Science.gov

Sample records for barrier plasma actuators

  1. Simulation Tool for Dielectric Barrier Discharge Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Likhanskii, Alexander

    2014-01-01

    Traditional approaches for active flow separation control using dielectric barrier discharge (DBD) plasma actuators are limited to relatively low speed flows and atmospheric conditions. This results in low feasibility of the DBDs for aerospace applications. For active flow control at turbine blades, fixed wings, and rotary wings and on hypersonic vehicles, DBD plasma actuators must perform at a wide range of conditions, including rarified flows and combustion mixtures. An efficient, comprehensive, physically based DBD simulation tool can optimize DBD plasma actuators for different operation conditions. Researchers are developing a DBD plasma actuator simulation tool for a wide range of ambient gas pressures. The tool will treat DBD using either kinetic, fluid, or hybrid models, depending on the DBD operational condition.

  2. Manufacturing of Dielectric Barrier Discharge Plasma Actuator for Degradation Resistance

    NASA Astrophysics Data System (ADS)

    Houser, Nicole M.

    The performance and broader application of dielectric barrier discharge (DBD) plasma actuators are restricted by the manufacturing methods currently employed. In the current work, two methodologies are proposed to build robust plasma actuators for active flow control; a protective silicone oil (PDMS) treatment for hand-cut and laid tape-based actuators and a microfabrication technique for glass-based devices. The microfabrication process, through which thin film electrodes are precisely deposited onto plasma-resistant glass substrates, is presented in detail. The resulting glass-based devices are characterized with respect to electrical properties and output for various operating conditions. The longevity of microfabricated devices is compared against silicone-treated and untreated hand-made devices of comparable geometries over 60 hours of continuous operation. Both tungsten and copper electrodes are considered for microfabricated devices. Human health effects are also considered in an electromagnetic field study of the area surrounding a live plasma actuator for various operating conditions.

  3. Modelling and simulation of single dielectric barrier discharge plasma actuators

    NASA Astrophysics Data System (ADS)

    Orlov, Dmitriy M.

    This work presents the study of the single-dielectric barrier discharge aerodynamic plasma actuator. The physics of the plasma discharge was studied through the time-resolved light intensity measurements of the plasma illumination. Plasma characteristics were obtained and analyzed for a range of applied voltage amplitudes and a.c. frequencies. Based on this data, electro-static and lumped-element circuit models were developed. The time-dependent charge distribution was used to provide boundary conditions to the electric field equation that was used to calculate the actuator body force vector. Numerical flow simulations were performed to study the effect of the plasma body force on the neutral fluid. The results agreed well with the experiments. An application of the plasma actuators to the leading-edge separation control on the NACA 0021 airfoil was studied numerically. The results were obtained for a range of angles of attack for uncontrolled flow, steady and unsteady plasma actuation. The aerodynamic stall of the airfoil was studied. Improvement in the airfoil characteristics was observed in numerical simulations at high angles of attack in cases with plasma actuation. The computational results corresponded very well with experimental observations.

  4. Optical Comparison of Single and Double Dielectric barrier plasma actuators

    NASA Astrophysics Data System (ADS)

    Hershkowitz, Noah; Oksuz, Lutfi; Hoskinson, Alan

    2009-11-01

    Time resolved ICCD pictures are taken for double and single surface barrier discharge plasma actuator for thick and thin powered electrodes. The filament and jet propagation minimum speeds are measured for both single and double barrier actuators. Optical emission spectra are measured using a monochromator. In a typical OES spectrum, O2, O^+, CO, OH, N, N2, N2^+ and also optical emission lines from exposed electrodes (stainless steel, copper and tungsten lines) were observed for single barrier actuators. The optical data are fit by SPECAIR code^1. The translational and rotational temperatures are found to be approximately room temperature while the vibrational temperatures were1700 K and 1200 K, the electron temperatures were 3200 K and 2400 K for thick and thin electrode respectively. The different regimes in a discharge will be discussed.

  5. Dielectric barrier discharge plasma actuator for flow control

    NASA Astrophysics Data System (ADS)

    Opaits, Dmitry Florievich

    Electrohydrodynamic (EHD) and magnetohydrodynamic phenomena are being widely studied for aerodynamic applications. The major effects of these phenomena are heating of the gas, body force generation, and enthalpy addition or extraction, [1, 2, 3]. In particular, asymmetric dielectric barrier discharge (DBD) plasma actuators are known to be effective EHD device in aerodynamic control, [4, 5]. Experiments have demonstrated their effectiveness in separation control, acoustic noise reduction, and other aeronautic applications. In contrast to conventional DBD actuators driven by sinusoidal voltages, we proposed and used a voltage profile consisting of nanosecond pulses superimposed on dc bias voltage. This produces what is essentially a non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The advantage of this non-self-sustained discharge is that the parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. Experimental studies were conducted of a flow induced in a quiescent room air by a single DBD actuator. A new approach for non-intrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low voltages. In view of practical applications certain questions have been also addressed, such as electrodynamic effects which accompany scaling of the actuators to real size models, and environmental effects of ozone production by the plasma actuators.

  6. Dielectric Barrier Discharge Plasma Actuator for Flow Control

    NASA Technical Reports Server (NTRS)

    Opaits, Dmitry, F.

    2012-01-01

    This report is Part II of the final report of NASA Cooperative Agreement contract no. NNX07AC02A. It includes a Ph.D. dissertation. The period of performance was January 1, 2007 to December 31, 2010. Part I of the final report is the overview published as NASA/CR-2012- 217654. Asymmetric dielectric barrier discharge (DBD) plasma actuators driven by nanosecond pulses superimposed on dc bias voltage are studied experimentally. This produces non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. The approach consisted of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low voltages. In view of practical applications certain questions have been also addressed, such as electrodynamic effects which accompany scaling of the actuators to real size models, and environmental effects of ozone production by the plasma actuators.

  7. Thrust Measurement of Dielectric Barrier Discharge (DBD) Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Ashpis, David E.; Laun, Matthew C.

    2013-11-01

    DBD plasma actuators generate a wall-jet that can be used for active flow control. We used an analytical balance to measure the thrust generated by the actuator, it is a common metric of its performance without external flow. We found that the measured force is afflicted by several problems; it drifts in time, not always repeatable, is unstable, and depends on the manner the voltage is applied. We report results of investigations of these issues. Tests were conducted on an actuator constructed of 1/4 inch thick high-density polyethylene (HDPE) dielectric with 100 mm long offset electrodes, with applied voltages up to 48 kV p-p and frequencies from 32 Hz to 2.5 kHz, and pure Sine and Trapezoidal waveforms. The relative humidity was in the range of 51-55%, corresponding to moisture range of 10,500 to13,000 ppm mass. Force readings were up to 500 mg, (approximately 50 mN/m). We found that the measured force is the net of the positive thrust generated by the wall-jet and an ``anti-thrust'' acting in the opposite direction. We propose a correction procedure that yields the plasma-generated thrust. The correction is based on voltage-dependent anti-thrust measured in the low frequency range of 20-40 Hz. We found that adjacent objects in a test setup affect the measured thrust, and verified it by comparing experiments with and without a metal enclosure, grounded and ungrounded. Uncorrected thrust varied by up to approximately +/-100%, and the corrected thrust variations were up to approximately 30%. Supported by NASA's FAP/Aerospace Sciences Project.

  8. Measurements and Simulations of Surface Dielectric Barrier Discharges Used as Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Hoskinson, Alan R.

    2012-01-01

    This report is a Ph.D. dissertation performed under NRA cooperative agreement and submitted as part of the final report. Asymmetric surface dielectric barrier discharges (DBDs) have shown promise for use as aerodynamic actuators for active flow control. In this project we studied DBD actuators experimentally and numerically. Our DBDs used a symmetric triangular high voltage waveform to generate plasma in atmospheric pressure air. Time-averaged measurements indicated that the induced force of a single barrier actuator design (one electrode insulated from the plasma) can be increased exponentially above the results of previous studies by decreasing both the length and thickness of the electrode exposed to the plasma. This increased force may allow these devices to control flow separation in a wider range of flow environments. Experiments using an intensified digital camera to examine the plasma on time scales of a few nanoseconds showed that, in addition to the previously-observed filamentary and jet-like plasma structures, discharges with very thin exposed electrodes exhibited a weak but constant plasma immediately adjacent to those electrodes. In double-barrier actuators (both electrodes insulated), decreasing the diameter of the narrower electrode lead to increasing forces, and recorded images showed the simultaneous existence of both filamentary and jet-like plasma structures. The development and application of a time-dependent, two-dimensional computational fluid plasma model has aided in understanding the detailed physics of surface DBDs at all-time scales. For simulated single-barrier discharges, the model qualitatively reproduced the filamentary and jet-like micro-discharge structures. The model was somewhat successful in reproducing the observed characteristics of double-barrier actuators. For both actuator geometries, the model indicated that the majority of the forces induced on the neutral gas occur in between micro-discharges as the plasmas decay.

  9. Analysis of local frequency response of flow to actuation: Application to the dielectric barrier discharge plasma actuator

    NASA Astrophysics Data System (ADS)

    Pereira, Ricardo; Kotsonis, Marios; de Oliveira, Gaël; Ragni, Daniele

    2015-10-01

    The present study provides a methodology to derive the local frequency response of flow under actuation, in terms of the magnitude of actuator induced perturbations. The method is applied to a dielectric barrier discharge (DBD) plasma actuator but can be extended to other kinds of pulsed actuation. The actuator body force term is introduced in the Navier-Stokes equations, from which the flow is locally approximated with a linear-time-invariant system. The proposed semi-phenomenological model includes the effect of both viscosity and external flow velocity, providing a system response in the frequency domain. A validity criterium is additionally devised for the estimation of the threshold frequency below which the developed approach can be applied. Analytical results are compared with experimental data for a typical DBD plasma actuator operating in quiescent flow and in a laminar boundary layer. Good agreement is obtained between analytical and experimental results for cases below the model validity threshold frequency. Results demonstrate an efficient and simple approach towards prediction of the response of a convective flow to pulsed actuation.

  10. Force Measurements of Single and Double Barrier DBD Plasma Actuators in Quiescent Air

    NASA Technical Reports Server (NTRS)

    Hoskinson, Alan R.; Hershkowitz, Noah; Ashpis, David E.

    2008-01-01

    We have performed measurements of the force induced by both single (one electrode insulated) and double (both electrodes insulated) dielectric barrier discharge plasma actuators in quiescent air. We have shown that, for single barrier actuators, as the electrode diameter decreased below those values previously studied the induced Force increases exponentially rather than linearly. This behavior has been experimentally verified using two different measurement techniques: stagnation probe measurements of the induced flow velocity and direct measurement of the force using an electronic balance. In addition, we have shown the the induced force is independent of the material used for the exposed electrode. The same techniques have shown that the induced force of a double barrier actuator increases with decreasing narrow electrode diameter.

  11. The Influence of Relative Humidity on Dielectric Barrier Discharge Plasma Flow Control Actuator Performance

    NASA Astrophysics Data System (ADS)

    Wicks, M.; Thomas, F. O.; Corke, T. C.; Patel, M.

    2012-11-01

    Dielectric barrier discharge (DBD) plasma actuators possess numerous advantages for flow control applications and have been the focus of several previous studies. Most work has been performed in relatively pristine laboratory settings. In actual flow control applications, however, it is essential to assess the impact of various environmental influences on actuator performance. As a first effort toward assessing a broad range of environmental effects on DBD actuator performance, the influence of relative humidity (RH) is considered. Actuator performance is quantified by force balance measurements of reactive thrust while RH is systematically varied via an ultrasonic humidifier. The DBD plasma actuator assembly, force balance, and ultrasonic humidifier are all contained inside a large, closed test chamber instrumented with RH and temperature sensors in order to accurately estimate the average RH at the actuator. Measurements of DBD actuator thrust as a function of RH for several different applied voltage regimes and dielectric materials and thicknesses are presented. Based on these results, several important design recommendations are made. This work was supported by Innovative Technology Applications Company (ITAC), LLC under a Small Business Innovation Research (SBIR) Phase II Contract No. N00014-11-C-0267 issued by the U.S. Department of the Navy.

  12. Phase effect on flow control for dielectric barrier plasma actuators

    SciTech Connect

    Singh, K. P.; Roy, Subrata

    2006-07-03

    Active control of flow has a wide range of applications. Specifically, mitigation of detachment due to the weakly ionized gas flow past a flat plate at an angle of attack is studied using two asymmetric sets of electrode pairs kept at a phase lag. The equations governing the dynamics of electrons, helium ions, and neutrals are solved self-consistently with charge-Poisson equation. The electrodynamic forces produced by two actuators largely depend on the relative phase between the potentials applied to rf electrodes and distance between them. A suitable phase and an optimum distance exist between two actuators for effective separation control.

  13. Parametric Investigation of Nanosecond Pulse Driven Dielectric Barrier Discharge Plasma Actuators for Aerodynamic Flow Control

    NASA Astrophysics Data System (ADS)

    Dawson, Robert; Little, Jesse

    2012-11-01

    Nanosecond pulse driven dielectric barrier discharge plasma actuators are studied experimentally in quiescent atmosphere. Per unit length peak energy and instantaneous peak power are calculated using simultaneous voltage and current measurements. Electrical characteristics are evaluated as a function of peak voltage, pulse frequency, discharge length and dielectric thickness. Schlieren imaging of compression waves is used to provide a relative measure of discharge energy that is coupled to the near surface gas as heat for the same parameters. Characteristics of the DBD load have a substantial effect on voltage and current traces which are reflected in the peak energy and peak power. Both peak energy and compression wave strength depend primarily on dielectric thickness and secondarily on actuator length although this is not universal in the case of energy necessitating examination of alternative calculation strategies. Peak power is mainly dependent on actuator length which is inconsistent with schlieren data as expected. Higher pulse frequency produces higher pulse energy, but is primarily attributed to heating of the actuator and power supply components. This effect is mainly observed for short actuators. Pulse energy increases as peak voltage to the power 3.5. This behavior is similar to observations of energy and thrust for ac-DBD plasma actuators suggesting that aspects of lumped-element circuit models may be applicable for optimizing ns-DBD performance.

  14. Characterization of nanosecond pulse driven dielectric barrier discharge plasma actuators for aerodynamic flow control

    NASA Astrophysics Data System (ADS)

    Dawson, Robert; Little, Jesse

    2013-03-01

    Positive polarity nanosecond pulse driven dielectric barrier discharge (ns-DBD) plasma actuators are studied experimentally in quiescent atmosphere. Pulse energy and instantaneous pulse power (hereafter referred to as energy and power) are calculated using simultaneous voltage and current measurements. Electrical characteristics are evaluated as a function of peak voltage, pulse frequency, discharge length, and dielectric thickness. Schlieren imaging is used to provide a relative estimate of discharge energy that is coupled to the near surface gas as heat for the same parameters. Characteristics of the DBD load have a substantial effect on the individual voltage and current traces which are reflected in the energy and power values. Power is mainly dependent on actuator length which is inconsistent with schlieren data as expected. Higher per unit length energy indicates a stronger compression wave for a given actuator geometry, but this is not universally true across different actuators suggesting some constructions more efficiently couple energy to the gas. Energy and compression wave strength are linearly related. Higher pulse frequency produces higher energy but is primarily attributed to heating of the actuator and power supply components and not to an optimal discharge frequency. Both energy and wave strength increase as peak voltage to the power of approximately 3.5 over a substantial range similar to ac-DBD plasma actuators.

  15. Energy deposition characteristics of nanosecond dielectric barrier discharge plasma actuators: Influence of dielectric material

    NASA Astrophysics Data System (ADS)

    Correale, G.; Winkel, R.; Kotsonis, M.

    2015-08-01

    An experimental study aimed at the characterization of energy deposition of nanosecond Dielectric Barrier Discharge (ns-DBD) plasma actuators was carried out. Special attention was given on the effect of the thickness and material used for dielectric barrier. The selected materials for this study were polyimide film (Kapton), polyamide based nylon (PA2200), and silicone rubber. Schlieren measurements were carried out in quiescent air conditions in order to observe density gradients induced by energy deposited. Size of heated area was used to qualify the energy deposition coupled with electrical power measurements performed using the back-current shunt technique. Additionally, light intensity measurements showed a different nature of discharge based upon the material used for barrier, for a fixed thickness and frequency of discharge. Finally, a characterisation study was performed for the three tested materials. Dielectric constant, volume resistivity, and thermal conductivity were measured. Strong trends between the control parameters and the energy deposited into the fluid during the discharge were observed. Results indicate that efficiency of energy deposition mechanism relative to the thickness of the barrier strongly depends upon the material used for the dielectric barrier itself. In general, a high dielectric strength and a low volumetric resistivity are preferred for a barrier, together with a high heat capacitance and a low thermal conductivity coefficient in order to maximize the efficiency of the thermal energy deposition induced by an ns-DBD plasma actuator.

  16. Simulation of an asymmetric single dielectric barrier plasma actuator

    SciTech Connect

    Singh, K.P.; Roy, Subrata

    2005-10-15

    Continuity equations governing electron and ion density are solved with Poisson's equation to obtain spatial and temporal profiles of electron density, ion density, and voltage. The motion of electrons and ions results in charge separation and generation of an electrostatic electric field. Electron deposition downstream of the overlap region of the electrode results in formation of a virtual negative electrode that always attracts the charge separation. The value of charge separation e(n{sub i}-n{sub e}) and the force per volume F=e(n{sub i}-n{sub e})E have been obtained near the dielectric surface for the 50th cycle. Domain integration of the force F=e(n{sub i}-n{sub e})E has been obtained for different plasma densities, frequencies, and rf voltage wave forms. The time average of the x force is positive and the y force is negative over the domain; therefore there is an average net force on the plasma in the positive x and negative y directions. This will result in a moving wave of plasma over the dielectric surface in the positive x direction, which can find application in flow control.

  17. Nanosecond pulsed sliding dielectric barrier discharge plasma actuator for airflow control: Electrical, optical, and mechanical characteristics

    NASA Astrophysics Data System (ADS)

    Bayoda, K. D.; Benard, N.; Moreau, E.

    2015-08-01

    Plasma actuators used for active flow control are widely studied because they could replace mechanical actuators. Industrial applications of these plasma actuators sometimes require a large surface plasma sheet in view of increasing the interaction region between the discharge and the incoming flow. Instead of using a typical two-electrode nanosecond pulsed dielectric barrier discharge for which the interaction region is limited to about 20 mm, this study proposes to characterize a nanosecond sliding discharge based on a three-electrode geometry in order to increase the extension length up to the electrode gap. This sliding discharge is compared to the typical nanosecond dielectric barrier discharge by means of electrical, optical, and mechanical diagnostics. Electrical characterization reveals that the deposited energy can be widely increased. Time-resolved Intensified Charge Coupled Device (iCCD) images of the discharge development over the dielectric surface highlight that the intensity and the propagation velocity of streamers are strongly affected by the DC voltage applied at the third electrode. Finally, qualitative and quantitative characterizations of the pressure wave due to the surrounding gas heating are proposed by means of Schlieren visualizations and high frequency pressure measurements, respectively.

  18. Dielectric Barrier Discharge (DBD) Plasma Actuators Thrust-Measurement Methodology Incorporating New Anti-Thrust Hypothesis

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Laun, Matthew C.

    2014-01-01

    We discuss thrust measurements of Dielectric Barrier Discharge (DBD) plasma actuators devices used for aerodynamic active flow control. After a review of our experience with conventional thrust measurement and significant non-repeatability of the results, we devised a suspended actuator test setup, and now present a methodology of thrust measurements with decreased uncertainty. The methodology consists of frequency scans at constant voltages. The procedure consists of increasing the frequency in a step-wise fashion from several Hz to the maximum frequency of several kHz, followed by frequency decrease back down to the start frequency of several Hz. This sequence is performed first at the highest voltage of interest, then repeated at lower voltages. The data in the descending frequency direction is more consistent and selected for reporting. Sample results show strong dependence of thrust on humidity which also affects the consistency and fluctuations of the measurements. We also observed negative values of thrust or "anti-thrust", at low frequencies between 4 Hz and up to 64 Hz. The anti-thrust is proportional to the mean-squared voltage and is frequency independent. Departures from the parabolic anti-thrust curve are correlated with appearance of visible plasma discharges. We propose the anti-thrust hypothesis. It states that the measured thrust is a sum of plasma thrust and anti-thrust, and assumes that the anti-thrust exists at all frequencies and voltages. The anti-thrust depends on actuator geometry and materials and on the test installation. It enables the separation of the plasma thrust from the measured total thrust. This approach enables more meaningful comparisons between actuators at different installations and laboratories. The dependence on test installation was validated by surrounding the actuator with a large diameter, grounded, metal sleeve.

  19. Dissipated power and induced velocity fields data of a micro single dielectric barrier discharge plasma actuator for active flow control.

    PubMed

    Pescini, E; Martnez, D S; De Giorgi, M G; Francioso, L; Ficarella, A

    2015-12-01

    In recent years, single dielectric barrier discharge (SDBD) plasma actuators have gained great interest among all the active flow control devices typically employed in aerospace and turbomachinery applications [1,2]. Compared with the macro SDBDs, the micro single dielectric barrier discharge (MSDBD) actuators showed a higher efficiency in conversion of input electrical power to delivered mechanical power [3,4]. This article provides data regarding the performances of a MSDBD plasma actuator [5,6]. The power dissipation values [5] and the experimental and numerical induced velocity fields [6] are provided. The present data support and enrich the research article entitled "Optimization of micro single dielectric barrier discharge plasma actuator models based on experimental velocity and body force fields" by Pescini et al. [6]. PMID:26425667

  20. Dissipated power and induced velocity fields data of a micro single dielectric barrier discharge plasma actuator for active flow control☆

    PubMed Central

    Pescini, E.; Martínez, D.S.; De Giorgi, M.G.; Francioso, L.; Ficarella, A.

    2015-01-01

    In recent years, single dielectric barrier discharge (SDBD) plasma actuators have gained great interest among all the active flow control devices typically employed in aerospace and turbomachinery applications [1,2]. Compared with the macro SDBDs, the micro single dielectric barrier discharge (MSDBD) actuators showed a higher efficiency in conversion of input electrical power to delivered mechanical power [3,4]. This article provides data regarding the performances of a MSDBD plasma actuator [5,6]. The power dissipation values [5] and the experimental and numerical induced velocity fields [6] are provided. The present data support and enrich the research article entitled “Optimization of micro single dielectric barrier discharge plasma actuator models based on experimental velocity and body force fields” by Pescini et al. [6]. PMID:26425667

  1. On the pulsating electric wind of a Single Dielectric Barrier Discharge (SDBD) plasma actuator

    NASA Astrophysics Data System (ADS)

    Vernet, Julie; Örlü, Ramis; Alfredsson, P. Henrik

    2014-11-01

    An experimental study is conducted on the electric wind produced by a Single Dielectric Barrier Discharge (SDBD) plasma actuator placed at the top of a half cylinder. Laser Doppler Velocimetry (LDV) measurements were performed and results show that increasing the driving voltage (6-16 kV peak-to-peak) and frequency (0.5-2 kHz) of the actuator increases the induced jet velocity (up to 4 m/s) and thus the momentum added by the actuator. The focus of the present study is on the phase-resolved behavior of the electric wind, in particular, its two strokes. Phase-averaged LDV data reveals that while the velocity during both strokes remains positive, there is nearly a factor of two in amplitude. The difference of behavior between the two strokes and its downstream and wall-normal evolution are mapped for various driving voltages. Results indicate that this difference is restricted to the vicinity of the actuator, thereby justifying the assumption of a steady force in simulations to model the induced force. The study is part of a larger investigation aiming at separation control on the A-pillar of a truck cabin. The support of the Swedish Energy Agency and SCANIA CV of the project Flow Research on Active and Novel Control Efficiency (FRANCE) is greatly acknowledged.

  2. Airflow influence on the discharge performance of dielectric barrier discharge plasma actuators

    SciTech Connect

    Kriegseis, J.; Tropea, C.; Grundmann, S.

    2012-07-15

    In the present work, the effect of the airflow on the performance of dielectric barrier discharge plasma-actuators is investigated experimentally. In order to analyze the actuator's performance, luminosity measurements have been carried out simultaneously with the recording of the relevant electrical parameters. A performance drop of about 10% is observed for the entire measured parameter range at a flow speed of M = 0.145 (U{sub {infinity}}=50 m/s). This insight is of particular importance, since the plasma-actuator control authority is already significantly reduced at this modest speed level. The results at higher Mach numbers (0.4

  3. Experimental investigation on a vectorized aerodynamic dielectric barrier discharge plasma actuator array

    NASA Astrophysics Data System (ADS)

    Neretti, Gabriele; Cristofolini, Andrea; Borghi, Carlo A.

    2014-04-01

    The Electro-Hydro-Dynamics (EHD) interaction, induced in atmospheric pressure still air by a surface dielectric barrier discharge (DBD) actuator, had been experimentally studied. A plasma aerodynamic actuator array, able to produce a vectorized jet, with the induced airflow oriented toward the desired direction, had been developed. The array was constituted by a sequence of single surface DBD actuators with kapton as dielectric material. An ac voltage in the range of 0-6 kV peak at 15 kHz had been used. The vectorization had been obtained by feeding the upper electrodes with different voltages and by varying the electrical connections. The lower electrodes had been connected either to ground or to the high voltage source, to produce the desired jet orientation and to avoid plasma formation acting in an undesired direction. Voltage and current measurements had been carried out to evaluate waveforms and to estimate the active power delivered to the discharge. Schlieren imaging allowed to visualize the induced jet and to estimate its orientation. Pitot measurements had been performed to obtain velocity profiles for all jet configurations. A proportional relation between the jet deflection angle and the applied voltage had been found. Moreover, a linear relation had been obtained between the maximum speed in the jet direction and the applied voltage. The active power of the discharge is approximated by both a power law function and an exponential function of the applied voltage.

  4. Dielectric barrier discharge plasma actuator to control turbulent flow downstream of a backward-facing step

    NASA Astrophysics Data System (ADS)

    Sujar-Garrido, P.; Benard, N.; Moreau, E.; Bonnet, J. P.

    2015-04-01

    The objective of these experiments was to determine the optimal forcing location and unsteady forcing actuation produced by a single dielectric barrier discharge plasma actuator for controlling the flow downstream of a backward-facing step. The investigated configuration is a 30-mm-height step mounted in a closed-loop wind tunnel. The flow velocity is fixed at 15 m/s, corresponding to a Reynolds number based on the step height equal to 3 × 104 ( Re θ = 1400). The control authority of the plasma discharge is highlighted by the time-averaged modification of the reattachment point and by the effects obtained on the turbulent dynamics of the reattached shear layer. Several locations of the device actuator are considered, and a parametric study of the input signal is investigated for each location. This procedure leads to the definition of an optimal control configuration regarding the minimization of the reattachment length. When the actuator—that produces an electrohydrodynamic force resulting in an electric wind jet—is located upstream the separation point, it can manipulate the first stages of the formation of the turbulent free shear layer and consequently to modify the flow dynamics. Maximum effects have been observed when the high voltage is burst modulated at a frequency f BM = 125 Hz with a duty-cycle of 50 %. This forcing corresponds to a Strouhal number based on the momentum thickness equal to 0.011, a value corresponding to the convective instability or Kelvin-Helmholtz instability of the separated shear layer.

  5. GASES, PLASMAS, AND ELECTRIC DISCHARGES: Optical Emission Spectroscopy Investigation of a Surface Dielectric Barrier Discharge Plasma Aerodynamic Actuator

    NASA Astrophysics Data System (ADS)

    Li, Ying-Hong; Wu, Yun; Jia, Min; Zhou, Zhang-Wen; Guo, Zhi-Gang; Pu, Yi-Kang

    2008-11-01

    The optical emission spectroscopy of a surface dielectric barrier discharge plasma aerodynamic actuator is investigated with different electrode configurations, applied voltages and driving frequencies. The rotational temperature of N2(C3∏u) molecule is calculated according to its rotational emission band near 380.5nm. The average electron energy of the discharge is evaluated by emission intensity ratio of first negative system to second positive system of N2. The rotational temperature is sensitive to the inner space of an electrode pair. The average electron energy shows insensitivity to the applied voltage, the driving frequency and the electrode configuration.

  6. Modeling and Simulation of Aerodynamic Single Dielectric Barrier Discharge Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Orlov, Dmitri; Font, Gabriel

    2008-11-01

    This work presents different approaches to modeling of the plasma actuator, an electrical flow control device, which is now widely used in aerodynamics for separation control, lift enhancement, drag reduction and flight control without moving surfaces. Study of the physics of the discharge in air at atmospheric pressure was performed using particle (PIC-DSMC) and fluid plasma simulations. Based on the experimentally obtained data electro-static and lumped-element circuit models were developed for engineering purposes. Numerical flow simulations were performed to study the effect of the plasma body force on the neutral fluid. The results agreed well with the experiments. An application of the plasma actuators to the leading-edge separation control on the NACA 0021 airfoil was studied numerically. The results were obtained for a range of angles of attack. Improvement in the airfoil characteristics was observed in numerical simulations at high angles of attack in cases with plasma actuation.

  7. Electrical and optical characteristics of the radio frequency surface dielectric barrier discharge plasma actuation

    NASA Astrophysics Data System (ADS)

    Wei-Long, Wang; Hui-Min, Song; Jun, Li; Min, Jia; Yun, Wu; Di, Jin

    2016-04-01

    Electrical characteristics and optical emission spectrum of the radio frequency (RF) surface dielectric barrier discharge (SDBD) plasma actuation are investigated experimentally in this paper. Influences of operating pressure, duty cycle and load power on the discharge are analyzed. When the operating pressure reaches 30 kPa, the discharge energy calculated from the Charge–Voltage (Q–V) Lissajous figure increases significantly, while the effective capacitance decreases remarkably. As the duty cycle of the applied voltage increases, the voltage–current waveforms, the area of Q–V loop and the capacity show no distinct changes. Below 40 W, effective capacitance increases with the increase of load power, but it almost remains unchanged when load power is between 40 W and 95 W. The relative intensity changes little as the operating pressure varies from 4 kPa to 100 kPa, while it rises evidently with the pressure below 4 kPa, which indicates that the RF discharge mode shifts from filamentary discharge to glow discharge at around 4 kPa. With the increase of load power, the relative intensity rises evidently. Additionally, the relative intensity is insensitive to the pressure, the duty cycle, and the load power. Project supported by the National Natural Science Foundation of China (Grant Nos. 11472306, 51276197, and 51336011).

  8. Simulation Tool for Dielectric Barrier Discharge Plasma Actuators at Atmospheric and Sub-Atmospheric Pressures: SBIR Phase I Final Report

    NASA Technical Reports Server (NTRS)

    Likhanskii, Alexandre

    2012-01-01

    This report is the final report of a SBIR Phase I project. It is identical to the final report submitted, after some proprietary information of administrative nature has been removed. The development of a numerical simulation tool for dielectric barrier discharge (DBD) plasma actuator is reported. The objectives of the project were to analyze and predict DBD operation at wide range of ambient gas pressures. It overcomes the limitations of traditional DBD codes which are limited to low-speed applications and have weak prediction capabilities. The software tool allows DBD actuator analysis and prediction for subsonic to hypersonic flow regime. The simulation tool is based on the VORPAL code developed by Tech-X Corporation. VORPAL's capability of modeling DBD plasma actuator at low pressures (0.1 to 10 torr) using kinetic plasma modeling approach, and at moderate to atmospheric pressures (1 to 10 atm) using hydrodynamic plasma modeling approach, were demonstrated. In addition, results of experiments with pulsed+bias DBD configuration that were performed for validation purposes are reported.

  9. Power consumption, discharge capacitance and light emission as measures for thrust production of dielectric barrier discharge plasma actuators

    SciTech Connect

    Kriegseis, J.; Grundmann, S.; Tropea, C.

    2011-07-01

    A new procedure of determining the time resolved capacitance of a plasma actuator during operation is introduced, representing a simple diagnostic tool that provides insight into the phenomenological behavior of plasma actuators. The procedure is demonstrated by presenting example correlations between consumed electrical energy, size of the plasma region, and the operating voltage. It is shown that the capacitance of a plasma actuator is considerably increased by the presence of the plasma; hence a system that has previously been impedance matched can be considerably de-tuned when varying the operating voltage of the actuator. Such information is fundamental for any attempts to increase the energy efficiency of plasma-actuator systems. A combined analysis of the capacitance, light emission, size of the plasma region, force production, and power consumption is presented.

  10. Time-resolved measurements of plasma-induced momentum in air and nitrogen under dielectric barrier discharge actuation

    NASA Astrophysics Data System (ADS)

    Leonov, Sergey; Opaits, Dmitry; Miles, Richard; Soloviev, Victor

    2010-11-01

    There has been much recent interest in boundary layer (BL) actuation by offset surface dielectric barrier discharges (SDBD). These discharges either act directly on the gas momentum through the mechanism of charge separation or they increase the flow stability through the creation of disturbances to the BL at a particular frequency. The objective of the work reported here is to clarify the physical mechanism of plasma-flow interaction. Two problems are considered in detail: the exact spatial/temporal distribution of the plasma-related force, and the specific role of negative ions in the net force budget. The experiments were made with an offset electrode configuration of SDBD at voltage amplitude U ≤12 kV and frequency f =0.02-2 kHz. The main data were obtained by time-resolved Pitot tube pressure measurements in air and nitrogen at atmospheric pressure. Three main features of SDBD behavior were considered. First, the strong inhomogeneity in the spatial distribution of the plasma-induced flow were detected. Second, the principal role of negative ions in plasma-induced flow generation was established. Third, the two types of gas disturbances were observed: the thermal effect and momentum transfer effect (ion wind). To explain the aforementioned features of SDBD behavior in air and nitrogen the results of numerical simulation have been used.

  11. Modeling of dielectric barrier discharge plasma actuators driven by repetitive nanosecond pulses

    SciTech Connect

    Likhanskii, Alexandre V.; Shneider, Mikhail N.; Macheret, Sergey O.; Miles, Richard B.

    2007-07-15

    A detailed physical model for an asymmetric dielectric barrier discharge (DBD) in air driven by repetitive nanosecond voltage pulses is developed. In particular, modeling of DBD with high voltage repetitive negative and positive nanosecond pulses combined with positive dc bias is carried out. Operation at high voltage is compared with operation at low voltage, highlighting the advantage of high voltages, however the effect of backward-directed breakdown in the case of negative pulses results in a decrease of the integral momentum transferred to the gas. The use of positive repetitive pulses with dc bias is demonstrated to be promising for DBD performance improvement. The effects of the voltage waveform not only on force magnitude, but also on the spatial profile of the force, are shown. The crucial role of background photoionization in numerical modeling of ionization waves (streamers) in DBD plasmas is demonstrated.

  12. Mechanisms for laminar separated-flow control using dielectric-barrier-discharge plasma actuator at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Sato, Makoto; Nonomura, Taku; Okada, Koichi; Asada, Kengo; Aono, Hikaru; Yakeno, Aiko; Abe, Yoshiaki; Fujii, Kozo

    2015-11-01

    Large-eddy simulations have been conducted to investigate the mechanisms of separated-flow control using a dielectric barrier discharge plasma actuator at a low Reynolds number. In the present study, the mechanisms are classified according to the means of momentum injection to the boundary layer. The separated flow around the NACA 0015 airfoil at a Reynolds number of 63 000 is used as the base flow for separation control. Both normal and burst mode actuations are adopted in separation control. The burst frequency non-dimensionalized by the freestream velocity and the chord length (F+) is varied from 0.25 to 25, and we discuss the control mechanism through the comparison of the aerodynamic performance and controlled flow-fields in each normal and burst case. Lift and drag coefficients are significantly improved for the cases of F+ = 1, 5, and 15 due to flow reattachment associated with a laminar-separation bubble. Frequency and linear stability analyses indicate that the F+ = 5 and 15 cases effectively excite the natural unstable frequency at the separated shear layer, which is caused by the Kelvin-Helmholtz instability. This excitation results in earlier flow reattachment due to earlier turbulent transition. Furthermore, the Reynolds stress decomposition is conducted in order to identify the means of momentum entrainment resulted from large-scale spanwise vortical structure or small-scale turbulent vortices. For the cases with flow reattachment, the large-scale spanwise vortices, which shed from the separated shear layer through plasma actuation, significantly increase the periodic component of the Reynolds stress near the leading edge. These large-scale vortices collapse to small-scale turbulent vortices, and the turbulent component of the Reynolds stress increases around the large-scale vortices. In these cases, although the combination of momentum entrainment by both Reynolds stress components results in flow reattachment, the dominant component is identified as the turbulent component. This indicates that one of the effective control mechanisms for laminar separation is momentum entrainment by turbulent vortices through turbulent transition.

  13. Model-based and adaptive laminar-flow control via dielectric-barrier-discharge plasma actuators: an experimental comparison

    NASA Astrophysics Data System (ADS)

    Fabbiane, Nicolò; Simon, Bernhard; Grundmann, Sven; Bagheri, Shervin; Henningson, Dan S.

    2014-11-01

    This work compares two of the mostly investigated reactive-control techniques in delaying the laminar-to-turbulence transition in boundary-layer (BL) flows: a Linear Quadratic Gaussian (LQG) regulator and a Filtered-X Least Mean Squares (FXLMS) algorithm. The two compensators are compared on damping 2D TS-waves excited via both single-frequency and white-noise disturbances in a zero-pressure-gradient BL flow. Surface hot-wire sensors are used to detect the incoming waves and measure the effectiveness of the control action that is provided by a dielectric-barrier-discharge plasma actuator positioned between the two sensors. Based on DNS of the experimental set-up a linear reduced order model is built using the Eigensystem Realization Algorithm and used for the LQG design. The two control techniques show comparable performances when tested at their design condition. However, when tested off-design the LQG compensator shows a stronger sensitivity to model variations. If the free-stream velocity is changed, the LQG regulator estimates a wrong phase information of the incoming disturbance resulting in a less effective control action. The FXLMS compensator, instead, is capable to adapt to the new condition and prescribe the correct phase information with no significant performance loss.

  14. Plasma actuators for bluff body flow control

    NASA Astrophysics Data System (ADS)

    Kozlov, Alexey V.

    The aerodynamic plasma actuators have shown to be efficient flow control devices in various applications. In this study the results of flow control experiments utilizing single dielectric barrier discharge plasma actuators to control flow separation and unsteady vortex shedding from a circular cylinder in cross-flow are reported. This work is motivated by the need to reduce landing gear noise for commercial transport aircraft via an effective streamlining created by the actuators. The experiments are performed at Re D = 20,000...164,000. Circular cylinders in cross-flow are chosen for study since they represent a generic flow geometry that is similar in all essential aspects to a landing gear oleo or strut. The minimization of the unsteady flow separation from the models and associated large-scale wake vorticity by using actuators reduces the radiated aerodynamic noise. Using either steady or unsteady actuation at ReD = 25,000, Karman shedding is totally eliminated, turbulence levels in the wake decrease significantly and near-field sound pressure levels are reduced by 13.3 dB. Unsteady actuation at an excitation frequency of St D = 1 is found to be most effective. The unsteady actuation also has the advantage that total suppression of shedding is achieved for a duty cycle of only 25%. However, since unsteady actuation is associated with an unsteady body force and produces a tone at the actuation frequency, steady actuation is more suitable for noise control applications. Two actuation strategies are used at ReD = 82,000: spanwise and streamwise oriented actuators. Near field microphone measurements in an anechoic wind tunnel and detailed study of the near wake using LDA are presented in the study. Both spanwise and streamwise actuators give nearly the same noise reduction level of 11.2 dB and 14.2 dB, respectively, and similar changes in the wake velocity profiles. The contribution of the actuator induced noise is found to be small compared to the natural shedding noise. A tandem cylinder configuration with the plasma actuation on the upstream cylinder is investigated using surface dynamic pressure sensors. As a result of the plasma actuation, the surface pressure fluctuations on the downstream cylinder are reduced by about two times at the free-stream velocity of 40 m/s (ReD = 164,000). In addition, this study presents the results of a parametric experimental investigation aimed at optimizing the body force produced by single dielectric barrier discharge (SDBD) plasma actuators used for aerodynamic flow control. A primary goal of the study is the improvement of actuator authority for flow control applications at higher Reynolds number than previously possible. The study examines the effects of dielectric material and thickness, applied voltage amplitude and frequency, voltage waveform, exposed electrode geometry, covered electrode width and multiple actuator arrays. The metric used to evaluate the performance of the actuator in each case is the measured actuator-induced thrust which is proportional to the total body force. It is demonstrated that actuators constructed with thick dielectric material of low dielectric constant and operated at low frequency AC voltage produce a body force that is an order of magnitude larger than that obtained by the Kapton-based actuators used in many previous plasma flow control studies. These actuators allow operation at much higher applied voltages without the formation of discrete streamers which lead to body force saturation.

  15. Flow control of an elongated jet in cross-flow: Film cooling effectiveness enhancement using surface dielectric barrier discharge plasma actuator

    NASA Astrophysics Data System (ADS)

    Audier, P.; Fénot, M.; Bénard, N.; Moreau, E.

    2016-02-01

    The case presented here deals with plasma flow control applied to a cross-flow configuration, more specifically to a film cooling system. The ability of a plasma dielectric barrier discharge actuator for film cooling effectiveness enhancement is investigated through an experimental set-up, including a film injection from an elongated slot into a thermally uniform cross-flow. Two-dimensional particle image velocimetry and infrared-thermography measurements are performed for three different blowing ratios of M = 0.4, 0.5, and 1. Results show that the effectiveness can be increased when the discharge is switched on, as predicted by the numerical results available in literature. Whatever the blowing ratio, the actuator induces a deflection of the jet flow towards the wall, increases its momentum, and delays its diffusion in the cross-flow.

  16. Microscale plasma actuators for improved thrust density

    SciTech Connect

    Wang, C.-C.; Roy, Subrata

    2009-07-01

    We present a study of the dielectric barrier discharge (DBD) plasma actuators for microscale applications. Traditional macroscale DBD actuators suffer from relatively small actuation effect as characterized by small induced force density and resulting flow velocity. As a remedy we propose microscale plasma actuators that may induce orders of magnitude higher force density. We study the physics of such actuation using a multiscale ionized gas flow code based on the high-fidelity finite-element procedure. First, a two-dimensional volume discharge with nitrogen as a working gas is investigated using a first-principles approach solving coupled system of hydrodynamic plasma equations and Poisson equation for ion density, electron density, and electric field distribution. The quasi-neutral plasma and the sheath regions are identified. As the gap between electrodes is reduced, the sheath structure dominates the plasma region. Second, we simulate a first generation plasma micropump. We solve multiscale plasma-gas interaction inside a two-dimensional cross section of the microscale pump geometry. The result shows that a reasonable mass flow rate can be pumped using a set of small active electrodes.

  17. Dielectric barrier discharge-based plasma actuator operation in artificial atmospheres for validation of modeling and simulation

    NASA Astrophysics Data System (ADS)

    Mangina, R. S.; Enloe, C. L.; Font, G. I.

    2015-11-01

    We present an experimental case study of time-resolved force production by an aerodynamic plasma actuator immersed in various mixtures of electropositive (N2) and electronegative gases (O2 and SF6) at atmospheric pressure using a fixed AC high-voltage input of 16 kV peak amplitude at 200 Hz frequency. We have observed distinct changes in the discharge structures during both negative- and positive-going voltage half-cycles, with corresponding variations in the actuator's force production: a ratio of 4:1 in the impulse produced by the negative-going half-cycle of the discharge among the various gas mixtures we explored, 2:1 in the impulse produced by the positive-going half-cycle, and cases in which the negative-going half-cycle dominates force production (by a ratio of 1.5:1), where the half-cycles produce identical force levels, and where the positive-going half cycle dominates (by a ratio of 1:5). We also present time-resolved experimental evidence for the first time that shows electrons do play a significant role in the momentum coupling to surrounding neutrals during the negative going voltage half-cycle of the N2 discharge. We show that there is sufficient macroscopic variation in the plasma that the predictions of numerical models at the microscopic level can be validated even though the plasma itself cannot be measured directly on those spatial and temporal scales.

  18. Dielectric barrier discharge-based plasma actuator operation in artificial atmospheres for validation of modeling and simulation

    SciTech Connect

    Mangina, R. S.; Enloe, C. L.; Font, G. I.

    2015-11-15

    We present an experimental case study of time-resolved force production by an aerodynamic plasma actuator immersed in various mixtures of electropositive (N{sub 2}) and electronegative gases (O{sub 2} and SF{sub 6}) at atmospheric pressure using a fixed AC high-voltage input of 16 kV peak amplitude at 200 Hz frequency. We have observed distinct changes in the discharge structures during both negative- and positive-going voltage half-cycles, with corresponding variations in the actuator's force production: a ratio of 4:1 in the impulse produced by the negative-going half-cycle of the discharge among the various gas mixtures we explored, 2:1 in the impulse produced by the positive-going half-cycle, and cases in which the negative-going half-cycle dominates force production (by a ratio of 1.5:1), where the half-cycles produce identical force levels, and where the positive-going half cycle dominates (by a ratio of 1:5). We also present time-resolved experimental evidence for the first time that shows electrons do play a significant role in the momentum coupling to surrounding neutrals during the negative going voltage half-cycle of the N{sub 2} discharge. We show that there is sufficient macroscopic variation in the plasma that the predictions of numerical models at the microscopic level can be validated even though the plasma itself cannot be measured directly on those spatial and temporal scales.

  19. Thrust Measurement of Dielectric Barrier Discharge (DBD) Plasma Actuators: New Anti-Thrust Hypothesis, Frequency Sweeps Methodology, Humidity and Enclosure Effects

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Laun, Matthew C.

    2014-01-01

    We discuss thrust measurements of Dielectric Barrier Discharge (DBD) plasma actuators devices used for aerodynamic active flow control. After a review of our experience with conventional thrust measurement and significant non-repeatability of the results, we devised a suspended actuator test setup, and now present a methodology of thrust measurements with decreased uncertainty. The methodology consists of frequency scans at constant voltages. The procedure consists of increasing the frequency in a step-wise fashion from several Hz to the maximum frequency of several kHz, followed by frequency decrease back down to the start frequency of several Hz. This sequence is performed first at the highest voltage of interest, then repeated at lower voltages. The data in the descending frequency direction is more consistent and selected for reporting. Sample results show strong dependence of thrust on humidity which also affects the consistency and fluctuations of the measurements. We also observed negative values of thrust, or "anti-thrust", at low frequencies between 4 Hz and up to 64 Hz. The anti-thrust is proportional to the mean-squared voltage and is frequency independent. Departures from the parabolic anti-thrust curve are correlated with appearance of visible plasma discharges. We propose the anti-thrust hypothesis. It states that the measured thrust is a sum of plasma thrust and anti-thrust, and assumes that the anti-thrust exists at all frequencies and voltages. The anti-thrust depends on actuator geometry and materials and on the test installation. It enables the separation of the plasma thrust from the measured total thrust. This approach enables more meaningful comparisons between actuators at different installations and laboratories. The dependence on test installation was validated by surrounding the actuator with a grounded large-diameter metal sleeve. Strong dependence on humidity is also shown; the thrust significantly increased with decreasing humidity, e.g., 44 percent increase as relative humidity changed from 18 percent and dew point 33 degF to 50 percent and dew point of 57 degF.

  20. Improving Wind Turbine Efficiency with Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Cooney, John; Corke, Thomas; Nelson, Robert

    2010-11-01

    As increasing the efficiency of modern wind turbines becomes more difficult, the use of active flow control now represents a more attractive means of possible improvement. This ongoing study examines utilizing single dielectric barrier discharge (SDBD) plasma actuators on wind turbine rotors to increase power generation. Blade element momentum (BEM) theory is used to identify regimes with the greatest potential for improvement and to estimate possible gains. Wind tunnel tests are conducted with plasma actuators to determine the amount of aerodynamic control achievable. In addition, the scope of a new "Laboratory for Enhanced Wind Energy Design" is outlined. Most critically, this resource includes two full-scale wind turbines to balance the known limitations of existing theory and wind tunnel testing by providing the capability to test novel blade designs and control strategies in the field.

  1. Experimental Study of the Unsteady Actuation Effect on Induced Flow Characteristics in DBD Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Sohrab Gholamhosein, Pouryoussefi; Masoud, Mirzaei

    2015-05-01

    The main aim of this paper is to investigate unsteady actuation effects on the operation of dielectric barrier discharge (DBD) plasma actuators and to study induced flow characteristics of steady and unsteady actuators in quiescent air. The parameters affecting the operation of unsteady plasma actuators were experimentally measured and compared with the ones for steady actuators. The effects of excitation frequency and duty cycle on the induced flow pattern properties were studied by means of hot-wire anemometers, and the smoke visualization method was also used. It was observed that the current and the mean induced velocity linearly increase with increasing duty cycle while they are not sensitive to excitation frequency. Furthermore, with increasing excitation frequency, the magnitude of vortices shedding from the actuator decreases while their frequency increases. Nevertheless, when the excitation frequency grows beyond a certain level, the induced flow downstream of the actuator behaves as a steady flow. However, the results for steady actuators show that by increasing the applied voltage and carrier frequency, the velocity of the induced flow first increases and then decreases with actuator saturation and the onset of the emission of streaky glow discharge.

  2. Separation Control on Generic ROBIN Rotorcraft Fuselage Using Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Coleman, Dustin

    2011-11-01

    Active flow control, in the form of dielectric barrier discharge (DBD) plasma actuators, is applied to a NASA ROBIN mod7 generic rotorcraft fuselage model. The control objective is reduce the massive 3-D flow separation occurring over the aft ramp section of the fuselage, thereby improving the vehicle flight characteristics. The plasma actuation methods investigated include: plasma streamwise vortex generators (PSVGs), as well as steady and unsteady spanwise actuation, combined with passive geometric modifications to the ramp section. Experiments were conducted at freestream Mach and Reynolds numbers of M∞ = 0 . 12 and ReL = 2 . 65 ×106 , respectively. Aerodynamic loads from each technique were quantified by means of 3-component force balance measurements (drag, lift, and pitching moment), a 128 count static pressure array, and time-resolved PIV wake surveys. Results are compared with previous studies that utilized active flow control in the form of pulsed jets and combustion actuators.

  3. Airflow acceleration performance of asymmetric surface dielectric barrier discharge actuators at different exposed needle electrode heights

    NASA Astrophysics Data System (ADS)

    Yang, Liang; Yan, Hui-Jie; Qi, Xiao-Hua; Hua, Yue; Ren, Chun-Sheng

    2015-12-01

    The use of plasma, created by asymmetric surface dielectric barrier discharge (ASDBD), as aerodynamic actuators to control airflows, has been of widespread concern over the past decades. For the single ASDBD, the actuator performance is dependent on the geometry of actuator and the produced plasma. In this work, a new electrode configuration, i.e., a row of needle, is taken as an exposed electrode for the ASDBD plasma actuator, and the electrode height is adjustable. The effects of different electrode heights on the airflow acceleration behavior are experimentally investigated by measuring surface potential distribution, ionic wind velocity, and mean thrust force production. It is demonstrated that the airflow velocity and thrust force increase with the exposed electrode height and the best actuator performance can be obtained when the exposed electrode is adjusted to an appropriate height. The difference, as analyzed, is mainly due to the distinct plasma spatial distributions at different exposed electrode heights.

  4. Robust, Flexible and Lightweight Dielectric Barrier Discharge Actuators Using Nanofoams/Aerogels

    NASA Technical Reports Server (NTRS)

    Sauti, Godfrey (Inventor); Xu, Tian-Bing (Inventor); Siochi, Emilie J. (Inventor); Wilkinson, Stephen P. (Inventor); Meador, Mary Ann B. (Inventor); Guo, Haiquan N. (Inventor)

    2015-01-01

    Robust, flexible, lightweight, low profile enhanced performance dielectric barrier discharge actuators (plasma actuators) based on aerogels/nanofoams with controlled pore size and size distribution as well as pore shape. The plasma actuators offer high body force as well as high force to weight ratios (thrust density). The flexibility and mechanical robustness of the actuators allows them to be shaped to conform to the surface to which they are applied. Carbon nanotube (CNT) based electrodes serve to further decrease the weight and profile of the actuators while maintaining flexibility while insulating nano-inclusions in the matrix enable tailoring of the mechanical properties. Such actuators are required for flow control in aeronautics and moving machinery such as wind turbines, noise abatement in landing gear and rotary wing aircraft and other applications.

  5. Energy and force prediction for a nanosecond pulsed dielectric barrier discharge actuator

    NASA Astrophysics Data System (ADS)

    Wang, Chin-Cheng; Roy, Subrata

    2012-05-01

    A three-species physical model is presented for dielectric barrier discharge (DBD) actuator under atmospheric pressure. The governing equations are solved for temporal and spatial distribution of electric potential and charge species using the finite element based multiscale ionized gas flow code. The plasma model is loosely coupled with compressible Navier-Stokes equations through momentum and energy source terms. Two cases of rf powered and nanosecond pulsed barrier discharge actuators are simulated. Based on the imparted time average electrohydrodynamic force and power deposition to the neutral gas, the nanosecond pulsed DBD actuator creates significant pressure variations within few microseconds. These results are in reasonable agreement with recently reported experimental shadow images.

  6. Use of Plasma Actuators as a Moving-Wake Generator

    NASA Technical Reports Server (NTRS)

    Corke, Thomas C.; Thomas, Flint O.; Klapetzky Michael J.

    2007-01-01

    The work documented in this report tests the concept of using plasma actuators as a simple and easy way to generate a simulated moving-wake and the disturbances associated with it in turbines. This wake is caused by the blades of the upstream stages of the turbine. Two types of devices, one constructed of arrays of NACA 0018 airfoils, and the one constructed of flat plates were studied. The airfoils or plates were equipped with surface mounted dielectric barrier discharge (DBD) plasma actuators, which were used to generate flow disturbances resembling moving-wakes. CTA hot-wire anemometry and flow visualization using a smoke-wire were used to investigate the wake independence at various spacings and downstream locations. The flat plates were found to produce better results than the airfoils in creating large velocity fluctuations in the free-stream flow. Different dielectric materials, plasma actuator locations, leading edge contours, angles of attack and plate spacings were investigated, some with positive results. The magnitudes of the velocity fluctuations were found to be comparable to existing mechanical moving-wake generators, thus proving the feasibility of using plasma actuators as a moving-wake generator.

  7. Dielectric barrier discharge actuator for vehicle drag reduction at highway speeds

    NASA Astrophysics Data System (ADS)

    Roy, Subrata; Zhao, Pengfei; DasGupta, Arnob; Soni, Jignesh

    2016-02-01

    We propose and demonstrate reduction of aerodynamic drag for a realistic geometry at highway speeds using serpentine dielectric barrier discharge actuators. A comparable linear plasma actuator fails to reduce the drag at these speeds. Experimental data collected for linear and serpentine plasma actuators under quiescent operating conditions show that the serpentine design has profound effect on near wall flow structure and resulting drag. For certain actuator arrangement, the measured drag reduced by over 14% at 26.8 m/s (60 mph) and over 10% at 31.3 m/s (70 mph) opening up realistic possibility of reasonable energy savings for full scale ground vehicles. In addition, the power consumption data and drag reduction effectiveness for different input signals are also presented.

  8. Experimental Study on DBD Plasma Actuator with Combination of AC and Nanosecond Pulse Voltage

    NASA Astrophysics Data System (ADS)

    Kimura, Taichi; Udagawa(Takashima, Keisuke; Yamasaki, Hiroyuki

    In the last decade, a Dielectric Barrier Discharge (DBD) plasma actuator driven by combination voltage of AC and nanosecond pulse has been studied. The combined-voltage-driven plasma actuator increased the body force effect, which induces wall jet and flow suction, by overlapping nanosecond pulse voltage while DBD plasma actuator driven by nanosecond pulses is a flow control actuator generating compression waves due to pulse heating, which allows us to do active flow control in high speed flow reported up to Mach number 0.7. In this study, DBD plasma actuator driven by combination voltage of sinusoidal AC and nanosecond pulse has been experimentally studied. Time-averaged net thrust and cycle-averaged power consumption of actuator were characterized by electrical weight balance and charge-voltage cycle of DBD plasma actuator, respectively. The plasma actuator thrust driven with the combination voltage enhanced its thrust with pulse repetition rate increase. Energy consumption in the actuator was controlled by varying AC phase when the nanosecond pulse is applied. Therefore, the thrust and power consumption in the actuator was almost independently controlled by pulse repetition rate and pulse imposed phase.

  9. Three-dimensional effects of curved plasma actuators in quiescent air

    SciTech Connect

    Wang Chincheng; Durscher, Ryan; Roy, Subrata

    2011-04-15

    This paper presents results on a new class of curved plasma actuators for the inducement of three-dimensional vortical structures. The nature of the fluid flow inducement on a flat plate, in quiescent conditions, due to four different shapes of dielectric barrier discharge (DBD) plasma actuators is numerically investigated. The three-dimensional plasma kinetic equations are solved using our in-house, finite element based, multiscale ionized gas (MIG) flow code. Numerical results show electron temperature and three dimensional plasma force vectors for four shapes, which include linear, triangular, serpentine, and square actuators. Three-dimensional effects such as pinching and spreading the neighboring fluid are observed for serpentine and square actuators. The mechanisms of vorticity generation for DBD actuators are discussed. Also the influence of geometric wavelength ({lambda}) and amplitude ({Lambda}) of the serpentine and square actuators on vectored thrust inducement is predicted. This results in these actuators producing significantly better flow mixing downstream as compared to the standard linear actuator. Increasing the wavelengths of serpentine and square actuators in the spanwise direction is shown to enhance the pinching effect giving a much higher vertical velocity. On the contrary, changing the amplitude of the curved actuator varies the streamwise velocity significantly influencing the near wall jet. Experimental data for a serpentine actuator are also reported for validation purpose.

  10. Three-dimensional effects of curved plasma actuators in quiescent air

    NASA Astrophysics Data System (ADS)

    Wang, Chin-Cheng; Durscher, Ryan; Roy, Subrata

    2011-04-01

    This paper presents results on a new class of curved plasma actuators for the inducement of three-dimensional vortical structures. The nature of the fluid flow inducement on a flat plate, in quiescent conditions, due to four different shapes of dielectric barrier discharge (DBD) plasma actuators is numerically investigated. The three-dimensional plasma kinetic equations are solved using our in-house, finite element based, multiscale ionized gas (MIG) flow code. Numerical results show electron temperature and three dimensional plasma force vectors for four shapes, which include linear, triangular, serpentine, and square actuators. Three-dimensional effects such as pinching and spreading the neighboring fluid are observed for serpentine and square actuators. The mechanisms of vorticity generation for DBD actuators are discussed. Also the influence of geometric wavelength (?) and amplitude (?) of the serpentine and square actuators on vectored thrust inducement is predicted. This results in these actuators producing significantly better flow mixing downstream as compared to the standard linear actuator. Increasing the wavelengths of serpentine and square actuators in the spanwise direction is shown to enhance the pinching effect giving a much higher vertical velocity. On the contrary, changing the amplitude of the curved actuator varies the streamwise velocity significantly influencing the near wall jet. Experimental data for a serpentine actuator are also reported for validation purpose.

  11. The manipulation of an unstarting supersonic flow by plasma actuator

    NASA Astrophysics Data System (ADS)

    Im, S.; Do, H.; Cappelli, M. A.

    2012-12-01

    The manipulation of an unstarting supersonic flow is demonstrated using a dielectric barrier discharge (DBD). Experiments are carried out in a Mach 4.7 model inlet flow. Flow features, such as boundary layers and shockwaves at low freestream static pressure (1 kPa) and temperature (60 K) are visualized with Rayleigh scattering from condensed CO2 particles. Flow unstart, initiated by mass injection, is studied for three model inlet flow configurations, distinguished by the initial conditions (untripped or tripped, plasma actuated or not) of the boundary layers. Unstart in the presence of thick, tripped boundary layers is characterized by the formation of an oblique unstart shock just upstream of a separating and propagating boundary layer. The presence of plasma actuation of this tripped boundary layer seems to arrest the boundary layer separation and leads to the formation of a quasi-stationary pseudo-shock, delaying unstart. The flow generated with DBD actuation is more characteristic of what is seen when unstart is generated in a model flow in which thin boundary layers grow naturally. Planar laser Rayleigh scattering visualizations suggest that the DBD actuation thins the tripped boundary layer over the exposed electrode region.

  12. Investigation of flow separation control by nanosecond pulsed dielectric barrier discharge actuators

    NASA Astrophysics Data System (ADS)

    Grech, N.; Leyland, P.; Peschke, Ph.; Ott, P.

    2015-06-01

    The ability of nanosecond pulsed dielectric barrier discharge (DBD) actuators to control flow separation was investigated on a NACA (National Advisory Committee for Aeronautics) 0015 profile for velocities up to 24 m/s (Re = 230,000). The optimal location for the actuator was determined from oil flow experiments. Moderate voltage levels were applied (3 and 6 kV) and the actuator was operated at frequencies ranging from 0.058 to 10 kHz in pulse and burst modes. The peak effectiveness of the actuator occurred at reduced frequency values of around 1. Plasma influence was observed at all tested angles of attack (up to 26°) and the stall angle was delayed by 8°.

  13. Scalability of Localized Arc Filament Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2008-01-01

    Temporal flow control of a jet has been widely studied in the past to enhance jet mixing or reduce jet noise. Most of this research, however, has been done using small diameter low Reynolds number jets that often have little resemblance to the much larger jets common in real world applications because the flow actuators available lacked either the power or bandwidth to sufficiently impact these larger higher energy jets. The Localized Arc Filament Plasma Actuators (LAFPA), developed at the Ohio State University (OSU), have demonstrated the ability to impact a small high speed jet in experiments conducted at OSU and the power to perturb a larger high Reynolds number jet in experiments conducted at the NASA Glenn Research Center. However, the response measured in the large-scale experiments was significantly reduced for the same number of actuators compared to the jet response found in the small-scale experiments. A computational study has been initiated to simulate the LAFPA system with additional actuators on a large-scale jet to determine the number of actuators required to achieve the same desired response for a given jet diameter. Central to this computational study is a model for the LAFPA that both accurately represents the physics of the actuator and can be implemented into a computational fluid dynamics solver. One possible model, based on pressure waves created by the rapid localized heating that occurs at the actuator, is investigated using simplified axisymmetric simulations. The results of these simulations will be used to determine the validity of the model before more realistic and time consuming three-dimensional simulations are conducted to ultimately determine the scalability of the LAFPA system.

  14. Precursor Flow Separation Detection Using Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Bowles, Patrick; Corke, Thomas

    2008-11-01

    A method for detecting incipient flow separation using plasma actuators is presented. The detection scheme relies upon the receptivity of the flow to unsteady disturbances that are introduced by the flow actuator. The receptivity to the unsteady disturbances is heightened as the flow approaches the separation limit, and subsequently can be detected downstream. This is demonstrated on a dynamically pitching airfoil that progresses through a dynamic stall cycle. A plasma actuator is located at the leading edge and pulsed at a frequency that is optimal to re-attach the flow. A pressure sensor monitors the unsteady pressure disturbances on the suction-side of the airfoil. Short-time Fourier analysis and Wavelet analysis capture the time-frequency behavior of the pressure sensor time series. Simultaneous flow visualization using a high-speed camera aid in elucidating the fluid response to the actuator input. The method not only provides a precursor for flow separation, but also an indicator when conditions exist where active re-attachment control is no longer needed. A closed-loop, feedback control scheme based on this is demonstrated.

  15. Comparisons of Force Measurement Methods for DBD Plasma Actuators in Quiescent Air

    NASA Technical Reports Server (NTRS)

    Hoskinson, Alan R.; Hershkowitz, Noah; Ashpis, David E.

    2009-01-01

    We have performed measurements of the force induced by both single (one electrode insulated) and double (both electrodes insulated) dielectric barrier discharge plasma actuators in quiescent air. We have shown that, for single barrier actuators with cylindrical exposed electrodes, as the electrode diameter decrease the force efficiencies increase much faster than a previously reported linear trend. This behavior has been experimentally verified using two different measurement techniques: stagnation probe measurements of the induced flow velocity and direct measurement of the force using an electronic balance. Actuators with rectangular cross-section exposed electrodes do not show the same rapid increase at small thicknesses. We have also shown that the induced force is independent of the material used for the exposed electrode. The same techniques have shown that the induced force of a double barrier actuator increases with decreasing narrow electrode diameter.

  16. Shock Generation and Control Using DBD Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Patel, Mehul P.; Cain, Alan B.; Nelson, Christopher C.; Corke, Thomas C.; Matlis, Eric H.

    2012-01-01

    This report is the final report of a NASA Phase I SBIR contract, with some revisions to remove company proprietary data. The Shock Boundary Layer Interaction (SBLI) phenomena in a supersonic inlet involve mutual interaction of oblique shocks with boundary layers, forcing the boundary layer to separate from the inlet wall. To improve the inlet efficiency, it is desired to prevent or delay shock-induced boundary layer separation. In this effort, Innovative Technology Applications Company (ITAC), LLC and the University of Notre Dame (UND) jointly investigated the use of dielectric-barrier-discharge (DBD) plasma actuators for control of SBLI in a supersonic inlet. The research investigated the potential for DBD plasma actuators to suppress flow separation caused by a shock in a turbulent boundary layer. The research involved both numerical and experimental investigations of plasma flow control for a few different SBLI configurations: (a) a 12 wedge flow test case at Mach 1.5 (numerical and experimental), (b) an impinging shock test case at Mach 1.5 using an airfoil as a shock generator (numerical and experimental), and (c) a Mach 2.0 nozzle flow case in a simulated 15 X 15 cm wind tunnel with a shock generator (numerical). Numerical studies were performed for all three test cases to examine the feasibility of plasma flow control concepts. These results were used to guide the wind tunnel experiments conducted on the Mach 1.5 12 degree wedge flow (case a) and the Mach 1.5 impinging shock test case (case b) which were at similar flow conditions as the corresponding numerical studies to obtain experimental evidence of plasma control effects for SBLI control. The experiments also generated data that were used in validating the numerical studies for the baseline cases (without plasma actuators). The experiments were conducted in a Mach 1.5 test section in the University of Notre Dame Hessert Laboratory. The simulation results from cases a and b indicated that multiple spanwise actuators in series and at a voltage of 75 kVp-p could fully suppress the flow separation downstream of the shock. The simulation results from case c showed that the streamwise plasma actuators are highly effective in creating pairs of counter-rotating vortices, much like the mechanical vortex generators, and could also potentially have beneficial effects for SBLI control. However, to achieve these effects, the positioning and the quantity of the DBD actuators used must be optimized. The wind tunnel experiments mapped the baseline flow with good agreement to the numerical simulations. The experimental results were conducted with spanwise actuators for cases a and b, but were limited by the inability to generate a sufficiently high voltage due to arcing in the wind-tunnel test-section. The static pressure in the tunnel was lower than the static pressure in an inlet at flight conditions, promoting arching and degrading the actuator performance.

  17. Study of Unsteady Flow Actuation Produced by Surface Plasma Actuator on 2-D Airfoil

    NASA Astrophysics Data System (ADS)

    Phan, Minh Khang; Shin, Jichul

    2014-10-01

    Effect of flow actuation driven by low current continuous or pulsed DC surface glow discharge plasma actuator is studied. Schlieren image of induced flow on flat plate taken at a high repetition rate reveals that the actuation is mostly initiated near the cathode. Assuming that the actuation is mostly achieved by ions in the cathode sheath region, numerical model for the source of flow actuation is obtained by analytical estimation of ion pressure force created in DC plasma sheath near the cathode and added in momentum equation as a body force term. Modeled plasma flow actuator is simulated with NACA0012 airfoil oscillating over a certain range of angle of attack (AoA) at specific reduced frequencies of airfoil. By changing actuation authority according to the change in AoA, stabilization of unsteady flow field is improved and hence steady aerodynamic performance can be maintained. Computational result shows that plasma actuation is only effective in modifying aerodynamic characteristics of separated flow. It turns out that plasma pulse frequency should be tuned for optimal performance depending on phase angle and rotating speed. The actuation authority can be parameterized by a ratio between plasma pulse frequency and reduced frequency.

  18. Investigation of microscale dielectric barrier discharge plasma devices

    NASA Astrophysics Data System (ADS)

    Zito, Justin C.

    This dissertation presents research performed on reduced-scale dielectric barrier discharge (DBD) plasma actuators. A first generation of microscale DBD actuators are designed and manufactured using polymeric dielectric layers, and successfully demonstrate operation at reduced scales. The actuators are 1 cm long and vary in width from tens of microns to several millimeters. A thin-film polymer or ceramic material is used as the dielectric barrier with thicknesses from 5 to 20 microns. The devices are characterized for their electrical, fluidic and mechanical performance. With electrical input of 5 kVpp, 1 kHz, the microscale DBD actuators induce a wall jet with velocity reaching up to 2 m/s and produce 3.5 mN/m of thrust, while consuming an average power of 20 W/m. A 5 mN/m plasma body force was observed, acting on the surrounding air. Failure of the microscale DBD actuators is investigated using thermal measurements of the dielectric surface in addition to both optical and scanning electron microscopy. The cause of device failure is identified as erosion of the dielectric surface due to collisions with ions from the discharge. A second generation of microscale actuators is then designed and manufactured using a more reliable dielectric material, namely silicon dioxide. These actuators demonstrate a significant improvement in device lifetime compared with first-generation microscale DBD actuators. The increase in actuator lifetime allowed the electrical, fluidic and mechanical characterization to be repeated over several input voltages and frequencies. At 7 kVpp, 1 kHz, the actuators with SiO2 dielectric induced velocities up to 1.5 m/s and demonstrated 1.4 mN/m of thrust while consuming an average power of 41 W/m. The plasma body force reached up to 2.5 mN/m. Depending on electrical input, the induced velocity and thrust span an order of magnitude in range. Comparisons are made with macroscale DBD actuators which relate the actuator's output performance and power consumption with the mass and volume of the actuator design. The small size and of microscale DBD actuators reduces its weight and power requirements, making them attractive for portable or battery-powered applications (e.g., on UAVs).

  19. Influence of circulation on a rounded-trailing-edge airfoil using plasma actuators

    NASA Astrophysics Data System (ADS)

    Kotsonis, Marios; Pul, Robin; Veldhuis, Leo

    2014-07-01

    An experimental study on influence of circulation around a symmetric airfoil with a rounded trailing edge is presented. Flow control is achieved by the use of dielectric barrier discharge plasma actuators placed at the trailing edge of the airfoil. Direct lift and drag measurements are taken using an external load balance at freestream velocities of 10, 15 and 20 m/s corresponding to chord Reynolds number of 140,000, 210,000, 280,000. Additionally, time-resolved particle image velocimetry is used in order to elucidate the topology and dynamical response of the wake flow under the influence of actuation. Results indicate an increase in lift coefficient of approximately 0.1 for the lowest tested Reynolds number using the plasma actuator. Flowfield measurements indicate the successful manipulation of the Kutta condition enabled by the plasma actuator. The actuator is enhancing the mixing of the wake near the trailing edge while reducing the dominant shedding frequency. Proper orthogonal decomposition analysis reveals further details regarding the dynamics of the wake flow in presence of actuation, suggesting the sensitivity of the control concept to the positioning of the actuator as well as the angle of attack.

  20. Evaluation of Dielectric-Barrier-Discharge Actuator Substrate Materials

    NASA Technical Reports Server (NTRS)

    Wilkinson, Stephen P.; Siochi, Emilie J.; Sauti, Godfrey; Xu, Tian-Bing; Meador, Mary Ann; Guo, Haiquan

    2014-01-01

    A key, enabling element of a dielectric barrier discharge (DBD) actuator is the dielectric substrate material. While various investigators have studied the performance of different homogeneous materials, most often in the context of related DBD experiments, fundamental studies focused solely on the dielectric materials have received less attention. The purpose of this study was to conduct an experimental assessment of the body-force-generating performance of a wide range of dielectric materials in search of opportunities to improve DBD actuator performance. Materials studied included commonly available plastics and glasses as well as a custom-fabricated polyimide aerogel. Diagnostics included static induced thrust, electrical circuit parameters for 2D surface discharges and 1D volume discharges, and dielectric material properties. Lumped-parameter circuit simulations for the 1D case were conducted showing good correspondence to experimental data provided that stray capacitances are included. The effect of atmospheric humidity on DBD performance was studied showing a large influence on thrust. The main conclusion is that for homogeneous, dielectric materials at forcing voltages less than that required for streamer formation, the material chemical composition appears to have no effect on body force generation when actuator impedance is properly accounted for.

  1. Noise control of subsonic cavity flows using plasma actuated receptive channels

    NASA Astrophysics Data System (ADS)

    Das Gupta, Arnob; Roy, Subrata

    2014-12-01

    We introduce a passive receptive rectangular channel at the trailing edge of an open rectangular cavity to reduce the acoustic tones generated due to coherent shear layer impingement. The channel is numerically tested at Mach 0.3 using an unsteady three-dimensional large eddy simulation. Results show reduction in pressure fluctuations in the cavity due to which sound pressure levels are suppressed. Two linear dielectric barrier discharge plasma actuators are placed inside the channel to enhance the flow through it. Specifically, acoustic suppression of 7 dB was obtained for Mach 0.3 flow with the plasma actuated channel. Also, the drag coefficient for the cavity reduced by over three folds for the channel and over eight folds for the plasma actuated channel. Such a channel can be useful in noise and drag reduction for various applications, including weapons bay, landing gear and branched piping systems.

  2. Turbine Tip Clearance Active Flow Control using Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Vanness, Daniel

    2005-11-01

    A low-speed linear cascade was used to examine the tip gap leakage flow and leakage vortex that exists within the low pressure turbine stage of a gas-turbine engine. The cascade array is composed of nine Pratt & Whitney ``PakB" blades, with the center blade having a variable tip gap up to five percent chord. Reynolds numbers based on axial chord varied from 10^4 to 10^5. Static pressure taps located at the midspan and near the tip of the blade were used to characterize the blade pressure distribution. A five-hole probe was also traversed in the downstream blade wake to ascertain velocity vectors and total pressure loss. Flow control in the form of a single-dielectric-barrier plasma actuator mounted on the blade tip was used to alter the leakage vortex by acting on the blade tip separation bubble, the blade tip shear layer instability, or the gap flow jet instability through the production of high frequency unsteady disturbances. The flow was documented through measurements with and without flow control for varying tip gaps and Reynolds numbers. The effect of the actuation on the tip leakage vortex and efficiency are investigated.

  3. Supersonic cavity flow control using plasma actuators

    NASA Astrophysics Data System (ADS)

    Webb, Nathan; Omari, Dennis; Samimy, Mo

    2015-11-01

    Flow over cavities with a length to depth ratio of order 1 undergo so called ``Rossiter'' resonance for certain combinations of free stream Mach number, upstream boundary layer characteristics, and cavity length. This is caused by the amplification of natural perturbations in the cavity shear layer by the Kelvin-Helmholtz instability. The amplified perturbations in the shear layer grow and roll up into large-scale structures, which interact with the trailing edge of the cavity. This interaction produces acoustic waves that travel upstream and further perturb the shear layer. If the timing/phase is correct, a feedback loop is formed. Artificial perturbations can be used to alter the resonance condition and thus the flow characteristics. In the past we used Localized Arc Filament Plasma Actuators (LAFPAs) to perturb the shear layer of a subsonic cavity and demonstrated significant control authority to suppress or excite resonance. This work seeks to examine control authority of the LAFPAs in the supersonic regime. Experiments conducted with a supersonic cavity demonstrated the LAFPAs retain the ability to suppress or excite resonance. The ability to either excite or suppress resonance, as needed, is required in some applications. Supported by AFRL.

  4. Low speed axial compressor stall margin improvement by unsteady plasma actuation

    NASA Astrophysics Data System (ADS)

    Li, Gang; Xu, Yanji; Yang, Lingyuan; Du, Wei; Zhu, Junqiang; Nie, Chaoqun

    2014-04-01

    This research investigates the use of single dielectric barrier discharge (SDBD) actuators for energizing the tip leakage flow to suppress rotating stall inception and extend the stable operating range of a low speed axial compressor with a single rotor. The jet induced by the plasma actuator adds momentum to the flow in the tip region and has a significant impact on the tip-gap flow. Experiments are carried out on a low speed axial compressor with a single rotor. The static pressure is measured at both the rotor inlet and outlet. The flow coefficient and pressure rise coefficient are calculated. Then the characteristic line is acquired to show the overall performance of the compressor. With unsteady plasma actuation of 18kV and 60W the compressor stability range improvement is realized at rotor speed of 1500 r/min — 2400 r/min.

  5. On the possibility of laminar flow control on a swept wing by means of plasma actuators

    NASA Astrophysics Data System (ADS)

    Chernyshev, S. L.; Kuryachii, A. P.; Manuilovich, S. V.; Rusyanov, D. A.; Skvortsov, V. V.

    2015-06-01

    Theoretical assessment of the possibility of laminar flow control (LFC) on a swept wing owing to volumetric force and heat impact of plasma actuators is presented. The proposed approach includes numerical modeling of dielectric barrier discharge (DBD) actuators, calculation of inviscid flow over an infinite span swept wing, calculation of compressible boundary layer spatially modulated in spanwise direction, and numerical solution of linear stability problem for stationary modes of cross-flow-type disturbances. Calculations have been performed for one set of geometrical and physical parameters describing plasma actuators to estimate qualitative features of volumetric force and heat input distributions. Inviscid flow and boundary layer calculations were executed at free stream parameters corresponding to typical cruise flight conditions. Estimation of volumetric force impact necessary for noticeable influence on cross-flowtype instability is obtained.

  6. Ionic wind measurements on multi-tip plasma actuators

    NASA Astrophysics Data System (ADS)

    Messanelli, F.; Belan, M.

    2016-03-01

    This work presents an experimental investigation about the effects of triangular tips on the active electrodes of plasma actuators. The tests are performed on two sets of actuators, corona and DBD, parameterized by means of the tip sharpness and the tips number per unit length. A total number of 30 actuators is considered. The devices are evaluated on the basis of the far field ionic wind velocity, that has been chosen as a representative test common to both kinds of actuator. The dataset includes velocity profiles and maps, that can be integrated to give mass ows and electromechanical effciencies. Some results are also presented in the parameter space defined by tip sharpness and tips number per unit length: this gives the chance of defining optimal electrode shapes within each set. In general, the longitudinal velocity of the gas increases downstream of the tips in all the actuators tested, but the velocity field is modified to different extents in the two kinds of actuators, and is more complicated for the DBDs than for the coronas. The tips also increase the effciency of all the actuators, particularly for the corona set, where even the stability is remarkably improved.

  7. Development of DBD plasma actuators: The double encapsulated electrode

    NASA Astrophysics Data System (ADS)

    Erfani, Rasool; Zare-Behtash, Hossein; Hale, Craig; Kontis, Konstantinos

    2015-04-01

    Plasma actuators are electrical devices that generate a wall bounded jet without the use of any moving parts. For aerodynamic applications they can be used as flow control devices to delay separation and augment lift on a wing. The standard plasma actuator consists of a single encapsulated (ground) electrode. The aim of this project is to investigate the effect of varying the number and distribution of encapsulated electrodes in the dielectric layer. Utilising a transformer cascade, a variety of input voltages are studied for their effect. In the quiescent environment of a Faraday cage the velocity flow field is recorded using particle image velocimetry. Through understanding of the mechanisms involved in producing the wall jet and the importance of the encapsulated electrode a novel actuator design is proposed. The actuator design distributes the encapsulated electrode throughout the dielectric layer. The experiments have shown that actuators with a shallow initial encapsulated electrode induce velocities greater than the baseline case at the same voltage. Actuators with a deep initial encapsulated electrode are able to induce the highest velocities as they can operate at higher voltages without breakdown of the dielectric.

  8. The use of plasma actuators for bluff body broadband noise control

    NASA Astrophysics Data System (ADS)

    Li, Yong; Zhang, Xin; Huang, Xun

    2010-08-01

    Experiments were conducted using plasma actuators to control broadband noise generated by a bluff body flow. The motivation behind the study was to explore the potential of plasma actuators to reduce landing gear noise during approach phase of an aircraft. The control effectiveness of both dielectric barrier discharge and sliding discharge plasma actuators were tested in laboratory environment, using a representative bluff body consisting of a circular cylinder and an oblique strut. Noise measurements were taken in an anechoic chamber using a phased microphone array and far-field microphones. Results showed that the upstream directed plasma forcing, located at ±90 deg on the upstream cylinder with respect to the approaching flow, could effectively attenuate the broadband noise radiated from the wake flow interaction with the downstream strut. With the same AC electrical power consumption, the sliding discharge with additional DC voltage was found to be more effective due to its elongated plasma distribution and higher induced flow momentum. Measurements using particle image velocimetry suggested that the flow speed impinging on the downstream strut was reduced by the upstream plasma forcing, contributing to the reduced noise.

  9. Flow control in low pressure turbine blades using plasma actuators

    NASA Astrophysics Data System (ADS)

    Ramakumar, Karthik

    2005-11-01

    An experimental study of plasma flow control actuators for flow separation control in low pressure turbine (LPT) blades is presented. The actuator arrangement consists of two copper strips separated by a dielectric medium with an input voltage of approximately 5kV and a frequency input varying from 3-5 kHz, creating a region of plasma used for boundary layer flow control. The effect of varying waveform on control efficacy is investigated using sine, square and saw tooth waveforms. The impact of duty cycle and forcing frequency on both displacement and momentum thickness are also examined. Boundary layer measurements are carried out using PIV while measurements of the wake downstream are performed using a 7-hole probe for Reynolds number ranging from 30,000 to 50,000. Separation is fully controlled in most configurations and boundary layer parameters reveal that the actuator entrains the free-stream flow at the actuator location and creates a region of high turbulence, essentially behaving similar to an active boundary layer trip. A small region of reversed flow near the surface indicates the presence of cross-stream vortical structures. The use of plasma synthetic jet actuators flow LPT flow control is also discussed.

  10. A rapidly settled closed-loop control for airfoil aerodynamics based on plasma actuation

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Wong, C. W.; Wang, L.; Lu, Z.; Zhu, Y.; Zhou, Y.

    2015-08-01

    This paper presents an experimental investigation on the response of the slope seeking with extended Kalman filter (EKF) deployed in a closed-loop system for airfoil aerodynamics control. A novel dielectric barrier discharge (DBD) plasma actuator was used to manipulate the flow around the NACA 0015 airfoil. Experiments were performed under different freestream velocities U ∞, covering the chord Reynolds number Re from 4.4 × 104 to 7.7 × 104. Firstly, the advantages of applying this DBD plasma actuator (hereafter called sawtooth plasma actuator) on the airfoil were examined in an open-loop system at Re = 7.7 × 104. The sawtooth plasma actuator led to a delay in the stall angle α stall by 5° and an increase in the maximum lift coefficient by about 9 %. On the other hand, at the same input power, the traditional DBD plasma actuator managed a delay in α stall by only 3° and an increase in by about 3 %. Secondly, the convergence time t c of the lift force F L at Re from 4.4 × 104 to 7.7 × 104 was investigated for two closed-loop systems. It has been demonstrated that the t c was about 70 % less under the slope seeking with EKF than that under the conventional slope seeking with high-pass (HP) and low-pass (LP) filters at Re = 7.7 × 104. The reduction in t c was also observed at a different Re. Finally, the slope seeking with EKF showed excellent robustness over a moderate Re range; that is, the voltage amplitude determined by the control algorithm promptly responded to a change in Re, much faster than that of the conventional slope seeking with HP and LP filters.

  11. Stabilisation of a three-dimensional boundary layer by base-flow manipulation using plasma actuators

    NASA Astrophysics Data System (ADS)

    Dörr, P. C.; Kloker, M. J.

    2015-07-01

    The applicability of dielectric barrier discharge plasma actuators for controlling the crossflow-vortex-induced laminar breakdown in a three-dimensional swept-wing-type boundary-layer flow is investigated using direct numerical simulation. Similar to the classical application of suction at the wall the aim is to modify the quasi two-dimensional base flow and to weaken primary crossflow (CF) instability, mainly due to a reduction of the basic CF. Not only localised volumetric forcing by plasma actuators but also CF counter-blowing and spots with a moving wall are investigated to identify effective fundamental mechanisms. It is found that counter blowing always results in partial blockage of the flow and eventually increased CF velocity, whereas moving-wall spots can slightly reduce the CF and the amplitude of crossflow vortices. Using discrete volumetric forcing a significant attenuation even of finite-amplitude crossflow vortices and thus a distinct transition delay is achieved.

  12. Reduction of aerodynamic friction drag of moving bodies using a Microwave-Dielectric-Barrier-Discharge actuator controlling the boundary layer

    NASA Astrophysics Data System (ADS)

    Pierre, Thiery

    2015-11-01

    A new plasma device named M-DBD (Microwave Dielectric Barrier Discharge) is used for controlling the boundary layer in order to reduce the drag force. A compact resonant UHF structure comprising a resonant element in the form of a quarter-wave antenna creates a mini-plasma insulated from the UHF electrodes by mica sheets. Additional electrodes induce an electric field in the plasma and transiently move the ions of the plasma. The high collision rate with the neutral molecules induce the global transient flow of the neutral gas. The temporal variation of the applied electric field is chosen in order to obtain a modification of the local boundary layer. First tests using an array of M-DBD plasma actuators are underway (see Patent ref. WO 2014111469 A1).

  13. Experimental Investigation on Aerodynamic Control of a Wing with Distributed Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Han, Menghu; Li, Jun; Liang, Hua; Niu, Zhongguo; Zhao, Guangyin

    2015-06-01

    Experimental investigation of active flow control on the aerodynamic performance of a flying wing is conducted. Subsonic wind tunnel tests are performed using a model of a 35° swept flying wing with an nanosecond dielectric barrier discharge (NS-DBD) plasma actuator, which is installed symmetrically on the wing leading edge. The lift and drag coefficient, lift-to-drag ratio and pitching moment coefficient are tested by a six-component force balance for a range of angles of attack. The results indicate that a 44.5% increase in the lift coefficient, a 34.2% decrease in the drag coefficient and a 22.4% increase in the maximum lift-to-drag ratio can be achieved as compared with the baseline case. The effects of several actuation parameters are also investigated, and the results show that control efficiency demonstrates a strong dependence on actuation location and frequency. Furthermore, we highlight the use of distributed plasma actuators at the leading edge to enhance the aerodynamic performance, giving insight into the different mechanism of separation control and vortex control, which shows tremendous potential in practical flow control for a broad range of angles of attack. supported by National Natural Science Foundation of China (Nos. 51276197, 51207169 and 51336011)

  14. Nanosecond-pulsed plasma actuation in quiescent air and laminar boundary layer

    NASA Astrophysics Data System (ADS)

    Correale, G.; Michelis, T.; Ragni, D.; Kotsonis, M.; Scarano, F.

    2014-03-01

    An experimental investigation of the working principles of a nanosecond-pulsed dielectric barrier discharge (ns-DBD) plasma actuator has been conducted. Special emphasis is given on the thermal effects accompanying the rapid deposition of energy associated with this kind of actuation. A ns-DBD plasma actuator has been operated in quiescent air conditions as well as in a flat plate laminar boundary layer, with external flow velocity of 5 and 10 m s-1. Schlieren imaging and particle image velocimetry have been used to characterize the actuation. Additionally, the back-current shunt technique has been used for current measurements, from which energy input (per pulse) is calculated. Cases of 10-, 20- and 50-pulse bursts are tested. Schlieren imaging in still air conditions shows the formation of a high-temperature region in the vicinity of the discharge volume. The spatial extent of the visible ‘hot spot’ depends upon the number of pulses within the burst, following a power law. Schlieren imaging of the span-wise effect of the plasma actuator reveals weak compression waves originating from the loci of discharge filaments. The thermal ‘hot spots’ exhibit significant three-dimensionality. Particle image velocimetry is used to measure the velocity field resulting from the ns-DBDs acting on a laminar boundary layer. The disturbance leads to formation of a Tollmien-Schlichting wave train, with spectral content in good agreement with linear stability theory. It is observed that the group length of the wave train is proportional to the number of pulses within the burst.

  15. A plasma aerodynamic actuator supplied by a multilevel generator operating with different voltage waveforms

    NASA Astrophysics Data System (ADS)

    Borghi, Carlo A.; Cristofolini, Andrea; Grandi, Gabriele; Neretti, Gabriele; Seri, Paolo

    2015-08-01

    In this work a high voltage—high frequency generator for the power supply of a dielectric barrier discharge (DBD) plasma actuator for the aerodynamic control obtained by the electro-hydro-dynamic (EHD) interaction is described and tested. The generator can produce different voltage waveforms. The operating frequency is independent of the load characteristics and does not require impedance matching. The peak-to-peak voltage is 30 kV at a frequency up to 20 kHz and time variation rates up to 60 kV μs-1. The performance of the actuator when supplied by several voltage waveforms is investigated. The tests have been performed in still air at atmospheric pressure. Voltage and current time behaviors have been measured. The evaluation of the energy delivered to the actuator allowed the estimation of the periods in which the plasma was ignited. Vibrational and rotational temperatures of the plasma have been estimated through spectroscopic acquisitions. The flow field induced in the region above the surface of the DBD actuator has been studied and the EHD conversion efficiency has been evaluated for the voltage waveforms investigated. The nearly sinusoidal multilevel voltage of the proposed generator and the sinusoidal voltage waveform of a conventional ac generator obtain comparable plasma features, EHD effects, and efficiencies. Inverse saw tooth waveform presents the highest effects and efficiency. The rectangular waveform generates suitable EHD effects but with the lowest efficiency. The voltage waveforms that induce plasmas with higher rotational temperatures are less efficient for the conversion of the electric into kinetic energy.

  16. Experimental investigation of effects of airflows on plasma-assisted combustion actuator characteristics

    NASA Astrophysics Data System (ADS)

    Liu, Xing-Jian; He, Li-Ming; Yu, Jin-Lu; Zhang, Hua-Lei

    2015-04-01

    The effects of the airflow on plasma-assisted combustion actuator (PACA) characteristics are studied in detail. The plasma is characterized electrically, as well as optically with a spectrometer. Our results show that the airflow has an obvious influence on the PACA characteristics. The breakdown voltage and vibrational temperature decrease, while the discharge power increases compared with the stationary airflow. The memory effect of metastable state species and the transportation characteristics of charged particles in microdischarge channel are the dominant causes for the variations of the breakdown voltage and discharge power, respectively, and the vibrational temperature calculated in this work can describe the electron energy of the dielectric barrier discharge plasma in PACA. These results offer new perspectives for the use of PACA in plasma-assisted combustion. Project supported by the National Natural Science Foundation of China (Grant Nos. 51436008, 50776100, and 51106179).

  17. Simulation of DBD plasma actuators, and nanoparticle-plasma interactions in argon-hydrogen CCP RF discharges

    NASA Astrophysics Data System (ADS)

    Mamunuru, Meenakshi

    The focus of this work is modeling and simulation of low temperature plasma discharges (LTPs). The first part of the thesis consists of the study of dielectric barrier (DBD) plasma actuators. Use of DBD plasma actuators on airfoil surfaces is a promising method for increasing airfoil efficiency. Actuators produce a surface discharge that causes time averaged thrust in the neutral gas. The thrust modifies the boundary layer properties of the flow and prevents the occurrence of separation bubbles. In simulating the working of an actuator, the focus is on the spatial characteristics of the thrust produced by the discharge over very short time and space scales. The results provide an understanding of the causes of thrust, and the basic principles behind the actuator operation. The second part of this work focusses on low pressure plasma discharges used for silicon nanoparticle synthesis. When reactive semiconductor precursor gases are passed through capacitively coupled plasma (CCP) radio frequency (RF) reactors, nano sized particles are formed. When the reactors are operated at high enough powers, a very high fraction of the nanoparticles are crystallized in the chamber. Nanoparticle crystallization in plasma is a very complex process and not yet fully understood. It can be inferred from experiments that bulk and surface processes initiated due to energetic ion impaction of the nanoparticles are responsible for reordering of silicon atoms, causing crystallization. Therefore, study of plasma-particle interactions is the first step towards understanding how particles are crystallized. The specific focus of this work is to investigate the experimental evidence that hydrogen gas presence in argon discharges used for silicon nanocrystal synthesis, leads to a superior quality of nanocrystals. Influence of hydrogen gas on plasma composition and discharge characteristics is studied. Via Monte Carlo simulation, distribution of ion energy impacting particles surface is studied. It is seen that hydrogen ions cause a reduction in particle floating potential, thereby lowering the ion impaction energies. The hydrogen ion current is also effective in delivering increased number of atomic H radicals to the particle surface, which are known to promote particle crystallization. The work therefore sheds light on the ways in which trace amount of hydrogen gas participates in silicon nanoparticle crystallization in argon silane plasma.

  18. Experimental Study of RailPAc Plasma Actuator for High-Authority Aerodynamic Flow Control in One Atmosphere

    NASA Astrophysics Data System (ADS)

    Gray, Miles; Choi, Young-Joon; Raja, Laxminarayan; Sirohi, Jayant

    2014-10-01

    Dielectric barrier discharge (DBD) actuators, a type of electrohydrodynamic (EHD) plasma actuator, have generated considerable interest in recent years. However, theoretical performance limitations hinder their application for high speed flows. Magnetohydrodynamic (MHD) plasma actuators with higher control authority circumvent these limitations, offering an excellent alternative. The rail plasma actuator (RailPAc) is an MHD actuator which uses Lorentz force to impart momentum to the surrounding air. RailPAc functions by generating a fast propagating arc column between two rail electrodes that accelerate the arc through J × B forces in a self-induced B-field. The arc column drags the surrounding air to induce aerodynamic flow motion. Our study of the RailPAc will include a description of the transient arc discharge structure through high-speed imaging and a description of the arc composition and temperature through time-resolved emission spectroscopy. Time-resolved force measurements quantify momentum transfer from the arc to the surrounding air and provides a direct measure of the actuator control authority.

  19. Demonstration of Separation Control Using Glow-Discharge Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Ashpis, David E.

    2003-01-01

    Active flow control of boundary-layer separation using glow-discharge plasma actuators is studied experimentally. Separation is induced on a flat plate installed in a closed-circuit wind tunnel by a shaped insert on the opposite wall. The flow conditions represent flow over the suction surface of a modem low-pressure-turbine airfoil. The Reynolds number, based on wetted plate length and nominal exit velocity, is varied from 50,000 to 300,000, covering cruise to takeoff conditions. Low (0.2%) and high (2.5%) free-stream turbulence intensities are set using passive grids. A spanwise-oriented phased-plasma-array actuator, fabricated on a printed circuit board, is surface-flush-mounted upstream of the separation point and can provide forcing in a wide frequency range. Static surface pressure measurements and hot-wire anemometry of the base and controlled flows are performed and indicate that the glow-discharge plasma actuator is an effective device for separation control.

  20. Demonstration of Separation Delay with Glow-Discharge Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Ashpis, David E.

    2004-01-01

    Active flow control of boundary-layer separation using glow-discharge plasma actuators is studied experimentally. Separation is induced on a flat plate installed in a closed-circuit wind tunnel by a shaped insert on the opposite wall. The flow conditions represent flow over the suction surface of a modern low-pressure-turbine airfoil. The Reynolds number, based on wetted plate length and nominal exit velocity, is varied from 50,000 to 300,000, covering cruise to takeoff conditions. Low (0.2 percent) and high (2.5 percent) free-stream turbulence intensities are set using passive grids. A spanwise-oriented phased-plasma-array actuator, fabricated on a printed circuit board, is surface-flush-mounted upstream of the separation point and can provide forcing in a wide frequency range. Static surface pressure measurements and hot-wire anemometry of the base and controlled flows are performed and indicate that the glow-discharge plasma actuator is an effective device for separation control.

  1. Plasma actuator electron density measurement using microwave perturbation method

    SciTech Connect

    Mirhosseini, Farid; Colpitts, Bruce

    2014-07-21

    A cylindrical dielectric barrier discharge plasma under five different pressures is generated in an evacuated glass tube. This plasma volume is located at the center of a rectangular copper waveguide cavity, where the electric field is maximum for the first mode and the magnetic field is very close to zero. The microwave perturbation method is used to measure electron density and plasma frequency for these five pressures. Simulations by a commercial microwave simulator are comparable to the experimental results.

  2. Performance improvement of plasma actuators using asymmetric high voltage waveforms

    NASA Astrophysics Data System (ADS)

    Kotsonis, M.; Ghaemi, S.

    2012-02-01

    An experimental study is conducted on high voltage waveforms used to power plasma actuators. Shapes that present an asymmetry between the two half cycles are investigated by means of induced thrust and velocity measurements. A parametric study is performed based on thrust measurements in order to find the optimum shape within the tested range. An asymmetric waveform which is made as a combination of sinusoidal and square shapes is found to increase produced thrust by almost 30% compared with the conventional sinusoidal waveform. The asymmetric waveform is further analysed using time-resolved particle image velocimetry in order to reveal the forcing mechanism governed by the shape differences. It is shown that the shape of the waveform has a significant effect on the performance of the actuator. Push and pull events occur within the actuation period and their respective strength and duration closely correlates with the shape of the waveform. It is found that the pull event is significantly weakened for the case of the optimized asymmetric waveform in comparison with the sinusoidal shape. This effectively increases the net momentum transfer and an improvement of approximately 40% in maximum induced velocity is achieved compared with sine waveform. Power consumption due to the asymmetric waveform is marginally increased which provides a significant increase in the actuator's relative efficiency.

  3. Progress Toward Accurate Measurements of Power Consumptions of DBD Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Laun, Matthew C.; Griebeler, Elmer L.

    2012-01-01

    The accurate measurement of power consumption by Dielectric Barrier Discharge (DBD) plasma actuators is a challenge due to the characteristics of the actuator current signal. Micro-discharges generate high-amplitude, high-frequency current spike transients superimposed on a low-amplitude, low-frequency current. We have used a high-speed digital oscilloscope to measure the actuator power consumption using the Shunt Resistor method and the Monitor Capacitor method. The measurements were performed simultaneously and compared to each other in a time-accurate manner. It was found that low signal-to-noise ratios of the oscilloscopes used, in combination with the high dynamic range of the current spikes, make the Shunt Resistor method inaccurate. An innovative, nonlinear signal compression circuit was applied to the actuator current signal and yielded excellent agreement between the two methods. The paper describes the issues and challenges associated with performing accurate power measurements. It provides insights into the two methods including new insight into the Lissajous curve of the Monitor Capacitor method. Extension to a broad range of parameters and further development of the compression hardware will be performed in future work.

  4. Plasma Actuators for Turbomachinery Flow Control

    NASA Technical Reports Server (NTRS)

    Miles, Richard, B; Shneider, Mikhail, N.

    2012-01-01

    This report is Part I of the final report of NASA Cooperative Agreement contract no. NNX07AC02A. The period of performance was January 1, 2007 to December 31, 2010. This report includes the project summary, a list of publications and reprints of the publications that appeared in archival journals. Part II of the final report includes a Ph.D. dissertation and is published separately as NASA/CR-2012-2172655. The research performed under this project was focused on the operation of surface dielectric barrier discharge (DBD) devices driven by high voltage, nanosecond scale pulses plus constant or time varying bias voltages. The main interest was in momentum production and the range of voltages applied eliminated significant heating effects. The approach was experimental supplemented by computational modeling. All the experiments were conducted at Princeton University. The project provided comprehensive understanding of the associated physical phenomena. Limitations on the performance of the devices for the generation of high velocity surface jets were established and various means for overcoming those limitations were proposed and tested. The major limitations included the maximum velocity limit of the jet due to electrical breakdown in air and across the dielectric, the occurrence of backward breakdown during the short pulse causing reverse thrust, the buildup of surface charge in the dielectric offsetting the forward driving potential of the bias voltage, and the interaction of the surface jet with the surface through viscous losses. It was also noted that the best performance occurred when the nanosecond pulse and the bias voltage were of opposite sign. Solutions include the development of partially conducting surface coatings, the development of a semiconductor diode inlaid surface material to suppress the backward breakdown. Extension to long discharge channels was studied and a new ozone imaging method developed for more quantitative determination of surface jet properties.

  5. Competition between pressure effects and airflow influence for the performance of plasma actuators

    SciTech Connect

    Kriegseis, J.; Barckmann, K.; Grundmann, S.; Frey, J.; Tropea, C.

    2014-05-15

    The present work addresses the combined influence of pressure variations and different airflow velocities on the discharge intensity of plasma actuators. Power consumption, plasma length, and discharge capacitance were investigated systematically for varying pressure levels (p = 0.1–1 bar) and airflow velocities (U{sub ∞}=0−100 m/s) to characterize and quantify the favorable and adverse effects on the discharge intensity. In accordance with previous reports, an increasing plasma actuator discharge intensity is observed for decreasing pressure levels. At constant pressure levels, an adverse airflow influence on the electric actuator performance is demonstrated. Despite the improved discharge intensity at lower pressure levels, the seemingly improved performance of the plasma actuators is accompanied with a more pronounced drop of the relative performance. These findings demonstrate the dependency of the (kinematic and thermodynamic) environmental conditions on the electric performance of plasma actuators, which in turn affects the control authority of plasma actuators for flow control applications.

  6. Investigation of the Flow Structure on a Flat Plate Induced by Unsteady Plasma Actuation with DNS Methods

    NASA Astrophysics Data System (ADS)

    Yu, Jianyang; Chen, Fu; Liu, Huaping; Song, Yanping

    2015-12-01

    An investigation into the flow characteristic on a flat plate induced by an unsteady plasma was conducted with the methods of direct numerical simulations (DNS). A simplified model of dielectric barrier discharge (DBD) plasma was applied and its parameters were calibrated with the experimental results. In the simulations, effects of the actuation frequency on the flow were examined. The instantaneous flow parameters were also drawn to serve as a detailed study on the behavior when the plasma actuator was applied to the flow. The result shows that induced by the unsteady actuation, a series of vortex pairs which showed dipole formation and periodicity distribution were formed in the boundary layer. The production of these vortex pairs indicated a strong energy exchange between the main flow and the boundary layer. They moved downstream under the action of the free stream and decayed under the influence of the fluid viscosity. The distance of the neighboring vortices was found to be determined by the actuation frequency. Interaction of the neighboring vortices would be ignored when the actuation frequency was too small to make a difference. supported by the Foundation for Innovative Research Groups of National Natural Science Foundation of China (No. 51121004) and National Natural Science Foundation of China (No. 50976026)

  7. Impact of ns-DBD plasma actuation on the boundary layer transition using convective heat transfer measurements

    NASA Astrophysics Data System (ADS)

    Ullmer, Dirk; Peschke, Philip; Terzis, Alexandros; Ott, Peter; Weigand, Bernhard

    2015-09-01

    This paper demonstrates that the impact of nanosecond pulsed dielectric barrier discharge (ns-DBD) actuators on the structure of the boundary layer can be investigated using quantitative convective heat transfer measurements. For the experiments, the flow over a flat plate with a C4 leading edge thickness distribution was examined at low speed incompressible flow (6.6-11.5 m s-1). An ns-DBD plasma actuator was mounted 5 mm downstream of the leading edge and several experiments were conducted giving particular emphasis on the effect of actuation frequency and the freestream velocity. Local heat transfer distributions were measured using the transient liquid crystal technique with and without plasma activated. As a result, any effect of plasma on the structure of the boundary layer is interpreted by local heat transfer coefficient distributions which are compared with laminar and turbulent boundary layer correlations. The heat transfer results, which are also confirmed by hot-wire measurements, show the considerable effect of the actuation frequency on the location of the transition point elucidating that liquid crystal thermography is a promising method for investigating plasma-flow interactions very close to the wall. Additionally, the hot-wire measurements indicate possible velocity oscillations in the near wall flow due to plasma activation.

  8. Transient ejection phase modeling of a Plasma Synthetic Jet actuator

    NASA Astrophysics Data System (ADS)

    Laurendeau, F.; Chedevergne, F.; Casalis, G.

    2014-12-01

    For several years, a promising Plasma Synthetic Jet actuator for high-speed flow control has been under development at ONERA. So far, its confined geometry and small space-time scales at play have prevented its full experimental characterization. Complementary accurate numerical simulations are then considered in this study in order to provide a complete aerothermodynamic description of the actuator. Two major obstacles have to be overcome with this approach: the modeling of the energy deposited by the electric arc and the accurate computation of the transient response of the cavity generating the pulsed jet. To solve the first problem, an Euler solver coupled with an electric circuit model was used to evaluate the energy deposition in the cavity. Such a coupling is performed by considering the electric field between the two electrodes. The second issue was then addressed by injecting these source terms in large Eddy simulations of the entire actuator. Aerodynamic results were finally compared with Schlieren visualizations. Using the proposed methodology, the temporal evolution of the jet front is remarkably well predicted.

  9. Effect of a direct current bias on the electrohydrodynamic performance of a surface dielectric barrier discharge actuator for airflow control

    NASA Astrophysics Data System (ADS)

    Yan, Huijie; Yang, Liang; Qi, Xiaohua; Ren, Chunsheng

    2015-02-01

    The effect of a DC bias on the electrohydrodynamics (EHD) force induced by a surface dielectric barrier AC discharge actuator for airflow control at the atmospheric pressure is investigated. The measurement of the surface potential due to charge deposition at different DC biases is carried out by using a special designed corona like discharge potential probe. From the surface potential data, the plasma electromotive force is shown not affected much by the DC biases except for some reduction of the DC bias near the exposed electrode edge for the sheath-like configuration. The total thrust is measured by an analytical balance, and an almost linear relationship to the potential voltage at the exposed electrode edge is found for the direct thrust force. The temporally averaged ionic wind characteristics are investigated by Pitot tube sensor and schlieren visualization system. It is found that the ionic wind velocity profiles with different DC biases are almost the same in the AC discharge plasma area but gradually diversified in the further downstream area as well as the upper space away from the discharge plasma area. Also, the DC bias can significantly modify the topology of the ionic wind produced by the AC discharge actuator. These results can provide an insight into how the DC biases to affect the force generation.

  10. Unmanned air vehicle flow separation control using dielectric barrier discharge plasma at high wind speed

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Huang, Yong; Wang, WanBo; Wang, XunNian; Li, HuaXing

    2014-06-01

    The present paper described an experimental investigation of separation control of an Unmanned Aerial Vehicle (UAV) at high wind speeds. The plasma actuator was based on Dielectric Barrier Discharge (DBD) and operated in a steady manner. The flow over a wing of UAV was performed with smoke flow visualization in the ?0.75 m low speed wind tunnel to reveal the flow structure over the wing so that the locations of plasma actuators could be optimized. A full model of the UAV was experimentally investigated in the ?3.2 m low speed wind tunnel using a six-component internal strain gauge balance. The effects of the key parameters, including the locations of the plasma actuators, the applied voltage amplitude and the operating frequency, were obtained. The whole test model was made of aluminium and acted as a cathode of the actuator. The results showed that the plasma acting on the surface of UAV could obviously suppress the boundary layer separation and reduce the model vibration at the high wind speeds. It was found that the maximum lift coefficient of the UAV was increased by 2.5% and the lift/drag ratio was increased by about 80% at the wind speed of 100 m/s. The control mechanism of the plasma actuator at the test configuration was also analyzed.

  11. Analytic model and frequency characteristics of plasma synthetic jet actuator

    NASA Astrophysics Data System (ADS)

    Zong, Hao-hua; Wu, Yun; Li, Ying-hong; Song, Hui-min; Zhang, Zhi-bo; Jia, Min

    2015-02-01

    This paper reports a novel analytic model of a plasma synthetic jet actuator (PSJA), considering both the heat transfer effect and the inertia of the throat gas. Both the whole cycle characteristics and the repetitive working process of PSJA can be predicted with this model. The frequency characteristics of a PSJA with 87 mm3 volume and different orifice diameters are investigated based on the analytic model combined with experiments. In the repetitive working mode, the actuator works initially in the transitional stage with 20 cycles and then in the dynamic balanced stage. During the transitional stage, major performance parameters of PSJA experience stepped growth, while during the dynamic balanced stage, these parameters are characterized by periodic variation. With a constant discharge energy of 6.9 mJ, there exists a saturated frequency of 4 kHz/6 kHz for an orifice diameter of 1 mm/1.5 mm, at which the time-averaged total pressure of the pulsed jet reaches a maximum. Between 0.5 mm and 1.5 mm, a larger orifice diameter leads to a higher saturated frequency due to the reduced jet duration time. As the actuation frequency increases, both the time-averaged cavity temperature and the peak jet velocity initially increase and then remain almost unchanged at 1600 K and 280 m/s, respectively. Besides, with increasing frequency, the mechanical energy incorporated in single pulsed jet, the expelled mass per pulse, and the time-averaged density in the cavity, decline in a stair stepping way, which is caused by the intermittent decrease of refresh stage duration in one period.

  12. Numerical investigation of plasma-actuator force-term estimations from flow experiments

    NASA Astrophysics Data System (ADS)

    Dörr, P. C.; Kloker, M. J.

    2015-10-01

    The accuracy of the experimental force-term estimation for cold, dielectric barrier discharge (DBD) plasma actuators based on fluid-velocity information is investigated by means of numerical simulations for cases without and with a laminar base flow. First, a wall jet induced by a steady planar body force similar to that induced by a plasma actuator under quiescent-air conditions is simulated. Second, the same steady force is applied to stabilise a laminar two-dimensional zero-pressure-gradient boundary-layer flow under the usual assumption of force independence. For both cases the force distribution is reconstructed applying two different methods to eliminate the pressure gradients unknown from experiments. The method based on the vorticity transport equation requires the force to be dominated by one component only. It is found that its accuracy is unaffected by a base flow but strongly dependent on the characteristics of the force distribution. The other method is based on the primitive-variable formulation of the Navier-Stokes equations, and the force components are assumed to dominate the pressure gradients, which are neglected. It is shown that this assumption is valid for the wall-parallel force component only, and in the case of a base flow the pressure gradients must not be neglected. The clarification of the accuracy of the different methods enables to evaluate the force-independence assumption in detail. For the case with base flow, the effect of force unsteadiness is investigated.

  13. Response of a circular cylinder wake to a symmetric actuation by non-thermal plasma discharges

    NASA Astrophysics Data System (ADS)

    Benard, N.; Moreau, E.

    2013-02-01

    In this study, the flow past a circular cylinder is manipulated by two plasma discharges placed on both sides of the model (at ±50°). A parametric investigation by force balance is conducted to define the sensitivity of the flow field to unsteady perturbations imparted by plasma actuators (dielectric barrier discharge) at 15.6 m/s ( Re D = 40,000). Effects of simple sinusoidal waveform, burst modulation and amplitude modulation are compared for low-frequency excitations. Regardless of the excitation mode, the cylinder experiences a large increase in the drag coefficient. The larger drag increase is observed for excitation related to the lock-on regime. Fast PIV measurements and triple decomposition by proper orthogonal decomposition are performed to extract the dynamical changes in the cylinder wake and to discriminate the control effects on the coherent and fluctuating turbulence. As expected, the control principally acts on the coherent flow structures. When forced, the vortices form closer to the base of the cylinder regardless of the actuation mode. This results in the drag increase observed by force measurements. The effectiveness of burst modulation is also due to the suppression of irregular shedding that is observed in the natural flow sequence and to a high level of correlation between the upper and lower vortex shedding. Finally, flow visualizations indicate that similar results can be obtained at higher Reynolds number ( Re D = 128,000, 50 m/s).

  14. Documentation and Control of Flow Separation on a Low Pressure Turbine Linear Cascade of Pak-B Blades Using Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Corke, Thomas c.; Thomas, FLint, O.; Huang, Junhui

    2007-01-01

    This work involved the documentation and control of flow separation that occurs over low pressure turbine (LPT) blades at low Reynolds numbers. A specially constructed linear cascade was utilized to study the flow field over a generic LPT cascade consisting of Pratt & Whitney "Pak-B" shaped blades. Flow visualization, surface pressure measurements, LDV measurements, and hot-wire anemometry were conducted to examine the flow fields with and without separation control. Experimental conditions were chosen to give a range of chord Reynolds numbers (based on axial chord and inlet velocity) from 10,000 to 100,000, and a range of freestream turbulence intensities from u'/U(infinity) = 0.08 to 2.85 percent. The blade pressure distributions were measured and used to identify the region of separation that depends on Reynolds number and the turbulence intensity. Separation control was performed using dielectric barrier discharge (DBD) plasma actuators. Both steady and unsteady actuation were implemented and found to work well. The comparison between the steady and unsteady actuators showed that the unsteady actuators worked better than the steady ones. For the steady actuators, it was found that the separated region is significantly reduced. For the unsteady actuators, where the signal was pulsed, the separation was eliminated. The total pressure losses (a low Reynolds number) was reduced by approximately a factor of two. It was also found that lowest plasma duty cycle (10 percent in this work) was as effective as the highest plasma duty cycle (50 percent in this work). The mechanisms of the steady and unsteady plasma actuators were studied. It was suggested by the experimental results that the mechanism for the steady actuators is turbulence tripping, while the mechanism for the unsteady actuators is to generate a train of spanwise structures that promote mixing.

  15. Turbulent separated shear flow control by surface plasma actuator: experimental optimization by genetic algorithm approach

    NASA Astrophysics Data System (ADS)

    Benard, N.; Pons-Prats, J.; Periaux, J.; Bugeda, G.; Braud, P.; Bonnet, J. P.; Moreau, E.

    2016-02-01

    The potential benefits of active flow control are no more debated. Among many others applications, flow control provides an effective mean for manipulating turbulent separated flows. Here, a nonthermal surface plasma discharge (dielectric barrier discharge) is installed at the step corner of a backward-facing step ( U 0 = 15 m/s, Re h = 30,000, Re θ = 1650). Wall pressure sensors are used to estimate the reattaching location downstream of the step (objective function #1) and also to measure the wall pressure fluctuation coefficients (objective function #2). An autonomous multi-variable optimization by genetic algorithm is implemented in an experiment for optimizing simultaneously the voltage amplitude, the burst frequency and the duty cycle of the high-voltage signal producing the surface plasma discharge. The single-objective optimization problems concern alternatively the minimization of the objective function #1 and the maximization of the objective function #2. The present paper demonstrates that when coupled with the plasma actuator and the wall pressure sensors, the genetic algorithm can find the optimum forcing conditions in only a few generations. At the end of the iterative search process, the minimum reattaching position is achieved by forcing the flow at the shear layer mode where a large spreading rate is obtained by increasing the periodicity of the vortex street and by enhancing the vortex pairing process. The objective function #2 is maximized for an actuation at half the shear layer mode. In this specific forcing mode, time-resolved PIV shows that the vortex pairing is reduced and that the strong fluctuations of the wall pressure coefficients result from the periodic passages of flow structures whose size corresponds to the height of the step model.

  16. Investigation of film cooling from cylindrical hole with plasma actuator on flat plate

    NASA Astrophysics Data System (ADS)

    Xiao, Yang; Dai, Sheng-ji; He, Li-ming; Jin, Tao; Zhang, Qian; Hou, Peng-hui

    2015-09-01

    This paper reports the Computational Fluid Dynamics modeling studies on the effect of plasma aerodynamic actuation on combustor film cooling performance. By comparing Case (i.e. film cooling hole with plasma actuator) result to Base (i.e. film cooling hole without plasma actuator) result, the mechanism of improving film cooling performance by using plasma actuator was analyzed. The results show that the Counter Rotating Vortex Pairs in Base are weakened by a new pair of vortex in Case, which is induced by the plasma-actuator-generated arc-shape-distributed electric body force. This leads to less interaction and less mixing between the main flow and the jet flow. Then it causes enhancement of the stability and the steadiness of the jet flow. Finally the average film cooling effectiveness in Case is higher than that in Base. For Case, the uniformity of temperature distribution along spanwise wall surface is improved as the actuator electrode radian increases, so does the average film cooling effectiveness. The film cooling effectiveness is higher when actuator is closer to the exit of hole.

  17. Vacuum application of thermal barrier plasma coatings

    NASA Technical Reports Server (NTRS)

    Holmes, R. R.; Mckechnie, T. N.

    1988-01-01

    Coatings are presently applied to Space Shuttle Main Engine (SSME) turbine blades for protection against the harsh environment realized in the engine during lift off-to-orbit. High performance nickel, chromium, aluminum, and yttrium (NiCrAlY) alloy coatings, which are applied by atmospheric plasma spraying, crack and spall off because of the severe thermal shock experienced during start-up and shut-down of the engine. Ceramic coatings of yttria stabilized zirconia (ZrO2-Y2O3) were applied initially as a thermal barrier over coating to the NiCrAlY but were removed because of even greater spalling. Utilizing a vacuum plasma spraying process, bond coatings of NiCrAlY were applied in a low pressure atmosphere of argon/helium, producing significantly improved coating-to-blade bonding. The improved coatings showed no spalling after 40 MSFC burner rig thermal shock cycles, cycling between 1700 and -423 F. The current atmospheric plasma NiCrAlY coatings spalled during 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2-Y2O3 to the turbine blades of first stage high-pressure fuel turbopumps utilizing the vacuum plasma process. The improved thermal barrier coating has successfully passed 40 burner rig thermal shock cycles without spalling. Hot firing in an SSME turbine engine is scheduled for the blades. Tooling was installed in preparation for vacuum plasma spray coating other SSME hardware, e.g., the titanium main fuel valve housing (MFVH) and the fuel turbopump nozzle/stator.

  18. Effect of plasma actuator and splitter plate on drag coefficient of a circular cylinder

    NASA Astrophysics Data System (ADS)

    Akbıyık, Hürrem; Erkan Akansu, Yahya; Yavuz, Hakan; Ertuğrul Bay, Ahmet

    2016-03-01

    In this paper, an experimental study on flow control around a circular cylinder with splitter plate and plasma actuator is investigated. The study is performed in wind tunnel for Reynolds numbers at 4000 and 8000. The wake region of circular cylinder with a splitter plate is analyzed at different angles between 0 and 180 degrees. In this the study, not only plasma actuators are activated but also splitter plate is placed behind the cylinder. A couple electrodes are mounted on circular cylinder at ±90 degrees. Also, flow visualization is achieved by using smoke wire method. Drag coefficient of the circular cylinder with splitter plate and the plasma actuator are obtained for different angles and compared with the plain circular cylinder. While attack angle is 0 degree, drag coefficient is decreased about 20% by using the splitter plate behind the circular cylinder. However, when the plasma actuators are activated, the improvement of the drag reduction is measured to be 50%.

  19. DBD Plasma Actuators for Flow Control in Air Vehicles and Jet Engines - Simulation of Flight Conditions in Test Chambers by Density Matching

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Thurman, Douglas R.

    2011-01-01

    Dielectric Barrier Discharge (DBD) Plasma actuators for active flow control in aircraft and jet engines need to be tested in the laboratory to characterize their performance at flight operating conditions. DBD plasma actuators generate a wall-jet electronically by creating weakly ionized plasma, therefore their performance is affected by gas discharge properties, which, in turn, depend on the pressure and temperature at the actuator placement location. Characterization of actuators is initially performed in a laboratory chamber without external flow. The pressure and temperature at the actuator flight operation conditions need to be simultaneously set in the chamber. A simplified approach is desired. It is assumed that the plasma discharge depends only on the gas density, while other temperature effects are assumed to be negligible. Therefore, tests can be performed at room temperature with chamber pressure set to yield the same density as in operating flight conditions. The needed chamber pressures are shown for altitude flight of an air vehicle and for jet engines at sea-level takeoff and altitude cruise conditions. Atmospheric flight conditions are calculated from standard atmosphere with and without shock waves. The engine data was obtained from four generic engine models; 300-, 150-, and 50-passenger (PAX) aircraft engines, and a military jet-fighter engine. The static and total pressure, temperature, and density distributions along the engine were calculated for sea-level takeoff and for altitude cruise conditions. The corresponding chamber pressures needed to test the actuators were calculated. The results show that, to simulate engine component flows at in-flight conditions, plasma actuator should be tested over a wide range of pressures. For the four model engines the range is from 12.4 to 0.03 atm, depending on the placement of the actuator in the engine. For example, if a DBD plasma actuator is to be placed at the compressor exit of a 300 PAX engine, it has to be tested at 12.4 atm for takeoff, and 6 atm for cruise conditions. If it is to be placed at the low-pressure turbine, it has to be tested at 0.5 and 0.2 atm, respectively. These results have implications for the feasibility and design of DBD plasma actuators for jet engine flow control applications. In addition, the distributions of unit Reynolds number, Mach number, and velocity along the engine are provided. The engine models are non-proprietary and this information can be used for evaluation of other types of actuators and for other purposes.

  20. Coherent Structures in a Supersonic Jet Excited by Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Gaitonde, Datta; Samimy, Mo

    2010-11-01

    Simulations are used in conjunction with experimental measurements to understand the coherent structures generated by excitation of a Mach 1.3 jet by eight localized arc filament plasma actuators uniformly distributed just upstream of the nozzle exit. Several modes are excited, including the axisymmetric (m=0), helical (m=1-3), and mixed modes (m=±1, ±2) modes. The Strouhal number for all cases is fixed at 0.3, which corresponds to the most amplified frequency. The simulations reproduce the distinct coherent structures measured in the experiment for each azimuthal mode. Detailed analysis of instantaneous, time- and phase-averaged quantities highlights a complex coherent structure generation, evolution and dissipation process. A key feature observed is the initiation of hairpin-like structures with tips/heads in the outer region of the jet shear layer and legs extending forward and slightly inclined in the direction of the jet axis, where the velocity is higher. The subsequent interactions of these structures yield different composite structures in the downstream region. For example, for m=0, adjacent hairpin structures merge to yield axisymmetric rings, with the legs connecting successive structures in the form of ribs in the braid region; and with m=1 and 2 mode excitation, distinct helical and double-helical structures are observed, respectively, with the hairpins forming substructures in the coils.

  1. An experimental study of plasma aerodynamic actuation on a round jet in cross flow

    NASA Astrophysics Data System (ADS)

    Dai, Sheng-ji; Xiao, Yang; He, Li-ming; Jin, Tao; Zhang, Qian; Hou, Peng-hui; Zhao, Zi-chen

    2015-03-01

    The present paper is performed on the effect of plasma aerodynamic actuation on a round jet in cross flow field with a low Reynolds number by using smoke visualization. The actuator is constituted by an electrode pair separated by a dielectric Al2O3 sheet. Several AC supply conditions are utilized. The experimental result shows a closing-in tendency of the jet flow toward the wall after being induced by plasma aerodynamic actuation, and such tendency is increasingly intensified as the actuation voltage increases. Numerical simulation is also performed. The simulation results show that an induced vortex pair is generated by plasma aerodynamic actuation near the wall flow field. The rotation direction of the induced vortex pair reverses against the counter-rotating vortex pair generated by a round jet in a cross flow without plasma aerodynamic actuation. Then the strength and structural size of the counter-rotating vortex pair are significantly reduced, resulting in the intensified near-wall effect of the jet flow. Three electrode-typed actuators (straight, 150°-elliptic arc and 180°-elliptic arc with the same streamwise extent) are placed at the exit of round jet to research the influence of electrode structure on jet in cross flow. The result shows that the longer the arc electrode surrounding the hole, the stronger the induced jet that flow near the wall is.

  2. Adaptive flow control of low-Reynolds number aerodynamics using dielectric barrier discharge actuator

    NASA Astrophysics Data System (ADS)

    Cho, Young-Chang; Shyy, Wei

    2011-10-01

    Aerodynamic performance of low-Reynolds number flyers, for a chord-based Reynolds number of 10 5 or below, is sensitive to wind gusts and flow separation. Active flow control offers insight into fluid physics as well as possible improvements in vehicle performance. While facilitating flow control by introducing feedback control and fluidic devices, major challenges of achieving a target aerodynamic performance under unsteady flow conditions lie on the high-dimensional nonlinear dynamics of the flow system. Therefore, a successful flow control framework requires a viable as well as accessible control scheme and understanding of underlying flow dynamics as key information of the flow system. On the other hand, promising devices have been developed recently to facilitate flow control in this flow regime. The dielectric barrier discharge (DBD) actuator is such an example; it does not have moving parts and provides fast impact on the flow field locally. In this paper, recent feedback flow control studies, especially those focusing on unsteady low-Reynolds number aerodynamics, are reviewed. As an example of an effective flow control framework, it is demonstrated that aerodynamic lift of a high angle-of-attack wing under fluctuating free-stream conditions can be stabilized using the DBD actuator and an adaptive algorithm based on general input-output models. System nonlinearities and control challenges are discussed by assessing control performance and the variation of the system parameters under various flow and actuation conditions. Other fundamental issues from the flow dynamics view point, such as the lift stabilization mechanism and the influence on drag fluctuation are also explored. Both potentiality and limitation of the linear modeling approach are discussed. In addition, guidelines on system identification and the controller and actuator setups are suggested.

  3. Characterization of linear plasma synthetic jet actuators in an initially quiescent medium

    SciTech Connect

    Santhanakrishnan, Arvind; Reasor, Daniel A. Jr.; LeBeau, Raymond P. Jr.

    2009-04-15

    The plasma synthetic jet actuator (PSJA) is a geometrical variant of the aerodynamic plasma actuator that can be used to produce zero-mass flux jets similar to those created by mechanical devices. This jet can be either three-dimensional using annular electrode arrays (annular PSJA) or nearly two dimensional using two rectangular-strip exposed electrodes and one embedded electrode (linear PSJA). Unsteady pulsing of the PSJA at time scales decoupled to the ac input frequency results in a flow field dominated by counter-rotating vortical structures similar to conventional synthetic jets, and the peak velocity and momentum of the jet is found to be affected by a combination of the pulsing frequency and input power. This paper investigates the fluid dynamic characteristics of linear plasma synthetic jet actuators in an initially quiescent medium. Two-dimensional particle image velocimetry measurements on the actuator are used to validate a previously developed numerical model wherein the plasma behavior is introduced into the Navier-Stokes equations as an electrohydrodynamic force term calculated from Maxwell's equations and solved for the fluid momentum. The numerical model was implemented in an incompressible, unstructured grid code. The results of the simulations are observed to reproduce some aspects of the qualitative and quantitative experimental behavior of the jet for steady and pulsed modes of actuator operation. The self-similarity behavior of plasma synthetic jets are examined and compared to mechanically driven continuous and synthetic jets.

  4. Shock Wave Boundary Layer Interaction Control Using Pulsed DBD Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Likhanskii, Alexandre; Beckwith, Kristian

    2012-11-01

    Flow separation in the shock wave boundary layer interaction (SWBLI) region significantly limits the development of supersonic inlets or scramjets. For past decades, scientists and engineers were looking for a way for active flow control of SWBLI. We will present our recent results of comprehensive simulations of SWBLI active control using pulsed nanosecond DBD plasma actuators at M=3. In the first part of simulations, we computed heat release from the ns pulse driven DBD plasma actuator to the flow using Tech-X plasma code Vorpal. This information has been consequently used in the simulations of SWBLI problem using Tech-X CFD code Nautilus. We compared baseline case with plasma actuators OFF to the case when plasma actuators were ON. We demonstrated strong perturbations in the region of SWBLI, suppression of flow separation and overall downstream increase of mass flow by ten percent when actuators are ON. We investigated the dependence of the results on the choice of different turbulence models and compared them to the laminar boundary layer case. We also performed parametric studies for different pulse repetition rates, pulse operation modes and DBD placement.

  5. Numerical and Experimental Investigation on the Attenuation of Electromagnetic Waves in Unmagnetized Plasmas Using Inductively Coupled Plasma Actuator

    NASA Astrophysics Data System (ADS)

    Lin, Min; Xu, Haojun; Wei, Xiaolong; Liang, Hua; Song, Huimin; Sun, Quan; Zhang, Yanhua

    2015-10-01

    The attenuation of electromagnetic (EM) waves in unmagnetized plasma generated by an inductively coupled plasma (ICP) actuator has been investigated both theoretically and experimentally. A numerical study is conducted to investigate the propagation of EM waves in multilayer plasma structures which cover a square flat plate. Experimentally, an ICP actuator with dimensions of 20 cm×20 cm×4 cm is designed to produce a steady plasma slab. The attenuation of EM waves in the plasma generated by the ICP actuator is measured by a reflectivity arch test method at incident waves of 2.3 GHz and 10.1 GHz, respectively. A contrastive analysis of calculated and measured results of these incident wave frequencies is presented, which suggests that the experiment accords well with our theory. As expected, the plasma slab generated by the ICP actuator can effectively attenuate the EM waves, which may have great potential application prospects in aircraft stealth. supported by National Natural Science Foundation of China (Nos. 51276197, 11472306 and 11402301)

  6. Design and characterization of a plasma actuator for controlling dynamic stall

    NASA Astrophysics Data System (ADS)

    Pollard, William; Staack, David

    2012-10-01

    A repetitive pulsed spark discharge inside of a ˜1 mm cavity generates a high velocity (100-600 m/s) gas jets potentially capable of controlling dynamic stall on an airfoil at Re ˜1e6. High temperature compressible 2D CFD was used to determine the design and geometry of the actuator slot and plasma cavity. Experimental results measuring the time dependent plasma discharge emission and density variations (using gated ICCD and Schlieren) indicate that the plasma can be modeled as constant volume heating over 100 ns. The energy input to the actuator is controlled by the high voltage and capacitance initiating the discharge. During the discharge air in the cavity is rapidly heated. Temperature and pressure increase 5-10x, causing strong gradients and shocks. The flow is directed using an angled slot. In CFD designed geometries shock fronts and high temperature gas velocities are experimentally determined. The force generated by the actuator is also experimentally determined. Experimental results from the actuator show that velocities of 500 m/s can be achieved through 1mm2 orifices with energy inputs of 50 mJ. The CFD model predicts time scales and velocities similar to those observed, and it also indicates cavity cooling as important in optimizing the actuator pulse repetition rate.

  7. Study of flow fields induced by surface dielectric barrier discharge actuator in low-pressure air

    SciTech Connect

    Che, Xueke E-mail: st@mail.iee.ac.cn; Nie, Wansheng; Tian, Xihui; Hou, Zhiyong; He, Haobo; Zhou, Penghui; Zhou, Siyin; Yang, Chao; Shao, Tao E-mail: st@mail.iee.ac.cn

    2014-04-15

    Surface dielectric barrier discharge (SDBD) is a promising method for a flow control. Flow fields induced by a SDBD actuator driven by the ac voltage in static air at low pressures varying from 1.0 to 27.7 kPa are measured by the particle image velocimetry method. The influence of the applied ac voltage frequency and magnitude on the induced flow fields is studied. The results show that three different classes of flow fields (wall jet flow field, complex flow field, and vortex-shape flow field) can be induced by the SDBD actuator in the low-pressure air. Among them, the wall jet flow field is the same as the tangential jet at atmospheric pressure, which is, together with the vertical jet, the complex flow field. The vortex-shape flow field is composed of one vertical jet which points towards the wall and two opposite tangential jets. The complex and the vortex-shape flow fields can be transformed to the wall jet flow field when the applied ac voltage frequency and magnitude are changed. It is found that the discharge power consumption increases initially, decreases, and then increases again at the same applied ac voltage magnitude when the air pressure decreases. The tangential velocity of the wall jet flow field increases when the air pressure decreases. It is however opposite for the complex flow field. The variation of the applied ac voltage frequency influences differently three different flow fields. When the applied ac voltage magnitude increases at the same applied ac voltage frequency, the maximal jet velocity increases, while the power efficiency increases only initially and then decreases again. The discharge power shows either linear or exponential dependences on the applied ac voltage magnitude.

  8. Propagating-arc magnetohydrodynamic plasma actuator for directional high-authority flow control in atmospheric air

    NASA Astrophysics Data System (ADS)

    Pafford, Brent; Sirohi, Jayant; Raja, Laxminarayan L.

    2013-12-01

    A propagating-arc magnetohydrodynamic plasma actuator for aerodynamic flow control is reported. The actuator comprises two rail electrodes flush mounted on an aerodynamic surface. A pulsed arc is propelled down the length of the rails by Lorentz forces supported by a self-induced magnetic field. The arc induces a high velocity pulsed air wall jet due to the pushing and entrainment actions. Experiments in quiescent air demonstrate that the plasma arc achieves a peak velocity of around 100 m s-1 and requires a discharge energy on the order of 300 J per pulse. Wind tunnel tests on a 14.5 inch chord airfoil section, at a Reynolds number of 0.45 million show induced flow velocities on the order of 10's m s-1 with significant penetration of the flow actuation effect perpendicular to the wall surface.

  9. Electric and plasma characteristics of RF discharge plasma actuation under varying pressures

    NASA Astrophysics Data System (ADS)

    Huimin, Song; Min, Jia; Di, Jin; Wei, Cui; Yun, Wu

    2016-03-01

    The electric and plasma characteristics of RF discharge plasma actuation under varying pressure have been investigated experimentally. As the pressure increases, the shapes of charge-voltage Lissajous curves vary, and the discharge energy increases. The emission spectra show significant difference as the pressure varies. When the pressure is 1000 Pa, the electron temperature is estimated to be 4.139 eV, the electron density and the vibrational temperature of plasma are 4.71×1011 cm-3 and 1.27 eV, respectively. The ratio of spectral lines which describes the electron temperature hardly changes when the pressure varies between 5000-30000 Pa, while it increases remarkably with the pressure below 5000 Pa, indicating a transition from filamentary discharge to glow discharge. The characteristics of emission spectrum are obviously influenced by the loading power. With more loading power, both of the illumination and emission spectrum intensity increase at 10000 Pa. The pin-pin electrode RF discharge is arc-like at power higher than 33 W, which results in a macroscopic air temperature increase. Project supported by the National Natural Science Foundation of China (Grant Nos. 11472306, 51336011, and 51407197).

  10. Flow and Noise Control in High Speed and High Reynolds Number Jets Using Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Samimy, M.; Kastner, J.; Kim, J.-H.; Utkin, Y.; Adamovich, I.; Brown, C. A.

    2006-01-01

    The idea of manipulating flow to change its characteristics is over a century old. Manipulating instabilities of a jet to increase its mixing and to reduce its radiated noise started in the 1970s. While the effort has been successful in low-speed and low Reynolds number jets, available actuators capabilities in terms of their amplitude, bandwidth, and phasing have fallen short in control of high-speed and high Reynolds number jets of practical interest. Localized arc filament plasma actuators have recently been developed and extensively used at Gas Dynamics and Turbulence Laboratory (GDTL) for control of highspeed and high Reynolds number jets. While the technique has been quite successful and is very promising, all the work up to this point had been carried out using small high subsonic and low supersonic jets from a 2.54 cm diameter nozzle exit with a Reynolds number of about a million. The preliminary work reported in this paper is a first attempt to evaluate the scalability of the technique. The power supply/plasma generator was designed and built in-house at GDTL to operate 8 actuators simultaneously over a large frequency range (0 to 200 kHz) with independent control over phase and duty cycle of each actuator. This allowed forcing the small jet at GDTL with azimuthal modes m = 0, 1, 2, 3, plus or minus 1, plus or minus 2, and plus or minus 4 over a large range of frequencies. This power supply was taken to and used, with minor modifications, at the NASA Nozzle Acoustic Test Rig (NATR). At NATR, 32 actuators were distributed around the 7.5 in. nozzle (a linear increase with nozzle exit diameter would require 60 actuators). With this arrangement only 8 actuators could operate simultaneously, thus limiting the forcing of the jet at NATR to only three azimuthal modes m = plus or minus 1, 4, and 8. Very preliminary results at NATR indicate that the trends observed in the larger NASA facility in terms of the effects of actuation frequency and azimuthal modes are similar in both small GDTL and larger NASA jets. However, the actuation authority seems to fall short in the larger jet at higher Mach numbers, resulting in decreased amplitude response compared to the small jet, which is attributed at this point to the lack of sufficient number of actuators. The preliminary results seem also to suggest that amplitude of actuation tones is similar in both the small and larger jets.

  11. Control of boundary layer separation and the wake of an airfoil using ns-DBD plasma actuators

    NASA Astrophysics Data System (ADS)

    Ashcraft, Timothy

    The efficacy of nanosecond pulse driven dielectric barrier discharge (ns-DBD) plasma actuators for boundary layer separation and wake control is investigated experimentally. A single ns-DBD plasma actuator is placed at the leading edge of a NACA 0012 airfoil model. Both baseline and controlled flow fields are studied using static pressure measurements, Particle Image Velocimetry (PIV) and Constant Temperature Anemometry (CTA). Experiments are primarily performed at Re = 0.74 x 106 and alpha = 18°. CP, PIV and CTA data show that a forcing frequency of F+ = 1.14 is optimal for separation control. CTA surveys of the wake at x/c = 7 indicate three approximate regimes of behavior. Forcing in the range 0.92< F+ < 1.52 results in the best conditions for separation control over the airfoil, but has no dominant signature in the wake at x/c = 7. Excitation in the range of 0.23 < F+ < 0.92 produces a single dominant frequency in the wake while F+ < 0.23 shows behavior representing a possible impulse response or nonlinear effects. PIV data confirm these observations in all three regimes. Cross-correlations of CTA data are also employed to evaluate the two-dimensionality of the excited wake. The initial results presented here are part of an ongoing effort to use active flow control (AFC), in the form of ns-DBDs, as an enabling technology for the study of unsteady aerodynamics and vortex-body interactions.

  12. LES of a Jet Excited by the Localized Arc Filament Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2011-01-01

    The fluid dynamics of a high-speed jet are governed by the instability waves that form in the free-shear boundary layer of the jet. Jet excitation manipulates the growth and saturation of particular instability waves to control the unsteady flow structures that characterize the energy cascade in the jet.The results may include jet noise mitigation or a reduction in the infrared signature of the jet. The Localized Arc Filament Plasma Actuators (LAFPA) have demonstrated the ability to excite a high-speed jets in laboratory experiments. Extending and optimizing this excitation technology, however, is a complex process that will require many tests and trials. Computational simulations can play an important role in understanding and optimizing this actuator technology for real-world applications. Previous research has focused on developing a suitable actuator model and coupling it with the appropriate computational fluid dynamics (CFD) methods using two-dimensional spatial flow approximations. This work is now extended to three-dimensions (3-D) in space. The actuator model is adapted to a series of discrete actuators and a 3-D LES simulation of an excited jet is run. The results are used to study the fluid dynamics near the actuator and in the jet plume.

  13. Effect of the duty cycle on the spark-plug plasma synthetic jet actuator

    NASA Astrophysics Data System (ADS)

    Seyhan, Mehmet; Erkan Akansu, Yahya; Karakaya, Fuat; Yesildag, Cihan; Akbıyık, Hürrem

    2016-03-01

    A promising novel actuator called Spark-Plug Plasma Synthetic Jet (SPSJ) has been developed in Atmospheric Plasma Research Laboratory at Niğde University. It generates electrothermally high synthetic jet velocity by using high voltage. SPSJ actuator can be utilized to be an active flow control device having some advantages such as no moving parts, low energy consumption and easy to integrate the system. This actuator consists of two main components: semi-surface spark plug (NGK BUHW) as an anode electrode and a cap having an orifice as a cathode electrode. The cap, having a jet exit orifice diameter of 2 mm, has diameter of 4.4 mm and height of 4.65 mm. This study presents the characteristics of SPSJ actuator by using the hot wire anemometer in order to approximately determine jet velocity in quiescent air. Peak velocity as high as 180 m/s was obtained for fe= 100 and duty cycle 50%. The flow visualization indicated that the actuator's jet velocity is enough to penetrate the developed boundary layer.

  14. Surface potential distribution and airflow performance of different air-exposed electrode plasma actuators at different alternating current/direct current voltages

    SciTech Connect

    Yang, Liang; Yan, Hui-Jie; Qi, Xiao-Hua; Hua, Yue; Ren, Chun-Sheng

    2015-04-15

    Asymmetric surface dielectric barrier discharge (SDBD) plasma actuators have been intensely studied for a number of years due to their potential applications for aerodynamic control. In this paper, four types of actuators with different configurations of exposed electrode are proposed. The SDBD actuators investigated are driven by dual-power supply, referred to as a fixed AC high voltage and an adjustable DC bias. The effects of the electrode structures on the dielectric surface potential distribution, the electric wind velocity, and the mean thrust production are studied, and the dominative factors of airflow acceleration behavior are revealed. The results have shown that the actions of the SDBD actuator are mainly dependent on the geometry of the exposed electrode. Besides, the surface potential distribution can effectively affect the airflow acceleration behavior. With the application of an appropriate additional DC bias, the surface potential will be modified. As a result, the performance of the electric wind produced by a single SDBD can be significantly improved. In addition, the work also illustrates that the actuators with more negative surface potential present better mechanical performance.

  15. Surface potential distribution and airflow performance of different air-exposed electrode plasma actuators at different alternating current/direct current voltages

    NASA Astrophysics Data System (ADS)

    Yang, Liang; Yan, Hui-Jie; Qi, Xiao-Hua; Hua, Yue; Ren, Chun-Sheng

    2015-04-01

    Asymmetric surface dielectric barrier discharge (SDBD) plasma actuators have been intensely studied for a number of years due to their potential applications for aerodynamic control. In this paper, four types of actuators with different configurations of exposed electrode are proposed. The SDBD actuators investigated are driven by dual-power supply, referred to as a fixed AC high voltage and an adjustable DC bias. The effects of the electrode structures on the dielectric surface potential distribution, the electric wind velocity, and the mean thrust production are studied, and the dominative factors of airflow acceleration behavior are revealed. The results have shown that the actions of the SDBD actuator are mainly dependent on the geometry of the exposed electrode. Besides, the surface potential distribution can effectively affect the airflow acceleration behavior. With the application of an appropriate additional DC bias, the surface potential will be modified. As a result, the performance of the electric wind produced by a single SDBD can be significantly improved. In addition, the work also illustrates that the actuators with more negative surface potential present better mechanical performance.

  16. FAST TRACK COMMUNICATION: Bulk flow modification with horseshoe and serpentine plasma actuators

    NASA Astrophysics Data System (ADS)

    Roy, Subrata; Wang, Chin-Cheng

    2009-02-01

    Two different control devices are introduced to modify the boundary layer thickness by plasma induced velocity in the low speed region. These horseshoe and serpentine shaped actuators are surface compliant and have a significant three-dimensional influence on neighbouring flows. A numerical investigation of the quiescent and flow condition demonstrates active electrodynamic actuation of fluid in all three principal (streamwise, crosswise and surface normal) directions altering the boundary layer thickness. Based on the powering scheme of electrodes, these actuators not only induce flow attachment to the work surface but can also extract momentum from an upstream flow injecting it into the bulk fluid. Such designs could be useful for tripping the flow as well as for separation control as needed.

  17. Numerical study of low pressure air plasma in an actuated channel

    NASA Astrophysics Data System (ADS)

    Houba, Tomas; Roy, Subrata

    2015-12-01

    A model for air plasma discharge based on drift-diffusion with local mean energy approximation is described. The model consists of 7 species and 18 reactions. The code is benchmarked with experimental and numerical results for low pressure glow discharge in a cylindrical tube. The code is used to simulate the discharge produced by a wire placed in a rectangular channel with grounded electrodes at the top and bottom walls. The discharge is concentrated near the wire. The actuator acts on the neutral gas through a body force and Joule heating. Around 80%-90% of the electrical power is converted to Joule heating of the neutral gas and the wall. The actuator produces a body force on the order of 0.1 mN/m. The effectiveness of the actuator increases from 100 to 300 V, and plateaus from 300 to 600 V. The results of the study suggest a further exploration of the channel concept.

  18. Investigation of the cylinder wake under spanwise periodic forcing with a segmented plasma actuator

    NASA Astrophysics Data System (ADS)

    Bhattacharya, S.; Gregory, James W.

    2015-01-01

    The wake response to three-dimensional forcing of flow over a circular cylinder was studied. Spanwise-segmented dielectric-barrier discharge plasma actuators were mounted on the cylinder in a square wave pattern for active forcing of the cylinder wake. The buried electrodes were placed periodically to create a spanwise-modulated blowing profile, with the aim of targeting three-dimensional instabilities in the wake. Considerable spanwise variation in the wake was achieved, which was a direct consequence of the difference in the location of shed spanwise vortices from the cylinder, along with the generation of streamwise vorticity. Two distinct power levels were used for forcing the flow, with different flow response observed between the two conditions. With low power, the segmented forcing caused the large-scale spanwise structures in the forcing region to lead those in the no-forcing region, with an accompanying shift away from the centerline and generation of streamwise vorticity. While vortex shedding was not substantially attenuated with low-power forcing, the shedding in the near wake was significantly attenuated with high-power forcing. This attenuation in the shedding strength was accompanied by a decrease in the peak shedding frequency, indicating an increase in the formation length. High-power forcing caused elongation of the Kármán vortices due to the induced strain field and strong differential development of the wake shedding frequency. In both forcing regimes, the wake three-dimensionality increased as shown by the increased width of the spectral peaks.

  19. Active control of massively separated high-speed/base flows with electric arc plasma actuators

    NASA Astrophysics Data System (ADS)

    DeBlauw, Bradley G.

    The current project was undertaken to evaluate the effects of electric arc plasma actuators on high-speed separated flows. Two underlying goals motivated these experiments. The first goal was to provide a flow control technique that will result in enhanced flight performance for supersonic vehicles by altering the near-wake characteristics. The second goal was to gain a broader and more sophisticated understanding of these complex, supersonic, massively-separated, compressible, and turbulent flow fields. The attainment of the proposed objectives was facilitated through energy deposition from multiple electric-arc plasma discharges near the base corner separation point. The control authority of electric arc plasma actuators on a supersonic axisymmetric base flow was evaluated for several actuator geometries, frequencies, forcing modes, duty cycles/on-times, and currents. Initially, an electric arc plasma actuator power supply and control system were constructed to generate the arcs. Experiments were performed to evaluate the operational characteristics, electromagnetic emission, and fluidic effect of the actuators in quiescent ambient air. The maximum velocity induced by the arc when formed in a 5 mm x 1.6 mm x 2 mm deep cavity was about 40 m/s. During breakdown, the electromagnetic emission exhibited a rise and fall in intensity over a period of about 340 ns. After breakdown, the emission stabilized to a near-constant distribution. It was also observed that the plasma formed into two different modes: "high-voltage" and "low-voltage". It is believed that the plasma may be switching between an arc discharge and a glow discharge for these different modes. The two types of plasma do not appear to cause substantial differences on the induced fluidic effects of the actuator. In general, the characterization study provided a greater fundamental understanding of the operation of the actuators, as well as data for computational model comparison. Preliminary investigations of actuator geometry in the supersonic base flow determined that inclined cavity and normal cavity actuators positioned on the base near the base edge could produce significant disturbances in the shear layer. The disturbances were able to be tracked in time with phase-locked schlieren imaging and particle image velocimetry (PIV). The final set of flow control experiments were therefore performed with an eight-actuator base using the inclined cavity actuator geometry. The actuators were able to cause moderate influences on the axisymmetric shear layer velocity profile and base pressure. The most substantial changes to the shear layer and base pressure were noted for the highest current and duty cycle tests. At 1 A and 20% duty cycle, the base pressure was reduced by 3.5%. Similar changes were noted for all modes and a range of frequencies from about 10-30 kHz. Increases in duty cycle between 4% and 20% caused a nearly linear decrease in base pressure. Analysis of the shear layer velocity profiles acquired through PIV show a local thickening of the shear layer in the region of the disturbances caused by the actuator. A slight increase in thickness was also observed away from the disturbance. Disturbances were able to be tracked at all frequencies and translated along the shear layer at a convective velocity of 430 +/- 20 m/s. A fairly clear trend of increasing velocity disturbance amplitude correlating to increasing base pressure changes was noted. Moreover, the ability of the disturbances to stay well organized further down the shear layer also appears to be a significant factor in the actuators' effect on base pressure. Consistent with these observations, it appears that increased duty cycle causes increased shear layer disturbance amplitudes. The use of PIV has enabled substantial insight to be gained into the effects of the actuators on the ensemble-averaged flow field and on the variability of the instantaneous flow field with and without control. A sensitive bimodal recirculation region behavior was found in the no-control flow field that the plasma actuators could force. The flow field and turbulence statistics in each mode were substantially different. Through analysis of past no-control base pressure measurements, it is believed that the bimodal behavior fluctuates at a characteristic frequency between 0.4 and 0.5 Hz [StD = [special character omitted](5x10-5)]. The flat time-averaged base pressure distribution is due to the superposition of a normally non-flat instantaneous base pressure distribution. Also, the standard deviation of the base pressure measurements is reduced when in one recirculation region mode as compared to when it is fluctuating between recirculation region modes.

  20. Measurement of transient force produced by a propagating arc magnetohydrodynamic plasma actuator in quiescent atmospheric air

    NASA Astrophysics Data System (ADS)

    Choi, Young Joon; Sirohi, Jayant; Raja, Laxminarayan L.

    2015-10-01

    An experimental study was conducted on a magnetohydrodynamic plasma actuator consisting of two parallel, six inch long, copper electrodes flush mounted on an insulating ceramic plate. An electrical arc is generated by a  ∼1 kA current pulse at  ∼100 V across the electrodes. A self-induced Lorentz force drives the arc along the electrodes. The motion of the arc induces flow in the surrounding air through compression as well as entrainment, and generates a transient force, about  ∼4 ms in duration. Experiments were performed on a prototype actuator in quiescent atmospheric air to characterize the motion of the arc and the momentum transferred to the surrounding air. Measurements included transient force and total impulse generated by the actuator as well as the armature voltage and current. The arc shape and transit velocity were determined by high-speed imaging. A peak force of 0.4 N imparting an impulse of 0.68 mN-s was measured for a peak current of 1.2 kA. The force scaled with the square of the armature current and the impulse scaled linearly with the spent capacitor energy. The results provide insight into the mechanisms of body force generation and momentum transfer of a magnetohydrodynamic plasma actuator.

  1. Numerical study of boundary layer separation control using magnetogasdynamic plasma actuators

    SciTech Connect

    Kalra, Chiranjeev S.; Shneider, Mikhail N.; Miles, Richard B.

    2009-10-15

    In this study, an efficient, time dependent, two-dimensional Navier-Stokes numerical code for shockwave boundary layer interaction in air is developed. Nonthermal surface plasma actuation is evaluated for effective shockwave induced boundary layer separation control within supersonic inlets. Specifically, high speed magnetogasdynamic plasma actuators are of interest. In these, localized ionization is produced close to the wall surface and then the flow is accelerated using strong magnetic fields. To replicate the experiments done at large boundary layer thickness, the code is divided into time independent and time dependent regimes to significantly reduce computation time. Computational results are in good agreement with experiments in terms of the flow structure as shown by Schlieren imaging, acetone planar laser scattering, and the static pressure profile on the test section wall.

  2. Influence of the energy dissipation rate in the discharge of a plasma synthetic jet actuator

    NASA Astrophysics Data System (ADS)

    Belinger, A.; Hardy, P.; Barricau, P.; Cambronne, J. P.; Caruana, D.

    2011-09-01

    A promising actuator for high-speed flow control, referred to as a plasma synthetic jet (PSJ), is being studied by the DMAE department of the ONERA, and the Laplace laboratory of the CNRS, in France. This actuator was inspired by the 'sparkjet' device developed by the Johns Hopkins University Applied Physics Laboratory. The PSJ, which produces a synthetic jet with high exhaust velocities, no active mechanical components and no mass flow admission, holds the promise of enabling high-speed flows to be manipulated. With this high-velocity jet it is possible to reduce fluid phenomena such as transition and turbulence, thus making it possible to increase an aircraft's performance whilst at the same time reducing its environmental impact. A thermal plasma discharge was created in a micro-cavity, causing the gas to be expelled. It is relevant that the velocity and momentum depend on the energy dispersed by the electric discharge. To control the frequency and energy dispersed in the plasma, the Laplace laboratory has developed two high-voltage power supply systems. These allow two different types of discharge to be produced, with energy being supplied to the discharge in two different manners. In this paper, we focus on the impact of the power supply on the plasma synthetic jet, and in particular on the role of the rate of energy dissipation in the discharge. In order to estimate the influence of the power supply on the machinery of the actuator, specific experimental techniques were used to investigate the electrical (voltage, current), thermal (Infra-red camera) and aerodynamic (jet duration, isentropic pressure, jet velocity) characteristics. These data sets were used to determine which of the two power supplies was more effective, thus allowing us to reach several conclusions concerning the importance of the energy dissipation rate on the PSJ actuator.

  3. One-dimensional analytical model development of a plasma-based actuator

    NASA Astrophysics Data System (ADS)

    Popkin, Sarah Haack

    This dissertation provides a method for modeling the complex, multi-physics, multi-dimensional processes associated with a plasma-based flow control actuator, also known as the SparkJet, by using a one-dimensional analytical model derived from the Euler and thermodynamic equations, under varying assumptions. This model is compared to CFD simulations and experimental data to verify and/or modify the model where simplifying assumptions poorly represent the real actuator. The model was exercised to explore high-frequency actuation and methods of improving actuator performance. Using peak jet momentum as a performance metric, the model shows that a typical SparkJet design (1 mm orifice diameter, 84.8 mm3 cavity volume, and 0.5 J energy input) operated over a range of frequencies from 1 Hz to 10 kHz shows a decrease in peak momentum corresponding to an actuation cutoff frequency of 800 Hz. The model results show that the cutoff frequency is primarily a function of orifice diameter and cavity volume. To further verify model accuracy, experimental testing was performed involving time-dependent, cavity pressure and arc power measurements as a function of orifice diameter, cavity volume, input energy, and electrode gap. The cavity pressure measurements showed that pressure-based efficiency ranges from 20% to 40%. The arc power measurements exposed the deficiency in assuming instantaneous energy deposition and a calorically perfect gas and also showed that arc efficiency was approximately 80%. Additional comparisons between the pressure-based modeling and experimental results show that the model captures the actuator dependence on orifice diameter, cavity volume, and input energy but over-estimates the duration of the jet flow during Stage 2. The likely cause of the disagreement is an inaccurate representation of thermal heat transfer related to convective heat transfer or heat loss to the electrodes.

  4. Numerical Simulations of Flow Separation Control in Low-Pressure Turbines using Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.; Ashpis, D. E.

    2007-01-01

    A recently introduced phenomenological model to simulate flow control applications using plasma actuators has been further developed and improved in order to expand its use to complicated actuator geometries. The new modeling approach eliminates the requirement of an empirical charge density distribution shape by using the embedded electrode as a source for the charge density. The resulting model is validated against a flat plate experiment with quiescent environment. The modeling approach incorporates the effect of the plasma actuators on the external flow into Navier Stokes computations as a body force vector which is obtained as a product of the net charge density and the electric field. The model solves the Maxwell equation to obtain the electric field due to the applied AC voltage at the electrodes and an additional equation for the charge density distribution representing the plasma density. The new modeling approach solves the charge density equation in the computational domain assuming the embedded electrode as a source therefore automatically generating a charge density distribution on the surface exposed to the flow similar to that observed in the experiments without explicitly specifying an empirical distribution. The model is validated against a flat plate experiment with quiescent environment.

  5. Flow control around a circular cylinder using pulsed dielectric barrier discharge surface plasma

    SciTech Connect

    Jukes, Timothy N.; Choi, Kwing-So

    2009-08-15

    Dielectric barrier discharge (DBD) plasma actuators have been used to control the flow around a circular cylinder at Re=15 000, where the near-wake structure was studied using time-resolved particle image velocimetry with simultaneous measurements of the dynamic lift and drag forces. It was shown that the vortex shedding was suppressed when the surface plasma placed near the natural separation point was activated in a pulsed mode at nondimensional frequency, f{sub p}{sup +}, above 0.6 with a force coefficient, C{sub p}, greater than 0.05%. Plasma actuator performance on flow control was summarized by mapping the changes in drag and lift fluctuations as a function of the forcing frequency and the force coefficient. They showed that more than 70% reduction in lift fluctuations was obtained with up to 32% drag reduction at f{sub p}{sup +}=2.0 and C{sub p}=0.32%. Here, narrowing of the wake was observed as the plasma promoted shear-layer roll-ups at the forcing frequency. This, however, did not affect the shear layer on the opposite side of the wake. At nondimensional forcing frequencies less than 0.6, the vortex shedding locked onto a multiple of the plasma frequency to amplify the wake oscillations. This caused more than 85% increase in lift fluctuations with 8% drag increase at f{sub p}{sup +}=0.2 and C{sub p}=0.01%. The efficiency of flow control using DBD plasma was found to be 1%-2% for drag reduction while around 6% for drag increase.

  6. Bacterial Inactivation by Atmospheric Pressure Dielectric Barrier Discharge Plasma Jet

    NASA Astrophysics Data System (ADS)

    Deng, Sanxi; Cheng, Cheng; Ni, Guohua; Meng, Yuedong; Chen, Hua

    2008-08-01

    Bacillus subtilis and Escherichia coli seeded in two media (agar and filter papers) were exposed to after-glow plasma emitted from a atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator in open air with a temperature of about 30-80 °C. In order to estimate the inactivation of microorganism using DBD plasma jet, various plasma conditions (such as treatment time and feed-gas composition of plasma jet) were changed. The results shown that the effective area of inactivation increased with the plasma treatment time as the bacteria seeded in Agar medium. The effective area of inactivation was much bigger than plasma jet treatment area after 5 min treatment. With the use of filter papers as the supporting media, the addition of reactive gases (oxygen, hydrogen peroxide vapor) into the plasma jet system, compared with only pure noble gas, led to a significant improvement in the bacterial Inactivation efficacy.

  7. Plasma surface modification and hydrophobic barrier coating of paper

    NASA Astrophysics Data System (ADS)

    Sahin, Halil Turgut

    2001-07-01

    Development of new technologies for production of alternative paper properties with minimal environmental hazards was the goal of this project. In this study, the utilization of various chemicals under radio frequency (RF) plasma environments was investigated for creation of hydrophobic barrier properties and deposition of electrically conductive conjugated thin layers on the surface of paper. Four basic approaches have been utilized to impart hydrophobic barriers to the paper without affecting bulk properties; argon plasma treatment after Teflon-like chemical; 1,1,1,2 tetrafluoroethane (TFE) predeposition, carbon tetrafluoride (CF4) plasma treatment after TFE pre-deposition, carbon tetrafluoride plasma treatment alone and octamethylcyclotetrasiloxane (OMCTSO) plasma treatment of paper under an RF-glow discharge. The chosen chemicals were found to enhance the properties of the paper substrates and surface analysis aided explanation of the mechanism of hydrophobic barrier improvements on paper. An attempt was also made to prepare oriented thin films of pi-conjugated polymers on paper surfaces with a pulsed plasma technique for incorporation of electrically conductive layers. Progressive changes in composition, with varying plasma duty cycles during the plasma polymerization, were observed with thiophene. The results of this study provide additional support for the unusually good control of film chemistry available via the pulsed plasma technique. Electrical conductivity measurements indicated that fragmented thiophene films were obtained under mild plasma conditions, but the discontinuous thiophene film was found to be oriented. The electrical behavior of the thiophene derived deposited layer was dramatically improved with chemical doping. Correlation of the changes of paper surface properties with changes in plasma parameters are partially explained by based on surface chemistry, although other structural features of the paper morphology were also affected to some extent by the treatments. It may be that some of the methods evaluated in this study could be applied by industry, particularly gas-vapor plasma treatments alone; however the approaches were designed to provide fundamental understanding of the mechanisms of plasma modification of the properties of paper.

  8. FAST TRACK COMMUNICATION: Asymmetric surface barrier discharge plasma driven by pulsed 13.56 MHz power in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Dedrick, J.; Boswell, R. W.; Charles, C.

    2010-09-01

    Barrier discharges are a proven method of generating plasmas at high pressures, having applications in industrial processing, materials science and aerodynamics. In this paper, we present new measurements of an asymmetric surface barrier discharge plasma driven by pulsed radio frequency (rf 13.56 MHz) power in atmospheric pressure air. The voltage, current and optical emission of the discharge are measured temporally using 2.4 kVp-p (peak to peak) 13.56 MHz rf pulses, 20 µs in duration. The results exhibit different characteristics to plasma actuators, which have similar discharge geometry but are typically driven at frequencies of up to about 10 kHz. However, the electrical measurements are similar to some other atmospheric pressure, rf capacitively coupled discharge systems with symmetric electrode configurations and different feed gases.

  9. Active Control of High Speed and High Reynolds Number Jets via Plasma Actuators^*

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Hwa

    2005-11-01

    Localized arc filament plasma actuators developed at OSU are uniquely suited to force high speed and high Reynolds number jets and shear flows. The actuators have high bandwidth ranging from 0 to 200 kHz and high amplitude with prescribed duty cycle and phase. Eight of these actuators were distributed around the perimeter of an axisymmetric nozzle of 2.54 cm diameter and were used to force ideally expanded Mach 1.3 jet with a Reynolds number of about 1x10^6. Axisymmetirc, helical (with m=1,2, and 4), flapping, and m = ±2 modes were used. The streamwise flow images showed that the jet column mode was forced most effectively around StD = 0.33, which is in line with what other researchers have found. At this Strouhal number, robust and periodic structures were generated. The effects of forcing amplitude were very limited. However, the effectiveness of forcing was strongly affected by forcing frequency and duty cycle. For all the modes of actuation, the optimum duty cycle was 5-15%. Pitot pressure measurements along the jet centerline showed significantly reduced potential core for some forced cases, especially for the forcing frequency around StD = 0.33. From streamwise images and the centerline pitot data, it appeared that helical and flapping modes are best for mixing enhancement. ^*Supported by NASA Glenn Research Center and OCAPP.

  10. The Influence of Spanwise Segmented Plasma Actuator Forcing on a Circular Cylinder Wake and the Selection of Optimum Wavelength

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Samik; Gregory, James W.

    2013-11-01

    Detailed investigations have been carried out on the effect of segmented plasma forcing on the wake of circular cylinder. Actuators of wavelength 1d to 6d (d = diameter) were used for three-dimensional actuation at Reynolds number of 4700. Two most important factors were wavelength of actuation and the power of plasma. Vortex shedding was not significantly attenuated below a certain threshold of the supplied voltage. However, for actuation wavelength more than 2d, the near wake developed a wavy profile due to emergence of streamwise vorticity. The reason for this development was differential displacement of the Karman vortex street behind the plasma forming and no plasma region. Forcing above the threshold voltage created strong circulating zones at each corner of the buried electrode, which diverted the flow from the no plasma region towards the plasma region. This process gave rise to alternate accelerated flow (behind the plasma region) and distinct reverse flow zones (behind no plasma regions). The strength of Karman shedding was attenuated as energy was extracted from it and fed to streamwise vorticity. This lead to significant reduction in drag in the event of high power actuation with 3d,4d and 5d actuators. The attenuation in shedding and reduction of drag was maximum for 4d actuator, which led to its selection as optimum wavelength. Significant difference in wake width was observed in high power forcing cases behind the two regions. This observation was attributed to spanwise difference in vortex formation length due to segmented forcing. This work was supported by the Air Force Office of Scientific Research.

  11. Control of supersonic axisymmetric base flows using passive splitter plates and pulsed plasma actuators

    NASA Astrophysics Data System (ADS)

    Reedy, Todd Mitchell

    An experimental investigation evaluating the effects of flow control on the near-wake downstream of a blunt-based axisymmetric body in supersonic flow has been conducted. To better understand and control the physical phenomena that govern these massively separated high-speed flows, this research examined both passive and active flow-control methodologies designed to alter the stability characteristics and structure of the near-wake. The passive control investigation consisted of inserting splitter plates into the recirculation region. The active control technique utilized energy deposition from multiple electric-arc plasma discharges placed around the base. The flow-control authority of both methodologies was evaluated with experimental diagnostics including particle image velocimetry, schlieren photography, surface flow visualization, pressure-sensitive paint, and discrete surface pressure measurements. Using a blowdown-type wind tunnel reconstructed specifically for these studies, baseline axisymmetric experiments without control were conducted for a nominal approach Mach number of 2.5. In addition to traditional base pressure measurements, mean velocity and turbulence quantities were acquired using two-component, planar particle image velocimetry. As a result, substantial insight was gained regarding the time-averaged and instantaneous near-wake flow fields. This dataset will supplement the previous benchmark point-wise laser Doppler velocimetry data of Herrin and Dutton (1994) for comparison with new computational predictive techniques. Next, experiments were conducted to study the effects of passive triangular splitter plates placed in the recirculation region behind a blunt-based axisymmetric body. By dividing the near-wake into 1/2, 1/3, and 1/4 cylindrical regions, the time-averaged base pressure distribution, time-series pressure fluctuations, and presumably the stability characteristics were altered. While the spatial base pressure distribution was influenced considerably, the area-integrated pressure was only slightly affected. Normalized RMS levels indicate that base pressure fluctuations were significantly reduced with the addition of the splitter plates. Power-spectral-density estimates revealed a spectral broadening of fluctuating energy for the 1/2 cylinder configuration and a bimodal distribution for the 1/3 and 1/4 cylinder configurations. It was concluded that the recirculation region is not the most sensitive location to apply flow control; rather, the shear layer may be a more influential site for implementing flow control methodologies. For active flow control, pulsed plasma-driven fluidic actuators were investigated. Initially, the performance of two plasma actuator designs was characterized to determine their potential as supersonic flow control devices. For the first actuator considered, the pulsed plasma jet, electro-thermal heating from an electric discharge heats and pressurizes gas in a small cavity which is exhausted through a circular orifice forming a synthetic jet. Depending on the electrical energy addition, peak jet velocities ranged between 130 to nearly 500 m/s when exhausted to quiescent, ambient conditions. The second plasma actuator investigated is the localized arc filament plasma actuator (LAFPA), which created fluidic perturbations through the rapid, local thermal heating, generated from an electric arc discharge between two electrodes within a shallow open cavity. Electrical and emission properties of the LAFPA were first documented as a function of pressure in a quiescent, no-flow environment. Rotational and vibrational temperatures from N2 spectra were obtained for select plasma conditions and ambient pressures. Results further validate that the assumption of optically thin conditions for these electric arc plasmas is not necessary valid, even at low ambient pressure. Breakdown voltage, sustained plasma voltage, power, and energy per pulse were demonstrated to decrease with decreasing pressure. Implementing an array of eight electric arcs circumferentially around the base near the corner expansion, the LAFPA actuators were shown to produce significant disturbances to the separating shear layer of the base flow and cause modest influences on the base pressure when actuated over a range of high frequencies (O(kHz)), forcing modes, duty cycles, and electrical currents. To tailor the plasma actuator toward the specific flow control application of the separated base flow, several actuator geometries and energy additions were evaluated. Displaying the ability to produce disturbances in the shear layer, an open cavity actuator design outperformed the other geometries consisting of a confined cavity with an exhaust orifice. Increases in duty cycle (between 2% and 6%) and in plasma current (1/4 to 4 amps) were shown to produce large velocity disturbances causing a decrease in average base pressure. At 4 amps and a maximum duty cycle of 6%, the largest measured change in area-weighted base pressure, near -1.5%, was observed for the axisymmetric forcing mode. Positive changes in base pressure were experienced (as much as 1% increase from the no-control) for the vertical and horizontal flapping modes.

  12. Sterilization of Turmeric by Atmospheric Pressure Dielectric Barrier Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Setareh, Salarieh; Davoud, Dorranian

    2013-11-01

    In this study atmospheric pressure dielectric barrier discharge (DBD) plasma has been employed for sterilizing dry turmeric powders. A 6 kV, 6 kHz frequency generator was used to generate plasma with Ar, Ar/O2, He, and He/O2 gases between the 5 mm gap of two quartz covered electrodes. The complete sterilization time of samples due to plasma treatment was measured. The most important contaminant of turmeric is bacillus subtilis. The results show that the shortest sterilization time of 15 min is achieved by exposing the samples to Ar/O2 plasma. Survival curves of samples are exponential functions of time and the addition of oxygen to plasma leads to a significant increase of the absolute value of time constant of the curves. Magnitudes of protein and DNA in treated samples were increased to a similar value for all samples. Taste, color, and solubility of samples were not changed after the plasma treatment.

  13. Two-dimensional plasma photonic crystals in dielectric barrier discharge

    SciTech Connect

    Fan Weili; Dong Lifang; Zhang Xinchun

    2010-11-15

    A series of two-dimensional plasma photonic crystals have been obtained by filaments' self-organization in atmospheric dielectric barrier discharge with two water electrodes, which undergo the transition from square to square superlattice and finally to the hexagon. The spatio-temporal behaviors of the plasma photonic crystals in nanosecond scale have been studied by optical method, which show that the plasma photonic crystal is actually an integration of different transient sublattices. The photonic band diagrams of the transverse electric (TE) mode and transverse magnetic mode for each sublattice of these plasma photonic crystals have been investigated theoretically. A wide complete band gap is formed in the hexagonal plasma photonic crystal with the TE mode. The changes of the band edge frequencies and the band gap widths in the evolvement of different structures are studied. A kind of tunable plasma photonic crystal which can be controlled both in space and time is suggested.

  14. Effects of plasma spray parameters on two layer thermal barrier

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1981-01-01

    The power level and the type of arc gas used during plasma spraying of a two layer thermal barrier system (TBS) were found to affect the life of the system. Life at 1095 C in a cyclic furnace test was improved by about 140 percent by increasing the power during plasma spray applications of the bond and thermal barrier coatings. This improvement is due to increases in the densities of the bond and thermal barrier coatings by 3 and 5 percent, respectively. These increases in densities are equivalent to about 45 and 30 percent reduction in mean porosities, respectively. The addition of hydrogen to the argon arc gas had the same effect as the reduction in power level and caused a reduction in TBS life.

  15. Recent developments in DBD plasma flow control

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Jun; Choi, Kwing-So; Feng, Li-Hao; Jukes, Timothy N.; Whalley, Richard D.

    2013-10-01

    Flow control using DBD (dielectric-barrier-discharge) plasma actuators is a relatively new, but rapidly expanding area of research. There are a number of review papers available on this subject, but few discuss on their latest developments. The purpose of the present article is to “fill the gap” by reviewing the recent trend of plasma actuator design and to summarise aerodynamic control techniques. Here, we review new plasma actuators, such as plasma synthetic jet actuators, plasma spark jet actuators, three-dimensional plasma actuators and plasma vortex generators, which can induce three-dimensional flows away from the wall. We also review the starting vortex that leads to formation of a plasma wall jet. This is an important subject not only for a better understanding of the flow induced by DBD plasma actuators, but also as a database that can be used to calibrate the numerical models for plasma flow control. Design of DBD plasma actuators to obtain turbulent skin-friction reduction is shown and the modifications to near-wall turbulence structures are summarised. Novel applications of DBD plasma actuators for aerodynamic control are then discussed, including pitch and roll control, plasma jet vectoring, circulation control and plasma flap, showing a potential of DBD plasma actuators for replacing movable, aircraft control surfaces. Finally, vortex shedding control techniques by a number of different plasma actuators are surveyed.

  16. In-Flight Infrared Measurements for Quantification of Transition Delay with DBD Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Simon, Bernhard; Grundmann, Sven

    2014-11-01

    Active flow control with a single DBD plasma actuator is performed in flight on wing of a motorized in order to delay laminar-turbulent transition at Rec = 3 .106 . While earlier experiments measured transition delay with point wise sensors such as microphones or surface hot wires, these dynamic sensors are now simultaneously applied with the infrared measurement technique. This allows a more accurate spatial quantification of the flow control impact. The miniature high resolution IR camera is mounted below the wing as the experiments are conducted on the pressure side. Two control strategies, boundary layer stabilization and active wave cancelation of Tollmien Schlichting (TS) waves, are performed in flight experiments, showing significant advantages of the IR measurement technique. Spanwise and streamwise effects on the transition delay are measured and evaluated with novel post processing strategies. This allows a detailed view on the correlation of TS wave damping and transition delay for different plasma actuator operation modes and flight conditions. This project is founded by the German Research Foundation DFG (GR 3524/4-1).

  17. A new plasma-driven pulsed jet actuator for flow control

    NASA Astrophysics Data System (ADS)

    Bonnet, Jean-Paul; Acher, Gwenael; Lebedev, Anton; Benard, Nicolas; Moreau, Eric; Electro-Fluido Group Team

    2015-11-01

    Active flow control requires actuators with enough authority and high frequency response. Synthetic jets can have high frequency response but are rather limited in terms of authority providing the exit velocity is limited. Pressurized (flowing) jets have a very high potential in terms of authority particularly for high velocity flow control purposes. However, for most purposes, high frequency modulation (of order of several kHz) is required in order to excite most unstable modes and to operate in closed mode. Rapid mechanical valves are limited in terms of frequency (up to typically a few hundred of Hz). We develop a new generation of plasma-driven pulsation of flowing jet. The principle is to increase the temperature at the sonic throat through a plasma discharge located at the throat. The flow rate being proportional to the square root of the temperature for a perfect gas, for the same settling chamber pressure, the actuator flow rate can be varied. The frequency is then no limited by any mechanical constraint. A demonstrator has been tested with a 1mm sonic throat. The electric discharge is created by a 10 kV voltage applied between the anode and the throat acting as the cathode. Within these conditions, a 30% modulation of the flow rate can be obtained.

  18. Plasma sprayed and electrospark deposited zirconium metal diffusion barrier coatings

    SciTech Connect

    Hollis, Kendall J; Pena, Maria I

    2010-01-01

    Zirconium metal coatings applied by plasma spraying and electrospark deposition (ESD) have been investigated for use as diffusion barrier coatings on low enrichment uranium fuel for research nuclear reactors. The coatings have been applied to both stainless steel as a surrogate and to simulated nuclear fuel uranium-molybdenum alloy substrates. Deposition parameter development accompanied by coating characterization has been performed. The structure of the plasma sprayed coating was shown to vary with transferred arc current during deposition. The structure of ESD coatings was shown to vary with the capacitance of the deposition equipment.

  19. Temporal modulation of plasma species in atmospheric dielectric barrier discharges

    SciTech Connect

    Yang, Aijun; Wang, Xiaohua E-mail: mzrong@mail.xjtu.edu.cn; Liu, Dingxin; Rong, Mingzhe E-mail: mzrong@mail.xjtu.edu.cn; Kong, Michael G.

    2014-07-15

    The atmospheric pressure dielectric barrier discharge in helium is a pulsed discharge in nature and the moment of maximum species densities is almost consistent with peak discharge current density. In this paper, a one-dimensional fluid model is used to investigate the temporal structure of plasma species in an atmospheric He-N{sub 2} dielectric barrier discharge (DBD). It is demonstrated that there exist microsecond delays of the moments of the maximum electron and ion densities from the peak of discharge current density. These time delays are caused by a competition between the electron impact and Penning ionizations, modulated by the N{sub 2} level in the plasma-forming gas. Besides, significant electron wall losses lead to the DBD being more positively charged and, with a distinct temporal separation in the peak electron and cation densities, the plasma is characterized with repetitive bursts of net positive charges. The temporal details of ionic and reactive plasma species may provide a new idea for some biological processes.

  20. Control of a high Reynolds number Mach 0.9 heated jet using plasma actuators

    SciTech Connect

    Kearney-Fischer, M.; Kim, J.-H.; Samimy, M.

    2009-09-15

    The results of particle image velocimetry (PIV) measurements in a high subsonic, heated, jet forced using localized arc filament plasma actuators (LAFPAs) show that LAFPAs can consistently produce significant mixing enhancement over a wide range of temperatures. These actuators have been used successfully in high Reynolds number, high-speed unheated jets. The facility consists of an axisymmetric jet with different nozzle blocks of exit diameter of 2.54 cm and variable jet temperature in an anechoic chamber. The focus of this paper is on a high subsonic (M{sub j}=0.9) jet. Twelve experiments with various forcing azimuthal modes (m=0, 1, and {+-}1) and temperatures (T{sub o}/T{sub a}=1.0, 1.4, and 2.0) at a fixed forcing Strouhal number (St{sub DF}=0.3) have been conducted and PIV results compared with the baseline results to characterize the effectiveness of LAFPAs for mixing enhancement. Centerline velocity and turbulent kinetic energy as well as jet width are used for determining the LAFPAs' effectiveness. The characteristics of large-scale structures are analyzed through the use of Galilean streamlines and swirling strength. Across the range of temperatures collected, the effectiveness of LAFPAs improves as temperature increases. Possible reasons for the increase in effectiveness are discussed.

  1. Nonintrusive microwave diagnostics of collisional plasmas in Hall thrusters and dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Stults, Joshua

    This research presents a numerical framework for diagnosing electron properties in collisional plasmas. Microwave diagnostics achieved a significant level of development during the middle part of the last century due to work in nuclear weapons and fusion plasma research. With the growing use of plasma-based devices in fields as diverse as space propulsion, materials processing and fluid flow control, there is a need for improved, flexible diagnostic techniques suitable for use under the practical constraints imposed by plasma fields generated in a wide variety of aerospace devices. Much of the current diagnostic methodology in the engineering literature is based on analytical diagnostic, or forward, models. The Appleton-Hartree formula is an oft-used analytical relation for the refractive index of a cold, collisional plasma. Most of the assumptions underlying the model are applicable to diagnostics for plasma fields such as those found in Hall Thrusters and dielectric barrier discharge (DBD) plasma actuators. Among the assumptions is uniform material properties, this assumption is relaxed in the present research by introducing a flexible, numerical model of diagnostic wave propagation that can capture the effects of spatial gradients in the plasma state. The numerical approach is chosen for its flexibility in handling future extensions such as multiple spatial dimensions to account for scattering effects when the spatial extent of the plasma is small relative to the probing beam's width, and velocity dependent collision frequency for situations where the constant collision frequency assumption is not justified. The numerical wave propagation model (forward model) is incorporated into a general tomographic reconstruction framework that enables the combination of multiple interferometry measurements. The combined measurements provide a quantitative picture of the spatial variation in the plasma properties. The benefit of combining multiple measurements in a coherent way (solving the inverse problem for the material properties) is the reconstruction provides a stronger empirical constraint on the predictions of high-fidelity predictive simulations than multiple un-reconstructed measurements in isolation. Use of the model for reconstructions informs the choice of numerical discretization technique. The model must be fast, low-storage and accurate to be useful for computing reconstructions. An important part of experimental work is error analysis, or uncertainty quantification. This becomes more difficult as sophistication of the measurement models increase. This research presents an uncertainty quantification technique based on complex-step sensitivity derivatives that is particularly well-suited for error propagation in sophisticated partial differential equation (PDE)-based measurement models, because it requires only trivial changes to the PDE solver to implement.

  2. Structure of propagating arc in a magneto-hydrodynamic rail plasma actuator

    NASA Astrophysics Data System (ADS)

    Gray, Miles D.; Choi, Young-Joon; Sirohi, Jayant; Raja, Laxminarayan L.

    2016-01-01

    The spatio-temporal evolution of a magnetically driven arc in a rail plasma flow actuator has been characterized with high-speed imaging, electrical measurements, and spectroscopy. The arc draws a peak current of ~1 kA. High-speed framing cameras were used to observe the complex arc propagation phenomenon. In particular, the anode and cathode roots were observed to have different modes of transit, which resulted in distinct types of electrode degradation on the anode and cathode surfaces. Observations of the arc electrical properties and induced magnetic fields are used to explain the transit mechanism of the arc. Emission spectroscopy revealed the arc temperature and species composition as a function of transit distance of the arc. The results obtained offer significant insights into the electromagnetic properties of the arc-rail system as well as arc-surface interaction phenomena in a propagating arc.

  3. Study of internal transport barrier triggering mechanism in tokamak plasmas

    SciTech Connect

    Dong, J.Q.; Mou, Z.Z.; Long, Y.X.; Mahajan, S.M.

    2004-12-01

    Sheared flow layers driven by magnetic energy, released in tearing-reconnection processes inherent in dissipative magnetohydrodynamics, are proposed as a triggering mechanism for the creation of the internal transport barrier (ITB) in tokamak plasmas. The double tearing mode, mediated by anomalous electron viscosity in configurations with a nonmonotonic safety factor, is investigated as an example. Particular emphasis is placed on the formation of sheared poloidal flow layers in the vicinity of the magnetic islands. A quasilinear simulation demonstrates that the sheared flows induced by the mode have desirable characteristics (lying just outside the magnetic islands), and sufficient levels required for ITB formation. A possible explanation is also proffered for the experimental observation that the transport barriers are preferentially formed in the proximity of low-order rational surfaces.

  4. Numerical simulations of tokamak plasma turbulence and internal transport barriers

    NASA Astrophysics Data System (ADS)

    Thyagaraja, A.

    2000-12-01

    A wide variety of magnetically confined plasmas, including many tokamaks such as the JET, TFTR, JT-60U, DIII-D, RTP, show clear evidence for the existence of the so-called `internal transport barriers' (ITBs) which are regions of relatively good confinement, associated with substantial gradients in temperature and/or density. A computational approach to investigating the properties of tokamak plasma turbulence and transport is developed. This approach is based on the evolution of global, two-fluid, nonlinear, electromagnetic plasma equations of motion with specified sources. In this paper, the computational model is applied to the problem of determining the nature and physical characteristics of barrier phenomena, with particular reference to RTP (electron-cyclotron resonance heated) and JET (neutral beam heated) observations of ITBs. The simulations capture features associated with the formation of these ITBs, and qualitatively reproduce some of the observations made on RTP and JET. The picture of plasma turbulence suggested involves variations of temperature and density profiles induced by the electromagnetic fluctuations, on length scales intermediate between the system size and the ion Larmor radius, and time scales intermediate between the confinement time and the Alfvén time (collectively termed `mesoscales'). The back-reaction of such profile `corrugations' (features exhibiting relatively high local spatial gradients and rapid time variations) on the development and saturation of the turbulence itself plays a key role in the nonlinear dynamics of the system. The corrugations are found to modify the dynamical evolution of radial electric field shear and the bootstrap current density, which in turn influence the turbulence. The interaction is mediated by relatively long wavelength, electromagnetic modes excited by an inverse cascade and involving nonlinear instabilities and relaxation phenomena such as intermittency and internal mode locking.

  5. Influence of geometrical parameters on performance of plasma synthetic jet actuator

    NASA Astrophysics Data System (ADS)

    Zong, Hao-hua; Wu, Yun; Jia, Min; Song, Hui-min; Liang, Hua; Li, Ying-hong; Zhang, Zhi-bo

    2016-01-01

    Plasma synthetic jet actuator (PSJA) has shown wide and promising application prospects in a high speed flow control field, due to its rapid response, high exhaust velocity, and non-moving components. In this paper, the total pressure profile of a plasma synthetic jet (PSJ) is measured and a new method is developed to evaluate the pulsed thrust of the PSJA. The influence of geometrical parameters including the electrode distance, the orifice diameter, and the throat length on PSJA performance is analyzed based on the pulsed thrust, the discharge characteristics, and the schlieren images. When varying the electrode distance, the dominant factor determining the jet intensity is the heating volume instead of the discharge energy. For the arc discharge, the electrode distance should be extended to increase both the jet velocity and the jet duration time. The design of the orifice diameter should be based on the controlled flow field. A large orifice diameter produces a strong perturbation with short time duration, while a small orifice diameter induces a lasting jet with low mass flux. In order to obtain better high frequency performance, the throat length should be shortened on the condition that the structural strength of the PSJA is maintained, while there is almost no influence of the throat length on the single cycle performance of the PSJA. Once the discharge energy is fixed, the pulsed thrust remains almost unchanged with different orifice diameters and throat lengths. These three geometrical parameters are independent to some extent and can be optimized separately.

  6. Coherent structures in plasma-actuator controlled supersonic jets: Axisymmetric and mixed azimuthal modes

    NASA Astrophysics Data System (ADS)

    Gaitonde, D. V.; Samimy, M.

    2011-09-01

    High-fidelity simulations are employed to study the effect of eight localized arc filament plasma actuators placed around the periphery of a Mach 1.3 converging-diverging nozzle exit. Emphasis is placed on understanding the coherent structures generated by axisymmetric (m = 0), flapping or first mixed (m = ±1) and second mixed (m = ±2) modes, which are excited at the jet column-mode frequency corresponding to a Strouhal number based on jet diameter of 0.3. Baseline (no control) and constant excitation (actuators on continuously) cases are also simulated. Comparisons with experimental results indicate that the computational model reproduces the main features induced by the actuators. Furthermore, the mean flow exhibits many similarities with the theoretical predictions of Cohen and Wygnanski [J. Fluid Mech. 176, 221 (1987)]. Overall, the results indicate a complex coherent structure generation, evolution, and disintegration process. For m = ±1, the phase-averaged flow reveals successive distorted elliptic vortex rings with axes in the flapping plane but alternating on either side of the jet axis. This generates a chain of structures each of which interacts with its predecessor on one side of the major plane and its successor on the other. Through self and mutual induction, the leading segment of each loop is pinched and passes through the previous ring before rapidly breaking up. The m = ±2 mode yields elliptic structures with major axes of successive rings being aligned with the two symmetry planes, which are orthogonal to each other. The minor axis side is pulled downstream faster than the rest of the structure because of the higher velocity near the jet centerline and self-induced effects, yielding a horse-shoe shape when viewed in profile. The m = 0 mode exhibits axisymmetric roll-up events, with vortex ribs in the braid regions connecting successive large coherent structures. The constant excitation (with largest energy input) and baseline cases are similar to each other, indicating that the direct effect of heating is negligible.

  7. Distributed forcing flow control in the wake of a blunt trailing edge profiled body using plasma actuators

    NASA Astrophysics Data System (ADS)

    Naghib-Lahouti, A.; Hangan, H.; Lavoie, P.

    2015-03-01

    A modern flow control technique for reducing the drag associated with the periodic shedding of von Kármán vortices in the wake of a blunt trailing edge profiled body is presented. The technique involves distributed forcing of the wake flow using an array of dielectric barrier discharge plasma actuators, with a spanwise spacing matched to the spanwise wavelength of the dominant secondary wake instability. The experiments include measurement of the velocity field in multiple vertical and horizontal planes in the wake using particle image velocimetry, as well as base pressure, at Reynolds numbers of 2000, 3000, and 5000 based on trailing edge thickness. The flow control technique causes elongation of the vortex formation region across the span, and significant reduction of the fluctuating and total drag forces, up to a maximum of 94% and 18%, respectively. The effectiveness of the flow control technique is shown to be dependent on the induced momentum coefficient. Proper orthogonal decomposition analysis is used to investigate the mechanism of interaction of the flow control technique with the wake flow. Two distinct flow regimes are observed depending on the induced momentum coefficient. The effect of the control on the wake flow structure in the first regime is similar to those observed in previous studies involving mild spanwise-periodic geometric perturbations at the trailing edge, where control leads to streamwise displacement of the vortices and a shift in shedding frequency. However, an incremental increase in the momentum coefficient leads to a second flow regime similar to those previously observed in the case of large-amplitude geometric perturbations, with an almost complete attenuation of vortex shedding in the near-wake region.

  8. Plasma and ion barrier for electron beam spot stability

    SciTech Connect

    Kwan, T.J.T.; Snell, C.M.

    1999-04-01

    The concept of a self-biased target to spatially confine the ions generated by the bombardment of intense electron beams on bremsstrahlung conversion targets has been predicted by computer simulation and further verified by experiments at the Integrated Test Stand for DARHT at Los Alamos National Laboratory. This technical article reports an alternative method of containing the plasmas and ions from the bremsstrahlung conversion target if the energy density of the electron beam is below a certain threshold. With the proposed changes of the electron beam parameters of the second axis of DARHT, the authors are able to show that a thin (0.5 mm) metallic barrier such as pure beryllium, or boron carbide with desirable thermal properties, is sufficiently transparent to the 20 MeV DARHT beam and at the same time able to confine the ions between the target and the barrier foil. The temperature rise in the foil due to energy deposited by the electron beam is expected to be below the melting point of the materials for the first three pulses. More important, they have shown in their time dependent particle-in-cell simulations that the deployment of a barrier situated 1 to 2 cm away from the converter target can achieve the ion confinement needed for the stability of the electron beam spot.

  9. Efficiency of plasma actuator ionization in shock wave modification in a rarefied supersonic flow over a flat plate

    NASA Astrophysics Data System (ADS)

    Joussot, Romain; Lago, Viviana; Parisse, Jean-Denis

    2014-12-01

    This paper describes experimental and numerical investigations focused on the shock wave modification, induced by a dc glow discharge, of a Mach 2 flow under rarefied regime. The model under investigation is a flat plate equipped with a plasma actuator composed of two electrodes. The glow discharge is generated by applying a negative potential to the upstream electrode, enabling the creation of a weakly ionized plasma. The natural flow (i.e. without the plasma) exhibits a thick laminar boundary layer and a shock wave with a hyperbolic shape. Images of the flow obtained with an ICCD camera revealed that the plasma discharge induces an increase in the shock wave angle. Thermal effects (volumetric, and at the surface) and plasma effects (ionization, and thermal non-equilibrium) are the most relevant processes explaining the observed modifications. The effect induced by the heating of the flat plate surface is studied experimentally by replacing the upstream electrode by a heating element, and numerically by modifying the thermal boundary condition of the model surface. The results show that for a similar temperature distribution over the plate surface, modifications induced by the heating element are lower than those produced by the plasma. This difference shows that other effects than purely thermal effects are involved with the plasma actuator. Measurements of the electron density with a Langmuir probe highlight the fact that the ionization degree plays an important role into the modification of the flow. The gas properties, especially the isentropic exponent, are indeed modified by the plasma above the actuator and upstream the flat plate. This leads to a local modification of the flow conditions, inducing an increase in the shock wave angle.

  10. Efficiency of plasma actuator ionization in shock wave modification in a rarefied supersonic flow over a flat plate

    SciTech Connect

    Joussot, Romain; Lago, Viviana; Parisse, Jean-Denis

    2014-12-09

    This paper describes experimental and numerical investigations focused on the shock wave modification, induced by a dc glow discharge, of a Mach 2 flow under rarefied regime. The model under investigation is a flat plate equipped with a plasma actuator composed of two electrodes. The glow discharge is generated by applying a negative potential to the upstream electrode, enabling the creation of a weakly ionized plasma. The natural flow (i.e. without the plasma) exhibits a thick laminar boundary layer and a shock wave with a hyperbolic shape. Images of the flow obtained with an ICCD camera revealed that the plasma discharge induces an increase in the shock wave angle. Thermal effects (volumetric, and at the surface) and plasma effects (ionization, and thermal non-equilibrium) are the most relevant processes explaining the observed modifications. The effect induced by the heating of the flat plate surface is studied experimentally by replacing the upstream electrode by a heating element, and numerically by modifying the thermal boundary condition of the model surface. The results show that for a similar temperature distribution over the plate surface, modifications induced by the heating element are lower than those produced by the plasma. This difference shows that other effects than purely thermal effects are involved with the plasma actuator. Measurements of the electron density with a Langmuir probe highlight the fact that the ionization degree plays an important role into the modification of the flow. The gas properties, especially the isentropic exponent, are indeed modified by the plasma above the actuator and upstream the flat plate. This leads to a local modification of the flow conditions, inducing an increase in the shock wave angle.

  11. MERCURY OXIDIZATION IN NON-THERMAL PLASMA BARRIER DISCHARGE SYSTEM

    SciTech Connect

    V.K. Mathur

    2003-02-01

    In the past decade, the emission of toxic elements from human activities has become a matter of great public concern. Hg, As, Se and Cd typically volatilize during a combustion process and are not easily caught with conventional air pollution control techniques. In addition, there is no pollution prevention technique available now or likely be available in the foreseeable future that can prevent the emission of these trace elements. These trace elements pose additional scientific challenge as they are present at only ppb levels in large gas streams. Mercury, in particular, has attracted significant attention due to its high volatility, toxicity and potential threat to human health. In the present research work, a non-thermal plasma dielectric barrier discharge technique has been used to oxidize Hg{sup 0}(g) to HgO. The basic premise of this approach is that Hg{sup 0} in vapor form cannot be easily removed in an absorption tower whereas HgO as a particulate is amiable to water scrubbing. The work presented in this report consists of three steps: (1) setting-up of an experimental apparatus to generate mercury vapors at a constant rate and modifying the existing non-thermal plasma reactor system, (2) solving the analytical challenge for measuring mercury vapor concentration at ppb level, and (3) conducting experiments on mercury oxidation under plasma conditions to establish proof of concept.

  12. Plasma chemistry in CO2 dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Brehmer, F.; Welzel, S.; van de Sanden, M. C. M.; Engeln, R.

    2013-09-01

    Plasma-assisted gas phase conversion in non-thermal environments is increasingly being considered as promising technology for fuel production from CO2 and hydrogen containing sources. Particularly the rate-limiting activation of CO2 is suggested to be tackled in plasmas at (sub-)atmospheric pressure conditions without the admixture of carrier gases. Therefore CO2 dielectric barrier discharges were studied to assess conversion yields and reaction mechanisms. The CO2 discharges were resonantly excited at around 100 kHz in a flow-tube lab-scale reactor designed to facilitate time-resolved in-situ optical emission and infrared laser absorption spectroscopy. Complementary analysis of the gas phase constituents using ex-situ FT-IR spectroscopy and a thorough electrical characterisation were carried out. The CO conversion yields were typically below 5% and hence in-line with similar studies. The energy efficiency can be uniformly described for different external plasma parameters (e.g. flow rate, power input, excitation frequency) as function of the specific energy input. Special attention was paid to the non-negligible formation of by-products such as O3 and O2 which suggests an inefficient recycling of atomic oxygen in secondary CO2 dissociation reactions.

  13. Inter- and intracellular signaling induced by magnetomechanical actuation of plasma membrane channels

    NASA Astrophysics Data System (ADS)

    Vitol, Elina A.; Rozhkova, Elena A.; Novosad, Valentyn; Bader, Samuel D.

    2012-02-01

    Magnetic particles allow for non-invasive control over their spatial orientation and motion which makes them ideally suitable for studying real-time processes in living cells. Lithographically defined ferromagnetic disks with spin-vortex ground state have the advantage of zero net magnetization in remanence. This eliminates long-range magnetic forces which otherwise lead to the interaction between particles and their agglomeration. Moreover, magnetically soft permalloy particles have high magnetization of saturation thus requiring very low external field for inducing high magnetomotive force, compared to superparamagnetic particles. Our group has previously demonstrated that micron-sized permalloy disks can be used for destruction of cancer cells (D.-H. Kim, E. A. Rozhkova, I. V. Ulasov, S. D. Bader, T. Rajh, M. S. Lesniak, V. Novosad, Nat. Mater. 9, 165-171 (2010). In this work, we investigate the effects of magnetomechanical stimulation of human brain cancer cells with these particles. It will be shown that the actuation of ion channels in cell plasma membrane induces, on the one hand side, intracellular signaling triggering cell apoptosis and, on the other hand, it stimulates the energy transfer between the cells which carries the information about apoptotic signal.

  14. Effect of dielectric and liquid on plasma sterilization using dielectric barrier discharge plasma.

    PubMed

    Mastanaiah, Navya; Johnson, Judith A; Roy, Subrata

    2013-01-01

    Plasma sterilization offers a faster, less toxic and versatile alternative to conventional sterilization methods. Using a relatively small, low temperature, atmospheric, dielectric barrier discharge surface plasma generator, we achieved ≥ 6 log reduction in concentration of vegetative bacterial and yeast cells within 4 minutes and ≥ 6 log reduction of Geobacillus stearothermophilus spores within 20 minutes. Plasma sterilization is influenced by a wide variety of factors. Two factors studied in this particular paper are the effect of using different dielectric substrates and the significance of the amount of liquid on the dielectric surface. Of the two dielectric substrates tested (FR4 and semi-ceramic (SC)), it is noted that the FR4 is more efficient in terms of time taken for complete inactivation. FR4 is more efficient at generating plasma as shown by the intensity of spectral peaks, amount of ozone generated, the power used and the speed of killing vegetative cells. The surface temperature during plasma generation is also higher in the case of FR4. An inoculated FR4 or SC device produces less ozone than the respective clean devices. Temperature studies show that the surface temperatures reached during plasma generation are in the range of 30°C-66 °C (for FR4) and 20 °C-49 °C (for SC). Surface temperatures during plasma generation of inoculated devices are lower than the corresponding temperatures of clean devices. pH studies indicate a slight reduction in pH value due to plasma generation, which implies that while temperature and acidification may play a minor role in DBD plasma sterilization, the presence of the liquid on the dielectric surface hampers sterilization and as the liquid evaporates, sterilization improves. PMID:23951023

  15. Effect of Dielectric and Liquid on Plasma Sterilization Using Dielectric Barrier Discharge Plasma

    PubMed Central

    Mastanaiah, Navya; Johnson, Judith A.; Roy, Subrata

    2013-01-01

    Plasma sterilization offers a faster, less toxic and versatile alternative to conventional sterilization methods. Using a relatively small, low temperature, atmospheric, dielectric barrier discharge surface plasma generator, we achieved ≥6 log reduction in concentration of vegetative bacterial and yeast cells within 4 minutes and ≥6 log reduction of Geobacillus stearothermophilus spores within 20 minutes. Plasma sterilization is influenced by a wide variety of factors. Two factors studied in this particular paper are the effect of using different dielectric substrates and the significance of the amount of liquid on the dielectric surface. Of the two dielectric substrates tested (FR4 and semi-ceramic (SC)), it is noted that the FR4 is more efficient in terms of time taken for complete inactivation. FR4 is more efficient at generating plasma as shown by the intensity of spectral peaks, amount of ozone generated, the power used and the speed of killing vegetative cells. The surface temperature during plasma generation is also higher in the case of FR4. An inoculated FR4 or SC device produces less ozone than the respective clean devices. Temperature studies show that the surface temperatures reached during plasma generation are in the range of 30°C–66°C (for FR4) and 20°C–49°C (for SC). Surface temperatures during plasma generation of inoculated devices are lower than the corresponding temperatures of clean devices. pH studies indicate a slight reduction in pH value due to plasma generation, which implies that while temperature and acidification may play a minor role in DBD plasma sterilization, the presence of the liquid on the dielectric surface hampers sterilization and as the liquid evaporates, sterilization improves. PMID:23951023

  16. Control of a shock wave-boundary layer interaction using localized arc filament plasma actuators

    NASA Astrophysics Data System (ADS)

    Webb, Nathan Joseph

    Supersonic flight is currently possible, but expensive. Inexpensive supersonic travel will require increased efficiency of high-speed air entrainment, an integral part of air-breathing propulsion systems. Although mixed compression inlet geometry can significantly improve entrainment efficiency, numerous Shock Wave-Boundary Layer Interactions (SWBLIs) are generated in this configuration. The boundary layer must therefore develop through multiple regions of adverse pressure gradient, causing it to thicken, and, in severe cases, separate. The associated increase in unsteadiness can have adverse effects on downstream engine hardware. The most severe consequence of these interactions is the increased aerodynamic blockage generated by the thickened boundary layer. If the increase is sufficient, it can choke the flow, causing inlet unstart, and resulting in a loss of thrust and high transient forces on the engine, airframe, and aircraft occupants. The potentially severe consequences associated with SWBLIs require flow control to ensure proper operation. Traditionally, boundary layer bleed has been used to control the interaction. Although this method is effective, it has inherent efficiency penalties. Localized Arc Filament Plasma Actuators (LAFPAs) are designed to generate perturbations for flow control. Natural flow instabilities act to amplify certain perturbations, allowing the LAFPAs to control the flow with minimal power input. LAFPAs also have the flexibility to maintain control over a variety of operating conditions. This work seeks to examine the effectiveness of LAFPAs as a separation control method for an oblique, impinging SWBLI. The low frequency unsteadiness in the reflected shock was thought to be the natural manifestation of a Kelvin-Helmholtz instability in the shear layer above the separation region. The LAFPAs were therefore placed upstream of the interaction to allow their perturbations to convect to the receptivity region (near the shear layer origin/separation line). Streamwise PIV measurements did not show that the boundary layer or separation region were energized by the actuation. The primary effect of the LAFPAs was the displacement of the reflected shock upstream. Jaunet et al. (2012) observed a similar shift in the reflected shock when they heated the wall beneath the boundary layer. A significantly greater power deposition was used in that work, and significantly larger shock displacements were observed. Although the LAFPAs output significantly less power (albeit in an unsteady, highly localized fashion), a parametric sweep strongly pointed to heating as the primary control mechanism. Further investigation and analysis showed that the near-wall heating of the flow by the plasma was the primary control mechanism of the LAFPAs, despite the small power input. The reflected shock was displaced by an increase in the separation region size, which was caused by the degradation of the upstream boundary layer. The LAFPAs degrade the upstream boundary layer through a variety of heating associated mechanisms: 1) Decreasing the density increases the mass flow deficit, 2) The altered skin-friction coefficient acts to retard the flow and make the velocity profile less full, and 3) The heating moves the sonic line further from the wall. Other mechanisms may also play a role.

  17. Dielectric barrier discharge plasma induced degradation of aqueous atrazine.

    PubMed

    Feng, Jingwei; Jiang, Lin; Zhu, Dan; Su, Kuizu; Zhao, Dayong; Zhang, Jibiao; Zheng, Zheng

    2016-05-01

    Degradation of herbicide atrazine in aqueous solution was investigated using a plate type dielectric barrier discharge (DBD) plasma reactor. DBD plasma was generated at the gas-liquid interface of the formed water film. At discharge time of 14 min, atrazine was degradated effectively with a degradation rate of 99 % at the discharge power of 200 W. The experimental data fitted well with first-order kinetics and the energy efficiency for 90 % degradation of atrazine (G value) was calculated, obtaining a rate constant of 0.35 min(-1) and a G value of 1.27 × 10(-10) mol J(-1) (98.76 mg kW(-1) h(-1)) at a discharge power of 200 W, respectively. The addition of Fe(2+) increased the rate constant and G value dramatically, and a significant decrease of the rate constant and G value was observed with the addition of radical scavengers (tert-butyl alcohol, isopropyl alcohol, or Na2CO3). The generated aqueous O3 and H2O2 were determined, which promoted the degradation of herbicide atrazine. Dechlorination was observed and the experimentally detected Cl(-) was 1.52 mg L(-1) at a discharge time of 14 min. The degradation intermediates of atrazine were detected by means of liquid chromatography-mass spectrometry; dechlorination, hydroxylation, dealkylation, and alkyl oxidation processes were involved in the degradation pathways of atrazine. PMID:26832879

  18. Enhanced Design of Turbo-jet LPT by Separation Control Using Phased Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Ashpis, David (Technical Monitor); Corke, Thomas C.; Thomas, Flint O.

    2003-01-01

    This work deals with the documentation and control of flow separation that occurs over turbine blades in the low-pressure turbine stage at low Reynolds numbers that exist at high altitude cruise. We utilize a specially constructed linear cascade that is designed to study the flow field over a generic LPT cascade consisting of Pratt & Whitney 'Pak B' shaped blades. This facility was constructed under a previous one-year NASA Glenn RC initiative. The center blade in the cascade is instrumented to measure the surface pressure coefficient distribution. Optical access allows two-component LDV measurement for boundary layer profiles. Experimental conditions have been chosen to give a range of chord Reynolds numbers from 10 to 100K, and a range of free-stream turbulence levels from u'/U(sub infinity)= 0.08 to 3 percent. The surface pressure measurements were used to define a region of separation and reattachment that depend on the free-stream conditions. The location of separation was found to be relatively insensitive to the experimental conditions. However, reattachment location was very sensitive to the turbulence level and Reynolds number. Excellent agreement was found between the measured pressure distributions and predictions from Euler and RANS simulations. Two-component LDV measurements are presently underway to document the mean and fluctuating velocity components in the boundary layer over the center blade for the range of experimental conditions. The fabrication of the plasma actuator is underway. These are designed to produce either streamwise vortices, or a downstream-directed wall jet. A precursor experiment for the former approach was performed with an array of vortex generators placed just upstream of the separation line. These led to reattachment except for the lowest Reynolds number. Progress has also been made on the proposed concept for a laterally moving wake. This involved constructing a smaller wind tunnel and molding an array of symmetric airfoils to form an array. Following its development, it will be scaled up and used to introduce lateral moving wakes upstream up the Pak-B cascade.

  19. Micronucleus formation induced by dielectric barrier discharge plasma exposure in brain cancer cells

    NASA Astrophysics Data System (ADS)

    Kaushik, Nagendra K.; Uhm, Hansup; Ha Choi, Eun

    2012-02-01

    Induction of micronucleus formation (cytogenetic damage) in brain cancer cells upon exposure of dielectric barrier discharge plasma has been investigated. We have investigated the influence of exposure and incubation times on T98G brain cancer cells by using growth kinetic, clonogenic, and micronucleus formation assay. We found that micronucleus formation rate directly depends on the plasma exposure time. It is also shown that colony formation capacity of cells has been inhibited by the treatment of plasma at all doses. Cell death and micronucleus formation are shown to be significantly elevated by 120 and 240 s exposure of dielectric barrier discharge plasma.

  20. Plasma Surface Modification of Polymer Backsheets: Origins of Future Interfacial Barrier/Backsheet Failure

    SciTech Connect

    Pankow, J. W.; Glick, S. H.

    2005-11-01

    Flexible polymer substrates coated with inorganic oxide moisture barriers are a potential replacement for glass backsheets in thin film PV modules. Silicon oxynitride (SiOxNy) deposited by PECVD on polyethylene terephthalate (PET) represents one potential new backsheet candidate. Barrier deposition runs at NREL have typically included a nitrogen-rich plasma pretreatment prior to actual barrier deposition with the intention of cleaning the PET surface as well as enhancing adhesion of the SiOxNy barrier film to PET; however, test coupons of PET/barrier/EVA/TPE failed after damp heat exposure. PET substrates exposed to plasma conditions similar to those used in pre-treatment were examined by X-ray photoelectron spectroscopy (XPS) to reveal new low molecular weight PET fragments are created which are volatile upon heating and water soluble. Failure analysis of the coupons determined that the moisture barrier is, in fact, transferred to the encapsulant side.

  1. In-situ formation of multiphase air plasma sprayed barrier coatings for turbine components

    SciTech Connect

    Subramanian, Ramesh

    2001-01-01

    A turbine component (10), such as a turbine blade, is provided which is made of a metal alloy (22) and a base, planar-grained thermal barrier layer (28) applied by air plasma spraying on the alloy surface, where a heat resistant ceramic oxide overlay material (32') covers the bottom thermal barrier coating (28), and the overlay material is the reaction product of the precursor ceramic oxide overlay material (32) and the base thermal barrier coating material (28).

  2. Fatigue testing of plasma-sprayed thermal barrier coatings, volume 2

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Nagy, A.; Popelar, C. F.

    1990-01-01

    A plasma sprayed thermal barrier coating for diesel engines were fatigue tested. Candidate thermal barrier coating materials were fatigue screened and a data base was generated for the selected candidate material. Specimen configurations are given for the bend fatigue tests, along with test setup, specimen preparation, test matrix and procedure, and data analysis.

  3. Improving plasma actuator performance at low pressure, and an analysis of the pointing capabilities of cubeSats using Plasmonic Force Propulsion (PFP) thrusters

    NASA Astrophysics Data System (ADS)

    Friz, Paul Daniel

    This thesis details the work done on two unrelated projects, plasma actuators, an aerodynamic flow control device, and Plasmonic Force Propulsion (PFP) thrusters, a space propulsion system for small satellites. The first half of the thesis is a paper published in the International Journal of Flow Control on plasma actuators. In this paper the thrust and power consumption of plasma actuators with varying geometries was studied at varying pressure. It was found that actuators with longer buried electrodes produce the most thrust over all and that they substantially improved thrust at low pressure. In particular actuators with 75 mm buried electrodes produced 26% more thrust overall and 34% more thrust at low pressure than the standard 15 mm design. The second half details work done modeling small satellite attitude and reaction control systems in order to compare the use of Plasmonic Force Propulsion thrusters with other state of the art reaction control systems. The model uses bang bang control algorithms and assumes the worst case scenario solar radiation pressure is the only disturbing force. It was found that the estimated 50-500 nN of thrust produced by PFP thrusters would allow the spacecraft which use them extremely high pointing and positioning accuracies (<10-9 degrees and 3 pm). PFP thrusters still face many developmental challenges such as increasing specific impulse which require more research, however, they have great potential to be an enabling technology for future NASA missions such as the Laser Interferometer Space Antenna, and The Stellar Imager.

  4. Ideal MHD stability of double transport barrier plasmas in DIII-D

    NASA Astrophysics Data System (ADS)

    Li, G. Q.; Wang, S. J.; Lao, L. L.; Turnbull, A. D.; Chu, M. S.; Brennan, D. P.; Groebner, R. J.; Zhao, L.

    2008-01-01

    The ideal MHD stability for double transport barrier (DTB or DB) plasmas with varying edge and internal barrier width and height was investigated, using the ideal MHD stability code GATO. A moderate ratio of edge transport barriers (ETB) height to internal transport barriers (ITBs) height is found to be beneficial to MHD stability and the βN is limited by global low n instabilities. For moderate ITB width DB plasmas, if the ETB is weak, the stability is limited by n = 1 (n is the toroidal mode number) global mode; whereas if the ETB is strong it is limited by intermediate-n edge peeling-ballooning modes. Broadening the ITB can improve stability if the ITB half width wi lsim 0.3. For very broad ITB width plasmas the stability is limited by stability to a low n (n > 1) global mode.

  5. Wind tunnel experiments on flow separation control of an Unmanned Air Vehicle by nanosecond discharge plasma aerodynamic actuation

    NASA Astrophysics Data System (ADS)

    Kang, Chen; Hua, Liang

    2016-02-01

    Plasma flow control (PFC) is a new kind of active flow control technology, which can improve the aerodynamic performances of aircrafts remarkably. The flow separation control of an unmanned air vehicle (UAV) by nanosecond discharge plasma aerodynamic actuation (NDPAA) is investigated experimentally in this paper. Experimental results show that the applied voltages for both the nanosecond discharge and the millisecond discharge are nearly the same, but the current for nanosecond discharge (30 A) is much bigger than that for millisecond discharge (0.1 A). The flow field induced by the NDPAA is similar to a shock wave upward, and has a maximal velocity of less than 0.5 m/s. Fast heating effect for nanosecond discharge induces shock waves in the quiescent air. The lasting time of the shock waves is about 80 μs and its spread velocity is nearly 380 m/s. By using the NDPAA, the flow separation on the suction side of the UAV can be totally suppressed and the critical stall angle of attack increases from 20° to 27° with a maximal lift coefficient increment of 11.24%. The flow separation can be suppressed when the discharge voltage is larger than the threshold value, and the optimum operation frequency for the NDPAA is the one which makes the Strouhal number equal one. The NDPAA is more effective than the millisecond discharge plasma aerodynamic actuation (MDPAA) in boundary layer flow control. The main mechanism for nanosecond discharge is shock effect. Shock effect is more effective in flow control than momentum effect in high speed flow control. Project supported by the National Natural Science Foundation of China (Grant Nos. 61503302, 51207169, and 51276197), the China Postdoctoral Science Foundation (Grant No. 2014M562446), and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2015JM1001).

  6. Thermal behavior of bovine serum albumin after exposure to barrier discharge helium plasma jet

    NASA Astrophysics Data System (ADS)

    Jijie, R.; Pohoata, V.; Topala, I.

    2012-10-01

    Non-thermal plasma jets at atmospheric pressure are useful tools nowadays in plasma medicine. Various applications are tested such as cauterization, coagulation, wound healing, natural and artificial surfaces decontamination, and sterilization. In order to know more about the effects of gas plasma on biological supramolecules, we exposed protein powders to a barrier discharge helium plasma jet. Then, spectroscopic investigations were carried out in order to obtain information on protein secondary, tertiary, and quaternary structures. We obtained a reduction of the protein alpha-helix content after the plasma exposure and a different behavior, for both thermal denaturation/renaturation kinetics and thermal aggregation process.

  7. Plasma Surface Modification of Polymer Backsheets: Origins of Future Interfacial Barrier/Backsheet Failure (Poster)

    SciTech Connect

    Pankow, J. W.; Glick, S. H.

    2006-05-01

    Flexible polymer substrates coated with inorganic oxide moisture barriers are a potential replacement for glass backsheets in thin-film PV (photovoltaic) modules. Silicon oxynitride (SiO{sub x}N{sub y}) deposited by plasma enhanced chemical vapor deposition (PECVD) on polyethylene terephthalate (PET) represents one potential new backsheet candidate. Barrier deposition runs at NREL have included a nitrogen-rich plasma pretreatment prior to barrier deposition with the intention of cleaning the PET surface and enhancing adhesion of the SiO{sub x}N{sub y} barrier film to PET; however, test coupons of PET/barrier/EVA/TPE failed after damp-heat exposure. (EVA is ethylene vinyl acetate and TPE is Tedlar{reg_sign}-PET-EVA). PET substrates exposed to plasma conditions similar to those used in pretreatment were examined by X-ray photoelectron spectroscopy (XPS) to reveal that new low molecular weight PET fragments were created at the PET surface. These fragments are responsible for barrier/PET interfacial failure and barrier transfer to the EVA encapsulant side following damp heat exposure.

  8. Miniaturized Argon Plasma: Neutral Gas Characteristics in Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Ashraf, Farahat

    2015-10-01

    Plasma-neutral gas dynamics is computationally investigated in a miniaturized microthruster that encloses Ar and contains dielectric material sandwiched between two metal plates using a two-dimensional plasma mode. Spatial and temporal plasma properties are investigated by solving the Poisson equation with the conservation equations of charged and excited neutral plasma species using the COMSOL Multiphysics 4.2b. The microthruster property is found to depend on the secondary electron emission coefficient. The electrohydrodynamic force (EHD) is calculated and found to be significant in the sheath area near the dielectric layer and is found to affect gas flow dynamics including the Ar excimer formation and density. The effects of pressure and secondary emission coefficient are discussed. The plasma characteristics are affected by small changes in the secondary electron emission coefficient, which could result from the dielectric erosion and aging, and is found to affect the electrohydrodynamic force produced when the microthruster is used to produce thrust for a small spacecraft.

  9. BRIEF COMMUNICATIONS: Amplification of surface plasma oscillations in complex metal-barrier-metal structures

    NASA Astrophysics Data System (ADS)

    Belenov, É. M.; Kompanets, I. N.; Popov, Yurii M.; Poluéktov, I. A.; Sagitov, S. I.; Soboleva, E. M.; Sobolev, A. G.; Uskov, A. V.; Tsukanov, V. G.

    1982-07-01

    An experimental study was made of the amplification of surface plasma oscillations due to a negative differential resistance of an Au-Al2O3-In2O3-Al2O3-In2O3-Al2O3-Ag structure resulting from resonance tunneling of electrons in a periodic potential field of a complex insulator barrier in this metal-barrier-metal structure.

  10. Tunable one-dimensional plasma photonic crystals in dielectric barrier discharge

    SciTech Connect

    Fan Weili; Dong Lifang

    2010-07-15

    A tunable one-dimensional plasma photonic crystal is obtained by using a dielectric barrier discharge with two liquid electrodes. It is formed by the self-organization of the filaments, rather than that in an artificial array of electrodes. The dispersion relations of the plasma photonic crystals are calculated by solving the Helmholtz equation using a method analogous to Kronig-Penney's problem. The photonic band diagrams of the plasma photonic crystals are studied when changing the filling factor, the lattice constant, and the electron density, based on the experimental results. The critical electron density is given, beyond which the plasma photonic crystal will have a remarkable band structure.

  11. Development of a stable dielectric-barrier discharge enhanced laminar plasma jet generated at atmospheric pressure

    SciTech Connect

    Tang Jie; Li Shibo; Zhao Wei; Wang Yishan; Duan Yixiang

    2012-06-18

    A stable nonthermal laminar atmospheric-pressure plasma source equipped with dielectric-barrier discharge was developed to realize more efficient plasma generation, with the total energy consumption reduced to nearly 25% of the original. Temperature and emission spectra monitoring indicates that this plasma is uniform in the lateral direction of the jet core region. It is also found that this plasma contains not only abundant excited argon atoms but also sufficient excited N{sub 2} and OH. This is mainly resulted from the escape of abundant electrons from the exit, due to the sharp decrease of sustaining voltage and the coupling between ions and electrons.

  12. Inactivation of Microcystis aeruginosa using dielectric barrier discharge low-temperature plasma

    SciTech Connect

    Pu, Sichuan; Chen, Jierong; Wang, Gang; Li, Xiaoyong; Ma, Yun; College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065

    2013-05-13

    The efficiency of Microcystis aeruginosa plasma inactivation was investigated using dielectric barrier discharge low-temperature plasma. The inactivation efficiency was characterized in terms of optical density. The influence of electrical and physicochemical parameters on M. aeruginosa inactivation was studied to determine the optimal experimental conditions. The influence of active species was studied. The proliferation of the M. aeruginosa cells was significantly decreased under plasma exposure. The morphologic changes in M. aeruginosa were characterized under scanning electron microscopy. These results suggest that the low-temperature plasma technology is a promising method for water pollution control.

  13. Inactivation of Microcystis aeruginosa using dielectric barrier discharge low-temperature plasma

    NASA Astrophysics Data System (ADS)

    Pu, Sichuan; Chen, Jierong; Wang, Gang; Li, Xiaoyong; Ma, Yun

    2013-05-01

    The efficiency of Microcystis aeruginosa plasma inactivation was investigated using dielectric barrier discharge low-temperature plasma. The inactivation efficiency was characterized in terms of optical density. The influence of electrical and physicochemical parameters on M. aeruginosa inactivation was studied to determine the optimal experimental conditions. The influence of active species was studied. The proliferation of the M. aeruginosa cells was significantly decreased under plasma exposure. The morphologic changes in M. aeruginosa were characterized under scanning electron microscopy. These results suggest that the low-temperature plasma technology is a promising method for water pollution control.

  14. Capillary Dielectric Barrier Discharge: Transition from Soft Ionization to Dissociative Plasma.

    PubMed

    Klute, Felix David; Michels, Antje; Schütz, Alexander; Vadla, Cedomil; Horvatic, Vlasta; Franzke, Joachim

    2016-05-01

    A capillary He dielectric barrier discharge was investigated with respect to its performance as a soft or dissociative ionization source. Spatiotemporal measurements of the plasma emission showed that in one voltage duty cycle the plasma evolved from a soft to dissociative ionization source. At the earliest time, the soft plasma was generated between the electrodes as well as outside the capillary forming the plasma jet. It was characterized by significant radiation arising only from He and N2(+), which are known to be important in the process of the soft ionization of the analyte. Later in time, the plasma capable of dissociating molecules develops. It is characterized by appreciable radiation from analyte dissociation products and is restricted to the interelectrode region in the capillary. Thus, for the soft ionization purposes, it is feasible to introduce the analyte exclusively in the plasma jet. For elemental analysis, the interelectrode plasma is appropriate. PMID:27032869

  15. Transport barriers with and without shear flows in a magnetized plasma

    SciTech Connect

    Martinell, Julio J.

    2014-01-14

    Different ways of producing a transport barrier in a toroidal magnetized plasma are discussed and the properties of the barriers are analyzed. The first mechanism is associated with the presence of a sheared plasma flow that is present in a limited region of the plasma, which creates a zonal flow. In contrast to the usual paradigm stating that the sheared flow reduces the turbulence correlation length and leads to suppression of the fluctuation driven transport in the region of highest shear, it is shown that from the perspective of chaotic transport of plasma particles in the fluctuation fields, the transport barrier is formed in the region of zero shear and it can be destroyed when the fluctuation level is high enough. It is also shown that finite gyroradius effects modify the dynamics and introduces new conditions for barrier formation. The second mechanism considers a method in which radio-frequency waves injected into the plasma can stabilize the drift waves and therefore the anomalous transport is reduced, creating a barrier. This process does not involve the presence of sheared flows and depends only on the effect of the RF wave field on the drift waves. The stabilizing effect in this case is due to the nonlinear ponderomotive force which acts in a way that offsets the pressure gradient destabilization. Finally, a mechanism based on the ponderomotive force of RF waves is described which produces poloidal plasma rotation around the resonant surface due to the asymmetry of induced transport; it creates a transport barrier by shear flow stabilization of turbulence.

  16. Technical note - Plasma-sprayed ceramic thermal barrier coatings for smooth intermetallic alloys

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Doychak, J.

    1992-01-01

    A new approach for plasma spray deposition of ceramic thermal barrier coatings directly to smooth substrates is described. Ceramic thermal barrier coatings were directly applied to substrates that had been coated with low-pressure plasma sprayed NiCrAlY bond coats and then centerless ground to simulate a smooth oxidation-resistant substrate. As the high-temperature oxidation behavior of NiAl+Zr is superior to that of MCrALY alloy, the bond coat is not required for oxidation resistance.

  17. Plasma-Sprayed Ceramic Coatings for Barrier Applications Against Molten Uranium Corrosion

    NASA Astrophysics Data System (ADS)

    Ananthapadmanabhan, P. V.; Chakravarthy, Y.; Chaturvedi, Vandana; Thiyagarajan, T. K.; Pragatheeswaran, A.

    2015-07-01

    Ceramic coatings are applied on engineering components for protecting them from large thermal load and hot corrosion. Choices of coating material for protection against hot corrosion by uranium are few, because of its high reactivity. Yttrium oxide has a high melting temperature and is inert towards uranium. Therefore, yttrium oxide coatings are effective as a barrier against hot corrosion by uranium and its alloys. This paper gives a summary of the developmental work on plasma-sprayed yttria coatings for corrosion barrier applications against molten uranium. Results show that plasma-sprayed yttria coatings offer a long-term solution to hot corrosion problems.

  18. Atmospheric pressure resistive barrier air plasma jet induced bacterial inactivation in aqueous environment

    NASA Astrophysics Data System (ADS)

    Thiyagarajan, Magesh; Sarani, Abdollah; Gonzales, Xavier

    2013-03-01

    An atmospheric pressure resistive barrier air plasma jet is designed to inactivate bacteria in aqueous media in direct and indirect exposure modes of treatment. The resistive barrier plasma jet is designed to operate at both dc and standard 50-60 Hz low frequency ac power input and the ambient air at 50% humidity level was used as the operating gas. The voltage-current characteristics of the plasma jet were analyzed and the operating frequency of the discharge was measured to be 20 kHz and the plasma power was measured to be 26 W. The plasma jet rotational temperatures (Trot) are obtained from the optical emission spectra, from the N2C-B(2+) transitions by matching the experimental spectrum results with the Spectra Air (SPECAIR) simulation spectra. The reactive oxygen and nitrogen species were measured using optical emission spectroscopy and gas analyzers, for direct and indirect treatment modes. The nitric oxides (NO) were observed to be the predominant long lived reactive nitrogen species produced by the plasma. Three different bacteria including Staphylococcus aureus (Gram-positive), Escherichia coli (Gram-negative), and Neisseria meningitidis (Gram-negative) were suspended in an aqueous media and treated by the resistive barrier air plasma jet in direct and indirect exposure modes. The results show that a near complete bacterial inactivation was achieved within 120 s for both direct and indirect plasma treatment of S. aureus and E. coli bacteria. Conversely, a partial inactivation of N. meningitidis was observed by 120 s direct plasma exposure and insignificant inactivation was observed for the indirect plasma exposure treatment. Plasma induced shifts in N. meningitidis gene expression was analyzed using pilC gene expression as a representative gene and the results showed a reduction in the expression of the pilC gene compared to untreated samples suggesting that the observed protection against NO may be regulated by other genes.

  19. Life modeling of atmospheric and low pressure plasma-sprayed thermal-barrier coating

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Argarwal, P.; Duderstadt, E. C.

    1984-01-01

    The cycles-to-failure vs cycle duration data for three different thermal barrier coating systems, which consist of atmospheric pressure plasma-sprayed ZrO2-8 percent Y2O3 over similarly deposited or low pressure plasma sprayed Ni-base alloys, are presently analyzed by means of the Miller (1980) oxidation-based life model. Specimens were tested at 1100 C for heating cycle lengths of 1, 6, and 20 h, yielding results supporting the model's value.

  20. Plasma sprayed ceramic thermal barrier coating for NiAl-based intermetallic alloys

    NASA Technical Reports Server (NTRS)

    Miller, Robert A. (Inventor); Doychak, Joseph (Inventor)

    1994-01-01

    A thermal barrier coating system consists of two layers of a zirconia-yttria ceramic. The first layer is applied by low pressure plasma spraying. The second layer is applied by conventional atmospheric pressure plasma spraying. This facilitates the attachment of a durable thermally insulating ceramic coating directly to the surface of a highly oxidation resistant NiAl-based intermetallic alloy after the alloy has been preoxidized to promote the formation of a desirable Al2O3 scale.

  1. Degradation of malachite green by dielectric barrier discharge plasma.

    PubMed

    Manoj Kumar Reddy, P; Ramaraju, B; Subrahmanyam, Ch

    2013-01-01

    Oxidative decomposition of aqueous organic pollutant malachite green (MG) was studied in a dielectric barrier discharge reactor operated under ambient conditions. Total organic carbon content analysis confirmed the mineralization of the pollutant leading to the formation of carbon dioxide, which was confirmed by an infrared analyzer. Typical results indicated that the degradation rate increases with increasing applied voltage and decreases with increasing concentration. Dye degradation followed first order kinetics. The intermediate products formed during the degradation of MG were identified by a high resolution mass spectrometer (HR-MS) and proposed a plausible mechanism for the mineralization process. PMID:23416603

  2. Dielectric barrier plasma dynamics for active control of separated flows

    SciTech Connect

    Roy, Subrata; Singh, K.P.; Gaitonde, Datta V.

    2006-03-20

    The dynamics of separation mitigation with asymmetric dielectric barrier discharges is explored by considering the gas flow past a flat plate at an angle of attack. A self-consistent model utilizing motion of electrons, ions, and neutrals is employed to couple the electric force field to the momentum of the fluid. The charge separation and concomitant electric field yield a time-averaged body force which is oriented predominantly downstream, with a smaller transverse component towards the wall. This induces a wall-jet-like feature that effectively eliminates the separation bubble. The impact of several geometric and electrical operating parameters is elucidated.

  3. Deactivation of A549 cancer cells in vitro by a dielectric barrier discharge plasma needle

    NASA Astrophysics Data System (ADS)

    Huang, Jun; Chen, Wei; Li, Hui; Wang, Xing-Quan; Lv, Guo-Hua; Khohsa, M. Latif; Guo, Ming; Feng, Ke-Cheng; Wang, Peng-Ye; Yang, Si-Ze

    2011-03-01

    An inactivation mechanism study on A549 cancer cells by means of a dielectric barrier discharge plasma needle is presented. The neutral red uptake assay provides a quantitative estimation of cell viability after plasma treatment. Experimental results show that the efficiency of argon plasma for the inactivation process is very dependent on power and treatment time. A 27 W power and 120 s treatment time along with 900 standard cubic centimeter per minute Ar flow and a nozzle-to-sample separation of 3 mm are the best parameters of the process. According to the argon emission spectra of the plasma jet and the optical microscope images of the A549 cells after plasma treatment, it is concluded that the reactive species (for example, OH and O) in the argon plasma play a major role in the cell deactivation.

  4. Electron dynamics and plasma jet formation in a helium atmospheric pressure dielectric barrier discharge jet

    SciTech Connect

    Algwari, Q. Th.; O'Connell, D.

    2011-09-19

    The excitation dynamics within the main plasma production region and the plasma jets of a kHz atmospheric pressure dielectric barrier discharge (DBD) jet operated in helium was investigated. Within the dielectric tube, the plasma ignites as a streamer-type discharge. Plasma jets are emitted from both the powered and grounded electrode end; their dynamics are compared and contrasted. Ignition of these jets are quite different; the jet emitted from the powered electrode is ignited with a slight time delay to plasma ignition inside the dielectric tube, while breakdown of the jet at the grounded electrode end is from charging of the dielectric and is therefore dependent on plasma production and transport within the dielectric tube. Present streamer theories can explain these dynamics.

  5. Attenuation of single-tone ultrasound by an atmospheric glow discharge plasma barrier

    SciTech Connect

    Stepaniuk, Vadim P.; Ioppolo, Tindaro; Oetuegen, M. Volkan; Sheverev, Valery A.

    2010-09-15

    Propagation of 143 kHz ultrasound through an atmospheric pressure glow discharge in air was studied experimentally. The plasma was a continuous dc discharge formed by a multipin electrode system. Distributions of the gas temperature were also obtained in and around the plasma using laser-induced Rayleigh scattering technique. Results show significant attenuation of the ultrasound by the glow discharge plasma barrier (up to -24 dB). The results indicate that sound attenuation does not depend on the thickness of the plasma and attenuation is caused primarily by reflection of the sound waves from the plasma due to the sharp gas temperatures gradients that form at the plasma boundary. These gradients can be as high as 80 K/mm.

  6. The Effect of Air Plasma on Sterilization of Escherichia coli in Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Hu, Miao; Guo, Yun

    2012-08-01

    In this work, a Dielectric Barrier Discharge (DBD) air plasma was used to sterilize Escherichia coli (E. coli) on the surface of medical Polyethylene Terephthalate (PET) film. The leakage of cellular DNA and protein by optical absorbance measurement at 260 nm and 280 nm, together with transmission electron microscopy (TEM) about cell morphology were performed after sterilization to analyse inactivation mechanisms. The results indicated that the DBD air plasma was very effective in E. coli sterilization. The plasma germicidal efficiency depended on the plasma treatment time, the air-gap distance, and the applied voltage. Within 5 min of plasma treatment, the germicidal efficiency against E. coli could reach 99.99%. An etching action on cell membranes by electrons, ions and radicals is the primary mechanism for DBD air plasma sterilization, which leads to the effusion of cellular contents (DNA and protein) and bacterial death.

  7. Compact High-Velocity Atmospheric Pressure Dielectric Barrier Plasma Jet in Ambient Air

    NASA Astrophysics Data System (ADS)

    Annette, Meiners; Michael, Leck; Bernd, Abel

    2015-01-01

    In this paper, a non-thermal atmospheric pressure plasma jet at high streaming velocity operating with ambient air is highlighted. In the present technological approach, the employment of air poses a significant challenge. The high oxygen concentration in air results in a reduced concentration of reactive species in combination with a short species lifetime. The plasma jet assembly presented here contains a special dielectric barrier with a high secondary emission coefficient. In this way, the electron density and in turn the density of reactive species is increased. In addition, the plasma jet assembly is equipped with a short electrode. This leads to a higher voltage across the discharge gap and in turn to an increased density of reactive plasma species. The plasma jet is formed within and emitted by a small conical nozzle. A high-speed gas flow with gas velocity of 340 m/s was achieved at the end of the nozzle. In the jet the concentration of toxic and unwanted neutral plasma species like O3 or NOx is significantly reduced because of the shorter residence time within the plasma. The range of short-lived active plasma species is in turn considerably enhanced. The jet efficiency and action range measured through the oxidation of a test surface were determined by measuring the increase of surface tension of a polypropylene substrate via contact angle measurements after plasma treatment. Numerical modeling of the plasma plume indicates that oxygen atoms are in fact the main active species in the plasma plume.

  8. Boundary-Layer Separation Control under Low-Pressure Turbine Airfoil Conditions using Glow-Discharge Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Ashpis, David E.

    2003-01-01

    Modem low-pressure turbines, in general, utilize highly loaded airfoils in an effort to improve efficiency and to lower the number of airfoils needed. Typically, the airfoil boundary layers are turbulent and fully attached at takeoff conditions, whereas a substantial fraction of the boundary layers on the airfoils may be transitional at cruise conditions due to the change of density with altitude. The strong adverse pressure gradients on the suction side of these airfoils can lead to boundary-layer separation at the latter low Reynolds number conditions. Large separation bubbles, particularly those which fail to reattach, cause a significant degradation of engine efficiency. A component efficiency drop of the order 2% may occur between takeoff and cruise conditions for large commercial transport engines and could be as large as 7% for smaller engines at higher altitude. An efficient means of of separation elimination/reduction is, therefore, crucial to improved turbine design. Because the large change in the Reynolds number from takeoff to cruise leads to a distinct change in the airfoil flow physics, a separation control strategy intended for cruise conditions will need to be carefully constructed so as to incur minimum impact/penalty at takeoff. A complicating factor, but also a potential advantage in the quest for an efficient strategy, is the intricate interplay between separation and transition for the situation at hand. Volino gives a comprehensive discussion of several recent studies on transition and separation under low-pressure-turbine conditions, among them one in the present facility. Transition may begin before or after separation, depending on the Reynolds number and other flow conditions. If the transition occurs early in the boundary layer then separation may be reduced or completely eliminated. Transition in the shear layer of a separation bubble can lead to rapid reattachment. This suggests using control mechanisms to trigger and enhance early transition. Gad-el-Hak provides a review of various techniques for flow control in general and Volino discusses recent studies on separation control under low-pressure-turbine conditions utilizing passive as well as active devices. As pointed out by Volino, passive devices optimized for separation control at low Reynolds numbers tend to increase losses at high Reynolds numbers, Active devices have the attractive feature that they can be utilized only in operational regimes where they are needed and when turned off would not affect the flow. The focus in the present paper is an experimental Separation is induced on a flat plate installed in a closed-circuit wind tunnel by a shaped insert on the opposite wall. The flow conditions represent flow over the suction surface of a modem low-pressure-turbine airfoil ('Pak-B'). The Reynolds number, based on wetted plate length and nominal exit velocity, is varied from 50,000 to 300,000, covering cruise to takeoff conditions. Low (0.2%) and high (2.5%) Gee-stream turbulence intensities are set using passive grids. A spanwise-oriented phased-plasma-array actuator, fabricated on a printed circuit board, is surface- flush-mounted upstream of the separation point and can provide forcing in a wide frequency range. Static surface pressure measurements and hot-wire anemometry of the base and controlled flows are performed and indicate that the glow-discharge plasma actuator is an effective device for separation control. of active separation control using glow discharge plasma actuators.

  9. Ion internal transport barrier in neutral beam heated plasmas on HL-2A

    NASA Astrophysics Data System (ADS)

    Yu, D. L.; Wei, Y. L.; Liu, L.; Dong, J. Q.; Ida, K.; Itoh, K.; Sun, A. P.; Cao, J. Y.; Shi, Z. B.; Wang, Z. X.; Xiao, Y.; Yuan, B. S.; Du, H. R.; He, X. X.; Chen, W. J.; Ma, Q.; Itoh, S.-I.; Zhao, K. J.; Zhou, Y.; Wang, J.; Ji, X. Q.; Zhong, W. L.; Li, Y. G.; Gao, J. M.; Deng, W.; Liu, Yi; Xu, Y.; Yan, L. W.; Yang, Q. W.; Ding, X. T.; Duan, X. R.; Liu, Yong; HL-2A Team

    2016-05-01

    Ion internal transport barriers (iITBs) are first observed in neutral beam injection (NBI) heated plasmas at the HL-2A tokamak. The position of the barrier foot, in the stationary state, coincides with the q  =  1 surface within its uncertainty of measurement. iITBs can develop more easily at the beginning of NBI heating. Also, iITBs are unstable for the sawtooth plasma. Simulations reveal that the thermal diffusivity of ions (χ i) inside the barrier can be as low as the neoclassical level. It is observed that the flow shear in the stationary iITB state reaches the level required for suppressing the ion temperature gradient mode instability, which indicates the important role of flow shear in sustaining the iITB.

  10. Micro-measurement of Plasma Near the Dielectric Surface in a Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Sakurai, Takeki; Shimomura, Osamu; Sugimoto, Kyouzou; Takahashi, Hideaki; Murata, Yasuhiro

    The lifetime of metastable excited atoms for barrier discharges in a glass cell and plasma display panel (PDP) has been measured by an laser induced evanescent-mode fluorescence (LIEF) and compared with values measured in a bulk plasma. No significant differece between lifetimes of metastables in the vicinity of a wall and in a bulk plasma is found. An additional optical technique using pockels effect of an electro-optic crystal is introduced in order to observe a temporal and spatial behavior of a wall voltage due to charges accumulated on a dielectric surface.

  11. Permeation barrier coating and plasma sterilization of PET bottles and foils

    NASA Astrophysics Data System (ADS)

    Steves, Simon; Deilmann, Michael; Bibinov, Nikita; Awakowicz, Peter

    2009-10-01

    Modern packaging materials such as polyethylene terephthalate (PET) offer various advantages over glass or metal containers. Beside this they only offer poor barrier properties against gas permeation. Therefore, the shelf-live of packaged food is reduced. Additionally, common sterilization methods like heat, hydrogen peroxide or peracetic acid may not be applicable due to reduced heat or chemical resistance of the plastic packaging material. For the plasma sterilization and permeation barrier coating of PET bottles and foils, a microwave driven low pressure plasma reactor is developed based on a modified Plasmaline antenna. The dependencies of important plasma parameters, such as gas mixture, process pressure, power and pulse conditions on oxygen permeation through packaging foil are investigated. A residual permeation as low as J = 1.0 ±0.3 cm^3m-2day-1bar-1 for 60 nm thick silicon oxide (SiOx) coated PET foils is achieved. To discuss this residual permeation, coating defects are visualized by capacitively coupled atomic oxygen plasma etching of coated substrate. A defect density of 3000 mm-2 is revealed responsible for permeation. For plasma sterilization, optimized plasma parameters based on fundamental research of plasma sterilization mechanisms permit short treatment times of a few seconds.

  12. Non-thermal dielectric-barrier discharge plasma damages human keratinocytes by inducing oxidative stress.

    PubMed

    Kim, Ki Cheon; Piao, Mei Jing; Madduma Hewage, Susara Ruwan Kumara; Han, Xia; Kang, Kyoung Ah; Jo, Jin Oh; Mok, Young Sun; Shin, Jennifer H; Park, Yeunsoo; Yoo, Suk Jae; Hyun, Jin Won

    2016-01-01

    The aim of this study was to identify the mechanisms through which dielectric-barrier discharge plasma damages human keratinocytes (HaCaT cells) through the induction of oxidative stress. For this purpose, the cells were exposed to surface dielectric-barrier discharge plasma in 70% oxygen and 30% argon. We noted that cell viability was decreased following exposure of the cells to plasma in a time-dependent manner, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The levels of intracellular reactive oxygen species (ROS) were determined using 2',7'-dichlorodihydrofluorescein diacetate and dihydroethidium was used to monitor superoxide anion production. Plasma induced the generation of ROS, including superoxide anions, hydrogen peroxide and hydroxyl radicals. N-acetyl cysteine, which is an antioxidant, prevented the decrease in cell viability caused by exposure to plasma. ROS generated by exposure to plasma resulted in damage to various cellular components, including lipid membrane peroxidation, DNA breaks and protein carbonylation, which was detected by measuring the levels of 8-isoprostane and diphenyl-1-pyrenylphosphine assay, comet assay and protein carbonyl formation. These results suggest that plasma exerts cytotoxic effects by causing oxidative stress-induced damage to cellular components. PMID:26573561

  13. Non-thermal dielectric-barrier discharge plasma damages human keratinocytes by inducing oxidative stress

    PubMed Central

    KIM, KI CHEON; PIAO, MEI JING; HEWAGE, SUSARA RUWAN KUMARA MADDUMA; HAN, XIA; KANG, KYOUNG AH; JO, JIN OH; MOK, YOUNG SUN; SHIN, JENNIFER H.; PARK, YEUNSOO; YOO, SUK JAE; HYUN, JIN WON

    2016-01-01

    The aim of this study was to identify the mechanisms through which dielectric-barrier discharge plasma damages human keratinocytes (HaCaT cells) through the induction of oxidative stress. For this purpose, the cells were exposed to surface dielectric-barrier discharge plasma in 70% oxygen and 30% argon. We noted that cell viability was decreased following exposure of the cells to plasma in a time-dependent manner, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The levels of intracellular reactive oxygen species (ROS) were determined using 2′,7′-dichlorodihydro-fluorescein diacetate and dihydroethidium was used to monitor superoxide anion production. Plasma induced the generation of ROS, including superoxide anions, hydrogen peroxide and hydroxyl radicals. N-acetyl cysteine, which is an antioxidant, prevented the decrease in cell viability caused by exposure to plasma. ROS generated by exposure to plasma resulted in damage to various cellular components, including lipid membrane peroxidation, DNA breaks and protein carbonylation, which was detected by measuring the levels of 8-isoprostane and diphenyl-1-pyrenylphosphine assay, comet assay and protein carbonyl formation. These results suggest that plasma exerts cytotoxic effects by causing oxidative stress-induced damage to cellular components. PMID:26573561

  14. Generation of dusty plasmas in supercritical carbon dioxide using surface dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Matsubayashi, Yasuhito; Urabe, Keiichiro; Stauss, Sven; Terashima, Kazuo

    2015-11-01

    Dusty plasmas are a class of plasmas that not only have repercussions for many branches of plasma science and technology, but also thermodynamics and statistical mechanics. However, in ground-based experiments, gravity influences the dynamics and formation of plasma crystals, and the realization of zero-gravity dusty plasmas in space is very costly and time-consuming. To overcome some of these limitations, we propose dusty plasmas in supercritical fluids as a means for realizing ground-based experiments under pseudo-microgravity conditions, to study the formation and self-organization of plasma crystals. Dusty plasmas were realized by using surface dielectric barrier discharges (DBDs) generated in supercritical carbon dioxide (\\text{scC}{{\\text{O}}2} ), and the motion of fine particles above the electrode surface was studied by high-speed imaging. The plasmas deposited charge on the particles, and the particles formed a self-organized structure above the surface DBD reactor. The particle charge estimated from the analysis of particle motion was on the order of  -104 to -105 e C, and the estimation of the Coulomb coupling parameter of the charged particles with a value of 102 to 104 confirmed the formation of strongly coupled plasmas.

  15. Diagnostic of plasma discharge parameters in helium filled dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Gulati, Pooja; Pal, Udit Narayan; Kumar, Mahesh; Prakash, Ram; Srivastava, Vishnu; Vyas, Vimal

    2012-11-01

    This paper reports the plasma discharge analysis of a dielectric barrier discharge (DBD) source. Helium is used as a working gas. The analysis is performed at fixed working pressure and operating frequency. The investigations are carried out using sinusoidal supply for the generation of discharges where two current pulses have been observed with different polarities in one period. A homogeneous type of discharge has been observed for different operating conditions in this DBD source. Since in situ diagnostics are not possible due to the small geometries in the used DBD source, the electrical measurements and spectroscopic analysis of the discharge have been performed to analyse the plasma discharge. The electrical analysis has been carried out using equivalent electrical circuit model. The plasma density and temperature within the discharge have been estimated using line ratio technique of the observed visible neutral helium lines. The estimated electron plasma density is found to be in close proximity with the plasma simulation code `OOPIC Pro'.

  16. Growth Control of Dry Yeast Using Scalable Atmospheric-Pressure Dielectric Barrier Discharge Plasma Irradiation

    NASA Astrophysics Data System (ADS)

    Kitazaki, Satoshi; Koga, Kazunori; Shiratani, Masaharu; Hayashi, Nobuya

    2012-11-01

    We have investigated the effects of plasma irradiation on the growth of dry yeast (Saccharomyces cerevisiae) using a scalable atmospheric-pressure dielectric barrier discharge (DBD) device. NO of 380 ppm, NO2 of 10 ppm and O3 of 560 ppm were detected 1 mm below the discharges, which were produced by the DBD plasmas. DBD plasma irradiation of 10 to 100 s enhances the growth of yeast in the lag phase, whereas that of 120 and 150 s suppresses the growth. O3, NO2, photons, and heat generated by the plasma irradiation are not responsible for the growth enhancement of the dry yeast. Plasma etching has little effect on the growth of dry yeast cells. NO plays a key role in the growth enhancement of dry yeast cells.

  17. Dynamic Properties of Helium Atmospheric Dielectric-Barrier-Discharge Plasma Jet.

    PubMed

    Uchida, Giichiro; Takenaka, Kosuke; Miyazaki, Atsushi; Kawabata, Kazufumi; Setsuhara, Yuichi

    2015-03-01

    We present here experiments on helium atmospheric dielectric-barrier discharge jet in open air. A long stable plasma plume is realized at high applied voltage and high gas flow rate. Optical emission measurements show that the plasma plume consists of two part: a plume head with high energy electrons and a tail part with low energy electrons. The plasma plume propagates away from the quartz-tube outlet with about 30-80 km/sec along the helium gas flow channel. The propagation velocity of plasma plume is in the time scale of electron drift velocity, and the electric field plays an important role as a driving force of the plasma plume propagation. PMID:26413660

  18. Plasma surface treatments by using a dielectric barrier discharge for the deposition of diamond films

    NASA Astrophysics Data System (ADS)

    Kang, I. J.; Ko, M. G.; Yang, J. K.; Lee, H. J.

    2013-07-01

    For plasma surface treatments at atmospheric pressure, a 2 kW dielectric barrier discharge (DBD) source was developed. It was investigated via an optical emission spectroscopy (OES), an IR camera and volt-ampere meters with a computer. It was confirmed that the developed source stably generated plasmas. After the diamonds had been seeded, the plasma surface treatments were performed as pretreatment to improve the deposition of the diamond films by using the developed DBD source with argon gas. The substrate surfaces were analyzed using a contact angle analysis (CAA), an atomic force microscopy (AFM) and a 3D Nano Profiling System. The results of the plasma surface treatments showed an improvement in the surface free energies of the substrates. The plasma surface treatments for 5 minutes also resulted in a more uniform distribution of the seeding diamonds on the substrates, which improved the depositions of the diamond films.

  19. A hypersonic plasma bullet train traveling in an atmospheric dielectric-barrier discharge jet

    SciTech Connect

    Shi Jianjun; Zhong Fangchun; Zhang Jing; Liu, D. W.; Kong, M. G.

    2008-01-15

    An experimental observation of fast-moving plasma bullets produced in an atmospheric dielectric-barrier discharge jet is reported in this paper. Nanosecond imaging suggests that the atmospheric discharge jet consists of a plasma bullet train traveling at a hypersonic speed from 7.0 km/s to 43.1 km/s. Yet on a millisecond scale, the bullet train appears as a plasma jet of several centimeters long. The plasma bullets are produced through several possible mechanisms, the most likely of which is related to the ionization wave. Time and space resolved optical emission spectroscopy show that reactive plasma species can be delivered to different spatial sites with varying quantities.

  20. Localized arc filament plasma actuators for noise mitigation and mixing enhancement

    NASA Technical Reports Server (NTRS)

    Samimy, Mohammad (Inventor); Adamovich, Igor (Inventor)

    2008-01-01

    A device for controlling fluid flow. The device includes an arc generator coupled to electrodes. The electrodes are placed adjacent a fluid flowpath such that upon being energized by the arc generator, an arc filament plasma adjacent the electrodes is formed. In turn, this plasma forms a localized high temperature, high pressure perturbation in the adjacent fluid flowpath. The perturbations can be arranged to produce vortices, such as streamwise vortices, in the flowing fluid to control mixing and noise in such flows. The electrodes can further be arranged within a conduit configured to contain the flowing fluid such that when energized in a particular frequency and sequence, can excite flow instabilities in the flowing fluid. The placement of the electrodes is such that they are unobtrusive relative to the fluid flowpath being controlled.

  1. Localized arc filament plasma actuators for noise mitigation and mixing enhancement

    NASA Technical Reports Server (NTRS)

    Samimy, Mohammad (Inventor); Adamovich, Igor (Inventor)

    2010-01-01

    A device for controlling fluid flow. The device includes an arc generator coupled to electrodes. The electrodes are placed adjacent a fluid flowpath such that upon being energized by the arc generator, an arc filament plasma adjacent the electrodes is formed. In turn, this plasma forms a localized high temperature, high pressure perturbation in the adjacent fluid flowpath. The perturbations can be arranged to produce vortices, such as streamwise vortices, in the flowing fluid to control mixing and noise in such flows. The electrodes can further be arranged within a conduit configured to contain the flowing fluid such that when energized in a particular frequency and sequence, can excite flow instabilities in the flowing fluid. The placement of the electrodes is such that they are unobtrusive relative to the fluid flowpath being controlled.

  2. Ferromagnetic tunnel junctions with plasma-oxidized Al barriers and their annealing effects

    NASA Astrophysics Data System (ADS)

    Sato, M.; Kikuchi, H.; Kobayashi, K.

    1998-06-01

    Cross-geometrical Ni-Fe/Co/Al-AlO/Co/Ni-Fe/Fe-Mn/Ni-Fe tunnel junctions were fabricated by magnetron sputtering. To form the insulating layer, an Al layer was reverse sputtered in an atmosphere of either oxygen or oxygen-argon mixture at low power after deposition. The oxidization time necessary to form an AlO barrier was much shorter than that by natural oxidization, lasting for only a half to a few minutes. By adding argon to oxygen, the oxidization was slowed down and high MR ratios were obtained for a wide range of time. A magnetoresistance (MR) ratio of 16% was observed in the as-deposited junction when the barrier was oxidized in oxygen plasma for 35 s. In addition, the MR ratio increased to 24% by annealing at 300 °C. In as-deposited junctions, the tunnel resistances were increased by increasing the plasma oxidization time, but the MR ratios gradually decreased. The estimated tunnel barrier width increased and the barrier height decreased with the plasma oxidization time. After annealing, the MR ratio increased only for those junctions oxidized for short times. This suggests that the remaining Al between the AlO and the Co surface plays an important role in the effects of annealing.

  3. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Koban, Ina; Matthes, Rutger; Hübner, Nils-Olaf; Welk, Alexander; Meisel, Peter; Holtfreter, Birte; Sietmann, Rabea; Kindel, Eckhard; Weltmann, Klaus-Dieter; Kramer, Axel; Kocher, Thomas

    2010-07-01

    Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log10 reduction factor of 1.5, the log10 reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice.

  4. Field emission microplasma actuation for microchannel flows

    NASA Astrophysics Data System (ADS)

    Sashank Tholeti, Siva; Shivkumar, Gayathri; Alexeenko, Alina A.

    2016-06-01

    Microplasmas offer attractive flow control methodology for gas transport in microsystems where large viscous losses make conventional pumping methods highly inefficient. We study microscale flow actuation by dielectric-barrier discharge (DBD) with field emission (FE) of electrons, which allows lowering the operational voltage from kV to a few hundred volts and below. A feasibility study of FE-DBD for flow actuation is performed using 2D particle-in-cell method with Monte Carlo collisions (PIC/MCC) at 10 MHz in nitrogen at atmospheric pressure. The free diffusion dominated, high velocity field emission electrons create a large positive space charge and a body force on the order of 106 N m‑3. The body force and Joule heat decrease with increase in dielectric thickness and electrode thickness. The body force also decreases at lower pressures. The plasma body force distribution along with the Joule heating is then used in the Navier–Stokes simulations to quantify the flow actuation in a microchannel. Theoretical analysis and simulations for plasma actuated planar Poiseuille flow show that the gain in flow rate is inversely proportional to Reynolds number. This theoretical analysis is in good agreement with the simulations for a microchannel with closely placed actuators under incompressible conditions. Flow rate of FE-DBD driven 2D microchannel is around 100 ml min‑1 mm‑1 for an input power of 64 μW mm‑1. The gas temperature rises by 1500 K due to the Joule heating, indicating FE-DBD’s potential for microcombustion, micropropulsion and chemical sensing in addition to microscale pumping and mixing applications.

  5. Study of non-thermal plasma jet with dielectric barrier configuration in nitrogen and argon

    NASA Astrophysics Data System (ADS)

    Choo, C. Y.; Chin, O. H.

    2014-03-01

    Dielectric barrier discharge (DBD) is advantageous in generating non-thermal plasma at atmospheric pressure, as it avoids transition to thermal arc and dispenses with costly vacuum system. It has found useful applications in treating heat-sensitive materials such as plastics and living tissue. In this work, the discharge formed between the Pyrex glass layer and the ground electrode is extruded through a nozzle to form the non-thermal plasma jet. The DBD characteristics were investigated in terms of charge transferred and mean power dissipated per cycle when operated in nitrogen and argon at various flow rates and applied voltages. These characteristics were then correlated to the dimension of the plasma jet. The mean power dissipated in the DBD was below 7 W giving an efficiency of 17 %. The length of the plasma jet was greatly limited to below 1 cm due to the configuration of the DBD system and nozzle.

  6. Carbon dioxide splitting in a dielectric barrier discharge plasma: a combined experimental and computational study.

    PubMed

    Aerts, Robby; Somers, Wesley; Bogaerts, Annemie

    2015-02-01

    Plasma technology is gaining increasing interest for the splitting of CO2 into CO and O2 . We have performed experiments to study this process in a dielectric barrier discharge (DBD) plasma with a wide range of parameters. The frequency and dielectric material did not affect the CO2 conversion and energy efficiency, but the discharge gap can have a considerable effect. The specific energy input has the most important effect on the CO2 conversion and energy efficiency. We have also presented a plasma chemistry model for CO2 splitting, which shows reasonable agreement with the experimental conversion and energy efficiency. This model is used to elucidate the critical reactions that are mostly responsible for the CO2 conversion. Finally, we have compared our results with other CO2 splitting techniques and we identified the limitations as well as the benefits and future possibilities in terms of modifications of DBD plasmas for greenhouse gas conversion in general. PMID:25641832

  7. Generation of tunable plasma photonic crystals in meshed dielectric barrier discharge

    SciTech Connect

    Wang, Yongjie; Dong, Lifang Liu, Weibo; He, Yafeng; Li, Yonghui

    2014-07-15

    Tunable superlattice plasma photonic crystals are obtained in a meshed dielectric barrier discharge. These plasma photonic crystals are composed of thin artificial lattices and thick self-organized lattices, and can be tuned easily by adjusting the applied voltage. A plasma photonic crystal with self-organized hexagonal lattice coupled to artificial square lattice is first realized. The dispersion relations of the square sublattices with different radii, which are recorded by an intensified charge-coupled device camera, are calculated. The results show that the thick square sublattice has the higher band edge frequencies and wider band widths. Band gaps of superlattice plasma photonic crystals are actually temporal integrations of those of transient sublattices.

  8. Detection of hydroxyl radicals during regeneration of granular activated carbon in dielectric barrier discharge plasma system

    NASA Astrophysics Data System (ADS)

    Tang, Shoufeng; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan

    2013-03-01

    To understand the reactions taking place in the dielectric barrier discharge (DBD) plasma system of activated carbon regeneration, the determination of active species is necessary. A method based on High Performance Liquid Chromatography with radical trapping by salicylic acid, has been developed to measure hydroxyl radical (OH) in the DBD plasma reactor. The effects of applied voltage, treatment time, and gas flow rate and atmosphere were investigated. Experimental results indicated that increasing voltage, treatment time and air flow rate could enhance the formation of OH. Oxygen atmosphere and a suitable GAC water content were contributed to OH generation. The results give an insight into plasma chemical processes, and can be helpful to optimize the design and application for the plasma system.

  9. A dielectric-barrier discharge enhanced plasma brush array at atmospheric pressure

    SciTech Connect

    Li Xuemei; Zhan Xuefang; Yuan Xin; Zhao Zhongjun; Yan Yanyue; Duan Yixiang; Tang Jie

    2013-07-15

    This study developed a large volume cold atmospheric plasma brush array, which was enhanced by a dielectric barrier discharge by integrating a pair of DC glow discharge in parallel. A platinum sheet electrode was placed in the middle of the discharge chamber, which effectively reduced the breakdown voltage and working voltage. Emission spectroscopy diagnosis indicated that many excited argon atoms were distributed almost symmetrically in the lateral direction of the plasma. The concentration variations of reactive species relative to the gas flow rate and discharge current were also examined.

  10. Nanocapsules for drug delivery through the skin barrier by tissue-tolerable plasma

    NASA Astrophysics Data System (ADS)

    Lademann, J.; Patzelt, A.; Richter, H.; Lademann, O.; Baier, G.; Breucker, L.; Landfester, K.

    2013-08-01

    For many years, several attempts have been made to enhance skin penetration by chemical, physical or mechanical manipulation to reduce the barrier function of the skin. The present study demonstrates the possibility of penetration enhancement for 400 nm sized nanocapsules loaded with a model drug consisting of a fluorescent dye by the application of tissue-tolerable plasma (TTP). Therefore, the stability of the nanocapsules and their penetration through the skin barrier prior to and in combination with TTP application was evaluated. The results revealed that the penetration of the nanocapsules could be effectively enhanced when applied in combination with TTP, hence delivering the model drug unaffected by plasma into deeper skin layers. The stability testing showed no significant structural changes of the nanocapsules after contact with TTP. Thus, the present study introduces a new strategy for the penetration enhancement of substances by the combined utilization of nanocapsules and TTP.

  11. Internal Transport Barrier in Edge Plasma of Small Size Divertor Tokamak Using Neutral Beam Injection

    NASA Astrophysics Data System (ADS)

    Bekheit, A. H.

    2013-08-01

    We model the internal transport barrier "ITB" in edge plasma of small size divertor tokamak with B2SOLPS0.5.2D fluid transport code. The simulation results demonstrated the following: (1) we control the internal transport barrier by altering the edge particle transport through changes the edge toroidal rotation which agree with the result of Burrell et al. (Edge Pedestal control in quiescent H-mode discharges in DIII-D using co-plus counter-neutral beam injection, Nucl Fusion, 49, 085024 (9pp) in 2009). (2) The radial electric field has neoclassical nature near separatrix with discharge by co-injection NBI. (3) The toroidal plasma viscosity has strong influence on the toroidal velocity.

  12. Mechanical property measurements of plasma-sprayed thermal-barrier coatings subjected to oxidation

    NASA Technical Reports Server (NTRS)

    Berndt, C. C.; Miller, R. A.

    1984-01-01

    Techniques have been developed for measuring the tensile properties of plasma-sprayed coatings which are used in thermal barrier applications. The measurements have included the average Young's modulus, bond strength and elongation at failure. The oxidation behavior of the bond coat plays an important role in the integrity and adhesion of plasma-sprayed thermal barrier coatings. This work studies the nature of the high temperature degradation on the mechanical properties of the coating. Furnace tests have been carried out on U-700 alloy with bond coats of NiCrAlY or NiCrAlZr and an overlay of ZrO2-8 percent Y2O3. Weight gain measurements on the coatings have been examined with relation to the adhesion strength and failure observations. The results from an initial study are reported in this work.

  13. Mechanical property measurements of plasma-sprayed thermal-barrier coatings subjected to oxidation

    SciTech Connect

    Berndt, C.C.; Miller, R.A.

    1984-07-01

    Techniques have been developed for measuring the tensile properties of plasma-sprayed coatings which are used in thermal barrier applications. The measurements have included the average Young's modulus, bond strength and elongation at failure. The oxidation behavior of the bond coat plays an important role in the integrity and adhesion of plasma-sprayed thermal barrier coatings. This work studies the nature of the high temperature degradation on the mechanical properties of the coating. Furnace tests have been carried out on U-700 alloy with bond coats of NiCrAlY or NiCrAlZr and an overlay of ZrO2-8 percent Y2O3. Weight gain measurements on the coatings have been examined with relation to the adhesion strength and failure observations. The results from an initial study are reported in this work. 13 references.

  14. Non-thermal plasma remediation of SO2/NO using a dielectric-barrier discharge

    NASA Astrophysics Data System (ADS)

    Sun, Wanming; Pashaie, Bijan; Dhali, Shirshak K.; Honea, Frank I.

    1996-04-01

    Here we report the experimental and simulation results of removal of SO2 and NO from a simulated coal combustion gas using a dielectric-barrier discharge. A Monte Carlo calculation is done to determine the transport properties of the flue gas. Following this, a detailed plasma chemistry calculation is done which takes into account the pulsed nature of the dielectric-barrier discharge. The computed results are in good agreement with the experimental data. We find that in low concentrations (400 ppm for SO2 and 100 ppm for NO) the dielectric-barrier discharge was capable of removing 99% of the SO2 and NO. Due to temperature dependence of the heavy particle reactions, there is a decrease in NO removal as the energy density is increased past an optimum value.

  15. Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species

    PubMed Central

    Arjunan, Krishna Priya; Friedman, Gary; Fridman, Alexander; Clyne, Alisa Morss

    2012-01-01

    Vascularization plays a key role in processes such as wound healing and tissue engineering. Non-thermal plasma, which primarily produces reactive oxygen species (ROS), has recently emerged as an efficient tool in medical applications including blood coagulation, sterilization and malignant cell apoptosis. Liquids and porcine aortic endothelial cells were treated with a non-thermal dielectric barrier discharge plasma in vitro. Plasma treatment of phosphate-buffered saline (PBS) and serum-free medium increased ROS concentration in a dose-dependent manner, with a higher concentration observed in serum-free medium compared with PBS. Species concentration inside cells peaked 1 h after treatment, followed by a decrease 3 h post treatment. Endothelial cells treated with a plasma dose of 4.2 J cm–2 had 1.7 times more cells than untreated samples 5 days after plasma treatment. The 4.2 J cm–2 plasma dose increased two-dimensional migration distance by 40 per cent compared with untreated control, while the number of cells that migrated through a three-dimensional collagen gel increased by 15 per cent. Tube formation was also enhanced by plasma treatment, with tube lengths in plasma-treated samples measuring 2.6 times longer than control samples. A fibroblast growth factor-2 (FGF-2) neutralizing antibody and ROS scavengers abrogated these angiogenic effects. These data indicate that plasma enhanced proliferation, migration and tube formation is due to FGF-2 release induced by plasma-produced ROS. Non-thermal plasma may be used as a potential tool for applying ROS in precise doses to enhance vascularization. PMID:21653568

  16. Skeletal Cell Differentiation Is Enhanced by Atmospheric Dielectric Barrier Discharge Plasma Treatment

    PubMed Central

    Zhang, Jun; Kurpad, Deepa S.; Fridman, Gregory; Fridman, Alexander; Freeman, Theresa A.

    2013-01-01

    Enhancing chondrogenic and osteogenic differentiation is of paramount importance in providing effective regenerative therapies and improving the rate of fracture healing. This study investigated the potential of non-thermal atmospheric dielectric barrier discharge plasma (NT-plasma) to enhance chondrocyte and osteoblast proliferation and differentiation. Although the exact mechanism by which NT-plasma interacts with cells is undefined, it is known that during treatment the atmosphere is ionized generating extracellular reactive oxygen and nitrogen species (ROS and RNS) and an electric field. Appropriate NT-plasma conditions were determined using lactate-dehydrogenase release, flow cytometric live/dead assay, flow cytometric cell cycle analysis, and Western blots to evaluate DNA damage and mitochondrial integrity. We observed that specific NT-plasma conditions were required to prevent cell death, and that loss of pre-osteoblastic cell viability was dependent on intracellular ROS and RNS production. To further investigate the involvement of intracellular ROS, fluorescent intracellular dyes Mitosox (superoxide) and dihydrorhodamine (peroxide) were used to assess onset and duration after NT-plasma treatment. Both intracellular superoxide and peroxide were found to increase immediately post NT-plasma treatment. These increases were sustained for one hour but returned to control levels by 24 hr. Using the same treatment conditions, osteogenic differentiation by NT-plasma was assessed and compared to peroxide or osteogenic media containing β-glycerolphosphate. Although both NT-plasma and peroxide induced differentiation-specific gene expression, neither was as effective as the osteogenic media. However, treatment of cells with NT-plasma after 24 hr in osteogenic or chondrogenic media significantly enhanced differentiation as compared to differentiation media alone. The results of this study show that NT-plasma can selectively initiate and amplify ROS signaling to enhance differentiation, and suggest this technology could be used to enhance bone fusion and improve healing after skeletal injury. PMID:24349203

  17. A model for residual stress evolution in air-plasma-sprayed zirconia thermal barrier coatings

    SciTech Connect

    Nair, B. G.; Singh, J. P.; Grimsditch, M.

    2000-02-28

    Ruby fluorescence spectroscopy indicates that residual stress in air-plasma-sprayed zirconia thermal barrier coatings is a function of the local interface geometry. The stress profile of a simulated rough interface characterized by ``peaks'' and ``valleys'' was modeled with a finite-element approach that accounted for thermal mismatch, oxide scale growth, and top coat sintering. Dependence of the stress profile on interface geometry and microstructure was investigated, and the results were compared with measured stresses.

  18. Optimization of a tunneling barrier in magnetic tunneling junction by tilted-plasma oxidation

    SciTech Connect

    Nam, C.H.; Shim, Heejae; Kim, K.S.; Cho, B.K.

    2004-10-01

    Oxidation of an AlO{sub x} insulating barrier in a magnetic tunneling junction (MTJ) was carried out by a tilted-plasma oxidation method. It was found that the tilted-plasma oxidation induced a gradual change in the extent of oxidation of an insulating layer, which consequently led to a gradual change in the tunneling magnetoresistance (TMR) and specific junction resistance (RA) of the MTJ. We found a linear relation in the TMR versus RA curve with positive and negative slopes for less- and overoxidized junctions, respectively, and a parabolic relation for optimally oxidized junctions. The crossover in the TMR versus RA curves provides an effective and useful way to optimize (and monitor) the oxidation condition of a tunneling barrier in MTJs especially of a tunneling barrier less than 10 A thick. The tunneling junctions were also investigated after thermal annealing at various temperatures. The observations after thermal annealing were found to be consistent with transmission electrons microscopy images and a scenario of the partial formation of an additional ultrathin tunneling barrier at the top surface of the bottom magnetic layer.

  19. Degradation of triclosan in aqueous solution by dielectric barrier discharge plasma combined with activated carbon fibers.

    PubMed

    Xin, Lu; Sun, Yabing; Feng, Jingwei; Wang, Jian; He, Dong

    2016-02-01

    The degradation of triclosan (TCS) in aqueous solution by dielectric barrier discharge (DBD) plasma with activated carbon fibers (ACFs) was investigated. In this study, ACFs and DBD plasma coexisted in a planar DBD plasma reactor, which could synchronously achieve degradation of TCS, modification and in situ regeneration of ACFs, enhancing the effect of recycling of ACFs. The properties of ACFs before and after modification by DBD plasma were characterized by BET and XPS. Various processing parameters affecting the synergetic degradation of TCS were also investigated. The results exhibited excellent synergetic effects in DBD plasma-ACFs system on TCS degradation. The degradation efficiency of 120 mL TCS with initial concentration of 10 mg L(-1) could reach 93% with 1 mm thick ACFs in 18 min at input power of 80 W, compared with 85% by single DBD plasma. Meanwhile, the removal rate of total organic carbon increased from 12% at pH 6.26-24% at pH 3.50. ACFs could ameliorate the degradation efficiency for planar DBD plasma when treating TCS solution at high flow rates or at low initial concentrations. A possible degradation pathway of TCS was investigated according to the detected intermediates, which were identified by liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) combined with theoretical calculation of Gaussian 09 program. PMID:26421625

  20. Gene Transfection Method Using Atmospheric Pressure Dielectric-Barrier Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Sasaki, Shota; Kanzaki, Makoto; Kaneko, Toshiro

    2013-09-01

    Gene transfection which is the process of deliberately introducing nucleic acids into cells is expected to play an important role in medical treatment because the process is necessary for gene therapy and creation of induced pluripotent stem (iPS) cells. However, the conventional transfection methods have some problems, so we focus attention on promising transfection methods by atmospheric pressure dielectric-barrier discharge (AP-DBD) plasmas. AP-DBD He plasmas are irradiated to the living cell covered with genes. Preliminarily, we use fluorescent dye YOYO-1 instead of the genes and use LIVE/DEAD Stain for cell viability test, and we analyze the transfection efficiency and cell viability under the various conditions. It is clarified that the transfection efficiency is strongly dependence on the plasma irradiation time and cell viability rates is high rates (>90%) regardless of long plasma irradiation time. These results suggest that ROS (Reactive Oxygen Species) and electric field generated by the plasma affect the gene transfection. In addition to this (the plasma irradiation time) dependency, we now investigate the effect of the plasma irradiation under the various conditions.

  1. Radio frequency plasma power dependence of the moisture permeation barrier characteristics of Al{sub 2}O{sub 3} films deposited by remote plasma atomic layer deposition

    SciTech Connect

    Jung, Hyunsoo; Samsung Display Co. Ltd., Tangjeong, Chungcheongnam-Do 336-741 ; Choi, Hagyoung; Lee, Sanghun; Jeon, Heeyoung; Jeon, Hyeongtag; Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791

    2013-11-07

    In the present study, we investigated the gas and moisture permeation barrier properties of Al{sub 2}O{sub 3} films deposited on polyethersulfone films (PES) by capacitively coupled plasma (CCP) type Remote Plasma Atomic Layer Deposition (RPALD) at Radio Frequency (RF) plasma powers ranging from 100 W to 400 W in 100 W increments using Trimethylaluminum [TMA, Al(CH{sub 3}){sub 3}] as the Al source and O{sub 2} plasma as the reactant. To study the gas and moisture permeation barrier properties of 100-nm-thick Al{sub 2}O{sub 3} at various plasma powers, the Water Vapor Transmission Rate (WVTR) was measured using an electrical Ca degradation test. WVTR decreased as plasma power increased with WVTR values for 400 W and 100 W of 2.6 × 10{sup −4} gm{sup −2}day{sup −1} and 1.2 × 10{sup −3} gm{sup −2}day{sup −1}, respectively. The trends for life time, Al-O and O-H bond, density, and stoichiometry were similar to that of WVTR with improvement associated with increasing plasma power. Further, among plasma power ranging from 100 W to 400 W, the highest power of 400 W resulted in the best moisture permeation barrier properties. This result was attributed to differences in volume and amount of ion and radical fluxes, to join the ALD process, generated by O{sub 2} plasma as the plasma power changed during ALD process, which was determined using a plasma diagnosis technique called the Floating Harmonic Method (FHM). Plasma diagnosis by FHM revealed an increase in ion flux with increasing plasma power. With respect to the ALD process, our results indicated that higher plasma power generated increased ion and radical flux compared with lower plasma power. Thus, a higher plasma power provides the best gas and moisture permeation barrier properties.

  2. Manipulation of a grid-generated mixing with an active honeycomb dielectric barrier plasma discharge

    NASA Astrophysics Data System (ADS)

    Benard, N.; Mizuno, A.; Moreau, E.

    2015-12-01

    This study defines and characterizes an active system for turbulent and scalar mixing enhancement. This system is made of an active grid composed of 121 holes where the gas flows. A high voltage is applied between printed electrodes and embedded ground electrodes in order to produce a non-thermal surface discharge at the hole exits. The goal is to modify the flow downstream of the active grid. First, electrical and optical characterizations of the actuator are proposed. Second, it is shown that the discharge strongly modifies the flow distribution of the multi-jet exhaust, and the flow change depends on the high voltage applied to the active plasma grid. A minimization of the potential core by 40% is reported when discharge frequency corresponds to jet column mode instability.

  3. The cold and atmospheric-pressure air surface barrier discharge plasma for large-area sterilization applications

    SciTech Connect

    Wang Dacheng; Zhao Di; Feng Kecheng; Zhang Xianhui; Liu Dongping; Yang Size

    2011-04-18

    This letter reports a stable air surface barrier discharge device for large-area sterilization applications at room temperature. This design may result in visually uniform plasmas with the electrode area scaled up (or down) to the required size. A comparison for the survival rates of Escherichia coli from air, N{sub 2} and O{sub 2} surface barrier discharge plasmas is presented, and the air surface plasma consisting of strong filamentary discharges can efficiently kill Escherichia coli. Optical emission measurements indicate that reactive species such as O and OH generated in the room temperature air plasmas play a significant role in the sterilization process.

  4. The cold and atmospheric-pressure air surface barrier discharge plasma for large-area sterilization applications

    NASA Astrophysics Data System (ADS)

    Wang, Dacheng; Zhao, Di; Feng, Kecheng; Zhang, Xianhui; Liu, Dongping; Yang, Size

    2011-04-01

    This letter reports a stable air surface barrier discharge device for large-area sterilization applications at room temperature. This design may result in visually uniform plasmas with the electrode area scaled up (or down) to the required size. A comparison for the survival rates of Escherichia coli from air, N2 and O2 surface barrier discharge plasmas is presented, and the air surface plasma consisting of strong filamentary discharges can efficiently kill Escherichia coli. Optical emission measurements indicate that reactive species such as O and OH generated in the room temperature air plasmas play a significant role in the sterilization process.

  5. BRIEF COMMUNICATIONS: Amplification in the ultraviolet range due to transitions in ions of a carbon plasma interacting with a barrier

    NASA Astrophysics Data System (ADS)

    Burmakov, A. P.; Goncharov, V. K.; Zhumar', A. Yu

    1987-03-01

    The observation of stimulated emission in the ultraviolet due to C II and C IV transitions in an electric-discharge plasma interacting with a flat barrier is reported. The results of measurements of the gain are presented.

  6. Internal Transport Barriers in Alcator C-Mod Ohmic H-Mode Plasmas

    NASA Astrophysics Data System (ADS)

    Wolfe, S. M.; Fiore, C. L.; Bonoli, P. T.; Greenwald, M. J.; Hubbard, A. E.; Marmar, E. S.; Rice, J. E.; Wukitch, S. J.; Redi, M.

    2002-11-01

    Ohmic H-mode operation in Alcator C-Mod is often accompanied by a spontaneous peaking of the central density. The resulting electron density profile shows a ``foot'' at an r/a = 0.5, similar to most double transport barrier modes in this device. Analysis of the transport in these plasmas shows a reduction of the core thermal transport, decline of central toroidal rotataion velocity, and decrease of ηe in the barrier region. This is similar to the ITBs that are induced using off axis ICRF injection.(C. L. Fiore, et al., Phys. Plasmas), 8 2023.^,(S. J. Wukitch, et al., Phys. Plasmas), 9 2149.^,(J.E. Rice, et al., Nuclear Fusion), 42 510. The results of transport and stability code analysis of these plasmas will be presented. Recent experiments have been done to test the response and the performance of such Ohmic H-mode ITBs under the addition of varying amounts of central rf power. The results of these experiments will be also be presented.

  7. Internal Transport Barrier Broadening through Subdominant Mode Stabilization in Reversed Field Pinch Plasmas

    NASA Astrophysics Data System (ADS)

    Lorenzini, R.; Auriemma, F.; Fassina, A.; Martines, E.; Terranova, D.; Sattin, F.

    2016-05-01

    The reversed field pinch (RFP) device RFX-mod features strong internal transport barriers when the plasma accesses states with a single dominant helicity. Such transport barriers enclose a hot helical region with high confinement whose amplitude may vary from a tiny one to an amplitude encompassing an appreciable fraction of the available volume. The transition from narrow to wide thermal structures has been ascribed so far to the transport reduction that occurs when the dominant mode separatrix, which is a preferred location for the onset of stochastic field lines, disappears. In this Letter we show instead that the contribution from the separatrix disappearance, by itself, is marginal and the main role is instead played by the progressive stabilization of secondary modes. The position and the width of the stochastic boundary encompassing the thermal structures have been estimated by applying the concept of a 3D quasiseparatrix layer, developed in solar physics to treat reconnection phenomena without true separatrices and novel to toroidal laboratory plasmas. Considering the favorable scaling of secondary modes with the Lundquist number, these results open promising scenarios for RFP plasmas at temperatures higher than the presently achieved ones, where lower secondary modes and, consequently, larger thermal structures are expected. Furthermore, this first application of the quasiseparatrix layer to a toroidal plasma indicates that such a concept is ubiquitous in magnetic reconnection, independent of the system geometry under investigation.

  8. Internal Transport Barrier Broadening through Subdominant Mode Stabilization in Reversed Field Pinch Plasmas.

    PubMed

    Lorenzini, R; Auriemma, F; Fassina, A; Martines, E; Terranova, D; Sattin, F

    2016-05-01

    The reversed field pinch (RFP) device RFX-mod features strong internal transport barriers when the plasma accesses states with a single dominant helicity. Such transport barriers enclose a hot helical region with high confinement whose amplitude may vary from a tiny one to an amplitude encompassing an appreciable fraction of the available volume. The transition from narrow to wide thermal structures has been ascribed so far to the transport reduction that occurs when the dominant mode separatrix, which is a preferred location for the onset of stochastic field lines, disappears. In this Letter we show instead that the contribution from the separatrix disappearance, by itself, is marginal and the main role is instead played by the progressive stabilization of secondary modes. The position and the width of the stochastic boundary encompassing the thermal structures have been estimated by applying the concept of a 3D quasiseparatrix layer, developed in solar physics to treat reconnection phenomena without true separatrices and novel to toroidal laboratory plasmas. Considering the favorable scaling of secondary modes with the Lundquist number, these results open promising scenarios for RFP plasmas at temperatures higher than the presently achieved ones, where lower secondary modes and, consequently, larger thermal structures are expected. Furthermore, this first application of the quasiseparatrix layer to a toroidal plasma indicates that such a concept is ubiquitous in magnetic reconnection, independent of the system geometry under investigation. PMID:27203329

  9. Influence of Microstructure on Thermal Properties of Axial Suspension Plasma-Sprayed YSZ Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Ganvir, Ashish; Curry, Nicholas; Markocsan, Nicolaie; Nylén, Per; Joshi, Shrikant; Vilemova, Monika; Pala, Zdenek

    2016-01-01

    Suspension plasma spraying is a relatively new thermal spaying technique to produce advanced thermal barrier coatings (TBCs) and enables production of coatings with a variety of structures—highly dense, highly porous, segmented, or columnar. This work investigates suspension plasma-sprayed TBCs produced using axial injection with different process parameters. The influence of coating microstructure on thermal properties was of specific interest. Tests carried out included microstructural analysis, phase analysis, determination of porosity, and pore size distribution, as well as thermal diffusivity/conductivity measurements. Results showed that axial suspension plasma spraying process makes it possible to produce various columnar-type coatings under different processing conditions. Significant influence of microstructural features on thermal properties of the coatings was noted. In particular, the process parameter-dependent microstructural attributes, such as porosity, column density, and crystallite size, were shown to govern the thermal diffusivity and thermal conductivity of the coating.

  10. Surface treatment of para-aramid fiber by argon dielectric barrier discharge plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Gu, Ruxi; Yu, Junrong; Hu, Chengcheng; Chen, Lei; Zhu, Jing; Hu, Zuming

    2012-10-01

    This paper is focused on influence of argon dielectric barrier discharge (DBD) plasma on the adhesive performance and wettability of para-aramid fibers and three parameters including treated power, exposure time and argon flux were detected. The interfacial shear strength (IFSS) was greatly increased by 28% with 300 W, 60 s, 2 L min-1 argon flux plasma treatment. The content of oxygen atom and oxygen-containing polar functional groups were enhanced after the argon plasma treated, so as the surface roughness, which contributed to the improvement of surface wettability and the decrease of contact angle with water. However, long-time exposure, exorbitant power or overlarge argon flux could partly destroy the prior effects of the treatment and damage the mechanical properties of fibers to some degree.

  11. Direct current dielectric barrier assistant discharge to get homogeneous plasma in capacitive coupled discharge

    SciTech Connect

    Du, Yinchang; Li, Yangfang; Cao, Jinxiang; Liu, Yu; Wang, Jian; Zheng, Zhe

    2014-06-15

    In this paper, we propose a method to get more homogeneous plasma in the geometrically asymmetric capacitive coupled plasma (CCP) discharge. The dielectric barrier discharge (DBD) is used for the auxiliary discharge system to improve the homogeneity of the geometrically asymmetric CCP discharge. The single Langmuir probe measurement shows that the DBD can increase the electron density in the low density volume, where the DBD electrodes are mounted, when the pressure is higher than 5 Pa. By this manner, we are able to improve the homogeneity of the plasma production and increase the overall density in the target volume. At last, the finite element simulation results show that the DC bias, applied to the DBD electrodes, can increase the homogeneity of the electron density in the CCP discharge. The simulation results show a good agreement with the experiment results.

  12. Fluid modelling of a packed bed dielectric barrier discharge plasma reactor

    NASA Astrophysics Data System (ADS)

    Van Laer, Koen; Bogaerts, Annemie

    2016-02-01

    A packed bed dielectric barrier discharge plasma reactor is computationally studied with a fluid model. Two different complementary axisymmetric 2D geometries are used to mimic the intrinsic 3D problem. It is found that a packing enhances the electric field strength and electron temperature at the contact points of the dielectric material due to polarization of the beads by the applied potential. As a result, these contact points prove to be of direct importance to initiate the plasma. At low applied potential, the discharge stays at the contact points, and shows the properties of a Townsend discharge. When a high enough potential is applied, the plasma will be able to travel through the gaps in between the beads from wall to wall, forming a kind of glow discharge. Therefore, the inclusion of a so-called ‘channel of voids’ is indispensable in any type of packed bed modelling.

  13. Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow

    NASA Astrophysics Data System (ADS)

    Qi, Haicheng; Gao, Wei; Fan, Zhihui; Liu, Yidi; Ren, Chunsheng

    2016-05-01

    Volume diffuse dielectric barrier discharge (DBD) plasma is produced in subsonic airflow by nanosecond high-voltage pulse power supply with a plate-to-plate discharge cell at 6 mm air gap length. The discharge images, optical emission spectra (OES), the applied voltage and current waveforms of the discharge at the changed airflow rates are obtained. When airflow rate is increased, the transition of the discharge mode and the variations of discharge intensity, breakdown characteristics and the temperature of the discharge plasma are investigated. The results show that the discharge becomes more diffuse, discharge intensity is decreased accompanied by the increased breakdown voltage and time lag, and the temperature of the discharge plasma reduces when airflow of small velocity is introduced into the discharge gap. These phenomena are because that the airflow changes the spatial distribution of the heat and the space charge in the discharge gap. supported by National Natural Science Foundation of China (No. 51437002)

  14. Development of a dielectric barrier discharge enhanced plasma jet in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Chang, Yuanyuan; Jia, Pengying; Xu, Longfei; Fang, Tongzhen; Wang, Long

    2012-09-01

    A plasma jet equipped with dielectric barrier discharge (DBD) is developed to generate diffuse air plasma with fairly large gap and cross sectional area. The diffuse air plasma has two discharge modes under different gap widths from the nozzle to the ground plate electrode. For large gap width, a diffuse plume fills the whole space between the nozzle and the plate electrode after coaxial DBD is ignited when the applied voltage reaches a certain value. Rather than diffuse plasma plume, a bright plasma column bridges the nozzle and the plate electrode with further increasing the applied voltage under small gap width. By optical and electrical measurement, results show that the macroscopically diffuse discharge in air is obtained by the superimposition of radially distributed streamers that appear at different cycles of the applied voltage, and the bright plasma column belongs to atmospheric pressure glow discharge. The molecular vibrational temperature and the gas temperature are given as functions of the peak value of the applied voltage.

  15. Development of a dielectric barrier discharge enhanced plasma jet in atmospheric pressure air

    SciTech Connect

    Li Xuechen; Chang Yuanyuan; Jia Pengying; Xu Longfei; Fang Tongzhen; Wang Long

    2012-09-15

    A plasma jet equipped with dielectric barrier discharge (DBD) is developed to generate diffuse air plasma with fairly large gap and cross sectional area. The diffuse air plasma has two discharge modes under different gap widths from the nozzle to the ground plate electrode. For large gap width, a diffuse plume fills the whole space between the nozzle and the plate electrode after coaxial DBD is ignited when the applied voltage reaches a certain value. Rather than diffuse plasma plume, a bright plasma column bridges the nozzle and the plate electrode with further increasing the applied voltage under small gap width. By optical and electrical measurement, results show that the macroscopically diffuse discharge in air is obtained by the superimposition of radially distributed streamers that appear at different cycles of the applied voltage, and the bright plasma column belongs to atmospheric pressure glow discharge. The molecular vibrational temperature and the gas temperature are given as functions of the peak value of the applied voltage.

  16. Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol

    NASA Astrophysics Data System (ADS)

    Qu, Guangzhou; Liang, Dongli; Qu, Dong; Huang, Yimei; Li, Jie

    2014-06-01

    In this study, two regeneration methods (dielectric barrier discharge (DBD) plasma and ozone (O3) regeneration) of saturated granular activated carbon (GAC) with pentachlorophenol (PCP) were compared. The results show that the two regeneration methods can eliminate contaminants from GAC and recover its adsorption properties to some extent. Comparing the DBD plasma with O3 regeneration, the adsorption rate and the capacity of the GAC samples after DBD plasma regeneration are greater than those after O3 regeneration. O3 regeneration decreases the specific surface area of GAC and increases the acidic surface oxygen groups on the surface of GAC, which causes a decrease in PCP on GAC uptake. With increasing regeneration cycles, the regeneration efficiencies of the two methods decrease, but the decrease in the regeneration efficiencies of GAC after O3 regeneration is very obvious compared with that after DBD plasma regeneration. Furthermore, the equilibrium data were fitted by the Freundlich and Langmuir models using the non-linear regression technique, and all the adsorption equilibrium isotherms fit the Langmuir model fairly well, which demonstrates that the DBD plasma and ozone regeneration processes do not appear to modify the adsorption process, but to shift the equilibrium towards lower adsorption concentrations. Analyses of the weight loss of GAC show that O3 regeneration has a lower weight loss than DBD plasma regeneration.

  17. Plasma Filaments in Dielectric Barrier Discharges Penetrating into High Aspect Ratio Cracks for Sterilization

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia Yu.; Kushner, Mark J.

    2012-10-01

    The ability of surface-hugging-plasmas, as produced in dielectric barrier discharges (DBDs), to penetrate into crevices, turn corners and navigate geometrical obstructions, is important in plasma-wound healing and sterilization. In this talk, we discuss results from a computational investigation of the plasma filaments produced in an air DBD and impinging on and penetrating into deep, high aspect ratio cracks in the bottom dielectric. The model used in this work, nonPDPSIM, is a plasma hydrodynamics model in which continuity, momentum and energy equations are solved for charged and neutral species with solution of Poisson's equation for the electric potential, concurrent with radiation transport. A Monte Carlo simulation is used to obtain ion energy distributions (IEDs) to surfaces. Cracks are 1 mm deep and 3 μm to 250 μm wide (aspect ratios of 333 to 4). We found that when impinging onto the cracked dielectric, the plasma filament conformally spreads over the surface. The conductive plasma transfers the applied potential to the opening of the crack. The width of the crack, w, then determines the penetration of the plasma. If w is large compared to the filament, the penetration is surface hugging. If w is commensurate with the filament, the plasma fills the crack. If the Debye length is about w or larger, there is not significant penetration. For the conditions investigated, penetration occurred for w > 5-6 μm. IEDs onto the surfaces of the trenches produce transient pulses of ions with energies >150 eV.

  18. Mechanisms and dynamics of the external transport barrier formation in non-linear plasma edge simulations

    NASA Astrophysics Data System (ADS)

    Chôné, L.; Beyer, P.; Sarazin, Y.; Fuhr, G.; Bourdelle, C.; Benkadda, S.

    2015-07-01

    L-H transition features are reproduced using three-dimensional first-principles plasma edge turbulence simulations. A transport barrier is observed to form spontaneously above a threshold of the input power. The physical mechanism relies on the coupling between the equilibrium pressure gradient and the poloidal flow, through both the radial force balance and the neoclassical friction. Accounting for the actual radial profile and time evolution of the latter is key to the barrier formation. It is found that neoclassical friction acts as an energy source for the flow, which largely overcomes the sink due to the turbulent Reynolds stress during the whole barrier lifetime. Importantly, experimentally reported dynamical features are recovered during the formation and lifetime of the barrier. This includes dithering of the radial electric field, which is reminiscent of experimentally observed limit-cycle oscillations and quasi-periodic relaxation oscillations showing similarities with type-III ELMs. These rich dynamics emerge from interplay between turbulence, turbulence-driven flows and the equilibrium flow governed by force balance.

  19. Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Jia, Caixia; Chen, Ping; Liu, Wei; Li, Bin; Wang, Qian

    2011-02-01

    Aramid fiber samples are treated by air dielectric barrier discharge (DBD) plasma at atmospheric pressure; the plasma treatment time is investigated as the major parameter. The effects of this treatment on the fiber surface physical and chemical properties are studied by using surface characterization techniques. Scanning electron microscopy (SEM) is performed to determine the surface morphology changes, X-ray photoelectron spectroscopy (XPS) is analyzed to reveal the surface chemical composition variations and dynamic contact angle analysis (DCAA) is used to examine the changes of the fiber surface wettability. In addition, the wetting behavior of a kind of thermoplastic resin, poly(phthalazinone ether sulfone ketone) (PPESK), on aramid fiber surface is also observed by SEM photos. The study shows that there seems to be an optimum treatment condition for surface modification of aramid fiber by the air DBD plasma. In this paper, after the 12 s, 27.6 W/cm3 plasma treatment the aramid fiber surface roughness is significantly improved, some new oxygen-containing groups such as C-O, Cdbnd O and Odbnd C-O are generated on the fiber surface and the fiber surface wettability is greatly enhanced, which results in the better wetting behavior of PPESK resin on the plasma-treated aramid fiber.

  20. Plasma From Patients With HELLP Syndrome Increases Blood–Brain Barrier Permeability

    PubMed Central

    Tremble, Sarah M.; Owens, Michelle Y.; Morris, Rachael; Cipolla, Marilyn J.

    2015-01-01

    Circulating inflammatory factors and endothelial dysfunction have been proposed to contribute to the pathophysiology of hemolysis, elevated liver enzymes, and low platelet count (HELLP) syndrome. To date, the occurrence of neurological complications in these women has been reported, but few studies have examined whether impairment in blood–brain barrier (BBB) permeability or cerebrovascular reactivity is present in women having HELLP syndrome. We hypothesized that plasma from women with HELLP syndrome causes increased BBB permeability and cerebrovascular dysfunction. Posterior cerebral arteries from female nonpregnant rats were perfused with 20% serum from women with normal pregnancies (n = 5) or women with HELLP syndrome (n = 5), and BBB permeability and vascular reactivity were compared. Plasma from women with HELLP syndrome increased BBB permeability while not changing myogenic tone and reactivity to pressure. Addition of the nitric oxide (NO) synthase inhibitor Nω-nitro-l-arginine methyl ester caused constriction of arteries that was not different with the different plasmas nor was dilation to the NO donor sodium nitroprusside different between the 2 groups. However, dilation to the small- and intermediate-conductance, calcium-activated potassium channel activator NS309 was decreased in vessels exposed to HELLP plasma. Thus, increased BBB permeability in response to HELLP plasma was associated with selective endothelial dysfunction. PMID:25194151

  1. High-speed sterilization technique using dielectric barrier discharge plasmas in atmospheric humid air

    NASA Astrophysics Data System (ADS)

    Miyamae, M.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2010-11-01

    The inactivation of Bacillus atrophaeus spores by a dielectric barrier discharge (DBD) plasma produced by an ac voltage application of 1 kHz in atmospheric humid air was investigated in order to develop low-temperature, low-cost and high-speed plasma sterilization technique. The biological indicators covered with a Tyvek sheet were set just outside the DBD plasma region, where the air temperature and humidity as a discharge gas were precisely controlled by an environmental test chamber. The results show that the inactivation of Bacillus atrophaeus spores was found to be dependent strongly on the humidity, and was completed within 15 min at a relative humidity of 90 % and a temperature of 30 C. The treatment time for sterilization is shorter than those of conventional sterilization methods using ethylene oxide gas and dry heat treatment. It is considered that reactive species such as hydroxyl radicals that are effective for the inactivation of Bacillus atrophaeus spores could be produced by the DBD plasma in the humid air. Repetitive micro-pulsed discharge plasmas in the humid air will be applied for the sterilization experiment to enhance the sterilization efficiency.

  2. Experimental investigation of a surface DBD plasma actuator at atmospheric pressure in different N2/O2 gas mixtures

    NASA Astrophysics Data System (ADS)

    Audier, P.; Rabat, H.; Leroy, A.; Hong, D.

    2014-12-01

    This paper presents an investigation of the influence of nitrogen and oxygen on the behavior of a surface dielectric barrier discharge (SDBD) used for active flow control. The SDBD operated in a controlled atmosphere under several N2/O2 gas mixture ratios. For each gas mixture, the consumed power was measured as a function of voltage amplitude. Then, for a given applied high voltage, the plasma morphology was recorded and commented and lastly, ionic wind velocity measurements were performed. Results show that the induced ionic wind velocity is mainly due to oxygen negative ions during the negative half-cycle. Nevertheless, the contribution of nitrogen to velocity is not negligible during the positive half-cycle. Moreover, the propagation of negative spark filaments during the negative half-cycle is linked to the proportion of O2 in the gas mixture. Increasing this proportion beyond 20% leads to a shift in the saturation effect to lower voltages and to a decrease in the maximum ionic wind velocity value.

  3. Fabrication of metallic single electron transistors featuring plasma enhanced atomic layer deposition of tunnel barriers

    NASA Astrophysics Data System (ADS)

    Karbasian, Golnaz

    The continuing increase of the device density in integrated circuits (ICs) gives rise to the high level of power that is dissipated per unit area and consequently a high temperature in the circuits. Since temperature affects the performance and reliability of the circuits, minimization of the energy consumption in logic devices is now the center of attention. According to the International Technology Roadmaps for Semiconductors (ITRS), single electron transistors (SETs) hold the promise of achieving the lowest power of any known logic device, as low as 1x10-18 J per switching event. Moreover, SETs are the most sensitive electrometers to date, and are capable of detecting a fraction of an electron charge. Despite their low power consumption and high sensitivity for charge detection, room temperature operation of these devices is quite challenging mainly due to lithographical constraints in fabricating structures with the required dimensions of less than 10 nm. Silicon based SETs have been reported to operate at room temperature. However, they all suffer from significant variation in batch-to-batch performance, low fabrication yield, and temperature-dependent tunnel barrier height. In this project, we explored the fabrication of SETs featuring metal-insulator-metal (MIM) tunnel junctions. While Si-based SETs suffer from undesirable effect of dopants that result in irregularities in the device behavior, in metal-based SETs the device components (tunnel barrier, island, and the leads) are well-defined. Therefore, metal SETs are potentially more predictable in behavior, making them easier to incorporate into circuits, and easier to check against theoretical models. Here, the proposed fabrication method takes advantage of unique properties of chemical mechanical polishing (CMP) and plasma enhanced atomic layer deposition (PEALD). Chemical mechanical polishing provides a path for tuning the dimensions of the tunnel junctions, surpassing the limits imposed by electron beam lithography and lift-off, while atomic layer deposition provides precise control over the thickness of the tunnel barrier and significantly increases the choices for barrier materials. As described below in detail, the fabrication of ultra-thin (~1nm) tunnel transparent barriers with PEALD is in fact challenging; we demonstrate that in fabrication of SETs with PEALD to form the barrier in the Ni-insulator-Ni tunnel junctions, additional NiO layers are parasitically formed in the Ni layers that form the top and bottom electrodes of the tunnel junctions. The NiO on the bottom electrode is formed due to oxidizing effect of the O 2 plasma used in the PEALD process, while the NiO on the bottom of the top electrode is believed to form during the metal deposition due to oxygen-containing contaminants on the surface of the deposited tunnel barrier. We also show that due to the presence of these surface parasitic layers of NiO, the resistance of Ni-insulator-Ni tunnel junctions is drastically increased. Moreover, the transport mechanism is changed from quantum tunneling through the dielectric barrier to one consistent with the tunnel barrier in series with compound layers of NiO and possibly, NiSixOy. The parasitic component in the tunnel junctions results in conduction freeze-out at low temperatures, deviation of junction parameters from ideal model, and excessive noise in the device. The reduction of NiO to Ni is therefore necessary to restore the metal-insulator-metal structure of the junctions. We have studied forming gas anneal as well as H2 plasma treatment as techniques to reduce the NiO layers that are parasitically formed in the junctions. Using either of these two techniques, we reduced the NiO formed on the island after being covered with the PEALD dielectric and before defining the top source and drain. Later, the NiO formed on the bottom of the source/drain is reduced during a second reducing step after the source/drain are formed on the tunnel barrier. Electrical characterization of SETs that are made with the proposed reducing treatments enable us to study the effect of each reducing process on the properties of the constituent tunnel junctions. In comparison to the junctions annealed twice in forming gas at 400°C, we consistently observed a ~10x higher conductance in devices treated twice with H2 plasma at 300°C. The possible damage to the barrier during the plasma treatment and thermally induced film deformation during the anneal which respectively, is believed to increase and lower the conductance are among the possible cause of this difference. Although both types of treatments were effective in alleviating the effect of the activated components in the junctions, all the devices that were treated by two anneal steps or by two H2 plasma steps (for reducing the top and bottom NiO) show deviations from ideal simulated MIM SET model and suffer from significant random telegraph signal (RTS) noise. However, our results show that by using forming gas anneal for bottom NiO reduction and H2 plasma for the top NiO reduction, one can achieve devices close to ideal MIM SETs with significantly less noise.

  4. Antimicrobial efficacy of two surface barrier discharges with air plasma against in vitro biofilms.

    PubMed

    Matthes, Rutger; Bender, Claudia; Schlüter, Rabea; Koban, Ina; Bussiahn, René; Reuter, Stephan; Lademann, Jürgen; Weltmann, Klaus-Dieter; Kramer, Axel

    2013-01-01

    The treatment of infected wounds is one possible therapeutic aspect of plasma medicine. Chronic wounds are often associated with microbial biofilms which limit the efficacy of antiseptics. The present study investigates two different surface barrier discharges with air plasma to compare their efficacy against microbial biofilms with chlorhexidine digluconate solution (CHX) as representative of an important antibiofilm antiseptic. Pseudomonas aeruginosa SG81 and Staphylococcus epidermidis RP62A were cultivated on polycarbonate discs. The biofilms were treated for 30, 60, 150, 300 or 600 s with plasma or for 600 s with 0.1% CHX, respectively. After treatment, biofilms were dispensed by ultrasound and the antimicrobial effects were determined as difference in the number of the colony forming units by microbial culture. A high antimicrobial efficacy on biofilms of both plasma sources in comparison to CHX treatment was shown. The efficacy differs between the used strains and plasma sources. For illustration, the biofilms were examined under a scanning electron microscope before and after treatment. Additionally, cytotoxicity was determined by the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay with L929 mouse fibroblast cell line. The cell toxicity of the used plasma limits its applicability on human tissue to maximally 150 s. The emitted UV irradiance was measured to estimate whether UV could limit the application on human tissue at the given parameters. It was found that the UV emission is negligibly low. In conclusion, the results support the assumption that air plasma could be an option for therapy of chronic wounds. PMID:23894661

  5. Antimicrobial Efficacy of Two Surface Barrier Discharges with Air Plasma against In Vitro Biofilms

    PubMed Central

    Matthes, Rutger; Bender, Claudia; Schlüter, Rabea; Koban, Ina; Bussiahn, René; Reuter, Stephan; Lademann, Jürgen; Weltmann, Klaus-Dieter; Kramer, Axel

    2013-01-01

    The treatment of infected wounds is one possible therapeutic aspect of plasma medicine. Chronic wounds are often associated with microbial biofilms which limit the efficacy of antiseptics. The present study investigates two different surface barrier discharges with air plasma to compare their efficacy against microbial biofilms with chlorhexidine digluconate solution (CHX) as representative of an important antibiofilm antiseptic. Pseudomonas aeruginosa SG81 and Staphylococcus epidermidis RP62A were cultivated on polycarbonate discs. The biofilms were treated for 30, 60, 150, 300 or 600 s with plasma or for 600 s with 0.1% CHX, respectively. After treatment, biofilms were dispensed by ultrasound and the antimicrobial effects were determined as difference in the number of the colony forming units by microbial culture. A high antimicrobial efficacy on biofilms of both plasma sources in comparison to CHX treatment was shown. The efficacy differs between the used strains and plasma sources. For illustration, the biofilms were examined under a scanning electron microscope before and after treatment. Additionally, cytotoxicity was determined by the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay with L929 mouse fibroblast cell line. The cell toxicity of the used plasma limits its applicability on human tissue to maximally 150 s. The emitted UV irradiance was measured to estimate whether UV could limit the application on human tissue at the given parameters. It was found that the UV emission is negligibly low. In conclusion, the results support the assumption that air plasma could be an option for therapy of chronic wounds. PMID:23894661

  6. Damage evolution and residual stresses in plasma-sprayed zirconia thermal barrier coatings.

    SciTech Connect

    Singh, J. P.

    1999-02-03

    Air-plasma-sprayed zirconia thermal barrier coatings were subjected to thermal cycling and residual stress evolution in thermally grown oxide scale was studied by micro- and macro-ruby fluorescence spectroscopy. The macro approach reveals that compressive stress in the oxide scale increases with increasing number of thermal cycles (and thus increasing scale thickness), reaching a value of 1.8 GPa at a scale thickness of 3-4 {micro}m (80 cycles). Micro-ruby fluorescence spectroscopy indicates that protrusions of the zirconia top coat into the bond coat act as localized areas of high stress concentration, leading to damage initiation during thermal cycling.

  7. Decomposition of trifluoromethane in a dielectric barrier discharge non-thermal plasma reactor.

    PubMed

    Gandhi, M Sanjeeva; Mok, Y S

    2012-01-01

    The decomposition of trifluoromethane (CHF3) was carried out using non-thermal plasma generated in a dielectric barrier discharge (DBD) reactor. The effects of reactor temperature, electric power, initial concentration and oxygen content were examined. The DBD reactor was able to completely destroy CHF3 with alumina beads as a packing material. The decomposition efficiency increased with increasing electric power and reactor temperature. The destruction of CHF3 gradually increased with the addition of O2 up to 2%, but further increase in the oxygen content led to a decrease in the decomposition efficiency. The degradation pathways were explained with the identified by-products. The main by-products from CHF3 were found to be COF2, CF4, CO2 and CO although the COF2 and CF4 disappeared when the plasma were combined with alumina catalyst. PMID:23513444

  8. Development of dielectric barrier discharge plasma processing apparatus for mass spectrometry and thin film deposition.

    PubMed

    Majumdar, Abhijit; Hippler, Rainer

    2007-07-01

    Cost effective and a very simple dielectric barrier discharge plasma processing apparatus for thin film deposition and mass spectroscopic analysis of organic gas mixture has been described. The interesting features of the apparatus are the construction of the dielectric electrodes made of aluminum oxide or alumina (Al(2)O(3)) and glass and the generation of high ignition voltage from the spark plug transformer taken from car. Metal capacitor is introduced in between ground and oscilloscope to measure the executing power during the discharge and the average electron density in the plasma region. The organic polymer films have been deposited on Si (100) substrate using several organic gas compositions. The experimental setup provides a unique drainage system from the reaction chamber controlled by a membrane pump to suck out and remove the poisonous gases or residuals (cyanogens, H-CN, CH(x)NH(2), etc.) which have been produced during the discharge of CH(4)N(2) mixture. PMID:17672789

  9. RAPID COMMUNICATION: Electron energy distribution functions for modelling the plasma kinetics in dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Carman, R. J.; Mildren, R. P.

    2000-10-01

    In modelling the plasma kinetics in dielectric barrier discharges (DBDs), the electron energy conservation equation is often included in the rate equation analysis (rather than utilizing the local-field approximation) with the assumption that the electron energy distribution function (EEDF) has a Maxwellian profile. We show that adopting a Maxwellian EEDF leads to a serious overestimate of the calculated ionization/excitation rate coefficients and the electron mobility for typical plasma conditions in a xenon DBD. Alternative EEDF profiles are trialed (Druyvesteyn, bi-Maxwellian and bi-Druyvesteyn) and benchmarked against EEDFs obtained from solving the steady-state Boltzmann equation. A bi-Druyvesteyn EEDF is shown to be more inherently accurate for modelling simulations of xenon DBDs.

  10. Development of dielectric barrier discharge plasma processing apparatus for mass spectrometry and thin film deposition

    NASA Astrophysics Data System (ADS)

    Majumdar, Abhijit; Hippler, Rainer

    2007-07-01

    Cost effective and a very simple dielectric barrier discharge plasma processing apparatus for thin film deposition and mass spectroscopic analysis of organic gas mixture has been described. The interesting features of the apparatus are the construction of the dielectric electrodes made of aluminum oxide or alumina (Al2O3) and glass and the generation of high ignition voltage from the spark plug transformer taken from car. Metal capacitor is introduced in between ground and oscilloscope to measure the executing power during the discharge and the average electron density in the plasma region. The organic polymer films have been deposited on Si (100) substrate using several organic gas compositions. The experimental setup provides a unique drainage system from the reaction chamber controlled by a membrane pump to suck out and remove the poisonous gases or residuals (cyanogens, H-CN, CHxNH2, etc.) which have been produced during the discharge of CH4/N2 mixture.

  11. Plasma-Deposited SiOxCyHz Barrier Coatings for Organic Device Encapsulation

    NASA Astrophysics Data System (ADS)

    Lee, Seunghun; Kang, Yong-Jin; Jung, Sunghoon; Kim, Jong-Kuk; Kim, Do-Geun

    2013-07-01

    A plasma-deposited SiOxCyHz barrier coating was investigated for the encapsulation of an organic photovoltaic (OPV). A closed drift linear plasma source, which is a modified extended layer linear ion source, was used to deposit SiOxCyHz films without any plasma damage due to plasma heating and ion bombardment on the organic devices. The deposition precursor was a gas mixture of hexamethyldisiloxane (HMDSO) and oxygen. The effect of the HMDSO/(HMDSO+O2) ratio over the range from 3.7 to 14.2% on the silicon content in Si(-O)x bonding was studied. HMDSO reacted effectively with oxygen radicals to form pure SiO2 bonds at the ratio of 3.7%. However, additional HMDSO injection led to insufficient HMDSO oxidation resulting in SiOxCyHz film deposition. In this work, a SiO2 single layer deposited at the ratio of 3.7% was adapted for the encapsulation of OPV. The encapsulated OPV showed an original power conversion efficiency (PCE) of ˜2% without any degradation.

  12. Fabrication of thin vertical mirrors through plasma etch and KOH:IPA polishing for integration into MEMS electrostatic actuators

    NASA Astrophysics Data System (ADS)

    Huda, M. Q.; Amin, T. M. F.; Ning, Y.; McKinnon, G.; Tulip, J.; Jäger, W.

    2013-03-01

    We developed a process for the fabrication of thin vertical mirrors as integrated structures of MEMS electrostatic actuators. The mirrors can be implemented as a vertical extension of the actuator sidewall, or can be positioned at any movable part of the actuator. The process involves the fabrication of a mesa structure on the handle layer of a silicon-oninsulator (SOI) wafer through deep reactive ion etching (DRIE). The etch/passivation cycles of the DRIE process were optimized to achieve vertical etch profiles with a depth of up to 200 μm with an aspect ratio of 10:1. The DRIE process introduced typical etch scallops with peak-to-valley and rms roughnesses on the order of 100 nm and 30 nm, respectively. A mask layer was used to pattern a 2.1 μm sacrificial oxide layer for the mesa structure. A second mask layer allowed us to define a large etch cavity for handle layer back-etch. The DRIE etched mesa structure was then etched with diluted potassium hydroxide (KOH) in isopropyl alcohol (IPA). Temperature and etch concentration were optimized for the removal of etch scallops without the formation of <111> etch facets. The etch scallops were almost completely removed and mirror quality surfaces were achieved. The developed mesa structures are suitable for integration into actuators that are patterned in the device layer. A third masking layer, aligned through infrared camera, was used to position the thin vertical mirror at the actuator sidewall. The process provides design flexibility in integrating vertical mirrors of adjustable dimensions to movable elements of MEMS structures.

  13. Effects of Dielectric Barrier Discharge Plasma Treatment on Pentachlorophenol Removal of Granular Activated Carbon

    NASA Astrophysics Data System (ADS)

    Ji, Puhui; Qu, Guangzhou; Li, Jie

    2013-10-01

    The pentachlorophenol (PCP) adsorbed granular activated carbon (GAC) was treated by dielectric barrier discharge (DBD) plasma. The effects of DBD plasma on the structure of GAC and PCP decomposition were analyzed by N2 adsorption, thermogravimetric, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and gas chromatography mass spectrometry (GC-MS). The experimental data of adsorption kinetics and thermodynamics of PCP on GAC were fitted with different kinetics and isotherm models, respectively. The results indicate that the types of N2 adsorption isotherm of GAC are not changed by DBD plasma, while the specific surface area and pore volume increase after DBD plasma treatment. It is found that the weight loss of the saturated GAC is the highest, on the contrary, the weight loss of DBD treated GAC is the least because of reduced PCP residue on the GAC. The XPS spectra and SEM image suggest that some PCP on the GAC is removed by DBD plasma, and the surface of GAC treated by DBD plasma presents irregular and heterogeneous morphology. The GC-MS identification of by-products shows that two main dechlorination intermediate products, tetrachlorophenol and trichlorophenol, are distinguished. The fitting results of experimental data of adsorption kinetics and thermodynamics indicate that the pseudo-first-order and pseudo-second order models can be used for the prediction of the kinetics of virgin GAC and DBD treated GAC for PCP adsorption, and the Langmuir isotherm model fits better with the data of adsorption isotherm than the Freundlich isotherm in the adsorption of PCP on virgin GAC and DBD treated GAC.

  14. Physical and plasmachemical aspects of diffuse coplanar barrier discharge as a novel atmospheric-pressure plasma source

    NASA Astrophysics Data System (ADS)

    Cernak, M.; Kovacik, D.; Zahoranova, A.; Rahel, J.

    2008-07-01

    Collaborating Czech and Slovakian university teams have recently developed an innovative plasma source, the so-called Diffuse Coplanar Surface Barrier Discharge (DCSBD), which has the potential to move a step closer to the industry requirement for in-line treatment of low-added-value materials using a highly-nonequlibrium ambient air plasma (Simor et al. 2002, The idea is to generate a thin (on the order of 0.1 mm) layer of highly-nonequlibrium plasma with a high power density (up to 100 W/cm^3) in the immediate vicinity of the treated surface and bring it into a close contact with the treated surface. Comparing to atmospheric-pressure glow discharge, volume dielectric barrier discharge, and plasma jet plasmas, such a diffuse plasma layer is believed to provide substantial advantages in energy consumption, exposure time, and technical simplicity. A brief outline of physical mechanism and basic properties of DCSBD will given using the results of emission spectroscopy, high-speed camera, and spatially resolved cross-correlation spectroscopy studies. The presentation will review also a current state of the art in in-line plasma treatment of low-cost materials and opportunities for the use of the so-called Diffuse Coplanar Surface Dielectric Barrier Discharge (DCSBD). The results obtained on the ambient air plasma treatments of textile, paper, wood, and glass illustrate that DCSBD offers outstanding performance with extremely low energy consumption for large area, uniform surface modifications of materials under continuous process conditions.

  15. QUIESCENT DOUBLE BARRIER H-MODE PLASMAS IN THE DIII-D TOKAMAK

    SciTech Connect

    K.H. BURRELL; M.E. AUSTIN; D.P. BRENNAN; J.C. DeBOO; E.J. DOYLE; C. FENZI; C. FUCHS; P. GOHIL; R.J. GROEBNER; L.L. LAO; T.C. LUCE; M.A. MAKOWSKI; G.R. McKEE; R.A. MOYER; C.C. PETTY; M. PORKOLAB; C.L.RETTIG; T.L. RHODES; J.C. ROST; B.W. STALLARD; E.J. STRAIT; E.J. SYNAKOWSKI; M.R. WADE; J.G. WATKINS; W.P. WEST

    2000-11-01

    High confinement (H-mode) operation is the choice for next-step tokamak devices based either on conventional or advanced tokamak physics. This choice, however, comes at a significant cost for both the conventional and advanced tokamaks because of the effects of edge localized modes (ELMs). ELMs can produce significant erosion in the divertor and can affect the beta limit and reduced core transport regions needed for advanced tokamak operation. Experimental results from DIII-D [J.L. Luxon, et al., Plasma Phys. and Contr. Nucl. Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987) Vol. I, p. 159] this year have demonstrated a new operating regime, the quiescent H-mode regime, which solves these problems. We have achieved quiescent H-mode operation which is ELM-free and yet has good density and impurity control. In addition, we have demonstrated that an internal transport barrier can be produced and maintained inside the H-mode edge barrier for long periods of time (>3.5 seconds or >25 energy confinement times {tau}{sub E}), yielding a quiescent double barrier regime. By slowly ramping the input power, we have achieved {beta}{sub N} H{sub 89} = 7 for up to 5 times the {tau}{sub E} of 150 ms. The {beta}{sub N} H{sub 89} values of 7 substantially exceed the value of 4 routinely achieved in standard ELMing H-mode. The key factors in creating the quiescent H-mode operation are neutral beam injection in the direction opposite to the plasma current (counter injection) plus cryopumping to reduce the density. Density and impurity control in the quiescent H-mode is possible because of the presence of an edge magnetic hydrodynamic (MHD) oscillation, the edge harmonic oscillation, which enhances the edge particle transport while leaving the energy transport unaffected.

  16. Digital Actuator Technology

    SciTech Connect

    Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

    2014-09-01

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator technology over legacy analog sensor technology in both quantitative and qualitative ways. 2. To recognize and address the added difficulty of digital technology qualification, especially in regard to software common cause failure (SCCF), that is introduced by the use of digital actuator technology.

  17. Electromechanical actuators

    NASA Technical Reports Server (NTRS)

    Bigham, J.

    1982-01-01

    Materials illustrating a presentation on the development of electromechanical actuators (EMA) for electric flight systems are presented. Technology issues are identified, and major steps relative to EMA development, NASA's role, and a technology procurement plan are outlined.

  18. Method and Process Development of Advanced Atmospheric Plasma Spraying for Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Mihm, Sebastian; Duda, Thomas; Gruner, Heiko; Thomas, Georg; Dzur, Birger

    2012-06-01

    Over the last few years, global economic growth has triggered a dramatic increase in the demand for resources, resulting in steady rise in prices for energy and raw materials. In the gas turbine manufacturing sector, process optimizations of cost-intensive production steps involve a heightened potential of savings and form the basis for securing future competitive advantages in the market. In this context, the atmospheric plasma spraying (APS) process for thermal barrier coatings (TBC) has been optimized. A constraint for the optimization of the APS coating process is the use of the existing coating equipment. Furthermore, the current coating quality and characteristics must not change so as to avoid new qualification and testing. Using experience in APS and empirically gained data, the process optimization plan included the variation of e.g. the plasma gas composition and flow-rate, the electrical power, the arrangement and angle of the powder injectors in relation to the plasma jet, the grain size distribution of the spray powder and the plasma torch movement procedures such as spray distance, offset and iteration. In particular, plasma properties (enthalpy, velocity and temperature), powder injection conditions (injection point, injection speed, grain size and distribution) and the coating lamination (coating pattern and spraying distance) are examined. The optimized process and resulting coating were compared to the current situation using several diagnostic methods. The improved process significantly reduces costs and achieves the requirement of comparable coating quality. Furthermore, a contribution was made towards better comprehension of the APS of ceramics and the definition of a better method for future process developments.

  19. Atomic oxygen production scaling in a nanosecond-pulsed externally grounded dielectric barrier plasma jet

    NASA Astrophysics Data System (ADS)

    Sands, Brian; Schmidt, Jacob; Ganguly, Biswa; Scofield, James

    2014-10-01

    Atomic oxygen production is studied in a capillary dielectric barrier plasma jet that is externally grounded and driven with a 20-ns risetime positive unipolar pulsed voltage at pulse repetition rates up to 25 kHz. The power coupled to the discharge can be easily increased by increasing the pulse repetition rate. At a critical turnover frequency, determined by the net energy density coupled to the discharge, the plasma chemistry abruptly changes. This is indicated by increased plasma conductance and a transition in reactive oxygen species production from an ozone-dominated production regime below the turnover frequency to atomic-oxygen-dominated production at higher pulse rates. Here, we characterize atomic oxygen production scaling using spatially- and temporally-resolved two-photon absorption laser-induced-fluorescence (TALIF). Quantitative results are obtained via calibration with xenon using a similar laser excitation and collection system. These results are compared with quantitative ozone and discharge power measurements using a helium gas flow with oxygen admixtures up to 3%.

  20. Formation of PtSi Schottky barrier MOSFETs using plasma etching

    SciTech Connect

    Woo, Young Min; Hwang, Wan Sik; Yoo, Won Jong

    2015-03-15

    PtSi Schottky barrier (SB) MOSFETs were fabricated and their device performance was characterized. PtSi was selected instead of NiSi to form the p-type SB junction since such a configuration would be easy to fabricate through SF{sub 6} based plasma etching. The addition of He-O{sub 2} in SF{sub 6} decreases the etching rate of PtSi while the etching rate of Pt remains unchanged. The retardation in the etching rate of PtSi in He-O{sub 2}/SF{sub 6} is attributed to the formation of a metal oxide on the etched PtSi surface, as evidenced by the x-ray photoelectron spectroscopy results. Optical emission spectroscopy was conducted to establish the endpoint where the wavelength from the feed gas was traced instead of tracing the etching by-products since the by-products have little association with the plasma reaction. The I{sub DS}–V{sub DS} curves at various V{sub G}–V{sub TH} indicate that plasma etching resulted in the successful removal of the Pt on the sidewall region, with negligible damage to the S/D area.

  1. Efficient barrier for charge injection in polyethylene by silver nanoparticles/plasma polymer stack

    SciTech Connect

    Milliere, L.; Makasheva, K. Laurent, C.; Despax, B.; Teyssedre, G.

    2014-09-22

    Charge injection from a metal/insulator contact is a process promoting the formation of space charge in polymeric insulation largely used in thick layers in high voltage equipment. The internal charge perturbs the field distribution and can lead to catastrophic failure either through its electrostatic effects or through energetic processes initiated under charge recombination and/or hot electrons effects. Injection is still ill-described in polymeric insulation due to the complexity of the contact between the polymer chains and the electrodes. Barrier heights derived from the metal work function and the polymer electronic affinity do not provide a good description of the measurements [Taleb et al., IEEE Trans. Dielectr. Electr. Insul. 20, 311–320 (2013)]. Considering the difficulty to describe the contact properties and the need to prevent charge injection in polymers for high voltage applications, we developed an alternative approach by tailoring the interface properties by the silver nanoparticles (AgNPs)/plasma polymer stack, deposited on the polymer film. Due to their small size, the AgNPs, covered by a very thin film of plasma polymer, act as deep traps for the injected charges thereby stabilizing the interface from the point of view of charge injection. After a quick description of the method for elaborating the nanostructured layer near the contact, it is demonstrated how the AgNPs/plasma polymer stack effectively prevents, in a spectacular way, the formation of bulk space charge.

  2. Columnar-Structured Mg-Al-Spinel Thermal Barrier Coatings (TBCs) by Suspension Plasma Spraying (SPS)

    NASA Astrophysics Data System (ADS)

    Schlegel, N.; Ebert, S.; Mauer, G.; Vaßen, R.

    2015-01-01

    The suspension plasma spraying (SPS) process has been developed to permit the feeding of sub-micrometer-sized powder into the plasma plume. In contrast to electron beam-physical vapor deposition and plasma spray-physical vapor deposition, SPS enables the cost-efficient deposition of columnar-structured coatings. Due to their strain tolerance, these coatings play an important role in the field of thermal barrier coatings (TBCs). In addition to the cost-efficient process, attention was turned to the TBC material. Nowadays, yttria partially stabilized zirconia (YSZ) is used as standard TBC material. However, its long-term application at temperatures higher than 1200 °C is problematic. At these high temperatures, phase transitions and sintering effects lead to the degradation of the TBC system. To overcome those deficits of YSZ, Mg-Al-spinel was chosen as TBC material. Even though it has a lower melting point (~2135 °C) and a higher thermal conductivity (~2.5 W/m/K) than YSZ, Mg-Al-spinel provides phase stability at high temperatures in contrast to YSZ. The Mg-Al-spinel deposition by SPS resulted in columnar-structured coatings, which have been tested for their thermal cycling lifetime. Furthermore, the influence of substrate cooling during the spraying process on thermal cycling behavior, phase composition, and stoichiometry of the Mg-Al-spinel has been investigated.

  3. Spontaneous versus induced hydrogen and deuterium helical shaped plasmas with electron internal transport barriers

    NASA Astrophysics Data System (ADS)

    Gobbin, M.; Franz, P.; Auriemma, F.; Lorenzini, R.; Marrelli, L.

    2015-09-01

    Electron internal transport barriers (eITBs) in high current plasmas with helical equilibria of the reversed field pinch experiment RFX-mod are analyzed and characterized in detail thanks to a high time resolution double filter diagnostic for the electron temperature spatial profile determination. The large amount of data provided by this diagnostic has required the development of dedicated algorithms and the identification of suitable parameters, reported and described in this paper, in order to perform automatic statistical studies. These numerical tools have been used to examine the effect of three dimensional (3D) magnetic fields applied by the RFX-mod 192 active coils in deuterium and hydrogen discharges with the aim to improve the sustainment and control of helical equilibria with eITBs. It is shown that 3D fields partially increase the occurring of helical states but with only a moderate effect on the eITBs duration; moreover, they have a different impact on the confinement properties in hydrogen and deuterium discharges. Numerical simulations, by the Hamiltonian guiding center code ORBIT, investigate the effect of magnetic topology in plasmas with and without the application of 3D fields on deuterium and hydrogen test ions transport. Results from numerical studies are in agreement with estimates of the particle confinement times showing that particle transport is reduced in deuterium plasmas but not significantly affected by the application of helical boundary conditions.

  4. Low-Temperature Plasma-Assisted Atomic Layer Deposition of Silicon Nitride Moisture Permeation Barrier Layers.

    PubMed

    Andringa, Anne-Marije; Perrotta, Alberto; de Peuter, Koen; Knoops, Harm C M; Kessels, Wilhelmus M M; Creatore, Mariadriana

    2015-10-14

    Encapsulation of organic (opto-)electronic devices, such as organic light-emitting diodes (OLEDs), photovoltaic cells, and field-effect transistors, is required to minimize device degradation induced by moisture and oxygen ingress. SiNx moisture permeation barriers have been fabricated using a very recently developed low-temperature plasma-assisted atomic layer deposition (ALD) approach, consisting of half-reactions of the substrate with the precursor SiH2(NH(t)Bu)2 and with N2-fed plasma. The deposited films have been characterized in terms of their refractive index and chemical composition by spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR). The SiNx thin-film refractive index ranges from 1.80 to 1.90 for films deposited at 80 °C up to 200 °C, respectively, and the C, O, and H impurity levels decrease when the deposition temperature increases. The relative open porosity content of the layers has been studied by means of multisolvent ellipsometric porosimetry (EP), adopting three solvents with different kinetic diameters: water (∼0.3 nm), ethanol (∼0.4 nm), and toluene (∼0.6 nm). Irrespective of the deposition temperature, and hence the impurity content in the SiNx films, no uptake of any adsorptive has been observed, pointing to the absence of open pores larger than 0.3 nm in diameter. Instead, multilayer development has been observed, leading to type II isotherms that, according to the IUPAC classification, are characteristic of nonporous layers. The calcium test has been performed in a climate chamber at 20 °C and 50% relative humidity to determine the intrinsic water vapor transmission rate (WVTR) of SiNx barriers deposited at 120 °C. Intrinsic WVTR values in the range of 10(-6) g/m2/day indicate excellent barrier properties for ALD SiNx layers as thin as 10 nm, competing with that of state-of-the-art plasma-enhanced chemical vapor-deposited SiNx layers of a few hundred nanometers in thickness. PMID:26393381

  5. Monitoring Delamination of Plasma-Sprayed Thermal Barrier Coatings by Reflectance-Enhanced Luminescence

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Bencic, Timothy J.

    2006-01-01

    Highly scattering plasma-sprayed thermal barrier coatings (TBCs) present a challenge for optical diagnostic methods to monitor TBC delamination because scattering attenuates light transmitted through the TBC and usually degrades contrast between attached and delaminated regions of the TBC. This paper presents a new approach where reflectance-enhanced luminescence from a luminescent sublayer incorporated along the bottom of the TBC is used to identify regions of TBC delamination. Because of the higher survival rate of luminescence reflecting off the back surface of a delaminated TBC, the strong scattering exhibited by plasma-sprayed TBCs actually accentuates contrast between attached and delaminated regions by making it more likely that multiple reflections of luminescence off the back surface occur before exiting the top surface of the TBC. A freestanding coating containing sections designed to model an attached or delaminated TBC was prepared by depositing a luminescent Eu-doped or Er-doped yttria-stabilized zirconia (YSZ) luminescent layer below a plasma-sprayed undoped YSZ layer and utilizing a NiCr backing layer to represent an attached substrate. For specimens with a Eu-doped YSZ luminescent sublayer, luminescence intensity maps showed excellent contrast between unbacked and NiCr-backed sections even at a plasma-sprayed overlayer thickness of 300 m. Discernable contrast between unbacked and NiCr-backed sections was not observed for specimens with a Er-doped YSZ luminescent sublayer because luminescence from Er impurities in the undoped YSZ layer overwhelmed luminescence originating form the Er-doped YSZ sublayer.

  6. Mechanical Properties of Plasma-Sprayed ZrO2-8 wt% Y2O3 Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Zhu, Dongming; Miller, Robert A.

    2004-01-01

    Mechanical behavior of free standing, plasma-sprayed ZrO2-8 wt% Y2O3 thermal barrier coatings, including strength, fracture toughness, fatigue, constitutive relation, elastic modulus, and directionality, has been determined under various loading-specimen configurations. This report presents and describes a summary of mechanical properties of the plasma-sprayed coating material to provide them as a design database.

  7. Pattern formation and dynamics of plasma filaments in dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Callegari, T.; Bernecker, B.; Boeuf, J. P.

    2014-10-01

    Dielectric barrier discharges (DBDs) operating in a transient glow discharge regime offer a large variety of self-organized filamentary static or dynamical structures and constitute an excellent physical system for the study of nonlinear dynamics and pattern formation. The plasma filaments of DBDs can exhibit particle-like behavior, with motion, generation, annihilation, and scattering as well as collective effects leading to self-organized structures (hexagons, stripes, concentric rings, spirals, etc) that are typical of reaction-diffusion systems. The purpose of this paper is to analyze the detailed physics of pattern formation in DBDs on the basis of numerical fluid simulations and experiments in order to provide a deeper understanding of the nonlinear mechanisms responsible for the self-organization and dynamics of filaments.

  8. Mechanical Properties of Air Plasma Sprayed Environmental Barrier Coating (EBC) Materials

    NASA Technical Reports Server (NTRS)

    Richards, Bradley; Zhu, Dongming; Ghosn, Louis; Wadley, Haydn

    2015-01-01

    Development work in Environmental Barrier Coatings (EBCs) for Ceramic Matrix Composites (CMCs) has focused considerably on the identification of materials systems and coating architectures to meet application needs. The evolution of these systems has occurred so quickly that modeling efforts and requisite data for modeling lag considerably behind development. Materials property data exists for many systems in the bulk form, but the effects of deposition on the critical properties of strength and fracture behavior are not well studied. We have plasma sprayed bulk samples of baseline EBC materials (silicon, ytterbium disilicate) and tested the mechanical properties of these materials to elicit differences in strength and toughness. We have also endeavored to assess the mixed-mode fracture resistance, Gc, of silicon in a baseline EBC applied to SiCSiC CMC via four point bend test. These results are compared to previously determined properties of the comparable bulk material.

  9. Changes induced in the permeability barrier of the yeast plasma membrane by cupric ion.

    PubMed Central

    Ohsumi, Y; Kitamoto, K; Anraku, Y

    1988-01-01

    A specific effect of Cu2+ eliciting selective changes in the permeability of intact Saccharomyces cerevisiae cells is described. When 100 microM CuCl2 was added to a cell suspension in a buffer of low ionic strength, the permeability barrier of the plasma membranes of the cells was lost within 2 min at 25 degrees C. The release of amino acids was partial, and the composition of the amino acids released was different from that of those retained in the cells. Mostly glutamate was released, but arginine was mainly retained in the cells. Cellular K+ was released rapidly after CuCl2 addition, but 30% of the total K+ was retained in the cells. These and other observations suggested that Cu2+ caused selective lesions of the permeability barrier of the plasma membrane but did not affect the permeability of the vacuolar membrane. These selective changes were not induced by the other divalent cations tested. A novel and simple method for differential extraction of vacuolar and cytosolic amino acid pools by Cu2+ treatment was established. When Ca2+ was added to Cu2+-treated cells, a large amount of Ca2+ was sequestered into vacuoles, with formation of an inclusion of a Ca2+-polyphosphate complex in the vacuoles. Cu2+-treated cells also showed enhanced uptake of basic amino acids and S-adenosylmethionine. The transport of these substrates showed saturable kinetics with low affinities, reflecting the vacuolar transport process in situ. With Cu2+ treatment, selective leakage of K+ from the cytosolic compartment appears to create a large concentration gradient of K+ across the vacuolar membrane and generates an inside-negative membrane potential, which may provide a driving force of uptake of positively charged substances into vacuoles. Cu2+ treatment provides a useful in situ method for investigating the mechanisms of differential solute pool formation and specific transport phenomena across the vacuolar membrane. PMID:3286617

  10. Wave induced barrier transparency and melting of quasi-crystalline structures in two dimensional plasma turbulence

    SciTech Connect

    Das, Amita

    2007-04-15

    The conservation of energy and enstrophy in two dimensional inviscid hydrodynamics leads to dual cascade behavior. The energy cascades towards long scales and the enstrophy is transferred to shorter scales. The interplay of these dynamical processes leads to self organization and formation of coherent patterns in the two dimensional hydrodynamic turbulence. It was shown by Kukharkin et al. [Phys. Rev. Lett. 25, 2486 (1995)] that this process of self organization occurs in an even more interesting fashion in the Hasegawa Mima (HM) equation [Phys. Fluids 21, 21 (1978)] This equation is a generalization of the two dimensional Navier Stokes hydrodynamics model in which there is a characteristic natural scale in the system (e.g., Larmor radius in the drift wave context). Kukharkin et al. observed that this scale acts as a barrier in the energy cascade, such that the cascade rate at the longer wavelength side of the barrier is smaller. This work has also shown that the accumulation of energy around the intrinsic scale leads to the formation of quasi-crystalline patterns. In the present paper it has been demonstrated that the presence of wave excitations leads to an increased cascade towards longer scales past the natural length scale barrier. It has also been demonstrated that wave excitations lead to the melting of quasi-crystalline structures. Another intriguing but interesting observation is that even though the faster cascade is induced by waves arising through an anisotropic inhomogeneity in one of the plasma parameters, the spectrum of the fluctuations continues to remain predominantly isotropic. A physical understanding of the observations is provided by illustrating a close connection between the Kelvin-Helmholtz destabilization of shear flows and the phenomenon of inverse cascade in 2D fluid flows.

  11. Removal of Tricholoethylene from Air Streams by a Superimposed Barrier Discharge Plasma Reactor

    NASA Astrophysics Data System (ADS)

    Urashima, Kuniko; Ito, Tairo; Chang, Jen-Shih

    1996-10-01

    In this work, superimposed barrier discharge - activated carbon filter hybrid systems are used to remove TCE from air streams, and the mechanism of TCE decomposition is investigated. The superimposed barrier discharge consisted of silent and a surface discharges. Experiments are conducted for the gas flow rate from 0.1 to 10 L/min, applied power from 0 to 7 W and TCE initial concentration from 0 to 2,000 ppm for 60 Hz ac applied voltage conditions. Discharge by-products are measured by FTIR, GC and TLV VOC detector. The results shows that; 1) TCE decomposition rate nonmonotonically increases with increasing applied power up to discharge power around 4 W and decreases with increasing applied power; 2) Approximately 50% of TCE is removed by plasma reactors and the other 50% is removed by activated carbon filters; 3) TCE is decomposition to form CO, CO2, H2O, HCl and Cl2, and HCl and Cl2 are adsorbed in activated carbon filters; 4) No COCl2 is observed in a discharge by-products for the present range of experiments; 5) Aerosol particles are also observed as a discharge by-products.

  12. Effect of Sintering on Mechanical and Physical Properties of Plasma-Sprayed Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    The effect of sintering on mechanical and physical properties of free-standing plasma-sprayed ZrO2-8 wt% Y2O3 thermal barrier coatings (TBCs) was determined by annealing them at 1316 C in air. Mechanical and physical properties of the TBCs, including strength, modes I and II fracture toughness, elastic modulus, Poisson s response, density, microhardness, fractography, and phase stability, were determined at ambient temperature as a function of annealing time ranging from 0 to 500 h. All mechanical and physical properties, except for the amount of monoclinic phase, increased significantly in 5 to 100 h and then reached a plateau above 100 h. Annealing resulted in healing of microcracks and pores and in grain growth, accompanying densification of the TBC s body due to the sintering effect. However, an inevitable adverse effect also occurred such that the desired lower thermal conductivity and good expansivity, which makes the TBCs unique in thermal barrier applications, were degraded upon annealing. A model was proposed to assess and quantify all the property variables in response to annealing in a normalized scheme. Directionality of as-sprayed TBCs appeared to have an insignificant effect on their properties, as determined via fracture toughness, microhardness, and elastic modulus measurements.

  13. Dielectric barrier discharge for multi-point plasma-assisted ignition at high pressures.

    PubMed

    Shcherbanev, S A; Stepanyan, S A; Popov, N A; Starikovskaia, S M

    2015-08-13

    Nanosecond surface dielectric barrier discharge (nSDBD) is an efficient tool for a multi-point plasma-assisted ignition of combustible mixtures at elevated pressures. The discharge develops as a set of synchronously propagated from the high-voltage electrode charged channels (streamers), with a typical density up to a few streamers per millimetre of the length of the electrode. In combustible mixtures, nSDBD initiates numerous combustion waves propagating from the electrode. Very little is known about nSDBD at high pressures. This work presents a comparative experimental study of the surface dielectric barrier discharge initiated by high-voltage pulses (U=±(20-60) kV) of different polarities in air at elevated pressures (P=1-6 atm). Discharge morphology, deposited energy and velocity of the discharge front propagation are analysed. Differences between the discharges of positive and negative polarity, as well as the changes in the discharge morphology with changing of a gas mixture composition. PMID:26170430

  14. The behavior of high-purity, low-density air plasma sprayed thermal barrier coatings

    SciTech Connect

    Helminiak, Yanar NM

    2009-12-01

    Research on the behavior of high-purity, low-density (85%) air plasma sprayed (APS) thermal barrier coatings (TBC) with NiCoCrAlY bond coats deposited by argon-shrouded plasma spraying is described. The microstructure of the APS topcoats is one variable in this study intended to maximize the coating thicknesses that can be applied without spallation and to minimize the thermal conduction through the YSZ layer. The specimens were evaluated using cyclic oxidation tests and important properties of the TBCs, such as resistance to sintering and phase transformation, were determined. The high purity resulted in top coats which are highly resistant to sintering and transformation from the metastable tetragonal phase to the equilibrium mixture of monoclinic and cubic phases. The porous topcoat microstructure also resulted in significant durability during thermal cycling. The actual failure mechanisms of the APS coatings were found to depend on topcoat thickness, CTE of the superalloy substrate and the nature of the thermal exposure.

  15. Degradation of aqueous 3,4-dichloroaniline by a novel dielectric barrier discharge plasma reactor.

    PubMed

    Feng, Jingwei; Liu, Runlong; Chen, Pei; Yuan, Shoujun; Zhao, Dayong; Zhang, Jibiao; Zheng, Zheng

    2015-03-01

    Degradation of aqueous 3,4-dichloroaniline (3,4-DCA) was conducted in a novel dielectric barrier discharge (DBD) plasma reactor. The factors affecting the degradation efficiency of 3,4-DCA and the degradation mechanism of 3,4-DCA were investigated. The experimental results indicated that the degradation efficiency of 3,4-DCA increased with increasing input power intensity, and the degradation of 3,4-DCA by the novel DBD plasma reactor fitted pseudo-first-order kinetics. Higher degradation efficiency of 3,4-DCA was observed in acidic conditions. The degradation efficiency of 3,4-DCA, the removal rate of total organic carbon (TOC), and the detected Cl(-) increased dramatically with adding Fe(2+) or Fe(3+). Degradation of 3,4-DCA could be accelerated or inhibited in the presence of H2O2 depending on the dosage. Several degradation intermediates of 3,4-DCA such as 1,2-dichlorobenzene, 2-chloro-1,4-benzoquinone, 3,4-dichlorophenyl isocyanate, 2-chlorohydroquinone, 3,4-dichloronitrobenzene, and 3,4-dichlorophenol were identified by gas chromatography mass spectrometry (GC-MS) analysis. Based on the identification of aromatic intermediates, acetic acid, formic acid, oxalic acid, and Cl(-) released, a possible mineralization pathway of 3,4-DCA was proposed. PMID:25315933

  16. Improved Ethanol Production from Xylose by Candida shehatae Induced by Dielectric Barrier Discharge Air Plasma

    NASA Astrophysics Data System (ADS)

    Chen, Huixia; Xiu, Zhilong; Bai, Fengwu

    2014-06-01

    Xylose fermentation is essential for ethanol production from lignocellulosic biomass. Exposure of the xylose-fermenting yeast Candida shehatae (C. shehatae) CICC1766 to atmospheric pressure dielectric barrier discharge (DBD) air plasma yields a clone (designated as C81015) with stability, which exhibits a higher ethanol fermentation rate from xylose, giving a maximal enhancement in ethanol production of 36.2% compared to the control (untreated). However, the biomass production of C81015 is lower than that of the control. Analysis of the NADH (nicotinamide adenine dinucleotide)- and NADPH (nicotinamide adenine dinucleotide phosphate)-linked xylose reductases and NAD+-linked xylitol dehydrogenase indicates that their activities are enhanced by 34.1%, 61.5% and 66.3%, respectively, suggesting that the activities of these three enzymes are responsible for improving ethanol fermentation in C81015 with xylose as a substrate. The results of this study show that DBD air plasma could serve as a novel and effective means of generating microbial strains that can better use xylose for ethanol fermentation.

  17. Development of dielectric barrier discharge plasma processing apparatus for mass spectrometry and thin film deposition

    SciTech Connect

    Majumdar, Abhijit; Hippler, Rainer

    2007-07-15

    Cost effective and a very simple dielectric barrier discharge plasma processing apparatus for thin film deposition and mass spectroscopic analysis of organic gas mixture has been described. The interesting features of the apparatus are the construction of the dielectric electrodes made of aluminum oxide or alumina (Al{sub 2}O{sub 3}) and glass and the generation of high ignition voltage from the spark plug transformer taken from car. Metal capacitor is introduced in between ground and oscilloscope to measure the executing power during the discharge and the average electron density in the plasma region. The organic polymer films have been deposited on Si (100) substrate using several organic gas compositions. The experimental setup provides a unique drainage system from the reaction chamber controlled by a membrane pump to suck out and remove the poisonous gases or residuals (cyanogens, H-CN, CH{sub x}NH{sub 2}, etc.) which have been produced during the discharge of CH{sub 4}/N{sub 2} mixture.

  18. Neutron and X-ray diffraction of plasma-sprayed zirconia-yttria thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Shankar, N. R.; Herman, H.; Singhal, S. P.; Berndt, C. C.

    1984-01-01

    ZrO2-7.8mol. pct. YO1.5, a fused powder, and ZrO2-8.7mol. pct. YO1.5, a prereacted powder, were plasma-sprayed onto steel substrates. Neutron diffraction and X-ray diffraction of the as-received powder, the powder plasma sprayed into water, as-sprayed coatings, and coatings heat-treated for 10 and 100 h were carried out to study phase transformations and ordering of the oxygen ions on the oxygen sublattice. The as-received fused powder has a much lower monoclinic percentage than does the pre-reacted powder, this resulting in a much lower monoclinic percentage in the coating. Heat treatment increases the percentages of the cubic and monoclinic phases, while decreasing the tetragonal content. An ordered tetragonal phase is detected by the presence of extra neutron diffraction peaks. These phase transformations and ordering will result in volume changes. The implications of these transformations on the performance of partially stabilized zirconia thermal barrier coatings is discussed.

  19. Simulataneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by dielectric barrier discharge plasma.

    PubMed

    Qu, Guang-Zhou; Lu, Na; Li, Jie; Wu, Yan; Li, Guo-Feng; Li, Duan

    2009-12-15

    An integrated granular activated carbon (GAC) adsorption/dielectric barrier discharge (DBD) process was applied to the treatment of high concentration pentachlorophenol (PCP) wastewater. The PCP in water firstly was adsorbed onto GAC, and then the degradation of PCP and regeneration of exhausted GAC were simultaneously carried out by DBD. The degradation mechanisms and products of PCP loaded on GAC were analyzed by EDX, FT-IR and GC-MS. The results suggested that the C-Cl bonds in PCP adsorbed by GAC were cleaved by DBD plasma, and some dechlorination and dehydroxylation products were identified. The adsorption capacity of adsorption/DBD treated GAC could maintain relatively high level, which confirmed that DBD treatment regenerated the GAC for subsequent reuse. The adsorption of N2, Boehm titration and XPS were used to investigate detailed surface characterizations of GAC. It could be found that DBD plasma not only increased the BET surface area and pore volume in micropore regions, but also had remarkably impact on the distribution of the oxygen-containing functional groups of GAC. PMID:19656621

  20. A cold plasma dielectric barrier discharge atomic emission detector for atmospheric mercury.

    PubMed

    Puanngam, Mahitti; Ohira, Shin-Ichi; Unob, Fuangfa; Wang, Jian-Hua; Dasgupta, Purnendu K

    2010-05-15

    An automated atmospheric elemental mercury analyzer based on the dielectric barrier discharge (DBD) atomic emission technique was developed. The instrument is based on a gold-on tungsten coiled filament preconcentrator fashioned from commercial quartz-halogen lamps, a DBD excitation source and a radiation detector. An in-house program provided system control and data collection. Several types of radiation detectors, e.g., charge coupled device (CCD) array spectrometers, photomultiplier tubes (PMTs) and phototube (PT) are investigated. An argon plasma provided better performance than a nitrogen plasma. With approximately 0.88 standard liters per min sampling rate and preconcentration for 2min, the estimated (S/N=3) detection limit was 0.12ng/L (Hg(0)), the linear range extended at least to 6.6ngHg/L. Typical RSD values for determination at the single digit ng/L level ranged from 2.8 to 4.9%. In 19 separate calibrations conducted over 7 days, the calibration slope had a standard error of 1%. The system was applied to the determination of atmospheric mercury in two different locations. PMID:20298901

  1. Isothermal Oxidation Behavior of Supersonic Atmospheric Plasma-Sprayed Thermal Barrier Coating System

    NASA Astrophysics Data System (ADS)

    Bai, Yu; Ding, Chunhua; Li, Hongqiang; Han, Zhihai; Ding, Bingjun; Wang, Tiejun; Yu, Lie

    2013-10-01

    In this work, Y2O3 stabilized zirconia-based thermal barrier coatings (TBCs) were deposited by conventional atmospheric plasma spraying (APS) and high efficiency supersonic atmospheric plasma spraying (SAPS), respectively. The effect of Al2O3 layer stability on the isothermal growth behavior of thermally grown oxides (TGOs) was studied. The results revealed that the Al2O3 layer experienced a three-stage change process, i.e., (1) instantaneous growth stage, (2) steady-state growth stage, and (3) depletion stage. The thickness of Al2O3 scale was proved to be an important factor for the growth rate of TGOs. The SAPS-TBCs exhibited a higher Al2O3 stability and better oxidation resistance as compared with the APS-TBCs. Additionally, it was found that inner oxides, especially nucleated on the top of the crest, continually grew and swallowed the previously formed Al2O3 layer, leading to the granulation and disappearance of continuous Al2O3 scale, which was finally replaced by the mixed oxides and spinel.

  2. Diamond-like carbon produced by plasma source ion implantation as a corrosion barrier

    SciTech Connect

    Lillard, R.S.; Butt, D.P.; Taylor, T.N.; Walter, K.C.; Nastasi, M.

    1998-03-01

    There currently exists a broad range of applications for which the ability to produce an adherent, hard, wear and, corrosion-resistant coating plays a vital role. These applications include engine components, orthopedic devices, textile manufacturing components, hard disk media, optical coatings, and cutting and machining tools (e.g., punches, taps, scoring dies, and extrusion dies). Ion beam processing can play an important role in all of these technologies. Plasma source ion implantation (PSII) is an emerging technology which has the potential to overcome the limitations of conventional ion implantation by: (1) reducing the time and expense for implanting onto complex shapes and large areas and (2) extending the thickness of the modification zone through ion beam enhanced plasma growth of surface coatings. In PSII, targets are placed directly in a plasma source and then pulse biased to produce a non-line-of-sight process for complex-shaped targets without complex fixturing. If the pulse bias is a relatively high negative potential (20 to 100 kV) ion implantation will result. If however, a low voltage (50--1,200 eV) high duty cycle pulse bias is applied, film deposition from the chamber gas will result, thereby increasing the extent of the surface modification into the 1--10 micron regime. To evaluate the potential for DLC to be used as a corrosion barrier, Electrochemical Impedance Spectroscopy (EIS) and traditional electrochemistry techniques were used to investigate the breakdown mechanism in chloride and nonchloride containing environments. The effect of surface preparation on coating breakdown was also evaluated.

  3. Mathematical analysis of thermoelastic characteristics in plasma-sprayed thermal barrier coatings.

    PubMed

    Go, Jaegwi; Jungo, Yeon-Gil; Kim, Seokchan; Ali, Md Afsar; Paik, Ungyu

    2012-02-01

    The thermoelastic characteristics of plasma-sprayed thermal barrier coatings (TBCs) have been analyzed using mathematical modeling. Two types of TBC model, cylinder and circular disk which are commercial plasma-sprayed TBCs, subjecting to symmetric temperature distribution to the radial and longitudinal directions, respectively, were taken into consideration. Based on the thermoelastic theories, a second order ordinary differential equation was derived for the cylinder model and a pair of partial differential equations were set up for the circular disk model. The analytic solution was obtained from the ordinary differential equation, while a finite volume method was developed for numerical solutions to the pair of partial differential equations due to the complexity of governing equations. The thermoelastic characteristics of TBC models, such as temperature distributions, displacements, and stresses, were displayed according to the obtained solutions. The rate of heat conduction in the section of the top coat is relatively slow in comparison with the substrate, and no profound difference appears in the temperature distribution between two TBC models. The highest longitudinal tensile stress is expressed at the bond coat of both models, and the substrate is under the compressive stresses to the circumferential direction. While the cylinder expands to the positive longitudinal direction only, the expansion in the circular disk occurs to both the positive and negative longitudinal directions. Relatively large displacement and stresses exhibit in the cylinder as compared with the circular disk. In the circular disk, the stresses to the radial direction undulate at each section, and the displacement profile displays that the width of the circular disk is slightly narrowed. The results demonstrate that the mechanical and thermal properties of the top and bond coats are the crucial factors to be considered in controlling the thermoelastic characteristics of plasma-sprayed TBCs. PMID:22629912

  4. Moisture barrier properties of thin organic-inorganic multilayers prepared by plasma-enhanced ALD and CVD in one reactor

    NASA Astrophysics Data System (ADS)

    Bülow, Tim; Gargouri, Hassan; Siebert, Mirko; Rudolph, Rolf; Johannes, Hans-Hermann; Kowalsky, Wolfgang

    2014-05-01

    A widely used application of the atomic layer deposition (ALD) and chemical vapour deposition (CVD) methods is the preparation of permeation barrier layers against water vapour. Especially in the field of organic electronics, these films are highly demanded as such devices are very sensitive to moisture and oxygen. In this work, multilayers of aluminium oxide (AlO x ) and plasma polymer (PP) were coated on polyethylene naphthalate substrates by plasma-enhanced ALD and plasma-enhanced CVD at 80℃ in the same reactor, respectively. As precursor, trimethylaluminium was used together with oxygen radicals in order to prepare AlO x , and benzene served as precursor to deposit the PP. This hybrid structure allows the decoupling of defects between the single AlO x layers and extends the permeation path for water molecules towards the entire barrier film. Furthermore, the combination of two plasma techniques in a single reactor system enables short process times without vacuum breaks. Single aluminium oxide films by plasma-enhanced ALD were compared to thermally grown layers and showed a significantly better barrier performance. The water vapour transmission rate (WVTR) was determined by means of electrical calcium tests. For a multilayer with 3.5 dyads of 25-nm AlO x and 125-nm PP, a WVTR of 1.2 × 10 -3 g m -2 d -1 at 60℃ and 90% relative humidity could be observed.

  5. Moisture barrier properties of thin organic-inorganic multilayers prepared by plasma-enhanced ALD and CVD in one reactor

    PubMed Central

    2014-01-01

    A widely used application of the atomic layer deposition (ALD) and chemical vapour deposition (CVD) methods is the preparation of permeation barrier layers against water vapour. Especially in the field of organic electronics, these films are highly demanded as such devices are very sensitive to moisture and oxygen. In this work, multilayers of aluminium oxide (AlO x ) and plasma polymer (PP) were coated on polyethylene naphthalate substrates by plasma-enhanced ALD and plasma-enhanced CVD at 80℃ in the same reactor, respectively. As precursor, trimethylaluminium was used together with oxygen radicals in order to prepare AlO x , and benzene served as precursor to deposit the PP. This hybrid structure allows the decoupling of defects between the single AlO x layers and extends the permeation path for water molecules towards the entire barrier film. Furthermore, the combination of two plasma techniques in a single reactor system enables short process times without vacuum breaks. Single aluminium oxide films by plasma-enhanced ALD were compared to thermally grown layers and showed a significantly better barrier performance. The water vapour transmission rate (WVTR) was determined by means of electrical calcium tests. For a multilayer with 3.5 dyads of 25-nm AlO x and 125-nm PP, a WVTR of 1.2 × 10 −3 gm−2d−1 at 60℃ and 90% relative humidity could be observed. PMID:24936155

  6. Thermally Actuated Hydraulic Pumps

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research vessels. Heretofore, electrically actuated hydraulic pumps have been used for this purpose. By eliminating the demand for electrical energy for pumping, the use of the thermally actuated hydraulic pumps could prolong the intervals between battery charges, thus making it possible to greatly increase the durations of undersea exploratory missions.

  7. Actuated atomizer

    NASA Technical Reports Server (NTRS)

    Tilton, Charles (Inventor); Weiler, Jeff (Inventor); Palmer, Randall (Inventor); Appel, Philip (Inventor)

    2008-01-01

    An actuated atomizer is adapted for spray cooling or other applications wherein a well-developed, homogeneous and generally conical spray mist is required. The actuated atomizer includes an outer shell formed by an inner ring; an outer ring; an actuator insert and a cap. A nozzle framework is positioned within the actuator insert. A base of the nozzle framework defines swirl inlets, a swirl chamber and a swirl chamber. A nozzle insert defines a center inlet and feed ports. A spool is positioned within the coil housing, and carries the coil windings having a number of turns calculated to result in a magnetic field of sufficient strength to overcome the bias of the spring. A plunger moves in response to the magnetic field of the windings. A stop prevents the pintle from being withdrawn excessively. A pintle, positioned by the plunger, moves between first and second positions. In the first position, the head of the pintle blocks the discharge passage of the nozzle framework, thereby preventing the atomizer from discharging fluid. In the second position, the pintle is withdrawn from the swirl chamber, allowing the atomizer to release atomized fluid. A spring biases the pintle to block the discharge passage. The strength of the spring is overcome, however, by the magnetic field created by the windings positioned on the spool, which withdraws the plunger into the spool and further compresses the spring.

  8. Actuator mechanism

    NASA Technical Reports Server (NTRS)

    Stange, W. C. (Inventor)

    1978-01-01

    An actuator mechanism is described, having a frame with a rotatable shaft supported in the frame, a positioning mechanism coupled to the shaft for rotating the shaft in two rotary positions, disposed approximately 180 degrees apart, and a pair of plungers coupled to the shaft. Each plunger is responsive to a control signal for applying bi-directional rotation to the shaft.

  9. Plasma treatment of poly(dimethylsiloxane) surfaces using a compact atmospheric pressure dielectric barrier discharge device for adhesion improvement

    NASA Astrophysics Data System (ADS)

    do Nascimento, Fellype; Parada, Sergio; Moshkalev, Stanislav; Machida, Munemasa

    2016-02-01

    Results of the treatment of poly(dimethylsiloxane) (PDMS) surfaces using novel atmospheric pressure pulsed dielectric barrier discharge plasmas are presented. Different gases (argon, helium, nitrogen) as well as their mixtures with water vapor were compared in terms of the improvement of adhesion between two PDMS samples after processing by plasma. The plasma was characterized by optical emission spectroscopy to identify the emitting species and determine the plasma temperatures. For all the gases studied, plasma processing resulted in increase of adhesion between PDMS samples if long exposure time (larger than 150 s) is applied. However, for very short treatment times (20 plasma pulses, total processing time about 3 s) the highest efficiency was found for helium plasmas. Water contact angles at PDMS surfaces as function of plasma processing time was analyzed. Atomic force microscopy analysis was performed to show reduction in the surface roughness after plasma treatment, which is likely to be the responsible for increase of the surface contact area and thus the adhesion between two PDMS surfaces. The role of the two mechanisms in the improvement of adhesion (enhanced wettability and changes in the surface morphology), for different time scales, is discussed. Interestingly, for the minimum processing time (20 plasma pulses), the improvement in adhesion and reduction of surface roughness are observed although the changes in the water contact angle are insignificant.

  10. Efficient new process for the desulfurization of mixtures of air and hydrogen sulfide via a dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Dahle, S.

    2015-10-01

    The efficient removal of hydrogen sulfide, H2S, from streams of H2S in air via a dielectric barrier discharge (DBD) plasma has been investigated using a quadrupole mass spectrometer. A suitable plasma device with a reservoir for storing sorbent powder of various kinds within the plasma region was constructed. Plasma treatments of gas streams with high concentrations of hydrogen sulfide in air yielded a removal of more than 98% of the initial hydrogen sulfide and a deposition of sulfur at the surface of the dielectric, while small amounts of sulfur dioxide were generated. The presence of calcium carbonate within the plasma region of the DBD device resulted in the removal of over 99% of the initial hydrogen sulfide content and the removal of 98% of the initial sulfur dioxide impurities from the gas mixture.

  11. [Plasma temperature of white-eye hexagonal pattern in dielectric barrier discharge].

    PubMed

    Zhao, Yang; Dong, Li-fang; Fu, Hong-yan

    2015-01-01

    By using the water-electrode discharge experimental setup, the white-eye hexagonal pattern is firstly observed and investigated in the dielectric barrier discharge with the mixture of argon and air whose content can be varied whenever necessary, and the study shows that the white-eye cell is an interleaving of three different hexagonal sub-structures: the spot, the ring, and the halo. The white-eye hexagonal pattern has the excellent discharge stability and sustainability during the experiment. Pictures recorded by ordinary camera with long exposure time in the same argon content condition show that the spot, the ring, and the halo of the white-eye hexagonal pattern have different brightness, which may prove that their plasma states are different. And, it is worth noting that there are obvious differences not only on the brightness but also on the color of the white-eye cell in conditions of different argon content, which shows that its plasma state also changed with the variation of the argon content. The white-eye hexagonal pattern is observed at a lower applied voltage so that the temperature of the water electrodes almost keeps unchanged during the whole experiment, which is advantageous for the long term stable measurement. The plasma state will not be affected by the temperature of the electrodes during the continuous discharge. Based on the above phenomena, plasma temperatures of the spot, the ring, and the halo in white-eye hexagonal pattern including molecule vibrational temperature and variations of electron density at different argon content are investigated by means of optical emission spectroscopy (OES). The emission spectra of the N2 second positive band(C3Πu-->B3Πg)are measured, and the molecule vibrational temperature of the spot, the ring, and the halo of the white-eye hexagonal pattern are calculated by the emission intensities. Furthermore, emission spectra of Ar I (2P2-->1S5)is collected and the changes of its width with different argon content are used to estimate the variations of electron density of the spot, the ring, and the halo of the white-eye hexagonal pattern. In the same argon content condition, the molecule vibrational temperatures of halo, ring, and spot in the white-eye hexagonal pattern are in descending order, while the electron densities of halo, ring, and spot are in ascending order. With argon content increasing from 70% to 90%, both the molecule vibrational temperature and the electron density of the spot increase, while both of them of the halo decrease. And the molecule vibrational temperature of the ring keeps constant, while its electron density decreases. The experimental results indicate that the plasma state of the spot, the halo and the ring in a white-eye cell of the white-eye hexagonal pattern is different. These results are of great importance to the investigation of the multilayer structure of the patterns in dielectric barrier discharge and applications in industry. PMID:25993819

  12. [Influence of pressure on plasma temperature in air/argon dielecteic barrier discharge].

    PubMed

    Dong, Li-Fang; Qi, Yu-Yan; Li, Li-Chun; Hao, Ya-Juan; Gao, Rui-Ling; Zhao, Zeng-Chao; Li, Xue-Chen

    2008-01-01

    Electron excitation temperature and molecule vibrational temperature in argon/air dielectric barrier discharge (DBD) at different gas pressure with water electrodes were studied by using optical emission spectra. The spectral lines of Ar I 763. 51 nm(2P6 --> 1S5) and Ar I 772.42 nm(2P2 --> 1S3) were chosen to calculate electron excitation temperature by the relative intensity ratio method. The emission spectra of nitrogen band of second positive system ( C3 pi(u) --> B3 pi(g)) were measured at the same time. The molecule vibration temperature was estimated by the emission intensities of different bands with delta(nu) = -1, delta(nu) = -2, and delta(nU) = -3 in nitrogen band of second positive system, using Boltzmann's plot method. In addition, the relative line intensities of nitrogen (0-0) band of first negative system at 391.4 nm and (0-0) band of second positive system at 337.1 nm were also measured to study the variation of electron energy. It was found that the electron excitation temperature decreased from 4 700 to 3 300 K and the molecule vibrational temperature decreased from 3 200 to 2 900 K with increasing gas pressure from 20 to 60 kPa. Besides, the ratio of I(N2+)/I(N2) also decreased with pressure increasing from 20 to 60 kPa, indicating that the average electron energy decreases with the gas pressure increasing. These results are of great importance to the study of plasma dynamics of dielectric barrier discharge and also to the underlying industrial applications. PMID:18422111

  13. Characteristics of a Plasma Synthetic Jet

    NASA Astrophysics Data System (ADS)

    Santhanakrishnan, Arvind

    2005-11-01

    The term plasma (aka, 1 atm glow discharge or dielectric barrier discharge) actuator is used to describe an arrangement of two electrodes separated by dielectric material. Under input of a high voltage, high frequency AC, this leads to dielectric breakdown, and the plasma region produced at the interfacial air gap can be used for flow control applications. One such novel actuator design consisting of an annular electrode array embedded on a flat plate is examined here. This particular actuator produces a jet that can be applied continuously or pulsated to resemble a synthetic (zero-net mass flux) jet. The purpose of this work is to examine the evolution of the plasma synthetic jet, and compare the jet characteristics with a conventional synthetic jet. Flow visualization is employed for qualitative observation of the flowfield with and without actuation. Phase-locked PIV measurements are used to examine the development of regular vortical structures and jet profiles. Two sets of counter-rotating vortex rings are generated upon plasma actuation, one of which advects downstream ahead of the jet while the other is ``trapped'' peripherally to the annulus. The effects of changing the forcing frequency and actuator dimensions in relation to the resultant jet momentum are investigated.

  14. The relation between doses or post-plasma time points and apoptosis of leukemia cells induced by dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Haixia; Xue, Zhixiao; Yin, Huijuan; Niu, Qing; Chen, Hongli

    2015-12-01

    The dielectric barrier discharge (DBD) plasma was applied to induce apoptosis of LT-12 leukemia cells. Plasma effects on cell death was evaluated by MTT assay and FCM apoptosis assay with Annexin V/PI double staining, suggesting that plasma killing cells rate and inducing cell apoptosis rate both positively were related to the plasma doses or the post-plasma time points. The cell death rates increased from 15.2% to 33.1% and the apoptosis rate raise from 23.8% to 28% when the dose raise from 60s to 120 s at 8 h post-plasma, while they increased from 15.4% to 34.9% and from 48% to 55.3% respectively at the same doses at 12 h post-plasma. Furthermore, the production of reactive oxygen species (ROS), gene and protein expression for Caspases and Bcl-2 family members were measured for exploring the related apoptotic mechanisms phenomenon. We found ROS immediately increased to 1.24 times of the original amount, then increasing to 5.39-fold at 20 h after treatment. The gene and protein expression for Caspases and Bcl-2 family members are very active at 8-12 h post-plasma. Our results demonstrate that DBD plasma can effectively induce tumor cell death through primarily related apoptotic mechanisms.

  15. Effects of electrode geometry on the performance of dielectric barrier/packed-bed discharge plasmas in benzene degradation.

    PubMed

    Jiang, Nan; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan

    2013-11-15

    In this study, the effects of electrode geometry on benzene degradation in a dielectric barrier/packed-bed discharge plasma reactor with different electrodes were systematically investigated. Three electrodes were employed in the experiments, these were coil, bolt, and rod geometries. The reactor using the coil electrode showed better performance in reducing the dielectric loss in the barrier compared to that using the bolt or rod electrodes. In the case of the coil electrode, both the benzene degradation efficiency and energy yield were higher than those for the other electrodes, which can be attributed to the increased role of surface mediated reactions. Irrespective of the electrode geometry, the packed-bed discharge plasma was superior to the dielectric barrier discharge plasma in benzene degradation at any specific applied voltage. The main gaseous products of benzene degradation were CO, CO2, H2O, and formic acid. Discharge products such as O3, N2O, N2O5, and HNO3 were also detected in the outlet gas. Moreover, the presence of benzene inhibited the formation of ozone because of the competing reaction of oxygen atoms with benzene. This study is expected to offer an optimized approach combining dielectric barrier discharge and packed-bed discharge to improve the degradation of gaseous pollutants. PMID:24061216

  16. Driving reactions: Surmounting activation barriers in solid state chemistry using hydroxide melts and RF plasmas

    NASA Astrophysics Data System (ADS)

    Friedman, Todd Lawrence

    1997-11-01

    This thesis explores several techniques for surmounting activation barriers in solid state chemistry. The two major issues addressed are the use of a solution-based molten hydroxide system to increase the rate of reactant diffusion over that in the solid state, and the use of an RF plasma to break bonds in gaseous reactants for subsequent reaction with a solid. Part I describes the use of molten alkali metal hydroxides as a low-temperature solvent system for both electrodeposition and precipitation of high valent copper oxides. Cyclic voltammetry was used to determine the effects of various reaction conditions on copper dissolved in the melts, including copper activity, temperature, and atmosphere composition. The results of this study indicate that copper oxide phases become less soluble at higher copper activities, temperatures, and pHsb2O values. Also, the Cu(II)/Cu(III) redox wave, important for the electrodeposition of cuprate phases with high copper formal oxidation states, is observed below 300sp°C in air and at 350sp°C in dry argon. NaCuOsb2 was electrodeposited under constant current conditions. Iodometric titrations and annealing studies indicate that NaCuOsb2 is oxygen deficient and tends to lose additional oxygen on heating. The hydroxide method was also successful in the deposition of thin films of superconducting EuBasb2Cusb4Osb8 on SrTiOsb3 substrates. The films were found to be superconducting with a Tsbc of 75 K in the absence of annealing. In Part II, the idea of circumventing activation energy barriers is applied to the problem of environmentally harmful perfluorocarbons (PFCs). Mass spectrometry was used to determine the PFC emissions from two semiconductor manufacturing processes: oxide etch and post-CVD chamber clean. Because of radical recombination to thermodynamically stable species, most of the PFCs used in these processes are emitted to the atmosphere. A prototype abatement device which uses an RF plasma to provide the activation energy to break the strong carbon-fluorine bonds in PFCs was built and tested. Breaking these bonds causes the production of highly reactive radicals, which react with CaO to produce CaFsb2. The maximum observed yield of the process was 34%.

  17. A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma

    PubMed Central

    Hoon Park, Ji; Kumar, Naresh; Hoon Park, Dae; Yusupov, Maksudbek; Neyts, Erik C.; Verlackt, Christof C. W.; Bogaerts, Annemie; Ho Kang, Min; Sup Uhm, Han; Ha Choi, Eun; Attri, Pankaj

    2015-01-01

    Bacteria can be inactivated through various physical and chemical means, and these have always been the focus of extensive research. To further improve the methodology for these ends, two types of plasma systems were investigated: nano-second pulsed plasma (NPP) as liquid discharge plasma and an Argon gas-feeding dielectric barrier discharge (Ar-DBD) as a form of surface plasma. To understand the sterilizing action of these two different plasma sources, we performed experiments with Staphylococcus aureus (S. aureus) bacteria (wild type) and multidrug resistant bacteria (Penicillum-resistant, Methicillin-resistant and Gentamicin-resistant). We observed that both plasma sources can inactivate both the wild type and multidrug-resistant bacteria to a good extent. Moreover, we observed a change in the surface morphology, gene expression and β-lactamase activity. Furthermore, we used X-ray photoelectron spectroscopy to investigate the variation in functional groups (C-H/C-C, C-OH and C=O) of the peptidoglycan (PG) resulting from exposure to plasma species. To obtain atomic scale insight in the plasma-cell interactions and support our experimental observations, we have performed molecular dynamics simulations to study the effects of plasma species, such as OH, H2O2, O, O3, as well as O2 and H2O, on the dissociation/formation of above mentioned functional groups in PG. PMID:26351132

  18. A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma.

    PubMed

    Park, Ji Hoon; Kumar, Naresh; Park, Dae Hoon; Yusupov, Maksudbek; Neyts, Erik C; Verlackt, Christof C W; Bogaerts, Annemie; Kang, Min Ho; Uhm, Han Sup; Choi, Eun Ha; Attri, Pankaj

    2015-01-01

    Bacteria can be inactivated through various physical and chemical means, and these have always been the focus of extensive research. To further improve the methodology for these ends, two types of plasma systems were investigated: nano-second pulsed plasma (NPP) as liquid discharge plasma and an Argon gas-feeding dielectric barrier discharge (Ar-DBD) as a form of surface plasma. To understand the sterilizing action of these two different plasma sources, we performed experiments with Staphylococcus aureus (S. aureus) bacteria (wild type) and multidrug resistant bacteria (Penicillum-resistant, Methicillin-resistant and Gentamicin-resistant). We observed that both plasma sources can inactivate both the wild type and multidrug-resistant bacteria to a good extent. Moreover, we observed a change in the surface morphology, gene expression and β-lactamase activity. Furthermore, we used X-ray photoelectron spectroscopy to investigate the variation in functional groups (C-H/C-C, C-OH and C=O) of the peptidoglycan (PG) resulting from exposure to plasma species. To obtain atomic scale insight in the plasma-cell interactions and support our experimental observations, we have performed molecular dynamics simulations to study the effects of plasma species, such as OH, H2O2, O, O3, as well as O2 and H2O, on the dissociation/formation of above mentioned functional groups in PG. PMID:26351132

  19. On the use of pulsed Dielectric Barrier Discharges to control the gas-phase composition of atmospheric pressure air plasmas

    NASA Astrophysics Data System (ADS)

    Barni, R.; Biganzoli, I.; Dell'Orto, E.; Riccardi, C.

    2014-11-01

    We presents results obtained from the numerical simulation of the gas-phase chemical kinetics in atmospheric pressure air non-equilibrium plasmas. In particular we have addressed the effect of pulsed operation mode of a plane dielectric barrier discharge. It was conjectured that the large difference in the time scales involved in the fast dissociation of oxygen molecules in plasma and their subsequent reactions to produce ozone and nitrogen oxides, makes the presence of a continuously repeated plasma production unnecessary and a waste of electrical power and thus efficiency. In order to test such suggestion we have performed a numerical study of the composition and the temporal evolution of the gas-phase of atmospheric pressure air non-equilibrium plasmas. Comparison with experimental findings in a dielectric barrier discharge with an electrode configuration symmetrical and almost ideally plane is briefly addressed too, using plasma diagnostics to extract the properties of the single micro-discharges and a sensor to measure the concentration of ozone produced by the plasma.

  20. Plasma protein binding limits the blood brain barrier permeation of the pyrethroid insecticide, deltamethrin.

    PubMed

    Amaraneni, Manoj; Sharma, Anshika; Pang, Jing; Muralidhara, Srinivasa; Cummings, Brian S; White, Catherine A; Bruckner, James V; Zastre, Jason

    2016-05-27

    Previous pharmacokinetic studies of deltamethrin (DLM) have revealed that brain levels of this highly lipophilic pyrethroid insecticide are only 15-20% of plasma levels. Experiments were performed to assess determinants limiting CNS access including plasma protein binding and the efflux transporter, P-gp. A human brain microvascular endothelial cell line, hCMEC/D3, was utilized as a model in vitro system to evaluate blood-brain barrier (BBB) permeation. Incubation of DLM with a series of human serum albumin (HSA) concentrations showed that unbound (fu) DLM ranged from 80% with 0.01% HSA to ∼20% at the physiologically-relevant 4% HSA. A positive correlation (R=0.987) was seen between fu and cellular uptake. Concentration-dependent uptake of DLM in 0.01% HSA was non-linear and was reduced at 4°C and by the P-gp inhibitor cyclosporine (CSA), indicative of a specific transport process. Cellular accumulation of [(3)H]-paclitaxel, a P-glycoprotein (P-gp) substrate, was increased by CSA but not by DLM, suggesting that DLM is neither a substrate nor an inhibitor of P-gp. The concentration-dependent uptake of DLM from 4% HSA was linear and not significantly impacted by temperature or CSA. In situ brain perfusion studies monitoring brain association of DLM at 0.01% and 4% HSA confirmed the aforementioned in vitro findings. This study demonstrates that brain uptake of DLM under normal physiological conditions appears to be a passive, non-saturable process, limited by the high protein binding of the pyrethroid. PMID:27016408

  1. Electrorepulsive actuator

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr. (Inventor); Curry, Kenneth C. (Inventor)

    1992-01-01

    The invention is a linear actuator that operates under the principle that like charges repel and opposite charges attract. The linear actuator consists of first and second pairs of spaced opposed conductors where one member of each pair of conductors is attached to a fixed member, and where the other member of each pair of conductors is attached to a movable member such as an elongated rod. The two pairs of spaced conductors may be provided in the form of two spacedly interwound helical vanes where the conductors are located on the opposite sides of the two helical vanes. One helical vane extends inwardly from a housing and the other helical vane extends outwardly from an elongated rod. The elongated rod may be caused to move linearly with respect to the housing by applying appropriate charges of like or opposite polarity to the electrical conductors on the helical vanes.

  2. Digital linear actuator

    SciTech Connect

    Birchard, W.G.

    1988-06-21

    A digital actuator is described comprising: (a) digital actuator cells, each digital actuator cell having an axis of expansion and first and second end surfaces; (b) third connecting means, each for connecting the first end surface of one digital actuator cell to the second end surface of an adjacent actuator cell, the plurality of digital actuator cells being connected in series by respective ones of the third connecting means to form the digital linear actuator.

  3. Thermal ionization instability development in air plasma generated by repetitive ns dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Shneider, Mikhael; Marinov, Daniil; Starikovskaia, Svetlana; PU Team; LPP Team

    2013-09-01

    The aim of this paper is to study a transformation of a nanosecond discharge under conditions of high repetitive frequency in a barrier configuration of the electrodes. Nanosecond DBDs at atmospheric pressure are widely used for research in plasma medicine. At atmospheric pressure conditions the discharge develops as a set of microchannels bridging a gap between the electrodes covered with dielectric, the current in each microchannel is restricted by charging of a dielectric surface. With pressure decrease, a discharge becomes more uniform, still it is known that a slight change of a gas mixture composition, f.e. add of a fuel, may lead to significant problems with the uniformity. Estimations were made to analyze the possibility of discharge contruction due to thermal ionization instability development. We used the assumption that there is no convective cooling of the gas in the discharge cell. It was shown that NS discharge in DBD geometry is non-uniform. Initial electrical fields distribution and thermal ionization instability development form the non-uniform energy distribution in the discharge. This non-uniformity can play a key role in kinetic experiments in this type of the discharge.

  4. Plasma-Sprayed Thermal Barrier Coatings with Enhanced Splat Bonding for CMAS and Corrosion Protection

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Yao, Shu-Wei; Wang, Li-Shuang; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2016-01-01

    The infiltration of molten CMAS in thermal barrier coatings (TBCs) at high temperature is significantly affected by the microstructure of the ceramic coating. Enhancing the bonding ratio between splats can reduce the interconnected pores and suppress the infiltration of the molten CMAS into the coating. In this study, a dual-layered (DL) TBC with the dense 8YSZ on the top of the conventional porous 8YSZ was proposed to enhance CMAS corrosion of atmospheric plasma-sprayed YSZ. The dense YSZ coating with improved lamellar bonding was deposited at a higher deposition temperature. The microstructure of the coatings before and after CMAS attack test was characterized by scanning electron microscopy. It was clearly revealed that by adjusting the microstructure and applying a dense ceramic layer with the improved interface bonding on the top of porous TBC, the infiltration of CMAS into porous YSZ coating can be effectively suppressed. Moreover, by designing DL TBCs, the thermal conductivity of the TBC system exhibits a limited increase. Thus with the design of DL structure, the TBCs with high CMAS corrosion resistance and low thermal conductivity can be achieved.

  5. Acetamiprid removal in wastewater by the low-temperature plasma using dielectric barrier discharge.

    PubMed

    Li, Shanping; Ma, Xiaolong; Jiang, Yanyan; Cao, Xiaohong

    2014-08-01

    Degradation of acetamiprid in wastewater was studied in a dielectric barrier discharge (DBD) reactor. This reactor produces ultraviolet light and reactive species like ozone (O₃) can be used for the treatment of wastewater. We examined the factors that could affect the degradation process, including the discharge power, and the initial concentrations of acetamiprid, and O₃ which is generated by the DBD reactor. We also investigated the effect of adding Na₂B₄O₇ as a radical scavenger to probe the role of hydroxyl radical in the reaction. The results indicated that acetamiprid could be removed from aqueous solution effectively and hydroxyl radicals played an important role during the degradation by the low temperature plasma. The degradation process of acetamiprid fits the first-order kinetics. The degradation efficiency was 83.48 percent at 200 min when the discharge power was 170 W and the initial acetamiprid concentration was 50 mg/L. The removal efficiency of acetamiprid decreased with the increasing concentration of Na₂B₄O₇ because B₄O₇(2-) is an excellent radical scavenger that inhibited the generation of OH during the DBD process. The removal efficiency of acetamiprid improved in the presence of O₃. The main reason was that O₃ can oxidize certain organic compounds directly or indirectly by generating hydroxyl radicals. The degradation products of acetamiprid were characterized qualitatively and quantitatively using high performance liquid chromatography, mass spectrometry and UV-vis spectroscopy. PMID:24840877

  6. Atmospheric pressure plasma jets beyond ground electrode as charge overflow in a dielectric barrier discharge setup

    SciTech Connect

    Jiang Nan; Ji Ailing; Cao Zexian

    2010-08-15

    With a proper combination of applied voltage and the width of ground electrode, atmospheric pressure plasma jets extending beyond the ground electrode, whether it sits on the downstream or the upstream side, can be equally obtained with a dielectric barrier discharge setup, which can be ascribed to the overflow of deposited charges [J. Appl. Phys. 106, 013308 (2009)]. Here, we show that, by using narrower ground electrodes, such an overflow jet can be successfully launched at a much reduced voltage (down to below 10 kV). Moreover, by using transparent and triadic ground electrodes, development of charge overflow beneath the ground electrode was temporally and spatially resolved. Temporal evolution of discharge currents measured on the severed ground electrode helps establish the propagation dynamics of discharges along the dielectric surface beneath ground electrode, and also reinforces the conception that the streamer's head is in connection to the active electrode via a conducting channel. A small propagation velocity of 3.3x10{sup 3} m/s was measured for the ''overflow'' jet inside the dielectric tube. The availability of such overflow jets is enormously advantageous concerning their application to living bodies, to which the high voltage at active electrode is lethally dangerous.

  7. Fracture toughness of plasma-sprayed thermal barrier ceramics: Influence of processing, microstructure, and thermal aging

    DOE PAGESBeta

    Dwivedi, Gopal; Viswanathan, Vaishak; Sampath, Sanjay; Shyam, Amit; Lara-Curzio, Edgar

    2014-06-09

    Fracture toughness has become one of the dominant design parameters that dictates the selection of materials and their microstructure to obtain durable thermal barrier coatings (TBCs). Much progress has been made in characterizing the fracture toughness of relevant TBC compositions in bulk form, and it has become apparent that this property is significantly affected by process-induced microstructural defects. In this investigation, a systematic study of the influence of coating microstructure on the fracture toughness of atmospheric plasma sprayed (APS) TBCs has been carried out. Yttria partially stabilized zirconia (YSZ) coatings were fabricated under different spray process conditions inducing different levelsmore » of porosity and interfacial defects. Fracture toughness was measured on free standing coatings in as-processed and thermally aged conditions using the double torsion technique. Results indicate significant variance in fracture toughness among coatings with different microstructures including changes induced by thermal aging. Comparative studies were also conducted on an alternative TBC composition, Gd2Zr2O7 (GDZ), which as anticipated shows significantly lower fracture toughness compared to YSZ. Furthermore, the results from these studies not only point towards a need for process and microstructure optimization for enhanced TBC performance but also a framework for establishing performance metrics for promising new TBC compositions.« less

  8. Fracture toughness of plasma-sprayed thermal barrier ceramics: Influence of processing, microstructure, and thermal aging

    SciTech Connect

    Dwivedi, Gopal; Viswanathan, Vaishak; Sampath, Sanjay; Shyam, Amit; Lara-Curzio, Edgar

    2014-06-09

    Fracture toughness has become one of the dominant design parameters that dictates the selection of materials and their microstructure to obtain durable thermal barrier coatings (TBCs). Much progress has been made in characterizing the fracture toughness of relevant TBC compositions in bulk form, and it has become apparent that this property is significantly affected by process-induced microstructural defects. In this investigation, a systematic study of the influence of coating microstructure on the fracture toughness of atmospheric plasma sprayed (APS) TBCs has been carried out. Yttria partially stabilized zirconia (YSZ) coatings were fabricated under different spray process conditions inducing different levels of porosity and interfacial defects. Fracture toughness was measured on free standing coatings in as-processed and thermally aged conditions using the double torsion technique. Results indicate significant variance in fracture toughness among coatings with different microstructures including changes induced by thermal aging. Comparative studies were also conducted on an alternative TBC composition, Gd2Zr2O7 (GDZ), which as anticipated shows significantly lower fracture toughness compared to YSZ. Furthermore, the results from these studies not only point towards a need for process and microstructure optimization for enhanced TBC performance but also a framework for establishing performance metrics for promising new TBC compositions.

  9. Sintering and Creep Behavior of Plasma-Sprayed Zirconia and Hafnia Based Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1998-01-01

    The sintering and creep of plasma-sprayed ceramic thermal barrier coatings under high temperature conditions are complex phenomena. Changes in thermomechanical and thermophysical properties and in the stress response of these coating systems as a result of the sintering and creep processes are detrimental to coating thermal fatigue resistance and performance. In this paper, the sintering characteristics of ZrO2-8wt%y2O3, ZrO2-25wt%CeO2-2.5wt%Y2O3, ZrO2-6w%NiO- 9wt%Y2O3, ZrO2-6wt%Sc2O3-2wt%y2O3 and HfO2-27wt%y2O3 coating materials were investigated using dilatometry. It was found that the HfO2-Y2O3 and baseline ZrO2-Y2O3 exhibited the best sintering resistance, while the NiO-doped ZrO2-Y2O3 showed the highest shrinkage strain rates during the tests. Higher shrinkage strain rates of the coating materials were also observed when the specimens were tested in Ar+5%H2 as compared to in air. This phenomenon was attributed to an enhanced metal cation interstitial diffusion mechanism under the reducing conditions. It is proposed that increased chemical stability of coating materials will improve the material sintering resistance.

  10. Quasistatic vs. Dynamic Modulus Measurements Of Plasma-Sprayed Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Morscher, G. N.; Choi, S. R.

    2002-01-01

    Plasma-sprayed 8wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) have been demonstrated to exhibit nonlinear hysteretic elastic behavior by quasistatic cyclic compression and cylindrical punch indentation measurements. In particular, the instantaneous (tangential) elastic modulus increases with applied stress and exhibits significant hysteresis during cycling. Sound velocity (dynamic) measurements also show an increase in TBC modulus with applied compressive stress, but in contrast show no significant hysteresis for the modulus during cycling. The nonlinear elastic behavior of the TBCs evidenced by these tests is attributed to coating compaction and internal sliding. The differences between the quasistatic and dynamic measurements are explained by the relative absence of the effect of internal sliding in the dynamic modulus measurements. By incorporating short load reversals into the larger loading cycle and measuring the instantaneous modulus at the start of each load reversal, the effects of internal sliding can be substantially reduced in the quasistatic measurements, and the resulting modulus values show good agreement with the modulus values determined by dynamic sound velocity measurements.

  11. High Temperature Multilayer Environmental Barrier Coatings Deposited Via Plasma Spray-Physical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Harder, Bryan James; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.

    2014-01-01

    Si-based ceramic matrix composites (CMCs) require environmental barrier coatings (EBCs) in combustion environments to avoid rapid material loss. Candidate EBC materials have use temperatures only marginally above current technology, but the addition of a columnar oxide topcoat can substantially increase the durability. Plasma Spray-Physical Vapor Deposition (PS-PVD) allows application of these multilayer EBCs in a single process. The PS-PVD technique is a unique method that combines conventional thermal spray and vapor phase methods, allowing for tailoring of thin, dense layers or columnar microstructures by varying deposition conditions. Multilayer coatings were deposited on CMC specimens and assessed for durability under high heat flux and load. Coated samples with surface temperatures ranging from 2400-2700F and 10 ksi loads using the high heat flux laser rigs at NASA Glenn. Coating morphology was characterized in the as-sprayed condition and after thermomechanical loading using electron microscopy and the phase structure was tracked using X-ray diffraction.

  12. Optical emission characteristics of surface nanosecond pulsed dielectric barrier discharge plasma

    SciTech Connect

    Wu Yun; Li Yinghong; Jia Min; Song Huimin; Liang Hua

    2013-01-21

    This paper reports an experimental study of the optical emission characteristics of the surface dielectric barrier discharge plasma excited by nanosecond pulsed voltage. N{sub 2}(C{sup 3}{Pi}{sub u}) rotational and vibrational temperatures are almost the same with upper electrode powered with positive polarity and lower electrode grounded or upper electrode grounded and lower electrode powered with positive polarity. While the electron temperature is 12% higher with upper electrode powered with positive polarity and lower electrode grounded. When the frequency is below 2000 Hz, there is almost no influence of applied voltage amplitude and frequency on N{sub 2}(C{sup 3}{Pi}{sub u}) rotational, vibrational temperature and electron temperature. As the pressure decreases from 760 Torr to 5 Torr, N{sub 2}(C{sup 3}{Pi}{sub u}) rotational temperature remains almost unchanged, while its vibrational temperature decreases initially and then increases. The discharge mode changes from a filamentary type to a glow type around 80 Torr. In the filamentary mode, the electron temperature remains almost unchanged. In the glow mode, the electron temperature increases while the pressure decreases.

  13. Influence of outgassing on plasma kinetics during wood treatment in dielectric barrier discharges at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Gangwar, R.; Levasseur, O.; Stafford, L.; Naude, N.; Gherardi, N.; Univ. de Montreal Team

    2013-09-01

    We have recently extended the range of applications of dielectric barrier discharges (DBD) at atmospheric pressure to the functionalization of wood surfaces with the objective of improving its durability following natural weathering. Having highly complex chemical composition and microstructure, it can release significant amount of impurities, which can play a crucial role on the plasma kinetics, and therefore on the process dynamics. The influence of wood outgassing on the physics driving DBD operated in nominally pure He was investigated using a combination of time-resolved optical emission spectroscopy (OES) and collisional-radiative (CR) modeling. For completely outgassed samples, the He I 588 nm-to-707 nm and 668 nm-to-728 nm line intensity ratios were relatively high early in the discharge cycle, decreased abruptly and then remained stable as the current increased and the discharge eventually extinguished. These results were correlated to a decrease of the electron temperature from about 1 eV early in the cycle to about 0.2 eV in the main discharge lifetime. As wood outgassing evolve, study revealed that the release of products (essentially air) from the wood substrate yields to an increase of the cycle-averaged electron temperature as well as to a significant quenching of He metastable atoms. Selected experiments in presence of trace amounts of N2, O2 and dry-air were also performed to better understand their respective roles.

  14. Organic Anion Transporter 4-Mediated Transport of Olmesartan at Basal Plasma Membrane of Human Placental Barrier.

    PubMed

    Noguchi, Saki; Nishimura, Tomohiro; Fujibayashi, Ayasa; Maruyama, Tetsuo; Tomi, Masatoshi; Nakashima, Emi

    2015-09-01

    Mechanisms regulating fetal transfer of olmesartan, an angiotensin-II receptor type 1 antagonist, are important as potential determinants of life-threatening adverse fetal effects. The purpose of this study was to examine the olmesartan transport mechanism through the basal plasma membrane (BM) of human syncytiotrophoblasts forming the placental barrier. Uptake of olmesartan by human placental BM vesicles was potently inhibited by dehydroepiandrosterone sulfate (DHEAS), estrone 3-sulfate, and bromosulfophthalein, which are all typical substrates of organic anion transporter (OAT) 4 localized at the BM of syncytiotrophoblasts, and was increased in the absence of chloride. In tetracycline-inducible OAT4-expressing cells, [(3) H]olmesartan uptake was increased by tetracycline treatment. Olmesartan uptake via OAT4 was concentration dependent with a Km of 20 μM, and was increased in the absence of chloride. [(3) H]Olmesartan efflux via OAT4 was also observed and was trans-stimulated by extracellular chloride and DHEAS. Thus, OAT4 mediates bidirectional transport of olmesartan and appears to regulate fetal transfer of olmesartan at the BM of syncytiotrophoblasts. Efflux transport of olmesartan via OAT4 from syncytiotrophoblasts to the fetal circulation might be facilitated in the presence of an inwardly directed physiological chloride gradient and extracellular DHEAS. PMID:25820021

  15. [Influence of Argon Content on Plasma Temperature of Single Filament in Dielectric Barrier Discharge].

    PubMed

    Fu, Hong-yan; Dong, Li-fang; Zhao, Yang

    2015-03-01

    The single filament (also referred to as monofilament) which composed of two parts including the center spot and the outer halo is observed and researched for the first time in dielectric barrier discharge, which filled with gas-mixture of argon and air. The pictures taken from the experiment show that the diameter of the monofilament decreases with the increasing of the content of the argon in the argon-air mixture, and at the same time there is an obvious difference on brightness between the center spot and the outer halo. All of these phenomenons suggest that the center spot and the outer halo are probably in different plasma state. The micro character of the center spot and the outer halo is researched seriously in the experiment by the time-resolved measurement with optical method. Three plasma temperatures of the center spot and the outer halo in single filament in different argon content are studied in details by using optical emission spectra. The emission spectra of the N2 second positive band (C3 π(u) --> B3 πg) are measured, from which the molecule vibrational temperature of the center spot and the outer halo are calculated. Based on the relative intensity of the N2 line at 391.4 nm and the N2 line at 394. 1 nm, the changing relationship of the average electron energy of the center spot and the outer halo with argon content is investigated. The spectral lines of Ar I 763.2 nm (2P6 --> 1S5) and 772.077 nm (2P2 --> 1S3) are chosen to estimate electron excitation temperature of the center spot and the outer halo by the relative intensity ratio method. The results show that the optical signal corresponding to the first lasge pulse is the center spot, whose signal intensity is a litter weaker; and the optical signal containing the whole pulse is the outer halo, whose signal intensity is stronger. The three plasma temperatures including the molecule vibrational temperature, average electron energy and electron excitation temperature of the outer halo are higher than those of the spot at the same argon content without exception. In addition, the molecule vibrational temperature of the center spot and the outer halo decrease with the argon content increases from 30% to 50%, while on the other hand, electron excitation temperature and average electron energy are decrease gradually. PMID:26117860

  16. Effects and Mechanism of Atmospheric-Pressure Dielectric Barrier Discharge Cold Plasma on Lactate Dehydrogenase (LDH) Enzyme

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Xu, Zimu; Shen, Jie; Li, Xu; Ding, Lili; Ma, Jie; Lan, Yan; Xia, Weidong; Cheng, Cheng; Sun, Qiang; Zhang, Zelong; Chu, Paul K.

    2015-05-01

    Proteins are carriers of biological functions and the effects of atmospheric-pressure non-thermal plasmas on proteins are important to applications such as sterilization and plasma-induced apoptosis of cancer cells. Herein, we report our detailed investigation of the effects of helium-oxygen non-thermal dielectric barrier discharge (DBD) plasmas on the inactivation of lactate dehydrogenase (LDH) enzyme solutions. Circular dichroism (CD) and dynamic light scattering (DLS) indicate that the loss of activity stems from plasma-induced modification of the secondary molecular structure as well as polymerization of the peptide chains. Raising the treatment intensity leads to a reduced alpha-helix content, increase in the percentage of the beta-sheet regions and random sequence, as well as gradually decreasing LDH activity. However, the structure of the LDH plasma-treated for 300 seconds exhibits a recovery trend after storage for 24 h and its activity also increases slightly. By comparing direct and indirect plasma treatments, plasma-induced LDH inactivation can be attributed to reactive species (RS) in the plasma, especially ones with a long lifetime including hydrogen peroxide, ozone, and nitrate ion which play the major role in the alteration of the macromolecular structure and molecular diameter in lieu of heat, UV radiation, and charged particles.

  17. Effects and Mechanism of Atmospheric-Pressure Dielectric Barrier Discharge Cold Plasma on Lactate Dehydrogenase (LDH) Enzyme.

    PubMed

    Zhang, Hao; Xu, Zimu; Shen, Jie; Li, Xu; Ding, Lili; Ma, Jie; Lan, Yan; Xia, Weidong; Cheng, Cheng; Sun, Qiang; Zhang, Zelong; Chu, Paul K

    2015-01-01

    Proteins are carriers of biological functions and the effects of atmospheric-pressure non-thermal plasmas on proteins are important to applications such as sterilization and plasma-induced apoptosis of cancer cells. Herein, we report our detailed investigation of the effects of helium-oxygen non-thermal dielectric barrier discharge (DBD) plasmas on the inactivation of lactate dehydrogenase (LDH) enzyme solutions. Circular dichroism (CD) and dynamic light scattering (DLS) indicate that the loss of activity stems from plasma-induced modification of the secondary molecular structure as well as polymerization of the peptide chains. Raising the treatment intensity leads to a reduced alpha-helix content, increase in the percentage of the beta-sheet regions and random sequence, as well as gradually decreasing LDH activity. However, the structure of the LDH plasma-treated for 300 seconds exhibits a recovery trend after storage for 24 h and its activity also increases slightly. By comparing direct and indirect plasma treatments, plasma-induced LDH inactivation can be attributed to reactive species (RS) in the plasma, especially ones with a long lifetime including hydrogen peroxide, ozone, and nitrate ion which play the major role in the alteration of the macromolecular structure and molecular diameter in lieu of heat, UV radiation, and charged particles. PMID:25992482

  18. Effects and Mechanism of Atmospheric-Pressure Dielectric Barrier Discharge Cold Plasma on Lactate Dehydrogenase (LDH) Enzyme

    PubMed Central

    Zhang, Hao; Xu, Zimu; Shen, Jie; Li, Xu; Ding, Lili; Ma, Jie; Lan, Yan; Xia, Weidong; Cheng, Cheng; Sun, Qiang; Zhang, Zelong; Chu, Paul K.

    2015-01-01

    Proteins are carriers of biological functions and the effects of atmospheric-pressure non-thermal plasmas on proteins are important to applications such as sterilization and plasma-induced apoptosis of cancer cells. Herein, we report our detailed investigation of the effects of helium-oxygen non-thermal dielectric barrier discharge (DBD) plasmas on the inactivation of lactate dehydrogenase (LDH) enzyme solutions. Circular dichroism (CD) and dynamic light scattering (DLS) indicate that the loss of activity stems from plasma-induced modification of the secondary molecular structure as well as polymerization of the peptide chains. Raising the treatment intensity leads to a reduced alpha-helix content, increase in the percentage of the beta-sheet regions and random sequence, as well as gradually decreasing LDH activity. However, the structure of the LDH plasma-treated for 300 seconds exhibits a recovery trend after storage for 24 h and its activity also increases slightly. By comparing direct and indirect plasma treatments, plasma-induced LDH inactivation can be attributed to reactive species (RS) in the plasma, especially ones with a long lifetime including hydrogen peroxide, ozone, and nitrate ion which play the major role in the alteration of the macromolecular structure and molecular diameter in lieu of heat, UV radiation, and charged particles. PMID:25992482

  19. Development of a diffuse air-argon plasma source using a dielectric-barrier discharge at atmospheric pressure

    SciTech Connect

    Tang Jie; Jiang Weiman; Zhao Wei; Wang Yishan; Li Shibo; Wang Haojing; Duan Yixiang; Research Center of Analytical Instrumentation, Sichuan University, Chengdu 610064

    2013-01-21

    A stable diffuse large-volume air plasma source was developed by using argon-induced dielectric-barrier discharges at atmospheric pressure. This plasma source can be operated in a filamentary discharge with the average areal power density of 0.27 W/cm{sup 2} and the gas temperature of 315{+-}3 K. Spatial measurement of emission spectrum and temperature indicates that this plasma is uniform in the central region along the transverse direction. It is also found that the formation of diffuse air plasma mainly lies in the creation of sufficient seed electrons by the Penning effect through collisions between two argon or nitrogen metastables at low electric fields.

  20. Modular droplet actuator drive

    NASA Technical Reports Server (NTRS)

    Pollack, Michael G. (Inventor); Paik, Philip (Inventor)

    2011-01-01

    A droplet actuator drive including a detection apparatus for sensing a property of a droplet on a droplet actuator; circuitry for controlling the detection apparatus electronically coupled to the detection apparatus; a droplet actuator cartridge connector arranged so that when a droplet actuator cartridge electronically is coupled thereto: the droplet actuator cartridge is aligned with the detection apparatus; and the detection apparatus can sense the property of the droplet on a droplet actuator; circuitry for controlling a droplet actuator coupled to the droplet actuator connector; and the droplet actuator circuitry may be coupled to a processor.

  1. Partial oxidation of methane to methanol with nitrogen dioxide in dielectric barrier discharge plasma: experimental and molecular modeling

    NASA Astrophysics Data System (ADS)

    Indarto, Antonius

    2016-04-01

    Non-catalytic conversion of methane (CH4) and nitrogen dioxide (NO2) into methanol (CH3OH) has been conducted and presented in this paper. Experiments were carried out using dielectric barrier discharge as the reaction medium in atmospheric pressure and temperature conditions. High yield production of methanol was achieved (18-20% mol) by single-stage plasma reaction with maximum selectivity of 32% mol. Compared to other oxidants, such as O2, the presence of NO2 in the plasma reaction resulted in higher methanol selectivity. For better understanding of the reactions, density functional theory calculations were also performed and discussed.

  2. Improved Electrohydraulic Linear Actuators

    NASA Technical Reports Server (NTRS)

    Hamtil, James

    2002-01-01

    A product line of improved electrohydraulic linear actuators has been developed. These actuators are designed especially for use in actuating valves in rocket-engine test facilities. They are also adaptable to similar industrial uses. Advantageous features of the electrohydraulic linear actuators with respect to shortcomings of prior electrohydraulic linear actuators are described.

  3. Failure of thick, low density air plasma sprayed thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Helminiak, Michael Aaron

    This research was directed at developing fundamental understandings of the variables that influence the performance of air plasma sprayed (APS) yttria-stabilized zirconia (YSZ) thermal barrier coatings (TBC). Focus was placed on understanding how and why each variable influenced the performance of the TBC system along with how the individual variables interacted with one another. It includes research on the effect of surface roughness of NiCoCrAlY bond coats deposited by argon-shrouded plasma spraying, the interdiffusion behavior of bond coats coupled to commercial superalloys, and the microstructural and compositional control of APS topcoats to maximize the coating thicknesses that can be applied without spallation. The specimens used for this research were prepared by Praxair Surface Technologies and have been evaluated using cyclic oxidation and thermal shock tests. TBC performance was sensitive to bond coat roughness with the rougher bond coats having improved cyclic performance than the smoother bond coats. The explanation being the rough bond coat surface hindered the propagation of the delamination cracks. The failure mechanisms of the APS coatings were found to depend on a combination of the topcoat thickness, topcoat microstructure and the coefficient of thermal expansion (CTE) mismatch between the superalloy and topcoat. Thinner topcoats tended to fail at the topcoat/TGO interface due to bond coat oxidation whereas thicker topcoats failed within the topcoat due to the strain energy release rate of the thicker coating exceeding the fracture strength of the topcoat. Properties of free-standing high and conventional purity YSZ topcoats of both a lowdensity (LD) and dense-vertically fissure (DVF) microstructures were evaluated. The densification rate and phase evolution were sensitive to the YSZ purity and the starting microstructure. Increasing the impurity content resulted in enhanced sintering and phase decomposition rates, with the exception of the conventional-purity DVF which exhibited a density decrease during sintering. A combination of the DVF and LD topcoat microstructures (dual TBC) resulted in significant increase in cyclic durability. A 1275 mum thick dual TBC coating was found to have a comparable furnace cyclic life to that of a 100 im LD TBC.

  4. Sintering and Fracture Behavior of Plasma-sprayed Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Miller, Robert A.

    2004-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. There is a need to characterize the fundamental sintering and fracture behavior of the current ZrO2-(7 to 8)wt%Y2O3 coating, in order to fully take advantage of the coating capability. In addition, a thorough evaluation of the coating behavior and temperature limits will be useful for more accurately assessing the benefit gained from future advanced coating systems. In this study, the sintering behavior of plasma-sprayed ZrO2-8wt%Y2O3 coatings was systematically investigated as a function of temperature and time using a dilatometer in the temperature range of 1200-1500 C. The coating sintering kinetics obtained by dilatometry were compared with the coating thermal conductivity increase kinetics, determined by a steady-state laser heat-flux testing approach, under high temperature and thermal gradient sintering conditions. The mode I, mode II, and mixed mode I-mode II fracture behavior of as-processed and sintering-annealed coatings was determined in asymmetric flexure loading at ambient and elevated temperatures in order to evaluate the coating sintering effects on the fracture envelope of K(sub I) versus K(sub II). The coating thermal conductivity cyclic response associated with the interface delamination of the coating systems under simulated engine heat-flux conditions will be discussed in conjunction with the sintering and fracture testing results.

  5. Improved Oxidation Life of Segmented Plasma Sprayed 8YSZ Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Smialek, James L.

    2004-03-01

    Unconventional plasma sprayed thermal barrier coating (TBC) systems were produced and evaluated by interrupted or cyclic furnace oxidation life testing. First, approximately 250 µm thick 8YSZ coatings were directly sprayed onto grit blasted surfaces of PWA 1484, without a bond coat, to take advantage of the excellent oxidation resistance of this superalloy. For nominal sulfur (S) contents of 1 ppmw, total coating separation took place at relatively short times (200 h at 1100°C). Reductions in the S content, by melt desulfurization commercially (0.3 ppmw) or by hydrogen (H2) annealing in the laboratory (0.01 ppmw), improved scale adhesion and extended life appreciably, by factors of 5-10. However, edge-initiated failure persisted, producing massive delamination as one sheet of coating. Secondly, surfaces of melt desulfurized PWA 1484 were machined with a grid of grooves or ribs (˜250 µm wide and high), resulting in a segmented TBC surface macrostructure, for the purpose of subverting this failure mechanism. In this case, failure occurred only as independent, single-segment events. For grooved samples, 1100 °C segment life was extended to ˜1000h for 5 mm wide segments, with no failure observed out to 2000 h for segments ≤2.5 mm wide. Ribbed samples were even more durable, and segments ≤6 mm remained intact for 2000 h. Larger segments failed by buckling at times inversely related to the segment width and decreased by oxidation effects at higher temperatures. This critical buckling size was consistent with that predicted for elastic buckling of a TBC plate subject to thermal expansion mismatch stresses. Thus, low S substrates demonstrate appreciable coating lives without a bond coat, while rib segmenting extends life considerably.

  6. Global transition from drift wave dominated regimes to multi-instability plasma dynamics and simultaneous formation of a radial transport barrier in helicon plasma

    NASA Astrophysics Data System (ADS)

    Chakraborty Thakur, Saikat; Cui, Lang; Gosselin, Jordan; Vaezi, Payam; Holland, Chris; Tynan, George

    2014-10-01

    Recent studies in CSDX reported a sharp global transition in the plasma dynamics during the route to turbulence. For B <140 mT, the plasma is dominated by density gradient driven drift waves [DW]. For B >140 mT, a new global equilibrium is achieved with simultaneous existence of three radially separated plasma instabilities: coherent Rayleigh Taylor [RT] modes at the center, DW at the density gradient and turbulent, shear driven Kelvin-Helmholtz [KH] instabilities at the edge. Only the RT modes rotate in the ion diamagnetic drift direction. The radial particle flux is directed outward for small radii and inward for large radii, forming a radial particle transport barrier leading to stiff profiles and increased core density. Simultaneously the core Ar-II light emission increases (×10) forming a very bright blue core. The radial extent of the inner RT mode and the blue core coincides with the radial location of the particle transport barrier. This equilibrium with simultaneous RT-DW-KH instabilities shows very rich plasma dynamics including intermittency, blob formation and propagation, inward particle flux against density gradients etc. We report detailed studies of azimuthal momentum balance and time resolved dynamics leading to the transition using Langmuir probes, fast imaging, spectroscopy, laser induced fluorescence etc.

  7. Microsecond-pulsed dielectric barrier discharge plasma stimulation of tissue macrophages for treatment of peripheral vascular disease

    NASA Astrophysics Data System (ADS)

    Miller, V.; Lin, A.; Kako, F.; Gabunia, K.; Kelemen, S.; Brettschneider, J.; Fridman, G.; Fridman, A.; Autieri, M.

    2015-12-01

    Angiogenesis is the formation of new blood vessels from pre-existing vessels and normally occurs during the process of inflammatory reactions, wound healing, tissue repair, and restoration of blood flow after injury or insult. Stimulation of angiogenesis is a promising and an important step in the treatment of peripheral artery disease. Reactive oxygen species have been shown to be involved in stimulation of this process. For this reason, we have developed and validated a non-equilibrium atmospheric temperature and pressure short-pulsed dielectric barrier discharge plasma system, which can non-destructively generate reactive oxygen species and other active species at the surface of the tissue being treated. We show that this plasma treatment stimulates the production of vascular endothelial growth factor, matrix metalloproteinase-9, and CXCL 1 that in turn induces angiogenesis in mouse aortic rings in vitro. This effect may be mediated by the direct effect of plasma generated reactive oxygen species on tissue.

  8. Permanent hydrophilization of outer and inner surfaces of polytetrafluoroethylene tubes using ambient air plasma generated by surface dielectric barrier discharges

    SciTech Connect

    Pavliňák, D.; Galmiz, O.; Zemánek, M.; Brablec, A.; Čech, J.; Černák, M.

    2014-10-13

    We present an atmospheric pressure ambient air plasma technique developed for technically simple treatment of inner and/or outer surfaces of plastic tubes and other hollow dielectric bodies. It is based on surface dielectric barrier discharge generating visually diffuse plasma layers along the treated dielectric surfaces using water-solution electrodes. The observed visual uniformity and measured plasma rotational and vibrational temperatures of 333 K and 2350 K indicate that the discharge can be readily applied to material surface treatment without significant thermal effect. This is exemplified by the obtained permanent surface hydrophilization of polytetrafluoroethylene tubes related to the replacement of a high fraction (more than 80%) of the surface fluorine determined by X-ray photoelectron spectroscopy. A tentative explanation of the discharge mechanism based on high-speed camera observations and the discharge current and voltage of measurements is outlined.

  9. Structural modification of the skin barrier by OH radicals: a reactive molecular dynamics study for plasma medicine

    NASA Astrophysics Data System (ADS)

    Van der Paal, J.; Verlackt, C. C.; Yusupov, M.; Neyts, E. C.; Bogaerts, A.

    2015-04-01

    While plasma treatment of skin diseases and wound healing has been proven highly effective, the underlying mechanisms, and more generally the effect of plasma radicals on skin tissue, are not yet completely understood. In this paper, we perform ReaxFF-based reactive molecular dynamics simulations to investigate the interaction of plasma generated OH radicals with a model system composed of free fatty acids, ceramides, and cholesterol molecules. This model system is an approximation of the upper layer of the skin (stratum corneum). All interaction mechanisms observed in our simulations are initiated by H-abstraction from one of the ceramides. This reaction, in turn, often starts a cascade of other reactions, which eventually lead to the formation of aldehydes, the dissociation of ceramides or the elimination of formaldehyde, and thus eventually to the degradation of the skin barrier function.

  10. An in situ and downstream study of non-thermal plasma chemistry in an air fed dielectric barrier discharge (DBD)

    NASA Astrophysics Data System (ADS)

    Al-Abduly, Abdullah; Christensen, Paul

    2015-12-01

    This paper reports a spectroscopic study of non-thermal plasma chemistry in an air-fed dielectric barrier discharge (DBD) plasma jet. In situ analysis (i.e. the analysis of the plasma glow) and downstream analysis were carried out to identify and monitor species produced in the plasma as they propagate from the plasma glow to downstream regions. The analyses were carried out using Fourier Transform InfraRed (FTIR) and UV–Vis spectroscopies. The species: O3, N2O5, N2O, HNO3, CO2, CO and, for the first time, a vibrationally excited form of CO2 (i.e. \\text{CO}2* (v)) were identified in the plasma glow, while O3, N2O5, HNO3 and N2O were detected in the downstream exhaust. The behaviour of these species was monitored as a function of a range of experimental conditions including: input power, gas flow rate, relative humidity, gas temperature and feed gas composition. In addition, the uncertainty associated with UV–vis detection of ozone in the presence of N2O5 and/or HNO3 as interfering species was determined.

  11. Field Emission Microplasma Actuated Microchannel Flow

    NASA Astrophysics Data System (ADS)

    Tholeti, Siva Sashank; Shivkumar, Gayathri; Alexeenko, Alina

    2015-11-01

    Flow actuation by dielectric barrier discharges (DBD) involve no moving parts and provide high power density for flow enhancement, heating and mixing applications in microthrusters, micropumps and microcombustors. Conventional micro-DBDs require voltages ~ kV for flow enhancement of a few m/s for 500 μm high channel. However for gaps <10 microns, field emission lowers the breakdown voltage following modified Paschen curve. We consider a micropump concept that takes advantage of the field emission from a micro-DBD with dielectric thickness of 3 μm and a peak voltage of -325 V at 10 MHz. At 760 Torr, for electrode thickness of 1 μm, Knudsen number with respect to the e-nitrogen collisions is 0.1. So, kinetic approach of particle-in-cell method with Monte Carlo collisions is applied in nitrogen at 300 K to resolve electron (ne) and ion (ni) number densities. Body force, fb = eE(ni-ne) , where, e is electron charge and E is electric field. The major source of heating from plasma is Joule heating, J.E, where J is current density. At 760 Torr, for fb,avg = 1 mN/cubic mm and J.E = 8 W/cubic mm, micro-DBD induced a flow with a velocity of 4.1 m/s for a 64 mW/m power input for a channel height of 500 μm. The PIC/MCC plasma simulations are coupled to a CFD solver for analysis of the resulting flow actuation in microchannels at various Reynolds numbers. This work was supported by NSF ECCS Grant No. 1202095.

  12. Formation of diamond-like carbon thin films using barrier-type surface discharge plasma under atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Yasui, Shinji; Tada, Kazuya; Takuwa, Tetsuya

    2016-01-01

    We studied the deposition of diamond-like carbon (DLC) thin films using barrier-type surface discharge plasma under atmospheric pressure. The main radicals generated by the barrier-type surface discharge using H2, CH4, and He as the plasma gases were Hα, Hβ, and CH. The emission intensities increased as the ratio of CH4 in the mixed gas decreased, and the mixed gas ratios of 2% CH4, 18% H2, 80% He were appropriate for the generation of the barrier-type surface discharge. The gas flow rate and applied voltage required to achieve a suitable plasma state for deposition of the DLC films varied depending on the polarity of the applied pulse. When a negative pulse is used, homogenous films can be obtained on the silicon wafer under the entire hole of the electrode; however, the deposition rate becomes very low in the range of 1.8-5.8 nm/min because the surface streamer plasma is very weak. On the other hand, using a bipolar and a positive pulse, a relatively high deposition rate in the range of 10-30 nm/min can be achieved on the silicon wafer under the central part of the electrode, although the thickness of the DLC films becomes nonuniform at the edge part of the electrode. The appropriate conditions of the DLC film deposition in this study were the pulse voltages of 6-8 kV and a gas flow rate of 1500 mL/min when using bipolar- and positive-pulse voltages. The relatively hard DLC films (6-8 GPa) were obtained under these conditions.

  13. Time-dependent volume force produced by a non-thermal plasma actuator from experimental velocity field

    NASA Astrophysics Data System (ADS)

    Benard, N.; Debien, A.; Moreau, E.

    2013-06-01

    The electrohydrodynamic volume force produced by the Coulomb force acting on charged species in weakly ionized gas can improve the aerodynamic performances of academic and industrial turbulent flows. In this paper, a single dielectric barrier discharge is investigated with a focus on the experimental characterization of the time-resolved topology of the produced electrohydrodynamic volume force. The distribution of force over the volume of gas is calculated from velocity measurements by resolving simplified Navier-Stokes equations. Comparisons between the present calculated body force and data from the open literature confirm the accuracy of the method used. This study reveals that the unsteady force shows large fluctuations with an alternation of positive and negative longitudinal forces. The glow and streamer discharge regimes contribute differently to the electrohydrodynamic volume force. Both regimes promote a positive volume force longitudinal to the flow and a negative volume force in the transverse direction. However, the momentum transfer is significantly larger during the glow regime. A negative volume force (70% of the positive force amplitude) is observed following the glow phase, when there is no discharge. This negative volume force results from the local flow deceleration due to viscous influence at the wall and turbulent diffusion in the flow.

  14. Biomimetic actuator

    NASA Astrophysics Data System (ADS)

    Bouda, Vaclav; Boudova, Lea; Haluzikova, Denisa

    2005-05-01

    The aim of the presentation is to propose an alternative model of mammalian skeletal muscle function, which reflects the simplicity of nature and can be applied in engineering. Van der Waals attractive and repulsive electrostatic forces are assumed to control the design of internal structures and functions of contractile units of the muscles - sarcomere. The role of myosin heads is crucial for the higher order formation. The model of the myosin head lattice is the working model for the sarcomere contraction interpretation. The contraction is interpreted as a calcium induced phase transition of the lattice, which results in relative actin-myosin sliding and/or force generation. The model should provide the engineering science with a simple analogy to technical actuators of high performance.

  15. Characteristics of NOx removal combining dielectric barrier discharge plasma with selective catalytic reduction by C2H5OH

    NASA Astrophysics Data System (ADS)

    Wang, Xing-Quan; Chen, Wei; Guo, Qi-Pei; Li, Yi; Lv, Guo-Hua; Sun, Xiu-Ping; Zhang, Xian-Hui; Feng, Ke-Cheng; Yang, Si-Ze

    2009-07-01

    With the assistance of dielectric barrier discharge (DBD) plasma, selective catalytic reduction of NOx by ethanol over Ag/Al2O3 catalysts was studied. Experimental results show that NOx conversion was greatly enhanced due to the presence of DBD plasma at lower temperature. By varying the DBD voltages or power in 13 kHz frequency at different temperatures, NOx conversion was increased to 40.7% from 6.4% at 176 °C, even to 66.8% from 17.3% at 200 °C. NOx conversion could even be improved to 90% at temperature above 255 °C. It was proposed that nonthermal plasma generated by dielectric barrier discharge reactor was very effective for oxidizing NO to NO2 under excess O2 conditions, which possesses high reactivity with C2H5OH to yield CxHyNzO compound. By reacting with CxHyNzO compound and oxygen, NOx is converted to N2 at low temperatures.

  16. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    NASA Astrophysics Data System (ADS)

    Li, Lee; Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-01

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  17. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    SciTech Connect

    Li, Lee Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-14

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  18. Measurement of Turbulence Decorrelation during Transport Barrier Evolution in a High Temperature Fusion Plasma

    SciTech Connect

    R. Nazikian; K. Shinohara; G.J. Kramer; E. Valeo; K. Hill; T.S. Hahm; G. Rewoldt; S. Ide; Y. Koide; Y. Oyama; H. Shirai; W. Tang

    2005-03-29

    A low power polychromatic beam of microwaves is used to diagnose the behavior of turbulent fluctuations in the core of the JT-60U tokamak during the evolution of the internal transport barrier. A continuous reduction in the size of turbulent structures is observed concomitant with the reduction of the density scale length during the evolution of the internal transport barrier. The density correlation length decreases to the order of the ion gyroradius, in contrast to the much longer scale lengths observed earlier in the discharge, while the density fluctuation level remain similar to the level before transport barrier formation.

  19. Combined Mode I and Mode II Fracture of Plasma-Sprayed Thermal Barrier Coatings at Ambient and Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The mode I, mode II, and combined mode I-mode II fracture behavior of ZrO2 - 8wt%Y2O3 thermal barrier coatings was determined in asymmetric flexure loading at both ambient and elevated temperatures. Precracks were introduced in test specimens using the single-edge-v-notched beam (SEVNB) method incorporated with final diamond polishing to achieve sharp crack tips. A fracture envelope of KI versus KII was determined for the coating material at ambient and elevated temperatures. Propagation angles of fracture as a function of KI/KII were also determined. The mixed-mode fracture behaviors of the coating material were compared with those of monolithic advanced ceramics determined previously. The mixed-mode fracture behavior of the plasma- sprayed thermal barrier coating material was predicted in terms of fracture envelope and propagation angle using mixed-mode fracture theories.

  20. Combined Mode I and Mode II Fracture of Plasma-Sprayed Thermal Barrier Coatings at Ambient and Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The mode I, mode II, and combined mode I-mode II fracture behavior of ZrO2- 8wt%Y2O3 thermal barrier coatings was determined in asymmetric flexure loading at both ambient and elevated temperatures. Precracks were introduced in test specimens using the single-edge-v-notched beam (SEVNB) method incorporated with final diamond polishing to achieve sharp crack tips. A fracture envelope of KI versus KII was determined for the coating material at ambient and elevated temperatures. Propagation angles of fracture as a function of K(sub I)/K(sub II) were also determined. The mixed-mode fracture behaviors of the coating material were compared with those of monolithic advanced ceramics determined previously. The mixed-mode fracture behavior of the plasma-sprayed thermal barrier coating material was predicted in terms of fracture envelope and propagation angle using mixed-mode fracture theories.

  1. Plasma-assisted atomic layer deposition of Al{sub 2}O{sub 3} moisture permeation barriers on polymers

    SciTech Connect

    Langereis, E.; Creatore, M.; Heil, S. B. S.; Sanden, M. C. M. van de; Kessels, W. M. M.

    2006-08-21

    Thin Al{sub 2}O{sub 3} films of different thicknesses (10-40 nm) were deposited by plasma-assisted atomic layer deposition on substrates of poly(2,6-ethylenenaphthalate) (PEN), and the water vapor transmission rate (WVTR) values were measured by means of the calcium test. The permeation barrier properties improved with decreasing substrate temperature and a good WVTR of 5x10{sup -3} g m{sup -2} day{sup -1} (WVTR{sub PEN}=0.5 g m{sup -2} day{sup -1}) was measured for a 20 nm thick Al{sub 2}O{sub 3} film deposited at room temperature using short purging times. Such ultrathin, low-temperature deposited, high-quality moisture permeation barriers are an essential requirement for the implementation of polymeric substrates in flexible electronic and display applications.

  2. Powerful Electromechanical Linear Actuator

    NASA Technical Reports Server (NTRS)

    Cowan, John R.; Myers, William N.

    1994-01-01

    Powerful electromechanical linear actuator designed to replace hydraulic actuator that provides incremental linear movements to large object and holds its position against heavy loads. Electromechanical actuator cleaner and simpler, and needs less maintenance. Two principal innovative features that distinguish new actuator are use of shaft-angle resolver as source of position feedback to electronic control subsystem and antibacklash gearing arrangement.

  3. Nonthermal Dielectric-Barrier Discharge Plasma-Induced Inactivation Involves Oxidative DNA Damage and Membrane Lipid Peroxidation in Escherichia coli?

    PubMed Central

    Joshi, Suresh G.; Cooper, Moogega; Yost, Adam; Paff, Michelle; Ercan, Utku K.; Fridman, Gregory; Friedman, Gary; Fridman, Alexander; Brooks, Ari D.

    2011-01-01

    Oxidative stress leads to membrane lipid peroxidation, which yields products causing variable degrees of detrimental oxidative modifications in cells. Reactive oxygen species (ROS) are the key regulators in this process and induce lipid peroxidation in Escherichia coli. Application of nonthermal (cold) plasma is increasingly used for inactivation of surface contaminants. Recently, we reported a successful application of nonthermal plasma, using a floating-electrode dielectric-barrier discharge (FE-DBD) technique for rapid inactivation of bacterial contaminants in normal atmospheric air (S. G. Joshi et al., Am. J. Infect. Control 38:293-301, 2010). In the present report, we demonstrate that FE-DBD plasma-mediated inactivation involves membrane lipid peroxidation in E. coli. Dose-dependent ROS, such as singlet oxygen and hydrogen peroxide-like species generated during plasma-induced oxidative stress, were responsible for membrane lipid peroxidation, and ROS scavengers, such as ?-tocopherol (vitamin E), were able to significantly inhibit the extent of lipid peroxidation and oxidative DNA damage. These findings indicate that this is a major mechanism involved in FE-DBD plasma-mediated inactivation of bacteria. PMID:21199923

  4. Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli.

    PubMed

    Joshi, Suresh G; Cooper, Moogega; Yost, Adam; Paff, Michelle; Ercan, Utku K; Fridman, Gregory; Friedman, Gary; Fridman, Alexander; Brooks, Ari D

    2011-03-01

    Oxidative stress leads to membrane lipid peroxidation, which yields products causing variable degrees of detrimental oxidative modifications in cells. Reactive oxygen species (ROS) are the key regulators in this process and induce lipid peroxidation in Escherichia coli. Application of nonthermal (cold) plasma is increasingly used for inactivation of surface contaminants. Recently, we reported a successful application of nonthermal plasma, using a floating-electrode dielectric-barrier discharge (FE-DBD) technique for rapid inactivation of bacterial contaminants in normal atmospheric air (S. G. Joshi et al., Am. J. Infect. Control 38:293-301, 2010). In the present report, we demonstrate that FE-DBD plasma-mediated inactivation involves membrane lipid peroxidation in E. coli. Dose-dependent ROS, such as singlet oxygen and hydrogen peroxide-like species generated during plasma-induced oxidative stress, were responsible for membrane lipid peroxidation, and ROS scavengers, such as α-tocopherol (vitamin E), were able to significantly inhibit the extent of lipid peroxidation and oxidative DNA damage. These findings indicate that this is a major mechanism involved in FE-DBD plasma-mediated inactivation of bacteria. PMID:21199923

  5. Investigation of the performance characteristics of a plasma synthetic jet actuator based on a quantitative Schlieren method

    NASA Astrophysics Data System (ADS)

    Zong, Hao-hua; Wu, Yun; Song, Hui-min; Jia, Min; Liang, Hua; Li, Ying-hong; Zhang, Zhi-bo

    2016-05-01

    A quantitative Schlieren method is developed to calculate the density field of axisymmetric flows. With this method, the flow field structures of plasma synthetic jets are analysed in detail. Major performance parameters, including the maximum density increase behind the shock wave, the expelled mass per pulse and the impulse, are obtained to evaluate the intensity of the shock wave and the jet. A high-density but low-velocity jet issues out of the cavity after the precursor shock wave, with a vortex ring at the wave front. The vortex ring gradually lags behind the center jet during the propagation, and its profile resembles a pair of kidneys in shape. After the jet terminates, the vortex ring breaks down and the whole density field is separated into two regions. In one period, the jet front velocity first increases and then decreases, with a maximum value of 270 m s‑1. The precursor shock wave velocity decays quickly from 370 m s‑1 to 340 m s‑1 in the first 50 μs. The variation in the maximum density rise behind the precursor shock wave is similar to that of the jet front velocity. The averaged exit density drops sharply at around 50 μs and then gradually rises. The maximum mass flow rate is about 0.35 g s‑1, and the total expelled mass in one period occupies 26% of the initial cavity gas mass. The impulse produced in the jet stage is estimated to be 5 μN s–1. The quantitative Schlieren method developed can also be used in the research of other compressible axisymmetric flows.

  6. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2004-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  7. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2006-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  8. Microprocessor controlled force actuator

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. C.; Inman, D. J.; Horner, G. C.

    1986-01-01

    The mechanical and electrical design of a prototype force actuator for vibration control of large space structures (LSS) is described. The force actuator is an electromagnetic system that produces a force by reacting against a proof-mass. The actuator has two colocated sensors, a digital microcontroller, and a power amplifier. The total weight of actuator is .998 kg. The actuator has a steady state force output of approximately 2.75 N from approximately 2 Hz to well beyond 1000 Hz.

  9. Plasma Treatment of Aluminum Using a Surface Barrier Discharge Operated in Air and Nitrogen: Parameter Optimization and Related Effects

    NASA Astrophysics Data System (ADS)

    Prysiazhnyi, V.

    2013-08-01

    This paper presents the results of aluminum surface treatment by diffuse coplanar surface barrier discharge. The goals are to study the effectiveness of the plasma treatment and the dependence of its efficiency on operation parameters, such as sample-to-electrode distance, treatment time or gas atmosphere. Three types of aluminum materials (bricks, sheets and thin films) were tested to ensure the reliability of the treatment. The changes in the surface properties were characterized by the surface free energy, atomic force microscopy, attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR) and X-ray photoelectron spectroscopy (XPS). The influence of aging effect on the treatment was also measured and discussed.

  10. Consequences of unburned hydrocarbons on microstreamer dynamics and chemistry during plasma remediation of NOx using dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Dorai, Rajesh; Kushner, Mark J.

    2003-05-01

    Atmospheric pressure plasmas, and dielectric barrier discharges (DBDs) in particular, are being investigated for their use in the remediation of nitrogen oxides (NOx) from automotive exhausts. In their normal mode of operation, DBDs consist of a large density of short-lived filamentary microdischarges. Localized energy deposition results in spatially nonuniform gas temperatures and species densities which initiate advective and diffusive transport. Diesel exhausts, one of the major sources of NOx, typically contain unburned hydrocarbons (UHCs) which significantly influence the NOx chemistry during plasma remediation. In this paper, we discuss results from a computational investigation of the consequences of UHC chemistry on radial transport dynamics and remediation of NOx. In the presence of UHCs, radicals such as O and OH are dominantly consumed in the microstreamer region and their transport to larger radii is reduced. As a result, the conversion of NO to NO2 is mainly restricted to the core of the microstreamer.

  11. Silicon oxide barrier films deposited on PET foils in pulsed plasmas: influence of substrate bias on deposition process and film properties

    NASA Astrophysics Data System (ADS)

    Steves, S.; Ozkaya, B.; Liu, C.-N.; Ozcan, O.; Bibinov, N.; Grundmeier, G.; Awakowicz, P.

    2013-02-01

    A widely used plastic for packaging, polyethylene terephtalate (PET) offers limited barrier properties against gas permeation. For many applications of PET (from food packaging to micro electronics) improved barrier properties are essential. A silicon oxide barrier coating of PET foils is applied by means of a pulsed microwave driven low-pressure plasma. While the adjustment of the microwave power allows for a control of the ion production during the plasma pulse, a substrate bias controls the energy of ions impinging on the substrate. Detailed analysis of deposited films applying oxygen permeation measurements, x-ray photoelectron spectroscopy and atomic force microscopy are correlated with results from plasma diagnostics describing the deposition process. The influence of a change in process parameters such as gas mixture and substrate bias on the gas temperature, electron density, mean electron energy, ion energy and the atomic oxygen density is studied. An additional substrate bias results in an increase in atomic oxygen density up to a factor of 6, although plasma parameter such as electron density of ne = 3.8 ± 0.8 × 1017 m-3 and electron temperature of kBTe = 1.7 ± 0.1 eV are unmodified. It is shown that atomic oxygen densities measured during deposition process higher than nO = 1.8 × 1021 m-3 yield in barrier films with a barrier improvement factor up to 150. Good barrier films are highly cross-linked and show a smooth morphology.

  12. Anisotropic Mechanical Properties of Plasma-Sprayed Thermal Barrier Coatings at High Temperature Determined by Ultrasonic Method

    NASA Astrophysics Data System (ADS)

    Wei, Qin; Zhu, Jianguo; Chen, Wei

    2016-01-01

    The mechanical properties of plasma-sprayed thermal barrier coatings (TBC) are of great scientific and technological significance for the design and fabrication of TBC systems. The ultrasonic method combined with a sing-around method for mechanical properties measurement of TBC is deduced and the elastic modulus can be determined in the spray, or longitudinal, direction, and the transverse direction. Tested specimens of plasma-sprayed TBC are detached from the substrate and treated with thermal exposure at 1400 °C. The elastic moduli along the longitudinal and transverse directions of the TBCs are measured by different types of ultrasonic waves combined with a sing-around method, while the Poisson's ratio is also obtained simultaneously. The experimental results indicate that the magnitude of longitudinal elastic modulus is larger than that of the transverse one, and thus the plasma-sprayed TBC has an anisotropic mechanical property. Moreover, the elastic moduli along both longitudinal and transverse directions change with high-temperature exposure time, which consists of a rapid increasing stage followed by a slow decreasing stage. In addition, the magnitude of Poisson's ratio increases slightly from 0.05 to 0.2 with the high-temperature exposure time. Generally, the microstructures in the plasma-sprayed coatings and their evolution in a high-temperature environment are the main causes of the varying anisotropic mechanical properties.

  13. Anisotropic Mechanical Properties of Plasma-Sprayed Thermal Barrier Coatings at High Temperature Determined by Ultrasonic Method

    NASA Astrophysics Data System (ADS)

    Wei, Qin; Zhu, Jianguo; Chen, Wei

    2016-02-01

    The mechanical properties of plasma-sprayed thermal barrier coatings (TBC) are of great scientific and technological significance for the design and fabrication of TBC systems. The ultrasonic method combined with a sing-around method for mechanical properties measurement of TBC is deduced and the elastic modulus can be determined in the spray, or longitudinal, direction, and the transverse direction. Tested specimens of plasma-sprayed TBC are detached from the substrate and treated with thermal exposure at 1400 °C. The elastic moduli along the longitudinal and transverse directions of the TBCs are measured by different types of ultrasonic waves combined with a sing-around method, while the Poisson's ratio is also obtained simultaneously. The experimental results indicate that the magnitude of longitudinal elastic modulus is larger than that of the transverse one, and thus the plasma-sprayed TBC has an anisotropic mechanical property. Moreover, the elastic moduli along both longitudinal and transverse directions change with high-temperature exposure time, which consists of a rapid increasing stage followed by a slow decreasing stage. In addition, the magnitude of Poisson's ratio increases slightly from 0.05 to 0.2 with the high-temperature exposure time. Generally, the microstructures in the plasma-sprayed coatings and their evolution in a high-temperature environment are the main causes of the varying anisotropic mechanical properties.

  14. Influence of ionic liquid and ionic salt on protein against the reactive species generated using dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Attri, Pankaj; Sarinont, Thapanut; Kim, Minsup; Amano, Takaaki; Koga, Kazunori; Cho, Art E.; Ha Choi, Eun; Shiratani, Masaharu

    2015-12-01

    The presence of salts in biological solution can affect the activity of the reactive species (RS) generated by plasma, and so they can also have an influence on the plasma-induced sterilization. In this work, we assess the influence that diethylammonium dihydrogen phosphate (DEAP), an ionic liquid (IL), and sodium chloride (NaCl), an ionic salt (IS), have on the structural changes in hemoglobin (Hb) in the presence of RS generated using dielectric barrier discharge (DBD) plasma in the presence of various gases [O2, N2, Ar, He, NO (10%) + N2 and Air]. We carry out fluorescence spectroscopy to verify the generation of •OH with or without the presence of DEAP IL and IS, and we use electron spin resonance (ESR) to check the generation of H• and •OH. In addition, we verified the structural changes in the Hb structure after treatment with DBD in presence and absence of IL and IS. We then assessed the structural stability of the Hb in the presence of IL and IS by using molecular dynamic (MD) simulations. Our results indicate that the IL has a strong effect on the conservation of the Hb structure relative to that of IS against RS generated by plasma.

  15. Functionalization of Hydrogen-free Diamond-like Carbon Films using Open-air Dielectric Barrier Discharge Atmospheric Plasma Treatments

    SciTech Connect

    Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Instituto de Materiales de Madrid, C.S.I.C., Cantoblanco, 28049 Madrid, Spain; Instituto de Quimica-Fisica"Rocasolano"C.S.I.C., 28006 Madrid, Spain; Mahasarakham University, Mahasarakham 44150, Thailand; CASTI, CNR-INFM Regional Laboratory, L'Aquila 67100, Italy; SUNY Upstate Medical University, Syracuse, NY 13210, USA; Endrino, Jose; Endrino, J. L.; Marco, J. F.; Poolcharuansin, P.; Phani, A.R.; Allen, M.; Albella, J. M.; Anders, A.

    2007-12-28

    A dielectric barrier discharge (DBD) technique has been employed to produce uniform atmospheric plasmas of He and N2 gas mixtures in open air in order to functionalize the surface of filtered-arc deposited hydrogen-free diamond-like carbon (DLC) films. XPS measurements were carried out on both untreated and He/N2 DBD plasma treated DLC surfaces. Chemical states of the C 1s and N 1s peaks were collected and used to characterize the surface bonds. Contact angle measurements were also used to record the short- and long-term variations in wettability of treated and untreated DLC. In addition, cell viability tests were performed to determine the influence of various He/N2 atmospheric plasma treatments on the attachment of osteoblast MC3T3 cells. Current evidence shows the feasibility of atmospheric plasmas in producing long-lasting variations in the surface bonding and surface energy of hydrogen-free DLC and consequently the potential for this technique in the functionalization of DLC coated devices.

  16. Influence of ionic liquid and ionic salt on protein against the reactive species generated using dielectric barrier discharge plasma

    PubMed Central

    Attri, Pankaj; Sarinont, Thapanut; Kim, Minsup; Amano, Takaaki; Koga, Kazunori; Cho, Art E.; Ha Choi, Eun; Shiratani, Masaharu

    2015-01-01

    The presence of salts in biological solution can affect the activity of the reactive species (RS) generated by plasma, and so they can also have an influence on the plasma-induced sterilization. In this work, we assess the influence that diethylammonium dihydrogen phosphate (DEAP), an ionic liquid (IL), and sodium chloride (NaCl), an ionic salt (IS), have on the structural changes in hemoglobin (Hb) in the presence of RS generated using dielectric barrier discharge (DBD) plasma in the presence of various gases [O2, N2, Ar, He, NO (10%) + N2 and Air]. We carry out fluorescence spectroscopy to verify the generation of •OH with or without the presence of DEAP IL and IS, and we use electron spin resonance (ESR) to check the generation of H• and •OH. In addition, we verified the structural changes in the Hb structure after treatment with DBD in presence and absence of IL and IS. We then assessed the structural stability of the Hb in the presence of IL and IS by using molecular dynamic (MD) simulations. Our results indicate that the IL has a strong effect on the conservation of the Hb structure relative to that of IS against RS generated by plasma. PMID:26656857

  17. Superconducting linear actuator

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce; Hockney, Richard

    1993-01-01

    Special actuators are needed to control the orientation of large structures in space-based precision pointing systems. Electromagnetic actuators that presently exist are too large in size and their bandwidth is too low. Hydraulic fluid actuation also presents problems for many space-based applications. Hydraulic oil can escape in space and contaminate the environment around the spacecraft. A research study was performed that selected an electrically-powered linear actuator that can be used to control the orientation of a large pointed structure. This research surveyed available products, analyzed the capabilities of conventional linear actuators, and designed a first-cut candidate superconducting linear actuator. The study first examined theoretical capabilities of electrical actuators and determined their problems with respect to the application and then determined if any presently available actuators or any modifications to available actuator designs would meet the required performance. The best actuator was then selected based on available design, modified design, or new design for this application. The last task was to proceed with a conceptual design. No commercially-available linear actuator or modification capable of meeting the specifications was found. A conventional moving-coil dc linear actuator would meet the specification, but the back-iron for this actuator would weigh approximately 12,000 lbs. A superconducting field coil, however, eliminates the need for back iron, resulting in an actuator weight of approximately 1000 lbs.

  18. The sterilization of Escherichia coli by dielectric-barrier discharge plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Miao, Hu; Yun, Guo

    2011-06-01

    The sterilization of E. coli (ATCC8099) using an atmospheric pressure, air DBD plasma driven by 100 Hz high-voltage power supply was investigated in this paper. The results showed that germicidal efficiency was closely related to the plasma treatment time, the gap spacing, the initial cell density and the surface characters of substrate materials. The germicidal efficiency was 99.999% under the conditions of 5-min plasma treatment, 3-cm gap spacing and on PET films. After plasma exposure for 5 min, the temperature was observed below 43 °C which could not lead to inactivate E. coli. The observation of protein leakage and cell morphology alteration by transmission electron microscopy (TEM) techniques revealed that the etching action on cell membrane by electrons, ions and radicals was primary reason of DBD air plasma sterilization.

  19. Deposition and characterization of plasma sprayed Ni-5A1/ magnesia stabilized zirconia based functionally graded thermal barrier coating

    NASA Astrophysics Data System (ADS)

    Baig, M. N.; Khalid, F. A.

    2014-06-01

    Thermal barrier coatings (TBCs) are employed to protect hot section components in industrial and aerospace gas turbine engines. Conventional TBCs frequently fail due to high residual stresses and difference between coefficient of thermal expansion (CTE) of the substrate & coatings. Functionally graded thermal barrier coatings (FG-TBCs) with gradual variation in composition have been proposed to minimize the problem. In this work, a five layered functionally graded thermal barrier coating system was deposited by atmospheric plasma spray (APS) technique on Nimonic 90 substrates using Ni-5Al as bond coat (BC) and magnesia stabilized zirconia as top coat (TC). The coatings were characterized by SEM, EDS, XRD & optical profilometer. Microhardness and coefficient of thermal expansion of the five layers deposited as individual coatings were also measured. The deposited coating system was oxidized at 800°C. SEM analysis showed that five layers were successfully deposited by APS to produce a FG-TBC. The results also showed that roughness (Ra) of the individual layers decreased with an increase in TC content in the coatings. It was found that microhardness and CTE values gradually changed from bond coat to cermet layers to top coat. The oxidized coated sample revealed parabolic behavior and changes in the surface morphology and composition of coating.

  20. Blood-nerve barrier: distribution of anionic sites on the endothelial plasma membrane and basal lamina of dorsal root ganglia.

    PubMed

    Bush, M S; Reid, A R; Allt, G

    1991-09-01

    Previous investigations of the blood-nerve barrier have correlated the greater permeability of ganglionic endoneurial vessels, compared to those of nerve trunks, with the presence of fenestrations and open intercellular junctions. Recent studies have demonstrated reduced endothelial cell surface charge in blood vessels showing greater permeability. To determine the distribution of anionic sites on the plasma membranes and basal laminae of endothelial cells in dorsal root ganglia, cationic colloidal gold and cationic ferritin were used. Electron microscopy revealed the existence of endothelial microdomains with differing labelling densities. Labelling indicated that caveolar and fenestral diaphragms and basal laminae are highly anionic at physiological pH, luminal plasma membranes and endothelial processes are moderately charged and abluminal plasma membranes are weakly anionic. Tracers did not occur in caveolae or cytoplasmic vesicles. In vitro tracer experiments at pH values of 7.3, 5.0, 3.5 and 2.0 indicated that the anionic charge on the various endothelial domains was contributed by chemical groups with differing pKa values. In summary, the labelling of ganglionic and sciatic nerve vessels was similar except for the heavy labelling of diaphragms in a minority of endoneurial vessels in ganglia. This difference is likely to account in part for the greater permeability of ganglionic endoneurial vessels. The results are discussed with regard to the blood-nerve and -brain barriers and vascular permeability in other tissues and a comparison made between the ultrastructure and anionic microdomains of epi-, peri- and endoneurial vessels of dorsal root ganglia and sciatic nerves. PMID:1960538

  1. Nonthermal Dielectric Barrier Discharge (DBD) Plasma Suppresses Herpes Simplex Virus Type 1 (HSV-1) Replication in Corneal Epithelium

    PubMed Central

    Alekseev, Oleg; Donovan, Kelly; Limonnik, Vladimir; Azizkhan-Clifford, Jane

    2014-01-01

    Purpose Herpes keratitis (HK) is the leading cause of cornea-derived and infection-associated blindness in the developed world. Despite the availability of effective antivirals, some patients develop refractory disease, drug-resistant infection, and topical toxicity. A nonpharmaceutical treatment modality may offer a unique advantage in the management of such cases. This study investigated the antiviral effect of nonthermal dielectric barrier discharge (DBD) plasma, a partially ionized gas that can be applied to organic substances to produce various biological effects. Methods Human corneal epithelial cells and explanted corneas were infected with herpes simplex virus type 1 (HSV-1) and exposed to culture medium treated with nonthermal DBD plasma. The extent of infection was measured by plaque assay, quantitative PCR, and Western blot. Corneal toxicity assessment was performed with fluorescein staining, histologic examination, and 8-OHdG detection. Results Application of DBD plasma–treated medium to human corneal epithelial cells and explanted corneas produced a dose-dependent reduction of the cytopathic effect, viral genome replication, and the overall production of infectious viral progeny. Toxicity studies showed lack of detrimental effects in explanted human corneas. Conclusions Nonthermal DBD plasma substantially suppresses corneal HSV-1 infection in vitro and ex vivo without causing pronounced toxicity. Translational Relevance Nonthermal plasma is a versatile tool that holds great biomedical potential for ophthalmology, where it is being investigated for wound healing and sterilization and is already in use for ocular microsurgery. The anti-HSV-1 activity of DBD plasma demonstrated here could be directly translated to the clinic for use against drug-resistant herpes keratitis. PMID:24757592

  2. Fischer-Tropsch Performance of an SiO2-Supported Co-Based Catalyst Prepared by Hydrogen Dielectric-Barrier Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Fu, Tingjun; Huang, Chengdu; Lv, Jing; Li, Zhenhua

    2014-03-01

    A silica-supported cobalt catalyst was prepared by hydrogen dielectric-barrier discharge (H2-DBD) plasma. Compared to thermal hydrogen reduction, H2-DBD plasma treatment can not only fully decompose the cobalt precursor but also partially reduce the cobalt oxides at lower temperature and with less time. The effect of the discharge atmosphere on the property of the plasma-prepared catalyst and the Fischer-Tropsch synthesis activity was studied. The results indicate that H2-DBD plasma treatment is a promising alternative for preparing Co/SiO2 catalysts from the viewpoint of energy savings and efficiency.

  3. Linear Boom Actuator

    NASA Technical Reports Server (NTRS)

    Koch, E. F.

    1985-01-01

    Actuator stabilizes spacecraft spin by varying length of support struts that hold spacecraft booms. Variation changes spin axis and controls wobble. Linear actuator controls spacecraft wobble applicable in rotating systems on Earth.

  4. Micromachined electrostatic vertical actuator

    SciTech Connect

    Lee, A.P.; Sommargren, G.E.; McConaghy, C.F.; Krulevitch, P.A.

    1999-10-19

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion, micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

  5. Electromechanical rotary actuator

    NASA Technical Reports Server (NTRS)

    Smith, S. P.; Mcmahon, W. J.

    1995-01-01

    An electromechanical rotary actuator has been developed as the prime mover for a liquid oxygen modulation valve on the Centaur Vehicle Rocket Engine. The rotary actuator requirements, design, test, and associated problems and their solutions are discussed in this paper.

  6. Powerful Electromechanical Linear Actuator

    NASA Technical Reports Server (NTRS)

    Cowan, John R.; Myers, William N.

    1994-01-01

    Powerful electromechanical linear actuator designed to replace hydraulic actuator. Cleaner, simpler, and needs less maintenance. Features rotary-to-linear-motion converter with antibacklash gearing and position feedback via shaft-angle resolvers, which measure rotary motion.

  7. Carbon nanotube actuators

    PubMed

    Baughman; Cui; Zakhidov; Iqbal; Barisci; Spinks; Wallace; Mazzoldi; De Rossi D; Rinzler; Jaschinski; Roth; Kertesz

    1999-05-21

    Electromechanical actuators based on sheets of single-walled carbon nanotubes were shown to generate higher stresses than natural muscle and higher strains than high-modulus ferroelectrics. Like natural muscles, the macroscopic actuators are assemblies of billions of individual nanoscale actuators. The actuation mechanism (quantum chemical-based expansion due to electrochemical double-layer charging) does not require ion intercalation, which limits the life and rate of faradaic conducting polymer actuators. Unlike conventional ferroelectric actuators, low operating voltages of a few volts generate large actuator strains. Predictions based on measurements suggest that actuators using optimized nanotube sheets may eventually provide substantially higher work densities per cycle than any previously known technology. PMID:10334985

  8. Micromachined electrostatic vertical actuator

    DOEpatents

    Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.; Krulevitch, Peter A.

    1999-10-19

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

  9. Collective phenomena in volume and surface barrier discharges

    NASA Astrophysics Data System (ADS)

    Kogelschatz, U.

    2010-11-01

    Barrier discharges are increasingly used as a cost-effective configuration to produce non-equilibrium plasmas at atmospheric pressure. This way, copious amounts of electrons, ions, free radicals and excited species can be generated without significant heating of the background gas. In most applications the barrier is made of dielectric material. Major applications utilizing mainly dielectric barriers include ozone generation, surface cleaning and modification, polymer and textile treatment, sterilization, pollution control, CO2 lasers, excimer lamps, plasma display panels (flat TV screens). More recent research efforts are devoted to biomedical applications and to plasma actuators for flow control. Sinusoidal feeding voltages at various frequencies as well as pulsed excitation schemes are used. Volume as well as surface barrier discharges can exist in the form of filamentary, regularly patterned or diffuse, laterally homogeneous discharges. The physical effects leading to collective phenomena in volume and surface barrier discharges are discussed in detail. Special attention is paid to self-organization of current filaments and pattern formation. Major similarities of the two types of barrier discharges are elaborated.

  10. Effects of surface modification by atmospheric oxygen dielectric barrier discharge plasma on PBO fibers and its composites

    NASA Astrophysics Data System (ADS)

    Liu, Zhe; Chen, Ping; Zhang, Xiaoliang; Yu, Qi; Ma, Keming; Ding, Zhenfeng

    2013-10-01

    In this paper, oxygen dielectric barrier discharge (oxy-DBD) plasma was employed to modify PBO fibers and enhance the interfacial adhesion of PBO fiber/bismaleimide composites. The interlaminar shear strength (ILSS) of the composites was improved greatly to 62.0 MPa with an increment of 41.2% at 30 W/cm3, 24 s. The SEM images of fracture morphology indicated that the failure place shifted from the interface to the matrix, and the water absorption decreased from 1.96 to 1.53%, the two results demonstrated the improved adhesive strength in other ways. In addition, the ILSS retention ratio of PBO/BMI composites after boiling in water were about 90%, confirming good humid resistance of the composites. The results obtained from XPS and AFM revealed that some polar groups were introduced onto PBO fibers and the surface morphology of PBO fibers was roughened. As a result, the wettability, reactivity and roughness of PBO fibers were all improved, they contributed to the improvement of the ILSS of the composites. The comparisons with air-DBD plasma showed that the chemical changes of PBO fibers were not alike because of different plasma gases.

  11. Single-chamber plasma enhanced chemical vapor deposition of transparent organic/inorganic multilayer barrier coating at low temperature

    SciTech Connect

    Park, S. M.; Kim, D. J.; Kim, S. I.; Lee, N.-E.

    2008-07-15

    Deposition of organic/inorganic multilayers is usually carried out by two different process steps by two different deposition methods. A single-chamber process for the deposition of multilayer stacks can make the process and deposition system simpler. In this work, SiOCH and plasma-polymerized methylcyclohexane (pp-MCH) films and their multilayer stacks for application to transparent diffusion barrier coatings were deposited in a single low-temperature plasma enhanced chemical vapor deposition reactor using hexamethyldisilazane/N{sub 2}O/O{sub 2}/Ar and methylcyclohexane/Ar mixtures for SiOCH and pp-MCH layers, respectively. The deposition rates of the SiOCH and pp-MCH layers were increased with increasing the N{sub 2}O:O{sub 2} gas flow ratio and rf plasma power, respectively. Oxygen concentration in the SiOCH films was decreased and carbon and hydrogen incorporation was increased when increasing the N{sub 2}O:O{sub 2} gas flow ratio from 0:1 to 3:1. In this work, the water vapor transmission rate of polyester sulfone substrate could be reduced from a level of 50 (bare substrate) to 0.8 g/m{sup 2} day after deposition of a pp-MCH/SiOCH/pp-MCH multilayer coating.

  12. Effects of Environmental Humidity and Temperature on Sterilization Efficiency of Dielectric Barrier Discharge Plasmas in Atmospheric Pressure Air

    NASA Astrophysics Data System (ADS)

    Kikuchi, Yusuke; Miyamae, Masanori; Nagata, Masayoshi; Fukumoto, Naoyuki

    2011-01-01

    The inactivation of Bacillus atrophaeus spores by a dielectric barrier discharge (DBD) plasma in atmospheric humid air was investigated in order to develop a low-temperature, low-cost, and high-speed plasma sterilization technique. The biological indicators covered with a Tyvek sheet were set just outside the DBD plasma region, where air temperature and humidity as a discharge gas were precisely controlled by an environmental test chamber. The results show that the inactivation of B. atrophaeus spores was found to be dependent strongly on humidity, and was completed within 15 min at a relative humidity of 90% and a temperature of 30 °C. The treatment time for sterilization is shorter than those of conventional sterilization methods using ethylene oxide gas and dry heat treatment. The inactivation rates depend on not only relative humidity but also temperature, so that water content in air could determine the generation of reactive species such as hydroxyl radicals that are effective for the inactivation of B. atrophaeus spores.

  13. Electromagnetic rotational actuation.

    SciTech Connect

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  14. Collective Phenomena In Volume And Surface Barrier Discharges

    NASA Astrophysics Data System (ADS)

    Kogelschatz, U.

    2010-07-01

    Barrier discharges are increasingly used as a cost-effective means to produce non-equilibrium plasmas at atmospheric pressure. This way, copious amounts of electrons, ions, free radicals and excited species can be generated without appreciable gas heating. In most applications the barrier is made of dielectric material. In laboratory experiments also the use of resistive, ferroelectric and semiconducting materials has been investigated, also porous ceramic layers and dielectric barriers with controlled surface conductivity. Major applications utilizing mainly dielectric barriers include ozone generation, surface cleaning and modification, polymer and textile treatment, sterilization, pollution control, CO2 lasers, excimer lamps, plasma display panels (flat TV screens). More recent research efforts are also devoted to biomedical applications and to plasma actuators for flow control. Sinu- soidal feeding voltages at various frequencies as well as pulsed excitation schemes are used. Volume as well as surface barrier discharges can exist in the form of filamentary, regularly patterned or laterally homogeneous discharges. Reviews of the subject and the older literature on barrier discharges were published by Kogelschatz (2002, 2003), by Wagner et al. (2003) and by Fridman et al. (2005). A detailed discussion of various properties of barrier discharges can also be found in the recent book "Non-Equilibrium Air Plasmas at Atmospheric Pressure" by Becker et al. (2005). The physical effects leading to collective phenomena in volume and surface barrier discharges will be discussed in detail. Special attention will be given to self-organization of current filaments. Main similarities and differences of the two types of barrier discharges will be elaborated.

  15. Novel approach to produce polymerized hydrocarbon coatings using dielectric barrier controlled atmospheric pressure glow discharge plasma

    NASA Astrophysics Data System (ADS)

    Mishra, K. K.; Khardekar, R. K.; Singh, Rashmi; Pant, H. C.

    2002-09-01

    Conventionally, low-pressure (<1 Torr) electrical discharges are used for material processing and thin-film deposition. These schemes suffer mainly due to the high cost of equipment and the complexity of operations. The atmospheric pressure glow discharge plasma is developed using a threaded styled electrode in different configurations, and these reactors are used to produce plasma polymerized coatings, required on plane substrates as self-supporting films to obtain membranes for blocking holes in cavities, and on microballoon targets, which are used as fuel containers for inertial confinement fusion, to avoid DT gas permeation. Helium gas is used as the supporting gas for formation and stabilization of atmospheric pressure glow discharge plasma reactors. Ethylene and acetylene gases are used as monomers to produce plasma polymerized hydrocarbon films. These films are characterized using scanning electron microscopy. Plasma polymerized coatings of thickness 100 nm-10 μm with a smooth surface finish (rms<100 nm) are deposited successfully. The surface finish is further improved using a postdischarge configuration. Preliminary results are very encouraging but further progress is to be made in this area. We are also planning to extend this technique for C:H coating of microballoons, which are used as fuel containers in inertial confinement fusion.

  16. AMSD Cryo Actuator Testing

    NASA Technical Reports Server (NTRS)

    Mullette, Mark; Matthews, Gary; Russell, Kevin (Technical Monitor)

    2002-01-01

    The actuator technology required for AMSD and subsequently NGST are critical in the successful development for future cryogenic systems. Kodak has undertaken an extensive test plan to determine the performance of the force actuators developed under the AMSD program. These actuators are currently in testing at MSFC and are expected to finish this test cycle in early June 2002.

  17. An atmospheric pressure quasiuniform planar plasma jet generated by using a dielectric barrier configuration

    SciTech Connect

    Li Qing; Takana, Hidemasa; Nishiyama, Hideya; Pu Yikang

    2011-06-13

    A stable nonthermal quasiuniform planar plasma jet, originating from a planar dielectric duct with a rectangular exit and issuing into ambient air at atmospheric pressure, is reported in the present work. Current-voltage characteristics, one discharge current pulse per sinusoidal half voltage cycle, show that the discharge is not filamentary. Its spatial uniformity in the transverse direction is shown to be excellent by monitoring optical emission spectra in the jet core region except jet boundaries. This is possibly resulted from high preionization in the upstream region, and it is a challenge to the traditional single streamer explanation for nonthermal plasma jets.

  18. SiC fiber and yttria-stabilized zirconia composite thick thermal barrier coatings fabricated by plasma spray

    NASA Astrophysics Data System (ADS)

    Ma, Rongbin; Cheng, Xudong; Ye, Weiping

    2015-12-01

    Approximately 4 mm-thick SiC fiber/yttria-stabilized zirconia (YSZ) composite thermal barrier coatings (TBCs) were prepared by atmospheric plasma spray (APS). The composite coatings have a 'reinforced concrete frame structure', which can protect the coating from failure caused by increasing thickness of coating. The SiC fiber plays an important role in reducing the residual stress level of the composite coatings. The thermal conductivity (TC) value of the composite coatings is 0.632 W/m K, which is about 50% reduction compared to that of typical APS YSZ TBCs. And the composite coatings have higher fracture toughness and better thermal shock resistance than the YSZ TBCs.

  19. Low temperature plasma-enhanced atomic layer deposition of thin vanadium nitride layers for copper diffusion barriers

    SciTech Connect

    Rampelberg, Geert; Devloo-Casier, Kilian; Deduytsche, Davy; Detavernier, Christophe; Blasco, Nicolas

    2013-03-18

    Thin vanadium nitride (VN) layers were grown by atomic layer deposition using tetrakis(ethylmethylamino)vanadium and NH{sub 3} plasma at deposition temperatures between 70 Degree-Sign C and 150 Degree-Sign C on silicon substrates and polymer foil. X-ray photoelectron spectroscopy revealed a composition close to stoichiometric VN, while x-ray diffraction showed the {delta}-VN crystal structure. The resistivity was as low as 200 {mu}{Omega} cm for the as deposited films and further reduced to 143 {mu}{Omega} cm and 93 {mu}{Omega} cm by annealing in N{sub 2} and H{sub 2}/He/N{sub 2}, respectively. A 5 nm VN layer proved to be effective as a diffusion barrier for copper up to a temperature of 720 Degree-Sign C.

  20. Porous α-Al2O3 thermal barrier coatings with dispersed Pt particles prepared by cathode plasma electrolytic deposition

    NASA Astrophysics Data System (ADS)

    Wang, Peng; He, Ye-dong; Deng, Shun-jie; Zhang, Jin

    2016-01-01

    Porous α-Al2O3 thermal barrier coatings (TBCs) containing dispersed Pt particles were prepared by cathode plasma electrolytic deposition (CPED). The influence of the Pt particles on the microstructure of the coatings and the CPED process were studied. The prepared coatings were mainly composed of α-Al2O3. The average thickness of the coatings was approximately 100 μm. Such single-layer TBCs exhibited not only excellent high-temperature cyclic oxidation and spallation resistance, but also good thermal insulation properties. Porous α-Al2O3 TBCs inhibit further oxidation of alloy substrates because of their extremely low oxygen diffusion rate, provide good thermal insulation because of their porous structure, and exhibit excellent mechanical properties because of the toughening effect of the Pt particles and because of stress relaxation induced by deformation of the porous structure.

  1. Influence of voltage pulse width on the discharge characteristics in an atmospheric dielectric-barrier-discharge plasma jet

    NASA Astrophysics Data System (ADS)

    Uchida, Giichiro; Takenaka, Kosuke; Setsuhara, Yuichi

    2016-01-01

    We present here the analysis of the discharge characteristics of a He dielectric-barrier-discharge (DBD) plasma jet operated in the voltage duty ratio of 20 to 80% under the condition of driving voltage frequency 5 kHz. Discharge strength is sensitive to the voltage pulse width, and the pulse width of 70 µs, which corresponds to the duty ratio of 35%, leads to high O optical emission intensity. We also performed time-resolved optical emission measurements in a transient pulse discharge driven by various voltage duty ratios. Two distinct pulse discharges are observed in the rising and falling periods of the positive rectangular voltage, and the first and second discharges have a peak intensity of optical emission at different duty ratio. The observations indicate that an adequate voltage pulse width could ignite a strong discharge both in the rising and falling period of applied voltage, which could produce a large amount of reactive excited O atoms.

  2. FAST TRACK COMMUNICATION: Atmospheric-pressure plasma CVD of TiO2 photocatalytic films using surface dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Di, Lan-Bo; Li, Xiao-Song; Shi, Chuan; Xu, Yong; Zhao, De-Zhi; Zhu, Ai-Min

    2009-02-01

    Surface dielectric barrier discharge (DBD) was used for atmospheric-pressure plasma CVD of TiO2 films from TiCl4 and O2 for the first time. Under this experiment, the deposition rate was estimated at 22 nm min-1 by scanning electron microscope observation and the as-deposited TiO2 films were amorphous as evidenced by Raman analysis. The photocatalytic application of TiO2 films in removing HCHO from simulated air was examined in a continuous flow reactor. The TiO2 films after calcination at 350 or 450 °C were notably photocatalytically active for complete oxidation of formaldehyde to an innocuous product (CO2), which was consistent with the results of Raman analysis. Using the TiO2 films, an extremely harmful by-product, CO, was not detected from photocatalytic oxidation of HCHO in a simulated air stream.

  3. Bimorphic polymeric photomechanical actuator

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S. (Inventor); Curley, Michael J. (Inventor); Adamovsky, Grigory (Inventor); Sarkisov, Jr., Sergey S. (Inventor); Fields, Aisha B. (Inventor)

    2006-01-01

    A bimorphic polymeric photomechanical actuator, in one embodiment using polyvinylidene fluoride (PVDF) as a photosensitive body, transmitting light over fiber optic cables, and controlling the shape and pulse duration of the light pulse to control movement of the actuator. Multiple light beams are utilized to generate different ranges of motion for the actuator from a single photomechanical body and alternative designs use multiple light beams and multiple photomechanical bodies to provide controlled movement. Actuator movement using one or more ranges of motion is utilized to control motion to position an actuating element in three dimensional space.

  4. Omnidirectional Actuator Handle

    NASA Technical Reports Server (NTRS)

    Moetteli, John B.

    1995-01-01

    Proposed actuator handle comprises two normally concentric rings, cables, and pulleys arranged such that relative displacement of rings from concentricity results in pulling of cable and consequent actuation of associated mechanism. Unlike conventional actuator handles like levers on farm implements, actuated from one or two directions only, proposed handle reached from almost any direction and actuated by pulling or pushing inner ring in any direction with respect to outer ring. Flanges installed on inner ring to cover gap between inner ring and housing to prevent clothing from being caught.

  5. New ZrO2-Yb2O3 plasma-sprayed coatings for thermal barrier applications

    NASA Technical Reports Server (NTRS)

    Stecura, Stephan

    1987-01-01

    New thermal barrier coatings, whose compositions were chosen on the basis of a limited study of the ZrO2-Yb2O3 system, were evaluated by cyclic testing in a furnace at 1120 C. On Ni-16.2Cr-5.9Al-0.15Y bond coating, ZrO2-12.4Yb2O3, ZrO2-14.7Yb2O3 and ZrO2-17.4Yb2O3 coatings have respectively 60, 30, and 15 percent longer lives than the near-optimum ZrO2-6.1Y2O3 coating. On Ni-18.3Cr-6.4Al-0.22Yb coating, ZrO2-12.4Yb2O3 has about 40 percent longer life than the ZrO2-6.1Y2O3 coating. The optimum Yb2O3 concentration in ZrO2 at which the maximum life is obtained is believed to be between 12.4 and 14.7 wt pct. The ZrO2-Yb2O3 thermal barrier systems failed through the formation of a crack or cracks in the thermal barrier coating near the bond coating interface. As-received ZrO2-Yb2O3 plasma spray powders had a nonhomogeneous distribution of Yb2O3. Monoclinic, cubic, and tetragonal phases in addition to Zr3Yb4O12 and an unknown phase were present.

  6. Mixed Mode Fracture of Plasma Sprayed Thermal Barrier Coatings: Effects of Anisotropy and Heterogeneity

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Ghosn, Louis L.

    2008-01-01

    The combined mode I-mode II fracture behavior of anisotropic ZrO2-8wt%Y2O3 thermal barrier coatings was determined in asymmetric flexure loading at both ambient and elevated temperatures. A fracture envelope of KI versus KII was determined for the coating material at ambient and elevated temperatures. Propagation angles of fracture as a function of KI/KII were also determined. The mixed-mode fracture behavior of the microsplat coating material was modeled using Finite Element approach to account for anisotropy and micro cracked structures, and predicted in terms of fracture envelope and propagation angle using mixed-mode fracture theories.

  7. Formation of Selective High Barrier Region by Inductively Coupled Plasma Treatment on GaN-Based Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Kuo, Ting-Wei; Lin, Shi-Xiong; Hung, Pin-Kun; Chong, Kwok-Keung; Hung, Chen-I.; Houng, Mau-Phon

    2010-11-01

    By inductively coupled plasma (ICP) etching, a selective high barrier region (SHBR) was fabricated below the p-pad metal electrode for modifying the injection current distribution on p-type GaN of GaN-based light-emitting diodes (LEDs). Through the analysis of current noise power spectra, the samples with ICP etching treatment have excess nitrogen vacancies at the selectively etched surface of p-type GaN; thus, they have a lower hole concentration than the as-grown sample, resulting in a larger barrier height for carrier transport. With this SHBR, the light-output power for the LED chip measured at 20 mA was significantly increased by 12% as compared with that for the conventional LED chip. The light-output power increase could be attributed to a relative reduction in optical power absorption under the p-pad electrode and a higher density of current effectively injected into the active layer of the LED by the SHBR structure.

  8. Processing-structure-property relationships of thermal barrier coatings deposited using the solution precursor plasma spray process

    NASA Astrophysics Data System (ADS)

    Xie, Liangde

    This research is intended to develop a novel process, solution-precursor plasma-spray (SPPS), for the deposition of highly durable thermal barrier coatings (TBCs). In the SPPS process a solution precursor feedstock, that results in ZrO2-7 wt% Y2O3 ceramic, is injected into the plasma jet and the coating is deposited on a metal substrate. The formed coating has the following novel microstructural features: (i) ultra-fine splats, (ii) through-thickness cracks, (iii) micrometer and nanometer porosity, and (iv) interpass boundaries. The deposition mechanisms of the solution precursor droplets injected into the different regions of the plasma jet were found to be different due to large temperature variation across the plasma jet. The solution precursor droplets injected into the core of the plasma jet are deposited on the substrate as ultra-fine splats that account for around 65 volume% of the coating. The other 35 volume% of the coating includes porosity and deposits formed from the solution precursor droplets injected into other regions of the plasma jet. The optimum processing condition for highly durable TBCs was determined using Taguchi design of experiments. Meanwhile, the relationship of the microstructural features and processing parameters was revealed. During thermal cycling, the unmelted particles in the coating were observed to pyloyze and/or sinter, while no sign of sintering was observed for the ultra-fine splats. The spacing of through-thickness cracks remains in the range of 160 to 190 mum throughout the thermal cycling test. Three stages of oxidation of the bond coat were observed. Failure of the SPPS TBC starts with the crack nucleation along the unmelted particles in the top coat and the Ni, Cr, Co-rich oxides of large thickness. These cracks propagate and coalesce with thermal cycling. The extensive cracking of the rapidly formed Ni, Cr, Co-rich oxides resulting from the depletion of aluminum in the bond coat leads to the development of large separation between TBC and substrate. When a separation of sufficient size emerges, the TBC starts to separate from the metal substrate by large scale buckling as a result of the small strain energy stored in the strain tolerant SPPS TBCs.

  9. Improved Electrohydraulic Linear Actuators

    NASA Technical Reports Server (NTRS)

    Hamtil, James; Selinsky, T.

    2002-01-01

    A product line of improved electrohydraulic linear actuators has been developed. These actuators are designed especially for use in actuating valves in rocket-engine test facilities. They are also adaptable to similar industrial uses. The advantageous features of the improved electrohydraulic linear actuators are best described with respect to shortcomings of prior electrohydraulic linear actuators that the improved ones are intended to supplant. The shortcomings are the following: They perform unreliably and inconsistently as positioning devices. Their capabilities for end-of-stroke buffering (that is, deceleration to gentle stops at designated stopping positions) range from unsatisfactory to nonexistent, with consequent potential for inducing catastrophic failures. It takes long times to modify standard actuators to meet specifications, and the costs of such modifications are high. In the cases of actuators equipped with fail-safe shutdown systems, the stroking times of these systems cannot be adjusted in the field.

  10. Considerations for Contractile Electroactive Materials and Actuators

    SciTech Connect

    Lenore Rasmussen, David Schramm, Paul Rasmussen, Kevin Mullaly, Ras Labs, LLC, Intelligent Materials for Prosthetics & Automation, Lewis D. Meixler, Daniel Pearlman and Alice Kirk

    2011-05-23

    Ras Labs produces contractile electroactive polymer (EAP) based materials and actuators that bend, swell, ripple, and contract (new development) with low electric input. In addition, Ras Labs produces EAP materials that quickly contract and expand, repeatedly, by reversing the polarity of the electric input, which can be cycled. This phenomenon was explored using molecular modeling, followed by experimentation. Applied voltage step functions were also investigated. High voltage steps followed by low voltage steps produced a larger contraction followed by a smaller contraction. Actuator control by simply adjusting the electric input is extremely useful for biomimetic applications. Muscles are able to partially contract. If muscles could only completely contract, nobody could hold an egg, for example, without breaking it. A combination of high and low voltage step functions could produce gross motor function and fine manipulation within the same actuator unit. Plasma treated electrodes with various geometries were investigated as a means of providing for more durable actuation.

  11. Considerations for contractile electroactive materials and actuators

    NASA Astrophysics Data System (ADS)

    Rasmussen, Lenore; Schramm, David; Rasmussen, Paul; Mullally, Kevin; Meixler, Lewis D.; Pearlman, Daniel; Kirk, Alice

    2011-04-01

    Ras Labs produces contractile electroactive polymer (EAP) based materials and actuators that bend, swell, ripple, and contract (new development) with low electric input. In addition, Ras Labs produces EAP materials that quickly contract and expand, repeatedly, by reversing the polarity of the electric input, which can be cycled. This phenomenon was explored using molecular modeling, followed by experimentation. Applied voltage step functions were also investigated. High voltage steps followed by low voltage steps produced a larger contraction followed by a smaller contraction. Actuator control by simply adjusting the electric input is extremely useful for biomimetic applications. Muscles are able to partially contract. If muscles could only completely contract, nobody could hold an egg, for example, without breaking it. A combination of high and low voltage step functions could produce gross motor function and fine manipulation within the same actuator unit. Plasma treated electrodes with various geometries were investigated as a means of providing for more durable actuation.

  12. Evaluation of the degradation of plasma sprayed thermal barrier coatings using nano-indentation.

    PubMed

    Kim, Dae-Jin; Cho, Sung-Keun; Choi, Jung-Hun; Koo, Jae-Mean; Seok, Chang-Sung; Kim, Moon-Young

    2009-12-01

    In this study, the disk type of a thermal barrier coating (TBC) system for a gas turbine blade was isothermally aged at 1100 degrees C for various times up to 400 hours. For each aging condition, the thickness of the thermally grown oxide (TGO) was measured by optical microscope and mechanical properties such as the elastic modulus and hardness were measured by micro-indentation and nano-indentation on the cross-section of a coating specimen. In the case of micro-indentation, the mechanical properties of a Ni-base superalloy substrate and MCrAlY bond coat material did not significantly change with an increase in exposure time. In the case of nano-indentation, the gamma-Ni phase and beta-NiAl phase in the bond coat and top coat material show no significant change in their properties. However, the elastic modulus and the hardness of TGO show a remarkable decrease from 100 h to 200 h then remain nearly constant after 200 h due to the internal delamination of TBC. It has been confirmed that the nano-indentation technique is a very effective way to evaluate the degradation of a thermal barrier coating system. PMID:19908771

  13. Damage Accumulation and Failure of Plasma-Sprayed Thermal Barrier Coatings under Thermal Gradient Cyclic Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Ghosn, Louis J.; Miller, rober A.

    2005-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. A fundamental understanding of the sintering and thermal cycling induced delamination of thermal barrier coating systems under engine-like heat flux conditions will potentially help to improve the coating temperature capability. In this study, a test approach is established to emphasize the real-time monitoring and assessment of the coating thermal conductivity, which can initially increase under the steady-state high temperature thermal gradient test due to coating sintering, and later decrease under the thermal gradient cyclic test due to coating cracking and delamination. Thermal conductivity prediction models have been established for a ZrO2-(7- 8wt%)Y2O3 model coating system in terms of heat flux, time, and testing temperatures. The coating delamination accumulation is then assessed based on the observed thermal conductivity response under the combined steady-state and cyclic thermal gradient tests. The coating thermal gradient cycling associated delaminations and failure mechanisms under simulated engine heat-flux conditions will be discussed in conjunction with the coating sintering and fracture testing results.

  14. COMPARISON OF THERMAL PROPERTIES OF THERMAL BARRIER COATING DEPOSITED ON IN738 USING STANDARD AIR PLASMA SPRAY WITH 100HE PLASMA SPRAY SYSTEM

    SciTech Connect

    Uppu, N.; Mensah, P.F.; Ofori, D.

    2006-07-01

    A typical blade material is made of Nickel super alloy and can bear temperatures up to 950°C. But the operating temperature of a gas turbine is above the melting point of super alloy nearly at 1500°C. This could lead to hot corrosions, high temperature oxidation, creep, thermal fatigue may takes place on the blade material. Though the turbine has an internal cooling system, the cooling is not adequate to reduce the temperature of the blade substrate. Therefore to protect the blade material as well as increase the efficiency of the turbine, thermal barrier coatings (TBCs) must be used. A TBC coating of 250 μm thick can reduce the temperature by up to 200° C. Air Plasma Spray Process (APS) and High Enthalpy Plasma Spray Process (100HE) were the processes used for coating the blades with the TBCs. Because thermal conductivity increases with increase in temperature, it is desired that these processes yield very low thermal conductivities at high temperatures in order not to damage the blade. An experiment was carried out using Flash line 5000 apparatus to compare the thermal conductivity of both processes.The apparatus could also be used to determine the thermal diffusivity and specific heat of the TBCs. 75 to 2800 K was the temperature range used in the experimentation. It was found out that though 100HE has high deposition efficiency, the thermal conductivity increases with increase in temperatures whiles APS yielded low thermal conductivities.

  15. Plasma-Assisted ALD of an Al2O3 Permeation Barrier Layer on Plastic

    NASA Astrophysics Data System (ADS)

    Lei, Wenwen; Li, Xingcun; Chen, Qiang; Wang, Zhengduo

    2012-02-01

    Atomic layer deposition (ALD) technique is used in the preparation of organic/inorganic layers, which requires uniform surfaces with their thickness down to several nanometers. For film with such thickness, the growth mode defined as the arrangement of clusters on the surface during the growth is of significance. In this work, Al2O3 thin film was deposited on various interfacial species of pre-treated polyethylene terephthalate (PET, 12 μm) by plasma assisted atomic layer deposition (PA-ALD), where trimethyl aluminium was used as the Al precursor and O2 as the oxygen source. The interfacial species, -NH3, -OH, and -COOH as well as SiCHO (derived from monomer of HMDSO plasma), were grafted previously by plasma and chemical treatments. The growth mode of PA-ALD Al2O3 was then investigated in detail by combining results from in-situ diagnosis of spectroscopic ellipsometry (SE) and ex-situ characterization of as-deposited layers from the morphologies scanned by atomic force microscopy (AFM). In addition, the oxygen transmission rates (OTR) of the original and treated plastic films were measured. The possible reasons for the dependence of the OTR values on the surface species were explored.

  16. A low-power magnetic-field-assisted plasma jet generated by dielectric-barrier discharge enhanced direct-current glow discharge at atmospheric pressure

    SciTech Connect

    Jiang, Weiman; Tang, Jie Wang, Yishan; Zhao, Wei; Duan, Yixiang; Research Center of Analytical Instrumentation, Sichuan University, Chengdu 610064

    2014-01-06

    A magnetic field is introduced to the dielectric-barrier discharge enhanced direct-current glow discharge for efficient plasma generation, with the discharge power of 2.7 W and total energy consumption reduced to 34% of the original. By spatially examining the emission spectra and plasma temperature, it is found that their peaks shift from edges to the center and the negative and anode glows merge into the positive column and disappear, accompanied by improvement of uniformity and chemical activity of the enlarged plasma. This lies in the enhancement of ionization in the curved and lengthened electron path and the dispersion of discharge domains.

  17. The algorithm and program complex for splitting on a parts the records of acoustic waves recorded during the work of plasma actuator flush-mounted in the model plane nozzle with the purpose of analyzing their robust spectral and correlation characteristics

    NASA Astrophysics Data System (ADS)

    Chernousov, A. D.; Malakhov, D. V.; Skvortsova, N. N.

    2014-03-01

    Currently acute problem of developing new technologies by reducing the noise of aircraft engines, including the directional impact on the noise on the basis of the interaction of plasma disturbances and sound generation pulsations. One of the devices built on this principle being developed in GPI RAS. They are plasma actuators (group of related to each other gaps, built on the perimeter of the nozzle) of various shapes and forms. In this paper an algorithm was developed which allows to separate impulses from the received experimental data, acquired during the work of plasma actuator flush-mounted in the model plane nozzle. The algorithm can be adjusted manually under a variety of situations (work of actuator in a nozzle with or without airflow, adjustment to different frequencies and pulse duration of the actuator). And program complex is developed on the basis of MatLab software, designed for building sustainable robust spectral and autocovariation functions of acoustic signals recorded during the experiments with the model of a nozzle with working actuator.

  18. Effect of duty-cycles on the air plasma gas-phase of dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Barni, R.; Biganzoli, I.; Dell'Orto, E. C.; Riccardi, C.

    2015-10-01

    An experimental investigation concerning the effects of a duty-cycle in the supply of a dielectric barrier discharge in atmospheric pressure air has been performed. Electrical characteristics of the discharge have been measured, focusing mainly on the statistical properties of the current filaments and on dielectric surface charging, both affected by the frequent repetition of breakdown imposed by the duty-cycle. Information on the gas-phase composition was gathered too. In particular, a strong enhancement in the ozone formation rate is observed when suitable long pauses separate the active discharge phases. A simulation of the chemical kinetics in the gas-phase, based on a simplified discharge modeling, is briefly described in order to shed light on the observed increase in ozone production. The effect of a duty-cycle on surface modification of polymeric films in order to increase their wettability has been investigated too.

  19. High Temperature Damping Behavior of Plasma-Sprayed Thermal Barrier and Protective Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.; Duffy, Kirsten P.; Ghosn, Louis J.

    2010-01-01

    A high temperature damping test apparatus has been developed using a high heat flux CO 2 laser rig in conjunction with a TIRA S540 25 kHz Shaker and Polytec OFV 5000 Vibrometer system. The test rig has been successfully used to determine the damping performance of metallic and ceramic protective coating systems at high temperature for turbine engine applications. The initial work has been primarily focused on the microstructure and processing effects on the coating temperature-dependence damping behavior. Advanced ceramic coatings, including multicomponent tetragonal and cubic phase thermal barrier coatings, along with composite bond coats, have also been investigated. The coating high temperature damping mechanisms will also be discussed.

  20. Polypropylene film chemical and physical modifications by dielectric barrier discharge plasma treatment at atmospheric pressure.

    PubMed

    Leroux, Frédéric; Campagne, Christine; Perwuelz, Anne; Gengembre, Léon

    2008-12-15

    Dielectric barrier discharge (DBD) technologies have been used to treat a polypropylene film. Various parameters such as treatment speed or electrical power were changed in order to determine the treatment power impact at the polypropylene surface. Indeed, all the treatments were performed using ambient air as gas to oxidize the polypropylene surface. This oxidation level and the surface modifications during the ageing were studied by a wetting method and by X-ray photoelectron spectroscopy (XPS). Moreover polypropylene film surface topography was analyzed by atomic force microscopy (AFM) in order to observe the surface roughness modifications. These topographic modifications were correlated to the surface oxidation by measuring with a lateral force microscope (LFM) the surface heterogeneity. The low ageing effects and the surface reorganization are discussed. PMID:18930244

  1. Decreased plasma thiol antioxidant barrier and selenoproteins as potential biomarkers for ongoing methylmercury intoxication and an individual protective capacity.

    PubMed

    Usuki, Fusako; Fujimura, Masatake

    2016-04-01

    Manifestation of methylmercury (MeHg) toxicity depends on individual susceptibility to MeHg, as well as MeHg burden level. Therefore, biomarkers that reflect the protective capacity against MeHg are needed. The critical role of oxidative stress in the pathogenesis of MeHg cytotoxicity has been demonstrated. Because MeHg has high affinity for selenohydryl groups, sulfhydryl groups, and selenides, and causes posttranscriptional defects in selenoenzymes, proteins with selenohydryl and sulfhydryl groups should play a critical role in mediating MeHg-induced oxidative stress. Here, plasma oxidative stress markers and selenoproteins were investigated in MeHg-intoxicated rats showing neuropathological changes after 4 weeks of MeHg exposure. The thiol antioxidant barrier (-SHp) level significantly decreased 2 weeks after MeHg exposure, which is an early stage at which no systemic oxidative stress, histopathological changes, or clinical signs were detected. Diacron reactive oxidant metabolite (d-ROM) levels significantly increased 3 weeks after MeHg exposure, indicating the occurrence of systemic oxidative stress. Rats treated with lead acetate or cadmium chloride showed no changes in levels of -SHp and d-ROM. Selenoprotein P1 abundance significantly decreased in MeHg-treated rats, whereas it significantly increased in rats treated with Pb or Cd. Plasma selenium-dependent glutathione peroxidase (GPx3) activity also significantly decreased after MeHg exposure, whereas plasma non-selenoenzyme glutathione reductase activity significantly increased in MeHg-treated rats. The results suggest that decreased capacity of -SHp and selenoproteins (GPx3 and selenoprotein P) can be useful biomarkers of ongoing MeHg cytotoxicity and the individual protective capacity against the MeHg body burden. PMID:25975991

  2. Electropneumatic actuator, phase 1

    NASA Astrophysics Data System (ADS)

    Bloomfield, D. P.

    1989-10-01

    The program demonstrated the feasibility of an electropneumatic actuator which can be used in manufacturing applications. The electropneumatic actuator, an alternative to the electric, hydraulic, and pneumatic actuators used in industry, consists of an electrochemical compressor, a power supply, and an actuator. The electrochemical compressor working fluid is hydrogen and a solvent such as water or ammonia. The compressor has no moving parts and runs on low voltage DC. The actuator is a conventional, commercially available unit. Researchers designed, constructed, and tested the electrochemical compressor in conjunction with the actuator, power supply, and computerized control. The one inch actuator can lift a fifty pound weight a distance of ten inches in about 1.5 minutes. The electrochemically powered system is capable of driving its loaded actuator to a prescribed location at a controlled rate. A defined set of design changes will combine the compressor and actuator in the same housing, and will develop two orders of magnitude increased actuator speed at the same or higher force levels.

  3. Properties of Plasma Enhanced Chemical Vapor Deposition Barrier Coatings and Encapsulated Polymer Solar Cells

    NASA Astrophysics Data System (ADS)

    Qi, Lei; Zhang, Chunmei; Chen, Qiang

    2014-01-01

    In this paper, we report silicon oxide coatings deposited by plasma enhanced chemical vapor deposition technology (PECVD) on 125 μm polyethyleneterephthalate (PET) surfaces for the purpose of the shelf lifetime extension of sealed polymer solar cells. After optimization of the processing parameters, we achieved a water vapor transmission rate (WVTR) of ca. 10-3 g/m2/day with the oxygen transmission rate (OTR) less than 0.05 cc/m2/day, and succeeded in extending the shelf lifetime to about 400 h in encapsulated solar cells. And then the chemical structure of coatings related to the properties of encapsulated cell was investigated in detail.

  4. Silicon Carbide as a tritium permeation barrier in tungsten plasma-facing components

    NASA Astrophysics Data System (ADS)

    Wright, G. M.; Durrett, M. G.; Hoover, K. W.; Kesler, L. A.; Whyte, D. G.

    2015-03-01

    The control of tritium inventory is of great importance in future fusion reactors, not only from a safety standpoint but also to maximize a reactor's efficiency. Due to the high mobility of hydrogenic species in tungsten (W) one concern is the loss of tritium from the system via permeation through the tungsten plasma-facing components (PFC). This can lead to loss of tritium through the cooling channels of the wall thereby mandating tritium monitoring and recovery methods for the cooling system of the first wall. The permeated tritium is then out of the fuel cycle and cannot contribute to energy production until it is recovered and recycled into the system.

  5. Local transport barrier formation and relaxation in reverse-shear plasmas on the TFTR tokamak

    SciTech Connect

    Synakowski, E.J.; Beer, M.A.; Batha, S.H.

    1997-02-01

    The roles of turbulence stabilization by sheared E x B flow and Shafranov-shift gradients are examined for TFTR. Enhanced Reverse-Shear plasmas. Both effects in combination provide the basis of a positive-feedback model that predicts reinforced turbulence suppression with increasing pressure gradient. Local fluctuation behavior at the onset of ERS confinement is consistent with this framework. The power required for transitions into the ERS regime are lower when high power neutral beams are applied earlier in the current profile evolution, consistent with the suggestion that both effects play a role. Separation of the roles of E x B and Shafranov shift effects was performed by varying the E x B shear through changes in the toroidal velocity with nearly-steady-state pressure profiles. Transport and fluctuation levels increase only when E x B shearing rates are driven below a critical value that is comparable to the fastest linear growth rates of the dominant instabilities. While a turbulence suppression criterion that involves the ratio of shearing to linear growth rates is in accord with many of these results, the existence of hidden dependencies of the criterion is suggested in experiments where the toroidal field was varied. The forward transition into the ERS regime has also been examined in strongly rotating plasmas. The power threshold is higher with unidirectional injection than with balanced injection.

  6. [Spectroscopic measurements of atomic hydrogen concentrations in dielectric barrier discharge hydrogen plasmas].

    PubMed

    Wang, Wei-Guo; Xu, Yong; Liu, Zhong-Wei; Zhu, Ai-Min; Wang, Wen-Chun

    2006-09-01

    Atomic hydrogen plays important roles in chemical vapor deposition of functional materials, plasma etching, and surface cleaning. The present work introduces the fundamental principle to determine atomic hydrogen density via optical emission spectroscopy using Ar as an actinometer, and also reports the experimental results of atomic hydrogen density in the DBD discharge hydrogen plasmas. The variations of atomic hydrogen density and the hydrogen dissociation fraction as a function of pressure were calculated based on some of the available electron-impact excitation cross section and quenching cross sections in the literatures. In this work, as the pressure increases from 0.32 to 5.1 kPa, the hydrogen dissociation fraction decreases from 5.2% to 0.089%, and the atomic hydrogen density decreases from 4.9 x 10(15) cm(-3) to 1.3 x 10(15) cm(-3). The variations of H atom Balmer lines and Ar (750.4 nm) emission intensity as functions of gas pressure, discharge voltage, and frequency were also investigated. PMID:17112023

  7. MEMS fluidic actuator

    DOEpatents

    Kholwadwala, Deepesh K.; Johnston, Gabriel A.; Rohrer, Brandon R.; Galambos, Paul C.; Okandan, Murat

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  8. Microstructural evolution of plasma sprayed submicron-/nano-zirconia-based thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Bai, Y.; Liu, K.; Wang, J. W.; Kang, Y. X.; Li, J. R.; Chen, H. Y.; Li, B. Q.

    2016-02-01

    Two types of agglomerates powder with grain sizes in the submicron- /nano-range were used as the feedstock to deposit yttria partially stabilized zirconia (YPSZ) thermal barrier coatings (TBCs). The dual-modal submicron-coating and multi-modal nano-coating were fabricated. The results from thermal shock test indicated that, due to the weak bond and higher densification rate of unmelted nano-particles in the nano-coating, the interface between recrystallization zone and unmelted nano-particles linked up, which resulted in the decrease of content of unmelted nano-particles from 13% to 7%. The weak bond and higher shrinking rate of nano-particles led to the formation of coarse cracks that ran along the recrystallization zone/unmelted nano-particles interfaces. These cracks caused the premature failure of nano-coating. The submicron-coating can overcome the inherent deficiencies of nano-coating at high temperatures and show a higher thermal shock resistance, it is expected to become a candidate for high-performance TBCs.

  9. Remote switch actuator

    SciTech Connect

    Haas, Edwin Gerard; Beauman, Ronald; Palo, Jr., Stefan

    2013-01-29

    The invention provides a device and method for actuating electrical switches remotely. The device is removably attached to the switch and is actuated through the transfer of a user's force. The user is able to remain physically removed from the switch site obviating need for protective equipment. The device and method allow rapid, safe actuation of high-voltage or high-current carrying electrical switches or circuit breakers.

  10. Comprehensive piezoceramic actuator review

    NASA Astrophysics Data System (ADS)

    Taylor, Chris J.; Washington, Gregory N.

    2002-07-01

    Piezoceramic actuation has become an area of increased interest in the past ten years. Having been used for many years as sensors in such applications as pressure transducers and smoke detectors, piezoceramics are now being used as prime movers in fuel injectors and valve lifters. In an effort to aid the engineering community, this paper will conduct a comprehensive review of several piezoceramic actuators. Classical design parameters will be derived for each actuator such as blocked force and free stroke. In addition, more esoteric entities such as mechanical efficiency and energy density will also be derived. The result will be design metrics of popular piezoceramic actuators containing vital design equations, validated with empirical data. Of the many different configurations of piezoceramic actuators, this paper will investigate the bimorph and unimorph bender. These actuator types are finding increased use in semi-active structural damping, energy harvesting and vibration control. The work in this paper will show experimental verification of various actuator types as well as theoretical derivations. In addition to unimorphs, bimorphs and stack actuators a novel type of unimorph bender, the THUNDER actuator (developed and licensed by NASA) will be included in the review.

  11. Improved Electrohydraulic Linear Actuators

    NASA Technical Reports Server (NTRS)

    Hamtil, James

    2004-01-01

    A product line of improved electrohydraulic linear actuators has been developed. These actuators are designed especially for use in actuating valves in rocket-engine test facilities. They are also adaptable to many industrial uses, such as steam turbines, process control valves, dampers, motion control, etc. The advantageous features of the improved electrohydraulic linear actuators are best described with respect to shortcomings of prior electrohydraulic linear actuators that the improved ones are intended to supplant. The flow of hydraulic fluid to the two ports of the actuator cylinder is controlled by a servo valve that is controlled by a signal from a servo amplifier that, in turn, receives an analog position-command signal (a current having a value between 4 and 20 mA) from a supervisory control system of the facility. As the position command changes, the servo valve shifts, causing a greater flow of hydraulic fluid to one side of the cylinder and thereby causing the actuator piston to move to extend or retract a piston rod from the actuator body. A linear variable differential transformer (LVDT) directly linked to the piston provides a position-feedback signal, which is compared with the position-command signal in the servo amplifier. When the position-feedback and position-command signals match, the servo valve moves to its null position, in which it holds the actuator piston at a steady position.

  12. FLUIDS, PLASMAS AND ELECTRIC DISCHARGES: The influence of the structures and compounds of DLC coatings on the barrier properties of PET bottles

    NASA Astrophysics Data System (ADS)

    Yang, Li; Wang, Zhen-Duo; Zhang, Shou-Ye; Yang, Li-Zhen; Chen, Qiang

    2009-12-01

    To reduce the oxygen transmission rate through a polyethylene terephthalate (PET) bottle (an organic plastic) diamond-like carbon (DLC) coatings on the inner surface of the PET bottle were deposited by radio frequency plasma-enhanced chemical vapour deposition (RF-PECVD) technology with C2H2 as the source of carbon and Ar as the diluted gas. As the barrier layer to humidity and gas permeation, this paper analyses the DLC film structure, composition, morphology and barrier properties by Fourier transform infrared, atomic force microscopy, scanning electron microscopy and oxygen transmission rate in detail. From the spectrum, it is found that the DLC film mainly consists of sp3 bonds. The barrier property of the films is significantly relevant to the sp3 bond concentration in the coating, the film thickness and morphology. Additionally, it is found that DLC film deposited in an inductively coupled plasma enhanced capacitively coupled plasma source shows a compact, homogeneous and crack-free surface, which is beneficial for a good gas barrier property in PET bottles.

  13. An asymmetrically surface-modified graphene film electrochemical actuator.

    PubMed

    Xie, Xuejun; Qu, Liangti; Zhou, Ce; Li, Yan; Zhu, Jia; Bai, Hua; Shi, Gaoquan; Dai, Liming

    2010-10-26

    It is critically important to develop actuator systems for diverse needs ranging from robots and sensors to memory chips. The advancement of mechanical actuators depends on the development of new materials and rational structure design. In this study, we have developed a novel graphene electrochemical actuator based on a rationally designed monolithic graphene film with asymmetrically modified surfaces. Hexane and O(2) plasma treatment were applied to the opposite sides of graphene film to induce the asymmetrical surface properties and hence asymmetrical electrochemical responses, responsible for actuation behaviors. The newly designed graphene actuator demonstrated here opens a new way for actuator fabrication and shows the potential of graphene film for applications in various electromechanical systems. PMID:20828146

  14. Dietary spray-dried chicken plasma improves intestinal barrier function and modulates immune status in weaning piglets.

    PubMed

    Zhang, Y; Zheng, P; Yu, B; He, J; Yu, J; Mao, X B; Wang, J X; Luo, J Q; Huang, Z Q; Cheng, G X; Chen, D W

    2016-01-01

    The objective of this study was to evaluate the effects of dietary addition of spray-dried chicken plasma (SDCP) as a replacement for spray-dried porcine plasma (SDPP) on serum biochemistry, intestinal barrier function, immune parameters, and the expression of intestinal development-related genes in weaning pigs. One hundred and forty-four 25-d-old weaning piglets with BW of 6.43 ± 0.39 kg were randomly allotted to 1 of 4 dietary treatments: 1) CON (basal diet; control), 2) SDPP (containing 5% SDPP), 3) SDPP + SDCP (containing 2.5% SDPP and 2.5% SDCP), and 4) SDCP (containing 5% SDCP). After a 28-d trial, 6 pigs from each treatment were randomly selected to collect serum and intestinal samples. On d 14 after the initiation of the trial, pigs in the SDPP, SDPP + SDCP, and SDCP groups had an increase ( < 0.05) in serum concentrations of total protein and IgG and a decrease ( < 0.05) in activities of alanine aminotransferase and diamine oxidase compared with the CON group. In the jejunum, supplementation with SDPP and SDCP reduced ( < 0.05) the concentration of tumor necrosis factor-α (TNF-α) and upregulated ( < 0.05) the mRNA levels of zonula occludens 1 (ZO-1), zonula occludens 2 (ZO-2), occludin (OCLN), Toll-like receptor 2 (TLR2), glucagon-like peptide 2 (GLP2), and IGF-1 compared with the CON group. In the ileum, feeding SDPP, SDPP + SDCP, and SDCP decreased ( < 0.05) the concentrations of TNF-α and secretory IgA (sIgA) and upregulated ( < 0.05) the mRNA levels of claudin 1 (CLDN-1) and TLR2 compared with feeding CON. However, there were no differences among the SDPP, SDPP + SDCP, and SDCP groups. Furthermore, supplementation with SDCP reduced ( < 0.05) the concentration of IL-10 and upregulated ( < 0.05) the mRNA levels of GLP-2, mucin 2 (MUC2), and trefoil factor family 3 (TFF3) in the ileum compared with feeding CON. Collectively, the current results indicate that dietary addition of SDCP has a beneficial influence on the health condition of weaning pigs by alleviating liver damage, promoting intestinal development, improving intestinal barrier function, and reducing overstimulation of immune response. The efficacy of SDCP is comparable to that of SDPP. PMID:26812324

  15. Thermal Conductivity and Erosion Durability of Composite Two-Phase Air Plasma Sprayed Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Schmitt, Michael P.; Rai, Amarendra K.; Zhu, Dongming; Dorfman, Mitchell R.; Wolfe, Douglas E.

    2015-01-01

    To enhance efficiency of gas turbines, new thermal barrier coatings (TBCs) must be designed which improve upon the thermal stability limit of 7 wt% yttria stabilized zirconia (7YSZ), approximately 1200 C. This tenant has led to the development of new TBC materials and microstructures capable of improved high temperature performance. This study focused on increasing the erosion durability of cubic zirconia based TBCs, traditionally less durable than the metastable t' zirconia based TBCs. Composite TBC microstructures composed of a low thermal conductivity/high temperature stable cubic Low-k matrix phase and a durable t' Low-k secondary phase were deposited via APS. Monolithic coatings composed of cubic Low-k and t' Low-k were also deposited, in addition to a 7YSZ benchmark. The thermal conductivity and erosion durability were then measured and it was found that both of the Low-k materials have significantly reduced thermal conductivities, with monolithic t' Low-k and cubic Low-k improving upon 7YSZ by approximately 13 and approximately 25%, respectively. The 40 wt% t' Low-k composite (40 wt% t' Low-k - 60 wt% cubic Low-k) showed a approximately 22% reduction in thermal conductivity over 7YSZ, indicating even at high levels, the t' Low-k secondary phase had a minimal impact on thermal in the composite coating. It was observed that a mere 20 wt% t' Low-k phase addition can reduce the erosion of a cubic Low-k matrix phase composite coating by over 37%. Various mixing rules were then investigated to assess this non-linear composite behavior and suggestions were made to further improve erosion durability.

  16. Hot-corrosion behavior of graded thermal barrier coatings formed by plasma-spraying process

    NASA Astrophysics Data System (ADS)

    Mifune, N.; Harada, Y.; Doi, T.; Yamasaki, R.

    2004-12-01

    The hot-corrosion behavior of thermal barrier coatings (TBCs) has been studied by comparing double-layer coatings and graded coatings. Two types of oxide ceramics, 2CaO·SiO2-15mass%CaO·ZrO2 (C2S-15CZ) and 8 mass% Y2O3·ZrO2 (8YSZ), with a bond coating of NiCrAlY, were applied to metallic substrates in this study. After hot-corrosion testing with V2O5-Na2SO4 corrosive ash for 3 h at 1273 K, the TBCs were investigated by visual inspection, a scanning electron microscope, x-ray diffraction, and electron probe microanalysis. The findings for the resulting coating of C2S-15CZ reacted with V2O5 only where it was in direct contact with the corrosive ash. The affected area from the reaction was limited to the coating surface where V2O5 was present. The coating showed adequate hot-corrosion resistance against V2O5-Na2SO4 corrosive ash for 3 h at 1273 K. The findings for the 8YSZ coating were that Y2O3, the stabilizing component, particularly reacted with V2O5 and lost its function, which led to partial spalling of the coating. It was observed that the hot-corrosion resistance of the double-layer TBC was largely influenced by the performance of a corrosion-resistant NiCrAlY bond coat, which provided protection against corrosive components penetrating through the ceramic topcoat. Last, the graded coating degraded due to the oxidation of NiCrAlY particles that existed near the topcoat surface and affected the durability of the TBC.

  17. Turbulent boundary-layer control with plasma spanwise travelling waves

    NASA Astrophysics Data System (ADS)

    Whalley, Richard D.; Choi, Kwing-So

    2014-08-01

    Arrays of dielectric-barrier-discharge plasma actuators have been designed to generate spanwise travelling waves in the turbulent boundary layer for possible skin-friction drag reductions. Particle image velocimetry was used to elucidate the modifications to turbulence structures created by the plasma spanwise travelling waves. It has been observed that the plasma spanwise travelling waves amalgamated streamwise vortices, lifting low-speed fluid from the near-wall region up and around the peripheries of their cores to form wide ribbons of low-speed streamwise velocity within the viscous sublayer.

  18. Plasma etching of SiO2 using remote-type pin-to-plate dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Park, Jae Beom; Kyung, Se Jin; Yeom, Geun Young

    2008-10-01

    Atmospheric pressure plasma etching of SiO2 was examined using a modified remote-type dielectric barrier discharge (DBD), called "pin-to-plate DBD." The effect of adding four gases CF4, C4F8, O2, and Ar to the base gas mixture containing N2 (60 slm) (slm denotes standard liters per minute)/NF3 (600 SCCM) (SCCM denotes cubic centimeter per minute at STP) on the SiO2 etch characteristics was investigated. The results showed that the SiO2 etch rate decreased continuously with increasing C4F8 (200-800 SCCM) addition, whereas the SiO2 etch rate increased with increasing CF4 (1-10 slm) addition up to 7 slm CF4. This increase in the SiO2 etch rate up to 7 slm CF4 was attributed to the effective removal of Si in SiO2 by F atoms through the removal of oxygen in SiO2 by carbon in the CFX in the plasma. However, the decrease in SiO2 etch rate with further increases in CF4 flow rate above 7 slm was attributed to the formation of a thick C-F polymer layer on the SiO2 surface. A SiO2 etch rate of approximately 243 nm/min was obtained with a gas mixture of N2 (60 slm)/NF3 (600 SCCM)/CF4 (7 slm), and an input voltage and operating frequency to the source of 10 kV and 30 kHz, respectively. The addition of 200 SCCM Ar to the above gas mixture increased the SiO2 etch rate to approximately 263 nm/min. This is possibly due to the increased ionization and dissociation of reactive species through penning ionization of Ar.

  19. Plasma Separation Process: Betacell (BCELL) code: User's manual. [Bipolar barrier junction

    SciTech Connect

    Taherzadeh, M.

    1987-11-13

    The emergence of clearly defined applications for (small or large) amounts of long-life and reliable power sources has given the design and production of betavoltaic systems a new life. Moreover, because of the availability of the plasma separation program, (PSP) at TRW, it is now possible to separate the most desirable radioisotopes for betacell power generating devices. A computer code, named BCELL, has been developed to model the betavoltaic concept by utilizing the available up-to-date source/cell parameters. In this program, attempts have been made to determine the betacell energy device maximum efficiency, degradation due to the emitting source radiation and source/cell lifetime power reduction processes. Additionally, comparison is made between the Schottky and PN junction devices for betacell battery design purposes. Certain computer code runs have been made to determine the JV distribution function and the upper limit of the betacell generated power for specified energy sources. A Ni beta emitting radioisotope was used for the energy source and certain semiconductors were used for the converter subsystem of the betacell system. Some results for a Promethium source are also given here for comparison. 16 refs.

  20. New Formation Technology of Plasma Display Panel Barrier-Rib Structure Using Silicone Rubber Mold Transferred from SU-8 Master Structure

    NASA Astrophysics Data System (ADS)

    Son, Seung-Hyun; Park, Yong-Suk; Choi, Sie-Young

    2002-06-01

    A new formation technology for a plasma display panel (PDP) barrier-rib structure is presented to realize a barrier rib with a high aspect ratio and reduce the manufacturing cost. In this study, we used an SU-8 50 photoresist, which is sensitive to UV irradiation, instead of polymethylmethacrylate (PMMA) which is sensitive to X-ray irradiation, so that the silicone rubber mold could be applicable to a large-area PDP. The first step is to produce an SU-8 master structure using amorphous silicon as an adhesion layer between a glass substrate and SU-8 photoresist. Second, a precise soft mold is manufactured for mass replication of the PDP barrier-rib construction, by molding liquid silicone rubber onto the glass substrate with lithographically defined SU-8 master structures. Third, a PDP barrier-rib structure is formed using the pattern-transferring process with a reusable silicone rubber mold. This is a very simple and inexpensive process consisting with printing of barrier-rib paste, drying, pattern-transferring, and sintering. The pattern-transferring process with a soft mold also demonstrates that the disadvantages of the conventional mold pressing process with a hard mold can be overcome. Consequently, by using the pattern-transferring process with the silicone rubber mold transferred from the SU-8 master structure, the desired barrier-rib shapes can be realized with a high aspect ratio and various dimensions.

  1. Metal carbonyl vapor generation coupled with dielectric barrier discharge to avoid plasma quench for optical emission spectrometry.

    PubMed

    Cai, Yi; Li, Shao-Hua; Dou, Shuai; Yu, Yong-Liang; Wang, Jian-Hua

    2015-01-20

    The scope of dielectric barrier discharge (DBD) microplasma as a radiation source for optical emission spectrometry (OES) is extended by nickel carbonyl vapor generation. We proved that metal carbonyl completely avoids the extinguishing of plasma, and it is much more suitable for matching the DBD excitation and OES detection with respect to significant DBD quenching by concomitant hydrogen when hydride generation is used. A concentric quartz UV reactor allows sample solution to flow through the central channel wherein to efficiently receive the uniformly distributed UV irradiation in the confined cylindrical space between the concentric tubes, which facilitates effective carbonyl generation in a nickel solution. The carbonyl is transferred into the DBD excitation chamber by an argon stream for nickel excitation, and the characteristic emission of nickel at 232.0 nm is detected by a charge-coupled device (CCD) spectrometer. A 1.0 mL sample solution results in a linear range of 5-100 μg L(-1) along with a detection limit of 1.3 μg L(-1) and a precision of 2.4% RSD at 50 μg L(-1). The present DBD-OES system is validated by nickel in certified reference materials. PMID:25511607

  2. Double-Layer Gadolinium Zirconate/Yttria-Stabilized Zirconia Thermal Barrier Coatings Deposited by the Solution Precursor Plasma Spray Process

    NASA Astrophysics Data System (ADS)

    Jiang, Chen; Jordan, Eric H.; Harris, Alan B.; Gell, Maurice; Roth, Jeffrey

    2015-08-01

    Advanced thermal barrier coatings (TBCs) with lower thermal conductivity, increased resistance to calcium-magnesium-aluminosilicate (CMAS), and improved high-temperature capability, compared to traditional yttria-stabilized zirconia (YSZ) TBCs, are essential to higher efficiency in next generation gas turbine engines. Double-layer rare-earth zirconate/YSZ TBCs are a promising solution. From a processing perspective, solution precursor plasma spray (SPPS) process with its unique and beneficial microstructural features can be an effective approach to obtaining the double-layer microstructure. Previously durable low-thermal-conductivity YSZ TBCs with optimized layered porosity, called the inter-pass boundaries (IPBs) were produced using the SPPS process. In this study, an SPPS gadolinium zirconate (GZO) protective surface layer was successfully added. These SPPS double-layer TBCs not only retained good cyclic durability and low thermal conductivity, but also demonstrated favorable phase stability and increased surface temperature capabilities. The CMAS resistance was evaluated with both accumulative and single applications of simulated CMAS in isothermal furnaces. The double-layer YSZ/GZO exhibited dramatic improvement in the single application, but not in the continuous one. In addition, to explore their potential application in integrated gasification combined cycle environments, double-layer TBCs were tested under high-temperature humidity and encouraging performance was recorded.

  3. Thermal barrier coating life and isothermal oxidation of low-pressure plasma-sprayed bond coat alloys

    NASA Technical Reports Server (NTRS)

    Brindley, W. J.; Miller, R. A.

    1990-01-01

    The paper investigates the isothermal oxidation kinetics of Ni-35Cr-6Al-0.95Y, Ni-18Cr-12Al-0.3Y, and Ni-16Cr-6Al-0.3Y low-pressure plasma-sprayed bond coat alloys and examines the effect of these alloys on the thermal barrier coating (TBC) cyclic life. TBC life was examined by cycling substrates coated with the different bond coats and a ZrO2-7 wt pct Y2O3 TBC in an air-rich burner rig flame between 1150 C and room temperature. The oxidation kinetics of the three bond coat alloys was examined by isothermal oxidation of monolithic NJiCrAlY coupons at 1083 C. The Ni-35Cr-6Al-0.95Y alloy exhibits comparatively high isothermal oxidation weight gains and provides the longest TBC life, whereas the Ni-16Cr-6Al-0.3Y alloy had the lowest weight gains and provided the shortest TBC life. The results show that, although bond coat oxidation is known to have a strong detrimental effect on TBC life, it is not the only bond coat factor that determines TBC life.

  4. Analysis of Plasma-Sprayed Thermal Barrier Coatings With Homogeneous and Heterogeneous Bond Coats Under Spatially Uniform Cyclic Thermal Loading

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Pindera, Marek-Jerzy; Aboudi, Jacob

    2003-01-01

    This report summarizes the results of a numerical investigation into the spallation mechanism in plasma-sprayed thermal barrier coatings observed under spatially-uniform cyclic thermal loading. The analysis focuses on the evolution of local stress and inelastic strain fields in the vicinity of the rough top/bond coat interface during thermal cycling, and how these fields are influenced by the presence of an oxide film and spatially uniform and graded distributions of alumina particles in the metallic bond coat aimed at reducing the top/bond coat thermal expansion mismatch. The impact of these factors on the potential growth of a local horizontal delamination at the rough interface's crest is included. The analysis is conducted using the Higher-Order Theory for Functionally Graded Materials with creep/relaxation constituent modeling capabilities. For two-phase bond coat microstructures, both the actual and homogenized properties are employed in the analysis. The results reveal the important contributions of both the normal and shear stress components to the delamination growth potential in the presence of an oxide film, and suggest mixed-mode crack propagation. The use of bond coats with uniform or graded microstructures is shown to increase the potential for delamination growth by increasing the magnitude of the crack-tip shear stress component.

  5. Thermal Aging Behavior of Axial Suspension Plasma-Sprayed Yttria-Stabilized Zirconia (YSZ) Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Zhao, Yuexing; Wang, Liang; Yang, Jiasheng; Li, Dachuan; Zhong, Xinghua; Zhao, Huayu; Shao, Fang; Tao, Shunyan

    2015-02-01

    7.5YSZ thermal barrier coatings (TBCs) were deposited onto the stainless steel substrates using axial suspension plasma spraying (ASPS). Free-standing coatings were isothermally aged in air from 1200 to 1600 °C for 24 h and at 1550 °C for 20 to 100 h, respectively. Thermal aging behavior such as phase composition, microstructure evolutions, grain growth, and mechanical properties for thermal-aged coatings were investigated. Results show that the as-sprayed metastable tetragonal (t'-ZrO2) phase decomposes into equilibrium tetragonal (t-ZrO2) and cubic (c-ZrO2) phases during high-temperature exposures. Upon further cooling, the c-ZrO2 may be retained or transform into another metastable tetragonal (t″-ZrO2) phase, and tetragonal → monoclinic phase transformation occurred after 1550 °C/40 h aging treatment. The coating exhibits a unique structure with segmentation cracks and micro/nano-size grains, and the grains grow gradually with increasing aging temperature and time. In addition, the hardness ( H) and Young's modulus ( E) significantly increased as a function of temperature due to healing of pores or cracks and grain growth of the coating. And a nonmonotonic variation is found in the coatings thermal aged at a constant temperature (1550 °C) with prolonged time, this is a synergetic effect of coating sintering and m-ZrO2 phase formation.

  6. Thermally responsive mechanical actuator

    NASA Technical Reports Server (NTRS)

    Madey, J. M.

    1973-01-01

    Device built for use in heat control, heat measurement, and mechanical actuation by heat include thermometers, thermostats, safety switches, circuit breakers, and mechanical actuators. Silicon rubber has highest coefficient of expansion of any known material and seems suitable for most of these devices.

  7. Self-actuated device

    DOEpatents

    Hecht, Samuel L. (Richland, WA)

    1984-01-01

    A self-actuated device, of particular use as a valve or an orifice for nuclear reactor fuel and blanket assemblies, in which a gas produced by a neutron induced nuclear reaction gradually accumulates as a function of neutron fluence. The gas pressure increase occasioned by such accumulation of gas is used to actuate the device.

  8. Dielectric barrier discharge plasma treatment on E. coli: Influence of CH4/N2, O2, N2/O2, N2, and Ar gases

    NASA Astrophysics Data System (ADS)

    Majumdar, Abhijit; Singh, Rajesh Kumar; Palm, Gottfried J.; Hippler, Rainer

    2009-10-01

    Atmospheric pressure dielectric barrier discharge (DBD) plasma has been employed on Gram-negative bacteria, Escherichia coli BL21. Treatment was carried out using plasma generated with different compositions of gases: CH4/N2 (1:2), O2, N2/O2 (1:1), N2, and Ar, and by varying plasma power and treatment time. E. coli cells were exposed under the DBD plasma in triplicates, and their surviving numbers were observed in terms of colony forming units. It has been observed that the CH4/N2 plasma exhibits relatively higher sterilization property toward E. coli compared to plasma generated by using O2, N2/O2, N2, and Ar gas mixtures. The time to kill up to 90% of the initial population of the E. coli cells was found to be about 2-3 min for CH4/N2 and O2 gas mixture DBD plasma. A prolongation of treatment time and an increase in the dissipated power significantly improved the E. coli killing efficiency of the atmospheric pressure DBD plasma.

  9. Efficacy of different carrier gases for barrier discharge plasma generation compared to chlorhexidine on the survival of Pseudomonas aeruginosa embedded in biofilm in vitro.

    PubMed

    Matthes, R; Hübner, N-O; Bender, C; Koban, I; Horn, S; Bekeschus, S; Weltmann, K-D; Kocher, T; Kramer, A; Assadian, O

    2014-01-01

    Because of its antimicrobial properties, nonthermal plasma could serve as an alternative to chemical antisepsis in wound treatment. Therefore, this study investigated the inactivation of biofilm-embedded Pseudomonas aeruginosa SG81 by a surface barrier-discharged (SBD) plasma for 30, 60, 150 and 300 s. In order to optimize the efficacy of the plasma, different carrier gases (argon, argon admixed with 1% oxygen, and argon with increased humidity up to approx. 80%) were tested and compared against 0.1% chlorhexidine digluconate (CHG) exposure for 600 s. The antimicrobial efficacy was determined by calculating the difference between the numbers of colony-forming units (CFU) of treated and untreated biofilms. Living bacteria were distinguished from dead by fluorescent staining and confocal laser scanning microscopy. Both SBD plasmas and CHG showed significant antimicrobial effects compared to the untreated control. However, plasma treatment led to a higher antimicrobial reduction (argon plasma 4.9 log10 CFU/cm(2), argon with admixed oxygen 3 log10 CFU/cm(2), and with increased gas humidity 2.7 log10 CFU/cm(2) after 300 s) compared to CHG. In conclusion, SBD plasma is suitable as an alternative to CHG for inactivation of Pseudomonas aeruginosa embedded in biofilm. Further development of SBD plasma sources and research on the role of carrier gases and humidity may allow their clinical application for wound management in the future. PMID:24434726

  10. Performance of Cobalt-Based Fischer-Tropsch Synthesis Catalysts Using Dielectric-Barrier Discharge Plasma as an Alternative to Thermal Calcination

    NASA Astrophysics Data System (ADS)

    Bai, Suli; Huang, Chengdu; Lv, Jing; Li, Zhenhua

    2012-01-01

    Co-based catalysts were prepared by using dielectric-barrier discharge (DBD) plasma as an alternative method to conventional thermal calcination. The characterization results of N2-physisorption, temperature programmed reduction (TPR), transmission electron microscope (TEM), and X-ray diffraction (XRD) indicated that the catalysts prepared by DBD plasma had a higher specific surface area, lower reduction temperature, smaller particle size and higher cobalt dispersion as compared to calcined catalysts. The DBD plasma method can prevent the sintering and aggregation of active particles on the support due to the decreased treatment time (0.5 h) at lower temperature compared to the longer thermal calcination at higher temperature (at 500° C for 5 h). As a result, the catalytic performance of the Fischer-Tropsch synthesis on DBD plasma treated Co/SiO2 catalyst showed an enhanced activity, C5+ selectivity and catalytic stability as compared to the conventional thermal calcined Co/SiO2 catalyst.

  11. Fast electrochemical actuator

    NASA Astrophysics Data System (ADS)

    Uvarov, I. V.; Postnikov, A. V.; Svetovoy, V. B.

    2016-03-01

    Lack of fast and strong microactuators is a well-recognized problem in MEMS community. Electrochemical actuators can develop high pressure but they are notoriously slow. Water electrolysis produced by short voltage pulses of alternating polarity can overcome the problem of slow gas termination. Here we demonstrate an actuation regime, for which the gas pressure is relaxed just for 10 μs or so. The actuator consists of a microchamber filled with the electrolyte and covered with a flexible membrane. The membrane bends outward when the pressure in the chamber increases. Fast termination of gas and high pressure developed in the chamber are related to a high density of nanobubbles in the chamber. The physical processes happening in the chamber are discussed so as problems that have to be resolved for practical applications of this actuation regime. The actuator can be used as a driving engine for microfluidics.

  12. Measurement of the impulse produced by a pulsed surface discharge actuator in air

    NASA Astrophysics Data System (ADS)

    Elias, P. Q.; Castera, P.

    2013-09-01

    The pulsed surface discharge in atmospheric pressure air generates a shock wave, thereby transferring an impulse to the surrounding gas. The aim of this work is to measure this impulse, using implementation of a plasma actuator based on linear surface discharges of length up to 10 cm, and of linear energy in a range 0.1-0.5 J cm-1. The shock wave generated by the discharge is visualized using a pulsed schlieren system and the impulse is measured with a dedicated balance. These measurements are correlated with 1D numerical simulations of pulsed energy depositions in a perfect gas. Experiments show that the discharge generates a cylindrical shock wave that travels at sonic speed after a few tens of microseconds, and produces an impulse that varies from 1 to 4 mN s m-1 and scales linearly with the linear energy density. This linearity agrees with the numerical simulations when 9.5% of the energy dissipated in the discharge is assumed to heat the gas. Overall, to produce a time-averaged force similar to the one achieved by dielectric barrier discharge (DBD) actuators, 2 to 3 times more power is required. However, surface discharge actuators do not saturate, and thus can induce time-averaged forces one or two orders of magnitude above DBD when pulsed at several hundreds of hertz.

  13. Cryogenic Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Jiang, Xiaoning; Cook, William B.; Hackenberger, Wesley S.

    2009-01-01

    In this paper, PMN-PT single crystal piezoelectric stack actuators and flextensional actuators were designed, prototyped and characterized for space optics applications. Single crystal stack actuators with footprint of 10 mm x10 mm and the height of 50 mm were assembled using 10 mm x10mm x0.15mm PMN-PT plates. These actuators showed stroke > 65 - 85 microns at 150 V at room temperature, and > 30 microns stroke at 77 K. Flextensional actuators with dimension of 10mm x 5 mm x 7.6 mm showed stroke of >50 microns at room temperature at driving voltage of 150 V. A flextensional stack actuator with dimension of 10 mm x 5 mm x 47 mm showed stroke of approx. 285 microns at 150 V at room temperature and > 100 microns at 77K under driving of 150 V should be expected. The large cryogenic stroke and high precision of these actuators are promising for cryogenic optics applications.

  14. Treatment surfaces with atomic oxygen excited in dielectric barrier discharge plasma of O{sub 2} admixed to N{sub 2}

    SciTech Connect

    Shun'ko, E. V.; Belkin, V. S.

    2012-06-15

    This paper describes the increase in surface energy of substrates by their treatment with gas composition generated in plasmas of DBD (Dielectric Barrier Discharge) in O2 admixed with N2. Operating gas dissociation and excitation was occurred in plasmas developed in two types of reactors of capacitively-coupled dielectric barrier configurations: coaxial cylindrical, and flat rectangular. The coaxial cylindrical type comprised an inner cylindrical electrode encapsulated in a ceramic sheath installed coaxially inside a cylindrical ceramic (quartz) tube passing through an annular outer electrode. Components of the flat rectangular type were a flat ceramic tube of a narrow rectangular cross section supplied with two flat electrodes mounted against one another outside of the long parallel walls of this tube. The operating gas, mixture of N{sub 2} and O{sub 2}, was flowing in a completely insulated discharge gap formed between insulated electrodes of the devices with an average velocity of gas inlet of about 7 to 9 m/s. Dielectric barrier discharge plasma was excited in the operating gaps with a bipolar pulse voltage of about 6 kV for 2 ms at 50 kHz repetition rate applied to the electrodes of the coaxial device, and of about 14 kV for 7 ms at 30 kHz repetition rate for the flat linear device. A lifetime of excited to the 2s{sup 2}2p{sup 4}({sup 1}S{sub 0}) state in DBD plasma and streaming to the surfaces with a gas flow atomic oxygen, responsible presumably for treating surfaces, exceeded 10 ms in certain cases, that simplified its separation from DBD plasma and delivery to substrates. As it was found in particular, surfaces of glass and some of polymers revealed significant enhancement in wettability after treatment.

  15. Corrosion barriers for silver-based telescope mirrors: comparative study of plasma-enhanced atomic layer deposition and reactive evaporation of aluminum oxide

    NASA Astrophysics Data System (ADS)

    Fryauf, David M.; Phillips, Andrew C.; Kobayashi, Nobuhiko P.

    2015-10-01

    Astronomical telescopes continue to demand high-endurance high-reflectivity silver (Ag) mirrors that can withstand years of exposure in Earth-based observatory environments. We present promising results of improved Ag mirror robustness using plasma-enhanced atomic layer deposition (PEALD) of aluminum oxide (AlOx) as a top barrier layer. Transparent AlOx is suitable for many optical applications; therefore, it has been the initial material of choice for this study. Two coating recipes developed with electron beam ion-assisted deposition (e-beam IAD) of materials including yttrium fluoride, titanium nitride, oxides of yttrium, tantalum, and silicon are used to provide variations in basic Ag mirror structures to compare the endurance of reactive e-beam IAD barriers with PEALD barriers. Samples undergo high temperature/high humidity environmental testing in a controlled environment of 80% humidity at 80°C for 10 days. Environmental testing shows visible results suggesting that the PEALD AlOx barrier offers robust protection against chemical corrosion and moisture permeation. Ag mirror structures were further characterized by reflectivity/absorption before and after deposition of AlOx barriers.

  16. Microstructure and properties of in-flight rare-earth doped thermal barrier coatings prepared by suspension plasma spray

    NASA Astrophysics Data System (ADS)

    Gong, Stephanie

    Thermal barrier coatings with lower thermal conductivity improve the efficiency of gas turbine engines by allowing higher operating temperatures. Recent studies were shown that coatings containing a pair of rare-earth oxides with equal molar ratio have lower thermal conductivity and improved sintering resistance compared to the undoped 4-4.5 mol.% yttria-stabilized zirconia (YSZ). In the present work, rare-earth doped coatings were fabricated via suspension plasma spray by spraying YSZ powder-ethanol suspensions that contained dissolved rare-earth nitrates. The compositions of the coatings determined by inductively coupled plasma mass spectroscopy verified that 68 +/- 8% of the rare-earth nitrates added into the suspension was incorporated into the coatings. Two coatings containing different concentrations of the same dopant pair (Nd2O3/Yb2O3), and three coatings having similar concentrations of different dopant pairs (Nd 2O3/Yb2O3, Nd2O3/Gd 2O3, and Gd2O3/Yb2O 3) were produced and compared. The effect of dopant concentration and dopant pair type on the microstructure and properties of the coatings in the as-sprayed and heat treated conditions were investigated using XRD, SEM, TEM, STEM-EDX, and the laser flash method. The cross-sectional morphology of all coatings displayed columnar structure. The porosity content of the coating was found to increase with increasing dopant concentration, but did not significantly change with dopant pairs. Similarly, increasing the Nd2O3/Yb2O 3 concentration lowered the thermal conductivity of the as-sprayed coatings. Although the effect of changing dopant pair type is not as significant as increasing the dopant concentration, the coating that contained Gd2O 3/Yb2O3 exhibited the lowest conductivity compared to coatings that had other dopant pairs. Thermal conductivity measurement performed on the heat treated coatings indicated a larger conductivity increase for the rare-earth doped coatings. A detailed study on the microstructural change of the coatings after various heat treatments at 1200°C and 1300°C showed evidence of crack healing and grain growth. Comparison between the rare-earth dopant distribution of a selected coating before and after a 1300°C/50 hr heat treatment suggests the possibility of dopant rearrangement, which can further increase the thermal conductivity. An explanation on the difference in the properties of the rare-earth doped coatings produced by SPS and conventional processes was discussed.

  17. Determination of Scattering and Absorption Coefficients for Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Spuckler, Charles M.; Markham, James R.

    2009-01-01

    The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360 C in a wavelength range from 1.2 micrometers up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (less than 1 per centimeter) at wavelengths between 2 micrometers and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as edge to shorter wavelengths."

  18. Electrothermal linear actuator

    NASA Technical Reports Server (NTRS)

    Derr, L. J.; Tobias, R. A.

    1969-01-01

    Converting electric power into powerful linear thrust without generation of magnetic fields is accomplished with an electrothermal linear actuator. When treated by an energized filament, a stack of bimetallic washers expands and drives the end of the shaft upward.

  19. Muscle Motion Solenoid Actuator

    NASA Astrophysics Data System (ADS)

    Obata, Shuji

    It is one of our dreams to mechanically recover the lost body for damaged humans. Realistic humanoid robots composed of such machines require muscle motion actuators controlled by all pulling actions. Particularly, antagonistic pairs of bi-articular muscles are very important in animal's motions. A system of actuators is proposed using the electromagnetic force of the solenoids with the abilities of the stroke length over 10 cm and the strength about 20 N, which are needed to move the real human arm. The devised actuators are based on developments of recent modern electro-magnetic materials, where old time materials can not give such possibility. Composite actuators are controlled by a high ability computer and software making genuine motions.

  20. Rotary Series Elastic Actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2013-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  1. Rotary series elastic actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2012-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  2. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III

    1994-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The linear proof mass actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (mass, upper housing, lower housing, and center support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operating testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  3. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, S. E., III

    1995-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The Linear Proof Mass Actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (Mass, Upper Housing, Lower Housing, and Center Support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operational testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  4. Magnetically Actuated Seal

    NASA Technical Reports Server (NTRS)

    Pinera, Alex

    2013-01-01

    This invention is a magnetically actuated seal in which either a single electromagnet, or multiple electromagnets, are used to control the seal's position. This system can either be an open/ close type of system or an actively controlled system.

  5. Plasma density enhancement in atmospheric-pressure dielectric-barrier discharges by high-voltage nanosecond pulse in the pulse-on period: a PIC simulation

    NASA Astrophysics Data System (ADS)

    Sang, Chaofeng; Sun, Jizhong; Wang, Dezhen

    2010-02-01

    A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.

  6. Modeling of the edge plasma of MAST Upgrade with a Super-X divertor including drifts and an edge transport barrier

    NASA Astrophysics Data System (ADS)

    Rozhansky, V.; Molchanov, P.; Veselova, I.; Voskoboynikov, S.; Kirk, A.; Fishpool, G.; Boerner, P.; Reiter, D.; Coster, D.

    2013-03-01

    The Super-X divertor edge plasma of the future MAST Upgrade tokamak (Lisgo et al 2009 36th EPS Plasma Physics Conf. 33E O4-046, Katramados et al 2011 Fusion Eng. Des. 86 1595, Morris 2012 IEEE Trans. Plasma Sci. 40 682) was simulated with the B2SOLPS5.2 transport code including, for the first time, the effects of drifts due to electric field and magnetic field gradients. The previous simulations did not contain drift effects as well as an account of the external transport barrier. The expected reduction in temperatures and heat flux densities at the low-field side divertors was obtained in the simulations. However, an account of \\vec{{E}}\\times \\vec{{B}} drifts and parallel currents led to an up-down asymmetry of the power to the plates in the connected double null configuration, which was not observed in the simulations without drifts.

  7. Tendon Driven Finger Actuation System

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Reich, David M. (Inventor); Bridgwater, Lyndon (Inventor); Linn, Douglas Martin (Inventor); Askew, Scott R. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Valvo, Michael C. (Inventor); Abdallah, Muhammad E. (Inventor); Permenter, Frank Noble (Inventor); Mehling, Joshua S. (Inventor)

    2013-01-01

    A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.

  8. Laser Initiated Actuator study

    SciTech Connect

    Watson, B.

    1991-06-27

    The program task was to design and study a laser initiated actuator. The design of the actuator is described, it being comprised of the fiber and body subassemblies. The energy source for all experiments was a Spectra Diode 2200-H2 laser diode. The diode is directly coupled to a 100 micron core, 0.3 numerical aperture fiber optic terminated with an SMA connector. The successful testing results are described and recommendations are made.

  9. Electrostatic Linear Actuator

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.; Curry, Kenneth C.

    1990-01-01

    Electrically charged helices attract or repel each other. Proposed electrostatic linear actuator made with intertwined dual helices, which holds charge-bearing surfaces. Dual-helix configuration provides relatively large unbroken facing charged surfaces (relatively large electrostatic force) within small volume. Inner helix slides axially in outer helix in response to voltages applied to conductors. Spiral form also makes components more rigid. Actuator conceived to have few moving parts and to be operable after long intervals of inactivity.

  10. Combustion powered linear actuator

    DOEpatents

    Fischer, Gary J.

    2007-09-04

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  11. Inertial Linear Actuators

    NASA Technical Reports Server (NTRS)

    Laughlin, Darren

    1995-01-01

    Inertial linear actuators developed to suppress residual accelerations of nominally stationary or steadily moving platforms. Function like long-stroke version of voice coil in conventional loudspeaker, with superimposed linear variable-differential transformer. Basic concept also applicable to suppression of vibrations of terrestrial platforms. For example, laboratory table equipped with such actuators plus suitable vibration sensors and control circuits made to vibrate much less in presence of seismic, vehicular, and other environmental vibrational disturbances.

  12. Considerations for Contractile Electroactive Materials and Actuators

    SciTech Connect

    Rasmussen, Lenore; Erickson, Carl J.; Meixler, Lewis D.; Ascione, George; Gentile, Charles A.; Tilson, Carl; Bernasek, Stephen L.; Abelev, Esta

    2010-02-19

    Ras Labs produces electroactive polymer (EAP) based materials and actuators that bend, swell, ripple and now contract (new development) with low electric input. This is an important attribute because of the ability of contraction to produce life-like motion. The mechanism of contraction is not well understood. Radionuclide-labeled experiments were conducted to follow the movement of electrolytes and water in these EAPs when activated. Extreme temperature experiments were performed on the contractile EAPs with very favorable results. One of the biggest challenges in developing these actuators, however, is the electrode-EAP interface because of the pronounced movement of the EAP. Plasma treatments of metallic electrodes were investigated in order to improve the attachment of the embedded electrodes to the EAP material. Surface analysis, adhesive testing, and mechanical testing were conducted to test metal surfaces and metal-polymer interfaces. The nitrogen plasma treatment of titanium produced a strong metal-polymer interface; however, oxygen plasma treatment of both stainless steel and titanium produced even stronger metal-polymer interfaces. Plasma treatment of the electrodes allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface.

  13. Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: effects on pathogen inactivation and meat-quality attributes.

    PubMed

    Jayasena, Dinesh D; Kim, Hyun Joo; Yong, Hae In; Park, Sanghoo; Kim, Kijung; Choe, Wonho; Jo, Cheorun

    2015-04-01

    The effects of a flexible thin-layer dielectric barrier discharge (DBD) plasma system using a sealed package on microbial inactivation and quality attributes of fresh pork and beef were tested. Following a 10-min treatment, the microbial-load reductions of Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Typhimurium were 2.04, 2.54, and 2.68 Log CFU/g in pork-butt samples and 1.90, 2.57, and 2.58 Log CFU/g in beef-loin samples, respectively. Colorimetric analysis showed that DBD-plasma treatment did not significantly affect L* values (lightness) of pork and beef samples, but lowered a* values (redness) significantly after 5- and 7.5-min exposures. The plasma treatment significantly influenced lipid oxidation only after a 10-min exposure. The texture of both types of meat was unaffected by plasma treatment. All sensory parameters of treated and non-treated samples were comparable except for taste, which was negatively influenced by the plasma treatment (P < 0.05). This thin-layer DBD-plasma system can be applied to inactivate foodborne pathogens. The observed minor deterioration of meat quality might be prevented by the use of hurdle technology. PMID:25475266

  14. Compact electrostatic comb actuator

    DOEpatents

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  15. Actuation of polypyrrole nanowires

    NASA Astrophysics Data System (ADS)

    Lee, Alexander S.; Peteu, Serban F.; Ly, James V.; Requicha, Aristides A. G.; Thompson, Mark E.; Zhou, Chongwu

    2008-04-01

    Nanoscale actuators are essential components of the NEMS (nanoelectromechanical systems) and nanorobots of the future, and are expected to become a major area of development within nanotechnology. This paper demonstrates for the first time that individual polypyrrole (PPy) nanowires with diameters under 100 nm exhibit actuation behavior, and therefore can potentially be used for constructing nanoscale actuators. PPy is an electroactive polymer which can change volume on the basis of its oxidation state. PPy-based macroscale and microscale actuators have been demonstrated, but their nanoscale counterparts have not been realized until now. The research reported here answers positively the fundamental question of whether PPy wires still exhibit useful volume changes at the nanoscale. Nanowires with a 50 nm diameter and a length of approximately 6 µm, are fabricated by chemical polymerization using track-etched polycarbonate membranes as templates. Their actuation response as a function of oxidation state is investigated by electrochemical AFM (atomic force microscopy). An estimate of the minimum actuation force is made, based on the displacement of the AFM cantilever.

  16. Actuation of polypyrrole nanowires.

    PubMed

    Lee, Alexander S; Peteu, Serban F; Ly, James V; Requicha, Aristides A G; Thompson, Mark E; Zhou, Chongwu

    2008-04-23

    Nanoscale actuators are essential components of the NEMS (nanoelectromechanical systems) and nanorobots of the future, and are expected to become a major area of development within nanotechnology. This paper demonstrates for the first time that individual polypyrrole (PPy) nanowires with diameters under 100 nm exhibit actuation behavior, and therefore can potentially be used for constructing nanoscale actuators. PPy is an electroactive polymer which can change volume on the basis of its oxidation state. PPy-based macroscale and microscale actuators have been demonstrated, but their nanoscale counterparts have not been realized until now. The research reported here answers positively the fundamental question of whether PPy wires still exhibit useful volume changes at the nanoscale. Nanowires with a 50 nm diameter and a length of approximately 6 µm, are fabricated by chemical polymerization using track-etched polycarbonate membranes as templates. Their actuation response as a function of oxidation state is investigated by electrochemical AFM (atomic force microscopy). An estimate of the minimum actuation force is made, based on the displacement of the AFM cantilever. PMID:21825643

  17. Hybrid electromechanical actuator and actuation system

    NASA Technical Reports Server (NTRS)

    Su, Ji (Inventor); Xu, Tian-Bing (Inventor)

    2008-01-01

    A hybrid electromechanical actuator has two different types of electromechanical elements, one that expands in a transverse direction when electric power is applied thereto and one that contracts in a transverse direction when electric power is applied thereto. The two electromechanical elements are (i) disposed in relation to one another such that the transverse directions thereof are parallel to one another, and (ii) mechanically coupled to one another at least at two opposing edges thereof. Electric power is applied simultaneously to the elements.

  18. Backed Bending Actuator

    NASA Technical Reports Server (NTRS)

    Costen, Robert C.; Su, Ji

    2004-01-01

    Bending actuators of a proposed type would partly resemble ordinary bending actuators, but would include simple additional components that would render them capable of exerting large forces at small displacements. Like an ordinary bending actuator, an actuator according to the proposal would include a thin rectangular strip that would comprise two bonded layers (possibly made of electroactive polymers with surface electrodes) and would be clamped at one end in the manner of a cantilever beam. Unlike an ordinary bending actuator, the proposed device would include a rigid flat backplate that would support part of the bending strip against backward displacement; because of this feature, the proposed device is called a backed bending actuator. When an ordinary bending actuator is inactive, the strip typically lies flat, the tip displacement is zero, and the force exerted by the tip is zero. During activation, the tip exerts a transverse force and undergoes a bending displacement that results from the expansion or contraction of one or more of the bonded layers. The tip force of an ordinary bending actuator is inversely proportional to its length; hence, a long actuator tends to be weak. The figure depicts an ordinary bending actuator and the corresponding backed bending actuator. The bending, the tip displacement (d(sub t)), and the tip force (F) exerted by the ordinary bending actuator are well approximated by the conventional equations for the loading and deflection of a cantilever beam subject to a bending moment which, in this case, is applied by the differential expansion or contraction of the bonded layers. The bending, displacement, and tip force of the backed bending actuator are calculated similarly, except that it is necessary to account for the fact that the force F(sub b) that resists the displacement of the tip could be sufficient to push part of the strip against the backplate; in such a condition, the cantilever beam would be effectively shortened (length L*) and thereby stiffened and, hence, made capable of exerting a greater tip force for a given degree of differential expansion or contraction of the bonded layers. Taking all of these effects into account, the cantilever-beam equations show that F(sub b) would be approximately inversely proportional to d(sup 1/2) for d less than a calculable amount, denoted the transition displacement (dt). For d less than d(sub t), part of the strip would be pressed against the backplate. Therefore, the force F(sub b) would be very large for d at or near zero and would decrease as d increases toward d(sub t). At d greater than d(sub t), none of the strip would be pressed against the backplate and F(sub b) would equal the tip force F of the corresponding ordinary bending actuator. The advantage of the proposal is that a backed bending actuator could be made long to obtain large displacement when it encountered little resistance but it could also exert a large zero-displacement force, so that it could more easily start the movement of a large mass, throw a mechanical switch, or release a stuck mechanism.

  19. Self-organized pattern formation of an atmospheric pressure plasma jet in a dielectric barrier discharge configuration

    SciTech Connect

    Nie Qiuyue; Ren Chunsheng; Wang Dezhen; Li Shouzhe; Zhang Jialiang; Kong, M. G.

    2007-05-28

    This letter reports the observation of self-organized patterns formed in a 29 mm wide atmospheric pressure plasma jet. By altering the gas flow rate and/or the applied voltage, the plasma jet is seen to have at least three different modes, namely, a diffuse-looking discharge, a self-organized discharge, and an unstable discharge with randomly occurring plasma channels. The self-organized discharge mode is characterized by several bright plasma channels embedded in a diffuse and dim plasma background. These plasma channels are regularly spaced from each other and their self-organized patterns are shown to evolve abruptly.

  20. Stereoscopic PIV measurement of boundary layer affected by DBD actuator

    NASA Astrophysics Data System (ADS)

    Procházka, Pavel; Uruba, Václav

    2016-03-01

    The effect of ionic wind generated by plasma actuator on developed boundary layer inside a narrow channel was investigated recently. Since the main investigated plane was parallel to the channel axis, the description of flow field was not evaluated credibly. This paper is dealing with cross-section planes downstream the actuator measured via 3D time-resolved PIV. The actuator position is in spanwise or in streamwise orientation so that ionic wind is blown in the same direction as the main flow or in opposite direction or perpendicularly. The interaction between boundary layer and ionic wind is evaluated for three different velocities of main flow and several parameters of plasma actuation (steady and unsteady regime, frequency etc.). Statistical properties of the flow are shown as well as dynamical behaviour of arising longitudinal vortices are discussed via phase-locked measurement and decomposition method.

  1. Non-collinear valve actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A. (Inventor)

    2012-01-01

    A non-collinear valve actuator includes a primary actuating system and a return spring system with each applying forces to a linkage system in order to regulate the flow of a quarter-turn valve. The primary actuating system and return spring system are positioned non-collinearly, which simply means the primary actuating system and return spring system are not in line with each other. By positioning the primary actuating system and return spring system in this manner, the primary actuating system can undergo a larger stroke while the return spring system experiences significantly less displacement. This allows the length of the return spring to be reduced due to the minimization of displacement thereby reducing the weight of the return spring system. By allowing the primary actuating system to undergo longer strokes, the weight of the primary actuating system may also be reduced. Accordingly, the weight of the non-collinear valve actuator is reduced.

  2. Streamer inhibition for improving force and electric wind produced by DBD actuators

    NASA Astrophysics Data System (ADS)

    Debien, Antoine; Benard, Nicolas; Moreau, Eric

    2012-05-01

    The use of thin wires from 13 to 300 µm in diameter as the exposed electrode of a surface dielectric barrier discharge (SDBD) plasma actuator is experimentally investigated by electrical and optical diagnostics, electrohydrodynamic force measurements and produced electric wind characterization from time-averaged and time-resolved measurements. The streamer inhibition and glow discharge enhancement due to the use of a thin wire active electrode fully modify the topology and the temporal behaviour of the thrust and the electric wind production. With a typical plate-to-plate DBD, the electric wind velocity increases during the negative going cycle. With a wire-to-plate design, both positive and negative going-cycle discharges result in an electric wind velocity increase. The four main quantitative results are as follows: (1) for a power consumption of 1 W cm-1, the force is increased from 65 to 95 mN m-1 when a 13 µm wire is used, (2) this corresponds to a 15% electric wind velocity enhancement, (3) electromechanical efficiency can be increased from 0.1% to 0.25%, (4) these improvements are applied for definition of a new multi-DBD design plasma actuator that allows us to produce a mean velocity of 10.5 m s-1.

  3. Combined in situ FTIR-spectroscopic and electrochemical analysis of nanopores in ultra-thin SiOx-like plasma polymer barrier films

    NASA Astrophysics Data System (ADS)

    Liu, C.-N.; Ozkaya, B.; Steves, S.; Awakowicz, P.; Grundmeier, G.

    2013-02-01

    Plasma polymerized SiOx barrier films were investigated by means of in situ spectroscopic and electrochemical methods to correlate the process parameters such as applied substrate bias with the resulting barrier properties. SiOx layers with various hexamethyldisiloxane/oxygen ratio were deposited with and without applied substrate bias. The resulting film morphologies were characterized by means of atomic force microscopy, and the presence of nanopores was analysed by cyclic voltammetry. In order to compare the film density and the presence of nanopore structure, evaluation of interfacial hydroxyl groups was performed by means of discrete polarization modulation Fourier transform infrared reflection-absorption spectroscopy in atmospheres with controlled partial pressures of H2O or D2O. It could be shown that the electrochemical and in situ spectroscopic approach allows for the analysis of nanopores and that a clear correlation of process parameters and film structure can be established.

  4. On electrostatically actuated microsensors

    NASA Astrophysics Data System (ADS)

    Caruntu, Dumitru I.; Knecht, Martin W.

    2010-04-01

    Mass deposition changes resonance frequencies of structures. Resonator sensitivity, defined as a fraction of change in frequency per unit deposited mass, is found for microcantilever sensors electrostatically actuated to include fringe and Casimir effects. These actuation forces produce nonlinear parametric oscillations. Constant thickness mass deposition on all four lateral surfaces of the cantilever of rectangular cross-section was assumed. The Euler-Bernoulli theory was used under the assumption that the beams are slender. Mass deposition on the free end surface of the cantilever was neglected. The deposition thickness was considered uniform and very small compared to any beam dimension. The deposited mass had no contribution to the stiffness, only to the mass. Analytical expression of the sensitivity of electrostatically actuated uniform microcantilever resonators sensor near natural frequency is determined.

  5. Torsional Ratcheting Actuating System

    SciTech Connect

    BARNES,STEPHEN MATTHEW; MILLER,SAMUEL L.; RODGERS,M. STEVEN; BITSIE,FERNANDO

    2000-01-24

    A new type of surface micromachined ratcheting actuation system has been developed at the Microelectronics Development Laboratory at Sandia National Laboratories. The actuator uses a torsional electrostatic comb drive that is coupled to an external ring gear through a ratcheting scheme. The actuator can be operated with a single square wave, has minimal rubbing surfaces, maximizes comb finger density, and can be used for open-loop position control. The prototypes function as intended with a minimum demonstrated operating voltage of 18V. The equations of motion are developed for the torsional electrostatic comb drive. The resonant frequency, voltage vs. displacement and force delivery characteristics are predicted and compared with the fabricated device's performance.

  6. Plasma-Enhanced Atomic Layer Deposition of Ruthenium-Titanium Nitride Mixed-Phase Layers for Direct-Plate Liner and Copper Diffusion Barrier Applications

    NASA Astrophysics Data System (ADS)

    Gildea, Adam James

    Current interconnect networks in semiconductor processing utilize a sputtered TaN diffusion barrier, Ta liner, and Cu seed to improve the adhesion, microstructure, and electromigration resistance of electrochemically deposited copper that fills interconnect wires and vias. However, as wire/via widths shrink due to device scaling, it becomes increasingly difficult to have the volume of a wire/via be occupied with ECD Cu which increases line resistance and increases the delay in signal propagation in IC chips. A single layer that could serve the purpose of a Cu diffusion barrier and ECD Cu adhesion promoter could allow ECD Cu to occupy a larger volume of a wire/via, leading to a decrease in line resistance and decrease in signal delay. Previous work has shown RuTaN, RuWCN, and RuCo films can act as Cu diffusion barriers and be directly platable to thickness of 2-3nm. However, other material selections may prove as effective or possibly better. Mixed-phase films of ruthenium titanium nitride grown by atomic layer deposition (ALD) were investigated for their performance as a Cu diffusion barrier and as a surface for the direct plating of ECD Cu. All Ru was deposited by plasma-enhanced atomic layer deposition (PEALD) while TiN was deposited by either thermal ALD or PEALD. RuTiN, films with thermal ALD TiN and a Ru:Ti of 20:1 showed barrier performance comparable to PVD TaN at 3-4 nm thickness and 15 nm planar films were directly platable. Follow up work is certainly needed for this material set, yet initial results indicate RuTiN could serve as an effective direct plate liner for Cu interconnects.

  7. Fault tolerant linear actuator

    DOEpatents

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  8. Hydraulic involute cam actuator

    DOEpatents

    Love, Lonnie J.; Lind, Randall F.

    2011-11-01

    Mechanical joints are provided in which the angle between a first coupled member and a second coupled member may be varied by mechanical actuators. In some embodiments the angle may be varied around a pivot axis in one plane and in some embodiments the angle may be varied around two pivot axes in two orthogonal planes. The joints typically utilize a cam assembly having two lobes with an involute surface. Actuators are configured to push against the lobes to vary the rotation angle between the first and second coupled member.

  9. Conceptual hermetically sealed elbow actuator

    NASA Technical Reports Server (NTRS)

    Wuenscher, H. F.

    1968-01-01

    Electrically or hydraulically powered, hermetically sealed angular or rotary actuator deflects mechanical members over a range of plus or minus 180 degrees. The actuator design provides incremental flexures which keep the local deflection rate within elastic limits.

  10. Low-Shock Pyrotechnic Actuator

    NASA Technical Reports Server (NTRS)

    Lucy, M. H.

    1984-01-01

    Miniature 1-ampere, 1-watt pyrotechnic actuator enclosed in flexible metal bellows. Bellows confines outgassing products, and pyrotechnic shock reduction achieved by action of bellows, gas cushion within device, and minimum use of pyrotechnic material. Actuator inexpensive, compact, and lightweight.

  11. Generation of large-scale, barrier-free diffuse plasmas in air at atmospheric pressure using array wire electrodes and nanosecond high-voltage pulses

    SciTech Connect

    Teng, Yun; Li, Lee Liu, Yun-Long; Liu, Lun; Liu, Minghai

    2014-10-15

    This paper introduces a method to generate large-scale diffuse plasmas by using a repetition nanosecond pulse generator and a parallel array wire-electrode configuration. We investigated barrier-free diffuse plasmas produced in the open air in parallel and cross-parallel array line-line electrode configurations. We found that, when the distance between the wire-electrode pair is small, the discharges were almost extinguished. Also, glow-like diffuse plasmas with little discharge weakening were obtained in an appropriate range of line-line distances and with a cathode-grounding cross-electrode configuration. As an example, we produced a large-scale, stable diffuse plasma with volumes as large as 18 × 15 × 15 cm{sup 3}, and this discharge region can be further expanded. Additionally, using optical and electrical measurements, we showed that the electron temperature was higher than the gas temperature, which was almost the same as room temperature. Also, an array of electrode configuration with more wire electrodes had helped to prevent the transition from diffuse discharge to arc discharge. Comparing the current waveforms of configurations with 1 cell and 9 cells, we found that adding cells significantly increased the conduction current and the electrical energy delivered in the electrode gaps.

  12. Generation of large-scale, barrier-free diffuse plasmas in air at atmospheric pressure using array wire electrodes and nanosecond high-voltage pulses

    NASA Astrophysics Data System (ADS)

    Teng, Yun; Li, Lee; Liu, Yun-Long; Liu, Lun; Liu, Minghai

    2014-10-01

    This paper introduces a method to generate large-scale diffuse plasmas by using a repetition nanosecond pulse generator and a parallel array wire-electrode configuration. We investigated barrier-free diffuse plasmas produced in the open air in parallel and cross-parallel array line-line electrode configurations. We found that, when the distance between the wire-electrode pair is small, the discharges were almost extinguished. Also, glow-like diffuse plasmas with little discharge weakening were obtained in an appropriate range of line-line distances and with a cathode-grounding cross-electrode configuration. As an example, we produced a large-scale, stable diffuse plasma with volumes as large as 18 × 15 × 15 cm3, and this discharge region can be further expanded. Additionally, using optical and electrical measurements, we showed that the electron temperature was higher than the gas temperature, which was almost the same as room temperature. Also, an array of electrode configuration with more wire electrodes had helped to prevent the transition from diffuse discharge to arc discharge. Comparing the current waveforms of configurations with 1 cell and 9 cells, we found that adding cells significantly increased the conduction current and the electrical energy delivered in the electrode gaps.

  13. SiO{sub 2}-like film deposition by dielectric barrier discharge plasma gun at ambient temperature under an atmospheric pressure

    SciTech Connect

    Chen Qiang; Zhang Yuefei; Han Erli; Ge Yuanjing

    2006-11-15

    A medium-frequency dielectric barrier discharge (DBD) plasma gun was used to deposit SiO{sub 2}-like films at ambient temperature under atmospheric pressure. SiO{sub 2}-like films were deposited on Si and stainless-steel surfaces by flowing Ar gas containing hexamethyldisiloxane (HMDSO) monomer through the gun. The authors found that the chemical structure of the deposited SiO{sub 2}-like film strongly depended on the HMDSO monomer ratio in the flowing gas and on the incident power. Fourier transform infrared spectroscopy showed no hydroxyl group in the chemical structure under the low HMDSO ratio in flowing gas or high incident plasma power. Scanning electron microscopy and atomic force microscopy revealed that SiO{sub 2}-like films began to grow as islands and then formed in columns having porosity. Oxygen added to the plasma-gun flow plays a lesser role in the SiO{sub 2}-like deposition from a DBD plasma gun at atmospheric pressure, and the critical temperature for pure SiO{sub 2} formation is also greatly lowered.

  14. Highly sensitive HPLC-DAD method for the assay of gefitinib in patient plasma and cerebrospinal fluid: application to a blood-brain barrier penetration study.

    PubMed

    Fang, Luo; Song, Yu; Weng, Xu; Li, Fanzhu; Xu, Yaping; Lin, Nengming

    2015-12-01

    The quantification of intracranial gefitinib (GEF) exposure is limited owing to the sensitivity of analytical equipment. Although mass spectrometry (MS) is the preferred method because of its high sensitivity, the equipment is not available in many laboratories, especially in developing Asian countries. In this paper, we developed a highly sensitive high performance liquid chromatography-diode array detector (HPLC-DAD) method for the assay of GEF in human cerebrospinal fluid (CSF) and plasma. GEF was extracted from CSF and plasma by solid-phase extraction and liquid-liquid extraction, respectively. The chromatographic separation was performed on a C18 column with gradient elution of 0.1% triethylamine solution and acetonitrile, then finally detected at 344 nm. This method was validated and proved to be highly sensitive with a lower limit of quantitation value of 0.11 ng/mL in CSF and 11 ng/mL in plasma. The blood-brain barrier penetration ratio of GEF ranged from 1.48 to 2.41%. This method provides a reliable MS-independent solution for the quantitation of GEF in patients' CSF and plasma. PMID:26014887

  15. Angular-Momentum-Compensating Actuator

    NASA Technical Reports Server (NTRS)

    Wiktor, Peter J.

    1988-01-01

    Reactionless actuator developed for instrument-pointing platforms on flexible spacecraft; by eliminating reactions, actuator changes aiming angle of platform without inducing vibrations in spacecraft, eliminateing vibrations in point angle of instrument platform. Actuator used on Earth in such systems as helicopter platforms for television cameras in law enforcement and news telecasts.

  16. Piezoelectric linear actuator

    NASA Technical Reports Server (NTRS)

    Lehrer, S.

    1969-01-01

    Actuator exerts linear force that is controllable and reproducible to microinch tolerance. It is constructed for extremely accurate control of a valve but can also be used as a variable venturi meter, micropositioner, microthruster, and in fluidics and reaction-control systems.

  17. "Mighty Worm" Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Bamford, Robert M.; Wada, Ben K.; Moore, Donald M.

    1994-01-01

    "Mighty Worm" piezoelectric actuator used as adjustable-length structural member, active vibrator or vibration suppressor, and acts as simple (fixed-length) structural member when inactive. Load force not applied to piezoelectric element in simple-structural-member mode. Piezoelectric element removed from load path when not in use.

  18. Electromechanical flight control actuator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The feasibility of using an electromechanical actuator (EMA) as the primary flight control equipment in aerospace flight is examined. The EMA motor design is presented utilizing improved permanent magnet materials. The necessary equipment to complete a single channel EMA using the single channel power electronics breadboard is reported. The design and development of an improved rotor position sensor/tachometer is investigated.

  19. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, J.G.

    1999-02-02

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing. 49 figs.

  20. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, James G.

    1999-01-01

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing.

  1. Shape Memory Alloy Actuator

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J. (Inventor)

    2002-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  2. Shape Memory Alloy Actuator

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J. (Inventor)

    2000-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  3. Furnace Cyclic Behavior of Plasma-Sprayed Zirconia-Yttria and Multi-Component Rare Earth Oxide Doped Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Nesbitt, James A.; McCue, Terry R.; Barrett, Charles A.; Miller, Robert A.

    2002-01-01

    Ceramic thermal barrier coatings will play an increasingly important role in advanced gas turbine engines because of their ability to enable further increases in engine temperatures. However, the coating performance and durability become a major concern under the increasingly harsh thermal cycling conditions. Advanced zirconia- and hafnia-based cluster oxide thermal barrier coatings with lower thermal conductivity and improved thermal stability are being developed using a high-heat-flux laser-rig based test approach. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of numerous candidate coating materials was carried out using conventional furnace cyclic tests. In this paper, furnace thermal cyclic behavior of the advanced plasma-sprayed zirconia-yttria-based thermal barrier coatings that were co-doped with multi-component rare earth oxides was investigated at 1163 C using 45 min hot cycles. The ceramic coating failure mechanisms were studied by using scanning electron microscopy combined with X-ray diffraction phase analysis after the furnace tests. The coating cyclic lifetime will be discussed in relation to coating phase structures, total dopant concentrations, and other properties.

  4. Sensor-actuator placement for flexible structures with actuator dynamics

    NASA Technical Reports Server (NTRS)

    Maghami, P. G.; Joshi, S. M.

    1991-01-01

    A novel approach for placement of sensors and actuators in control of flexible space structures is developed. Using an approximation of the control forces and output measurements by spatially continuous functions, the approach follows a nonlinear programming technique to determine optimal locations for sensors and actuators. Two different criteria are considered for the placement of sensors and actuators. The first criterion optimizes the location of the sensors and actuators in order to move the transmission zeros of the system farther to the left of the imaginary axis. The second criterion, however, places the sensors and actuators to optimize a function of the singular values of the Hankel matrix, which includes both measures of controllability and observability. Moreover, the effect of actuator dynamics in the placement of sensors and actuators is investigated.

  5. Effects of lipopolysaccharide on the expression of plasma membrane monoamine transporter (PMAT) at the blood-brain barrier and its implications to the transport of neurotoxins.

    PubMed

    Wu, Kuo-Chen; Lu, Ya-Hsuan; Peng, Yi-Hsuan; Hsu, Lih-Ching; Lin, Chun-Jung

    2015-12-01

    Plasma membrane monoamine transporter (PMAT) is a polyspecific organic cation transporter that is highly expressed in the central nervous system. This study aimed to investigate the effect of lipopolysaccharide on PMAT expression at the blood-brain barrier and the interaction between PMAT and neurotoxins. As a result, PMAT mRNA was identified in brain microvessels (BMVs), brain microvascular endothelial cells (BMECs), astrocytes, and pericytes isolated from C57BL/6 mice and/or Wistar rats using RT-qPCR. The immunofluorescence staining confirmed the expression of PMAT protein in BMVs and striatum of C57BL/6 mice. Western blotting demonstrated its localization at the luminal and abluminal sides of BMECs. In C57BL/6 mice, PMAT protein was significantly increased in BMVs 24 h after an intraperitoneal injection of 3 mg/kg lipopolysaccharide. Lipopolysaccharide treatment also significantly increased PMAT expression in cerebral cortex and the striatum in a time-dependent manner, as well as the brain-to-plasma ratio of 1-benzyl-1,2,3,4-tetrahydroisoquinoline (1-benzyl-TIQ). In isolated cells, lipopolysaccharide treatment significantly increased PMAT mRNA in brain astrocytes and the BMECs co-cultured with astrocytes. In addition to 1-methyl-4-phenylpyridinium, the kinetic study indicated that both 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 1-benzyl-TIQ are substrates of human PMAT. These findings suggest that inflammation can change PMAT expression at the blood-brain barrier, which may affect PMAT-mediated transport of neurotoxins. We demonstrated the expression of plasma membrane monoamine transporter (PMAT; mRNA or protein) at several subunits of the blood-brain barrier. Lipopolysaccharide treatment can significantly increase the expression of PMAT in vivo (in brain microvessels, cerebral cortex, and the striatum of C57BL/6 mice) and in vitro (in brain astrocytes and brain microvascular endothelial cells co-cultured with astrocytes). Lipopolysaccharide treatment also increased the brain-to-plasma ratio of 1-benzyl-1,2,3,4-tetrahydroisoquinoline (1-benzyl-TIQ) in mice, where 1-benzyl-TIQ competitively inhibited 1-methyl-4-phenylpyridinium (MPP(+) ) uptake in MDCK-human PMAT (hPMAT) cells and its uptake in MDCK-hPMAT is concentration dependent. PMID:26376205

  6. Dielectric Actuation of Polymers

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP in tactile display is investigated by the prototyping of a large scale refreshable Braille display device. Braille is a critical way for the vision impaired community to learn literacy and improve life quality. Current piezoelectrics-based refreshable Braille display technologies are limited to up to 1 line of Braille text, due to the bulky size of bimorph actuators. Based on the unique actuation feature of BSEP, refreshable Braille display devices up to smartphone-size have been demonstrated by polymer sheet laminates. Dots in the devices can be individually controlled via incorporated field-driven BSEP actuators and Joule heater units. A composite material consisting of silver nanowires (AgNW) embedded in a polymer substrate is brought up as a compliant electrode candidate for BSEP application. The AgNW composite is highly conductive (Rs: 10 Ω/sq) and remains conductive at strains as high as 140% (Rs: <10 3 Ω/sq). The baseline conductivity has only small changes up to 90% strain, which makes it low enough for both field driving and stretchable Joule heating. An out-of-plane bistable area strain up to 68% under Joule heating is achieved.

  7. Electroactive polymer actuator devices (EAPAD)

    NASA Astrophysics Data System (ADS)

    Spinks, Geoffrey M.; Wallace, Gordon G.; Ding, Jie; Zhou, Dezhi; Xi, Binbin; Scott, Timothy R.; Truong, Van-Tan

    2003-07-01

    Designing and building devices that utilize electroactive polymer actuators brings into sharp focus the performance required of these materials. Using the example of a "rehabilitation glove", it is shown that the performance of polypyrrole actuators fall short of that required. In particular, the need to simultaneously produce 5% actuator strain at a 5 MPa isotonic stress cannot be achieved with the actuators investigated in our laboratories to date. However, significant improvements in the performance under load have been achieved with the use of ionic liquid electrolytes. The use of new materials such as composites of conducting polymers and carbon nanotubes offers the possibility of further improvements in actuator performance. Finally, redesigning the glove actuator offers a compromise solution that allows existing actuators to be used in a prototype device.

  8. Dyeing mechanism and optimization of polyamide 6,6 functionalized with double barrier discharge (DBD) plasma in air

    NASA Astrophysics Data System (ADS)

    Oliveira, Fernando Ribeiro; Zille, Andrea; Souto, Antonio Pedro

    2014-02-01

    The physico-chemical improvements occasioned by DBD plasma discharge in dyeing process of polyamide 6,6 (PA66) fibers were investigated. The SEM, fluorescence microscopy, UV-vis spectroscopy, surface energy, FTIR, XPS and pH of aqueous extracts confirm the high polar functionalization of PA66 fibers due to plasma incorporation of oxygen atoms from atmospheric air. DBD plasma-generated reactive species preferentially break the CN bonds, and not the aliphatic C-C chain of PA66. Formation of low-molecular weight acidic molecules that act as dye "carrier" and creation of micro-channels onto PA66 surface seems to favor dye diffusion into the fiber cores. Plasma treatment allows high level of direct dye diffusion and fixation in PA66 fibers at lower temperatures and shorter dyeing times than traditional dyeing methods.

  9. Considerations for contractile electroactive materials and actuators

    NASA Astrophysics Data System (ADS)

    Rasmussen, Lenore; Meixler, Lewis D.; Gentile, Charles A.

    2012-04-01

    Electroactive polymers (EAPs) that bend, swell, ripple (first generation materials), and now contract with low electric input (new development) have been produced. The mechanism of contraction is not well understood. Radionuclide-labeled experiments, molecular modeling, electrolyte experiments, pH experiments, and an ionic concentration experiment were used to determine the chain of events that occur during contraction and, reciprocally, expansion when the polarity is reversed, in these ionic EAPs. Plasma treatment of the electrodes, along with other strategies, allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface, analogous to nerves and tendons moving with muscles during movement. Challenges involved with prototyping actuation using contractile EAPs are also discussed.

  10. Microfabricated therapeutic actuators

    DOEpatents

    Lee, Abraham P.; Northrup, M. Allen; Ciarlo, Dino R.; Krulevitch, Peter A.; Benett, William J.

    1999-01-01

    Microfabricated therapeutic actuators are fabricated using a shape memory polymer (SMP), a polyurethane-based material that undergoes a phase transformation at a specified temperature (Tg). At a temperature above temperature Tg material is soft and can be easily reshaped into another configuration. As the temperature is lowered below temperature Tg the new shape is fixed and locked in as long as the material stays below temperature Tg. Upon reheating the material to a temperature above Tg, the material will return to its original shape. By the use of such SMP material, SMP microtubing can be used as a release actuator for the delivery of embolic coils through catheters into aneurysms, for example. The microtubing can be manufactured in various sizes and the phase change temperature Tg is determinate for an intended temperature target and intended use.

  11. Microfabricated therapeutic actuators

    DOEpatents

    Lee, A.P.; Northrup, M.A.; Ciarlo, D.R.; Krulevitch, P.A.; Benett, W.J.

    1999-06-15

    Microfabricated therapeutic actuators are fabricated using a shape memory polymer (SMP), a polyurethane-based material that undergoes a phase transformation at a specified temperature (Tg). At a temperature above temperature Tg material is soft and can be easily reshaped into another configuration. As the temperature is lowered below temperature Tg the new shape is fixed and locked in as long as the material stays below temperature Tg. Upon reheating the material to a temperature above Tg, the material will return to its original shape. By the use of such SMP material, SMP microtubing can be used as a release actuator for the delivery of embolic coils through catheters into aneurysms, for example. The microtubing can be manufactured in various sizes and the phase change temperature Tg is determinate for an intended temperature target and intended use. 8 figs.

  12. Electrical Actuation Technology Bridging

    NASA Technical Reports Server (NTRS)

    Hammond, Monica (Compiler); Sharkey, John (Compiler)

    1993-01-01

    This document contains the proceedings of the NASA Electrical Actuation Technology Bridging (ELA-TB) Workshop held in Huntsville, Alabama, September 29-October 1, 1992. The workshop was sponsored by the NASA Office of Space Systems Development and Marshall Space Flight Center (MSFC). The workshop addressed key technologies bridging the entire field of electrical actuation including systems methodology, control electronics, power source systems, reliability, maintainability, and vehicle health management with special emphasis on thrust vector control (TVC) applications on NASA launch vehicles. Speakers were drawn primarily from industry with participation from universities and government. In addition, prototype hardware demonstrations were held at the MSFC Propulsion Laboratory each afternoon. Splinter sessions held on the final day afforded the opportunity to discuss key issues and to provide overall recommendations. Presentations are included in this document.

  13. Scissor thrust valve actuator

    DOEpatents

    DeWall, Kevin G.; Watkins, John C; Nitzel, Michael E.

    2006-08-29

    Apparatus for actuating a valve includes a support frame and at least one valve driving linkage arm, one end of which is rotatably connected to a valve stem of the valve and the other end of which is rotatably connected to a screw block. A motor connected to the frame is operatively connected to a motor driven shaft which is in threaded screw driving relationship with the screw block. The motor rotates the motor driven shaft which drives translational movement of the screw block which drives rotatable movement of the valve driving linkage arm which drives translational movement of the valve stem. The valve actuator may further include a sensory control element disposed in operative relationship with the valve stem, the sensory control element being adapted to provide control over the position of the valve stem by at least sensing the travel and/or position of the valve stem.

  14. Microfabricated therapeutic actuator mechanisms

    DOEpatents

    Northrup, M.A.; Ciarlo, D.R.; Lee, A.P.; Krulevitch, P.A.

    1997-07-08

    Electromechanical microstructures (microgrippers), either integrated circuit (IC) silicon-based or precision machined, to extend and improve the application of catheter-based interventional therapies for the repair of aneurysms in the brain or other interventional clinical therapies. These micromechanisms can be specifically applied to release platinum coils or other materials into bulging portions of the blood vessels also known as aneurysms. The ``micro`` size of the release mechanism is necessary since the brain vessels are the smallest in the body. Through a catheter more than one meter long, the micromechanism located at one end of the catheter can be manipulated from the other end thereof. The microgripper (micromechanism) of the invention will also find applications in non-medical areas where a remotely actuated microgripper or similar actuator would be useful or where micro-assembling is needed. 22 figs.

  15. Microfabricated therapeutic actuator mechanisms

    DOEpatents

    Northrup, Milton A.; Ciarlo, Dino R.; Lee, Abraham P.; Krulevitch, Peter A.

    1997-01-01

    Electromechanical microstructures (microgrippers), either integrated circuit (IC) silicon-based or precision machined, to extend and improve the application of catheter-based interventional therapies for the repair of aneurysms in the brain or other interventional clinical therapies. These micromechanisms can be specifically applied to release platinum coils or other materials into bulging portions of the blood vessels also known as aneurysms. The "micro" size of the release mechanism is necessary since the brain vessels are the smallest in the body. Through a catheter more than one meter long, the micromechanism located at one end of the catheter can be manipulated from the other end thereof. The microgripper (micromechanism) of the invention will also find applications in non-medical areas where a remotely actuated microgripper or similar actuator would be useful or where micro-assembling is needed.

  16. GASES, PLASMAS, AND ELECTRIC DISCHARGES: Self-Consistent Model for Atmospheric Pressure Dielectric Barrier Discharges in Helium

    NASA Astrophysics Data System (ADS)

    Sun, Ji-Zhong; Wang, Qi; Zhang, Jian-Hong; Wang, Yan-Hui; Wang, De-Zhen

    2008-11-01

    We show the necessity of leaving out the approximation of constant average electron energy in many fluid models. For this purpose a one-dimensional self-consistent model for He atmospheric barrier discharges is developed. With this model, the electron energy distribution function in the atmospheric pressure glow discharge is obtained without introducing much difficulty, and the new model is readily implemented for investigating discharges in complicated gases.

  17. Dissolution actuated sample container

    DOEpatents

    Nance, Thomas A.; McCoy, Frank T.

    2013-03-26

    A sample collection vial and process of using a vial is provided. The sample collection vial has an opening secured by a dissolvable plug. When dissolved, liquids may enter into the interior of the collection vial passing along one or more edges of a dissolvable blocking member. As the blocking member is dissolved, a spring actuated closure is directed towards the opening of the vial which, when engaged, secures the vial contents against loss or contamination.

  18. Linear mass actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III (Inventor); Crossley, Edward A., Jr. (Inventor); Jones, Irby W. (Inventor); Miller, James B. (Inventor); Davis, C. Calvin (Inventor); Behun, Vaughn D. (Inventor); Goodrich, Lewis R., Sr. (Inventor)

    1992-01-01

    A linear mass actuator includes an upper housing and a lower housing connectable to each other and having a central passageway passing axially through a mass that is linearly movable in the central passageway. Rollers mounted in the upper and lower housings in frictional engagement with the mass translate the mass linearly in the central passageway and drive motors operatively coupled to the roller means, for rotating the rollers and driving the mass axially in the central passageway.

  19. Shape memory alloy actuator

    DOEpatents

    Varma, Venugopal K.

    2001-01-01

    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  20. Influence of the 316 L stainless steel interface on the stability and barrier properties of plasma fluorocarbon films.

    PubMed

    Lewis, François; Cloutier, Maxime; Chevallier, Pascale; Turgeon, Stéphane; Pireaux, Jean-Jacques; Tatoulian, Michael; Mantovani, Diego

    2011-07-01

    Coatings are known to be one of the more suited strategies to tailor the interface between medical devices and the surrounding cells and tissues once implanted. The development of coatings and the optimization of their adhesion and stability are of major importance. In this work, the influence of plasma etching of the substrate on a plasma fluorocarbon ultrathin coating has been investigated with the aim of improving the stability and the corrosion properties of coated medical devices. The 316 L stainless steel interface was subjected to two different etching sequences prior to the plasma deposition. These plasma etchings, with H(2) and C(2)F(6) as gas precursors, modified the chemical composition and the thickness of the oxide layer and influenced the subsequent polymerization. The coating properties were evaluated using flat substrates submitted to deformation, aging into aqueous medium and corrosion tests. X-ray photoelectron spectroscopy (XPS), time of flight-secondary ion mass spectrometry (ToF-SIMS), ellipsometry, and atomic force microscopy (AFM) were performed to determine the effects of the deformation and the aging on the chemistry and morphology of the coated samples. Analyses showed that plasma etchings were essential to promote reproducible polymerization and film growth. However, the oxide layer thinning due to the etching lowered the corrosion resistance of the substrate and affected the stability of the interface. Still, the deformed samples did not exhibited adhesion and cohesion failure before and after the aging. PMID:21545130