Science.gov

Sample records for bartkut leonidas sakalauskas

  1. Swelling of U(Mo)–Al(Si) dispersion fuel under irradiation – Non-destructive analyses of the LEONIDAS E-FUTURE plates

    SciTech Connect

    S. Van den Berghe; Y. Parthoens; F. Charollais; Y. S. Kim; A. Leenaers; E. Koonen; V. Kuzminov; P. Lemoine; C. Jarousse; H. Guyon; D. Wachs; D. Keiser, Jr.; A. Robinson; J. Stevens; G. Hofman

    2012-11-01

    In the framework of the elimination of High-Enriched Uranium (HEU) from the civil circuit, the search for an appropriate fuel to replace the high-enriched research reactor fuel in those reactors that currently still require it for their operation has led to the development of a U–7 wt.%Mo alloy based dispersion fuel with an Al–Si matrix. The European LEONIDAS program, joining SCK-CEN, ILL, CEA and AREVA-CERCA, is aimed at the qualification of such a fuel for the use in high power conditions. The first experiment of the program, designated E-FUTURE, was performed to select the appropriate matrix Si concentration and fuel plate post-production heat treatment parameters for further qualification. It consisted of the irradiation of four distinct (4% and 6% Si, 3 different heat treatments) full size, flat fuel plates in the BR2 reactor. The irradiation conditions were relatively severe: 470 W/cm2 peak BOL power, with an approximate 70% 235U peak burnup.

  2. Microstructural evolution of U(Mo)–Al(Si) dispersion fuel under irradiation – Destructive analyses of the LEONIDAS E-FUTURE plates

    SciTech Connect

    A. Leenaers; S. Van den Berghe; J. Van Eyken; E. Koonen; F. Charollais; P. Lemoine; Y. Calzavara; H. Guyon; C. Jarousse; D. Geslin; D. Wachs; D. Keiser; A. Robinson; G. Hofman; Y. S. Kim

    2013-10-01

    Several irradiation experiments have confirmed the positive effect of adding Si to the matrix of an U(Mo) dispersion fuel plate on its in-pile irradiation behavior. E-FUTURE, the first experiment of the LEONIDAS program, was performed to select an optimum Si concentration and fuel plate heat treatment parameters for further qualification. It consisted of the irradiation of 4 distinct (regarding Si content and heat treatments), full size flat fuel plates in the BR2 reactor under bounding conditions (470 W/cm2 peak BOL power, approximately 70% peak burn-up). After the irradiation, the E-FUTURE plates were examined non-destructively and found to have pillowed in the highest burn-up positions. The destructive post-irradiation examination confirmed that the fuel evolves in a stable way up to a burn-up of 60%235U. Even in the deformed area (pillow) the U(Mo) fuel itself shows stable behavior and remaining matrix material was present. From the calculation of the volume fractions, the positive effect of a higher Si amount added to the matrix and the higher annealing temperature can be derived.

  3. Swelling of U(Mo)-Al(Si) dispersion fuel under irradiation - Non-destructive analyses of the LEONIDAS E-FUTURE plates

    NASA Astrophysics Data System (ADS)

    Van den Berghe, S.; Parthoens, Y.; Charollais, F.; Kim, Y. S.; Leenaers, A.; Koonen, E.; Kuzminov, V.; Lemoine, P.; Jarousse, C.; Guyon, H.; Wachs, D.; Keiser, D., Jr.; Robinson, A.; Stevens, J.; Hofman, G.

    2012-11-01

    In the framework of the elimination of High-Enriched Uranium (HEU) from the civil circuit, the search for an appropriate fuel to replace the high-enriched research reactor fuel in those reactors that currently still require it for their operation has led to the development of a U-7 wt.%Mo alloy based dispersion fuel with an Al-Si matrix. The European LEONIDAS program, joining SCK•CEN, ILL, CEA and AREVA-CERCA, is aimed at the qualification of such a fuel for the use in high power conditions. The first experiment of the program, designated E-FUTURE, was performed to select the appropriate matrix Si concentration and fuel plate post-production heat treatment parameters for further qualification. It consisted of the irradiation of four distinct (4% and 6% Si, 3 different heat treatments) full size, flat fuel plates in the BR2 reactor. The irradiation conditions were relatively severe: 470 W/cm2 peak BOL power, with a ˜70% 235U peak burnup.

  4. Performance evaluation of the R6R018 fuel plate using PLATE code

    SciTech Connect

    Pavel G. Medvedev; Hakan Ozaltun

    2010-03-01

    The paper presents results of performance evaluation of the R6R018 fuel plate using PLATE code. R6R018 is a U-7Mo dispersion type mini-plate with Al-3.5Si matrix irradiated in the RERTR-9B experiment. The design of this plate is prototypical of the planned LEONIDAS irradiation test. Therefore, a detailed performance analysis of this plate is important to confirm acceptable behavior in pile, and to provide baseline and justification for further analysis and testing. Specific results presented in the paper include fuel temperature history, growth of the interaction layer between the U-Mo and the matrix, swelling, growth of the corrosion layer, and degradation of thermal conductivity. The methodology of the analysis will be discussed including the newly developed capability to account for the formation of the interaction layer during fuel fabrication.

  5. Outcomes From AAS Hack Day at the 227th AAS Meeting

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    paper, Ruth is seeking contributions of one-minute audio recordings.RadioFree LST: Radio observers dont care when the Sun is up, but they do care if their astronomical objects of interest are above the horizon. Demitri Muna (Ohio State) and Amanda Kepley (NRAO) created a calculator which uses local sidereal time (LST) to determine when sources rise and set based on the position of the observatory and the coordinates of the target..@demitrimuna @aakepley are creating a LST calculator for radio telescopes. #radiofreelst #hackaas pic.twitter.com/TEAdYe3hvi astrobites (@astrobites) January 8, 2016Hidden Killer Detective: The Kepler spacecraft has enabled many discoveries related to exoplanets and stars. But now that K2 is observing in the ecliptic plane, it should also find asteroids. Geert Barentsen (NASA Ames), Tom Barclay (NASA Ames), Meg Schwamb (ASIAA), and Brooke Simmons (UC San Diego) created a new crowd-sourced Zooniverse project so anyone can help search for moving objects that may be asteroids.Expanding Astronomy on Tap: This casual science pub night, started in 2013, is now a regular event in seven cities worldwide. Jeff Silverman (UT Austin) created a Launch Manifesto and guide for bringing Astronomy on Tap to your own city. If youre interested, fill out their survey to get more information.The Arceli Project: Arceli is publishing online astronomy content. A team led by ScienceBetter and Kelle Cruz (CUNY) including Daina Bouquin (Harvard CfA), Aram Zucker-Scharff, Lars Holm Nielsen (CERN), Jonathan Sick (LSST), Chris Erdmann (Harvard CfA), and Meredith Rawls (NMSU) worked on getting each component of Arceli to talk to the others. Eventually, Arceli will accept submissions of informal scholarly contentlike blog postswhich will become archived and citable just like traditional papers.Special Dark: Leonidas Moustakas (JPL/Caltech) and Tonima Ananna (Yale) hosted a special session at this years AAS meeting all about dark matter. During hack day, they began a