Science.gov

Sample records for barrier reef ecosystem

  1. Assessment of the Water Quality and Ecosystem Health of the Great Barrier Reef (Australia): Conceptual Models

    NASA Astrophysics Data System (ADS)

    Haynes, David; Brodie, Jon; Waterhouse, Jane; Bainbridge, Zoe; Bass, Deb; Hart, Barry

    2007-12-01

    Run-off containing increased concentrations of sediment, nutrients, and pesticides from land-based anthropogenic activities is a significant influence on water quality and the ecologic conditions of nearshore areas of the Great Barrier Reef World Heritage Area, Australia. The potential and actual impacts of increased pollutant concentrations range from bioaccumulation of contaminants and decreased photosynthetic capacity to major shifts in community structure and health of mangrove, coral reef, and seagrass ecosystems. A detailed conceptual model underpins and illustrates the links between the main anthropogenic pressures or threats (dry-land cattle grazing and intensive sugar cane cropping) and the production of key contaminants or stressors of Great Barrier Reef water quality. The conceptual model also includes longer-term threats to Great Barrier Reef water quality and ecosystem health, such as global climate change, that will potentially confound direct model interrelationships. The model recognises that system-specific attributes, such as monsoonal wind direction, rainfall intensity, and flood plume residence times, will act as system filters to modify the effects of any water-quality system stressor. The model also summarises key ecosystem responses in ecosystem health that can be monitored through indicators at catchment, riverine, and marine scales. Selected indicators include riverine and marine water quality, inshore coral reef and seagrass status, and biota pollutant burdens. These indicators have been adopted as components of a long-term monitoring program to enable assessment of the effectiveness of change in catchment-management practices in improving Great Barrier Reef (and adjacent catchment) water quality under the Queensland and Australian Governments’ Reef Water Quality Protection Plan.

  2. Navigating the transition to ecosystem-based management of the Great Barrier Reef, Australia.

    PubMed

    Olsson, Per; Folke, Carl; Hughes, Terry P

    2008-07-15

    We analyze the strategies and actions that enable transitions toward ecosystem-based management using the recent governance changes of the Great Barrier Reef Marine Park as a case study. The interplay among individual actors, organizations, and institutions at multiple levels is central in such transitions. A flexible organization, the Great Barrier Reef Marine Park Authority, was crucial in initiating the transition to ecosystem-based management. This agency was also instrumental in the subsequent transformation of the governance regime and provided leadership throughout the process. Strategies involved internal reorganization and management innovation, leading to an ability to coordinate the scientific community, to increase public awareness of environmental issues and problems, to involve a broader set of stakeholders, and to maneuver the political system for support at critical times. The transformation process was induced by increased pressure on the Great Barrier Reef (from terrestrial runoff, overharvesting, and global warming) that triggered a new sense of urgency to address these challenges. The focus of governance shifted from protection of selected individual reefs to stewardship of the larger-scale seascape. The study emphasizes the significance of stewardship that can change patterns of interactions among key actors and allow for new forms of management and governance to emerge in response to environmental change. This example illustrates that enabling legislations or other social bounds are essential, but not sufficient for shifting governance toward adaptive comanagement of complex marine ecosystems. PMID:18621698

  3. Navigating the transition to ecosystem-based management of the Great Barrier Reef, Australia

    PubMed Central

    Olsson, Per; Folke, Carl; Hughes, Terry P.

    2008-01-01

    We analyze the strategies and actions that enable transitions toward ecosystem-based management using the recent governance changes of the Great Barrier Reef Marine Park as a case study. The interplay among individual actors, organizations, and institutions at multiple levels is central in such transitions. A flexible organization, the Great Barrier Reef Marine Park Authority, was crucial in initiating the transition to ecosystem-based management. This agency was also instrumental in the subsequent transformation of the governance regime and provided leadership throughout the process. Strategies involved internal reorganization and management innovation, leading to an ability to coordinate the scientific community, to increase public awareness of environmental issues and problems, to involve a broader set of stakeholders, and to maneuver the political system for support at critical times. The transformation process was induced by increased pressure on the Great Barrier Reef (from terrestrial runoff, overharvesting, and global warming) that triggered a new sense of urgency to address these challenges. The focus of governance shifted from protection of selected individual reefs to stewardship of the larger-scale seascape. The study emphasizes the significance of stewardship that can change patterns of interactions among key actors and allow for new forms of management and governance to emerge in response to environmental change. This example illustrates that enabling legislations or other social bounds are essential, but not sufficient for shifting governance toward adaptive comanagement of complex marine ecosystems. PMID:18621698

  4. The economic value of ecosystem services in the Great Barrier Reef: our state of knowledge.

    PubMed

    Stoeckl, Natalie; Hicks, Christina C; Mills, Morena; Fabricius, Katharina; Esparon, Michelle; Kroon, Frederieke; Kaur, Kamaljit; Costanza, Robert

    2011-02-01

    This article reviews literature relating to the Great Barrier Reef (GBR) and aims to assess the current state of knowledge about (1) the "value" of ecosystem services (ES) provided by the GBR and (2) the way in which activities that are carried out in regions adjacent to the GBR affect those values. It finds that most GBR valuation studies have concentrated on a narrow range of ES (e.g., tourism and fishing) and that little is known about other ES or about the social, temporal, and spatial distribution of those services. Just as the reef provides ES to humans and to other ecosystems, so too does the reef receive a variety of ES from adjoining systems (e.g., mangroves). Yet, despite the evidence that the reef's ability to provide ES has been eroded because of recent changes to adjoining ecosystems, little is known about the value of the ES provided by adjoining systems or about the value of recent changes. These information gaps may lead to suboptimal allocations of resource use within multiple realms. PMID:21332495

  5. The role of sponges in the Mesoamerican Barrier-Reef Ecosystem, Belize.

    PubMed

    Rützler, Klaus

    2012-01-01

    Over the past four decades, sponge research has advanced by leaps and bounds through endeavours such as the Caribbean Coral Reef Ecosystems (CCRE) programme at the U.S. National Museum of Natural History in Washington, D.C. Since its founding in the early 1970s, the programme has been dedicated to a detailed multidisciplinary study of a section of the Mesoamerican Barrier Reef, the Atlantic's largest reef complex, and has generated data far beyond the capability of lone investigators and brief expeditions. This reef complex extends 250 km southward from Yucatan, Mexico, into the Gulf of Honduras, most of it lying 20-40 km off the coast of Belize. A relatively unspoiled ecosystem, it features a great variety of habitats in close proximity, ranging from mangrove islands, seagrass meadows, and patch reefs in its lagoon to the barrier reef along the margin of the continental shelf. Among its varied macrobenthos, sponges stand out for their ubiquity, range of colours, rich species and biomass, and ecological importance; they populate rocky substrates, some sandy bottoms, and the subtidal stilt roots and peat banks of mangroves. Working from a field station established in 1972 on Carrie Bow Cay, a sand islet atop the reef off southern Belize, experts in numerous disciplines from both the Museum and academic institutions throughout the world have explored the area's biodiversity in the broadest sense and community development over time. At last count, 113 researchers (88 working on site) have focused on the biological and geological role of Porifera in Carrie Bow's reef communities, with the results reported in 125 scientific papers to date. The majority of these sponge studies have centred on systematics and faunistics, including quantitative distribution among the various habitats. Taxonomic approaches have ranged from basic morphology to fine structure, DNA barcoding, and ecological manipulations and culminated in a mini-workshop involving several experts on Caribbean

  6. Great Barrier Reef, Queensland, Australia

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This detailed view of the Great Barrier Reef, Queensland, Australia (19.5S, 149.5E) shows several small patch reefs within the overall reef system. The Great Barrier Reef, largest in the world, comprises thousands of individual reefs of great variety and are closely monitored by marine ecologists. These reefs are about 6000 years old and sit on top of much older reefs. The most rapid coral growth occurs on the landward side of the reefs.

  7. Great Barrier Reef

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A better than average view of the Great Barrier Reef was captured by SeaWiFS on a recent overpass. There is sunglint northeast of the reef and there appears to be some sort of filamentous bloom in the Capricorn Channel.

  8. Coral Reef Ecosystems

    NASA Astrophysics Data System (ADS)

    Yap, Helen T.

    Coral reefs are geological structures of significant dimensions, constructed over millions of years by calcifying organisms. The present day reef-builders are hard corals belonging to the order Scleractinia, phylum Cnidaria. The greatest concentrations of coral reefs are in the tropics, with highest levels of biodiversity situated in reefs of the Indo-West Pacific region. These ecosystems have provided coastal protection and livelihood to human populations over the millennia. Human activities have caused destruction of these habitats, the intensity of which has increased alarmingly since the latter decades of the twentieth century. The severity of this impact is directly related to exponential growth rates of human populations especially in the coastal areas of the developing world. However, a more recently recognized phenomenon concerns disturbances brought about by the changing climate, manifested mainly as rising sea surface temperatures, and increasing acidification of ocean waters due to greater drawdown of higher concentrations of atmospheric carbon dioxide. Management efforts have so far not kept pace with the rates of degradation, so that the spatial extent of damaged reefs and the incidences of localized extinction of reef species are increasing year after year. The major management efforts to date consist of establishing marine protected areas and promoting the active restoration of coral habitats.

  9. Studies on the Great Barrier Reef

    SciTech Connect

    Walton, S.

    1985-01-01

    Proposals to drill for oil on Australia's Great Barrier Reef have led to the appointment of a royal commission to study the environmental impact of such activities. The Australian Institute of Marine Science has developed a 5-part research plant which covers the Australian mangrove environment; nearshore habitat; processes and interactions, energy flows, resource cycling and their consequences within the reef ecosystems; patterns, abundances and relationships within the reef; and the continental shelf of the Great Barrier Reef region. Research in each of these areas is described.

  10. Australia's Great Barrier Reef

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Great Barrier Reef extends for 2,000 kilometers along the northeastern coast of Australia. It is not a single reef, but a vast maze of reefs, passages, and coral cays (islands that are part of the reef). This nadir true-color image was acquired by the MISR instrument on August 26, 2000 (Terra orbit 3679), and shows part of the southern portion of the reef adjacent to the central Queensland coast. The width of the MISR swath is approximately 380 kilometers, with the reef clearly visible up to approximately 200 kilometers from the coast. It may be difficult to see the myriad details in the browse image, but if you retrieve the higher resolution version, a zoomed display reveals the spectacular structure of the many reefs.

    The more northerly coastal area in this image shows the vast extent of sugar cane cultivation, this being the largest sugar producing area in Australia, centered on the city of Mackay. Other industries in the area include coal, cattle, dairying, timber, grain, seafood, and fruit. The large island off the most northerly part of the coast visible in this image is Whitsunday Island, with smaller islands and reefs extending southeast, parallel to the coast. These include some of the better known resort islands such as Hayman, Lindeman, Hamilton, and Brampton Islands.

    Further south, just inland of the small semicircular bay near the right of the image, is Rockhampton, the largest city along the central Queensland coast, and the regional center for much of central Queensland. Rockhampton is just north of the Tropic of Capricorn. Its hinterland is a rich pastoral, agricultural, and mining region.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  11. USGS research on Atlantic coral reef ecosystems

    USGS Publications Warehouse

    Kuffner, Ilsa B.; Yates, Kimberly K.; Zawada, David G.; Richey, Julie N.; Kellogg, Christina A.; Toth, Lauren T.

    2015-01-01

    Coral reefs are massive, biomineralized structures that protect coastal communities by acting as barriers to hazards such as hurricanes and tsunamis. They provide sand for beaches through the natural process of erosion, support tourism and recreational industries, and provide essential habitat for fisheries. The continuing global degradation of coral reef ecosystems is well documented. There is a need for focused, coordinated science to understand the complex physical and biological processes and interactions that are impacting the condition of coral reefs and their ability to respond to a changing environment.

  12. Diet and cross-shelf distribution of rabbitfishes (f. Siganidae) on the northern Great Barrier Reef: implications for ecosystem function

    NASA Astrophysics Data System (ADS)

    Hoey, A. S.; Brandl, S. J.; Bellwood, D. R.

    2013-12-01

    Herbivorous fishes are a critical functional group on coral reefs, and there is a clear need to understand the role and relative importance of individual species in reef processes. While numerous studies have quantified the roles of parrotfishes and surgeonfishes on coral reefs, the rabbitfishes (f. Siganidae) have been largely overlooked. Consequently, they are typically viewed as a uniform group of grazing or browsing fishes. Here, we quantify the diet and distribution of rabbitfish assemblages on six reefs spanning the continental shelf in the northern Great Barrier Reef. Our results revealed marked variation in the diet and distribution of rabbitfish species. Analysis of stomach contents identified four distinct groups: browsers of leathery brown macroalgae ( Siganus canaliculatus, S. javus), croppers of red and green macroalgae ( S. argenteus, S. corallinus, S. doliatus, S. spinus) and mixed feeders of diverse algal material, cyanobacteria, detritus and sediment ( S. lineatus, S. punctatissimus, S. punctatus, S. vulpinus). Surprisingly, the diet of the fourth group ( S. puellus) contained very little algal material (22.5 %) and was instead dominated by sponges (69.1 %). Together with this variation in diet, the distribution of rabbitfishes displayed clear cross-shelf variation. Biomass was greatest on inner-shelf reefs (112.7 ± 18.2 kg.ha-1), decreasing markedly on mid- (37.8 ± 4.6 kg.ha-1) and outer-shelf reefs (9.7 ± 2.2 kg.ha-1). This pattern was largely driven by the browsing S. canaliculatus that accounted for 50 % of the biomass on inner-shelf reefs, but was absent in mid- and outer-shelf reefs. Mixed feeders, although primarily restricted to the reef slope and back reef habitats, also decreased in abundance and biomass from inshore to offshore, while algal cropping taxa were the dominant group on mid-shelf reefs. These results clearly demonstrate the extent to which diet and distribution vary within the Siganidae and emphasise the importance of

  13. Spatial patterns in benthic communities and the dynamics of a mosaic ecosystem on the Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Ninio, R.; Meekan, M.

    2002-04-01

    The benthic communities of the Great Barrier Reef (GBR) have been characterized as a mosaic with patches at scales of tens to hundreds of kilometres formed by clusters of reefs with comparable environmental settings and histories of disturbance. We use data sets of changes in cover of abundant benthic organisms to examine the relationship between community composition and the dynamics of this mosaic. Our data were compiled from seven annual video surveys of permanent transects on the north-east flanks of up to 52 reefs at different shelf positions throughout most of the GBR. Classification analysis of these data sets identified three distinct groups of reefs, the first dominated by poritid hard corals and alcyoniid soft corals, the second by hard corals of the genus Acropora, and the third by xeniid soft corals. These groups underwent different amounts of change in cover during the period of our study. As acroporan corals are fast growing but susceptible to mortality due to predators and wave action, the group of reefs dominated by this genus displayed rapid rates of growth and loss of cover. In contrast, cover in the remaining groups changed very slowly or remained stable. Some evidence suggests that competition for space may limit growth of acroporan corals and thus rates of change in the group dominated by xeniid soft corals. These contrasting patterns imply that susceptibility to, and recovery from, disturbances such as cyclones, predators, and bleaching events will differ among these groups of reefs.

  14. Great Barrier Reef

    Atmospheric Science Data Center

    2013-04-16

    ... reef, but a vast maze of reefs, passages, and coral cays (islands that are part of the reef). This nadir true-color image was acquired by ... visible in this image is Whitsunday Island, with smaller islands and reefs extending southeast, parallel to the coast. These include ...

  15. Benthic community composition on submerged reefs in the central Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Roberts, T. E.; Moloney, J. M.; Sweatman, H. P. A.; Bridge, T. C. L.

    2015-06-01

    Community dynamics on coral reefs are often examined only in relatively shallow waters, which are most vulnerable to many disturbances. The Great Barrier Reef World Heritage Area (GBRWHA) includes extensive submerged reefs that do not approach sea level and are within depths that support many coral reef taxa that also occur in shallow water. However, the composition of benthic communities on submerged reefs in the GBRWHA is virtually unknown. We examined spatial patterns in benthic community composition on 13 submerged reefs in the central Great Barrier Reef (GBR) at depths of 10-30 m. We show that benthic communities on submerged reefs include similar species groups to those on neighbouring emergent reefs. The spatial distribution of species groups was well explained by depth and cross-shelf gradients that are well-known determinants of community composition on emergent reefs. Many equivalent species groups occurred at greater depths on submerged reefs, likely due to variability in the hydrodynamic environment among reef morphologies. Hard coral cover and species richness were lowest at the shallowest depth (6 m) on emergent reefs and were consistently higher on submerged reefs for any given depth. These results suggest that disturbances are less frequent on submerged reefs, but evidence that a severe tropical cyclone in 2011 caused significant damage to shallow regions of more exposed submerged reefs demonstrates that they are not immune. Our results confirm that submerged reefs in the central GBR support extensive and diverse coral assemblages that deserve greater attention in ecosystem assessments and management decisions.

  16. Quantifying Water Flow within Aquatic Ecosystems Using Load Cell Sensors: A Profile of Currents Experienced by Coral Reef Organisms around Lizard Island, Great Barrier Reef, Australia

    PubMed Central

    Johansen, Jacob L.

    2014-01-01

    Current velocity in aquatic environments has major implications for the diversity, abundance and ecology of aquatic organisms, but quantifying these currents has proven difficult. This study utilises a simple and inexpensive instrument (<$150) to provide a detailed current velocity profile of the coral-reef system around Lizard Island (Great Barrier Reef, Australia) at a spatial and temporal scale relevant to the ecology of individual benthos and fish. The instrument uses load-cell sensors to provide a correlation between sensor output and ambient current velocity of 99%. Each instrument is able to continuously record current velocities to >500 cms−1 and wave frequency to >100 Hz over several weeks. Sensor data are registered and processed at 16 MHz and 10 bit resolution, with a measuring precision of 0.06±0.04%, and accuracy of 0.51±0.65% (mean ±S.D.). Each instrument is also pressure rated to 120 m and shear stresses ≤20 kNm−2 allowing deployment in harsh environments. The instrument was deployed across 27 coral reef sites covering the crest (3 m), mid-slope (6 m) and deep-slope (9 m depth) of habitats directly exposed, oblique or sheltered from prevailing winds. Measurements demonstrate that currents over the reef slope and crest varies immensely depending on depth and exposure: Currents differ up to 9-fold within habitats only separated by 3 m depth and 15-fold between exposed, oblique and sheltered habitats. Comparisons to ambient weather conditions reveal that currents around Lizard Island are largely wind driven. Zero to 22.5 knot winds correspond directly to currents of 0 to >82 cms−1, while tidal currents rarely exceed 5.5 cms−1. Rather, current velocity increases exponentially as a function of wave height (0 to 1.6 m) and frequency (0.54 to 0.20 Hz), emphasizing the enormous effect of wind and waves on organisms in these shallow coral reef habitats. PMID:24421878

  17. Using MODIS data for mapping of water types within river plumes in the Great Barrier Reef, Australia: towards the production of river plume risk maps for reef and seagrass ecosystems.

    PubMed

    Petus, Caroline; da Silva, Eduardo Teixeira; Devlin, Michelle; Wenger, Amelia S; Alvarez-Romero, Jorge G

    2014-05-01

    River plumes are the major transport mechanism for nutrients, sediments and other land-based pollutants into the Great Barrier Reef (GBR, Australia) and are a major threat to coastal and marine ecosystems such as coral reefs and seagrass beds. Understanding the spatial extent, frequency of occurrence, loads and ecological impacts of land-based pollutants discharged through river plumes is essential to drive catchment management actions. In this study, a framework to produce river plume risk maps for seagrass and coral ecosystems, using supervised classification of MODIS Level 2 (L2) satellite products, is presented. Based on relevant L2 thresholds, river plumes are classified into Primary, Secondary, and Tertiary water types, which represent distinct water quality (WQ) parameters concentrations and combinations. Annual water type maps are produced over three wet seasons (2010-2013) as a case of study. These maps provide a synoptic basis to assess the likelihood and magnitude of the risk of reduced coastal WQ associated with the river discharge (river plume risk) and in combination with sound knowledge of the regional ecosystems can serve as the basis to assess potential ecological impacts for coastal and marine GBR ecosystems. The methods described herein provide relevant and easily reproducible large-scale information for river plume risk assessment and management. PMID:24632405

  18. Catchment management and the Great Barrier Reef.

    PubMed

    Brodie, J; Christie, C; Devlin, M; Haynes, D; Morris, S; Ramsay, M; Waterhouse, J; Yorkston, H

    2001-01-01

    Pollution of coastal regions of the Great Barrier Reef is dominated by runoff from the adjacent catchment. Catchment land-use is dominated by beef grazing and cropping, largely sugarcane cultivation, with relatively minor urban development. Runoff of sediment, nutrients and pesticides is increasing and for nitrogen is now four times the natural amount discharged 150 years ago. Significant effects and potential threats are now evident on inshore reefs, seagrasses and marine animals. There is no effective legislation or processes in place to manage agricultural pollution. The Great Barrier Reef Marine Park Act does not provide effective jurisdiction on the catchment. Queensland legislation relies on voluntary codes and there is no assessment of the effectiveness of the codes. Integrated catchment management strategies, also voluntary, provide some positive outcomes but are of limited success. Pollutant loads are predicted to continue to increase and it is unlikely that current management regimes will prevent this. New mechanisms to prevent continued degradation of inshore ecosystems of the Great Barrier Reef World Heritage Area are urgently needed. PMID:11419129

  19. Miocene precursors to Great Barrier Reef

    SciTech Connect

    Davies, P.J.; Symonds, P.A.; Feary, D.A.; Pigram, C.

    1988-01-01

    Huge reefs of Miocene age are present in the Gulf of Papua north of the present-day Great Barrier Reef and to the east on the Marion and Queensland Plateaus. In the Gulf of Papua, Miocene barrier reefs formed the northern forerunner of the Great Barrier Reef, extending for many hundreds of kilometers along the eastern and northern margin of the Australian craton within a developing foreland basin. Barrier reefs, slope pinnacle reefs, and platform reefs are seen in seismic sections and drill holes. Leeside talus deposits testify to the high energy impinging on the eastern margin of these Miocene reefs. The Queensland Plateau is a marginal plateau east of the central Great Barrier Reef and separated from it by a rift trough. Miocene reefs occupied an area of about 50,000 km/sup 2/ and grew on salt-controlled highs on the western margin of the plateau and on a regional basement high extending from the platform interior to its southern margin. Reef growth has continued to the present day, although two major contractions in the area covered by reefs occurred during the Miocene. The Marion Plateau is present directly east of the Great Barrier Reef and during the Micoene formed a 30,000-km/sup 2/ platform with barrier reefs along its northern margin and huge platform reefs and laggons on the platform interior. These reefs grew on a flat peneplained surface, the whole area forming a large shallow epicontinental sea. In all three areas, the middle Miocene formed the acme of reef expansion in the region.

  20. The Great Barrier Reef World Heritage Area seagrasses: Managing this iconic Australian ecosystem resource for the future

    NASA Astrophysics Data System (ADS)

    Coles, Robert G.; Rasheed, Michael A.; McKenzie, Len J.; Grech, Alana; York, Paul H.; Sheaves, Marcus; McKenna, Skye; Bryant, Catherine

    2015-02-01

    The Great Barrier Reef World Heritage Area (GBRWHA) includes one of the world's largest areas of seagrass (35,000 km2) encompassing approximately 20% of the world's species. Mapping and monitoring programs sponsored by the Australian and Queensland Governments and Queensland Port Authorities have tracked a worrying decrease in abundance and area since 2007. This decline has almost certainly been the result of a series of severe tropical storms and associated floods exacerbating existing human induced stressors. A complex variety of marine and terrestrial management actions and plans have been implemented to protect seagrass and other habitats in the GBRWHA. For seagrasses, these actions are inadequate. They provide an impression of effective protection of seagrasses; reduce the sense of urgency needed to trigger action; and waste the valuable and limited supply of "conservation capital". There is a management focus on ports, driven by public concerns about high profile development projects, which exaggerates the importance of these relatively concentrated impacts in comparison to the total range of threats and stressors. For effective management of seagrass at the scale of the GBRWHA, more emphasis needs to be placed on the connectivity between seagrass meadow health, watersheds, and all terrestrial urban and agricultural development associated with human populations. The cumulative impacts to seagrass from coastal and marine processes in the GBRWHA are not evenly distributed, with a mosaic of high and low vulnerability areas. This provides an opportunity to make choices for future coastal development plans that minimise stress on seagrass meadows.

  1. Great Barrier Reef, Queensland, Australia

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Along the coast of Queensland, Australia (18.0S, 147.5E), timbered foothills of the Great Dividing Range separate the semi-arid interior of Queensland from the farmlands of the coastal plains. Prominent cleared areas in the forest indicate deforestation for farm and pasture lands. Offshore, islands and the Great Barrier Reef display sand banks along the southern sides of the structures indicating a dominant southerly wind and current direction.

  2. Reef Ecosystem Services and Decision Support Database

    EPA Science Inventory

    This scientific and management information database utilizes systems thinking to describe the linkages between decisions, human activities, and provisioning of reef ecosystem goods and services. This database provides: (1) Hierarchy of related topics - Click on topics to navigat...

  3. The Barrier Reef sediment apron: Tobacco Reef, Belize

    NASA Astrophysics Data System (ADS)

    MacIntyre, Ian G.; Graus, Richard R.; Reinthal, Peter N.; Littler, Mark M.; Littler, Diane S.

    1987-07-01

    Sedimentological and biological surveys of the back-reef sediment apron of Tobacco Reef, a continuous segment of the Belizean Barrier Reef, reveal five distinct biogeological zones: (1) coralline-coral- Dictyota pavement, (2) Turbinaria-Sargassum rubble, (3) Laurencia-Acanthophora sand and gravel, (4) bare sand and 95 Thalassia sand. These zones parallel the entire 9-km reef. The distribution of these zones is related to the spatial patterns of fish herbivory, the size of bottom sediments, and the stability of the substrate. Sedimentological and hydrodynamic studies indicate that most of the sediments in this area are transported from the reef crest and fore reef during periods of storm or hurricane activity and that their size distribution is largely the result of differential transport by high bottom-water velocities during those periods.

  4. Predicting the Location and Spatial Extent of Submerged Coral Reef Habitat in the Great Barrier Reef World Heritage Area, Australia

    PubMed Central

    Bridge, Tom; Beaman, Robin; Done, Terry; Webster, Jody

    2012-01-01

    Aim Coral reef communities occurring in deeper waters have received little research effort compared to their shallow-water counterparts, and even such basic information as their location and extent are currently unknown throughout most of the world. Using the Great Barrier Reef as a case study, habitat suitability modelling is used to predict the distribution of deep-water coral reef communities on the Great Barrier Reef, Australia. We test the effectiveness of a range of geophysical and environmental variables for predicting the location of deep-water coral reef communities on the Great Barrier Reef. Location Great Barrier Reef, Australia. Methods Maximum entropy modelling is used to identify the spatial extent of two broad communities of habitat-forming megabenthos phototrophs and heterotrophs. Models were generated using combinations of geophysical substrate properties derived from multibeam bathymetry and environmental data derived from Bio-ORACLE, combined with georeferenced occurrence records of mesophotic coral communities from autonomous underwater vehicle, remotely operated vehicle and SCUBA surveys. Model results are used to estimate the total amount of mesophotic coral reef habitat on the GBR. Results Our models predict extensive but previously undocumented coral communities occurring both along the continental shelf-edge of the Great Barrier Reef and also on submerged reefs inside the lagoon. Habitat suitability for phototrophs is highest on submerged reefs along the outer-shelf and the deeper flanks of emergent reefs inside the GBR lagoon, while suitability for heterotrophs is highest in the deep waters along the shelf-edge. Models using only geophysical variables consistently outperformed models incorporating environmental data for both phototrophs and heterotrophs. Main Conclusion Extensive submerged coral reef communities that are currently undocumented are likely to occur throughout the Great Barrier Reef. High-quality bathymetry data can be used

  5. A Paddock to reef monitoring and modelling framework for the Great Barrier Reef: Paddock and catchment component.

    PubMed

    Carroll, Chris; Waters, David; Vardy, Suzanne; Silburn, David M; Attard, Steve; Thorburn, Peter J; Davis, Aaron M; Halpin, Neil; Schmidt, Michael; Wilson, Bruce; Clark, Andrew

    2012-01-01

    Targets for improvements in water quality entering the Great Barrier Reef (GBR) have been set through the Reef Water Quality Protection Plan (Reef Plan). To measure and report on progress towards the targets set a program has been established that combines monitoring and modelling at paddock through to catchment and reef scales; the Paddock to Reef Integrated Monitoring, Modelling and Reporting Program (Paddock to Reef Program). This program aims to provide evidence of links between land management activities, water quality and reef health. Five lines of evidence are used: the effectiveness of management practices to improve water quality; the prevalence of management practice adoption and change in catchment indicators; long-term monitoring of catchment water quality; paddock & catchment modelling to provide a relative assessment of progress towards meeting targets; and finally marine monitoring of GBR water quality and reef ecosystem health. This paper outlines the first four lines of evidence. PMID:22277580

  6. Flushing of Bowden Reef lagoon, Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Wolanski, Eric; King, Brian

    1990-12-01

    Field and numerical studies were undertaken in 1986 and 1987 of the water circulation around and over Bowden Reef, a 5-km long kidney-shaped coral reef lagoon system in the Great Barrier Reef. In windy conditions, the flushing of the lagoon was primarily due to the intrusion into the lagoon of topographically induced tidal eddies generated offshore. In calm weather, such eddies did not prevail and lagoon flushing was much slower. The observed currents at sites a few kilometres apart in inter-reefal waters, have a significant horizontal shear apparently due to the complex circulation in the reef matrix. Under such conditions, sensitivity tests demonstrate the importance of including this shear in the specification of open boundary conditions of numerical models of the hydrodynamics around reefs. Contrary to established practice, the water circulation around a coral reef should not be modelled by assuming reefs are hydrodynamically isolated from surrounding ones. Little improvement appears likely in the reliability of reef-scale numerical models until the inter-reefal shear can be reliably incorporated in such models.

  7. Postglacial fringing-reef to barrier-reef conversion on Tahiti links Darwin's reef types.

    PubMed

    Blanchon, Paul; Granados-Corea, Marian; Abbey, Elizabeth; Braga, Juan C; Braithwaite, Colin; Kennedy, David M; Spencer, Tom; Webster, Jody M; Woodroffe, Colin D

    2014-01-01

    In 1842 Charles Darwin claimed that vertical growth on a subsiding foundation caused fringing reefs to transform into barrier reefs then atolls. Yet historically no transition between reef types has been discovered and they are widely considered to develop independently from antecedent foundations during glacio-eustatic sea-level rise. Here we reconstruct reef development from cores recovered by IODP Expedition 310 to Tahiti, and show that a fringing reef retreated upslope during postglacial sea-level rise and transformed into a barrier reef when it encountered a Pleistocene reef-flat platform. The reef became stranded on the platform edge, creating a lagoon that isolated it from coastal sediment and facilitated a switch to a faster-growing coral assemblage dominated by acroporids. The switch increased the reef's accretion rate, allowing it to keep pace with rising sea level, and transform into a barrier reef. This retreat mechanism not only links Darwin's reef types, but explains the re-occupation of reefs during Pleistocene glacio-eustacy. PMID:24845540

  8. Postglacial Fringing-Reef to Barrier-Reef conversion on Tahiti links Darwin's reef types

    NASA Astrophysics Data System (ADS)

    Blanchon, Paul; Granados-Corea, Marian; Abbey, Elizabeth; Braga, Juan C.; Braithwaite, Colin; Kennedy, David M.; Spencer, Tom; Webster, Jody M.; Woodroffe, Colin D.

    2014-05-01

    In 1842 Charles Darwin claimed that vertical growth on a subsiding foundation caused fringing reefs to transform into barrier reefs then atolls. Yet historically no transition between reef types has been discovered and they are widely considered to develop independently from antecedent foundations during glacio-eustatic sea-level rise. Here we reconstruct reef development from cores recovered by IODP Expedition 310 to Tahiti, and show that a fringing reef retreated upslope during postglacial sea-level rise and transformed into a barrier reef when it encountered a Pleistocene reef-flat platform. The reef became stranded on the platform edge, creating a lagoon that isolated it from coastal sediment and facilitated a switch to a faster-growing coral assemblage dominated by acroporids. The switch increased the reef's accretion rate, allowing it to keep pace with rising sea level, and transform into a barrier reef. This retreat mechanism not only links Darwin's reef types, but explains the re-occupation of reefs during Pleistocene glacio-eustacy.

  9. Postglacial Fringing-Reef to Barrier-Reef conversion on Tahiti links Darwin's reef types

    PubMed Central

    Blanchon, Paul; Granados-Corea, Marian; Abbey, Elizabeth; Braga, Juan C.; Braithwaite, Colin; Kennedy, David M.; Spencer, Tom; Webster, Jody M.; Woodroffe, Colin D.

    2014-01-01

    In 1842 Charles Darwin claimed that vertical growth on a subsiding foundation caused fringing reefs to transform into barrier reefs then atolls. Yet historically no transition between reef types has been discovered and they are widely considered to develop independently from antecedent foundations during glacio-eustatic sea-level rise. Here we reconstruct reef development from cores recovered by IODP Expedition 310 to Tahiti, and show that a fringing reef retreated upslope during postglacial sea-level rise and transformed into a barrier reef when it encountered a Pleistocene reef-flat platform. The reef became stranded on the platform edge, creating a lagoon that isolated it from coastal sediment and facilitated a switch to a faster-growing coral assemblage dominated by acroporids. The switch increased the reef's accretion rate, allowing it to keep pace with rising sea level, and transform into a barrier reef. This retreat mechanism not only links Darwin's reef types, but explains the re-occupation of reefs during Pleistocene glacio-eustacy. PMID:24845540

  10. Spectral wave dissipation over a barrier reef

    NASA Astrophysics Data System (ADS)

    Lowe, Ryan J.; Falter, James L.; Bandet, Marion D.; Pawlak, Geno; Atkinson, Marlin J.; Monismith, Stephen G.; Koseff, Jeffrey R.

    2005-04-01

    A 2 week field experiment was conducted to measure surface wave dissipation on a barrier reef at Kaneohe Bay, Oahu, Hawaii. Wave heights and velocities were measured at several locations on the fore reef and the reef flat, which were used to estimate rates of dissipation by wave breaking and bottom friction. Dissipation on the reef flat was found to be dominated by friction at rates that are significantly larger than those typically observed at sandy beach sites. This is attributed to the rough surface generated by the reef organisms, which makes the reef highly efficient at dissipating energy by bottom friction. Results were compared to a spectral wave friction model, which showed that the variation in frictional dissipation among the different frequency components could be described using a single hydraulic roughness length scale. Surveys of the bottom roughness conducted on the reef flat showed that this hydraulic roughness length was comparable to the physical roughness measured at this site. On the fore reef, dissipation was due to the combined effect of frictional dissipation and wave breaking. However, in this region the magnitude of dissipation by bottom friction was comparable to wave breaking, despite the existence of a well-defined surf zone there. Under typical wave conditions the bulk of the total wave energy incident on Kaneohe Bay is dissipated by bottom friction, not wave breaking, as is often assumed for sandy beach sites and other coral reefs.

  11. Quantifying Coral Reef Ecosystem Services

    EPA Science Inventory

    Coral reefs have been declining during the last four decades as a result of both local and global anthropogenic stresses. Numerous research efforts to elucidate the nature, causes, magnitude, and potential remedies for the decline have led to the widely held belief that the recov...

  12. Quantifying Climatological Ranges and Anomalies for Pacific Coral Reef Ecosystems

    PubMed Central

    Gove, Jamison M.; Williams, Gareth J.; McManus, Margaret A.; Heron, Scott F.; Sandin, Stuart A.; Vetter, Oliver J.; Foley, David G.

    2013-01-01

    Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic–biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will

  13. Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems.

    PubMed

    Gove, Jamison M; Williams, Gareth J; McManus, Margaret A; Heron, Scott F; Sandin, Stuart A; Vetter, Oliver J; Foley, David G

    2013-01-01

    Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic-biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will help

  14. Regional-scale nitrogen and phosphorus budgets for the northern (14°S) and central (17°S) Great Barrier Reef shelf ecosystem

    NASA Astrophysics Data System (ADS)

    Furnas, M.; Alongi, D.; McKinnon, D.; Trott, L.; Skuza, M.

    2011-12-01

    Seasonally averaged N and P box model budgets were constructed for two regional-scale sections of the Great Barrier Reef (GBR) shelf, one in the near-pristine far-northern GBR (13.5-14.5°S) and the other in the central GBR (17-18°S) adjacent to more intensively farmed wet tropics watersheds. We were unable to simultaneously balance shelf-scale N and P budgets within seasonal or annual time frames, indicating that magnitudes of a number of key input and, especially, loss processes are still poorly constrained. In most cases, current estimates of system-level N and P sources (rainfall, runoff, upwelling, N-fixation) are less than estimated loss processes (denitrification, cross-shelfbreak mixing and burial). Nutrient dynamics in both shelf sections are dominated by the tightly coupled uptake and mineralization of soluble N and P in the water column and the sedimentation-resuspension of particulate detritus. On an area-averaged basis, internal cycling fluxes are an order of magnitude greater than input-output fluxes. Denitrification in shelf sediments is a significant sink for N while lateral mixing is both a source and sink for P.

  15. Aliphatic hydrocarbons in Great Barrier Reef organisms and environment

    NASA Astrophysics Data System (ADS)

    Coates, M.; Connell, D. W.; Bodero, J.; Miller, G. J.; Back, R.

    1986-07-01

    This investigation was undertaken to assess the chemical nature, occurrence, and possible origin of petroleum hydrocarbons in the Great Barrier Reef ecosystem. Aliphatic hydrocarbons in surface sediments, water, and a suite of seven species from widely separated coral reefs in the Great Barrier Reef area were analysed by gas chromatography, and by gas chromatography coupled with mass spectrometry. The hydrocarbons found were substantially of biogenic origin. The major components were n-pentadecane, n-heptadecane, pristane and mono-alkenes based on heptadecane, and were believed to originate from benthic algae and phytoplankton. There was no evidence to suggest that lipid content had any influence on hydrocarbon content. Hydrocarbons from the organisms and sediments have characteristic composition patterns which would be altered by the presence of petroleum hydrocarbons. An unresolved complex mixture, usually considered indicative of petroleum contamination, was found in greater than trace amounts only in Holothuria (sea cucumber) and Acropora (coral) from the Capricorn Group, and in some sediment samples from the Capricorn Group and Lizard Island area.

  16. Framework of barrier reefs threatened by ocean acidification.

    PubMed

    Comeau, Steeve; Lantz, Coulson A; Edmunds, Peter J; Carpenter, Robert C

    2016-03-01

    To date, studies of ocean acidification (OA) on coral reefs have focused on organisms rather than communities, and the few community effects that have been addressed have focused on shallow back reef habitats. The effects of OA on outer barrier reefs, which are the most striking of coral reef habitats and are functionally and physically different from back reefs, are unknown. Using 5-m long outdoor flumes to create treatment conditions, we constructed coral reef communities comprised of calcified algae, corals, and reef pavement that were assembled to match the community structure at 17 m depth on the outer barrier reef of Moorea, French Polynesia. Communities were maintained under ambient and 1200 μatm pCO2 for 7 weeks, and net calcification rates were measured at different flow speeds. Community net calcification was significantly affected by OA, especially at night when net calcification was depressed ~78% compared to ambient pCO2 . Flow speed (2-14 cm s(-1) ) enhanced net calcification only at night under elevated pCO2 . Reef pavement also was affected by OA, with dissolution ~86% higher under elevated pCO2 compared to ambient pCO2 . These results suggest that net accretion of outer barrier reef communities will decline under OA conditions predicted within the next 100 years, largely because of increased dissolution of reef pavement. Such extensive dissolution poses a threat to the carbonate foundation of barrier reef communities. PMID:26154126

  17. Abundance and diversity of anemonefishes and their host sea anemones at two mesophotic sites on the Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Bridge, T.; Scott, A.; Steinberg, D.

    2012-12-01

    Anemonefishes and their host sea anemones are iconic inhabitants of coral reef ecosystems. While studies have documented their abundance in shallow-water reef habitats in parts of the Indo-Pacific, none have examined these species on mesophotic reefs. In this study, we used autonomous underwater vehicle imagery to examine the abundance and diversity of anemones and anemonefishes at Viper Reef and Hydrographers Passage in the central Great Barrier Reef at depths between 50 and 65 m. A total of 37 host sea anemones (31 Entacmaea quadricolor and 6 Heteractis crispa) and 24 anemonefishes (23 Amphiprion akindynos and 1 A. perideraion) were observed. Densities were highest at Viper Reef, with 8.48 E. quadricolor and A. akindynos per 100 m2 of reef substratum. These results support the hypothesis that mesophotic reefs have many species common to shallow-water coral reefs and that many taxa may occur at depths greater than currently recognised.

  18. Environmental quality and preservation; reefs, corals, and carbonate sands; guides to reef-ecosystem health and environment

    USGS Publications Warehouse

    Lidz, Barbara H.

    2001-01-01

    Introduction In recent years, the health of the entire coral reef ecosystem that lines the outer shelf off the Florida Keys has declined markedly. In particular, loss of those coral species that are the building blocks of solid reef framework has significant negative implications for economic vitality of the region. What are the reasons for this decline? Is it due to natural change, or are human activities (recreational diving, ship groundings, farmland runoff, nutrient influx, air-borne contaminants, groundwater pollutants) a contributing factor and if so, to what extent? At risk of loss are biologic resources of the reefs, including habitats for endangered species in shoreline mangroves, productive marine and wetland nurseries, and economic fisheries. A healthy reef ecosystem builds a protective offshore barrier to catastrophic wave action and storm surges generated by tropical storms and hurricanes. In turn, a healthy reef protects the homes, marinas, and infrastructure on the Florida Keys that have been designed to capture a lucrative tourism industry. A healthy reef ecosystem also protects inland agricultural and livestock areas of South Florida whose produce and meat feed much of the United States and other parts of the world. In cooperation with the National Oceanic and Atmospheric Administration's (NOAA) National Marine Sanctuary Program, the U.S. Geological Survey (USGS) continues longterm investigations of factors that may affect Florida's reefs. One of the first steps in distinguishing between natural change and the effects of human activities, however, is to determine how coral reefs have responded to past environmental change, before the advent of man. By so doing, accurate scientific information becomes available for Marine Sanctuary management to understand natural change and thus to assess and regulate potential human impact better. The USGS studies described here evaluate the distribution (location) and historic vitality (thickness) of Holocene

  19. Coral Reefs on the Edge? Carbon Chemistry on Inshore Reefs of the Great Barrier Reef

    PubMed Central

    Uthicke, Sven; Furnas, Miles; Lønborg, Christian

    2014-01-01

    While increasing atmospheric carbon dioxide (CO2) concentration alters global water chemistry (Ocean Acidification; OA), the degree of changes vary on local and regional spatial scales. Inshore fringing coral reefs of the Great Barrier Reef (GBR) are subjected to a variety of local pressures, and some sites may already be marginal habitats for corals. The spatial and temporal variation in directly measured parameters: Total Alkalinity (TA) and dissolved inorganic carbon (DIC) concentration, and derived parameters: partial pressure of CO2 (pCO2); pH and aragonite saturation state (Ωar) were measured at 14 inshore reefs over a two year period in the GBR region. Total Alkalinity varied between 2069 and 2364 µmol kg−1 and DIC concentrations ranged from 1846 to 2099 µmol kg−1. This resulted in pCO2 concentrations from 340 to 554 µatm, with higher values during the wet seasons and pCO2 on inshore reefs distinctly above atmospheric values. However, due to temperature effects, Ωar was not further reduced in the wet season. Aragonite saturation on inshore reefs was consistently lower and pCO2 higher than on GBR reefs further offshore. Thermodynamic effects contribute to this, and anthropogenic runoff may also contribute by altering productivity (P), respiration (R) and P/R ratios. Compared to surveys 18 and 30 years ago, pCO2 on GBR mid- and outer-shelf reefs has risen at the same rate as atmospheric values (∼1.7 µatm yr−1) over 30 years. By contrast, values on inshore reefs have increased at 2.5 to 3 times higher rates. Thus, pCO2 levels on inshore reefs have disproportionately increased compared to atmospheric levels. Our study suggests that inshore GBR reefs are more vulnerable to OA and have less buffering capacity compared to offshore reefs. This may be caused by anthropogenically induced trophic changes in the water column and benthos of inshore reefs subjected to land runoff. PMID:25295864

  20. New evidence for the barrier reef model, Permian Capitan Reef complex, New Mexico

    SciTech Connect

    Kirkland, B.L.; Moore, C.H. Jr. )

    1990-05-01

    Recent paleontologic and petrologic observations suggest that the Capitan Formation was deposited as an organic or ecologic reef that acted as an emergent barrier to incoming wave energy. In outcrops in the Guadalupe Mountains and within Carlsbad Caverns, massive reef boundstone contains a highly diverse assemblage of frame-building and binding organisms. In modern reefs, diversity among frame builders decreases dramatically with depth. Marine cement is abundant in reef boundstone, but limited in back-reef grainstone and packstone. This cementation pattern is similar to that observed in modern emergent barrier reef systems. Based on comparison with modern analogs, these dasycladrominated back-reef sediments and their associated biota are indicative of shallow, hypersaline conditions. Few of these dasyclads exhibit broken or abraded segments and some thallus sections are still articulated suggesting that low-energy, hypersaline conditions occurred immediately shelfward of the reef. In addition, large-scale topographic features, such as possible spur and groove structures between Walnut Canyon and Rattlesnake Canyon, and facies geometries, such as the reef to shelf transition, resemble those found in modern shallow-water reefs. The organisms that formed the Capitan Reef appear to have lived in, and responded to, physical and chemical conditions similar to those that control the geometry of modern shallow-water reefs. Like their modern counterparts, they seem to have strongly influenced adjacent environments. In light of this evidence, consideration should be given to either modifying or abandoning the marginal mound model in favor of the originally proposed barrier reef model.

  1. Influence of hydrodynamic energy on Holocene reef flat accretion, Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Dechnik, Belinda; Webster, Jody M.; Nothdurft, Luke; Webb, Gregory E.; Zhao, Jian-xin; Duce, Stephanie; Braga, Juan C.; Harris, Daniel L.; Vila-Concejo, Ana; Puotinen, Marji

    2016-01-01

    The response of platform reefs to sea-level stabilization over the past 6 ka is well established for the Great Barrier Reef (GBR), with reefs typically accreting laterally from windward to leeward. However, these observations are based on few cores spread across reef zones and may not accurately reflect a reef's true accretional response to the Holocene stillstand. We present a new record of reef accretion based on 49 U/Th ages from Heron and One Tree reefs in conjunction with re-analyzed data from 14 reefs across the GBR. We demonstrate that hydrodynamic energy is the main driver of accretional direction; exposed reefs accreted primarily lagoon-ward while protected reefs accreted seawards, contrary to the traditional growth model in the GBR. Lateral accretion rates varied from 86.3 m/ka-42.4 m/ka on the exposed One Tree windward reef and 68.35 m/ka-15.7 m/ka on the protected leeward Heron reef, suggesting that wind/wave energy is not a dominant control on lateral accretion rates. This represents the most comprehensive statement of lateral accretion direction and rates from the mid-outer platform reefs of the GBR, confirming great variability in reef flat growth both within and between reef margins over the last 6 ka, and highlighting the need for closely-spaced transects.

  2. Ocean acidification: Linking science to management solutions using the Great Barrier Reef as a case study.

    PubMed

    Albright, Rebecca; Anthony, Kenneth R N; Baird, Mark; Beeden, Roger; Byrne, Maria; Collier, Catherine; Dove, Sophie; Fabricius, Katharina; Hoegh-Guldberg, Ove; Kelly, Ryan P; Lough, Janice; Mongin, Mathieu; Munday, Philip L; Pears, Rachel J; Russell, Bayden D; Tilbrook, Bronte; Abal, Eva

    2016-11-01

    Coral reefs are one of the most vulnerable ecosystems to ocean acidification. While our understanding of the potential impacts of ocean acidification on coral reef ecosystems is growing, gaps remain that limit our ability to translate scientific knowledge into management action. To guide solution-based research, we review the current knowledge of ocean acidification impacts on coral reefs alongside management needs and priorities. We use the world's largest continuous reef system, Australia's Great Barrier Reef (GBR), as a case study. We integrate scientific knowledge gained from a variety of approaches (e.g., laboratory studies, field observations, and ecosystem modelling) and scales (e.g., cell, organism, ecosystem) that underpin a systems-level understanding of how ocean acidification is likely to impact the GBR and associated goods and services. We then discuss local and regional management options that may be effective to help mitigate the effects of ocean acidification on the GBR, with likely application to other coral reef systems. We develop a research framework for linking solution-based ocean acidification research to practical management options. The framework assists in identifying effective and cost-efficient options for supporting ecosystem resilience. The framework enables on-the-ground OA management to be the focus, while not losing sight of CO2 mitigation as the ultimate solution. PMID:27564868

  3. Distribution, abundance and diversity of crustose coralline algae on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Dean, Angela J.; Steneck, Robert S.; Tager, Danika; Pandolfi, John M.

    2015-06-01

    The Great Barrier Reef (GBR) is the world's largest coral reef ecosystem. Crustose coralline algae (CCA) are important contributors to reef calcium carbonate and can facilitate coral recruitment. Despite the importance of CCA, little is known about species-level distribution, abundance, and diversity, and how these vary across the continental shelf and key habitat zones within the GBR. We quantified CCA species distributions using line transects ( n = 127) at 17 sites in the northern and central regions of the GBR, distributed among inner-, mid-, and outer-shelf regions. At each site, we identified CCA along replicate transects in three habitat zones: reef flat, reef crest, and reef slope. Taxonomically, CCA species are challenging to identify (especially in the field), and there is considerable disagreement in approach. We used published, anatomically based taxonomic schemes for consistent identification. We identified 30 CCA species among 12 genera; the most abundant species were Porolithon onkodes, Paragoniolithon conicum (sensu Adey), Neogoniolithon fosliei, and Hydrolithon reinboldii. Significant cross-shelf differences were observed in CCA community structure and CCA abundance, with inner-shelf reefs exhibiting lower CCA abundance than outer-shelf reefs. Shelf position, habitat zone, latitude, depth, and the interaction of shelf position and habitat were all significantly associated with variation in composition of CCA communities. Collectively, shelf position, habitat, and their interaction contributed to 22.6 % of the variation in coralline communities. Compared to mid- and outer-shelf sites, inner-shelf sites exhibited lower relative abundances of N. fosliei and Lithophyllum species. Reef crest habitats exhibited greater abundance of N. fosliei than reef flat and reef slope habitats. Reef slope habitats exhibited lower abundance of P. onkodes, but greater abundance of Neogoniolithon clavycymosum than reef crest and reef slope habitats. These findings

  4. Congruent patterns of connectivity can inform management for broadcast spawning corals on the Great Barrier Reef.

    PubMed

    Lukoschek, Vimoksalehi; Riginos, Cynthia; van Oppen, Madeleine J H

    2016-07-01

    Connectivity underpins the persistence and recovery of marine ecosystems. The Great Barrier Reef (GBR) is the world's largest coral reef ecosystem and managed by an extensive network of no-take zones; however, information about connectivity was not available to optimize the network's configuration. We use multivariate analyses, Bayesian clustering algorithms and assignment tests of the largest population genetic data set for any organism on the GBR to date (Acropora tenuis, >2500 colonies; >50 reefs, genotyped for ten microsatellite loci) to demonstrate highly congruent patterns of connectivity between this common broadcast spawning reef-building coral and its congener Acropora millepora (~950 colonies; 20 reefs, genotyped for 12 microsatellite loci). For both species, there is a genetic divide at around 19°S latitude, most probably reflecting allopatric differentiation during the Pleistocene. GBR reefs north of 19°S are essentially panmictic whereas southern reefs are genetically distinct with higher levels of genetic diversity and population structure, most notably genetic subdivision between inshore and offshore reefs south of 19°S. These broadly congruent patterns of higher genetic diversities found on southern GBR reefs most likely represent the accumulation of alleles via the southward flowing East Australia Current. In addition, signatures of genetic admixture between the Coral Sea and outer-shelf reefs in the northern, central and southern GBR provide evidence of recent gene flow. Our connectivity results are consistent with predictions from recently published larval dispersal models for broadcast spawning corals on the GBR, thereby providing robust connectivity information about the dominant reef-building genus Acropora for coral reef managers. PMID:27085309

  5. Llandoverian to Ludlovian barrier reef complex in southeast Wisconsin

    SciTech Connect

    Rovey, C.W. )

    1989-08-01

    Subsurface exploration in the Michigan basin established that a carbonate bank and barrier reef complex prograded basinward during the late Wenlockian to early Ludlovian, but the corresponding Niagaran Series is generally undifferentiated. In southeast Wisconsin the series is well exposed; thus, a better record of depositional history is available. Until now, reefs in the Racine formation of southeast Wisconsin (upper Wenlockian through lower Ludlovian) were interpreted as patch reefs built landward of the barrier complex. However, the following criteria are consistent with an extension of Michigan's northern barrier complex beneath Lake Michigan to southeast Wisconsin: (1) Ubiquitous presence of reef facies along a southwest to northeast trend. This trend is coincident with thickening and a facies change indicative of a deep to shallow water transition, (2) similarity in depositional sequence of the overlying Salina Group in Wisconsin and Michigan. The Salina sediments surround, but are absent over, structures interpreted as pinnacle reefs and form a feather edge against the thicker belt interpreted as a barrier complex. Hence, the Racine reefs are reinterpreted as a barrier complex. Hence, the Racine reefs are reinterpreted as a barrier and pinnacle reef complex. Similar facies changes are also present in older formations. Intraformational truncation surfaces in the underlying Waukesha Dolomite (upper Llandoverian to lower Wenlockian) clearly indicate the presence of a nearby carbonate slope. Therefore, the carbonate buildup originated prior to the Wenlockian and migrated further basinward than previously believed.

  6. Demography of the ecosystem engineer Crassostrea gigas, related to vertical reef accretion and reef persistence

    NASA Astrophysics Data System (ADS)

    Walles, Brenda; Mann, Roger; Ysebaert, Tom; Troost, Karin; Herman, Peter M. J.; Smaal, Aad C.

    2015-03-01

    Marine species characterized as structure building, autogenic ecosystem engineers are recognized worldwide as potential tools for coastal adaptation efforts in the face of sea level rise. Successful employment of ecosystem engineers in coastal protection largely depends on long-term persistence of their structure, which is in turn dependent on the population dynamics of the individual species. Oysters, such as the Pacific oyster (Crassostrea gigas), are recognized as ecosystem engineers with potential for use in coastal protection. Persistence of oyster reefs is strongly determined by recruitment and shell production (growth), processes facilitated by gregarious settlement on extant shell substrate. Although the Pacific oyster has been introduced world-wide, and has formed dense reefs in the receiving coastal waters, the population biology of live oysters and the quantitative mechanisms maintaining these reefs has rarely been studied, hence the aim of the present work. This study had two objectives: (1) to describe the demographics of extant C. gigas reefs, and (2) to estimate vertical reef accretion rates and carbonate production in these oyster reefs. Three long-living oyster reefs (>30 years old), which have not been exploited since their first occurrence, were examined in the Oosterschelde estuary in the Netherlands. A positive reef accretion rate (7.0-16.9 mm year-1 shell material) was observed, consistent with self-maintenance and persistent structure. We provide a framework to predict reef accretion and population persistence under varying recruitment, growth and mortality scenarios.

  7. Impact Of Coral Structures On Wave Directional Spreading Across A Shallow Reef Flat - Lizard Island, Northern Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Leon, J. X.; Baldock, T.; Callaghan, D. P.; Hoegh-guldberg, O.; Mumby, P.; Phinn, S. R.; Roelfsema, C. M.; Saunders, M. I.

    2013-12-01

    Coral reef hydrodynamics operate at several and overlapping spatial-temporal scales. Waves have the most important forcing function on shallow (< 5 m) reefs as they drive most ecological and biogeochemical processes by exerting direct physical stress, directly mixing water (temperature and nutrients) and transporting sediments, nutrients and plankton. Reef flats are very effective at dissipating wave energy and providing an important ecosystem service by protecting highly valued shorelines. The effectiveness of reef flats to dissipate wave energy is related to the extreme hydraulic roughness of the benthos and substrate composition. Hydraulic roughness is usually obtained empirically from frictional-dissipation calculations, as detailed field measurements of bottom roughness (e.g. chain-method or profile gauges) is a very labour and time-consuming task. In this study we measured the impact of coral structures on wave directional spreading. Field data was collected during October 2012 across a reef flat on Lizard Island, northern Great Barrier Reef. Wave surface levels were measured using an array of self-logging pressure sensors. A rapid in situ close-range photogrammetric method was used to create a high-resolution (0.5 cm) image mosaic and digital elevation model. Individual coral heads were extracted from these datasets using geo-morphometric and object-based image analysis techniques. Wave propagation was modelled using a modified version of the SWAN model which includes the measured coral structures in 2m by 1m cells across the reef. The approach followed a cylinder drag approach, neglecting skin friction and inertial components. Testing against field data included bed skin friction. Our results show, for the first time, how the variability of the reef benthos structures affects wave dissipation across a shallow reef flat. This has important implications globally for coral reefs, due to the large extent of their area occupied by reef flats, particularly, as

  8. Parrotfish predation on massive Porites on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Bonaldo, R. M.; Bellwood, D. R.

    2011-03-01

    Parrotfish grazing scars on coral colonies were quantified across four reef zones at Lizard Island, Northern Great Barrier Reef (GBR). The abundance of parrotfish grazing scars was highest on reef flat and crest, with massive Porites spp . colonies having more parrotfish grazing scars than all other coral species combined. Massive Porites was the only coral type positively selected for grazing by parrotfishes in all four reef zones. The density of parrotfish grazing scars on massive Porites spp., and the rate of new scar formation, was highest on the reef crest and flat, reflecting the lower massive Porites cover and higher parrotfish abundance in these habitats. Overall, it appears that parrotfish predation pressure on corals could affect the abundance of preferred coral species, especially massive Porites spp , across the reef gradient. Parrotfish predation on corals may have a more important role on the GBR reefs than previously thought.

  9. Securing the future of the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Hughes, Terry P.; Day, Jon C.; Brodie, Jon

    2015-06-01

    The decline of the Great Barrier Reef can be reversed by improvements to governance and management: current policies that promote fossil fuels and economic development of the Reef region need to be reformed to prioritize long-term protection from climate change and other stressors.

  10. Impacts of Artificial Reefs on Surrounding Ecosystems

    NASA Astrophysics Data System (ADS)

    Manoukian, Sarine

    Artificial reefs are becoming a popular biological and management component in shallow water environments characterized by soft seabed, representing both important marine habitats and tools to manage coastal fisheries and resources. An artificial reef in the marine environment acts as an open system with exchange of material and energy, altering the physical and biological characteristics of the surrounding area. Reef stability will depend on the balance of scour, settlement, and burial resulting from ocean conditions over time. Because of the unstable nature of sediments, they require a detailed and systematic investigation. Acoustic systems like high-frequency multibeam sonar are efficient tools in monitoring the environmental evolution around artificial reefs, whereas water turbidity can limit visual dive and ROV inspections. A high-frequency multibeam echo sounder offers the potential of detecting fine-scale distribution of reef units, providing an unprecedented level of resolution, coverage, and spatial definition. How do artificial reefs change over time in relation to the coastal processes? How accurately does multibeam technology map different typologies of artificial modules of known size and shape? How do artificial reefs affect fish school behavior? What are the limitations of multibeam technology for investigating fish school distribution as well as spatial and temporal changes? This study addresses the above questions and presents results of a new approach for artificial reef seafloor mapping over time, based upon an integrated analysis of multibeam swath bathymetry data and geoscientific information (backscatter data analysis, SCUBA observations, physical oceanographic data, and previous findings on the geology and sedimentation processes, integrated with unpublished data) from Senigallia artificial reef, northwestern Adriatic Sea (Italy) and St. Petersburg Beach Reef, west-central Florida continental shelf. A new approach for observation of fish

  11. Coral reef community composition in the context of disturbance history on the Great Barrier Reef, Australia.

    PubMed

    Graham, Nicholas A J; Chong-Seng, Karen M; Huchery, Cindy; Januchowski-Hartley, Fraser A; Nash, Kirsty L

    2014-01-01

    Much research on coral reefs has documented differential declines in coral and associated organisms. In order to contextualise this general degradation, research on community composition is necessary in the context of varied disturbance histories and the biological processes and physical features thought to retard or promote recovery. We conducted a spatial assessment of coral reef communities across five reefs of the central Great Barrier Reef, Australia, with known disturbance histories, and assessed patterns of coral cover and community composition related to a range of other variables thought to be important for reef dynamics. Two of the reefs had not been extensively disturbed for at least 15 years prior to the surveys. Three of the reefs had been severely impacted by crown-of-thorns starfish outbreaks and coral bleaching approximately a decade before the surveys, from which only one of them was showing signs of recovery based on independent surveys. We incorporated wave exposure (sheltered and exposed) and reef zone (slope, crest and flat) into our design, providing a comprehensive assessment of the spatial patterns in community composition on these reefs. Categorising corals into life history groupings, we document major coral community differences in the unrecovered reefs, compared to the composition and covers found on the undisturbed reefs. The recovered reef, despite having similar coral cover, had a different community composition from the undisturbed reefs, which may indicate slow successional processes, or a different natural community dominance pattern due to hydrology and other oceanographic factors. The variables that best correlated with patterns in the coral community among sites included the density of juvenile corals, herbivore fish biomass, fish species richness and the cover of macroalgae. Given increasing impacts to the Great Barrier Reef, efforts to mitigate local stressors will be imperative to encouraging coral communities to persist into

  12. Coral Reef Community Composition in the Context of Disturbance History on the Great Barrier Reef, Australia

    PubMed Central

    Graham, Nicholas A. J.; Chong-Seng, Karen M.; Huchery, Cindy; Januchowski-Hartley, Fraser A.; Nash, Kirsty L.

    2014-01-01

    Much research on coral reefs has documented differential declines in coral and associated organisms. In order to contextualise this general degradation, research on community composition is necessary in the context of varied disturbance histories and the biological processes and physical features thought to retard or promote recovery. We conducted a spatial assessment of coral reef communities across five reefs of the central Great Barrier Reef, Australia, with known disturbance histories, and assessed patterns of coral cover and community composition related to a range of other variables thought to be important for reef dynamics. Two of the reefs had not been extensively disturbed for at least 15 years prior to the surveys. Three of the reefs had been severely impacted by crown-of-thorns starfish outbreaks and coral bleaching approximately a decade before the surveys, from which only one of them was showing signs of recovery based on independent surveys. We incorporated wave exposure (sheltered and exposed) and reef zone (slope, crest and flat) into our design, providing a comprehensive assessment of the spatial patterns in community composition on these reefs. Categorising corals into life history groupings, we document major coral community differences in the unrecovered reefs, compared to the composition and covers found on the undisturbed reefs. The recovered reef, despite having similar coral cover, had a different community composition from the undisturbed reefs, which may indicate slow successional processes, or a different natural community dominance pattern due to hydrology and other oceanographic factors. The variables that best correlated with patterns in the coral community among sites included the density of juvenile corals, herbivore fish biomass, fish species richness and the cover of macroalgae. Given increasing impacts to the Great Barrier Reef, efforts to mitigate local stressors will be imperative to encouraging coral communities to persist into

  13. Stochastic dynamics of a warmer Great Barrier Reef.

    PubMed

    Cooper, Jennifer K; Spencer, Matthew; Bruno, John F

    2015-07-01

    Pressure on natural communities from human activities continues to increase. Even unique ecosystems like the Great Barrier Reef (GBR), that until recently were considered near-pristine and well-protected, are showing signs of rapid degradation. We collated recent (1996-2006) spatiotemporal relationships between benthic community composition on the GBR and environmental variables (ocean temperature and local threats resulting from human activity). We built multivariate models of the effects of these variables on short-term dynamics, and developed an analytical approach to study their long-term consequences. We used this approach to study the effects of ocean warming under different levels of local threat. Observed short-term changes in benthic community structure (e.g., declining coral cover) were associated with ocean temperature (warming) and local threats. Our model projected that, in the long-term, coral cover of less than 10% was not implausible. With increasing temperature and/or local threats, corals were initially replaced by sponges, gorgonians, and other taxa, with an eventual moderately high probability of domination (> 50%) by macroalgae when temperature increase was greatest (e.g., 3.5 degrees C of warming). Our approach to modeling community dynamics, based on multivariate statistical models, enabled us to project how environmental change (and thus local and international policy decisions) will influence the future state of coral reefs. The same approach could be applied to other systems for which time series of ecological and environmental variables are available. PMID:26378303

  14. Assessment of uncertainty in Great Barrier Reef catchment models.

    PubMed

    Herr, A; Kuhnert, P M

    2007-01-01

    This paper addresses uncertainty in socio-economic and sediment-nutrient models that are being developed for the assessment of change in the Great Barrier Reef (GBR) area. The catchments draining into the GBR lagoon are sources of pollutants. The Reef Water Quality Management Plan of the Queensland Government identified sediments and nutrients transported to the GBR lagoon as the major long-term threats to the reef and inshore ecosystems and the wellbeing of the human communities. The plan clearly indicates that changes in land management are required by 2013 to reduce pollutant inputs and, at the same time, maintain or enhance the benefits from using the inland waters. Science that provides decision tools for natural resource management and improves socio-economic and biophysical understanding is required to enable managers to make better decisions. A major research activity (the Water for a Healthy Country Flagship) aims to address social, economic and biophysical outcomes of land management change in the GBR. It contains research activities that provide information for integrated model development. Currently, however, these models lack the ability to estimate the uncertainty associated with prediction. This project aims to provide statistical methods for assessing uncertainty in models of sediment transportation to the GBR. Furthermore, it provides a link between the models and the decision-making process that allows assessment of uncertainty, a step pertinent to the risk analysis of policy options. This paper describes current and ongoing approaches for assessing uncertainty using a sediment modelling example and provides a way forward for the integration of applied socio-economic and biophysical models used in the decision-making process. PMID:17711014

  15. 77 FR 12567 - Proposed Information Collection; Comment Request; Pacific Islands Region Coral Reef Ecosystems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... Islands Region Coral Reef Ecosystems Logbook and Reporting AGENCY: National Oceanic and Atmospheric... Special Coral Reef Ecosystem Fishing Permit (authorized under the Fishery Management Plan for Coral Reef... the logbooks is used to obtain fish catch/fishing effort data on coral reef fishes and...

  16. Monitoring pesticides in the Great Barrier Reef.

    PubMed

    Shaw, Melanie; Furnas, Miles J; Fabricius, Katharina; Haynes, David; Carter, Steve; Eaglesham, Geoff; Mueller, Jochen F

    2010-01-01

    Pesticide runoff from agriculture poses a threat to water quality in the world heritage listed Great Barrier Reef (GBR) and sensitive monitoring tools are needed to detect these pollutants. This study investigated the utility of passive samplers in this role through deployment during a wet and dry season at river mouths, two near-shore regions and an offshore region. The nearshore marine environment was shown to be contaminated with pesticides in both the dry and wet seasons (average water concentrations of 1.3-3.8 ng L(-1) and 2.2-6.4 ng L(-1), respectively), while no pesticides were detected further offshore. Continuous monitoring of two rivers over 13 months showed waters flowing to the GBR were contaminated with herbicides (diuron, atrazine, hexazinone) year round, with highest average concentrations present during summer (350 ng L(-1)). The use of passive samplers has enabled identification of insecticides in GBR waters which have not been reported in the literature previously. PMID:19818971

  17. The importance of structural complexity in coral reef ecosystems

    NASA Astrophysics Data System (ADS)

    Graham, N. A. J.; Nash, K. L.

    2013-06-01

    The importance of structural complexity in coral reefs has come to the fore with the global degradation of reef condition; however, the limited scale and replication of many studies have restricted our understanding of the role of complexity in the ecosystem. We qualitatively and quantitatively (where sufficient standardised data were available) assess the literature regarding the role of structural complexity in coral reef ecosystems. A rapidly increasing number of publications have studied the role of complexity in reef ecosystems over the past four decades, with a concomitant increase in the diversity of methods used to quantify structure. Quantitative analyses of existing data indicate a strong negative relationship between structural complexity and algal cover, which may reflect the important role complexity plays in enhancing herbivory by reef fishes. The cover of total live coral and branching coral was positively correlated with structural complexity. These habitat attributes may be creating much of the structure, resulting in a collinear relationship; however, there is also evidence of enhanced coral recovery from disturbances where structural complexity is high. Urchin densities were negatively correlated with structural complexity; a relationship that may be driven by urchins eroding reef structure or by their gregarious behaviour when in open space. There was a strong positive relationship between structural complexity and fish density and biomass, likely mediated through density-dependent competition and refuge from predation. More variable responses were found when assessing individual fish families, with all families examined displaying a positive relationship to structural complexity, but only half of these relationships were significant. Although only corroborated with qualitative data, structural complexity also seems to have a positive effect on two ecosystem services: tourism and shoreline protection. Clearly, structural complexity is an

  18. Trapping and dispersion of coral eggs around Bowden Reef, Great Barrier Reef, following mass coral spawning

    NASA Astrophysics Data System (ADS)

    Wolanski, Eric; Burrage, Derek; King, Brian

    1989-05-01

    Bowden Reef is a 5 km long kidney-shaped coral reef with a lagoon, located on the mid-shelf of the central region of the Great Barrier Reef. Field studies were carried out, in November 1986, at the time of mass coral spawning, of the water circulation around Bowden Reef and in the surrounding inter-reefal waters. The near-reef water circulation was strongly three-dimensional although the stratification was weak. In calm weather, coral eggs were aggregated in slicks along topographically controlled fronts. In the absence of a longshore current, water and coral eggs were trapped in the lagoon and in a boundary layer around Bowden Reef, by tidally driven recirculating motions. In the presence of a longshore current, some trapping occurred in the lagoon, but the bulk of the coral eggs was advected away from Bowden Reef and reached downstream reefs in a few days. This implies a likelihood of both self-seeding of reefs, and connectivity between reefs.

  19. Mid-late Holocene Reef Growth and Sedimentation History at Inshore Fringing Reefs in the Central Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Ryan, E.; Smithers, S.; Lewis, S.; Zhao, J. X.; Clark, T.

    2014-12-01

    Inshore coral reefs of Australia's Great Barrier Reef (GBR) are threatened by terrestrial sediment loads that are argued to have increased by five to six times since coastal catchments were settled by Europeans in the mid-1850s. Nutrient and contaminant delivery to the inshore GBR has also increased over this period. However, direct evidence that European colonisation has changed the ecology of inshore reefs on the GBR remains limited, partly due to a lack of baseline historical data on coral reef growth. Coral reefs have been growing in inshore areas of the GBR since 6 or 7 ky BP, and have experienced natural fluctuations in terrestrial sediment loads over this period. For example, floods associated with episodic cyclones and major rainfall events often deliver pulses of sediment, especially if they follow prolonged dry spells. To better understand this history of sediment influx and reef development, we have examined in detail the chronostratigraphy of several inshore GBR reefs that have grown since the mid-Holocene. Here, we report on eight percussion cores collected at Bramston Reef (148°15'E, 20°03'S). Two cores terminate in the pre-Holocene substrate and therefore capture the entire Holocene sequence of both reef framework and terrigenous sediment matrix. Results from detailed core analyses indicate variable sedimentation patterns throughout the period of reef development. Furthermore, reef ecological condition and variability through the mid-late Holocene is described using palaeoecological analyses. We explore the impacts of sedimentation variability on reef growth and ecology, and compare reef ecological condition pre- and post-European colonisation.

  20. Ecosystem Services Research Program: LTG 4: Ecosystem specific studies: coral reefs

    EPA Science Inventory

    Our short-term objective is that managers and decision-makers recognize that coral reefs provide ecosystem services (ES) that can be valued and included in decision processes. The long-term objective is that coral reef ES are routinely valued and considered in watershed and coast...

  1. Benthic foraminifera baseline assemblages from a coastal nearshore reef complex on the central Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Johnson, Jamie; Perry, Chris; Smithers, Scott; Morgan, Kyle

    2016-04-01

    Declining water quality due to river catchment modification since European settlement (c. 1850 A.D.) represents a major threat to the health of coral reefs on Australia's Great Barrier Reef (GBR), particularly for those located in the coastal waters of the GBR's inner-shelf. These nearshore reefs are widely perceived to be most susceptible to declining water quality owing to their close proximity to river point sources. Despite this, nearshore reefs have been relatively poorly studied with the impacts and magnitudes of environmental degradation still remaining unclear. This is largely due to ongoing debates concerning the significance of increased sediment yields against naturally high background sedimentary regimes. Benthic foraminifera are increasingly used as tools for monitoring environmental and ecological change on coral reefs. On the GBR, the majority of studies have focussed on the spatial distributions of contemporary benthic foraminiferal assemblages. While baseline assemblages from other environments (e.g. inshore reefs and mangroves) have been described, very few records exist for nearshore reefs. Here, we present preliminary results from the first palaeoecological study of foraminiferal assemblages of nearshore reefs on the central GBR. Cores were recovered from the nearshore reef complex at Paluma Shoals using percussion techniques. Recovery was 100%, capturing the entire Holocene reef sequence of the selected reef structures. Radiocarbon dating and subsequent age-depth modelling techniques were used to identify reef sequences pre-dating European settlement. Benthic foraminifera assemblages were reconstructed from the identified sequences to establish pre-European ecological baselines with the aim of providing a record of foraminiferal distribution during vertical reef accretion and against which contemporary ecological change may be assessed.

  2. 78 FR 49258 - Fisheries in the Western Pacific; Special Coral Reef Ecosystem Fishing Permit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... Coral Reef Ecosystem Fishing Permit AGENCY: National Marine Fisheries Service (NMFS), National Oceanic... assessment; request for comments. SUMMARY: NMFS proposes to issue a Special Coral Reef Ecosystem Fishing Permit that would authorize Kampachi Farms, LLC, to culture and harvest a coral reef ecosystem...

  3. 76 FR 77779 - Availability of Seats for the Northwestern Hawaiian Islands Coral Reef Ecosystem Reserve Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... Coral Reef Ecosystem Reserve Advisory Council AGENCY: Office of National Marine Sanctuaries (ONMS... the following vacant seats on the Northwestern Hawaiian Islands Coral Reef Ecosystem Reserve Advisory....byers@noaa.gov . SUPPLEMENTARY INFORMATION: The NWHI Coral Reef Ecosystem Reserve is a ]...

  4. 77 FR 16211 - Availability of Seats for the Northwestern Hawaiian Islands Coral Reef Ecosystem Reserve Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-20

    ... Coral Reef Ecosystem Reserve Advisory Council AGENCY: Office of National Marine Sanctuaries (ONMS... the following vacant seats on the Northwestern Hawaiian Islands Coral Reef Ecosystem Reserve Advisory... . SUPPLEMENTARY INFORMATION: The NWHI Coral Reef Ecosystem Reserve is a marine protected area designed to...

  5. Currents Along the Mesoamerican Barrier Reef, Western Caribbean

    NASA Astrophysics Data System (ADS)

    Armstrong, B. N.

    2004-12-01

    To characterize currents and the extent to which they are influenced by winds, Interocean S4 electromagnetic current meter data were analyzed from three locations between Lighthouse Reef (17.4441º N) and Sapodilla Cays (16.1509º N). A better understanding of these currents is important to local fishing efforts, ecotourists and SCUBA divers through its value to conservation efforts with respect to connectivity and repopulation of the reef. The currents were related to regional COAMPS_CENTAM modeled wind data to determine the extent to which winds drive the near reef currents. Harmonic analysis of the currents was also conducted to determine the influence of tidal cycles. This study will test the extent to which:(i) currents seaward of the Mesoamerican Barrier Reef extending from Lighthouse Reef to Sapodilla Cays are wind driven, (ii) tidally influenced and (iii) coherent.

  6. Exploring the hidden shallows: extensive reef development and resilience within the turbid nearshore Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Morgan, Kyle; Perry, Chris; Smithers, Scott; Johnson, Jamie; Daniell, James

    2016-04-01

    Mean coral cover on Australia's Great Barrier Reef (GBR) has reportedly declined by over 15% during the last 30 years. Climate change events and outbreaks of coral disease have been major drivers of degradation, often exacerbating the stresses caused by localised human activities (e.g. elevated sediment and nutrient inputs). Here, however, in the first assessment of nearshore reef occurrence and ecology across meaningful spatial scales (15.5 sq km), we show that areas of the GBR shelf have exhibited strong intra-regional variability in coral resilience to declining water quality. Specifically, within the highly-turbid "mesophotic" nearshore (<10 m depth) of the central GBR, where terrigenous seafloor sediments are persistently resuspended by wave processes, coral cover averages 38% (twice that reported on mid- and outer-shelf reefs). Of the mapped area, 11% of the seafloor has distinct reef or coral community cover, a density comparable to that measured across the entire GBR shelf (9%). Identified coral taxa (21 genera) exhibited clear depth-stratification corresponding closely to light attenuation and seafloor topography. Reefs have accreted relatively rapidly during the late-Holocene (1.8-3.0 mm y‑1) with rates of vertical reef growth influenced by intrinsic shifts in coral assemblages associated with reef development. Indeed, these shallow-water reefs may have similar potential as refugia from large-scale disturbance as their deep-water (>30 m) "mesophotic" equivalents, and also provide a basis from which to model future trajectories of reef growth within nearshore areas.

  7. Low calcification in corals in the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Atreyee

    2012-10-01

    Reef-building coral communities in the Great Barrier Reef—the world's largest coral reef—may now be calcifying at only about half the rate that they did during the 1970s, even though live coral cover may not have changed over the past 40 years, a new study finds. In recent decades, coral reefs around the world, home to large numbers of fish and other marine species, have been threatened by such human activities as pollution, overfishing, global warming, and ocean acidification; the latter affects ambient water chemistry and availability of calcium ions, which are critical for coral communities to calcify, build, and maintain reefs. Comparing data from reef surveys during the 1970s, 1980s, and 1990s with present-day (2009) measurements of calcification rates in One Tree Island, a coral reef covering 13 square kilometers in the southern part of the Great Barrier Reef, Silverman et al. show that the total calcification rates (the rate of calcification minus the rate of dissolution) in these coral communities have decreased by 44% over the past 40 years; the decrease appears to stem from a threefold reduction in calcification rates during nighttime.

  8. 77 FR 12243 - Proposed Information Collection; Comment Request; Pacific Islands Region Coral Reef Ecosystems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... Islands Region Coral Reef Ecosystems Permit Form AGENCY: National Oceanic and Atmospheric Administration... vessel to fish for Western Pacific coral reef ecosystem management unit species in the designated low-use... regulations; or (3) fishing for, taking, or retaining any Potentially Harvested Coral Reef Taxa in the...

  9. Surface alkaline phosphatase activities of macroalgae on coral reefs of the central Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Schaffelke, B.

    2001-05-01

    Inshore reefs of the Great Barrier Reef (GBR) are subject to episodic nutrient supply, mainly by flood events, whereas midshelf reefs have a more consistent low nutrient availability. Alkaline phosphatase activity (APA) enables macroalgae to increase their phosphorus (P) supply by using organic P. APA was high (~4.0 to 15.5 µmol PO4 3- g DW-1 h-1) in species colonising predominantly inshore reefs and low (<2 µmol PO4 3- g DW-1 h-1) in species with a cross-shelf distribution. However, APA values of GBR algae in this study were much lower than data reported from other coral reef systems. In experiments with two Sargassum species tissue P levels were correlated negatively, and N:P ratios were positively correlated with APA. High APA can compensate for a relative P-limitation of macroalgae in coral reef systems that are subject to significant N-inputs, such as the GBR inshore reefs. APA and other mechanisms to acquire a range of nutrient species allow inshore species to thrive in habitats with episodic nutrient supply. These species also are likely to benefit from an increased nutrient supply caused by human activity, which currently is a global problem.

  10. Management Strategy Evaluation Applied to Coral Reef Ecosystems in Support of Ecosystem-Based Management

    PubMed Central

    Weijerman, Mariska; Fulton, Elizabeth A.; Brainard, Russell E.

    2016-01-01

    Ecosystem modelling is increasingly used to explore ecosystem-level effects of changing environmental conditions and management actions. For coral reefs there has been increasing interest in recent decades in the use of ecosystem models for evaluating the effects of fishing and the efficacy of marine protected areas. However, ecosystem models that integrate physical forcings, biogeochemical and ecological dynamics, and human induced perturbations are still underdeveloped. We applied an ecosystem model (Atlantis) to the coral reef ecosystem of Guam using a suite of management scenarios prioritized in consultation with local resource managers to review the effects of each scenario on performance measures related to the ecosystem, the reef-fish fishery (e.g., fish landings) and coral habitat. Comparing tradeoffs across the selected scenarios showed that each scenario performed best for at least one of the selected performance indicators. The integrated ‘full regulation’ scenario outperformed other scenarios with four out of the six performance metrics at the cost of reef-fish landings. This model application quantifies the socio-ecological costs and benefits of alternative management scenarios. When the effects of climate change were taken into account, several scenarios performed equally well, but none prevented a collapse in coral biomass over the next few decades assuming a business-as-usual greenhouse gas emissions scenario. PMID:27023183

  11. Management Strategy Evaluation Applied to Coral Reef Ecosystems in Support of Ecosystem-Based Management.

    PubMed

    Weijerman, Mariska; Fulton, Elizabeth A; Brainard, Russell E

    2016-01-01

    Ecosystem modelling is increasingly used to explore ecosystem-level effects of changing environmental conditions and management actions. For coral reefs there has been increasing interest in recent decades in the use of ecosystem models for evaluating the effects of fishing and the efficacy of marine protected areas. However, ecosystem models that integrate physical forcings, biogeochemical and ecological dynamics, and human induced perturbations are still underdeveloped. We applied an ecosystem model (Atlantis) to the coral reef ecosystem of Guam using a suite of management scenarios prioritized in consultation with local resource managers to review the effects of each scenario on performance measures related to the ecosystem, the reef-fish fishery (e.g., fish landings) and coral habitat. Comparing tradeoffs across the selected scenarios showed that each scenario performed best for at least one of the selected performance indicators. The integrated 'full regulation' scenario outperformed other scenarios with four out of the six performance metrics at the cost of reef-fish landings. This model application quantifies the socio-ecological costs and benefits of alternative management scenarios. When the effects of climate change were taken into account, several scenarios performed equally well, but none prevented a collapse in coral biomass over the next few decades assuming a business-as-usual greenhouse gas emissions scenario. PMID:27023183

  12. Physical connectivity in the Mesoamerican Barrier Reef System inferred from 9 years of ocean color observations

    NASA Astrophysics Data System (ADS)

    Soto, I.; Andréfouët, S.; Hu, C.; Muller-Karger, F. E.; Wall, C. C.; Sheng, J.; Hatcher, B. G.

    2009-06-01

    Ocean color images acquired from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) from 1998 to 2006 were used to examine the patterns of physical connectivity between land and reefs, and among reefs in the Mesoamerican Barrier Reef System (MBRS) in the northwestern Caribbean Sea. Connectivity was inferred by tracking surface water features in weekly climatologies and a time series of weekly mean chlorophyll- a concentrations derived from satellite imagery. Frequency of spatial connections between 17 pre-defined, geomorphological domains that include the major reefs in the MBRS and river deltas in Honduras and Nicaragua were recorded and tabulated as percentage of connections. The 9-year time series of 466 weekly mean images portrays clearly the seasonal patterns of connectivity, including river plumes and transitions in the aftermath of perturbations such as hurricanes. River plumes extended offshore from the Honduras coast to the Bay Islands (Utila, Cayo Cochinos, Guanaja, and Roatán) in 70% of the weekly mean images. Belizean reefs, especially those in the southern section of the barrier reef and Glovers Atoll, were also affected by riverine discharges in every one of the 9 years. Glovers Atoll was exposed to river plumes originating in Honduras 104/466 times (22%) during this period. Plumes from eastern Honduras went as far as Banco Chinchorro and Cozumel in Mexico. Chinchorro appeared to be more frequently connected to Turneffe Atoll and Honduran rivers than with Glovers and Lighthouse Atolls, despite their geographic proximity. This new satellite data analysis provides long-term, quantitative assessments of the main pathways of connectivity in the region. The percentage of connections can be used to validate predictions made using other approaches such as numerical modeling, and provides valuable information to ecosystem-based management in coral reef provinces.

  13. An observational heat budget analysis of a coral reef, Heron Reef, Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    MacKellar, Mellissa C.; McGowan, Hamish A.; Phinn, Stuart R.

    2013-03-01

    Measurements of the surface energy balance, the structure and evolution of the convective atmospheric reef layer (CARL), and local meteorology and hydrodynamics were made during June 2009 and February 2010 at Heron Reef, Australia, to establish the relative partitioning of heating within the water and atmosphere. Horizontal advection was shown to moderate temperature in the CARL and the water, having a cooling influence on the atmosphere, and providing an additional source or sink of energy to the water overlying the reef, depending on tide. The key driver of atmospheric heating was surface sensible heat flux, while heating of the reef water was primarily due to solar radiation, and thermal conduction and convection from the reef substrate. Heating and cooling processes were more defined during winter due to higher sensible and latent heat fluxes and strong diurnal evolution of the CARL. Sudden increases in water temperature were associated with inundation of warmer oceanic water during the flood tide, particularly in winter due to enhanced nocturnal cooling of water overlying the reef. Similarly, cooling of the water over the reef occurred during the ebb tide as heat was transported off the reef to the surrounding ocean. While these results are the first to shed light on the heat budget of a coral reef and overlying CARL, longer-term, systematic measurements of reef thermal budgets are needed under a range of meteorological and hydrodynamic conditions, and across various reef types to elucidate the influence on larger-scale oceanic and atmospheric processes. This is essential for understanding the role of coral reefs in tropical and sub-tropical meteorology; the physical processes that take place during coral bleaching events, and coral and algal community dynamics on coral reefs.

  14. Temporal clustering of tropical cyclones on the Great Barrier Reef and its ecological importance

    NASA Astrophysics Data System (ADS)

    Wolff, Nicholas H.; Wong, Aaron; Vitolo, Renato; Stolberg, Kristin; Anthony, Kenneth R. N.; Mumby, Peter J.

    2016-06-01

    Tropical cyclones have been a major cause of reef coral decline during recent decades, including on the Great Barrier Reef (GBR). While cyclones are a natural element of the disturbance regime of coral reefs, the role of temporal clustering has previously been overlooked. Here, we examine the consequences of different types of cyclone temporal distributions (clustered, stochastic or regular) on reef ecosystems. We subdivided the GBR into 14 adjoining regions, each spanning roughly 300 km, and quantified both the rate and clustering of cyclones using dispersion statistics. To interpret the consequences of such cyclone variability for coral reef health, we used a model of observed coral population dynamics. Results showed that clustering occurs on the margins of the cyclone belt, being strongest in the southern reefs and the far northern GBR, which also has the lowest cyclone rate. In the central GBR, where rates were greatest, cyclones had a relatively regular temporal pattern. Modelled dynamics of the dominant coral genus, Acropora, suggest that the long-term average cover might be more than 13 % greater (in absolute cover units) under a clustered cyclone regime compared to stochastic or regular regimes. Thus, not only does cyclone clustering vary significantly along the GBR but such clustering is predicted to have a marked, and management-relevant, impact on the status of coral populations. Additionally, we use our regional clustering and rate results to sample from a library of over 7000 synthetic cyclone tracks for the GBR. This allowed us to provide robust reef-scale maps of annual cyclone frequency and cyclone impacts on Acropora. We conclude that assessments of coral reef vulnerability need to account for both spatial and temporal cyclone distributions.

  15. Environmental Records from Great Barrier Reef Corals: Inshore versus Offshore Drivers

    PubMed Central

    Walther, Benjamin D.; Kingsford, Michael J.; McCulloch, Malcolm T.

    2013-01-01

    The biogenic structures of stationary organisms can be effective recorders of environmental fluctuations. These proxy records of environmental change are preserved as geochemical signals in the carbonate skeletons of scleractinian corals and are useful for reconstructions of temporal and spatial fluctuations in the physical and chemical environments of coral reef ecosystems, including The Great Barrier Reef (GBR). We compared multi-year monitoring of water temperature and dissolved elements with analyses of chemical proxies recorded in Porites coral skeletons to identify the divergent mechanisms driving environmental variation at inshore versus offshore reefs. At inshore reefs, water Ba/Ca increased with the onset of monsoonal rains each year, indicating a dominant control of flooding on inshore ambient chemistry. Inshore multi-decadal records of coral Ba/Ca were also highly periodic in response to flood-driven pulses of terrigenous material. In contrast, an offshore reef at the edge of the continental shelf was subject to annual upwelling of waters that were presumed to be richer in Ba during summer months. Regular pulses of deep cold water were delivered to the reef as indicated by in situ temperature loggers and coral Ba/Ca. Our results indicate that although much of the GBR is subject to periodic environmental fluctuations, the mechanisms driving variation depend on proximity to the coast. Inshore reefs are primarily influenced by variable freshwater delivery and terrigenous erosion of catchments, while offshore reefs are dominated by seasonal and inter-annual variations in oceanographic conditions that influence the propensity for upwelling. The careful choice of sites can help distinguish between the various factors that promote Ba uptake in corals and therefore increase the utility of corals as monitors of spatial and temporal variation in environmental conditions. PMID:24204743

  16. Rapid vertical accretion on a `young' shore-detached turbid zone reef: Offshore Paluma Shoals, central Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Perry, C. T.; Smithers, S. G.; Gulliver, P.

    2013-12-01

    We report on the age structure and net accretion rates determined for an open water turbid zone reef, known as Offshore Paluma Shoals, located on the inner central Great Barrier Reef. Twenty-eight radiocarbon dates from 5 cores through the reef structure indicate that this reef began growing ~1,700 years ago and that net vertical accretion through the main phase of reef development was rapid (averaging 7.8 mm yr-1), this despite the reef growing in highly turbid waters. The most rapid growth phases coincided with the accumulation of mud-rich terrigenoclastic sediments within the reef fabric. The study emphasises the capacity of turbid zone reefs to vertically accrete at rates matching or exceeding many clear water reefs despite seemingly detrimental water quality conditions.

  17. Herbivorous fishes, ecosystem function and mobile links on coral reefs

    NASA Astrophysics Data System (ADS)

    Welsh, J. Q.; Bellwood, D. R.

    2014-06-01

    Understanding large-scale movement of ecologically important taxa is key to both species and ecosystem management. Those species responsible for maintaining functional connectivity between habitats are often called mobile links and are regarded as essential elements of resilience. By providing connectivity, they support resilience across spatial scales. Most marine organisms, including fishes, have long-term, biogeographic-scale connectivity through larval movement. Although most reef species are highly site attached after larval settlement, some taxa may also be able to provide rapid, reef-scale connectivity as adults. On coral reefs, the identity of such taxa and the extent of their mobility are not yet known. We use acoustic telemetry to monitor the movements of Kyphosus vaigiensis, one of the few reef fishes that feeds on adult brown macroalgae. Unlike other benthic herbivorous fish species, it also exhibits large-scale (>2 km) movements. Individual K. vaigiensis cover, on average, a 2.5 km length of reef (11 km maximum) each day. These large-scale movements suggest that this species may act as a mobile link, providing functional connectivity, should the need arise, and helping to support functional processes across habitats and spatial scales. An analysis of published studies of home ranges in reef fishes found a consistent relationship between home range size and body length. K. vaigiensis is the sole herbivore to depart significantly from the expected home range-body size relationship, with home range sizes more comparable to exceptionally mobile large pelagic predators rather than other reef herbivores. While the large-scale movements of K. vaigiensis reveal its potential capacity to enhance resilience over large areas, it also emphasizes the potential limitations of small marine reserves to protect some herbivore populations.

  18. Devonian Great Barrier Reef of Canning basin, Western Australia

    SciTech Connect

    Playford, P.E.

    1980-06-01

    A well-preserved Middle to Upper Devonian barrier-reef belt is exhumed as a series of limestone ranges for 350 km along the northern margin of the Canning basin. The reefs are of international importance for reef research because of the excellence of exposures and the lack of extensive dolomitization or structural deformation. They are also known in the subsurface, where they are regarded as prime objectives for oil exploration. The platforms were built by stromatoporoids, algae, and corals in the Givetian and Frasnian, and by algae in the Famennian. The platform and basin deposits were laid down nearly horizontally, whereas the marginal-slope deposits accumulated on steep depositional slopes. Geopetal fabrics, which quantify depositional and tectonic-compactional dip components, provide paleobathymetric data concerning the reef complexes and their fossil biotas. The reef limestones were subject to strong submarine cementation, resulting in very early porosity destruction, whereas the back-reef deposits of the platform interiors remained largely uncemented and retained most of their primary porosity. Stylolitization and associated compaction were greatest in limestones whose primary porosity was not destroyed by early submarine cementation. Consequently the platform interiors have compacted more than the margins, resulting in the typical concave shape of many platforms. Cementation concomitant with stylolitization destroyed most of the porosity that remained in the limestones after early submarine diagenesis. The most porous rocks now are dolomites having secondary moldic porosity. 27 figures.

  19. Photochemical activity in waters of the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Szymczak, R.; Waite, T. D.

    1991-12-01

    Photochemical activity in waters of the Great Barrier Reef was investigated through studies on the vertical, horizontal and temporal distribution of hydrogen peroxide and factors influencing its generation and decay processes. Surface hydrogen peroxide concentrations varied from 15 to 110 nM and generally decreased with depth, though a number of anomalies were detected. Photochemical activity decreased with increasing distance from the coast reflecting the positive influence of terrestrial inputs to the hydrogen peroxide generation and decay processes. Increases in photochemical activity were observed in the proximity of coral reefs. Hydrogen peroxide concentrations in the region were influenced by wind-induced mixing processes, atmospheric inputs, anthropogenic activity and seasonal light regimes.

  20. Comparison of Coral Reef Ecosystems along a Fishing Pressure Gradient

    PubMed Central

    Weijerman, Mariska; Fulton, Elizabeth A.; Parrish, Frank A.

    2013-01-01

    Three trophic mass-balance models representing coral reef ecosystems along a fishery gradient were compared to evaluate ecosystem effects of fishing. The majority of the biomass estimates came directly from a large-scale visual survey program; therefore, data were collected in the same way for all three models, enhancing comparability. Model outputs–such as net system production, size structure of the community, total throughput, production, consumption, production-to-respiration ratio, and Finn’s cycling index and mean path length–indicate that the systems around the unpopulated French Frigate Shoals and along the relatively lightly populated Kona Coast of Hawai’i Island are mature, stable systems with a high efficiency in recycling of biomass. In contrast, model results show that the reef system around the most populated island in the State of Hawai’i, O’ahu, is in a transitional state with reduced ecosystem resilience and appears to be shifting to an algal-dominated system. Evaluation of the candidate indicators for fishing pressure showed that indicators at the community level (e.g., total biomass, community size structure, trophic level of the community) were most robust (i.e., showed the clearest trend) and that multiple indicators are necessary to identify fishing perturbations. These indicators could be used as performance indicators when compared to a baseline for management purposes. This study shows that ecosystem models can be valuable tools in identification of the system state in terms of complexity, stability, and resilience and, therefore, can complement biological metrics currently used by monitoring programs as indicators for coral reef status. Moreover, ecosystem models can improve our understanding of a system’s internal structure that can be used to support management in identification of approaches to reverse unfavorable states. PMID:23737951

  1. Dissolution of dead corals by euendolithic microorganisms across the northern Great Barrier Reef (Australia).

    PubMed

    Aline, Tribollet

    2008-05-01

    Spatial and temporal variabilities in species composition, abundance, distribution, and bioeroding activity of euendolithic microorganisms were investigated in experimental blocks of the massive coral Porites along an inshore-offshore transect across the northern Great Barrier Reef (Australia) over a 3-year period. Inshore reefs showed turbid and eutrophic waters, whereas the offshore reefs were characterized by oligotrophic waters. The euendolithic microorganisms and their ecological characteristics were studied using techniques of microscopy, petrographic sections, and image analysis. Results showed that euendolithic communities found in blocks of coral were mature. These communities were dominated by the chlorophyte Ostreobium quekettii, the cyanobacterium Plectonema terebrans, and fungi. O. quekettii was found to be the principal agent of microbioerosion, responsible for 70-90% of carbonate removal. In the offshore reefs, this oligophotic chlorophyte showed extensive systems of filaments that penetrated deep inside coral skeletons (up to 4.1 mm) eroding as much as 1 kg CaCO3 eroded m(-2) year(-1). The percentage of colonization by euendolithic filaments at the surface of blocks did not vary significantly among sites, while their depths of penetration, especially that of O. quekettii (0.6-4.1 mm), increased significantly and gradually with the distance from the shore. Rates of microbioerosion (0.1-1.4 kg m(-2) after 1 year and 0.2-1.3 kg m(-2) after 3 years of exposure) showed a pattern similar to the one found for the depth of penetration of O. quekettii filaments. Accordingly, oligotrophic reefs had the highest rates ofmicrobioerosion ofup to 1.3 kg m(-2) year(-1), whereas the development of euendolithic communities in inshore reefs appeared to be limited by turbidity, high sedimentation rates, and low grazing pressure (rates < 0.5 kg m(-2) after 3 years). Those results suggest that boring microorganisms, including O. quekettii, have a significant impact on

  2. Freshwater impacts in the central Great Barrier Reef: 1648-2011

    NASA Astrophysics Data System (ADS)

    Lough, J. M.; Lewis, S. E.; Cantin, N. E.

    2015-09-01

    The Australian summer monsoon is highly variable from year to year resulting in high variability in the magnitude and extent of freshwater river flood plumes affecting the Great Barrier Reef (GBR). These flood plumes transport terrestrial materials and contaminants to the reef and can have significant impacts on both water quality and ecosystem health. The occurrence and intensity of these freshwater flood plumes are reliably recorded as annual luminescent lines in inshore massive corals and occasional luminescent lines in mid-shelf corals. We use measured luminescence in a long Porites core and four recently collected short cores from Havannah Island (a nearshore reef in the central GBR) to reconstruct Burdekin River flow, 1648-2011, and five recent short cores from Britomart Reef (a mid-shelf reef, 65 km northeast of Havannah Island) to assess the frequency of flood plume events extending beyond the inshore to mid-shelf reefs. The reconstruction highlights that the frequency of high flow events has increased in the GBR from 1 in every 20 yr prior to European settlement (1748-1847) to 1 in every 6 yr reoccurrence (1948-2011). Three of the most extreme events in the past 364 yr have occurred since 1974, including 2011. The reconstruction also shows a shift to higher flows, increased variability from the latter half of the nineteenth century, and likely more frequent freshwater impacts on mid-shelf reefs. This change coincided with European settlement of northern Queensland and substantial changes in land use, which resulted in increased sediment loads exported to the GBR. The consequences of increased sediment loads to the GBR were, therefore, likely exacerbated by this climate shift. This change in Burdekin River flow characteristics appears to be associated with a shift towards greater El Niño-Southern Oscillation variability and rapid warming in the southwest Pacific, evident in independent palaeoclimatic records.

  3. Coral-macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Cheal, A. J.; MacNeil, M. Aaron; Cripps, E.; Emslie, M. J.; Jonker, M.; Schaffelke, B.; Sweatman, H.

    2010-12-01

    Changes from coral to macroalgal dominance following disturbances to corals symbolize the global degradation of coral reefs. The development of effective conservation measures depends on understanding the causes of such phase shifts. The prevailing view that coral-macroalgal phase shifts commonly occur due to insufficient grazing by fishes is based on correlation with overfishing and inferences from models and small-scale experiments rather than on long-term quantitative field studies of fish communities at affected and resilient sites. Consequently, the specific characteristics of herbivorous fish communities that most promote reef resilience under natural conditions are not known, though this information is critical for identifying vulnerable ecosystems. In this study, 11 years of field surveys recorded the development of the most persistent coral-macroalgal phase shift (>7 years) yet observed on Australia’s Great Barrier Reef (GBR). This shift followed extensive coral mortality caused by thermal stress (coral bleaching) and damaging storms. Comparisons with two similar reefs that suffered similar disturbances but recovered relatively rapidly demonstrated that the phase shift occurred despite high abundances of one herbivore functional group (scraping/excavating parrotfishes: Labridae). However, the shift was strongly associated with low fish herbivore diversity and low abundances of algal browsers (predominantly Siganidae) and grazers/detritivores (Acanthuridae), suggesting that one or more of these factors underpin reef resilience and so deserve particular protection. Herbivorous fishes are not harvested on the GBR, and the phase shift was not enhanced by unusually high nutrient levels. This shows that unexploited populations of herbivorous fishes cannot ensure reef resilience even under benign conditions and suggests that reefs could lose resilience under relatively low fishing pressure. Predictions of more severe and widespread coral mortality due to global

  4. Cryptofauna of the epilithic algal matrix on an inshore coral reef, Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Kramer, M. J.; Bellwood, D. R.; Bellwood, O.

    2012-12-01

    Composed of a collection of algae, detritus, sediment and invertebrates, the epilithic algal matrix (EAM) is an abundant and ubiquitous feature of coral reefs. Despite its prevalence, there is a paucity of information regarding its associated invertebrate fauna. The cryptofaunal invertebrate community of the EAM was quantitatively investigated in Pioneer Bay on Orpheus Island, Great Barrier Reef. Using a vacuum collection method, a diversity of organisms representing 10 different phyla were identified. Crustacea dominated the samples, with harpacticoid copepods being particularly abundant (2025 ± 132 100 cm-2; mean density ± SE). The volume of coarse particulate matter in the EAM was strongly correlated with the abundance of harpacticoid copepods. The estimated biomass of harpacticoid copepods (0.48 ± 0.05 g m-2; wet weight) suggests that this group is likely to be important for reef trophodynamics and nutrient cycling.

  5. Inadequate evaluation and management of threats in Australia's Marine Parks, including the Great Barrier Reef, misdirect Marine conservation.

    PubMed

    Kearney, Bob; Farebrother, Graham

    2014-01-01

    The magnificence of the Great Barrier Reef and its worthiness of extraordinary efforts to protect it from whatever threats may arise are unquestioned. Yet almost four decades after the establishment of the Great Barrier Reef Marine Park, Australia's most expensive and intensely researched Marine Protected Area, the health of the Reef is reported to be declining alarmingly. The management of the suite of threats to the health of the reef has clearly been inadequate, even though there have been several notable successes. It is argued that the failure to prioritise correctly all major threats to the reef, coupled with the exaggeration of the benefits of calling the park a protected area and zoning subsets of areas as 'no-take', has distracted attention from adequately addressing the real causes of impact. Australia's marine conservation efforts have been dominated by commitment to a National Representative System of Marine Protected Areas. In so doing, Australia has displaced the internationally accepted primary priority for pursuing effective protection of marine environments with inadequately critical adherence to the principle of having more and bigger marine parks. The continuing decline in the health of the Great Barrier Reef and other Australian coastal areas confirms the limitations of current area management for combating threats to marine ecosystems. There is great need for more critical evaluation of how marine environments can be protected effectively and managed efficiently. PMID:25358302

  6. The large-scale influence of the Great Barrier Reef matrix on wave attenuation

    NASA Astrophysics Data System (ADS)

    Gallop, Shari L.; Young, Ian R.; Ranasinghe, Roshanka; Durrant, Tom H.; Haigh, Ivan D.

    2014-12-01

    Offshore reef systems consist of individual reefs, with spaces in between, which together constitute the reef matrix. This is the first comprehensive, large-scale study, of the influence of an offshore reef system on wave climate and wave transmission. The focus was on the Great Barrier Reef (GBR), Australia, utilizing a 16-yr record of wave height from seven satellite altimeters. Within the GBR matrix, the wave climate is not strongly dependent on reef matrix submergence. This suggests that after initial wave breaking at the seaward edge of the reef matrix, wave energy that penetrates the matrix has little depth modulation. There is no clear evidence to suggest that as reef matrix porosity (ratio of spaces between individual reefs to reef area) decreases, wave attenuation increases. This is because individual reefs cast a wave shadow much larger than the reef itself; thus, a matrix of isolated reefs is remarkably effective at attenuating wave energy. This weak dependence of transmitted wave energy on depth of reef submergence, and reef matrix porosity, is also evident in the lee of the GBR matrix. Here, wave conditions appear to be dependent largely on local wind speed, rather than wave conditions either seaward, or within the reef matrix. This is because the GBR matrix is a very effective wave absorber, irrespective of water depth and reef matrix porosity.

  7. The exposure of the Great Barrier Reef to ocean acidification

    PubMed Central

    Mongin, Mathieu; Baird, Mark E.; Tilbrook, Bronte; Matear, Richard J.; Lenton, Andrew; Herzfeld, Mike; Wild-Allen, Karen; Skerratt, Jenny; Margvelashvili, Nugzar; Robson, Barbara J.; Duarte, Carlos M.; Gustafsson, Malin S. M.; Ralph, Peter J.; Steven, Andrew D. L.

    2016-01-01

    The Great Barrier Reef (GBR) is founded on reef-building corals. Corals build their exoskeleton with aragonite, but ocean acidification is lowering the aragonite saturation state of seawater (Ωa). The downscaling of ocean acidification projections from global to GBR scales requires the set of regional drivers controlling Ωa to be resolved. Here we use a regional coupled circulation–biogeochemical model and observations to estimate the Ωa experienced by the 3,581 reefs of the GBR, and to apportion the contributions of the hydrological cycle, regional hydrodynamics and metabolism on Ωa variability. We find more detail, and a greater range (1.43), than previously compiled coarse maps of Ωa of the region (0.4), or in observations (1.0). Most of the variability in Ωa is due to processes upstream of the reef in question. As a result, future decline in Ωa is likely to be steeper on the GBR than currently projected by the IPCC assessment report. PMID:26907171

  8. The exposure of the Great Barrier Reef to ocean acidification.

    PubMed

    Mongin, Mathieu; Baird, Mark E; Tilbrook, Bronte; Matear, Richard J; Lenton, Andrew; Herzfeld, Mike; Wild-Allen, Karen; Skerratt, Jenny; Margvelashvili, Nugzar; Robson, Barbara J; Duarte, Carlos M; Gustafsson, Malin S M; Ralph, Peter J; Steven, Andrew D L

    2016-01-01

    The Great Barrier Reef (GBR) is founded on reef-building corals. Corals build their exoskeleton with aragonite, but ocean acidification is lowering the aragonite saturation state of seawater (Ωa). The downscaling of ocean acidification projections from global to GBR scales requires the set of regional drivers controlling Ωa to be resolved. Here we use a regional coupled circulation-biogeochemical model and observations to estimate the Ωa experienced by the 3,581 reefs of the GBR, and to apportion the contributions of the hydrological cycle, regional hydrodynamics and metabolism on Ωa variability. We find more detail, and a greater range (1.43), than previously compiled coarse maps of Ωa of the region (0.4), or in observations (1.0). Most of the variability in Ωa is due to processes upstream of the reef in question. As a result, future decline in Ωa is likely to be steeper on the GBR than currently projected by the IPCC assessment report. PMID:26907171

  9. Effect of substrate type on bacterial community composition in biofilms from the Great Barrier Reef.

    PubMed

    Witt, Verena; Wild, Christian; Uthicke, Sven

    2011-10-01

    Natural and anthropogenic impacts such as terrestrial runoff, influence the water quality along the coast of the Great Barrier Reef (GBR) and may in turn affect coral reef communities. Associated bacterial biofilms respond rapidly to environmental conditions and are potential bioindicators for changes in water quality. As a prerequisite to study the effects of water quality on biofilm communities, appropriate biofilm substrates for deployment in the field must be developed and evaluated. This study investigates the effect of different settlement substrates (i.e. glass slides, ceramic tiles, coral skeletons and reef sediments) on bacterial biofilm communities grown in situ for 48 days at two locations in the Whitsunday Island Group (Central GBR) during two sampling times. Bacterial communities associated with the biofilms were analysed using terminal restriction fragment length polymorphism (T-RFLP) and clone library analyses of 16S rRNA genes. Findings revealed that substrate type had little influence on bacterial community composition. Of particular relevance, glass slides and coral skeletons exhibited very similar communities during both sampling times, suggesting the suitability of standardized glass slides for long-term biofilm indicator studies in tropical coral reef ecosystems. PMID:22092719

  10. Benthic diatom community composition in three regions of the Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Gottschalk, S.; Uthicke, S.; Heimann, K.

    2007-06-01

    Despite their ecological importance, very little is known about the taxonomy and ecology of benthic diatoms in coral-reef ecosystems. Diatom densities and community compositions were investigated in three distinct regions of the Great Barrier Reef (GBR): (a) Wet Tropics (WT), (b) Princess Charlotte Bay (PCB), and (c) the Outer Shelf (OS). About 209 taxa were observed in the GBR sediments studied, with an average abundance of 2.55 × 106 cells ml-1 in the upper 1 cm of sediment. Total diatom abundances were about twice as high in inshore reefs of PCB and WT compared with OS reefs. A redundancy analysis (RDA) of diatom composition clearly grouped the three regions separately but showed little influence of grain size, nitrogen and organic carbon content of the sediments. The only distinct correlates were inorganic carbon and the distance to the mainland associated with OS communities. Analysis of similarity (ANOSIM) of diatom community composition revealed significant differences between all three regions. Indicator values showed that most highly abundant taxa occurred in all regions. However, several taxa were clearly identified as characteristic of particular regions. It is hypothesised that variations in nutrient and light availability are the most likely explanation for the observed differences in community composition.

  11. Diurnal warming in shallow coastal seas: Observations from the Caribbean and Great Barrier Reef regions

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Minnett, P. J.; Berkelmans, R.; Hendee, J.; Manfrino, C.

    2014-07-01

    A good understanding of diurnal warming in the upper ocean is important for the validation of satellite-derived sea surface temperature (SST) against in-situ buoy data and for merging satellite SSTs taken at different times of the same day. For shallow coastal regions, better understanding of diurnal heating could also help improve monitoring and prediction of ecosystem health, such as coral reef bleaching. Compared to its open ocean counterpart which has been studied extensively and modeled with good success, coastal diurnal warming has complicating localized characteristics, including coastline geometry, bathymetry, water types, tidal and wave mixing. Our goal is to characterize coastal diurnal warming using two extensive in-situ temperature and weather datasets from the Caribbean and Great Barrier Reef (GBR), Australia. Results showed clear daily warming patterns in most stations from both datasets. For the three Caribbean stations where solar radiation is the main cause of daily warming, the mean diurnal warming amplitudes were about 0.4 K at depths of 4-7 m and 0.6-0.7 K at shallower depths of 1-2 m; the largest warming value was 2.1 K. For coral top temperatures of the GBR, 20% of days had warming amplitudes >1 K, with the largest >4 K. The bottom warming at shallower sites has higher daily maximum temperatures and lower daily minimum temperatures than deeper sites nearby. The averaged daily warming amplitudes were shown to be closely related to daily average wind speed and maximum insolation, as found in the open ocean. Diurnal heating also depends on local features including water depth, location on different sections of the reef (reef flat vs. reef slope), the relative distance from the barrier reef chain (coast vs. lagoon stations vs. inner barrier reef sites vs. outer rim sites); and the proximity to the tidal inlets. In addition, the influence of tides on daily temperature changes and its relative importance compared to solar radiation was quantified by

  12. Reef sharks exhibit site-fidelity and higher relative abundance in marine reserves on the Mesoamerican Barrier Reef.

    PubMed

    Bond, Mark E; Babcock, Elizabeth A; Pikitch, Ellen K; Abercrombie, Debra L; Lamb, Norlan F; Chapman, Demian D

    2012-01-01

    Carcharhinid sharks can make up a large fraction of the top predators inhabiting tropical marine ecosystems and have declined in many regions due to intense fishing pressure. There is some support for the hypothesis that carcharhinid species that complete their life-cycle within coral reef ecosystems, hereafter referred to as "reef sharks", are more abundant inside no-take marine reserves due to a reduction in fishing pressure (i.e., they benefit from marine reserves). Key predictions of this hypothesis are that (a) individual reef sharks exhibit high site-fidelity to these protected areas and (b) their relative abundance will generally be higher in these areas compared to fished reefs. To test this hypothesis for the first time in Caribbean coral reef ecosystems we combined acoustic monitoring and baited remote underwater video (BRUV) surveys to measure reef shark site-fidelity and relative abundance, respectively. We focused on the Caribbean reef shark (Carcharhinus perezi), the most common reef shark in the Western Atlantic, at Glover's Reef Marine Reserve (GRMR), Belize. Acoustically tagged sharks (N = 34) were detected throughout the year at this location and exhibited strong site-fidelity. Shark presence or absence on 200 BRUVs deployed at GRMR and three other sites (another reserve site and two fished reefs) showed that the factor "marine reserve" had a significant positive effect on reef shark presence. We rejected environmental factors or site-environment interactions as predominant drivers of this pattern. These results are consistent with the hypothesis that marine reserves can benefit reef shark populations and we suggest new hypotheses to determine the underlying mechanism(s) involved: reduced fishing mortality or enhanced prey availability. PMID:22412965

  13. Reef Sharks Exhibit Site-Fidelity and Higher Relative Abundance in Marine Reserves on the Mesoamerican Barrier Reef

    PubMed Central

    Bond, Mark E.; Babcock, Elizabeth A.; Pikitch, Ellen K.; Abercrombie, Debra L.; Lamb, Norlan F.; Chapman, Demian D.

    2012-01-01

    Carcharhinid sharks can make up a large fraction of the top predators inhabiting tropical marine ecosystems and have declined in many regions due to intense fishing pressure. There is some support for the hypothesis that carcharhinid species that complete their life-cycle within coral reef ecosystems, hereafter referred to as “reef sharks”, are more abundant inside no-take marine reserves due to a reduction in fishing pressure (i.e., they benefit from marine reserves). Key predictions of this hypothesis are that (a) individual reef sharks exhibit high site-fidelity to these protected areas and (b) their relative abundance will generally be higher in these areas compared to fished reefs. To test this hypothesis for the first time in Caribbean coral reef ecosystems we combined acoustic monitoring and baited remote underwater video (BRUV) surveys to measure reef shark site-fidelity and relative abundance, respectively. We focused on the Caribbean reef shark (Carcharhinus perezi), the most common reef shark in the Western Atlantic, at Glover's Reef Marine Reserve (GRMR), Belize. Acoustically tagged sharks (N = 34) were detected throughout the year at this location and exhibited strong site-fidelity. Shark presence or absence on 200 BRUVs deployed at GRMR and three other sites (another reserve site and two fished reefs) showed that the factor “marine reserve” had a significant positive effect on reef shark presence. We rejected environmental factors or site-environment interactions as predominant drivers of this pattern. These results are consistent with the hypothesis that marine reserves can benefit reef shark populations and we suggest new hypotheses to determine the underlying mechanism(s) involved: reduced fishing mortality or enhanced prey availability. PMID:22412965

  14. 50 CFR 665.120 - American Samoa coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false American Samoa coral reef ecosystem fisheries. 665.120 Section 665.120 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... PACIFIC American Samoa Fisheries § 665.120 American Samoa coral reef ecosystem fisheries....

  15. 50 CFR 665.420 - Mariana coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Mariana coral reef ecosystem fisheries. 665.420 Section 665.420 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... Mariana Archipelago Fisheries § 665.420 Mariana coral reef ecosystem fisheries....

  16. 50 CFR 665.220 - Hawaii coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Hawaii coral reef ecosystem fisheries. 665.220 Section 665.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... Hawaii Fisheries § 665.220 Hawaii coral reef ecosystem fisheries....

  17. 50 CFR 665.220 - Hawaii coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Hawaii coral reef ecosystem fisheries. 665.220 Section 665.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... Hawaii Fisheries § 665.220 Hawaii coral reef ecosystem fisheries....

  18. 50 CFR 665.420 - Mariana coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Mariana coral reef ecosystem fisheries. 665.420 Section 665.420 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... Mariana Archipelago Fisheries § 665.420 Mariana coral reef ecosystem fisheries....

  19. 50 CFR 665.620 - PRIA coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false PRIA coral reef ecosystem fisheries. 665.620 Section 665.620 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Island Area Fisheries § 665.620 PRIA coral reef ecosystem fisheries....

  20. 50 CFR 665.120 - American Samoa coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false American Samoa coral reef ecosystem fisheries. 665.120 Section 665.120 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... PACIFIC American Samoa Fisheries § 665.120 American Samoa coral reef ecosystem fisheries....

  1. 50 CFR 665.620 - PRIA coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false PRIA coral reef ecosystem fisheries. 665.620 Section 665.620 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Island Area Fisheries § 665.620 PRIA coral reef ecosystem fisheries....

  2. 78 FR 66683 - Fisheries in the Western Pacific; Special Coral Reef Ecosystem Fishing Permit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-06

    ... request for public comments on August 13, 2013 (78 FR 49258). NMFS received comments from eight... Coral Reef Ecosystem Fishing Permit AGENCY: National Marine Fisheries Service (NMFS), National Oceanic... assessment and finding of no significant impact for the issuance of a special coral reef ecosystem...

  3. Coral bleaching: one disturbance too many for near-shore reefs of the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Thompson, A. A.; Dolman, A. M.

    2010-09-01

    The dynamic nature of coral communities can make it difficult to judge whether a reef system is resilient to the current disturbance regime. To address this question of resilience for near-shore coral communities of the Great Barrier Reef (Australia) a data set consisting of 350 annual observations of benthic community change was compiled from existing monitoring data. These data spanned the period 1985-2007 and were derived from coral reefs within 20 km of the coast. During years without major disturbance events, cover increase of the Acroporidae was much faster than it was for other coral families; a median of 11% per annum compared to medians of less than 4% for other coral families. Conversely, Acroporidae were more severely affected by cyclones and bleaching events than most other families. A simulation model parameterised with these observations indicated that while recovery rates of hard corals were sufficient to compensate for impacts associated with cyclones and crown-of-thorns starfish, the advent of mass bleaching has lead to a significant change in the composition of the community and a rapid decline in hard coral cover. Furthermore, if bleaching events continue to occur with the same frequency and severity as in the recent past, the model predicts that the cover of Acroporidae will continue to decline. Although significant cover of live coral remains on near-shore reefs, and recovery is observed during inter-disturbance periods, it appears that this system will not be resilient to the recent disturbance regime over the long term. Conservation strategies for coral reefs should focus on both mitigating local factors that act synergistically to increase the susceptibility of Acroporidae to climate change while promoting initiatives that maximise the recovery potential from inevitable disturbances.

  4. Halimeda biomass, growth rates and sediment generation on reefs in the central great barrier reef province

    NASA Astrophysics Data System (ADS)

    Drew, Edward A.

    1983-06-01

    The average biomass of Halimeda per m2 of solid substratum increased progressively on a series of reefs situated at increasing distances from the shore in the central Great Barrier Reef. There was none on a reef close inshore, increasing to nearly 500 g m-2 total biomass (≃90% calcium carbonate) on an oceanic atoll system in the Coral Sea. The biomass measured contained 13 species of Halimeda but was dominated by only two species, H. copiosa and H. opuntia, except on the atoll where H. minima was dominant. Three sand-dwelling species were also present but did not occur anywhere in substantial quantities. Growth rates of the dominant species were measured bv tagging individual branch tips. A mean value of 0.16 segments d-1 was recorded but 41% of the branch tips did not grow any new segments whilst only 1% grew more than one per day. The number of branch tips per unit biomass was very constant and has been used in conjunction with growth rates and biomass to calculate productivity rates, and thence sedimentation, in the lagoon of one of the reefs. Biomass doubling time of 15 d and production of 6.9 g dry wt m-2 d-1 are considerably higher than previously reported values for Halimeda vegetation and there was little seasonal change detected over a whole year. Those values indicate annual accretion of 184.9 g m-2 year-1 of Halimeda segment debris over the entire lagoon floor (5.9 km2) of Davies Reef, equivalent to 0.13 mm year-1 due to Halimeda alone, or 1 m every 1,892 years when other contributions to that sediment are taken into account.

  5. Nephtyidae (Annelida: Phyllodocida) of Lizard Island, Great Barrier Reef, Australia.

    PubMed

    Murray, Anna; Wong, Eunice; Hutchings, Pat

    2015-01-01

    Seven species of the family Nephtyidae are recorded from Lizard Island, none previously reported from the Great Barrier Reef. Two species of Aglaophamus, four species of Micronephthys, one new and one previously unreported from Australia, and one species of Nephtys, were identified from samples collected during the Lizard Island Polychaete Workshop 2013, as well as from ecological studies undertaken during the 1970s and deposited in the Australian Museum marine invertebrate Collections. A dichotomous key to aid identification of these species newly reported from Lizard Island is provided. PMID:26624076

  6. Seasonal variations in the subsurface ultraviolet-B on an inshore Pacific coral reef ecosystem.

    PubMed

    Downs, Nathan J; Schouten, Peter W; Parisi, Alfio V

    2013-01-01

    Fringing coral reefs provide a unique opportunity to study shallow aquatic ecosystems. A fringing coral reef system located in close proximity to a developed region was considered in this study. In such an environment, the rate of decay of dissolved organic matter is high and the penetration of higher energy ultraviolet-B (UVB) extends a greater influence on species diversity, particularly upon shallow benthic communities. Results from a 9 month subsurface UVB exposure measurement campaign performed at a site located on the southern Queensland coast (Hervey Bay, 25°S) are presented in this research. For this, a novel dosimetric technique was utilized to measure long-term subsurface UVB exposures. The resultant data set includes exposure measurements made during the significant La Niña event of late 2010 which resulted in unprecedented high sea surface temperatures and severe flooding across eastern Australia, impacting upon the lagoon regions of the Great Barrier Reef and Queensland's southern estuaries, including the study site. The influence of season, diurnal tidal variation, cloud cover and solar zenith angle were analyzed over the campaign period. Mean minimum daylight water depth was found to be the most significant factor influencing subsurface UVB. PMID:23701175

  7. Towards protecting the Great Barrier Reef from land-based pollution.

    PubMed

    Kroon, Frederieke J; Thorburn, Peter; Schaffelke, Britta; Whitten, Stuart

    2016-06-01

    The Great Barrier Reef (GBR) is an iconic coral reef system extending over 2000 km along the north-east coast of Australia. Global recognition of its Outstanding Universal Value resulted in the listing of the 348 000 km(2) GBR World Heritage Area (WHA) by UNESCO in 1981. Despite various levels of national and international protection, the condition of GBR ecosystems has deteriorated over the past decades, with land-based pollution from the adjacent catchments being a major and ongoing cause for this decline. To reduce land-based pollution, the Australian and Queensland Governments have implemented a range of policy initiatives since 2003. Here, we evaluate the effectiveness of existing initiatives to reduce discharge of land-based pollutants into the waters of the GBR. We conclude that recent efforts in the GBR catchments to reduce land-based pollution are unlikely to be sufficient to protect the GBR ecosystems from declining water quality within the aspired time frames. To support management decisions for desired ecological outcomes for the GBR WHA, we identify potential improvements to current policies and incentives, as well as potential changes to current agricultural land use, based on overseas experiences and Australia's unique potential. The experience in the GBR may provide useful guidance for the management of other marine ecosystems, as reducing land-based pollution by better managing agricultural sources is a challenge for coastal communities around the world. PMID:26922913

  8. Global Trajectories of the Long-Term Decline of Coral Reef Ecosystems

    NASA Astrophysics Data System (ADS)

    Pandolfi, John M.; Bradbury, Roger H.; Sala, Enric; Hughes, Terence P.; Bjorndal, Karen A.; Cooke, Richard G.; McArdle, Deborah; McClenachan, Loren; Newman, Marah J. H.; Paredes, Gustavo; Warner, Robert R.; Jackson, Jeremy B. C.

    2003-08-01

    Degradation of coral reef ecosystems began centuries ago, but there is no global summary of the magnitude of change. We compiled records, extending back thousands of years, of the status and trends of seven major guilds of carnivores, herbivores, and architectural species from 14 regions. Large animals declined before small animals and architectural species, and Atlantic reefs declined before reefs in the Red Sea and Australia, but the trajectories of decline were markedly similar worldwide. All reefs were substantially degraded long before outbreaks of coral disease and bleaching. Regardless of these new threats, reefs will not survive without immediate protection from human exploitation over large spatial scales.

  9. Spatial and temporal variations in turbidity on two inshore turbid reefs on the Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Browne, N. K.; Smithers, S. G.; Perry, C. T.

    2013-03-01

    This study describes the natural turbidity regimes at two inshore turbid reefs on the central Great Barrier Reef where wind-driven waves are the main agent of sediment resuspension. Many corals on inshore turbid reefs have adapted to high and fluctuating turbidity, however, anthropogenic activities such as dredging are speculated to produce larger and more prolonged turbidity events that may exceed the environmental tolerance and adaptive capacity of corals on these reefs. Natural turbidity regimes must be described and understood to determine whether and when coral communities on inshore turbid reefs are at risk from anthropogenically elevated turbidity, but at present few baseline studies exist. Here, we present turbidity data from (a) Middle Reef, a semi-protected reef located between Magnetic Island and Townsville and (b) Paluma Shoals, a reef exposed to higher energy wind and waves located in Halifax Bay. Instruments were deployed on both reefs for 16 days to measure spatial and temporal variations in turbidity and its driving forces (waves, currents, tides). Locally driven wind waves were the key driver of turbidity, but the strength of the relationship was dependent on wave exposure. Turbidity regimes thus vary markedly over individual reefs and this is reflected in community assemblage distributions, with a high abundance of heterotrophic corals (e.g. Goniopora) in reef habitats subjected to large fluctuations in turbidity (>100 NTU). A turbidity model developed using local wind speed data explained up to 75 % and up to 46 % of the variance in turbidity at Paluma Shoals and Middle Reef, respectively. Although the model was based on a brief two-week observational period, it reliably predicted variations in 24-h averaged turbidity and identified periods when turbidity rose above ambient baseline levels, offering reef managers insights into turbidity responses to modified climate and coastal sediment delivery regimes.

  10. Remote video bioassays reveal the potential feeding impact of the rabbitfish Siganus canaliculatus (f: Siganidae) on an inner-shelf reef of the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Fox, R. J.; Bellwood, D. R.

    2008-09-01

    Herbivores are widely acknowledged as key elements maintaining the health and resilience of terrestrial and aquatic ecosystems. Understanding and quantifying the impact of herbivores in ecosystems are fundamental to our ability to manage these systems. The traditional method of quantifying the impact of herbivorous fishes on coral reefs has been to use transplanted pieces of seagrass or algae as “bioassays”. However, these experiments leave a key question unanswered, namely: Which species are responsible for the impact being quantified? This study revisits the use of bioassays and tested the assumption that the visual abundance of species reflects their role in the removal of assay material. Using remote video cameras to film removal of assay material on an inner-shelf reef of the Great Barrier Reef, the species responsible for assay-based herbivory were identified. The video footage revealed that Siganus canaliculatus, a species not previously recorded at the study site, was primarily responsible for removal of macroalgal biomass. The average percentage decrease in thallus length of whole plants of Sargassum at the reef crest was 54 ± 8.9% (mean ± SE), and 50.4 ± 9.8% for individually presented Sargassum strands (for a 4.5-h deployment). Of the 14,656 bites taken from Sargassum plants and strands across all reef zones, nearly half (6,784 bites or 46%) were taken by S. canaliculatus, with the majority of the remainder attributable to Siganus doliatus. However, multiple regression analysis demonstrated that only the bites of S. canaliculatus were removing macroalgal biomass. The results indicate that, even with detailed observations, the species of herbivore that may be responsible for maintaining benthic community structure can go unnoticed. Some of our fundamental ideas of the relative importance of individual species in ecosystem processes may be in need of re-evaluation.

  11. Sea level record obtained from submerged the Great Barrier Reef coral reefs

    NASA Astrophysics Data System (ADS)

    Yokoyama, Y.; Esat, T. M.; Thompson, W. G.; Thomas, A. L.; Webster, J.; Miyairi, Y.; Matsuzaki, H.; Okuno, J.; Fallon, S.; Braga, J.; Humblet, M.; Iryu, Y.; Potts, D. C.

    2013-12-01

    The last glacial is an interesting time in climate history. The growth and decay of large northern hemisphere ice sheets acting in harmony with major changes in ocean circulation amplified climate variations and resulted in severe and rapid climate swings throughout this time. The variability is not limited to climate but includes rapid, large scale changes in sea level recorded by tropical corals (eg., Yokoyama and Esat, 2011 Oceanography). Research done in the last decade using corals provides a better picture of the climate system, though only a few samples older than 15 ka are available. The Integrated Ocean Drilling Program (IODP) Expedition 325 drilled 34 holes across 17 sites in the Great Barrier Reef, Australia to recover fossil coral reef deposits. We recovered reef materials from water depth to 126 m that ranged in age from 9,000 years to older than 30,000 years ago covering several paleoclimatologically important events, including the Last Glacial Maximum. Two transects separated more than 600 km apart show an identical sea-level history thereby verifying the reliability of the records. Radiometrically dated corals and coralline algae indicate periods of rapid sea-level fluctuation at this time, likely due to complex interactions between ocean currents and ice sheets of the North Atlantic.

  12. Holocene aggradation of the Dry Tortugas coral reef ecosystem

    NASA Astrophysics Data System (ADS)

    Brock, J. C.; Palaseanu-Lovejoy, M.; Poore, R. Z.; Nayegandhi, A.; Wright, C. W.

    2010-12-01

    Radiometric age dating of reef cores acquired at the Dry Tortugas coral reef ecosystem (DTCRE) was merged with lidar topographic mapping to examine Holocene reef development linked to spatial variation in growth and erosion under the control of sea level. Analysis of variance of lidar topography confirmed the presence of three distinct terraces on all three major DTCRE banks (Loggerhead Bank, Garden Bank, and Pulaski Bank). Reef building on the middle terrace (T2) began atop Pleistocene edifices on Loggerhead Bank by 8.0 ka (thousands of years ago) and on Garden Bank by 7.2 ka at elevations of about -16.0 m and -11.9 m, respectively, relative to present mean sea level. Following this initiation at different elevations, T2 aggraded vertically on both banks at different rates during the early Holocene under foundering conditions until a highstand at 5.2 ka, resulting in a 2.21 m offset in present mean T2 elevation between these banks. Initiation of an upper terrace (T1) occurred on both Loggerhead Bank and Garden Bank in association with sea-level fall to a lowstand at near 4.8 ka. This upper terrace initiated on Garden Bank at about 5.0 ka and then grew upward at rate of 2.5 mm year-1 until approximately 3.8 ka. On Loggerhead Bank, the upper T1 terrace formed after 4.5 ka at a higher vertical aggradation rate of 4.1 mm year-1, but at a lower elevation than on Garden Bank. Terrace T1 aggraded on Loggerhead Bank below the elevation of lowstands during late Holocene sea-level oscillation, and consequently erosion on Loggerhead Bank was minimal and likely limited to the crest of the upper terrace. In contrast, after 3.8 ka terrace T1 on Garden Bank likely tracked sea level and consequently underwent erosion when sea level fell to second, third and fourth lowstands at 3.3, 1.1, and 0.3 ka.

  13. Holocene aggradation of the Dry Tortugas coral reef ecosystem

    USGS Publications Warehouse

    Brock, J.C.; Palaseanu-Lovejoy, M.; Poore, R.Z.; Nayegandhi, A.; Wright, C.W.

    2010-01-01

    Radiometric age dating of reef cores acquired at the Dry Tortugas coral reef ecosystem (DTCRE) was merged with lidar topographic mapping to examine Holocene reef development linked to spatial variation in growth and erosion under the control of sea level. Analysis of variance of lidar topography confirmed the presence of three distinct terraces on all three major DTCRE banks (Loggerhead Bank, Garden Bank, and Pulaski Bank). Reef building on the middle terrace (T2) began atop Pleistocene edifices on Loggerhead Bank by 8.0 ka (thousands of years ago) and on Garden Bank by 7.2 ka at elevations of about −16.0 m and −11.9 m, respectively, relative to present mean sea level. Following this initiation at different elevations, T2 aggraded vertically on both banks at different rates during the early Holocene under foundering conditions until a highstand at 5.2 ka, resulting in a 2.21 m offset in present mean T2 elevation between these banks. Initiation of an upper terrace (T1) occurred on both Loggerhead Bank and Garden Bank in association with sea-level fall to a lowstand at near 4.8 ka. This upper terrace initiated on Garden Bank at about 5.0 ka and then grew upward at rate of 2.5 mm year−1 until approximately 3.8 ka. On Loggerhead Bank, the upper T1 terrace formed after 4.5 ka at a higher vertical aggradation rate of 4.1 mm year−1, but at a lower elevation than on Garden Bank. Terrace T1 aggraded on Loggerhead Bank below the elevation of lowstands during late Holocene sea-level oscillation, and consequently erosion on Loggerhead Bank was minimal and likely limited to the crest of the upper terrace. In contrast, after 3.8 ka terrace T1 on Garden Bank likely tracked sea level and consequently underwent erosion when sea level fell to second, third and fourth lowstands at 3.3, 1.1, and 0.3 ka.

  14. Biogeochemical responses following coral mass spawning on the Great Barrier Reef: pelagic-benthic coupling

    NASA Astrophysics Data System (ADS)

    Wild, C.; Jantzen, C.; Struck, U.; Hoegh-Guldberg, O.; Huettel, M.

    2008-03-01

    This study quantified how the pulse of organic matter from the release of coral gametes triggered a chain of pelagic and benthic processes during an annual mass spawning event on the Australian Great Barrier Reef. Particulate organic matter (POM) concentrations in reef waters increased by threefold to 11-fold the day after spawning and resulted in a stimulation of pelagic oxygen consumption rates that lasted for at least 1 week. Water column microbial communities degraded the organic carbon of gametes of the broadcast-spawning coral Acropora millepora at a rate of >15% h-1, which is about three times faster than the degradation rate measured for larvae of the brooding coral Stylophora pistillata. Stable isotope signatures of POM in the water column reflected the fast transfer of organic matter from coral gametes into higher levels of the food chain, and the amount of POM reaching the seafloor immediately increased after coral spawning and then tailed-off in the next 2 weeks. Short-lasting phytoplankton blooms developed within a few days after the spawning event, indicating a prompt recycling of nutrients released through the degradation of spawning products. These data show the profound effects of coral mass spawning on the reef community and demonstrate the tight recycling of nutrients in this oligotrophic ecosystem.

  15. Adaptive management of the Great Barrier Reef: a globally significant demonstration of the benefits of networks of marine reserves.

    PubMed

    McCook, Laurence J; Ayling, Tony; Cappo, Mike; Choat, J Howard; Evans, Richard D; De Freitas, Debora M; Heupel, Michelle; Hughes, Terry P; Jones, Geoffrey P; Mapstone, Bruce; Marsh, Helene; Mills, Morena; Molloy, Fergus J; Pitcher, C Roland; Pressey, Robert L; Russ, Garry R; Sutton, Stephen; Sweatman, Hugh; Tobin, Renae; Wachenfeld, David R; Williamson, David H

    2010-10-26

    The Great Barrier Reef (GBR) provides a globally significant demonstration of the effectiveness of large-scale networks of marine reserves in contributing to integrated, adaptive management. Comprehensive review of available evidence shows major, rapid benefits of no-take areas for targeted fish and sharks, in both reef and nonreef habitats, with potential benefits for fisheries as well as biodiversity conservation. Large, mobile species like sharks benefit less than smaller, site-attached fish. Critically, reserves also appear to benefit overall ecosystem health and resilience: outbreaks of coral-eating, crown-of-thorns starfish appear less frequent on no-take reefs, which consequently have higher abundance of coral, the very foundation of reef ecosystems. Effective marine reserves require regular review of compliance: fish abundances in no-entry zones suggest that even no-take zones may be significantly depleted due to poaching. Spatial analyses comparing zoning with seabed biodiversity or dugong distributions illustrate significant benefits from application of best-practice conservation principles in data-poor situations. Increases in the marine reserve network in 2004 affected fishers, but preliminary economic analysis suggests considerable net benefits, in terms of protecting environmental and tourism values. Relative to the revenue generated by reef tourism, current expenditure on protection is minor. Recent implementation of an Outlook Report provides regular, formal review of environmental condition and management and links to policy responses, key aspects of adaptive management. Given the major threat posed by climate change, the expanded network of marine reserves provides a critical and cost-effective contribution to enhancing the resilience of the Great Barrier Reef. PMID:20176947

  16. Coral Reef and Coastal Ecosystems Decision Support Workshop April 27-29, 2010 Caribbean Coral Reef Institute, La Parguera, Puerto Rico

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) and Caribbean Coral Reef Institute (CCRI) hosted a Coral Reef and Coastal Ecosystems Decision Support Workshop on April 27-28, 2010 at the Caribbean Coral Reef Institute in La Parguera, Puerto Rico. Forty-three participants, includin...

  17. Understanding Biophysical Interactions In The Great Barrier Reef Catchments: Better Landscape Management For Water Quality Outcomes

    NASA Astrophysics Data System (ADS)

    Bui, E. N.; Wilkinson, S. N.; Bartley, R.

    2014-12-01

    Sediment input to the Great Barrier Reef (GBR) lagoon has had deleterious impacts on seagrass and coral ecosystems. The response of the Australian government has been to develop policies to: (i) reverse the impact of threats from sediments and nutrients, and improve water quality and aquatic health of the GBR lagoon; and (ii) to facilitate the uptake of sustainable farming and land management practices that deliver improved ecosystem services, by at least 30 per cent of farmers. The Reef2050 Long term sustainability plan aims to identify priority locations for on-ground investment of remediation options that will result in a reduction of constituent loads to the GBR. Recent sediment tracing studies indicate that subsoil from erosion features such as gullies and channel banks are the dominant contributors of sediment in the GBR catchments. Better control of gully and streambank erosion and restoration of riparian habitats are therefore necessary. Here we review the evidence for bank erosion in the GBR catchments and how scientific evidence on feedback relationships between climate- geochemistry-vegetation-landforms can be used to develop better guidelines for streambank and gully re-vegetation.

  18. Prey Density Threshold and Tidal Influence on Reef Manta Ray Foraging at an Aggregation Site on the Great Barrier Reef.

    PubMed

    Armstrong, Asia O; Armstrong, Amelia J; Jaine, Fabrice R A; Couturier, Lydie I E; Fiora, Kym; Uribe-Palomino, Julian; Weeks, Scarla J; Townsend, Kathy A; Bennett, Mike B; Richardson, Anthony J

    2016-01-01

    Large tropical and sub-tropical marine animals must meet their energetic requirements in a largely oligotrophic environment. Many planktivorous elasmobranchs, whose thermal ecologies prevent foraging in nutrient-rich polar waters, aggregate seasonally at predictable locations throughout tropical oceans where they are observed feeding. Here we investigate the foraging and oceanographic environment around Lady Elliot Island, a known aggregation site for reef manta rays Manta alfredi in the southern Great Barrier Reef. The foraging behaviour of reef manta rays was analysed in relation to zooplankton populations and local oceanography, and compared to long-term sighting records of reef manta rays from the dive operator on the island. Reef manta rays fed at Lady Elliot Island when zooplankton biomass and abundance were significantly higher than other times. The critical prey density threshold that triggered feeding was 11.2 mg m-3 while zooplankton size had no significant effect on feeding. The community composition and size structure of the zooplankton was similar when reef manta rays were feeding or not, with only the density of zooplankton changing. Higher zooplankton biomass was observed prior to low tide, and long-term (~5 years) sighting data confirmed that more reef manta rays are also observed feeding during this tidal phase than other times. This is the first study to examine prey availability at an aggregation site for reef manta rays and it indicates that they feed in locations and at times of higher zooplankton biomass. PMID:27144343

  19. Prey Density Threshold and Tidal Influence on Reef Manta Ray Foraging at an Aggregation Site on the Great Barrier Reef

    PubMed Central

    Armstrong, Asia O.; Armstrong, Amelia J.; Jaine, Fabrice R. A.; Couturier, Lydie I. E.; Fiora, Kym; Uribe-Palomino, Julian; Weeks, Scarla J.; Townsend, Kathy A.; Bennett, Mike B.; Richardson, Anthony J.

    2016-01-01

    Large tropical and sub-tropical marine animals must meet their energetic requirements in a largely oligotrophic environment. Many planktivorous elasmobranchs, whose thermal ecologies prevent foraging in nutrient-rich polar waters, aggregate seasonally at predictable locations throughout tropical oceans where they are observed feeding. Here we investigate the foraging and oceanographic environment around Lady Elliot Island, a known aggregation site for reef manta rays Manta alfredi in the southern Great Barrier Reef. The foraging behaviour of reef manta rays was analysed in relation to zooplankton populations and local oceanography, and compared to long-term sighting records of reef manta rays from the dive operator on the island. Reef manta rays fed at Lady Elliot Island when zooplankton biomass and abundance were significantly higher than other times. The critical prey density threshold that triggered feeding was 11.2 mg m-3 while zooplankton size had no significant effect on feeding. The community composition and size structure of the zooplankton was similar when reef manta rays were feeding or not, with only the density of zooplankton changing. Higher zooplankton biomass was observed prior to low tide, and long-term (~5 years) sighting data confirmed that more reef manta rays are also observed feeding during this tidal phase than other times. This is the first study to examine prey availability at an aggregation site for reef manta rays and it indicates that they feed in locations and at times of higher zooplankton biomass. PMID:27144343

  20. Carbon Cycle Model of a Hawaiian Barrier Reef under Rising Ocean Acidification and Temperature Conditions of the Anthropocene

    NASA Astrophysics Data System (ADS)

    Drupp, P. S.; Mackenzie, F. T.; De Carlo, E. H.; Guidry, M.

    2015-12-01

    A CO2-carbonic acid system biogeochemical box model (CRESCAM, Coral Reef and Sediment Carbonate Model) of the barrier reef flat in Kaneohe Bay, Hawai'i was developed to determine how increasing temperature and dissolved inorganic carbon (DIC) content of open ocean source waters, resulting from rising anthropogenic CO2 emissions and ocean acidification, affect the CaCO3budget of coral reef ecosystems. CRESCAM consists of 17 reservoirs and 59 fluxes, including a surface water column domain, a two-layer permeable sediment domain, and a coral framework domain. Physical, chemical, and biological processes such as advection, carbonate precipitation/dissolution, and net ecosystem production and calcification were modeled. The initial model parameters were constrained by experimental and field data from previous coral reef studies, mostly in Kaneohe Bay over the past 50 years. The field studies include data collected by our research group for both the water column and sediment-porewater system.The model system, initially in a quasi-steady state condition estimated for the early 21st century, was perturbed using future projections to the year 2100 of the Anthropocene of atmospheric CO2 ­concentrations, temperature, and source water DIC. These perturbations were derived from the most recent (2013) IPCC's Representative Concentration Pathway (RCP) scenarios, which predict CO2 atmospheric concentrations and temperature anomalies out to 2100. A series of model case studies were also performed whereby one or more parameters (e.g., coral calcification response to declining surface water pH) were altered to investigate potential future outcomes. Our model simulations predict that although the Kaneohe Bay barrier reef will likely see a significant decline in NEC over the coming century, it is unlikely to reach a state of net erosion - a result contrary to several global coral reef model projections. In addition, we show that depending on the future response of NEP and NEC to OA

  1. Disturbance and the dynamics of coral cover on the Great Barrier Reef (1995-2009).

    PubMed

    Osborne, Kate; Dolman, Andrew M; Burgess, Scott C; Johns, Kerryn A

    2011-01-01

    Coral reef ecosystems worldwide are under pressure from chronic and acute stressors that threaten their continued existence. Most obvious among changes to reefs is loss of hard coral cover, but a precise multi-scale estimate of coral cover dynamics for the Great Barrier Reef (GBR) is currently lacking. Monitoring data collected annually from fixed sites at 47 reefs across 1300 km of the GBR indicate that overall regional coral cover was stable (averaging 29% and ranging from 23% to 33% cover across years) with no net decline between 1995 and 2009. Subregional trends (10-100 km) in hard coral were diverse with some being very dynamic and others changing little. Coral cover increased in six subregions and decreased in seven subregions. Persistent decline of corals occurred in one subregion for hard coral and Acroporidae and in four subregions in non-Acroporidae families. Change in Acroporidae accounted for 68% of change in hard coral. Crown-of-thorns starfish (Acanthaster planci) outbreaks and storm damage were responsible for more coral loss during this period than either bleaching or disease despite two mass bleaching events and an increase in the incidence of coral disease. While the limited data for the GBR prior to the 1980's suggests that coral cover was higher than in our survey, we found no evidence of consistent, system-wide decline in coral cover since 1995. Instead, fluctuations in coral cover at subregional scales (10-100 km), driven mostly by changes in fast-growing Acroporidae, occurred as a result of localized disturbance events and subsequent recovery. PMID:21423742

  2. Nereididae (Annelida: Phyllodocida) of Lizard Island, Great Barrier Reef, Australia.

    PubMed

    Glasby, Christopher J

    2015-01-01

    Nereididae is one of the most ubiquitous of polychaete families, yet knowledge of their diversity in the northern Great Barrier Reef is poor; few species have been previously reported from any of the atolls or islands including Lizard Island. In this study, the diversity of the family from Lizard Island and surrounding reefs is documented based on museum collections derived from surveys conducted mostly over the last seven years. The Lizard Island nereidid fauna was found to be represented by 14 genera and 38 species/species groups, including 11 putative new species. Twelve species are newly reported from Lizard Island; four of these are also first records for Australia. For each genus and species, diagnoses and/or taxonomic remarks are provided in addition to notes on their habitat on Lizard Island, and general distribution; the existence of tissue samples tied to vouchered museum specimens is indicated. Fluorescence photography is used to help distinguish closely similar species of Nereis and Platynereis. A key is provided to facilitate identification and encourage further taxonomic, molecular and ecological studies on the group. PMID:26624071

  3. Helium-3 inside atoll barrier reef interstitial water: A clue for geothermal endo-upwelling

    SciTech Connect

    Rougerie, F. ); Andrie, C. ); Jean-Baptiste, P.

    1991-01-01

    Interstitial waters from boreholes in the reef conglomerate of Tikehau atoll (S.W. Pacific) contain positive anomalous concentrations of dissolved inorganic nutrients compared to adjacent oceanic and lagoonal waters. These anomalies have been interpreted by geothermal circulation of deep oceanic waters penetrating the porous reef carbonates and ascending through the atoll flanks by thermo-convective advection as already proposed for other atolls. The authors present here a new strong evidence of this geothermal circulation inside atoll reefs from the record of helium-3 anomalies in borehole waters of Tikehau atoll. These results bear directly on three controversial aspects of reef history: the efficiency of thermal energy for circulation of reef pore waters, the sources of nutrients to support the net productivity of reef ecosystems, the early diagenesis of reef foundation carbonates.

  4. Serpulidae (Annelida) of Lizard Island, Great Barrier Reef, Australia.

    PubMed

    Kupriyanova, Elena K; Sun, Yanan; Hove, Harry A Ten; Wong, Eunice; Rouse, Greg W

    2015-01-01

    Serpulidae are obligatory sedentary polychaetes inhabiting calcareous tubes that are most common in subtropical and tropical areas of the world. This paper describes serpulid polychaetes collected from Lizard Island, Great Barrier Reef, Australia in 1983-2013 and deposited in Australian museums and overseas. In total, 17 serpulid genera were recorded, but although the study deals with 44 nominal taxa, the exact number of species remains unclear because a number of genera (i.e., Salmacina, Protula, Serpula, Spirobranchus, and Vermiliopsis) need world-wide revisions. Some species described herein are commonly found in the waters around Lizard Island, but had not previously been formally reported. A new species of Hydroides (H. lirs) and two new species of Semivermilia (S. annehoggettae and S. lylevaili) are described. A taxonomic key to all taxa found at Lizard Island is provided. PMID:26624073

  5. Recruitment Variability of Coral Reef Sessile Communities of the Far North Great Barrier Reef.

    PubMed

    Luter, Heidi M; Duckworth, Alan R; Wolff, Carsten W; Evans-Illidge, Elizabeth; Whalan, Steve

    2016-01-01

    One of the key components in assessing marine sessile organism demography is determining recruitment patterns to benthic habitats. An analysis of serially deployed recruitment tiles across depth (6 and 12 m), seasons (summer and winter) and space (meters to kilometres) was used to quantify recruitment assemblage structure (abundance and percent cover) of corals, sponges, ascidians, algae and other sessile organisms from the northern sector of the Great Barrier Reef (GBR). Polychaetes were most abundant on recruitment titles, reaching almost 50% of total recruitment, yet covered <5% of each tile. In contrast, mean abundances of sponges, ascidians, algae, and bryozoans combined was generally less than 20% of total recruitment, with percentage cover ranging between 15-30% per tile. Coral recruitment was very low, with <1 recruit per tile identified. A hierarchal analysis of variation over a range of spatial and temporal scales showed significant spatio-temporal variation in recruitment patterns, but the highest variability occurred at the lowest spatial scale examined (1 m-among tiles). Temporal variability in recruitment of both numbers of taxa and percentage cover was also evident across both summer and winter. Recruitment across depth varied for some taxonomic groups like algae, sponges and ascidians, with greatest differences in summer. This study presents some of the first data on benthic recruitment within the northern GBR and provides a greater understanding of population ecology for coral reefs. PMID:27049650

  6. Recruitment Variability of Coral Reef Sessile Communities of the Far North Great Barrier Reef

    PubMed Central

    Luter, Heidi M.; Duckworth, Alan R.; Wolff, Carsten W.; Evans-Illidge, Elizabeth; Whalan, Steve

    2016-01-01

    One of the key components in assessing marine sessile organism demography is determining recruitment patterns to benthic habitats. An analysis of serially deployed recruitment tiles across depth (6 and 12 m), seasons (summer and winter) and space (meters to kilometres) was used to quantify recruitment assemblage structure (abundance and percent cover) of corals, sponges, ascidians, algae and other sessile organisms from the northern sector of the Great Barrier Reef (GBR). Polychaetes were most abundant on recruitment titles, reaching almost 50% of total recruitment, yet covered <5% of each tile. In contrast, mean abundances of sponges, ascidians, algae, and bryozoans combined was generally less than 20% of total recruitment, with percentage cover ranging between 15–30% per tile. Coral recruitment was very low, with <1 recruit per tile identified. A hierarchal analysis of variation over a range of spatial and temporal scales showed significant spatio-temporal variation in recruitment patterns, but the highest variability occurred at the lowest spatial scale examined (1 m—among tiles). Temporal variability in recruitment of both numbers of taxa and percentage cover was also evident across both summer and winter. Recruitment across depth varied for some taxonomic groups like algae, sponges and ascidians, with greatest differences in summer. This study presents some of the first data on benthic recruitment within the northern GBR and provides a greater understanding of population ecology for coral reefs. PMID:27049650

  7. Critical research needs for identifying future changes in Gulf coral reef ecosystems.

    PubMed

    Feary, David A; Burt, John A; Bauman, Andrew G; Al Hazeem, Shaker; Abdel-Moati, Mohamed A; Al-Khalifa, Khalifa A; Anderson, Donald M; Amos, Carl; Baker, Andrew; Bartholomew, Aaron; Bento, Rita; Cavalcante, Geórgenes H; Chen, Chaolun Allen; Coles, Steve L; Dab, Koosha; Fowler, Ashley M; George, David; Grandcourt, Edwin; Hill, Ross; John, David M; Jones, David A; Keshavmurthy, Shashank; Mahmoud, Huda; Moradi Och Tapeh, Mahdi; Mostafavi, Pargol Ghavam; Naser, Humood; Pichon, Michel; Purkis, Sam; Riegl, Bernhard; Samimi-Namin, Kaveh; Sheppard, Charles; Vajed Samiei, Jahangir; Voolstra, Christian R; Wiedenmann, Joerg

    2013-07-30

    Expert opinion was assessed to identify current knowledge gaps in determining future changes in Arabian/Persian Gulf (thereafter 'Gulf') coral reefs. Thirty-one participants submitted 71 research questions that were peer-assessed in terms of scientific importance (i.e., filled a knowledge gap and was a research priority) and efficiency in resource use (i.e., was highly feasible and ecologically broad). Ten research questions, in six major research areas, were highly important for both understanding Gulf coral reef ecosystems and also an efficient use of limited research resources. These questions mirrored global evaluations of the importance of understanding and evaluating biodiversity, determining the potential impacts of climate change, the role of anthropogenic impacts in structuring coral reef communities, and economically evaluating coral reef communities. These questions provide guidance for future research on coral reef ecosystems within the Gulf, and enhance the potential for assessment and management of future changes in this globally significant region. PMID:23643407

  8. Critical research needs for identifying future changes in Gulf coral reef ecosystems

    PubMed Central

    Feary, David A.; Burt, John A.; Bauman, Andrew G.; Al Hazeem, Shaker; Abdel-Moati, Mohamed A.; Al-Khalifa, Khalifa A.; Anderson, Donald M.; Amos, Carl; Baker, Andrew; Bartholomew, Aaron; Bento, Rita; Cavalcante, Geórgenes H.; Chen, Chaolun Allen; Coles, Steve L.; Dab, Koosha; Fowler, Ashley M.; George, David; Grandcourt, Edwin; Hill, Ross; John, David M.; Jones, David A.; Keshavmurthy, Shashank; Mahmoud, Huda; Moradi Och Tapeh, Mahdi; Mostafavi, Pargol Ghavam; Naser, Humood; Pichon, Michel; Purkis, Sam; Riegl, Bernhard; Samimi-Namin, Kaveh; Sheppard, Charles; Vajed Samiei, Jahangir; Voolstra, Christian R.; Wiedenmann, Joerg

    2014-01-01

    Expert opinion was assessed to identify current knowledge gaps in determining future changes in Arabian/ Persian Gulf (thereafter ‘Gulf’) coral reefs. Thirty-one participants submitted 71 research questions that were peer-assessed in terms of scientific importance (i.e., filled a knowledge gap and was a research priority) and efficiency in resource use (i.e., was highly feasible and ecologically broad). Ten research questions, in six major research areas, were highly important for both understanding Gulf coral reef ecosystems and also an efficient use of limited research resources. These questions mirrored global evaluations of the importance of understanding and evaluating biodiversity, determining the potential impacts of climate change, the role of anthropogenic impacts in structuring coral reef communities, and economically evaluating coral reef communities. These questions provide guidance for future research on coral reef ecosystems within the Gulf, and enhance the potential for assessment and management of future changes in this globally significant region. PMID:23643407

  9. Topography, substratum and benthic macrofaunal relationships on a tropical mesophotic shelf margin, central Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Bridge, T. C. L.; Done, T. J.; Beaman, R. J.; Friedman, A.; Williams, S. B.; Pizarro, O.; Webster, J. M.

    2011-03-01

    Habitats and ecological communities occurring in the mesophotic region of the central Great Barrier Reef (GBR), Australia, were investigated using autonomous underwater vehicle (AUV) from 51 to 145 m. High-resolution multibeam bathymetry of the outer-shelf at Hydrographers Passage in the central GBR revealed submerged linear reefs with tops at 50, 55, 80, 90, 100 and 130 m separated by flat, sandy inter-reefal areas punctuated by limestone pinnacles. Cluster analysis of AUV images yielded five distinct site groups based on their benthic macrofauna, with rugosity and the presence of limestone reef identified as the most significant abiotic factors explaining the distribution of macrofaunal communities. Reef-associated macrofaunal communities occurred in three distinct depth zones: (1) a shallow (<60 m) community dominated by photosynthetic taxa, notably scleractinian corals, zooxanthellate octocorals and photosynthetic sponges; (2) a transitional community (60-75 m) comprising both zooxanthellate taxa and azooxanthellate taxa (notably gorgonians and antipatharians); and (3) an entirely azooxanthellate community (>75 m). The effects of depth and microhabitat topography on irradiance most likely play a critical role in controlling vertical zonation on reef substrates. The lower depth limits of zooxanthellate corals are significantly shallower than that observed in many other mesophotic coral ecosystems. This may be a result of resuspension of sediments from the sand sheets by strong currents and/or a consequence of cold water upwelling.

  10. Integration of coral reef ecosystem process studies and remote sensing: Chapter 5

    USGS Publications Warehouse

    Brook, John; Yates, Kimberly; Halley, Robert

    2006-01-01

    Worldwide, local-scale anthropogenic stress combined with global climate change is driving shifts in the state of reef benthic communities from coral-rich to micro- or macroalgal-dominated (Knowlton, 1992; Done, 1999). Such phase shifts in reef benthic communities may be either abrupt or gradual, and case studies from diverse ocean basins demonstrate that recovery, while uncertain (Hughes, 1994), typically involves progression through successional stages (Done, 1992). These transitions in benthic community structure involve changes in community metabolism, and accordingly, the holistic evaluation of associated biogeochemical variables is of great intrinsic value (Done, 1992). Effective reef management requires advance prediction of coral reef alteration in the face of anthropogenic stress and change in the global environment (Hatcher, 1997a). In practice, this goal requires techniques that can rapidly discern, at an early stage, sublethal effects that may cause long-term increases in mortality (brown, 1988; Grigg and Dollar, 1990). Such methods would improve our understanding of the differences in the population, community, and ecosystem structure, as well as function, between pristine and degraded reefs. This knowledge base could then support scientifically based management strategies (Done, 1992). Brown (1988) noted the general lack of rigor in the assessment of stress on coral reefs and suggested that more quantitative approaches than currently exist are needed to allow objective understanding of coral reef dynamics. Sensitive techniques for the timely appraisal of pollution effects or generalized endemic stress in coral reefs are sorely lacking (Grigg and Dollar, 1990; Wilkinsin, 1992). Moreover, monitoring methods based on population inventories, sclerochronology, or reproductive biology tend to myopic and may give inconsistent results. Ideally, an improved means of evaluating reef stress would discriminate mortality due to natural causes from morality to

  11. Guiding principles for the improved governance of port and shipping impacts in the Great Barrier Reef.

    PubMed

    Grech, A; Bos, M; Brodie, J; Coles, R; Dale, A; Gilbert, R; Hamann, M; Marsh, H; Neil, K; Pressey, R L; Rasheed, M A; Sheaves, M; Smith, A

    2013-10-15

    The Great Barrier Reef (GBR) region of Queensland, Australia, encompasses a complex and diverse array of tropical marine ecosystems of global significance. The region is also a World Heritage Area and largely within one of the world's best managed marine protected areas. However, a recent World Heritage Committee report drew attention to serious governance problems associated with the management of ports and shipping. We review the impacts of ports and shipping on biodiversity in the GBR, and propose a series of guiding principles to improve the current governance arrangements. Implementing these principles will increase the capacity of decision makers to minimize the impacts of ports and shipping on biodiversity, and will provide certainty and clarity to port operators and developers. A 'business as usual' approach could lead to the GBR's inclusion on the List of World Heritage in Danger in 2014. PMID:23932477

  12. Fletcher field: a Silurian patch/barrier-reef complex in southwestern Ontario

    SciTech Connect

    Meadows, J.R.; Churcher, P.L.; Lawson, D.E.; Dusseault, M.B.

    1986-08-01

    The importance of reef growth to Silurian oil and gas production in the Michigan basin is reflected in the large number of studies that have been conducted. Unfortunately, most of these studies have focused on pinnacle reefs, with patch and barrier reefs being virtually ignored, although they represent viable oil and gas exploration targets. Many patch reefs in Ontario also represent targets for enhanced oil recovery projects. Without detailed geologic studies, these projects cannot be readily implemented. A recent sedimentologic study defined the facies distribution of a patch- and barrier-reef complex and its associated producing zones (A-1 carbonate). The Fletcher field, located in southwestern Ontario, was chosen for study. Structures and facies relationships were defined using nine cored holes and geophysical well logs. In addition, detailed studies were made of the clay mineralogy and the controversial Guelph A-1 carbonate contact. Defined facies relationships indicate that the Fletcher patch/barrier reef differs in many respects to pinnacle reefs. The facies are simpler and fewer, consisting of a poorly zoned reef core overlain by a micritized reef-top, lagoonal, and supratidal sequence. The origin of the green shale at the Guelph A-1 contact is interpreted as resulting partly from subaerial exposure and partly from the concentration of insolubles by pressure solution. The clay mineralogy consists of a monomineralic assemblage of illite. The amount and distribution of this assemblage would not significantly affect enhanced oil recovery.

  13. Spatial Scales of Bacterial Diversity in Cold-Water Coral Reef Ecosystems

    PubMed Central

    Schöttner, Sandra; Wild, Christian; Hoffmann, Friederike; Boetius, Antje; Ramette, Alban

    2012-01-01

    Background Cold-water coral reef ecosystems are recognized as biodiversity hotspots in the deep sea, but insights into their associated bacterial communities are still limited. Deciphering principle patterns of bacterial community variation over multiple spatial scales may however prove critical for a better understanding of factors contributing to cold-water coral reef stability and functioning. Methodology/Principal Findings Bacterial community structure, as determined by Automated Ribosomal Intergenic Spacer Analysis (ARISA), was investigated with respect to (i) microbial habitat type and (ii) coral species and color, as well as the three spatial components (iii) geomorphologic reef zoning, (iv) reef boundary, and (v) reef location. Communities revealed fundamental differences between coral-generated (branch surface, mucus) and ambient microbial habitats (seawater, sediments). This habitat specificity appeared pivotal for determining bacterial community shifts over all other study levels investigated. Coral-derived surfaces showed species-specific patterns, differing significantly between Lophelia pertusa and Madrepora oculata, but not between L. pertusa color types. Within the reef center, no community distinction corresponded to geomorphologic reef zoning for both coral-generated and ambient microbial habitats. Beyond the reef center, however, bacterial communities varied considerably from local to regional scales, with marked shifts toward the reef periphery as well as between different in- and offshore reef sites, suggesting significant biogeographic imprinting but weak microbe-host specificity. Conclusions/Significance This study presents the first multi-scale survey of bacterial diversity in cold-water coral reefs, spanning a total of five observational levels including three spatial scales. It demonstrates that bacterial communities in cold-water coral reefs are structured by multiple factors acting at different spatial scales, which has fundamental

  14. Temporal variation in development of ecosystem services from oyster reef restoration

    USGS Publications Warehouse

    LaPeyre, Megan K.; Humphries, Austin T.; Casas, Sandra M.; La Peyre, Jerome F.

    2014-01-01

    Restoration ecology relies heavily on ecosystem development theories that generally assume development of fully functioning natural systems over time, but often fail to identify the time-frame required for provision of desired functions, or acknowledge different pathways of functional development. In estuaries, a decline of overall habitat quality and functioning has led to significant efforts to restore critical ecosystem services, recently through the creation and restoration of oyster reefs. Oyster reef restoration generally occurs with goals of (1) increasing water quality via filtration through sustainable oyster recruitment, (2) stabilizing shorelines, and (3) creating and enhancing critical estuarine habitat for fish and invertebrates. We restored over 260 m2 of oyster reef habitat in coastal Louisiana and followed the development and provision of these ecosystem services from 2009 through 2012. Oysters recruited to reefs immediately, with densities of oysters greater than 75 mm exceeding 80 ind m−2 after 3 years, and provision of filtration rates of 1002 ± 187 L h−1 m−2; shoreline stabilization effects of the created reefs were minimal over the three years of monitoring, with some evidence of positive shoreline stabilization during higher wind/energy events only; increased nekton abundance of resident, but not larger transient fish was immediately measurable at the reefs, however, this failed to increase through time. Our results provide critical insights into the development trajectories of ecosystem services provided by restored oyster reefs, as well as the mechanisms mediating these changes. This is critical both ecologically to understand how and where a reef thrives, and for policy and management to guide decision-making related to oyster reef restoration and the crediting and accounting of ecosystem services.

  15. Human activity selectively impacts the ecosystem roles of parrotfishes on coral reefs.

    PubMed

    Bellwood, David R; Hoey, Andrew S; Hughes, Terence P

    2012-04-22

    Around the globe, coral reefs and other marine ecosystems are increasingly overfished. Conventionally, studies of fishing impacts have focused on the population size and dynamics of targeted stocks rather than the broader ecosystem-wide effects of harvesting. Using parrotfishes as an example, we show how coral reef fish populations respond to escalating fishing pressure across the Indian and Pacific Oceans. Based on these fish abundance data, we infer the potential impact on four key functional roles performed by parrotfishes. Rates of bioerosion and coral predation are highly sensitive to human activity, whereas grazing and sediment removal are resilient to fishing. Our results offer new insights into the vulnerability and resilience of coral reefs to the ever-growing human footprint. The depletion of fishes causes differential decline of key ecosystem functions, radically changing the dynamics of coral reefs and setting the stage for future ecological surprises. PMID:22090383

  16. Rapid survey protocol that provides dynamic information on reef condition to managers of the Great Barrier Reef.

    PubMed

    Beeden, R J; Turner, M A; Dryden, J; Merida, F; Goudkamp, K; Malone, C; Marshall, P A; Birtles, A; Maynard, J A

    2014-12-01

    Managing to support coral reef resilience as the climate changes requires strategic and responsive actions that reduce anthropogenic stress. Managers can only target and tailor these actions if they regularly receive information on system condition and impact severity. In large coral reef areas like the Great Barrier Reef Marine Park (GBRMP), acquiring condition and impact data with good spatial and temporal coverage requires using a large network of observers. Here, we describe the result of ~10 years of evolving and refining participatory monitoring programs used in the GBR that have rangers, tourism operators and members of the public as observers. Participants complete Reef Health and Impact Surveys (RHIS) using a protocol that meets coral reef managers' needs for up-to-date information on the following: benthic community composition, reef condition and impacts including coral diseases, damage, predation and the presence of rubbish. Training programs ensure that the information gathered is sufficiently precise to inform management decisions. Participants regularly report because the demands of the survey methodology have been matched to their time availability. Undertaking the RHIS protocol we describe involves three ~20 min surveys at each site. Participants enter data into an online data management system that can create reports for managers and participants within minutes of data being submitted. Since 2009, 211 participants have completed a total of more than 10,415 surveys at more than 625 different reefs. The two-way exchange of information between managers and participants increases the capacity to manage reefs adaptively, meets education and outreach objectives and can increase stewardship. The general approach used and the survey methodology are both sufficiently adaptable to be used in all reef regions. PMID:25179944

  17. Fish predation on sea urchins on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Young, M. A. L.; Bellwood, D. R.

    2012-09-01

    Predators are important for regulating adult sea urchin densities. Here, we employ remote underwater video cameras to record diurnal predation on tethered sea urchins at Lizard Island on the Great Barrier Reef (GBR). We identified four fish predators of adult sea urchins ( Balistoides viridescens, Balistapus undulatus, Lethrinus atkinsoni and Choerodon schoenleinii). Predator activity appeared to be site-specific. Balistoides viridescens and B. undulatus (f: Balistidae) were the two most important predators of Echinometra mathaei with the former handling E. mathaei significantly faster (mean 0.7 min) than B. undulatus (5.2 min). Balistoides viridescens also successfully preyed on 70 % of detections, while C. schoenleinii, B. undulatus and L. atkinsoni preyed on just 33, 17 and <1 %, respectively. Additionally, B. viridescens were behaviourally dominant among predator species and were observed as aggressors in 30 encounters with B. undulatus and 8 encounters with L. atkinsoni. In only one encounter was B. viridescens the recipient of any aggression (from B. undulatus). In terms of relative vulnerability, of the three sea urchin species examined, E. mathaei were more vulnerable to predation than Diadema setosum or Echinothrix calamaris, with mean handling times of 1.2, 4.8 and 10.3 min, respectively. Balistoides viridescens and B. undulatus both appear to be able to play an important role as predators of sea urchins on the relatively intact coral reefs of Lizard Island. However, B. viridescens emerge as the most efficient predator in terms of handling speed and the proportion of detections preyed upon. They were also the behaviourally dominant predator. This preliminary study of the predators of sea urchins on the GBR highlights the potential significance of relatively scarce but functionally important species.

  18. Reef Fish Community Biomass and Trophic Structure Changes across Shallow to Upper-Mesophotic Reefs in the Mesoamerican Barrier Reef, Caribbean

    PubMed Central

    Gress, Erika; Wright, Georgina; Exton, Dan A.; Rogers, Alex D.

    2016-01-01

    Mesophotic coral ecosystems (MCEs; reefs 30-150m depth) are of increased research interest because of their potential role as depth refuges from many shallow reef threats. Yet few studies have identified patterns in fish species composition and trophic group structure between MCEs and their shallow counterparts. Here we explore reef fish species and biomass distributions across shallow to upper-MCE Caribbean reef gradients (5-40m) around Utila, Honduras, using a diver-operated stereo-video system. Broadly, we found reef fish species richness, abundance and biomass declining with depth. At the trophic group level we identified declines in herbivores (both total and relative community biomass) with depth, mostly driven by declines in parrotfish (Scaridae). Piscivores increased as a proportion of the community with increased depth while, in contrast to previous studies, we found no change in relative planktivorous reef fish biomass across the depth gradient. In addition, we also found evidence of ontogenetic migrations in the blue tang (Acanthurus coeruleus), striped parrotfish (Scarus iserti), blue chromis (Chromis cyanea), creole wrasse (Clepticus parrae), bluehead wrasse (Thalassoma bifasciatum) and yellowtail snapper (Ocyurus chrysurus), with a higher proportion of larger individuals at mesophotic and near-mesophotic depths than on shallow reefs. Our results highlight the importance of using biomass measures when considering fish community changes across depth gradients, with biomass generating different results to simple abundance counts. PMID:27332811

  19. Reef Fish Community Biomass and Trophic Structure Changes across Shallow to Upper-Mesophotic Reefs in the Mesoamerican Barrier Reef, Caribbean.

    PubMed

    Andradi-Brown, Dominic A; Gress, Erika; Wright, Georgina; Exton, Dan A; Rogers, Alex D

    2016-01-01

    Mesophotic coral ecosystems (MCEs; reefs 30-150m depth) are of increased research interest because of their potential role as depth refuges from many shallow reef threats. Yet few studies have identified patterns in fish species composition and trophic group structure between MCEs and their shallow counterparts. Here we explore reef fish species and biomass distributions across shallow to upper-MCE Caribbean reef gradients (5-40m) around Utila, Honduras, using a diver-operated stereo-video system. Broadly, we found reef fish species richness, abundance and biomass declining with depth. At the trophic group level we identified declines in herbivores (both total and relative community biomass) with depth, mostly driven by declines in parrotfish (Scaridae). Piscivores increased as a proportion of the community with increased depth while, in contrast to previous studies, we found no change in relative planktivorous reef fish biomass across the depth gradient. In addition, we also found evidence of ontogenetic migrations in the blue tang (Acanthurus coeruleus), striped parrotfish (Scarus iserti), blue chromis (Chromis cyanea), creole wrasse (Clepticus parrae), bluehead wrasse (Thalassoma bifasciatum) and yellowtail snapper (Ocyurus chrysurus), with a higher proportion of larger individuals at mesophotic and near-mesophotic depths than on shallow reefs. Our results highlight the importance of using biomass measures when considering fish community changes across depth gradients, with biomass generating different results to simple abundance counts. PMID:27332811

  20. Coral community change on a turbid-zone reef complex: developing baseline records for the central Great Barrier Reef's nearshore coral reefs

    NASA Astrophysics Data System (ADS)

    Johnson, Jamie; Perry, Chris; Smithers, Scott; Morgan, Kyle; Johnson, Kenneth

    2016-04-01

    Understanding past coral community development and reef growth is crucial for placing contemporary ecological and environmental change within appropriate reef-building timescales. Coral reefs located within coastal inner-shelf zones are widely perceived to be most susceptible to declining water quality due to their proximity to modified river catchments. On the inner-shelf of Australia's Great Barrier Reef (GBR) the impacts and magnitude of declining water quality since European settlement (c. 1850 A.D.) still remain unclear. This relates to ongoing debates concerning the significance of increased sediment yields against the naturally high background sedimentary regimes and the paucity of long-term (>decadal) ecological datasets. To provide baseline records for interpreting coral community change within the turbid inner-shelf waters of the GBR, 21 cores were recovered from five nearshore reefs spanning an evolutionary spectrum of reef development. Discrete intervals pre- and post-dating European settlement, but deposited at equivalent water depths, were identified by radiocarbon dating, enabling the discrimination of extrinsic and intrinsic driven shifts within the coral palaeo-record. We report no discernible evidence of anthropogenically-driven disturbance on the coral community records at these sites. Instead, significant transitions in coral community assemblages relating to water depth and vertical reef accretion were observed. We suggest that these records may be used to contextualise observed contemporary ecological change within similar environments on the GBR.

  1. Towards ecologically relevant targets for river pollutant loads to the Great Barrier Reef.

    PubMed

    Kroon, Frederieke J

    2012-01-01

    Degradation of coastal ecosystems in the Great Barrier Reef (GBR), Australia, has been linked with a decline in water quality from land-based runoff. This paper examines the reduction in current end-of-catchment loads required for total suspended solids (TSS) and dissolved inorganic nitrogen (DIN) to achieve GBR water quality guidelines. Based on first-order estimates of sustainable pollutant loads, current TSS and DIN loads would need to be reduced by approximately 7000ktons/y (41%) and 6000tons/y (38%), respectively. Next, these estimated reductions for TSS and DIN are compared with Reef Plan targets for anthropogenic sediment (-20% by 2020) and nitrogen (-50% by 2013) loads. If successful, these targets will accomplish approximately 40% of TSS and 92% of DIN load reductions required to achieve sustainable loads to the GBR lagoon. These first-order estimates elucidate the need to establish ecologically relevant targets for river pollutant loads to the GBR for management and policy. PMID:22136764

  2. Lower Cretaceous barrier reef and outer shelf facies, Sligo Formation, south Texas

    SciTech Connect

    Kirkland, B.L.; Lighty, R.G.; Rezak, R.; Tieh, T.T.

    1987-09-01

    Along the south Texas margin, a vast carbonate-shelf complex with an extensive barrier-reef system and abundant shallow-lagoon and skeletal-shoal deposits existed during the Aptian to Albian. The Sligo Formation represents more than 609.6 m (2000 ft) of deposition along this margin. Facies types along the shelf edge were quantitatively delineated by cluster analysis of detailed point-count data from 90 thin sections of whole cores from five wells. In addition, studies of 42.6 m (140 ft) of core slabs and thin sections of well cuttings from four other wells were used to establish a regional depositional model. Along the Sligo shelf edge, three major facies occur: reef or reef rubble (two subfacies), back reef (three subfacies), and lagoonal (two subfacies). Reef facies are dominated by caprinids and also contain solenoporid algae, stromatoporoids, and an assortment of corals. Behind the reef, a spectrum of extensive back-reef deposits interfinger with shallow (< 5 m), lagoonal sediments. Farther behind the shelf-margin reef complex, along the outer shelf, benthic foraminifera, peloids, and ooids were deposited in high-energy shoals, and are interbedded with low-energy lagoonal sediments. The two types of buildups probably existed along the Sligo shelf margin and the equivalent Cupido shelf margin to the south: (1) wave-resistant coral-caprinid-stromatoporid barrier reefs (adjacent to restricted lagoonal facies), and (2) low-lying rudist banks (adjacent to diverse, washed lagoonal facies).

  3. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems

    PubMed Central

    Rix, Laura; de Goeij, Jasper M.; Mueller, Christina E.; Struck, Ulrich; Middelburg, Jack J.; van Duyl, Fleur C.; Al-Horani, Fuad A.; Wild, Christian; Naumann, Malik S.; van Oevelen, Dick

    2016-01-01

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21–40% of the mucus carbon and 32–39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments. PMID:26740019

  4. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems.

    PubMed

    Rix, Laura; de Goeij, Jasper M; Mueller, Christina E; Struck, Ulrich; Middelburg, Jack J; van Duyl, Fleur C; Al-Horani, Fuad A; Wild, Christian; Naumann, Malik S; van Oevelen, Dick

    2016-01-01

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21-40% of the mucus carbon and 32-39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments. PMID:26740019

  5. Seasonal Dynamical Prediction of Coral Bleaching in the Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Spillman, C. M.; Alves, O.

    2009-05-01

    Sea surface temperature (SST) is now recognised as the primary cause of mass coral bleaching events. Coral bleaching occurs during times of stress, particularly when SSTs exceed the coral colony's tolerance level. Global warming is potentially a serious threat to the future of the world's reef systems with predictions by the international community that bleaching will increase in both frequency and severity. Advance warning of anomalous sea surface temperatures, and thus potential bleaching events, would allow for the implementation of management strategies to minimise reef damage. Seasonal SST forecasts from the coupled ocean-atmosphere model POAMA (Bureau of Meteorology) have skill in the Great Barrier Reef (Australia) several months into the future. We will present model forecasts and probabilistic products for use in reef management, and assess model skill in the region. These products will revolutionise the way in which coral bleaching events are monitored and assessed in the Great Barrier Reef and Australian region.

  6. Challenges for Ecosystem Services Provided by Coral Reefs In the Face of Climate Change

    NASA Astrophysics Data System (ADS)

    Kikuchi, R. K.; Elliff, C. I.

    2014-12-01

    Coral reefs provide many ecosystem services of which coastal populations are especially dependent upon, both in cases of extreme events and in daily life. However, adaptation to climate change is still relatively unknown territory regarding the ecosystem services provided by coastal environments, such as coral reefs. Management strategies usually consider climate change as a distant issue and rarely include ecosystem services in decision-making. Coral reefs are among the most vulnerable environments to climate change, considering the impact that increased ocean temperature and acidity have on the organisms that compose this ecosystem. If no actions are taken, the most likely scenario to occur will be of extreme decline in the ecosystem services provided by coral reefs. Loss of biodiversity due to the pressures of ocean warming and acidification will lead to increased price of seafood products, negative impact on food security, and ecological imbalances. Also, sea-level rise and fragile structures due to carbonate dissolution will increase vulnerability to storms, which can lead to shoreline erosion and ultimately threaten coastal communities. Both these conditions will undoubtedly affect recreation and tourism, which are often the most important use values in the case of coral reef systems. Adaptation strategies to climate change must take on an ecosystem-based approach with continuous monitoring programs, so that multiple ecosystem services are considered and not only retrospective trends are analyzed. Brazilian coral reefs have been monitored on a regular basis since 2000 and, considering that these marginal coral reefs of the eastern Atlantic are naturally under stressful conditions (e.g. high sedimentation rates), inshore reefs of Brazil, such as those in Tinharé-Boipeba, have shown lower vitality rates due to greater impacts from the proximity to the coastal area (e.g. pollution, overfishing, sediment run-off). This chronic negative impact must be addressed

  7. Estaurine Freshwater Entrainment By Oyster Reefs: Quantifying A Keystone Ecosystem Service

    NASA Astrophysics Data System (ADS)

    Kaplan, D. A.; Olabarrieta, M.; Frederick, P.; Valle-Levinson, A.; Seavey, J.

    2014-12-01

    Oyster reefs have been shown to provide myriad critical ecosystem services, however their role in directing flow and currents during non-storm conditions has been largely neglected. In many regions, oyster reefs form as linear structures perpendicular to the coast and across the path of streams and rivers, potentially entraining large volumes of freshwater flow and altering nearshore mixing. We hypothesize that these reefs have the potential to influence salinity over large areas, providing a "keystone" ecosystem service by supporting multiple estuarine functions. Here we present results from a field and modeling study to quantify the effects of reef extent and elevation on estuarine salinities under varying river discharge. We found salinity differences ranging from 2 to 16 g/kg between inshore and offshore sides of degraded oyster reefs in the Suwannee Sound (FL, USA), supporting the role of reefs as local-scale freshwater dams. Moreover, differences between inshore and offshore salinities were correlated with flow, with the most marked differences during periods of low flow. Hydrodynamic modeling using the 3-D Regional Ocean Modeling System (ROMS) suggests that the currently degraded reef system entrained greater volumes of freshwater in the past, buffering the landward advance of high salinities, particularly during low flow events related to droughts. Using ROMS, we also modeled a variety of hypothetical oyster bar morphology scenarios (historical, current, and "restored") to understand how changes in reef structure (elevation, extent, and completeness) impact estuarine mixing and near-shore salinities. Taken together, these results serve to: 1) elucidate a poorly documented ecosystem service of oyster reefs; 2) provide an estimate of the magnitude and sptial extent of the freshwater entrainment effect; and 3) offer quantitative information to managers and restoration specialists interested in restoring oyster habitat.

  8. Coral reef ecosystem decline: changing dynamics of coral reef carbonate production and implications for reef growth potential

    NASA Astrophysics Data System (ADS)

    Perry, Chris

    2016-04-01

    Global-scale deteriorations in coral reef health have caused major shifts in species composition and are likely to be exacerbated by climate change. It has been suggested that one effect of these ecological changes will be to lower reef carbonate production rates, which will impair reef growth potential and, ultimately, may lead to states of net reef erosion. However, quantitative data to support such assertions are limited, and linkages between the ecological state of coral reefs and their past and present geomorphic performance (in other words their growth potential) are poorly resolved. Using recently collected data from sites in the Caribbean and Indian Ocean, and which have undergone very different post-disturbance ecological trajectories over the last ~20-30 years, the differential impacts of disturbance on contemporary carbonate production regimes and on reef growth potential can be explored. In the Caribbean, a region which has been severely impacted ecological over the last 30+ years, our datasets show that average carbonate production rates on reefs are now less than 50% of pre-disturbance rates, and that calculated accretion rates (mm yr-1) are an about order of magnitude lower within shallow water habitats compared to Holocene averages. Collectively, these data suggest that recent ecological declines are now propagating through the system to impact on the geomorphic performance of Caribbean reefs and will impair their future growth potential. In contrast, the carbonate budgets of most reefs across the Chagos archipelago (central Indian Ocean), which is geographically remote and largely isolated from direct human disturbances, have recovered rapidly from major past disturbances (specifically the 1998 coral bleaching event). The carbonate budgets on these remote reefs now average +3.7 G (G = kg CaCO3 m-2 yr-1). Most significantly the production rates on Acropora-dominated reefs, which were most severely impacted by the 1998 bleaching event, average +8.4 G

  9. Small change, big difference: Sea surface temperature distributions for tropical coral reef ecosystems, 1950-2011

    NASA Astrophysics Data System (ADS)

    Lough, J. M.

    2012-09-01

    Changes in tropical sea surface temperature (SST) are examined over the period 1950-2011 during which global average temperature warmed by 0.4°C. Average tropical SST is warming about 70% of the global average rate. Spatially, significant warming between the two time periods, 1950-1980 and 1981-2011, has occurred across 65% of the tropical oceans. Coral reef ecosystems occupy 10% of the tropical oceans, typically in regions of warmer (+1.8°C) and less variable SST (80% of months within 3.3°C range) compared to non-reef areas (80% of months within 7.0°C range). SST is a primary controlling factor of coral reef distribution and coral reef organisms have already shown their sensitivity to the relatively small amount of warming observed so far through, for example, more frequent coral bleaching events and outbreaks of coral disease. Experimental evidence is also emerging of possible thermal thresholds in the range 30°C-32°C for some physiological processes of coral reef organisms. Relatively small changes in SST have already resulted in quite large differences in SST distribution with a maximum ‘hot spot’ of change in the near-equatorial Indo-Pacific which encompasses both the Indo-Pacific warm pools and the center of coral reef biodiversity. Identification of this hot spot of SST change is not new but this study highlights its significance with respect to tropical coral reef ecosystems. Given the modest amount of warming to date, changes in SST distribution are of particular concern for coral reefs given additional local anthropogenic stresses on many reefs and ongoing ocean acidification likely to increasingly compromise coral reef processes.

  10. Anticipative management for coral reef ecosystem services in the 21st century.

    PubMed

    Rogers, Alice; Harborne, Alastair R; Brown, Christopher J; Bozec, Yves-Marie; Castro, Carolina; Chollett, Iliana; Hock, Karlo; Knowland, Cheryl A; Marshell, Alyssa; Ortiz, Juan C; Razak, Tries; Roff, George; Samper-Villarreal, Jimena; Saunders, Megan I; Wolff, Nicholas H; Mumby, Peter J

    2015-02-01

    Under projections of global climate change and other stressors, significant changes in the ecology, structure and function of coral reefs are predicted. Current management strategies tend to look to the past to set goals, focusing on halting declines and restoring baseline conditions. Here, we explore a complementary approach to decision making that is based on the anticipation of future changes in ecosystem state, function and services. Reviewing the existing literature and utilizing a scenario planning approach, we explore how the structure of coral reef communities might change in the future in response to global climate change and overfishing. We incorporate uncertainties in our predictions by considering heterogeneity in reef types in relation to structural complexity and primary productivity. We examine 14 ecosystem services provided by reefs, and rate their sensitivity to a range of future scenarios and management options. Our predictions suggest that the efficacy of management is highly dependent on biophysical characteristics and reef state. Reserves are currently widely used and are predicted to remain effective for reefs with high structural complexity. However, when complexity is lost, maximizing service provision requires a broader portfolio of management approaches, including the provision of artificial complexity, coral restoration, fish aggregation devices and herbivore management. Increased use of such management tools will require capacity building and technique refinement and we therefore conclude that diversification of our management toolbox should be considered urgently to prepare for the challenges of managing reefs into the 21st century. PMID:25179273

  11. Holocene sea-level changes and barrier reef formation on an oceanic island, Palau Islands, western Pacific

    NASA Astrophysics Data System (ADS)

    Kayanne, Hajime; Yamano, Hiroya; Randall, Richard H.

    2002-06-01

    Internal facies and development of an oceanic island's barrier reef were revealed by the stratigraphical study of six drill cores in Palau Islands, western Pacific. The Holocene reef development is primarily constrained at its foundation by the antecedent topography of Pleistocene substratum. Holocene barrier reef is an increment on the Pleistocene barrier reef, which had been subaerially exposed during glacial stages. About 8300 cal. year BP (calibrated calendar years B.P.), branching Acropora facies initially formed a bank on the seaward side of a Pleistocene limestone surface with a vertical accumulation rate as high as 30 m/ka (ka=1000 years). After 7200 cal. year BP, when the sea-level rise rate decreased, reef crest facies caught up with the sea surface with an accumulation rate of less than 2.2 m/ka. Corals found in the reef crest facies are similar to the present-day reef crest corals dominated by Acropora digitifera and A. humilis. After the reef crest was formed, bioclastic sand and gravel facies prograded lagoonward of the reef crest and consisted mostly of reef derived materials. The construction of patch reefs post-dated the barrier reef formation. The mature barrier reef provided calm conditions inside the lagoon, which then led to the construction of patch reefs and fringing reefs. Sea-level changes deduced from the accumulation curves show rapid rise before 7200 cal. year BP followed by a slight rise of 4 m at its maximum. This change in sea-level rise rate inspired the change in reef facies from branching Acropora to reef crest.

  12. Herbivory, Connectivity, and Ecosystem Resilience: Response of a Coral Reef to a Large-Scale Perturbation

    PubMed Central

    Adam, Thomas C.; Schmitt, Russell J.; Holbrook, Sally J.; Brooks, Andrew J.; Edmunds, Peter J.; Carpenter, Robert C.; Bernardi, Giacomo

    2011-01-01

    Coral reefs world-wide are threatened by escalating local and global impacts, and some impacted reefs have shifted from coral dominance to a state dominated by macroalgae. Therefore, there is a growing need to understand the processes that affect the capacity of these ecosystems to return to coral dominance following disturbances, including those that prevent the establishment of persistent stands of macroalgae. Unlike many reefs in the Caribbean, over the last several decades, reefs around the Indo-Pacific island of Moorea, French Polynesia have consistently returned to coral dominance following major perturbations without shifting to a macroalgae-dominated state. Here, we present evidence of a rapid increase in populations of herbivorous fishes following the most recent perturbation, and show that grazing by these herbivores has prevented the establishment of macroalgae following near complete loss of coral on offshore reefs. Importantly, we found the positive response of herbivorous fishes to increased benthic primary productivity associated with coral loss was driven largely by parrotfishes that initially recruit to stable nursery habitat within the lagoons before moving to offshore reefs later in life. These results underscore the importance of connectivity between the lagoon and offshore reefs for preventing the establishment of macroalgae following disturbances, and indicate that protecting nearshore nursery habitat of herbivorous fishes is critical for maintaining reef resilience. PMID:21901131

  13. Herbivory, connectivity, and ecosystem resilience: response of a coral reef to a large-scale perturbation.

    PubMed

    Adam, Thomas C; Schmitt, Russell J; Holbrook, Sally J; Brooks, Andrew J; Edmunds, Peter J; Carpenter, Robert C; Bernardi, Giacomo

    2011-01-01

    Coral reefs world-wide are threatened by escalating local and global impacts, and some impacted reefs have shifted from coral dominance to a state dominated by macroalgae. Therefore, there is a growing need to understand the processes that affect the capacity of these ecosystems to return to coral dominance following disturbances, including those that prevent the establishment of persistent stands of macroalgae. Unlike many reefs in the Caribbean, over the last several decades, reefs around the Indo-Pacific island of Moorea, French Polynesia have consistently returned to coral dominance following major perturbations without shifting to a macroalgae-dominated state. Here, we present evidence of a rapid increase in populations of herbivorous fishes following the most recent perturbation, and show that grazing by these herbivores has prevented the establishment of macroalgae following near complete loss of coral on offshore reefs. Importantly, we found the positive response of herbivorous fishes to increased benthic primary productivity associated with coral loss was driven largely by parrotfishes that initially recruit to stable nursery habitat within the lagoons before moving to offshore reefs later in life. These results underscore the importance of connectivity between the lagoon and offshore reefs for preventing the establishment of macroalgae following disturbances, and indicate that protecting nearshore nursery habitat of herbivorous fishes is critical for maintaining reef resilience. PMID:21901131

  14. Impacts and Recovery from Severe Tropical Cyclone Yasi on the Great Barrier Reef

    PubMed Central

    Beeden, Roger; Maynard, Jeffrey; Puotinen, Marjetta; Marshall, Paul; Dryden, Jen; Goldberg, Jeremy; Williams, Gareth

    2015-01-01

    Full recovery of coral reefs from tropical cyclone (TC) damage can take decades, making cyclones a major driver of habitat condition where they occur regularly. Since 1985, 44 TCs generated gale force winds (≥17 metres/second) within the Great Barrier Reef Marine Park (GBRMP). Of the hurricane strength TCs (≥H1—Saffir Simpson scale; ≥ category 3 Australian scale), TC Yasi (February, 2011) was the largest. In the weeks after TC Yasi crossed the GBRMP, participating researchers, managers and rangers assessed the extent and severity of reef damage via 841 Reef Health and Impact Surveys at 70 reefs. Records were scaled into five damage levels representing increasingly widespread colony-level damage (1, 2, 3) and reef structural damage (4, 5). Average damage severity was significantly affected by direction (north vs south of the cyclone track), reef shelf position (mid-shelf vs outer-shelf) and habitat type. More outer-shelf reefs suffered structural damage than mid-shelf reefs within 150 km of the track. Structural damage spanned a greater latitudinal range for mid-shelf reefs than outer-shelf reefs (400 vs 300 km). Structural damage was patchily distributed at all distances, but more so as distance from the track increased. Damage extended much further from the track than during other recent intense cyclones that had smaller circulation sizes. Just over 15% (3,834 km2) of the total reef area of the GBRMP is estimated to have sustained some level of coral damage, with ~4% (949 km2) sustaining a degree of structural damage. TC Yasi likely caused the greatest loss of coral cover on the GBR in a 24-hour period since 1985. Severely impacted reefs have started to recover; coral cover increased an average of 4% between 2011 and 2013 at re-surveyed reefs. The in situ assessment of impacts described here is the largest in scale ever conducted on the Great Barrier Reef following a reef health disturbance. PMID:25874718

  15. Cross-shelf exchanges between the Coral Sea and the Great Barrier Reef lagoon determined from a regional-scale numerical model

    NASA Astrophysics Data System (ADS)

    Schiller, Andreas; Herzfeld, Mike; Brinkman, Richard; Rizwi, Farhan; Andrewartha, John

    2015-10-01

    Analyses of the variability in a 3.5-year run of a hydrodynamic model developed for simulating the circulation of the Great Barrier Reef (GBR) are presented. Sea-surface temperature, salinity, currents and cross-shelf transports between the GBR lagoon and the deep ocean offshore are investigated and compare well to available observations. Water mass intrusions and flushing events are critical factors in determining the health of coral reef and continental shelf ecosystems. Results from tracer release experiments provide a synoptic view of the variability of residence times within the GBR and identify critical regions of shelf-ocean exchange. One such region of significant tracer contribution to the shelf is identified in the vicinity of the Pompey Reefs in an area characterised by increased frequency of upslope transported water. Another location of enhanced flux on to the shelf exists in the region bracketing Palm Passage, where the reef matrix is very open, and provides little obstacle to cross-shelf exchange. The Palm Passage location is the origin of a northwards plume of elevated concentration. The model circulation provides a robust and useful picture of the Great Barrier Reef, rendering the model suitable for providing input to biogeochemical and sediment models to simulate, at a broad scale, the ecosystem health, water quality, transport and fate of water and waterborne material, moving through catchments and into the GBR lagoon.

  16. Large-scale pesticide monitoring across Great Barrier Reef catchments--Paddock to Reef Integrated Monitoring, Modelling and Reporting Program.

    PubMed

    Smith, Rachael; Middlebrook, Rachael; Turner, Ryan; Huggins, Rae; Vardy, Suzanne; Warne, Michael

    2012-01-01

    The transport and potential toxicity of pesticides in Queensland (QLD) catchments from agricultural areas is a key concern for the Great Barrier Reef (GBR). In 2009, a pesticide monitoring program was established as part of the Australian and QLD Governments' Reef Plan (2009). Samples were collected at eight End of System sites (above the tidal zone) and three sub-catchment sites. At least two pesticides were detected at every site including insecticides, fungicides, herbicides, and the Reef Plan's (2009) five priority photosystem II (PSII) herbicides (diuron, atrazine, hexazinone, tebuthiuron and ametryn). Diuron, atrazine and metolachlor exceeded Australian and New Zealand water quality guideline trigger values (TVs) at eight sites. Accounting for PSII herbicide mixtures increased the estimated toxicity and led to larger exceedances of the TVs at more sites. This study demonstrates the widespread contamination of pesticides, particularly PSII herbicides, across the GBR catchment area which discharges to the GBR. PMID:21920563

  17. Global Human Footprint on the Linkage between Biodiversity and Ecosystem Functioning in Reef Fishes

    PubMed Central

    Mora, Camilo; Aburto-Oropeza, Octavio; Ayala Bocos, Arturo; Ayotte, Paula M.; Banks, Stuart; Bauman, Andrew G.; Beger, Maria; Bessudo, Sandra; Booth, David J.; Brokovich, Eran; Brooks, Andrew; Chabanet, Pascale; Cinner, Joshua E.; Cortés, Jorge; Cruz-Motta, Juan J.; Cupul Magaña, Amilcar; DeMartini, Edward E.; Edgar, Graham J.; Feary, David A.; Ferse, Sebastian C. A.; Friedlander, Alan M.; Gaston, Kevin J.; Gough, Charlotte; Graham, Nicholas A. J.; Green, Alison; Guzman, Hector; Hardt, Marah; Kulbicki, Michel; Letourneur, Yves; López Pérez, Andres; Loreau, Michel; Loya, Yossi; Martinez, Camilo; Mascareñas-Osorio, Ismael; Morove, Tau; Nadon, Marc-Olivier; Nakamura, Yohei; Paredes, Gustavo; Polunin, Nicholas V. C.; Pratchett, Morgan S.; Reyes Bonilla, Héctor; Rivera, Fernando; Sala, Enric; Sandin, Stuart A.; Soler, German; Stuart-Smith, Rick; Tessier, Emmanuel; Tittensor, Derek P.; Tupper, Mark; Usseglio, Paolo; Vigliola, Laurent; Wantiez, Laurent; Williams, Ivor; Wilson, Shaun K.; Zapata, Fernando A.

    2011-01-01

    Difficulties in scaling up theoretical and experimental results have raised controversy over the consequences of biodiversity loss for the functioning of natural ecosystems. Using a global survey of reef fish assemblages, we show that in contrast to previous theoretical and experimental studies, ecosystem functioning (as measured by standing biomass) scales in a non-saturating manner with biodiversity (as measured by species and functional richness) in this ecosystem. Our field study also shows a significant and negative interaction between human population density and biodiversity on ecosystem functioning (i.e., for the same human density there were larger reductions in standing biomass at more diverse reefs). Human effects were found to be related to fishing, coastal development, and land use stressors, and currently affect over 75% of the world's coral reefs. Our results indicate that the consequences of biodiversity loss in coral reefs have been considerably underestimated based on existing knowledge and that reef fish assemblages, particularly the most diverse, are greatly vulnerable to the expansion and intensity of anthropogenic stressors in coastal areas. PMID:21483714

  18. Coral records of reef-water pH across the central Great Barrier Reef, Australia: assessing the influence of river runoff on inshore reefs

    NASA Astrophysics Data System (ADS)

    D'Olivo, J. P.; McCulloch, M. T.; Eggins, S. M.; Trotter, J.

    2014-07-01

    The boron isotopic (δ11Bcarb) compositions of long-lived Porites coral are used to reconstruct reef-water pH across the central Great Barrier Reef (GBR) and assess the impact of river runoff on inshore reefs. For the period from 1940 to 2009, corals from both inner as well as mid-shelf sites exhibit the same overall decrease in δ11Bcarb of 0.086 ± 0.033‰ per decade, equivalent to a~decline in seawater pH (pHsw) of ~ 0.017 ± 0.007 pH units per decade. This decline is consistent with the long-term effects of ocean acidification based on estimates of CO2 uptake by surface waters due to rising atmospheric levels. We also find that compared to the mid-shelf corals, the δ11Bcarb compositions for inner shelf corals subject to river discharge events, have higher and more variable values and hence higher inferred pHsw values. These higher δ11Bcarb values for inner-shelf corals are particularly evident during wet years, despite river waters having lower pH. The main effect of river discharge on reef-water carbonate chemistry thus appears to be from higher nutrients driving increased phytoplankton productivity, resulting in the drawdown of pCO2 and increase in pHsw. Increased primary production therefore has the potential to counter the more transient effects of low pH river water (pHrw) discharged into near-shore environments. Importantly however, inshore reefs also show a consistent pattern of sharply declining coral growth that coincides with periods of high river discharge. This occurs despite these reefs having higher pHsw values and hence higher seawater aragonite saturation states, demonstrating the over-riding importance of local reef-water quality on coral reef health.

  19. Coral records of reef-water pH across the central Great Barrier Reef, Australia: assessing the influence of river runoff on inshore reefs

    NASA Astrophysics Data System (ADS)

    D'Olivo, J. P.; McCulloch, M. T.; Eggins, S. M.; Trotter, J.

    2015-02-01

    The boron isotopic (δ11Bcarb) compositions of long-lived Porites coral are used to reconstruct reef-water pH across the central Great Barrier Reef (GBR) and assess the impact of river runoff on inshore reefs. For the period from 1940 to 2009, corals from both inner- and mid-shelf sites exhibit the same overall decrease in δ11Bcarb of 0.086 ± 0.033‰ per decade, equivalent to a decline in seawater pH (pHsw) of ~0.017 ± 0.007 pH units per decade. This decline is consistent with the long-term effects of ocean acidification based on estimates of CO2 uptake by surface waters due to rising atmospheric levels. We also find that, compared to the mid-shelf corals, the δ11Bcarb compositions of inner-shelf corals subject to river discharge events have higher and more variable values, and hence higher inferred pHsw values. These higher δ11Bcarb values of inner-shelf corals are particularly evident during wet years, despite river waters having lower pH. The main effect of river discharge on reef-water carbonate chemistry thus appears to be from reduced aragonite saturation state and higher nutrients driving increased phytoplankton productivity, resulting in the drawdown of pCO2 and increase in pHsw. Increased primary production therefore has the potential to counter the more transient effects of low-pH river water (pHrw) discharged into near-shore environments. Importantly, however, inshore reefs also show a consistent pattern of sharply declining coral growth that coincides with periods of high river discharge. This occurs despite these reefs having higher pHsw, demonstrating the overriding importance of local reef-water quality and reduced aragonite saturation state on coral reef health.

  20. Assessing the value of Earth Observation for managing coral reefs: an example from the Great Barrier Reef.

    PubMed

    Bouma, Jetske A; Kuik, Onno; Dekker, Arnold G

    2011-10-01

    The Integrated Global Observing Strategy (IGOS, 2003) argues that further investments in Earth Observation information are required to improve coral reef protection worldwide. The IGOS Strategy does not specify what levels of investments are needed nor does it quantify the benefits associated with better-protected reefs. Evaluating costs and benefits is important for determining optimal investment levels and for convincing policy-makers that investments are required indeed. Few studies have quantitatively assessed the economic benefits of Earth Observation information or evaluated the economic value of information for environmental management. This paper uses an expert elicitation approach based on Bayesian Decision Theory to estimate the possible contribution of global Earth Observation to the management of the Great Barrier Reef. The Great Barrier Reef including its lagoon is a World Heritage Area affected by anthropogenic changes in land-use as well as climate change resulting in increased flows of sediments, nutrients and carbon to the GBR lagoon. Since European settlement, nutrient and sediment loads having increased 5-10 times and the change in water quality is causing damages to the reef. Earth Observation information from ocean and coastal color satellite sensors can provide spatially and temporally dense information on sediment flows. We hypothesize that Earth Observation improves decision-making by enabling better-targeted run-off reduction measures and we assess the benefits (cost savings) of this improved targeting by optimizing run-off reductions under different states of the world. The analysis suggests that the benefits of Earth Observation can indeed be substantial, depending on the perceived accuracy of the information and on the prior beliefs of decision-makers. The results indicate that increasing informational accuracy is the most effective way for developers of Earth Observation information to increase the added value of Earth Observation for

  1. Geochemical Records of Bleaching Events and the Associated Stressors From the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Roark, E. B.; McCulloch, M.; Ingram, B. L.; Marshall, J. F.

    2003-12-01

    The health of coral reefs world-wide is increasingly threatened by a wide array of stressors. On the Great Barrier Reef (GBR) these stressors include increased sediment flux associated with land use changes, increased sea surface temperatures (SST) and salinity changes due to large floods, the latter two of which are factors in an increased number of bleaching events. The ability to document long-term change in these stressors along with changes in the number of bleaching events would help discern what are natural and anthropogenic changes in this ecosystem. Here we present results of an initial calibration effort aimed at identifying bleaching events and the associated stressors using stable isotopic and trace element analysis in coral cores. Three ˜15-year time series of geochemical measurements (δ 13C, δ 18O, and Sr/Ca) on Porites coral cores obtained from Pandora Reef and the Keppel Islands on the GBR have been developed at near weekly resolution. Since the δ 13C of the coral skeletal carbonate is known to be affected by both environmental factors (e.g. insolation and temperature) and physiological factors (e.g. photosynthesis, calcification, and the statues of the symbiotic relationship between corals and zooxanthellae) it is the most promising proxy for reconstructing past bleaching events. The first record (PAN-98) comes from a coral head that had undergone bleaching and died shortly after the large-scale bleaching events on Pandora Reef in 1998. A second core (PAN-02) was collected from a living coral within 10m of PAN-98 in 2002. Sr/Ca ratios in both cores tracked even the smallest details of an in situ SST record. The increase in SST that occurred three to four weeks prior to bleaching was faithfully recorded by a similar decrease in the Sr/Ca ratio in PAN-98, indicating that calcification continued despite the high SST of 30-31° C. The δ 13C values decreased by about 5‰ , one week after the SST increase, and remained at this value for about 4

  2. The importance of large benthic foraminifera to reef island sediment budget and dynamics at Raine Island, northern Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Dawson, John L.; Smithers, Scott G.; Hua, Quan

    2014-10-01

    Low-lying reef islands are among the most vulnerable environments on earth to anthropogenic-induced climate change and sea-level rise over the next century because they are low, composed of unconsolidated sediment that is able to be mobilised by waves and currents, and depend on sediments supplied by reef organisms that are particularly sensitive to environmental changes (e.g. ocean temperatures and chemistry). Therefore, the spatial and temporal links between active carbonate production and island formation and dynamics are fundamental to predicting future island resilience, yet remain poorly quantified. In this paper we present results of a detailed geomorphological and sedimentological study of a reef and sand cay on the northern Great Barrier Reef. We provide an empirical investigation of the temporal linkages between sediment production and reef island development using a large collection of single grain AMS 14C dates. Large benthic foraminifera (LBF) are the single most important contributor to contemporary island sand mass (47%; ranging from 36% to 63%) at Raine Island, reflecting rapid rates of sediment production and delivery. Standing stock data reveal extremely high production rates on the reef (1.8 kg m- 2 yr- 1), while AMS 14C dates of single LBF tests indicate rapid rates of sediment transferral across the reef. We also demonstrate that age is statistically related to preservation and taphonomic grade (severely abraded tests > moderately abraded tests > pristine tests). We construct a contemporary reef and island sediment budget model for Raine Island that shows that LBF (Baculogypsina, Marginopora and Amphistegina) contribute 55% of the sediment produced on the reef annually, of which a large proportion (54%) contribute to the net annual accretion of the island. The tight temporal coupling between LBF growth and island sediment supply combined with the sensitivity of LBF to bleaching and ocean acidification suggests that islands dominated by LBF are

  3. River loads of suspended solids, nitrogen, phosphorus and herbicides delivered to the Great Barrier Reef lagoon.

    PubMed

    Kroon, Frederieke J; Kuhnert, Petra M; Henderson, Brent L; Wilkinson, Scott N; Kinsey-Henderson, Anne; Abbott, Brett; Brodie, Jon E; Turner, Ryan D R

    2012-01-01

    Degradation of coastal ecosystems in the Great Barrier Reef (GBR) lagoon, Australia, has been linked with increased land-based runoff of suspended solids, nutrients and pesticides since European settlement. This study estimated the increase in river loads for all 35 GBR basins, using the best available estimates of pre-European and current loads derived from catchment modelling and monitoring. The mean-annual load to the GBR lagoon for (i) total suspended solids has increased by 5.5 times to 17,000ktonnes/year, (ii) total nitrogen by 5.7 times to 80,000tonnes/year, (iii) total phosphorus by 8.9 times to 16,000tonnes/year, and (iv) PSII herbicides is 30,000kg/year. The increases in river loads differ across the 10 pollutants and 35 basins examined, reflecting differences in surface runoff, urbanisation, deforestation, agricultural practices, mining and retention by reservoirs. These estimates will facilitate target setting for water quality and desired ecosystem states, and enable prioritisation of critical sources for management. PMID:22154273

  4. Dynamical seasonal prediction of summer sea surface temperatures in the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Spillman, C. M.; Alves, O.

    2009-03-01

    Coral bleaching is a serious problem threatening the world coral reef systems, triggered by high sea surface temperatures (SST) which are becoming more prevalent as a result of global warming. Seasonal forecasts from coupled ocean-atmosphere models can be used to predict anomalous SST months in advance. In this study, we assess the ability of the Australian Bureau of Meteorology seasonal forecast model (POAMA) to forecast SST anomalies in the Great Barrier Reef, Australia, with particular focus on the major 1998 and 2002 bleaching events. Advance warning of potential bleaching events allows for the implementation of management strategies to minimise reef damage. This study represents the first attempt to apply a dynamical seasonal model to the problem of coral bleaching and predict SST over a reef system for up to 6 months lead-time, a potentially invaluable tool for reef managers.

  5. Presence of Symbiodinium spp. in macroalgal microhabitats from the southern Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Venera-Ponton, D. E.; Diaz-Pulido, G.; Rodriguez-Lanetty, M.; Hoegh-Guldberg, O.

    2010-12-01

    Coral reefs are highly dependent on the mutualistic symbiosis between reef-building corals and dinoflagellates from the genus Symbiodinium. These dinoflagellates spend part of their life cycle outside the coral host and in the majority of the cases have to re-infect corals each generation. While considerable insight has been gained about Symbiodinium in corals, little is known about the ecology and biology of Symbiodinium in other reef microhabitats. This study documents Symbiodinium associating with benthic macroalgae on the southern Great Barrier Reef, including some Symbiodinium that are genetically close to the symbiotic strains from reef-building corals. It is possible that some of these Symbiodinium were in hospite, associated to soritid foraminifera or ciliates; nevertheless, the presence of Symbiodinium C3 and C15 in macroalgal microhabitats may also suggest a potential link between communities of Symbiodinium associating with both coral hosts and macroalgae.

  6. Terrestrial pollutant runoff to the Great Barrier Reef: An update of issues, priorities and management responses.

    PubMed

    Brodie, J E; Kroon, F J; Schaffelke, B; Wolanski, E C; Lewis, S E; Devlin, M J; Bohnet, I C; Bainbridge, Z T; Waterhouse, J; Davis, A M

    2012-01-01

    The Great Barrier Reef (GBR) is a World Heritage Area and contains extensive areas of coral reef, seagrass meadows and fisheries resources. From adjacent catchments, numerous rivers discharge pollutants from agricultural, urban, mining and industrial activity. Pollutant sources have been identified and include suspended sediment from erosion in cattle grazing areas; nitrate from fertiliser application on crop lands; and herbicides from various land uses. The fate and effects of these pollutants in the receiving marine environment are relatively well understood. The Australian and Queensland Governments responded to the concerns of pollution of the GBR from catchment runoff with a plan to address this issue in 2003 (Reef Plan; updated 2009), incentive-based voluntary management initiatives in 2007 (Reef Rescue) and a State regulatory approach in 2009, the Reef Protection Package. This paper reviews new research relevant to the catchment to GBR continuum and evaluates the appropriateness of current management responses. PMID:22257553

  7. Genetic differentiation among populations of the brooding soft coral Clavularia koellikeri on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Bastidas, C.; Benzie, J.; Fabricius, K.

    2002-09-01

    The contribution of sexual and asexual reproduction, the spatial patterns of genetic structure, and the potential gene flow among populations were determined for the soft coral Clavularia koellikeri (Octocorallia: Alcyonacea, Clavulariidae) at ten sites among six reefs from two well-separated regions of the Great Barrier Reef (GBR), Australia. Eight allozyme loci indicated that colonies of C. koellikeri separated ≥3 m were produced sexually. Genetic diversity was lower in the southern (18°S) compared with the northern (10°S) populations, suggesting that reefs closer to the southernmost limit of the distribution of C. koellikeri within the GBR (19°S) may represent a more marginal habitat for this species. High levels of genetic differentiation were significant at all spatial scales (sites within reefs, reefs, and regions) from <4 km up to 1,000 km, indicating that C. koellikeri has restricted dispersal, consistent with having brooded larvae.

  8. How models can support ecosystem-based management of coral reefs

    NASA Astrophysics Data System (ADS)

    Weijerman, Mariska; Fulton, Elizabeth A.; Janssen, Annette B. G.; Kuiper, Jan J.; Leemans, Rik; Robson, Barbara J.; van de Leemput, Ingrid A.; Mooij, Wolf M.

    2015-11-01

    Despite the importance of coral reef ecosystems to the social and economic welfare of coastal communities, the condition of these marine ecosystems have generally degraded over the past decades. With an increased knowledge of coral reef ecosystem processes and a rise in computer power, dynamic models are useful tools in assessing the synergistic effects of local and global stressors on ecosystem functions. We review representative approaches for dynamically modeling coral reef ecosystems and categorize them as minimal, intermediate and complex models. The categorization was based on the leading principle for model development and their level of realism and process detail. This review aims to improve the knowledge of concurrent approaches in coral reef ecosystem modeling and highlights the importance of choosing an appropriate approach based on the type of question(s) to be answered. We contend that minimal and intermediate models are generally valuable tools to assess the response of key states to main stressors and, hence, contribute to understanding ecological surprises. As has been shown in freshwater resources management, insight into these conceptual relations profoundly influences how natural resource managers perceive their systems and how they manage ecosystem recovery. We argue that adaptive resource management requires integrated thinking and decision support, which demands a diversity of modeling approaches. Integration can be achieved through complimentary use of models or through integrated models that systemically combine all relevant aspects in one model. Such whole-of-system models can be useful tools for quantitatively evaluating scenarios. These models allow an assessment of the interactive effects of multiple stressors on various, potentially conflicting, management objectives. All models simplify reality and, as such, have their weaknesses. While minimal models lack multidimensionality, system models are likely difficult to interpret as they

  9. The Structure of Mediterranean Rocky Reef Ecosystems across Environmental and Human Gradients, and Conservation Implications

    PubMed Central

    Sala, Enric; Ballesteros, Enric; Dendrinos, Panagiotis; Di Franco, Antonio; Ferretti, Francesco; Foley, David; Fraschetti, Simonetta; Friedlander, Alan; Garrabou, Joaquim; Güçlüsoy, Harun; Guidetti, Paolo; Halpern, Benjamin S.; Hereu, Bernat; Karamanlidis, Alexandros A.; Kizilkaya, Zafer; Macpherson, Enrique; Mangialajo, Luisa; Mariani, Simone; Micheli, Fiorenza; Pais, Antonio; Riser, Kristin; Rosenberg, Andrew A.; Sales, Marta; Selkoe, Kimberly A.; Starr, Rick; Tomas, Fiona; Zabala, Mikel

    2012-01-01

    Historical exploitation of the Mediterranean Sea and the absence of rigorous baselines makes it difficult to evaluate the current health of the marine ecosystems and the efficacy of conservation actions at the ecosystem level. Here we establish the first current baseline and gradient of ecosystem structure of nearshore rocky reefs at the Mediterranean scale. We conducted underwater surveys in 14 marine protected areas and 18 open access sites across the Mediterranean, and across a 31-fold range of fish biomass (from 3.8 to 118 g m−2). Our data showed remarkable variation in the structure of rocky reef ecosystems. Multivariate analysis showed three alternative community states: (1) large fish biomass and reefs dominated by non-canopy algae, (2) lower fish biomass but abundant native algal canopies and suspension feeders, and (3) low fish biomass and extensive barrens, with areas covered by turf algae. Our results suggest that the healthiest shallow rocky reef ecosystems in the Mediterranean have both large fish and algal biomass. Protection level and primary production were the only variables significantly correlated to community biomass structure. Fish biomass was significantly larger in well-enforced no-take marine reserves, but there were no significant differences between multi-use marine protected areas (which allow some fishing) and open access areas at the regional scale. The gradients reported here represent a trajectory of degradation that can be used to assess the health of any similar habitat in the Mediterranean, and to evaluate the efficacy of marine protected areas. PMID:22393445

  10. The structure of Mediterranean rocky reef ecosystems across environmental and human gradients, and conservation implications

    USGS Publications Warehouse

    Sala, Enric; Ballesteros, Enric; Dendrinos, Panagiotis; Di Franco, Antonio; Ferretti, Francesco; Foley, David; Fraschetti, Simonetta; Friedlander, Alan M.; Garrabou, Joaquim; Guclusoy, Harun; Guidetti, Paolo; Halpern, Benjamin S.; Hereu, Bernat; Karamanlidis, Alexandros A.; Kizilkaya, Zafer; Macpherson, Enrique; Mangialajo, Luisa; Mariani, Simone; Micheli, Fiorenza; Pais, Antonio; Riser, Kristin; Rosenberg, Andrew A.; Sales, Marta; Selkoe, Kimberly A.; Starr, Rick; Tomas, Fiona; Zabala, Mikel

    2012-01-01

    Historical exploitation of the Mediterranean Sea and the absence of rigorous baselines makes it difficult to evaluate the current health of the marine ecosystems and the efficacy of conservation actions at the ecosystem level. Here we establish the first current baseline and gradient of ecosystem structure of nearshore rocky reefs at the Mediterranean scale. We conducted underwater surveys in 14 marine protected areas and 18 open access sites across the Mediterranean, and across a 31-fold range of fish biomass (from 3.8 to 118 g m-2). Our data showed remarkable variation in the structure of rocky reef ecosystems. Multivariate analysis showed three alternative community states: (1) large fish biomass and reefs dominated by non-canopy algae, (2) lower fish biomass but abundant native algal canopies and suspension feeders, and (3) low fish biomass and extensive barrens, with areas covered by turf algae. Our results suggest that the healthiest shallow rocky reef ecosystems in the Mediterranean have both large fish and algal biomass. Protection level and primary production were the only variables significantly correlated to community biomass structure. Fish biomass was significantly larger in well-enforced no-take marine reserves, but there were no significant differences between multi-use marine protected areas (which allow some fishing) and open access areas at the regional scale. The gradients reported here represent a trajectory of degradation that can be used to assess the health of any similar habitat in the Mediterranean, and to evaluate the efficacy of marine protected areas.

  11. Geomorphology and sediment transport on a submerged back-reef sand apron: One Tree Reef, Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Harris, Daniel L.; Vila-Concejo, Ana; Webster, Jody M.

    2014-10-01

    Back-reef sand aprons are conspicuous and dynamic sedimentary features in coral reef systems. The development of these features influences the evolution and defines the maturity of coral reefs. However, the hydrodynamic processes that drive changes on sand aprons are poorly understood with only a few studies directly assessing sediment entrainment and transport. Current and wave conditions on a back-reef sand apron were measured during this study and a digital elevation model was developed through topographic and bathymetric surveying of the sand apron, reef flats and lagoon. The current and wave processes that may entrain and transport sediment were assessed using second order small amplitude (Stokes) wave theory and Shields equations. The morphodynamic interactions between current flow and geomorphology were also examined. The results showed that sediment transport occurs under modal hydrodynamic conditions with waves the main force entraining sediment rather than average currents. A morphodynamic relationship between current flow and geomorphology was also observed with current flow primarily towards the lagoon in shallow areas of the sand apron and deeper channel-like areas directing current off the sand apron towards the lagoon or the reef crest. These results show that the short-term mutual interaction of hydrodynamics and geomorphology in coral reefs can result in morphodynamic equilibrium.

  12. Occurrence and distribution of antifouling biocide Irgarol-1051 in coral reef ecosystems, Zanzibar.

    PubMed

    Sheikh, Mohammed A; Juma, Fatma S; Staehr, Peter; Dahl, Karsten; Rashid, Rashid J; Mohammed, Mohammed S; Ussi, Ali M; Ali, Hassan R

    2016-08-15

    2-methythiol-4-tert-butylamino-6-cyclopropylamino-s-triazine (Irgarol-1051) has been widely used as effective alternative antifouling paint in marine structures including ships. However, it has been causing deleterious effects to marine organisms including reef building corals. The main objective of this study was to establish baseline levels of Irgarol-1051 around coral reefs and nearby ecosystems along coastline of Zanzibar Island. The levels of Irgarol-1051 ranged from 1.35ng/L around coral reefs to 15.44ng/L around harbor with average concentration of 4.11 (mean)±0.57 (SD) ng/L. This is below Environmental Risk Limit of 24ng/L as proposed by Dutch Authorities which suggests that the contamination is not alarming especially for coral reef ecosystem health. The main possible sources of the contamination are from shipping activities. This paper provides important baseline information of Irgarol-1051 around the coral reef ecosystems within the Western Indian Ocean (WIO) region and may be useful for formulation of marine conservation strategies and policies. PMID:27234364

  13. Effectiveness of benthic foraminiferal and coral assemblages as water quality indicators on inshore reefs of the Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Uthicke, S.; Thompson, A.; Schaffelke, B.

    2010-03-01

    Although the debate about coral reef decline focuses on global disturbances (e.g., increasing temperatures and acidification), local stressors (nutrient runoff and overfishing) continue to affect reef health and resilience. The effectiveness of foraminiferal and hard-coral assemblages as indicators of changes in water quality was assessed on 27 inshore reefs along the Great Barrier Reef. Environmental variables (i.e., several water quality and sediment parameters) and the composition of both benthic foraminiferal and hard-coral assemblages differed significantly between four regions (Whitsunday, Burdekin, Fitzroy, and the Wet Tropics). Grain size and organic carbon and nitrogen content of sediments, and a composite water column parameter (based on turbidity and concentrations of particulate matter) explained a significant amount of variation in the data (tested by redundancy analyses) in both assemblages. Heterotrophic species of foraminifera were dominant in sediments with high organic content and in localities with low light availability, whereas symbiont-bearing mixotrophic species were dominant elsewhere. A similar suite of parameters explained 89% of the variation in the FORAM index (a Caribbean coral reef health indicator) and 61% in foraminiferal species richness. Coral richness was not related to environmental setting. Coral assemblages varied in response to environmental variables, but were strongly shaped by acute disturbances (e.g., cyclones, Acanthaster planci outbreaks, and bleaching), thus different coral assemblages may be found at sites with the same environmental conditions. Disturbances also affect foraminiferal assemblages, but they appeared to recover more rapidly than corals. Foraminiferal assemblages are effective bioindicators of turbidity/light regimes and organic enrichment of sediments on coral reefs.

  14. EFFECTS OF GLOBAL CHANGE ON CORAL REEF ECOSYSTEMS

    EPA Science Inventory

    Corals and coral reefs of the Caribbean and through the world are deteriorating at an accelerated rate. Several stressors are believed to contrbute to this decline, including global changes in atmospheric gases and land use patterns. In particular, warmer water temperatures and...

  15. The mapping of the Posidonia oceanica (L.) Delile barrier reef meadow in the southeastern Gulf of Tunis (Tunisia)

    NASA Astrophysics Data System (ADS)

    Hachani, Mohamed Amine; Ziadi, Boutheina; Langar, Habib; Sami, Djallouli Aslem; Turki, Souad; Aleya, Lotfi

    2016-09-01

    Barrier reefs are among the most important ecomorphosis for Posidonia oceanica meadows and have long been subjected to anthropic pressures. The authors mapped the entire Sidi Rais (northeastern Tunisia) Posidonia oceanica barrier reef by means of remote sensing based on processing a satellite image acquired via Google Earth © software, coupled with field observations obtained by snorkeling. The map thus produced represents the P. oceanica barrier reef in its current state, covering a total area of 156.77 ha, the reef being divided into three distinct sections separated by reverse flows with each section subject to varied anthropic factors and disturbances.

  16. Informing policy to protect coastal coral reefs: insight from a global review of reducing agricultural pollution to coastal ecosystems.

    PubMed

    Kroon, Frederieke J; Schaffelke, Britta; Bartley, Rebecca

    2014-08-15

    The continuing degradation of coral reefs has serious consequences for the provision of ecosystem goods and services to local and regional communities. While climate change is considered the most serious risk to coral reefs, agricultural pollution threatens approximately 25% of the total global reef area with further increases in sediment and nutrient fluxes projected over the next 50 years. Here, we aim to inform coral reef management using insights learned from management examples that were successful in reducing agricultural pollution to coastal ecosystems. We identify multiple examples reporting reduced fluxes of sediment and nutrients at end-of-river, and associated declines in nutrient concentrations and algal biomass in receiving coastal waters. Based on the insights obtained, we recommend that future protection of coral reef ecosystems demands policy focused on desired ecosystem outcomes, targeted regulatory approaches, up-scaling of watershed management, and long-term maintenance of scientifically robust monitoring programs linked with adaptive management. PMID:24975091

  17. STS-32 Earth observation of the western Coral Sea and the Great Barrier Reef

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-32 Earth observation taken onboard Columbia, Orbiter Vehicle (OV) 102, is of the western Coral Sea and the Great Barrier Reef. The scene shows phytoplankton or algal bloom in the northwest Coral Sea. The western Coral Sea and the Great Barrier Reef waters offshore Queensland, Australia are the sites of some of the larger concentrations or 'blooms' of phytoplankton and algae in the open ocean. In the instance illustrated here, the leading edge of a probable concentration of algae or phytoplankton is seen as a light irregular line and sheen between the offshore Great Barrier Reef and the Queensland coast. Previous phytoplankton concentrations in this area have been reported by ships at sea as having formed floating mats as thick as two meters.

  18. 50 CFR 665.420 - Mariana coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Mariana coral reef ecosystem fisheries. 665.420 Section 665.420 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN...

  19. 50 CFR 665.620 - PRIA coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false PRIA coral reef ecosystem fisheries. 665.620 Section 665.620 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC Pacific...

  20. 50 CFR 665.120 - American Samoa coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false American Samoa coral reef ecosystem fisheries. 665.120 Section 665.120 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE...

  1. 50 CFR 665.120 - American Samoa coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false American Samoa coral reef ecosystem fisheries. 665.120 Section 665.120 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE...

  2. 50 CFR 665.420 - Mariana coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Mariana coral reef ecosystem fisheries. 665.420 Section 665.420 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN...

  3. 50 CFR 665.120 - American Samoa coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false American Samoa coral reef ecosystem fisheries. 665.120 Section 665.120 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE...

  4. 50 CFR 665.220 - Hawaii coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Hawaii coral reef ecosystem fisheries. 665.220 Section 665.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN...

  5. 50 CFR 665.620 - PRIA coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false PRIA coral reef ecosystem fisheries. 665.620 Section 665.620 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC Pacific...

  6. 50 CFR 665.420 - Mariana coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Mariana coral reef ecosystem fisheries. 665.420 Section 665.420 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN...

  7. 50 CFR 665.220 - Hawaii coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Hawaii coral reef ecosystem fisheries. 665.220 Section 665.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN...

  8. 50 CFR 665.620 - PRIA coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false PRIA coral reef ecosystem fisheries. 665.620 Section 665.620 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC Pacific...

  9. 50 CFR 665.220 - Hawaii coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Hawaii coral reef ecosystem fisheries. 665.220 Section 665.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC...

  10. A Decision Support System for Ecosystem-Based Management of Tropical Coral Reef Environments

    NASA Astrophysics Data System (ADS)

    Muller-Karger, F. E.; Eakin, C.; Guild, L. S.; Nemani, R. R.; Hu, C.; Lynds, S. E.; Li, J.; Vega-Rodriguez, M.; Coral Reef Watch Decision Support System Team

    2010-12-01

    We review a new collaborative program established between the National Aeronautics and Space Administration (NASA) and the National Oceanic and Atmospheric Administration (NOAA) to augment the NOAA Coral Reef Watch decision-support system. NOAA has developed a Decision Support System (DSS) under the Coral Reef Watch (CRW) program to forecast environmental stress in coral reef ecosystems around the world. This DSS uses models and 50 km Advanced Very High Resolution Radiometer (AVHRR) to generate “HotSpot” and Degree Heating Week coral bleaching indices. These are used by scientists and resource managers around the world. These users, including National Marine Sanctuary managers, have expressed the need for higher spatial resolution tools to understand local issues. The project will develop a series of coral bleaching products at higher spatial resolution using Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR data. We will generate and validate products at 1 km resolution for the Caribbean Sea and Gulf of Mexico, and test global assessments at 4 and 50 km. The project will also incorporate the Global Coral Reef Millennium Map, a 30-m resolution thematic classification of coral reefs developed by the NASA Landsat-7 Science Team, into the CRW. The Millennium Maps help understand the geomorphology of individual reefs around the world. The products will be available through the NOAA CRW and UNEP-WCMC web portals. The products will help users formulate policy options and management decisions. The augmented DSS has a global scope, yet it addresses the needs of local resource managers. The work complements efforts to map and monitor coral reef communities in the U.S. territories by NOAA, NASA, and the USGS, and is a contribution to international efforts in ecological forecasting of coral reefs under changing environments, coral reef research, resource management, and conservation. Acknowledgement: Funding is provided by the NASA Ecological Forecasting

  11. Diuron tolerance and potential degradation by pelagic microbiomes in the Great Barrier Reef lagoon

    PubMed Central

    Pantos, Olga; Morgan, Thomas C.; Rich, Virginia; Tonin, Hemerson; Bourne, David G.; Mercurio, Philip; Negri, Andrew P.; Tyson, Gene W.

    2016-01-01

    Diuron is a herbicide commonly used in agricultural areas where excess application causes it to leach into rivers, reach sensitive marine environments like the Great Barrier Reef (GBR) lagoon and pose risks to marine life. To investigate the impact of diuron on whole prokaryotic communities that underpin the marine food web and are integral to coral reef health, GBR lagoon water was incubated with diuron at environmentally-relevant concentration (8 µg/L), and sequenced at specific time points over the following year. 16S rRNA gene amplicon profiling revealed no significant short- or long-term effect of diuron on microbiome structure. The relative abundance of prokaryotic phototrophs was not significantly altered by diuron, which suggests that they were largely tolerant at this concentration. Assembly of a metagenome derived from waters sampled at a similar location in the GBR lagoon did not reveal the presence of mutations in the cyanobacterial photosystem that could explain diuron tolerance. However, resident phages displayed several variants of this gene and could potentially play a role in tolerance acquisition. Slow biodegradation of diuron was reported in the incubation flasks, but no correlation with the relative abundance of heterotrophs was evident. Analysis of metagenomic reads supports the hypothesis that previously uncharacterized hydrolases carried by low-abundance species may mediate herbicide degradation in the GBR lagoon. Overall, this study offers evidence that pelagic phototrophs of the GBR lagoon may be more tolerant of diuron than other tropical organisms, and that heterotrophs in the microbial seed bank may have the potential to degrade diuron and alleviate local anthropogenic stresses to inshore GBR ecosystems. PMID:26989611

  12. Diuron tolerance and potential degradation by pelagic microbiomes in the Great Barrier Reef lagoon.

    PubMed

    Angly, Florent E; Pantos, Olga; Morgan, Thomas C; Rich, Virginia; Tonin, Hemerson; Bourne, David G; Mercurio, Philip; Negri, Andrew P; Tyson, Gene W

    2016-01-01

    Diuron is a herbicide commonly used in agricultural areas where excess application causes it to leach into rivers, reach sensitive marine environments like the Great Barrier Reef (GBR) lagoon and pose risks to marine life. To investigate the impact of diuron on whole prokaryotic communities that underpin the marine food web and are integral to coral reef health, GBR lagoon water was incubated with diuron at environmentally-relevant concentration (8 µg/L), and sequenced at specific time points over the following year. 16S rRNA gene amplicon profiling revealed no significant short- or long-term effect of diuron on microbiome structure. The relative abundance of prokaryotic phototrophs was not significantly altered by diuron, which suggests that they were largely tolerant at this concentration. Assembly of a metagenome derived from waters sampled at a similar location in the GBR lagoon did not reveal the presence of mutations in the cyanobacterial photosystem that could explain diuron tolerance. However, resident phages displayed several variants of this gene and could potentially play a role in tolerance acquisition. Slow biodegradation of diuron was reported in the incubation flasks, but no correlation with the relative abundance of heterotrophs was evident. Analysis of metagenomic reads supports the hypothesis that previously uncharacterized hydrolases carried by low-abundance species may mediate herbicide degradation in the GBR lagoon. Overall, this study offers evidence that pelagic phototrophs of the GBR lagoon may be more tolerant of diuron than other tropical organisms, and that heterotrophs in the microbial seed bank may have the potential to degrade diuron and alleviate local anthropogenic stresses to inshore GBR ecosystems. PMID:26989611

  13. Organic biomarkers to describe the major carbon inputs and cycling of organic matter in the central Great Barrier Reef region

    NASA Astrophysics Data System (ADS)

    Burns, Kathryn; Brinkman, Diane

    2011-06-01

    Controversy surrounds the sources and transport of land derived pollutants in the Great Barrier Reef ecosystem because there is insufficient knowledge of the mechanism of movement of organic contaminants and the cycling of organic matter in this dynamic system. Thus a sediment and sediment trap study was used to describe the composition of resuspended and surface sediments in the south central Great Barrier Reef and its lagoon. This region is characterised by strong tides (6-8 m at Mackay) and trade winds regularly about 15-20 knots. A series of organic biomarkers detailed the cyclical processes of sediment resuspension, recolonising with marine algae and bacteria, packaging into zooplankton faecal pellets and resettlement to sediments where the organics undergo further diagenesis. With each cycle the inshore sediments are diluted with CaCO 3 reef sediments and moved further offshore with the strong ebb tide currents. This results in transport of land derived materials offshore and little storage of organic materials in the lagoon or reef sediments. These processes were detailed by inorganic measurements such as %CaCO 3 and Al/Ca ratios, and by the compositions of hydrocarbon, sterol, alcohol, and fatty acid lipid fractions. Persistent contaminants such as coal dust from a coastal loading facility can be detected in high concentration inshore and decreasing out to the shelf break at 180 m approximately 40 nautical miles offshore. The normal processes would likely be amplified during cyclonic and other storms. The lipids show the sources of carbon to include diatoms and other phytoplankton, creanaerchaeota, sulfate reducing and other bacteria, land plants including mangrove leaves, plus coal dust and other petroleum contaminants.

  14. Satellite Remote Sensing of Coral Reefs: By Learning about Coral Reefs, Students Gain an Understanding of Ecosystems and How Cutting-Edge Technology Can Be Used to Study Ecological Change

    ERIC Educational Resources Information Center

    Palandro, David; Thoms, Kristin; Kusek, Kristen; Muller-Karger, Frank; Greely, Teresa

    2005-01-01

    Coral reefs are one of the most important ecosystems on the planet, providing sustenance to both marine organisms and humans. Yet they are also one of the most endangered ecosystems as coral reef coverage has declined dramatically in the past three decades. Researchers continually seek better ways to map coral reef coverage and monitor changes…

  15. Last interglacial reef growth beneath Belize barrier and isolated platform reefs

    USGS Publications Warehouse

    Gischler, Eberhard; Lomando, Anthony J.; Hudson, J. Harold; Holmes, Charles W.

    2000-01-01

    We report the first radiometric dates (thermal-ionization mass spectrometry) from late Pleistocene reef deposits from offshore Belize, the location of the largest modern reef complex in the Atlantic Ocean. The results presented here can be used to explain significant differences in bathymetry, sedimentary facies, and reef development of this major reef area, and the results are significant because they contribute to the knowledge of the regional geology of the eastern Yucatán. The previously held concept of a neotectonically stable eastern Yucatán is challenged. The dates indicate that Pleistocene reefs and shallow-water limestones, which form the basement of modern reefs in the area, accumulated ca. 125–130 ka. Significant differences in elevation of the samples relative to present sea level (>10 m) have several possible causes. Differential subsidence along a series of continental margin fault blocks in combination with variation in karstification are probably the prime causes. Differential subsidence is presumably related to initial extension and later left-lateral movements along the adjacent active boundary between the North American and Caribbean plates. Increasing dissolution toward the south during Pleistocene sea-level lowstands is probably a consequence of higher precipitation rates in mountainous southern Belize.

  16. Some nemerteans (Nemertea) from Queensland and the Great Barrier Reef, Australia.

    PubMed

    Gibson, R; Sundberg, P

    2001-12-01

    Three species of marine nemerteans described and illustrated from Queensland and the Great Barrier Reef, Australia, include one new genus and two new species: these are the monostiliferous hoplonemerteans Thallasionemertes leucocephala gen. et sp. nov. and Correanemertes polyophthalma sp. nov. A new colour variety of the heteronemertean Micrura callima is also reported, this species previously only being known from Rottnest Island, Western Australia. A key for the field identification of the marine nemerteans recorded from coastal Queensland and the Great Barrier Reef is provided. PMID:11911083

  17. Coral Skeletons Provide Historical Evidence of Phosphorus Runoff on the Great Barrier Reef

    PubMed Central

    Mallela, Jennie; Lewis, Stephen E.; Croke, Barry

    2013-01-01

    Recently, the inshore reefs of the Great Barrier Reef have declined rapidly because of deteriorating water quality. Increased catchment runoff is one potential culprit. The impacts of land-use on coral growth and reef health however are largely circumstantial due to limited long-term data on water quality and reef health. Here we use a 60 year coral core record to show that phosphorus contained in the skeletons (P/Ca) of long-lived, near-shore Porites corals on the Great Barrier Reef correlates with annual records of fertiliser application and particulate phosphorus loads in the adjacent catchment. Skeletal P/Ca also correlates with Ba/Ca, a proxy for fluvial sediment loading, again linking near-shore phosphorus records with river runoff. Coral core records suggest that phosphorus levels increased 8 fold between 1949 and 2008 with the greatest levels coinciding with periods of high fertiliser-phosphorus use. Periods of high P/Ca correspond with intense agricultural activity and increased fertiliser application in the river catchment following agricultural expansion and replanting after cyclone damage. Our results demonstrate how coral P/Ca records can be used to assess terrestrial nutrient loading of vulnerable near-shore reefs. PMID:24086606

  18. Fungi and their role in corals and coral reef ecosystems.

    PubMed

    Raghukumar, Chandralata; Ravindran, J

    2012-01-01

    Fungi in coral reefs exist as endoliths, endobionts, saprotrophs and as pathogens. Although algal and fungal endoliths in corals were described way back in 1973, their role in microboring, carbonate alteration, discoloration, density banding, symbiotic or parasitic association was postulated almost 25 years later. Fungi, as pathogens in corals, have become a much discussed topic in the last 10 years. It is either due to the availability of better tools for investigations or greater awareness among the research communities. Fungi which are exclusive as endoliths (endemic) in corals or ubiquitous forms seem to play a role in coral reef system. Fungi associated with sponges and their role in production or induction of secondary metabolites in their host is of primary interest to various pharmaceutical industries and funding agencies. Fungal enzymes in degradation of coral mucus, and plant detritus hold great promise in biotechnological applications. Unravelling fungal diversity in corals and associated reef organisms using culture and culture-independent approaches is a subject gaining attention from research community world over. PMID:22222828

  19. Effects of different disturbance types on butterflyfish communities of Australia's Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Emslie, M. J.; Pratchett, M. S.; Cheal, A. J.

    2011-06-01

    The effects of disturbances on coral reef fishes have been extensively documented but most studies have relied on opportunistic sampling following single events. Few studies have the spatial and temporal extent to directly compare the effects of multiple disturbances over a large geographic scale. Here, benthic communities and butterflyfishes on 47 reefs of the Great Barrier Reef were surveyed annually to examine their responses to physical disturbances (cyclones and storms) and/or biological disturbances (bleaching, outbreaks of crown-of-thorns starfish and white syndrome disease). The effects on benthic and butterflyfish communities varied among reefs depending on the structure and geographical setting of each community, on the size and type of disturbance, and on the disturbance history of that reef. There was considerable variability in the response of butterflyfishes to different disturbances: physical disturbances (occurring with or without biological disturbances) produced substantial declines in abundance, whilst biological disturbances occurring on their own did not. Butterflyfishes with the narrowest feeding preferences, such as obligate corallivores, were always the species most affected. The response of generalist feeders varied with the extent of damage. Wholesale changes to the butterflyfish community were only recorded where structural complexity of reefs was drastically reduced. The observed effects of disturbances on butterflyfishes coupled with predictions of increased frequency and intensity of disturbances sound a dire warning for the future of butterflyfish communities in particular and reef fish communities in general.

  20. Sedimentary environments of the Central Region of the Great Barrier Reef of Australia

    NASA Astrophysics Data System (ADS)

    Scoffin, Terence P.; Tudhope, Alexander W.

    1985-09-01

    The sediments and calcareous organisms on the outer reefal shelf of the Central Region of the Great Barrier Reef were collected and observed by SCUBA diving and research vessel techniques (including underwater television) to understand the production and processes of deposition of the sediment. The carbonate grains are mainly sand and gravel size and solely of skeletal origin. Over the whole area the major CaCO3 producers, in order of decreasing importance are: benthic foraminiferans (chiefly Operculina, Amphistegina, Marginopora, Alveolinella and Cycloclypeus), the calcareous green alga Halimeda, molluscs and corals. Coral abundance is high only close to reefs and submerged rocky substrates. Benthic foraminiferal sands dominate the inter-reef areas i.e. the bulk of the shelf, and Halimeda gravels form an outer shelf band between 60 and 100 m depths. Seven distinct facies are recognised after quantitative analyses of the sediments. These are: A. Shelf edge slope (>120 m depth); B. Shelf edge (with rocky outcrops); C. Outer shelf with high Halimeda (>40%); D. Inter-reef I; E. Inter-reef II ( 100 m depth but >2% pelagics); F. Lee-ward reef talus wedge (<2 km from sea level reefs); G. Lagoonal.

  1. Coral reefs of the turbid inner-shelf of the Great Barrier Reef, Australia: An environmental and geomorphic perspective on their occurrence, composition and growth

    NASA Astrophysics Data System (ADS)

    Browne, N. K.; Smithers, S. G.; Perry, C. T.

    2012-10-01

    Investigations of the geomorphic and sedimentary context in which turbid zone reefs exist, both in the modern and fossil reef record, can inform key ecological debates regarding species tolerances and adaptability to elevated turbidity and sedimentation. Furthermore, these investigations can address critical geological and palaeoecological questions surrounding longer-term coral-sediment interactions and reef growth histories. Here we review current knowledge about turbid zone reefs from the inner-shelf regions of the Great Barrier Reef (GBR) in Australia to consider these issues and to evaluate reef growth in the period prior to and post European settlement. We also consider the future prospects of these reefs under reported changing water quality regimes. Turbid zone reefs on the GBR are relatively well known compared to those in other reef regions. They occur within 20 km of the mainland coast where reef development may be influenced by continual or episodic terrigenous sediment inputs, fluctuating salinities (24-36 ppt), and reduced water quality through increased nutrient and pollutant delivery from urban and agricultural runoff. Individually, and in synergy, these environmental conditions are widely viewed as unfavourable for sustained and vigorous coral reef growth, and thus these reefs are widely perceived as marginal compared to clear water reef systems. However, recent research has revealed that this view is misleading, and that in fact many turbid zone reefs in this region are resilient, exhibit relatively high live coral cover (> 30%) and have distinctive community assemblages dominated by fast growing (Acropora, Montipora) and/or sediment tolerant species (Turbinaria, Goniopora, Galaxea, Porites). Palaeoecological reconstructions based on the analysis of reef cores show that community assemblages are relatively stable at millennial timescales, and that many reefs are actively accreting (average 2-7 mm/year) where accommodation space is available

  2. Disease outbreaks, bleaching and a cyclone drive changes in coral assemblages on an inshore reef of the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Haapkylä, J.; Melbourne-Thomas, J.; Flavell, M.; Willis, B. L.

    2013-09-01

    Coral disease is a major threat to the resilience of coral reefs; thus, understanding linkages between disease outbreaks and disturbances predicted to increase with climate change is becoming increasingly important. Coral disease surveys conducted twice yearly between 2008 and 2011 at a turbid inshore reef in the central Great Barrier Reef spanned two disturbance events, a coral bleaching event in 2009 and a severe cyclone (cyclone `Yasi') in 2011. Surveys of coral cover, community structure and disease prevalence throughout this 4-yr study provide a unique opportunity to explore cumulative impacts of disturbance events and disease for inshore coral assemblages. The principal coral disease at the study site was atramentous necrosis (AtN), and it primarily affected the key inshore, reef-building coral Montipora aequituberculata. Other diseases detected were growth anomalies, white syndrome and brown band syndrome. Diseases affected eight coral genera, although Montipora was, by far, the genus mostly affected. The prevalence of AtN followed a clear seasonal pattern, with disease outbreaks occurring only in wet seasons. Mean prevalence of AtN on Montipora spp. (63.8 % ± 3.03) was three- to tenfold greater in the wet season of 2009, which coincided with the 2009 bleaching event, than in other years. Persistent wet season outbreaks of AtN combined with the impacts of bleaching and cyclone events resulted in a 50-80 % proportional decline in total coral cover. The greatest losses of branching and tabular acroporids occurred following the low-salinity-induced bleaching event of 2009, and the greatest losses of laminar montiporids occurred following AtN outbreaks in 2009 and in 2011 following cyclone Yasi. The shift to a less diverse coral assemblage and the concomitant loss of structural complexity are likely to have long-term consequences for associated vertebrate and invertebrate communities on Magnetic Island reefs.

  3. Net ecosystem production, calcification and CO2 fluxes on a reef flat in Northeastern Brazil

    NASA Astrophysics Data System (ADS)

    Longhini, Cybelle M.; Souza, Marcelo F. L.; Silva, Ananda M.

    2015-12-01

    The carbon cycle in coral reefs is usually dominated by the organic carbon metabolism and precipitation-dissolution of CaCO3, processes that control the CO2 partial pressure (pCO2) in seawater and the CO2 fluxes through the air-sea interface. In order to characterize these processes and the carbonate system, four sampling surveys were conducted at the reef flat of Coroa Vermelha during low tide (exposed flat). Net ecosystem production (NEP), net precipitation-dissolution of CaCO3 (G) and CO2 fluxes across the air-water interface were calculated. The reef presented net autotrophy and calcification at daytime low tide. The NEP ranged from -8.7 to 31.6 mmol C m-2 h-1 and calcification from -13.1 to 26.0 mmol C m-2 h-1. The highest calcification rates occurred in August 2007, coinciding with the greater NEP rates. The daytime CO2 fluxes varied from -9.7 to 22.6 μmol CO2 m-2 h-1, but reached up to 13,900 μmol CO2 m-2 h-1 during nighttime. Carbon dioxide influx to seawater was predominant in the reef flat during low tide. The regions adjacent to the reef showed a supersaturation of CO2, acting as a source of CO2 to the atmosphere (from -22.8 to -2.6 mol CO2 m-2 h-1) in the reef flat during ebbing tide. Nighttime gas release to the atmosphere indicates a net CO2 release from the Coroa Vermelha reef flat within 24 h, and that these fluxes can be important to carbon budget in coral reefs.

  4. The Gulf Coast Vulnerability Assessment: Mangrove, Tidal Emergent Marsh, Barrier Islands, and Oyster Reef

    USGS Publications Warehouse

    Watson, Amanda; Reece, Joshua S.; Tirpak, Blair; Edwards, Cynthia Kallio; Geselbracht, Laura; Woodrey, Mark; LaPeyre, Megan K.; Dalyander, Patricia (Soupy)

    2015-01-01

    Climate, sea level rise, and urbanization are undergoing unprecedented levels of combined change and are expected to have large effects on natural resources—particularly along the Gulf of Mexico coastline (Gulf Coast). Management decisions to address these effects (i.e., adaptation) require an understanding of the relative vulnerability of various resources to these stressors. To meet this need, the four Landscape Conservation Cooperatives along the Gulf partnered with the Gulf of Mexico Alliance to conduct this Gulf Coast Vulnerability Assessment (GCVA). Vulnerability in this context incorporates the aspects of exposure and sensitivity to threats, coupled with the adaptive capacity to mitigate those threats. Potential impact and adaptive capacity reflect natural history features of target species and ecosystems. The GCVA used an expert opinion approach to qualitatively assess the vulnerability of four ecosystems: mangrove, oyster reef, tidal emergent marsh, and barrier islands, and a suite of wildlife species that depend on them. More than 50 individuals participated in the completion of the GCVA, facilitated via Ecosystem and Species Expert Teams. Of the species assessed, Kemp’s ridley sea turtle was identified as the most vulnerable species across the Gulf Coast. Experts identified the main threats as loss of nesting habitat to sea level rise, erosion, and urbanization. Kemp’s ridley also had an overall low adaptive capacity score due to their low genetic diversity, and higher nest site fidelity as compared to other assessed species. Tidal emergent marsh was the most vulnerable ecosystem, due in part to sea level rise and erosion. In general, avian species were more vulnerable than fish because of nesting habitat loss to sea level rise, erosion, and potential increases in storm surge. Assessors commonly indicated a lack of information regarding impacts due to projected changes in the disturbance regime, biotic interactions, and synergistic effects in both

  5. Consistent nutrient storage and supply mediated by diverse fish communities in coral reef ecosystems.

    PubMed

    Allgeier, Jacob E; Layman, Craig A; Mumby, Peter J; Rosemond, Amy D

    2014-08-01

    Corals thrive in low nutrient environments and the conservation of these globally imperiled ecosystems is largely dependent on mitigating the effects of anthropogenic nutrient enrichment. However, to better understand the implications of anthropogenic nutrients requires a heightened understanding of baseline nutrient dynamics within these ecosystems. Here, we provide a novel perspective on coral reef nutrient dynamics by examining the role of fish communities in the supply and storage of nitrogen (N) and phosphorus (P). We quantified fish-mediated nutrient storage and supply for 144 species and modeled these data onto 172 fish communities (71 729 individual fish), in four types of coral reefs, as well as seagrass and mangrove ecosystems, throughout the Northern Antilles. Fish communities supplied and stored large quantities of nutrients, with rates varying among ecosystem types. The size structure and diversity of the fish communities best predicted N and P supply and storage and N : P supply, suggesting that alterations to fish communities (e.g., overfishing) will have important implications for nutrient dynamics in these systems. The stoichiometric ratio (N : P) for storage in fish mass (~8 : 1) and supply (~20 : 1) was notably consistent across the four coral reef types (but not seagrass or mangrove ecosystems). Published nutrient enrichment studies on corals show that deviations from this N : P supply ratio may be associated with poor coral fitness, providing qualitative support for the hypothesis that corals and their symbionts may be adapted to specific ratios of nutrient supply. Consumer nutrient stoichiometry provides a baseline from which to better understand nutrient dynamics in coral reef and other coastal ecosystems, information that is greatly needed if we are to implement more effective measures to ensure the future health of the world's oceans. PMID:24692262

  6. Tidal jets, nutrient upwelling and their influence on the productivity of the alga Halimeda in the Ribbon Reefs, Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Wolanski, Eric; Drew, Edward; Abel, Kay M.; O'Brien, John

    1988-02-01

    A field experiment was carried out to study water circulation and benthic biological productivity near a passage through the Ribbon Reefs in the northern Great Barrier Reef of Australia. The currents through the passage were phase-locked with the tide. During rising tides, strong currents through the passage generated localized upwelling on the upper continental slope, enriching the depleted surface waters in nutrients, particularly nitrate and phosphate. Simultaneously, on the shelf side of the passage, a tidal jet-vortex pair system developed, which separated from the Ribbon Reefs so that the coral reefs themselves received little of the upwelled water. This was propagated as a bottom-trapped layer towards the meadows of the calcareous alga Halimeda situated several kilometres inshore of the reefs. Halimeda can accumulate nutrients, particularly nitrate, from the relatively low concentrations available from the upwelling events. The quantity of nitrogen upwelled was more than sufficient to supply the total nitrogen requirements of the Halimeda vegetation. A tidal jet also formed, offshore from the reef passage, during falling tides and the coral-covered offshore side of the Ribbon Reefs may be sustained by the subsequent vertical turbulent entrainment into the jet of deep, nutrient-rich water immediately offshore from the reef passages. These processes require a continuous barrier reef with only narrow passages several kilometers apart. Numerical models successfully reproduce the observations of jet-driven upwelling and of the dynamics of the tidal jet-vortex pair system. The model predictions are very sensitive to the details of the bathymetry of reef passages. As such data are presently unavailable, it is not yet possible to use these models to calculate the jet-driven nutrient upwelling for the whole Great Barrier Reef.

  7. Remote sensing of sea surface temperatures during 2002 Barrier Reef coral bleaching

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Strong, Alan E.; Skirving, William

    Early in 2002, satellites of the U.S. National Oceanic and Atmospheric Administration (NOAA) detected anomalously high sea surface temperatures (SST) developing in the western Coral Sea, midway along Australia's Great Barrier Reef (GBR). This was the beginning of what was to become the most significant GBR coral bleaching event on record [Wilkinson, 2002]. During this time, NOAA's National Environmental Satellite, Data, and Information Service (NESDIS) provided satellite data as part of ongoing collaborative work on coral reef health with the Australian Institute of Marine Science (AIMS) and the Great Barrier Reef Marine Park Authority (GBRMPA). These data proved invaluable to AIMS and GBRMPA as they monitored and assessed the development and evolution of SSTs throughout the austral summer, enabling them to keep stakeholders, government, and the general public informed and up to date.

  8. Assessment of crown-of-thorns skeletal elements in surface sediment of the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Henderson, R. A.

    1992-07-01

    A total of 1655 crown-of-thorns starfish skeletal elements were recovered from 237 surface sediment samples from Davies, Centipede, Myrmidon, Hope, Holbourne Island, 22 110, Gannet Cay and Lady Musgrave Island Reefs of the central and southern sectors of the Great Barrier Reef. Three categories of reef may be recognised on the incidence of Acanthaster planci skeletal elements in surface sediment from these and previously studied reefs: category A (abundant, >12 elements kg1-), category C (common, 3 8 elements kg-1) and category C (rare, 0 0.1 elements kg-1). These categories parallel estimates of crown-of-thorns populations in the period 1986 1990. “A” reefs have generally experienced high intensity outbreaks, “C” reefs less intense or perhaps less frequent outbreaks and “R” reefs have had little or no crown-of-thorns presence. The incidence of crown-of-thorns skeletal elements in surface sediment potentially provides an indication of population densities and outbreaks over a time scale of several decades. A perspective of contemporary crown-of-thorns incidence on the many reefs of the GBR lacking direct observational records may thereby be obtained. For Holbourne Island a comparison was made of element incidence in an area of known mass mortality induced by poisoning with a control area that was undisturbed. The incidence of A. planci skeletal elements is comparable in the two areas and similar to the incidence established for other reefs such as Green Island and John Brewer where high intensity outbreaks are known to have occurred. A direct relationship between high incidence of elements in surface sediment and mass mortality following outbreak events is indicated.

  9. Spatial Analyses of Benthic Habitats to Define Coral Reef Ecosystem Regions and Potential Biogeographic Boundaries along a Latitudinal Gradient

    PubMed Central

    Walker, Brian K.

    2012-01-01

    Marine organism diversity typically attenuates latitudinally from tropical to colder climate regimes. Since the distribution of many marine species relates to certain habitats and depth regimes, mapping data provide valuable information in the absence of detailed ecological data that can be used to identify and spatially quantify smaller scale (10 s km) coral reef ecosystem regions and potential physical biogeographic barriers. This study focused on the southeast Florida coast due to a recognized, but understudied, tropical to subtropical biogeographic gradient. GIS spatial analyses were conducted on recent, accurate, shallow-water (0–30 m) benthic habitat maps to identify and quantify specific regions along the coast that were statistically distinct in the number and amount of major benthic habitat types. Habitat type and width were measured for 209 evenly-spaced cross-shelf transects. Evaluation of groupings from a cluster analysis at 75% similarity yielded five distinct regions. The number of benthic habitats and their area, width, distance from shore, distance from each other, and LIDAR depths were calculated in GIS and examined to determine regional statistical differences. The number of benthic habitats decreased with increasing latitude from 9 in the south to 4 in the north and many of the habitat metrics statistically differed between regions. Three potential biogeographic barriers were found at the Boca, Hillsboro, and Biscayne boundaries, where specific shallow-water habitats were absent further north; Middle Reef, Inner Reef, and oceanic seagrass beds respectively. The Bahamas Fault Zone boundary was also noted where changes in coastal morphologies occurred that could relate to subtle ecological changes. The analyses defined regions on a smaller scale more appropriate to regional management decisions, hence strengthening marine conservation planning with an objective, scientific foundation for decision making. They provide a framework for similar

  10. An Integrated Coral Reef Ecosystem Model to Support Resource Management under a Changing Climate.

    PubMed

    Weijerman, Mariska; Fulton, Elizabeth A; Kaplan, Isaac C; Gorton, Rebecca; Leemans, Rik; Mooij, Wolf M; Brainard, Russell E

    2015-01-01

    Millions of people rely on the ecosystem services provided by coral reefs, but sustaining these benefits requires an understanding of how reefs and their biotic communities are affected by local human-induced disturbances and global climate change. Ecosystem-based management that explicitly considers the indirect and cumulative effects of multiple disturbances has been recommended and adopted in policies in many places around the globe. Ecosystem models give insight into complex reef dynamics and their responses to multiple disturbances and are useful tools to support planning and implementation of ecosystem-based management. We adapted the Atlantis Ecosystem Model to incorporate key dynamics for a coral reef ecosystem around Guam in the tropical western Pacific. We used this model to quantify the effects of predicted climate and ocean changes and current levels of current land-based sources of pollution (LBSP) and fishing. We used the following six ecosystem metrics as indicators of ecosystem state, resilience and harvest potential: 1) ratio of calcifying to non-calcifying benthic groups, 2) trophic level of the community, 3) biomass of apex predators, 4) biomass of herbivorous fishes, 5) total biomass of living groups and 6) the end-to-start ratio of exploited fish groups. Simulation tests of the effects of each of the three drivers separately suggest that by mid-century climate change will have the largest overall effect on this suite of ecosystem metrics due to substantial negative effects on coral cover. The effects of fishing were also important, negatively influencing five out of the six metrics. Moreover, LBSP exacerbates this effect for all metrics but not quite as badly as would be expected under additive assumptions, although the magnitude of the effects of LBSP are sensitive to uncertainty associated with primary productivity. Over longer time spans (i.e., 65 year simulations), climate change impacts have a slight positive interaction with other drivers

  11. An Integrated Coral Reef Ecosystem Model to Support Resource Management under a Changing Climate

    PubMed Central

    Weijerman, Mariska; Fulton, Elizabeth A.; Kaplan, Isaac C.; Gorton, Rebecca; Leemans, Rik; Mooij, Wolf M.; Brainard, Russell E.

    2015-01-01

    Millions of people rely on the ecosystem services provided by coral reefs, but sustaining these benefits requires an understanding of how reefs and their biotic communities are affected by local human-induced disturbances and global climate change. Ecosystem-based management that explicitly considers the indirect and cumulative effects of multiple disturbances has been recommended and adopted in policies in many places around the globe. Ecosystem models give insight into complex reef dynamics and their responses to multiple disturbances and are useful tools to support planning and implementation of ecosystem-based management. We adapted the Atlantis Ecosystem Model to incorporate key dynamics for a coral reef ecosystem around Guam in the tropical western Pacific. We used this model to quantify the effects of predicted climate and ocean changes and current levels of current land-based sources of pollution (LBSP) and fishing. We used the following six ecosystem metrics as indicators of ecosystem state, resilience and harvest potential: 1) ratio of calcifying to non-calcifying benthic groups, 2) trophic level of the community, 3) biomass of apex predators, 4) biomass of herbivorous fishes, 5) total biomass of living groups and 6) the end-to-start ratio of exploited fish groups. Simulation tests of the effects of each of the three drivers separately suggest that by mid-century climate change will have the largest overall effect on this suite of ecosystem metrics due to substantial negative effects on coral cover. The effects of fishing were also important, negatively influencing five out of the six metrics. Moreover, LBSP exacerbates this effect for all metrics but not quite as badly as would be expected under additive assumptions, although the magnitude of the effects of LBSP are sensitive to uncertainty associated with primary productivity. Over longer time spans (i.e., 65 year simulations), climate change impacts have a slight positive interaction with other drivers

  12. Sustaining Ecosystem Services in the Global Coral Reef Crisis

    NASA Astrophysics Data System (ADS)

    Aronson, Richard B.; Precht, William F.

    2009-07-01

    Objective science is critical to understanding the relative impacts of the many putative causal agents in the global coral reef crisis. This paper provides an evidence-based scenario of causality leading to the current state of reef degradation. Contrary to revisionist narratives that emphasize the local-scale effects of fishing and nutrient loading, coral populations were and are degrading primarily due to regional-to global-scale factors. Most important among these large-scale factors are disease outbreaks and coral bleaching, both of which are related to climate change. Because policy recommendations and management strategies will differ depending on which cause(s) are perceived to exert the greatest influence, scientists must be explicit about when they are acting as advocates and when they are objectively conveying scientific results. Legitimate scientific debate is healthy and in no way diminishes the goal of creating cogent policy. Forced ideological unification, in contrast, risks obfuscation, undermining the scientific process. Science must move forward unfettered by political expediency; however, the situation is dire enough to warrant immediate action on local, regional, and global levels, based on the best scientific information at hand, in parallel with continuing research.

  13. An Ecosystem Service Evaluation Tool to Support Ridge-to-Reef Management and Conservation in Hawaii

    NASA Astrophysics Data System (ADS)

    Oleson, K.; Callender, T.; Delevaux, J. M. S.; Falinski, K. A.; Htun, H.; Jin, G.

    2014-12-01

    Faced with increasing anthropogenic stressors and diverse stakeholders, local managers are adopting a ridge-to-reef and multi-objective management approach to restore declining coral reef health state. An ecosystem services framework, which integrates ecological indicators and stakeholder values, can foster more applied and integrated research, data collection, and modeling, and thus better inform the decision-making process and realize decision outcomes grounded in stakeholders' values. Here, we describe a research program that (i) leverages remotely sensed and empirical data to build an ecosystem services-based decision-support tool geared towards ridge-to-reef management; and (ii) applies it as part of a structured, value-based decision-making process to inform management in west Maui, a NOAA coral reef conservation priority site. The tool links terrestrial and marine biophysical models in a spatially explicit manner to quantify and map changes in ecosystem services delivery resulting from management actions, projected climate change impacts, and adaptive responses. We couple model outputs with localized valuation studies to translate ecosystem service outcomes into benefits and their associated socio-cultural and/or economic values. Managers can use this tool to run scenarios during their deliberations to evaluate trade-offs, cost-effectiveness, and equity implications of proposed policies. Ultimately, this research program aims at improving the effectiveness, efficiency, and equity outcomes of ecosystem-based management. This presentation will describe our approach, summarize initial results from the terrestrial modeling and economic valuations for west Maui, and highlight how this decision support tool benefits managers in west Maui.

  14. Wave transformations across a Caribbean fringing-barrier Coral Reef

    NASA Astrophysics Data System (ADS)

    Lugo-Fernández, Alexis; Roberts, Harry H.; Suhayda, Joseph N.

    1998-08-01

    Wave measurements during three experiments at Tague Reef, St. Croix (U.S.V.I.) in April 1987 showed a net energy decrease across the reef profile of 65-71% between the forereef and crest, wave propagation to the backreef increased energy reduction to 78-88%. Tidally induced water depth changes (range of 0.3 m) increased wave energy dissipation by 15% between forereef and crest and 20% between forereef and backreef. Significant wave heights throughout the experiment were low (<0.5 m) and exhibited a tidal modulation in the backreef or lagoon. Wave transmission over the reef averaged 0.46 and modulated by the tide (0.32 at low tide vs 0.62 at high tide). The spectral time-delay model applied to analyzed wave transformations across the reef produced attenuation coefficients that averaged 0.62 between 0.05 and 0.1 cps (20-10 s) and afterwards oscillate between 0.22 and 0.35. For waves between the forereef and backreef, the attenuation coefficients from the time-delay model decay exponentially between 0.05 and 0.1 cps, afterwards they oscillate between 0.13 and 0.2. The steady wave-energy model with bottom friction, essentially form drag, and wave breaking dissipation yield wave heights modulated by the tides and errors of <19% in the crest and >20% at the backreef. The model revealed that while frictional and wave-breaking dissipation are equally important, frictional dissipation is greater.

  15. Halimeda bioherms of the northern Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Marshall, John F.; Davies, Peter J.

    1988-03-01

    The reefless tract directly behind the ribbon reefs on the outer shelf off Cooktown supports a luxuriant growth of Halimeda that, during the Holocene, has developed into bioherms. These mounded biodies of unconsolidated sediment have formed banks that vary in height between 2 and 20 m. Combined shallow, high-resolution seismic reflection profiles and side-scan sonar have diferentiated three areas of biohermal complexes behind the ribbon reefs of Cooktown. Observations by SCUBA and submersible plus the sedimentology of the bioherms indicate that they are in situ accumulations. Evidence from dating of cores suggests that the Halimeda bioherms began to grow about 10 000 years B.P. and their growth has continued to the present time, even though their tops are presently restricted to a depth of -20 m. It is suggested that the origin and morphology of the bioherms are related to a specific hydrodynamic phenomenon, involving jets of nutrient-rich, upwelled oceanic water intruding onto the outer shelf via the narrow passes between the ribbon reefs, and forming eddies behind the ribbons.

  16. Rebecca shoal barrier reef complex of Gulfian and Paleocene age - onshore and offshore Florida

    SciTech Connect

    Winston, G.O.

    1989-03-01

    Surrounding the Florida Peninsula and the offshore portion of the South Florida basin is a 1300-mi long dolomite barrier reef complex that occupies a 3800-ft composite interval spanning most of the Gulfian and Paleocene. Forty-four wells have penetrated various aspects of this complex. Growth began with the Card Sound facies (some 1400 ft thick) in the lower Gulfian, shortly after the end of the Early Cretaceous. This facies is present in only two wells, 4 mi apart on Key Largo. The appearance of the Rebecca Shoal reef in the earliest Gulfian indicates that the Florida Straits were then present, as deep water would have been necessary to support a growing reef of this magnitude. During the late Gulfian, the reef (Plantation equivalent) expanded northward along the East Coast and westward along the Keys. The width now was over 6 mi. By the beginning of the Paleocene, the reef (Tavernier facies) had completely surrounded the peninsula, resulting in the deposition of the Cedar Keys dolomite-anhydrite lagoonal facies. The width of the complex was now as much as 20 mi. At the close of the Paleocene, the Rebecca Shoals reef ended abruptly. It was overlain by an orange/brown anhedral dolomite characteristic of the basal Eocene. The lithology of the outer region of the reef complex is characterized by a light-colored, porous, fine to medium crystalline euhedral dolomite. Large cavities, including a 60-ft cavern, have been reported. Two core samples show a taluslike rubble texture with vug porosity between the square-sided fragments. Behind the Tavernier reef, this facies is gradually replaced by nonporous anhedral and cryptocrystalline dolomite. Farther lagoonward, these three lithologies become interbedded with typical Cedar keys, a very fine microcrystalline to microcrystalline dolomite.

  17. Cross-shelf variation in browsing intensity on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Hoey, A. S.; Bellwood, D. R.

    2010-06-01

    Herbivory is widely accepted as a key process determining the structure and resilience of coral reefs, with regional reductions in herbivores often being related to shifts from dominance by coral to leathery macroalgae. The removal of leathery macroalgae may therefore be viewed as a critical process on coral reefs. However, few studies have examined this process beyond a within-reef scale. Here, browsing activity was examined across the entire Great Barrier Reef shelf using bioassays of the leathery macroalga Sargassum to directly quantify algal removal. The assays revealed marked cross-shelf variation in browsing intensity, with the highest rates recorded on mid-shelf reefs (55.2-79.9% day-1) and decreasing significantly on inner- (10.8-17.0% day-1) and outer-shelf (10.1-10.4% day-1) reefs. Surprisingly, the variation in browsing intensity was not directly related to estimates of macroalgal browser biomass; rather, it appears to be shaped primarily by the local environment and behaviour of the component species. Removal rates across the inner- and mid-shelf reefs appear to be related to the attractiveness of the assays relative to the resident algal communities. Controlling for the influence of the resident algal communities revealed a positive relationship between removal rates and the biomass of a single macroalgal browsing species, Naso unicornis. In contrast, the low removal rates on the outer-shelf reefs displayed no relationship to algal or herbivore communities and appeared to reflect a negative behavioural response by the resident fishes to a novel, or unfamiliar, alga. These findings not only highlight the complexities of the relationship between fish presence and ecological function, but also the value of examining ecological processes across broader spatial scales.

  18. Community calcification in Lizard Island, Great Barrier Reef: A 33 year perspective

    NASA Astrophysics Data System (ADS)

    Silverman, J.; Schneider, K.; Kline, D. I.; Rivlin, T.; Rivlin, A.; Hamylton, S.; Lazar, B.; Erez, J.; Caldeira, K.

    2014-11-01

    Measurements of community calcification (Gnet) were made during September 2008 and October 2009 on a reef flat in Lizard Island, Great Barrier Reef, Australia, 33 years after the first measurements were made there by the LIMER expedition in 1975. In 2008 and 2009 we measured Gnet = 61 ± 12 and 54 ± 13 mmol CaCO3 m-2·day-1, respectively. These rates are 27-49% lower than those measured during the same season in 1975-76. These rates agree well with those estimated from the measured temperature and degree of aragonite saturation using a reef calcification rate equation developed from observations in a Red Sea coral reef. Community structure surveys across the Lizard Island reef flat during our study using the same methods employed in 1978 showed that live coral coverage had not changed significantly (∼8%). However, it should be noted that the uncertainty in the live coral coverage estimates in this study and in 1978 were fairly large and inherent to this methodology. Using the reef calcification rate equation while assuming that seawater above the reef was at equilibrium with atmospheric PCO2 and given that live coral cover had not changed Gnet should have declined by 30 ± 8% since the LIMER study as indeed observed. We note, however, that the error in estimated Gnet decrease relative to the 1970's could be much larger due to the uncertainties in the coral coverage measurements. Nonetheless, the similarity between the predicted and the measured decrease in Gnet suggests that ocean acidification may be the primary cause for the lower CaCO3 precipitation rate on the Lizard Island reef flat.

  19. Population Growth Rates of Reef Sharks with and without Fishing on the Great Barrier Reef: Robust Estimation with Multiple Models

    PubMed Central

    Hisano, Mizue; Connolly, Sean R.; Robbins, William D.

    2011-01-01

    Overfishing of sharks is a global concern, with increasing numbers of species threatened by overfishing. For many sharks, both catch rates and underwater visual surveys have been criticized as indices of abundance. In this context, estimation of population trends using individual demographic rates provides an important alternative means of assessing population status. However, such estimates involve uncertainties that must be appropriately characterized to credibly and effectively inform conservation efforts and management. Incorporating uncertainties into population assessment is especially important when key demographic rates are obtained via indirect methods, as is often the case for mortality rates of marine organisms subject to fishing. Here, focusing on two reef shark species on the Great Barrier Reef, Australia, we estimated natural and total mortality rates using several indirect methods, and determined the population growth rates resulting from each. We used bootstrapping to quantify the uncertainty associated with each estimate, and to evaluate the extent of agreement between estimates. Multiple models produced highly concordant natural and total mortality rates, and associated population growth rates, once the uncertainties associated with the individual estimates were taken into account. Consensus estimates of natural and total population growth across multiple models support the hypothesis that these species are declining rapidly due to fishing, in contrast to conclusions previously drawn from catch rate trends. Moreover, quantitative projections of abundance differences on fished versus unfished reefs, based on the population growth rate estimates, are comparable to those found in previous studies using underwater visual surveys. These findings appear to justify management actions to substantially reduce the fishing mortality of reef sharks. They also highlight the potential utility of rigorously characterizing uncertainty, and applying multiple

  20. Population growth rates of reef sharks with and without fishing on the great barrier reef: robust estimation with multiple models.

    PubMed

    Hisano, Mizue; Connolly, Sean R; Robbins, William D

    2011-01-01

    Overfishing of sharks is a global concern, with increasing numbers of species threatened by overfishing. For many sharks, both catch rates and underwater visual surveys have been criticized as indices of abundance. In this context, estimation of population trends using individual demographic rates provides an important alternative means of assessing population status. However, such estimates involve uncertainties that must be appropriately characterized to credibly and effectively inform conservation efforts and management. Incorporating uncertainties into population assessment is especially important when key demographic rates are obtained via indirect methods, as is often the case for mortality rates of marine organisms subject to fishing. Here, focusing on two reef shark species on the Great Barrier Reef, Australia, we estimated natural and total mortality rates using several indirect methods, and determined the population growth rates resulting from each. We used bootstrapping to quantify the uncertainty associated with each estimate, and to evaluate the extent of agreement between estimates. Multiple models produced highly concordant natural and total mortality rates, and associated population growth rates, once the uncertainties associated with the individual estimates were taken into account. Consensus estimates of natural and total population growth across multiple models support the hypothesis that these species are declining rapidly due to fishing, in contrast to conclusions previously drawn from catch rate trends. Moreover, quantitative projections of abundance differences on fished versus unfished reefs, based on the population growth rate estimates, are comparable to those found in previous studies using underwater visual surveys. These findings appear to justify management actions to substantially reduce the fishing mortality of reef sharks. They also highlight the potential utility of rigorously characterizing uncertainty, and applying multiple

  1. A critical review of environmental management of the 'not so Great' Barrier Reef

    NASA Astrophysics Data System (ADS)

    Brodie, Jon; Waterhouse, Jane

    2012-06-01

    Recent estimates put average coral cover across the Great Barrier Reef (GBR) at about 20-30%. This is estimated to be a large reduction since the 1960s. The Great Barrier Reef Marine Park Act was enacted in 1975 and the Great Barrier Reef Marine Park Authority (GBRMPA) set up shortly afterwards. So the question is: why has coral cover continued to decline when the GBR is being managed with a management regime often recognised as 'the best managed coral reef system in the world', based on a strong science-for-management ethic. The stressors which are known to be most responsible for the loss of coral cover (and general 'reef health') are terrestrial pollution including the link to outbreaks of crown of thorns starfish, fishing impacts and climate change. These have been established through a long and intensive research effort over the last 30 years. However the management response of the GBRMPA after 1975, while based on a strong science-for-management program, did not concentrate on these issues but instead on managing access through zoning with restrictions on fishing in very limited areas and tourism management. Significant action on fishing, including trawling, did not occur until the Trawl Management Plan of 2000 and the rezoning of the GBR Marine Park in 2004. Effective action on terrestrial pollution did not occur until the Australian Government Reef Rescue initiative which commenced in 2008. Effective action on climate change has yet to begin either nationally or globally. Thus it is not surprising that coral cover on the GBR has reduced to values similar to those seen in other coral reef areas in the world such as Indonesia and the Philippines. Science has always required long periods to acquire sufficient evidence to drive management action and hence there is a considerable time lag between the establishment of scientific evidence and the introduction of effective management. It can still be credibly claimed that the GBR is the best managed coral reef

  2. Positive and negative effects of a threatened parrotfish on reef ecosystems.

    PubMed

    McCauley, Douglas J; Young, Hillary S; Guevara, Roger; Williams, Gareth J; Power, Eleanor A; Dunbar, Robert B; Bird, Douglas W; Durham, William H; Micheli, Fiorenza

    2014-10-01

    Species that are strong interactors play disproportionately important roles in the dynamics of natural ecosystems. It has been proposed that their presence is necessary for positively shaping the structure and functioning of ecosystems. We evaluated this hypothesis using the case of the world's largest parrotfish (Bolbometopon muricatum), a globally imperiled species. We used direct observation, animal tracking, and computer simulations to examine the diverse routes through which B. muricatum affects the diversity, dispersal, relative abundance, and survival of the corals that comprise the foundation of reef ecosystems. Our results suggest that this species can influence reef building corals in both positive and negative ways. Field observation and simulation outputs indicated that B. muricatum reduced the abundance of macroalgae that can outcompete corals, but they also feed directly on corals, decreasing coral abundance, diversity, and colony size. B. muricatum appeared to facilitate coral advancement by mechanically dispersing coral fragments and opening up bare space for coral settlement, but they also damaged adult corals and remobilized a large volume of potentially stressful carbonate sediment. The impacts this species has on reefs appears to be regulated in part by its abundance-the effects of B. muricatum were more intense in simulation scenarios populated with high densities of these fish. Observations conducted in regions with high and low predator (e.g., sharks) abundance generated results that are consistent with the hypothesis that these predators of B. muricatum may play a role in governing their abundance; thus, predation may modulate the intensity of the effects they have on reef dynamics. Overall our results illustrate that functionally unique and threatened species may not have universally positive impacts on ecosystems and that it may be necessary for environmental managers to consider the diverse effects of such species and the forces that

  3. Internal structure and Holocene evolution of One Tree Reef, southern Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Marshall, J. F.; Davies, P. J.

    1982-06-01

    Analysis of core from six drill holes and ten vibrocores from One Tree Reef has delineated five major biosedimentological facies: algal pavement, coral head facies, branching coral facies, reef flat rubble facies and sand facies. Holocene growth began around 8,000 years B.P. with a high energy coral head facies on windward margins and a lower energy branching coral facies on patch reefs and on leeward margins. Vertical accumulation rates for these two principal facies are not greatly different; the coral head facies grew at 1.8 7.3 m/1,000 years and the branching coral facies at 0.6 8.3 m/1,000 years. Growth was initially much slower than the rate of sea level rise, a situation which changed only after sea level stabilized around 6,200 years B.P. A facies evolution model with rigidly imposed time constraints divides growth into three phases, i.e. vertical growth to sea level, transitional adjustment of biofacies at sea level, and leeward progradative phases.

  4. Factors affecting adoption of improved management practices in the pastoral industry in Great Barrier Reef catchments.

    PubMed

    Rolfe, John; Gregg, Daniel

    2015-07-01

    Substantial efforts are being made by industry and government in Australia to reduce adverse impacts of pastoral operations on water quality draining to the Great Barrier Reef. A key target is to achieve rapid adoption of better management practices by landholders, but current theoretical frameworks provide limited guidance about priorities for improving adoption. In this study information from direct surveys with landholders in the two largest catchments draining into the Great Barrier Reef has been collected and analysed. Study outcomes have important implications for policy settings, because they confirm that substantial variations in adoption drivers exist across landholders, enterprises and practices. The results confirm that the three broad barriers to adoption of information gaps, financial incentives and risk perceptions are relevant. This implies that different policy mechanisms, including extension and incentive programs, remain important, although financial incentives were only identified as important to meet capital and transformational costs rather than recurrent costs. PMID:25909442

  5. Ecological traits influencing range expansion across large oceanic dispersal barriers: insights from tropical Atlantic reef fishes.

    PubMed

    Luiz, Osmar J; Madin, Joshua S; Robertson, D Ross; Rocha, Luiz A; Wirtz, Peter; Floeter, Sergio R

    2012-03-01

    How do biogeographically different provinces arise in response to oceanic barriers to dispersal? Here, we analyse how traits related to the pelagic dispersal and adult biology of 985 tropical reef fish species correlate with their establishing populations on both sides of two Atlantic marine barriers: the Mid-Atlantic Barrier (MAB) and the Amazon-Orinoco Plume (AOP). Generalized linear mixed-effects models indicate that predictors for successful barrier crossing are the ability to raft with flotsam for the deep-water MAB, non-reef habitat usage for the freshwater and sediment-rich AOP, and large adult-size and large latitudinal-range for both barriers. Variation in larval-development mode, often thought to be broadly related to larval-dispersal potential, is not a significant predictor in either case. Many more species of greater taxonomic diversity cross the AOP than the MAB. Rafters readily cross both barriers but represent a much smaller proportion of AOP crossers than MAB crossers. Successful establishment after crossing both barriers may be facilitated by broad environmental tolerance associated with large body size and wide latitudinal-range. These results highlight the need to look beyond larval-dispersal potential and assess adult-biology traits when assessing determinants of successful movements across marine barriers. PMID:21920979

  6. Phylogeography of colour polymorphism in the coral reef fish Pseudochromis fuscus, from Papua New Guinea and the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Messmer, Vanessa; van Herwerden, Lynne; Munday, Philip L.; Jones, Geoffrey P.

    2005-11-01

    Body colour has played a significant role in the evolution of coral reef fishes, but the phylogenetic level at which colour variation is expressed and the evolutionary processes driving the development and persistence of different colour patterns are often poorly understood. The aim of this study was to examine the genetic relationships between multiple colour morphs of Pseudochromis fuscus (family Pseudochromidae), both within and among geographic locations. Pseudochromis fuscus is currently described as a single species, but exhibits at least six discrete colour morphs throughout its range. In this study, P. fuscus from Papua New Guinea (PNG) and the Great Barrier Reef (GBR), Australia, formed three genetically distinct clades based on mitochondrial DNA (control region) sequence data: (1) yellow and brown morphs from the GBR and southern PNG, as well as an orange morph from southern PNG; (2) a pink morph from southern PNG; and (3) all three morphs (pink, orange and grey) found in Kimbe Bay, northern PNG. The three groups showed deep levels of divergence ( d=14.6-25.4%), suggesting that P. fuscus is a complex of polychromatic species, rather than a single widespread species with many different colour morphs. Population genetic analyses indicate that the three clades have experienced unique evolutionary histories, possibly from differential effects of sea level fluctuations, barriers to gene flow and historical biogeography.

  7. Reefs of the deep: the biology and geology of cold-water coral ecosystems.

    PubMed

    Roberts, J Murray; Wheeler, Andrew J; Freiwald, André

    2006-04-28

    Coral reefs are generally associated with shallow tropical seas; however, recent deep-ocean exploration using advanced acoustics and submersibles has revealed unexpectedly widespread and diverse coral ecosystems in deep waters on continental shelves, slopes, seamounts, and ridge systems around the world. Advances reviewed here include the use of corals as paleoclimatic archives and their biogeological functioning, biodiversity, and biogeography. Threats to these fragile, long-lived, and rich ecosystems are mounting: The impacts of deep-water trawling are already widespread, and effects of ocean acidification are potentially devastating. PMID:16645087

  8. The 27-year decline of coral cover on the Great Barrier Reef and its causes.

    PubMed

    De'ath, Glenn; Fabricius, Katharina E; Sweatman, Hugh; Puotinen, Marji

    2012-10-30

    The world's coral reefs are being degraded, and the need to reduce local pressures to offset the effects of increasing global pressures is now widely recognized. This study investigates the spatial and temporal dynamics of coral cover, identifies the main drivers of coral mortality, and quantifies the rates of potential recovery of the Great Barrier Reef. Based on the world's most extensive time series data on reef condition (2,258 surveys of 214 reefs over 1985-2012), we show a major decline in coral cover from 28.0% to 13.8% (0.53% y(-1)), a loss of 50.7% of initial coral cover. Tropical cyclones, coral predation by crown-of-thorns starfish (COTS), and coral bleaching accounted for 48%, 42%, and 10% of the respective estimated losses, amounting to 3.38% y(-1) mortality rate. Importantly, the relatively pristine northern region showed no overall decline. The estimated rate of increase in coral cover in the absence of cyclones, COTS, and bleaching was 2.85% y(-1), demonstrating substantial capacity for recovery of reefs. In the absence of COTS, coral cover would increase at 0.89% y(-1), despite ongoing losses due to cyclones and bleaching. Thus, reducing COTS populations, by improving water quality and developing alternative control measures, could prevent further coral decline and improve the outlook for the Great Barrier Reef. Such strategies can, however, only be successful if climatic conditions are stabilized, as losses due to bleaching and cyclones will otherwise increase. PMID:23027961

  9. Benthic Foraminifera as ecological indicators for water quality on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Uthicke, Sven; Nobes, Kristie

    2008-07-01

    Benthic foraminifera are established indicators for Water Quality (WQ) in Florida and the Caribbean. However, nearshore coral reefs of the Great Barrier Reef (GBR) and other Pacific regions are also subjected to increased nutrient and sediment loads. Here, we investigate the use of benthic foraminifera as indicators to assess status and trends of WQ on GBR reefs. We quantified several sediment parameters and the foraminiferan assemblage composition on 20 reefs in four geographic regions of the GBR, and along a water column nutrient and turbidity gradient. Twenty-seven easily recognisable benthic foraminiferan taxa (>63 μm) were distinguished. All four geographic regions differed significantly ( p < 0.05, ANOSIM) in their assemblage composition, and a redundancy analysis (RDA) showed that sediment parameters only explained a small proportion of the variance in the assemblage composition. On nine reefs along a previously studied water quality gradient, foraminifera showed a distinct shift in assemblage composition towards larger symbiont-bearing taxa from turbid inner shelf towards clearer outer shelf reefs. A RDA separated symbiotic and aposymbiotic (heterotrophic) taxa. In addition, total suspended solid and water column chlorophyll a concentrations were negatively correlated, and optical depth and distance to the mainland were positively correlated, with the abundance of symbiont-bearing taxa. Several large foraminifera were identified as indicators for offshore, clear water conditions. In contrast, heterotrophic rotaliids and a species retaining plastids ( Elphidium sp.) where highly characteristic for low light, higher nutrient conditions. Application of the FORAM index to GBR assemblage composition showed a significant increase in the value of this index with increased distance from the mainland in the Whitsunday region ( r2 = 0.75, p < 0.001), and therefore with increasing light and decreased nutrient availability. We conclude that it will be possible to

  10. Social, institutional, and knowledge mechanisms mediate diverse ecosystem service benefits from coral reefs.

    PubMed

    Hicks, Christina C; Cinner, Joshua E

    2014-12-16

    Ecosystem services are supplied by nature but, by definition, are received by people. Ecosystem service assessments, intended to influence the decisions people make regarding their interactions with nature, need to understand how people benefit from different ecosystem services. A critical question is therefore, What determines the distribution of ecosystem service benefits between different sections of society? Here, we use an entitlements approach to examine how people perceive ecosystem service benefits across 28 coral reef fishing communities in four countries. In doing so, we quantitatively show that bundles of benefits are mediated by key access mechanisms (e.g., rights-based, economic, knowledge, social, and institutional). We find that specific access mechanisms influence which ecosystem services people prioritize. Social, institutional, and knowledge mechanisms are associated with the largest number and diversity of benefits. However, local context strongly determines whether specific access mechanisms enable or constrain benefits. Local ecological knowledge enabled people to prioritize a habitat benefit in Kenya, but constrained people from prioritizing the same benefit in Madagascar. Ecosystem service assessments, and their resultant policies, need to include the broad suite of access mechanisms that enable different people to benefit from a supply of ecosystem services. PMID:25453100

  11. Social, institutional, and knowledge mechanisms mediate diverse ecosystem service benefits from coral reefs

    PubMed Central

    Cinner, Joshua E.

    2014-01-01

    Ecosystem services are supplied by nature but, by definition, are received by people. Ecosystem service assessments, intended to influence the decisions people make regarding their interactions with nature, need to understand how people benefit from different ecosystem services. A critical question is therefore, What determines the distribution of ecosystem service benefits between different sections of society? Here, we use an entitlements approach to examine how people perceive ecosystem service benefits across 28 coral reef fishing communities in four countries. In doing so, we quantitatively show that bundles of benefits are mediated by key access mechanisms (e.g., rights-based, economic, knowledge, social, and institutional). We find that specific access mechanisms influence which ecosystem services people prioritize. Social, institutional, and knowledge mechanisms are associated with the largest number and diversity of benefits. However, local context strongly determines whether specific access mechanisms enable or constrain benefits. Local ecological knowledge enabled people to prioritize a habitat benefit in Kenya, but constrained people from prioritizing the same benefit in Madagascar. Ecosystem service assessments, and their resultant policies, need to include the broad suite of access mechanisms that enable different people to benefit from a supply of ecosystem services. PMID:25453100

  12. Polycyclic aromatic hydrocarbons in clams, sediments, and seawater from the Great Barrier Reef region, Australia

    SciTech Connect

    Bagg, J.; Smith, J.D. )

    1988-09-01

    On the Great Barrier Reef actively growing organisms occur mainly in shallow water, between the low-water mark and about 5m depth. The effects of hydrocarbon pollution either from discharge into the sea or run-off from the shore might be expected to be most significantly at air/water or solid/water interfaces and so the earliest indications of contamination are likely to be found in species that live in this vulnerable zone. For this reason the clam Tridacna maxima which is found in the intertidal region was chosen to be analyzed for PAH content. This clam occurs in adequate numbers along the entire length of the Great Barrier Reef and yields enough tissue to permit detection of PAH at very low concentrations. In addition during collection their shells close so that the chance of significant contamination during transport is very small. Clams were taken from a number of sites including isolated reefs such as John Brewer Reef, the research stations, Heron and Lizard Islands, and a tourist resort, Green Island. At all these sites sediments were analyzed for PAH and at Green Island, in addition, seawater was analyzed.

  13. [A review of the role and function of microbes in coral reef ecosystem].

    PubMed

    Zhou, Jin; Jin, Hui; Cai, Zhong-Hua

    2014-03-01

    Coral reef is consisted with several kinds of reef-associated organisms, including coral, fish, benthos, algae and microbes, which is an important marine ecosystem. Coral reef lives in the oligotrophic environment, has very highly primary productivity and net productivity, and is called "tropical rain forest in ocean". In corals, diverse microorganisms exert a significant influence on biogeochemical and ecological processes, including food webs, organism life cycles, and nutrient cycling. With the development of molecular biology, the role of microorganisms in a coral system is becoming more outstanding. In this article, we reviewed current understanding on 1) the onset of coral-bacterial associations; 2) the characteristics of microbes in coral (specificity, plasticity and co-evolution) ; 3) the role and signal regulation of microbes in the health and disease of coral; and 4) the response mechanism of microbes for global climatic change and consequent effects, such as temperature rise, ocean acidification and eutrophication. The aims of this article were to summarize the latest theories and achievements, clear the mechanism of microbial ecology in coral reefs and provide a theoretical reference for better protection and maintaining the coral's biodiversity. PMID:24984515

  14. Economic valuation of ecosystem services from coral reefs in the South Pacific: taking stock of recent experience.

    PubMed

    Laurans, Yann; Pascal, Nicolas; Binet, Thomas; Brander, Luke; Clua, Eric; David, Gilbert; Rojat, Dominique; Seidl, Andrew

    2013-02-15

    The economic valuation of coral reefs ecosystem services is currently seen as a promising approach to demonstrate the benefits of sustainable management of coral ecosystems to policymakers and to provide useful information for improved decisions. Most coral reefs economic studies have been conducted in the United States, Southeast Asia and the Caribbean, and only a few have covered the South Pacific region. In this region, coral reefs are essential assets for small island developing states as well as for developed countries. Accordingly, a series of ecosystem services valuations has been carried out recently in the South Pacific, to try and supply decision-makers with new information. Applying ecosystem services valuation to the specific ecological, social, economic and cultural contexts of the South Pacific is however not straightforward. This paper analyses how extant valuations address the various management challenges of coral reef regions in general and more specifically for the South Pacific. Bearing in mind that economic valuation has to match policy-making contexts, we emphasize a series of specific considerations when conducting and applying ecosystem services valuation in South Pacific ecological and social contexts. Finally, the paper examines the decision-making situations in which extant valuations took place. We conclude that, although ecosystem valuations have been effectively used as a means to raise awareness with respect to coral reef conservation, methodologies will have to be further developed, with multidisciplinary inputs, if they are to provide valuable inputs in local and technical decision-making. PMID:23295680

  15. Exposure of clownfish larvae to suspended sediment levels found on the Great Barrier Reef: Impacts on gill structure and microbiome.

    PubMed

    Hess, Sybille; Wenger, Amelia S; Ainsworth, Tracy D; Rummer, Jodie L

    2015-01-01

    Worldwide, increasing coastal development has played a major role in shaping coral reef species assemblages, but the mechanisms underpinning distribution patterns remain poorly understood. Recent research demonstrated delayed development in larval fishes exposed to suspended sediment, highlighting the need to further understand the interaction between suspended sediment as a stressor and energetically costly activities such as growth and development that are essential to support biological fitness. We examined the gill morphology and the gill microbiome in clownfish larvae (Amphiprion percula) exposed to suspended sediment concentrations (using Australian bentonite) commonly found on the inshore Great Barrier Reef. The gills of larvae exposed to 45 mg L(-1) of suspended sediment had excessive mucous discharge and growth of protective cell layers, resulting in a 56% thicker gill epithelium compared to fish from the control group. Further, we found a shift from 'healthy' to pathogenic bacterial communities on the gills, which could increase the disease susceptibility of larvae. The impact of suspended sediments on larval gills may represent an underlying mechanism behind the distribution patterns of fish assemblages. Our findings underscore the necessity for future coastal development to consider adverse effects of suspended sediments on fish recruitment, and consequently fish populations and ecosystem health. PMID:26094624

  16. Spatial and temporal genetic structure of Symbiodinium populations within a common reef-building coral on the Great Barrier Reef.

    PubMed

    Howells, Emily J; Willis, Bette L; Bay, Line K; van Oppen, Madeleine J H

    2013-07-01

    The dinoflagellate photosymbiont Symbiodinium plays a fundamental role in defining the physiological tolerances of coral holobionts, but little is known about the dynamics of these endosymbiotic populations on coral reefs. Sparse data indicate that Symbiodinium populations show limited spatial connectivity; however, no studies have investigated temporal dynamics for in hospite Symbiodinium populations following significant mortality and recruitment events in coral populations. We investigated the combined influences of spatial isolation and disturbance on the population dynamics of the generalist Symbiodinium type C2 (ITS1 rDNA) hosted by the scleractinian coral Acropora millepora in the central Great Barrier Reef. Using eight microsatellite markers, we genotyped Symbiodinium in a total of 401 coral colonies, which were sampled from seven sites across a 12-year period including during flood plume-induced coral bleaching. Genetic differentiation of Symbiodinium was greatest within sites, explaining 70-86% of the total genetic variation. An additional 9-27% of variation was explained by significant differentiation of populations among sites separated by 0.4-13 km, which is consistent with low levels of dispersal via water movement and historical disturbance regimes. Sampling year accounted for 6-7% of total genetic variation and was related to significant coral mortality following severe bleaching in 1998 and a cyclone in 2006. Only 3% of the total genetic variation was related to coral bleaching status, reflecting generally small (8%) reductions in allelic diversity within bleached corals. This reduction probably reflected a loss of genotypes in hospite during bleaching, although no site-wide changes in genetic diversity were observed. Combined, our results indicate the importance of disturbance regimes acting together with limited oceanographic transport to determine the genetic composition of Symbiodinium types within reefs. PMID:23730715

  17. Three new species of Calyptotheca (Bryozoa: Lanceoporidae) from the Great Barrier Reef, tropical Australia.

    PubMed

    Sebastian, Pascal; Cumming, Robyn L

    2016-01-01

    The cheilostome bryozoans Calyptotheca wulguru n. sp. and Calyptotheca tilbrooki n. sp. (Lanceoporidae) are described from inter-reefal, sediment-dominated habitats of the Great Barrier Reef, and Calyptotheca churro n. sp. was washed up on a Heron Island beach, with uncertain origin. Calyptotheca wulguru n. sp. and C. churro n. sp. belong to a subgroup of Calyptotheca species with numerous small, oval, marginal adventitious avicularia and suboral nodular thickening or umbones. The vicarious avicularia of C. tilbrooki n. sp. are elongate-oval, unlike those of other known Calyptotheca species, and C. tilbrooki n. sp. has more pronounced orificial dimorphism than in any other known Calyptotheca species. Calyptotheca churro n. sp. has the most pronounced suboral umbo of all known Calyptotheca species. This study increases the known Calyptotheca species of the Great Barrier Reef to ten, and of tropical Australia to 14. PMID:27394202

  18. 1200 year paleoecological record of coral community development from the terrigenous inner shelf of the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Perry, C. T.; Smithers, S. G.; Palmer, S. E.; Larcombe, P.; Johnson, K. G.

    2008-09-01

    Increased terrestrial sediment and nutrient yields are regardedas significant threats to coral reef health. Within the centralGreat Barrier Reef lagoon, where water quality has reportedlydeclined since European settlement (since ca. A.D. 1850), inner-shelfreef conditions have purportedly deteriorated. However, thelink between reef decline and water-quality change remains controversial,primarily because of a lack of pre-European period ecologicalbaseline data against which to assess contemporary ecologicalstates. Here we present a high-resolution record of reef accretionand coral community composition from a turbid-zone, nearshorereef on the inner shelf of the Great Barrier Reef; the recordis based on six radiocarbon date-constrained cores, andextends back to ca. 1200 calibrated yr B.P. Results demonstratenot only the potential for coral communities to initiate andpersist in settings dominated by fine-grained terrigenous sedimentaccumulation, but also that a temporally persistent (but lowdiversity) suite of corals has dominated the reef-building communityat this site for at least the past millennium. Furthermore,the coral assemblages exhibit no evidence of community shiftsattributable to post-European water-quality changes. While extrapolationof these findings to other turbid-zone reefs must remain tentative,the study raises important questions about the resilience ofinner-shelf reefs that are under terrestrial sediment influenceand subject to elevated turbidity conditions, and demonstratesthe potential to develop detailed, millennial time scale, coralcommunity records from Holocene reef systems.

  19. Declining Coral Skeletal Extension for Forereef Colonies of Siderastrea siderea on the Mesoamerican Barrier Reef System, Southern Belize

    PubMed Central

    Castillo, Karl D.; Ries, Justin B.; Weiss, Jack M.

    2011-01-01

    Background Natural and anthropogenic stressors are predicted to have increasingly negative impacts on coral reefs. Understanding how these environmental stressors have impacted coral skeletal growth should improve our ability to predict how they may affect coral reefs in the future. We investigated century-scale variations in skeletal extension for the slow-growing massive scleractinian coral Siderastrea siderea inhabiting the forereef, backreef, and nearshore reefs of the Mesoamerican Barrier Reef System (MBRS) in the western Caribbean Sea. Methodology/Principal Findings Thirteen S. siderea cores were extracted, slabbed, and X-rayed. Annual skeletal extension was estimated from adjacent low- and high-density growth bands. Since the early 1900s, forereef S. siderea colonies have shifted from exhibiting the fastest to the slowest average annual skeletal extension, while values for backreef and nearshore colonies have remained relatively constant. The rates of change in annual skeletal extension were −0.020±0.005, 0.011±0.006, and −0.008±0.006 mm yr−1 per year [mean±SE] for forereef, backreef, and nearshore colonies respectively. These values for forereef and nearshore S. siderea were significantly lower by 0.031±0.008 and by 0.019±0.009 mm yr−1 per year, respectively, than for backreef colonies. However, only forereef S. siderea exhibited a statistically significant decline in annual skeletal extension over the last century. Conclusions/Significance Our results suggest that forereef S. siderea colonies are more susceptible to environmental stress than backreef and nearshore counterparts, which may have historically been exposed to higher natural baseline stressors. Alternatively, sediment plumes, nutrients, and pollution originating from watersheds of Guatemala and Honduras may disproportionately impact the forereef environment of the MBRS. We are presently reconstructing the history of environmental stressors that have impacted the MBRS to constrain

  20. Baseline data for evaluating development trajectory and provision of ecosystem services of created fringing oyster reefs in Vermilion Bay, Louisiana

    USGS Publications Warehouse

    La Peyre, Megan K.; Schwarting, Lindsay; Miller, Shea

    2013-01-01

    Understanding the time frame in which ecosystem services (that is, water quality maintenance, shoreline protection, habitat provision) are expected to be provided is important when restoration projects are being designed and implemented. Restoration of three-dimensional shell habitats in coastal Louisiana and elsewhere presents a valuable and potentially self-sustaining approach to providing shoreline protection, enhancing nekton habitat, and providing water quality maintenance. As with most restoration projects, the development of expected different ecosystem services often occurs over varying time frames, with some services provided immediately and others taking longer to develop. This project was designed initially to compare the provision and development of ecosystem services by created fringing shoreline reefs in subtidal and intertidal environments in Vermilion Bay, Louisiana. Specifically, the goal was to test the null hypothesis that over time, the oyster recruitment and development of a sustainable oyster reef community would be similar at both intertidal and subtidal reef bases, and these sustainable reefs would in time provide similar shoreline stabilization, nekton habitat, and water quality services over similar time frames. Because the ecosystem services hypothesized to be provided by oyster reefs reflect long-term processes, fully testing the above-stated null hypothesis requires a longer-time frame than this project allowed. As such, this project was designed to provide the initial data on reef development and provision of ecosystem services, to identify services that may develop immediately, and to provide baseline data to allow for longer-term follow up studies tracking reef development over time. Unfortunately, these initially created reef bases (subtidal, intertidal) were not constructed as planned because of the Deepwater Horizon oil spill in April 2010, which resulted in reef duplicates being created 6 months apart. Further confounding the

  1. Neosabellides lizae, a new species of Ampharetidae (Annelida) from Lizard Island, Great Barrier Reef, Australia.

    PubMed

    Alvestad, Tom; Budaeva, Nataliya

    2015-01-01

    Neosabellides lizae, a new species of Ampharetidae, is described from the intertidal zone off Lizard Island, Great Barrier Reef, Queensland, Australia. The new species is referred to the genus Neosabellides based on the shape of the prostomium, three pairs of branchiae, 14 thoracic segments with notopodia, 12 thoracic uncinigerous segments, and the first two pairs of abdominal uncinigers of thoracic type. The new species differs from all known species of Neosabellides in having 14 abdominal uncinigerous segments. PMID:26624066

  2. Insights into the Coral Microbiome: Underpinning the Health and Resilience of Reef Ecosystems.

    PubMed

    Bourne, David G; Morrow, Kathleen M; Webster, Nicole S

    2016-09-01

    Corals are fundamental ecosystem engineers, creating large, intricate reefs that support diverse and abundant marine life. At the core of a healthy coral animal is a dynamic relationship with microorganisms, including a mutually beneficial symbiosis with photosynthetic dinoflagellates (Symbiodinium spp.) and enduring partnerships with an array of bacterial, archaeal, fungal, protistan, and viral associates, collectively termed the coral holobiont. The combined genomes of this coral holobiont form a coral hologenome, and genomic interactions within the hologenome ultimately define the coral phenotype. Here we integrate contemporary scientific knowledge regarding the ecological, host-specific, and environmental forces shaping the diversity, specificity, and distribution of microbial symbionts within the coral holobiont, explore physiological pathways that contribute to holobiont fitness, and describe potential mechanisms for holobiont homeostasis. Understanding the role of the microbiome in coral resilience, acclimation, and environmental adaptation is a new frontier in reef science that will require large-scale collaborative research efforts. PMID:27482741

  3. Surviving coral bleaching events: porites growth anomalies on the Great Barrier Reef.

    PubMed

    Cantin, Neal E; Lough, Janice M

    2014-01-01

    Mass coral bleaching affected large parts of the Great Barrier Reef (GBR) in 1998 and 2002. In this study, we assessed if signatures of these major thermal stress events were recorded in the growth characteristics of massive Porites colonies. In 2005 a suite of short (<50 cm) cores were collected from apparently healthy, surviving Porites colonies, from reefs in the central GBR (18-19°S) that have documented observations of widespread bleaching. Sites included inshore (Nelly Bay, Pandora Reef), annually affected by freshwater flood events, midshelf (Rib Reef), only occasionally affected by freshwater floods and offshore (Myrmidon Reef) locations primarily exposed to open ocean conditions. Annual growth characteristics (extension, density and calcification) were measured in 144 cores from 79 coral colonies and analysed over the common 24-year period, 1980-2003. Visual examination of the annual density bands revealed growth hiatuses associated with the bleaching years in the form of abrupt decreases in annual linear extension rates, high density stress bands and partial mortality. The 1998 mass-bleaching event reduced Porites calcification by 13 and 18% on the two inshore locations for 4 years, followed by recovery to baseline calcification rates in 2002. Evidence of partial mortality was apparent in 10% of the offshore colonies in 2002; however no significant effects of the bleaching events were evident in the calcification rates at the mid shelf and offshore sites. These results highlight the spatial variation of mass bleaching events and that all reef locations within the GBR were not equally stressed by the 1998 and 2002 mass bleaching events, as some models tend to suggest, which enabled recovery of calcification on the GBR within 4 years. The dynamics in annual calcification rates and recovery displayed here should be used to improve model outputs that project how coral calcification will respond to ongoing warming of the tropical oceans. PMID:24586377

  4. The ecosystem service value of living versus dead biogenic reef

    NASA Astrophysics Data System (ADS)

    Sheehan, E. V.; Bridger, D.; Attrill, M. J.

    2015-03-01

    Mixed maerl beds (corralline red algae) comprise dead thalli with varying amounts of live maerl fragments, but previously it was not known whether the presence of the live maerl increases the ecosystem service 'habitat provision' of the dead maerl for the associated epibenthos. A 'flying array' towed sled with high definition video was used to film transects of the epibenthos in dead maerl and mixed maerl beds in two locations to the north and south of the English Channel (Falmouth and Jersey). Mixed maerl beds supported greater number of taxa and abundance than dead beds in Falmouth, while in Jersey, mixed and dead beds supported similar number of taxa and dead beds had a greater abundance of epifauna. Scallops tended to be more abundant on mixed beds than dead beds. Tube worms were more abundant on mixed beds in Falmouth and dead beds in Jersey. An increasing percentage occurrence of live maerl thalli correlated with increasing number of taxa in Falmouth but not Jersey. It was concluded that while live thalli can increase the functional role of dead maerl beds for the epibenthos, this is dependent on location and response variable. As a result of this work, maerl habitat in SE Jersey has been protected from towed demersal fishing gear.

  5. Spionidae (Annelida) from Lizard Island, Great Barrier Reef, Australia: the genera Aonides, Dipolydora, Polydorella, Prionospio, Pseudopolydora, Rhynchospio, and Tripolydora.

    PubMed

    Radashevsky, Vasily I

    2015-01-01

    Nineteen species in seven genera of spionid polychaetes are described and illustrated based on new material collected from the intertidal and shallow waters around the Lizard Island Group, northern Great Barrier Reef. Only one of these species had been previously reported from the Reef. Six species are described as new to science, and the taxonomy of seven species should be clarified in the future. Prionospio sensu lato is the most diverse group with 11 species identified in the present study. One species is identified in each of the genera Dipolydora, Polydorella, Rhynchospio and Tripolydora, and two species are identified in each of the genera Aonides and Pseudopolydora. The fauna of spionid polychaetes of the Great Barrier Reef seems to be more diverse than previously described and more species are expected to be found in the future. An identification key is provided to 16 genera of Spionidae reported from or likely to be found on the Great Barrier Reef. PMID:26624082

  6. Bayesian decision-network modeling of multiple stakeholders for reef ecosystem restoration in the coral triangle.

    PubMed

    Varkey, Divya A; Pitcher, Tony J; McAllister, Murdoch K; Sumaila, Rashid S

    2013-06-01

    Proposals for marine conservation measures have proliferated in the last 2 decades due to increased reports of fishery declines and interest in conservation. Fishers and fisheries managers have often disagreed strongly when discussing controls on fisheries. In such situations, ecosystem-based models and fisheries-stock assessment models can help resolve disagreements by highlighting the trade-offs that would be made under alternative management scenarios. We extended the analytical framework for modeling such trade-offs by including additional stakeholders whose livelihoods and the value they place on conservation depend on the condition of the marine ecosystem. To do so, we used Bayesian decision-network models (BDNs) in a case study of an Indonesian coral reef fishery. Our model included interests of the fishers and fishery managers; individuals in the tourism industry; conservation interests of the state, nongovernmental organizations, and the local public; and uncertainties in ecosystem status, projections of fisheries revenues, tourism growth, and levels of interest in conservation. We calculated the total utility (i.e., value) of a range of restoration scenarios. Restricting net fisheries and live-fish fisheries appeared to be the best compromise solutions under several combinations of settings of modeled variables. Results of our case study highlight the implications of alternate formulations for coral reef stakeholder utility functions and discount rates for the calculation of the net benefits of alternative fisheries management options. This case study may also serve as a useful example for other decision analyses with multiple stakeholders. PMID:23530881

  7. Submerged Shelf Edge Features on Australia's Great Barrier Reef and Their Response to Quaternary Sea-Level Changes

    NASA Astrophysics Data System (ADS)

    Abbey, E. A.; Webster, J. M.; Beaman, R. J.

    2010-12-01

    Australia has the largest extant barrier reef system in the world, the Great Barrier Reef. As sensitive indicators of their environment, tropical coral reefs are also valuable repositories of climate and sea-level histories. As sea-levels oscillate, reefs wax and wane along shallow shelf margins. During rapid transgressions, many reefs are unable to keep up and become drowned. Submerged, or drowned, reefs can provide a wealth of information as to the nature and timing of local oceanic conditions, and are well-recognised for their value as relative sea-level indicators. The Great Barrier Reef may hold the largest repository of Pleistocene and Holocene climate and sea-level records in the world, in the form of submerged reefs. The current understanding of submerged reefs along the Great Barrier Reef shelf edge is based on widely-spaced singlebeam echosounder profiles and several small scale (3-8 km2) multibeam surveys. In spite of these earlier studies that hinted at the wide distribution of submerged reefs, no regional-scale work has been undertaken using high-resolution multibeam swath bathymetry. Here we investigate four widely-spaced sites (200 km) from depths of 45-130 m ranging in size up to 400 km2 along Australia’s north-east margin using high-resolution multibeam swath bathymetry and surficial dredge samples. The aims of this study include characterising the morphology, distribution and variety of features, as well as identifying the processes associated with their origin, to gain a better understanding of the history of the Great Barrier Reef and its response to Quaternary sea-level changes. The high-resolution (cell pixel size 5 m) dataset presented here has allowed an unprecedented view of the seabed topography. This highly detailed imagery reveals very subtle characteristics of features that can indicate their environmental setting: for example, submarine or subaerial, and constructional or erosional. Comprehensive mapping of each site has resulted in

  8. Effects of High Dissolved Inorganic and Organic Carbon Availability on the Physiology of the Hard Coral Acropora millepora from the Great Barrier Reef.

    PubMed

    Meyer, Friedrich W; Vogel, Nikolas; Diele, Karen; Kunzmann, Andreas; Uthicke, Sven; Wild, Christian

    2016-01-01

    Coral reefs are facing major global and local threats due to climate change-induced increases in dissolved inorganic carbon (DIC) and because of land-derived increases in organic and inorganic nutrients. Recent research revealed that high availability of labile dissolved organic carbon (DOC) negatively affects scleractinian corals. Studies on the interplay of these factors, however, are lacking, but urgently needed to understand coral reef functioning under present and near future conditions. This experimental study investigated the individual and combined effects of ambient and high DIC (pCO2 403 μatm/ pHTotal 8.2 and 996 μatm/pHTotal 7.8) and DOC (added as Glucose 0 and 294 μmol L-1, background DOC concentration of 83 μmol L-1) availability on the physiology (net and gross photosynthesis, respiration, dark and light calcification, and growth) of the scleractinian coral Acropora millepora (Ehrenberg, 1834) from the Great Barrier Reef over a 16 day interval. High DIC availability did not affect photosynthesis, respiration and light calcification, but significantly reduced dark calcification and growth by 50 and 23%, respectively. High DOC availability reduced net and gross photosynthesis by 51% and 39%, respectively, but did not affect respiration. DOC addition did not influence calcification, but significantly increased growth by 42%. Combination of high DIC and high DOC availability did not affect photosynthesis, light calcification, respiration or growth, but significantly decreased dark calcification when compared to both controls and DIC treatments. On the ecosystem level, high DIC concentrations may lead to reduced accretion and growth of reefs dominated by Acropora that under elevated DOC concentrations will likely exhibit reduced primary production rates, ultimately leading to loss of hard substrate and reef erosion. It is therefore important to consider the potential impacts of elevated DOC and DIC simultaneously to assess real world scenarios, as

  9. Effects of High Dissolved Inorganic and Organic Carbon Availability on the Physiology of the Hard Coral Acropora millepora from the Great Barrier Reef

    PubMed Central

    Meyer, Friedrich W.; Vogel, Nikolas; Diele, Karen; Kunzmann, Andreas; Uthicke, Sven; Wild, Christian

    2016-01-01

    Coral reefs are facing major global and local threats due to climate change-induced increases in dissolved inorganic carbon (DIC) and because of land-derived increases in organic and inorganic nutrients. Recent research revealed that high availability of labile dissolved organic carbon (DOC) negatively affects scleractinian corals. Studies on the interplay of these factors, however, are lacking, but urgently needed to understand coral reef functioning under present and near future conditions. This experimental study investigated the individual and combined effects of ambient and high DIC (pCO2 403 μatm/ pHTotal 8.2 and 996 μatm/pHTotal 7.8) and DOC (added as Glucose 0 and 294 μmol L-1, background DOC concentration of 83 μmol L-1) availability on the physiology (net and gross photosynthesis, respiration, dark and light calcification, and growth) of the scleractinian coral Acropora millepora (Ehrenberg, 1834) from the Great Barrier Reef over a 16 day interval. High DIC availability did not affect photosynthesis, respiration and light calcification, but significantly reduced dark calcification and growth by 50 and 23%, respectively. High DOC availability reduced net and gross photosynthesis by 51% and 39%, respectively, but did not affect respiration. DOC addition did not influence calcification, but significantly increased growth by 42%. Combination of high DIC and high DOC availability did not affect photosynthesis, light calcification, respiration or growth, but significantly decreased dark calcification when compared to both controls and DIC treatments. On the ecosystem level, high DIC concentrations may lead to reduced accretion and growth of reefs dominated by Acropora that under elevated DOC concentrations will likely exhibit reduced primary production rates, ultimately leading to loss of hard substrate and reef erosion. It is therefore important to consider the potential impacts of elevated DOC and DIC simultaneously to assess real world scenarios, as

  10. Diversity of sponges (Porifera) from cryptic habitats on the Belize barrier reef near Carrie Bow Cay.

    PubMed

    Rützler, Klaus; Piantoni, Carla; Van Soest, Rob W M; Díaz, M Cristina

    2014-01-01

    The Caribbean barrier reef near Carrie Bow Cay, Belize, has been a focus of Smithsonian Institution (Washington) reef and mangrove investigations since the early 1970s. Systematics and biology of sponges (Porifera) were addressed by several researchers but none of the studies dealt with cryptic habitats, such as the shaded undersides of coral rubble, reef crevices, and caves, although a high species diversity was recognized and samples were taken for future reference and study. This paper is the result of processing samples taken between 1972 and 2012. In all, 122 species were identified, 14 of them new (including one new genus). The new species are Tetralophophora (new genus) mesoamericana, Geodia cribrata, Placospongia caribica, Prosuberites carriebowensis, Timea diplasterina, Timea oxyasterina, Rhaphidhistia belizensis, Wigginsia curlewensis, Phorbas aurantiacus, Myrmekioderma laminatum, Niphates arenata, Siphonodictyon occultum, Xestospongia purpurea, and Aplysina sciophila. We determined that about 75 of the 122 cryptic sponge species studied (61%) are exclusive members of the sciophilic community, 47 (39 %) occur in both, light-exposed and shaded or dark habitats. Since we estimate the previously known sponge population of Carrie Bow reefs and mangroves at about 200 species, the cryptic fauna makes up 38 % of total diversity. PMID:24871152