Sample records for base alloys evaluated

  1. Evaluation of Ni-Cr-base alloys for SOFC interconnect applications

    NASA Astrophysics Data System (ADS)

    Yang, Zhenguo; Xia, Guan-Guang; Stevenson, Jeffry W.

    To further understand the suitability of Ni-Cr-base alloys for solid oxide fuel cell (SOFC) interconnect applications, three commercial Ni-Cr-base alloys, Haynes 230, Hastelloy S and Haynes 242 were selected and evaluated for oxidation behavior under different exposure conditions, scale conductivity and thermal expansion. Haynes 230 and Hastelloy S, which have a relatively high Cr content, formed a thin scale mainly comprised of Cr 2O 3 and (Mn,Cr,Ni) 3O 4 spinels under SOFC operating conditions, demonstrating excellent oxidation resistance and a high scale electrical conductivity. In contrast, a thick double-layer scale with a NiO outer layer above a chromia-rich substrate was grown on Haynes 242 in moist air or at the air side of dual exposure samples, indicating limited oxidation resistance for the interconnect application. With a face-centered-cubic (FCC) substrate, all three alloys possess a coefficient of thermal expansion (CTE) that is higher than that of candidate ferritic stainless steels, e.g. Crofer22 APU. Among the three alloys, Haynes 242, which is heavily alloyed with W and Mo and contains a low Cr content, demonstrated the lowest average CTE at 13.1 × 10 -6 K -1 from room temperature to 800 °C, but it was also observed that the CTE behavior of Haynes 242 was very non-linear.

  2. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolodosky, A.; Fratoni, M.

    2014-11-20

    Pre-conceptual fusion blanket designs require research and development to reflect important proposed changes in the design of essential systems, and the new challenges they impose on related fuel cycle systems. One attractive feature of using liquid lithium as the breeder and coolant is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. If the chemical reactivity of lithium could be overcome, the result would have a profound impact on fusion energy and associated safety basis.more » The overriding goal of this project is to develop a lithium-based alloy that maintains beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns. To minimize the number of alloy combinations that must be explored, only those alloys that meet certain nuclear performance metrics will be considered for subsequent thermodynamic study. The specific scope of this study is to evaluate the neutronics performance of lithium-based alloys in the blanket of an inertial confinement fusion (ICF) engine. The results of this study will inform the development of lithium alloys that would guarantee acceptable neutronics performance while mitigating the chemical reactivity issues of pure lithium.« less

  3. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    DOEpatents

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  4. Cast Fe-base cylinder/regenerator housing alloy

    NASA Technical Reports Server (NTRS)

    Larson, F.; Kindlimann, L.

    1980-01-01

    The development of an iron-base alloy that can meet the requirements of automotive Stirling engine cylinders and regenerator housings is described. Alloy requirements are as follows: a cast alloy, stress for 5000-hr rupture life of 200 MPa (29 ksi) at 775 C (1427 F), oxidation/corrosion resistance comparable to that of N-155, compatibility with hydrogen, and an alloy cost less than or equal to that of 19-9DL. The preliminary screening and evaluation of ten alloys are described.

  5. Evaluation of Surface Roughness and Tensile Strength of Base Metal Alloys Used for Crown and Bridge on Recasting (Recycling).

    PubMed

    Agrawal, Amit; Hashmi, Syed W; Rao, Yogesh; Garg, Akanksha

    2015-07-01

    Dental casting alloys play a prominent role in the restoration of the partial dentition. Casting alloys have to survive long term in the mouth and also have the combination of structure, molecules, wear resistance and biologic compatibility. According to ADA system casting alloys were divided into three groups (wt%); high noble, Noble and predominantly base metal alloys. To evaluate the mechanical properties such as tensile strength and surface roughness of the new and recast base metal (nickel-chromium) alloys. Recasting of the base metal alloys derived from sprue and button, to make it reusable has been done. A total of 200 test specimens were fabricated using specially fabricated jig of metal and divided into two groups- 100 specimens of new alloy and 100 specimens of recast alloys, which were tested for tensile strength on universal testing machine and surface roughness on surface roughness tester. Tensile strength of new alloy showed no statistically significant difference (p-value>0.05) from recast alloy whereas new alloy had statistically significant surface roughness (Maximum and Average surface roughness) difference (p-value<0.01) as compared to recast alloy. Within the limitations of the study it is concluded that the tensile strength will not be affected by recasting of nickel-chromium alloy whereas surface roughness increases markedly.

  6. Evaluation of Surface Roughness and Tensile Strength of Base Metal Alloys Used for Crown and Bridge on Recasting (Recycling)

    PubMed Central

    Hashmi, Syed W.; Rao, Yogesh; Garg, Akanksha

    2015-01-01

    Background Dental casting alloys play a prominent role in the restoration of the partial dentition. Casting alloys have to survive long term in the mouth and also have the combination of structure, molecules, wear resistance and biologic compatibility. According to ADA system casting alloys were divided into three groups (wt%); high noble, Noble and predominantly base metal alloys. Aim To evaluate the mechanical properties such as tensile strength and surface roughness of the new and recast base metal (nickel-chromium) alloys. Materials and Methods Recasting of the base metal alloys derived from sprue and button, to make it reusable has been done. A total of 200 test specimens were fabricated using specially fabricated jig of metal and divided into two groups- 100 specimens of new alloy and 100 specimens of recast alloys, which were tested for tensile strength on universal testing machine and surface roughness on surface roughness tester. Results Tensile strength of new alloy showed no statistically significant difference (p-value>0.05) from recast alloy whereas new alloy had statistically significant surface roughness (Maximum and Average surface roughness) difference (p-value<0.01) as compared to recast alloy. Conclusion Within the limitations of the study it is concluded that the tensile strength will not be affected by recasting of nickel-chromium alloy whereas surface roughness increases markedly. PMID:26393194

  7. Selection And Evaluation Of An Alloy For Nozzle Application

    NASA Technical Reports Server (NTRS)

    Pandey, A. B.; Shah, S.; Shadoan, M.; Lyles, Garry (Technical Monitor)

    2003-01-01

    The present work includes results on material characterization conducted under COBRA Hydrogen Cooled Nozzle Program and was funded by NASA MSFC. The nozzle requires a material that has high strength at ambient and high (up to l200 F) temperatures in air and hydrogen. Presently, a precipitation hardened steel; A-286 is used in nozzles for Space Shuttle Engines. The A-286 alloy has limited hydrogen compatibility and weldability. The present work focused on selection and characterization of JBK-75 alloy that has significantly higher capability in hydrogen and weldability in addition to other attributes. The alloy was evaluated at different temperatures and environments. Tungsten Inert Gas (TIG) and Electron Beam welding techniques were used to evaluate the weldability of material. Brazing was also conducted on the alloy and evaluated. The characterization of base JBK-75 alloy, welded and brazed alloy included tensile properties, low cycle fatigue and crack growth resistance at different temperatures in air and hydrogen environments. The results indicated that JBK-75 has excellent tensile and fatigue properties in air and hydrogen. The welded and brazed alloy also showed very good properties.

  8. In vitro and in vivo corrosion evaluation of nickel-chromium- and copper-aluminum-based alloys.

    PubMed

    Benatti, O F; Miranda, W G; Muench, A

    2000-09-01

    The low resistance to corrosion is the major problem related to the use of copper-aluminum alloys. This in vitro and in vivo study evaluated the corrosion of 2 copper-aluminum alloys (Cu-Al and Cu-Al-Zn) compared with a nickel-chromium alloy. For the in vitro test, specimens were immersed in the following 3 corrosion solutions: artificial saliva, 0.9% sodium chloride, and 1.0% sodium sulfide. For the in vivo test, specimens were embedded in complete dentures, so that one surface was left exposed. The 3 testing sites were (1) close to the oral mucosa (partial self-cleaning site), (2) surface exposed to the oral cavity (self-cleaning site), and (3) specimen bottom surface exposed to the saliva by means of a tunnel-shaped perforation (non-self-cleaning site). Almost no corrosion occurred with the nickel-chromium alloy, for either the in vitro or in vivo test. On the other hand, the 2 copper-aluminum-based alloys exhibited high corrosion in the sulfide solution. These same alloys also underwent high corrosion in non-self-cleaning sites for the in vivo test, although minimal attack was observed in self-cleaning sites. The nickel-chromium alloy presented high resistance to corrosion. Both copper-aluminum alloys showed considerable corrosion in the sulfide solution and clinically in the non-self-cleaning site. However, in self-cleaning sites these 2 alloys did not show substantial corrosion.

  9. Evaluation of precipitation hardening in TiC-reinforced Ti2AlNb-based alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-ran; Cai, Qi; Liu, Yong-chang; Ma, Zong-qing; Li, Chong; Li, Hui-jun

    2018-04-01

    Ti2AlNb-based alloys with 0.0wt%, 0.6wt%, and 2.0wt% carbon nanotube (CNT) addition were fabricated from spherical Ti-22Al-25Nb powder by sintering in the B2 single-phase region. Phase identification and microstructural examination were performed to evaluate the effect of carbon addition on the hardness of the alloys. Carbon was either in a soluble state or in carbide form depending on its concentration. The acicular carbides formed around 1050°C were identified as TiC and facilitated the transformation of α2 + B2 → O. The TiC was located within the acicular O phase. The surrounding O phase was distributed in certain orientations with angles of 65° or 90° O phase particles. The obtained alloy was composed of acicular O, Widmanstatten B2 + O, and acicular TiC. As a result of the precipitation of carbides as well as the O phase, the hardness of the alloy with 2.0wt% CNT addition increased to HV 429 ± 9.

  10. Corrosion Evaluation of Stellite Alloys 12 and 712

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J.I.

    2000-10-30

    The High Level Waste Division requested the Materials Technology Section (MTS) to evaluate the use of Waukesha Metal 88 (WM88) and Stellite alloys 12 (S12) and 712 (S712) as materials of construction for slurry pumps. As candidate materials, WM88 was chosen for the tilt pad column bearings and S12 and S712 were selected for the impeller bearings. The Stellite alloys are cobalt-based alloys typically used for their resistance to both corrosion and wear. WM88 is noted for resistance to galling and seizing. These materials, however, had not been evaluated for use in high level radioactive waste, which have a highmore » pH. A series of electrochemical corrosion tests were performed in support of this evaluation to determine the general corrosion rate and corrosion characteristics of these alloys. The tests were conducted at room temperature in simulated three waste tank environments. For WM88, the test solution was inhibited water, which is commonly used in the tank farm. For S12 and S712, the test solutions were a simulated Tank 8 waste solution and a 3 M sodium hydroxide solution. The general corrosion rates of all alloys in these solutions were less than 0.1 mils per year (mpy). The alloys displayed passive behavior in these solutions due to the protective nature of their oxides.« less

  11. Cast iron-base alloy for cylinder/regenerator housing

    NASA Technical Reports Server (NTRS)

    Witter, Stewart L.; Simmons, Harold E.; Woulds, Michael J.

    1985-01-01

    NASACC-1 is a castable iron-base alloy designed to replace the costly and strategic cobalt-base X-40 alloy used in the automotive Stirling engine cylinder/generator housing. Over 40 alloy compositions were evaluated using investment cast test bars for stress-rupture testing. Also, hydrogen compatibility and oxygen corrosion resistance tests were used to determine the optimal alloy. NASACC-1 alloy was characterized using elevated and room temperature tensile, creep-rupture, low cycle fatigue, heat capacity, specific heat, and thermal expansion testing. Furthermore, phase analysis was performed on samples with several heat treated conditions. The properties are very encouraging. NASACC-1 alloy shows stress-rupture and low cycle fatigue properties equivalent to X-40. The oxidation resistance surpassed the program goal while maintaining acceptable resistance to hydrogen exposure. The welding, brazing, and casting characteristics are excellent. Finally, the cost of NASACC-1 is significantly lower than that of X-40.

  12. On Nb Silicide Based Alloys: Alloy Design and Selection.

    PubMed

    Tsakiropoulos, Panos

    2018-05-18

    The development of Nb-silicide based alloys is frustrated by the lack of composition-process-microstructure-property data for the new alloys, and by the shortage of and/or disagreement between thermodynamic data for key binary and ternary systems that are essential for designing (selecting) alloys to meet property goals. Recent publications have discussed the importance of the parameters δ (related to atomic size), Δχ (related to electronegativity) and valence electron concentration (VEC) (number of valence electrons per atom filled into the valence band) for the alloying behavior of Nb-silicide based alloys (J Alloys Compd 748 (2018) 569), their solid solutions (J Alloys Compd 708 (2017) 961), the tetragonal Nb₅Si₃ (Materials 11 (2018) 69), and hexagonal C14-NbCr₂ and cubic A15-Nb₃X phases (Materials 11 (2018) 395) and eutectics with Nb ss and Nb₅Si₃ (Materials 11 (2018) 592). The parameter values were calculated using actual compositions for alloys, their phases and eutectics. This paper is about the relationships that exist between the alloy parameters δ, Δχ and VEC, and creep rate and isothermal oxidation (weight gain) and the concentrations of solute elements in the alloys. Different approaches to alloy design (selection) that use property goals and these relationships for Nb-silicide based alloys are discussed and examples of selected alloy compositions and their predicted properties are given. The alloy design methodology, which has been called NICE (Niobium Intermetallic Composite Elaboration), enables one to design (select) new alloys and to predict their creep and oxidation properties and the macrosegregation of Si in cast alloys.

  13. Evaluation and comparison of castability between an indigenous and imported Ni-Cr alloy.

    PubMed

    Ramesh, Ganesh; Padmanabhan, T V; Ariga, Padma; Subramanian, R

    2011-01-01

    Since 1907 casting restorations have been in use in dentistry. Numerous companies have been manufacturing and marketing base metal alloys. Gold was a major component of casting alloys. But alloys with less than 65% gold tarnished easily and the increase in cost of gold post-1970s lead to the revival of base metal alloys such as nickel-chromium and cobalt-chromium alloys which were in use since 1930s. This study was conducted to evaluate and compare the castability between an indigenous alloy and an imported alloy, as imported base metal alloys are considered to be expensive for fabrication of crowns and bridges. This study was conducted to evaluate and compare the castability (for the accurate fabrication of crowns and bridges) between an indigenous base metal alloy-Non-ferrous Materials Technology Development Centre (NFTDC), Hyderabad (Alloy A) -and an imported base metal alloys (Alloy B). Castability measurement was obtained by counting the number of completely formed line segments surrounding the 81 squares in the pattern and later calculating the percentage values. The percentage obtained was taken as the castability value for a particular base metal alloy. The percentage of castability was determined by counting only the number of completely cast segments in a perfect casting (81 × 2 = 162), and then multiplying the resulting fraction by 100 to give the percentage completeness. The Student t-test was used. When the castability of alloys A and B was compared, the calculated value was less than the tabular value (1.171 < 2.048) leading to the conclusion that castability between alloys A and B is insignificant. Therefore we conclude that both the alloys have the same castability. Using the above-mentioned materials and following the method to test castability, we were able to derive favorable results. As the results were satisfactory, we can conclude that the castability of the indigenous alloy is on par with the imported alloy.

  14. On Nb Silicide Based Alloys: Alloy Design and Selection

    PubMed Central

    Tsakiropoulos, Panos.

    2018-01-01

    The development of Nb-silicide based alloys is frustrated by the lack of composition-process-microstructure-property data for the new alloys, and by the shortage of and/or disagreement between thermodynamic data for key binary and ternary systems that are essential for designing (selecting) alloys to meet property goals. Recent publications have discussed the importance of the parameters δ (related to atomic size), Δχ (related to electronegativity) and valence electron concentration (VEC) (number of valence electrons per atom filled into the valence band) for the alloying behavior of Nb-silicide based alloys (J Alloys Compd 748 (2018) 569), their solid solutions (J Alloys Compd 708 (2017) 961), the tetragonal Nb5Si3 (Materials 11 (2018) 69), and hexagonal C14-NbCr2 and cubic A15-Nb3X phases (Materials 11 (2018) 395) and eutectics with Nbss and Nb5Si3 (Materials 11 (2018) 592). The parameter values were calculated using actual compositions for alloys, their phases and eutectics. This paper is about the relationships that exist between the alloy parameters δ, Δχ and VEC, and creep rate and isothermal oxidation (weight gain) and the concentrations of solute elements in the alloys. Different approaches to alloy design (selection) that use property goals and these relationships for Nb-silicide based alloys are discussed and examples of selected alloy compositions and their predicted properties are given. The alloy design methodology, which has been called NICE (Niobium Intermetallic Composite Elaboration), enables one to design (select) new alloys and to predict their creep and oxidation properties and the macrosegregation of Si in cast alloys. PMID:29783707

  15. Tungsten wire-nickel base alloy composite development

    NASA Technical Reports Server (NTRS)

    Brentnall, W. D.; Moracz, D. J.

    1976-01-01

    Further development and evaluation of refractory wire reinforced nickel-base alloy composites is described. Emphasis was placed on evaluating thermal fatigue resistance as a function of matrix alloy composition, fabrication variables and reinforcement level and distribution. Tests for up to 1,000 cycles were performed and the best system identified in this current work was 50v/o W/NiCrAlY. Improved resistance to thermal fatigue damage would be anticipated for specimens fabricated via optimized processing schedules. Other properties investigated included 1,093 C (2,000 F) stress rupture strength, impact resistance and static air oxidation. A composite consisting of 30v/o W-Hf-C alloy fibers in a NiCrAlY alloy matrix was shown to have a 100-hour stress rupture strength at 1,093 C (2,000 F) of 365 MN/square meters (53 ksi) or a specific strength advantage of about 3:1 over typical D.S. eutectics.

  16. Bioaccessibility of metals in alloys: Evaluation of three surrogate biofluids

    PubMed Central

    Hillwalker, Wendy E.; Anderson, Kim A.

    2014-01-01

    Bioaccessibility in vitro tests measure the solubility of materials in surrogate biofluids. However, the lack of uniform methods and the effects of variable test parameters on material solubility limit interpretation. One aim of this study was to measure and compare bioaccessibility of selected economically important alloys and metals in surrogate physiologically based biofluids representing oral, inhalation and dermal exposures. A second aim was to experimentally test different biofluid formulations and residence times in vitro. A third aim was evaluation of dissolution behavior of alloys with in vitro lung and dermal biofluid surrogates. This study evaluated the bioaccessibility of sixteen elements in six alloys and 3 elemental/metal powders. We found that the alloys/metals, the chemical properties of the surrogate fluid, and residence time all had major impacts on metal solubility. The large variability of bioaccessibility indicates the relevancy of assessing alloys as toxicologically distinct relative to individual metals. PMID:24212234

  17. NICKEL-BASE ALLOY

    DOEpatents

    Inouye, H.; Manly, W.D.; Roche, T.K.

    1960-01-19

    A nickel-base alloy was developed which is particularly useful for the containment of molten fluoride salts in reactors. The alloy is resistant to both salt corrosion and oxidation and may be used at temperatures as high as 1800 deg F. Basically, the alloy consists of 15 to 22 wt.% molybdenum, a small amount of carbon, and 6 to 8 wt.% chromium, the balance being nickel. Up to 4 wt.% of tungsten, tantalum, vanadium, or niobium may be added to strengthen the alloy.

  18. SUPERCONDUCTING VANADIUM BASE ALLOY

    DOEpatents

    Cleary, H.J.

    1958-10-21

    A new vanadium-base alloy which possesses remarkable superconducting properties is presented. The alloy consists of approximately one atomic percent of palladium, the balance being vanadium. The alloy is stated to be useful in a cryotron in digital computer circuits.

  19. 10 000-hr Cyclic Oxidation Behavior of 68 High-Temperature Co-, Fe-, and Ni- Base Alloys Evaluated at 982 deg. C (1800 deg. F)

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.

    1999-01-01

    Power systems with operating temperatures in the range of 815 to 982 C (1500 to 1800 F) frequently require alloys that can operate for long times at these temperatures. A critical requirement is that these alloys have adequate oxidation resistance. The alloys used in these power systems require thousands of hours of operating life with intermittent shutdown to room temperature. Intermittent power plant shutdowns, however, offer the possibility that the protective scale will tend to spall (i.e., crack and flake off) upon cooling, increasing the rate of oxidative attack in subsequent heating cycles. Thus, it is critical that candidate alloys be evaluated for cyclic oxidation behavior. It was determined that exposing test alloys to ten 1000-hr cycles in static air at 982 10 000-hr Cyclic Oxidation Behavior of 68 High-Temperature Co-, Fe-, and Ni-Base Alloys Evaluated at 982 C (1800 F) could give a reasonable simulation of long-time power plant operation. Iron- (Fe-), nickel- (Ni-), and cobalt- (Co-) based high-temperature alloys with sufficient chromium (Cr) and/or aluminum (Al) content can exhibit excellent oxidation resistance. The protective oxides formed by these classes of alloys are typically Cr2O3 and/or Al2O3, and are usually influenced by their Cr, or Cr and Al, content. Sixty-eight Co-, Fe-, and Ni-base high-temperature alloys, typical of those used at this temperature or higher, were used in this study. At the NASA Lewis Research Center, the alloys were tested and compared on the basis of their weight change as a function of time, x-ray diffraction of the protective scale composition, and the physical appearance of the exposed samples. Although final appearance and x-ray diffraction of the final scale products were two factors used to evaluate the oxidation resistance of each alloy, the main criterion was the oxidation kinetics inferred from the specific weight change versus time data. These data indicated a range of oxidation behavior including parabolic

  20. Biodegradability and platelets adhesion assessment of magnesium-based alloys using a microfluidic system

    PubMed Central

    Liu, Lumei; Koo, Youngmi; Collins, Boyce; Xu, Zhigang; Sankar, Jagannathan

    2017-01-01

    Magnesium (Mg)-based stents are extensively explored to alleviate atherosclerosis due to their biodegradability and relative hemocompatibility. To ensure the quality, safety and cost-efficacy of bioresorbable scaffolds and full utilization of the material tunability afforded by alloying, it is critical to access degradability and thrombosis potential of Mg-based alloys using improved in vitro models that mimic as closely as possible the in vivo microenvironment. In this study, we investigated biodegradation and initial thrombogenic behavior of Mg-based alloys at the interface between Mg alloys’ surface and simulated physiological environment using a microfluidic system. The degradation properties of Mg-based alloys WE43, AZ31, ZWEK-L, and ZWEK-C were evaluated in complete culture medium and their thrombosis potentials in platelet rich plasma, respectively. The results show that 1) physiological shear stress increased the corrosion rate and decreased platelets adhesion rate as compared to static immersion; 2) secondary phases and impurities in material composition induced galvanic corrosion, resulting in higher corrosion resistance and platelet adhesion rate; 3) Mg-based alloys with higher corrosion rate showed higher platelets adhesion rate. We conclude that a microfluidic-based in vitro system allows evaluation of biodegradation behaviors and platelets responses of Mg-based alloys under specific shear stress, and degradability is related to platelets adhesion. PMID:28797069

  1. Evaluation of the mechanical properties of electroslag refined iron alloys

    NASA Technical Reports Server (NTRS)

    Bhat, G. K.

    1976-01-01

    Nitronic 40 (21Cr-6N-9Mn), HY-130, 9Ni-4Co, and D-6 alloys were prepared and evaluated in the form of 15.2 mm thick plates. Smooth bar tensile tests, double-edge sharp notch fracture toughness tests Charpy V-notch impact tests were conducted on appropriate heat treated specimens of the four steel plates at 22 C, -50 C, -100 C, -150 C, and -196 C. Similar material characterization, including metallographic evaluation studies on air melt and vacuum arc melt grades of same four alloy steels were conducted for comparative purposes. A cost analysis of manufacturing plates of air melt, electroslag remelt and vacuum arc remelt grades was performed. The results of both material characterization and cost analyses pointed out certain special benefits of electroslag processing iron base alloys.

  2. Evaluation of an Al-Ce alloy for laser additive manufacturing

    DOE PAGES

    Plotkowski, A.; Rios, O.; Sridharan, N.; ...

    2016-12-27

    Our present research in metal additive manufacturing (AM) focuses on designing processing parameters around existing alloys designed for traditional manufacturing. However, to maximize the benefits of AM, alloys should be designed to specifically take advantage of the unique thermal conditions of these processes. Furthermore, our study focuses on the development of a design methodology for alloys in AM, using a newly developed Al-Ce alloy as an initial case study. To evaluate the candidacy of this system for fusion based additive manufacturing, single-line laser melts were made on cast Al-12Ce plates using three different beam velocities (100, 200, and 300 mm/min).more » The microstructure was evaluated in the as-melted and heat treated conditions (24 hrs at 300°C). An extremely fine microstructure was observed within the weld pools, evolving from eutectic at the outer solid-liquid boundaries to a primary Al FCC dendritic/cellular structure nearer the melt-pool centerline. We rationalized the observed microstructures through the construction of a microstructure selection map for the Al-Ce binary system, which will be used to enable future alloy design. Interestingly, the heat treated samples exhibited no microstructural coarsening.« less

  3. On the corrosion behavior and biocompatibility of palladium-based dental alloys

    NASA Astrophysics Data System (ADS)

    Sun, Desheng

    Palladium-based alloys have been used as dental restorative materials for about two decades with good clinical history. But there have been clinical case reports showing possible allergy effects from these alloys. The aim of this study was to characterize the corrosion behavior and mechanisms of several palladium-based dental alloys by potentiodynamic polarization methods, electrochemical impedance spectroscopy (EIS), and scanning Kelvin probe force microscopy/atomic force microscopy (SKPFM/AFM), and to evaluate their biocompatibility by a cell culture technique and an animal model. Using SKPFM/AFM and scanning electron microscopy, the Ru-enriched phase from the use of ruthenium as a grain-refining element was identified as being slightly more noble than the palladium solid solution matrix in a high-palladium alloy. Other secondary precipitates that exist in the microstructures of these high-palladium alloys have minimal differences in Volta potential compared to the matrix. For high-palladium alloys, corrosion is generally uniform due to the predominant palladium content in the different phases. Potentiodynamic polarization and EIS have shown that representative palladium-silver alloys have low corrosion tendency and high corrosion resistance, which are equivalent to a well-known high-noble gold-palladium alloy in simulated body fluid and oral environments. The palladium-silver alloys tested are resistant to chloride ion corrosion. Passivation and dealloying have been identified for all of the tested palladium-silver alloys. The great similarity in corrosion behavior among the palladium-silver alloys is attributed to their similar chemical compositions. The variation in microstructures of palladium-silver alloys tested does not cause significant difference in corrosion behavior. The corrosion resistance of these palladium-silver alloys at elevated potentials relevant to oral environment is still satisfactory. The release of elements from representative dental

  4. Evaluation of candidate stirling engine heater tube alloys at 820 deg and 860 deg C

    NASA Technical Reports Server (NTRS)

    Misencik, J. A.

    1982-01-01

    Seven commercial alloys were evaluated in Stirling simulator materials rigs. Five iron base alloys (N-155, A-286, Incoloy 800, 19-9DL, and 316 stainless steel), one nickel base alloy (Inconel 718), and one cobalt base alloy (HS-188) were tested in the form of thin wall tubing in a diesel fuel fired test rig. Tubes filled with hydrogen or helium at gas pressure of 21.6 MPa and temperatures of 820 and 860 C were endurance tested for 1000 and 535 hours, respectively. Results showed that under these conditions hydrogen permeated rapidly through the tube walls, thus requiring refilling during each five hour cycle. Helium was readily contained, exhibiting no measurable loss by permeation. Helium filled tubes tested at 860 C all exhibited creep-rupture failures within the 535 hour endurance test. Subsequent tensile test evaluation after removal from the rig indicated reduced room temperature ductility for some hydrogen-filled tubes compared to helium-filled tubes, suggesting possible hydrogen embrittlement in these alloys.

  5. Creep-Rupture Behavior of Ni-Based Alloy Tube Bends for A-USC Boilers

    NASA Astrophysics Data System (ADS)

    Shingledecker, John

    Advanced ultrasupercritical (A-USC) boiler designs will require the use of nickel-based alloys for superheaters and reheaters and thus tube bending will be required. The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code Section II PG-19 limits the amount of cold-strain for boiler tube bends for austenitic materials. In this summary and analysis of research conducted to date, a number of candidate nickel-based A-USC alloys were evaluated. These alloys include alloy 230, alloy 617, and Inconel 740/740H. Uniaxial creep and novel structural tests and corresponding post-test analysis, which included physical measurements, simplified analytical analysis, and detailed microscopy, showed that different damage mechanisms may operate based on test conditions, alloy, and cold-strain levels. Overall, creep strength and ductility were reduced in all the alloys, but the degree of degradation varied substantially. The results support the current cold-strain limits now incorporated in ASME for these alloys for long-term A-USC boiler service.

  6. TUNGSTEN BASE ALLOYS

    DOEpatents

    Schell, D.H.; Sheinberg, H.

    1959-12-15

    A high-density quaternary tungsten-base alloy having high mechanical strength and good machinability composed of about 2 wt.% Ni, 3 wt.% Cu, 5 wt.% Pb, and 90wt.% W is described. This alloy can be formed by the powder metallurgy technique of hot pressing in a graphite die without causing a reaction between charge and the die and without formation of a carbide case on the final compact, thereby enabling re-use of the graphite die. The alloy is formable at hot- pressing temperatures of from about 1200 to about 1350 deg C. In addition, there is little component shrinkage, thereby eliminating the necessity of subsequent extensive surface machining.

  7. Effect of CeO2 addition on the properties of FeAl based alloy produced by mechanical alloying technique

    NASA Astrophysics Data System (ADS)

    Khaerudini, Deni S.; Muljadi, Sardjono, P.; Tetuko, Anggito P.; Sebayang, P.; Ginting, M.

    2013-09-01

    Iron aluminides based on FeAl is notable for their low materials cost, ease of fabrication and good corrosion, suffixation and oxidation resistance. However, the application based on these unique properties still require the development of Fe-Al based alloy since it shows some drawbacks such as a lack of high temperature strength and low ductility. To improve the mechanical properties of FeAl based alloy, ceria (CeO2) will be added to this compound. FeAl based alloy produced by the mechanical alloying (MA) technique. The developed specimens then assessed with respect to oxidation behaviour in high temperature, scale microstructure and hardness. The surface morphologies of the alloy evaluated and observed using scanning electron microscopy (SEM) with an energy dispersive X-ray spectroscopy (EDX). The phase structures of oxide scale formed on them were identified by X-ray diffraction (XRD). The results found that the FeAl intermetallic compound containing CeO2 0.5 wt.% is less pores and CeO2 1.0 wt.% is more homogen in powder and solid form, higher hardness and increase in their resistance to oxidation behaviour in high temperature compared with another percentage of CeO2.

  8. The hydrogen embrittlement of titanium-based alloys

    NASA Astrophysics Data System (ADS)

    Tal-Gutelmacher, Ervin; Eliezer, Dan

    2005-09-01

    Titanium-based alloys provide an excellent combination of a high strength/weight ratio and good corrosion behavior, which makes these alloys among the most important advanced materials for a variety of aerospace, marine, industrial, and commercial applications. Although titanium is considered to be reasonably resistant to chemical attack, severe problems can arise when titanium-based alloys come in contact with hydrogen-containing environments, where they can pick up large amounts of hydrogen, especially at elevated temperatures. The severity and the extent of the hydrogen interaction with titanium-based alloys are directly related to the microstructure and composition of the titanium alloys. This paper addresses the hydrogen embrittlement of titanium-based alloys. The hydrogen-titanium interaction is reviewed, including the solubility of hydrogen in α and β phases of titanium and hydride formation. Also, the paper summarizes the detrimental effects of hydrogen in different titanium alloys.

  9. High Entropy Alloys: A Current Evaluation of Founding Ideas and Core Effects and Exploring Nonlinear Alloys (Postprint)

    DTIC Science & Technology

    2017-08-29

    contain IM phases when using TEM diffraction.1,2 High -Entropy Alloys: A Current Evaluation of Founding Ideas and Core Effects and Exploring ‘‘Nonlinear...obvious outsider. Specifically, an alloy with a high Tm need not contain only elements with high Tm, and it can include one or two elements of moderate or...AFRL-RX-WP-JA-2017-0383 HIGH ENTROPY ALLOYS: A CURRENT EVALUATION OF FOUNDING IDEAS AND CORE EFFECTS AND EXPLORING "NONLINEAR ALLOYS

  10. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that is...

  11. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that is...

  12. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that is...

  13. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that is...

  14. High strength forgeable tantalum base alloy

    NASA Technical Reports Server (NTRS)

    Buckman, R. W., Jr.

    1975-01-01

    Increasing tungsten content of tantalum base alloy to 12-15% level will improve high temperature creep properties of existing tantalum base alloys while retaining their excellent fabrication and welding characteristics.

  15. Wettability of magnesium based alloys

    NASA Astrophysics Data System (ADS)

    Ornelas, Victor Manuel

    The premise of this project was to determine the wettability behavior of Mg-based alloys using three different liquids. Contact angle measurements were carried out along with utilizing the Zisman method for obtaining values for the critical surface tension. Adhesion energy values were also found through the use of the Young-Dupre equation. This project utilized the Mg-based alloy Mg-2Zn-2Gd with supplemented alpha-Minimum Essential Medium (MEM), Phosphate Buffer Saline solution (PBS), and distilled water. These three liquids are commonly used in cell cultivation and protein adsorption studies. Supplemented alpha-MEM consisted of alpha-MEM, fetal bovine serum, and penicillin-streptomycin. Mg-2Zn-2Gd was used because of observed superior mechanical properties and better corrosion resistance as compared to conventional Mg-alloys. These attractive properties have made it possible for this alloy to be used in biomedical devices within the human body. However, the successful use of this alloy system in the human body requires knowledge in the response of protein adsorption on the alloy surface. Protein adsorption depends on many parameters, but one of the most important factors is the wettability behavior at the surface.

  16. Corrosion assessment and enhanced biocompatibility analysis of biodegradable magnesium-based alloys

    NASA Astrophysics Data System (ADS)

    Pompa, Luis Enrique

    Magnesium alloys have raised immense interest to many researchers because of its evolution as a new third generation material. Due to their biocompatibility, density, and mechanical properties, magnesium alloys are frequently reported as prospective biodegradable implant materials. Moreover, magnesium based alloys experience a natural phenomena to biodegrade in aqueous solutions due to its corrosive activity, which is excellent for orthopedic and cardiovascular applications. However, major concerns with such alloys are fast and non-uniform corrosion degradation. Controlling the degradation rate in the physiological environment determines the success of an implant. In this investigation, three grades of magnesium alloys: AZ31B, AZ91E and ZK60A were studied for their corrosion resistance and biocompatibility. Scanning electron microscopy, energy dispersive spectroscopy, atomic force microscopy and contact angle meter are used to study surface morphology, chemistry, roughness and wettability, respectively. Additionally, the cytotoxicity of the leached metal ions was evaluated by a tetrazolium based bio-assay, MTS.

  17. Fabrication of tungsten wire reinforced nickel-base alloy composites

    NASA Technical Reports Server (NTRS)

    Brentnall, W. D.; Toth, I. J.

    1974-01-01

    Fabrication methods for tungsten fiber reinforced nickel-base superalloy composites were investigated. Three matrix alloys in pre-alloyed powder or rolled sheet form were evaluated in terms of fabricability into composite monotape and multi-ply forms. The utility of monotapes for fabricating more complex shapes was demonstrated. Preliminary 1093C (2000F) stress rupture tests indicated that efficient utilization of fiber strength was achieved in composites fabricated by diffusion bonding processes. The fabrication of thermal fatigue specimens is also described.

  18. New Developments of Ti-Based Alloys for Biomedical Applications

    PubMed Central

    Li, Yuhua; Yang, Chao; Zhao, Haidong; Qu, Shengguan; Li, Xiaoqiang; Li, Yuanyuan

    2014-01-01

    Ti-based alloys are finding ever-increasing applications in biomaterials due to their excellent mechanical, physical and biological performance. Nowdays, low modulus β-type Ti-based alloys are still being developed. Meanwhile, porous Ti-based alloys are being developed as an alternative orthopedic implant material, as they can provide good biological fixation through bone tissue ingrowth into the porous network. This paper focuses on recent developments of biomedical Ti-based alloys. It can be divided into four main sections. The first section focuses on the fundamental requirements titanium biomaterial should fulfill and its market and application prospects. This section is followed by discussing basic phases, alloying elements and mechanical properties of low modulus β-type Ti-based alloys. Thermal treatment, grain size, texture and properties in Ti-based alloys and their limitations are dicussed in the third section. Finally, the fourth section reviews the influence of microstructural configurations on mechanical properties of porous Ti-based alloys and all known methods for fabricating porous Ti-based alloys. This section also reviews prospects and challenges of porous Ti-based alloys, emphasizing their current status, future opportunities and obstacles for expanded applications. Overall, efforts have been made to reveal the latest scenario of bulk and porous Ti-based materials for biomedical applications. PMID:28788539

  19. Evaluation of an advanced directionally solidified gamma/gamma'-alpha Mo eutectic alloy

    NASA Technical Reports Server (NTRS)

    Henry, M. F.; Jackson, M. R.; Gigliotti, M. F. X.; Nelson, P. B.

    1979-01-01

    An attempt was made to improve on the properties of the candidate jet engine turbine blade material AG-60, a gamma/gamma prime-alpha Mo eutectic composite. Alloy 38 (AG-170) was evaluated in the greatest detail. This alloy, Ni-5.88 A1-29.74 Mo-1.65 V-1.2C Re (weight percent), represents an improvement beyond AG-60, based on mechanical testing of the transverse and/or longitudinal orientations over a range of temperatures in tension, shear, rupture, and rupture after thermal exposure. It is likely that other alloys in the study represent a similar improvement.

  20. Cladding of Mg alloy with Zr based BMG Alloy

    NASA Astrophysics Data System (ADS)

    Prasada Rao, A. K.; Oh, Y. S.; Faisal, M. K.; Kim, N. J.

    2016-02-01

    In the present work, an attempt has been made to clad AZ31 magnesium alloy with Zr-based bulk metallic glassy alloy (Vit-1), by casting method. The interface studies conducted using SEM-EDS line scan indicate that a good bond is formed at the clad interface of Zr and Mg. And the mechanism involved is discussed herein.

  1. Evaluation of dispersion strengthened nickel-base alloy heat shields for space shuttle application

    NASA Technical Reports Server (NTRS)

    Johnson, R., Jr.; Killpatrick, D. H.

    1976-01-01

    The results obtained in a program to evaluate dispersion-strengthened nickel-base alloys for use in a metallic radiative thermal protection system operating at surface temperatures to 1477 K for the space shuttle were presented. Vehicle environments having critical effects on the thermal protection system are defined; TD Ni-20Cr characteristics of material used in the current study are compared with previous results; cyclic load, temperature, and pressure effects on sheet material residual strength are investigated; the effects of braze reinforcement in improving the efficiency of spotwelded joints are evaluated; parametric studies of metallic radiative thermal protection systems are reported; and the design, instrumentation, and testing of full scale subsize heat shield panels in two configurations are described. Initial tests of full scale subsize panels included simulated meteoroid impact tests, simulated entry flight aerodynamic heating, programmed differential pressure loads and temperatures simulating mission conditions, and acoustic tests simulating sound levels experienced during boost flight.

  2. Welding and brazing of nickel and nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Mortland, J. E.; Evans, R. M.; Monroe, R. E.

    1972-01-01

    The joining of four types of nickel-base materials is described: (1) high-nickel, nonheat-treatable alloys, (2) solid-solution-hardening nickel-base alloys, (3) precipitation-hardening nickel-base alloys, and (4) dispersion-hardening nickel-base alloys. The high-nickel and solid-solution-hardening alloys are widely used in chemical containers and piping. These materials have excellent resistance to corrosion and oxidation, and retain useful strength at elevated temperatures. The precipitation-hardening alloys have good properties at elevated temperature. They are important in many aerospace applications. Dispersion-hardening nickel also is used for elevated-temperature service.

  3. Coating of 6028 Aluminum Alloy Using Aluminum Piston Alloy and Al-Si Alloy-Based Nanocomposites Produced by the Addition of Al-Ti5-B1 to the Matrix Melt

    NASA Astrophysics Data System (ADS)

    El-Labban, Hashem F.; Abdelaziz, M.; Mahmoud, Essam R. I.

    2014-10-01

    The Al-12 pctSi alloy and aluminum-based composites reinforced with TiB2 and Al3Ti intermetallics exhibit good wear resistance, strength-to-weight ratio, and strength-to-cost ratio when compared to equivalent other commercial Al alloys, which make them good candidates as coating materials. In this study, structural AA 6028 alloy is used as the base material. Four different coating materials were used. The first one is Al-Si alloy that has Si content near eutectic composition. The second, third, and fourth ones are Al-6 pctSi-based reinforced with TiB2 and Al3Ti nano-particles produced by addition of Al-Ti5-B1 master alloy with different weight percentages (1, 2, and 3 pct). The coating treatment was carried out with the aid of GTAW process. The microstructures of the base and coated materials were investigated using optical microscope and scanning electron microscope equipped with EDX analyzer. Microhardness of the base material and the coated layer were evaluated using a microhardness tester. GTAW process results in almost sound coated layer on 6028 aluminum alloy with the used four coating materials. The coating materials of Al-12 pct Si alloy resulted in very fine dendritic Al-Si eutectic structure. The interface between the coated layer and the base metal was very clean. The coated layer was almost free from porosities or other defects. The coating materials of Al-6 pct Si-based mixed with Al-Ti5-B1 master alloy with different percentages (1, 2, and 3 pct), results in coated layer consisted of matrix of fine dendrite eutectic morphology structure inside α-Al grains. Many fine in situ TiAl3 and TiB2 intermetallics were precipitated almost at the grain boundary of α-Al grains. The amounts of these precipitates are increased by increasing the addition of Al-Ti5-B1 master alloy. The surface hardness of the 6028 aluminum alloy base metal was improved with the entire four used surface coating materials. The improvement reached to about 85 pct by the first type of

  4. Evaluation of mechanically alloyed Cu-based powders as filler alloy for brazing tungsten to a reduced activation ferritic-martensitic steel

    NASA Astrophysics Data System (ADS)

    de Prado, J.; Sánchez, M.; Ureña, A.

    2017-07-01

    80Cu-20Ti powders were evaluated for their use as filler alloy for high temperature brazing of tungsten to a reduced activation ferritic/martensitic steel (Eurofer), and its application for the first wall of the DEMO fusion reactor. The use of alloyed powders has not been widely considered for brazing purposes and could improve the operational brazeability of the studied system due to its narrower melting range, determined by DTA analysis, which enhances the spreading capabilities of the filler. Ti contained in the filler composition acts as an activator element, reacting and forming several interfacial layers at the Eurofer-braze, which enhances the wettability properties and chemical interaction at the brazing interface. Brazing thermal cycle also activated the diffusion phenomena, which mainly affected to the Eurofer alloying elements causing in it a softening band of approximately 400 μm of thickness. However, this softening effect did not degrade the shear strength of the brazed joints (94 ± 23 MPa), because failure during testing was always located at the tungsten-braze interface.

  5. Performance evaluation of several commercial alloys in a reducing environment

    NASA Astrophysics Data System (ADS)

    Liu, Y.

    Several commercial alloys including Ebrite, Crofer 22 APU, Haynes 230 and Haynes 242, which are candidates for intermediate-temperature solid oxide fuel cell (SOFC) interconnect materials, were isothermally and cyclically oxidized at 900 °C in the reducing atmosphere of Ar + 5 vol.% H 2 + 3 vol.% H 2O corresponding to the SOFC anode environment. Results indicate that these alloys exhibited good scale spallation resistance with the Ni-base alloys possessing better oxidation resistance over the Fe-base alloys. Both Mn-Cr spinel and Cr 2O 3 were formed in the oxide scales of these alloys. For Crofer 22 APU and Haynes 242, a continuous protective MnO and Mn-Cr spinel layer formed outside on the inner layer of Cr 2O 3. The increase in scale ASR after longer-term thermal exposure in the reducing environment was relatively slower for the Ni-base alloys than for the Fe-base alloys.

  6. Evaluation of lithium alloy anode materials for Li-TiS2 cells

    NASA Technical Reports Server (NTRS)

    Huang, C.-K.; Subbarao, S.; Shen, D. H.; Deligiannis, F.; Attia, A.; Halpert, G.

    1991-01-01

    A study was performed to select candidate lithium alloy anode materials and establish selection criteria. Some of the selected alloy materials were evaluated for their electrochemical properties and performance. This paper describes the criteria for the selection of alloys and the findings of the studies. Li-Si and Li-Cd alloys have been found to be unstable in the EC+2-MeTHF-based electrolyte. The Li-Al alloy system was found to be promising among the alloy systems studied in view of its stability and reversibility. Unfortunately, the large volume changes of LiAl alloys during charge/discharge cycling cause considerable 'exfoliation' of its active mass. This paper also describes ways how to address this problem. The rate of disintegration of this anode would probably be surpressed by the presence of an inert solid solution or a uniform distribution of precipitates within the grains of the active mass. It was discovered that the addition of a small quantity of Mn may improve the mechanical properties of LiAl. In an attempt to reduce the Li-Al alloy vs. Li voltage, it was observed that LiAlPb(0.1)Cd(0.3) material can be cycled at 1.5 mA/sq cm without exfoliation of the active mass.

  7. Rare-earth metals in nickel aluminide-based alloys: III. Structure and properties of multicomponent Ni3Al-based alloys

    NASA Astrophysics Data System (ADS)

    Bazyleva, O. A.; Povarova, K. B.; Kazanskaya, N. K.; Drozdov, A. A.

    2009-04-01

    The possibility of increasing the life of heterophase cast light Ni3Al-based superalloys at temperatures higher than 0.8 T m of Ni3Al is studied when their directional structure is additionally stabilized by nanoprecipitates, which form upon additional alloying of these alloys by refractory and active metals, and using special methods for preparing and melting of an alloy charge. The effect of the method of introducing the main components and refractory reaction-active and surface-active alloying elements into Ni3Al-based cast superalloys, which are thermally stable natural composite materials of the eutectic type, on the structure-phase state and the life of these alloys is studied. When these alloys are melted, it is necessary to perform a set of measures to form particles of refractory oxide cores covered with the β-NiAl phase and, then, γ'prim-Ni3Al phase precipitates during solidification. The latter phase forms the outer shell of grain nuclei, which provides high thermal stability and hot strength of an intermetallic compound-based alloy. As a result, a modified structure that is stabilized by the nanoprecipitates of nickel and aluminum lanthanides and the nanoprecipitates of phases containing refractory metals is formed. This structure enhances the life of the alloy at 1000 °C by a factor of 1.8-2.5.

  8. Fabrication and study of double sintered TiNi-based porous alloys

    NASA Astrophysics Data System (ADS)

    Sergey, Anikeev; Valentina, Hodorenko; Timofey, Chekalkin; Victor, Gunther; Ji-hoon, Kang; Ji-soon, Kim

    2017-05-01

    Double-sintered porous TiNi-based alloys were fabricated and their structural characteristics and physico-mechanical properties were investigated. A fabrication technology of powder mixtures is elaborated in this article. Sintering conditions were chosen experimentally to ensure good structure and properties. The porous alloys were synthesized by solid-state double diffusion sintering (DDS) of Ti-Ni powder and prepare to obtain dense, crack-free, and homogeneous samples. The Ti-Ni compound sintered at various temperatures was investigated by scanning electron microscopy. Phase composition of the sintered alloys was determined by x-ray diffraction. Analysis of the data confirmed the morphology and structural parameters. Mechanical and physical properties of the sintered alloys were evaluated. DDS at 1250 °C was found to be optimal to produce porous samples with a porosity of 56% and mean pore size of 90 μm. Pore size distribution was unimodal within the narrow range of values. The alloys present enhanced strength and ductility, owing to both the homogeneity of the macrostructure and relative elasticity of the bulk, which is hardened by the Ni-rich precipitates. These results suggest the possibility to manufacture porous TiNi-based alloys for application as a new class of dental implants.

  9. Chrome-free Samarium-based Protective Coatings for Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Hou, Legan; Cui, Xiufang; Yang, Yuyun; Lin, Lili; Xiao, Qiang; Jin, Guo

    The microstructure of chrome-free samarium-based conversion coating on magnesium alloy was investigated and the corrosion resistance was evaluated as well. The micro-morphology, transverse section, crystal structure and composition of the coating were observed by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and X- ray photoelectron spectroscopy (XPS), respectively. The corrosion resistance was evaluated by potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The results reveal that the morphology of samarium conversion coating is of crack-mud structure. Tiny cracks distribute in the compact coating deposited by samarium oxides. XRD, EDS and XPS results characterize that the coating is made of amorphous and trivalent-samarium oxides. The potentiodynamic polarization curve, EIS and OCP indicate that the samarium conversion coating can improve the corrosion resistance of magnesium alloys.

  10. Magnesium-based biodegradable alloys: Degradation, application, and alloying elements

    PubMed Central

    Pogorielov, Maksym; Husak, Eugenia; Solodivnik, Alexandr; Zhdanov, Sergii

    2017-01-01

    In recent years, the paradigm about the metal with improved corrosion resistance for application in surgery and orthopedy was broken. The new class of biodegradable metal emerges as an alternative for biomedical implants. These metals corrode gradually with an appropriate host response and release of corrosion products. And it is absolutely necessary to use essential metals metabolized by hosting organism with local and general nontoxic effect. Magnesium serves this aim best; it plays the essential role in body metabolism and should be completely excreted within a few days after degradation. This review summarizes data from Mg discovery and its first experimental and clinical application of modern concept of Mg alloy development. We focused on biodegradable metal application in general surgery and orthopedic practice and showed the advantages and disadvantages Mg alloys offer. We focused on methods of in vitro and in vivo investigation of degradable Mg alloys and correlation between these methods. Based on the observed data, a better way for new alloy pre-clinical investigation is suggested. This review analyzes possible alloying elements that improve corrosion rate, mechanical properties, and gives the appropriate host response. PMID:28932493

  11. Evaluation of alloys and coatings for use in automobile thermal reactors

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P.; Oldrieve, R. E.

    1974-01-01

    Several candidate alloys and coatings were evaluated for use in automobile thermal reactors. Full-size reactors of the candidate materials were evaluated in cyclic engine dynamometer tests with a peak temperature of 1040 C (1900 F). Two developmental ferritic-iron alloys, GE-1541 and NASA-18T, exhibited the best overall performance by lasting at least 60 percent of the life of test engine. Four of the alloys evaluated warrant consideration for reactor use. They are GE-1541, Armco 18 SR, NASA-18T, and Inconel 601. None of the commercial coating substrate combinations evaluated warrant consideration for reactor use.

  12. Comparison of the tensile bond strength of high-noble, noble, and base metal alloys bonded to enamel.

    PubMed

    Sen, D; Nayir, E; Pamuk, S

    2000-11-01

    Although the bond strengths of various resin composite luting materials have been reported in the literature, the evaluation of these systems with various cast alloys of different compositions has not been completely clarified. To evaluate the tensile bond strength of sandblasted high-noble, noble, and base metal alloys bonded to etched enamel by 2 different bonding agents of different chemical composition: Panavia-Ex (BIS-GMA) and Super-Bond (4-META acrylic). Flat enamel surfaces were prepared on buccal surfaces of 60 extracted noncarious human incisors. Teeth were divided into 3 groups of 20 each. Twenty circular disks of 5 mm diameter were prepared for casting for each group. Group I was cast with a high-noble, group II with a noble, and group III with a base metal alloy. The surfaces of the disks were sandblasted with 250 microm Al(2)O(3). Ten disks of each group were bonded to exposed enamel surfaces with Super-Bond and 10 disks with Panavia-Ex as recommended by the manufacturer. The tensile bond strength was measured with an Instron universal testing machine with a crosshead speed of 0.5 mm/min until failure occurred. Two-way ANOVA was used to evaluate the results. The differences in bond strengths of Super-Bond and Panavia-Ex with different alloys were not significant. The highest bond strengths were obtained in base metal alloys, followed by noble and high-noble alloys. These results were significant. Panavia-Ex and Super-Bond exhibited comparable tensile bond strengths. For both luting agents, the highest bond strengths were achieved with base metal alloys and the lowest with high-noble alloys.

  13. Analysis of thermoelectric properties of high-temperature complex alloys of nickel-base, iron-base and cobalt-base groups

    NASA Technical Reports Server (NTRS)

    Holanda, R.

    1984-01-01

    The thermoelectric properties alloys of the nickel-base, iron-base, and cobalt-base groups containing from 1% to 25% 106 chromium were compared and correlated with the following material characteristics: atomic percent of the principle alloy constituent; ratio of concentration of two constituents; alloy physical property (electrical resistivity); alloy phase structure (percent precipitate or percent hardener content); alloy electronic structure (electron concentration). For solid-solution-type alloys the most consistent correlation was obtained with electron concentration, for precipitation-hardenable alloys of the nickel-base superalloy group, the thermoelectric potential correlated with hardener content in the alloy structure. For solid-solution-type alloys, no problems were found with thermoelectric stability to 1000; for precipitation-hardenable alloys, thermoelectric stability was dependent on phase stability. The effects of the compositional range of alloy constituents on temperature measurement uncertainty are discussed.

  14. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolodosky, A.; Fratoni, M.

    breeding, low electrical conductivity and therefore low MHD pressure drop, low chemical reactivity, and extremely low tritium inventory; the addition of sodium (FLiNaBe) has been considered because it retains the properties of FliBe but also lowers the melting point. Although many of these blanket concepts are promising, challenges still remain. The limited amount of beryllium available poses a problem for ceramic breeders such as the HCPB. FLiBe and FLiNaBe are highly viscous and have a low thermal conductivity. Lithium lead possesses a poor thermal conductivity which can cause problems in both DCLL and LiPb blankets. Additionally, the tritium permeation from these two blankets into plant components can be a problem and must be reduced. Consequently, Lawrence Livermore National Laboratory (LLNL) is attempting to develop a lithium-based alloy—most likely a ternary alloy—which maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns for use in the blanket of an inertial fusion energy (IFE) power plant. The LLNL concept employs inertial confinement fusion (ICF) through the use of lasers aimed at an indirect-driven target composed of deuterium-tritium fuel. The fusion driver/target design implements the same physics currently experimented at the National Ignition Facility (NIF). The plant uses lithium in both the primary coolant and blanket; therefore, lithium-related hazards are of primary concern. Although reducing chemical reactivity is the primary motivation for the development of new lithium alloys, the successful candidates will have to guarantee acceptable performance in all their functions. The scope of this study is to evaluate the neutronics performance of a large number of lithium-based alloys in the blanket of the IFE engine and assess their properties upon activation. This manuscript is organized as follows: Section 12 presents the models and methodologies used for the analysis

  15. Evaluation of advanced austenitic alloys relative to alloy design criteria for steam service

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swindeman, R.W.; Maziasz, P.J.; Bolling, E.

    1990-05-01

    The results are summarized for a 6-year activity on advanced austenitic stainless steels for heat recovery systems. Commercial, near-commercial, and developmental alloys were evaluated relative to criteria for metallurgical stability, fabricability, weldability, and mechanical strength. Fireside and steamside corrosion were also considered, but no test data were collected. Lean stainless steel alloys that were given special attention in the study were type 316 stainless steel, fine-grained type 347 stainless steel, 17-14CuMo stainless steel, Esshete 1250, Sumitomo ST3Cu{reg sign} stainless steel, and a group of alloys identified as HT-UPS (high-temperature, ultrafine-precipitation strengthened) steels that were basically 14Cr--16Ni--Mo steels modified by variousmore » additions of MC-forming elements. It was found that, by solution treating the MC-forming alloys to temperatures above 1150{degree}C and subsequently cold or warm working, excellent metallurgical stability and creep strength could be achieved. Test data to beyond 35,000 h were collected. The ability to clad the steels for improved fireside corrosion resistance was demonstrated. Weldability of the alloys was of concern, and hot cracking was found to be a problem in the HT-UPS alloys. By reducing the phosphorous content and selecting either CRE 16-8-2 stainless steel or alloy 556 filler metal, weldments were produced that had excellent strength and ductility. The major issues related to the development of the advanced alloys were identified and ways to resolve the issues suggested. 89 refs., 45 figs., 8 tabs.« less

  16. Evaluation of Sc-Bearing Aluminum Alloy C557 for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Dicus, Dennis L.

    2002-01-01

    The performance of the Al-Mg-Sc alloy C557 was evaluated to assess its potential for a broad range of aerospace applications, including airframe and launch vehicle structures. Of specific interest were mechanical properties at anticipated service temperatures and thermal stability of the alloy. Performance was compared with conventional airframe aluminum alloys and with other emerging aluminum alloys developed for specific service environments. Mechanical properties and metallurgical structure were evaluated for commercially rolled sheet in the as-received H116 condition and after thermal exposures at 107 C. Metallurgical analyses were performed to de.ne grain morphology and texture, strengthening precipitates, and to assess the effect of thermal exposure.

  17. Overlapping double etch technique for evaluation of metallic alloys to stress corrosion cracking

    DOEpatents

    Steeves, Arthur F.; Stewart, James C.

    1981-01-01

    A double overlapping etch zone technique for evaluation of the resistance of metallic alloys to stress corrosion cracking. The technique involves evaluating the metallic alloy along the line of demarcation between an overlapping double etch zone and single etch zone formed on the metallic alloy surface.

  18. Overlapping double etch technique for evaluation of metallic alloys to stress corrosion cracking

    DOEpatents

    Not Available

    1980-05-28

    A double overlapping etch zone technique for evaluation of the resistance of metallic alloys to stress corrosion cracking is described. The technique involves evaluating the metallic alloy along the line of demarcation between an overlapping double etch zone and single etch zone formed on the metallic alloy surface.

  19. Evaluation of ultraliner PVC alloy pipeliner.

    DOT National Transportation Integrated Search

    2013-12-01

    In an effort to evaluate promising pipe lining techniques, the Agency installed two Ultraliner : PVC Alloy Pipeliners in the town of Barton, Vermont in May of 2003; one in an 18 : - : inch (450 : mm nominal) reinforced concrete pipe (RCP) and one in ...

  20. Choosing An Alloy For Automotive Stirling Engines

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.

    1988-01-01

    Report describes study of chemical compositions and microstructures of alloys for automotive Stirling engines. Engines offer advantages of high efficiency, low pollution, low noise, and ability to use variety of fuels. Twenty alloys evaluated for resistance to corrosion permeation by hydrogen, and high temperature. Iron-based alloys considered primary candidates because of low cost. Nickel-based alloys second choice in case suitable iron-based alloy could not be found. Cobalt-based alloy included for comparison but not candidate, because it is expensive strategic material.

  1. Cobalt-Base Alloy Gun Barrel Study

    DTIC Science & Technology

    2014-07-01

    Cobalt-Base Alloy Gun Barrel Study by William S. de Rosset and Jonathan S. Montgomery ARL-RP-0491 July 2014 A reprint...21005-5069 ARL-RP-0491 July 2014 Cobalt-Base Alloy Gun Barrel Study William S. de Rosset and Jonathan S. Montgomery Weapons and Materials... Gun Barrel Study 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) William S. de Rosset and Jonathan S. Montgomery

  2. Cladding burst behavior of Fe-based alloys under LOCA

    DOE PAGES

    Terrani, Kurt A.; Dryepondt, Sebastien N.; Pint, Bruce A.; ...

    2015-12-17

    Burst behavior of austenitic and ferritic Fe-based alloy tubes has been examined under a simulated large break loss of coolant accident. Specifically, type 304 stainless steel (304SS) and oxidation resistant FeCrAl tubes were studied alongside Zircaloy-2 and Zircaloy-4 that are considered reference fuel cladding materials. Following the burst test, characterization of the cladding materials was carried out to gain insights regarding the integral burst behavior. Given the widespread availability of a comprehensive set of thermo-mechanical data at elevated temperatures for 304SS, a modeling framework was implemented to simulate the various processes that affect burst behavior in this Fe-based alloy. Themore » most important conclusion is that cladding ballooning due to creep is negligible for Fe-based alloys. Thus, unlike Zr-based alloys, cladding cross-sectional area remains largely unchanged up to the point of burst. Furthermore, for a given rod internal pressure, the temperature onset of burst in Fe-based alloys appears to be simply a function of the alloy's ultimate tensile strength, particularly at high rod internal pressures.« less

  3. My Experience with Ti-Ni-Based and Ti-Based Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Miyazaki, Shuichi

    2017-12-01

    The present author has been studying shape memory alloys including Cu-Al-Ni, Ti-Ni-based, and Ni-free Ti-based alloys since 1979. This paper reviews the present author's research results for the latter two materials since 1981. The topics on the Ti-Ni-based alloys include the achievement of superelasticity in Ti-Ni alloys through understanding of the role of microstructures consisting of dislocations and precipitates, followed by the contribution to the development of application market of shape memory effect and superelasticity, characterization of the R-phase and monoclinic martensitic transformations, clarification of the basic characteristics of fatigue properties, development of sputter-deposited shape memory thin films and fabrication of prototypes of microactuators utilizing thin films, development of high temperature shape memory alloys, and so on. The topics of Ni-free Ti-based shape memory alloys include the characterization of the orthorhombic phase martensitic transformation and related shape memory effect and superelasticity, the effects of texture, omega phase and adding elements on the martensitic transformation and shape memory properties, clarification of the unique effects of oxygen addition to induce non-linear large elasticity, Invar effect and heating-induced martensitic transformation, and so on.

  4. Evaluation and control of environmental corrosion for aluminum and steel alloys

    NASA Technical Reports Server (NTRS)

    Franklin, D. B.

    1977-01-01

    Corrosion protection systems for aerospace application and the effects of surface treatments and methods of controlling stress corrosion are evaluated. Chromate pigmented systems were found to be most effective for aluminum alloys; zinc-rich coatings gave the greatest protection to steel alloys. Various steel and aluminum alloys are rated for stress corrosion resistance.

  5. Application of sintered titanium alloys to metal denture bases: a study of titanium powder sheets for complete denture base.

    PubMed

    Doi, H; Harrori, M; Hasegawa, K; Yoshinari, M; Kawada, E; Oda, Y

    2001-02-01

    The purpose of this study was the fabrication of titanium powder sheets to enable the application of sintered titanium alloys as metal denture bases. The effects of titanium particle shape and size, binder content, and plasticizer content on the surface smoothness, tensile strength and elongation of titanium powder sheets was investigated. To select a suitable ratio of powdered metal contents for application as a metal denture base, the effects of aluminum content in Ti sheets and various other powder metal contents in Ti-Al sheets on the density, sintering shrinkage, and bending strength were evaluated. Based on the results of the above experiments, we developed a mixed powder sheet composed of 83Ti-7Al-10Cr with TA45 titanium powder (atomized, -45 microm), and 8 mass% binder content. This titanium alloy sheet had good formability and ductility. Its sintered titanium alloy had a density of 3.2 g/cm3, sintering shrinkage of 3.8%, and bending strength of 403 MPa. The titanium alloy sheet is clinically acceptable for fabricating denture bases.

  6. An evaluation of the benefits of utilizing rapid solidification for development of 2XXX (Al-Cu-Mg) alloys

    NASA Technical Reports Server (NTRS)

    Paris, H. G.; Chellman, D. J.

    1986-01-01

    The advantages of rapid solidification processing over ingot metallurgy processing in the development of 2XXX aluminum alloy compositions were evaluated using a similarly processed ingot metallurgy (IM) control alloy. The powder metallurgy (PM) alloy extrusions showed a reduced age-hardening response in comparison with similar IM compositions, with higher tensile properties for naturally aged extrusions but lower properties for artificially aged ones. However, the tensile properties of naturally and artificially aged PM alloy extrusions based on a version of IM 2034 alloy, but containing 0.6 weight percent zirconium, were comparable to those of the IM control extrusions and had significantly superior combinations of strength and toughness. The tensile properties of this PM alloy showed even greater advantage in 6.4-mm (0.25-in.) and 1.8-mm (0.070-in.) plate and sheet, the yield strength being about 68 MPa (10 ksi) greater than reported values for the IM 2034 alloy sheet. An artificially aged PM alloy based on 2219 alloy also showed a strength and strength-toughness combination comparable to those of the PM Al-Cu-Mg-Zr alloy, substantially outperforming the IM 2219 alloy. These results show that rapid solidification offers the flexibility needed to modify conventional IM compositions to produce new alloy compositions with superior mechanical properties.

  7. Quantitative Residual Strain Analyses on Strain Hardened Nickel Based Alloy

    NASA Astrophysics Data System (ADS)

    Yonezawa, Toshio; Maeguchi, Takaharu; Goto, Toru; Juan, Hou

    Many papers have reported about the effects of strain hardening by cold rolling, grinding, welding, etc. on stress corrosion cracking susceptibility of nickel based alloys and austenitic stainless steels for LWR pipings and components. But, the residual strain value due to cold rolling, grinding, welding, etc. is not so quantitatively evaluated.

  8. Effect of nitrogen on iron-manganese-based shape memory alloys

    NASA Astrophysics Data System (ADS)

    Ariapour, Azita

    Shape memory effect is due to a reversible martensitic transformation. The major drawback in case of Fe-Mn-based shape memory alloys is their inferior shape memory effect compared to Ni-Ti and Cu-based shape memory alloys and their low strength and corrosion resistance compared to steel alloys. It is known that by increasing the alloy strength the shape memory effect can be improved. Nitrogen in solid solution can increase the strength of steels to a greater extent than other major alloying elements. However, its effect on shape memory effect of Fe-Mn-based alloys is ambiguous. In this work first we investigated the effect of nitrogen addition in solid solution on both shape memory effect (SME) and strength of a Fe-Mn-Cr-Ni-Si shape memory alloy (SMA). It was found that interstitial nitrogen suppressed the shape memory effect in these alloys. As an example addition of 0.24 wt % nitrogen in solid solution to the alloy system suppressed the SME by ˜80% and increased the strength by 20%. A reduction of martensitic phase formation was found to be the dominant factor in suppression of the SME. This was related, experimentally and theoretically to stacking fault energy of the alloy as well as the driving force and friction force during the transformation. The second approach was doping the alloy with both 0.36 wt% of nitrogen and 0.36 wt% of niobium. Niobium has great affinity for nitrogen and thus NbN dispersed particles can be produced in the alloy following hot rolling. Then particles prevent growth of the alloy and increase the strength of the alloy due to reduced grain size, and precipitation hardening. The improvement of SME in this alloy compared to the interstitial containing alloys was due to the large removal of the nitrogen from solid solution. In case of all the alloys studied in this work, the presence of nitrogen in solid solution improved the corrosion resistance of the alloy. This suggests that nitrogen can replace nickel in the alloy. One of the

  9. Schaeffler-Type Phase Diagram of Ti-Based Alloys

    NASA Astrophysics Data System (ADS)

    Ishida, K.

    2017-10-01

    The α(hcp)/β(bcc) phase equilibria of Ti-based multi-component alloys can be described by a Schaeffler-type diagram, where Al and Mo equivalents (Aleq and Moeq) are used. Aleq is thermodynamically defined by the ratio of partial molar free energy changes transfer of one mole of each α forming element and Al from a dilute solution of α to β phases, while Moeq is also deduced by similar thermodynamic quantities of β forming element and Mo. Aleq and Moeq for 40 alloying elements are estimated from the thermodynamic parameters assessed by Kaufman and Murray. It is shown that three types of Ti alloys, i.e., α and near α, α+β, and β alloys, can be exactly classified using Aleq and Moeq. The Ms and β transus temperatures can also be predicted by Aleq and Moeq. The proposed Aleq and Moeq are very useful for alloy design, heat treatment, and microstructural evolution of Ti-based alloys.

  10. Ternary Magnesium-Lithium Base Constitution Diagrams and Magnesium Alloys of Low Alloy Additions

    DTIC Science & Technology

    1951-03-01

    progress In eperimental development of mgmesiu-bease &alls with low alloy additions. The primry purpose of this investiptiU is to obtain alloys baving a...Casting Magnesium-Lithium Base Ternary Alloys Melting and Castirg Technigue The design , construction and operation of equipment for melting and...protection during heat treatment were: 1. Design and construction of a specimen container to hold a number of specimens in an inert atmosphere in order to WAC

  11. An evaluation of alloys and coatings for use in automobile thermal reactors

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P.; Oldrieve, R. E.

    1974-01-01

    Several candidate alloys and coatings were evaluated for use in automobile thermal reactors. Full-size reactors of the candidate materials were analyzed in cyclic engine dynamometer tests with peak temperature of 1900 F (1040 C). Two developmental ferritic iron alloys GE1541 and NASA-18T - exhibited the best overall performance lasting at least 60% of the life of the test engine. Four of the alloys evaluated warrant consideration for reactor use. They include GE1541, Armco 18 SR, NASA-18T, and Inconel 601. None of the commercial coating substrate combinations evaluated warrant consideration for reactor use.-

  12. Fracture toughness evaluation of select advanced replacement alloys for LWR core internals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Lizhen; Chen, Xiang

    Life extension of the existing nuclear reactors imposes irradiation of high fluences to structural materials, resulting in significant challenges to the traditional reactor materials such as type 304 and 316 stainless steels. Advanced alloys with superior radiation resistance will increase safety margins, design flexibility, and economics for not only the life extension of the existing fleet but also new builds with advanced reactor designs. The Electric Power Research Institute (EPRI) teamed up with Department of Energy (DOE) to initiate the Advanced Radiation Resistant Materials (ARRM) program, aiming to develop and test degradation resistant alloys from current commercial alloy specifications bymore » 2021 to a new advanced alloy with superior degradation resistance in light water reactor (LWR)-relevant environments by 2024. Fracture toughness is one of the key engineering properties required for core internal materials. Together with other properties, which are being examined such as high-temperature steam oxidation resistance, radiation hardening, and irradiation-assisted stress corrosion cracking resistance, the alloys will be down-selected for neutron irradiation study and comprehensive post-irradiation examinations. According to the candidate alloys selected under the ARRM program, ductile fracture toughness of eight alloys was evaluated at room temperature and the LWR-relevant temperatures. The tested alloys include two ferritic alloys (Grade 92 and an oxide-dispersion-strengthened alloy 14YWT), two austenitic stainless steels (316L and 310), four Ni-base superalloys (718A, 725, 690, and X750). Alloy 316L and X750 are included as reference alloys for low- and high-strength alloys, respectively. Compact tension specimens in 0.25T and 0.2T were machined from the alloys in the T-L and R-L orientations according to the product forms of the alloys. This report summarizes the final results of the specimens tested and analyzed per ASTM Standard E1820. Unlike

  13. Microstructural Evaluations of Baseline HSR/EPM Disk Alloys

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Garg, Anita; Ellis, David L.

    2004-01-01

    Six alloys representing two classes of powder metallurgy nickel-based superalloys were examined by transmission electron microscopy (TEM) and phase extraction. Alloys KM4, CH98, IN-100 and 456 are based on a Ni-18Co-12Cr composition while alloys Rene' 88 DT and SR 3 have lower Al and Co and higher Cr contents. The lambda size distributions were determined from quantitative image analysis of the TEM images. The volume fraction of lambda and carbides and the composition of the phases were determined by a combination of phase extraction and TEM. The results showed many similarities in lambda size distributions, grain boundary serrations, and grain boundary carbide frequencies between alloys KM4, CH98, 456, Rene' 88 DT and SR 3 when heat treated to give an approximate grain size of ASTM 6. The density of grain boundary carbides in KM4 was shown to substantially increase as the grain size increased. IN-100 and 456 subjected to a serration cooling heat treatment had much more complex lambda size distributions with very large intergranular and intragranular secondary lambda as well as finer than average cooling and aging lambda. The grain boundary carbides in IN-100 were similar to the other alloys, but 456 given the serration cooling heat treatment had a more variable density of grain boundary carbides. Examination of the phases extracted from the matrix showed that there were significant differences in the phase chemistries and elemental partitioning ratios between the various alloys.

  14. Metallurgical characterization of experimental Ag-based soldering alloys.

    PubMed

    Ntasi, Argyro; Al Jabbari, Youssef S; Silikas, Nick; Al Taweel, Sara M; Zinelis, Spiros

    2014-10-01

    To characterize microstructure, hardness and thermal properties of experimental Ag-based soldering alloys for dental applications. Ag12Ga (AgGa) and Ag10Ga5Sn (AgGaSn) were fabricated by induction melting. Six samples were prepared for each alloy and microstructure, hardness and their melting range were determined by, scanning electron microscopy, energy dispersive X-ray (EDX) microanalysis, X-ray diffraction (XRD), Vickers hardness testing and differential scanning calorimetry (DSC). Both alloys demonstrated a gross dendritic microstructure while according to XRD results both materials consisted predominately of a Ag-rich face centered cubic phase The hardness of AgGa (61 ± 2) was statistically lower than that of AgGaSn (84 ± 2) while the alloys tested showed similar melting range of 627-762 °C for AgGa and 631-756 °C for AgGaSn. The experimental alloys tested demonstrated similar microstructures and melting ranges. Ga and Sn might be used as alternative to Cu and Zn to modify the selected properties of Ag based soldering alloys.

  15. Evaluation of Cyclic Behavior of Aircraft Turbine Disk Alloys

    NASA Technical Reports Server (NTRS)

    Shahani, V.; Popp, H. G.

    1978-01-01

    An evaluation of the cyclic behavior of three aircraft engine turbine disk materials was conducted to compare their relative crack initiation and crack propagation resistance. The disk alloys investigated were Inconel 718, hot isostatically pressed and forged powder metallurgy Rene '95, and as-hot-isostatically pressed Rene '95. The objective was to compare the hot isostatically pressed powder metallurgy alloy forms with conventionally processed superalloys as represented by Inconel 718. Cyclic behavior was evaluated at 650 C both under continuously cycling and a fifteen minute tensile hold time cycle to simulate engine conditions. Analysis of the test data were made to evaluate the strain range partitioning and energy exhaustion concepts for predicting hold time effects on low cycle fatigue.

  16. The resistance of selected high strength alloys to embrittlement by a hydrogen environment. [iron and cobalt base alloys

    NASA Technical Reports Server (NTRS)

    Benson, R. B., Jr.

    1974-01-01

    Selected high strength iron base and cobalt base alloys were resistant to degradation of mechanical properties in a one atmosphere hydrogen environment at ambient temperature. These alloys were strengthened initially by cold working which produced strain induced martensite and fcc mechanical twins in an fcc matrix. Heat treatment of the cobalt base alloy after cold working produced carbide precipitates with retention of an hcp epsilon phase which increased the yield strength level. High strength alloys can be produced which have some resistance to degradation of mechanical properties by a hydrogen environment under certain conditions.

  17. Vibration Sensor Monitoring of Nickel-Titanium Alloy Turning for Machinability Evaluation.

    PubMed

    Segreto, Tiziana; Caggiano, Alessandra; Karam, Sara; Teti, Roberto

    2017-12-12

    Nickel-Titanium (Ni-Ti) alloys are very difficult-to-machine materials causing notable manufacturing problems due to their unique mechanical properties, including superelasticity, high ductility, and severe strain-hardening. In this framework, the aim of this paper is to assess the machinability of Ni-Ti alloys with reference to turning processes in order to realize a reliable and robust in-process identification of machinability conditions. An on-line sensor monitoring procedure based on the acquisition of vibration signals was implemented during the experimental turning tests. The detected vibration sensorial data were processed through an advanced signal processing method in time-frequency domain based on wavelet packet transform (WPT). The extracted sensorial features were used to construct WPT pattern feature vectors to send as input to suitably configured neural networks (NNs) for cognitive pattern recognition in order to evaluate the correlation between input sensorial information and output machinability conditions.

  18. Vibration Sensor Monitoring of Nickel-Titanium Alloy Turning for Machinability Evaluation

    PubMed Central

    Segreto, Tiziana; Karam, Sara; Teti, Roberto

    2017-01-01

    Nickel-Titanium (Ni-Ti) alloys are very difficult-to-machine materials causing notable manufacturing problems due to their unique mechanical properties, including superelasticity, high ductility, and severe strain-hardening. In this framework, the aim of this paper is to assess the machinability of Ni-Ti alloys with reference to turning processes in order to realize a reliable and robust in-process identification of machinability conditions. An on-line sensor monitoring procedure based on the acquisition of vibration signals was implemented during the experimental turning tests. The detected vibration sensorial data were processed through an advanced signal processing method in time-frequency domain based on wavelet packet transform (WPT). The extracted sensorial features were used to construct WPT pattern feature vectors to send as input to suitably configured neural networks (NNs) for cognitive pattern recognition in order to evaluate the correlation between input sensorial information and output machinability conditions. PMID:29231864

  19. Influence of S. mutans on base-metal dental casting alloy toxicity.

    PubMed

    McGinley, E L; Dowling, A H; Moran, G P; Fleming, G J P

    2013-01-01

    We have highlighted that exposure of base-metal dental casting alloys to the acidogenic bacterium Streptococcus mutans significantly increases cellular toxicity following exposure to immortalized human TR146 oral keratinocytes. With Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), S. mutans-treated nickel-based (Ni-based) and cobalt-chromium-based (Co-Cr-based) dental casting alloys were shown to leach elevated levels of metal ions compared with untreated dental casting alloys. We targeted several biological parameters: cell morphology, viable cell counts, cell metabolic activity, cell toxicity, and inflammatory cytokine expression. S. mutans-treated dental casting alloys disrupted cell morphology, elicited significantly decreased viable cell counts (p < 0.0001) and cell metabolic activity (p < 0.0001), and significantly increased cell toxicity (p < 0.0001) and inflammatory cytokine expression (p < 0.0001). S. mutans-treated Ni-based dental casting alloys induced elevated levels of cellular toxicity compared with S. mutans-treated Co-Cr-based dental casting alloys. While our findings indicated that the exacerbated release of metal ions from S. mutans-treated base-metal dental casting alloys was the likely result of the pH reduction during S. mutans growth, the exact nature of mechanisms leading to accelerated dissolution of alloy-discs is not yet fully understood. Given the predominance of S. mutans oral carriage and the exacerbated cytotoxicity observed in TR146 cells following exposure to S. mutans-treated base-metal dental casting alloys, the implications for the long-term stability of base-metal dental restorations in the oral cavity are a cause for concern.

  20. Effect of different alloyed layers on the high temperature oxidation behavior of newly developed Ti 2AlNb-based alloys

    NASA Astrophysics Data System (ADS)

    Wu, Hongyan; Zhang, Pingze; Zhao, Haofeng; Wang, Ling; Xie, Aigen

    2011-01-01

    The application of titanium aluminide orthorhombic alloys (O-phase alloys) as potential materials in aircraft and jet engines was limited by their poor oxidation resistance at high temperature. The Ti 2AlNb-based alloys were chromised (Cr), chromium-tungstened (Cr-W) and nickel-chromised (Ni-Cr) by the double glow plasma surface alloying process to improve their high temperature oxidation resistance. The discontinuous oxidative behavior of Cr, Cr-W and Ni-Cr alloyed layers on Ti 2AlNb-based alloy at 1093 K was explored in this study. After exposing at 1093 K, the TiO 2 layer was formed on the bare alloy and accompanied by the occurrence of crack, which promoted oxidation rate. The oxidation behavior of Ti 2AlNb-based alloys was improved by surface alloying due to the formation of protective Al 2O 3 scale or continuous and dense NiCr 2O 4 film. The Ni-Cr alloyed layer presented the best high-temperature oxidation resistance among three alloyed layers.

  1. Effect of Microstructure and Alloy Chemistry on Hydrogen Embrittlement of Precipitation-Hardened Ni-Based Alloys

    NASA Astrophysics Data System (ADS)

    Obasi, G. C.; Zhang, Z.; Sampath, D.; Morana, Roberto; Akid, R.; Preuss, M.

    2018-04-01

    The sensitivity to hydrogen embrittlement (HE) has been studied in respect of precipitation size distributions in two nickel-based superalloys: Alloy 718 (UNS N07718) and Alloy 945X (UNS N09946). Quantitative microstructure analysis was carried out by the combination of scanning and transmission electron microscopy and energy dispersive x-ray spectroscopy (EDS). While Alloy 718 is mainly strengthened by γ″, and therefore readily forms intergranular δ phase, Alloy 945X has been designed to avoid δ formation by reducing Nb levels providing high strength through a combination of γ' and γ″. Slow strain rate tensile tests were carried out for different microstructural conditions in air and after cathodic hydrogen (H) charging. HE sensitivity was determined based on loss of elongation due to the H uptake in comparison to elongation to failure in air. Results showed that both alloys exhibited an elevated sensitivity to HE. Fracture surfaces of the H precharged material showed quasi-cleavage and transgranular cracks in the H-affected region, while ductile failure was observed toward the center of the sample. The crack origins observed on the H precharged samples exhibited quasi-cleavage with slip traces at high magnification. The sensitivity is slightly reduced for Alloy 718, by coarsening γ″ and reducing the overall strength of the alloy. However, on further coarsening of γ″, which promotes continuous decoration of grain boundaries with δ phase, the embrittlement index rose again indicating a change of hydrogen embrittlement mechanism from hydrogen-enhanced local plasticity (HELP) to hydrogen-enhanced decohesion embrittlement (HEDE). In contrast, Alloy 945X displayed a strong correlation between strength, based on precipitation size and embrittlement index, due to the absence of any significant formation of δ phase for the investigated microstructures. For the given test parameters, Alloy 945X did not display any reduced sensitivity to HE compared with

  2. Preliminary Evaluation of Cavitation-Erosion Resistance of Ti-Alloys in Mercury for the Spallation Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawel, Steven J; Mansur, Louis K

    2010-01-01

    A number of Ti-based alloys in both the mill-annealed and 20% cold-worked conditions were subjected to sonication conditions in Hg using a vibratory horn to assess relative cavitation-erosion resistance. Weight loss as a function of exposure time was roughly proportional to hardness for all alloys/conditions examined, with Ti-6Al-4V (Ti-Grade 5) and Ti-6Al-2Sn-4Zr-2Mo yielding the best resistance to cavitation-erosion as evidenced by low weight losses and little or no tendency to form pits on the exposed surface. Unalloyed Ti (Ti-Grade 4) and Ti-0.12Pd (Ti-Grade 7) exhibited greater weight losses by a factor or about two and about five, respectively, with Ti-0.12Pdmore » particularly prone to pitting development. The mean erosion rates of the best two Ti-alloys examined here were about a factor of three higher than identically tested 316LN stainless steel following a low temperature carburizing treatment, but this difference is considered minor given that the rate for both materials is very low/manageable and represents a through-thickness property for the Ti-alloys. A nitriding surface treatment was also evaluated as a potential method to further increase the cavitation-erosion resistance of these alloys in Hg, but the selected treatment proved largely ineffective. Recommendations for further work to evaluate the efficacy of Ti-based alloys for use in high-powered targets for the Spallation Neutron Source are given.« less

  3. Design of a nitrogen-implanted titanium-based superelastic alloy with optimized properties for biomedical applications.

    PubMed

    Gordin, D M; Busardo, D; Cimpean, A; Vasilescu, C; Höche, D; Drob, S I; Mitran, V; Cornen, M; Gloriant, T

    2013-10-01

    In this study, a superelastic Ni-free Ti-based biomedical alloy was treated in surface by the implantation of nitrogen ions for the first time. The N-implanted surface was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and secondary ion mass spectroscopy, and the superficial mechanical properties were evaluated by nano-indentation and by ball-on-disk tribological tests. To investigate the biocompatibility, the corrosion resistance of the N-implanted Ti alloy was evaluated in simulated body fluids (SBF) complemented by in-vitro cytocompatibility tests on human fetal osteoblasts. After implantation, surface analysis methods revealed the formation of a titanium-based nitride on the substrate surface. Consequently, an increase in superficial hardness and a significant reduction of friction coefficient were observed compared to the non-implanted sample. Also, a better corrosion resistance and a significant decrease in ion release rates have been obtained. Cell culture experiments indicated that the cytocompatibility of the N-implanted Ti alloy was superior to that of the corresponding non-treated sample. Thus, this new functional N-implanted titanium-based superelastic alloy presents the optimized properties that are required for various medical devices: superelasticity, high superficial mechanical properties, high corrosion resistance and excellent cytocompatibility. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. On improving the fracture toughness of a NiAl-based alloy by mechanical alloying

    NASA Technical Reports Server (NTRS)

    Kostrubanic, J.; Koss, D. A.; Locci, I. E.; Nathal, M.

    1991-01-01

    Mechanical alloying (MA) has been used to process the NiAl-based alloy Ni-35Al-20Fe, such that a fine-grain (about 2 microns) microstructure is obtained through the addition of 2 vol pct Y2O3 particles. When compared to a conventionally processed, coarse-grained (about 28 microns) Ni-35-20 alloy without the Y2O3 particles, the MA alloy exhibits two to three times higher fracture toughness values, despite a 50-percent increase in yield strength. Room-temperature K(O) values as high as 34 MPa sq rt m are observed, accompanied by a yield strength in excess of 1100 MPa. Fractography confirms a change in fracture characteristics of the fine-grained MA alloy.

  5. Metallurgical and electrochemical characterization of contemporary silver-based soldering alloys.

    PubMed

    Ntasi, Argyro; Al Jabbari, Youssef; Mueller, Wolf Dieter; Eliades, George; Zinelis, Spiros

    2014-05-01

    To investigate the microstructure, hardness, and electrochemical behavior of four contemporary Ag-based soldering alloys used for manufacturing orthodontic appliances. The Ag-based alloys tested were Dentaurum Universal Silver Solder (DEN), Orthodontic Solders (LEO), Ortho Dental Universal Solder (NOB), and Silver Solder (ORT). Five disk-shaped specimens were produced for each alloy, and after metallographic preparation their microstructural features, elemental composition, and hardness were determined by scanning electron microscopy with energy-dispersive X-ray (EDX) microanalysis, X-ray diffraction (XRD) analysis, and Vickers hardness testing. The electrochemical properties were evaluated by anodic potentiodynamic scanning in 0.9% NaCl and Ringer's solutions. Hardness, corrosion current (Icorr), and corrosion potential (Ecorr) were statistically analyzed by one-way analysis of variance and Tukey test (α=.05). EDX analysis showed that all materials belong to the Ag-Zn-Cu ternary system. Three different mean atomic contrast phases were identified for LEO and ORT and two for DEN and NOB. According to XRD analysis, all materials consisted of Ag-rich and Cu-rich face-centered cubic phases. Hardness testing classified the materials in descending order as follows: DEN, 155±3; NOB, 149±3; ORT, 141±4; and LEO, 136±8. Significant differences were found for Icorr of NOB in Ringer's solution and Ecorr of DEN in 0.9% NaCl solution. Ag-based soldering alloys demonstrate great diversity in their elemental composition, phase size and distribution, hardness, and electrochemical properties. These differences may anticipate variations in their clinical performance.

  6. MATE (Materials for Advanced Turbine Engines) Program, Project 3. Volume 2: Design, fabrication and evaluation of an oxide dispersion strengthened sheet alloy combustor liner

    NASA Technical Reports Server (NTRS)

    Bose, S.; Sheffler, K. D.

    1988-01-01

    The suitability of wrought oxide dispersion strengthened (ODS) superalloy sheet for gas turbine engine combustor applications was evaluated. Two yttria (Y2O3) dispersion strengthened alloys were evaluated; Incoloy MA956 and Haynes Development Alloy (HDA) 8077 (NiCrAl base). Preliminary tests showed both alloys to be potentially viable combustor materials, with neither alloy exhibiting a significant advantage over the other. MA956 was selected as the final alloy based on manufacturing reproducibility for evaluation as a burner liner. A hybrid PW2037 inner burner liner containing MA956 and Hastelloy X components and using a louvered configuration was designed and constructed. The louvered configuration was chosen because of field experience and compatibility with the bill of material PW2037 design. The simulated flight cycle for the ground based engine tests consisted of 4.5 min idle, 1.5 min takeoff and intermediate conditions in a PW2037 engine with average uncorrected combustor exit temperature of 1527 C. Post test evaluation consisting of visual observations and fluorescent penetrant inspections was conducted after 500 cycles of testing. No loss of integrity in the burner liner was shown.

  7. Tensile and stress-rupture behavior of hafnium carbide dispersed molybdenum and tungsten base alloy wires

    NASA Technical Reports Server (NTRS)

    Yun, Hee Mann; Titran, Robert H.

    1993-01-01

    The tensile strain rate sensitivity and the stress-rupture strength of Mo-base and W-base alloy wires, 380 microns in diameter, were determined over the temperature range from 1200 K to 1600 K. Three molybdenum alloy wires; Mo + 1.1w/o hafnium carbide (MoHfC), Mo + 25w/o W + 1.1w/o hafnium carbide (MoHfC+25W) and Mo + 45w/o W + 1.1w/o hafnium carbide (MoHfC+45W), and a W + 0.4w/o hafnium carbide (WHfC) tungsten alloy wire were evaluated. The tensile strength of all wires studied was found to have a positive strain rate sensitivity. The strain rate dependency increased with increasing temperature and is associated with grain broadening of the initial fibrous structures. The hafnium carbide dispersed W-base and Mo-base alloys have superior tensile and stress-rupture properties than those without HfC. On a density compensated basis the MoHfC wires exhibit superior tensile and stress-rupture strengths to the WHfC wires up to approximately 1400 K. Addition of tungsten in the Mo-alloy wires was found to increase the long-term stress rupture strength at temperatures above 1400 K. Theoretical calculations indicate that the strength and ductility advantage of the HfC dispersed alloy wires is due to the resistance to recrystallization imparted by the dispersoid.

  8. Metallurgical characterization of experimental Ag-based soldering alloys

    PubMed Central

    Ntasi, Argyro; Al Jabbari, Youssef S.; Silikas, Nick; Al Taweel, Sara M.; Zinelis, Spiros

    2014-01-01

    Aim To characterize microstructure, hardness and thermal properties of experimental Ag-based soldering alloys for dental applications. Materials and methods Ag12Ga (AgGa) and Ag10Ga5Sn (AgGaSn) were fabricated by induction melting. Six samples were prepared for each alloy and microstructure, hardness and their melting range were determined by, scanning electron microscopy, energy dispersive X-ray (EDX) microanalysis, X-ray diffraction (XRD), Vickers hardness testing and differential scanning calorimetry (DSC). Results Both alloys demonstrated a gross dendritic microstructure while according to XRD results both materials consisted predominately of a Ag-rich face centered cubic phase The hardness of AgGa (61 ± 2) was statistically lower than that of AgGaSn (84 ± 2) while the alloys tested showed similar melting range of 627–762 °C for AgGa and 631–756 °C for AgGaSn. Conclusion The experimental alloys tested demonstrated similar microstructures and melting ranges. Ga and Sn might be used as alternative to Cu and Zn to modify the selected properties of Ag based soldering alloys. PMID:25382945

  9. Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg-Li-(Al)-(RE) alloys for future cardiovascular stent application.

    PubMed

    Zhou, W R; Zheng, Y F; Leeflang, M A; Zhou, J

    2013-11-01

    Mg-Li-based alloys were investigated for future cardiovascular stent application as they possess excellent ductility. However, Mg-Li binary alloys exhibited reduced mechanical strengths due to the presence of lithium. To improve the mechanical strengths of Mg-Li binary alloys, aluminum and rare earth (RE) elements were added to form Mg-Li-Al ternary and Mg-Li-Al-RE quarternary alloys. In the present study, six Mg-Li-(Al)-(RE) alloys were fabricated. Their microstructures, mechanical properties and biocorrosion behavior were evaluated by using optical microscopy, X-ray diffraction, scanning electronic microscopy, tensile tests, immersion tests and electrochemical measurements. Microstructure characterization indicated that grain sizes were moderately refined by the addition of rare earth elements. Tensile testing showed that enhanced mechanical strengths were obtained, while electrochemical and immersion tests showed reduced corrosion resistance caused by intermetallic compounds distributed throughout the magnesium matrix in the rare-earth-containing Mg-Li alloys. Cytotoxicity assays, hemolysis tests as well as platelet adhesion tests were performed to evaluate in vitro biocompatibilities of the Mg-Li-based alloys. The results of cytotoxicity assays clearly showed that the Mg-3.5Li-2Al-2RE, Mg-3.5Li-4Al-2RE and Mg-8.5Li-2Al-2RE alloys suppressed vascular smooth muscle cell proliferation after 5day incubation, while the Mg-3.5Li, Mg-8.5Li and Mg-8.5Li-1Al alloys were proven to be tolerated. In the case of human umbilical vein endothelial cells, the Mg-Li-based alloys showed no significantly reduced cell viabilities except for the Mg-8.5Li-2Al-2RE alloy, with no obvious differences in cell viability between different culture periods. With the exception of Mg-8.5Li-2Al-2RE, all of the other Mg-Li-(Al)-(RE) alloys exhibited acceptable hemolysis ratios, and no sign of thrombogenicity was found. These in vitro experimental results indicate the potential of Mg

  10. Breakaway phenomenon of Zr-based alloys during a high-temperature oxidation

    NASA Astrophysics Data System (ADS)

    Baek, Jong Hyuk; Jeong, Yong Hwan

    2008-01-01

    The breakaway oxidation phenomena in Zr-based alloys were studied in the temperature range of 950-1200 °C for up to 36 000 s by using a modified thermo-gravimetric analyzer. After the oxidation tests, the oxidation behaviors, breakaway oxidation time, hydrogen pick-up contents, and oxidation rate constants of the alloys were systematically evaluated in this study. The breakaway oxidation time was shortened with an increase of the Sn content in the Zr alloys. A breakaway oxidation phenomenon could be caused by the transition of a tetragonal oxide phase into a monoclinic one, and the oxide transition could lead to form the oxide cracks in both the lateral and radial directions. The cracks within the oxide layer could result in catastrophic increase in the weight gain rates and rapid increase the hydrogen pick-up within the oxygen-stabilized α-Zr and prior β-Zr layers. The oxidation rate constants calculated from the post-breakaway data in the Zr alloys with breakaway oxidation behaviors matched well with the values from both the Baker-Just and Cathcart-Pawel correlations.

  11. Ni3Al-based alloys for die and tool application

    DOEpatents

    Liu, Chain T.; Bloom, Everett E.

    2001-01-01

    A novel Ni.sub.3 Al-based alloy exhibits strengths and hardness in excess of the standard base alloy IC-221M at temperatures of up to about 1000.degree. C. The alloy is useful in tool and die applications requiring such temperatures, and for structural elements in engineering systems exposed to such temperatures.

  12. Creep rupture testing of alloy 617 and A508/533 base metals and weldments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natesan, K.; Li, M.; Soppet, W.K.

    2012-01-17

    The NGNP, which is an advanced HTGR concept with emphasis on both electricity and hydrogen production, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 750-1000 C. Alloy 617 is a prime candidate for VHTR structural components such as reactor internals, piping, and heat exchangers in view of its resistance to oxidation and elevated temperature strength. However, lack of adequate data on the performance of the alloy in welded condition prompted to initiate a creep test program at Argonne National Laboratory. In addition, Testing has been initiated tomore » evaluate the creep rupture properties of the pressure vessel steel A508/533 in air and in helium environments. The program, which began in December 2009, was certified for quality assurance NQA-1 requirements during January and February 2010. Specimens were designed and fabricated during March and the tests were initiated in April 2010. During the past year, several creep tests were conducted in air on Alloy 617 base metal and weldment specimens at temperatures of 750, 850, and 950 C. Idaho National Laboratory, using gas tungsten arc welding method with Alloy 617 weld wire, fabricated the weldment specimens. Eight tests were conducted on Alloy 617 base metal specimens and nine were on Alloy 617 weldments. The creep rupture times for the base alloy and weldment tests were up to {approx}3900 and {approx}4500 h, respectively. The results showed that the creep rupture lives of weld specimens are much longer than those for the base alloy, when tested under identical test conditions. The test results also showed that the creep strain at fracture is in the range of 7-18% for weldment samples and were much lower than those for the base alloy, under similar test conditions. In general, the weldment specimens showed more of a flat or constant creep rate region than the base metal specimens. The base alloy and the weldment exhibited

  13. Design of diaphragm actuator based on ferromagnetic shape memory alloy composite

    NASA Astrophysics Data System (ADS)

    Liang, Yuanchang; Taya, Minoru; Kuga, Yasuo

    2003-08-01

    A new diaphragm actuator based on the ferromagnetic shape memory alloy (FSMA) composite is designed where the FSMA composite is composed of ferromagnetic soft iron and superelastic grade of NiTi shape memory alloy (SMA). The actuation mechanism for the FSMA composite plate of the actuator is the hybrid mechanism that we proposed previously. This diaphragm actuator is the first design toward designing a new synthetic jet actuator that will be used for active flow control technology on airplane wings. The design of the FSMA composite diaphragm actuator was established first by using both mechanical and ferromagnetic finite element analyses with an aim of optimization of the actuator components. Based on the FEM results, the first generation diaphragm actuator system was assembled and its static and dynamic performance was experimentally evaluated.

  14. Fused slurry silicide coatings for columbium alloys reentry heat shields. Volume 1: Evaluation analysis

    NASA Technical Reports Server (NTRS)

    Fitzgerald, B.

    1973-01-01

    The R-512E (Si-20Cr-20Fe) fused slurry silicide coating process was optimized to coat full size (20in x 20in) single face rib and corrugation stiffened panels fabricated from FS-85 columbium alloy for 100 mission space shuttle heat shield applications. Structural life under simulated space shuttle lift-off stresses and reentry conditions demonstrated reuse capability well beyond 100 flights for R-512E coated FS-85 columbium heat shield panels. Demonstrated coating damage tolerance showed no immediate structural failure on exposure. The FS-85 columbium alloy was selected from five candidate alloys (Cb-752, C-129Y, WC-3015, B-66 and FS-85) based on the evaluation tests which have designed to determine: (1) change in material properties due to coating and reuse; (2) alloy tolerance to coating damage; (3) coating emittance characteristics under reuse conditions; and (4) new coating chemistries for improved coating life.

  15. Calculations of hydrogen diffusivity in Zr-based alloys: Influence of alloying elements and effect of stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, J.; Jiang, C.; Zhang, Y.

    This report summarizes the progress on modeling hydrogen diffusivity in Zr-based alloys. The presence of hydrogen (H) can detrimentally affect the mechanical properties of many metals and alloys. To mitigate these detrimental effects requires fundamental understanding of the thermodynamics and kinetics governing H pickup and hydride formation. In this work, we focus on H diffusion in Zr-based alloys by studying the effects of alloying elements and stress, factors that have been shown to strongly affect H pickup and hydride formation in nuclear fuel claddings. A recently developed accelerated kinetic Monte Carlo method is used for the study. It is foundmore » that for the alloys considered here, H diffusivity depends weakly on composition, with negligible effect at high temperatures in the range of 600-1200 K. Therefore, the small variation in compositions of these alloys is likely not a major cause of the very different H pickup rates. In contrast, stress strongly affects H diffusivity. This effect needs to be considered for studying hydride formation and delayed hydride cracking.« less

  16. Neutronics and activation analysis of lithium-based ternary alloys in IFE blankets

    DOE PAGES

    Jolodosky, Alejandra; Kramer, Kevin; Meier, Wayne; ...

    2016-04-09

    Here we report that an attractive feature of using liquid lithium as the breeder and coolant in fusion blankets is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. The Lawrence Livermore National Laboratory is carrying an effort to develop a lithium-based alloy that maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) and at the same time reduces overall flammability concerns. This study evaluates the neutronics performance of lithium-based alloys inmore » the blanket of an inertial fusion energy chamber in order to inform such development. 3-D Monte Carlo calculations were performed to evaluate two main neutronics performance parameters for the blanket: tritium breeding ratio (TBR), and the fusion energy multiplication factor (EMF). It was found that elements that exhibit low absorption cross sections and higher q-values such as lead, tin, and strontium, perform well with those that have high neutron multiplication such as lead and bismuth. These elements meet TBR constrains ranging from 1.02 to 1.1. However, most alloys do not reach EMFs greater than 1.15. Additionally, it was found that enriching lithium significantly increases the TBR and decreases the minimum lithium concentration by more than 60%. The amount of enrichment depends on how much total lithium is in the alloy to begin with. Alloys that performed well in the TBR and EMF calculations were considered for activation analysis. Activation simulations were executed with 50 years of irradiation and 300 years of cooling. It was discovered that bismuth is a poor choice due to achieving the highest decay heat, contact dose rates, and accident doses. In addition, it does not meet the waste disposal ratings (WDR). Some of the activation results for alloys with tin, zinc, and gallium were in

  17. The Effect of Solution Heat Treatment on an Advanced Nickel-Base Disk Alloy

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Kantzos, P. T.

    2004-01-01

    Five heat treat options for an advanced nickel-base disk alloy, LSHR, have been investigated. These included two conventional solution heat treat cycles, subsolvus/oil quench and supersolvus/fan cool, which yield fine grain and coarse grain microstructure disks respectively, as well as three advanced dual microstructure heat treat (DMHT) options. The DMHT options produce disks with a fine grain bore and a coarse grain rim. Based on an overall evaluation of the mechanical property data, it was evident that the three DMHT options achieved a desirable balance of properties in comparison to the conventional solution heat treatments for the LSHR alloy. However, one of the DMHT options, SUB/DMHT, produced the best set of properties, largely based on dwell crack growth data. Further evaluation of the SUB/DMHT option in spin pit experiments on a generic disk shape demonstrated the advantages and reliability of a dual grain structure at the component level.

  18. Electrochemical hydrogen storage alloys and batteries fabricated from Mg containing base alloys

    DOEpatents

    Ovshinsky, Stanford R.; Fetcenko, Michael A.

    1996-01-01

    An electrochemical hydrogen storage material comprising: (Base Alloy).sub.a M.sub.b where, Base Alloy is an alloy of Mg and Ni in a ratio of from about 1:2 to about 2:1, preferably 1:1; M represents at least one modifier element chosen from the group consisting of Co, Mn, Al, Fe, Cu, Mo, W, Cr, V, Ti, Zr, Sn, Th, Si, Zn, Li, Cd, Na, Pb, La, Mm, and Ca; b is greater than 0.5, preferably 2.5, atomic percent and less than 30 atomic percent; and a+b=100 atomic percent. Preferably, the at least one modifier is chosen from the group consisting of Co, Mn, Al, Fe, and Cu and the total mass of the at least one modifier element is less than 25 atomic percent of the final composition. Most preferably, the total mass of said at least one modifier element is less than 20 atomic percent of the final composition.

  19. Microfluidic platforms for gallium-based liquid metal alloy

    NASA Astrophysics Data System (ADS)

    Kim, Daeyoung

    As an alternative to toxic mercury, non-toxic gallium-based liquid metal alloy has been gaining popularity due to its higher thermal and electrical conductivities, and low toxicity along with liquid property. However, it is difficult to handle as the alloy becomes readily oxidized in atmospheric air environment. This instant oxidation causes the gallium-based liquid metal alloy to wet almost any solid surface. Therefore, it has been primarily limited to applications which rely only on its deformability, not on its mobility. In this research, various approaches to mobilize gallium-based liquid metal alloy were investigated. Multi-scale surface patterned with polydimethylsiloxane (PDMS) micro pillar array showed super-lyophobic property against gallium-based liquid metal alloy by minimizing the contact area between the solid surface and the liquid metal, and it was expanded to a three-dimensional tunnel shaped microfluidic channel. Vertically-aligned carbon nanotube forest leads to another promising super-lyophobic surface due to its hierarchical micro/nano scale combined structures and chemical inertness. When the carbon nanotubes were transferred onto flexible PDMS by imprinting, the super-lyophobic property was still maintained even under the mechanical deformation such as stretching and bending. Alternatively, the gallium-based liquid metal can be manipulated by modifying the surface of liquid metal itself. With chemical reaction with HCl 'vapor', the oxidized surface (mainly Ga2O3/Ga2O) of gallium-based liquid metal was converted to GaCl3/InCl 3 resulting in the recovery of non-wetting characteristics. Paper which is intrinsically porous is attractive as a super-lyophobic surface and it was found that hydrochloric acid (HCl) impregnation enhanced the anti-wetting property by the chemical reaction. As another alternative method, by coating the viscoelastic oxidized surface of liquid metal with ferromagnetic materials (CoNiMnP or Fe), it showed non

  20. Synthesis of aluminum-based scandium-yttrium master alloys

    NASA Astrophysics Data System (ADS)

    Bazhin, V. Yu.; Kosov, Ya. I.; Lobacheva, O. L.; Dzhevaga, N. V.

    2015-07-01

    The preparation technology for an Al-2% Sc-0.5% Y master alloy using aluminum-manganese alloys has been developed and tested. The microstructure of the prepared master alloy is studied and the compositions of intermetallics is determined. The efficient technological parameters of the synthesis are determined. It is shown that varying the compositions of starting reagents and alloying additions and optimizing the process conditions (temperature, mixing, etc.) allow us to forecast the manufacturing and operating characteristics of aluminum-based master alloys. Joint additions of scandium and yttrium oxides to a charge favor a substantial decrease in the grain size of the formed intermetallics; this effect appears to the utmost in the case of microallying with yttrium up to 0.5 wt %.

  1. An evaluation of GTAW-P versus GTA welding of alloy 718

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.; Kurgan, C.; Malone, T. W.

    1991-01-01

    Mechanical properties were evaluated to determine statistically whether the pulsed current gas tungsten arc welding (GTAW-P) process produces welds in alloy 718 with room temperature structural performance equivalent to current Space Shuttle Main Engine (SSME) welds manufactured by the constant current GTAW-P process. Evaluations were conducted on two base metal lots, two filler metal lots, two heat input levels, and two welding processes. The material form was 0.125-inch (3.175-mm) alloy 718 sheet. Prior to welding, sheets were treated to either the ST or STA-1 condition. After welding, panels were left as welded or heat treated to the STA-1 condition, and weld beads were left intact or machined flush. Statistical analyses were performed on yield strength, ultimate tensile strength (UTS), and high cycle fatigue (HCF) properties for all the post welded material conditions. Analyses of variance were performed on the data to determine if there were any significant effects on UTS or HCF life due to variations in base metal, filler metal, heat input level, or welding process. Statistical analyses showed that the GTAW-P process does produce welds with room temperature structural performance equivalent to current SSME welds manufactured by the GTAW process, regardless of prior material condition or post welding condition.

  2. A microstructure-based yield stress and work-hardening model for textured 6xxx aluminium alloys

    NASA Astrophysics Data System (ADS)

    Khadyko, M.; Myhr, O. R.; Dumoulin, S.; Hopperstad, O. S.

    2016-04-01

    The plastic properties of an aluminium alloy are defined by its microstructure. The most important factors are the presence of alloying elements in the form of solid solution and precipitates of various sizes, and the crystallographic texture. A nanoscale model that predicts the work-hardening curves of 6xxx aluminium alloys was proposed by Myhr et al. The model predicts the solid solution concentration and the particle size distributions of different types of metastable precipitates from the chemical composition and thermal history of the alloy. The yield stress and the work hardening of the alloy are then determined from dislocation mechanics. The model was largely used for non-textured materials in previous studies. In this work, a crystal plasticity-based approach is proposed for the work hardening part of the nanoscale model, which allows including the influence of the crystallographic texture. The model is evaluated by comparison with experimental data from uniaxial tensile tests on two textured 6xxx alloys in five temper conditions.

  3. Comparative Evaluation of Cast Aluminum Alloys for Automotive Cylinder Heads: Part I—Microstructure Evolution

    NASA Astrophysics Data System (ADS)

    Roy, Shibayan; Allard, Lawrence F.; Rodriguez, Andres; Watkins, Thomas R.; Shyam, Amit

    2017-05-01

    The present study stages a comparative evaluation of microstructure and associated mechanical and thermal response for common cast aluminum alloys that are used for manufacturing automotive cylinder heads. The systems considered are Al-Cu (206-T6), Al-Si-Cu (319-T7), and Al-Si (356-T6, A356-T6, and A356 + 0.5Cu-T6). The focus of the present manuscript is on the evaluation of microstructure at various length scales after aging, while the second manuscript will deal with the mechanical and thermal response of these alloys due to short-term (aging) and long-term (pre-conditioning) heat treatments. At the grain-scale, the Al-Cu alloy possessed an equiaxed microstructure as opposed to the dendritic structure for the Al-Si-Cu or Al-Si alloys which is related to the individual solidification conditions for these alloy systems. The composition and morphology of intermetallic precipitates within the grain and at the grain/dendritic boundary are dictated by the alloy chemistry, solidification, and heat treatment conditions. At the nanoscale, these alloys contain various metastable strengthening precipitates (GPI and θ^'' in Al-Cu alloy, θ^' in Al-Si-Cu alloy, and β^' in Al-Si alloys) with varying size, morphology, coherency, and thermal stability.

  4. Processability evaluation of a Mo-containing FeCrAl alloy for seamless thin-wall tube fabrication

    DOE PAGES

    Sun, Zhiqian; Yamamoto, Yukinori

    2017-06-10

    The processability of a Mo-containing FeCrAl alloy (Fe-13Cr-5.2Al-2Mo base, in wt%), developed for accident-tolerant nuclear fuel claddings, was evaluated through a stepwise rolling process at 400 °C under two different inter-pass annealing conditions (i.e., 650 °C for 1 h and at 870 °C for 30 min). The inter-pass annealing at 870 °C easily softened the FeCrAl alloy; however, it led to the formation of coarse grains of ~200 µm. On the other hand, the FeCrAl alloy maintained elongated, deformed grains with the inter-pass annealing at 650 °C, but the annealed samples showed relatively high deformation resistance and strong texture. Importantmore » aspects concerning the processability and microstructural control of FeCrAl alloys, such as deformation inhomogeneity, texture development, and grain coarsening, were discussed. Optimized processing conditions were recommended, based on the results, to achieve desirable microstructures with balanced processability and mechanical properties.« less

  5. Synthesis of an Al-Mn-Based Alloy Containing In Situ-Formed Quasicrystals and Evaluation of Its Mechanical and Corrosion Properties

    NASA Astrophysics Data System (ADS)

    Naglič, Iztok; Samardžija, Zoran; Delijić, Kemal; Kobe, Spomenka; Leskovar, Blaž; Markoli, Boštjan

    2018-05-01

    An Al-Mn alloy with additions of copper, magnesium, and silicon was prepared and cast into a copper mold. It contains in situ-formed icosahedral quasicrystals (iQCs), as confirmed by electron backscatter diffraction. The aim of this work is to present the mechanical and corrosion properties of this alloy and compare its properties with some conventional commercial materials. The compressive strength and compressive yield strength were 751 MPa and 377 MPa, while the compressive fracture strain was 19%. It was observed that intensive shearing caused the final fracture of the specimens and the fractured iQC dendrites still showed cohesion with the α-Al matrix. The polarization resistance and corrosion rate of the artificially aged alloy were 7.30 kΩ and 1.2 μm/year. The evaluated properties are comparable to conventional, discontinuously reinforced aluminum metal-matrix composites and structural wrought aluminum alloys.

  6. Indentation creep behaviors of amorphous Cu-based composite alloys

    NASA Astrophysics Data System (ADS)

    Song, Defeng; Ma, Xiangdong; Qian, Linfang

    2018-04-01

    This work reports the indentation creep behaviors of two Si2Zr3/amorphous Cu-based composite alloys utilizing nanoindentation technique. By analysis with Kelvin model, the retardation spectra of alloys at different positions, detached and attached regions to the intermetallics, were deduced. For the indentation of detached regions to Si2Zr3 intermetallics in both alloys, very similarity in creep displacement can be observed and retardation spectra show a distinct disparity in the second retardation peak. For the indentation of detached regions, the second retardation spectra also display distinct disparity. At both positions, the retardation spectra suggest that Si elements may lead to the relatively dense structure in the amorphous matrix and to form excessive Si2Zr3 intermetallics which may deteriorate the plastic deformation of current Cu-based composite alloys.

  7. Comparative evaluation of cast aluminum alloys for automotive cylinder heads: Part I Microstructure evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Shibayan; Allard, Jr, Lawrence Frederick; Rodriguez, Andres

    The present study stages a comparative evaluation of microstructure and associated mechanical and thermal response for common cast aluminum alloys that are used for manufacturing automotive cylinder heads. The systems considered are Al-Cu (206-T6), Al-Si-Cu (319-T7), and Al-Si (356-T6, A356-T6, and A356 + 0.5Cu-T6). The focus of the present manuscript is on the evaluation of microstructure at various length scales after aging, while the second manuscript will deal with the mechanical and thermal response of these alloys due to short-term (aging) and long-term (pre-conditioning) heat treatments. At the grain-scale, the Al-Cu alloy possessed an equiaxed microstructure as opposed to themore » dendritic structure for the Al-Si-Cu or Al-Si alloys which is related to the individual solidification conditions for these alloy systems. The composition and morphology of intermetallic precipitates within the grain and at the grain/dendritic boundary are dictated by the alloy chemistry, solidification, and heat treatment conditions. At the nanoscale, these alloys contain various metastable strengthening precipitates (GPI and θ''θ'' in Al-Cu alloy, θ'θ' in Al-Si-Cu alloy, and β'β' in Al-Si alloys) with varying size, morphology, coherency, and thermal stability.« less

  8. Comparative evaluation of cast aluminum alloys for automotive cylinder heads: Part I Microstructure evolution

    DOE PAGES

    Roy, Shibayan; Allard, Jr, Lawrence Frederick; Rodriguez, Andres; ...

    2017-03-06

    The present study stages a comparative evaluation of microstructure and associated mechanical and thermal response for common cast aluminum alloys that are used for manufacturing automotive cylinder heads. The systems considered are Al-Cu (206-T6), Al-Si-Cu (319-T7), and Al-Si (356-T6, A356-T6, and A356 + 0.5Cu-T6). The focus of the present manuscript is on the evaluation of microstructure at various length scales after aging, while the second manuscript will deal with the mechanical and thermal response of these alloys due to short-term (aging) and long-term (pre-conditioning) heat treatments. At the grain-scale, the Al-Cu alloy possessed an equiaxed microstructure as opposed to themore » dendritic structure for the Al-Si-Cu or Al-Si alloys which is related to the individual solidification conditions for these alloy systems. The composition and morphology of intermetallic precipitates within the grain and at the grain/dendritic boundary are dictated by the alloy chemistry, solidification, and heat treatment conditions. At the nanoscale, these alloys contain various metastable strengthening precipitates (GPI and θ''θ'' in Al-Cu alloy, θ'θ' in Al-Si-Cu alloy, and β'β' in Al-Si alloys) with varying size, morphology, coherency, and thermal stability.« less

  9. Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants

    PubMed Central

    Uddin, M S; Hall, Colin; Murphy, Peter

    2015-01-01

    are required to leverage the benefit of Mg-based alloys. Hybrid treatments combining innovative biomimetic coating and mechanical processing would be regarded as a potentially promising way to tackle the corrosion problem. Synergetic cutting-burnishing integrated with cryogenic cooling may be another encouraging approach in this regard. More studies focusing on rigorous testing, evaluation and characterisation are needed to assess the efficacy of the methods. PMID:27877829

  10. Physical Properties of NiFeCrCo-based High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Zaddach, Alexander Joseph

    Conventional alloy design has been based on improving the properties of a single base, or solvent, element through relatively small additions of other elements. More recently, research has been conducted on alloys that contain multiple principal elements, particularly multi-component equiatomic alloys. When such alloys form solid solution phases, they are termed "high-entropy alloys" (HEAs) due to their high configurational entropy. These alloys often have favorable properties compared to conventional dilute solution alloys, but their compositional complexity and relative novelty means that they remain difficult to design and their basic properties are often unknown. The motivation for this work is a detailed experimental exploration of some of the basic physical properties of NiFeCrCo-based alloys. NiFeCrCoMn was one of the first equiatomic HEAs developed. As the compositional space within this single system is extremely large, this work focuses primarily on equiatomic alloys and a limited subset of non-equiatomic alloys chosen for their specific properties. Several alloys are prepared using both conventional methods (arc melting) and nonequilibrium methods (mechanical alloying). Properties studied include stacking fault energy, bulk mechanical properties, single crystal elastic constants, and magnetic properties. The equiatomic NiFeCrCo and NiFeCrCoMn alloys were found to have a moderate to low stacking fault energy, 18 -- 30 mJ m-2. As they are single-phase, fcc alloys, they have high tensile ductility. Additionally, they also exhibit high work-hardening rates, resulting in high toughness. NiFeCrCo outperforms the 5-component equiatomic alloy in ductility and toughness. A 5-component alloy with higher Co content to reduce the stacking fault energy also performs well. The single crystal elastic constants were measured using nanoindentation modulus measurements of grains of known orientation. The measured elastic constants were consistent with those calculated

  11. Exploratory Investigation of Advanced-Temperature Nickel-Base Alloys

    NASA Technical Reports Server (NTRS)

    Freche, John C.; Waters, William J.

    1959-01-01

    An investigation was conducted to provide an advanced-temperature nickel-base alloy with properties suitable for aircraft turbine blades as well as for possible space vehicle applications. An entire series of alloys that do not require vacuum melting techniques and that generally provide good stress-rupture and impact properties was evolved. The basic-alloy composition of 79 percent nickel, 8 percent molybdenum, 6 percent chromium, 6 percent aluminum, and 1 percent zirconium was modified by a series of element additions such as carbon, titanium, and boron, with the nickel content adjusted to account for the additives. Stress-rupture, impact, and swage tests were made with all the alloys. The strongest composition (basic alloy plus 1.5 percent titanium plus 0.125 percent carbon) displayed 384- and 574-hour stress-rupture lives at 1800 F and 15,000 psi in the as-cast and homogenized conditions, respectively. All the alloys investigated demonstrated good impact resistance. Several could not be broken in a low-capacity Izod impact tester and, on this basis, all compared favorably with several high-strength high-temperature alloys. Swaging cracks were encountered with all the alloys. In several cases, however, these cracks were slight and could be detected only by zyglo examination. Some of these compositions may become amenable to hot working on further development. On the basis of the properties indicated, it appears that several of the alloys evolved, particularly the 1.5 percent titanium plus 0.125 percent carbon basic-alloy modification, could be used for advanced- temperature turbine blades, as well as for possible space vehicle applications.

  12. Alloy 740H Component Manufacturing Development

    NASA Astrophysics Data System (ADS)

    de Barbadillo, J. J.; Baker, B. A.; Gollihue, R. D.; Patel, S. J.

    Alloy 740H was developed specifically for use in A-USC power plants. This alloy has been intensively evaluated in collaborative programs throughout the world, and the key properties have been verified and documented. In 2011 the alloy was approved for use in welded construction under ASME Code Case 2702. At present, alloy 740H is the only age-hardened nickel-base alloy that is ASME code approved. The emphasis for A-USC materials development is now on verification of the metalworking industry's capability to make the full range of mill product forms and sizes and to produce fittings and fabrications required for construction of a power plant. This paper presents the results of recent developments in component manufacture and evaluation.

  13. Thermodynamic properties and atomic structure of Ca-based liquid alloys

    NASA Astrophysics Data System (ADS)

    Poizeau, Sophie

    To identify the most promising positive electrodes for Ca-based liquid metal batteries, the thermodynamic properties of diverse Ca-based liquid alloys were investigated. The thermodynamic properties of Ca-Sb alloys were determined by emf measurements. It was found that Sb as positive electrode would provide the highest voltage for Ca-based liquid metal batteries (1 V). The price of such a battery would be competitive for the grid-scale energy storage market. The impact of Pb, a natural impurity of Sb, was predicted successfully and confirmed via electrochemical measurements. It was shown that the impact on the open circuit voltage would be minor. Indeed, the interaction between Ca and Sb was demonstrated to be much stronger than between Ca and Pb using thermodynamic modeling, which explains why the partial thermodynamic properties of Ca would not vary much with the addition of Pb to Sb. However, the usage of the positive electrode would be reduced, which would limit the interest of a Pb-Sb positive electrode. Throughout this work, the molecular interaction volume model (MIVM) was used for the first time for alloys with thermodynamic properties showing strong negative deviation from ideality. This model showed that systems such as Ca-Sb have strong short-range order: Ca is most stable when its first nearest neighbors are Sb. This is consistent with what the more traditional thermodynamic model, the regular association model, would predict. The advantages of the MIVM are the absence of assumption regarding the composition of an associate, and the reduced number of fitting parameters (2 instead of 5). Based on the parameters derived from the thermodynamic modeling using the MIVM, a new potential of mixing for liquid alloys was defined to compare the strength of interaction in different Ca-based alloys. Comparing this trend with the strength of interaction in the solid state of these systems (assessed by the energy of formation of the intermetallics), the systems with

  14. METHOD FOR ANNEALING AND ROLLING ZIRCONIUM-BASE ALLOYS

    DOEpatents

    Picklesimer, M.L.

    1959-07-14

    A fabrication procedure is presented for alpha-stabilized zirconium-base alloys, and in particular Zircaloy-2. The alloy is initially worked at a temperature outside the alpha-plus-beta range (810 to 970 deg ), held at a temperature above 970 deg C for 30 minutes and cooled rapidly. The alloy is then cold-worked to reduce the size at least 20% and annealed at a temperature from 700 to 810 deg C. This procedure serves both to prevent the formation of stringers and to provide a randomly oriented crystal structure.

  15. Durable pd-based alloy and hydrogen generation membrane thereof

    DOEpatents

    Benn, Raymond C.; Opalka, Susanne M.; Vanderspurt, Thomas Henry

    2010-02-02

    A durable Pd-based alloy is used for a H.sub.2-selective membrane in a hydrogen generator, as in the fuel processor of a fuel cell plant. The Pd-based alloy includes Cu as a binary element, and further includes "X", where "X" comprises at least one metal from group "M" that is BCC and acts to stabilize the .beta. BCC phase for stability during operating temperatures. The metal from group "M" is selected from the group consisting of Fe, Cr, Nb, Ta, V, Mo, and W, with Nb and Ta being most preferred. "X" may further comprise at least one metal from a group "N" that is non-BCC, preferably FCC, that enhances other properties of the membrane, such as ductility. The metal from group "N" is selected from the group consisting of Ag, Au, Re, Ru, Rh, Y, Ce, Ni, Ir, Pt, Co, La and In. The at. % of Pd in the binary Pd--Cu alloy ranges from about 35 at. % to about 55 at. %, and the at. % of "X" in the higher order alloy, based on said binary alloy, is in the range of about 1 at. % to about 15 at. %. The metals are selected according to a novel process.

  16. Materials for Advanced Turbine Engines (MATE): Project 3: Design, fabrication and evaluation of an oxide dispersion strengthened sheet alloy combustor liner, volume 1

    NASA Technical Reports Server (NTRS)

    Henricks, R. J.; Sheffler, K. D.

    1984-01-01

    The suitability of wrought oxide dispersion strengthened (ODS) superalloy sheet for gas turbine engine combustor applications was evaluated. Incoloy MA 956 (FeCrAl base) and Haynes Developmental Alloy (HDA) 8077 (NiCrAl base) were evaluated. Preliminary tests showed both alloys to be potentially viable combustor materials, with neither alloy exhibiting a significant advantage over the other. Both alloys demonstrated a +167C (300 F) advantage of creep and oxidation resistance with no improvement in thermal fatigue capability compared to a current generation combustor alloy (Hastelloy X). MA956 alloy was selected for further demonstration because it exhibited better manufacturing reproducibility than HDA8077. Additional property tests were conducted on MA956. To accommodate the limited thermal fatigue capability of ODS alloys, two segmented, mechanically attached, low strain ODS combustor design concepts having predicted fatigue lives or = 10,000 engine cycles were identified. One of these was a relatively conventional louvered geometry, while the other involved a transpiration cooled configuration. A series of 10,000 cycle combustor rig tests on subscale MA956 and Hastelloy X combustor components showed no cracking, thereby confirming the beneficial effect of the segmented design on thermal fatigue capability. These tests also confirmed the superior oxidation and thermal distortion resistance of the ODS alloy. A hybrid PW2037 inner burner liner containing MA956 and Hastelloy X components was designed and constructed.

  17. The development of additive manufacturing technique for nickel-base alloys: A review

    NASA Astrophysics Data System (ADS)

    Zadi-Maad, Ahmad; Basuki, Arif

    2018-04-01

    Nickel-base alloys are an attractive alloy due to its excellent mechanical properties, a high resistance to creep deformation, corrosion, and oxidation. However, it is a hard task to control performance when casting or forging for this material. In recent years, additive manufacturing (AM) process has been implemented to replace the conventional directional solidification process for the production of nickel-base alloys. Due to its potentially lower cost and flexibility manufacturing process, AM is considered as a substitute technique for the existing. This paper provides a comprehensive review of the previous work related to the AM techniques for Ni-base alloys while highlighting current challenges and methods to solving them. The properties of conventionally manufactured Ni-base alloys are also compared with the AM fabricated alloys. The mechanical properties obtained from tension, hardness and fatigue test are included, along with discussions of the effect of post-treatment process. Recommendations for further work are also provided.

  18. Research and Development on Titanium Alloys

    DTIC Science & Technology

    1949-10-31

    EVALUATION OF EPERIMENTAL TITANIUM-BASE ALLOYS• 65 Binary Alloys of Titanium . . . . .. 65 Titanium-Silver Alloys. . . . . ..... ... 68 Mechanical Properties...using a technique in melting designed to give more uniform distribution of the alloying additions. NMATTWLL MOMORIAL INSTITUTE 4...tc Dr. Derge for analysis. BATTELLE MEMORIAL INSTITUTE -107- 2TABLE 28. OXYGEN STANDARDS FOR ANALYSIS Wt fSapl Pein Cen Designation Sample lielting, 1

  19. Thermodynamic Considerations of Contamination by Alloying Elements of Remelted End-of-Life Nickel- and Cobalt-Based Superalloys

    NASA Astrophysics Data System (ADS)

    Lu, Xin; Matsubae, Kazuyo; Nakajima, Kenichi; Nakamura, Shinichiro; Nagasaka, Tetsuya

    2016-06-01

    Cobalt and nickel are high-value commodity metals and are mostly used in the form of highly alloyed materials. The alloying elements used may cause contamination problems during recycling. To ensure maximum resource efficiency, an understanding of the removability of these alloying elements and the controllability of some of the primary alloying elements is essential with respect to the recycling of end-of-life (EoL) nickel- and cobalt-based superalloys by remelting. In this study, the distribution behaviors of approximately 30 elements that are usually present in EoL nickel- and cobalt-based superalloys in the solvent metal (nickel, cobalt, or nickel-cobalt alloy), oxide slag, and gas phases during the remelting were quantitatively evaluated using a thermodynamic approach. The results showed that most of the alloying elements can be removed either in the slag phase or into the gas phase. However, the removal of copper, tin, arsenic, and antimony by remelting is difficult, and they remain as tramp elements during the recycling. On the other hand, the distribution tendencies of iron, molybdenum, and tungsten can be controlled by changing the remelting conditions. To increase the resource efficiency of recycling, preventing contamination by the tramp elements and identifying the alloying compositions of EoL superalloys are significantly essential, which will require the development of efficient prior alloy-sorting systems and advanced separation technologies.

  20. Bond strength and interactions of machined titanium-based alloy with dental cements.

    PubMed

    Wadhwani, Chandur; Chung, Kwok-Hung

    2015-11-01

    The most appropriate luting agent for restoring cement-retained implant restorations has yet to be determined. Leachable chemicals from some types of cement designed for teeth may affect metal surfaces. The purpose of this in vitro study was to evaluate the shear bond strength and interactions of machined titanium-based alloy with dental luting agents. Eight dental luting agents representative of 4 different compositional classes (resin, polycarboxylate, glass ionomer, and zinc oxide-based cements) were used to evaluate their effect on machined titanium-6 aluminum-4 vanadium (Ti-6Al-4V) alloy surfaces. Ninety-six paired disks were cemented together (n=12). After incubation in a 37°C water bath for 7 days, the shear bond strength was measured with a universal testing machine (Instron) and a custom fixture with a crosshead speed of 5 mm/min. Differences were analyzed statistically with 1-way ANOVA and Tukey HSD tests (α=.05). The debonded surfaces of the Ti alloy disks were examined under a light microscope at ×10 magnification to record the failure pattern, and the representative specimens were observed under a scanning electron microscope. The mean ±SD of shear failure loads ranged from 3.4 ±0.5 to 15.2 ±2.6 MPa. The retention provided by both polycarboxylate cements was significantly greater than that of all other groups (P<.05). The scanning electron microscope examination revealed surface pits only on the bonded surface cemented with the polycarboxylate cements. Cementation with polycarboxylate cement obtained higher shear bond strength. Some chemical interactions occurred between the machined Ti-6Al-4V alloy surface and polycarboxylate cements during cementation. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  1. 10,000-Hour Cyclic Oxidation Behavior at 982 C (1800 F) of 68 High-Temperature Co-, Fe-, and Ni-Base Alloys

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.

    1997-01-01

    Sixty-eight high temperature Co-, Fe-, and Ni-base alloys were tested for 10-one thousand hour cycles in static air at 982 C (1800 F). The oxidation behavior of the test samples was evaluated by specific weight change/time data, x-ray diffraction of the post-test samples, and their final appearance. The gravimetric and appearance data were combined into a single modified oxidation parameter, KB4 to rank the cyclic oxidation resistance from excellent to catastrophic. The alloys showing the 'best' resistance with no significant oxidation attack were the alumina/aluminate spinel forming Ni-base turbine alloys: U-700, NASA-VIA and B-1900; the Fe-base ferritic alloys with Al: TRW-Valve, HOS-875, NASA-18T, Thermenol and 18SR; and the Ni-base superalloy IN-702.

  2. Microstructures and Mechanical Properties of Co-Cr Dental Alloys Fabricated by Three CAD/CAM-Based Processing Techniques

    PubMed Central

    Kim, Hae Ri; Jang, Seong-Ho; Kim, Young Kyung; Son, Jun Sik; Min, Bong Ki; Kim, Kyo-Han; Kwon, Tae-Yub

    2016-01-01

    The microstructures and mechanical properties of cobalt-chromium (Co-Cr) alloys produced by three CAD/CAM-based processing techniques were investigated in comparison with those produced by the traditional casting technique. Four groups of disc- (microstructures) or dumbbell- (mechanical properties) specimens made of Co-Cr alloys were prepared using casting (CS), milling (ML), selective laser melting (SLM), and milling/post-sintering (ML/PS). For each technique, the corresponding commercial alloy material was used. The microstructures of the specimens were evaluated via X-ray diffractometry, optical and scanning electron microscopy with energy-dispersive X-ray spectroscopy, and electron backscattered diffraction pattern analysis. The mechanical properties were evaluated using a tensile test according to ISO 22674 (n = 6). The microstructure of the alloys was strongly influenced by the manufacturing processes. Overall, the SLM group showed superior mechanical properties, the ML/PS group being nearly comparable. The mechanical properties of the ML group were inferior to those of the CS group. The microstructures and mechanical properties of Co-Cr alloys were greatly dependent on the manufacturing technique as well as the chemical composition. The SLM and ML/PS techniques may be considered promising alternatives to the Co-Cr alloy casting process. PMID:28773718

  3. Development of Protective Coatings for Chromium-Base Alloys

    NASA Technical Reports Server (NTRS)

    English, J. J.; MacMillan, C. A.; Williams, D. N.; Bartlett, E. S.

    1966-01-01

    Chromium alloy sheet was clad with 5 to 10-mil-thick oxidation-resistant nickel-base alloy foils. Specimens also contained 1/2 to 1-mil-thick intermediate layers of platinum, tungsten, and/or W-25Re. Cladding was done by the isostatic hot gas-pressure bonding,.process. The clad chromium-alloy specimens were cyclic oxidation tested at 2100 F and 2300 F for up to 200 hours to determine the effectiveness of these metal claddings in protecting the chromium alloy Cr-5W from oxidation and contamination. Cladding systems consisting of 5-mil-thick Ni-20Cr-20W modified with 3 to 5 weight percent aluminum and containing a 1 /2-mil tungsten diffusion barrier demonstrated potential for long-time service at temperatures as high as 2300 F.

  4. High Frequency Vibration Based Fatigue Testing of Developmental Alloys

    NASA Astrophysics Data System (ADS)

    Holycross, Casey M.; Srinivasan, Raghavan; George, Tommy J.; Tamirisakandala, Seshacharyulu; Russ, Stephan M.

    Many fatigue test methods have been previously developed to rapidly evaluate fatigue behavior. This increased test speed can come at some expense, since these methods may require non-standard specimen geometry or increased facility and equipment capability. One such method, developed by George et al, involves a base-excited plate specimen driven into a high frequency bending resonant mode. This resonant mode is of sufficient frequency (typically 1200 to 1700 Hertz) to accumulate 107 cycles in a few hours. One of the main limitations of this test method is that fatigue cracking is almost certainly guaranteed to be surface initiated at regions of high stress. This brings into question the validity of the fatigue test results, as compared to more traditional uniaxial, smooth-bar testing, since high stresses are subjecting only a small volume to fatigue damage. This limitation also brings into question the suitability of this method to screen developmental alloys, should their initiation life be governed by subsurface flaws. However, if applicable, the rapid generation of fatigue data using this method would facilitate faster design iterations, identifying more quickly, material and manufacturing process deficiencies. The developmental alloy used in this study was a powder metallurgy boron-modified Ti-6Al-4V, a new alloy currently being considered for gas turbine engine fan blades. Plate specimens were subjected to fully reversed bending fatigue. Results are compared with existing data from commercially available Ti-6Al-4V using both vibration based and more traditional fatigue test methods.

  5. Near-Threshold Fatigue Crack Growth Behavior of Fine-Grain Nickel-Based Alloys

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Piascik, Robert S.

    2003-01-01

    Constant-Kmax fatigue crack growth tests were performed on two finegrain nickel-base alloys Inconel 718 (DA) and Ren 95 to determine if these alloys exhibit near-threshold time-dependent crack growth behavior observed for fine-grain aluminum alloys in room-temperature laboratory air. Test results showed that increases in K(sub max) values resulted in increased crack growth rates, but no evidence of time-dependent crack growth was observed for either nickel-base alloy at room temperature.

  6. Improved Mg-based alloys for hydrogen storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sapru, K.; Ming, L.; Stetson, N.T.

    1998-08-01

    The overall objective of this on-going work is to develop low temperature alloys capable of reversibly storing at least 3 wt.% hydrogen, allowing greater than for 2 wt.% at the system level which is required by most applications. Surface modification of Mg can be used to improve its H-sorption kinetics. The authors show here that the same Mg-transition metal-based multi-component alloy when prepared by melt-spinning results in a more homogeneous materials with a higher plateau pressure as compared to preparing the material by mechanical grinding. They have also shown that mechanically alloyed Mg{sub 50}Al{sub 45}Zn{sub 5} results in a samplemore » having a higher plateau pressure.« less

  7. Adaptation and micro-structure of Co-Cr alloy maxillary complete denture base plates fabricated by selective laser melting technique.

    PubMed

    Ye, Ye; Jiao, Ting; Zhu, Jiarui; Sun, Jian

    2018-01-24

    The purpose of the study was to evaluate the adaptation and micro-structure of Co-Cr alloy maxillary complete denture base plates fabricated by the selective laser melting (SLM) technique. Twenty pairs of edentulous casts were randomly and evenly divided into two groups, and manufacturing of the Co-Cr alloy maxillary complete denture base was conducted either by the SLM technique or by the conventional method. The base-cast sets were transversally sectioned into three sections at the distal canines, mesial of the first molars and the posterior palatal zone. The gap between the metal base and cast was measured in these three sections with a stereoscopic microscope, and the data were analysed using t tests. A total of five specimens of 5 mm diameter were fabricated with the Co-Cr alloy by SLM and the traditional casting technology. A scanning electron microscope (SEM) was used to evaluate the differences in microstructure between these specimens. There was no statistical difference between the three sections in all four groups (P > 0.05). At the region of the canines, the clearance value for the SLM Co-Cr alloy group was larger than that of the conventional method group (P < 0.05). At the mesial of the first molar region and the posterior palatal zone, there was no statistical difference between the gaps observed in the two groups (P > 0.05). The SLM Co-Cr alloy has a denser microstructure behaviour and less casting defect than the cast Co-Cr alloy. The SLM technique showed initial feasibility for the manufacture of dental bases of complete dentures, but large sample studies are needed to prove its reliability in clinical applications. The mechanical properties and microstructure of the denture frameworks prepared by selective laser melting indicate that these dentures are appropriate for clinical use.

  8. The effect of nanobioceramic reinforcement on mechanical and biological properties of Co-base alloy/hydroxyapatite nanocomposite.

    PubMed

    Bahrami, M; Fathi, M H; Ahmadian, M

    2015-03-01

    The goal of the present research was to fabricate, characterize, and evaluate mechanical and biological properties of Co-base alloy composites with different amounts of hydroxyapatite (HA) nanopowder reinforcement. The powder of Co-Cr-Mo alloy was mixed with different amounts of HA by ball milling and it was then cold pressed and sintered. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were used. Microhardness measurement and compressive tests were also carried out. Bioactivity behavior was evaluated in simulated body fluid (SBF). A significant decrease in modulus elasticity and an increase in microhardness of the sintered composites were observed. Apatite formation on the surface of the composites showed that it could successfully convert bioinert Co-Cr-Mo alloy to bioactive type by adding 10, 15, and 20wt.% HA which have lower modulus elasticity and higher microhardness. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. A Fundamental Approach to Developing Aluminium based Bulk Amorphous Alloys based on Stable Liquid Metal Structures and Electronic Equilibrium - 154041

    DTIC Science & Technology

    2017-03-28

    AFRL-AFOSR-JP-TR-2017-0027 A Fundamental Approach to Developing Aluminium-based Bulk Amorphous Alloys based on Stable Liquid -Metal Structures and...to 16 Dec 2016 4.  TITLE AND SUBTITLE A Fundamental Approach to Developing Aluminium-based Bulk Amorphous Alloys based on Stable Liquid -Metal...including Al, Cu, Ni, Zr, Mg, Pd, Ga , Ca. Many new Al-based amorphous alloys were found within the numerous alloy systems studied in this project, and

  10. Calcium hydride synthesis of Ti-Nb-based alloy powders

    NASA Astrophysics Data System (ADS)

    Kasimtsev, A. V.; Shuitsev, A. V.; Yudin, S. N.; Levinskii, Yu. V.; Sviridova, T. A.; Alpatov, A. V.; Novosvetlova, E. E.

    2017-09-01

    The metallothermic (calcium hydride) synthesis of Ti-Nb alloy powders alloyed with tantalum and zirconium is experimentally studied under various conditions. Chemical, X-ray diffraction, and metallographic analyses of the synthesized products show that initial oxides are completely reduced and a homogeneous β-Ti-based alloy powder forms under the optimum synthesis conditions at a temperature of 1200°C. At a lower synthesis temperature, the end products have a high oxygen content. The experimental results are used to plot the thermokinetic dependences o formation of a bcc solid solution at various times of isothermal holding of Ti-22Nb-6Ta and Ti-22Nb-6Zr (at %) alloys. The physicochemical and technological properties of the Ti-22Nb-6Ta and Ti-22Nb-6Zr alloy powders synthesized by calcium hydride reduction under the optimum conditions are determined.

  11. Compressive creep behavior of alloys based on B2 FeAl

    NASA Technical Reports Server (NTRS)

    Mantravadi, N.; Vedula, K.; Gaydosh, D.; Titran, R. H.

    1986-01-01

    Alloys based on FeAl are attractive alternate materials for environmental resistance at intermediate temperatures. Addition of small amounts of Nb, Hf, Ta, Mo, Zr, and B were shown to improve the compressive creep of this alloy at 1100 K. Boron, in particular, was found to have a synergistic effect along with Zr in providing properties substantially better than the binary alloy. This improvement seems to be related to the higher activation energy found for this alloy, suggesting a modification in the diffusion behavior due to the alloying additions.

  12. Compressive creep behavior of alloys based on B2 FeAl

    NASA Technical Reports Server (NTRS)

    Mantravadi, N.; Vedula, K.; Gaydosh, D.; Titran, R. H.

    1987-01-01

    Alloys based on FeAl are attractive alternative materials for environmental resistance at intermediate temperatures. Addition of small amounts of Nb, Hf, Ta, Mo, Zr, and B were shown to improve the compressive creep of this alloy at 1100 K. Boron, in particular, was found to have a synergistic effect along with Zr in providing properties substantially better than the binary alloy. This improvement seems to be related to the higher activation energy found for this alloy, suggesting a modification in the diffusion behavior due to the alloying additions.

  13. Evaluation of coatings for cobalt- and nickel-base superalloys, volume 2

    NASA Technical Reports Server (NTRS)

    Moore, V. S.; Brentnall, W. D.; Stetson, A. R.

    1970-01-01

    The final results of an oxidation-reduction rig evaluation of aluminide coatings are presented, as applied to 1N-100 and B1900 nickel-base and X-10 and WI-52 cobalt-base alloys. Burner rigs were used which operated on JP-5 fuel and air, producing a gas velocity of 0.85 (2000 to 2500 ft/sec) at the specimen's leading edge. One-hour heating cycles were used with three minutes of air blast cooling. Results of testing at temperatures ranging from T sub max of 1850 to 2050 F indicate that coated B1900 has the longest oxidation life at all temperatures, followed by IN-100X-40WI-52, based on a weight change criterion. Coatings on nickel-base alloys provided more than twice the life of coating on cobalt-base alloys at comparable temperatures. The coatings with higher aluminum content and comparable thickness had longer lives. Silicon appeared to be a beneficial additive in the nickel-base alloy coatings for long term, low temperature life, but not for short term, high temperature performance. Chromium was identified in all coatings. Extrapolating the life results obtained to 1600 F, all the selected coatings on the four alloys would be protective for at least 10,000 hours.

  14. Observations on the oxidation of Mn-modified Ni-base Haynes 230 alloy under SOFC exposure conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Z Gary; Xia, Gordon; Stevenson, Jeffry W.

    2005-07-01

    The commercial Ni-base Haynes 230 alloy (Ni-Cr-Mo-W-Mn) was modified with two increased levels of Mn (1 and 2 wt per cent) and evaluated for its oxidation resistance under simulated SOFC interconnect exposure conditions. Oxidation rate, oxide morphology, oxide conductivity and thermal expansion were measured and compared with commercial Haynes 230. It was observed that additions of higher levels of Mn to the bulk alloy facilitated the formation of a bi-layered oxide scale that was comprised of an outer M3O4 (M=Mn, Cr, Ni) spinel-rich layer at the oxide – gas interface over a Cr2O3-rich sub-layer at the metal – oxide interface.more » The modified alloys showed higher oxidation rates and the formation of thicker oxide scales compared to the base alloy. The formation of a spinel-rich top layer improved the scale conductivity, especially during the early stages of the oxidation, but the higher scale growth rate resulted in an increase in the area-specific electrical resistance over time. Due to their face-centered cubic crystal structure, both commercial and modified alloys demonstrated a coefficient of thermal expansion that was higher than that of typical anode-supported and electrolyte-supported SOFCs.« less

  15. Resistance of a directionally solidified gamma/gamma prime-delta eutectic alloy to recrystallization. [Ni-base alloy

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Scheuermann, C. M.; Andrews, C. W.

    1976-01-01

    A lamellar nickel-base directionally-solidified eutectic gamma/gamma prime-delta alloy has potential as an advanced gas turbine blade material. The microstructural stability of this alloy was investigated. Specimens were plastically deformed by uniform compression or Brinell indentation, then annealed between 750 and 1120 C. Microstructural changes observed after annealing included gamma prime coarsening, pinch-off and spheroidization of delta lamellae, and appearance of an unidentified blocky phase in surface layers. All but the first of these was localized in severely deformed regions, suggesting that microstructural instability may not be a serious problem in the use of this alloy.

  16. Iron-based alloys with corrosion resistance to oxygen-sulfur mixed gases

    DOEpatents

    Natesan, K.

    1992-11-17

    An iron-based alloy with improved performance with exposure to oxygen-sulfur mixed gases with the alloy containing about 9--30 wt. % Cr and a small amount of Nb and/or Zr implanted on the surface of the alloy to diffuse a depth into the surface portion, with the alloy exhibiting corrosion resistance to the corrosive gases without bulk addition of Nb and/or Zr and without heat treatment at temperatures of 1000--1100 C. 7 figs.

  17. Iron-based alloys with corrosion resistance to oxygen-sulfur mixed gases

    DOEpatents

    Natesan, Krishnamurti

    1992-01-01

    An iron-based alloy with improved performance with exposure to oxygen-sulfur mixed gases with the alloy containing about 9-30 wt. % Cr and a small amount of Nb and/or Zr implanted on the surface of the alloy to diffuse a depth into the surface portion, with the alloy exhibiting corrosion resistance to the corrosive gases without bulk addition of Nb and/or Zr and without heat treatment at temperatures of 1000.degree.-1100.degree. C.

  18. Corrosion Performance of Fe-Based Alloys in Simulated Oxy-Fuel Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Zuotao; Natesan, Ken; Cai, Zhonghou

    The long-term corrosion of Fe-based alloys in simulated oxy-fuel environment at 1023 K (750 A degrees C) was studied. Detailed results are presented on weight change, scale thickness, internal penetration, microstructural characteristics of the corrosion products, and the cracking of scales for the alloys after exposure at 1023 K (750 A degrees C) for up to 3600 hours. An incubation period during which the corrosion rate was low was observed for the alloys. After the incubation period, the corrosion accelerated, and the corrosion process followed linear kinetics. Effects of alloy, CaO-containing ash, and gas composition on the corrosion rate weremore » also studied. In addition, synchrotron nanobeam X-ray analysis was employed to determine the phase and chemical composition of the oxide layers on the alloy surface. Results from these studies are being used to address the long-term corrosion performance of Fe-based alloys in various coal-ash combustion environments and to develop methods to mitigate high-temperature ash corrosion.« less

  19. Determination of design allowable strength properties of elevated-temperature alloys. Part 1: Coated columbium alloys

    NASA Technical Reports Server (NTRS)

    Favor, R. J.; Maykuth, D. J.; Bartlett, E. S.; Mindlin, H.

    1972-01-01

    A program to determine the characteristics of two coated columbium alloy systems for spacecraft structures is discussed. The alloy was evaluated as coated base material, coated butt-welded material, and material thermal/pressure cycled prior to testing up to 30 cycles. Evaluation was by means of tensile tests covering the temperature range to 2400 F. Design allowables were computed and are presented as tables of data. The summary includes a room temperature property table, effect of temperature curves, and typical stress-strain curves.

  20. Zirconium-based alloys, nuclear fuel rods and nuclear reactors including such alloys, and related methods

    DOEpatents

    Mariani, Robert Dominick

    2014-09-09

    Zirconium-based metal alloy compositions comprise zirconium, a first additive in which the permeability of hydrogen decreases with increasing temperatures at least over a temperature range extending from 350.degree. C. to 750.degree. C., and a second additive having a solubility in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. At least one of a solubility of the first additive in the second additive over the temperature range extending from 350.degree. C. to 750.degree. C. and a solubility of the second additive in the first additive over the temperature range extending from 350.degree. C. to 750.degree. C. is higher than the solubility of the second additive in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. Nuclear fuel rods include a cladding material comprising such metal alloy compositions, and nuclear reactors include such fuel rods. Methods are used to fabricate such zirconium-based metal alloy compositions.

  1. Development of a Knowledge Base of Ti-Alloys From First-Principles and Thermodynamic Modeling

    NASA Astrophysics Data System (ADS)

    Marker, Cassie

    An aging population with an active lifestyle requires the development of better load-bearing implants, which have high levels of biocompatibility and a low elastic modulus. Titanium alloys, in the body centered cubic phase, are great implant candidates, due to their mechanical properties and biocompatibility. The present work aims at investigating the thermodynamic and elastic properties of bcc Tialloys, using the integrated first-principles based on Density Functional Theory (DFT) and the CALculation of PHAse Diagrams (CALPHAD) method. The use of integrated first-principles calculations based on DFT and CALPHAD modeling has greatly reduced the need for trial and error metallurgy, which is ineffective and costly. The phase stability of Ti-alloys has been shown to greatly affect their elastic properties. Traditionally, CALPHAD modeling has been used to predict the equilibrium phase formation, but in the case of Ti-alloys, predicting the formation of two metastable phases o and alpha" is of great importance as these phases also drastically effect the elastic properties. To build a knowledge base of Ti-alloys, for biomedical load-bearing implants, the Ti-Mo-Nb-Sn-Ta-Zr system was studied because of the biocompatibility and the bcc stabilizing effects of some of the elements. With the focus on bcc Ti-rich alloys, a database of thermodynamic descriptions of each phase for the pure elements, binary and Ti-rich ternary alloys was developed in the present work. Previous thermodynamic descriptions for the pure elements were adopted from the widely used SGTE database for global compatibility. The previous binary and ternary models from the literature were evaluated for accuracy and new thermodynamic descriptions were developed when necessary. The models were evaluated using available experimental data, as well as the enthalpy of formation of the bcc phase obtained from first-principles calculations based on DFT. The thermodynamic descriptions were combined into a database

  2. Recrystallization characteristics of oxide dispersion strengthened nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Hotzler, R. K.; Glasgow, T. K.

    1980-01-01

    Electron microscopy was employed to study the process of recrystallization in two oxide dispersion strengthened (ODS) mechanically alloyed nickel-base alloys, MA 754 and MA 6000E. MA 754 contained both fine, uniformly dispersed particles and coarser oxides aligned along the working direction. Hot rolled MA 754 had a grain size of 0.5 microns and high dislocation densities. After partial primary recrystallization, the fine grains transformed to large elongated grains via secondary (or abnormal) grain growth. Extruded and rolled MA 6000E contained equiaxed grains of 0.2 micron diameter. Primary recrystallization occurring during working eliminated virtually all dislocations. Conversion from fine to coarse grains was triggered by gamma prime dissolution; this was also a process of secondary or abnormal grain growth. Comparisons were made to conventional and oxide dispersion strengthened nickel-base alloys.

  3. Formation of Aluminide Coatings on Fe-Based Alloys by Chemical Vapor Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ying; Pint, Bruce A; Cooley, Kevin M

    2008-01-01

    Aluminide and Al-containing coatings were synthesized on commercial ferritic (P91) and austenitic (304L) alloys via a laboratory chemical vapor deposition (CVD) procedure for rigorous control over coating composition, purity and microstructure. The effect of the CVD aluminizing parameters such as temperature, Al activity, and post-aluminizing anneal on coating growth was investigated. Two procedures involving different Al activities were employed with and without including Cr-Al pellets in the CVD reactor to produce coatings with suitable thickness and composition for coating performance evaluation. The phase constitution of the as-synthesized coatings was assessed with the aid of a combination of X-ray diffraction, electronmore » probe microanalysis, and existing phase diagrams. The mechanisms of formation of these CVD coatings on the Fe-based alloys are discussed, and compared with nickel aluminide coatings on Ni-base superalloys. In addition, Cr-Al pellets were replaced with Fe-Al metals in some aluminizing process runs and similar coatings were achieved.« less

  4. Static and dynamic cyclic oxidation of 12 nickel-, cobalt-, and iron-base high-temperature alloys

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Johnston, J. R.; Sanders, W. A.

    1978-01-01

    Twelve typical high-temperature nickel-, cobalt-, and iron-base alloys were tested by 1 hr cyclic exposures at 1038, 1093, and 1149 C and 0.05 hr exposures at 1093 C. The alloys were tested in both a dynamic burner rig at Mach 0.3 gas flow and in static air furnace for times up to 100 hr. The alloys were evaluated in terms of specific weight loss as a function of time, and X-ray diffraction analysis and metallographic examination of the posttest specimens. A method previously developed was used to estimate specific metal weight loss from the specific weight change of the sample. The alloys were then ranked on this basis. The burner-rig test was more severe than a comparable furnace test and resulted in an increased tendency for oxide spalling due to volatility of Cr in the protective scale and the more drastic cooling due to the air-blast quench of the samples. Increased cycle frequency also increased the tendency to spall for a given test exposure. The behavior of the alloys in both types of tests was related to their composition and their tendency to form scales. The alloys with the best overall behavior formed alpha-Al2O3 aluminate spinels.

  5. NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-based materials for high speed aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr.

    1993-01-01

    This report on the NASA-UVa Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from January 1, 1992 to June 30, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) powder metallurgy 2XXX alloys, (3) rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  6. NASA-UVa light aerospace alloy and structures technology program supplement: Aluminum-based materials for high speed aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr. (Editor)

    1995-01-01

    This report on the NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from July 1, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) Ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) Powder metallurgy 2XXX alloys, (3) Rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) Discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  7. Brushing-Induced Surface Roughness of Two Nickel Based Alloys and a Titanium Based Alloy: A Comparative Study - In Vitro Study

    PubMed Central

    Acharya, B L Guruprasanna; Nadiger, Ramesh; Shetty, Bharathraj; Gururaj, G; Kumar, K Naveen; Darshan, D D

    2014-01-01

    Background: Alloys with high nickel content have been increasingly used in dentistry. Alloys have high corrosion rates when exposed to chemical or physical forces that are common intra orally. Titanium is the most biocompatible materials for crowns, fixed partial dentures and implants in the present use, but paradoxically the self-protective oxide film on the titanium can be affected by excessive use of the most common preventive agents in dentistry. Therefore, this study is undertaken in order to draw attention toward the potential effect of prophylactic brushing in a saline medium. Materials and Methods: Forty-five wax patterns in equal dimensions of 10 mm × 10 mm × 2 mm were cast in titanium (Grade II) and nickel-chromium. Of the 45 wax patterns, 15 wax patterns were used for preparing cast titanium samples and 30 wax patterns were used for preparing cast nickel-chromium samples and polished. These samples were divided into three groups of 15 samples each. They are brushed for 48 h each clinically simulating 2 years of brushing in a saline tooth paste medium. The surface roughnesses of the samples were evaluated using profilometer, scanning electron microscopes and energy dispersive spectroscopy. Results were subjected to statistical analysis. Results: The statistical analysis of the Rz and Ra surface roughness values were calculated. Significant difference of surface roughness was present in the titanium samples compared to that of the machine-readable cataloguing and Wirolloy (nickel-chromium) samples after the study. To know the difference in the values of all samples before and after, Student’s paired t-test was carried out. Results showed that there is a significant change in the Rz and Ra values of titanium samples. Conclusion: The present findings suggest that, prophylactic brushing with the fluoridated toothpaste have an effect on the surface roughness of titanium and also to a certain extent, on nickel-chromium. Therefore, careful consideration must

  8. NASA-UVA Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr.

    1997-01-01

    This is the final report of the study "Aluminum-Based Materials for High Speed Aircraft" which had the objectives (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials and (2) to assess the materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT. The research team consisted of ALCOA, Allied-Signal, Boeing, McDonnell Douglas, Reynolds Metals and the University of Virginia. Four classes of aluminum alloys were investigated: (1) I/M 2XXX containing Li and I/M 2XXX without Li, (2) I/M 6XXX, (3) two P/M 2XXX alloys, and (4) two different aluminum-based metal matrix composites (MMC). The I/M alloys were targeted for a Mach 2.0 aircraft and the P/M and MMC alloys were targeted for a Mach 2.4 aircraft. Design studies were conducted using several different concepts including skin/stiffener (baseline), honeycomb sandwich, integrally stiffened and hybrid adaptations (conventionally stiffened thin-sandwich skins). Alloy development included fundamental studies of coarsening behavior, the effect of stress on nucleation and growth of precipitates, and fracture toughness as a function of temperature were an integral part of this program. The details of all phases of the research are described in this final report.

  9. Calculation of the surface tension of liquid Ga-based alloys

    NASA Astrophysics Data System (ADS)

    Dogan, Ali; Arslan, Hüseyin

    2018-05-01

    As known, Eyring and his collaborators have applied the structure theory to the properties of binary liquid mixtures. In this work, the Eyring model has been extended to calculate the surface tension of liquid Ga-Bi, Ga-Sn and Ga-In binary alloys. It was found that the addition of Sn, In and Bi into Ga leads to significant decrease in the surface tension of the three Ga-based alloy systems, especially for that of Ga-Bi alloys. The calculated surface tension values of these alloys exhibit negative deviation from the corresponding ideal mixing isotherms. Moreover, a comparison between the calculated results and corresponding literature data indicates a good agreement.

  10. Computational studies of physical properties of Nb-Si based alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Lizhi

    2015-04-16

    The overall goal is to provide physical properties data supplementing experiments for thermodynamic modeling and other simulations such as phase filed simulation for microstructure and continuum simulations for mechanical properties. These predictive computational modeling and simulations may yield insights that can be used to guide materials design, processing, and manufacture. Ultimately, they may lead to usable Nb-Si based alloy which could play an important role in current plight towards greener energy. The main objectives of the proposed projects are: (1) developing a first principles method based supercell approach for calculating thermodynamic and mechanic properties of ordered crystals and disordered latticesmore » including solid solution; (2) application of the supercell approach to Nb-Si base alloy to compute physical properties data that can be used for thermodynamic modeling and other simulations to guide the optimal design of Nb-Si based alloy.« less

  11. Thermodynamic Tuning of Mg-Based Hydrogen Storage Alloys: A Review

    PubMed Central

    Zhu, Min; Lu, Yanshan; Ouyang, Liuzhang; Wang, Hui

    2013-01-01

    Mg-based hydrides are one of the most promising hydrogen storage materials because of their relatively high storage capacity, abundance, and low cost. However, slow kinetics and stable thermodynamics hinder their practical application. In contrast to the substantial progress in the enhancement of the hydrogenation/dehydrogenation kinetics, thermodynamic tuning is still a great challenge for Mg-based alloys. At present, the main strategies to alter the thermodynamics of Mg/MgH2 are alloying, nanostructuring, and changing the reaction pathway. Using these approaches, thermodynamic tuning has been achieved to some extent, but it is still far from that required for practical application. In this article, we summarize the advantages and disadvantages of these strategies. Based on the current progress, finding reversible systems with high hydrogen capacity and effectively tailored reaction enthalpy offers a promising route for tuning the thermodynamics of Mg-based hydrogen storage alloys. PMID:28788353

  12. Dual Microstructure Heat Treatment of a Nickel-Base Disk Alloy

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2001-01-01

    Existing Dual Microstructure Heat Treat (DMHT) technology was successfully applied to Alloy 10, a high strength, nickel-base disk alloy, to produce a disk with a fine grain bore and coarse grain rim. Specimens were extracted from the DMHT disk and tested in tension, creep, fatigue, and crack growth using conditions pertinent to disk applications. These data were then compared with data from "traditional" subsolvus and supersolvus heat treatments for Alloy 10. The results showed the DMHT disk to have a high strength, fatigue resistant bore comparable to that of subsolvus Alloy 10. Further, creep resistance of the DMHT rim was comparable to that of supersolvus Alloy 10. Crack growth resistance in the DMHT rim, while better than that for subsolvus, was inferior to that of supersolvus Alloy 10. The slow cool at the end of the DMHT conversion and/or the subsolvus resolution step are thought to be responsible for degrading rim DMHT crack growth resistance.

  13. Shape-Memory Effect and Pseudoelasticity in Fe-Mn-Based Alloys

    NASA Astrophysics Data System (ADS)

    La Roca, P.; Baruj, A.; Sade, M.

    2017-03-01

    Several Fe-based alloys are being considered as potential candidates for applications which require shape-memory behavior or superelastic properties. The possibility of using fabrication methods which are well known in the steel industry is very attractive and encourages a large amount of research in the field. In the present article, Fe-Mn-based alloys are mainly addressed. On the one hand, attention is paid to the shape-memory effect where the alloys contain (a) a maximum amount of Mn up to around 30 wt%, (b) several possible substitutional elements like Si, Cr, Ni, Co, and Nb and (c) some possible interstitial elements like C. On the other hand, superelastic alloys are analyzed, mainly the Fe-Mn-Al-Ni system discovered a few years ago. The most noticeable properties resulting from the martensitic transformations which are responsible for the mentioned properties, i.e., the fcc-hcp in the first case and the bcc-fcc in the latter are discussed. Selected potential applications are also analyzed.

  14. Aluminum alloy/alumina-based ceramic interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebeau, T.; Strom-Olsen, J.O.; Gruzleski, J.E.

    1995-07-01

    Wetting experiments were performed on eutectic ZrO{sub 2}/Al{sub 2}O{sub 3} (ZA), ZrO{sub 2}/Al{sub 2}O{sub 3}/TiO{sub 2} (ZAT), and ZrO{sub 2}/Al{sub 2}O{sub 3}/SiO{sub 2} (ZAS) ceramic substrates with different Al alloys. Four major variables were tested to study the wetting behavior of the different ceramic-metal systems. Variable include holding time, melt temperature, ally, and ceramic compositions. An experimental setup was designed to measure in situ contact angles using the sessile drop method. For any ceramic substrate, a temperature over 950 C was necessary to observe an equilibrium wetting angle of less than 90{degree} with pure Al; by alloying the aluminum, wettingmore » could be observed at lower temperatures ({theta} = 76--86{degree} at 900 C for Al-10 wt. % Si, {theta} {approximately}72{degree} at 850 C for Al-2.4 wt. % Mg) forming clean interfaces. Finally, ZAS specimens reacted with molten Al alloys over 900 C to produce Zr-Al based intermetallics at the metal-ceramic interface.« less

  15. Computer-Aided Design of Manufacturing Chain Based on Closed Die Forging for Hardly Deformable Cu-Based Alloys

    NASA Astrophysics Data System (ADS)

    Pietrzyk, Maciej; Kuziak, Roman; Pidvysots'kyy, Valeriy; Nowak, Jarosław; Węglarczyk, Stanisław; Drozdowski, Krzysztof

    2013-07-01

    Two copper-based alloys were considered, Cu-1 pct Cr and Cu-0.7 pct Cr-1 pct Si-2 pct Ni. The thermal, electrical, and mechanical properties of these alloys are given in the paper and compared to pure copper and steel. The role of aging and precipitation kinetics in hardening of the alloys is discussed based upon the developed model. Results of plastometric tests performed at various temperatures and various strain rates are presented. The effect of the initial microstructure on the flow stress was investigated. Rheologic models for the alloys were developed. A finite element (FE) model based on the Norton-Hoff visco-plastic flow rule was applied to the simulation of forging of the alloys. Analysis of the die wear for various processes of hot and cold forging is presented as well. A microstructure evolution model was implemented into the FE code, and the microstructure and mechanical properties of final products were predicted. Various variants of the manufacturing cycles were considered. These include different preheating schedules, hot forging, cold forging, and aging. All variants were simulated using the FE method and loads, die filling, tool wear, and mechanical properties of products were predicted. Three variants giving the best combination of forging parameters were selected and industrial trials were performed. The best manufacturing technology for the copper-based alloys is proposed.

  16. Evaluation of candidate Stirling engine heater tube alloys after 3500 hours exposure to high pressure doped hydrogen or helium

    NASA Technical Reports Server (NTRS)

    Misencik, J. A.; Titran, R. H.

    1984-01-01

    The heater head tubes of current prototype automotive Stirling engines are fabricated from alloy N-155, an alloy which contains 20 percent cobalt. Because the United States imports over 90 percent of the cobalt used in this country and resource supplies could not meet the demand imposed by automotive applications of cobalt in the heater head (tubes plus cylinders and regenerator housings), it is imperative that substitute alloys free of cobalt be identified. The research described herein focused on the heater head tubes. Sixteen alloys (15 potential substitutes plus the 20 percent Co N-155 alloy) were evaluated in the form of thin wall tubing in the NASA Lewis Research Center Stirling simulator materials diesel fuel fired test rigs. Tubes filled with either hydrogen doped with 1 percent CO2 or with helium at a gas pressure of 15 MPa and a temperature of 820 C were cyclic endurance tested for times up to 3500 hr. Results showed that two iron-nickel base superalloys, CG-27 and Pyromet 901 survived the 3500 hr endurance test. The remaining alloys failed by creep-rupture at times less than 3000 hr, however, several other alloys had superior lives to N-155. Results further showed that doping the hydrogen working fluid with 1 vol % CO2 is an effective means of reducing hydrogen permeability through all the alloy tubes investigated.

  17. Effect of Minor Alloying Elements on Localized Corrosion Behavior of Aluminum-Copper-Magnesium based Solid Solution Alloys

    NASA Astrophysics Data System (ADS)

    Aburada, Tomohiro

    2011-12-01

    , nanometer, and micrometer scales. Technological implementations of the findings of the research are also discussed, including a new route to synthesize nanoporous materials with tunable porosity and new corrosion mitigation strategies for commercial Al-based alloys containing the detrimental Al2CuMg phase.

  18. Formability of a wrought Mg alloy evaluated by impression testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, Walid; Gollapudi, Srikant; Charit, Indrajit

    This study is focused on furthering our understanding of the different factors that influence the formability of Magnesium alloys. Towards this end, formability studies were undertaken on a wrought Mg-2Zn-1Mn (ZM21) alloy. In contrast to conventional formability studies, the impression testing method was adopted here to evaluate the formability parameter, B, at temperatures ranging from 298 to 473 K. The variation of B of ZM21 with temperature and its rather limited values were discussed in the light of different deformation mechanisms such as activation of twinning, slip, grain boundary sliding (GBS) and dynamic recrystallization (DRX). It was found that themore » material characteristics such as grain size, texture and testing conditions such as temperature and strain rate, were key determinants of the mechanism of plastic deformation. A by-product of this analysis was the observation of an interesting correlation between the Zener-Hollomon parameter, Z, and the ability of Mg alloys to undergo DRX.« less

  19. Evaluation of the Mechanical Properties of Electroslag Refined Fe-12Ni Alloys

    NASA Technical Reports Server (NTRS)

    Bhat, G. K.

    1978-01-01

    Three Fe-12Ni alloys, individually alloyed with small amounts of V, Ti, and Al, were manufactured through different melting techniques, with special emphasis on electroslag remelting, in order to achieve different levels of metal purity and associated costs. The relative effectiveness of these melting techniques was evaluated from tensile and slow bend fracture toughness behavior at 25 C and -196 C after tempering the test specimens at various temperatures. The best melting procedure was vacuum induction melting (VIM) with or without electroslag remelting (ESR). VIM+ESR is the recommended procedure since ESR provides increased yield of plate product, a reduction of overall manufacturing costs and, depending on the alloy composition, improved tensile and fracture toughness properties.

  20. Role of alloying elements in adhesive transfer and friction of copper-base alloys

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1978-01-01

    Sliding friction experiments were conducted in a vacuum with binary-copper alloy riders sliding against a conventional bearing-steel surface with normal residual oxides present. The binary alloys contained 1 atomic percent of various alloying elements. Auger spectroscopy analysis was used to monitor the adhesive transfer of the copper alloys to the bearing-steel surface. A relation was found to exist between adhesive transfer and the reaction potential and free energy of formation of the alloying element in the copper. The more chemically active the element and the more stable its oxide, the greater was the adhesive transfer and wear of the copper alloy. Transfer occurred in all the alloys except copper-gold after relatively few (25) passes across the steel surface.

  1. Effects of neutron irradiation on deformation behavior of nickel-base fastener alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajaj, R.; Mills, W.J.; Kammenzind, B.F.

    1999-07-01

    This paper presents the effects of neutron irradiation on the fracture behavior and deformation microstructure of high-strength nickel-base alloy fastener materials, Alloy X-750 and Alloy 625. Alloy X-750 in the HTH condition, and Alloy 625 in the direct aged condition were irradiated to a fluence of 2.4x10{sup 20} n/cm{sup 2} at 264 C in the Advanced Test Reactor. Deformation structures at low strains were examined. It was previously shown that Alloy X-750 undergoes hardening, a significant degradation in ductility and an increase in intergranular fracture. In contrast, Alloy 625 had shown softening with a concomitant increase in ductility and transgranularmore » failure after irradiation. The deformation microstructures of the two alloys were also different. Alloy X-750 deformed by a planar slip mechanism with fine microcracks forming at the intersections of slip bands with grain boundaries. Alloy 625 showed much more homogeneous deformation with fine, closely spaced slip bands and an absence of microcracks. The mechanism(s) of irradiation assisted stress corrosion cracking (IASCC) are discussed.« less

  2. Method for improve x-ray diffraction determinations of residual stress in nickel-base alloys

    DOEpatents

    Berman, Robert M.; Cohen, Isadore

    1990-01-01

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys which comprises covering part of a predetermined area of the surface of a nickel-base alloy with a dispersion, exposing the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample.

  3. Research activities of biomedical magnesium alloys in China

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Gu, Xuenan

    2011-04-01

    The potential application of Mg alloys as bioabsorable/biodegradable implants have attracted much recent attention in China. Advances in the design and biocompatibility evaluation of bio-Mg alloys in China are reviewed in this paper. Bio-Mg alloys have been developed by alloying with the trace elements existing in human body, such as Mg-Ca, Mg-Zn and Mg-Si based systems. Additionally, novel structured Mg alloys such as porous, composited, nanocrystalline and bulk metallic glass alloys were tried. To control the biocorrosion rate of bio-Mg implant to match the self-healing/regeneration rate of the surrounding tissue in vivo, surface modification layers were coated with physical and chemical methods.

  4. Composition Optimization of Lithium-Based Ternary Alloy Blankets for Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Jolodosky, Alejandra

    The goal of this dissertation is to examine the neutronic properties of a novel type of fusion reactor blanket material in the form of lithium-based ternary alloys. Pure liquid lithium, first proposed as a blanket for fusion reactors, is utilized as both a tritium breeder and a coolant. It has many attractive features such as high heat transfer and low corrosion properties, but most importantly, it has a very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns including degradation of the concrete containment structure. The work of this thesis began as a collaboration with Lawrence Livermore National Laboratory in an effort to develop a lithium-based ternary alloy that can maintain the beneficial properties of lithium while reducing the reactivity concerns. The first studies down-selected alloys based on the analysis and performance of both neutronic and activation characteristics. First, 3-D Monte Carlo calculations were performed to evaluate two main neutronics performance parameters for the blanket: tritium breeding ratio (TBR), and energy multiplication factor (EMF). Alloys with adequate results based on TBR and EMF calculations were considered for activation analysis. Activation simulations were executed with 50 years of irradiation and 300 years of cooling. It was discovered that bismuth is a poor choice due to achieving the highest decay heat, contact dose rates, and accident doses. In addition, it does not meet the waste disposal ratings (WDR). The straightforward approach to obtain Monte Carlo TBR and EMF results required 231 simulations per alloy and became computationally expensive, time consuming, and inefficient. Consequently, alternate methods were pursued. A collision history-based methodology recently developed for the Monte Carlo code Serpent, calculates perturbation effects on practically

  5. Mn-Fe base and Mn-Cr-Fe base austenitic alloys

    DOEpatents

    Brager, Howard R.; Garner, Francis A.

    1987-09-01

    Manganese-iron base and manganese-chromium-iron base austenitic alloys designed to have resistance to neutron irradiation induced swelling and low activation have the following compositions (in weight percent): 20 to 40 Mn; up to about 15 Cr; about 0.4 to about 3.0 Si; an austenite stabilizing element selected from C and N, alone or in combination with each other, and in an amount effective to substantially stabilize the austenite phase, but less than about 0.7 C, and less than about 0.3 N; up to about 2.5 V; up to about 0.1 P; up to about 0.01 B; up to about 3.0 Al; up to about 0.5 Ni; up to about 2.0 W; up to about 1.0 Ti; up to about 1.0 Ta; and with the remainder of the alloy being essentially iron.

  6. Mn-Fe base and Mn-Cr-Fe base austenitic alloys

    DOEpatents

    Brager, Howard R.; Garner, Francis A.

    1987-01-01

    Manganese-iron base and manganese-chromium-iron base austenitic alloys designed to have resistance to neutron irradiation induced swelling and low activation have the following compositions (in weight percent): 20 to 40 Mn; up to about 15 Cr; about 0.4 to about 3.0 Si; an austenite stabilizing element selected from C and N, alone or in combination with each other, and in an amount effective to substantially stabilize the austenite phase, but less than about 0.7 C, and less than about 0.3 N; up to about 2.5 V; up to about 0.1 P; up to about 0.01 B; up to about 3.0 Al; up to about 0.5 Ni; up to about 2.0 W; up to about 1.0 Ti; up to about 1.0 Ta; and with the remainder of the alloy being essentially iron.

  7. Progress in the Modeling of NiAl-Based Alloys Using the BFS Method

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Ferrante, John; Garg, Anita

    1997-01-01

    The BFS method has been applied to the study of NiAl-based materials to assess the effect of alloying additions on structure. Ternary, quaternary and even pent-alloys based on Ni-rich NiAl with additions of Ti, Cr and Cu were studied. Two approaches were used, Monte Carlo simulations to determine ground state structures and analytical calculations of high symmetry configurations which give physical insight into preferred bonding. Site occupancy energetics for ternary and the more complicated case of quaternary additions were determined, and solubility limits and precipitate formation with corresponding information concerning structure and lattice parameter were also 'observed' computationally. The method was also applied to determine the composition of alloy surfaces and interfaces. Overall, the results demonstrate that the BFS method for alloys is a powerful tool for alloy design and with its simplicity and obvious advantages can be used to complement any experimental alloy design program.

  8. [Evaluation of bond strength between low fusing porcelain with goldplated cobalt-chromium alloys].

    PubMed

    Guo, Jing; Zhu, Jia; Zhu, Hong-shui

    2014-02-01

    To evaluate the bond strength of Vita OMEGA 900 low fusing porcelain fused with the goldplated Wirobond cobalt-chrome metalt ceramic alloy. Low fusing porcelain was fused with the cobalt-chromium alloy strips(group A) and the goldplated cobalt-chromium alloy strips(group B) respectively according to ISO9693 (A:8,B:10). 8 specimens of each group were submitted to three point bending test. Two more test pieces fused with gold plated cobalt-chromium alloys were made (group B'). One test piece of both group B and group B' were observed under scanning electron microscope (SEM) randomly. The data was analyzed with SPSS 16.0 software package. The bond strength (MPa) of group A and group B was 29.92±4.28 and 28.20±5.21, respectively (P>0.05), both higher than 25 MPa required by ISO9693. SEM showed that Vita OMEGA 900 low fusing porcelain and the goldplated Wirobond cobalt-chrome metalt ceramic alloy combined together closely without cracks. Much gold was fused to the cobalt-chrome alloy surface of breaking porcelain specimen after testing. Vita OMEGA 900 low fusing porcelain can match with the goldplated Wirobond cobalt-chrome metalt ceramic alloy. Supported by Foundation of Education Department of Jiangxi Province (GJJ10367).

  9. Effects of Alloying Elements on Room and High Temperature Tensile Properties of Al-Si Cu-Mg Base Alloys =

    NASA Astrophysics Data System (ADS)

    Alyaldin, Loay

    In recent years, aluminum and aluminum alloys have been widely used in automotive and aerospace industries. Among the most commonly used cast aluminum alloys are those belonging to the Al-Si system. Due to their mechanical properties, light weight, excellent castability and corrosion resistance, these alloys are primarily used in engineering and in automotive applications. The more aluminum is used in the production of a vehicle, the less the weight of the vehicle, and the less fuel it consumes, thereby reducing the amount of harmful emissions into the atmosphere. The principal alloying elements in Al-Si alloys, in addition to silicon, are magnesium and copper which, through the formation of Al2Cu and Mg2Si precipitates, improve the alloy strength via precipitation hardening following heat treatment. However, most Al-Si alloys are not suitable for high temperature applications because their tensile and fatigue strengths are not as high as desired in the temperature range 230-350°C, which are the temperatures that are often attained in automotive engine components under actual service conditions. The main challenge lies in the fact that the strength of heat-treatable cast aluminum alloys decreases at temperatures above 200°C. The strength of alloys under high temperature conditions is improved by obtaining a microstructure containing thermally stable and coarsening-resistant intermetallics, which may be achieved with the addition of Ni. Zr and Sc. Nickel leads to the formation of nickel aluminide Al3Ni and Al 9FeNi in the presence of iron, while zirconium forms Al3Zr. These intermetallics improve the high temperature strength of Al-Si alloys. Some interesting improvements have been achieved by modifying the composition of the base alloy with additions of Mn, resulting in an increase in strength and ductility at both room and high temperatures. Al-Si-Cu-Mg alloys such as the 354 (Al-9wt%Si-1.8wt%Cu-0.5wt%Mg) alloys show a greater response to heat treatment as a

  10. Alloy-Based Anode Materials toward Advanced Sodium-Ion Batteries.

    PubMed

    Lao, Mengmeng; Zhang, Yu; Luo, Wenbin; Yan, Qingyu; Sun, Wenping; Dou, Shi Xue

    2017-12-01

    Sodium-ion batteries (SIBs) are considered as promising alternatives to lithium-ion batteries owing to the abundant sodium resources. However, the limited energy density, moderate cycling life, and immature manufacture technology of SIBs are the major challenges hindering their practical application. Recently, numerous efforts are devoted to developing novel electrode materials with high specific capacities and long durability. In comparison with carbonaceous materials (e.g., hard carbon), partial Group IVA and VA elements, such as Sn, Sb, and P, possess high theoretical specific capacities for sodium storage based on the alloying reaction mechanism, demonstrating great potential for high-energy SIBs. In this review, the recent research progress of alloy-type anodes and their compounds for sodium storage is summarized. Specific efforts to enhance the electrochemical performance of the alloy-based anode materials are discussed, and the challenges and perspectives regarding these anode materials are proposed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Method for improving x-ray diffraction determinations of residual stress in nickel-base alloys

    DOEpatents

    Berman, R.M.; Cohen, I.

    1988-04-26

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys is discussed. Part of a predetermined area of the surface of a nickel-base alloy is covered with a dispersion. This exposes the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose, since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample. 2 figs.

  12. Microstructure and mechanical properties of Ni and Fe-base boride-dispersion-strengthened microcrystalline alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wade, C.S.; Park, H.G.; Hoagland, R.G.

    This paper considers the relation between microstructure and mechanical properties of two Ni-base and two Fe-base Boride-Dispersion-Strengthened Microcrystalline (BDSM) alloys. In these very fine grained materials the borides were primarily Cr, Mo, and MoFe in a fcc matrix in three of the alloys, and a bcc in one of the Fe-base alloys. Strength data and resistance to stress corrosion cracking are reported and, in the latter case, extraordinary resistance to SCC in NaCl, Na{sub 2}S{sub 2}O{sub 3} and boiling MgCl{sub 2} environments was observed in every case. The fcc BDSM alloys also demonstrated excellent thermal stability in terms of strengthmore » and fracture roughness up to 1000 C. The bcc alloy suffered severe loss of toughness. The fracture mode involved ductile rupture in all alloys and they display a reasonably linear correlation between K{sub Ic} and the square root of particle spacing.« less

  13. Interstitial-phase precipitation in iron-base alloys: a comparative study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelton, A.R.

    1982-06-01

    Recent developments have elucidated the atomistic mechanisms of precipitation of interstitial elements in simple alloy systems. However, in the more technologically important iron base alloys, interstitial phase precipitation is generally not well understood. The present experimental study was therefore designed to test the applicability of these concepts to more complex ferrous alloys. Hence, a comparative study was made of interstitial phase precipitation in ferritic Fe-Si-C and in austenitic phosphorus-containing Fe-Cr-Ni steels. These systems were subjected to a variety of quench-age thermal treatments, and the microstructural development was subsequently characterized by transmission electron microscopy.

  14. Application of STEM characterization for investigating radiation effects in BCC Fe-based alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parish, Chad M.; Field, Kevin G.; Certain, Alicia G.

    2015-04-20

    This paper provides a general overview of advanced scanning transmission electron microscopy (STEM) techniques used for characterization of irradiated BCC Fe-based alloys. Advanced STEM methods provide the high-resolution imaging and chemical analysis necessary to understand the irradiation response of BCC Fe-based alloys. The use of STEM with energy dispersive x-ray spectroscopy (EDX) for measurement of radiation-induced segregation (RIS) is described, with an illustrated example of RIS in proton- and self-ion irradiated T91. Aberration-corrected STEM-EDX for nanocluster/nanoparticle imaging and chemical analysis is also discussed, and examples are provided from ion-irradiated oxide dispersion strengthened (ODS) alloys. In conclusion, STEM techniques for void,more » cavity, and dislocation loop imaging are described, with examples from various BCC Fe-based alloys.« less

  15. Steam Oxidation Behavior of Advanced Steels and Ni-Based Alloys at 800 °C

    NASA Astrophysics Data System (ADS)

    Dudziak, T.; Boroń, L.; Deodeshmukh, V.; Sobczak, J.; Sobczak, N.; Witkowska, M.; Ratuszek, W.; Chruściel, K.

    2017-03-01

    This publication studies the steam oxidation behavior of advanced steels (309S, 310S and HR3C) and Ni-based alloys (Haynes® 230®, alloy 263, alloy 617 and Haynes® 282®) exposed at 800 °C for 2000 h under 1 bar pressure, in a pure water steam system. The results revealed that all exposed materials showed relatively low weight gain, with no spallation of the oxide scale within the 2000 h of exposure. XRD analysis showed that Ni-based alloys developed an oxide scale consisting of four main phases: Cr2O3 (alloy 617, Haynes® 282®, alloy 263 and Haynes® 230®), MnCr2O4 (alloy 617, Haynes® 282® and Haynes® 230®), NiCr2O4 (alloy 617) and TiO2 (alloy 263, Haynes® 282®). In contrast, advanced steels showed the development of Cr2O3, MnCr2O4, Mn7SiO12, FeMn(SiO4) and SiO2 phases. The steel with the highest Cr content showed the formation of Fe3O4 and the thickest oxide scale.

  16. Superior Ballistic Impact Resistance Achieved by the Co-Base Alloy Haynes 25

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Noebe, Ronald D.; Revilock, Duane M.

    2003-01-01

    The fan case in a jet engine is required to contain a fan blade in the rare event of a blade loss during operation. Because of its function, the fan case is the largest structural component in high-bypass-ratio turbofan engines used in commercial aircraft. Therefore, the use of lighter and stronger materials would be advantageous in most engines and is practically a necessity in the latest generation of high-bypass engines. Small panels, 7 in. wide by 7 in. long, of a number of metallic alloys were impact tested at room temperature with a 0.50-caliber blunt-nose titanium alloy projectile at the NASA Glenn Research Center (ref. 1). These metallic systems included several high-strength aluminum (Al) alloys, Al-based laminates, aluminum metal matrix composites (Al-MMCs), nickel-base superalloys (Inconel 718 and 625), several titanium (Ti) alloys in different heat treated conditions, 304L stainless steel, a stainless-steel-based laminate, and a high strength steel (Nitronic 60). It was determined that a simple Co-base alloy (Haynes 25) had the best impact resistance on an areal weight basis. Haynes 25 was at least 10 percent better than IMI 550, the best titanium alloy tested to date, and it was far superior to other metals, especially at higher impact velocities (greater than 1100 ft/sec). Because this material could be ideal for fan containment applications in supersonic aircraft as a replacement for titanium, impact tests were also conducted at 371 oC and compared with results from alloys tested at elevated temperature under previous programs (i.e., Inconel 718, Ti-6242, M-152, Timetal 21S, and Aeromet 100). Although cobalt-base alloys are used in some high-temperature engine applications, to our knowledge they are not used in any containment systems. Advantages of cobalt over titanium include lower cost, easier processing, better high-temperature strength, and no fire hazard if tip rub occurs. Future plans include testing of lightweight sandwich panels with Haynes

  17. Comparative thermal fatigue resistance of several oxide dispersion strengthened alloys

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Bizon, P. T.

    1981-01-01

    The thermal fatigue resistance of several oxide dispersion strengthened (ODS) alloys has been evaluated through cyclic exposure in fluidized beds. The ODS nickel-base alloy MA 754 and ODS iron-base alloy MA 956 as well as four experimental ODS Ni-16Cr-4.5Al base alloys with and without Ta additions were examined. Both bare and coated alloys were subjected to up to 6000 cycles where each cycle consisted of a 3 minute immersion in a fluidized bed at 1130 C followed by a 3 minute immersion in a bed at 357 C. Testing revealed that the thermal fatigue resistance of the ODS nickel-base alloys was excellent and about equal to that of directionally solidified superalloys. However, the thermal fatigue resistance of MA 956 was found to be poor. Metallographic examination of tested specimens revealed that, in general, the post-test microstructures can be rationalized on the basis of previous diffusion, mechanical property, and oxidation studies.

  18. Alloy Development, Processing and Characterization of Devitrified Titanium Base Microcrystalline Alloys.

    DTIC Science & Technology

    1986-01-01

    cooling, but in disagreement with Newtonian cooling [28.311, where ! <D-1S* Sch deiation cannot be accounted for, since sufficient information in not...industrialized applications. It has been shown that general scientific principles involved in rapid solidification technology are also applicable to Ti alloy...formed, in principle , by continuous feeding of the fresh alloy into the crucible. In qC a H C * (T -T r (2 this case, preferably the feed alloy shoulb P T

  19. A standards-based method for compositional analysis by energy dispersive X-ray spectrometry using multivariate statistical analysis: application to multicomponent alloys.

    PubMed

    Rathi, Monika; Ahrenkiel, S P; Carapella, J J; Wanlass, M W

    2013-02-01

    Given an unknown multicomponent alloy, and a set of standard compounds or alloys of known composition, can one improve upon popular standards-based methods for energy dispersive X-ray (EDX) spectrometry to quantify the elemental composition of the unknown specimen? A method is presented here for determining elemental composition of alloys using transmission electron microscopy-based EDX with appropriate standards. The method begins with a discrete set of related reference standards of known composition, applies multivariate statistical analysis to those spectra, and evaluates the compositions with a linear matrix algebra method to relate the spectra to elemental composition. By using associated standards, only limited assumptions about the physical origins of the EDX spectra are needed. Spectral absorption corrections can be performed by providing an estimate of the foil thickness of one or more reference standards. The technique was applied to III-V multicomponent alloy thin films: composition and foil thickness were determined for various III-V alloys. The results were then validated by comparing with X-ray diffraction and photoluminescence analysis, demonstrating accuracy of approximately 1% in atomic fraction.

  20. Experimental Verification of the Decomposition of Y2O3 in Fe-Based ODS Alloys During Mechanical Alloying Process

    NASA Astrophysics Data System (ADS)

    Byun, Jong Min; Park, Chun Woong; Do Kim, Young

    2018-06-01

    In this study, we investigated the state of Y2O3, as a major additive element in Fe-based ODS alloys, during mechanical alloying (MA) processes by thermodynamic approaches and experimental verification. For this purpose, we introduced Ti2O3 that formed different reaction products depending on the state of Y2O3 into the Fe-based ODS alloys. In addition, the reaction products of Ti2O3, Y, and Y2O3 powders were predicted approximately based on their formation enthalpy. The experimental results relating to the formation of Y-based complex oxides revealed that YTiO3 and Y2Ti2O7 were formed when Ti2O3 reacted with Y; in contrast, only Y2Ti2O7 was detected during the reaction between Ti2O3 and Y2O3. In the alloy of Fe-Cr-Y2O3 with Ti2O3, YTiO3 (formed by the reaction of Ti2O3 with Y) was detected after the MA and heat treatment processes were complete, even though Y2O3 was present in the system. Using these results, it was proved that Y2O3 decomposed into monoatomic Y and O during the MA process.

  1. Selective thermal transformation of old computer printed circuit boards to Cu-Sn based alloy.

    PubMed

    Shokri, Ali; Pahlevani, Farshid; Cole, Ivan; Sahajwalla, Veena

    2017-09-01

    This study investigates, verifies and determines the optimal parameters for the selective thermal transformation of problematic electronic waste (e-waste) to produce value-added copper-tin (Cu-Sn) based alloys; thereby demonstrating a novel new pathway for the cost-effective recovery of resources from one of the world's fastest growing and most challenging waste streams. Using outdated computer printed circuit boards (PCBs), a ubiquitous component of e-waste, we investigated transformations across a range of temperatures and time frames. Results indicate a two-step heat treatment process, using a low temperature step followed by a high temperature step, can be used to produce and separate off, first, a lead (Pb) based alloy and, subsequently, a Cu-Sn based alloy. We also found a single-step heat treatment process at a moderate temperature of 900 °C can be used to directly transform old PCBs to produce a Cu-Sn based alloy, while capturing the Pb and antimony (Sb) as alloying elements to prevent the emission of these low melting point elements. These results demonstrate old computer PCBs, large volumes of which are already within global waste stockpiles, can be considered a potential source of value-added metal alloys, opening up a new opportunity for utilizing e-waste to produce metal alloys in local micro-factories. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. An in situ USAXS-SAXS-WAXS study of precipitate size distribution evolution in a model Ni-based alloy.

    PubMed

    Andrews, Ross N; Serio, Joseph; Muralidharan, Govindarajan; Ilavsky, Jan

    2017-06-01

    Intermetallic γ' precipitates typically strengthen nickel-based superalloys. The shape, size and spatial distribution of strengthening precipitates critically influence alloy strength, while their temporal evolution characteristics determine the high-temperature alloy stability. Combined ultra-small-, small- and wide-angle X-ray scattering (USAXS-SAXS-WAXS) analysis can be used to evaluate the temporal evolution of an alloy's precipitate size distribution (PSD) and phase structure during in situ heat treatment. Analysis of PSDs from USAXS-SAXS data employs either least-squares fitting of a preordained PSD model or a maximum entropy (MaxEnt) approach, the latter avoiding a priori definition of a functional form of the PSD. However, strong low- q scattering from grain boundaries and/or structure factor effects inhibit MaxEnt analysis of typical alloys. This work describes the extension of Bayesian-MaxEnt analysis methods to data exhibiting structure factor effects and low- q power law slopes and demonstrates their use in an in situ study of precipitate size evolution during heat treatment of a model Ni-Al-Si alloy.

  3. An in situ USAXS–SAXS–WAXS study of precipitate size distribution evolution in a model Ni-based alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, Ross N.; Serio, Joseph A.; Muralidharan, Govindarajan

    Intermetallic γ' precipitates typically strengthen nickel-based superalloys. The shape, size and spatial distribution of strengthening precipitates critically influence alloy strength, while their temporal evolution characteristics determine the high-temperature alloy stability. Combined ultra-small-, small- and wide-angle X-ray scattering (USAXS–SAXS–WAXS) analysis can be used to evaluate the temporal evolution of an alloy's precipitate size distribution (PSD) and phase structure duringin situheat treatment. Analysis of PSDs from USAXS–SAXS data employs either least-squares fitting of a preordained PSD model or a maximum entropy (MaxEnt) approach, the latter avoidinga prioridefinition of a functional form of the PSD. However, strong low-qscattering from grain boundaries and/or structuremore » factor effects inhibit MaxEnt analysis of typical alloys. Lastly, this work describes the extension of Bayesian–MaxEnt analysis methods to data exhibiting structure factor effects and low-qpower law slopes and demonstrates their use in anin situstudy of precipitate size evolution during heat treatment of a model Ni–Al–Si alloy.« less

  4. An in situ USAXS–SAXS–WAXS study of precipitate size distribution evolution in a model Ni-based alloy

    DOE PAGES

    Andrews, Ross N.; Serio, Joseph A.; Muralidharan, Govindarajan; ...

    2017-05-30

    Intermetallic γ' precipitates typically strengthen nickel-based superalloys. The shape, size and spatial distribution of strengthening precipitates critically influence alloy strength, while their temporal evolution characteristics determine the high-temperature alloy stability. Combined ultra-small-, small- and wide-angle X-ray scattering (USAXS–SAXS–WAXS) analysis can be used to evaluate the temporal evolution of an alloy's precipitate size distribution (PSD) and phase structure duringin situheat treatment. Analysis of PSDs from USAXS–SAXS data employs either least-squares fitting of a preordained PSD model or a maximum entropy (MaxEnt) approach, the latter avoidinga prioridefinition of a functional form of the PSD. However, strong low-qscattering from grain boundaries and/or structuremore » factor effects inhibit MaxEnt analysis of typical alloys. Lastly, this work describes the extension of Bayesian–MaxEnt analysis methods to data exhibiting structure factor effects and low-qpower law slopes and demonstrates their use in anin situstudy of precipitate size evolution during heat treatment of a model Ni–Al–Si alloy.« less

  5. Theoretical study of surface plasmon resonance sensors based on 2D bimetallic alloy grating

    NASA Astrophysics Data System (ADS)

    Dhibi, Abdelhak; Khemiri, Mehdi; Oumezzine, Mohamed

    2016-11-01

    A surface plasmon resonance (SPR) sensor based on 2D alloy grating with a high performance is proposed. The grating consists of homogeneous alloys of formula MxAg1-x, where M is gold, copper, platinum and palladium. Compared to the SPR sensors based a pure metal, the sensor based on angular interrogation with silver exhibits a sharper (i.e. larger depth-to-width ratio) reflectivity dip, which provides a big detection accuracy, whereas the sensor based on gold exhibits the broadest dips and the highest sensitivity. The detection accuracy of SPR sensor based a metal alloy is enhanced by the increase of silver composition. In addition, the composition of silver which is around 0.8 improves the sensitivity and the quality of SPR sensor of pure metal. Numerical simulations based on rigorous coupled wave analysis (RCWA) show that the sensor based on a metal alloy not only has a high sensitivity and a high detection accuracy, but also exhibits a good linearity and a good quality.

  6. PROCESS OF COATING METALS WITH BISMUTH OR BISMUTH-BASE ALLOYS

    DOEpatents

    Beach, J.G.

    1958-01-28

    A method is described for producing coatings of bismuth or bismuth alloys on a metal base. This is accomplished by electrodepositing the bismuth from an aqueous solution of BiCl/sub 3/, and by making the metal base alternately the cathode and the anode, the cathode periods being twice as long as the anode periods. In one embodiment a nickel coating is first electrodeposited in a known way, and this nickel plated piece is tae base upon which tae bismuth is deposited by the process of this patent. The coated piece is then heat treated to produce a homogeneous Ni--Bi alloy by diffusion.

  7. A Versatile Method for Nanostructuring Metals, Alloys and Metal Based Composites

    NASA Astrophysics Data System (ADS)

    Gurau, G.; Gurau, C.; Bujoreanu, L. G.; Sampath, V.

    2017-06-01

    A new severe plastic deformation method based on High Pressure Torsion is described. The method patented as High Speed High Pressure Torsion (HSHPT) shows a wide scope and excellent adaptability assuring large plastic deformation degree on metals, alloys even on hard to deform or brittle alloys. The paper present results obtained on aluminium, magnesium, titan, iron and coper alloys. In addition capability of HSHPT to process metallic composites is described. OM SEM, TEM, DSC, RDX and HV investigation methods were employed to confirm fine and ultrafine structure.

  8. Elevated temperature tribology of cobalt and tantalum-based alloys

    DOE PAGES

    Scharf, T. W.; Prasad, S. V.; Kotula, P. G.; ...

    2014-12-31

    This paper describes the friction and wear behavior of a Co–Cr alloy sliding on a Ta–W alloy. Measurements were performed in a pin-on-flat configuration with a hemispherically tipped Co-base alloy pin sliding on a Ta–W alloy flat from ambient to 430°C. Focused ion beam-scanning electron microscopy (FIB-SEM) and cross-sectional transmission electron microscopy (TEM) were used to identify the friction-induced changes to the chemistry and crystal structure in the subsurface regions of wear tracks. During sliding contact, transfer of material varied as a function of the test temperature, either from pin-to-flat, flat-to-pin, or both, resulting in either wear loss and/or volumemore » gain. Friction coefficients (μ) and wear rates also varied as a function of test temperature. The lowest friction coefficient (μ=0.25) and wear rate (1×10 –4 mm 3/N•m) were observed at 430°C in argon atmosphere. This was attributed to the formation of a Co-base metal oxide layer (glaze), predominantly (Co, Cr)O with Rocksalt crystal structure, on the pin surface. Part of this oxide film transferred to the wear track on Ta–W, providing a self-mated oxide-on-oxide contact. Once the oxide glaze is formed, it is able to provide friction reduction for the entire temperature range of this study, ambient to 430°C. Furthermore, the results of this study indicate that glazing the surfaces of Haynes alloys with continuous layers of cobalt chrome oxide prior to wear could protect the cladded surfaces from damage.« less

  9. Elevated temperature tribology of cobalt and tantalum-based alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scharf, T. W.; Prasad, S. V.; Kotula, P. G.

    This paper describes the friction and wear behavior of a Co–Cr alloy sliding on a Ta–W alloy. Measurements were performed in a pin-on-flat configuration with a hemispherically tipped Co-base alloy pin sliding on a Ta–W alloy flat from ambient to 430°C. Focused ion beam-scanning electron microscopy (FIB-SEM) and cross-sectional transmission electron microscopy (TEM) were used to identify the friction-induced changes to the chemistry and crystal structure in the subsurface regions of wear tracks. During sliding contact, transfer of material varied as a function of the test temperature, either from pin-to-flat, flat-to-pin, or both, resulting in either wear loss and/or volumemore » gain. Friction coefficients (μ) and wear rates also varied as a function of test temperature. The lowest friction coefficient (μ=0.25) and wear rate (1×10 –4 mm 3/N•m) were observed at 430°C in argon atmosphere. This was attributed to the formation of a Co-base metal oxide layer (glaze), predominantly (Co, Cr)O with Rocksalt crystal structure, on the pin surface. Part of this oxide film transferred to the wear track on Ta–W, providing a self-mated oxide-on-oxide contact. Once the oxide glaze is formed, it is able to provide friction reduction for the entire temperature range of this study, ambient to 430°C. Furthermore, the results of this study indicate that glazing the surfaces of Haynes alloys with continuous layers of cobalt chrome oxide prior to wear could protect the cladded surfaces from damage.« less

  10. Evolution of Constitution, Structure, and Morphology in FeCo-Based Multicomponent Alloys

    NASA Astrophysics Data System (ADS)

    Li, R.; Stoica, M.; Liu, G.; Eckert, J.

    2010-07-01

    Constituent phases, melting behaviors, and microstructure of multicomponent (Fe0.5Co0.5) x (Mo0.1C0.2B0.5Si0.2)100- x alloys ( x = 95, 90, 85, 80, and 70) produced by copper mold casting were evaluated by various analysis techniques, i.e., X-ray diffractometry, scanning electronic microscopy with energy dispersive X-ray spectrometry, and differential scanning calorimetry. Metastable Fe3C- and Cr23C6-type phases were identified in the chill-cast alloys. A schematic illustration was proposed to explain the evolution of constituent phases and microstructure for the alloys with x = 95, 90, and 85 during the solidification process, which could be applicable to controlling microstructural formation of other multicomponent alloys with similar microstructures by artificially adjusting the composition.

  11. Porous Nb-Ti based alloy produced from plasma spheroidized powder

    NASA Astrophysics Data System (ADS)

    Li, Qijun; Zhang, Lin; Wei, Dongbin; Ren, Shubin; Qu, Xuanhui

    Spherical Nb-Ti based alloy powder was prepared by the combination of plasma spheroidization and mechanical alloying. Phase constituents, microstructure and surface state of the powder, and pore characteristics of the resulting porous alloy were investigated. The results show that the undissolved W and V in the mechanically alloyed powder is fully alloyed after spheroidization, and single β phase is achieved. Particle size of the spheroidized powder is in the range of 20-110 μm. With the decrease of particle size, a transformation from typical dendrite solidification structure to fine cell microstructure occurs. The surface of the spheroidized powder is coated by a layer of oxides consisting mainly of TiO2 and Nb2O5. Probabilities of sinter-neck formation and particle coalescence increases with increasing sintering temperature. Porous skeleton with relatively homogeneous pore distribution and open pore channel is formed after vacuum sintering at 1700 °C, and the porosity is 32%. The sintering kinetic analysis indicates that grain boundary diffusion is the primary mass transport mechanism during sintering process.

  12. An investigation of the initiation stage of hot corrosion in Ni-base alloys

    NASA Technical Reports Server (NTRS)

    Huang, T. T.; Meier, G. H.

    1979-01-01

    The commercial nickel base alloy, IN-738, and high purity laboratory alloys were prepared to simulate the effects of the major elements in IN-738. Results indicate that the initiation of hot corrosion attack of IN-738 and other similar alloys is the result of local penetration of molten salt through the protective oxide scale.

  13. Iron-based alloy and nitridation treatment for PEM fuel cell bipolar plates

    DOEpatents

    Brady, Michael P [Oak Ridge, TN; Yang, Bing [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN

    2010-11-09

    A corrosion resistant electrically conductive component that can be used as a bipolar plate in a PEM fuel cell application is composed of an alloy substrate which has 10-30 wt. % Cr, 0.5 to 7 wt. % V, and base metal being Fe, and a continuous surface layer of chromium nitride and vanadium nitride essentially free of base metal. A oxide layer of chromium vanadium oxide can be disposed between the alloy substrate and the continuous surface nitride layer. A method to prepare the corrosion resistant electrically conductive component involves a two-step nitridization sequence by exposing the alloy to a oxygen containing gas at an elevated temperature, and subsequently exposing the alloy to an oxygen free nitrogen containing gas at an elevated temperature to yield a component where a continuous chromium nitride layer free of iron has formed at the surface.

  14. Cerium-based, intermetallic-strengthened aluminum casting alloy: High-volume co-product development

    DOE PAGES

    Sims, Zachary C.; Weiss, David; McCall, S. K.; ...

    2016-05-23

    Here, several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanicalmore » properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.« less

  15. Advanced nickel base alloys for high strength, corrosion applications

    DOEpatents

    Flinn, John E.

    1998-01-01

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0-20Fe, 10-30Cr, 2-12Mo, 6 max. Nb, 0.05-3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01-0.08C, less than 0.2N, 0.1 max. 0, bal. Ni.

  16. Toughness testing and high-temperature oxidation evaluations of advanced alloys for core internals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Lizhen; Pint, Bruce A.; Chen, Xiang

    2016-09-16

    Alloy X-750 was procured from Carpenter Technology and Bodycote in this year. An appropriate TMT was developed on Alloy 439 to obtain materials with refined grain size for property screening tests. Charpy V-notch impact tests were completed for the three ferritic steels Grade 92, Alloy 439, and 14YWT. Fracture toughness tests at elevated temperatures were completed for 14YWT. The tests will be completed for the other alloys in next fiscal year. Steam oxidation tests of the three ferritic steels, 316L, and Zr–2.5Nb have been completed. The steam tests of the Ni-based superalloys and the other austenitic stainless steels will bemore » continued and finished in next fiscal year. Performance ranking in terms of steam oxidation resistance and impact/fracture toughness of the alloys will be deduced.« less

  17. Dendrite-Free Potassium–Oxygen Battery Based on a Liquid Alloy Anode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Wei; Lau, Kah Chun; Lei, Yu

    The safety issue caused by the dendrite growth is not only a key research problem in lithium-ion batteries but also a critical concern in alkali metal (i.e., Li, Na, and K) oxygen batteries where a solid metal is usually used as the anode. Herein, we demonstrate the first dendrite-free K-O-2 battery at ambient temperature based on a liquid Na K alloy anode. The unique liquid liquid connection between the liquid alloy and the electrolyte in our alloy anode-based battery provides a homogeneous and robust anode electrolyte interface. Meanwhile, we manage to show that the Na K alloy is only compatiblemore » in K-O-2 batteries but not in Na-O-2 batteries, which is mainly attributed to the stronger reducibility of potassium and relatively more favorable thermodynamic formation of KO, over NaO2 during the discharge process. It is observed that our K-O-2 battery based on a liquid alloy anode shows a long cycle life (over 620 h) and a low discharge charge overpotential (about 0.05 V at initial cycles). Moreover, the mechanism investigation into the K-O-2 cell degradation shows that the 02 crossover effect and the ether electrolyte instability are the critical problems for K-O-2 batteries. In a word, this study provides a new route to solve the problems caused by the dendrite growth in alkali metal oxygen batteries.« less

  18. Adhesion and friction of iron-base binary alloys in contact with silicon carbide in vacuum

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    Single pass sliding friction experiments were conducted with various iron base binary alloys (alloying elements were Ti, Cr, Mn, Ni, Rh, and W) in contact with a single crystal silicon carbide /0001/ surface in vacuum. Results indicate that atomic size and concentration of alloying elements play an important role in controlling adhesion and friction properties of iron base binary alloys. The coefficient of friction generally increases with an increase in solute concentration. The coefficient of friction increases linearly as the solute to iron atomic radius ratio increases or decreases from unity. The chemical activity of the alloying elements was also an important parameter in controlling adhesion and friction of alloys, as these latter properties are highly dependent upon the d bond character of the elements.

  19. Metallographic examination of TD-nickel base alloys. [thermal and chemical etching technique evaluation

    NASA Technical Reports Server (NTRS)

    Kane, R. D.; Petrovic, J. J.; Ebert, L. J.

    1975-01-01

    Techniques are evaluated for chemical, electrochemical, and thermal etching of thoria dispersed (TD) nickel alloys. An electrochemical etch is described which yielded good results only for large grain sizes of TD-nickel. Two types of thermal etches are assessed for TD-nickel: an oxidation etch and vacuum annealing of a polished specimen to produce an etch. It is shown that the first etch was somewhat dependent on sample orientation with respect to the processing direction, the second technique was not sensitive to specimen orientation or grain size, and neither method appear to alter the innate grain structure when the materials were fully annealed prior to etching. An electrochemical etch is described which was used to observe the microstructures in TD-NiCr, and a thermal-oxidation etch is shown to produce better detail of grain boundaries and to have excellent etching behavior over the entire range of grain sizes of the sample.

  20. The elemental move characteristic of nickel-based alloy in molten salt corrosion by using nuclear microprobe

    NASA Astrophysics Data System (ADS)

    Lei, Qiantao; Liu, Ke; Gao, Jie; Li, Xiaolin; Shen, Hao; Li, Yan

    2017-08-01

    Nickel-based alloys as candidate materials for Thorium Molten Salt Reactor (TMSR), need to be used under high temperature in molten salt environment. In order to ensure the safety of the reactor running, it is necessary to study the elemental move characteristic of nickel-based alloys in the high temperature molten salts. In this work, the scanning nuclear microprobe at Fudan University was applied to study the elemental move. The Nickel-based alloy samples were corroded by molten salt at different temperatures. The element concentrations in the Nickel-based alloys samples were determined by the scanning nuclear microprobe. Micro-PIXE results showed that the element concentrations changed from the interior to the exterior of the alloy samples after the corrosion.

  1. Fabrication methods and applications of microstructured gallium based liquid metal alloys

    NASA Astrophysics Data System (ADS)

    Khondoker, M. A. H.; Sameoto, D.

    2016-09-01

    This review contains a comparative study of reported fabrication techniques of gallium based liquid metal alloys embedded in elastomers such as polydimethylsiloxane or other rubbers as well as the primary challenges associated with their use. The eutectic gallium-indium binary alloy (EGaIn) and gallium-indium-tin ternary alloy (galinstan) are the most common non-toxic liquid metals in use today. Due to their deformability, non-toxicity and superior electrical conductivity, these alloys have become very popular among researchers for flexible and reconfigurable electronics applications. All the available manufacturing techniques have been grouped into four major classes. Among them, casting by needle injection is the most widely used technique as it is capable of producing features as small as 150 nm width by high-pressure infiltration. One particular fabrication challenge with gallium based liquid metals is that an oxide skin is rapidly formed on the entire exposed surface. This oxide skin increases wettability on many surfaces, which is excellent for keeping patterned metal in position, but is a drawback in applications like reconfigurable circuits, where the position of liquid metal needs to be altered and controlled accurately. The major challenges involved in many applications of liquid metal alloys have also been discussed thoroughly in this article.

  2. Dendritic growth and structure of undercooled nickel base alloys

    NASA Technical Reports Server (NTRS)

    Flemings, M. C.; Shiohara, Y.

    1988-01-01

    The principal objectives of this overall investigation are to: study means for obtaining high undercooling in levitation melted droplets, and study structures produced upon the solidification of these undercooled specimens. Thermal measurements are made of the undercooling, and of the rapid recalescence, to develop an understanding of the solidification mechanism. Comparison of results is made with the modeling studies. Characterization and metallographic work is done to gain an understanding of the relationship between rapid solidification variables and the structures so produced. In ground based work to date, solidification of undercooled Ni-25 wt percent Sn alloy was observed by high-speed cinematography and the results compared with optical temperature measurements. Also in ground based work, high-speed optical temperature measurements were made of the solidification behavior of levitated metal samples within a transparent glass medium. Two undercooled Ni-Sn alloys were examined. Measurements were carried out on samples at undercoolings up to 330 K. Microstructures of samples produced in ground based work were determined by optical metallography and by SEM, and microsegregation by electron microprobe measurements. A series of flight tests were planned to conduct experiments similar to the ground based experiments. The Space Shuttle Columbia carried an alloy undercooled experiment in the STS 61-C mission in January 1986. A sample of Ni-32.5 wt percent Sn eutectic was melted and solidified under microgravity conditions.

  3. Thermodynamic properties of gadolinium in Ga-Sn and Ga-Zn eutectic based alloys

    NASA Astrophysics Data System (ADS)

    Maltsev, Dmitry S.; Volkovich, Vladimir A.; Yamshchikov, Leonid F.; Chukin, Andrey V.

    2016-09-01

    Thermodynamic properties of gadolinium in Ga-Sn and Ga-Zn eutectic based alloys were studied. Temperature dependences of gadolinium activity in the studied alloys were determined at 573-1073 K employing the EMF method. Solubility of gadolinium in the Ga-Sn and Ga-Zn alloys was measured at 462-1073 K using IMCs sedimentation method. Activity coefficients as well as partial and excess thermodynamic functions of gadolinium in the studied alloys were calculated on the basis of the obtained experimental data.

  4. Friction and wear of iron-base binary alloys in sliding contact with silicon carbide in vacuum

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    Multipass sliding friction experiments were conducted with various iron base binary alloys in contact with a single crystal silicon carbide surface in vacuum. Results indicate that the atomic size and concentration of alloy elements play important roles in controlling the transfer and friction properties of iron base binary alloys. Alloys having high solute concentration produce more transfer than do alloys having low solute concentration. The coefficient of friction during multipass sliding generally increases with an increase in the concentration of alloying element. The change of friction with succeeding passes after the initial pass also increases as the solute to iron, atomic radius ratio increases or decreases from unity.

  5. [Clinical evaluation of the effect of gold alloy and Ni-Cr alloy porcelain fused metal crown restorations].

    PubMed

    Sun, Wei-ge; Liu, Xiang-hui; Zhang, Ling; Zhang, Chun; Xie, Ming-yi; Zhou, Wen-juan

    2009-02-01

    To observe the clinical effect of gold alloy porcelain fused metal (PFM) crown restoration and Ni-Cr alloy PFM crown restoration. A total of 168 teeth from 48 patients were restored with gold alloy PFM crown. The other 48 patients, with a total of 179 teeth were restored with Ni-Cr alloy PFM crown. They were examined in integrality, retention, shade, cervical margin, and gingival health immediately, 6 months, one year, two years ,and three years after restoration. The date was analyzed by rank sum test using SPSS12.0 software package. The clinical effect of Ni-Cr alloy PFM crown was as good as gold alloy PFM crown when checked up after cementation at once. However, when they were examined 6 months, one year, two years ,and three years after restoration, the clinical effect of gold alloy PFM crown group was significantly better than that of Ni-Cr alloy PFM crown, P<0.05. The gold alloy PFM crown has better properties than Ni-Cr alloy PFM crown as a kind of long-term restoration, especially on the aspect of shade.

  6. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamm, Artur; Aabloo, Alvo; Klintenberg, Mattias

    2015-08-26

    The aim of our study is to characterize some atomic-scale properties of Ni-based FCC multicomponent alloys. For this purpose, we use Monte Carlo method combined with density functional theory calculations to study short-range order (SRO), atomic displacements, electronic density of states, and magnetic moments in equimolar ternary NiCrCo, and quaternary NiCrCoFe alloys. The salient features for the ternary alloy are a negative SRO parameter between Ni Cr and a positive between Cr Cr pairs as well as a weakly magnetic state. For the quaternary alloy we predict negative SRO parameter for Ni Cr and Ni Fe pairs and positive formore » Cr Cr and Fe Fe pairs. Atomic displacements for both ternary and quaternary alloys are negligible. In contrast to the ternary, the quaternary alloy shows a complex magnetic structure. The electronic structure of the ternary and quaternary alloys shows differences near the Fermi energy between a random solid solution and the predicted structure with SRO. Despite that, the calculated EXAFS spectra does not show enough contrast to discriminate between random and ordered structures. Finally, the predicted SRO has an impact on point-defect energetics, electron phonon coupling and thermodynamic functions and thus, SRO should not be neglected when studying properties of these two alloys.« less

  7. Liquid oxygen LOX compatibility evaluations of aluminum lithium (Al-Li) alloys: Investigation of the Alcoa 2090 and MMC weldalite 049 alloys

    NASA Technical Reports Server (NTRS)

    Diwan, Ravinder M.

    1989-01-01

    The behavior of liquid oxygen (LOX) compatibility of aluminum lithium (Al-Li) alloys is investigated. Alloy systems of Alcoa 2090, vintages 1 to 3, and of Martin Marietta Corporation (MMC) Weldalite 049 were evaluated for their behavior related to the LOX compatibility employing liquid oxygen impact test conditions under ambient pressures and up to 1000 psi. The developments of these aluminum lithium alloys are of critical and significant interest because of their lower densities and higher specific strengths and improved mechanical properties at cryogenic temperatures. Of the different LOX impact tests carried out at the Marshall Space Flight Center (MSFC), it is seen that in certain test conditions at higher pressures, not all Al-Li alloys are LOX compatible. In case of any reactivity, it appears that lithium makes the material more sensitive at grain boundaries due to microstructural inhomogeneities and associated precipitate free zones (PFZ). The objectives were to identify and rationalize the microstructural mechanisms that could be relaxed to LOX compatibility behavior of the alloy system in consideration. The LOX compatibility behavior of Al-Li 2090 and Weldalite 049 is analyzed in detail using microstructural characterization techniques with light optical metallography, scanning electron microscopy (SEM), electron microprobe analysis, and surface studies using secondary ion mass spectrometry (SIMS), electron spectroscopy in chemical analysis (ESCA) and Auger electron spectroscopy (AES). Differences in the behavior of these aluminum lithium alloys are assessed and related to their chemistry, heat treatment conditions, and microstructural effects.

  8. Investigation of phase stability of novel equiatomic FeCoNiCuZn based-high entropy alloy prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Soni, Vinay Kumar; Sanyal, S.; Sinha, S. K.

    2018-05-01

    The present work reports the structural and phase stability analysis of equiatomic FeCoNiCuZn High entropy alloy (HEA) systems prepared by mechanical alloying (MA) method. In this research effort some 1287 alloy combinations were extensively studied to arrive at most favourable combination. FeCoNiCuZn based alloy system was selected on the basis of physiochemical parameters such as enthalpy of mixing (ΔHmix), entropy of mixing (ΔSmix), atomic size difference (ΔX) and valence electron concentration (VEC) such that it fulfils the formation criteria of stable multi component high entropy alloy system. In this context, we have investigated the effect of novel alloying addition in view of microstructure and phase formation aspect. XRD plots of the MA samples shows the formation of stable solid solution with FCC (Face Cantered Cubic) after 20 hr of milling time and no indication of any amorphous or intermetallic phase formation. Our results are in good agreement with calculation and analysis done on the basis of physiochemical parameters during selection of constituent elements of HEA.

  9. Advanced nickel base alloys for high strength, corrosion applications

    DOEpatents

    Flinn, J.E.

    1998-11-03

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0--20Fe, 10--30Cr, 2--12Mo, 6 max. Nb, 0.05--3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01--0.08C, less than 0.2N, 0.1 max. 0, bal. Ni. 3 figs.

  10. Corrosion in artificial saliva of a Ni-Cr-based dental alloy joined by TIG welding and conventional brazing.

    PubMed

    Matos, Irma C; Bastos, Ivan N; Diniz, Marília G; de Miranda, Mauro S

    2015-08-01

    Fixed prosthesis and partial dental prosthesis frameworks are usually made from welded Ni-Cr-based alloys. These structures can corrode in saliva and have to be investigated to establish their safety. The purpose of this study was to evaluate the corrosion behavior of joints joined by tungsten inert gas (TIG) welding and conventional brazing in specimens made of commercial Ni-Cr alloy in Fusayama artificial saliva at 37°C (pH 2.5 and 5.5). Eighteen Ni-Cr base metal specimens were cast and welded by brazing or tungsten inert gas methods. The specimens were divided into 3 groups (base metal, 2 welded specimens), and the composition and microstructure were qualitatively evaluated. The results of potential corrosion and corrosion current density were analyzed with a 1-way analysis of variance and the Tukey test for pairwise comparisons (α=.05). Base metal and tungsten inert gas welded material showed equivalent results in electrochemical corrosion tests, while the air-torched specimens exhibited low corrosion resistance. The performance was worst at pH 2.5. These results suggest that tungsten inert gas is a suitable welding process for use in dentistry, because the final microstructure does not reduce the corrosion resistance in artificial saliva at 37°C, even in a corrosion-testing medium that facilitates galvanic corrosion processes. Moreover, the corrosion current density of brazed Ni-Cr alloy joints was significantly higher (P<.001) than the base metal and tungsten inert gas welded joints. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  11. Low Young's modulus Ti-based porous bulk glassy alloy without cytotoxic elements.

    PubMed

    Nicoara, M; Raduta, A; Parthiban, R; Locovei, C; Eckert, J; Stoica, M

    2016-05-01

    A new a biocompatible Ti42Zr40Ta3Si15 (atomic %) porous bulk glassy alloy was produced by combination of rapid solidification and powder metallurgy techniques. Amorphous alloy ribbons were fabricated by melt spinning, i.e. extremely fast quenching the molten alloy with 10(6)K/s from T=1973K down to room temperature. The ribbons were then cryo-milled at liquid nitrogen temperature in order to produce powder, which was subsequently hot pressed. The resulting thick pellets have a porosity of about 14vol%, a high compression strength of 337MPa and a Young's modulus of about E=52GPa, values very close to those characteristic of cortical bone. Moreover, the morphology of the samples is very similar to that of cortical bone. The biocompatibility, which is due to the absence of any toxic element in the chemical composition, together with the suitable mechanical behavior, make these samples promising for orthopedic and dentistry applications. Ti-based alloys are nowadays the standard solution for biomedical implants. However, both the conventional crystalline and amorphous alloys have higher rigidity as the human bone, leading to the damage of the bone at the interface, and contains harmful elements like vanadium, aluminum, nickel or beryllium. The hierarchical porous structures based on glassy alloys with biocompatible elements is a much better alternative. This work presents for the first time the manufacturing of such porous bodies starting from Ti-based amorphous alloy ribbons, which contains only non-harmful elements. The morphology and the compressive mechanical properties of these new products are analyzed in regard with those characteristic to the cortical bone. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Grain Refinement of Al-Si-Fe-Cu-Zn-Mn Based Alloy by Al-Ti-B Alloy and Its Effect on Mechanical Properties.

    PubMed

    Yoo, Hyo-Sang; Kim, Yong-Ho; Jung, Chang-Gi; Lee, Sang-Chan; Lee, Seong-Hee; Son, Hyeon-Taek

    2018-03-01

    We investigated the effects of Al-5.0wt%Ti-1.0wt%B addition on the microstructure and mechanical properties of the as-extruded Al-0.15wt%Si-0.2wt%Fe-0.3wt%Cu-0.15wt%Zn-0.9wt%Mn based alloys. The Aluminum alloy melt was held at 800 °C and then poured into a mould at 200 °C. Aluminum alloys were hot-extruded into a rod that was 12 mm in thickness with a reduction ratio of 38:1. AlTiB addition to Al-0.15Si-0.2Fe-0.3Cu-0.15Zn-0.9Mn based alloys resulted in the formation of Al3Ti and TiB2 intermetallic compounds and grain refinement. With increasing of addition AlTiB, ultimate tensile strength increased from 93.38 to 99.02 to 100.01 MPa. The tensile strength of the as-extruded alloys was improved due to the formation of intermetallic compounds and grain refinement.

  13. Microstructural characterisation of friction stir welding joints of mild steel to Ni-based alloy 625

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, J.; University of Campinas; Ramirez, A.J., E-mail: ramirezlondono.1@osu.edu

    2015-12-15

    In this study, 6-mm-thick mild steel and Ni-based alloy 625 plates were friction stir welded using a tool rotational speed of 300 rpm and a travel speed of 100 mm·min{sup −1}. A microstructural characterisation of the dissimilar butt joint was performed using optical microscopy, scanning and transmission electron microscopy, and energy dispersive X-ray spectroscopy (XEDS). Six different weld zones were found. In the steel, the heat-affected zone (HAZ) was divided into three zones and was composed of ferrite, pearlite colonies with different morphologies, degenerated regions of pearlite and allotriomorphic and Widmanstätten ferrite. The stir zone (SZ) of the steel showedmore » a coarse microstructure consisting of allotriomorphic and Widmanstätten ferrite, degenerate pearlite and MA constituents. In the Ni-based alloy 625, the thermo-mechanically affected zone (TMAZ) showed deformed grains and redistribution of precipitates. In the SZ, the high deformation and temperature produced a recrystallised microstructure, as well as fracture and redistribution of MC precipitates. The M{sub 23}C{sub 6} precipitates, present in the base material, were also redistributed in the stir zone of the Ni-based alloy. TMAZ in the steel and HAZ in the Ni-based alloy could not be identified. The main restorative mechanisms were discontinuous dynamic recrystallisation in the steel, and discontinuous and continuous dynamic recrystallisation in the Ni-based alloy. The interface region between the steel and the Ni-based alloy showed a fcc microstructure with NbC carbides and an average length of 2.0 μm. - Highlights: • Comprehensive microstructural characterisation of dissimilar joints of mild steel to Ni-based alloy • Friction stir welding of joints of mild steel to Ni-based alloy 625 produces sound welds. • The interface region showed deformed and recrystallised fcc grains with NbC carbides and a length of 2.0 μm.« less

  14. Grindability of dental magnetic alloys.

    PubMed

    Hayashi, Eisei; Kikuchi, Masafumi; Okuno, Osamu; Kimura, Kohei

    2005-06-01

    In this study, the grindability of cast magnetic alloys (Fe-Pt-Nb magnetic alloy and magnetic stainless steel) was evaluated and compared with that of conventional dental casting alloys (Ag-Pd-Au alloy, Type 4 gold alloy, and cobalt-chromium alloy). Grindability was evaluated in terms of grinding rate (i.e., volume of metal removed per minute) and grinding ratio (i.e., volume ratio of metal removed compared to wheel material lost). Solution treated Fe-Pt-Nb magnetic alloy had a significantly higher grinding rate than the aged one at a grinding speed of 750-1500 m x min(-1). At 500 m x min(-1), there were no significant differences in grinding rate between solution treated and aged Fe-Pt-Nb magnetic alloys. At a lower speed of 500 m x min(-1) or 750 m x min(-1), it was found that the grinding rates of aged Fe-Pt-Nb magnetic alloy and stainless steel were higher than those of conventional casting alloys.

  15. High-temperature, low-cycle fatigue of advanced copper-base alloys for rocket nozzles. Part 2: NASA 1.1, Glidcop, and sputtered copper alloys

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1974-01-01

    Short-term tensile and low-cycle fatigue data are reported for five advance copper-base alloys: Sputtered Zr-Cu as received, sputtered Zr-Cu heat-treated, Glidcop AL-10, and NASA alloys 1-1A and 1-1B. Tensile tests were performed in argon at 538 C using an axial strain rate of 0.002/sec. Yield strength and ultimate tensile strength data are reported along with reduction in area values. Axial strain controlled low-cycle fatigue tests were performed in argon at 538C using an axial strain rate of 0.002/sec to define the fatigue life over the range from 100 to 3000 cycles for the five materials studied. It was found that the fatigue characteristics of the NASA 1-1A and NASA 1-1B compositions are identical and represent fatique life values which are much greater than those for the other materials tested. The effect of temperature on NASA 1-1B alloy at a strain rate of 0.002/sec was evaluated along with the effect of strain rates of 0.0004 and 0.01/sec at 538 C. Hold-time data are reported for the NASA 1-1B alloy at 538 C using 5 minute hold periods in tension only and compression only at two different strain range values. Hold periods in tension were much more detrimental than hold periods in compression.

  16. An oxide dispersion strengthened Ni-W-Al alloy with superior high temperature strength

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1976-01-01

    Oxide dispersion strengthened alloys based on the WAZ-20 nickel-base alloy were prepared by the mechanical alloying process described by Benjamin (1973), and evaluated. The results of microstructural examinations and mechanical property determinations are discussed. It is shown that WAZ-20, a high gamma-prime fraction alloy having a high gamma-prime solvus temperature, can be effectively dispersion strengthened. The strengths obtained were outstanding, especially at 1150 and 1205 C. The strength is attributed to a combination of highly alloyed matrix, elongated grain structure, and hard phase dispersion. Tensile ductility can be improved by post-recrystallization heat treatment. The new alloy shows some potential for low stress post-extrusion forming.

  17. Alloying and Hardness of Eutectics with Nbss and Nb₅Si₃ in Nb-silicide Based Alloys.

    PubMed

    Tsakiropoulos, Panos

    2018-04-11

    In Nb-silicide based alloys, eutectics can form that contain the Nb ss and Nb₅Si₃ phases. The Nb₅Si₃ can be rich or poor in Ti, the Nb can be substituted with other transition and refractory metals, and the Si can be substituted with simple metal and metalloid elements. For the production of directionally solidified in situ composites of multi-element Nb-silicide based alloys, data about eutectics with Nb ss and Nb₅Si₃ is essential. In this paper, the alloying behaviour of eutectics observed in Nb-silicide based alloys was studied using the parameters ΔH mix , ΔS mix , VEC (valence electron concentration), δ (related to atomic size), Δχ (related to electronegativity), and Ω (= T m ΔS mix /|ΔH mix |). The values of these parameters were in the ranges -41.9 < ΔH mix <-25.5 kJ/mol, 4.7 < ΔS mix < 15 J/molK, 4.33 < VEC < 4.89, 6.23 < δ < 9.44, 0.38 < Ω < 1.35, and 0.118 < Δχ < 0.248, with a gap in Δχ values between 0.164 and 0.181. Correlations between ΔS mix , Ω, ΔS mix , and VEC were found for all of the eutectics. The correlation between ΔH mix and δ for the eutectics was the same as that of the Nb ss , with more negative ΔH mix for the former. The δ versus Δχ map separated the Ti-rich eutectics from the Ti-poor eutectics, with a gap in Δχ values between 0.164 and 0.181, which is within the Δχ gap of the Nb ss . Eutectics were separated according to alloying additions in the Δχ versus VEC, Δχ versus , δ versus , and VEC versus maps, where = Al + Ge + Si + Sn. Convergence of data in maps occurred at δ ≈ 9.25, VEC ≈ 4.35, Δχ in the range ≈ 0.155 to 0.162, and in the range ≈ 21.6 at.% to ≈ 24.3 at.%. The convergence of data also indicated that the minimum concentration of Ti and maximum concentrations of Al and Si in the eutectic were about 8.7 at.% Ti, 6.3 at.% Al, and 21.6 at.% Si, respectively, and that the minimum concentration of Si in the eutectic was in the range 8 < Si < 10 at.%.

  18. Development and Evaluation of Wide Clearance Braze Joints in Gamma Prime Alloys.

    DTIC Science & Technology

    1982-03-01

    from nickel base superalloys which contain significant amounts of aluminum and/or titanium . * These latter two elements, while imparting good hiqh...thermally induced tensile stress fatigue, their surfaces become covered with oxides (and sulfides) of the aluminum and titanium used to strengthen the alloys...process, it also cleans crack surfaces, and this opens a way to repair the very costly parts. Since the alloys contain aluminum and titanium , post- weld

  19. [Metallurgical differentiation of cobalt-chromium alloys for implants].

    PubMed

    Holzwarth, U; Thomas, P; Kachler, W; Göske, J; Schuh, A

    2005-10-01

    Cobalt Chromium alloys are used in cemented total hip or knee arthroplasty as well as in metal-on-metal bearings in total hip arthroplasty. An increasing number of publications report about (allergic) reactions to wear particles of Cobalt Chromium alloys. Reactions to nickel are more frequent in comparison to Cobalt or Chromium particles. It is well known that different kinds of Cobalt Chromium alloys contain different amounts of alloying elements; nevertheless. The aim of the current work was to compare the different Cobalt Chromium alloys according to ASTM F or ISO standards in respect to the different alloying elements. Co28Cr6Mo casting alloys according to ASTM F 75 or ISO 5832-4 as well as forging alloy types according to ASTM F 799 and ISO 5832 such as Co20Cr15W10Ni, Co35Ni20Cr, Fe40Co20Cr10Ni, Co20Cr20Ni, and Co28Cr6Mo were analyzed in respect to their element content of Co, Cr, Ni, Mo, Fe, W, and Mn. In 1935 the Cobalt based alloy "Vitallium" Co30Cr5Mo basically used in the aircraft industry was introduced into medicine. The chemical composition of this alloy based on Cobalt showed 30 wt.% Chromium and 5 wt.% Molybdenum. The differentiation using alloy names showed no Nickel information in single alloy names. The information given about different alloys can lead to an unprecise evaluation of histopathological findings in respect to alloys or alloying constituents. Therefore, implant manufacturers should give the exact information about the alloys used and adhere to European law, Euronorm 93/42/EWG.

  20. Self-passivating bulk tungsten-based alloys manufactured by powder metallurgy

    NASA Astrophysics Data System (ADS)

    López-Ruiz, P.; Ordás, N.; Lindig, S.; Koch, F.; Iturriza, I.; García-Rosales, C.

    2011-12-01

    Self-passivating tungsten-based alloys are expected to provide a major safety advantage compared to pure tungsten, which is at present the main candidate material for the first wall armour of future fusion reactors. WC10Si10 alloys were manufactured by mechanical alloying (MA) in a Planetary mill and subsequent hot isostatic pressing (HIP), achieving densities above 95%. Different MA conditions were studied. After MA under optimized conditions, a core with heterogeneous microstructure was found in larger powder particles, resulting in the presence of some large W grains after HIP. Nevertheless, the obtained microstructure is significantly refined compared to previous work. First MA trials were also performed on the Si-free system WCr12Ti2.5. In this case a very homogeneous structure inside the powder particles was obtained, and a majority ternary metastable bcc phase was found, indicating that almost complete alloying occurred. Therefore, a very fine and homogeneous microstructure can be expected after HIP in future work.

  1. An evaluation of a lathe-cut high-copper amalgam alloy.

    PubMed

    Knibbs, P J; Plant, C G; Shovelton, D S; Jones, P A

    1987-09-01

    Modification of an amalgam alloy may give rise to improved physical properties. The physical properties of a newly formulated, single-composition lathe-cut amalgam alloy were studied and found to be superior to those of a conventional lathe-cut amalgam alloy. However, such modification in formulation may result in changes in the clinical handling properties of the material. The high-copper amalgam alloy was assessed by a panel of general practitioners who found that the general handling properties of the material were similar to those of conventional lathe-cut amalgam alloys. The longer term performance of the high-copper alloy was assessed by means of a blind, controlled clinical trial carried out by two operators. A 1-year assessment of the resulting restorations and tooth replicas could not distinguish between the high-copper alloy and a conventional alloy. The two alloys had both given good clinical results.

  2. Effect of Alloy 625 Buffer Layer on Hardfacing of Modified 9Cr-1Mo Steel Using Nickel Base Hardfacing Alloy

    NASA Astrophysics Data System (ADS)

    Chakraborty, Gopa; Das, C. R.; Albert, S. K.; Bhaduri, A. K.; Murugesan, S.; Dasgupta, Arup

    2016-04-01

    Dashpot piston, made up of modified 9Cr-1Mo steel, is a part of diverse safety rod used for safe shutdown of a nuclear reactor. This component was hardfaced using nickel base AWS ER NiCr-B alloy and extensive cracking was experienced during direct deposition of this alloy on dashpot piston. Cracking reduced considerably and the component was successfully hardfaced by application of Inconel 625 as buffer layer prior to hardface deposition. Hence, a separate study was undertaken to investigate the role of buffer layer in reducing the cracking and on the microstructure of the hardfaced deposit. Results indicate that in the direct deposition of hardfacing alloy on modified 9Cr-1Mo steel, both heat-affected zone (HAZ) formed and the deposit layer are hard making the thickness of the hard layer formed equal to combined thickness of both HAZ and deposit. This hard layer is unable to absorb thermal stresses resulting in the cracking of the deposit. By providing a buffer layer of Alloy 625 followed by a post-weld heat treatment, HAZ formed in the modified 9Cr-1Mo steel is effectively tempered, and HAZ formed during the subsequent deposition of the hardfacing alloy over the Alloy 625 buffer layer is almost completely confined to Alloy 625, which does not harden. This reduces the cracking susceptibility of the deposit. Further, unlike in the case of direct deposition on modified 9Cr-1Mo steel, dilution of the deposit by Ni-base buffer layer does not alter the hardness of the deposit and desired hardness on the deposit surface could be achieved even with lower thickness of the deposit. This gives an option for reducing the recommended thickness of the deposit, which can also reduce the risk of cracking.

  3. 4-d magnetism: Electronic structure and magnetism of some Mo-based alloys

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Bose, S. K.; Kudrnovský, J.

    2017-02-01

    We report results of a first-principles density-functional study of alloys of the 4 d -element Mo with group IV elements Si, Ge and Sn in zinc blende (ZB) and rock salt (RS) structures. The study was motivated by a similar study of ours based on the 4 d -element Tc, which showed the presence of half-metallic states with integer magnetic moment (1μB) per formula unit in TcX (X=C, Si, Ge) alloys. The calculated Curie temperatures for the ferromagnetic (FM) phases were low, around or less than 300 K. Searching for the possibility of 4 d -based alloys with higher Curie temperatures we have carried out the study involving the elements Mo, Ru and Rh. Among these the most promising case appears to be that involving the element Mo. Among the MoX (X=Si, Ge, Sn) alloys in ZB and RS structures, both MoGe and MoSn in ZB structures are found to possess an integer magnetic moment of 2μB per formula unit. ZB MoSn can be classified as a marginal/weak half-metal or a spin gapless semiconductor, while ZB MoGe would be best described as a gapless magnetic semiconductor. The calculated Curie temperatures are in the range 300-700 K. Considering the theoretical uncertainty in the band gaps due not only to the treatment of exchange and correlation effects, but density functional theory itself, these classifications may change somewhat, but both merit investigation from the viewpoint of potential spintronic application. Based on their higher Curie temperatures, Mo-based alloys would serve such purpose better than the previously reported Tc-based ones.

  4. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy.

    PubMed

    Dang, B; Zhang, X; Chen, Y Z; Chen, C X; Wang, H T; Liu, F

    2016-08-09

    Al-Si-based casting alloys have a great potential in various industrial applications. Common strengthening strategies on these alloys are accompanied inevitably by sacrifice of ductility, known as strength-ductility trade-off dilemma. Here, we report a simple route by combining rapid solidification (RS) with a post-solidification heat treatment (PHT), i.e. a RS + PHT route, to break through this dilemma using a commercial Al-Si-based casting alloy (A356 alloy) as an example. It is shown that yield strength and elongation to failure of the RS + PHT processed alloy are elevated simultaneously by increasing the cooling rate upon RS, which are not influenced by subsequent T6 heat treatment. Breaking through the dilemma is attributed to the hierarchical microstructure formed by the RS + PHT route, i.e. highly dispersed nanoscale Si particles in Al dendrites and nanoscale Al particles decorated in eutectic Si. Simplicity of the RS + PHT route makes it being suitable for industrial scaling production. The strategy of engineering microstructures offers a general pathway in tailoring mechanical properties of other Al-Si-based alloys. Moreover, the remarkably enhanced ductility of A356 alloy not only permits strengthening further the material by work hardening but also enables possibly conventional solid-state forming of the material, thus extending the applications of such an alloy.

  5. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy

    PubMed Central

    Dang, B.; Zhang, X.; Chen, Y. Z.; Chen, C. X.; Wang, H. T.; Liu, F.

    2016-01-01

    Al-Si-based casting alloys have a great potential in various industrial applications. Common strengthening strategies on these alloys are accompanied inevitably by sacrifice of ductility, known as strength-ductility trade-off dilemma. Here, we report a simple route by combining rapid solidification (RS) with a post-solidification heat treatment (PHT), i.e. a RS + PHT route, to break through this dilemma using a commercial Al-Si-based casting alloy (A356 alloy) as an example. It is shown that yield strength and elongation to failure of the RS + PHT processed alloy are elevated simultaneously by increasing the cooling rate upon RS, which are not influenced by subsequent T6 heat treatment. Breaking through the dilemma is attributed to the hierarchical microstructure formed by the RS + PHT route, i.e. highly dispersed nanoscale Si particles in Al dendrites and nanoscale Al particles decorated in eutectic Si. Simplicity of the RS + PHT route makes it being suitable for industrial scaling production. The strategy of engineering microstructures offers a general pathway in tailoring mechanical properties of other Al-Si-based alloys. Moreover, the remarkably enhanced ductility of A356 alloy not only permits strengthening further the material by work hardening but also enables possibly conventional solid-state forming of the material, thus extending the applications of such an alloy. PMID:27502444

  6. A TEM quantitative evaluation of strengthening in an Mg-RE alloy reinforced with SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabibbo, Marcello, E-mail: m.cabibbo@univpm.it; Spigarelli, Stefano

    2011-10-15

    Magnesium alloys containing rare earth elements are known to have high specific strength, good creep and corrosion resistance up to 523 K. The addition of SiC ceramic particles strengthens the metal matrix composite resulting in better wear and creep resistance while maintaining good machinability. The role of the reinforcement particles in enhancing strength can be quantitatively evaluated using transmission electron microscopy (TEM). This paper presents a quantitative evaluation of the different strengthening contributions, determined through TEM inspections, in an SiC Mg-RE composite alloy containing yttrium, neodymium, gadolinium and dysprosium. Compression tests at temperatures ranging between 290 and 573 K weremore » carried out. The microstructure strengthening mechanism was studied for all the compression conditions. Strengthening was compared to the mechanical results and the way the different contributions were combined is also discussed and justified. - Research Highlights: {yields} TEM yield strengthening terms evaluation on a Mg-RE SiC alloy. {yields} The evaluation has been extended to different compression temperature conditions. {yields} Linear and Quadratic sum has been proposed and validated. {yields} Hall-Petch was found to be the most prominent strengthening contributions.« less

  7. A microcomputed tomography evaluation of the marginal fit of cobalt-chromium alloy copings fabricated by new manufacturing techniques and alloy systems.

    PubMed

    Kim, Eun-Ha; Lee, Du-Hyeong; Kwon, Sung-Min; Kwon, Tae-Yub

    2017-03-01

    Although new digital manufacturing techniques are attracting interest in dentistry, few studies have comprehensively investigated the marginal fit of fixed dental prostheses fabricated with such techniques. The purpose of this in vitro microcomputed tomography (μCT) study was to evaluate the marginal fit of cobalt-chromium (Co-Cr) alloy copings fabricated by casting and 3 different computer-aided design and computer-aided manufacturing (CAD-CAM)-based processing techniques and alloy systems. Single Co-Cr metal crowns were fabricated using 4 different manufacturing techniques: casting (control), milling, selective laser melting, and milling/sintering. Two different commercial alloy systems were used for each fabrication technique (a total of 8 groups; n=10 for each group). The marginal discrepancy and absolute marginal discrepancy of the crowns were determined with μCT. For each specimen, the values were determined from 4 different regions (sagittal buccal, sagittal lingual, coronal mesial, and coronal distal) by using imaging software and recorded as the average of the 4 readings. For each parameter, the results were statistically compared with 2-way analysis of variance and appropriate post hoc analysis (using Tukey or Student t test) (α=.05). The milling and selective laser melting groups showed significantly larger marginal discrepancies than the control groups (70.4 ±12.0 and 65.3 ±10.1 μm, respectively; P<.001), whereas the milling/sintering groups exhibited significantly smaller values than the controls (P=.004). The milling groups showed significantly larger absolute marginal discrepancy than the control groups (137.4 ±29.0 and 139.2 ±18.9 μm, respectively; P<.05). In the selective laser melting and milling/sintering groups, the absolute marginal discrepancy values were material-specific (P<.05). Nonetheless, the milling/sintering groups yielded statistically comparable (P=.935) or smaller (P<.001) absolute marginal discrepancies to the control

  8. Evaluation of pitting corrosion resistance of high-alloyed stainless steels welds for FGD plants in Korea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baek, K.K.; Sung, H.J.; Im, C.S.

    1998-12-31

    For successful application of high-alloyed stainless steels for Flue Gas Desulfurization (FGD) plants, pitting corrosion resistance of arc welds of N-added 6%Mo austenitic stainless steels (UNS N 08367) and super duplex stainless steels (UNS S 32550) made with various filler metals were evaluated using the Green Death solution. For Gas Tungsten Arc (GTA) and Gas Metal Arc (GMA) welds of N 08367, Critical Pitting Temperature (CPT) of base metal was 65--70 C, whereas weld made by ERNiCrMo-3 filler metal yielded CPT of 50 C. Welds made by ERNiCrMo-10 or ERNiCrMo-4 filler metals showed CPT of 60--65 C and 65--70C, respectively.more » For GTA and GMA welds of S 32550, CPT of welds made by ERNiCrMo-3 was 45--50 C, indicating that the filler metal can provide pitting corrosion resistance matching the S 32550 alloy. Thus, a proper pitting corrosion resistance of weldments of high-alloy stainless steels can be achieved by selecting filler metals having at least +10 higher Pitting Resistance Equivalent Number (PRE{sub N}) value than the base metal regardless of the type of arc welding process. The over-alloyed filler metals would compensate preferential segregation of Cr, MO along the dendrite boundary, which made the dendrite core more susceptible to pitting. Nitrogen addition to the GTA welds of N 08367 made with ERNiCrMo-3 failed to improve pitting corrosion resistance, which was attributed to the precipitation of nitrogen in the weld metal in the form of Nb-nitride.« less

  9. A study of surface tension driven segregation in monotectic alloy systems

    NASA Technical Reports Server (NTRS)

    Andrews, J. Barry; Andrews, Rosalia N.; Gowens, Terrell F.

    1988-01-01

    The compatibilities of various monotectic alloy systems with several different crucible materials were evaluated. The study was carried out using small candidate alloy samples of compositions that produced fifty volume percent of each liquid phase at the monotectic temperature. Compatibility was based on the evaluation of the wetting tendency of the two immiscible phases with the crucible material in a one-g solidified sample. Three types of wetting phenomena were observed during the evaluation. Type 1 indicates an alloy-crucible combination where the L2 phase preferentially wets the crucible material. Since L2 is usually the minority phase in desirable alloys, this material combination would be difficult to process and is therefore considered incompatible. Type 2 behavior indicates an alloy-crucible combination where the L1 phase preferentially wets the crucible material. This type of combination is considered compatible since surface tension effects should aid in processing the alloy to a useful form. Type 3 indicates any combination that leads to major reactions between the alloy and crucible material, gas entrapment, or separation of the metal from the crucible wall. Additional compatibility evaluations would have to be carried out on combinations of this category. The five alloy systems studied included aluminum-bismuth, copper-lead, aluminum-indium, aluminum-lead and cadmium-gallium. The systems were combined with crucibles of alumina, boron nitride, mullite, quartz, silicon carbide and zirconia.

  10. Investigation on corrosion behavior of Ni-based alloys in molten fluoride salt using synchrotron radiation techniques

    NASA Astrophysics Data System (ADS)

    Liu, Min; Zheng, Junyi; Lu, Yanling; Li, Zhijun; Zou, Yang; Yu, Xiaohan; Zhou, Xingtai

    2013-09-01

    Ni-based alloys have been selected as the structural materials in molten-salt reactors due to their high corrosion resistance and excellent mechanical properties. In this paper, the corrosion behavior of some Ni-based superalloys including Inconel 600, Hastelloy X and Hastelloy C-276 were investigated in molten fluoride salts at 750 °C. Morphology and microstructure of corroded samples were analyzed using scanning electron microscope (SEM), synchrotron radiation X-ray microbeam fluorescence (μ-XRF) and synchrotron radiation X-ray diffraction (SR-XRD) techniques. Results from μ-XRF and SR-XRD show that the main depleted alloying element of Ni-based alloys in molten fluoride salt is Cr. In addition, the results indicate that Mo can enhance the corrosion resistance in molten FLiNaK salts. Among the above three Ni-based alloys, Hastelloy C-276 exhibits the best corrosion resistance in molten fluoride salts 750 °C. Higher-content Mo and lower-content Cr in Hastelloy C-276 alloy were responsible for the better anti-corrosive performance, compared to the other two alloys.

  11. Advanced oxide dispersion strengthened sheet alloys for improved combustor durability

    NASA Technical Reports Server (NTRS)

    Henricks, R. J.

    1981-01-01

    Burner design modifications that will take advantage of the improved creep and cyclic oxidation resistance of oxide dispersion strengthened (ODS) alloys while accommodating the reduced fatigue properties of these materials were evaluated based on preliminary analysis and life predictions, on construction and repair feasibility, and on maintenance and direct operating costs. Two designs - the film cooled, segmented louver and the transpiration cooled, segmented twin Wall - were selected for low cycle fatigue (LCF) component testing. Detailed thermal and structural analysis of these designs established the strain range and temprature at critical locations resulting in predicted lives of 10,000 cycles for MA 956 alloy. The ODs alloys, MA 956 and HDA 8077, demonstrated a 167 C (300 F) temperature advantage over Hastelloy X alloy in creep strength and oxidation resistance. The MA 956 alloy was selected for mechanical property and component test evaluations. The MA 956 alloy was superior to Hastelloy X in LCF component testing of the film cooled, segmented louver design.

  12. Evaluation of the mechanical properties and porcelain bond strength of cobalt-chromium dental alloy fabricated by selective laser melting.

    PubMed

    Wu, Lin; Zhu, Haiting; Gai, Xiuying; Wang, Yanyan

    2014-01-01

    Limited information is available regarding the microstructure and mechanical properties of dental alloy fabricated by selective laser melting (SLM). The purpose of this study was to evaluate the mechanical properties of a cobalt-chromium (Co-Cr) dental alloy fabricated by SLM and to determine the correlation between its microstructure and mechanical properties and its porcelain bond strength. Five metal specimens and 10 metal ceramic specimens were fabricated to evaluate the mechanical properties of SLM Co-Cr dental alloy (SLM alloy) with a tensile test and its porcelain bond strength with a 3-point bending test. The relevant properties of the SLM alloy were compared with those of the currently used Co-Cr dental alloy fabricated with conventional cast technology (cast alloy). The Student t test was used to compare the results of the SLM alloy and the cast alloy (α=.05). The microstructure of the SLM alloy was analyzed with a metallographic microscope; the metal ceramic interface of the SLM porcelain bonded alloy was studied with scanning electron microscopy, energy dispersive x-ray spectroscopy, and an electron probe microanalyzer. Both the mean (standard deviation) yield strength (884.37 ± 8.96 MPa) and tensile strength (1307.50 ±10.65 MPa) of the SLM alloy were notably higher than yield strength (568.10 ± 30.94 MPa) and tensile strength (758.73 ± 25.85 MPa) of the currently used cast alloy, and the differences were significant (P<.05). The porcelain bond strength of the SLM alloy was 55.78 ± 3.02 MPa, which was similar to that of the cast alloy, 54.17 ± 4.96 MPa (P>.05). Microstructure analysis suggested that the SLM alloy had a dense and obviously orientated microstructure, which led to excellent mechanical properties. Analysis from scanning electron microscopy, energy dispersive x-ray spectroscopy, and the electron probe microanalyzer indicated that the SLM alloy had an intermediate layer with elemental interpenetration between the alloy and the

  13. Irradiation-induced damage evolution in concentrated Ni-based alloys

    DOE PAGES

    Velisa, Gihan; Ullah, Mohammad Wali; Xue, Haizhou; ...

    2017-06-06

    Understanding the effects of chemical complexity from the number, type and concentration of alloying elements in single-phase concentred solid-solution alloys (SP-CSAs) on defect dynamics and microstructure evolution is pivotal for developing next-generation radiation-tolerant structural alloys. A specially chosen set of SP-CSAs with different chemical complexity (Ni 80Fe 20, Ni 80Cr 20 and Ni 40Fe 40Cr 20) are investigated using 1.5 MeV Mn ions over a wide fluence range, from 2 × 10 13 to 1 × 10 16 ions cm –2 at room temperature. Based on an integrated study of Rutherford backscattering spectroscopy in channeling geometry and molecular dynamics simulations,more » the results demonstrate that Ni 40Fe 40Cr 20 is more radiation tolerant than Ni 80Fe 20, Ni 80Cr 20 and elemental Ni in the low fluence regime. While chemical complexity of this set of SP-CSAs is clearly demonstrated to affect defect evolution through suppressed defect production and enhanced recombination at early stages, the effect of the mixed ferro- and anti-ferromagnetic interactions is not the only controlling factor responsible for the improved radiation performance. As a result, the observed strong alloying effect on defect evolution is attributed to the altered defect migration mobilities of defect clusters in these alloys, an intrinsic characteristic of the complex energy landscapes in CSAs.« less

  14. Irradiation-induced damage evolution in concentrated Ni-based alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velisa, Gihan; Ullah, Mohammad Wali; Xue, Haizhou

    Understanding the effects of chemical complexity from the number, type and concentration of alloying elements in single-phase concentred solid-solution alloys (SP-CSAs) on defect dynamics and microstructure evolution is pivotal for developing next-generation radiation-tolerant structural alloys. A specially chosen set of SP-CSAs with different chemical complexity (Ni 80Fe 20, Ni 80Cr 20 and Ni 40Fe 40Cr 20) are investigated using 1.5 MeV Mn ions over a wide fluence range, from 2 × 10 13 to 1 × 10 16 ions cm –2 at room temperature. Based on an integrated study of Rutherford backscattering spectroscopy in channeling geometry and molecular dynamics simulations,more » the results demonstrate that Ni 40Fe 40Cr 20 is more radiation tolerant than Ni 80Fe 20, Ni 80Cr 20 and elemental Ni in the low fluence regime. While chemical complexity of this set of SP-CSAs is clearly demonstrated to affect defect evolution through suppressed defect production and enhanced recombination at early stages, the effect of the mixed ferro- and anti-ferromagnetic interactions is not the only controlling factor responsible for the improved radiation performance. As a result, the observed strong alloying effect on defect evolution is attributed to the altered defect migration mobilities of defect clusters in these alloys, an intrinsic characteristic of the complex energy landscapes in CSAs.« less

  15. Development and wind tunnel evaluation of a shape memory alloy based trim tab actuator for a civil aircraft

    NASA Astrophysics Data System (ADS)

    Senthilkumar, P.; Jayasankar, S.; Satisha; Sateesh, V. L.; Kamaleshaiah, M. S.; Dayananda, G. N.

    2013-09-01

    This paper presents the development and wind tunnel evaluation of a shape memory alloy (SMA) based smart trim tab for a typical two seater civil aircraft. The SMA actuator was housed in the port side of the elevator for the purpose of actuating the trim tab. Wind tunnel tests were conducted on a full scale horizontal tail model with elevator and trim tab at free stream speeds of 25, 35 and 45 m s-1, and also for a number of deflections of the elevator (30° up, 0° neutral and 25° down) and trim tab (11° and 21° up and 15° and 31° down). To measure the hinge moment experienced by the trim tab under various test conditions, two miniaturized balances were designed and fabricated. A gain scheduled proportional integral (GSPI) controller was developed to control the SMA actuated smart trim tab. It was confirmed during the tests that the trim tab could be controlled at the desired position against the aerodynamic loads acting on it for the various test conditions.

  16. Design of membrane actuators based on ferromagnetic shape memory alloy composite for the synthetic jet actuator

    NASA Astrophysics Data System (ADS)

    Liang, Yuanchang; Taya, Minoru; Kuga, Yasuo

    2004-07-01

    A new membrane actuator based on our previous diaphragm actuator was designed and constructed to improve the dynamic performance. The finite element analysis was used to estimate the frequency response of the composite membrane which will be driven close to its resonance to obtain a large stroke. The membrane is made of ferromagnetic shape memory alloy (FSMA) composite including a ferromagnetic soft iron pad and a superelastic grade of NiTi shape memory alloy (SMA). The actuation mechanism for the FSMA composite membrane of the actuator is the hybrid mechanism that we proposed previously. This membrane actuator is designed for a new synthetic jet actuator package that will be used for active flow control technology on airplane wings. Based on the FEM results, the new membrane actuator system was assembled and its static and dynamic performance was experimentally evaluated including the dynamic magnetic response of the hybrid magnet.

  17. Effect of soldering on the metal-ceramic bond strength of an Ni-Cr base alloy.

    PubMed

    Nikellis, Ioannis; Levi, Anna; Zinelis, Spiros

    2005-11-01

    Although soldering is a common laboratory procedure, the use of soldering alloys may adversely affect metal-ceramic bond strength and potentially decrease the longevity of metal-ceramic restorations. The purpose of this study was to investigate the effect of soldering on metal-ceramic bond strength of a representative Ni-Cr base metal alloy. Twenty-eight rectangular (25 x 3 x 0.5 mm) Ni-based alloy (Wiron 99) specimens were equally divided into soldering (S) and reference (R) groups. Soldering group specimens were covered with a 0.1-mm layer of the appropriate solder (Wiron-Lot) and reduced by 0.1 mm on the opposite side. Five specimens of each group were used for the measurement of surface roughness parameter (R(z)) and hardness, and 3 were used for measurement of the modulus of elasticity. Six specimens of each group were covered with porcelain (Ceramco 3) and subjected to a 3-point bending test for evaluation of the metal-ceramic bond strength according to the ISO 9693 specification. The data from surface roughness, hardness, modulus of elasticity, and metal-ceramic bond strength were analyzed statistically, using independent t tests (alpha=.05). Statistical analysis of the R(z) surface roughness parameter (S: 3.4 +/- 0.3 mum; R: 3.7 +/- 0.7 microm; P=.07) and bond strength (S: 46 +/- 3 MPa; R: 40 +/- 5 MPa; P=.057) failed to reveal any significant difference between the 2 groups. The specimens of the soldering group demonstrated significantly lower values both in hardness (S: 128 +/- 11 VHN; R: 217 +/- 4 VHN; P<.001) and in modulus of elasticity (S: 135 +/- 4 GPa; R: 183 +/- 6 GPa; P=.035) than the reference group. Under the conditions of the present study, the addition of solder to the base metal alloy did not affect the metal-ceramic bond strength.

  18. Tantalum modified ferritic iron base alloys

    NASA Technical Reports Server (NTRS)

    Oldrieve, R. E.; Blankenship, C. P. (Inventor)

    1977-01-01

    Strong ferritic alloys of the Fe-CR-Al type containing 0.4% to 2% tantalum were developed. These alloys have improved fabricability without sacrificing high temperature strength and oxidation resistance in the 800 C (1475 F) to 1040 C (1900 F) range.

  19. Development of oxide dispersion strengthened turbine blade alloy by mechanical alloying

    NASA Technical Reports Server (NTRS)

    Merrick, H. F.; Curwick, L. R. R.; Kim, Y. G.

    1977-01-01

    There were three nickel-base alloys containing up to 18 wt. % of refractory metal examined initially for oxide dispersion strengthening. To provide greater processing freedom, however, a leaner alloy was finally selected. This base alloy, alloy D, contained 0.05C/15Cr / 2Mo/4W/2Ta/4.5Al/2.Ti/015Zr/0.01-B/Bal. Ni. Following alloy selection, the effect of extrusion, heat treatment, and oxide volume fraction and size on microstructure and properties were examined. The optimum structure was achieved in zone annealed alloy D which contained 2.5 vol. % of 35 mm Y2O3 and which was extruded 16:1 at 1038 C.

  20. Activation characteristics of multiphase Zr-based hydrogen storage alloys for Ni/MH rechargeable batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, H.; Lee, S.M.; Lee, J.Y.

    1999-10-01

    AB{sub 2} type Zr-based Laves phase alloys have been studied for possible use as negative electrodes of Ni/MH batteries with high hydrogen storage capacity. However, these alloys have the serious problem of slow activation owing to the formation of surface oxide films. To overcome this problem, alloys with multiphase microstructures have been developed. These alloys become electrochemically active via the creation of micropores by the dissolution of soluble oxide components such as vanadium oxide. However, this phenomenon has been described based only on changes in the chemical composition of the oxide layer. In the present study, this phenomenon is approachedmore » with respect to interactions between the constituent phases. An electrochemical analysis of constituent phases showed that the second phase, resulting in localized Ni-rich pits on the alloy surface. The presence of microcracks at the periphery of the Ni-rich pits after 30 h exposure to KOH electrolyte implies that hydrogen is absorbed preferentially at Ni-rich pits, thereby forming a large active surface area. However, such multiphase alloys have poor cycle durability due to the persistent dissolution of components in the second phase. Through Cr substitution, the authors have developed a family of durable alloys to prevent this unwanted dissolution from the second phase.« less

  1. Development of Ultra-high Purity (UHP) Fe-Based Alloys with High Creep and Oxidation Resistance for A-USC Technology

    NASA Astrophysics Data System (ADS)

    Hamdani, Fethi; Das, Nishith K.; Shoji, Tetsuo

    2018-06-01

    The design of ultra-high purity (UHP) Fe-based model alloys for advanced ultra-supercritical (A-USC) technology is attempted in this work. Creep testing has been performed in air at 700 °C and a stress level of 150 MPa. Analysis of the fracture surface and cross section of the crept specimen was performed. To evaluate the oxidation resistance in A-USC conditions, oxidation testing was performed in supercritical water (SCW) at 700 °C and 25 MPa. Weight gain (WG) measurements and meticulous characterization of the oxide scale were carried out. Based on thermodynamics and density functional theory calculations, some reactive elements in the Fe-Cr-Ni system were designated to promote precipitation strengthening and to improve the hydrogen-accelerated oxidation resistance. The addition of a 2 wt pct Mo into Fe-22Cr-22Ni-0.6Nb wt pct-based matrix did not significantly improve the creep resistance. The addition of 0.26 wt pct Zr coupled with cold working was effective for improving creep properties. The Mo-modified model alloy showed almost the same WG value as SUS310, while the Zr-modified alloy showed a higher WG value. Meanwhile, a Cr-enriched continuous oxide layer was formed at the oxidation front of the Zr-modified alloy and SUS310S after exposure to SCW conditions.

  2. Development of Ultra-high Purity (UHP) Fe-Based Alloys with High Creep and Oxidation Resistance for A-USC Technology

    NASA Astrophysics Data System (ADS)

    Hamdani, Fethi; Das, Nishith K.; Shoji, Tetsuo

    2018-03-01

    The design of ultra-high purity (UHP) Fe-based model alloys for advanced ultra-supercritical (A-USC) technology is attempted in this work. Creep testing has been performed in air at 700 °C and a stress level of 150 MPa. Analysis of the fracture surface and cross section of the crept specimen was performed. To evaluate the oxidation resistance in A-USC conditions, oxidation testing was performed in supercritical water (SCW) at 700 °C and 25 MPa. Weight gain (WG) measurements and meticulous characterization of the oxide scale were carried out. Based on thermodynamics and density functional theory calculations, some reactive elements in the Fe-Cr-Ni system were designated to promote precipitation strengthening and to improve the hydrogen-accelerated oxidation resistance. The addition of a 2 wt pct Mo into Fe-22Cr-22Ni-0.6Nb wt pct-based matrix did not significantly improve the creep resistance. The addition of 0.26 wt pct Zr coupled with cold working was effective for improving creep properties. The Mo-modified model alloy showed almost the same WG value as SUS310, while the Zr-modified alloy showed a higher WG value. Meanwhile, a Cr-enriched continuous oxide layer was formed at the oxidation front of the Zr-modified alloy and SUS310S after exposure to SCW conditions.

  3. Effect of Multiple Alloying Elements on the Glass-Forming Ability, Thermal Stability, and Crystallization Behavior of Zr-Based Alloys

    NASA Astrophysics Data System (ADS)

    Bazlov, A. I.; Tsarkov, A. A.; Ketov, S. V.; Suryanarayana, C.; Louzguine-Luzgin, D. V.

    2018-02-01

    Effect of multiple alloying elements on the glass-forming ability, thermal stability, and crystallization behavior of Zr-based glass-forming alloys were studied in the present work. We investigated the effect of complete or partial substitution of Ti and Ni with similar early and late transition metals, respectively, on the glass-forming ability and crystallization behavior of the Zr50Ti10Cu20Ni10Al10 alloy. Poor correlation was observed between different parameters indicating the glass-forming ability and the critical size of the obtained glassy samples. Importance of the width of the crystallization interval is emphasized. The kinetics of primary crystallization, i.e., the rate of nucleation and rate of growth of the nuclei of primary crystals is very different from that of the eutectic alloys. Thus, it is difficult to estimate the glass-forming ability only on the basis of the empirical parameters not taking into account the crystallization behavior and the crystallization interval.

  4. Evaluation of Pb-17Li compatibility of ODS Fe-12Cr-5Al alloys

    NASA Astrophysics Data System (ADS)

    Unocic, Kinga A.; Hoelzer, David T.

    2016-10-01

    The Dual Coolant Lead Lithium (DCLL: eutectic Pb-17Li and He) blanket concept requires improved Pb-17Li compatibility with ferritic steels in order to demonstrate acceptable performance in fusion reactors. As an initial step, static Pb-17at.%Li (Pb-17Li) capsule experiments were conducted on new oxide dispersion strengthened (ODS) FeCrAl alloys ((1) Y2O3 (125Y), (2) Y2O3 + ZrO2 (125YZ), (3) Y2O3 + HfO2 (125YH), and (4) Y2O3 + TiO2 (125YT)) produced at ORNL via mechanical alloying (MA). Tests were conducted in static Pb-17Li for 1000 h at 700 °C. Alloys showed promising compatibility with Pb-17Li with small mass change after testing for 125YZ, 125YH and 125YT, while the 125Y alloy experienced the highest mass loss associated with some oxide spallation and subsequent alloy dissolution. X-ray diffraction methods identified the surface reaction product as LiAlO2 on all four alloys. A small decrease (∼1 at.%) in Al content beneath the oxide scale was observed in all four ODS alloys, which extended 60 μm beneath the oxide/metal interface. This indicates improvements in alloy dissolution by decreasing the amount of Al loss from the alloy. Scales formed on 125YZ, 125YH and 125YT were examined via scanning transmission electron microscopy (S/TEM) and revealed incorporation of Zr-, Hf-, and Ti-rich precipitates within the LiAlO2 product, respectively. This indicates an inward scale growth mechanism. Future work in flowing Pb-17Li is needed to further evaluate the effectiveness of this strategy in a test blanket module.

  5. Evaluation of Pb-17Li compatibility of ODS Fe-12Cr-5Al alloys

    DOE PAGES

    Unocic, Kinga A.; Hoelzer, David T.

    2016-07-09

    The Dual Coolant Lead Lithium (DCLL: eutectic Pb–17Li and He) blanket concept requires improved Pb–17Li compatibility with ferritic steels in order to demonstrate acceptable performance in fusion reactors. As an initial step, static Pb-17at.%Li (Pb-17Li) capsule experiments were conducted on new oxide dispersion strengthened (ODS) FeCrAl alloys ((1) Y 2O 3 (125Y), (2) Y 2O 3+ZrO 2 (125YZ), (3) Y 2O 3+HfO 2 (125YH), and (4) Y 2O 3+TiO 2 (125YT)) produced at ORNL via mechanical alloying (MA). Tests were conducted in static Pb–17Li for 1000 h at 700°C. Alloys showed promising compatibility with Pb–17Li with small mass change aftermore » testing for 125YZ, 125YH and 125YT, while the 125Y alloy experienced the highest mass loss associated with some oxide spallation and subsequent alloy dissolution. X-ray diffraction methods identified the surface reaction product as LiAlO 2 on all four alloys. A small decrease (~1 at.%) in Al content beneath the oxide scale was observed in all 4 ODS alloys, which extended through 60 μm beneath the oxide/metal interface. This indicates improvements in alloy dissolution by decreasing the amount of Al loss from the alloy. Scales formed on 125YZ, 125YH and 125YT were examined via scanning transmission electron microscopy (S/TEM) and revealed incorporation of Zr-, Hf-, and Ti-rich precipitates within the LiAlO2 product, respectively. This indicates an inward scale growth mechanism. Future work in flowing Pb–17Li is needed to further evaluate the effectiveness of this strategy in a test blanket module.« less

  6. Damage structures in fission-neutron irradiated Ni-based alloys at high temperatures

    NASA Astrophysics Data System (ADS)

    Yamakawa, K.; Shimomura, Y.

    1999-01-01

    The defects formed in Ni based (Ni-Si, Ni-Cu and Ni-Fe) alloys which were irradiated with fission-neutrons were examined by electron microscopy. Irradiations were carried out at 473 K and 573 K. In the 473 K irradiated specimens, a high density of large interstitial loops and small vacancy clusters with stacking fault tetrahedra (SFT) were observed. The number densities of these two types of defects did not strongly depend on the amount of solute atoms in each alloy. The density of the loops in Ni-Si alloys was much higher than those in Ni-Cu and Ni-Fe alloys, while the density of SFT only slightly depended on the kind of solute. Also, the size of the loops depended on the kinds and amounts of solute. In 573 K irradiated Ni-Cu specimens, a high density of dislocation lines developed during the growth of interstitial loops. In Ni-Si alloys, the number density and size of the interstitial loops changed as a function of the amount of solute. Voids were formed in Ni-Cu alloys but scarcely formed in Ni-Si alloys. The number density of voids was one hundredth of that of SFT observed in 473 K irradiated Ni-Cu alloys. Possible formation processes of interstitial loops, SFT dislocation lines and voids are discussed.

  7. Anneal-Hardening Behavior of Cr-Fe-C Alloy Deposits Prepared in a Cr3+-Based Bath with Fe2+ Ions

    PubMed Central

    Huang, Ching An; Chen, Jhih You; Wang, Hai

    2017-01-01

    Cr-Fe-C alloy deposits were successfully prepared on high-carbon tool steel in a Cr3+-based electroplating bath containing Fe2+ ions and suitable complex agents. A Cr-based alloy deposit was obtained with an electroplating current density higher than 25 Adm−2, and a Fe-based alloy deposit was obtained using a current density of 20 Adm−2. Following electroplating, these alloy deposited specimens were annealed via rapid thermal annealing (RTA) at 500 °C for different periods up to 30 s. The experimental results show that Cr- and Fe-based alloy deposits could be significantly hardened after RTA at 500 °C for a few seconds. The maximum hardness was that of the Cr-Fe-C alloy deposit annealed at 500 °C for 10 s. The maximum hardness of 1205 Hv was detected from the annealed Cr-based alloy deposit prepared with 30 ASD. The hardening mechanism of annealed Cr- and Fe-based alloy deposits is attributed to the precipitation of C-related membranes. The hardness values of the annealed Cr- and Fe-based alloy deposits increase with the increasing degree of crystallization of the C-related membranes. PMID:29206206

  8. Effects of Some Light Alloying Elements on the Oxidation Behavior of Fe and Ni-Cr Based Alloys During Air Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Zeng, Zhensu; Kuroda, Seiji; Kawakita, Jin; Komatsu, Masayuki; Era, Hidenori

    2010-01-01

    The oxidation behavior of iron binary powders with addition of Si (1, 4 wt.%) and B (1, 3 wt.%) and that of a Ni-Cr based alloy powder with Si (4.3 wt.%), B (3.0 wt.%), and C (0.8 wt.%) additions during atmosphere plasma spray (APS) have been investigated. Analysis of the chemical composition and phases of oxides in the captured in-flight particles and deposited coatings was carried out. The results show that the addition of Si and B to iron effectively reduced the oxygen contents in the coatings, especially during the in-flight period at higher particles temperature. Ni-Cr based alloy powder with Si, B, and C additions reduced the oxidation of the base alloys significantly. Preferential oxidation and subsequent vaporization of Si, B, and C from the surface of the sprayed particles are believed to play a major role in controlling oxidation in the APS process.

  9. Ignition characteristics of the nickel-based alloy UNS N07718 in pressurized oxygen

    NASA Technical Reports Server (NTRS)

    Bransford, James W.; Billiard, Phillip A.; Hurley, James A.; Mcdermott, Kathleen M.; Vazquez, Isaura

    1989-01-01

    The development of ignition and combustion in pressurized oxygen atmospheres was studied for the nickel based alloy UNS N07718. Ignition of the alloy was achieved by heating the top. It was found that the alloy would autoheat to destruction from temperatures below the solidus temperature. In addition, endothermic events occurred as the alloy was heated, many at reproducible temperatures. Many endothermic events occurred prior to abrupt increases in surface temperature and appeared to accelerate the rate of increase in specimen temperature. It appeared that the source of some endotherms may increase the oxidation rate of the alloy. Ignition parameters are defined and the temperatures at which these parameters occur are given for the oxygen pressure range of 1.72 to 13.8 MPa (250 to 2000 psia).

  10. Microstructural Characterization of Base Metal Alloys with Conductive Native Oxides for Electrical Contact Applications

    NASA Astrophysics Data System (ADS)

    Senturk, Bilge Seda

    Metallic contacts are a ubiquitous method of connecting electrical and electronic components/systems. These contacts are usually fabricated from base metals because they are inexpensive, have high bulk electrical conductivities and exhibit excellent formability. Unfortunately, such base metals oxidize in air under ambient conditions, and the characteristics of the native oxide scales leads to contact resistances orders of magnitude higher than those for mating bare metal surface. This is a critical technological issue since the development of unacceptably high contact resistances over time is now by far the most common cause of failure in electrical/electronic devices and systems. To overcome these problems, several distinct approaches are developed for alloying base metals to promote the formation of self-healing inherently conductive native oxide scales. The objective of this dissertation study is to demonstrate the viability of these approaches through analyzing the data from Cu-9La (at%) and Fe-V binary alloy systems. The Cu-9 La alloy structure consists of eutectic colonies tens of microns in diameter wherein a rod-like Cu phase lies within a Cu6La matrix phase. The thin oxide scale formed on the Cu phase was found to be Cu2O as expected while the thicker oxide scale formed on the Cu6La phase was found to be a polycrystalline La-rich Cu2O. The enhanced electrical conductivity in the native oxide scale of the Cu-9La alloy arises from heavy n-type doping of the Cu2O lattice by La3+. The Fe-V alloy structures consist of a mixture of large elongated and equiaxed grains. A thin polycrystalline Fe3O4 oxide scale formed on all of the Fe-V alloys. The electrical conductivities of the oxide scales formed on the Fe-V alloys are higher than that formed on pure Fe. It is inferred that this enhanced conductivity arises from doping of the magnetite with V+4 which promotes electron-polaron hopping. Thus, it has been demonstrated that even in simple binary alloy systems one

  11. Ductile metal alloys, method for making ductile metal alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cockeram, Brian V.

    A ductile alloy is provided comprising molybdenum, chromium and aluminum, wherein the alloy has a ductile to brittle transition temperature of about 300 C after radiation exposure. The invention also provides a method for producing a ductile alloy, the method comprising purifying a base metal defining a lattice; and combining the base metal with chromium and aluminum, whereas the weight percent of chromium is sufficient to provide solute sites within the lattice for point defect annihilation.

  12. Increasing Ti-6Al-4V brazed joint strength equal to the base metal by Ti and Zr amorphous filler alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganjeh, E., E-mail: navidganjehie@sina.kntu.ac.ir; Sarkhosh, H.; Bajgholi, M.E.

    Microstructural features developed along with mechanical properties in furnace brazing of Ti-6Al-4V alloy using STEMET 1228 (Ti-26.8Zr-13Ni-13.9Cu, wt.%) and STEMET 1406 (Zr-9.7Ti-12.4Ni-11.2Cu, wt.%) amorphous filler alloys. Brazing temperatures employed were 900-950 Degree-Sign C for the titanium-based filler and 900-990 Degree-Sign C for the zirconium-based filler alloys, respectively. The brazing time durations were 600, 1200 and 1800 s. The brazed joints were evaluated by ultrasonic test, and their microstructures and phase constitutions analyzed by metallography, scanning electron microscopy and X-ray diffraction analysis. Since microstructural evolution across the furnace brazed joints primarily depends on their alloying elements such as Cu, Ni andmore » Zr along the joint. Accordingly, existence of Zr{sub 2}Cu, Ti{sub 2}Cu and (Ti,Zr){sub 2}Ni intermetallic compounds was identified in the brazed joints. The chemical composition of segregation region in the center of brazed joints was identical to virgin filler alloy content which greatly deteriorated the shear strength of the joints. Adequate brazing time (1800 s) and/or temperature (950 Degree-Sign C for Ti-based and 990 Degree-Sign C for Zr-based) resulted in an acicular Widmanstaetten microstructure throughout the entire joint section due to eutectoid reaction. This microstructure increased the shear strength of the brazed joints up to the Ti-6Al-4V tensile strength level. Consequently, Ti-6Al-4V can be furnace brazed by Ti and Zr base foils produced excellent joint strengths. - Highlights: Black-Right-Pointing-Pointer Temperature or time was the main factors of controlling braze joint strength. Black-Right-Pointing-Pointer Developing a Widmanstaetten microstructure generates equal strength to base metal. Black-Right-Pointing-Pointer Brittle intermetallic compounds like (Ti,Zr){sub 2}Ni/Cu deteriorate shear strength. Black-Right-Pointing-Pointer Ti and Zr base filler alloys were the best choice for

  13. In vitro mechanical integrity of hydroxyapatite coated magnesium alloy.

    PubMed

    Kannan, M Bobby; Orr, Lynnley

    2011-08-01

    The mechanical integrity of resorbable implants during service, especially in load bearing orthopaedic applications, is critical. The high degradation rate of resorbable magnesium and magnesium-based implants in body fluid may potentially cause premature in-service failure. In this study, a magnesium alloy (AZ91) was potentiostatically coated with hydroxyapatite at different cathodic voltages in an attempt to enhance the mechanical integrity. The mechanical integrity of the uncoated and hydroxyapatite coated alloys was evaluated after in vitro testing of the coated samples in simulated body fluid (SBF). The uncoated alloy showed 40% loss in the mechanical strength after five days exposure to SBF. However, the hydroxyapatite coated alloy exposed to SBF showed 20% improvement in the mechanical strength as compared to that of the uncoated alloy. The alloy coated potentiostatically at -2 V performed better than the -3 V coated alloy. The cross-sectional analysis of the coatings revealed relatively uniform coating thickness for the -2 V coated alloy, whereas the -3 V coated alloy exhibited areas of uneven coating. This can be attributed to the increase in hydrogen evolution on the alloy during -3 V coating as compared to -2 V coating. The scanning electron micrographs of the in vitro tested alloy revealed that hydroxyapatite coating significantly reduced the localized corrosion of the alloy, which is critical for better in-service mechanical integrity. Thus, the study suggests that the in vitro mechanical integrity of resorbable magnesium-based alloy can be improved by potentiostatic hydroxyapatite coating. © 2011 IOP Publishing Ltd

  14. Microstructure, biocorrosion and cytotoxicity evaluations of rapid solidified Mg-3Ca alloy ribbons as a biodegradable material.

    PubMed

    Gu, X N; Li, X L; Zhou, W R; Cheng, Y; Zheng, Y F

    2010-06-01

    Rapidly solidified (RS) Mg–3Ca alloy ribbons were prepared by the melt-spinning technique at different wheel rotating speeds (15 m s(-1), 30 m s(-1) and 45 m s(-1) with the as-cast Mg–3Ca alloy ingot as a raw material. The RS45 Mg–3Ca alloy ribbon showed a much more fine grain size feature (approximately 200–500 nm) in comparison to the coarse grain size (50–100 μm)of the original as-cast Mg–3Ca alloy ingot. The corrosion electrochemical tests in simulated body fluid indicated that the corrosion rate of the as-cast Mg–3Ca alloy was strongly reduced by the RS procedure and tended to be further decreased with increasing wheel rotating speeds(1.43 mm yr(-1) for RS15, 0.94 mm yr(-1) for RS30 and 0.36 mm yr(-1) for RS45). The RS Mg–3Ca alloy ribbons showed more uniform corrosion morphology compared with the as-cast Mg–3Ca alloy after polarization. The cytotoxicity evaluation revealed that the three experimental as-spun Mg–3Ca alloy ribbon extracts did not induce toxicity to the L-929 cells,whereas the as-cast Mg–3Ca alloy ingot extract did. The L-929 cells showed more improved adhesion on the surfaces of the three as-spun Mg–3Ca alloy ribbons than that of the as-cast Mg–3Ca alloy ingot.

  15. Niobium-aluminum base alloys having improved, high temperature oxidation resistance

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G. (Inventor); Stephens, Joseph R. (Inventor)

    1991-01-01

    A niobium-aluminum base alloy having improved oxidation resistance at high temperatures and consisting essentially of 48%-52% niobium, 36%-42% aluminum, 4%-10% chromium, 0%-2%, more preferably 1%-2%, silicon and/or tungsten with tungsten being preferred, and 0.1%-2.0% of a rare earth selected from the group consisting of yttrium, ytterbium and erbium. Parabolic oxidation rates, k.sub.p, at 1200.degree. C. range from about 0.006 to 0.032 (mg/cm.sup.2).sup.2 /hr. The new alloys also exhibit excellent cyclic oxidation resistance.

  16. The influence of heat treatments on several types of base-metal removable partial denture alloys.

    PubMed

    Morris, H F; Asgar, K; Rowe, A P; Nasjleti, C E

    1979-04-01

    Four removable partial denture alloys, Vitallium (Co-Cr alloy), Dentillium P.D. (Fe-Cr alloy), Durallium L.G. (Co-Cr-Ni alloy), and Ticonium 100 (Ni-Cr alloy), were evaluated in the as-cast condition and after heat treatment for 15 minutes at 1,300 degrees, 1,600 degrees, 1,900 degrees, and 2,200 degrees F followed by quenching in water. The following properties were determined and compared for each alloy at each heat treatment condition: the yield strengths at 0.01%, 0.1%, and 0.2% offsets, the ultimate tensile strength, the percent elongation, the modulus of elasticity, and the Knoop microhardness. The results were statistically analyzed. Photomicrographs were examined for each alloy and test condition. The following conclusions were made: 1. The "highest values" were exhibited by the as-cast alloy. 2. Heat treatment of the partial denture alloys tested resulted in reductions in strength, while the elongations varied. This study demonstrates that, in practice, one should avoid (a) prolonged "heat-soaking" while soldering and (b) grinding or polishing of the casting until the alloy is "red hot". 3. Durallium L.G. was the least affected by the various heat treatment conditions. 4. Conventional reporting of the yield strength at 0.2% offset, the ultimate tensile strength, and percent elongation are not adequate to completely describe and compare the mechanical behavior of alloys. The reporting of the yield strength at 0.01% offset, in addition to the other reported properties, will provide a more complete description of the behavior of the dental alloys.

  17. A theoretical study of thorium titanium-based alloys

    NASA Astrophysics Data System (ADS)

    Obodo, K. O.; Chetty, N.

    2013-09-01

    Using theoretical quantum chemical methods, we investigate the dearth of ordered alloys involving thorium and titanium. Whereas both these elements are known to alloy very readily with various other elements, for example with oxygen, current experimental data suggests that Th and Ti do not alloy very readily with each other. In this work, we consider a variety of ordered alloys at varying stoichiometries involving these elements within the framework of density functional theory using the generalized gradient approximation for the exchange and correlation functional. By probing the energetics, electronic, phonon and elastic properties of these systems, we confirm the scarcity of ordered alloys involving Th and Ti, since for a variety of reasons many of the systems that we considered were found to be unfavorable. However, our investigations resulted in one plausible ordered structure: We propose ThTi3 in the Cr3Si structure as a metastable ordered alloy.

  18. Evaluation of flow properties in the weldments of vanadium alloys using a novel indentation technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubbi, A.N.; Rowcliffe, A.F.; Lee, E.H.

    1996-10-01

    Automated Ball Indentation (ABI) testing, was successfully employed to determine the flow properties of the fusion zone, heat affected zone (HAZ), and base metal of the gas tungsten arc (GTA) and electron beam (EB) welds of the V-4Cr-4Ti (large heat no. 832665) and the V-5Cr-5Ti (heat 832394) alloys. ABI test results showed a clear distinction among the properties of the fusion zone, HAZ, and base metal in both GTA and EB welds of the two alloys. GTA and EB welds of both V-4Cr-4Ti and V-5Cr-5Ti alloys show strengthening of both the fusion zone and the HAZ (compared to base metal)more » with the fusion zone having higher strength than the HAZ. These data correlate well with the Brinell hardness. On the other hand, GTA welds of both alloys, after a post-weld heat treatment of 950{degrees}C for 2 h, show a recovery of the properties to base metal values with V-5Cr-5Ti showing a higher degree of recovery compared to V-4Cr-4Ti. These measurements correlate with the reported recovery of the Charpy impact properties.« less

  19. Corrosion behavior of experimental and commercial nickel-base alloys in HCl and HCl containing Fe3+

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.

    The effects of ferric ions on the corrosion resistance and electrochemical behavior of a series of Ni-based alloys in 20% HCl at 30ºC were investigated. The alloys studied were those prepared by the Albany Research Center (ARC), alloys J5, J12, J13, and those sold commercially, alloys 22, 242, 276, and 2000. Tests included mass loss, potentiodynamic polarization, and linear polarization.

  20. Fe-based long range ordered alloys

    DOEpatents

    Liu, Chain T; Inouye, Henry; Schaffhauser, Anthony C.

    1980-01-01

    Malleable long range ordered alloys having high critical ordering temperatures exist in the V(Co,Fe).sub.3 and V(Co,Fe,Ni).sub.3 system having the composition comprising by weight 22-23% V, 35-50% Fe, 0-22% Co and 19-40% Ni with an electron density no greater than 8.00. Excellent high temperature properties occur in alloys having compositions comprising by weight 22-23% V, 35-45% Fe, 0-10% Co, 25-35% Ni; 22-23% V, 28-33% Ni and the remainder Fe; and 22-23% V, 19-22% Ni, 19-22% Co and the remainder Fe. The alloys are fabricable by casting, deforming and annealing for sufficient time to provide ordered structure.

  1. Directionally solidified iron-base eutectic alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1976-01-01

    Pseudobinary eutectic alloys with nominal compositions of Fe-25Ta-22Ni-10Cr and Fe-15.5Nb-14.5Ni-6.0Cr were directionally solidified at 0.5 centimeter per hour. Their microstructure consisted of the fcc, iron solid-solution, matrix phase reinforced by about 41-volume-percent, hcp, faceted Fe2Ta fibers and 41-volume-percent, hcp, Fe2Nb lamellae for the tantalum- and niobium-containing alloys, respectively. The microstructural stability under thermal cycling and the temperature dependence of tensile properties were investigated. These alloys showed low elevated-temperature strength and were not considered suitable for application in aircraft-gas-turbine blades although they may have applicability as vane materials.

  2. An in situ USAXS–SAXS–WAXS study of precipitate size distribution evolution in a model Ni-based alloy1

    PubMed Central

    Andrews, Ross N.; Serio, Joseph; Muralidharan, Govindarajan; Ilavsky, Jan

    2017-01-01

    Intermetallic γ′ precipitates typically strengthen nickel-based superalloys. The shape, size and spatial distribution of strengthening precipitates critically influence alloy strength, while their temporal evolution characteristics determine the high-temperature alloy stability. Combined ultra-small-, small- and wide-angle X-ray scattering (USAXS–SAXS–WAXS) analysis can be used to evaluate the temporal evolution of an alloy’s precipitate size distribution (PSD) and phase structure during in situ heat treatment. Analysis of PSDs from USAXS–SAXS data employs either least-squares fitting of a preordained PSD model or a maximum entropy (MaxEnt) approach, the latter avoiding a priori definition of a functional form of the PSD. However, strong low-q scattering from grain boundaries and/or structure factor effects inhibit MaxEnt analysis of typical alloys. This work describes the extension of Bayesian–MaxEnt analysis methods to data exhibiting structure factor effects and low-q power law slopes and demonstrates their use in an in situ study of precipitate size evolution during heat treatment of a model Ni–Al–Si alloy. PMID:28656039

  3. Creep and stress rupture of a mechanically alloyed oxide dispersion and precipitation strengthened nickel-base superalloy

    NASA Technical Reports Server (NTRS)

    Howson, T. E.; Tien, J. K.; Mervyn, D. A.

    1980-01-01

    The creep and stress rupture behavior of a mechanically alloyed oxide dispersion strengthened (ODS) and gamma-prime precipitation strengthened nickel-base alloy (alloy MA 6000E) was studied at intermediate and elevated temperatures. At 760 C, MA 6000E exhibits the high creep strength characteristic of nickel-base superalloys and at 1093 C the creep strength is superior to other ODS nickel-base alloys. The stress dependence of the creep rate is very sharp at both test temperatures and the apparent creep activation energy measured around 760 C is high, much larger in magnitude than the self-diffusion energy. Stress rupture in this large grain size material is transgranular and crystallographic cracking is observed. The rupture ductility is dependent on creep strain rate, but usually is low. These and accompanying microstructural results are discussed with respect to other ODS alloys and superalloys and the creep behavior is rationalized by invoking a recently-developed resisting stress model of creep in materials strengthened by second phase particles.

  4. Burner Rig Hot Corrosion of Five Ni-Base Alloys Including Mar-M247

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Helmink, R.; Harris, K.; Erickson, G.

    2000-01-01

    The hot corrosion resistance of four new Ni-base superalloys was compared to that of Mar-M247 by testing in a Mach 0.3 burner rig at 900 C for 300 1-hr cycles. While the Al content was held the same as in the Mar-M247, the Cr and Co levels in the four new alloys were decreased while other strengthening elements (Re, Ta) were increased. Surprisingly, despite their lower Cr and Co contents, the hot corrosion behavior of all four new alloys was superior to that of the Mar-M247 alloy. The Mar-M247 alloy began to lose weight almost immediately whereas the other four alloys appeared to undergo an incubation period of 50-150 1-hr cycles. Examination of the cross-sectional microstructures showed regions of rampant corrosion attack (propagation stage) in all five alloys after 300 1-hr cycles . This rampant corrosion morphology was similar for each of the alloys with Ni and Cr sulfides located in an inner subscale region. The morphology of the attack suggests a classic "Type I", or high temperature, hot corrosion attack.

  5. The performances of proto-type Ni/MH secondary batteries using Zr-based hydrogen storage alloys and filamentary type Ni

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Min; Lee, Ho; Kim, Jin-Ho; Lee, Paul S.; Lee, Jai-Young

    2001-04-01

    For the purpose of developing a Zr-based Laves phase alloy with higher capacity and better performance for electrochemical application, extensive work has been carried out. After careful alloy design of ZrMn2-based hydrogen storage alloys through varying their stoichiometry by means of substituting or adding alloying elements, the Zr0.9Ti0.1(Mn0.7V0.5Ni1.4)0.92 with high capacity (392 mAh/g at the 0.25C) and improved performance (comparable to that of commercialized AB5 type alloy) was developed. Another endeavor was made to improve the poor activation property and the low rate capability of the developed Zr-based Laves phase alloy for commercialization. The combination method of hot-immersion and slow-charging was introduced. It was found that electrode activation was greatly improved after hot immersion at 80°C for 12h followed by charging at 0.05C. The effects of this method are discussed in comparison with other activation methods. The combination method was successfully applied to the formation process of 80 Ah Ni/MH cells. A series of systematic investigations has been rendered to analyze the inner cell pressure characteristics of a sealed type Ni-MH battery. It was found that the increase of inner cell pressure in the sealed type Ni/MH battery of the above-mentioned Zr-Ti-Mn-V-Ni alloy was mainly due to the accumulation of oxygen gas during charge/discharge cycling. The fact identified that the surface catalytic activity was affected more dominantly by the oxygen recombination reaction than the reaction surface area was also identified. In order to improve the surface catalytic activity of a Zr-Ti-Mn-V-Ni alloy, which is closely related to the inner pressure behavior in a sealed cell, the electrode was fabricated by mixing the alloy with Cu powder and a filamentary type of Ni and replacing 75% of the carbon black with them; thus, the inner cell pressure rarely increases with cycles due to the active gas recombination reaction. Measurements of the surface

  6. Dual Microstructure Heat Treatment of a Nickel-Base Disk Alloy Assessed

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2002-01-01

    Gas turbine engines for future subsonic aircraft will require nickel-base disk alloys that can be used at temperatures in excess of 1300 F. Smaller turbine engines, with higher rotational speeds, also require disk alloys with high strength. To address these challenges, NASA funded a series of disk programs in the 1990's. Under these initiatives, Honeywell and Allison focused their attention on Alloy 10, a high-strength, nickel-base disk alloy developed by Honeywell for application in the small turbine engines used in regional jet aircraft. Since tensile, creep, and fatigue properties are strongly influenced by alloy grain size, the effect of heat treatment on grain size and the attendant properties were studied in detail. It was observed that a fine grain microstructure offered the best tensile and fatigue properties, whereas a coarse grain microstructure offered the best creep resistance at high temperatures. Therefore, a disk with a dual microstructure, consisting of a fine-grained bore and a coarse-grained rim, should have a high potential for optimal performance. Under NASA's Ultra-Safe Propulsion Project and Ultra-Efficient Engine Technology (UEET) Program, a disk program was initiated at the NASA Glenn Research Center to assess the feasibility of using Alloy 10 to produce a dual-microstructure disk. The objectives of this program were twofold. First, existing dual-microstructure heat treatment (DMHT) technology would be applied and refined as necessary for Alloy 10 to yield the desired grain structure in full-scale forgings appropriate for use in regional gas turbine engines. Second, key mechanical properties from the bore and rim of a DMHT Alloy 10 disk would be measured and compared with conventional heat treatments to assess the benefits of DMHT technology. At Wyman Gordon and Honeywell, an active-cooling DMHT process was used to convert four full-scale Alloy 10 disks to a dual-grain microstructure. The resulting microstructures are illustrated in the

  7. Development of advanced high strength tantalum base alloys. Part 1: Screening investigation

    NASA Technical Reports Server (NTRS)

    Buckman, R. W., Jr.

    1971-01-01

    Five experimental tantalum alloy compositions containing 13-18% W+Re+Hf solid solution solute additions with dispersed phase strengthening achieved by carbon or nitrogen additions were prepared as 1.4 inch diameter ingot processed to 3/8 inch diameter rod and evaluated. Elevated temperature tensile and creep strength increased monotonically with increasing solute content. Room temperature elongation decreased for 20% to less than 2% as the solute content was increased above 16%. Phase identification indicated that the precipitating phase in the carbide containing alloys was Ta2C.

  8. Surface tension measurement of undercooled liquid Ni-based multicomponent alloys

    NASA Astrophysics Data System (ADS)

    Chang, J.; Wang, H. P.; Zhou, K.; Wei, B.

    2012-09-01

    The surface tensions of liquid ternary Ni-5%Cu-5%Fe, quaternary Ni-5%Cu-5%Fe-5%Sn and quinary Ni-5%Cu-5%Fe-5%Sn-5%Ge alloys were determined as a function of temperature by the electromagnetic levitation oscillating drop method. The maximum undercoolings obtained in the experiments are 272 (0.15T L), 349 (0.21T L) and 363 K (0.22T L), respectively. For all the three alloys, the surface tension decreases linearly with the rise of temperature. The surface tension values are 1.799, 1.546 and 1.357 N/m at their liquidus temperatures of 1719, 1644 and 1641 K. Their temperature coefficients are -4.972 × 10-4, -5.057 × 10-4 and -5.385 × 10-4 N/m/K. It is revealed that Sn and Ge are much more efficient than Cu and Fe in reducing the surface tension of Ni-based alloys. The addition of Sn can significantly enlarge the maximum undercooling at the same experimental condition. The viscosity of the three undercooled liquid alloys was also derived from the surface tension data.

  9. The resistance to embrittlement by a hydrogen environment of selected high strength iron-manganese base alloys

    NASA Technical Reports Server (NTRS)

    Benson, R. B., Jr.; Kim, D. K.; Atteridge, D.; Gerberich, W. W.

    1974-01-01

    Fe-16Mn and Fe-25Mn base alloys, which had been cold worked to yield strength levels of 201 and 178 KSI, were resistant to degradation of mechanical properties in a one atmosphere hydrogen environment at ambient temperature under the loading conditions employed in this investigation. Transmission electron microscopy established that bands of epsilon phase martensite and fcc mechanical twins were formed throughout the fcc matrix when these alloys were cold worked. In the cold worked alloys a high density of crystal defects were observed associated with both types of strain induced structures, which should contribute significantly to the strengthening of these alloys. High strength iron base alloys can be produced which appear to have some resistance to degradation of mechanical properties in a hydrogen environment under certain conditions.

  10. First-principles investigations of iron-based alloys and their properties

    NASA Astrophysics Data System (ADS)

    Limmer, Krista Renee

    Fundamental understanding of the complex interactions governing structure-property relationships in iron-based alloys is necessary to advance ferrous metallurgy. Two key components of alloy design are carbide formation and stabilization and controlling the active deformation mechanism. Following a first-principles methodology, understanding on the electronic level of these components has been gained for predictive modeling of alloys. Transition metal carbides have long played an important role in alloy design, though the complexity of their interactions with the ferrous matrix is not well understood. Bulk, surface, and interface properties of vanadium carbide, VCx, were calculated to provide insight for the carbide formation and stability. Carbon vacancy defects are shown to stabilize the bulk carbide due to increased V-V bonding in addition to localized increased V-C bond strength. The VCx (100) surface energy is minimized when carbon vacancies are at least two layers from the surface. Further, the Fe/VC interface is stabilized through maintaining stoichiometry at the Fe/VC interface. Intrinsic and unstable stacking fault energy, gammaisf and gamma usf respectively, were explicitly calculated in nonmagnetic fcc Fe-X systems for X = Al, Si, P, S, and the 3d and 4d transition elements. A parabolic relationship is observed in gamma isf across the transition metals with minimums observed for Mn and Tc in the 3d and 4d periods, respectively. Mn is the only alloying addition that was shown to decrease gamma isf in fcc Fe at the given concentration. The effect of alloying on gammausf also has a parabolic relationship, with all additions decreasing gammaisf yielding maximums for Fe and Rh.

  11. Machinability evaluation of titanium alloys.

    PubMed

    Kikuchi, Masafumi; Okuno, Osamu

    2004-03-01

    In the present study, the machinability of titanium, Ti-6Al-4V, Ti-6A1-7Nb, and free-cutting brass was evaluated using a milling machine. The metals were slotted with square end mills under four cutting conditions. The cutting force and the rotational speed of the spindle were measured. The cutting forces for Ti-6Al-4V and Ti-6Al-7Nb were higher and that for brass was lower than that for titanium. The rotational speed of the spindle was barely affected by cutting. The cross sections of the Ti-6Al-4V and Ti-6Al-7Nb chips were more clearly serrated than those of titanium, which is an indication of difficult-to-cut metals. There was no marked difference in the surface roughness of the cut surfaces among the metals. Cutting force and the appearance of the metal chips were found to be useful as indices of machinability and will aid in the development of new alloys for dental CAD/CAM and the selection of suitable machining conditions.

  12. Alloying and Hardness of Eutectics with Nbss and Nb5Si3 in Nb-silicide Based Alloys

    PubMed Central

    Tsakiropoulos, Panos

    2018-01-01

    In Nb-silicide based alloys, eutectics can form that contain the Nbss and Nb5Si3 phases. The Nb5Si3 can be rich or poor in Ti, the Nb can be substituted with other transition and refractory metals, and the Si can be substituted with simple metal and metalloid elements. For the production of directionally solidified in situ composites of multi-element Nb-silicide based alloys, data about eutectics with Nbss and Nb5Si3 is essential. In this paper, the alloying behaviour of eutectics observed in Nb-silicide based alloys was studied using the parameters ΔHmix, ΔSmix, VEC (valence electron concentration), δ (related to atomic size), Δχ (related to electronegativity), and Ω (= Tm ΔSmix/|ΔHmix|). The values of these parameters were in the ranges −41.9 < ΔHmix <−25.5 kJ/mol, 4.7 < ΔSmix < 15 J/molK, 4.33 < VEC < 4.89, 6.23 < δ < 9.44, 0.38 < Ω < 1.35, and 0.118 < Δχ < 0.248, with a gap in Δχ values between 0.164 and 0.181. Correlations between ΔSmix, Ω, ΔSmix, and VEC were found for all of the eutectics. The correlation between ΔHmix and δ for the eutectics was the same as that of the Nbss, with more negative ΔHmix for the former. The δ versus Δχ map separated the Ti-rich eutectics from the Ti-poor eutectics, with a gap in Δχ values between 0.164 and 0.181, which is within the Δχ gap of the Nbss. Eutectics were separated according to alloying additions in the Δχ versus VEC, Δχ versus , δ versus , and VEC versus maps, where = Al + Ge + Si + Sn. Convergence of data in maps occurred at δ ≈ 9.25, VEC ≈ 4.35, Δχ in the range ≈ 0.155 to 0.162, and in the range ≈ 21.6 at.% to ≈ 24.3 at.%. The convergence of data also indicated that the minimum concentration of Ti and maximum concentrations of Al and Si in the eutectic were about 8.7 at.% Ti, 6.3 at.% Al, and 21.6 at.% Si, respectively, and that the minimum concentration of Si in the eutectic was in the range 8 < Si < 10 at.%. PMID:29641503

  13. Surface modification of high temperature iron alloys

    DOEpatents

    Park, Jong-Hee

    1995-01-01

    A method and article of manufacture of a coated iron based alloy. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700.degree. C.-1200.degree. C. to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy.

  14. Fe-based long range ordered alloys

    DOEpatents

    Liu, C.T.

    Malleable long range ordered alloys with high critical ordering temperatures exist in the V(Co,Fe)/sub 3/ and V(Co,Fe,Ni)/sub 3/ system. The composition comprising by weight 22 to 23% V, 35 to 50% Fe, 0 to 22% Co and 19 to 40% Ni with an electron density no greater than 8.00. Excellent high temperature properties occur in alloys having compositions comprising by weight 22 to 23% V, 35 to 45% Fe, 0 to 10% Co, 25 to 35% Ni; 22 to 23% V, 28 to 33% Ni and the remainder Fe; and 22 to 23% V, 19 to 22% Co and the remainder Fe. The alloys are fabricable by casting, deforming and annealing for sufficient time to provide ordered structure.

  15. Evaluation of a Diffusion/Trapping Model for Hydrogen Ingress in High- Strength Alloys

    DTIC Science & Technology

    1992-10-01

    high-strength steels [3-5], precipitation -hardened and work-hardened nickel-base alloys [3-61, and titanium [71 and was shown to be effective in...other two alloys, Ti-13-11-3 was tested in the unaged and age- conditions to establish the role of the secondary (x phase precipitated during aging... maraging steel , so it probably takes the form of reversible trapping [5,29]. Hence, grain boundaries are considered to be the most likely sites for

  16. Advanced Class of FML on the Base Al-Li Alloy 1441 with Lower Density

    NASA Astrophysics Data System (ADS)

    Antipov, V. V.; Senatorova, O. G.; Lukina, N. F.

    Structure, composition, properties combination of specimens and components, a number of technological parameters for production of advanced FML based on high-modulus Al-Li 1441 alloy (E 79 GPa) with reduced density (d 2.6 g/m3) and optimized adhesive prepreg reinforced with high-strength high-modulus VMP glass fibres are described. Service life 1441 alloy provides the possibility of manufacture of thin sheets (up to 0.3 mm), clad and unclad. Moreover, some experience on the usage of 1441 T1, T11 sheets and shapes in Be 200 and Be 103 aircraft was accumulated. The class of FML materials based on Al-Li alloy provide an 5% improvement in weight efficiency and stiffness of skin structures as compared with those made from FML with conventional Al-Cu-Mg (2024T3 a.o.) and Al-Zn-Mg-Cu (7475T76 a.o.) alloys.

  17. Novel Heating-Induced Reversion during Crystallization of Al-based Glassy Alloys

    NASA Astrophysics Data System (ADS)

    Han, F. F.; Inoue, A.; Han, Y.; Kong, F. L.; Zhu, S. L.; Shalaan, E.; Al-Marzouki, F.; Greer, A. L.

    2017-04-01

    Thermal stability and crystallization of three multicomponent glassy alloys, Al86Y7Ni5Co1Fe0.5Pd0.5, Al85Y8Ni5Co1Fe0.5Pd0.5 and Al84Y9Ni4Co1.5Fe0.5Pd1, were examined to assess the ability to form the mixture of amorphous (am) and fcc-aluminum (α-Al) phases. On heating, the glass transition into the supercooled liquid is shown by the 85Al and 84Al glasses. The crystallization sequences are [am] → [am + α-Al] → [α-Al + compounds] for the 86Al and 85Al alloys, and [am] → [am + α-Al + cubic AlxMy (M = Y, Ni, Co, Fe, Pd)] → [am + α-Al] → [α-Al + Al3Y + Al9(Co, Ni)2 + unknown phase] for the 84Al alloy. The glass transition appears even for the 85Al alloy where the primary phase is α-Al. The heating-induced reversion from [am + α-Al + multicomponent AlxMy] to [am + α-Al] for the 84Al alloy is abnormal, not previously observed in crystallization of glassy alloys, and seems to originate from instability of the metastable AlxMy compound, in which significant inhomogeneous strain is caused by the mixture of solute elements. This novel reversion phenomenon is encouraging for obtaining the [am + α-Al] mixture over a wide range of high temperature effective for the formation of Al-based high-strength nanostructured bulk alloys by warm working.

  18. Short-Range-Order for fcc-based Binary Alloys Revisited from Microscopic Geometry

    NASA Astrophysics Data System (ADS)

    Yuge, Koretaka

    2018-04-01

    Short-range order (SRO) in disordered alloys is typically interpreted as competition between chemical effect of negative (or positive) energy gain by mixing constituent elements and geometric effects comes from difference in effective atomic radius. Although we have a number of theoretical approaches to quantitatively estimate SRO at given temperatures, it is still unclear to systematically understand trends in SRO for binary alloys in terms of geometric character, e.g., effective atomic radius for constituents. Since chemical effect plays significant role on SRO, it has been believed that purely geometric character cannot capture the SRO trends. Despite these considerations, based on the density functional theory (DFT) calculations on fcc-based 28 equiatomic binary alloys, we find that while conventional Goldschmidt or DFT-based atomic radius for constituents have no significant correlation with SRO, atomic radius for specially selected structure, constructed purely from information about underlying lattice, can successfully capture the magnitude of SRO. These facts strongly indicate that purely geometric information of the system plays central role to determine characteristic disordered structure.

  19. Fabrication of a Mo based high temperature TZM alloy by non-consumable arc melting technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, S.P.; Krishnamurthy, N., E-mail: spc@barc.gov.in

    High temperature structural materials are in great demand for power, chemical and nuclear industries which can perform beyond 1000 °C as super alloys usually fail. In this regard, Mo based TZM alloy is capable of retaining strength up to 1500 °C with excellent corrosion compatibility against molten alkali metals. Hence, currently this alloy is considered an important candidate material for high temperature compact nuclear and fusion reactors. Due to reactive nature of Mo and having high melting point, manufacturing this alloy by conventional process is unsuitable. Powder metallurgy technique has limited success due to restriction in quantity and purity. Thismore » paper deals with fabrication of TZM alloy by nonconsumable tungsten arc melting technique. Initially a ternary master alloy of Mo-Ti-Zr was prepared which subsequently by dilution method, was converted into TZM alloy gradually by external addition of Mo and C in various proportions. A number of melting trials were conducted to optimize the process parameters like current, voltage and time to achieve desired alloy composition. The alloy was characterized with respect to composition, elemental distribution profile, microstructure, hardness profile and phase analysis. Well consolidated alloy button was obtained having desired composition, negligible material loss and having microstructure as comparable to standard TZM alloy. (author)« less

  20. Surface characterization and cytocompatibility evaluation of silanized magnesium alloy AZ91 for biomedical applications

    NASA Astrophysics Data System (ADS)

    Witecka, Agnieszka; Yamamoto, Akiko; Dybiec, Henryk; Swieszkowski, Wojciech

    2012-12-01

    Mg alloys with high Al contents have superior corrosion resistance in aqueous environments, but poor cytocompatibility compared to that of pure Mg. We have silanized the cast AZ91 alloy to improve its cytocompatibility using five different silanes: ethyltriethoxysilane (S1), 3-aminopropyltriethoxysilane (S2), 3-isocyanatopyltriethoxysilane (S3), phenyltriethoxysilane (S4) and octadecyltriethoxysilane (S5). The surface hydrophilicity/hydrophobicity was evaluated by water contact angle measurements. X-ray photoelectron analysis was performed to investigate the changes in surface states and chemical composition. All silane reagents increased adsorption of the albumin to the modified surface. In vitro cytocompatibility evaluation revealed that silanization improved cell growth on AZ91 modified by silane S1. Measurement of the concentration of Mg2+ ions released during the cell culture indicated that silanization does not affect substrate degradation.

  1. Fatigue Strength Estimation Based on Local Mechanical Properties for Aluminum Alloy FSW Joints

    PubMed Central

    Sillapasa, Kittima; Mutoh, Yoshiharu; Miyashita, Yukio; Seo, Nobushiro

    2017-01-01

    Overall fatigue strengths and hardness distributions of the aluminum alloy similar and dissimilar friction stir welding (FSW) joints were determined. The local fatigue strengths as well as local tensile strengths were also obtained by using small round bar specimens extracted from specific locations, such as the stir zone, heat affected zone, and base metal. It was found from the results that fatigue fracture of the FSW joint plate specimen occurred at the location of the lowest local fatigue strength as well as the lowest hardness, regardless of microstructural evolution. To estimate the fatigue strengths of aluminum alloy FSW joints from the hardness measurements, the relationship between fatigue strength and hardness for aluminum alloys was investigated based on the present experimental results and the available wide range of data from the references. It was found as: σa (R = −1) = 1.68 HV (σa is in MPa and HV has no unit). It was also confirmed that the estimated fatigue strengths were in good agreement with the experimental results for aluminum alloy FSW joints. PMID:28772543

  2. Fatigue Strength Estimation Based on Local Mechanical Properties for Aluminum Alloy FSW Joints.

    PubMed

    Sillapasa, Kittima; Mutoh, Yoshiharu; Miyashita, Yukio; Seo, Nobushiro

    2017-02-15

    Overall fatigue strengths and hardness distributions of the aluminum alloy similar and dissimilar friction stir welding (FSW) joints were determined. The local fatigue strengths as well as local tensile strengths were also obtained by using small round bar specimens extracted from specific locations, such as the stir zone, heat affected zone, and base metal. It was found from the results that fatigue fracture of the FSW joint plate specimen occurred at the location of the lowest local fatigue strength as well as the lowest hardness, regardless of microstructural evolution. To estimate the fatigue strengths of aluminum alloy FSW joints from the hardness measurements, the relationship between fatigue strength and hardness for aluminum alloys was investigated based on the present experimental results and the available wide range of data from the references. It was found as: σ a ( R = -1) = 1.68 HV ( σ a is in MPa and HV has no unit). It was also confirmed that the estimated fatigue strengths were in good agreement with the experimental results for aluminum alloy FSW joints.

  3. Surface modification of high temperature iron alloys

    DOEpatents

    Park, J.H.

    1995-06-06

    A method and article of manufacture of a coated iron based alloy are disclosed. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700--1200 C to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy. 13 figs.

  4. Mechanical and Microstructure Study of Nickel-Based ODS Alloys Processed by Mechano-Chemical Bonding and Ball Milling

    NASA Astrophysics Data System (ADS)

    Amare, Belachew N.

    Due to the need to increase the efficiency of modern power plants, land-based gas turbines are designed to operate at high temperature creating harsh environments for structural materials. The elevated turbine inlet temperature directly affects the materials at the hottest sections, which includes combustion chamber, blades, and vanes. Therefore, the hottest sections should satisfy a number of material requirements such as high creep strength, ductility at low temperature, high temperature oxidation and corrosion resistance. Such requirements are nowadays satisfied by implementing superalloys coated by high temperature thermal barrier coating (TBC) systems to protect from high operating temperature required to obtain an increased efficiency. Oxide dispersive strengthened (ODS) alloys are being considered due to their high temperature creep strength, good oxidation and corrosion resistance for high temperature applications in advanced power plants. These alloys operating at high temperature are subjected to different loading systems such as thermal, mechanical, and thermo-mechanical combined loads at operation. Thus, it is critical to study the high temperature mechanical and microstructure properties of such alloys for their structural integrity. The primary objective of this research work is to investigate the mechanical and microstructure properties of nickel-based ODS alloys produced by combined mechano-chemical bonding (MCB) and ball milling subjected to high temperature oxidation, which are expected to be applied for high temperature turbine coating with micro-channel cooling system. Stiffness response and microstructure evaluation of such alloy systems was studied along with their oxidation mechanism and structural integrity through thermal cyclic exposure. Another objective is to analyze the heat transfer of ODS alloy coatings with micro-channel cooling system using finite element analysis (FEA) to determine their feasibility as a stand-alone structural

  5. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications

    NASA Astrophysics Data System (ADS)

    Santa Coloma, P.; Izagirre, U.; Belaustegi, Y.; Jorcin, J. B.; Cano, F. J.; Lapeña, N.

    2015-08-01

    Novel chromium-free conversion coatings based on Zr/Ti/Mn/Mo compounds were developed at a pilot scale to improve the corrosion resistance of the AA2024-T3 and AA7075-T6 aluminum alloys for aircraft applications. The influence of the presence of Zr and Ti in the Zr/Ti/Mn/Mo conversion bath's formulation on the corrosion resistance of the coated alloys was investigated. The corrosion resistance provided by the conversion coatings was evaluated by salt spray exposure and potentiodynamic sweeps. Optical and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) and atomic force microscopy (AFM) operating in the Kelvin Probe mode (SKPFM) were used to provide microstructural information of the coated samples that achieved the best results in the corrosion tests. The salt spray test evidenced the higher corrosion resistance of the coated samples compared to the bare surfaces for both alloys. The potentiodynamic tests showed that the corrosion current density decreased for coated AA7075-T6 and AA2024-T3 alloys, which indicated an obvious improvement of the corrosion resistance with all the processes for both alloys. Although the corrosion resistance of the coated samples appeared to be higher for the alloy AA7075-T6 than for the alloy AA2024-T3, both alloys achieved the best corrosion protection with the coatings deposited from conversion bath formulations containing no titanium salts. The microscopy analysis on the coated AA7075-T6 samples revealed that a local deposition of Zr compounds and, possibly, an oxidation process occurred in the vicinity of the alloy's intermetallic particles. The amount of the Zr deposits at these locations increased with coating's formulations without Ti, which provided the best corrosion resistance. The Cr-free conversion coatings developed in this study for the AA7075-T6 and AA2024-T3 alloys do not meet yet the strict requirements of the aircraft industry. However, they significantly improved the corrosion

  6. Vacuum Levels Needed to Simulate Internal Fatigue Crack Growth in Titanium Alloys and Nickel-base Superalloys: Thermodynamic Considerations

    DTIC Science & Technology

    2012-03-01

    AFRL-RX-WP-TP-2012-0250 VACUUM LEVELS NEEDED TO SIMULATE INTERNAL FATIGUE CRACK GROWTH IN TITANIUM ALLOYS AND NICKEL - BASE SUPERALLOYS...TITANIUM ALLOYS AND NICKEL - BASE SUPERALLOYS: THERMODYNAMIC CONSIDERATIONS (PREPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM...surface growth in Ti- alloys and Ni - base superalloys. Even with the highest vacuum level attained using “state-of-the-art” pumps, it is unclear if

  7. Manufacture and engine test of advanced oxide dispersion strengthened alloy turbine vanes. [for space shuttle thermal protection

    NASA Technical Reports Server (NTRS)

    Bailey, P. G.

    1977-01-01

    Oxide-Dispersion-strengthened (ODS) Ni-Cr-Al alloy systems were exploited for turbine engine vanes which would be used for the space shuttle thermal protection system. Available commercial and developmental advanced ODS alloys were evaluated, and three were selected based on established vane property goals and manufacturing criteria. The selected alloys were evaluated in an engine test. Candidate alloys were screened by strength, thermal fatigue resistance, oxidation and sulfidation resistance. The Ni-16Cr (3 to 5)Al-ThO2 system was identified as having attractive high temperature oxidation resistance. Subsequent work also indicated exceptional sulfidation resistance for these alloys.

  8. Experimental Evaluation of a Device Prototype Based on Shape Memory Alloys for the Retrofit of Historical Buildings

    NASA Astrophysics Data System (ADS)

    Cardone, Donatello; Sofia, Salvatore

    2012-12-01

    Metallic tie-rods are currently used in many historical buildings for absorbing the out-of-plane horizontal forces of arches, vaults and roof trusses, despite they exhibit several limitations under service and seismic conditions. In this paper, a post-tensioned system based on the superelastic properties of Ni-Ti shape memory alloys is proposed for improving the structural performances of traditional metallic tie-rods. First, the thermal behavior under service conditions is investigated based on the results of numerical and experimental studies. Subsequently, the seismic performances under strong earthquakes are verified trough a number of shaking table tests on a 1:4-scale timber roof truss model. The outcomes of these studies fully confirm the achievement of the design objectives of the proposed prototype device.

  9. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.

    1980-01-01

    The feasibility of using metal alloys as thermal energy storage media was investigated. The elements selected as candidate media were limited to aluminum, copper, magnesium, silicon, zinc, calcium, and phosphorus on the basis of low cost and latent heat of transformation. Several new eutectic alloys and ternary intermetallic phases were determined. A new method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation. The method and apparatus are discussed and the experimental results are presented for aluminum and two aluminum-eutectic alloys. Candidate materials were evaluated to determine suitable materials for containment of the metal alloys. Graphite was used to contain the alloys during the volume change measurements. Silicon carbide was identified as a promising containment material and surface-coated iron alloys were also evaluated. System considerations that are pertinent if alloy eutectics are used as thermal energy storage media are discussed. Potential applications to solar receivers and industrial furnaces are illustrated schematically.

  10. Study on super-long deep-hole drilling of titanium alloy.

    PubMed

    Liu, Zhanfeng; Liu, Yanshu; Han, Xiaolan; Zheng, Wencui

    2018-01-01

    In this study, the super-long deep-hole drilling of a titanium alloy was investigated. According to material properties of the titanium alloy, an experimental approach was designed to study three issues discovered during the drilling process: the hole-axis deflection, chip morphology, and tool wear. Based on the results of drilling experiments, crucial parameters for the super-long deep-hole drilling of titanium alloys were obtained, and the influences of these parameters on quality of the alloy's machining were also evaluated. Our results suggest that the developed drilling process is an effective method to overcome the challenge of super-long deep-hole drilling on difficult-to-cut materials.

  11. Experimental Investigation on Laser Impact Welding of Fe-Based Amorphous Alloys to Crystalline Copper

    PubMed Central

    Wang, Xiao; Luo, Yapeng; Huang, Tao; Liu, Huixia

    2017-01-01

    Recently, amorphous alloys have attracted many researchers’ attention for amorphous structures and excellent properties. However, the welding of amorphous alloys to traditional metals in the microscale is not easy to realize in the process with amorphous structures unchanged, which restrains the application in industry. In this paper, a new method of welding Fe-based amorphous alloys (GB1K101) to crystalline copper by laser impact welding (LIW) is investigated. A series of experiments was conducted under different laser energies, during which Fe-based amorphous alloys and crystalline copper were welded successfully by LIW. In addition, the microstructure and mechanical properties of welding joints were observed and measured, respectively. The results showed that the surface wave and springback were observed on the flyer plate after LIW. The welding interface was straight or wavy due to different plastic deformation under different laser energies. The welding interface was directly bonded tightly without visible defects. No visible element diffusion and intermetallic phases were found in the welding interface. The Fe-based amorphous alloys retained amorphous structures after LIW under the laser energy of 835 mJ. The nanoindentation hardness across the welding interface showed an increase on both sides of the welding interface. The results of the lap shearing test showed that the fracture position was on the side of copper coil. PMID:28772886

  12. Experimental Investigation on Laser Impact Welding of Fe-Based Amorphous Alloys to Crystalline Copper.

    PubMed

    Wang, Xiao; Luo, Yapeng; Huang, Tao; Liu, Huixia

    2017-05-12

    Recently, amorphous alloys have attracted many researchers' attention for amorphous structures and excellent properties. However, the welding of amorphous alloys to traditional metals in the microscale is not easy to realize in the process with amorphous structures unchanged, which restrains the application in industry. In this paper, a new method of welding Fe-based amorphous alloys (GB1K101) to crystalline copper by laser impact welding (LIW) is investigated. A series of experiments was conducted under different laser energies, during which Fe-based amorphous alloys and crystalline copper were welded successfully by LIW. In addition, the microstructure and mechanical properties of welding joints were observed and measured, respectively. The results showed that the surface wave and springback were observed on the flyer plate after LIW. The welding interface was straight or wavy due to different plastic deformation under different laser energies. The welding interface was directly bonded tightly without visible defects. No visible element diffusion and intermetallic phases were found in the welding interface. The Fe-based amorphous alloys retained amorphous structures after LIW under the laser energy of 835 mJ. The nanoindentation hardness across the welding interface showed an increase on both sides of the welding interface. The results of the lap shearing test showed that the fracture position was on the side of copper coil.

  13. On the Alloying and Properties of Tetragonal Nb₅Si₃ in Nb-Silicide Based Alloys.

    PubMed

    Tsakiropoulos, Panos

    2018-01-04

    The alloying of Nb₅Si₃ modifies its properties. Actual compositions of (Nb,TM)₅X₃ silicides in developmental alloys, where X = Al + B + Ge + Si + Sn and TM is a transition and/or refractory metal, were used to calculate the composition weighted differences in electronegativity (Δχ) and an average valence electron concentration (VEC) and the solubility range of X to study the alloying and properties of the silicide. The calculations gave 4.11 < VEC < 4.45, 0.103 < Δχ < 0.415 and 33.6 < X < 41.6 at.%. In the silicide in Nb-24Ti-18Si-5Al-5Cr alloys with single addition of 5 at.% B, Ge, Hf, Mo, Sn and Ta, the solubility range of X decreased compared with the unalloyed Nb₅Si₃ or exceeded 40.5 at.% when B was with Hf or Mo or Sn and the Δχ decreased with increasing X. The Ge concentration increased with increasing Ti and the Hf concentration increased and decreased with increasing Ti or Nb respectively. The B and Sn concentrations respectively decreased and increased with increasing Ti and also depended on other additions in the silicide. The concentration of Sn was related to VEC and the concentrations of B and Ge were related to Δχ. The alloying of Nb₅Si₃ was demonstrated in Δχ versus VEC maps. Effects of alloying on the coefficient of thermal expansion (CTE) anisotropy, Young's modulus, hardness and creep data were discussed. Compared with the hardness of binary Nb₅Si₃ (1360 HV), the hardness increased in silicides with Ge and dropped below 1360 HV when Al, B and Sn were present without Ge. The Al effect on hardness depended on other elements substituting Si. Sn reduced the hardness. Ti or Hf reduced the hardness more than Cr in Nb₅Si₃ without Ge. The (Nb,Hf)₅(Si,Al)₃ had the lowest hardness. VEC differentiated the effects of additions on the hardness of Nb₅Si₃ alloyed with Ge. Deterioration of the creep of alloyed Nb₅Si₃ was accompanied by decrease of VEC and increase or decrease of Δχ depending on alloying addition(s).

  14. Friction and wear with a single-crystal abrasive grit of silicon carbide in contact with iron base binary alloys in oil: Effects of alloying element and its content

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with various iron-base binary alloys (alloying elements were Ti, Cr, Mn, Ni, Rh, and W) in contact with a rider of 0.025-millimeter-radius, single-crystal silicon carbide in mineral oil. Results indicate that atomic size and content of alloying element play a dominant role in controlling the abrasive-wear and -friction properties of iron-base binary alloys. The coefficient of friction and groove height (wear volume) general alloy decrease, and the contact pressure increases in solute content. There appears to be very good correlation of the solute to iron atomic radius ratio with the decreasing rate of coefficient of friction, the decreasing rate of groove height (wear volume), and the increasing rate of contact pressure with increasing solute content C. Those rates increase as the solute to iron atomic radius ratio increases from unity.

  15. Alloy Development, Processing and Characterization of Devitrified Titanium Base Microcrystalline Alloys.

    DTIC Science & Technology

    1984-12-01

    quench rates (10V 10V [/sec). Since the heat transport and temperature profile of Ti melt in the cold copper crucible are not well known, melting...experiments in a cold copper crucible by arc heating were conducted using Ti-6.3Si alloy. The temperature measurement at both the surface and the bottom of the...melt spinning compart- ment B, and ribbon processing chamber C. The pre-melted alloy ingot is . - " charged directly into a cold copper crucible while

  16. NDE detectability of fatigue type cracks in high strength alloys

    NASA Technical Reports Server (NTRS)

    Christner, B. K.; Rummel, W. D.

    1983-01-01

    Specimens suitable for investigating the reliability of production nondestructive evaluation (NDE) to detect tightly closed fatigue cracks in high strength alloys representative of those materials used in spacecraft engine/booster construction were produced. Inconel 718 was selected as representative of nickel base alloys and Haynes 188 was selected as representative of cobalt base alloys used in this application. Cleaning procedures were developed to insure the reusability of the test specimens and a flaw detection reliability assessment of the fluorescent penetrant inspection method was performed using the test specimens produced to characterize their use for future reliability assessments and to provide additional NDE flaw detection reliability data for high strength alloys. The statistical analysis of the fluorescent penetrant inspection data was performed to determine the detection reliabilities for each inspection at a 90% probability/95% confidence level.

  17. Novel Heating-Induced Reversion during Crystallization of Al-based Glassy Alloys.

    PubMed

    Han, F F; Inoue, A; Han, Y; Kong, F L; Zhu, S L; Shalaan, E; Al-Marzouki, F; Greer, A L

    2017-04-13

    Thermal stability and crystallization of three multicomponent glassy alloys, Al 86 Y 7 Ni 5 Co 1 Fe 0.5 Pd 0.5 , Al 85 Y 8 Ni 5 Co 1 Fe 0.5 Pd 0.5 and Al 84 Y 9 Ni 4 Co 1.5 Fe 0.5 Pd 1 , were examined to assess the ability to form the mixture of amorphous (am) and fcc-aluminum (α-Al) phases. On heating, the glass transition into the supercooled liquid is shown by the 85Al and 84Al glasses. The crystallization sequences are [am] → [am + α-Al] → [α-Al + compounds] for the 86Al and 85Al alloys, and [am] → [am + α-Al + cubic Al x M y (M = Y, Ni, Co, Fe, Pd)] → [am + α-Al] → [α-Al + Al 3 Y + Al 9 (Co, Ni) 2  + unknown phase] for the 84Al alloy. The glass transition appears even for the 85Al alloy where the primary phase is α-Al. The heating-induced reversion from [am + α-Al + multicomponent Al x M y ] to [am + α-Al] for the 84Al alloy is abnormal, not previously observed in crystallization of glassy alloys, and seems to originate from instability of the metastable Al x M y compound, in which significant inhomogeneous strain is caused by the mixture of solute elements. This novel reversion phenomenon is encouraging for obtaining the [am + α-Al] mixture over a wide range of high temperature effective for the formation of Al-based high-strength nanostructured bulk alloys by warm working.

  18. Improved hydrogen absorption and desorption kinetics of magnesium-based alloy via addition of yttrium

    NASA Astrophysics Data System (ADS)

    Yang, Tai; Li, Qiang; Liu, Ning; Liang, Chunyong; Yin, Fuxing; Zhang, Yanghuan

    2018-02-01

    Yttrium (Y) is selected to modify the microstructure of magnesium (Mg) to improve the hydrogen storage performance. Thereby, binary alloys with the nominal compositions of Mg24Yx (x = 1-5) are fabricated by inexpensive casting technique. Their microstructure and phase transformation during hydriding and dehydriding process are characterized by using X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy analysis. The isothermal hydrogen absorption and desorption kinetics are also measured by a Sievert's-type apparatus at various temperatures. Typical multiphase structures of binary alloy can be clearly observed. All of these alloys can reversibly absorb and desorb large amount of hydrogen at proper temperatures. The addition of Y markedly promotes the hydrogen absorption kinetics. However, it results in a reduction of reversible hydrogen storage capacity. A maximum value of dehydrogenation rate is observed with the increase of Y content. The Mg24Y3 alloy has the optimal desorption kinetic performance, and it can desorb about 5.4 wt% of hydrogen at 380 °C within 12 min. Combining Johnson-Mehl-Avrami kinetic model and Arrhenius equation, the dehydrogenation activation energy of the alloys are evaluated. The Mg24Y3 alloy also has the lowest dehydrogenation activation energy (119 kJ mol-1).

  19. VANADIUM ALLOYS

    DOEpatents

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  20. Improved adherence of sputtered titanium carbide coatings on nickel- and titanium-base alloys

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Brainard, W. A.

    1979-01-01

    Rene 41 and Ti-6Al-4V alloys were radio frequency sputter coated with titanium carbide by several techniques in order to determine the most effective. Coatings were evaluated in pin-on-disk tests. Surface analysis by X-ray photoelectron spectroscopy was used to relate adherence to interfacial chemistry. For Rene 41, good coating adherence was obtained when a small amount of acetylene was added to the sputtering plasma. The acetylene carburized the alloy surface and resulted in better bonding to the TiC coating. For Ti-6Al-4V, the best adherence and wear protection was obtained when a pure titanium interlayer was used between the coating and the alloy. The interlayer is thought to prevent the formation of a brittle, fracture-prone, aluminum oxide layer.

  1. PROCESSING OF HIGH-PERFORMANCE Nb{sub 3}Sn WIRES THROUGH A NEW DIFFUSION REACTION USING Sn BASED ALLOYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tachikawa, K.; Sasaki, H.; Yamaguchi, M.

    Tightly consolidated Sn-Ta and Sn-B based alloys have been prepared by the reaction among constituent metal powders at 750-775 deg. C. Sn-Ta and Sn-B based alloys exhibit quite similar microstructures. A small amount of Ti addition seems to improve the bonding between Ta or B particles and Sn matrix. Nb{sub 3}Sn wires have been fabricated by the Jelly Roll (JR) and Multi-rod (MR) process using Sn based alloy sheet and rod, respectively. Thick Nb{sub 3}Sn layers with nearly stoichiometric A15 composition are synthesized through a new diffusion mechanism between Nb and Sn based alloy. B{sub c2}(4.2 K)'s of 26.9 Tmore » (mid) and 26.5 T (mid) have been obtained in the JR and MR processed wires, respectively, using Sn-Ta based alloy. These wires exhibit enough non-Cu J{sub c} to be used above 20 T and 4.2 K. T{sub c} of JR wires using Sn-B based sheet is 18.14 K (offset) which is slightly higher than that of wires using Sn-Ta based sheet.« less

  2. Surface characterization and cytocompatibility evaluation of silanized magnesium alloy AZ91 for biomedical applications

    PubMed Central

    Witecka, Agnieszka; Yamamoto, Akiko; Dybiec, Henryk; Swieszkowski, Wojciech

    2012-01-01

    Mg alloys with high Al contents have superior corrosion resistance in aqueous environments, but poor cytocompatibility compared to that of pure Mg. We have silanized the cast AZ91 alloy to improve its cytocompatibility using five different silanes: ethyltriethoxysilane (S1), 3-aminopropyltriethoxysilane (S2), 3-isocyanatopyltriethoxysilane (S3), phenyltriethoxysilane (S4) and octadecyltriethoxysilane (S5). The surface hydrophilicity/hydrophobicity was evaluated by water contact angle measurements. X-ray photoelectron analysis was performed to investigate the changes in surface states and chemical composition. All silane reagents increased adsorption of the albumin to the modified surface. In vitro cytocompatibility evaluation revealed that silanization improved cell growth on AZ91 modified by silane S1. Measurement of the concentration of Mg2+ ions released during the cell culture indicated that silanization does not affect substrate degradation. PMID:27877541

  3. Electrothermal atomic absorption spectrometric determination of copper in nickel-base alloys with various chemical modifiers*1

    NASA Astrophysics Data System (ADS)

    Tsai, Suh-Jen Jane; Shiue, Chia-Chann; Chang, Shiow-Ing

    1997-07-01

    The analytical characteristics of copper in nickel-base alloys have been investigated with electrothermal atomic absorption spectrometry. Deuterium background correction was employed. The effects of various chemical modifiers on the analysis of copper were investigated. Organic modifiers which included 2-(5-bromo-2-pyridylazo)-5-(diethylamino-phenol) (Br-PADAP), ammonium citrate, 1-(2-pyridylazo)-naphthol, 4-(2-pyridylazo)resorcinol, ethylenediaminetetraacetic acid and Triton X-100 were studied. Inorganic modifiers palladium nitrate, magnesium nitrate, aluminum chloride, ammonium dihydrogen phosphate, hydrogen peroxide and potassium nitrate were also applied in this work. In addition, zirconium hydroxide and ammonium hydroxide precipitation methods have also been studied. Interference effects were effectively reduced with Br-PADAP modifier. Aqueous standards were used to construct the calibration curves. The detection limit was 1.9 pg. Standard reference materials of nickel-base alloys were used to evaluate the accuracy of the proposed method. The copper contents determined with the proposed method agreed closely with the certified values of the reference materials. The recoveries were within the range 90-100% with relative standard deviation of less than 10%. Good precision was obtained.

  4. Improved Warm-Working Process For An Iron-Base Alloy

    NASA Technical Reports Server (NTRS)

    Cone, Fred P.; Cryns, Brendan J.; Miller, John A.; Zanoni, Robert

    1992-01-01

    Warm-working process produces predominantly unrecrystallized grain structure in forgings of iron-base alloy A286 (PWA 1052 composition). Yield strength and ultimate strength increased, and elongation and reduction of area at break decreased. Improved process used on forgings up to 10 in. thick and weighing up to 900 lb.

  5. Vacuum Levels Needed to Simulate Internal Fatigue Crack Growth in Titanium Alloys and Nickel-Base Superalloys Thermaodynamic Conditioners (Preprint)

    DTIC Science & Technology

    2012-08-01

    AFRL-RX-WP-TP-2012-0412 VACUUM LEVELS NEEDED TO SIMULATE INTERNAL FATIGUE CRACK GROWTH IN TITANIUM ALLOYS AND NICKEL - BASE SUPERALLOYS...LEVELS NEEDED TO SIMULATE INTERNAL FATIGUE CRACK GROWTH IN TITANIUM ALLOYS AND NICKEL - BASE SUPERALLOYS: THERMAODYNAMIC CONSIDERATIONS (PREPRINT) 5a...have examined fatigue growth of surface cracks in vacuum to simulate sub-surface growth in Ti- alloys and Ni - base superalloys. Even with the highest

  6. Evaluation of Pt Alloys as Electrocatalysts for Oxalic Acid Oxidation: A Combined Experimental and Computational Study

    DOE PAGES

    Perry, Albert; Babanova, Sofia; Matanovic, Ivana; ...

    2016-07-14

    Here in this study we combined experimental approaches and density functional theory to evaluate novel platinum-based materials as electrocatalysts for oxalic acid oxidation. Several Pt alloys, PtSn (1:1), PtSn (19:1), PtRu (1:4), PtRuSn (5:4:1), and PtRhSn (3:1:4), were synthetized using sacrificial support method and tested for oxidation of oxalic acid at pH 4. It was shown that PtSn (1:1) and PtRu (1:4) have higher mass activity relative to Pt. These two materials along with Pt and one of the least active alloys, PtSn (19:1), were further analyzed for the oxidation of oxalic acid at different pHs. The results show thatmore » all samples tested followed an identical trend of decreased onset potential with increased pH and increased catalytic activity with decreased pH. Density functional theory was further utilized to gain a fundamental knowledge about the mechanism of oxalic acid oxidation on Pt, PtSn (1:1), and PtRu (1:4). In conclusion, the results of the calculations along with the experimentally observed dependence of generated currents on the oxalic acid concentration indicate that the mechanism of oxalic acid oxidation on Pt proceeds without the participation of surface oxidizing species, while on Pt alloys it involves their participation.« less

  7. Ductility dip cracking susceptibility of Inconel Filler Metal 52 and Inconel Alloy 690

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikel, J.M.; Parker, D.M.

    1998-06-01

    Alloy 690 and Filler Metal 52 have become the materials of choice for commercial nuclear steam generator applications in recent years. Filler Metal 52 exhibits improved resistance to weld solidification and weld-metal liquation cracking as compared to other nickel-based filler metals. However, recently published work indicates that Filler Metal 52 is susceptible to ductility dip cracking (DDC) in highly restrained applications. Susceptibility to fusion zone DDC was evaluated using the transverse varestraint test method, while heat affected zone (HAZ) DDC susceptibility was evaluated using a newly developed spot-on-spot varestraint test method. Alloy 690 and Filler Metal 52 cracking susceptibility wasmore » compared to the DDC susceptibility of Alloy 600, Filler Metal 52, and Filler Metal 625. In addition, the effect of grain size and orientation on cracking susceptibility was also included in this study. Alloy 690, Filler Metal 82, Filler Metal 52, and Filler Metal 625 were found more susceptible to fusion zone DDC than Alloy 600. Filler Metal 52 and Alloy 690 were found more susceptible to HAZ DDC when compared to wrought Alloy 600, Filler Metal 82 and Filler Metal 625. Filler Metal 52 exhibited the greatest susceptibility to HAZ DDC of all the weld metals evaluated. The base materials were found much more resistant to HAZ DDC in the wrought condition than when autogenously welded. A smaller grain size was found to offer greater resistance to DDC. For weld metal where grain size is difficult to control, a change in grain orientation was found to improve resistance to DDC.« less

  8. Effects of thermomechanical processing on strength and toughness of iron - 12-percent-nickel - reactive metal alloys at -196 C

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1978-01-01

    Thermomechanical processing (TMP) was evaluated as a method of strengthening normally tough iron-12-nickel-reactive metal alloys at cryogenic temperatures. Five iron-12 nickel alloys with reactive metal additions of aluminum, niobium, titanium, vanadium, and aluminum plus niobium were investigated. Primary evaluation was based on the yield strength and fracture toughness of the thermomechanically processed alloys at -196 C.

  9. High temperature alloy

    NASA Technical Reports Server (NTRS)

    Frank, R. G.; Semmel, J. W., Jr.

    1968-01-01

    Molybdenum is substituted for tungsten on an atomic basis in a cobalt-based alloy, S-1, thus enabling the alloy to be formed into various mill products, such as tubing and steels. The alloy is weldable, has good high temperature strength and is not subject to embrittlement produced by high temperature aging.

  10. Fundamental Study of the Development and Evaluation of Biodegradable Mg-Y-Ca-Zr Alloys as Novel Implant Materials

    NASA Astrophysics Data System (ADS)

    Da-Tren Chou

    Degradable metals hold considerable promise as materials which exhibit higher mechanical properties than degradable polymers while corroding over time to alleviate complications such as stress-shielding and infection that is inherent to permanent, bioinert metallic biomaterials. Specifically, degradable magnesium (Mg) alloys have emerged as a promising alternative for orthopedic and craniofacial applications due to their positive bone remodeling behavior, good biocompatibility, and relatively high strength compared to polymers while exhibiting similar stiffness to natural bone. Increasing the strength to maintain device integrity during degradation while simultaneously controlling the rapid corrosion of Mg to reduce the risk of hydrogen gas accumulation and toxicity are ongoing paramount goals for optimizing Mg alloys for musculoskeletal applications. In order to address these goals, novel Mg-Y-Ca-Zr based alloys were developed with alloying elements judiciously selected to impart favorable properties. Processing techniques including solution heat treatment combined with hot extrusion were employed to further enhance the desired properties of the material namely, controlled corrosion, high strength and ductility, and minimal toxic response. Increasing the Y content contributed to improved corrosion resistance yielding corrosion rates similar to commercial Mg alloys. Hot extrusion was employed to reduce the grain size, thereby improving mechanical properties through the Hall-Petch relation. Extrusion yielded extremely high strength relative to other Mg alloys, values approaching that of iron-based alloys, due to the presence of Mg12YZn, a long period stacking order phase that served to impede dislocation propagation. Both as-cast and extruded Mg-Y-Ca-Zr alloys demonstrated excellent in vitro cytocompatibility eliciting high viability and proliferation of MC3T3 pre-osteoblast cells and human mesenchymal stem cells. Alloying elements Y and Zr were specifically shown

  11. Advanced ordered intermetallic alloy deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C.T.; Maziasz, P.J.; Easton, D.S.

    1997-04-01

    The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositionsmore » and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.« less

  12. The effect of alloying on gamma and gamma prime in nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Wallace, J. F.

    1972-01-01

    An investigation was conducted to determine the compositional limits of gamma and gamma prime phases in nickel-base superalloys. Fifty-one nickel-base alloys were melted under vacuum and heat treated for 4 hours at 1190 C followed by 1008 hours at 850 C. The alloys had the following composition ranges: A1 4.0 to 13 atomic percent, Cr 6.5 to 20.5 percent, Ti 0.25 to 4.75 percent, Mo 0.0 to 6.0 percent, and W 0.0 to 4.0 percent. The residues from the ammonium sulfate electrolytic extraction for the two-phase alloys were analyzed chemically and by X-ray diffraction. The results of the investigation were used to assemble a mathematical model of the gamma-gamma prime region of the Ni-Al-Cr-Ti-Mo-W system. A computer program was written to analyze the model of the phase diagram. Some of these results are also presented graphically. The resulting model is capable of satisfactorily predicting the compositions of conjugate gamma-gamma prime phases in the alloys investigated and twelve of fifteen commercial superalloys studied.

  13. Isothermal and cyclic oxidation at 1000 and 1100 deg C of four nickel-base alloys: NASA-TRW VIA, B-1900, 713C, and 738X

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Santoro, G. J.; Lowell, C. E.

    1973-01-01

    The isothermal and cyclic oxidation resistance of four cast Ni-base gamma + gamma prime alloys, NASA-TRW Via, B-1900, 713C, and 738X, was determined in still air at 1000 and 1100 C. The oxidation process was evaluated by specific sample weight change with time, sample thickness change, X-ray diffraction of the scales, and sample metallography. The behavior is discussed in terms of the Cr, Al, and refractory metal contents of the alloys.

  14. Performance analysis of GeSn-alloy-based multiple quantum well transistor laser

    NASA Astrophysics Data System (ADS)

    Ranjan, Ravi; Pareek, Prakash; Anwer Askari, Syed Sadique; Das, Mukul K.

    2018-02-01

    The Group IV Photonics (GFP) which include an alloy of Si, Ge & Sn that gives a direct bandgap material (GeSn, SiGeSn) in near and mid-IR region used as an active material in photonics devices. The multiple quantum well SiGeSn/GeSn transistor laser structure is considered in this paper and performance parameters are evaluated for the same. The result shows that the threshold base current density (2.6 kA/cm2) for the proposed device initially decreases with increasing number of quantum well (QW) and later on it saturates. The current gain and output photon density of the device decreases and increases respectively, with increasing number of QW.

  15. Joining precipitation-hardened nickel-base alloys by friction welding

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1972-01-01

    Solid state deformation welding process, friction welding, has been developed for joining precipitation hardened nickel-base alloys and other gamma prime-strengthened materials which heretofore have been virtually unweldable. Method requires rotation of one of the parts to be welded, but where applicable, it is an ideal process for high volume production jobs.

  16. Plasma sprayed ceramic thermal barrier coating for NiAl-based intermetallic alloys

    NASA Technical Reports Server (NTRS)

    Miller, Robert A. (Inventor); Doychak, Joseph (Inventor)

    1994-01-01

    A thermal barrier coating system consists of two layers of a zirconia-yttria ceramic. The first layer is applied by low pressure plasma spraying. The second layer is applied by conventional atmospheric pressure plasma spraying. This facilitates the attachment of a durable thermally insulating ceramic coating directly to the surface of a highly oxidation resistant NiAl-based intermetallic alloy after the alloy has been preoxidized to promote the formation of a desirable Al2O3 scale.

  17. Influence of the pulsed plasma treatment on the corrosion resistance of the low-alloy steel plated by Ni-based alloy

    NASA Astrophysics Data System (ADS)

    Dzhumaev, P.; Yakushin, V.; Kalin, B.; Polsky, V.; Yurlova, M.

    2016-04-01

    This paper presents investigation results of the influence of high temperature pulsed plasma flows (HTPPF) treatment on the corrosion resistance of low-alloy steel 0.2C-Cr-Mn- Ni-Mo cladded by the rapidly quenched nickel-based alloy. A technique that allows obtaining a defect-free clad layer with a good adhesion to the substrate was developed. It is shown that the preliminary treatment of steel samples by nitrogen plasma flows significantly increases their corrosion resistance in the conditions of intergranular corrosion test in a water solution of sulfuric acid. A change of the corrosion mechanism of the clad layer from intergranular to uniform corrosion was observed as a result of sub-microcrystalline structure formation and homogeneous distribution of alloying elements in the plasma treated surface layer thus leading to the significant increase of the corrosion resistance.

  18. Microstructure and Mechanical Properties of Laves Phase-strengthened Fe-Cr-Zr Alloys

    DOE PAGES

    Tan, Lizhen; Yang, Ying

    2014-12-05

    Laves phase-reinforced alloys have shown some preliminary promising performance at room temperatures. This paper aims at evaluating mechanical properties of Laves phase-strengthened alloys at elevated temperatures. Three Fe-Cr-Zr alloys were designed to favor the formation of eutectic microstructures containing Laves and body-centered cubic phases with the aid of thermodynamic calculations. Microstructural characterization was carried out on the alloys in as-processed and aged states using optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. The effect of thermal aging and alloy composition on microstructure has been discussed based on microstructural characterization results. Mechanical properties have been evaluated by meansmore » of Vickers microhardness measurements, tensile testing at temperatures up to 973.15 K (700.15 °C), and creep testing at 873.15 K (600.15 °C) and 260 MPa. Alloys close to the eutectic composition show significantly superior strength and creep resistance compared to P92. Finally, however, their low tensile ductility may limit their applications at relatively low temperatures.« less

  19. Advancement of Compositional and Microstructural Design of Intermetallic γ-TiAl Based Alloys Determined by Atom Probe Tomography

    PubMed Central

    Klein, Thomas; Clemens, Helmut; Mayer, Svea

    2016-01-01

    Advanced intermetallic alloys based on the γ-TiAl phase have become widely regarded as most promising candidates to replace heavier Ni-base superalloys as materials for high-temperature structural components, due to their facilitating properties of high creep and oxidation resistance in combination with a low density. Particularly, recently developed alloying concepts based on a β-solidification pathway, such as the so-called TNM alloy, which are already incorporated in aircraft engines, have emerged offering the advantage of being processible using near-conventional methods and the option to attain balanced mechanical properties via subsequent heat-treatment. Development trends for the improvement of alloying concepts, especially dealing with issues regarding alloying element distribution, nano-scale phase characterization, phase stability, and phase formation mechanisms demand the utilization of high-resolution techniques, mainly due to the multi-phase nature of advanced TiAl alloys. Atom probe tomography (APT) offers unique possibilities of characterizing chemical compositions with a high spatial resolution and has, therefore, been widely used in recent years with the aim of understanding the materials constitution and appearing basic phenomena on the atomic scale and applying these findings to alloy development. This review, thus, aims at summarizing scientific works regarding the application of atom probe tomography towards the understanding and further development of intermetallic TiAl alloys. PMID:28773880

  20. Advancement of Compositional and Microstructural Design of Intermetallic γ-TiAl Based Alloys Determined by Atom Probe Tomography.

    PubMed

    Klein, Thomas; Clemens, Helmut; Mayer, Svea

    2016-09-06

    Advanced intermetallic alloys based on the γ-TiAl phase have become widely regarded as most promising candidates to replace heavier Ni-base superalloys as materials for high-temperature structural components, due to their facilitating properties of high creep and oxidation resistance in combination with a low density. Particularly, recently developed alloying concepts based on a β-solidification pathway, such as the so-called TNM alloy, which are already incorporated in aircraft engines, have emerged offering the advantage of being processible using near-conventional methods and the option to attain balanced mechanical properties via subsequent heat-treatment. Development trends for the improvement of alloying concepts, especially dealing with issues regarding alloying element distribution, nano-scale phase characterization, phase stability, and phase formation mechanisms demand the utilization of high-resolution techniques, mainly due to the multi-phase nature of advanced TiAl alloys. Atom probe tomography (APT) offers unique possibilities of characterizing chemical compositions with a high spatial resolution and has, therefore, been widely used in recent years with the aim of understanding the materials constitution and appearing basic phenomena on the atomic scale and applying these findings to alloy development. This review, thus, aims at summarizing scientific works regarding the application of atom probe tomography towards the understanding and further development of intermetallic TiAl alloys.

  1. On the interdiffusion in multilayered silicide coatings for the vanadium-based alloy V-4Cr-4Ti

    NASA Astrophysics Data System (ADS)

    Chaia, N.; Portebois, L.; Mathieu, S.; David, N.; Vilasi, M.

    2017-02-01

    To provide protection against corrosion at high temperatures, silicide diffusion coatings were developed for the V-4Cr-4Ti alloy, which can be used as the fuel cladding in next-generation sodium-cooled fast breeder reactors. The multilayered coatings were prepared by halide-activated pack cementation using MgF2 as the transport agent and pure silicon (high activity) as the master alloy. Coated pure vanadium and coated V-4Cr-4Ti alloy were studied and compared as substrates. In both cases, the growth of the silicide layers (V3Si, V5Si3, V6Si5 and VSi2) was controlled exclusively by solid-state diffusion, and the growth kinetics followed a parabolic law. Wagner's analysis was adopted to calculate the integrated diffusion coefficients for all silicides. The estimated values of the integrated diffusion coefficients range from approximately 10-9 to 10-13 cm2 s-1. Then, a diffusion-based numerical approach was used to evaluate the growth and consumption of the layers when the coated substrates were exposed at critical temperatures. The estimated lifetimes of the upper VSi2 layer were 400 h and 280 h for pure vanadium and the V-4Cr-4Ti alloy, respectively. The result from the numeric simulation was in good agreement with the layer thicknesses measured after aging the coated samples at 1150 °C under vacuum.

  2. Nanostructured Fe-Cr Alloys for Advanced Nuclear Energy Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scattergood, Ronald O.

    2016-04-26

    , which is not based on an equilibrium state. The PI and coworkers have developed thermodynamic-based models that can be used to select appropriate solute additions to Fe14Cr base alloys to achieve a contribution to grain-size stabilization and He bubble mitigation by the thermodynamic effect. All such models require approximations and the proposed research was aimed at alloy selection, processing and detailed atomic-level microstructure evaluations to establish the efficacy of the thermodynamic effect. The outcome of this research shows that appropriate alloy additions can produce a contribution from the thermodynamic stabilization effect. Furthermore, due to the oxygen typically present in nominally high purity elemental powders used for powder metallurgy processing, the optimum results obtained appeared as a synergistic combination of nano-size oxide particle pinning kinetic effect and the grain-boundary segregation thermodynamic effect.« less

  3. Room-temperature ferromagnetic transitions and the temperature dependence of magnetic behaviors in FeCoNiCr-based high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Na, Suok-Min; Yoo, Jin-Hyeong; Lambert, Paul K.; Jones, Nicholas J.

    2018-05-01

    High-entropy alloys (HEAs) containing multiple principle alloying elements exhibit unique properties so they are currently receiving great attention for developing innovative alloy designs. In FeCoNi-based HEAs, magnetic behaviors strongly depend on the addition of alloying elements, usually accompanied by structural changes. In this work, the effect of non-magnetic components on the ferromagnetic transition and magnetic behaviors in equiatomic FeCoNiCrX (X=Al, Ga, Mn and Sn) HEAs was investigated. Alloy ingots of nominal compositions of HEAs were prepared by arc melting and the button ingots were cut into discs for magnetic measurements as functions of magnetic field and temperature. The HEAs of FeCoNiCrMn and FeCoNiCrSn show typical paramagnetic behaviors, composed of solid solution FCC matrix, while the additions of Ga and Al in FeCoNiCr exhibit ferromagnetic behaviors, along with the coexistence of FCC and BCC phases due to spinodal decomposition. The partial phase transition in both HEAs with the additions of Ga and Al would enhance ferromagnetic properties due to the addition of the BCC phase. The saturation magnetization for the base alloy FeCoNiCr is 0.5 emu/g at the applied field of 20 kOe (TC = 104 K). For the HEAs of FeCoNiCrGa and FeCoNiCrAl, the saturation magnetization significantly increased to 38 emu/g (TC = 703 K) and 25 emu/g (TC = 277 K), respectively. To evaluate the possibility of solid solution FCC and BCC phases in FeCoNiCr-type HEAs, we introduced a parameter of valence electron concentration (VEC). The proposed rule for solid solution formation by the VEC was matched with FeCoNiCr-type HEAs.

  4. Radiological, histological, and hematological evaluation of hydroxyapatite-coated resorbable magnesium alloy screws placed in rabbit tibia.

    PubMed

    Lim, Ho-Kyung; Byun, Soo-Hwan; Lee, Jin-Yong; Lee, Jung-Woo; Kim, Sae-Mi; Lee, Sung-Mi; Kim, Hyoun-Ee; Lee, Jong-Ho

    2017-08-01

    Titanium (Ti) screw has excellent mechanical property, and osseointegration capacity. However, they require surgery for removal. In contrast, polymer screws are resorbable, but they have poor mechanical properties. In this research, magnesium alloy screws (WE43: Mg-Y-Nd-Zr) that have advantages of titanium and polymer were manufactured. In addition, to increase biocompatibility and control degradation rate, the Mg alloy was coated with hydroxyapatite (HA). Torsion test and corrosion test were performed in vitro. For clinical, radiological and histological evaluation, on the eight rabbits, two HA-coated screws were installed in left tibia, and two noncoated screws were installed in right tibia. Each four rabbits were sacrificed 6 and 12 weeks postoperatively. For hematological evaluation, the same type of screws were installed on both legs. Complete blood count (CBC), Mg 2+ concentrate were sampled from the ear central artery on the operation day for a control point, and at 1, 2, 4, 6, 8, and 12 weeks. Mg alloy screws have no differences of biocompatibility according to the HA coating. However, resorption of screw was slower in case of the HA coating. The hematological problem related releasing of Mg was not found. The results suggest that Mg alloy screws have feasibility for clinical application. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1636-1644, 2017. © 2016 Wiley Periodicals, Inc.

  5. Fatigue properties of MA 6000E, a gamma-prime strengthened ODS alloy. [Oxide Dispersion Strengthened Ni-base alloy for gas turbine blade applications

    NASA Technical Reports Server (NTRS)

    Kim, Y. G.; Merrick, H. F.

    1980-01-01

    MA 6000E is a corrosion resistant, gamma-prime strengthened ODS alloy under development for advanced turbine blade applications. The high temperature, 1093 C, rupture strength is superior to conventional nickel-base alloys. This paper addresses the fatigue behavior of the alloy. Excellent properties are exhibited in low and high cycle fatigue and also thermal fatigue. This is attributed to a unique combination of microstructural features, i.e., a fine distribution of dispersed oxides and other nonmetallics, and the highly elongated grain structure which advantageously modify the deformation characteristics and crack initiation and propagation modes from that characteristic of conventional gamma-prime hardened superalloys.

  6. Intergranular tellurium cracking of nickel-based alloys in molten Li, Be, Th, U/F salt mixture

    NASA Astrophysics Data System (ADS)

    Ignatiev, Victor; Surenkov, Alexander; Gnidoy, Ivan; Kulakov, Alexander; Uglov, Vadim; Vasiliev, Alexander; Presniakov, Mikhail

    2013-09-01

    In Russia, R&D on Molten Salt Reactor (MSR) are concentrated now on fast/intermediate spectrum concepts which were recognized as long term alternative to solid fueled fast reactors due to their attractive features: strong negative feedback coefficients, easy in-service inspection, and simplified fuel cycle. For high-temperature MSR corrosion of the metallic container alloy in primary circuit is the primary concern. Key problem receiving current attention include surface fissures in Ni-based alloys probably arising from fission product tellurium attack. This paper summarizes results of corrosion tests conducted recently to study effect of oxidation state in selected fuel salt on tellurium attack and to develop means of controlling tellurium cracking in the special Ni-based alloys recently developed for molten salt actinide recycler and tranforming (MOSART) system. Tellurium corrosion of Ni-based alloys was tested at temperatures up to 750 °C in stressed and unloaded conditions in molten LiF-BeF2 salt mixture fueled by about 20 mol% of ThF4 and 2 mol% of UF4 at different [U(IV)]/[U(III)] ratios: 0.7, 4, 20, 100 and 500. Following Ni-based alloys (in mass%): HN80М-VI (Mo—12, Cr—7.6, Nb—1.5), HN80МТY (Mo—13, Cr—6.8, Al—1.1, Ti—0.9), HN80МТW (Mo—9.4, Cr—7.0, Ti—1.7, W—5.5) and ЕМ-721 (W—25.2, Cr—5.7, Ti—0.17) were used for the study in the corrosion facility. If the redox state the fuel salt is characterized by uranium ratio [U(IV)]/[U(III)] < 1 the alloys' specimens get a more negative stationary electrode potential than equilibrium electrode potentials of some uranium intermetallic compounds and alloys with nickel and molybdenum. This leads to spontaneous behavior of alloy formation processes on the specimens' surface and further diffusion of uranium deep into the metallic phase. As consequence of this films of intermetallic compounds and alloys of nickel, molybdenum, tungsten with uranium are formed on the alloys specimens' surface

  7. Fusion materials: Technical evaluation of the technology of vandium alloys for use as blanket structural materials in fusion power systems

    NASA Astrophysics Data System (ADS)

    1993-08-01

    The Committee's evaluation of vanadium alloys as a structural material for fusion reactors was constrained by limited data and time. The design of the International Thermonuclear Experimental Reactor is still in the concept stage, so meaningful design requirements were not available. The data on the effect of environment and irradiation on vanadium alloys were sparse, and interpolation of these data were made to select the V-5Cr-5Ti alloy. With an aggressive, fully funded program it is possible to qualify a vanadium alloy as the principal structural material for the ITER blanket in the available 5 to 8-year window. However, the data base for V-5Cr-5Ti is limited and will require an extensive development and test program. Because of the chemical reactivity of vanadium the alloy will be less tolerant of system failures, accidents, and off-normal events than most other candidate blanket structural materials and will require more careful handling during fabrication of hardware. Because of the cost of the material more stringent requirements on processes, and minimal historical working experience, it will cost an order of magnitude to qualify a vanadium alloy for ITER blanket structures than other candidate materials. The use of vanadium is difficult and uncertain; therefore, other options should be explored more thoroughly before a final selection of vanadium is confirmed. The Committee views the risk as being too high to rely solely on vanadium alloys. In viewing the state and nature of the design of the ITER blanket as presented to the Committee, it is obvious that there is a need to move toward integrating fabrication, welding, and materials engineers into the ITER design team. If the vanadium alloy option is to be pursued, a large program needs to be started immediately. The commitment of funding and other resources needs to be firm and consistent with a realistic program plan.

  8. The Microstructural Evolution of Haynes 282 Alloy During Long-Term Exposure Tests

    NASA Astrophysics Data System (ADS)

    Fu, Rui; Zhao, Shuangqun; Wang, Yanfeng; Li, Qiang; Ma, Yunhai; Lin, Fusheng; Chi, Chengyu

    Haynes 282 alloy is a γ' precipitation strengthened nickel based superalloy designed by Haynes International Incorporation in 2005. This alloy is currently being evaluated for use as high temperature components at 700°C Advanced-Ultra Supercritical (A-USC)power plants, thus it is particularly important to have good creep property and microstructure stability.

  9. Enthalpies of a binary alloy during solidification

    NASA Technical Reports Server (NTRS)

    Poirier, D. R.; Nandapurkar, P.

    1988-01-01

    The purpose of the paper is to present a method of calculating the enthalpy of a dendritic alloy during solidification. The enthalpies of the dendritic solid and interdendritic liquid of alloys of the Pb-Sn system are evaluated, but the method could be applied to other binaries, as well. The enthalpies are consistent with a recent evaluation of the thermodynamics of Pb-Sn alloys and with the redistribution of solute in the same during dendritic solidification. Because of the heat of mixing in Pb-Sn alloys, the interdendritic liquid of hypoeutectic alloys (Pb-rich) of less than 50 wt pct Sn has enthalpies that increase as temperature decreases during solidification.

  10. Nondestructive evaluation of loading and fatigue effects in Haynes(R) 230(R) alloy

    NASA Astrophysics Data System (ADS)

    Saleh, Tarik Adel

    Nondestructive evaluation is a useful method for studying the effects of deformation and fatigue. In this dissertation I employed neutron and X-ray diffraction, nonlinear resonant ultrasound spectroscopy (NRUS), and infrared thermography to study the effects of deformation and fatigue on two different nickel based superalloys. The alloys studied were HAYNES 230, a solid solution strengthened alloy with 4% M6C carbides, and secondarily HASTELLOY C-2000 a similar single phase alloy. Using neutron and X-ray diffraction, the deformation behavior of HAYNES 230 was revealed to be composite-like during compression, but unusual in tension, where the carbides provide strengthening until just after the macroscopic yield strength and then they begin to debond and crack, creating a tension-compression asymmetry that is revealed clearly by in situ diffraction. In fatigue of HAYNES 230, the hkl elastic strains changed very little in tension-tension fatigue. However, in situ tension-compression studies showed large changes over the initial stages of fatigue. The HAYNES 230 samples studies had two distinct starting textures, measured by neutron diffraction. Some samples were texture free initially and deformed in tension and compression to fiber textures. Other samples started with a bimodal texture due to cross-rolling and incomplete annealing. The final texture of these bimodal samples is shown through modeling to be a superposition of the initial texture and typical FCC deformation mechanisms. The texture-free samples deformed significantly more macroscopically and in internal elastic strains than the samples with the cross-rolled texture. In contrast to the relative insensitivity of neutron diffraction to the effects of tension-tension fatigue, NRUS revealed large differences between as-received and progressively fatigued samples. This showed that microcracking and void formation are the primary mechanisms responsible for fatigue damage in tension-tension fatigue. NRUS is

  11. A new method for promoting adhesion between precious metal alloys and dental adhesives.

    PubMed

    Ohno, H; Araki, Y; Endo, K

    1992-06-01

    A new, simple method of modifying the adherend metal surface by a liquid Ga-Sn alloy (Adlloy) was applied to dental precious and base-metal alloys for adhesion with 4-META adhesive resin. Adhesions of 4-META resin to three other surface states--as-polished, oxidized at high temperature, and electroplated tin--were also performed for comparison with the adhesion on Adlloy-modified surfaces. Bond strength measurements were made, and the durability against water at the adhering interface was evaluated. The Adlloy-modified gold alloys (Type IV and 14 K) and silver-based alloys (Ag-Pd and Ag-Cu) showed not only high bond strengths but also excellent water durability at the adhesion interface. Surface modification by Adlloy, however, did not affect adhesion to Ag-In-Zn and base-metal (SUS, Co-Cr, and Ni-Cr) alloys. Adhesion to the tin-electroplated specimens was comparable with that to the Adlloy-modified specimens.

  12. High gas velocity oxidation and hot corrosion testing of oxide dispersion-strengthened nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.

    1975-01-01

    Several oxide dispersion strengthened (ODS) nickel-base alloys were tested in high velocity gases for cyclic oxidation resistance at temperatures to 1200 C and times to 500 hours and for hot corrosion resistance at 900 C for 200 hours. Nickel-chromium-aluminum ODS alloys were found to have superior resistance to oxidation and hot corrosion when compared to bare and coated nickel-chromium ODS alloys. The best of the alloys tested had compositions of nickel - 15.5 to 16 weight percent chromium with aluminum weight percents between 4.5 and 5.0. All of the nickel-chromium-aluminum ODS materials experienced small weight losses (less than 16 mg/sq cm).

  13. Oxidation/vaporization of silicide coated columbium base alloys

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Stearns, C. A.

    1971-01-01

    Mass spectrometric and target collection experiments were made at 1600 K to elucidate the mode of oxidative vaporization of two columbium alloys, fused-slurry-coated with a complex silicide former (Si-20Cr-Fe). At oxygen pressures up to 0.0005 torr the major vapor component detected by mass spectrometry for oxidized samples was gaseous silicon monoxide. Analysis of condensates collected at oxygen pressures of 0.1, 1.0 and 10 torr revealed that chromium-, silicon-, iron- and tungsten- containing species were the major products of vaporization. Equilibrium thermochemical diagrams were constructed for the metal-oxygen system corresponding to each constituent metal in both the coating and base alloy. The major vaporizing species are expected to be the gaseous oxides of chromium, silicon, iron and tungsten. Plots of vapor phase composition and maximum vaporization rate versus oxygen pressure were calculated for each coating constituent. The major contribution to weight loss by vaporization at oxygen pressures above 1 torr was shown to be the chromium-containing species.

  14. Room-Temperature Deformation and Martensitic Transformation of Two Co-Cr-Based Alloys

    NASA Astrophysics Data System (ADS)

    Cai, S.; Schaffer, J. E.; Huang, D.; Gao, J.; Ren, Y.

    2018-05-01

    Deformation of two Co-Cr alloys was studied by in situ synchrotron X-ray diffraction. Both alloys show stress-induced martensite transformation, which is affected by phase stabilities and transformation strains. Crystal structure of WC in Co-20Cr-15W-10Ni is identified. Compared with other phases present, it is elastically isotropic, exhibits high strength, and can elastically withstand strains exceeding 1 pct. Texture change during phase transformation is explained based on the crystal orientation relationship between γ- and ɛ-phases.

  15. Room-Temperature Deformation and Martensitic Transformation of Two Co-Cr-Based Alloys

    NASA Astrophysics Data System (ADS)

    Cai, S.; Schaffer, J. E.; Huang, D.; Gao, J.; Ren, Y.

    2018-07-01

    Deformation of two Co-Cr alloys was studied by in situ synchrotron X-ray diffraction. Both alloys show stress-induced martensite transformation, which is affected by phase stabilities and transformation strains. Crystal structure of WC in Co-20Cr-15W-10Ni is identified. Compared with other phases present, it is elastically isotropic, exhibits high strength, and can elastically withstand strains exceeding 1 pct. Texture change during phase transformation is explained based on the crystal orientation relationship between γ- and ɛ-phases.

  16. Experimental Studies on Al (5.7% Zn) Alloy based Hybrid MMC

    NASA Astrophysics Data System (ADS)

    Shivaprakash, Y. M.; Ramu, H. C.; Chiranjivee; Kumar, Roushan; Kumar, Deepak

    2018-02-01

    In this investigation, an attempt is made to disperse SiC (20-25 microns) and Gr (15-20 microns) in the aluminium alloy having Zn, Mg and coper as major alloying elements. The composite is further subjected to mechanical testing to determine various properties like hardness, tensile strength and wear resistance. The alloy and composite samples were tested in the un heat treated conditions. All the tests were done at the laboratory conditions as per ASTM standards. The Pin-On-Disc tribometer is used to test the two-body abrasive sliding wear behaviour in dry conditions. The wear pattern is analysed by the optical images of worn surface taken in an inverted metallurgical microscope. The calculated density is found to be reducing as the SiC and Gr quantity is increased in the base alloy. The as cast Al alloy was found to be having highest hardness. The introduction of SiC tend to increase the hardness and UTS, since Gr is also introduced simultaneously which tends to reduce the hardness and UTS of composite. The composite having highest quantity of Gr showed superior wear resistance which is mainly because the Gr particulates provide an inbuilt lubricating properties to composite. The analysis of images of worn surface showed the abrasive and delamination pattern of wear. The composites developed in the present work can be used in the automobile and aerospace parts that are light in weight and require self-lubricating properties to enhance the wear resistance.

  17. Hot-tearing of multicomponent Al-Cu alloys based on casting load measurements in a constrained permanent mold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabau, Adrian S; Mirmiran, Seyed; Glaspie, Christopher

    Hot-tearing is a major casting defect that is often difficult to characterize, especially for multicomponent Al alloys used for cylinder head castings. The susceptibility of multicomponent Al-Cu alloys to hot-tearing during permanent mold casting was investigated using a constrained permanent mold in which the load and displacement was measured. The experimental results for hot tearing susceptibility are compared with those obtained from a hot-tearing criterion based temperature range evaluated at fraction solids of 0.87 and 0.94. The Cu composition was varied from approximately 5 to 8 pct. (weight). Casting experiments were conducted without grain refining. The measured load during castingmore » can be used to indicate the severity of hot tearing. However, when small hot-tears are present, the load variation cannot be used to detect and assess hot-tearing susceptibility.« less

  18. Hot corrosion behavior of platinum-modified nickel- and cobalt-based alloys and coatings

    NASA Astrophysics Data System (ADS)

    Deodeshmukh, Vinay Prakash

    Cr+Si were assessed. The effects pre-oxidation treatments were also studied to further improve the hot corrosion resistance. In addition, high-temperature oxidation behavior of various modified of gamma' + gamma alloys was studied in air at 1150°C under both isothermal and cyclic oxidation conditions. Certain modified versions of gamma' + gamma coating composition(s) exhibited excellent resistance to both hot corrosion and oxidation. Finally, the HTHC and LTHC resistance of novel Pt+Hf-modified gamma' + gamma-based diffusion coatings using a pack cementation process developed at ISU were studied and compared with state-of-the-art commercial coatings. It was found that the Pt+Hf-modified gamma' + gamma coating exhibited superior resistance to both types of hot corrosion with the preoxidation treatment; while, only Pt-modified beta exhibited excellent LTHC resistance with no pre-oxidation treatment. This study also involved evaluating the hot corrosion resistance of various commercially available Pt-modified beta-NiAl diffusion aluminides and CoCrAlY-based overlay coatings for marine gas turbine engine components under both HTHC and LTHC conditions. The Al-Pt-rich beta aluminide exhibited improved resistance to both types of hot corrosion compared to the various Ni-rich beta aluminide and CoCrAlY coatings.

  19. Biocompatibility of austenite and martensite phases in NiTi-based alloys

    NASA Astrophysics Data System (ADS)

    Danilov, A.; Kapanen, A.; Kujala, S.; Saaranen, J.; Ryhänen, J.; Pramila, A.; Jämsä, T.; Tuukkanen, J.

    2003-10-01

    The effect of surface phase composition on the biocompatibility of NiTi-based shape memory alloys was studied. The biocompatibility characteristics of parent β-phase (austenite) in binary NiTi and of martensite in ternary NiTiCu alloys after similar surface mechanical treatment were compared. The martensitic phase as a result of surface mechanical treatment (strain-induced martensite) was shown to decrease the biocompatibility of material in comparison to fully austenite state. The cytotoxicity (amount of dead cells / 1000 cells) and cell attachent (paxillin count / frame) were found to be linear functions of structural stresses in austenite.

  20. Evaluation of candidate alloys for the construction of metal flex hoses in the STS launch environment

    NASA Technical Reports Server (NTRS)

    Macdowell, Louis G., III; Ontiveros, Cordelia

    1988-01-01

    Various vacuum jacketed cryogenic supply lines at the Shuttle launch site use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the flex hoses, which were made out of 304L stainless steel. A search was done to find a more corrosion resistant replacement material. Nineteen metal alloys were tested. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, long term exposure at the beach corrosion testing site, and pitting corrosion tests in ferric chloride solution. Based on the results, the most corrosion resistant alloys were found to be, in order, Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, and Inco Alloy G-3. Of these top five alloys, the Hastelloy C-22 stands out as being the best of the alloys tested.

  1. Nickel base alloy. [for gas turbine engine stator vanes

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Waters, W. J. (Inventor)

    1977-01-01

    A nickel base superalloy for use at temperatures of 2000 F (1095 C) to 2200 F (1205 C) was developed for use as stator vane material in advanced gas turbine engines. The alloy has a nominal composition in weight percent of 16 tungsten, 7 aluminum, 1 molybdenum, 2 columbium, 0.3 zirconium, 0.2 carbon and the balance nickel.

  2. PLUTONIUM-THORIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.

    1959-09-15

    New plutonium-base binary alloys useful as liquid reactor fuel are described. The alloys consist of 50 to 98 at.% thorium with the remainder plutonium. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are easy fabrication, phase stability, and the accompanying advantuge of providing a means for converting Th/sup 232/ into U/sup 233/.

  3. Transverse and longitudinal tensile properties at 760 C of several oxide dispersion strengthened nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Anglin, A. E., Jr.

    1979-01-01

    The transverse and longitudinal tensile properties of the oxide dispersion strengthened nickel-base alloys were determined at 760 C. The alloys with small amounts of gamma prime have strength levels suitable for turbine vane applications, while other highly alloyed, gamma prime strengthened superalloys have strengths typical of turbine blade materials. These alloys were produced by mechanical alloying and extrusion and the turbine blade alloys were also directionally recrystallized. Resultant grain aspect ratios varied from 1:1 to over 20:1. Longitudinal tensile strengths ranged from 285 to 1175 MPa, while longitudinal elongations were in excess of 4 percent for all alloys. Transverse tensile strengths were comparable to longitudinal strengths, but transverse ductility levels were generally less than 2 percent elongation. Tensile and yield strengths increased with increasing strain rate over the range 0.001 to 0.05 per second. Ductility in both orientations was not strain rate sensitive but could be related to grain size and grain aspect ratio.

  4. Degradation of bioabsorbable Mg-based alloys: Assessment of the effects of insoluble corrosion products and joint effects of alloying components on mammalian cells.

    PubMed

    Grillo, Claudia A; Alvarez, Florencia; Fernández Lorenzo de Mele, Mónica A

    2016-01-01

    This work is focused on the processes occurring at the bioabsorbable metallic biomaterial/cell interfaces that may lead to toxicity. A critical analysis of the results obtained when degradable metal disks (pure Mg and rare earth-containing alloys (ZEK100 alloys)) are in direct contact with cell culture and those obtained with indirect methods such as the use of metal salts and extracts was made. Viability was assessed by Acridine Orange dye, neutral red and clonogenic assays. The effects of concentration of corrosion products and possible joint effects of the binary and ternary combinations of La, Zn and Mg ions, as constituents of ZEK alloys, were evaluated on a mammalian cell culture. In all cases more detrimental effects were found for pure Mg than for the alloys. Experiments with disks showed that gradual alterations in pH and in the amount of corrosion products were better tolerated by cells and resulted in higher viability than abrupt changes. In addition, viability was dependent on the distance from the source of ions. Experiments with extracts showed that the effect of insoluble degradation products was highly detrimental. Indirect tests with Zn ions revealed that harmful effects may be found at concentrations ≥ 150 μM and at ≥ 100 μM in mixtures with Mg. These mixtures lead to more deleterious effects than single ions. Results highlight the need to develop a battery of tests to evaluate the biocompatibility of bioabsorbable biomaterials. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Tunable dimensional crossover and magnetocrystalline anisotropy in Fe 2 P -based alloys

    DOE PAGES

    Zhuravlev, I. A.; Antropov, V. P.; Vishina, A.; ...

    2017-10-01

    Electronic structure calculations are used to examine the magnetic properties of Fe 2P-based alloys and the mechanisms through which the Curie temperature and magnetocrystalline anisotropy can be optimized for specific applications. It is found that at elevated temperatures the magnetic interaction in pure Fe 2P develops a pronounced two-dimensional character due to the suppression of the magnetization in one of the sublattices, but the interlayer coupling is very sensitive to band filling and structural distortions. This feature suggests a natural explanation of the observed sharp enhancement of the Curie temperature by alloying with multiple elements, such as Co, Ni, Si,more » and B. The magnetocrystalline anisotropy is also tunable by electron doping, reaching a maximum near the electron count of pure Fe 2P. These findings enable the optimization of the alloy content, suggesting co-alloying of Fe 2P with Co (or Ni) and Si as a strategy for maximizing the magnetocrystalline anisotropy at and above room temperature.« less

  6. Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation.

    PubMed

    Mostaed, E; Sikora-Jasinska, M; Mostaed, A; Loffredo, S; Demir, A G; Previtali, B; Mantovani, D; Beanland, R; Vedani, M

    2016-07-01

    The search for a degradable metal simultaneously showing mechanical properties equal or higher to that of stainless steel and uniform degradation is still an open challenge. Several magnesium-based alloys have been studied, but their degradation rate has proved to be too fast and rarely homogeneous. Fe-based alloys show appropriate mechanical properties but very low degradation rate. In the present work, four novel Zn-Mg and two Zn-Al binary alloys were investigated as potential biodegradable materials for stent applications. The alloys were developed by casting process and homogenized at 350°C for 48h followed by hot extrusion at 250°C. Tube extrusion was performed at 300°C to produce tubes with outer/inner diameter of 4/1.5mm as precursors for biodegradable stents. Corrosion tests were performed using Hanks׳ modified solution. Extruded alloys exhibited slightly superior corrosion resistance and slower degradation rate than those of their cast counterparts, but all had corrosion rates roughly half that of a standard purity Mg control. Hot extrusion of Zn-Mg alloys shifted the corrosion regime from localized pitting to more uniform erosion, mainly due to the refinement of second phase particles. Zn-0.5Mg is the most promising material for stent applications with a good combination of strength, ductility, strain hardening exponent and an appropriate rate of loss of mechanical integrity during degradation. An EBSD analysis in the vicinity of the laser cut Zn-0.5Mg tube found no grain coarsening or texture modification confirming that, after laser cutting, the grain size and texture orientation of the final stent remains unchanged. This work shows the potential for Zn alloys to be considered for stent applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Evaluation of mechanical properties of Aluminum-Copper cold sprayed and alloy 625 wire arc sprayed coatings

    NASA Astrophysics Data System (ADS)

    Bashirzadeh, Milad

    This study examines microstructural-based mechanical properties of Al-Cu composite deposited by cold spraying and wire arc sprayed nickel-based alloy 625 coating using numerical modeling and experimental techniques. The microhardness and elastic modulus of samples were determined using the Knoop hardness technique. Hardness in both transverse and longitudinal directions on the sample cross-sections has been measured. An image-based finite element simulation algorithm was employed to determine the mechanical properties through an inverse analysis. In addition mechanical tests including, tensile, bending, and nano-indentation tests were performed on alloy 625 wire arc sprayed samples. Overall, results from the experimental tests are in relatively good agreement for deposited Al-Cu composites and alloy 625 coating. However, results obtained from numerical simulation are significantly higher in value than experimentally obtained results. Examination and comparison of the results are strong indications of the influence of microstructure characteristics on the mechanical properties of thermally spray deposited coatings.

  8. Forming an age hardenable aluminum alloy with intermediate annealing

    NASA Astrophysics Data System (ADS)

    Wang, Kaifeng; Carsley, John E.; Stoughton, Thomas B.; Li, Jingjing; Zhang, Lianhong; He, Baiyan

    2013-12-01

    A method to improve formability of aluminum sheet alloys by a two-stage stamping process with intermediate annealing was developed for a non-age hardenable Al-Mg alloy where the annealing heat treatment provided recovery of cold work from the initial stamping and recrystallization of the microstructure to enhance the forming limits of the material. This method was extended to an age hardenable, Al-Mg-Si alloy, which is complicated by the competing metallurgical effects during heat treatment including recovery (softening effect) vs. precipitation (hardening effect). An annealing heat treatment process condition was discovered wherein the stored strain energy from an initial plastic deformation can be sufficiently recovered to enhance formability in a second deformation; however, there is a deleterious effect on subsequent precipitation hardening. The improvement in formability was quantified with uniaxial tensile tests as well as with the forming limit diagram. Since strain-based forming limit curves (FLC) are sensitive to pre-strain history, both stress-based FLCs and polar-effective-plastic-strain (PEPS) FLCs, which are path-independent, were used to evaluate the forming limits after preform annealing. A technique was developed to calculate the stress-based FLC in which a residual-effective-plastic-strain (REPS) was determined by overlapping the hardening curve of the pre-strained and annealed material with that of the simply-annealed- material. After converting the strain-based FLCs using the constant REPS method, it was found that the stress-based FLCs and the PEPS FLCs of the post-annealed materials were quite similar and both tools are applicable for evaluating the forming limits of Al-Mg-Si alloys for a two-step stamping process with intermediate annealing.

  9. Dendrite segregation in Ni3Al-based intermetallic single crystals alloyed with Cr, Mo, W, Ti, Co, and Re

    NASA Astrophysics Data System (ADS)

    Drozdov, A. A.; Povarova, K. B.; Morozov, A. E.; Antonova, A. V.; Bulakhtina, M. A.; Alad'ev, N. A.

    2015-07-01

    The character of dendrite segregation in Ni3Al-based intermetallic VKNA-type alloy single crystals with a dendritic-cellular structure is studied. Distribution coefficient k d of an alloying element (AE) in the alloy during solidification k d = c d.a.I/ c 0 ( c 0 is the AE content in the alloy (liquid phase composition), c d.a.I is the AE content in primary dendrite arms of the alloy (in the solid phase)) and segregation coefficient k s = c d.a.I/ c i.d ( c i.d is the AE content in the interdendritic space) have been found. A comparative study of the dendrite segregation parameters in VKNA-nype Ni3Al-based intermetallic alloys and the well-known ZhS36-type nickel superalloy shows that the intermetallic alloys satisfy to the rule deduced for two- and three-component nickel-based superalloys: if an introduced AE increases the melting temperature of the basic metal, we have k d > 1 (Co, W, Re); if it decreases the melting temperature, we have k d < 1 (Al, Ti, Cr, Mo). Dendrite segregation coefficients k s are dependent on the proportion of the AE contents in the alloys. In nickel superalloys, the dendrite segregation of aluminum, tungsten, and rhenium is higher than that in the intermetallic alloys. The dendrite segregation coefficients of tungsten and rhenium is higher by a factor of 1.5-2 than that in the VKNA-type intermetallic alloys with a low content of refractory metals. This can be due to the retardation of diffusion of refractory metals in the solid phase of a nickel superalloy highly alloyed with these elements.

  10. Environmental protection to 922K (1200 F) for titanium alloys

    NASA Technical Reports Server (NTRS)

    Groves, M. T.

    1973-01-01

    Evaluations are presented of potential coating systems for protection of titanium alloys from hot-salt stress-corrosion up to temperatures of 755 K (900 F) and from oxidation embrittlement up to temperature of 922 K (1200 F). Diffusion type coatings containing Si, Al, Cr, Ni or Fe as single coating elements or in various combinations were evaluated for oxidation protection, hot-salt stress-corrosion (HSSC) resistance, effects on tensile properties, fatigue properties, erosion resistance and ballistic impact resistance on an alpha and beta phase titanium alloy (Ti-6Al-2Sn-4Zr-2Mo). All of the coatings investigated demonstrated excellent oxidation protectiveness, but none of the coatings provided protection from hot-salt stress-corrosion. Experimental results indicated that both the aluminide and silicide types of coatings actually decreased the HSSC resistance of the substrate alloy. The types of coatings which have typically been used for oxidation protection of refractory metals and nickel base superalloys are not suitable for titanium alloys because they increase the susceptibility to hot-salt stress-corrosion, and that entirely new coating concepts must be developed for titanium alloy protection in advanced turbine engines.

  11. A dislocation density based micromechanical constitutive model for Sn-Ag-Cu solder alloys

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Yao, Yao; Zeng, Tao; Keer, Leon M.

    2017-10-01

    Based on the dislocation density hardening law, a micromechanical model considering the effects of precipitates is developed for Sn-Ag-Cu solder alloys. According to the microstructure of the Sn-3.0Ag-0.5Cu thin films, intermetallic compounds (IMCs) are assumed as sphere particles embedded in the polycrystalline β-Sn matrix. The mechanical behavior of polycrystalline β-Sn matrix is determined by the elastic-plastic self-consistent method. The existence of IMCs not only impedes the motion of dislocations but also increases the overall stiffness. Thus, a dislocation density based hardening law considering non-shearable precipitates is adopted locally for single β-Sn crystal, and the Mori-Tanaka scheme is applied to describe the overall viscoplastic behavior of solder alloys. The proposed model is incorporated into finite element analysis and the corresponding numerical implementation method is presented. The model can describe the mechanical behavior of Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.5Cu alloys under high strain rates at a wide range of temperatures. Furthermore, the overall Young’s modulus changes due to different contents of IMCs is predicted and compared with experimental data. Results show that the proposed model can describe both elastic and inelastic behavior of solder alloys with reasonable accuracy.

  12. Microstructures and Mechanical Properties of Two-Phase Alloys Based on NbCr(2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cady, C.M.; Chen, K.C.; Kotula, P.G.

    A two-phase, Nb-Cr-Ti alloy (bee+ C15 Laves phase) has been developed using several alloy design methodologies. In effort to understand processing-microstructure-property relationships, diffment processing routes were employed. The resulting microstructure and mechanical properties are discussed and compared. Plasma arc-melted samples served to establish baseline, . . . as-cast properties. In addition, a novel processing technique, involving decomposition of a supersaturated and metastable precursor phase during hot isostatic pressing (HIP), was used to produce a refined, equilibrium two-phase microstructure. Quasi-static compression tests as a ~ function of temperature were performed on both alloy types. Different deformation mechanisms were encountered based uponmore » temperature and microstructure.« less

  13. Nb-Based Nb-Al-Fe Alloys: Solidification Behavior and High-Temperature Phase Equilibria

    NASA Astrophysics Data System (ADS)

    Stein, Frank; Philips, Noah

    2018-03-01

    High-melting Nb-based alloys hold significant promise for the development of novel high-temperature materials for structural applications. In order to understand the effect of alloying elements Al and Fe, the Nb-rich part of the ternary Nb-Al-Fe system was investigated. A series of Nb-rich ternary alloys were synthesized from high-purity Nb, Al, and Fe metals by arc melting. Solidification paths were identified and the liquidus surface of the Nb corner of the ternary system was established by analysis of the as-melted microstructures and thermal analysis. Complementary analysis of heat-treated samples yielded isothermal sections at 1723 K and 1873 K (1450 °C and 1600 °C).

  14. On the in vitro biocompatibility of Elgiloy, a co-based alloy, compared to two titanium alloys.

    PubMed

    Es-Souni, Martha; Fischer-Brandies, Helge; Es-Souni, Mohammed

    2003-01-01

    The aim of the present investigation was to contribute to an understanding of the effects of surface topography and chemical composition on the corrosion behavior and thus the biocompatibility of Elgiloy (RMO, Denver, CO, USA), a common Co-based alloy. The results are compared with those obtained for a binary NiTi alloy, Neo Sentalloy (GAC, Central Islip, NY, USA) and a beta-III-Ti alloy, TMA (Ormco, Glendora, CA, USA). In the present study, the surface topography and the chemical composition of two different grades of Elgiloy, Blue Elgiloy (soft) and Yellow Elgiloy (ductile), were examined by means of scanning electron microscopy (SEM) and energy-dispersive spectroscopy analysis (EDS). Their corrosion behavior in half-strength Ringer solution and in an artificial saliva solution according to Barrett [1] was investigated using potentiodynamic corrosion testing (PDC). The photometry-based PAN method was used to quantify the released Ni and Co ions. The in vitro biocompatibility of the two grades of Elgiloy was tested in three different cell cultures: in L929, a commercially available mouse fibroblast cell line, and in primary human epithelial cells and fibroblasts. The results of the corrosion testing showed satisfactorily high pitting corrosion potentials but lower repassivation potentials and a strong increase in current density once pitting had occurred. The photometric results revealed the release of Ni and Co ions in both tested electrolytes. The tested native surfaces exhibited numerous grinding and polishing grooves, inclusions and inhomogeneities of the microstructure. After corrosion testing the same surfaces displayed numerous signs of corrosion, especially in areas with microstructural inhomogeneities. In vitro biocompatibility testing showed a substantially reduced dehydrogenase activity in the presence of Elgiloy. The reduced quality of surface finish resulting from the manufacturing process led in the case of the tested Elgiloy types to decreased

  15. Electron phonon coupling in Ni-based binary alloys with application to displacement cascade modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samolyuk, German D.; Stocks, George Malcolm; Stoller, Roger E.

    Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron–phonon (el–ph) coupling. The el–ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni 0.5Fe 0.5, Ni 0.5Co 0.5 and Ni 0.5Pd 0.5 are ordered ferromagnetically, whereas Ni 0.5Cr 0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied bymore » a decrease of electronic density of states at the Fermi level, which in turn reduces the el–ph coupling. Thus, the el–ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10–20% in the alloys under consideration.« less

  16. Electron phonon coupling in Ni-based binary alloys with application to displacement cascade modeling

    DOE PAGES

    Samolyuk, German D.; Stocks, George Malcolm; Stoller, Roger E.

    2016-04-01

    Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron–phonon (el–ph) coupling. The el–ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni 0.5Fe 0.5, Ni 0.5Co 0.5 and Ni 0.5Pd 0.5 are ordered ferromagnetically, whereas Ni 0.5Cr 0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied bymore » a decrease of electronic density of states at the Fermi level, which in turn reduces the el–ph coupling. Thus, the el–ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10–20% in the alloys under consideration.« less

  17. Quantitative evaluation of thermodynamic parameters of Li-Sn alloys related to their use in fusion reactor

    NASA Astrophysics Data System (ADS)

    Krasin, V. P.; Soyustova, S. I.

    2018-07-01

    Along with other liquid metals liquid lithium-tin alloys can be considered as an alternative to the use of solid plasma facing components of a future fusion reactor. Therefore, parameters characterizing both the ability to retain hydrogen isotopes and those that determine the extraction of tritium from a liquid metal can be of particular importance. Theoretical correlations based on the coordination cluster model have been used to obtain Sieverts' constants for solutions of hydrogen in liquid Li-Sn alloys. The results of theoretical computations are compared with the previously published experimental values for two alloys of the Li-Sn system. The Butler equation in combination with the equations describing the thermodynamic potentials of a binary solution is used to calculate the surface composition and surface tension of liquid Li-Sn alloys.

  18. Evaluation of the cyclic behavior of aircraft turbine disk alloys

    NASA Technical Reports Server (NTRS)

    Cowles, B. A.; Sims, D. L.; Warren, J. R.

    1978-01-01

    Five aircraft turbine disk alloys representing various strength and processing histories were evaluated at 650 C to determine if recent strength advances in powder metallurgy have resulted in corresponding increases in low cycle fatigue (LCF) capability. Controlled strain LCF tests and controlled load crack propagation tests were performed. Results were used for direct material comparisons and in the analysis of an advanced aircraft turbine disk, having a fixed design and operating cycle. Crack initiation lives were found to increase with increasing tensile yield strength, while resistance to fatigue crack propagation generally decreased with increasing strength.

  19. Development and Processing Improvement of Aerospace Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Lisagor, W. Barry; Bales, Thomas T.

    2007-01-01

    This final report, in multiple presentation format, describes a comprehensive multi-tasked contract study to improve the overall property response of selected aerospace alloys, explore further a newly-developed and registered alloy, and correlate the processing, metallurgical structure, and subsequent properties achieved with particular emphasis on the crystallographic orientation texture developed. Modifications to plate processing, specifically hot rolling practices, were evaluated for Al-Li alloys 2195 and 2297, for the recently registered Al-Cu-Ag alloy, 2139, and for the Al-Zn-Mg-Cu alloy, 7050. For all of the alloys evaluated, the processing modifications resulted in significant improvements in mechanical properties. Analyses also resulted in an enhanced understanding of the correlation of processing, crystallographic texture, and mechanical properties.

  20. High temperature static strain gage alloy development program

    NASA Technical Reports Server (NTRS)

    Hulse, C. O.; Bailey, R. S.; Lemkey, F. D.

    1985-01-01

    The literature, applicable theory and finally an experimental program were used to identify new candidate alloy systems for use as the electrical resistance elements in static strain gages up to 1250K. The program goals were 50 hours of use in the environment of a test stand gas turbine engine with measurement accuracies equal to or better than 10 percent of full scale for strains up to + or - 2000 microstrain. As part of this effort, a computerized electrical resistance measurement system was constructed for use at temperatures between 300K and 1250K and heating and cooling rates of 250K/min and 10K/min. The two best alloys were an iron-chromium-aluminum alloy and a palladium base alloy. Although significant progress was made, it was concluded that a considerable additional effort would be needed to fully optimize and evaluate these candidate systems.

  1. Ignition characteristics of the iron-based alloy UNS S66286 in pressurized oxygen

    NASA Technical Reports Server (NTRS)

    Bransford, James W.; Billard, Phillip A.; Hurley, James A.; Mcdermott, Kathleen M.; Vazquez, Isaura

    1988-01-01

    The development of ignition and combustion in pressurized oxygen atmospheres was studied for the iron based alloy UNS S66286. Ignition of the alloy was achieved by heating the top surface of a cylindrical specimen with a continuous-wave CO2 laser. Two heating procedures were used. In the first, laser power was adjusted to maintain an approximately linear increase in surface temperature. In the second, laser power was periodically increased until autoheating (self-heating) was established. It was found that the alloy would autoheat to destruction from temperatures below the solidus temperature. In addition endothermic events occurred as the alloy was heated, many at reproducible temperatures. Many endothermic events occurred prior to abrupt increases in surface temperature and appeared to accelerate the rate of increase in specimen temperature to rates greater than what would be expected from increased temperature alone. It is suggested that the source of these endotherms may increase the oxidation rate of the alloy. Ignition parameters are defined and the temperatures at which these parameters occur are given for the oxygen pressure range of 1.72 to 13.8 MPa (25 to 2000 psia).

  2. Origin and tuning of the magnetic anisotropy in Fe2P-based alloys

    NASA Astrophysics Data System (ADS)

    Zhuravlev, Ivan; Antropov, V. P.; Belashchenko, K. D.

    Fe2P-based alloys have been studied for years due to their potential magnetocaloric applications. In addition, Fe2P demonstrates record-high magnetocrystalline anisotropy (MCA) for systems with no heavy elements. While the Curie temperature TC in pure Fe2P is too low for applications, this system appears to be highly tunable, and its TC can be greatly increased by alloying with many other d and p elements. Here we present the electronic structure analysis of magnetic properties of these alloys, searching for systems with higher TC while preserving high MCA. The microscopic origin of the dominant contribution to MCA and its concentration dependence is revealed. We further find that co-alloying with Co or Ni and Si is a promising strategy for achieving high Curie temperature and MCA, which is more favorable compared to individual alloying by Co/Ni or Si due to the compensation of their effects on the band occupation. Work at UNL supported by NSF Grants DMR-1308751 and DMR-1609776. Work at Ames Lab was supported by the Critical Materials Institute, an Energy Innovation Hub funded by the US DOE.

  3. Life prediction for high temperature low cycle fatigue of two kinds of titanium alloys based on exponential function

    NASA Astrophysics Data System (ADS)

    Mu, G. Y.; Mi, X. Z.; Wang, F.

    2018-01-01

    The high temperature low cycle fatigue tests of TC4 titanium alloy and TC11 titanium alloy are carried out under strain controlled. The relationships between cyclic stress-life and strain-life are analyzed. The high temperature low cycle fatigue life prediction model of two kinds of titanium alloys is established by using Manson-Coffin method. The relationship between failure inverse number and plastic strain range presents nonlinear in the double logarithmic coordinates. Manson-Coffin method assumes that they have linear relation. Therefore, there is bound to be a certain prediction error by using the Manson-Coffin method. In order to solve this problem, a new method based on exponential function is proposed. The results show that the fatigue life of the two kinds of titanium alloys can be predicted accurately and effectively by using these two methods. Prediction accuracy is within ±1.83 times scatter zone. The life prediction capability of new methods based on exponential function proves more effective and accurate than Manson-Coffin method for two kinds of titanium alloys. The new method based on exponential function can give better fatigue life prediction results with the smaller standard deviation and scatter zone than Manson-Coffin method. The life prediction results of two methods for TC4 titanium alloy prove better than TC11 titanium alloy.

  4. Evaluation of Oxide Dispersion Strengthened (ODS) Molybdenum Alloys

    DTIC Science & Technology

    1997-01-01

    rrSÄSTSÄ approximately 3900° E. Tungsten , molybdenum, »’^^^eÄfon^^Ä^Setttese techniques-are excellent candidates tor <^*Jf?£L5*!s3J to form oxides. The...1% creep strain in 1,000 hours) of thoriated tungsten alloys was measured to be up to five times higher than commercially-pure tungsten . These alloys...temperature decomposable hydroxide or carbonate oxide compound are mixed, Reference (d). The resulting powder batch mixture is then cold isostatically

  5. Mechanical Characteristics, In Vitro Degradation, Cytotoxicity, and Antibacterial Evaluation of Zn-4.0Ag Alloy as a Biodegradable Material

    PubMed Central

    Li, Ping; Schille, Christine; Schweizer, Ernst; Rupp, Frank; Heiss, Alexander; Legner, Claudia; Klotz, Ulrich E.; Geis-Gerstorfer, Jürgen

    2018-01-01

    Zn-based biodegradable metallic materials have been regarded as new potential biomaterials for use as biodegradable implants, mainly because of the ideal degradation rate compared with those of Mg-based alloys and Fe-based alloys. In this study, we developed and investigated a novel Zn-4 wt % Ag alloy as a potential biodegradable metal. A thermomechanical treatment was applied to refine the microstructure and, consequently, to improve the mechanical properties, compared to pure Zn. The yield strength (YS), ultimate tensile strength (UTS) and elongation of the Zn-4Ag alloy are 157 MPa, 261 MPa, and 37%, respectively. The corrosion rate of Zn-4Ag calculated from released Zn ions in DMEM extracts is approximately 0.75 ± 0.16 μg cm–2 day–1, which is higher than that of pure Zn. In vitro cytotoxicity tests showed that the Zn-4Ag alloy exhibits acceptable toxicity to L929 and Saos-2 cells, and could effectively inhibit initial bacteria adhesion. This study shows that the Zn-4Ag exhibits excellent mechanical properties, predictable degradation behavior, acceptable biocompatibility, and effective antibacterial properties, which make it a candidate biodegradable material. PMID:29518938

  6. Ignition characteristics of the nickel-based alloy UNS N07001 in pressurized oxygen

    NASA Technical Reports Server (NTRS)

    Bransford, J. W.; Billiard, P. A.

    1990-01-01

    The development of ignition and combustion in pressurized oxygen atmospheres was studied for the nickel-based alloy UNS N07001. Ignition of the alloy was achieved by heating the top surface of a cylindrical specimen with a continuous-wave CO2 laser. Two heating procedures were used. In the first, laser power was adjusted to maintain an approximately linear increase in surface temperature. In the second, laser power was periodically increased until autoheating (self-heating) was established. It was found that the alloy would autoheat to combustion from temperatures below the solidus temperature. In addition, the alloy had a tendency to develop combustion zones (hot spots) at high oxygen pressures when the incremental (step) heating test mode was used. Unique points on the temperature-time curves that describe certain events are defined and the temperatures at which these events occur are given for the oxygen pressure range of 1.72 to 13.8 MPa (250 to 2000 psia).

  7. STRUCTURE AND HIGH-FIELD PERFORMANCE OF JELLY ROLL PROCESSED Nb{sub 3}Sn WIRES USING Sn-Ta AND Sn-Ti BASED ALLOY SHEET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tachikawa, K.; Tsuyuki, T.; Hayashi, Y.

    Sn-Ta based alloy buttons of different compositions were prepared by the melt diffusion process among constituent metal powders, and then pressed into plates. Meanwhile Sn-Ti based alloy plates were sliced from the melt and cast ingot. Resulting Sn-based alloy plates were rolled into thin sheets. The Sn-based alloy sheet was laminated with a Nb sheet, and wound into a Jelly Roll (JR) composite. The composite was encased in a sheath, and fabricated into a thin wire followed by the heat treatment. The application of hydrostatic extrusion is useful at the initial stage of the fabrication. The JR wires using Sn-Tamore » and Sn-Ti based alloy sheets show a non-Cu J{sub c} of {approx}250 A/mm{sup 2} and {approx}150 A/mm{sup 2} at 20 T and 22 T, respectively, at 4.2 K. It has been found that the Nb impregnates into the Sn-based alloy layers during the reaction, and Nb{sub 3}Sn layers are synthesized by the mutual diffusion between the Nb sheet and the Sn-based alloy sheet without formation of voids. Sn-Ti based alloy sheets are attractive due to their easiness of mass production. Structure and high-field performance of JR processed Nb{sub 3}Sn wires prepared from Sn-based alloy sheets with different compositions are compared in this article.« less

  8. Machinability of cast commercial titanium alloys.

    PubMed

    Watanabe, I; Kiyosue, S; Ohkubo, C; Aoki, T; Okabe, T

    2002-01-01

    This study investigated the machinability of cast orthopedic titanium (metastable beta) alloys for possible application to dentistry and compared the results with those of cast CP Ti, Ti-6Al-4V, and Ti-6Al-7Nb, which are currently used in dentistry. Machinability was determined as the amount of metal removed with the use of an electric handpiece and a SiC abrasive wheel turning at four different rotational wheel speeds. The ratios of the amount of metal removed and the wheel volume loss (machining ratio) were also evaluated. Based on these two criteria, the two alpha + beta alloys tested generally exhibited better results for most of the wheel speeds compared to all the other metals tested. The machinability of the three beta alloys employed was similar or worse, depending on the speed of the wheel, compared to CP Ti. Copyright 2002 Wiley Periodicals, Inc.

  9. Detection and distribution of lithium in Mg-Li-Al based alloy by ToF-SIMS

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod

    2016-12-01

    Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) is used to investigate the surface as well as bulk microstructural features of novel Mg-Li-Al based alloy namely Mg-9Li-7Al-3Sn-1Zn (LATZ9531). ToF-SIMS study indicates that there are six multi-oxide layers present within the surface film of LATZ9531. Furthermore, The presence of Li containing phase has been qualitatively confirmed based on the high number of Li-ion counts in SIMS, and the same is verified quantitatively by using electron probe microanalysis (EPMA). The novel approach may be useful to determine the chemical composition of the phases in various alloys which has lighter alloying elements such as lithium.

  10. Solidification kinetics of a Cu-Zr alloy: ground-based and microgravity experiments

    NASA Astrophysics Data System (ADS)

    Galenko, P. K.; Hanke, R.; Paul, P.; Koch, S.; Rettenmayr, M.; Gegner, J.; Herlach, D. M.; Dreier, W.; Kharanzhevski, E. V.

    2017-04-01

    Experimental and theoretical results obtained in the MULTIPHAS-project (ESA-European Space Agency and DLR-German Aerospace Center) are critically discussed regarding solidification kinetics of congruently melting and glass forming Cu50Zr50 alloy samples. The samples are investigated during solidification using a containerless technique in the Electromagnetic Levitation Facility [1]. Applying elaborated methodologies for ground-based and microgravity experimental investigations [2], the kinetics of primary dendritic solidification is quantitatively evaluated. Electromagnetic Levitator in microgravity (parabolic flights and on board of the International Space Station) and Electrostatic Levitator on Ground are employed. The solidification kinetics is determined using a high-speed camera and applying two evaluation methods: “Frame by Frame” (FFM) and “First Frame - Last Frame” (FLM). In the theoretical interpretation of the solidification experiments, special attention is given to the behavior of the cluster structure in Cu50Zr50 samples with the increase of undercooling. Experimental results on solidification kinetics are interpreted using a theoretical model of diffusion controlled dendrite growth.

  11. Natural ageing responses of duplex structured Mg-Li based alloys

    PubMed Central

    Li, C. Q.; Xu, D. K.; Wang, B. J.; Sheng, L. Y.; Qiao, Y. X.; Han, E. H.

    2017-01-01

    Natural ageing responses of duplex structured Mg-6%Li and Mg-6%Li-6%Zn-1.2%Y alloys have been investigated. Microstructural analyses revealed that the precipitation and coarsening process of α-Mg particles could occur in β-Li phases of both two alloys during ageing process. Since a certain amount of Mg atoms in β-Li phases were consumed for the precipitation of abundant tiny MgLiZn particles, the size of α-Mg precipitates in Mg-6%Li-6%Zn-1.2%Y alloy was relatively smaller than that in Mg-6%Li alloy. Micro hardness measurements demonstrated that with the ageing time increasing, the α-Mg phases in Mg-6%Li alloy could have a constant hardness value of 41 HV, but the contained β-Li phases exhibited a slight age-softening response. Compared with the Mg-6%Li alloy, the age-softening response of β-Li phases in Mg-6%Li-6%Zn-1.2%Y alloy was much more profound. Meanwhile, a normal age-hardening response of α-Mg phases was maintained. Tensile results indicated that obvious ageing-softening phenomenon in terms of macro tensile strength occurred in both two alloys. Failure analysis demonstrated that for the Mg-6%Li alloy, cracks were preferentially initiated at α-Mg/β-Li interfaces. For the Mg-6%Li-6%Zn-1.2%Y alloy, cracks occurred at both α-Mg/β-Li interfaces and slip bands in α-Mg and β-Li phases. PMID:28053318

  12. The strengthening mechanism of a nickel-based alloy after laser shock processing at high temperatures

    PubMed Central

    Li, Yinghong; Zhou, Liucheng; He, Weifeng; He, Guangyu; Wang, Xuede; Nie, Xiangfan; Wang, Bo; Luo, Sihai; Li, Yuqin

    2013-01-01

    We investigated the strengthening mechanism of laser shock processing (LSP) at high temperatures in the K417 nickel-based alloy. Using a laser-induced shock wave, residual compressive stresses and nanocrystals with a length of 30–200 nm and a thickness of 1 μm are produced on the surface of the nickel-based alloy K417. When the K417 alloy is subjected to heat treatment at 900 °C after LSP, most of the residual compressive stress relaxes while the microhardness retains good thermal stability; the nanocrystalline surface has not obviously grown after the 900 °C per 10 h heat treatment, which shows a comparatively good thermal stability. There are several reasons for the good thermal stability of the nanocrystalline surface, such as the low value of cold hardening of LSP, extreme high-density defects and the grain boundary pinning of an impure element. The results of the vibration fatigue experiments show that the fatigue strength of K417 alloy is enhanced and improved from 110 to 285 MPa after LSP. After the 900 °C per 10 h heat treatment, the fatigue strength is 225 MPa; the heat treatment has not significantly reduced the reinforcement effect. The feature of the LSP strengthening mechanism of nickel-based alloy at a high temperature is the co-working effect of the nanocrystalline surface and the residual compressive stress after thermal relaxation. PMID:27877617

  13. Transient liquid phase bonding of titanium-, iron- and nickel-based alloys

    NASA Astrophysics Data System (ADS)

    Rahman, A. H. M. Esfakur

    The operating temperature of land-based gas turbines and jet engines are ever-increasing to increase the efficiency, decrease the emissions and minimize the cost. Within the engines, complex-shaped parts experience extreme temperature, fatigue and corrosion conditions. Ti-based, Ni-based and Fe-based alloys are commonly used in gas turbines and jet engines depending on the temperatures of different sections. Although those alloys have superior mechanical, high temperature and corrosion properties, severe operating conditions cause fast degradation and failure of the components. Repair of these components could reduce lifecycle costs. Unfortunately, conventional fusion welding is not very attractive, because Ti reacts very easily with oxygen and nitrogen at high temperatures, Ni-based superalloys show heat affected zone (HAZ) cracking, and stainless steels show intergranular corrosion and knife-line attack. On the other hand, transient liquid phase (TLP) bonding method has been considered as preferred joining method for those types of alloys. During the initial phase of the current work commercially pure Ti, Fe and Ni were diffusion bonded using commercially available interlayer materials. Commercially pure Ti (Ti-grade 2) has been diffusion bonded using silver and copper interlayers and without any interlayer. With a silver (Ag) interlayer, different intermetallics (AgTi, AgTi2) appeared in the joint centerline microstructure. While with a Cu interlayer eutectic mixtures and Ti-Cu solid solutions appeared in the joint centerline. The maximum tensile strengths achieved were 160 MPa, 502 MPa, and 382 MPa when Ag, Cu and no interlayers were used, respectively. Commercially pure Fe (cp-Fe) was diffusion bonded using Cu (25 m) and Au-12Ge eutectic interlayer (100 microm). Cu diffused predominantly along austenite grain boundaries in all bonding conditions. Residual interlayers appeared at lower bonding temperature and time, however, voids were observed in the joint

  14. Experimental evaluation of shape memory alloy actuation technique in adaptive antenna design concepts

    NASA Astrophysics Data System (ADS)

    Kefauver, W. Neill; Carpenter, Bernie F.

    1994-09-01

    Creation of an antenna system that could autonomously adapt contours of reflecting surfaces to compensate for structural loads induced by a variable environment would maximize performance of space-based communication systems. Design of such a system requires the comprehensive development and integration of advanced actuator, sensor, and control technologies. As an initial step in this process, a test has been performed to assess the use of a shape memory alloy as a potential actuation technique. For this test, an existing, offset, cassegrain antenna system was retrofit with a subreflector equipped with shape memory alloy actuators for surface contour control. The impacts that the actuators had on both the subreflector contour and the antenna system patterns were measured. The results of this study indicate the potential for using shape memory alloy actuation techniques to adaptively control antenna performance; both variations in gain and beam steering capabilities were demonstrated. Future development effort is required to evolve this potential into a useful technology for satellite applications.

  15. Experimental evaluation of shape memory alloy actuation technique in adaptive antenna design concepts

    NASA Technical Reports Server (NTRS)

    Kefauver, W. Neill; Carpenter, Bernie F.

    1994-01-01

    Creation of an antenna system that could autonomously adapt contours of reflecting surfaces to compensate for structural loads induced by a variable environment would maximize performance of space-based communication systems. Design of such a system requires the comprehensive development and integration of advanced actuator, sensor, and control technologies. As an initial step in this process, a test has been performed to assess the use of a shape memory alloy as a potential actuation technique. For this test, an existing, offset, cassegrain antenna system was retrofit with a subreflector equipped with shape memory alloy actuators for surface contour control. The impacts that the actuators had on both the subreflector contour and the antenna system patterns were measured. The results of this study indicate the potential for using shape memory alloy actuation techniques to adaptively control antenna performance; both variations in gain and beam steering capabilities were demonstrated. Future development effort is required to evolve this potential into a useful technology for satellite applications.

  16. Evaluation of Microstructure and Mechanical Properties of Nano-Y2O3-Dispersed Ferritic Alloy Synthesized by Mechanical Alloying and Consolidated by High-Pressure Sintering

    NASA Astrophysics Data System (ADS)

    Karak, Swapan Kumar; Dutta Majumdar, J.; Witczak, Zbigniew; Lojkowski, Witold; Ciupiński, Łukasz; Kurzydłowski, K. J.; Manna, Indranil

    2013-06-01

    In this study, an attempt has been made to synthesize 1.0 wt pct nano-Y2O3-dispersed ferritic alloys with nominal compositions: 83.0 Fe-13.5 Cr-2.0 Al-0.5 Ti (alloy A), 79.0 Fe-17.5 Cr-2.0 Al-0.5 Ti (alloy B), 75.0 Fe-21.5 Cr-2.0 Al-0.5 Ti (alloy C), and 71.0 Fe-25.5 Cr-2.0 Al-0.5 Ti (alloy D) steels (all in wt pct) by solid-state mechanical alloying route and consolidation the milled powder by high-pressure sintering at 873 K, 1073 K, and 1273 K (600°C, 800°C, and 1000°C) using 8 GPa uniaxial pressure for 3 minutes. Subsequently, an extensive effort has been undertaken to characterize the microstructural and phase evolution by X-ray diffraction, scanning and transmission electron microscopy, and energy dispersive spectroscopy. Mechanical properties including hardness, compressive strength, Young's modulus, and fracture toughness were determined using micro/nano-indentation unit and universal testing machine. The present ferritic alloys record extraordinary levels of compressive strength (from 1150 to 2550 MPa), Young's modulus (from 200 to 240 GPa), indentation fracture toughness (from 3.6 to 15.4 MPa√m), and hardness (from13.5 to 18.5 GPa) and measure up to 1.5 through 2 times greater strength but with a lower density (~7.4 Mg/m3) than other oxide dispersion-strengthened ferritic steels (<1200 MPa) or tungsten-based alloys (<2200 MPa). Besides superior mechanical strength, the novelty of these alloys lies in the unique microstructure comprising uniform distribution of either nanometric (~10 nm) oxide (Y2Ti2O7/Y2TiO5 or un-reacted Y2O3) or intermetallic (Fe11TiY and Al9.22Cr2.78Y) particles' ferritic matrix useful for grain boundary pinning and creep resistance.

  17. Evaluation of the new TAMZ titanium alloy for dental cast application.

    PubMed

    Zhang, Y M; Guo, T W; Li, Z C

    2000-12-01

    To reveal the potential of the new titanium alloy as dental prosthodontic materials. Dental castings of TAMZ alloy were investigated in the casting machine specially designed for titanium. A mesh pattern was used to count the castability value. The mechanical properties were measured by means of a universal testing machine. Optical micrography was done on the exposed cross-section of TAMZ alloy casting. From the surface to the inner part the Knoop hardness in reacted layer of TAMZ alloy casting was measured. The structure and elemental analyses of the reacted layer were made by SEM and element line scanning observation. The castability value (Cv = 98%) and the tensile test (sigma b = 850 Mpa, sigma 0.2 = 575 Mpa, delta = 7.33%) data were collected. The castings microstructure showed main alpha phase and small beta phase. Knoop hardness in the surface reacted layer was greater than that in the inner part. From the SEM and element line scanning observation, there are three different layers in the surface reacted layer of the TAMZ alloy castings, and higher level of element of O, Al, Si and Zr were found in the reacted layer while the Si permeated deeper than others. TAMZ alloy can be accepted as a material for dental alloy in prosthodontics.

  18. Measuring grain boundary character distributions in Ni-base alloy 725 using high-energy diffraction microscopy

    DOE PAGES

    Bagri, Akbar; Hanson, John P.; Lind, J. P.; ...

    2016-10-25

    We use high-energy X-ray diffraction microscopy (HEDM) to characterize the microstructure of Ni-base alloy 725. HEDM is a non-destructive technique capable of providing three-dimensional reconstructions of grain shapes and orientations in polycrystals. The present analysis yields the grain size distribution in alloy 725 as well as the grain boundary character distribution (GBCD) as a function of lattice misorientation and boundary plane normal orientation. We find that the GBCD of Ni-base alloy 725 is similar to that previously determined in pure Ni and other fcc-base metals. We find an elevated density of Σ9 and Σ3 grain boundaries. We also observe amore » preponderance of grain boundaries along low-index planes, with those along (1 1 1) planes being the most common, even after Σ3 twins have been excluded from the analysis.« less

  19. Influence of the casting processing route on the corrosion behavior of dental alloys.

    PubMed

    Galo, Rodrigo; Rocha, Luis Augusto; Faria, Adriana Claudia; Silveira, Renata Rodrigues; Ribeiro, Ricardo Faria; de Mattos, Maria da Gloria Chiarello

    2014-12-01

    Casting in the presence of oxygen may result in an improvement of the corrosion performance of most alloys. However, the effect of corrosion on the casting without oxygen for dental materials remains unknown. The aim of this study was to investigate the influence of the casting technique and atmosphere (argon or oxygen) on the corrosion behavior response of six different dental casting alloys. The corrosion behavior was evaluated by electrochemical measurements performed in artificial saliva for the different alloys cast in two different conditions: arc melting in argon and oxygen-gas flame centrifugal casting. A slight decrease in open-circuit potential for most alloys was observed during immersion, meaning that the corrosion tendency of the materials increases due to the contact with the solution. Exceptions were the Co-based alloys prepared by plasma, and the Co-Cr-Mo and Ni-Cr-4Ti alloys processed by oxidized flame, in which an increase in potential was observed. The amount of metallic ions released into the artificial saliva solution during immersion was similar for all specimens. Considering the pitting potential, a parameter of high importance when considering the fluctuating conditions of the oral environment, Co-based alloys show the best performance in comparison with the Ni-based alloys, independent of the processing route. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Origin of spin reorientation transitions in antiferromagnetic MnPt-based alloys

    NASA Astrophysics Data System (ADS)

    Chang, P.-H.; Zhuravlev, I. A.; Belashchenko, K. D.

    2018-04-01

    Antiferromagnetic MnPt exhibits a spin reorientation transition (SRT) as a function of temperature, and off-stoichiometric Mn-Pt alloys also display SRTs as a function of concentration. The magnetocrystalline anisotropy in these alloys is studied using first-principles calculations based on the coherent potential approximation and the disordered local moment method. The anisotropy is fairly small and sensitive to the variations in composition and temperature due to the cancellation of large contributions from different parts of the Brillouin zone. Concentration and temperature-driven SRTs are found in reasonable agreement with experimental data. Contributions from specific band-structure features are identified and used to explain the origin of the SRTs.

  1. Evaluating the Tensile Properties of Aluminum Foundry Alloys through Reference Castings-A Review.

    PubMed

    Anilchandra, A R; Arnberg, Lars; Bonollo, Franco; Fiorese, Elena; Timelli, Giulio

    2017-08-30

    The tensile properties of an alloy can be exploited if detrimental defects and imperfections of the casting are minimized and the microstructural characteristics are optimized through several strategies that involve die design, process management and metal treatments. This paper presents an analysis and comparison of the salient characteristics of the reference dies proposed in the literature, both in the field of pressure and gravity die-casting. The specimens produced with these reference dies, called separately poured specimens, are effective tools for the evaluation and comparison of the tensile and physical behaviors of Al-Si casting alloys. Some of the findings of the present paper have been recently developed in the frame of the European StaCast project whose results are complemented here with some more recent outcomes and a comprehensive analysis and discussion.

  2. Evaluating the Tensile Properties of Aluminum Foundry Alloys through Reference Castings—A Review

    PubMed Central

    Anilchandra, A.R.; Arnberg, Lars; Bonollo, Franco; Fiorese, Elena

    2017-01-01

    The tensile properties of an alloy can be exploited if detrimental defects and imperfections of the casting are minimized and the microstructural characteristics are optimized through several strategies that involve die design, process management and metal treatments. This paper presents an analysis and comparison of the salient characteristics of the reference dies proposed in the literature, both in the field of pressure and gravity die-casting. The specimens produced with these reference dies, called separately poured specimens, are effective tools for the evaluation and comparison of the tensile and physical behaviors of Al-Si casting alloys. Some of the findings of the present paper have been recently developed in the frame of the European StaCast project whose results are complemented here with some more recent outcomes and a comprehensive analysis and discussion. PMID:28867796

  3. Results from Alloy 600 And Alloy 690 Caustic SCC Model Boiler Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Frederick D.; Thomas, Larry E.

    2009-08-03

    A versatile model boiler test methodology was developed and used to compare caustic stress corrosion cracking (SCC) of mill annealed Alloy 600 and thermally treated Alloy 690. The model boiler included simulated crevice devices that efficiently and consistently concentrated Na2CO3, resulting in volatilization of CO2 with the steam and concentration of NaOH at the tube surfaces. The test methodology also included variation in tube stress, either produced by the primary to secondary side pressure differential, or by a novel method that reproducibly yields a higher stress condition on the tube. The significant effect of residual stress on tube SCC wasmore » also considered. SCC of both Alloy 600 and Alloy 690 were evaluated as a function of temperature and stress. Analytical transmission electron microscopy (ATEM) evaluations of the cracks and the grain boundaries ahead of the cracks were performed, providing insight into the SCC mechanism. This model boiler test methodology may be applicable to a range of bulkwater secondary chemistries that concentrate to produce aggressive crevice environments.« less

  4. The relative stress-corrosion-cracking susceptibility of candidate aluminum-lithium alloys for aerospace applications

    NASA Technical Reports Server (NTRS)

    Pizzo, P. P.

    1982-01-01

    Stress corrosion tests of Al-Li-Cu powder metallurgy alloys are described. Alloys investigated were Al-2.6% Li-1.4% and Al-2.6% Li-1.4% Cu-1.6% Mg. The base properties of the alloys were characterized. Process, heat treatment, and size/orientational effects on the tensile and fracture behavior were investigated. Metallurgical and electrochemical conditions are identified which provide reproducible and controlled parameters for stress corrosion evaluation. Preliminary stress corrosion test results are reported. Both Al-Li-Cu alloys appear more susceptible to stress corrosion crack initiation than 7075-T6 aluminum, with the magnesium bearing alloy being the most susceptible. Tests to determine the threshold stress intensity for the base and magnesium bearing alloys are underway. Twelve each, bolt loaded DCB type specimens are under test (120 days) and limited crack growth in these precracked specimens has been observed. General corrosion in the aqueous sodium chloride environment is thought to be obscuring results through crack tip blunting.

  5. Creep-rupture behavior of a developmental cast-iron-base alloy for use up to 800 deg C

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Scheuermann, Coulson M.

    1987-01-01

    A promising iron-base cast alloy is being developed as part of the DOE/NASA Stirling Engine Systems Project under contract DEN 3-282 with the United Technologies Research Center. This report presents the results of a study at the Lewis Research Center of the alloy's creep-rupture properties. The alloy was tested under a variety of conditions and was found to exhibit the normal 3-stage creep response. The alloy compared favorably with others being used or under consideration for the automotive Stirling engine cylinder/regenerator housing.

  6. Evaluation on the Effect of Composition on Radiation Hardening and Embrittlement in Model FeCrAl Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Briggs, Samuel A.; Edmondson, Philip

    2015-09-18

    This report details the findings of post-radiation mechanical testing and microstructural characterization performed on a series of model and commercial FeCrAl alloys to assist with the development of a cladding technology with enhanced accident tolerance. The samples investigated include model alloys with simple ferritic grain structure and two commercial alloys with minor solute additions. These samples were irradiated in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) up to nominal doses of 7.0 dpa near or at Light Water Reactor (LWR) relevant temperatures (300-400 C). Characterization included a suite of techniques including small angle neutron scatteringmore » (SANS), atom probe tomography (APT), and transmission based electron microscopy techniques. Mechanical testing included tensile tests at room temperature on sub-sized tensile specimens. The goal of this work was to conduct detailed characterization and mechanical testing to begin establishing empirical and/or theoretical structure-property relationships for radiation-induced hardening and embrittlement in the FeCrAl alloy class. Development of such relationships will provide insight on the performance of FeCrAl alloys in an irradiation environment and will enable further development of the alloy class for applications within a LWR environment. A particular focus was made on establishing trends, including composition and radiation dose. The report highlights in detail the pertinent findings based on this work. This report shows that radiation hardening in the alloys is primarily composition dependent due to the phase separation in the high-Cr FeCrAl alloys. Other radiation induced/enhanced microstructural features were less dependent on composition and when observed at low number densities, were not a significant contributor to the observed mechanical responses. Pre-existing microstructure in the alloys was found to be important, with grain boundaries and pre

  7. High-Temperature Wettability and Interactions between Y-Containing Ni-Based Alloys and Various Oxide Ceramics.

    PubMed

    Li, Jinpeng; Zhang, Huarui; Gao, Ming; Li, Qingling; Bian, Weidong; Tao, Tongxiang; Zhang, Hu

    2018-05-07

    To obtain appropriate crucible materials for vacuum induction melting of MCrAlY alloys, four different oxide ceramics, including MgO, Y₂O₃, Al₂O₃, and ZrO₂, with various microstructures were designed and characterized. The high-temperature wettability and interactions between Ni-20Co-20Cr-10Al-1.5Y alloys and oxide ceramics were studied by sessile drop experiments under vacuum. The results showed that all the systems exhibited non-wetting behavior. The contact angles were stable during the melting process of alloys and the equilibrium contact angles were 140° (MgO), 148° (Y₂O₃), 154° (Al₂O₃), and 157° (ZrO₂), respectively. The interfacial reaction between the ceramic substrates and alloys occurred at high temperature. Though the ceramics had different microstructures, similar continuous Y₂O₃ reaction layer with thicknesses of about 25 μm at the alloy-ceramic interface in MgO, Al₂O₃, and ZrO₂ systems formed. The average area percentage of oxides in the alloy matrices were 0.59% (MgO), 0.11% (Al₂O₃), 0.09% (ZrO₂), and 0.02% (Y₂O₃), respectively. The alloys, after reacting with MgO ceramic, had the highest inclusion content, while those with the lowest content were in the Y₂O₃ system. Y₂O₃ ceramic was the most beneficial for vacuum induction melting of high-purity Y-containing Ni-based alloys.

  8. Evaluation of Subsequent Heat Treatment Routes for Near-β Forged TA15 Ti-Alloy

    PubMed Central

    Sun, Zhichao; Wu, Huili; Yang, He

    2016-01-01

    TA15 Ti-alloy is widely used to form key load-bearing components in the aerospace field, where excellent service performance is needed. Near-β forging technology provides an attractive way to form these complicated Ti-alloy components but subsequent heat treatment has a great impact on the final microstructure and mechanical properties. Therefore evaluation and determination of the heat treatment route is of particular significance. In this paper, for the near-β forged TA15 alloy, the formation and evolution of microstructures under different subsequent heat treatment routes (annealing, solution and aging, toughening and strengthening) were studied and the cooling mode after forging was also considered. Then, the type and characteristics of the obtained microstructures were discussed through quantitative metallographic analysis. The corresponding mechanical properties (tensile, impact toughness, and fracture toughness) and effects of microstructural characteristics were investigated. Finally, for a required microstructure and performance a reasonable heat treatment route was recommended. The work is of importance for the application and development of near-β forging technology. PMID:28773994

  9. On the Alloying and Properties of Tetragonal Nb5Si3 in Nb-Silicide Based Alloys

    PubMed Central

    Tsakiropoulos, Panos

    2018-01-01

    The alloying of Nb5Si3 modifies its properties. Actual compositions of (Nb,TM)5X3 silicides in developmental alloys, where X = Al + B + Ge + Si + Sn and TM is a transition and/or refractory metal, were used to calculate the composition weighted differences in electronegativity (Δχ) and an average valence electron concentration (VEC) and the solubility range of X to study the alloying and properties of the silicide. The calculations gave 4.11 < VEC < 4.45, 0.103 < Δχ < 0.415 and 33.6 < X < 41.6 at.%. In the silicide in Nb-24Ti-18Si-5Al-5Cr alloys with single addition of 5 at.% B, Ge, Hf, Mo, Sn and Ta, the solubility range of X decreased compared with the unalloyed Nb5Si3 or exceeded 40.5 at.% when B was with Hf or Mo or Sn and the Δχ decreased with increasing X. The Ge concentration increased with increasing Ti and the Hf concentration increased and decreased with increasing Ti or Nb respectively. The B and Sn concentrations respectively decreased and increased with increasing Ti and also depended on other additions in the silicide. The concentration of Sn was related to VEC and the concentrations of B and Ge were related to Δχ. The alloying of Nb5Si3 was demonstrated in Δχ versus VEC maps. Effects of alloying on the coefficient of thermal expansion (CTE) anisotropy, Young’s modulus, hardness and creep data were discussed. Compared with the hardness of binary Nb5Si3 (1360 HV), the hardness increased in silicides with Ge and dropped below 1360 HV when Al, B and Sn were present without Ge. The Al effect on hardness depended on other elements substituting Si. Sn reduced the hardness. Ti or Hf reduced the hardness more than Cr in Nb5Si3 without Ge. The (Nb,Hf)5(Si,Al)3 had the lowest hardness. VEC differentiated the effects of additions on the hardness of Nb5Si3 alloyed with Ge. Deterioration of the creep of alloyed Nb5Si3 was accompanied by decrease of VEC and increase or decrease of Δχ depending on alloying addition(s). PMID:29300327

  10. Microstructure of rapidly solidified Nb-based pre-alloyed powders for additive manufacturing

    NASA Astrophysics Data System (ADS)

    Guo, Yueling; Jia, Lina; Kong, Bin; Zhang, Shengnan; Zhang, Fengxiang; Zhang, Hu

    2017-07-01

    For powder-based additive manufacturing, sphere-shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by plasma rotating electrode processing (PREP). The microstructure, surface oxidation and microhardness of the pre-alloyed powders were systematically investigated. Results showed that the main phases were Nb solid solution (Nbss) and Cr2Nb. The Cr2Nb phases were further determined using transmission electron microscopy (TEM). Fine dendrite structures were observed in the as-fabricated pre-alloyed powders, which transformed to large grains after heat treatment (HT) at 1450 °C for 3 h. With the increase of powder size, the secondary dendrite arm spacing (SDAS) increased and the microhardness (HV) decreased. A clean powder surface free of oxide particles was obtained by PREP and an oxide layer with 9.39 nm in thickness was generated on the powder surface. Compared with Cr- and Nb-oxides, more Ti-oxides were formed on outmost powder surface with a higher content of Ti (up to 47.86 at.%). The differences upon the microstructure and microhardness of the pre-alloyed powders with different sizes were discussed.

  11. Superplastic Deformation Mechanisms of Superfine/Nanocrystalline Duplex PM-TiAl-Based Alloy.

    PubMed

    Gong, Xuebo; Duan, Zhenxin; Pei, Wen; Chen, Hua

    2017-09-19

    In this paper, the equiaxed superfine/nanocrystalline duplex PM-TiAl-based alloy with (γ + α₂) microstructure, Ti-45Al-5Nb (at %), has been synthesized by high-energy ball milling and vacuum hot pressing sintering. Superplastic deformation behavior has been investigated at 1000 °C and 1050 °C with strain rates from 5 × 10 -5 s -1 to 1 × 10 -3 s -1 . The effects of deformation on the microstructure and mechanical behaviors of high Nb containing TiAl alloy have been characterized and analyzed. The results showed that, the ultimate tensile strength of the alloy was 58.7 MPa at 1000 °C and 10.5 MPa at 1050 °C with a strain rate of 5 × 10 -5 s -1 , while the elongation was 121% and 233%, respectively. The alloy exhibited superplastic elongation at 1000 and 1050 °C with an exponent (m) of 0.48 and 0.45. The main softening mechanism was dynamic recrystallization of γ grains; the dislocation slip and γ/γ interface twinning were responsible for superplastic deformation. The orientation relationship of γ/γ interface twinning obeyed the classical one: (001) γ //(110) γ .

  12. Enhancement of wear and corrosion resistance of beta titanium alloy by laser gas alloying with nitrogen

    NASA Astrophysics Data System (ADS)

    Chan, Chi-Wai; Lee, Seunghwan; Smith, Graham; Sarri, Gianluca; Ng, Chi-Ho; Sharba, Ahmed; Man, Hau-Chung

    2016-03-01

    The relatively high elastic modulus coupled with the presence of toxic vanadium (V) in Ti6Al4V alloy has long been a concern in orthopaedic applications. To solve the problem, a variety of non-toxic and low modulus beta-titanium (beta-Ti) alloys have been developed. Among the beta-Ti alloy family, the quaternary Ti-Nb-Zr-Ta (TNZT) alloys have received the highest attention as a promising replacement for Ti6Al4V due to their lower elastic modulus and outstanding long term stability against corrosion in biological environments. However, the inferior wear resistance of TNZT is still a problem that must be resolved before commercialising in the orthopaedic market. In this work, a newly developed laser surface treatment technique was employed to improve the surface properties of Ti-35.3Nb-7.3Zr-5.7Ta alloy. The surface structure and composition of the laser-treated TNZT surface were examined by grazing incidence X-ray diffraction (GI-XRD) and X-ray photoelectron spectroscopy (XPS). The wear and corrosion resistance were evaluated by pin-on-plate sliding test and anodic polarisation test in Hanks' solution. The experimental results were compared with the untreated (or base) TNZT material. The research findings showed that the laser surface treatment technique reported in this work can effectively improve the wear and corrosion resistance of TNZT.

  13. The effect of fusion-relevant helium levels on the mechanical properties of isotopically tailored ferritic alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hankin, G.L.; Hamilton, M.L.; Gelles, D.S.

    1997-04-01

    The yield and maximum strengths of an irradiated series of isotopically tailored ferritic alloys were evaluated using the shear punch test. The composition of three of the alloys was Fe-12Cr-1.5Ni. Different balances of nickel isotopes were used in each alloy in order to produce different helium levels. A fourth alloy, which contained no nickel, was also irradiated. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys, and as expected, the strength of the alloys decreased with increasing irradiation temperature. Helium itself, up to 75 appmmore » over 7 dpa appears to have little effect on the mechanical properties of the alloys.« less

  14. Initial assessment of Ni-base alloy performance in 0.1 MPa and supercritical CO 2

    DOE PAGES

    Pint, B. A.; Keiser, J. R.

    2015-09-25

    There is considerable interest in increasing the working temperature of both open and closed supercritical CO 2 (sCO 2) cycles to ≥700 °C. At these temperatures, it is unlikely that any Fe-base alloys have suitable strength and therefore the focus is on Ni-base alloys for this application. To begin addressing the lack of compatibility data under these conditions, initial work exposed a wide range of candidate alloys in 500-h exposures at 20 MPa (200 bar) CO 2 at 650 -750 °C in high purity CO 2. In general, the reaction products were thin and protective in these exposures. A smallermore » group of alloy coupons focusing on chromia- and alumina-forming alloys was exposed for 500h in 0.1 MPa (1bar) air, CO 2, CO 2+O 2 and CO 2+H 2O for comparison. Thus, the thin surface oxides formed were very similar to those formed at high pressure and no clear detrimental effect of CO 2 oxidation or O 2 or H 2O impurities could be observed in these exposures.« less

  15. Properties and microstructures for dual alloy combinations of three superalloys with alloy 901

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1985-01-01

    Dual alloy combinations have potential for use in aircraft engine components such as turbine disks where a wide range of stress and temperature regimes exists during operation. Such alloy combinations may directly result in the conservation of elements which are costly or not available domestically. Preferably, a uniform heat treatment yielding good properties for both alloys should be used. Dual alloy combinations of iron rich Alloy 901 with nickel base superalloys Rene 95, Astroloy, or MERL 76 were not isostatically pressed from prealloyed powders. Individual alloys, alloy mixtures, and layered alloy combinations were given the heat treatments specified for their use in turbine disks or appropriate for Alloy 901. Selected specimens were overaged for 1500 hr at 650 C. Metallographic examinations revealed the absence of phases not originally present in either alloy of a combination. Mechanical tests showed adequate properties in combinations of Rene 95 or Astroloy with Alloy 901 when given the Alloy 901 heat treatment. Combinations with MERL 76 had better properties when given the MERL 76 heat treatment. The results indicate that these combinations are promising candidates for use in turbine disks.

  16. Accelerated exploration of multi-principal element alloys with solid solution phases

    PubMed Central

    Senkov, O.N.; Miller, J.D.; Miracle, D.B.; Woodward, C.

    2015-01-01

    Recent multi-principal element, high entropy alloy (HEA) development strategies vastly expand the number of candidate alloy systems, but also pose a new challenge—how to rapidly screen thousands of candidate alloy systems for targeted properties. Here we develop a new approach to rapidly assess structural metals by combining calculated phase diagrams with simple rules based on the phases present, their transformation temperatures and useful microstructures. We evaluate over 130,000 alloy systems, identifying promising compositions for more time-intensive experimental studies. We find the surprising result that solid solution alloys become less likely as the number of alloy elements increases. This contradicts the major premise of HEAs—that increased configurational entropy increases the stability of disordered solid solution phases. As the number of elements increases, the configurational entropy rises slowly while the probability of at least one pair of elements favouring formation of intermetallic compounds increases more rapidly, explaining this apparent contradiction. PMID:25739749

  17. Stress corrosion evaluation of powder metallurgy aluminum alloy 7091 with the breaking load test method

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.

    1987-01-01

    The stress corrosion behavior of the P/M aluminum alloy 7091 is evaluated in two overaged heat treatment conditions, T7E69 and T7E70, using an accelerated test technique known as the breaking load test method. The breaking load data obtained in this study indicate that P/M 7091 alloy is highly resistant to stress corrosion in both longitudinal and transverse orientations at stress levels up to 90 percent of the material yield strength. The reduction in mean breaking stress as a result of corrosive attack is smallest for the more overaged T7E70 condition. Details of the test procedure are included.

  18. Environmental Durability of Coated GRCop-84 Copper Alloys

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.; Robinson, C.; Barrett, C.; Humphrey, D.

    2005-01-01

    An advanced Cu-8(at.%)Cr-4%Nb alloy developed at NASA's Glenn Research Center, and designated as GRCop-84, is currently being considered for use as liners in combustor chambers and nozzle ramps in NASA s future generations of reusable launch vehicles (RLVs). However, past experience has shown that unprotected copper alloys undergo an environmental attack called "blanching" in rocket engines using liquid hydrogen as fuel and liquid oxygen as the oxidizer. Potential for sulfidation attack of the liners in hydrocarbon-fueled engines is also of concern. As a result, protective overlay coatings alloys are being developed for GRCop-84. The oxidation behavior of several new coating alloys has been evaluated. GRCop-84 specimens were coated with several copper and nickel-based coatings, where the coatings were deposited by either vacuum plasma spraying or cold spraying techniques. Coated and uncoated specimens were thermally cycled in a furnace at different temperatures in order to evaluate the performance of the coatings. Additional studies were conducted in a high pressure burner rig using a hydrocarbon fuel and subjected to a high heat flux hydrogen-oxygen combustion flame in NASA s Quick Access Rocket Exhaust (QARE) rig. The performance of these coatings are discussed.

  19. In vivo evaluation of Mg-6Zn and titanium alloys on collagen metabolism in the healing of intestinal anastomosis

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Hu; Ni, Jian-Shu; Cao, Nai-Long; Yu, Song; Chen, Yi-Gang; Zhang, Shao-Xiang; Gu, Bao-Jun; Yan, Jun

    2017-03-01

    There is a great clinical need for biodegradable materials, which were used as pins of circular staplers, for gastrointestinal reconstruction in medicine. In this work we compared the effects of the Mg-6Zn and the titanium alloys on collagen metabolism in the healing of the intestinal tract in vivo. The study included Sprague-Dawley rats and their effect was compared on rat’s intestinal tract, using serum magnesium, radiology, and immunohistochemistry in vivo. Radiographic and scanning electron microscope evaluation confirmed the degradation by Mg-6Zn alloy during the implantation period. Biochemical measurements including serum magnesium, creatinine, blood urea nitrogen and glutamic-pyruvic-transaminase proved that degradation of Mg-6Zn alloy showed no impact on serum magnesium and the function of other important organs. Superior to titanium alloy, Mg-6Zn alloy enhanced the expression of collagen I/III and relatively suppressed the expression of MMP-1/-13 in the healing tissues, leading to more mature collagen formation at the site of anastomosis. In conclusion, Mg-6Zn alloy performed better than titanium alloy on collagen metabolism and promoted the healing of intestinal anastomosis. Hence, Mg-6Zn may be a promising candidate for use of stapler pins for intestinal reconstruction in the clinically.

  20. Corrosion Behavior of Alloys in Molten Fluoride Salts

    NASA Astrophysics Data System (ADS)

    Zheng, Guiqiu

    The molten fluoride salt-cooled high-temperature nuclear reactor (FHR) has been proposed as a candidate Generation IV nuclear reactor. This reactor combines the latest nuclear technology with the use of molten fluoride salt as coolant to significantly enhance safety and efficiency. However, an important challenge in FHR development is the corrosion of structural materials in high-temperature molten fluoride salt. The structural alloys' degradation, particularly in terms of chromium depletion, and the molten salt chemistry are key factors that impact the lifetime of nuclear reactors and the development of future FHR designs. In support of materials development for the FHR, the nickel base alloy of Hastelloy N and iron-chromium base alloy 316 stainless steel are being actively considered as critical structural alloys. Enriched 27LiF-BeF2 (named as FLiBe) is a promising coolant for the FHR because of its neutronic properties and heat transfer characteristics while operating at atmospheric pressure. In this study, the corrosion behavior of Ni-5Cr and Ni-20Cr binary model alloys, and Hastelloy N and 316 stainless steel in molten FLiBe with and without graphite were investigated through various microstructural analyses. Based on the understanding of the corrosion behavior and data of above four alloys in molten FLiBe, a long-term corrosion prediction model has been developed that is applicable specifically for these four materials in FLiBe at 700ºC. The model uses Cr concentration profile C(x, t) as a function of corrosion distance in the materials and duration fundamentally derived from the Fick's diffusion laws. This model was validated with reasonable accuracy for the four alloys by fitting the calculated profiles with experimental data and can be applied to evaluate corrosion attack depth over the long-term. The critical constant of the overall diffusion coefficient (Deff) in this model can be quickly calculated from the experimental measurement of alloys' weight

  1. Inhibitory effect of Ti-Ag alloy on artificial biofilm formation.

    PubMed

    Nakajo, Kazuko; Takahashi, Masatoshi; Kikuchi, Masafumi; Takada, Yukyo; Okuno, Osamu; Sasaki, Keiichi; Takahashi, Nobuhiro

    2014-01-01

    Titanium-silver (Ti-Ag) alloy has been improved for machinability and mechanical properties, but its anti-biofilm properties have not been elucidated yet. Thus, this study aimed to evaluate the effects of Ti-Ag alloy on biofilm formation and bacterial viability in comparison with pure Ti, pure Ag and silver-palladium (Ag-Pd) alloy. Biofilm formation on the metal plates was evaluated by growing Streptococcus mutans and Streptococcus sobrinus in the presence of metal plates. Bactericidal activity was evaluated using a film contact method. There were no significant differences in biofilm formation between pure Ti, pure Ag and Ag-Pd alloy, while biofilm amounts on Ti-20% Ag and Ti-25% Ag alloys were significantly lower (p<0.05). In addition, Ti-Ag alloys and pure Ti were not bactericidal, although pure Ag and Ag-Pd alloy killed bacteria. These results suggest that Ti-20% Ag and Ti-25% Ag alloys are suitable for dental material that suppresses biofilm formation without disturbing healthy oral microflora.

  2. Transverse-Weld Tensile Properties of a New Al-4Cu-2Si Alloy as Filler Metal

    NASA Astrophysics Data System (ADS)

    Sampath, K.

    2009-12-01

    AA2195, an Al-Cu-Li alloy in the T8P4 age-hardened condition, is a candidate aluminum armor for future combat vehicles, as this material offers higher static strength and ballistic protection than current aluminum armor alloys. However, certification of AA2195 alloy for armor applications requires initial qualification based on the ballistic performance of welded panels in the as-welded condition. Currently, combat vehicle manufacturers primarily use gas metal arc welding (GMAW) process to meet their fabrication needs. Unfortunately, a matching GMAW consumable electrode is currently not commercially available to allow effective joining of AA2195 alloy. This initial effort focused on an innovative, low-cost, low-risk approach to identify an alloy composition suitable for effective joining of AA2195 alloy, and evaluated transverse-weld tensile properties of groove butt joints produced using the identified alloy. Selected commercial off-the-shelf (COTS) aluminum alloy filler wires were twisted to form candidate twisted filler rods. Representative test weldments were produced using AA2195 alloy, candidate twisted filler rods and gas tungsten arc welding (GTAW) process. Selected GTA weldments produced using Al-4wt.%Cu-2wt.%Si alloy as filler metal consistently provided transverse-weld tensile properties in excess of 275 MPa (40 ksi) UTS and 8% El (over 25 mm gage length), thereby showing potential for acceptable ballistic performance of as-welded panels. Further developmental work is required to evaluate in detail GMAW consumable wire electrodes based on the Al-Cu-Si system containing 4.2-5.0 wt.% Cu and 1.6-2.0 wt.% Si.

  3. GRCop-84: A High Temperature Copper-based Alloy For High Heat Flux Applications

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2005-01-01

    While designed for rocket engine main combustion chamber liners, GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) offers potential for high heat flux applications in industrial applications requiring a temperature capability up to approximately 700 C (1292 F). GRCop-84 is a copper-based alloy with excellent elevated temperature strength, good creep resistance, long LCF lives and enhanced oxidation resistance. It also has a lower thermal expansion than copper and many other low alloy copper-based alloys. GRCop-84 can be manufactured into a variety of shapes such as tubing, bar, plate and sheet using standard production techniques and requires no special production techniques. GRCop-84 forms well, so conventional fabrication methods including stamping and bending can be used. GRCop-84 has demonstrated an ability to be friction stir welded, brazed, inertia welded, diffusion bonded and electron beam welded for joining to itself and other materials. Potential applications include plastic injection molds, resistance welding electrodes and holders, permanent metal casting molds, vacuum plasma spray nozzles and high temperature heat exchanger applications.

  4. Diffusive Phenomena and the Austenite/Martensite Relative Stability in Cu-Based Shape-Memory Alloys

    NASA Astrophysics Data System (ADS)

    Pelegrina, J. L.; Yawny, A.; Sade, M.

    2018-03-01

    The main characteristic of martensitic phase transitions is the coordinate movement of the atoms which takes place athermally, without the contribution of diffusion during its occurrence. However, the impacts of diffusive phenomena on the relative stability between the phases involved and, consequently, on the associated transformation temperatures and functional properties can be significant. This is particularly evident in the case of Cu-based shape-memory alloys where atomic diffusion in both austenite and martensite metastable phases might occur even at room-temperature levels, giving rise to a variety of intensively studied phenomena. In the present study, the progresses made in the understanding of three selected diffusion-related effects of importance in Cu-Zn-Al and Cu-Al-Be alloys are reviewed. They are the after-quench retained disorder in the austenitic structure and its subsequent reordering, the stabilization of the martensite, and the effect of applied stress on the austenitic order. It is shown how the experimental results obtained from tests performed on single crystal material can be rationalized under the shed of a model developed to evaluate the variation of the relative stability between the phases in terms of atom pairs interchanges.

  5. Diffusive Phenomena and the Austenite/Martensite Relative Stability in Cu-Based Shape-Memory Alloys

    NASA Astrophysics Data System (ADS)

    Pelegrina, J. L.; Yawny, A.; Sade, M.

    2018-02-01

    The main characteristic of martensitic phase transitions is the coordinate movement of the atoms which takes place athermally, without the contribution of diffusion during its occurrence. However, the impacts of diffusive phenomena on the relative stability between the phases involved and, consequently, on the associated transformation temperatures and functional properties can be significant. This is particularly evident in the case of Cu-based shape-memory alloys where atomic diffusion in both austenite and martensite metastable phases might occur even at room-temperature levels, giving rise to a variety of intensively studied phenomena. In the present study, the progresses made in the understanding of three selected diffusion-related effects of importance in Cu-Zn-Al and Cu-Al-Be alloys are reviewed. They are the after-quench retained disorder in the austenitic structure and its subsequent reordering, the stabilization of the martensite, and the effect of applied stress on the austenitic order. It is shown how the experimental results obtained from tests performed on single crystal material can be rationalized under the shed of a model developed to evaluate the variation of the relative stability between the phases in terms of atom pairs interchanges.

  6. X-ray fluorescence determination of Sn, Sb, Pb in lead-based bearing alloys using a solution technique

    NASA Astrophysics Data System (ADS)

    Tian, Lunfu; Wang, Lili; Gao, Wei; Weng, Xiaodong; Liu, Jianhui; Zou, Deshuang; Dai, Yichun; Huang, Shuke

    2018-03-01

    For the quantitative analysis of the principal elements in lead-antimony-tin alloys, directly X-ray fluorescence (XRF) method using solid metal disks introduces considerable errors due to the microstructure inhomogeneity. To solve this problem, an aqueous solution XRF method is proposed for determining major amounts of Sb, Sn, Pb in lead-based bearing alloys. The alloy samples were dissolved by a mixture of nitric acid and tartaric acid to eliminated the effects of microstructure of these alloys on the XRF analysis. Rh Compton scattering was used as internal standard for Sb and Sn, and Bi was added as internal standard for Pb, to correct for matrix effects, instrumental and operational variations. High-purity lead, antimony and tin were used to prepare synthetic standards. Using these standards, calibration curves were constructed for the three elements after optimizing the spectrometer parameters. The method has been successfully applied to the analysis of lead-based bearing alloys and is more rapid than classical titration methods normally used. The determination results are consistent with certified values or those obtained by titrations.

  7. First Principles Calculations of Transition Metal Binary Alloys: Phase Stability and Surface Effects

    NASA Astrophysics Data System (ADS)

    Aspera, Susan Meñez; Arevalo, Ryan Lacdao; Shimizu, Koji; Kishida, Ryo; Kojima, Kazuki; Linh, Nguyen Hoang; Nakanishi, Hiroshi; Kasai, Hideaki

    2017-06-01

    The phase stability and surface effects on binary transition metal nano-alloy systems were investigated using density functional theory-based first principles calculations. In this study, we evaluated the cohesive and alloying energies of six binary metal alloy bulk systems that sample each type of alloys according to miscibility, i.e., Au-Ag and Pd-Ag for the solid solution-type alloys (SS), Pd-Ir and Pd-Rh for the high-temperature solid solution-type alloys (HTSS), and Au-Ir and Ag-Rh for the phase-separation (PS)-type alloys. Our results and analysis show consistency with experimental observations on the type of materials in the bulk phase. Varying the lattice parameter was also shown to have an effect on the stability of the bulk mixed alloy system. It was observed, particularly for the PS- and HTSS-type materials, that mixing gains energy from the increasing lattice constant. We furthermore evaluated the surface effects, which is an important factor to consider for nanoparticle-sized alloys, through analysis of the (001) and (111) surface facets. We found that the stability of the surface depends on the optimization of atomic positions and segregation of atoms near/at the surface, particularly for the HTSS and the PS types of metal alloys. Furthermore, the increase in energy for mixing atoms at the interface of the atomic boundaries of PS- and HTSS-type materials is low enough to overcome by the gain in energy through entropy. These, therefore, are the main proponents for the possibility of mixing alloys near the surface.

  8. Biocompatibility Assessment of Novel Bioresorbable Alloys Mg-Zn-Se and Mg-Zn-Cu for Endovascular Applications: In- Vitro Studies.

    PubMed

    Persaud-Sharma, Dharam; Budiansky, Noah; McGoron, Anthony J

    2013-01-01

    Previous studies have shown that using biodegradable magnesium alloys such as Mg-Zn and Mg-Zn-Al possess the appropriate mechanical properties and biocompatibility to serve in a multitude of biological applications ranging from endovascular to orthopedic and fixation devices. The objective of this study was to evaluate the biocompatibility of novel as-cast magnesium alloys Mg-1Zn-1Cu wt.% and Mg-1Zn-1Se wt.% as potential implantable biomedical materials, and compare their biologically effective properties to a binary Mg-Zn alloy. The cytotoxicity of these experimental alloys was evaluated using a tetrazolium based- MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay and a lactate dehydrogenase membrane integrity assay (LDH). The MTS assay was performed on extract solutions obtained from a 30-day period of alloy immersion and agitation in simulated body fluid to evaluate the major degradation products eluted from the alloy materials. Human foreskin fibroblast cell growth on the experimental magnesium alloys was evaluated for a 72 hour period, and cell death was quantified by measuring lactate dehydrogenase concentrations. Both Mg-Zn-Se and Mg-Zn-Cu alloys exhibit low cytotoxicity levels which are suitable for biomaterial applications. The Mg-Zn-Cu alloy was found to completely degrade within 72 hours, resulting in lower human foreskin fibroblast cell viability. The Mg-Zn-Se alloy was shown to be less cytotoxic than both the Mg-Zn-Cu and Mg-Zn alloys.

  9. Biocompatibility Assessment of Novel Bioresorbable Alloys Mg-Zn-Se and Mg-Zn-Cu for Endovascular Applications: In- Vitro Studies

    PubMed Central

    Budiansky, Noah; McGoron, Anthony J.

    2013-01-01

    Previous studies have shown that using biodegradable magnesium alloys such as Mg-Zn and Mg-Zn-Al possess the appropriate mechanical properties and biocompatibility to serve in a multitude of biological applications ranging from endovascular to orthopedic and fixation devices. The objective of this study was to evaluate the biocompatibility of novel as-cast magnesium alloys Mg-1Zn-1Cu wt.% and Mg-1Zn-1Se wt.% as potential implantable biomedical materials, and compare their biologically effective properties to a binary Mg-Zn alloy. The cytotoxicity of these experimental alloys was evaluated using a tetrazolium based- MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay and a lactate dehydrogenase membrane integrity assay (LDH). The MTS assay was performed on extract solutions obtained from a 30-day period of alloy immersion and agitation in simulated body fluid to evaluate the major degradation products eluted from the alloy materials. Human foreskin fibroblast cell growth on the experimental magnesium alloys was evaluated for a 72 hour period, and cell death was quantified by measuring lactate dehydrogenase concentrations. Both Mg-Zn-Se and Mg-Zn-Cu alloys exhibit low cytotoxicity levels which are suitable for biomaterial applications. The Mg-Zn-Cu alloy was found to completely degrade within 72 hours, resulting in lower human foreskin fibroblast cell viability. The Mg-Zn-Se alloy was shown to be less cytotoxic than both the Mg-Zn-Cu and Mg-Zn alloys. PMID:24058329

  10. Solidification of Al-Sn-Cu Based Immiscible Alloys under Intense Shearing

    NASA Astrophysics Data System (ADS)

    Kotadia, H. R.; Doernberg, E.; Patel, J. B.; Fan, Z.; Schmid-Fetzer, R.

    2009-09-01

    The growing importance of Al-Sn based alloys as materials for engineering applications necessitates the development of uniform microstructures with improved performance. Guided by the recently thermodynamically assessed Al-Sn-Cu system, two model immiscible alloys, Al-45Sn-10Cu and Al-20Sn-10Cu, were selected to investigate the effects of intensive melt shearing provided by the novel melt conditioning by advanced shear technology (MCAST) unit on the uniform dispersion of the soft Sn phase in a hard Al matrix. Our experimental results have confirmed that intensive melt shearing is an effective way to achieve fine and uniform dispersion of the soft phase without macro-demixing, and that such dispersed microstructure can be further refined in alloys with precipitation of the primary Al phase prior to the demixing reaction. In addition, it was found that melt shearing at 200 rpm and 60 seconds will be adequate to produce fine and uniform dispersion of the Sn phase, and that higher shearing speed and prolonged shearing time can only achieve minor further refinement.

  11. High temperature, low-cycle fatigue of copper-base alloys for rocket nozzles. Part 2: Strainrange partitioning and low-cycle fatigue results at 538 deg C

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1976-01-01

    Low-cycle fatigue tests of 1/2 Hard AMZIRC Copper and NARloy Z were performed in argon at 538 C to determine partitioned strain range versus life relationships. Strain-controlled low-cycle fatigue tests of a Zr-Cr-Mg copper-base alloy were also performed. Strain ranges, lower than those employed in previous tests, were imposed in order to extend the fatigue life curve out to approximately 400,000 cycles. An experimental copper alloy and an experimental silver alloy were also studied. Tensile tests were performed in air at room temperature and in argon at 538 C. Strain-controlled low-cycle fatigue tests were performed at 538 C in argon to define the fatigue life over the regime from 300 to 3,000 cycles. For the silver alloy, three additional heat treatments were introduced, and a limited evaluation of the short-term tensile and low-cycle fatigue behavior at 538 C was performed.

  12. Proton irradiation studies on Al and Al5083 alloy

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, P.; Gayathri, N.; Bhattacharya, M.; Gupta, A. Dutta; Sarkar, Apu; Dhar, S.; Mitra, M. K.; Mukherjee, P.

    2017-10-01

    The change in the microstructural parameters and microhardness values in 6.5 MeV proton irradiated pure Al and Al5083 alloy samples have been evaluated using different model based techniques of X-ray diffraction Line Profile Analysis (XRD) and microindendation techniques. The detailed line profile analysis of the XRD data showed that the domain size increases and saturates with irradiation dose both in the case of Al and Al5083 alloy. The corresponding microstrain values did not show any change with irradiation dose in the case of the pure Al but showed an increase at higher irradiation doses in the case of Al5083 alloy. The microindendation results showed that unirradiated Al5083 alloy has higher hardness value compared to that of unirradiated pure Al. The hardness increased marginally with irradiation dose in the case of Al5083, whereas for pure Al, there was no significant change with dose.

  13. Fabrication characteristics and hydrogenation behavior of hydrogen storage alloys for sealed Ni-MH batteries

    NASA Astrophysics Data System (ADS)

    Kim, Ho-Sung; Kim, Jeon Min; Kim, Tae-Won; Oh, Ik-Hyun; Choi, Jeon; Park, Choong Nyeon

    2008-08-01

    Hydrogen storage alloys based on LmNi4.2Co0.2Mn0.3Al0.3 were fabricated to study the equilibrium hydrogen pressure and electrochemical performance. The surface morphology and structure of the alloys were analyzed by SEM and XRD, and then the hydrogenation behaviors of all alloys were evaluated by PCT and electrochemical half-cell. We studied the hydrogenation behavior of the Lm-based alloy with changes in composition elements such as Mn, Al, and Co and investigated the optimal design for Lm-based alloy in a sealed battery system. As a result of studying the hydrogenation characterization of alloys with the substitution elements, hydrogen storage alloys such as LmNi3.75Co0.15Mn0.5Al0.3 and LmNi3.5Co0.5Mn0.5Al0.5 were obtained to correspond with the characteristics of a sealed battery with a higher capacity, long life cycle, lower internal pressure, and lower battery cost. The capacity preservation rate of LmNi3.5Co0.5Mn0.5Al0.5 was greatly improved to 92.7% (255 mAh/g) at 60 cycles, indicating a low equilibrium hydrogen pressure of 0.03 atm in PCT devices.

  14. Fe-Cr-Mo based ODS alloys via spark plasma sintering: A combinational characterization study by TEM and APT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y. Q. Wu; K. N. Allahar; J. Burns

    2013-08-01

    Nanoscale oxides play an important role in oxide dispersion strengthened (ODS) alloys for improved high temperature creep resistance and enhanced radiation damage tolerance. In this study, transmission electron microscopy (TEM) and atom probe tomography (APT) were combined to investigate two novel Fe-16Cr-3Mo (wt.%) based ODS alloys. Spark plasma sintering (SPS) was used to consolidate the ODS alloys from powders that were milled with 0.5 wt.% Y2O3 powder only or with Y2O3 powder and 1 wt.% Ti. TEM characterization revealed that both alloys have a bimodal structure of nanometer-size (~ 100 – 500 nm) and micron-size grains with nanostructured oxide precipitatesmore » formed along and close to grain boundaries with diameters ranging from five to tens of nanometers. APT provides further quantitative analyses of the oxide precipitates, and also reveals Mo segregation at grain boundaries next to oxide precipitates. The alloys with and without Ti are compared based on their microstructures.« less

  15. Mechanical, electrical, and thermal expansion properties of carbon nanotube-based silver and silver-palladium alloy composites

    NASA Astrophysics Data System (ADS)

    Pal, Hemant; Sharma, Vimal

    2014-11-01

    The mechanical, electrical, and thermal expansion properties of carbon nanotube (CNT)-based silver and silver-palladium (10:1, w/w) alloy nanocomposites are reported. To tailor the properties of silver, CNTs were incorporated into a silver matrix by a modified molecular level-mixing process. CNTs interact weakly with silver because of their non-reactive nature and lack of mutual solubility. Therefore, palladium was utilized as an alloying element to improve interfacial adhesion. Comparative microstructural characterizations and property evaluations of the nanocomposites were performed. The structural characterizations revealed that decorated type-CNTs were dispersed, embedded, and anchored into the silver matrix. The experimental results indicated that the modification of the silver and silver-palladium nanocomposite with CNT resulted in increases in the hardness and Young's modulus along with concomitant decreases in the electrical conductivity and the coefficient of thermal expansion (CTE). The hardness and Young's modulus of the nanocomposites were increased by 30%-40% whereas the CTE was decreased to 50%-60% of the CTE of silver. The significantly improved CTE and the mechanical properties of the CNT-reinforced silver and silver-palladium nanocomposites are correlated with the intriguing properties of CNTs and with good interfacial adhesion between the CNTs and silver as a result of the fabrication process and the contact action of palladium as an alloying element.

  16. Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency

    NASA Astrophysics Data System (ADS)

    Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.; Kesler, Michael S.; Weiss, David; Ott, Ryan T.; Meng, Fanqiang; Kassoumeh, Sam; Evangelista, James; Begley, Gerald; Rios, Orlando

    2018-06-01

    Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatment line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. This work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.

  17. Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency

    NASA Astrophysics Data System (ADS)

    Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.; Kesler, Michael S.; Weiss, David; Ott, Ryan T.; Meng, Fanqiang; Kassoumeh, Sam; Evangelista, James; Begley, Gerald; Rios, Orlando

    2018-04-01

    Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatment line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. This work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.

  18. Evaluation of phase transformation in ferromagnetic shape memory Fe-Pd alloy by magnetic Barkhausen noise

    NASA Astrophysics Data System (ADS)

    Furuya, Yasubumi; Tamoto, Shizuka; Kubota, Takeshi; Okazaki, Teiko; Hagood, Nesbitt W.; Spearing, S. Mark

    2002-07-01

    The possibility to detect the phase transformation with martensites by heating or cooling as well as stress-loading in ferromagnetic shape memory Fe-30at percent Pd alloy thin foil by using magnetic Markhausen noise sensor was studied. MBHN is caused by the irregular interactions between magnetic domain and thermally activated martensite twins during magnetization. In general, the envelope of the MBHN voltage versus time signals in Fe-29at percent Pd ribbon showed two peaks during magnetization, where secondary peak at intermediate state of magnetization process decreased with increasing temperature, while the MBHN envelopes in pure iron did not change with increasing temperature. The variety of MBHN due to the phase transformation was apt to arise at higher frequency part of spectrum during intermediate state of magnetization process and it decreased with disappearance of martensite twins. Besides, MBHN increased monotonically with increasing loading stress and then, it decreased with unloading, however MBHN showed large hysteresis between loading and unloading passes. Based on the experimental results from MBHN measurements for both thermoelastic and stress-induced martensite phase transformations in Fe-30at percent Pd ribbon samples, MBHN method seems a useful technique to non-destructive evaluation of martensite phase transformation of ferromagnetic shape memory alloy.

  19. Superplastic forming and diffusion bonding of rapidly solidified, dispersion strengthened aluminum alloys for elevated temperature structural applications

    NASA Technical Reports Server (NTRS)

    Ting, E. Y.; Kennedy, J. R.

    1989-01-01

    Rapidly solidified alloys, based upon the Al-Fe-V-Si system and designed for elevated temperature applications, were evaluated for superplasticity and diffusion bonding behavior. Alloys with 8, 16, 27, and 36 volume percent silicide dispersoids were produced; dispersoid condition was varied by rolling at 300, 400, and 500 C (572, 752, and 932 F). Superplastic behavior was evaluated at strain rates from 1 x 10(exp -6)/s to 8.5/s at elevated temperatures. The results indicate that there was a significant increase in elongation at higher strain rates and at temperatures above 600 C (1112 F). However, the exposure of the alloys to temperatures greater than 600 C (1112 F) resulted in the coarsening of the strengthening dispersoid and the degradation of mechanical properties. Diffusion bonding was possible using low gas pressure at temperatures greater than 600 C (1112 F) which also resulted in degraded properties. The bonding of Al-Fe-V-Si alloys to 7475 aluminum alloy was performed at 516 C (960 F) without significant degradation in microstructure. Bond strengths equal to 90 percent that of the base metal shear strength were achieved. The mechanical properties and microstructural characteristics of the alloys were investigated.

  20. Development of Oxidation Protection Coatings for Gamma Titanium Aluminide Alloys

    NASA Technical Reports Server (NTRS)

    Wallace, T. A.; Bird, R. K.; Sankaran, S. N.

    2003-01-01

    Metallic material systems play a key role in meeting the stringent weight and durability requirements for reusable launch vehicle (RLV) airframe hot structures. Gamma titanium aluminides (gamma-TiAl) have been identified as high-payoff materials for high-temperature applications. The low density and good elevated temperature mechanical properties of gamma-TiAl alloys make them attractive candidates for durable lightweight hot structure and thermal protection systems at temperatures as high as 871 C. However, oxidation significantly degrades gamma-TiAl alloys under the high-temperature service conditions associated with the RLV operating environment. This paper discusses ongoing efforts at NASA Langley Research Center to develop durable ultrathin coatings for protecting gamma-TiAl alloys from high-temperature oxidation environments. In addition to offering oxidation protection, these multifunctional coatings are being engineered to provide thermal control features to help minimize heat input into the hot structures. This paper describes the coating development effort and discusses the effects of long-term high-temperature exposures on the microstructure of coated and uncoated gamma-TiAl alloys. The alloy of primary consideration was the Plansee alloy gamma-Met, but limited studies of the newer alloy gamma-Met-PX were also included. The oxidation behavior of the uncoated materials was evaluated over the temperature range of 704 C to 871 C. Sol-gel-based coatings were applied to the gamma-TiAl samples by dipping and spraying, and the performance evaluated at 871 C. Results showed that the coatings improve the oxidation resistance, but that further development is necessary.

  1. Bone response to a novel Ti-Ta-Nb-Zr alloy.

    PubMed

    Stenlund, Patrik; Omar, Omar; Brohede, Ulrika; Norgren, Susanne; Norlindh, Birgitta; Johansson, Anna; Lausmaa, Jukka; Thomsen, Peter; Palmquist, Anders

    2015-07-01

    Commercially pure titanium (cp-Ti) is regarded as the state-of-the-art material for bone-anchored dental devices, whereas the mechanically stronger alloy (Ti-6Al-4V), made of titanium, aluminum (Al) and vanadium (V), is regarded as the material of choice for high-load applications. There is a call for the development of new alloys, not only to eliminate the potential toxic effect of Al and V but also to meet the challenges imposed on dental and maxillofacial reconstructive devices, for example. The present work evaluates a novel, dual-stage, acid-etched, Ti-Ta-Nb-Zr alloy implant, consisting of elements that create low toxicity, with the potential to promote osseointegration in vivo. The alloy implants (denoted Ti-Ta-Nb-Zr) were evaluated after 7 days and 28 days in a rat tibia model, with reference to commercially pure titanium grade 4 (denoted Ti). Analyses were performed with respect to removal torque, histomorphometry and gene expression. The Ti-Ta-Nb-Zr showed a significant increase in implant stability over time in contrast to the Ti. Further, the histological and gene expression analyses suggested faster healing around the Ti-Ta-Nb-Zr, as judged by the enhanced remodeling, and mineralization, of the early-formed woven bone and the multiple positive correlations between genes denoting inflammation, bone formation and remodeling. Based on the present experiments, it is concluded that the Ti-Ta-Nb-Zr alloy becomes osseointegrated to at least a similar degree to that of pure titanium implants. This alloy is therefore emerging as a novel implant material for clinical evaluation. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Biffi, C. A.; Tuissi, A.

    2014-10-01

    In this paper, an experimental study of laser micro-processing on a Cu-Zr-based shape memory alloy (SMA), which is suitable for high-temperature (HT) applications, is discussed. A first evaluation of the interaction between a laser beam and Zr50Cu28Ni7Co15 HT SMA is highlighted. Single laser pulses at various levels of power and pulse duration were applied to evaluate their effect on the sample surfaces. Blind and through microholes were produced with sizes on the order of a few hundreds of microns; the results were characterized from the morphological viewpoint using a scanning electron microscope. The high beam quality allows the holes to be created with good circularity and little melted material around the hole periphery. An analysis of the chemical composition was performed using energy dispersive spectroscopy, revealing that compositional changes were limited, while important oxidation occurred on the hole surfaces. Additionally, laser micro-cutting tests were also proposed to evaluate the cut edge morphology and dimensions. The main result of this paper concerned the good behavior of the material upon interaction with the laser beam, which suggests that microfeatures can be successfully produced in this alloy.

  3. Attack polish for nickel-base alloys and stainless steels

    DOEpatents

    Steeves, Arthur F.; Buono, Donald P.

    1983-01-01

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels. The chemical attack polish comprises Fe(NO.sub.3).sub.3, concentrated CH.sub.3 COOH, concentrated H.sub.2 SO.sub.4 and H.sub.2 O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  4. Method of polishing nickel-base alloys and stainless steels

    DOEpatents

    Steeves, Arthur F.; Buono, Donald P.

    1981-01-01

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels. The chemical attack polish comprises Fe(NO.sub.3).sub.3, concentrated CH.sub.3 COOH, concentrated H.sub.2 SO.sub.4 and H.sub.2 O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  5. Attack polish for nickel-base alloys and stainless steels

    DOEpatents

    Not Available

    1980-05-28

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels is described. The chemical attack polich comprises FeNO/sub 3/, concentrated CH/sub 3/COOH, concentrated H/sub 2/SO/sub 4/ and H/sub 2/O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  6. Alloy design for intrinsically ductile refractory high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Sheikh, Saad; Shafeie, Samrand; Hu, Qiang; Ahlström, Johan; Persson, Christer; Veselý, Jaroslav; Zýka, Jiří; Klement, Uta; Guo, Sheng

    2016-10-01

    Refractory high-entropy alloys (RHEAs), comprising group IV (Ti, Zr, Hf), V (V, Nb, Ta), and VI (Cr, Mo, W) refractory elements, can be potentially new generation high-temperature materials. However, most existing RHEAs lack room-temperature ductility, similar to conventional refractory metals and alloys. Here, we propose an alloy design strategy to intrinsically ductilize RHEAs based on the electron theory and more specifically to decrease the number of valence electrons through controlled alloying. A new ductile RHEA, Hf0.5Nb0.5Ta0.5Ti1.5Zr, was developed as a proof of concept, with a fracture stress of close to 1 GPa and an elongation of near 20%. The findings here will shed light on the development of ductile RHEAs for ultrahigh-temperature applications in aerospace and power-generation industries.

  7. Evaluation of a Shape Memory Alloy Reinforced Annuloplasty Band for Minimally Invasive Mitral Valve Repair

    PubMed Central

    Purser, Molly F.; Richards, Andrew L.; Cook, Richard C.; Osborne, Jason A.; Cormier, Denis R.; Buckner, Gregory D.

    2013-01-01

    Purpose An in vitro study using explanted porcine hearts was conducted to evaluate a novel annuloplasty band, reinforced with a two-phase, shape memory alloy, designed specifically for minimally invasive mitral valve repair. Description In its rigid (austenitic) phase, this band provides the same mechanical properties as the commercial semi-rigid bands. In its compliant (martensitic) phase, this band is flexible enough to be introduced through an 8-mm trocar and is easily manipulated within the heart. Evaluation In its rigid phase, the prototype band displayed similar mechanical properties to commercially available semi-rigid rings. Dynamic flow testing demonstrated no statistical differences in the reduction of mitral valve regurgitation. In its flexible phase, the band was easily deployed through an 8-mm trocar, robotically manipulated and sutured into place. Conclusions Experimental results suggest that the shape memory alloy reinforced band could be a viable alternative to flexible and semi-rigid bands in minimally invasive mitral valve repair. PMID:19766827

  8. Role of lead in electrochemical reaction of alloy 600, alloy 690, Ni, Cr, and Fe in water

    NASA Astrophysics Data System (ADS)

    Hwang, Seong Sik; Kim, Joung Soo; Kim, Ju Yup

    2003-08-01

    It has been reported that lead causes stress corrosion cracking (SCC) in the secondary side of steam generators (SG) in pressurized water reactors (PWR). The materials of SG tubings are alloy 600, alloy 690, or alloy 800, among which the main alloying elements are Ni, Cr, and Fe. The effect of lead on the electrochemical behaviors of alloy 600 and alloy 690 using an anodic polarization technique was evaluated. We also obtained polarization curves of pure Ni, Cr, and Fe in water containing lead. As the amount of lead in the solution increased, critical current densities and passive current densities of alloy 600 and alloy 690 increased, while the breakdown potential of the alloys decreased. Lead increased critical current density and the passive current of Cr in pH 4 and pH 10. The instability of passive film of steam generator tubings in water containing lead might arise from the instability of Cr passivity.

  9. Densification behavior, nanocrystallization, and mechanical properties of spark plasma sintered Fe-based bulk amorphous alloys

    NASA Astrophysics Data System (ADS)

    Singh, Ashish Kumar

    Fe-based amorphous alloys are gaining increasing attention due to their exceptional wear and corrosion resistance for potential structural applications. Two major challenges that are hindering the commercialization of these amorphous alloys are difficulty in processing of bulk shapes (diameter > 10 mm) and lack of ductility. Spark plasma sintering (SPS) is evolving as a promising technique for processing bulk shapes of amorphous and nanocrystalline materials. The objective of this work is to investigate densification behavior, nanocrystallization, and mechanical properties of SPS sintered Fe-based amorphous alloys of composition Fe48Cr15Mo14Y2C15B6. SPS processing was performed in three distinct temperature ranges of amorphous alloys: (a) below glass transition temperature (Tg), (b) between Tg and crystallization temperature (Tx), and (c) above Tx. Punch displacement data obtained during SPS sintering was correlated with the SPS processing parameters such as temperature, pressure, and sintering time. Powder rearrangement, plastic deformation below T g, and viscous flow of the material between Tg and Tx were observed as the main densification stages during SPS sintering. Micro-scale temperature distributions at the point of contact and macro-scale temperature distribution throughout the sample during SPS of amorphous alloys were modeled. The bulk amorphous alloys are expected to undergo structural relaxation and nanocrystallization during SPS sintering. X-ray diffraction (XRD), small angle neutron scattering (SANS), and transmission electron microscopy (TEM) was performed to investigate the evolution of nanocrystallites in SPS sintered Fe-based bulk amorphous alloys. The SANS analysis showed significant scattering for the samples sintered in the supercooled region indicating local structural and compositional changes with the profuse nucleation of nano-clusters (~4 nm). Compression tests and microhardness were performed on the samples sintered at different

  10. An investigation of squeeze-cast alloy 718

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.

    1993-01-01

    Alloy 718 billets produced by the squeeze-cast process have been evaluated for use as potential replacements for propulsion engine components which are normally produced from forgings. Alloy 718 billets were produced using various processing conditions. Structural characterizations were performed on 'as-cast' billets. As-cast billets were then homogenized and solution treated and aged according to conventional heat-treatment practices for this alloy. Mechanical property evaluations were performed on heat-treated billets. As-cast macrostructures and microstructures varied with squeeze-cast processing parameters. Mechanical properties varied with squeeze-cast processing parameters and heat treatments. One billet exhibited a defect free, refined microstructure, with mechanical properties approaching those of wrought alloy 718 bar, confirming the feasibility of squeeze-casting alloy 718. However, further process optimization is required, and further structural and mechanical property improvements are expected with process optimization.

  11. Enhanced ferroelectric polarization and possible morphotrophic phase boundary in PZT-based alloys

    DOE PAGES

    Parker, David S.; Singh, David; McGuire, Michael A.; ...

    2016-05-16

    We present a combined theoretical and experimental study of alloys of the high performance piezoelectric PZT (PbZr 0.5Ti 0.5O 3) with BZnT (BiZn 0.5Ti 0.5O 3) and BZnZr (BiZn 0.5Zr 0.5O 3), focusing on atomic displacements, ferroelectric polarization, and elastic stability. From theory we find that the 75-25 PZT-BZnT alloy has substantially larger cation displacements, and hence ferroelectric polarization than the PZT base material, on the tetragonal side of the phase diagram. We also find a possible morphotrophic phase boundary in this system by comparing displacement patterns and optimized c/a ratios. Elastic stability calculations find the structures to be essentiallymore » stable. Lastly, experiments indicate the feasibility of sample synthesis within this alloy system, although measurements do not find significant polarization, probably due to a large coercive field.« less

  12. Strengthening Effect of Incremental Shear Deformation on Ti Alloy Clad Plate with a Ni-Based Alloy Laser-Clad Layer

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Zha, G. C.; Kong, F. X.; Wu, M. L.; Feng, X.; Gao, S. Y.

    2017-05-01

    A Ti-6Al-4V alloy clad plate with a Tribaloy 700 alloy laser-clad layer is subjected to incremental shear deformation, and we evaluate the structural evolution and mechanical properties of the specimens. Results indicate the significance of the incremental shear deformation on the strengthening effect. The wear resistance and Vickers hardness of the laser-clad layer are enhanced due to increased dislocation density. The incremental shear deformation can increase the bonding strength of the laser-clad layer and the corresponding substrate and can break the columnar crystals in the laser-clad layer near the interface. These phenomena suggest that shear deformation eliminates the defects on the interface of the laser-clad layer and the substrate. Substrate hardness is evidently improved, and the strengthening effect is caused by the increased dislocation density and shear deformation. This deformation can then transform the α- and β-phases in the substrate into a high-intensity ω-phase.

  13. Evaluation of candidate alloys for the construction of metal flex hoses in the STS launch environment

    NASA Technical Reports Server (NTRS)

    Ontiveros, Cordelia

    1988-01-01

    Various vacuum jacketed cryogenic supply lines at the Shuttle launch site use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch, fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the flex hoses, which were made of 304L stainless steel. A search was done to find a more corrosion resistant replacement material. This study focused on 19 metal alloys. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, long term exposure at the beach corrosion testing site, and pitting corrosion tests in ferric chloride solution. Based on the results of these tests, the most corrosion resistant alloys were found to be (in order) Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, and Inco Alloy G-3. Of these top five alloys, the Hastelloy C-22 stands out as being the best of those tested for this application.

  14. Effect of Al and Y2O3 on Mechanical Properties in Mechanically Alloyed Nanograin Ni-Based Alloys.

    PubMed

    Kim, Chung Seok; Kim, Il-Ho

    2015-08-01

    The effects of aluminum and Y2O3 on the mechanical properties in nano grain Ni-based alloys have been investigated. The test specimens are prepared by mechanical alloying at an Ar atmosphere. The addition of Y2O3 and Al may cause an increase in the tensile strength at room temperature, 400 °C and 600 °C. However, it was confirmed that the increase of tensile strength at room temperature and 400 °C was predominantly caused by addition of Y2O3, while that at 600 °C was mainly due to addition of Al. These results can be attributed to the dispersion strengthening of Y2O3, preventing the formation of Cr2O3 and the change of fracture mode at 600 °C by the addition of Al.

  15. Mechanical behaviour of pressed and sintered titanium alloys obtained from master alloy addition powders.

    PubMed

    Bolzoni, L; Esteban, P G; Ruiz-Navas, E M; Gordo, E

    2012-11-01

    The fabrication of the workhorse Ti-6Al-4V alloy and of the Ti-3Al-2.5V alloy was studied considering the master alloy addition variant of the blending elemental approach conventionally used for titanium powder metallurgy. The powders were characterised by means thermal analysis and X-ray diffraction and shaped by means of uniaxial pressing. The microstructural evolution with the sintering temperature (900-1400 °C) was evaluated by SEM and EDS was used to study the composition. XRD patterns as well as the density by Archimedes method were also obtained. The results indicate that master alloy addition is a suitable way to fabricate well developed titanium alloy but also to produce alloy with the desired composition, not available commercially. Density of 4.3 g/cm³ can be obtained where a temperature higher than 1200 °C is needed for the complete diffusion of the alloying elements. Flexural properties comparable to those specified for wrought Ti-6Al-4V medical devices are, generally, obtained. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Superplastic Deformation Mechanisms of Superfine/Nanocrystalline Duplex PM-TiAl-Based Alloy

    PubMed Central

    Gong, Xuebo; Duan, Zhenxin; Pei, Wen; Chen, Hua

    2017-01-01

    In this paper, the equiaxed superfine/nanocrystalline duplex PM-TiAl-based alloy with (γ + α2) microstructure, Ti-45Al-5Nb (at %), has been synthesized by high-energy ball milling and vacuum hot pressing sintering. Superplastic deformation behavior has been investigated at 1000 °C and 1050 °C with strain rates from 5 × 10−5 s−1 to 1 × 10−3 s−1. The effects of deformation on the microstructure and mechanical behaviors of high Nb containing TiAl alloy have been characterized and analyzed. The results showed that, the ultimate tensile strength of the alloy was 58.7 MPa at 1000 °C and 10.5 MPa at 1050 °C with a strain rate of 5 × 10−5 s−1, while the elongation was 121% and 233%, respectively. The alloy exhibited superplastic elongation at 1000 and 1050 °C with an exponent (m) of 0.48 and 0.45. The main softening mechanism was dynamic recrystallization of γ grains; the dislocation slip and γ/γ interface twinning were responsible for superplastic deformation. The orientation relationship of γ/γ interface twinning obeyed the classical one: (001)γ//(110)γ. PMID:28925971

  17. New soft magnetic amorphous cobalt based alloys with high hysteresis loop linearity

    NASA Astrophysics Data System (ADS)

    Nosenko, V. K.; Maslov, V. V.; Kochkubey, A. P.; Kirilchuk, V. V.

    2008-02-01

    The new amorphous Co56÷59(Fe,Ni,Mn)21÷24(Si0.2B0.8)20-based metal alloys (AMA) with high saturation induction (BS>=1T) were developed. Toroidal tape wound magnetic cores made from these AMA after heat-magnetic treatment (HMT) in a reversal field are characterized by high hysteresis loop linearity, minimum effective magnetic permeability and its high field stability in combination with low coercivity Hc (1-3 A/m, 1 kHz). For the most prospecting alloy compositions the value of effective magnetic permeability decreases compared to known alloys up to 550 - 670 units and remains constant in the wide magnetic field range 1100 - 1300 A/m. Maximum remagnetization loop linearity is achieved after optimum HMT in high Ni containing AMAs, which are characterized by the record low squareness ratio values Ks=0.002-0.02 and Hc=1.0 A/m. Magnetic cores made from the new amorphous alloys can be used both in filter chokes of switch-mode power supply units and in matching mini-transformers of telecommunication systems; at that, high efficiency and accuracy of signal transmission including high frequency pulses are ensured under conditions of long-term influence of dc magnetic bias.

  18. Corrosion Screening of EV31A Magnesium and Other Magnesium Alloys using Laboratory-Based Accelerated Corrosion and Electro-Chemical Methods

    DTIC Science & Technology

    2014-07-01

    corrosion studies (16). A schematic of the SWAP process and example of the powder produced is included in figure 4. This alloy contains amounts of Al ...advanced powder -based alloy and ZAXE1711 (both from Japan) were produced using a Spinning Water Atomization Process (SWAP) to yield powder particles with...and ZAXE1711 Mg alloy powders and (b) morphology of coarse Mg alloy powder prepared by SWAP

  19. Laboratory evaluation of compressor blades considered for use in CIP/CUP compressors. [GAT2, 214X, X224, and D-15Al alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritchie, K.L.

    1976-04-30

    Four die-casting alloys, the external-pressure-pin and conventional casting methods, an accelerated aging heat treatment, and an airfoil fillet modification were evaluated for 33F-S1 compressor blades considered for use in axial flow compressors installed during the Cascade Improvement and Uprating Programs at the three gaseous diffusion plants. Based on castability, resonant frequency, resistance to fatigue cracking, and shank breaking load, the ranking of the four alloys from highest to lowest is GAT2, 214X, X224, and D-15. The GAT2 alloy ranked highest in all categories except impact value; the impact values of both X224 and 214X alloys exceeded that of the GAT2more » alloy, thus indicating the latter is relatively more brittle. However, in view of its other excellent properties, including fatigue cracking resistance, GAT2 alloy is worthy of consideration for use in blades for CIP/CUP or Add-on Plant compressors, particularly if castability becomes a problem with the presently used 214X alloy. Use of the external-pressure-pin casting method is not recommended because the resulting casting difficulties cannot be justified by the small increases in shank breaking loads. The airfoil fillet modification, which is a change from the conventional circular fillet to an elliptical fillet, resulted in increases (1.5 to 4.0 percent) in the average resonant frequency and in resistance to fatigue cracking (15 to 100 percent). The results of giving the blades an accelerated aging heat treatment, designed to simulate in excess of 10,000 hours of cascade exposure, showed that overaging had no significant effect on average resonant frequency but that overaging improved blade quality by reducing residual casting stress. (auth)« less

  20. Aeronautical Industry Requirements for Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Bran, D. T.; Elefterie, C. F.; Ghiban, B.

    2017-06-01

    The project presents the requirements imposed for aviation components made from Titanium based alloys. A significant portion of the aircraft pylons are manufactured from Titanium alloys. Strength, weight, and reliability are the primary factors to consider in aircraft structures. These factors determine the requirements to be met by any material used to construct or repair the aircraft. Many forces and structural stresses act on an aircraft when it is flying and when it is static and this thesis describes environmental factors, conditions of external aggression, mechanical characteristics and loadings that must be satisfied simultaneously by a Ti-based alloy, compared to other classes of aviation alloys (as egg. Inconel super alloys, Aluminum alloys).For this alloy class, the requirements are regarding strength to weight ratio, reliability, corrosion resistance, thermal expansion and so on. These characteristics additionally continue to provide new opportunities for advanced manufacturing methods.

  1. A new titanium based alloy Ti-27Nb-13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial.

    PubMed

    Mendes, Marcio W D; Ágreda, Carola G; Bressiani, Ana H A; Bressiani, José C

    2016-06-01

    Titanium alloys are widely used in biomedical applications due to their excellent properties such as high strength, good corrosion resistance and biocompatibility. Titanium alloys with alloying elements such as Nb and Zr are biocompatible and have Young's modulus close to that of human bone. To increase the bioactivity of titanium alloy surfaces is used chemical treatment with NaOH followed by immersion in simulated body fluid (SBF). The purpose of this study was to produce the alloy Ti-27Nb-13Zr with low Young's modulus by powder metallurgy using powders produced by the HDH process. The formation of biomimetic coatings on samples immersed in SBF for 3, 7, 11 and 15 days was evaluated. Characterization of the coating was performed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and scanning electron microscope. The microstructure and composition of the alloy were determined using SEM and XRD, while the mechanical properties were evaluated by determining the elastic modulus and the Vickers microhardness. The sintered alloys were composed of α and β phases, equiaxed grains and with density around 97.8% of its theoretical density. The Vickers microhardness and elasticity modulus of the alloy were determined and their values indicate that this alloy can be used as a biomaterial. Analysis of the coating revealed the presence of calcium phosphate layers on samples immersed for >3 days in the SBF solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Boundary Engineering for the Thermoelectric Performance of Bulk Alloys Based on Bismuth Telluride.

    PubMed

    Mun, Hyeona; Choi, Soon-Mok; Lee, Kyu Hyoung; Kim, Sung Wng

    2015-07-20

    Thermoelectrics, which transports heat for refrigeration or converts heat into electricity directly, is a key technology for renewable energy harvesting and solid-state refrigeration. Despite its importance, the widespread use of thermoelectric devices is constrained because of the low efficiency of thermoelectric bulk alloys. However, boundary engineering has been demonstrated as one of the most effective ways to enhance the thermoelectric performance of conventional thermoelectric materials such as Bi2 Te3 , PbTe, and SiGe alloys because their thermal and electronic transport properties can be manipulated separately by this approach. We review our recent progress on the enhancement of the thermoelectric figure of merit through boundary engineering together with the processing technologies for boundary engineering developed most recently using Bi2 Te3 -based bulk alloys. A brief discussion of the principles and current status of boundary-engineered bulk alloys for the enhancement of the thermoelectric figure of merit is presented. We focus mainly on (1) the reduction of the thermal conductivity by grain boundary engineering and (2) the reduction of thermal conductivity without deterioration of the electrical conductivity by phase boundary engineering. We also discuss the next potential approach using two boundary engineering strategies for a breakthrough in the area of bulk thermoelectric alloys. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Creep-rupture behavior of seven iron-base alloys after long term aging at 760 deg in low pressure hydrogen

    NASA Technical Reports Server (NTRS)

    Witzke, W. R.; Stephens, J. R.

    1980-01-01

    Seven candidate iron-base alloys for heater tube application in the Stirling automotive engine were aged for 3500 hours at 760 C in argon and hydrogen. Aging degraded the tensile and creep-rupture properties. The presence of hydrogen during aging caused additional degradiation of the rupture strength in fine grain alloys. Based on current design criteria for the Mod 1 Stirling engine, N-155 and 19-9DL are considered the only alloys in this study with strengths adequate for heater tube service at 760 C.

  4. Corrosion behavior in high-temperature pressurized water of Zircaloy-4 joints brazed with Zr-Cu-based amorphous filler alloys

    NASA Astrophysics Data System (ADS)

    Lee, Jung Gu; Lee, Gyoung-Ja; Park, Jin-Ju; Lee, Min-Ku

    2017-05-01

    The compositional effects of ternary Zr-Cu-X (X: Al, Fe) amorphous filler alloys on galvanic corrosion susceptibility in high-temperature pressurized water were investigated for Zircaloy-4 brazed joints. Through an Al-induced microgalvanic reaction that deteriorated the overall nobility of the joint, application of the Zr-Cu-Al filler alloy caused galvanic coupling to develop readily between the Al-bearing joint and the Al-free base metal, finally leading to massive localized corrosion of the joint. Contrastingly, joints prepared with a Zr-Cu-Fe filler alloy showed excellent corrosion resistance comparable to that of the Zircaloy-4 base metal, since the Cu and Fe elements forming fine intermetallic particles with Zr did not influence the electrochemical stability of the resultant joints. The present results demonstrate that Fe is a more suitable alloying element than Al for brazing filler alloys subjected to high-temperature corrosive environments.

  5. Understanding the solidification and microstructure evolution during CSC-MIG welding of Fe–Cr–B-based alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorour, A.A., E-mail: ahmad.sorour@mail.mcgill.ca; Chromik, R.R., E-mail: richard.chromik@mcgill.ca; Gauvin, R., E-mail: raynald.gauvin@mcgill.ca

    2013-12-15

    The present is a study of the solidification and microstructure of Fe–28.2%Cr–3.8%B–1.5%Si–1.5%Mn (wt.%) alloy deposited onto a 1020 plain carbon steel substrate using the controlled short-circuit metal inert gas welding process. The as-solidified alloy was a metal matrix composite with a hypereutectic microstructure. Thermodynamic calculation based on the Scheil–Gulliver model showed that a primary (Cr,Fe){sub 2}B phase formed first during solidification, followed by an eutectic formation of the (Cr,Fe){sub 2}B phase and a body-centered cubic Fe-based solid solution matrix, which contained Cr, Mn and Si. Microstructure analysis confirmed the formation of these phases and showed that the shape of themore » (Cr,Fe){sub 2}B phase was irregular plate. As the welding heat input increased, the weld dilution increased and thus the volume fraction of the (Cr,Fe){sub 2}B plates decreased while other microstructural characteristics were similar. - Highlights: • We deposit Fe–Cr–B-based alloy onto plain carbon steel using the CSC-MIG process. • We model the solidification behavior using thermodynamic calculation. • As deposited alloy consists of (Cr,Fe){sub 2}B plates embedded in Fe-based matrix. • We study the effect of the welding heat input on the microstructure.« less

  6. A Comparison between Shear Bond Strength of VMK Master Porcelain with Three Base-metal Alloys (Ni-cr-T3, VeraBond, Super Cast) and One Noble Alloy (X-33) in Metal-ceramic Restorations

    PubMed Central

    Ahmadzadeh, A; Neshati, A; Mousavi, N; Epakchi, S; Dabaghi Tabriz, F; Sarbazi, AH

    2013-01-01

    Statement of Problem: The increase in the use of metal-ceramic restorations and a high prevalence of porcelain chipping entails introducing an alloy which is more compatible with porcelain and causes a stronger bond between the two. This study is to compare shear bond strength of three base-metal alloys and one noble alloy with the commonly used VMK Master Porcelain. Materials and Method: Three different groups of base-metal alloys (Ni-cr-T3, Super Cast, and VeraBond) and one group of noble alloy (X-33) were selected. Each group consisted of 15 alloy samples. All groups went through the casting process and change from wax pattern into metal disks. The VMK Master Porcelain was then fired on each group. All the specimens were put in the UTM; a shear force was loaded until a fracture occurred and the fracture force was consequently recorded. The data were analyzed by SPSS Version 16 and One-Way ANOVA was run to compare the shear strength between the groups. Furthermore, the groups were compared two-by-two by adopting Tukey test. Results: The findings of this study revealed shear bond strength of Ni-Cr-T3 alloy was higher than the three other alloys (94 MPa or 330 N). Super Cast alloy had the second greatest shear bond strength (80. 87Mpa or 283.87 N). Both VeraBond (69.66 MPa or 245 N) and x-33 alloys (66.53 MPa or 234 N) took the third place. Conclusion: Ni-Cr-T3 with VMK Master Porcelain has the greatest shear bond strength. Therefore, employment of this low-cost alloy is recommended in metal-ceramic restorations. PMID:24724144

  7. Chromium boron surfaced nickel-iron base alloys

    NASA Technical Reports Server (NTRS)

    Rashid, James M. (Inventor); Friedrich, Leonard A. (Inventor); Freling, Melvin (Inventor)

    1984-01-01

    Chromium boron diffusion coatings on nickel iron alloys uniquely provide them with improvement in high cycle fatigue strength (up to 30%) and erosion resistance (up to 15 times), compared to uncoated alloy. The diffused chromium layer extends in two essential concentration zones to a total depth of about 40.times.10.sup.-6 m, while the succeeding boron layer is limited to 50-90% of the depth of the richest Cr layer nearest the surface. Both coatings are applied using conventional pack diffusion processes.

  8. High-Temperature Wettability and Interactions between Y-Containing Ni-Based Alloys and Various Oxide Ceramics

    PubMed Central

    Li, Jinpeng; Gao, Ming; Li, Qingling; Bian, Weidong; Tao, Tongxiang; Zhang, Hu

    2018-01-01

    To obtain appropriate crucible materials for vacuum induction melting of MCrAlY alloys, four different oxide ceramics, including MgO, Y2O3, Al2O3, and ZrO2, with various microstructures were designed and characterized. The high-temperature wettability and interactions between Ni-20Co-20Cr-10Al-1.5Y alloys and oxide ceramics were studied by sessile drop experiments under vacuum. The results showed that all the systems exhibited non-wetting behavior. The contact angles were stable during the melting process of alloys and the equilibrium contact angles were 140° (MgO), 148° (Y2O3), 154° (Al2O3), and 157° (ZrO2), respectively. The interfacial reaction between the ceramic substrates and alloys occurred at high temperature. Though the ceramics had different microstructures, similar continuous Y2O3 reaction layer with thicknesses of about 25 μm at the alloy-ceramic interface in MgO, Al2O3, and ZrO2 systems formed. The average area percentage of oxides in the alloy matrices were 0.59% (MgO), 0.11% (Al2O3), 0.09% (ZrO2), and 0.02% (Y2O3), respectively. The alloys, after reacting with MgO ceramic, had the highest inclusion content, while those with the lowest content were in the Y2O3 system. Y2O3 ceramic was the most beneficial for vacuum induction melting of high-purity Y-containing Ni-based alloys. PMID:29735958

  9. Minor-Cu doped soft magnetic Fe-based FeCoBCSiCu amorphous alloys with high saturation magnetization

    NASA Astrophysics Data System (ADS)

    Li, Yanhui; Wang, Zhenmin; Zhang, Wei

    2018-05-01

    The effects of Cu alloying on the amorphous-forming ability (AFA) and magnetic properties of the P-free Fe81Co5B11C2Si1 amorphous alloy were investigated. Addition of ≤ 1.0 at.% Cu enhances the AFA of the base alloy without significant deterioration of the soft magnetic properties. The Fe80.5Co5B11C2Si1Cu0.5 alloy with the largest critical thickness for amorphous formation of ˜35 μm possesses a high saturation magnetization (Bs) of ˜1.78 T, low coercivity of ˜14.6 A/m, and good bending ductility upon annealing in a wide temperature range of 513-553 K with maintaining the amorphous state. The fabrication of the new high-Fe-content Fe-Co-B-C-Si-Cu amorphous alloys by minor doping of Cu gives a guideline to developing high Bs amorphous alloys with excellent AFA.

  10. In Vitro Biocompatibility and Endothelialization of Novel Magnesium-Rare Earth Alloys for Improved Stent Applications

    PubMed Central

    Zhao, Nan; Watson, Nevija; Xu, Zhigang; Chen, Yongjun; Waterman, Jenora; Sankar, Jagannathan; Zhu, Donghui

    2014-01-01

    Magnesium (Mg) based alloys are the most advanced cardiovascular stent materials. This new generation of stent scaffold is currently under clinical evaluation with encouraging outcomes. All these Mg alloys contain a certain amount of rare earth (RE) elements though the exact composition is not yet disclosed. RE alloying can usually enhance the mechanical strength of different metal alloys but their toxicity might be an issue for medical applications. It is still unclear how RE elements will affect the magnesium (Mg) alloys intended for stent materials as a whole. In this study, we evaluated MgZnCaY-1RE, MgZnCaY-2RE, MgYZr-1RE, and MgZnYZr-1RE alloys for cardiovascular stents applications regarding their mechanical strength, corrosion resistance, hemolysis, platelet adhesion/activation, and endothelial biocompatibility. The mechanical properties of all alloys were significantly improved. Potentiodynamic polarization showed that the corrosion resistance of four alloys was at least 3–10 times higher than that of pure Mg control. Hemolysis test revealed that all the materials were non-hemolytic while little to moderate platelet adhesion was found on all materials surface. No significant cytotoxicity was observed in human aorta endothelial cells cultured with magnesium alloy extract solution for up to seven days. Direct endothelialization test showed that all the alloys possess significantly better capability to sustain endothelial cell attachment and growth. The results demonstrated the promising potential of these alloys for stent material applications in the future. PMID:24921251

  11. NEUTRON REACTOR FUEL ELEMENT UTILIZING ZIRCONIUM-BASE ALLOYS

    DOEpatents

    Saller, H.A.; Keeler, J.R.; Szumachowski, E.R.

    1957-11-12

    This patent relates to clad fuel elements for use in neutronic reactors and is drawn to such a fuel element which consists of a core of fissionable material, comprised of an alloy of zirconium and U/sup 235/ enriched uranium, encased in a jacket of a binary zirconium-tin alloy in which the tin content ranges between 1 and 15% by weight.

  12. Mechanical Alloying of W-Mo-V-Cr-Ta High Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Das, Sujit; Robi, P. S.

    2018-04-01

    Recent years have seen the emergence of high-entropy alloys (HEAs) consisting of five or more elements in equi-atomic or near equi-atomic ratios. These alloys in single phase solid solution exhibit exceptional mechanical properties viz., high strength at room and elevated temperatures, reasonable ductility and stable microstructure over a wide range of temperatures making it suitable for high temperature structural materials. In spite of the attractive properties, processing of these materials remains a challenge. Reports regarding fabrication and characterisation of a few refractory HEA systems are available. The processing of these alloys have been carried out by arc melting of small button sized materials. The present paper discusses the development of a novel refractory W-Mo-V-Cr-Ta HEA powder based on a new alloy design concept. The powder mixture was milled for time periods up to 64 hours. Single phase alloy powder having body centred cubic structure was processed by mechanical alloying. The milling characteristics and extent of alloying during the ball milling were characterized using X-ray diffractiometre (XRD), field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). A single phase solid solution alloy powder having body-centred cubic (BCC) structure with a lattice parameter of 3.15486 Å was obtained after milling for 32 hours.

  13. Lightweight design of automobile frame based on magnesium alloy

    NASA Astrophysics Data System (ADS)

    Lyu, R.; Jiang, X.; Minoru, O.; Ju, D. Y.

    2018-06-01

    The structural performance and lightweighting of car base frame design is a challenging task due to all the performance targets that must be satisfied. In this paper, three kinds of materials (iron, aluminum and magnesium alloy) replacement along with section design optimization strategy is proposed to develop a lightweight car frame structure to satisfy the tensile and safety while reducing weight. Two kinds of cross-sections are considered as the design variables. Using Ansys static structure, the design optimization problem is solved, comparing the results of each step, structure of the base flame is optimized for lightweight.

  14. Oxidation and corrosion resistance of candidate Stirling engine heater-head-tube alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Barrett, C. A.

    1984-01-01

    Sixteen candidate iron base Stirling engine heater head tube alloys are evaluated in a diesel fuel fired simulator materials test rig to determine their oxidation and corrosion resistance. Sheet specimens are tested at 820 C for 3500 hr in 5 hr heating cycles. Specific weight change data and an attack parameter are used to categorize the alloys into four groups; 10 alloys show excellent for good oxidation and corrosion resistance and six alloys exhibit poor or catastrophic resistance. Metallographic, X-ray, and electron microprobe analyses aid in further characterizing the oxidation and corrosion behavior of the alloys. Alloy compositions, expecially the reactive elements aluminum, titanium, and chromium, play a major role in the excellent oxidation and corrosion behavior of the alloys. The best oxidation resistance is associated with the formation of an iron nickel aluminum outer oxide scale, an intermediate oxide scale rich in chromium and titanium, and an aluminum outer oxide scale adjacent to the metallic substrate, which exhibits a zone of internal oxidation of aluminum and to some extent titanium.

  15. Chemical passivation as a method of improving the electrochemical corrosion resistance of Co-Cr-based dental alloy.

    PubMed

    Rylska, Dorota; Sokołowski, Grzegorz; Sokołowski, Jerzy; Łukomska-Szymańska, Monika

    2017-01-01

    The purpose of the study was to evaluate corrosion resistance of Wirobond C® alloy after chemical passivation treatment. The alloy surface undergone chemical passivation treatment in four different media. Corrosion studies were carried out by means of electrochemical methods in saline solution. Corrosion effects were determined using SEM. The greatest increase in the alloy polarization resistance was observed for passive layer produced in Na2SO4 solution with graphite. The same layer caused the highest increase in corrosion current. Generally speaking, the alloy passivation in Na2SO4 solution with graphite caused a substantial improvement of the corrosion resistance. The sample after passivation in Na2SO4 solution without graphite, contrary to others, lost its protective properties along with successive anodic polarization cycles. The alloy passivation in Na3PO4 solution with graphite was the only one that caused a decrease in the alloy corrosion properties. The SEM studies of all samples after chemical passivation revealed no pit corrosion - in contrast to the sample without any modification. Every successive polarization cycle in anodic direction of pure Wirobond C® alloy enhances corrosion resistance shifting corrosion potential in the positive direction and decreasing corrosion current value. The chemical passivation in solutions with low pH values decreases susceptibility to electrochemical corrosion of Co-Cr dental alloy. The best protection against corrosion was obtained after chemical passivation of Wirobond C® in Na2SO4 solution with graphite. Passivation with Na2SO4 in solution of high pH does not cause an increase in corrosion resistance of WIROBOND C. Passivation process increases alloy resistance to pit corrosion.

  16. Aeronautical requirements for Inconel 718 alloy

    NASA Astrophysics Data System (ADS)

    Elefterie, C. F.; Guragata, C.; Bran, D.; Ghiban, B.

    2017-06-01

    The project goal is to present the requirements imposed by aviation components made from super alloys based on Nickel. A significant portion of fasteners, locking lugs, blade retainers and inserts are manufactured from Alloy 718. The thesis describes environmental factors (corrosion), conditions of external aggression (salt air, intense heat, heavy industrial pollution, high condensation, high pressure), mechanical characteristics (tensile strength, yield strength and fatigue resistance) and loadings (tensions, compression loads) that must be satisfied simultaneously by Ni-based super alloy, compared to other classes of aviation alloys (as egg. Titanium alloys, Aluminum alloys). For this alloy the requirements are strength durability, damage tolerance, fail safety and so on. The corrosion can be an issue, but the fatigue under high-magnitude cyclic tensile loading it’s what limits the lifetime of the airframe. Also, the excellent malleability and weldability characteristics of the 718 system make the material physical properties tolerant of manufacturing processes. These characteristics additionally continue to provide new opportunities for advanced manufacturing methods.

  17. Biocompatibility effects of indirect exposure of base-metal dental casting alloys to a human-derived three-dimensional oral mucosal model.

    PubMed

    McGinley, Emma Louise; Moran, Gary P; Fleming, Garry J P

    2013-11-01

    The study employed a three-dimensional (3D) human-derived oral mucosal model to assess the biocompatibility of base-metal dental casting alloys ubiquitous in fixed prosthodontic and orthodontic dentistry. Oral mucosal models were generated using primary human oral keratinocyte and gingival fibroblast cells seeded onto human de-epidermidised dermal scaffolds. Nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) base-metal alloy immersion solutions were exposed to oral mucosal models for increasing time periods (2-72h). Analysis methodologies (histology, viable cell counts, oxidative stress, cytokine expression and toxicity) were performed following exposure. Ni-based alloy immersion solutions elicited significantly decreased cell viability (P<0.0004) with increased oxidative stress (P<0.0053), inflammatory cytokine expression (P<0.0077) and cellular toxicity levels (P<0.0001) compared with the controls. However, the Ni-free Co-Cr-based alloy immersion solutions did not elicit adverse oxidative stress (P>0.4755) or cellular toxicity (P<0.2339) responses compared with controls. Although the multiple analyses highlighted Ni-Cr base-metal alloy immersion solutions elicited significantly detrimental effects to the oral mucosal models, it was possible to distinguish between Ni-Cr alloys using the approach employed. The study employed a 3D human-derived full-thickness differentiated oral mucosal model suitable for biocompatibility assessment of base-metal dental casting alloys through discriminatory experimental parameters. Increasing incidences of Ni hypersensitivity in the general population warrants serious consideration from dental practitioners and patients alike where fixed prosthodontic/orthodontic dental treatments are the treatment modality involved. The novel and analytical oral mucosal model has the potential to significantly contribute to the advancement of reproducible dental medical device and dental material appraisals. Copyright © 2013 Elsevier Ltd. All

  18. Evaluation of metal-ceramic bond characteristics of three dental Co-Cr alloys prepared with different fabrication techniques.

    PubMed

    Wang, Hongmei; Feng, Qing; Li, Ning; Xu, Sheng

    2016-12-01

    Limited information is available regarding the metal-ceramic bond strength of dental Co-Cr alloys fabricated by casting (CAST), computer numerical control (CNC) milling, and selective laser melting (SLM). The purpose of this in vitro study was to evaluate the metal-ceramic bond characteristics of 3 dental Co-Cr alloys fabricated by casting, computer numerical control milling, and selective laser melting techniques using the 3-point bend test (International Organization for Standardization [ISO] standard 9693). Forty-five specimens (25×3×0.5 mm) made of dental Co-Cr alloys were prepared by CAST, CNC milling, and SLM techniques. The morphology of the oxidation surface of metal specimens was evaluated by scanning electron microscopy (SEM). After porcelain application, the interfacial characterization was evaluated by SEM equipped with energy-dispersive spectrometry (EDS) analysis, and the metal-ceramic bond strength was assessed with the 3-point bend test. Failure type and elemental composition on the debonding interface were assessed by SEM/EDS. The bond strength was statistically analyzed by 1-way ANOVA and Tukey honest significant difference test (α=.05). The oxidation surfaces of the CAST, CNC, and SLM groups were different. They were porous in the CAST group but compact and irregular in the CNC and SLM groups. The metal-ceramic interfaces of the SLM and CNC groups showed excellent combination compared with those of the CAST group. The bond strength was 37.7 ±6.5 MPa for CAST, 43.3 ±9.2 MPa for CNC, and 46.8 ±5.1 MPa for the SLM group. Statistically significant differences were found among the 3 groups tested (P=.028). The debonding surfaces of all specimens exhibited cohesive failure mode. The oxidation surface morphologies and thicknesses of dental Co-Cr alloys are dependent on the different fabrication techniques used. The bond strength of all 3 groups exceed the minimum acceptable value of 25 MPa recommended by ISO 9693; hence, dental Co-Cr alloy

  19. Subtask 12B1: Welding development for V-Cr-Ti alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J.F.; Goodwin, G.M.; Grossbeck, M.L.

    1995-03-01

    Development of the metallurgical and technological basis for the welding of thick sections of V-Cr-Ti alloys. The weldability and weldment properties of the V-5Cr-5Ti alloy have been evaluated. Results for the Sigmajig test of the vanadium alloy were similar to the cracking resistance of stainless steels, and indicates hot-cracking is unlikely to be a problem. Subsize Charpy test results for GTA weld metal in the as-welded condition have shown a significant reduction in toughness compared to the base metal. The weld metal toughness properties were restored to approximately that of the base metal after exposure to a PWHT 950{degrees}C. Themore » subsize Charpy toughness results for the EB weld metal from this same heat of vanadium alloy has shown significant improvement in properties compared to the GTA weld metal and the base metal. Further testing and analysis will be conducted to more fully characterize the properties of weld metal for each welding process and develop a basic understanding of the cause of the toughness decrease in the GTA welds. 5 figs., 1 tab.« less

  20. Effect of chromium and phosphorus on the physical properties of iron and titanium-based amorphous metallic alloy films

    NASA Technical Reports Server (NTRS)

    Distefano, S.; Rameshan, R.; Fitzgerald, D. J.

    1991-01-01

    Amorphous iron and titanium-based alloys containing various amounts of chromium, phosphorus, and boron exhibit high corrosion resistance. Some physical properties of Fe and Ti-based metallic alloy films deposited on a glass substrate by a dc-magnetron sputtering technique are reported. The films were characterized using differential scanning calorimetry, stress analysis, SEM, XRD, SIMS, electron microprobe, and potentiodynamic polarization techniques.

  1. Development and study of chemical vapor deposited tantalum base alloys

    NASA Technical Reports Server (NTRS)

    Meier, G. H.; Bryant, W. A.

    1976-01-01

    A technique for the chemical vapor deposition of alloys was developed. The process, termed pulsing, involves the periodic injection of reactant gases into a previously-evacuated reaction chamber where they blanket the substrate almost instantaneously. Formation of alternating layers of the alloy components and subsequent homogenization allows the formation of an alloy of uniform composition with the composition being determined by the duration and relative numbers of the various cycles. The technique has been utilized to produce dense alloys of uniform thickness and composition (Ta- 10 wt % W) by depositing alternating layers of Ta and W by the hydrogen reduction of TaCl5 and WCl6. A similar attempt to deposit a Ta - 8 wt % W - 2 wt% Hf alloy was unsuccessful because of the difficulty in reducing HfCl4 at temperatures below those at which gas phase nucleation of Ta and W occurred.

  2. A new activation process for a Zr-based alloy as a negative electrode for Ni/MH electric vehicle batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, J.S.; Lee, H.; Lee, S.M.

    1999-12-01

    The effects of a combination hot-immersion and slow-charging method on the activation of a Zr-based alloy were investigated. A Zr{sub 0.7}Ti{sub 0.3}Cr{sub 0.3}Mn{sub 0.3}V{sub 0.4}Ni{sub 1.0} alloy electrode was treated with two steps: alloy electrodes were immersed at 80 C for 12 h in a KOH solution and then charged at a low current density for one cycle. It was found that the alloy electrode activation was greatly improved after this hot-immersion and slow-charging treatment, and furthermore the treated electrodes were fully activated at the first normal cycle. The effects of this treatment are discussed on the basis of resultsmore » obtained by scanning electron microscopy, Auger electron spectroscopy, and inductively coupled plasma spectroscopy. The hot-immersion and slow-charging method was successfully applied to the formation process of 80 Ah Ni/MH cells using this Zr-based alloy.« less

  3. Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency

    DOE PAGES

    Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.; ...

    2018-04-25

    Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatmentmore » line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. Furthermore, this work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.« less

  4. Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.

    Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatmentmore » line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. Furthermore, this work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.« less

  5. The effect of TiB2 reinforcement on the mechanical properties of an Al-Cu-Li alloy-based metal-matrix composite

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The addition of ceramic particles to aluminum based alloys can substantially improve mechanical properties, especially Young's modulus and room and elevated temperature strengths. However, these improvements typically occur at the expense of tensile ductility. The mechanical properties are evaluated to a metal matrix composite (MMC) consisting of an ultrahigh strength aluminum lithium alloy, Weldalite (tm) 049, reinforced with TiB2 particles produced by an in situ precipitation technique called the XD (tm) process. The results are compared to the behavior of a nonreinforced Weldalite 049 variant. It is shown that both 049 and 049-TiB2 show very attractive warm temperature properties e.g., 625 MPa yield strength at 150 C after 100 h at temperature. Weldalite 049 reinforced with a nominal 4 v pct. TiB2 shows an approx. 8 pct. increase in modulus and a good combination of strength (529 MPa UTS) and ductility (6.5 pct.) in the T3 temper. And the high ductility of Weldalite 049 in the naturally aged and underaged tempers makes the alloy a good, high strength matrix for ceramic reinforcement.

  6. Influence of creep damage on the low cycle thermal-mechanical fatigue behavior of two tantalum base alloys

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.; Doble, G. S.

    1972-01-01

    Low cycle fatigue tests have been performed on the tantalum base alloys T-111 and ASTAR 811C with synchronized, independently programmed temperature and strain cycling. The thermal-mechanical cycles applied fell into three basic categories: these were isothermal cycling, in-phase thermal cycling, and out-of-phase thermal cycling. In-phase cycling was defined as tensile deformation associated with high temperature and compressive deformation with low temperature, while out-of-phase thermal cycling was defined as the reverse case. The in-phase thermal cycling had a pronounced detrimental influence on the fatigue life of both alloys, with the life reduction being greater in the solid solution strengthened T-111 alloy than in the carbide strengthened ASTAR 811C alloy. The out-of-phase tests also showed pronounced effects on the fatigue life of both alloys, although not as dramatic.

  7. Effect of Cr contents on the diffusion behavior of Te in Ni-based alloy

    NASA Astrophysics Data System (ADS)

    Jia, Yanyan; Li, Zhefu; Ye, Xiangxi; Liu, Renduo; Leng, Bin; Qiu, Jie; Liu, Min; Li, Zhijun

    2017-12-01

    The embrittlement of Ni-based structural alloys caused by fission production Te is one of the major challenges for molten salt reactors. It has been reported that solution element Cr can prevent the situation of intergranular cracks caused by Te. However, there is no detailed mechanism explanation on this phenomenon. In this study, the effect of Cr on Te diffusion in Ni-Cr binary system was investigated by diffusion experiments at 800 °C for 100 h. Results show that Te reacts with the alloy mainly forming Ni3Te2, and strip shaped Cr3Te4 is only found on the surface of Ni-15%Cr alloy. According to the discussion of thermodynamic chemical reaction process, Cr3Te4 exhibits the best stability and preferential formation compound in Te/Ni-Cr system as its Gibbs free energy of formation is the lowest. With the increase of Cr content in the alloy, the diffusion depth of Te along grain boundaries significantly decreases. Moreover, the formation process of reaction product and diffusion process are described. The diffusion of Te can be suppressed by high content of Cr in Ni-Cr alloy due to the formation of Cr3Te4 and thus the grain boundary is protected from Te corroding.

  8. Static and vibrational properties of equiatomic Na-based binary alloys

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2007-09-01

    The computations of the static and vibrational properties of four equiatomic Na-based binary alloys viz. Na0.5Li0.5, Na0.5K0.5, Na0.5Rb0.5 and Na0.5Cs0.5, to second order in local model potential is discussed in terms of real-space sum of Born von Karman central force constants. The local field correlation functions due to Hartree (H), Ichimaru Utsumi (IU) and Sarkar et al. (S) are used to investigate the influence of the screening effects on the aforesaid properties. Results for the lattice constants C11, C12, C44, C12 C44, C12/C44 and bulk modulus B obtained using the H-local field correction function have higher values in comparison with the results obtained for the same properties using IU- and S-local field correction functions. The results for the Shear modulus (C‧), deviation from Cauchy's relation, Poisson's ratio σ, Young modulus Y, propagation velocity of elastic waves, phonon dispersion curves and degree of anisotropy A are highly appreciable for the four equiatomic Na-based binary alloys.

  9. Grindability of cast Ti-Cu alloys.

    PubMed

    Kikuchi, Masafumi; Takada, Yukyo; Kiyosue, Seigo; Yoda, Masanobu; Woldu, Margaret; Cai, Zhuo; Okuno, Osamu; Okabe, Toru

    2003-07-01

    The purpose of the present study was to evaluate the grindability of a series of cast Ti-Cu alloys in order to develop a titanium alloy with better grindability than commercially pure titanium (CP Ti), which is considered to be one of the most difficult metals to machine. Experimental Ti-Cu alloys (0.5, 1.0, 2.0, 5.0, and 10.0 mass% Cu) were made in an argon-arc melting furnace. Each alloy was cast into a magnesia mold using a centrifugal casting machine. Cast alloy slabs (3.5 mm x 8.5 mm x 30.5 mm), from which the hardened surface layer (250 microm) was removed, were ground using a SiC abrasive wheel on an electric handpiece at four circumferential speeds (500, 750, 1000, or 1250 m/min) at 0.98 N (100 gf). Grindability was evaluated by measuring the amount of metal volume removed after grinding for 1min. Data were compared to those for CP Ti and Ti-6Al-4V. For all speeds, Ti-10% Cu alloy exhibited the highest grindability. For the Ti-Cu alloys with a Cu content of 2% or less, the highest grindability corresponded to an intermediate speed. It was observed that the grindability increased with an increase in the Cu concentration compared to CP Ti, particularly for the 5 or 10% Cu alloys at a circumferential speed of 1000 m/min or above. By alloying with copper, the cast titanium exhibited better grindability at high speed. The continuous precipitation of Ti(2)Cu among the alpha-matrix grains made this material less ductile and facilitated more effective grinding because small broken segments more readily formed.

  10. Irradiation effects in oxide dispersion strengthened (ODS) Ni-base alloys for Gen. IV nuclear reactors

    NASA Astrophysics Data System (ADS)

    Oono, Naoko; Ukai, Shigeharu; Kondo, Sosuke; Hashitomi, Okinobu; Kimura, Akihiko

    2015-10-01

    Oxide particle dispersion strengthened (ODS) Ni-base alloys are irradiated by using simulation technique (Fe/He dual-ion irradiation) to investigate the reliability to Gen. IV high-temperature reactors. The fine oxide particles with less than 10 nm in average size and approximately 8.0 × 1022 m-3 in number density remained after 101 dpa irradiation. The tiny helium bubbles were inside grains, not at grain-boundaries; it is advantageous effect of oxide particles which trap the helium atoms at the particle-matrix interface. Ni-base ODS alloys demonstrated their great ability to overcome He embrittlement.

  11. Potentiodynamic polarization study of the in vitro corrosion behavior of 3 high-palladium alloys and a gold-palladium alloy in 5 media.

    PubMed

    Sun, Desheng; Monaghan, Peter; Brantley, William A; Johnston, William M

    2002-01-01

    Corrosion of cast alloy restorations may lead to their failure or adversely affect their biocompatibility. Although some documentation of the corrosion behavior of the high-palladium dental alloys exists, questions remain about their corrosion resistance and mechanisms. This study compared the in vitro corrosion characteristics of 3 high-palladium alloys and 1 gold-palladium alloy in simulated body fluid and oral environments. Two Pd-Cu-Ga alloys and 1 Pd-Ga alloy were selected; an Au-Pd alloy served as the control. The corrosion behavior for the as-cast and simulated porcelain-firing (heat-treated) conditions of each alloy (N = 5) was evaluated in 0.9% NaCl, 0.09% NaCl, and Fusayama solutions. Heat-treated specimens of each alloy (N = 5) were also tested in N(2)-deaerated 0.09% NaCl and Fusayama solutions (pH 4). After immersion in the electrolyte for 24 hours, the open-circuit potential (OCP) was measured, and linear polarization was performed from -20 mV to +20 mV (vs. OCP) at a scanning rate of 0.125 mV/s. Cyclic polarization was performed from -300 mV to +1000 mV and back to -300 mV (vs. OCP) at a scanning rate of 1 mV/s. Data were evaluated with analysis of variance and the Ryan-Einot-Gabriel-Welsch multiple-range test (alpha=.05). The OCP of each alloy varied with the condition (as-cast or heat-treated) and electrolyte used. Corrosion resistance was similar for the 4 alloys tested. For cyclic polarization, all alloys showed active-passive or spontaneous passive behavior in nearly all electrolytes. During some reverse scans, the 3 high-palladium alloys displayed 3 or 5 anodic peaks. No positive hysteresis was observed for any of the alloy/electrolyte combinations evaluated. The corrosion resistances of the 3 high-palladium alloys in simulated body fluid and oral environments were comparable to that of the gold-palladium alloy. The similar corrosion resistance for the 3 high-palladium alloys was attributed to their high noble metal content and theorized stable

  12. Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity

    DOE PAGES

    Jin, Ke; Sales, Brian C.; Stocks, George Malcolm; ...

    2016-02-01

    We discovered that equiatomic alloys (e.g. high entropy alloys) have recently attracted considerable interest due to their exceptional properties, which might be closely related to their extreme disorder induced by the chemical complexity. To understand the effects of chemical complexity on their fundamental physical properties, a family of (eight) Ni-based, face-center-cubic (FCC), equiatomic alloys, extending from elemental Ni to quinary high entropy alloys, has been synthesized, and their electrical, thermal, and magnetic properties are systematically investigated in the range of 4–300 K by combining experiments with ab initio Korring-Kohn-Rostoker coherent-potential-approximation (KKR-CPA) calculations. The scattering of electrons is significantly increased duemore » to the chemical (especially magnetic) disorder. It has weak correlation with the number of elements but strongly depends on the type of elements. Thermal conductivities of the alloys are largely lower than pure metals, primarily because the high electrical resistivity suppresses the electronic thermal conductivity. Moreover, the temperature dependence of the electrical and thermal transport properties is further discussed, and the magnetization of five alloys containing three or more elements is measured in magnetic fields up to 4 T.« less

  13. Development of 1100 °C Capable Alumina-Forming Austenitic Alloys

    DOE PAGES

    Brady, M. P.; Muralidharan, G.; Yamamoto, Y.; ...

    2016-11-18

    Recently dalumina-forming austenitic (AFA) alloys based on ~12–32 weight % (wt%) Ni have been developed and offer an attractive combination of oxidation resistance and creep resistance at relatively low alloy cost. But, they exhibit a transition to internal oxidation and nitridation of Al above ~750–950 °C depending on composition and exposure environment. In order to identify AFA compositions capable of higher-temperature operation for applications such as ethylene cracking, the oxidation behavior of a series of developmental, as-cast nominal Fe–(25–45)Ni–(10–25)Cr–(4–5)Al–1Si–0.15Hf–0.07Y–0.01B wt% base alloys with and without Nb, Ti, and C additions was evaluated at 1100 °C in air with 10% watermore » vapor. Furthermore, we observed protective alumina scale formation at levels of 35Ni, 25Cr, and 4Al with additions of Nb and C, indicating promise for 1100°C capable cast AFA alloys.« less

  14. Evaluation of powder metallurgy superalloy disk materials

    NASA Technical Reports Server (NTRS)

    Evans, D. J.

    1975-01-01

    A program was conducted to develop nickel-base superalloy disk material using prealloyed powder metallurgy techniques. The program included fabrication of test specimens and subscale turbine disks from four different prealloyed powders (NASA-TRW-VIA, AF2-1DA, Mar-M-432 and MERL 80). Based on evaluation of these specimens and disks, two alloys (AF2-1DA and Mar-M-432) were selected for scale-up evaluation. Using fabricating experience gained in the subscale turbine disk effort, test specimens and full scale turbine disks were formed from the selected alloys. These specimens and disks were then subjected to a rigorous test program to evaluate their physical properties and determine their suitability for use in advanced performance turbine engines. A major objective of the program was to develop processes which would yield alloy properties that would be repeatable in producing jet engine disks from the same powder metallurgy alloys. The feasibility of manufacturing full scale gas turbine engine disks by thermomechanical processing of pre-alloyed metal powders was demonstrated. AF2-1DA was shown to possess tensile and creep-rupture properties in excess of those of Astroloy, one of the highest temperature capability disk alloys now in production. It was determined that metallographic evaluation after post-HIP elevated temperature exposure should be used to verify the effectiveness of consolidation of hot isostatically pressed billets.

  15. Electrochemical Evaluation of Alloys for Spaceport Design

    NASA Astrophysics Data System (ADS)

    Calle, Luz Marina; MacDowell, Louis G.; Vinje, Rubiela D.

    2003-01-01

    Corrosion studies began at the Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the corrosion protection of carbon steel. NASA's KSC Beach Corrosion Test Site, which was established at that time, has been documented by the American Society of Materials (ASM) as one of the most corrosive naturally occurring environments in the world. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocker boosters. In the years that followed, numerous studies have identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosive environment at the launch pad. The Corrosion Laboratory was established at KSC in 1985 and was outfitted with state-of-the-art electrochemistry equipment to conduct research and materials characterization in many different corrosive environments. This paper will describe the application of electrochemistry in combination with atmospheric exposure to the selection of alloys in a spaceport environment.

  16. Evaluation of candidate Stirling engine heater tube alloys for 1000 hours at 760 C

    NASA Technical Reports Server (NTRS)

    Misencik, J. A.

    1980-01-01

    Six tubing alloys were endurance tested in a diesel fired, Stirling engine simulator materials test rig for 1000 hours of 760 C while pressurized at 17 to 21 MPa with either hydrogen or helium. The alloys tested were N 155, A 286, Incoloy 800, 19 9DL, Nitronic 40 and 316 stainless steel. The alloys were in the form of thin wall tubing. Hydrogen permeated rapidly through the tube walls of all six alloys when they were heated to 760 C. Helium was readily contained. Creep rupture failures occurred in four of the six alloys pressurized with hydrogen. Only two alloys survived the 1000 hour endurance test with no failures. Simultaneous exposure to either hydrogen or helium and the combustion environment did not seriously degrade the tensile strength of the six alloys in room temperature or 760 C tests after exposure. Decreases in room temperature ductility were observed and are attributed to aging rather than to hydrogen embrittlement in three of the alloys. However, there may be a hydrogen embrittlement effect in the N 155, 19 9DL, and Nitronic 40 alloys.

  17. The fractography of casting alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, G.W.

    1994-10-01

    Several types of casting alloys were fractured using various loading modes (uniaxial tension, bending, impact, and torsion, and cyclic stressing), and the corresponding mechanical properties were determined. The unetched and etched fracture surfaces and the microstructures were examined using conventional techniques. The types of casting alloys that were the subjects f these investigations include gray iron, ductile iron, cast steel, and aluminum-base alloys (A380, A356, and 319). The fractographic studies have yielded these generalizations regarding the topography of the fracture surfaces. In the case of low-ductility alloys such as gray iron and the aluminum-base alloys, the tensile edge of amore » fracture surface produced by a stress system with a strong bending-moment component has a highly irregular contour, whereas the compressive edge of the fracture surface is quite straight and parallel to the bend axis. On the other hand, the periphery of a fracture surface produced by uniaxial tension has a completely irregular contour. The fracture surface produced by cyclic loading of a gray iron does not display any macroscopic evidence (such as a thumb nail) of the loading mode. However, the fracture surface of each of the other casting alloys displays clear, macroscopic evidence of failure induced by fatigue. The aluminum-base alloys fracture completely within the interdendritic region of the microstructure when subjected to monotonic loading by uniaxial tension or bending, whereas a fatigue crack propagates predominantly through the primary crystals of the microstructure.« less

  18. Alloy and structural optimization of a directionally solidified lamellar eutectic alloy

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.

    1976-01-01

    Mechanical property characterization tests of a directionally solidified Ni-20 percent Cb-2.5 percent Al-6 percent Cr cellular eutectic turbine blade alloy demonstrated excellent long time creep stability and indicated intermediate temperature transverse tensile ductility and shear strength to be somewhat low for turbine blade applications. Alloy and structural optimization significantly improves these off-axis properties with no loss of longitudinal creep strength or stability. The optimized alloy-structure combination is a carbon modified Ni-20.1 percent Cb-2.5 percent Al-6.0 percent Cr-0.06 percent C composition processed under conditions producing plane front solidification and a fully-lamellar microstructure. With current processing technology, this alloy exhibits a creep-rupture advantage of 39 C over the best available nickel base superalloy, directionally solidified MAR M200+ Hf. While improved by about 20 percent, shear strength of the optimized alloy remains well below typical superalloy values.

  19. Mechanical Properties and Microstructural Characterization of Aged Nickel-based Alloy 625 Weld Metal

    NASA Astrophysics Data System (ADS)

    Silva, Cleiton Carvalho; de Albuquerque, Victor Hugo C.; Miná, Emerson Mendonça; Moura, Elineudo P.; Tavares, João Manuel R. S.

    2018-03-01

    The aim of this work was to evaluate the different phases formed during solidification and after thermal aging of the as-welded 625 nickel-based alloy, as well as the influence of microstructural changes on the mechanical properties. The experiments addressed aging temperatures of 650 and 950 °C for 10, 100, and 200 hours. The samples were analyzed by electron microscopy, microanalysis, and X-ray diffraction in order to identify the secondary phases. Mechanical tests such as hardness, microhardness, and Charpy-V impact test were performed. Nondestructive ultrasonic inspection was also conducted to correlate the acquired signals with mechanical and microstructural properties. The results show that the alloy under study experienced microstructural changes when aged at 650 °C. The aging was responsible by the dissolution of the Laves phase formed during the solidification and the appearance of γ″ phase within interdendritic region and fine carbides along the solidification grain boundaries. However, when it was aged at 950 °C, the Laves phase was continuously dissolved and the excess Nb caused the precipitation of the δ-phase (Ni3Nb), which was intensified at 10 hours of aging, with subsequent dissolution for longer periods such as 200 hours. Even when subjected to significant microstructural changes, the mechanical properties, especially toughness, were not sensitive to the dissolution and/or precipitation of the secondary phases.

  20. First principles calculation of elastic and magnetic properties of Cr-based full-Heusler alloys

    NASA Astrophysics Data System (ADS)

    Aly, Samy H.; Shabara, Reham M.

    2014-06-01

    We present an ab-initio study of the elastic and magnetic properties of Cr-based full-Heusler alloys within the first-principles density functional theory. The lattice constant, magnetic moment, bulk modulus and density of states are calculated using the full-potential nonorthogonal local-orbital minimum basis (FPLO) code in the Generalized Gradient Approximation (GGA) scheme. Only the two alloys Co2CrSi and Fe2CrSi are half-metallic with energy gaps of 0.88 and 0.55 eV in the spin-down channel respectively. We have predicted the metallicity state for Fe2CrSb, Ni2CrIn, Cu2CrIn, and Cu2CrSi alloys. Fe2CrSb shows a strong pressure dependent, e.g. exhibits metallicity at zero pressure and turns into a half-metal at P≥10 GPa. The total and partial magnetic moments of these alloys were studied under higher pressure, e.g. in Co2CrIn, the total magnetic moment is almost unchanged under higher pressure up to 500 GPa.

  1. An investigation of the properties of Mg-Zn-Al alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z.; Couture, A.; Luo, A.

    1998-06-05

    During the past ten years, the use of magnesium castings in the automotive and electronics industries has been expanding at an impressive rate. Die casting is one of the most effective fabrication methods and has been extensively used to produce magnesium components, especially in the automotive industry. However, the number of available Mg-based alloys for die casting is very limited. Therefore, it is pressing to develop some new Mg die casting alloys with good creep resistance, acceptable castability and low cost. Mg-Zn-Al (ZA) is a promising alloy system which is able to meet the requirements. But up to now, onlymore » a small amount of research has been carried out on this system. The aim of the present work is to examine and evaluate the microstructural features, tensile properties and creep resistance in order to get a better overall understanding of alloys of this system and to identify the most promising compositions. The influence of small additions of Ca and Sr on the tensile and creep properties of ZA alloys was also investigated.« less

  2. Grindability of cast Ti-Hf alloys.

    PubMed

    Kikuchi, Masafumi; Takahashi, Masatoshi; Sato, Hideki; Okuno, Osamu; Nunn, Martha E; Okabe, Toru

    2006-04-01

    As part of our systematic studies characterizing the properties of titanium alloys, we investigated the grindability of a series of cast Ti-Hf alloys. Alloy buttons with hafnium concentrations up to 40 mass% were made using an argon-arc melting furnace. Each button was cast into a magnesia-based mold using a dental titanium casting machine; three specimens were made for each metal. Prior to testing, the hardened surface layer was removed. The specimens were ground at five different speeds for 1 min at 0.98 N using a carborundum wheel on an electric dental handpiece. Grindability was evaluated as the volume of metal removed per minute (grinding rate) and the volume ratio of metal removed compared to the wheel material lost (grinding ratio). The data were analyzed using ANOVA. A trend of increasing grindability was found with increasing amounts of hafnium, although there was no statistical difference in the grindability with increasing hafnium contents. We also found that hafnium may be used to harden or strengthen titanium without deteriorating the grindability.

  3. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    NASA Astrophysics Data System (ADS)

    Abdal-hay, Abdalla; Dewidar, Montasser; Lim, Jae Kyoo

    2012-11-01

    The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc-solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might widen the use of Mg based implants.

  4. A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch

    NASA Technical Reports Server (NTRS)

    Notardonato, W. U.; Krishnan, V. B.; Singh, J. D.; Woodruff, T. R.; Vaidyanathan, R.

    2005-01-01

    Shape memory alloys (SMAs) can produce large strains when deformed (e.g., up to 8%). Heating results in a phase transformation and associated recovery of all the accumulated strain. This strain recovery can occur against large forces, resulting in their use as actuators. Thus an SMA element can integrate both sensory and actuation functions, by inherently sensing a change in temperature and actuating by undergoing a shape change as a result of a temperature-induced phase transformation. Two aspects of our work on cryogenic SMAs are addressed here. First - a shape memory alloy based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulkhead arrangement is discussed. Such a switch integrates the sensor element and the actuator element and can be used to create a variable thermal sink to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. Second - fabrication via arc-melting and subsequent materials testing of SMAs with cryogenic transformation temperatures for use in the aforementioned switch is discussed.

  5. Air Oxidation Behavior of Two Ti-Base Alloys Synthesized by HIP

    NASA Astrophysics Data System (ADS)

    Liu, S.; Guo, Q. Q.; Liu, L. L.; Xu, L.; Liu, Y. Y.

    2016-04-01

    The oxidation behavior of Ti-5Al-2.5Sn and Ti-6Al-4V produced by hot isostatic pressing (HIP) has been studied at 650-850°C in air for 24 h. The oxidation kinetics of both alloys followed the parabolic law with good approximation, except for Ti-5Al-2.5Sn oxidized at 850°C. Multi-layered scales formed on both alloys at 750°C and 850°C. Ternary additions of Sn and V accounted for the different morphology of the scales formed on these two alloys. In addition, the oxidation behavior of HIP alloys is compared with that of the corresponding cast alloys and the scaling mechanism is discussed.

  6. Imprinting bulk amorphous alloy at room temperature

    DOE PAGES

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; ...

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the abilitymore » of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.« less

  7. Corrosion behavior of Alloy 690 and Alloy 693 in simulated nuclear high level waste medium

    NASA Astrophysics Data System (ADS)

    Samantaroy, Pradeep Kumar; Suresh, Girija; Paul, Ranita; Kamachi Mudali, U.; Raj, Baldev

    2011-11-01

    Nickel based alloys are candidate materials for the storage of high level waste (HLW) generated from reprocessing of spent nuclear fuel. In the present investigation Alloy 690 and Alloy 693 are assessed by potentiodynamic anodic polarization technique for their corrosion behavior in 3 M HNO 3, 3 M HNO 3 containing simulated HLW and in chloride medium. Both the alloys were found to possess good corrosion resistance in both the media at ambient condition. Microstructural examination was carried out by SEM for both the alloys after electrolytic etching. Compositional analysis of the passive film formed on the alloys in 3 M HNO 3 and 3 M HNO 3 with HLW was carried out by XPS. The surface of Alloy 690 and Alloy 693, both consists of a thin layer of oxide of Ni, Cr, and Fe under passivation in both the media. The results of investigation are presented in the paper.

  8. Creep behavior of uranium carbide-based alloys

    NASA Technical Reports Server (NTRS)

    Seltzer, M. S.; Wright, T. R.; Moak, D. P.

    1975-01-01

    The present work gives the results of experiments on the influence of zirconium carbide and tungsten on the creep properties of uranium carbide. The creep behavior of high-density UC samples follows the classical time-dependence pattern of (1) an instantaneous deformation, (2) a primary creep region, and (3) a period of steady-state creep. Creep rates for unalloyed UC-1.01 and UC-1.05 are several orders of magnitude greater than those measured for carbide alloys containing a Zr-C and/or W dispersoid. The difference in creep strength between alloyed and unalloyed materials varies with temperature and applied stress.

  9. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments

    NASA Astrophysics Data System (ADS)

    Rojaee, Ramin; Fathi, Mohammadhossein; Raeissi, Keyvan

    2013-11-01

    Bio-absorbable magnesium (Mg) based alloys have been introduced as innovative orthopedic implants during recent years. It has been specified that rapid degradation of Mg based alloys in physiological environment should be restrained in order to be utilized in orthopedic trauma fixation and vascular intervention. In this developing field of healthcare materials, micro-arc oxidation (MAO), and MgF2 conversion coating were exploited as surface pre-treatment of AZ91 magnesium alloy to generate a nanostructured hydroxyapatite (n-HAp) coating via electrophoretic deposition (EPD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques were used to characterize the obtained powder and coatings. The potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the coated and uncoated specimens, and in vitro bioactivity evaluation were performed in simulated body fluid. Results revealed that the MAO/n-HAp coated AZ91 Mg alloy samples with a rough topography and lower corrosion current density leads to a lower Mg degradation rate accompanied by high bioactivity.

  10. Cryogenic Properties of a New Tough-Strong Iron Alloy

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1977-01-01

    A program was undertaken to develop an iron-base alloy having a fracture toughness of 220 MPa. m superscript 1/2 with a corresponding yield stress of 1.4 GPa (200 ksi) at-196 C. An Fe-12Ni alloy was selected as the base alloy. Factors considered included reactive metal additions, effects of interstitial impurities, strengthening mechanisms, and weldability. The goals were met in an Fe-12Ni-0.5Al alloy strengthened by thermomechanical processing or by precipitate strengthening with 2 percent Cu. The alloy is weldable with the weld metal and heat affected zone in the postweld annealed condition having toughness equivalent to the base alloy.

  11. Weldability of high toughness Fe-12% Ni alloys containing Ti, Al or Nb

    NASA Technical Reports Server (NTRS)

    Devletian, J. H.; Stephens, J. R.; Witzke, W. R.

    1977-01-01

    Three exceptionally high-toughness Fe-12%Ni alloys designed for cryogenic service were welded using the GTA welding process. Evaluation of weldability included equivalent energy (KIed) fracture toughness tests, transverse-weld tensile tests at -196 and 25 C and weld crack sensitivity tests. The Fe-12%Ni-0.25%Ti alloy proved extremely weldable for cryogenic applications, having weld and HAZ properties comparable with those of the wrought base alloy. The Fe-12%Ni-0.5%Al had good weld properties only after the weld joint was heat treated. The Fe-12%Ni-0.25%Nb alloy was not considered weldable for cryogenic use because of its poor weld joint properties at -196 C and its susceptibility to hot cracking.

  12. Evaluation of particulate matter emissions from manganese alloy production using life-cycle assessment.

    PubMed

    Davourie, Julia; Westfall, Luke; Ali, Mohammed; McGough, Doreen

    2017-01-01

    Life-cycle assessments (LCAs) provide a wealth of industry data to assist in evaluating the environmental impacts of industrial processes and product supply chains. In this investigation, data from a recent LCA covering global manganese alloy production was used to evaluate sources of particulate matter (PM) emissions associated with the manganese alloy supply chain. The analysis is aimed at providing an empirical, industry-averaged breakdown of the contribution that processes and emissions controls have on total emissions, manganese releases and occupational exposure. The assessment shows that 66% of PM emissions associated with manganese production occur beyond manganese facilities. Direct or on-site emissions represent 34% of total PM and occur predominantly as disperse sources during mineral extraction and hauling, and as primary furnace emissions. The largest contribution of manganese-bearing PM at ground-level is associated with fugitive emissions from metal and slag tapping, casting, crushing and screening. The evaluation provides a high-level ranking of emissions by process area, to assist in identifying priority areas for industry-wide initiatives to reduce emissions and occupational exposure of manganese. The range of PM emission levels in industry indicate that further enhancements in PM emissions can be achieved by sharing of best practices in emissions controls, limiting furnace conditions which lead to by-passing of emissions controls and application of secondary emission controls to capture fugitive emissions during tapping and casting. The LCA approach to evaluating PM emissions underscores the important role that process optimization and resource efficiency have on reducing PM emissions throughout the manganese supply chain. Copyright © 2016. Published by Elsevier B.V.

  13. Platelet compatibility of magnesium alloys.

    PubMed

    Yahata, Chie; Mochizuki, Akira

    2017-09-01

    Lately, Mg alloys have been investigated as a new class of biomaterials owing to their excellent biodegradability and biocompatibility. It has previously been reported that the in vitro compatibility of a Mg alloy containing aluminum and zinc (AZ) alloy with the blood coagulation system is excellent due to Mg 2+ ions eluting from the alloy. In this study, the compatibility of the AZ alloy with platelets was evaluated by scanning electron microscopy (SEM) and flow cytometry. In the flow cytometry analysis, the platelets were stained using PAC-1 and P-selectin antibodies. SEM images and PAC-1 analyses showed no negative effects on the platelets, whereas P-selectin analysis showed marked platelet activation. To understand these contradictory results, the amount of β-thromboglobulin (β-TG) released from the platelets was investigated. From that investigation, it was concluded that platelets are markedly activated by the alloys. In addition to clarifying divergent results depending on the analysis method used, the effects of Mg 2+ ions and pH on platelet activation were studied. These results show that platelet activation is caused by an increase in pH at the alloy surface owing to the erosion of the alloy. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Design of experiment (DOE) study of biodegradable magnesium alloy synthesized by mechanical alloying using fractional factorial design

    NASA Astrophysics Data System (ADS)

    Salleh, Emee Marina; Ramakrishnan, Sivakumar; Hussain, Zuhailawati

    2014-06-01

    The biodegradable nature of magnesium (Mg) makes it a most highlighted and attractive to be used as implant materials. However, rapid corrosion rate of Mg alloys especially in electrolytic aqueous environment limits its performance. In this study, Mg alloy was mechanically milled by incorporating manganese (Mn) as alloying element. An attempt was made to study both effect of mechanical alloying and subsequent consolidation processes on the bulk properties of Mg-Mn alloys. 2k-2 factorial design was employed to determine the significant factors in producing Mg alloy which has properties closes to that of human bones. The design considered six factors (i.e. milling time, milling speed, weight percentage of Mn, compaction pressure, sintering temperature and sintering time). Density and hardness were chosen as the responses for assessing the most significant parameters that affected the bulk properties of Mg-Mn alloys. The experimental variables were evaluated using ANOVA and regression model. The main parameter investigated was compaction pressure.

  15. Bond strength of poly(methyl methacrylate) denture base material to cast titanium and cobalt-chromium alloy.

    PubMed

    Matsuda, Yasuhiro; Yanagida, Hiroaki; Ide, Takako; Matsumura, Hideo; Tanoue, Naomi

    2010-06-01

    The shear bond strength of an auto-polymerizing poly(methyl methacrylate) denture base resin material to cast titanium and cobalt-chromium alloy treated with six conditioning methods was investigated. Disk specimens (10 mm in diameter and 2.5 mm in thickness) were cast from pure titanium and cobalt-chromium alloy. The specimens were wet ground to a final surface finish of 600 grit, air dried, and treated with the following bonding systems: 1) air abraded with 50-70-microm-grain alumina (SAN); 2) air abraded with 50-70-microm-grain alumina + conditioned with Alloy Primer (ALP); 3) air abraded with 50-70-microm-grain alumina + conditioned with AZ Primer (AZP); 4) air abraded with 50-70-microm-grain alumina + conditioned with Estenia Opaque Primer (EOP); 5) air abraded with 50-70-microm-grain alumina + conditioned with Metal Link Primer (MLP), and 6) treated with ROCATEC system (ROC). A denture base material (Palapress Vario) was then applied to each metal specimen. Shear bond strengths were determined before and after 10,000 thermocycles. The strengths decreased after thermocycling in all combinations. Among the treatment methods assessed, groups 2 and 4 showed significantly (p < 0.05) enhanced shear bond strengths for both metals. In group 4, the strength in MPa (n = 7) after thermocycling for cobalt-chromium alloy was 38.3, which was statistically (p < 0.05) higher than that for cast titanium (34.7). Air abrasion followed by the application of two primers containing a hydrophobic phosphate monomer (MDP) effectively improved the strength of the bond of denture base material to cast titanium and cobalt-chromium alloy.

  16. Nano-sized Superlattice Clusters Created by Oxygen Ordering in Mechanically Alloyed Fe Alloys

    NASA Astrophysics Data System (ADS)

    Hu, Yong-Jie; Li, Jing; Darling, Kristopher A.; Wang, William Y.; Vanleeuwen, Brian K.; Liu, Xuan L.; Kecskes, Laszlo J.; Dickey, Elizabeth C.; Liu, Zi-Kui

    2015-07-01

    Creating and maintaining precipitates coherent with the host matrix, under service conditions is one of the most effective approaches for successful development of alloys for high temperature applications; prominent examples include Ni- and Co-based superalloys and Al alloys. While ferritic alloys are among the most important structural engineering alloys in our society, no reliable coherent precipitates stable at high temperatures have been found for these alloys. Here we report discovery of a new, nano-sized superlattice (NSS) phase in ball-milled Fe alloys, which maintains coherency with the BCC matrix up to at least 913 °C. Different from other precipitates in ferritic alloys, this NSS phase is created by oxygen-ordering in the BCC Fe matrix. It is proposed that this phase has a chemistry of Fe3O and a D03 crystal structure and becomes more stable with the addition of Zr. These nano-sized coherent precipitates effectively double the strength of the BCC matrix above that provided by grain size reduction alone. This discovery provides a new opportunity for developing high-strength ferritic alloys for high temperature applications.

  17. Low-temperature softening in body-centered cubic alloys

    NASA Technical Reports Server (NTRS)

    Pink, E.; Arsenault, R. J.

    1979-01-01

    In the low-temperature range, bcc alloys exhibit a lower stress-temperature dependence than the pure base metals. This effect often leads to a phenomenon that is called 'alloy softening': at low temperatures, the yield stress of an alloy may be lower than that of the base metal. Various theories are reviewed; the most promising are based either on extrinsic or intrinsic models of low-temperature deformation. Some other aspects of alloy softening are discussed, among them the effects on the ductile-brittle transition temperature.

  18. Requirements of titanium alloys for aeronautical industry

    NASA Astrophysics Data System (ADS)

    Ghiban, Brânduşa; Bran, Dragoş-Teodor; Elefterie, Cornelia Florina

    2018-02-01

    The project presents the requirements imposed for aeronatical components made from Titanium based alloys. Asignificant portion of the aircraft pylons are manufactured from Titanium alloys. Strength, weight, and reliability are the primary factors to consider in aircraft structures. These factors determine the requirements to be met by any material used to construct or repair the aircraft. Many forces and structural stresses act on an aircraft when it is flying and when it is static and this thesis describes environmental factors, conditions of external aggression, mechanical characteristics and loadings that must be satisfied simultaneously by a Ti-based alloy, compared to other classes of aviation alloys (as egg. Inconel super alloys, Aluminum alloys). For this alloy class, the requirements are regarding strength to weight ratio, reliability, corrosion resistance, thermal expansion and so on. These characteristics additionally continue to provide new opportunities for advanced manufacturing methods.

  19. Microstructure and hydrogenation properties of a melt-spun non-stoichiometric Zr-based Laves phase alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Tiebang, E-mail: tiebangzhang@nwpu.edu.cn; Zhang, Yunlong; Li, Jinshan

    2016-01-15

    Alloy with composition of Zr{sub 0.9}Ti{sub 0.1}V{sub 1.7} off normal stoichiometric proportion is selected to investigate the effect of defects introduced by non-stoichiometry on hydrogenation kinetics of Zr–Ti–V Laves phase alloys. Microstructure and phase constituent of melt-spun ribbons have been investigated in this work. The activation process, hydrogenation kinetics, thermodynamics characteristics and hydride phase constituent of as-cast alloy and melt-spun ribbons are also compared. Comparing with the as-cast alloy, the dominant Laves phase ZrV{sub 2} is preserved, V-BCC phase is reduced and α-Zr phase is replaced by a small amount of Zr{sub 3}V{sub 3}O phase in melt-spun ribbons. Melt-spun ribbonsmore » exhibit easy activation and fast initial hydrogen absorption on account of the increased specific surface area. However, the decrease in unit cell volume of the dominant phase leads to the decrease in hydrogen absorption capacity. Melt-spinning technique raises the equilibrium pressure and decreases the stability of hydride due to the decrease of unit cell volume and the elimination of α-Zr phase, respectively. Melt-spun ribbons with fine grains show improved hydrogen absorption kinetics comparing with that of the as-cast alloy. Meanwhile, the prevalent micro twins observed within melt-spun ribbons are believed to account for the improved hydrogen absorption kinetics. - Highlights: • Role of defects on hydrogenation kinetics of Zr-based alloys is proposed. • Microstructure and hydrogenation properties of as-cast/melt-spun alloy are compared. • Melt-spinning technique improves the hydrogenation kinetics of Zr{sub 0.9}Ti{sub 0.1}V{sub 1.7} alloy. • Refined grains and twin defects account for improved hydrogen absorption kinetics.« less

  20. Study of low-modulus biomedical β Ti-Nb-Zr alloys based on single-crystal elastic constants modeling.

    PubMed

    Wang, Xing; Zhang, Ligang; Guo, Ziyi; Jiang, Yun; Tao, Xiaoma; Liu, Libin

    2016-09-01

    CALPHAD-type modeling was used to describe the single-crystal elastic constants of the bcc solution phase in the ternary Ti-Nb-Zr system. The parameters in the model were evaluated based on the available experimental data and first-principle calculations. The composition-elastic properties of the full compositions were predicted and the results were in good agreement with the experimental data. It is found that the β phase can be divided into two regions which are separated by a critical dynamical stability composition line. The corresponding valence electron number per atom and the polycrystalline Young׳s modulus of the critical compositions are 4.04-4.17 and 30-40GPa respectively. Orientation dependencies of single-crystal Young׳s modulus show strong elastic anisotropy on the Ti-rich side. Alloys compositions with a Young׳s modulus along the <100> direction matching that of bone were found. The current results present an effective strategy for designing low modulus biomedical alloys using computational modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.