Science.gov

Sample records for base height cloud

  1. Development of methods for inferring cloud thickness and cloud-base height from satellite radiance data

    NASA Technical Reports Server (NTRS)

    Smith, William L., Jr.; Minnis, Patrick; Alvarez, Joseph M.; Uttal, Taneil; Intrieri, Janet M.; Ackerman, Thomas P.; Clothiaux, Eugene

    1993-01-01

    Cloud-top height is a major factor determining the outgoing longwave flux at the top of the atmosphere. The downwelling radiation from the cloud strongly affects the cooling rate within the atmosphere and the longwave radiation incident at the surface. Thus, determination of cloud-base temperature is important for proper calculation of fluxes below the cloud. Cloud-base altitude is also an important factor in aircraft operations. Cloud-top height or temperature can be derived in a straightforward manner using satellite-based infrared data. Cloud-base temperature, however, is not observable from the satellite, but is related to the height, phase, and optical depth of the cloud in addition to other variables. This study uses surface and satellite data taken during the First ISCCP Regional Experiment (FIRE) Phase-2 Intensive Field Observation (IFO) period (13 Nov. - 7 Dec. 1991, to improve techniques for deriving cloud-base height from conventional satellite data.

  2. Biogeography, Cloud Base Heights and Cloud Immersion in Tropical Montane Cloud Forests

    NASA Astrophysics Data System (ADS)

    Welch, R. M.; Asefi, S.; Zeng, J.; Nair, U. S.; Lawton, R. O.; Ray, D. K.; Han, Q.; Manoharan, V. S.

    2007-05-01

    Tropical Montane Cloud Forests (TMCFs) are ecosystems characterized by frequent and prolonged immersion within orographic clouds. TMCFs often lie at the core of the biological hotspots, areas of high biodiversity, whose conservation is necessary to ensure the preservation of a significant amount of the plant and animal species in the world. TMCFs support islands of endemism dependent on cloud water interception that are extremely susceptible to environmental and climatic changes at regional or global scales. Due to the ecological and hydrological importance of TMCFs it is important to understand the biogeographical distribution of these ecosystems. The best current list of TMCFs is a global atlas compiled by the United Nations Environmental Program (UNEP). However, this list is incomplete, and it does not provide information on cloud immersion, which is the defining characteristic of TMCFs and sorely needed for ecological and hydrological studies. The present study utilizes MODIS satellite data both to determine orographic cloud base heights and then to quantify cloud immersion statistics over TMCFs. Results are validated from surface measurements over Northern Costa Rica for the month of March 2003. Cloud base heights are retrieved with approximately 80m accuracy, as determined at Monteverde, Costa Rica. Cloud immersion derived from MODIS data is also compared to an independent cloud immersion dataset created using a combination of GOES satellite data and RAMS model simulations. Comparison against known locations of cloud forests in Northern Costa Rica shows that the MODIS-derived cloud immersion maps successfully identify these cloud forest locations, including those not included in the UNEP data set. Results also will be shown for cloud immersion in Hawaii. The procedure appears to be ready for global mapping.

  3. Automated cloud base height determination from high resolution Landsat data - A Hough transform approach

    NASA Technical Reports Server (NTRS)

    Sengupta, S. K.; Berendes, T.; Welch, R. M.; Navar, M.; Wielicki, B.

    1990-01-01

    A direct method for determining the cloud base height derived from the displacement of the shadow from the cloud, and the solar azimuth and zenith angle is presented. Cumulus cloud scenes over land from Landsat MSS imagery are considered. The clouds are first matched with the corresponding shadows; the pixel distance of a reference point in the cloud is computed from the corresponding reference point in the shadow; and then the solar zenith angle is used to compute the cloud base height. Observations indicate that the cloud base height appears to be size-dependent with larger clouds generally associated with higher cloud bases and that clouds within the same size range and within the same scene region are approximately of the same height.

  4. Toward autonomous surface-based infrared remote sensing of polar clouds: cloud-height retrievals

    NASA Astrophysics Data System (ADS)

    Rowe, Penny M.; Cox, Christopher J.; Walden, Von P.

    2016-08-01

    Polar regions are characterized by their remoteness, making measurements challenging, but an improved knowledge of clouds and radiation is necessary to understand polar climate change. Infrared radiance spectrometers can operate continuously from the surface and have low power requirements relative to active sensors. Here we explore the feasibility of retrieving cloud height with an infrared spectrometer that would be designed for use in remote polar locations. Using a wide variety of simulated spectra of mixed-phase polar clouds at varying instrument resolutions, retrieval accuracy is explored using the CO2 slicing/sorting and the minimum local emissivity variance (MLEV) methods. In the absence of imposed errors and for clouds with optical depths greater than ˜ 0.3, cloud-height retrievals from simulated spectra using CO2 slicing/sorting and MLEV are found to have roughly equivalent high accuracies: at an instrument resolution of 0.5 cm-1, mean biases are found to be ˜ 0.2 km for clouds with bases below 2 and -0.2 km for higher clouds. Accuracy is found to decrease with coarsening resolution and become worse overall for MLEV than for CO2 slicing/sorting; however, the two methods have differing sensitivity to different sources of error, suggesting an approach that combines them. For expected errors in the atmospheric state as well as both instrument noise and bias of 0.2 mW/(m2 sr cm-1), at a resolution of 4 cm-1, average retrieval errors are found to be less than ˜ 0.5 km for cloud bases within 1 km of the surface, increasing to ˜ 1.5 km at 4 km. This sensitivity indicates that a portable, surface-based infrared radiance spectrometer could provide an important complement in remote locations to satellite-based measurements, for which retrievals of low-level cloud are challenging.

  5. Cumulus cloud base height estimation from high spatial resolution Landsat data - A Hough transform approach

    NASA Technical Reports Server (NTRS)

    Berendes, Todd; Sengupta, Sailes K.; Welch, Ron M.; Wielicki, Bruce A.; Navar, Murgesh

    1992-01-01

    A semiautomated methodology is developed for estimating cumulus cloud base heights on the basis of high spatial resolution Landsat MSS data, using various image-processing techniques to match cloud edges with their corresponding shadow edges. The cloud base height is then estimated by computing the separation distance between the corresponding generalized Hough transform reference points. The differences between the cloud base heights computed by these means and a manual verification technique are of the order of 100 m or less; accuracies of 50-70 m may soon be possible via EOS instruments.

  6. [Retrieval of the Optical Thickness and Cloud Top Height of Cirrus Clouds Based on AIRS IR High Spectral Resolution Data].

    PubMed

    Cao, Ya-nan; Wei, He-li; Dai, Cong-ming; Zhang, Xue-hai

    2015-05-01

    A study was carried out to retrieve optical thickness and cloud top height of cirrus clouds from the Atmospheric Infrared Sounder (AIRS) high spectral resolution data in 1070~1135 cm-1 IR band using a Combined Atmospheric Radiative Transfer model (CART) by brightness temperature difference between model simulation and AIRS observation. The research is based on AIRS LIB high spectral infrared observation data combined with Moderate Resolution Imaging Spectroradiometer (MODIS) cloud product data. Brightness temperature spectra based, on the retrieved cirrus optical thickness and cloud top height were simulated and compared with brightness temperature spectra of AIRS observation in the 650~1150 cm-1 band. The cirrus optical thickness and cloud top height retrieved were compared with brightness temperature of AIRS for channel 760 (900.56 cm-1, 11. 1 µm) and cirrus reflectance of MODIS cloud product. And cloud top height retrieved was compared with cloud top height from MODIS. Results show that the brightness temperature spectra simulated were basically consistent with AIRS observation under the condition of retrieval in the 650~1150 cm-1 band. It means that CART can be used to simulate AIRS brightness temperature spectra. The retrieved cirrus parameters are consistent with brightness temperature of AIRS for channel 11. 1 µm with low brightness temperature corresponding to large cirrus optical thickness and high cloud top height. And the retrieved cirrus parameters are consistent with cirrus reflectance of MODIS cloud product with high cirrus reflectance corresponding to large cirrus optical thickness and high cloud top height. Correlation coefficient of brightness temperature between retrieved cloud top height and MODIS cloud top height was relatively high. They are mostly located in the range of 8. 5~11.5 km, and their probability distribution trend is approximately identical. CART model is feasible to retrieve cirrus properties, and the retrieval is reliable. PMID

  7. Latitudinal variations of cloud base height and lightning parameters in the tropics

    NASA Technical Reports Server (NTRS)

    Mushtak, V. C.; Williams, E. R.; Boccippio, D. J.

    2006-01-01

    The observed reduction in cloud-to-ground lightning in the new-equational zone is examined from the perspective of the width of the main negative charge region. Thermodynamic observations of cloud base height also show a climatological minimum value in the near-equatorial region. The association of low cloud base with both narrow updrafts and narrow changing zones may impede the bridging of the large air gap to ground, and thereby suppress cloud-to-ground lightning activity. This width dependence may be more important than the approx. 10% variation in height of the freezing level in the encouraging flashes to ground.

  8. Latitudinal variations of cloud base height and lightning parameters in the tropics

    NASA Astrophysics Data System (ADS)

    Mushtak, V. C.; Williams, E. R.; Boccippio, D. J.

    2005-07-01

    The observed reduction in cloud-to-ground lightning in the near-equatorial zone is examined from the perspective of the width of the main negative charge region. Thermodynamic observations of cloud base height also show a climatological minimum value in the near-equatorial region. The association of low cloud bases with both narrow updrafts and narrow charging zones may impede the bridging of the large air gap to ground, and thereby suppress cloud-to-ground lightning activity. This width dependence may be more important than the ˜ 10% variation in height of the freezing level in encouraging flashes to ground.

  9. Urbanization causes increased cloud base height and decreased fog in coastal Southern California

    NASA Astrophysics Data System (ADS)

    Williams, A. Park; Schwartz, Rachel E.; Iacobellis, Sam; Seager, Richard; Cook, Benjamin I.; Still, Christopher J.; Husak, Gregory; Michaelsen, Joel

    2015-03-01

    Subtropical marine stratus clouds regulate coastal and global climate, but future trends in these clouds are uncertain. In coastal Southern California (CSCA), interannual variations in summer stratus cloud occurrence are spatially coherent across 24 airfields and dictated by positive relationships with stability above the marine boundary layer (MBL) and MBL height. Trends, however, have been spatially variable since records began in the mid-1900s due to differences in nighttime warming. Among CSCA airfields, differences in nighttime warming, but not daytime warming, are strongly and positively related to fraction of nearby urban cover, consistent with an urban heat island effect. Nighttime warming raises the near-surface dew point depression, which lifts the altitude of condensation and cloud base height, thereby reducing fog frequency. Continued urban warming, rising cloud base heights, and associated effects on energy and water balance would profoundly impact ecological and human systems in highly populated and ecologically diverse CSCA.

  10. Urbanization Causes Increased Cloud Base Height and Decreased Fog in Coastal Southern California

    NASA Technical Reports Server (NTRS)

    Williams, A. Park; Schwartz, Rachel E.; Iacobellis, Sam; Seager, Richard; Cook, Benjamin I.; Still, Christopher J.; Husak, Gregory; Michaelsen, Joel

    2015-01-01

    Subtropical marine stratus clouds regulate coastal and global climate, but future trends in these clouds are uncertain. In coastal Southern California (CSCA), interannual variations in summer stratus cloud occurrence are spatially coherent across 24 airfields and dictated by positive relationships with stability above the marine boundary layer (MBL) and MBL height. Trends, however, have been spatially variable since records began in the mid-1900s due to differences in nighttime warming. Among CSCA airfields, differences in nighttime warming, but not daytime warming, are strongly and positively related to fraction of nearby urban cover, consistent with an urban heat island effect. Nighttime warming raises the near-surface dew point depression, which lifts the altitude of condensation and cloud base height, thereby reducing fog frequency. Continued urban warming, rising cloud base heights, and associated effects on energy and water balance would profoundly impact ecological and human systems in highly populated and ecologically diverse CSCA.

  11. Verification and correction of cloud base and top height retrievals from Ka-band cloud radar in Boseong, Korea

    NASA Astrophysics Data System (ADS)

    Oh, Su-Bin; Kim, Yeon-Hee; Kim, Ki-Hoon; Cho, Chun-Ho; Lim, Eunha

    2016-01-01

    In this study, cloud base height (CBH) and cloud top height (CTH) observed by the Ka-band (33.44 GHz) cloud radar at the Boseong National Center for Intensive Observation of Severe Weather during fall 2013 (September-November) were verified and corrected. For comparative verification, CBH and CTH were obtained using a ceilometer (CL51) and the Communication, Ocean and Meteorological Satellite (COMS). During rainfall, the CBH and CTH observed by the cloud radar were lower than observed by the ceilometer and COMS because of signal attenuation due to raindrops, and this difference increased with rainfall intensity. During dry periods, however, the CBH and CTH observed by the cloud radar, ceilometer, and COMS were similar. Thin and low-density clouds were observed more effectively by the cloud radar compared with the ceilometer and COMS. In cases of rainfall or missing cloud radar data, the ceilometer and COMS data were proven effective in correcting or compensating the cloud radar data. These corrected cloud data were used to classify cloud types, which revealed that low clouds occurred most frequently.

  12. Evaluation of cloud base height measurements from Ceilometer CL31 and MODIS satellite over Ahmedabad, India

    NASA Astrophysics Data System (ADS)

    Sharma, Som; Vaishnav, Rajesh; Shukla, Munn V.; Kumar, Prashant; Kumar, Prateek; Thapliyal, Pradeep K.; Lal, Shyam; Acharya, Yashwant B.

    2016-02-01

    Clouds play a tangible role in the Earth's atmosphere and in particular, the cloud base height (CBH), which is linked to cloud type, is one of the most important characteristics to describe the influence of clouds on the environment. In the present study, CBH observations from Ceilometer CL31 were extensively studied during May 2013 to January 2015 over Ahmedabad (23.03° N, 72.54° E), India. A detailed comparison has been performed with the use of ground-based CBH measurements from Ceilometer CL31 and CBH retrieved from MODIS (Moderate Resolution Imaging Spectroradiometer) onboard Aqua and Terra satellite. CBH retrieved from MODIS is ˜ 1.955 and ˜ 1.093 km on 25 July 2014 and 1 January 2015 respectively, which matches well with ceilometer-measured CBH ( ˜ 1.92 and ˜ 1.097 km). Some interesting features of cloud dynamics viz. strong downdraft and updraft have been observed over Ahmedabad which revealed different cloud characteristics during monsoon and post-monsoon periods. CBH shows seasonal variation during the Indian summer monsoon and post-monsoon period. Results indicate that the ceilometer is an excellent instrument to precisely detect low- and mid-level clouds, and the MODIS satellite provides accurate retrieval of high-level clouds over this region. The CBH algorithm used for the MODIS satellite is also able to capture the low-level clouds.

  13. New Stereo Vision Digital Camera System for Simultaneous Measurement of Cloud Base Height and Atmospheric Visibility

    NASA Astrophysics Data System (ADS)

    Janeiro, F. M.; Carretas, F.; Palma, N.; Ramos, P. M.; Wagner, F.

    2013-12-01

    Clouds play an important role in many aspects of everyday life. They affect both the local weather as well as the global climate and are an important parameter on climate change studies. Cloud parameters are also important for weather prediction models which make use of actual measurements. It is thus important to have low-cost instrumentation that can be deployed in the field to measure those parameters. This kind of instruments should also be automated and robust since they may be deployed in remote places and be subject to adverse weather conditions. Although clouds are very important in environmental systems, they are also an essential component of airplane safety when visual flight rules (VFR) are enforced, such as in most small aerodromes where it is not economically viable to install instruments for assisted flying. Under VFR there are strict limits on the height of the cloud base, cloud cover and atmospheric visibility that ensure the safety of the pilots and planes. Although there are instruments, available in the market, to measure those parameters, their relatively high cost makes them unavailable in many local aerodromes. In this work we present a new prototype which has been recently developed and deployed in a local aerodrome as proof of concept. It is composed by two digital cameras that capture photographs of the sky and allow the measurement of the cloud height from the parallax effect. The new developments consist on having a new geometry which allows the simultaneous measurement of cloud base height, wind speed at cloud base height and atmospheric visibility, which was not previously possible with only two cameras. The new orientation of the cameras comes at the cost of a more complex geometry to measure the cloud base height. The atmospheric visibility is calculated from the Lambert-Beer law after the measurement of the contrast between a set of dark objects and the background sky. The prototype includes the latest hardware developments that

  14. Evaluation of Satellite-Based Upper Troposphere Cloud Top Height Retrievals in Multilayer Cloud Conditions During TC4

    NASA Technical Reports Server (NTRS)

    Chang, Fu-Lung; Minnis, Patrick; Ayers, J. Kirk; McGill, Matthew J.; Palikonda, Rabindra; Spangenberg, Douglas A.; Smith, William L., Jr.; Yost, Christopher R.

    2010-01-01

    Upper troposphere cloud top heights (CTHs), restricted to cloud top pressures (CTPs) less than 500 hPa, inferred using four satellite retrieval methods applied to Twelfth Geostationary Operational Environmental Satellite (GOES-12) data are evaluated using measurements during the July August 2007 Tropical Composition, Cloud and Climate Coupling Experiment (TC4). The four methods are the single-layer CO2-absorption technique (SCO2AT), a modified CO2-absorption technique (MCO2AT) developed for improving both single-layered and multilayered cloud retrievals, a standard version of the Visible Infrared Solar-infrared Split-window Technique (old VISST), and a new version of VISST (new VISST) recently developed to improve cloud property retrievals. They are evaluated by comparing with ER-2 aircraft-based Cloud Physics Lidar (CPL) data taken during 9 days having extensive upper troposphere cirrus, anvil, and convective clouds. Compared to the 89% coverage by upper tropospheric clouds detected by the CPL, the SCO2AT, MCO2AT, old VISST, and new VISST retrieved CTPs less than 500 hPa in 76, 76, 69, and 74% of the matched pixels, respectively. Most of the differences are due to subvisible and optically thin cirrus clouds occurring near the tropopause that were detected only by the CPL. The mean upper tropospheric CTHs for the 9 days are 14.2 (+/- 2.1) km from the CPL and 10.7 (+/- 2.1), 12.1 (+/- 1.6), 9.7 (+/- 2.9), and 11.4 (+/- 2.8) km from the SCO2AT, MCO2AT, old VISST, and new VISST, respectively. Compared to the CPL, the MCO2AT CTHs had the smallest mean biases for semitransparent high clouds in both single-layered and multilayered situations whereas the new VISST CTHs had the smallest mean biases when upper clouds were opaque and optically thick. The biases for all techniques increased with increasing numbers of cloud layers. The transparency of the upper layer clouds tends to increase with the numbers of cloud layers.

  15. Observations of orographic Cloud Base Heights from satellite and in-situ measurements at the Monteverde Cloud Mist Forest Reserve, Costa Rica

    NASA Astrophysics Data System (ADS)

    Asefi, S.; Zeng, J.; Han, Q.; Welch, R. M.; Lawton, R. O.; Nair, U. S.; Ray, D.; McCarty, W. R.; Jedlovec, G.

    2005-12-01

    Tropical montane cloud mist forests are among the most biologically rich and diverse ecosystems, providing habitats for many of the world's endangered species. Survival of these habitats depends strongly on regular and frequent immersion in orographic clouds. At the Monteverde Cloud Mist Forest Reserve in Costa Rica, the bases of the clouds have shifted upslope, leading to anuran population crashes, an increase in the upper elevation of bird ranges on the Pacific slope, and longer dry season mist-free intervals. Satellite remote sensing techniques have been developed to determine the orographic cloud base heights; these are tested for the dry season month of March 2003 over the Monteverde cloud forests. The approach derives MODIS cloud top pressures and then converts them to cloud top heights using geopotential height profiles. The NCAR Land Use and Cloud Interaction Experiment (LUCIE), consisting of paired mobile radiosonde systems deployed in Costa Rica, provided the means for validating the retrievals. Results show that the four MODIS CO2 slicing channels do not provide sufficiently accurate cloud top height values, although some of the differences are due to a mismatch in the observational periods. In order to improve the results, two alternative approaches are examined. Simulated geopotential height profiles from the CSU Regional Atmospheric Modeling System (RAMS) initialized with soundings provided superior results. Another approach investigated the utility of multiple combinations of channels in the CO2 slicing technique using Atmospheric Infrared Sounder (AIRS) data for cloud height assignment. Using AIRS a more accurate determination of cloud top height is achieved. Cloud thicknesses are estimated using three different approaches: 1) constant liquid water content (CLWC); 2) an empirical relationship; and 3) an adiabatic model. The CLWC approach provided the most consistent results. Cloud base heights are computed from subtracting cloud thickness from cloud

  16. Neural network sensor fusion: Creation of a virtual sensor for cloud-base height estimation

    NASA Astrophysics Data System (ADS)

    Pasika, Hugh Joseph Christopher

    2000-10-01

    Sensor fusion has become a significant area of signal processing research that draws on a variety of tools. Its goals are many, however in this thesis, the creation of a virtual sensor is paramount. In particular, neural networks are used to simulate the output of a LIDAR (LASER. RADAR) that measures cloud-base height. Eye-safe LIDAR is more accurate than the standard tool that would be used for such measurement; the ceilometer. The desire is to make cloud-base height information available at a network of ground-based meteorological stations without actually installing LIDAR sensors. To accomplish this, fifty-seven sensors ranging from multispectral satellite information to standard atmospheric measurements such as temperature and humidity, are fused in what can only be termed as a very complex, nonlinear environment. The result is an accurate prediction of cloud-base height. Thus, a virtual sensor is created. A total of four different learning algorithms were studied; two global and two local. In each case, the very best state-of-the-art learning algorithms have been selected. Local methods investigated are the regularized radial basis function network, and the support vector machine. Global methods include the standard backpropagation with momentum trained multilayer perceptron (used as a benchmark) and the multilayer perceptron trained via the Kalman filter algorithm. While accuracy is the primary concern, computational considerations potentially limit the application of several of the above techniques. Thus, in all cases care was taken to minimize computational cost. For example in the case of the support vector machine, a method of partitioning the problem in order to reduce memory requirements and make the optimization over a large data set feasible was employed and in the Kalman algorithm case, node-decoupling was used to dramatically reduce the number of operations required. Overall, the methods produced somewhat equivalent mean squared errors indicating

  17. Stereoscopic ground-based determination of the cloud base height: theory of camera position calibration with account for lens distortion

    NASA Astrophysics Data System (ADS)

    Chulichkov, Alexey I.; Postylyakov, Oleg V.

    2016-05-01

    For the reconstruction of some geometrical characteristics of clouds a method was developed based on taking pictures of the sky by a pair of digital photo cameras and subsequent processing of the obtained sequence of stereo frames to obtain the height of the cloud base. Since the directions of the optical axes of the stereo cameras are not exactly known, a procedure of adjusting of obtained frames was developed which use photographs of the night starry sky. In the second step, the method of the morphological analysis of images is used to determine the relative shift of the coordinates of some fragment of cloud. The shift is used to estimate the searched cloud base height. The proposed method can be used for automatic processing of stereo data and getting the cloud base height. The earlier paper described a mathematical model of stereophotography measurement, poses and solves the problem of adjusting of optical axes of the cameras in paraxial (first-order geometric optics) approximation and was applied for the central part of the sky frames. This paper describes the model of experiment which takes into account lens distortion in Seidel approximation (depending on the third order of the distance from optical axis). We developed procedure of simultaneous camera position calibration and estimation of parameters of lens distortion in Seidel approximation.

  18. Modeling atmospheric longwave radiation at the surface during overcast skies: The role of cloud base height

    NASA Astrophysics Data System (ADS)

    Viúdez-Mora, A.; Costa-Surós, M.; Calbó, J.; González, J. A.

    2015-01-01

    behavior of the atmospheric downward longwave radiation at the surface under overcast conditions is studied. For optically thick clouds, longwave radiation depends greatly on the cloud base height (CBH), besides temperature and water vapor profiles. The CBH determines the cloud emission temperature and the air layers contributing to the longwave radiation that reaches the surface. Overcast situations observed at Girona (NE Iberian Peninsula) were studied by using a radiative transfer model. The data set includes different seasons, and a large range of CBH (0-5000 m). The atmosphere profiles were taken from the European Center for Medium-Range Weather Forecast analysis. The CBH was determined from ceilometer measurements and also estimated by using a suitable method applied to the vertical profile of relative humidity. The agreement between calculations and pyrgeometer measurements is remarkably good (1.6 ± 6.2 W m-2) if the observed CBH is used; poorer results are obtained with the estimated CBH (4.3 ± 7.0 W m-2). These results are better than those obtained from a simple parameterization based upon ground-level data (1.1 ± 11.6 W m-2), which can be corrected by adding a term that takes into account the CBH (-0.1 ± 7.3 W m-2). At this site, the cloud radiative effect (CRE) at the surface lies in the range 50-80 W m-2, has a clear seasonal behavior (higher CRE in winter), and depends upon the CBH. For the cold and the warm seasons, CRE decreases with CBH at a rate of -5 and -4 W m-2/km, respectively. Results obtained for other climates (subarctic and tropical) are also presented.

  19. Cloud base and top heights in the Hawaiian region determined with satellite and ground-based measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Chunxi; Wang, Yuqing; Lauer, Axel; Hamilton, Kevin; Xie, Feiqin

    2012-08-01

    We present a multi-year climatology of cloud-base-height (CBH), cloud-top-height (CTH), and trade wind inversion base height (TWIBH) for the Hawaiian region (18°N-22.5°N, 153.7°W-160.7°W). The new climatology is based on data from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO), the Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC), ceilometer observations and radiosondes. The climatology reported here is well suited to evaluate climate model simulations and can serve as a reference state for studies of the impact of climate change on Hawaiian ecosystems. The averaged CBH from CALIPSO in the Hawaiian Region is 890 m. The mean CTH from CALIPSO is 2110 m, which is close to the mean TWIBH from COSMIC. For non-precipitating cases, the mean TWIBH at both Lihue and Hilo is close to 2000 m. For precipitating cases, the mean TWIBH is 2450 m and 2280 m at Hilo and Lihue, respectively. The potential cloud thickness (PCT) is defined as the difference between TWIBH and CBH and the mean PCT is several hundred meters thicker for precipitating than for the non-precipitating cases at both stations. We find that the PCT is more strongly correlated to the TWIBH than the CBH and that precipitation is unlikely to occur if the TWIBH is below 1500 m. The observed rainfall intensity is correlated to the PCT, i.e., thicker clouds are more likely to produce heavy rain.

  20. Development of an analysis tool for cloud base height and visibility

    NASA Astrophysics Data System (ADS)

    Umdasch, Sarah; Reinhold, Steinacker; Manfred, Dorninger; Markus, Kerschbaum; Wolfgang, Pöttschacher

    2014-05-01

    The meteorological variables cloud base height (CBH) and horizontal atmospheric visibility (VIS) at surface level are of vital importance for safety and effectiveness in aviation. Around 20% of all civil aviation accidents in the USA from 2003 to 2007 were due to weather related causes, around 18% of which were owing to decreased visibility or ceiling (main CBH). The aim of this study is to develop a system generating quality-controlled gridded analyses of the two parameters based on the integration of various kinds of observational data. Upon completion, the tool is planned to provide guidance for nowcasting during take-off and landing as well as for flights operated under visual flight rules. Primary input data consists of manual as well as instrumental observation of CBH and VIS. In Austria, restructuring of part of the standard meteorological stations from human observation to automatic measurement of VIS and CBH is currently in progress. As ancillary data, satellite derived products can add 2-dimensional information, e.g. Cloud Type by NWC SAF (Nowcasting Satellite Application Facilities) MSG (Meteosat Second Generation). Other useful available data are meteorological surface measurements (in particular of temperature, humidity, wind and precipitation), radiosonde, radar and high resolution topography data. A one-year data set is used to study the spatial and weather-dependent representativeness of the CBH and VIS measurements. The VERA (Vienna Enhanced Resolution Analysis) system of the Institute of Meteorology and Geophysics of the University of Vienna provides the framework for the analysis development. Its integrated "Fingerprint" technique allows the insertion of empirical prior knowledge and ancillary information in the form of spatial patterns. Prior to the analysis, a quality control of input data is performed. For CBH and VIS, quality control can consist of internal consistency checks between different data sources. The possibility of two

  1. Estimation of cirrus and stratus cloud heights using landsat imagery

    SciTech Connect

    Inomata, Yasushi; Feind, R.E.; Welch, R.M.

    1996-03-01

    A new method based upon high-spatial-resolution imagery is presented that matches cloud and shadow regions to estimate cirrus and stratus cloud heights. The distance between the cloud and the matching shadow pattern is accomplished using the 2D cross-correlation function from which the cloud height is derived. The distance between the matching cloud-shadow patterns is verified manually. The derived heights also are validated through comparison with a temperature-based retrieval of cloud height. It is also demonstrated that an estimate of cloud thickness can be retrieved if both the sunside and antisunside of the cloud-shadow pair are apparent. The technique requires some interpretation to determine the cloud height level retrieved (i.e., the top, base, or mid-level). It is concluded that the method is accurate to within several pixels, equivalent to cloud height variations of about {plus_minus}250 m. The results show that precise placement of the templates is unnecessary, so that the development of a semiautomated procedure is possible. Cloud templates of about 64 pixels on a side or larger produce consistent results. The procedure was repeated for imagery degraded to simulate lower spatial resolutions. The results suggest that spatial resolution of 150-200 m or better is necessary in order to obtain stable cloud height retrievals. 22 refs., 13 figs., 4 tabs.

  2. Estimation of Cirrus and Stratus Cloud Heights Using Landsat Imagery

    NASA Technical Reports Server (NTRS)

    Inomata, Yasushi; Feind, R. E.; Welch, R. M.

    1996-01-01

    A new method based upon high-spatial-resolution imagery is presented that matches cloud and shadow regions to estimate cirrus and stratus cloud heights. The distance between the cloud and the matching shadow pattern is accomplished using the 2D cross-correlation function from which the cloud height is derived. The distance between the matching cloud-shadow patterns is verified manually. The derived heights also are validated through comparison with a temperature-based retrieval of cloud height. It is also demonstrated that an estimate of cloud thickness can be retrieved if both the sunside and anti-sunside of the cloud-shadow pair are apparent. The technique requires some intepretation to determine the cloud height level retrieved (i.e., the top, base, or mid-level). It is concluded that the method is accurate to within several pixels, equivalent to cloud height variations of about +/- 250 m. The results show that precise placement of the templates is unnecessary, so that the development of a semi-automated procedure is possible. Cloud templates of about 64 pixels on a side or larger produce consistent results. The procedure was repeated for imagery degraded to simulate lower spatial resolutions. The results suggest that spatial resolution of 150-200 m or better is necessary in order to obtain stable cloud height retrievals.

  3. Evaluation of SCIAMACHY Oxygen A band cloud heights using Cloudnet measurements

    NASA Astrophysics Data System (ADS)

    Wang, P.; Stammes, P.

    2014-05-01

    Two SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) O2 A band cloud height products are evaluated using ground-based radar/lidar measurements between January 2003 and December 2011. The products are the ESA (European Space Agency) Level 2 (L2) version 5.02 cloud top height and the FRESCO (Fast Retrieval Scheme for Clouds from the Oxygen A band) version 6 cloud height. The radar/lidar profiles are obtained at the Cloudnet sites of Cabauw and Lindenberg, and are averaged for 1 h centered at the SCIAMACHY overpass time. In total we have 217 cases of single-layer clouds and 204 cases of multilayer clouds. We find that the ESA L2 cloud top height has a better agreement with the Cloudnet cloud top height than the Cloudnet cloud middle height. The ESA L2 cloud top height is on average 0.4 km higher than the Cloudnet cloud top height, with a standard deviation of 3.1 km. The FRESCO cloud height is closer to the Cloudnet cloud middle height than the Cloudnet cloud top height. The mean difference between the FRESCO cloud height and the Cloudnet cloud middle height is -0.1 km with a standard deviation of 1.9 km. The ESA L2 cloud top height is higher than the FRESCO cloud height. The differences between the SCIAMACHY cloud (top) height and the Cloudnet cloud top height are linked to cloud optical thickness. The SCIAMACHY cloud height products are further compared to the Cloudnet cloud top height and the Cloudnet cloud middle height in 1 km bins. For single-layer clouds, the difference between the ESA L2 cloud top height and the Cloudnet cloud top height is less than 1 km for each cloud bin at 3-7 km. The difference between the FRESCO cloud height and the Cloudnet cloud middle height is less than 1 km for each cloud bin at 0-6 km. The results are similar for multilayer clouds, but the percentage of cases having a bias within 1 km is smaller than for single-layer clouds. We may conclude that the FRESCO cloud height is accurate for low and middle

  4. An Assessment of MultiAngle Imaging SpectroRadiometer (MISR) Stereo-Derived Cloud Top Heights and cloud top winds using ground-based radar, lidar, and microwave radiometers

    SciTech Connect

    Marchand, Roger T.; Ackerman, Thomas P.; Moroney, C.

    2007-03-17

    Clouds are of tremendous importance to climate because of their direct radiative effects and because of their role in atmospheric dynamics and the hydrological cycle. The value of satellite imagery in monitoring cloud properties on a global basis can hardly be understated. One cloud property that satellites are in an advantageous position to monitor is cloud top height. Cloud top height retrievals are especially important for MISR because the derived height field is used to co-register the measured radiances. In this presentation we show the results of an ongoing comparison between ground-based millimeter-wave cloud radar and lidar measurements of cloud top and MISR stereo-derived cloud top height. This comparison is based on data from three radar systems located in the U.S Southern Great Plains (Lamont, Oklahoma), the Tropical Western Pacific (Nauru Island) and the North Slope of Alaska (Barrow, Alaska). These radars are operated as part of the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program. The MISR stereo height algorithm is performing largely as expected for most optically thick clouds. As with many satellite retrievals, the stereo-height retrieval has difficulty with optically thin clouds or ice clouds with little optical contrast near cloud top.

  5. Validation of SCIAMACHY O2 A band cloud heights using Cloudnet radar/lidar measurements

    NASA Astrophysics Data System (ADS)

    Wang, P.; Stammes, P.

    2013-10-01

    For the first time two SCIAMACHY O2 A band cloud height products are validated using ground-based radar/lidar measurements between January 2003 and December 2011. The products are the ESA Level 2 (L2) version 5.02 cloud top height and the FRESCO (Fast Retrieval Scheme for Clouds from the Oxygen A band) version 6 cloud height. The radar/lidar profiles are obtained at the Cloudnet sites of Cabauw and Lindenberg, and are averaged for one hour centered at the SCIAMACHY overpass time to achieve an optimal temporal and spatial match. In total we have about 220 cases of single layer clouds and 200 cases of multi-layer clouds. The FRESCO cloud height and ESA L2 cloud top height are compared with the Cloudnet cloud top height and Cloudnet cloud middle height. We find that the ESA L2 cloud top height has a better agreement with the Cloudnet cloud top height than the Cloudnet cloud middle height. The ESA L2 cloud top height is on average 0.44 km higher than the Cloudnet cloud top height, with a standard deviation of 3.07 km. The FRESCO cloud height is closer to the Cloudnet cloud middle height than the Cloudnet cloud top height. The mean difference between the FRESCO cloud height and the Cloudnet cloud middle height is -0.14 km with a standard deviation of 1.88 km. The SCIAMACHY cloud height products are further compared to the Cloudnet cloud top height and the Cloudnet cloud middle height in 1 km bins. For single layer clouds, the difference between the ESA L2 cloud top height and the Cloudnet cloud top height is less than 1 km for each cloud bin at 3-7 km, which is 24 % percent of the data. The difference between the FRESCO cloud height and the Cloudnet cloud middle height is less than 1 km for each cloud bin at 0-6 km, which is 85 % percent of the data. The results are similar for multi-layer clouds, but the percentage of cases having a bias within 1 km is smaller than for single layer clouds. Since globally about 60 % of all clouds are low clouds and 42 % are single

  6. Cloud height differences on Saturn

    NASA Astrophysics Data System (ADS)

    Apt, J.; Singer, R. B.

    1982-12-01

    Spectrophotometry from 0.6-2.5 μm at 1.5% spectral resolution of Saturn's equator and visibly dark South Equatorial Belt near a 1980 ring-plane crossing shows substantially less absorption by methane over the equator than over the SEB. Model fits using Appleby's model atmosphere and a multiple scattering model lead to the conclusion that the pressure levels of the clouds in the two regions differ by 20%. The region of high clouds is coincident with the location of the equatorial fast jet observed by Voyager.

  7. Crop height determination with UAS point clouds

    NASA Astrophysics Data System (ADS)

    Grenzdörffer, G. J.

    2014-11-01

    The accurate determination of the height of agricultural crops helps to predict yield, biomass etc. These relationships are of great importance not only for crop production but also in grassland management, because the available biomass and food quality are valuable information. However there is no cost efficient and automatic system for the determination of the crop height available. 3D-point clouds generated from high resolution UAS imagery offer a new alternative. Two different approaches for crop height determination are presented. The "difference method" were the canopy height is determined by taking the difference between a current UAS-surface model and an existing digital terrain model (DTM) is the most suited and most accurate method. In situ measurements, vegetation indices and yield observations correlate well with the determined UAS crop heights.

  8. Stereographic cloud heights from SMS/goes imagery

    NASA Technical Reports Server (NTRS)

    Minzner, R. A.; Shenk, W. E.; Teagle, R. D.; Steranka, J.

    1977-01-01

    Stereographic pairs of SMS/GOES images, generated simultaneously by the spin-scan cameras of each of two geostationary satellites (SMS 1 and SMS2), separated by 32 degrees of longitude on February 1, 1975, were analyzed photogrametrically to yield cloud heights with a two-sigma uncertainty of 500 meters. These cloud heights compare favorably with heights of the same clouds measured by radar and IR methods. The same SMS image pairs were used to measure mountaintop heights with a mean deviation of 0.24 km from cartographic values.

  9. Predicting Daily Insolation with Hourly Cloud Height and Coverage.

    NASA Astrophysics Data System (ADS)

    Meyers, T. P.; Dale, R. F.

    1983-04-01

    Solar radiation information is used in crop growth, boundary layer, entomological and plant pathological models, and in determining the potential use of active and passive solar energy systems. Yet solar radiation is among the least measured meteorological variables.A semi-physical model based on standard meteorological data was developed to estimate solar radiation received at the earth's surface. The radiation model includes the effects of Rayleigh scattering, absorption by water vapor and permanent gases, and absorption and scattering by aerosols and clouds. Cloud attenuation is accounted for by assigning transmission coefficients based on cloud height and amount. The cloud transmission coefficients for various heights and coverages were derived empirically from hourly observations of solar radiation in conjunction with corresponding cloud observations at West Lafayette, Indiana. The model was tested with independent data from West Lafayette and Indianapolis, Madison, WI, Omaha, NE, Columbia, MO, Nashville, TN, Seattle, WA, Los Angeles, CA, Phoenix, AZ, Lake Charles, LA, Miami, FL, and Sterling, VA. For each of these locations a 16% random sample of days was drawn within each of the 12 months in a year for testing the model. Excellent agreement between predicted and observed radiation values was obtained for all stations tested. Mean absolute errors ranged from 1.05 to 1.80 MJ m2 day1 and root-mean-square errors ranged from 1.31 to 2.32 MJ m2 day1. The model's performance judged by relative error was found to be independent of season and cloud amount for all locations tested.

  10. Analysis of cloud top height and cloud coverage from satellites using the O2 A and B bands

    NASA Technical Reports Server (NTRS)

    Kuze, Akihiko; Chance, Kelly V.

    1994-01-01

    Cloud height and cloud coverage detection are important for total ozone retrieval using ultraviolet and visible scattered light. Use of the O2 A and B bands, around 761 and 687 nm, by a satellite-borne instrument of moderately high spectral resolution viewing in the nadir makes it possible to detect cloud top height and related parameters, including fractional coverage. The measured values of a satellite-borne spectrometer are convolutions of the instrument slit function and the atmospheric transmittance between cloud top and satellite. Studies here determine the optical depth between a satellite orbit and the Earth or cloud top height to high accuracy using FASCODE 3. Cloud top height and a cloud coverage parameter are determined by least squares fitting to calculated radiance ratios in the oxygen bands. A grid search method is used to search the parameter space of cloud top height and the coverage parameter to minimize an appropriate sum of squares of deviations. For this search, nonlinearity of the atmospheric transmittance (i.e., leverage based on varying amounts of saturation in the absorption spectrum) is important for distinguishing between cloud top height and fractional coverage. Using the above-mentioned method, an operational cloud detection algorithm which uses minimal computation time can be implemented.

  11. Thunderstorm cloud height-rainfall rate relations for use with satellite rainfall estimation techniques

    NASA Technical Reports Server (NTRS)

    Adler, R. F.; Mack, R. A.

    1984-01-01

    Observational studies of thunderstorm cloud height-rainfall rate and cloud height-volume rainfall rate relations are reviewed with significant variations being noted among climatological regimes. Analysis of the Florida (summer) and Oklahoma (spring) relations are made using a one-dimensional cloud model to ascertain the important factors in determining the individual cloud-rain relations and the differences between the two regimes. In general, the observed relations are well simulated by the model-based calculations. The generally lower predicted rain rates in Oklahoma (as compared to Florida) result from lower precipitation efficiencies which are due to a combination of larger entrainment (related to larger vertical wind shear) and drier environment. The generally steeper slope of the Oklahoma rain rate height curves is shown to be due to a stronger variation in maximum vertical velocity with cloud top height, which, in turn, is related to the greater static stability in the range of cloud tops. The impact of the regime-to-regime variations on empirical rain estimation schemes based on satellite-observed cloud height or cloud temperature information is discussed and a rain estimation approach based on model-generated cloud-rain relations is outlined.

  12. Stratocumulus cloud height variations determined from surface and satellite observations

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Young, David F.; Davies, R.; Blaskovic, M.; Albrecht, Bruce A.

    1990-01-01

    Determination of cloud-top heights from satellite-inferred cloud-top temperatures is a relatively straightforward procedure for a well-behaved troposphere. The assumption of a monotonically decreasing temperature with increasing altitude is commonly used to assign a height to a given cloud-top temperature. In the hybrid bispectral threshold method, or HBTM, Minnis et al. (1987) assume that the lapse rate for the troposphere is -6.5/Kkm and that the surface temperature which calibrated this lapse rate is the 24 hour mean of the observed or modeled clear-sky, equivalent blackbody temperature. The International Satellite Cloud Climatology Project (ISCCP) algorithm (Rossow et al., 1988) attempts a more realistic assignment of height by utilizing interpolations of analyzed temperature fields from the National Meteorological Center (NMC) to determine the temperature at a given level over the region of interest. Neither these nor other techniques have been tested to any useful extent. The First ISCCP Regional Experiment (FIRE) Intensive Field Observations (IFO) provide an excellent opportunity to assess satellite-derived cloud height results because of the availability of both direct and indirect cloud-top altitude data of known accuracy. The variations of cloud-top altitude during the Marine Stratocumulus IFO (MSIFO, June 29 to July 19, 1987) derived from surface, aircraft, and satellite data are examined.

  13. Stereographic cloud heights from imagery of SMS/GOES satellites

    NASA Technical Reports Server (NTRS)

    Minzner, R. A.; Shenk, W. E.; Teagle, R. D.; Steranka, J.

    1978-01-01

    Stereographic pairs of SMS/GOES images, generated simultaneously by the spin-scan cameras of each of two geostationary satellites (SMS 1 and SMS 2, separated by 32 degrees of longitude on February 17, 1975), have been analyzed photogrammetrically to yield cloud heights with a two-sigma uncertainty of 500 meters. The 32-degree angle between the image plane of the two satellites, plus the distortions involved in transferring the image of a nearly full hemisphere of the earth onto a plane, required the development of a special instrument to permit stereographic compilation. Cloud heights measured stereographically compared favorably with heights of the same clouds measured by radar and IR methods. The same SMS image pairs were used to measure mountain-top heights with a mean deviation of 0.24 km from cartographic values.

  14. Retrieval of cloud height from SCIAMACHY using oxygen absorption around 630nm

    NASA Astrophysics Data System (ADS)

    Grzegorski, Michael; Deutschmann, Tim; Platt, Ulrich; Wang, Ping; Wagner, Thomas

    2010-05-01

    The SCanning Imaging Absorption spectrometer for Atmospheric ChartographY (SCIAMACHY) on ENVISAT allows measurements of different atmospheric trace gases (e.g. O3, NO2, SO2, CH4, HCHO, CO, BrO, H2O, O2, O4) using the DOAS technique. The HICRU algorithm retrieves cloud height using the spectral analysis of the oxygen absorption around 630nm combined with results of the Monte-Carlo model TRACY-II and a new SCIAMACHY surface albedo database. The results are compared to: 1.) cloud height retrievals of other satellite instruments (MERIS, MODIS) 2.) ISCCP climatology 3.) SCIAMACHY cloud algorithms (SACURA, FRESCO+) 4.) LIDAR/RADAR measurements. For low clouds, the HICRU algorithm retrieves cloud heights more close to the the top, because of the assumption of an appropriate cloud model with a realistic estimation of the scattering inside the cloud. It is also demonstrated, that none the three SCIAMACHY cloud algorithms HICRU, SACURA and FRESCO+ is able to retrieve the top of high clouds because of principal characteristics of the retrieval methods based on oxygen absorption. But oxygen absorptions can provide important additional information on the vertical cloud structure and multiple cloud layers if the method is combined with cloud-top-retrieval using windows in the thermal infrared. An application of these concepts to the GOSAT instrument will be discussed.

  15. Aerosol - cloud - water vapor relations for cloud systems of different heights

    NASA Astrophysics Data System (ADS)

    Stathopoulos, Stavros; Kourtidis, Konstantinos; Georgoulias, Aristeidis

    2016-04-01

    Here we examine the annual and seasonal aerosol - cloud relations over three major urban clusters of China, for different cloud heights and atmospheric water vapor amounts, using a decade of Aerosol Optical Depth at 550nm (AOD), Cloud Cover (CC), Cloud Optical Depth (COD), Water Vapor (WV) and Cloud Top Pressure (CTP) data from the MODIS instrument. Over all regions (spanning from temperate to tropical monsoon climates) and for all seasons, CC is found to increase with AOD, WV and cloud height. Aerosols, at low WV environments and under constant cloud height, have less impact on CC than at high WV environments. In addition, AOD has a varying influence on COD depending on CTP. Finally, COD is found to increase with height for low and middle height clouds, and with increasing AOD, especially at low AOD, the latter being in line with the expected first indirect effect. This research has been financed under the FP7 Programme MarcoPolo (Grand Number 606953, Theme SPA.2013.3.2-01).

  16. A Polar Specific 20-year Data Set of Cloud Fraction and Height Derived from Satellite Radiances

    NASA Technical Reports Server (NTRS)

    Francis, Jennifer; Schweiger, Axel

    2004-01-01

    This is a final report to fulfill reporting requirements on NASA grant NASA NAG5-11800. Jennifer Francis, PI at Rutgers University is currently continuing work on this project under a no-cost extension. Work at the University of Washington portion of the project is completed and reported here. Major accomplishments and results from this portion of the project include: 1) Extension and reprocessing of TOVS Polar Pathfinder (Path-P) data set; 2) Analysis of Arctic cloud variability; 3) Validation of Southern Hemisphere ocean cloud retrievals; 4) Intercompared cloud height information from AVHRR retrievals and surface-based cloud radar information.

  17. Cloud Height Maps for Hurricanes Frances and Ivan

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Multi-angle Imaging SpectroRadiometer (MISR) captured these images and cloud-top height retrievals of Hurricane Frances on September 4, 2004, when the eye sat just off the coast of eastern Florida, and Hurricane Ivan on September 5th, after this cyclone had devastated Grenada and was heading toward the central and western Caribbean. Hurricane Frances made landfall in the early hours of September 5, and was downgraded to Tropical Storm status as it swept inland through the Florida panhandle and continued northward. On the heels of Frances is Hurricane Ivan, which is on record as the strongest tropical cyclone to form at such a low latitude in the Atlantic, and was the most powerful hurricane to have hit the Caribbean in nearly a decade.

    The ability of forecasters to predict the intensity and amount of rainfall associated with hurricanes still requires improvement, especially on the 24 to 48 hour timescale vital for disaster planning. To improve the operational models used to make hurricane forecasts, scientists need to better understand the multi-scale interactions at the cloud, mesoscale and synoptic scales that lead to hurricane intensification and dissipation, and the various physical processes that affect hurricane intensity and rainfall distributions. Because these uncertainties with regard to how to represent cloud processes still exist, it is vital that the model findings be evaluated against hurricane observations whenever possible. Two-dimensional maps of cloud height such as those shown here offer an unprecedented opportunity for comparing simulated cloud fields against actual hurricane observations.

    The left-hand panel in each image pair is a natural color view from MISR's nadir camera. The right-hand panels are cloud-top height retrievals produced by automated computer recognition of the distinctive spatial features between images acquired at different view angles. These results indicate that at the time that these images were

  18. Cloud Coverage and Height Distribution from the GLAS Polar Orbiting Lidar: Comparison to Passive Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Spinhime, J. D.; Palm, S. P.; Hlavka, D. L.; Hart, W. D.; Mahesh, A.

    2004-01-01

    The Geoscience Laser Altimeter System (GLAS) began full on orbit operations in September 2003. A main application of the two-wavelength GLAS lidar is highly accurate detection and profiling of global cloud cover. Initial analysis indicates that cloud and aerosol layers are consistently detected on a global basis to cross-sections down to 10(exp -6) per meter. Images of the lidar data dramatically and accurately show the vertical structure of cloud and aerosol to the limit of signal attenuation. The GLAS lidar has made the most accurate measurement of global cloud coverage and height to date. In addition to the calibrated lidar signal, GLAS data products include multi level boundaries and optical depth of all transmissive layers. Processing includes a multi-variable separation of cloud and aerosol layers. An initial application of the data results is to compare monthly cloud means from several months of GLAS observations in 2003 to existing cloud climatologies from other satellite measurement. In some cases direct comparison to passive cloud retrievals is possible. A limitation of the lidar measurements is nadir only sampling. However monthly means exhibit reasonably good global statistics and coverage results, at other than polar regions, compare well with other measurements but show significant differences in height distribution. For polar regions where passive cloud retrievals are problematic and where orbit track density is greatest, the GLAS results are particularly an advance in cloud cover information. Direct comparison to MODIS retrievals show a better than 90% agreement in cloud detection for daytime, but less than 60% at night. Height retrievals are in much less agreement. GLAS is a part of the NASA EOS project and data products are thus openly available to the science community (see http://glo.gsfc.nasa.gov).

  19. Global cloud top height retrieval using SCIAMACHY limb spectra: model studies and first results

    NASA Astrophysics Data System (ADS)

    Eichmann, Kai-Uwe; Lelli, Luca; von Savigny, Christian; Sembhi, Harjinder; Burrows, John P.

    2016-03-01

    Cloud top heights (CTHs) are retrieved for the period 1 January 2003 to 7 April 2012 using height-resolved limb spectra measured with the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) on board ENVISAT (ENVIronmental SATellite). In this study, we present the retrieval code SCODA (SCIAMACHY cloud detection algorithm) based on a colour index method and test the accuracy of the retrieved CTHs in comparison to other methods. Sensitivity studies using the radiative transfer model SCIATRAN show that the method is capable of detecting cloud tops down to about 5 km and very thin cirrus clouds up to the tropopause. Volcanic particles can be detected that occasionally reach the lower stratosphere. Upper tropospheric ice clouds are observable for a nadir cloud optical thickness (COT) ≥ 0.01, which is in the subvisual range. This detection sensitivity decreases towards the lowermost troposphere. The COT detection limit for a water cloud top height of 5 km is roughly 0.1. This value is much lower than thresholds reported for passive cloud detection methods in nadir-viewing direction. Low clouds at 2 to 3 km can only be retrieved under very clean atmospheric conditions, as light scattering of aerosol particles interferes with the cloud particle scattering. We compare co-located SCIAMACHY limb and nadir cloud parameters that are retrieved with the Semi-Analytical CloUd Retrieval Algorithm (SACURA). Only opaque clouds (τN,c > 5) are detected with the nadir passive retrieval technique in the UV-visible and infrared wavelength ranges. Thus, due to the frequent occurrence of thin clouds and subvisual cirrus clouds in the tropics, larger CTH deviations are detected between both viewing geometries. Zonal mean CTH differences can be as high as 4 km in the tropics. The agreement in global cloud fields is sufficiently good. However, the land-sea contrast, as seen in nadir cloud occurrence frequency distributions, is not

  20. Cloud Height Estimation with a Single Digital Camera and Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Carretas, Filipe; Janeiro, Fernando M.

    2014-05-01

    Clouds influence the local weather, the global climate and are an important parameter in the weather prediction models. Clouds are also an essential component of airplane safety when visual flight rules (VFR) are enforced, such as in most small aerodromes where it is not economically viable to install instruments for assisted flying. Therefore it is important to develop low cost and robust systems that can be easily deployed in the field, enabling large scale acquisition of cloud parameters. Recently, the authors developed a low-cost system for the measurement of cloud base height using stereo-vision and digital photography. However, due to the stereo nature of the system, some challenges were presented. In particular, the relative camera orientation requires calibration and the two cameras need to be synchronized so that the photos from both cameras are acquired simultaneously. In this work we present a new system that estimates the cloud height between 1000 and 5000 meters. This prototype is composed by one digital camera controlled by a Raspberry Pi and is installed at Centro de Geofísica de Évora (CGE) in Évora, Portugal. The camera is periodically triggered to acquire images of the overhead sky and the photos are downloaded to the Raspberry Pi which forwards them to a central computer that processes the images and estimates the cloud height in real time. To estimate the cloud height using just one image requires a computer model that is able to learn from previous experiences and execute pattern recognition. The model proposed in this work is an Artificial Neural Network (ANN) that was previously trained with cloud features at different heights. The chosen Artificial Neural Network is a three-layer network, with six parameters in the input layer, 12 neurons in the hidden intermediate layer, and an output layer with only one output. The six input parameters are the average intensity values and the intensity standard deviation of each RGB channel. The output

  1. Deep Convective Cloud Top Heights and Their Thermodynamic Control During CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Sherwood, Steven C.; Minnis, Patrick; McGill, Matthew

    2004-01-01

    Infrared (11 micron) radiances from GOES-8 and local radiosonde profiles, collected during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) in July 2002, are used to assess the vertical distribution of Florida-area deep convective cloud top height and test predictions as to its variation based on parcel theory. The highest infrared tops (Z(sub 11)) reached approximately to the cold point, though there is at least a 1-km uncertainty due to unknown cloud-environment temperature differences. Since lidar shows that visible 'tops' are 1 km or more above Z(sub 11), visible cloud tops frequently penetrated the lapse-rate tropopause (approx. 15 km). Further, since lofted ice content may be present up to approx. 1 km above the visible tops, lofting of moisture through the mean cold point (15.4 km) was probably common. Morning clouds, and those near Key West, rarely penetrated the tropopause. Non-entraining parcel theory (i.e., CAPE) does not successfully explain either of these results, but can explain some of the day-to-day variations in cloud top height over the peninsula. Further, moisture variations above the boundary layer account for most of the day-today variability not explained by CAPE, especially over the oceans. In all locations, a 20% increase in mean mixing ratio between 750 and 500 hPa was associated with about 1 km deeper maximum cloud penetration relative to the neutral level. These results suggest that parcel theory may be useful for predicting changes in cumulus cloud height over time, but that parcel entrainment must be taken into account even for the tallest clouds. Accordingly, relative humidity above the boundary layer may exert some control on the height of the tropical troposphere.

  2. Inter-Comparisons between Radiometric and Geometric Cloud Top Height Products

    NASA Astrophysics Data System (ADS)

    Madani, H.; Carr, J. L.; Heidinger, A. K.; Wanzong, S.

    2015-12-01

    The accurate retrieval of cloud properties such as cloud top height from satellite imagery is important for early warning of severe weather development and for reliable aviation weather forecasts. This paper describes a comparison between cloud top height products (Stereo-CTH), determined using an algorithm based on stereoscopy, and operational cloud top height products which are generated by using the Clouds from AVHRR Extended (CLAVR-x) cloud processing system. Both methods work with Geostationary Operational Environmental Satellite (GOES) data, and in limited cases, we also compare with data from CALIPSO. The Stereo-CTH algorithm is based on matching images of the same or similar spectral bands acquired quasi-simultaneously by satellites from two or three different vantage points. The CTH product generated by CLAVR-x is based on the Algorithm Working Group (AWG) Cloud Height Algorithm (ACHA) and uses only Infrared (IR) observations from a single sensor. The Stereo-CTH algorithm was applied to GOES data when all three satellites (GOES 13-15) were operational at the same time allowing for the generation of a two-satellite CTH in areas of overlap between two satellites and a three-satellite CTH where geographic coverage is available for all three satellites. The comparison was applied to the three-satellite CTH, which is considered the best quality data. The comparison between the two products displays an approximately linear relationship between the Stereo-CTH and the CLAVR-CTH for most of the data as shown in Figure 1. The observed differences are investigated and discussed.

  3. Comparing different methods to retrieve cloud top height from Meteosat satellite data

    NASA Astrophysics Data System (ADS)

    Tabone, I.; Briz, S.; Anzalone, A.; De Castro, A. J.; Lopez, F.; Ferrarese, S.; Isgrò, F.; Cassardo, C.; Cremonini, R.; Bertaina, M.

    2015-10-01

    Cloud parameters such as the Cloud Top Height (CTH), Cloud Top Temperature (CTT), emissivity, particle size and optical depth have always been matter of interest for the atmospheric community. Particularly the CTH provides information leading to better understand the cloud radiative effects. Although there are many meteorological satellites providing the CTH, there are other sensors, not devoted to this purpose, that give some information from which this crucial parameter can be estimated. In this contribution we will describe three different methodologies to retrieve the CTH. The first technique is based on stereo-vision algorithms and requires two different views of the same scene and does not need of extra atmospheric information. In the second one, brightness temperatures in two IR spectral bands are converted to real cloud temperature by means of the proposed algorithms. From the CTT, the CTH is estimated using temperature vertical profiles (measured or modeled). The third technique retrieves the CTH from the output parameters of post event simulations performed by a Numerical Weather Prediction (NWP) model that in this work will be the mesoscale model WRF (Weather Research Forecast). This article presents a preliminary work, in which the heights retrieved by the three methodologies applied to the geostationary satellite Meteosat 10 are compared with the heights given by MODIS sensor installed on the polar satellite AQUA. This promising results show that valuable information about CTH can be retrieved from Meteosat which provide high frequency and large scale data useful for weather and climate research.

  4. A Simple Stochastic Model for Generating Broken Cloud Optical Depth and Top Height Fields

    NASA Technical Reports Server (NTRS)

    Prigarin, Sergei M.; Marshak, Alexander

    2007-01-01

    A simple and fast algorithm for generating two correlated stochastic twodimensional (2D) cloud fields is described. The algorithm is illustrated with two broken cumulus cloud fields: cloud optical depth and cloud top height retrieved from Moderate Resolution Imaging Spectrometer (MODIS). Only two 2D fields are required as an input. The algorithm output is statistical realizations of these two fields with approximately the same correlation and joint distribution functions as the original ones. The major assumption of the algorithm is statistical isotropy of the fields. In contrast to fractals and the Fourier filtering methods frequently used for stochastic cloud modeling, the proposed method is based on spectral models of homogeneous random fields. For keeping the same probability density function as the (first) original field, the method of inverse distribution function is used. When the spatial distribution of the first field has been generated, a realization of the correlated second field is simulated using a conditional distribution matrix. This paper is served as a theoretical justification to the publicly available software that has been recently released by the authors and can be freely downloaded from http://i3rc.gsfc.nasa.gov/Public codes clouds.htm. Though 2D rather than full 3D, stochastic realizations of two correlated cloud fields that mimic statistics of given fields have proved to be very useful to study 3D radiative transfer features of broken cumulus clouds for better understanding of shortwave radiation and interpretation of the remote sensing retrievals.

  5. Tornado occurrences related to overshooting cloud-top heights as determined from ATS pictures

    NASA Technical Reports Server (NTRS)

    Fujita, T. T.

    1972-01-01

    A sequence of ATS 3 pictures including the development history of large anvil clouds near Salina, Kansas was enlarged by NASA into 8X negatives which were used to obtain the best quality prints by mixing scan lines in 8 steps to minimize checker-board patterns. These images resulted in the best possible resolution, permitting use to compute the heights of overshooting tops above environmental anvil levels based on cloud shadow relationships along with the techniques of lunar topographic mapping. Of 39 heights computed, 6 were within 15 miles of reported positions of 3 tornadoes. It was found that the tornado proximity tops were mostly less than 5000 ft, with one exception of 7000 ft, suggesting that tornadoes are most likely to occur when overshooting height decreases. In order to simulate surface vortices induced by cloud-scale rotation and updraft fields, a laboratory model was constructed. The model experiment has shown that the rotation or updraft field induces a surface vortex but their combination does prevent the formation of the surface vortex. This research leads to a conclusion that the determination of the cloud-top topography and its time variation is of extreme importance in predicting severe local storms for a period of 0 to 6 hours.

  6. Temporal variation of the cloud top height over the tropical Pacific observed by geostationary satellites

    NASA Astrophysics Data System (ADS)

    Nishi, N.; Hamada, A.

    2012-12-01

    Stratiform clouds (nimbostratus and cirriform clouds) in the upper troposphere accompanied with cumulonimbus activity cover large part of the tropical region and largely affect the radiation and water vapor budgets there. Recently new satellites (CloudSat and CALIPSO) can give us the information of cloud height and cloud ice amount even over the open ocean. However, their coverage is limited just below the satellite paths; it is difficult to capture the whole shape and to trace the lifecycle of each cloud system by using just these datasets. We made, as a complementary product, a dataset of cloud top height and visible optical thickness with one-hour resolution over the wide region, by using infrared split-window data of the geostationary satellites (AGU fall meeting 2011) and released on the internet (http://database.rish.kyoto-u.ac.jp/arch/ctop/). We made lookup tables for estimating cloud top height only with geostationary infrared observations by comparing them with the direct cloud observation by CloudSat (Hamada and Nishi, 2010, JAMC). We picked out the same-time observations by MTSAT and CloudSat and regressed the cloud top height observation of CloudSat back onto 11μm brightness temperature (Tb) and the difference between the 11μm Tb and 12μm Tb. We will call our estimated cloud top height as "CTOP" below. The area of our coverage is 85E-155W (MTSAT2) and 80E-160W(MTSAT1R), and 20S-20N. The accuracy of the estimation with the IR split-window observation is the best in the upper tropospheric height range. We analyzed the formation and maintenance of the cloud systems whose top height is in the upper troposphere with our CTOP analysis, CloudSat 2B-GEOPROF, and GSMaP (Global Satellite Mapping of Precipitation) precipitation data. Most of the upper tropospheric stratiform clouds have their cloud top within 13-15 km range. The cloud top height decreases slowly when dissipating but still has high value to the end. However, we sometimes observe that a little

  7. Altimeter height measurement error introduced by the presence of variable cloud and rain attenuation

    NASA Technical Reports Server (NTRS)

    Monaldo, F. M.; Goldhirsh, J.; Walsh, E. J.

    1986-01-01

    It has recently been recognized that spatially inhomogeneous clouds and rain can substantially affect the height precision obtainable from a spaceborne radar altimeter system. Through computer simulation, it has been found that typical levels of cloud and rain intensities and associated spatial variabilities may degrade altimeter precision at 13.5 GHz and, in particular, cause severe degradation at 35 GHz. This degradation in precision is a result of radar signature distortion caused by variable attenuation over the beam limited altimeter footprint. Because attenuation effects increase with frequency, imprecision caused by them will significantly impact on the frequency selection of future altimeters. In this paper the degradation of altimeter precision introduced by idealized cloud and rain configurations as well as for a realistic rain configuration as measured with a ground based radar is examined.

  8. Altimeter height measurement errors introduced by the presence of variable cloud and rain attenuation

    NASA Technical Reports Server (NTRS)

    Monaldo, F. M.; Goldhirsh, J.; Walsh, E. J.

    1984-01-01

    It has recently been recognized that spatially inhomogeneous clouds and rain can substantially affect the height precision obtainable from a spaceborne radar altimeter system. Through computer simulation, it has been found that typical levels of cloud and rain intensities and associated spatial variabilities may degrade altimeter precision at 13.5 GHz and, in particular, cause severe degradation at 35 GHz. This degradation in precision is a result of radar signature distortion caused by variable attenuation over the beam limited altimeter footprint. Because attenuation effects increase with frequency, imprecision caused by them will significantly impact on the frequency selection of future altimeters. In this paper the degradation of altimeter precision introduced by idealized cloud and rain configurations as well as for a realistic rain configuration as measured with a ground based radar is examined.

  9. A new algorithm for detecting cloud height using OMPS/LP measurements

    NASA Astrophysics Data System (ADS)

    Chen, Zhong; DeLand, Matthew; Bhartia, Pawan K.

    2016-03-01

    The Ozone Mapping and Profiler Suite Limb Profiler (OMPS/LP) ozone product requires the determination of cloud height for each event to establish the lower boundary of the profile for the retrieval algorithm. We have created a revised cloud detection algorithm for LP measurements that uses the spectral dependence of the vertical gradient in radiance between two wavelengths in the visible and near-IR spectral regions. This approach provides better discrimination between clouds and aerosols than results obtained using a single wavelength. Observed LP cloud height values show good agreement with coincident Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements.

  10. Arctic PBL Cloud Height and Motion Retrievals from MISR and MINX

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.

    2012-01-01

    How Arctic clouds respond and feedback to sea ice loss is key to understanding of the rapid climate change seen in the polar region. As more open water becomes available in the Arctic Ocean, cold air outbreaks (aka. off-ice flow from polar lows) produce a vast sheet of roll clouds in the planetary boundary layer (PBl). The cold air temperature and wind velocity are the critical parameters to determine and understand the PBl structure formed under these roll clouds. It has been challenging for nadir visible/IR sensors to detect Arctic clouds due to lack of contrast between clouds and snowy/icy surfaces. In addition) PBl temperature inversion creates a further problem for IR sensors to relate cloud top temperature to cloud top height. Here we explore a new method with the Multiangle Imaging Spectro-Radiometer (MISR) instrument to measure cloud height and motion over the Arctic Ocean. Employing a stereoscopic-technique, MISR is able to measure cloud top height accurately and distinguish between clouds and snowy/icy surfaces with the measured height. We will use the MISR INteractive eXplorer (MINX) to quantify roll cloud dynamics during cold-air outbreak events and characterize PBl structures over water and over sea ice.

  11. Remote Sensing of Cloud Top Heights Using the Research Scanning Polarimeter

    NASA Technical Reports Server (NTRS)

    Sinclair, Kenneth; van Diedenhoven, Bastiaan; Cairns, Brian; Yorks, John; Wasilewski, Andrzej

    2015-01-01

    Clouds cover roughly two thirds of the globe and act as an important regulator of Earth's radiation budget. Of these, multilayered clouds occur about half of the time and are predominantly two-layered. Changes in cloud top height (CTH) have been predicted by models to have a globally averaged positive feedback, however observational changes in CTH have shown uncertain results. Additional CTH observations are necessary to better and quantify the effect. Improved CTH observations will also allow for improved sub-grid parameterizations in large-scale models and accurate CTH information is important when studying variations in freezing point and cloud microphysics. NASA's airborne Research Scanning Polarimeter (RSP) is able to measure cloud top height using a novel multi-angular contrast approach. RSP scans along the aircraft track and obtains measurements at 152 viewing angles at any aircraft location. The approach presented here aggregates measurements from multiple scans to a single location at cloud altitude using a correlation function designed to identify the location-distinct features in each scan. During NASAs SEAC4RS air campaign, the RSP was mounted on the ER-2 aircraft along with the Cloud Physics Lidar (CPL), which made simultaneous measurements of CTH. The RSPs unique method of determining CTH is presented. The capabilities of using single and combinations of channels within the approach are investigated. A detailed comparison of RSP retrieved CTHs with those of CPL reveal the accuracy of the approach. Results indicate a strong ability for the RSP to accurately identify cloud heights. Interestingly, the analysis reveals an ability for the approach to identify multiple cloud layers in a single scene and estimate the CTH of each layer. Capabilities and limitations of identifying single and multiple cloud layers heights are explored. Special focus is given to sources of error in the method including optically thin clouds, physically thick clouds, multi

  12. A development of cloud top height retrieval using thermal infrared spectra observed with GOSAT and comparison with CALIPSO data

    NASA Astrophysics Data System (ADS)

    Someya, Yu; Imasu, Ryoichi; Saitoh, Naoko; Ota, Yoshifumi; Shiomi, Kei

    2016-05-01

    An algorithm based on CO2 slicing, which has been used for cirrus cloud detection using thermal infrared data, was developed for high-resolution radiance spectra from satellites. The channels were reconstructed based on sensitivity height information of the original spectral channels to reduce the effects of measurement errors. Selection of the reconstructed channel pairs was optimized for several atmospheric profile patterns using simultaneous studies assuming a cloudy sky. That algorithm was applied to data by the Greenhouse gases Observing SATellite (GOSAT). Results were compared with those obtained from the space-borne lidar instrument on-board Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). Monthly mean cloud amounts from the slicing generally agreed with those from CALIPSO observations despite some differences caused by surface temperature biases, optically very thin cirrus, multilayer structures of clouds, extremely low cloud tops, and specific atmospheric conditions. Comparison of coincident data showed good agreement, except for some cases, and revealed that the improved slicing method is more accurate than the traditional slicing method. Results also imply that improved slicing can detect low-level clouds with cloud top heights as low as approximately 1.5 km.

  13. Stereographic cloud heights from the imagery of two scan-synchronized geostationary satellites

    NASA Technical Reports Server (NTRS)

    Minzner, R. A.; Teagle, R. D.; Steranka, J.; Shenk, W. E.

    1979-01-01

    Scan synchronization of the sensors of two SMS-GOES satellites yields imagery from which cloud heights can be derived stereographically with a theoretical two-sigma random uncertainty of + or - 0.25 km for pairs of satellites separated by 60 degrees of longitude. Systematic height errors due to cloud motion can be kept below 100 m for all clouds with east-west components of speed below hurricane speed, provided the scan synchronization is within 40 seconds at the mid-point latitude, and the spin axis of each satellite is parallel to that of the earth.

  14. Are Satellite-Retrieved Correlations Between Cloud-Top-Height and Aerosol Optical Depth Evidence of Aerosol Invigoration of Convection?

    NASA Astrophysics Data System (ADS)

    Stier, P.; Gryspeerdt, E.; Grandey, B. S.; Wagner, T. M.; Kipling, Z.

    2013-12-01

    A robust negative correlation between cloud top pressure (CTP) and aerosol optical depth (AOD) has been documented in a number of studies and triggered hypotheses on aerosol invigoration of convective clouds. However, correlation based analysis is limited in its explanatory power as it does not directly establish physical causality between the correlated properties which may be cross-correlated with other meteorological factors. In this study we combine the global aerosol-climate model ECHAM-HAM with mechanistic coupling of the aerosol microphysics (HAM) to the two-moment cloud microphysics in the Convective Cloud Field Model (CCFM) and satellite data from SEVIRI, MODIS, ISCCP, CALIOP and CloudSat. CCFM explicitly simulates a spectrum of convective cloud top heights within each grid box, providing enhanced realism over traditional mass flux schemes. Consistency is established through sampling of the models at satellite overpass times and the use of ISCCP and COSP satellite simulators in the model. We employ this setup to investigate the contributions of aerosol-cloud interactions and meteorological cross-correlations to AOD--CTP correlations. Our analysis shows that a significant fraction of the observed AOD-CTP relationship is driven by the meteorological link between CTP and cloud fraction (CF), which itself is strongly linked to AOD via the humidification of aerosol in humid (hence preferentially cloudy) environments. Our results shed light on this controversial issue with potentially significant climate implications and emphasise the difficulty to constrain for meteorological variability in observational studies of aerosol-cloud interactions.

  15. Thermal disequilibrium at the top of volcanic clouds and its effect on estimates of the column height

    NASA Technical Reports Server (NTRS)

    Woods, Andrew W.; Self, Stephen

    1992-01-01

    Satellite images of large volcanic explosions reveal that the tops of volcanic eruptions columns are much cooler than the surrounding atmosphere. It is proposed that this effect occurs whenever a mixture of hot volcanic ash and entrained air ascends sufficiently high into a stably stratified atmosphere. Although the mixture is initially very hot, it expands and cools as the ambient pressure decreases. It is shown that cloud-top undercoolings in excess of 20 C may develop in clouds that penetrate the stratosphere, and it is predicted that, for a given cloud-top temperature, variations in the initial temperature of 100-200 C may correspond to variations in the column height of 5-10 km. It is deduced that the present practice of converting satellite-based measurements of the temperature at the top of volcanic eruptions columns to estimates of the column height will produce rather inaccurate results and should therefore be discontinued.

  16. Cloud-top Height Esimation Method by Geostationary Satellite Split-Window Measurements Trained with CALIPSO and CloudSat data

    NASA Astrophysics Data System (ADS)

    Nishi, Noriyuki; Hamada, Atsushi; Hirose, Hitoshi

    2015-04-01

    We released a database of cloud top height and visible optical thickness (CTOP) with one-hour resolution over the tropical western Pacific and Maritime Continent, by using infrared split-window data of the geostationary satellites (MTSAT) (http://database.rish.kyoto-u.ac.jp/arch/ctop/). We made lookup tables for estimating cloud top height only with geostationary infrared observations by comparing them with the direct cloud observation by CloudSat (Hamada and Nishi, 2010, JAMC). We picked out the same-time observations by MTSAT and CloudSat and regressed the cloud top height observation of CloudSat back onto 11 micro m brightness temperature (Tb) and the difference between the 11 micro m Tb and 12 micro m Tb of MTSAT. The database contains digital data and quick look images from Jul 2005 to real time and the area in 85E-155W (MTSAT2) and 20S-20N. Though the CTOP dataset is particularly useful for the upper tropospheric clouds, it has one serious problem. The cloud radar onboard CloudSat cannot well detect the optically thin cirrus clouds composed of small ice crystals and misses a certain part of cirriform clouds in the upper troposphere. In order to overcome this weakness, we are now making next version of the CTOP by using the lidar data (CALIOP) onboard CALIPSO satellite. One problem on the use of lidar observation is that they observe very thin cirrus formed around the tropopause. The main purpose of CTOP dataset is to provide the top height of clouds that originate from cloud clusters including cumulonimbus and nimbostratus, not of in-situ cirrus clouds formed near the tropopause. To exclude the very thin tropopause cirrus, we define cloud-top height of CALIOP observation as the height at which the optical depth accumulated from the cloud top is 0.2, instead of the CALIOP cloud top itself. With this criterion we can succeed in estimating the top height of cirruiform clouds, but it has another problem for thick clouds like cumulonimbus. For such clouds, the

  17. Synergy of stereo cloud top height and ORAC optimal estimation cloud retrieval: evaluation and application to AATSR

    NASA Astrophysics Data System (ADS)

    Fisher, Daniel; Poulsen, Caroline A.; Thomas, Gareth E.; Muller, Jan-Peter

    2016-03-01

    In this paper we evaluate the impact on the cloud parameter retrievals of the ORAC (Optimal Retrieval of Aerosol and Cloud) algorithm following the inclusion of stereo-derived cloud top heights as a priori information. This is performed in a mathematically rigorous way using the ORAC optimal estimation retrieval framework, which includes the facility to use such independent a priori information. Key to the use of a priori information is a characterisation of their associated uncertainty. This paper demonstrates the improvements that are possible using this approach and also considers their impact on the microphysical cloud parameters retrieved. The Along-Track Scanning Radiometer (AATSR) instrument has two views and three thermal channels, so it is well placed to demonstrate the synergy of the two techniques. The stereo retrieval is able to improve the accuracy of the retrieved cloud top height when compared to collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), particularly in the presence of boundary layer inversions and high clouds. The impact of the stereo a priori information on the microphysical cloud properties of cloud optical thickness (COT) and effective radius (RE) was evaluated and generally found to be very small for single-layer clouds conditions over open water (mean RE differences of 2.2 (±5.9) microns and mean COD differences of 0.5 (±1.8) for single-layer ice clouds over open water at elevations of above 9 km, which are most strongly affected by the inclusion of the a priori).

  18. Retrieval of cloud fraction and height anomalies and their trend from temporally and spatially averaged infrared spectra observed from space

    NASA Astrophysics Data System (ADS)

    Kato, S.; Rose, F. G.; Liu, X.; Wielicki, B. A.; Mlynczak, M. G.

    2013-12-01

    Understanding how clouds and atmospheric properties change with time under radiative forcing is necessary to understand feedback. Generally, global clouds and atmospheric Understanding how clouds and atmospheric properties change with time under radiative forcing is necessary to understand feedback. Generally, global clouds and atmospheric properties are retrieved from satellite-based instruments. Subsequently, retrieved values from an instrument's field-of-view are averaged and the time rate of change of cloud or atmospheric properties can be inferred from averaged properties. This is simple in concept but identifying artifacts of the retrieval is difficult in practice. An alternative way to derive a trend of cloud and atmospheric properties is tying their property change directly to the observed radiance change. This average-then-retrieve approach directly utilizes instrument stability but requires separating cloud and atmospheric property changes contributing to the highly spatially and temporally averaged observed radiance change. In this presentation, we demonstrate the average-then-retrieve approach by simulating the retrieval of cloud fraction and height anomalies from highly averaged longwave spectra. We use 28 years of reanalysis (Modern Era Retrospective-Analysis for Research MERRA) for the simulation and retrieve annual 10° zonal cloud fraction and height anomalies, as well as temperature and water vapor amount anomalies. The error in retrieved anomalies is estimated based on the method discussed in Kato et al. (2011). The uncertainty in the trend estimated from retrieved anomalies is also discussed. Reference Kato, S., B. A. Wielicki, F. G. Rose, X. Liu, P. C. Taylor, D. P. Kratz, M. G. Mlynczak, D. F. Young, N. Phojanamongkolkij, S. Sun-Mack, W. F. Miller, Y. Chen, 2011b, Detection of atmospheric changes in spatially and temporally averaged infrared spectra observed from space, J Climate, 24, 6392-6407, Doi: 10.1175/JCLI-D-10-05005.1.

  19. Global cloud top height retrieval using SCIAMACHY limb spectra: model studies and first results

    NASA Astrophysics Data System (ADS)

    Eichmann, K.-U.; Lelli, L.; von Savigny, C.; Sembhi, H.; Burrows, J. P.

    2015-08-01

    Cloud top heights (CTH) were retrieved for the period 1 January 2003 to 7 April 2012 using height-resolved limb spectra measured with the Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) on board ENVISAT (ENVIronmental SATellite). In this study, we tested the sensitivity of the colour index method used in the retrieval code SCODA (SCIAMACHY Cloud Detection Algorithm) and the accuracy of the retrieved CTHs in comparison to other methods. Sensitivity studies using the radiative transfer model SCIATRAN showed that the method is capable of generally detecting cloud tops down to about 5 km and very thin cirrus clouds even up to the tropopause. Volcanic particles can also be detected that occasionally reach the lower stratosphere. Low clouds at 2-3 km can only be retrieved under very clean atmospheric conditions, as light scattering of aerosols interferes with the cloud retrieval. Upper tropospheric ice clouds are detectable for cloud optical depths down to about τN = 0.005, which is in the subvisual range. The detection sensitivity decreases towards the surface. An optical thickness of roughly 0.1 was the lower detection limit for water cloud top heights at 5 km. This value is much lower than thresholds reported for the passive cloud detection in nadir viewing direction. Comparisons with SCIAMACHY nadir cloud top heights, calculated with the Semi-Analytical CloUd Retrieval Algorithm (SACURA), showed a good agreement in the global cloud field distribution. But only opaque clouds (τN > 5) are detectable with the nadir passive retrieval technique in the UV-visible and infrared wavelength range. So due to the frequent occurrence of thin and sub-visual cirrus clouds in the tropics, large cloud top height deviations were detected between both viewing geometries. Also the land/sea contrast seen in nadir retrievals was not detected in limb mode. Co-located cloud top height measurements of the limb viewing Michelson Interferometer for Passive

  20. AATSR Based Volcanic Ash Plume Top Height Estimation

    NASA Astrophysics Data System (ADS)

    Virtanen, Timo H.; Kolmonen, Pekka; Sogacheva, Larisa; Sundstrom, Anu-Maija; Rodriguez, Edith; de Leeuw, Gerrit

    2015-06-01

    The AATSR Correlation Method (ACM) height estimation algorithm is presented. The algorithm uses Advanced Along Track Scanning Radiometer (AATSR) satellite data to detect volcanic ash plumes and to estimate the plume top height. The height estimate is based on the stereo-viewing capability of the AATSR instrument, which allows to determine the parallax between the satellite's nadir and 55° forward views, and thus the corresponding height. AATSR provides an advantage compared to other stereo-view satellite instruments: with AATSR it is possible to detect ash plumes using brightness temperature difference between thermal infrared (TIR) channels centered at 11 and 12 μm. The automatic ash detection makes the algorithm efficient in processing large quantities of data: the height estimate is calculated only for the ash-flagged pixels. Besides ash plumes, the algorithm can be applied to any elevated feature with sufficient contrast to the background, such as smoke and dust plumes and clouds. The ACM algorithm can be applied to the Sea and Land Surface Temperature Radiometer (SLSTR), scheduled for launch at the end of 2015.

  1. First height comparison of noctilucent clouds and simultaneous PMSE

    NASA Technical Reports Server (NTRS)

    Waelchli, Urs; Stegman, Jacek; Witt, Georg; Cho, John Y. N.; Miller, Clark A.; Kelley, Michael C.; Swartz, Wesley E.

    1993-01-01

    On the night of August 9-10, 1991, two rocket payloads were launched into simultaneously occurring noctilucent clouds (NLC) and polar mesospheric summer echoes (PMSE) above Esrange, a third rocket payload was launched into a NLC where a PMSE was detected 5 minutes later above Esrange, in Sweden as part of the NLC-91 campaign. An aim of this experiment was to compare the vertical structures and locations of the NLC and PMSE events. To this end, in-situ optical photometers and particle impact sensors were used to measure the altitude and vertical structure of the NLC layer, while the Cornell University portable radar interferometer (CUPRI) was used to probe the PMSE. Although this comparison is complicated by the horizontal separations between the in-situ measurements and the radar volume, and low electron densities which reduced the overall radar reflectivity, we conclude that the PMSE layer in the CUPRI radar volume remained above the NLC layer detected by the in-situ instruments by 300 to 2000 m throughout the experiment. We interpret this result as supporting the view that PMSE are more likely to result from the presence of aerosols smaller than the ones optically detectable as NLCs.

  2. Effects of explosively venting aerosol-sized particles through earth-containment systems on the cloud-stabilization height

    SciTech Connect

    Dyckes, G.W.

    1980-07-01

    A method of approximating the cloud stabilization height for aerosol-sized particles vented explosively through earth containment systems is presented. The calculated values for stabilization heights are in fair agreement with those obtained experimentally.

  3. A geometric photography model for determining cloud top heights using MISR images

    NASA Astrophysics Data System (ADS)

    He, Yongjian; Qiu, Xinfa; Sun, Zhian; Li, Qiang

    2015-10-01

    Cloud top height (CTH) is an important factor in weather forecasting and monitoring. An accurate CTH has scientific significance for improving the quality of both weather analyses and numerical weather prediction. The three-dimensional geometric method has been widely recognized as a CTH calculation method that provides relatively high accuracy. In this paper, we used the theory of digital photogrammetry and remote sensing technology to establish a geometric photography model (GPM) that can simultaneously determine CTHs and cloud movement speed (CMS) by introducing the CMS into the collinearity equation of photogrammetry. The CTH is derived by constructing three-dimensional image pairs of multitemporal Multiangle Imaging Spectroradiometer (MISR) red spectral band images from three angles. Compared with CTHs observed by ground-based lidar at the United States Southern Great Plains, the difference of CTHs using the GPM relative to the reference value was less than 300 m. By analyzing the ground control points, the GPM error is estimated to be approximately 300 m. Compared with MISR CTH data, the CTHs calculated in this study were similar to that of MISR without wind.

  4. Cloud Height Retrieval with Oxygen A and B Bands for the Deep Space Climate Observatory (DSCOVR) Mission

    NASA Technical Reports Server (NTRS)

    Yang, Yuekui; Marshak, Alexander; Mao, Jianping; Lyapustin, Alexei; Herman, Jay

    2012-01-01

    Planned to fly in 2014, the Deep Space Climate Observatory (DSCOVR) would see the whole sunlit half of the Earth from the L 1 Lagrangian point and would provide simultaneous data on cloud and aerosol properties with its Earth Polychromatic Imaging Camera (EPIC). EPIC images the Earth on a 2Kx2K CCD array, which gives a horizontal resolution of about 10 km at nadir. A filter-wheel provides consecutive images in 10 spectral channels ranging from the UV to the near-IR, including the oxygen A and B bands. This paper presents a study of retrieving cloud height with EPIC's oxygen A and B bands. As the first step, we analyzed the effect of cloud optical and geometrical properties, sun-view geometry, and surface type on the cloud height determination. Second, we developed two cloud height retrieval algorithms that are based on the Mixed Lambertian-Equivalent Reflectivity (MLER) concept: one utilizes the absolute radiances at the Oxygen A and B bands and the other uses the radiance ratios between the absorption and reference channels of the two bands. Third, we applied the algorithms to the simulated EPIC data and to the data from SCanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY (SCIAMACHY) observations. Results show that oxygen A and B bands complement each other: A band is better suited for retrievals over ocean, while B band is better over vegetated land due to a much darker surface. Improvements to the MLER model, including corrections to surface contribution and photon path inside clouds, will also be discussed.

  5. Assessment of the Performance of the Chilbolton 3-GHz Advanced Meteorological Radar for Cloud-Top-Height Retrieval.

    NASA Astrophysics Data System (ADS)

    Naud, C. M.; Muller, J.-P.; Slack, E. C.; Wrench, C. L.; Clothiaux, E. E.

    2005-06-01

    The Chilbolton 3-GHz Advanced Meteorological Radar (CAMRa), which is mounted on a fully steerable 25-m dish, can provide three-dimensional information on the presence of hydrometeors. The potential for this radar to make useful measurements of low-altitude liquid water cloud structure is investigated. To assess the cloud-height assignment capabilities of the 3-GHz radar, low-level cloud-top heights were retrieved from CAMRa measurements made between May and July 2003 and were compared with cloud-top heights retrieved from a vertically pointing 94-GHz radar that operates alongside CAMRa. The average difference between the 94- and 3-GHz radar-derived cloud-top heights is shown to be -0.1 ± 0.4 km. To assess the capability of 3-GHz radar scans to be used for satellite-derived cloud-top-height validation, multiangle imaging spectroradiometer (MISR) cloud-top heights were compared with both 94- and 3-GHz radar retrievals. The average difference between 94-GHz radar and MISR cloud-top heights is shown to be 0.1 ± 0.3 km, while the 3-GHz radar and MISR average cloud-top-height difference is shown to be -0.2 ± 0.6 km. In assessing the value of the CAMRa measurements, the problems associated with low-reflectivity values from stratiform liquid water clouds, ground clutter, and Bragg scattering resulting from turbulent mixing are all addressed. It is shown that, despite the difficulties, the potential exists for CAMRa measurements to contribute significantly to liquid water cloud-top-height retrievals, leading to the production of two-dimensional transects (i.e., maps) of cloud-top height.

  6. Satellite and Surface Data Synergy for Developing a 3D Cloud Structure and Properties Characterization Over the ARM SGP. Stage 1: Cloud Amounts, Optical Depths, and Cloud Heights Reconciliation

    NASA Technical Reports Server (NTRS)

    Genkova, I.; Long, C. N.; Heck, P. W.; Minnis, P.

    2003-01-01

    One of the primary Atmospheric Radiation Measurement (ARM) Program objectives is to obtain measurements applicable to the development of models for better understanding of radiative processes in the atmosphere. We address this goal by building a three-dimensional (3D) characterization of the cloud structure and properties over the ARM Southern Great Plains (SGP). We take the approach of juxtaposing the cloud properties as retrieved from independent satellite and ground-based retrievals, and looking at the statistics of the cloud field properties. Once these retrievals are well understood, they will be used to populate the 3D characterization database. As a first step we determine the relationship between surface fractional sky cover and satellite viewing angle dependent cloud fraction (CF). We elaborate on the agreement intercomparing optical depth (OD) datasets from satellite and ground using available retrieval algorithms with relation to the CF, cloud height, multi-layer cloud presence, and solar zenith angle (SZA). For the SGP Central Facility, where output from the active remote sensing cloud layer (ARSCL) valueadded product (VAP) is available, we study the uncertainty of satellite estimated cloud heights and evaluate the impact of this uncertainty for radiative studies.

  7. Latitudinal variation of Cloud Top Height throughout the seasons as seen from SEVIRI, AIRS and ATSR-2

    NASA Astrophysics Data System (ADS)

    Kniffka, Anke; Lockhoff, Maarit; Hollmann, Rainer

    2010-05-01

    The main objective of the presented study is to monitor temporal changes in the large scale distribution of Cloud Top Height/Pressure (CTH/CTP). as they are operationally generated by the EUMETSAT's Satellite Application Facility on Climate Monitoring (CM-SAF). CTH/CTP of CM-SAF is considered together with two datasets based on ATSR-2 (the Along Track Scanning Radiometer 2 aboard ERS-2) as well as a combination of AIRS/AMSU-A (Atmospheric Infrared Sounder/ Advanced Microwave Sounding Unit) measurements. CM-SAF uses space-based observations from geostationary Meteosat Second Generation (MSG) satellites and polar orbiting NOAA and MetOp satellites to provide satellite-derived geophysical parameter data sets suitable for climate monitoring. CM-SAF's product suite includes cloud parameters, radiation fluxes, surface albedo, and atmospheric water vapour, temperature and humidity profiles on a regional and partially on a global scale. ATSR-2's cloud and aerosol products were produced within the project Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) employing an optimal estimation method for the retrieval. AIRS is installed together with AMSU-A on the Aqua mission, the cloud products as well as greenhouse gases and dust maps are produced at the Jet Propulsion Laboratory, California Institute of Technology. For the cloud retrieval the cloud-clearing approach is applied. The monthly mean products from a period between August 2006 and October 2010 from the three different instrument systems were analysed and compared. There are large differences in the derivation of the three data sets concerning the instrumentation and retrieval methods, not to forget that two of the instrument systems fly onboard of polar orbiting satellites while the other one is kept in a geostationary orbit. Nevertheless large scale distributions of the respective cloud top heights are quite comparable. As an example, the travelling of the ITCZ as depicted by the three different

  8. Multi-Sensor Analysis of Cloud-Top Height in Sc - Cu Transition Regions

    NASA Astrophysics Data System (ADS)

    Ludewig, E.; Horvath, A.

    2010-12-01

    In the eastern basins of the subtropical oceans unbroken sheets of stratocumulus transition to fields of scattered cumulus as boundary-layer air masses advect equatorward in the trades. This shift in cloud regimes is the subject of intense modeling efforts, because it has profound effects on the local and the planetary albedo. To provide observational constraints for such modeling studies, we analyzed satellite measurements of boundary-layer cloud-top heights (CTHs) in the northeast and southeast Atlantic and Pacific. Our sensor suite comprised CALIPSO-CALIOP, MODIS, MISR, and Meteosat-9. The study covered the summer months June-August and September-November for the northern and southern hemisphere, respectively, spanning the period 2006-2009. We considered CALIOP lidar measurements the most accurate and, hence, used them as reference. The operational Collection 5 MODIS CTHs were based on fitting measured cloud-top temperatures (CTTs) to forecast temperature profiles and were known to have large biases in case of low-level inversions. Therefore, we also evaluated CTHs derived from CTT-SST differences and various lapse rate formulations, which is the method suggested for the upcoming Collection 6 dataset. The MISR stereo CTHs were computed from a purely geometric method, which, however, is rather sensitive to errors in along-track wind speed. Because our previous work indicated a MISR cross-swath speed bias, we created a modified CTH dataset by replacing MISR winds with Meteosat-9 winds to correct the raw MISR stereo heights. The various satellite retrievals were then compared over whole regions as well as along characteristic Sc-Cu transition trajectories computed with the HYSPLIT model. For context, results from LES transition simulations were also analyzed. Some highlights of our study are summarized below. The CALIOP, MISR, and lapse-rate-based MODIS CTHs all showed a systematic increase of 500-700 m in the southeast Atlantic and northeast Pacific as Sc

  9. Automatic determination of trunk diameter, crown base and height of scots pine (Pinus Sylvestris L.) Based on analysis of 3D point clouds gathered from multi-station terrestrial laser scanning. (Polish Title: Automatyczne okreslanie srednicy pnia, podstawy korony oraz wysokosci sosny zwyczajnej (Pinus Silvestris L.) Na podstawie analiz chmur punktow 3D pochodzacych z wielostanowiskowego naziemnego skanowania laserowego)

    NASA Astrophysics Data System (ADS)

    Ratajczak, M.; Wężyk, P.

    2015-12-01

    Rapid development of terrestrial laser scanning (TLS) in recent years resulted in its recognition and implementation in many industries, including forestry and nature conservation. The use of the 3D TLS point clouds in the process of inventory of trees and stands, as well as in the determination of their biometric features (trunk diameter, tree height, crown base, number of trunk shapes), trees and lumber size (volume of trees) is slowly becoming a practice. In addition to the measurement precision, the primary added value of TLS is the ability to automate the processing of the clouds of points 3D in the direction of the extraction of selected features of trees and stands. The paper presents the original software (GNOM) for the automatic measurement of selected features of trees, based on the cloud of points obtained by the ground laser scanner FARO. With the developed algorithms (GNOM), the location of tree trunks on the circular research surface was specified and the measurement was performed; the measurement covered the DBH (l: 1.3m), further diameters of tree trunks at different heights of the tree trunk, base of the tree crown and volume of the tree trunk (the selection measurement method), as well as the tree crown. Research works were performed in the territory of the Niepolomice Forest in an unmixed pine stand (Pinussylvestris L.) on the circular surface with a radius of 18 m, within which there were 16 pine trees (14 of them were cut down). It was characterized by a two-storey and even-aged construction (147 years old) and was devoid of undergrowth. Ground scanning was performed just before harvesting. The DBH of 16 pine trees was specified in a fully automatic way, using the algorithm GNOM with an accuracy of +2.1%, as compared to the reference measurement by the DBH measurement device. The medium, absolute measurement error in the cloud of points - using semi-automatic methods "PIXEL" (between points) and PIPE (fitting the cylinder) in the FARO Scene 5.x

  10. CloudSat-Constrained Cloud Ice Water Path and Cloud Top Height Retrievals from MHS 157 and 183.3 GHz Radiances

    NASA Technical Reports Server (NTRS)

    Gong, J.; Wu, D. L.

    2014-01-01

    Ice water path (IWP) and cloud top height (ht) are two of the key variables in determining cloud radiative and thermodynamical properties in climate models. Large uncertainty remains among IWP measurements from satellite sensors, in large part due to the assumptions made for cloud microphysics in these retrievals. In this study, we develop a fast algorithm to retrieve IWP from the 157, 183.3+/-3 and 190.3 GHz radiances of the Microwave Humidity Sounder (MHS) such that the MHS cloud ice retrieval is consistent with CloudSat IWP measurements. This retrieval is obtained by constraining the empirical forward models between collocated and coincident measurements of CloudSat IWP and MHS cloud-induced radiance depression (Tcir) at these channels. The empirical forward model is represented by a lookup table (LUT) of Tcir-IWP relationships as a function of ht and the frequency channel.With ht simultaneously retrieved, the IWP is found to be more accurate. The useful range of the MHS IWP retrieval is between 0.5 and 10 kg/sq m, and agrees well with CloudSat in terms of the normalized probability density function (PDF). Compared to the empirical model, current operational radiative transfer models (RTMs) still have significant uncertainties in characterizing the observed Tcir-IWP relationships. Therefore, the empirical LUT method developed here remains an effective approach to retrieving ice cloud properties from the MHS-like microwave channels.

  11. Comparing Icesat/glas Based Elevation Heights with Photogrammetric Terrain Heights from Uav-Imagery on the East Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Enßle, F.; Fritz, A.; Koch, B.

    2015-08-01

    Digital elevation models (DEMs) and height measurements are broadly used in environmental studies. Two common elevation sources are the Ice Cloud and land elevation Satellite (ICESat), which acquired laser range measurements with the Geoscience Laser Altimeter System (GLAS) across the globe and elevation data from the Shuttle Radar Topography Mission (SRTM). Current developments of small unmanned aerial vehicles (UAV) provide the opportunity to collect aerial images of remote areas at a high spatial resolution. These can be further processed to digital surface models by stereophotogrammetry and provide a reliable data source to evaluate coarse scale Digital Elevation Models (DEMs). This study compares ICESat/GLAS and SRTM90 elevation data against photogrammetric terrain heights within GLAS footprints on high altitudes on the East Tibetan Plateau. Without vegetation-bias, we were able to examine height differences under different topographic conditions and of different acquisition dates. Several resampling techniques were applied to SRTM90 data and averaged height within each footprint was calculated. ICESat/GLAS heights (n = 148) are most similar to UAV data based elevations with an averaged difference of -0.8m ±3.1m. Results furthermore indicate the validity of ICESat/GLAS heights, which are usually removed from analyses by applying different quality flags. Smallest difference of SRTM90 to UAV based heights could be observed by a natural neighbour resampling technique (averaged 3.6m ±14m), whereat other techniques achieved quite similar results. It can be confirmed that within a range of 3,800-4,200m above mean sea level the ICESat/GLAS heights are a precise source to determine elevation at footprint geolocation.

  12. A neural network approach for monitoring of volcanic SO2 and cloud height using hyperspectral measurements

    NASA Astrophysics Data System (ADS)

    Piscini, Alessandro; Carboni, Elisa; Del Frate, Fabio; Grainger, Roy Gordon

    2014-10-01

    In this study two neural networks were implemented in order to emulate a retrieval model and to estimate the sulphur dioxide (SO2) columnar content and cloud height from volcanic eruption. ANNs were trained using all Infrared Atmospheric Sounding Interferometer (IASI) channels in Thermal Infrared (TIR) as inputs, and the corresponding values of SO2 content and height of volcanic cloud obtained using the Oxford SO2 retrievals as target outputs. The retrieval is demonstrated for the eruption of the Eyjafjallajökull volcano (Iceland) occurred in 2010 and to three IASI images of the Grímsvötn volcanic eruption that occurred in May 2011, in order to evaluate the networks for an unknown eruption. The results of validation, both for Eyjafjallajökull independent data-sets, provided root mean square error (RMSE) values between neural network outputs and targets lower than 20 DU for SO2 total column and 200 mb for cloud height, therefore demonstrating the feasibility to estimate SO2 values using a neural network approach, and its importance in near real time monitoring activities, owing to its fast application. Concerning the validation carried out with neural networks on images from the Grímsvötn eruption, the RMSE of the outputs remained lower than the Standard Deviation (STD) of targets, and the neural network underestimated retrieval only where target outputs showed different statistics than those used during the training phase.

  13. 10 Years of Height Resolved, Cloud-Track, Vector Winds from MISR

    NASA Astrophysics Data System (ADS)

    Garay, M. J.; Mueller, K. J.; Moroney, C. M.; Jovanovic, V.; Wu, D. L.; Diner, D. J.

    2009-12-01

    By utilizing multiple camera views and fast image matching algorithms to identify common features and determine feature motion, the MISR instrument on NASA’s Terra satellite has now collected nearly 10 years of height-resolved, cloud-track, vector winds using a single, globally consistent algorithm. The MISR cloud-track winds are reported globally on mesoscale domains of 70.4 km × 70.4 km and referenced to stereoscopically derived heights above the earth ellipsoid, which have a nominal vertical resolution of approximately 500 m. Importantly, from the standpoint of climate research, the stereo height assignment and wind retrieval are largely insensitive to instrument calibration changes because the pattern matcher relies only on relative brightness values, rather than the absolute magnitude of the brightness. We will describe comparisons with other wind datasets, including geostationary cloud drift winds, scatterometer surface winds, and reanalysis model winds, that demonstrate the quality of the MISR winds. We will also show the coverage and resolution advantages that MISR provides relative to these other datasets. Additionally, because the global winds are driven primarily by the global (im)balance of heating, monitoring variations in the winds over 10 years promises to yield important insights into the processes related to the hydrologic cycle and transport of heat and water vapor, such as the Madden-Julian Oscillation (MJO) and the El Niño Southern Oscillation (ENSO).

  14. Correlating Polar Stratospheric Cloud Occurrence at the South Pole with Transport and Polar Geopotential Height Anomalies

    NASA Astrophysics Data System (ADS)

    Campbell, J. R.; Sassen, K.

    2007-12-01

    In a recent paper, we describe the macrophysical and thermodynamic properties of polar stratospheric clouds (PSC) at the South Pole based on continuous eye-safe lidar measurements made over five seasons (2000, 2003-2006). In this paper, we describe the relationship between PSC occurrence and the propensity for transport within the austral polar vortex. The southern lower-stratospheric polar airmass may be approximated as a closed system from May to September. Saturation vapor pressures for background concentrations of sulfuric and nitric acid and water vapor are reached either through radiational cooling or isentropic lift. Once nucleated, PSC acquire fall-velocities that remove these compounds from these heights. Satellite measurements (e.g., MLS) depict the widening proximity of the depleted airmass through the polar night. Yet, our measurements show that PSC occurrence can occur up to 20 km late in the season, which suggests replenishment of these species in air originating near the edges of the vortex. We examine 120-h back-trajectories during July and August and temperature histories to identify conditions and circumstances favorable to this occurring. Furthermore, we describe geopotential height anomalies averaged along 60° - 90° S, and compared to a twenty-year mean, as a proxy for the dynamic character of the polar vortex. Negative/positive anomalies indicate a strong/weak and deep/shallow vortex where its circulation inhibits/promotes meridional transport, replenishment and the likelihood of PSC at South Pole. We test this hypothesis using our dataset and reach conclusions on the influence of the polar vortex on total PSC observed each season, which, in turn, may influence the severity of annual ozone losses.

  15. The upper clouds of Venus: Determination of the scale height from NIMS-Galileo infrared data

    NASA Technical Reports Server (NTRS)

    Roos, M.; Drossart, P.; Encrenaz, TH.; Lellouch, E.; Bezard, B.; Carlson, R. W.; Baines, K. H.; Kamp, L. W.; Taylor, F. W.; Collard, A. D.

    1993-01-01

    The 3-5 micrometer thermal emission of the nightside of Venus, recorded by the Near-Infrared Mapping Spectrometer (NIMS) instrument at the time of the Galileo flyby of Venus, is analysed to infer the properties of the upper cloud boundary. From the global maps of Venus at fixed wavelengths, the limb darkening of the flux is measured at several latitudes, within each infrared channel. By using the nominal Pioneer Venus thermal profile, these data give access to two parameters: the cloud deck temperature and the cloud scale height. It is verified independently, from the NIMS spectra, that this thermal profile is consistent with all the NIMS observations, and that the thermal structure does not vary significantly in the latitude range (25 deg S, 30 deg N). Within this range, the cloud scale height is found to be constant with latitude, and is H = 5.2 km, with an accuracy of about 15%, taking into account the various sources of theoretical and observational uncertainties. At higher latitudes, the temperature profile becomes more isothermal and the presented method to retrieve H is no longer valid.

  16. Remote sensing of cloud top pressure/height from SEVIRI: analysis of ten current retrieval algorithms

    NASA Astrophysics Data System (ADS)

    Hamann, U.; Walther, A.; Baum, B.; Bennartz, R.; Bugliaro, L.; Derrien, M.; Francis, P.; Heidinger, A.; Joro, S.; Kniffka, A.; Le Gléau, H.; Lockhoff, M.; Lutz, H.-J.; Meirink, J. F.; Minnis, P.; Palikonda, R.; Roebeling, R.; Thoss, A.; Platnick, S.; Watts, P.; Wind, G.

    2014-01-01

    The role of clouds remains the largest uncertainty in climate projections. They influence solar and thermal radiative transfer and the earth's water cycle. Therefore, there is an urgent need for accurate cloud observations to validate climate models and to monitor climate change. Passive satellite imagers measuring radiation at visible to thermal infrared wavelengths provide a wealth of information on cloud properties. Among others, the cloud top height (CTH) - a crucial parameter to estimate the thermal cloud radiative forcing - can be retrieved. In this paper we investigate the skill of ten current retrieval algorithms to estimate the CTH using observations from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard Meteosat Second Generation (MSG). In the first part we compare the ten SEVIRI cloud top pressure (CTP) datasets with each other. The SEVIRI algorithms catch the latitudinal variation of the CTP in a similar way. The agreement is better in the extratropics than in the tropics. In the tropics multi-layer clouds and thin cirrus layers complicate the CTP retrieval, whereas good agreement is found for the cores of the deep convective system having a high optical depth. Furthermore, a good agreement between the algorithms is observed for trade wind cumulus and marine stratocumulus clouds. In the second part of the paper the SEVIRI retrievals are compared to CTH observations from the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR) instruments. It is important to note that the different measurement techniques cause differences in the retrieved CHT data. SEVIRI measures a radiatively effective CTH, while the CTH of the active instruments is derived from the return time of the emitted signal. Therefore some systematic diffrences are expected. On average the CTHs detected by the SEVIRI algorithms are 1.0 to 2.5 km lower than CALIOP observations, and the correlation coefficients between the SEVIRI and the

  17. Cloud Based Applications and Platforms (Presentation)

    SciTech Connect

    Brodt-Giles, D.

    2014-05-15

    Presentation to the Cloud Computing East 2014 Conference, where we are highlighting our cloud computing strategy, describing the platforms on the cloud (including Smartgrid.gov), and defining our process for implementing cloud based applications.

  18. Remote Sensing of Cloud Top Height from SEVIRI: Analysis of Eleven Current Retrieval Algorithms

    NASA Technical Reports Server (NTRS)

    Hamann, U.; Walther, A.; Baum, B.; Bennartz, R.; Bugliaro, L.; Derrien, M.; Francis, P. N.; Heidinger, A.; Joro, S.; Kniffka, A.; Le Gleau, H.; Lockhoff, M.; Lutz, H.-J.; Meirink, J. F.; Minnis, P.; Palikonda, R.; Roebeling, R.; Thoss, A.; Platnick, S.; Watts, P.; Wind, G.

    2014-01-01

    The role of clouds remains the largest uncertainty in climate projections. They influence solar and thermal radiative transfer and the earth's water cycle. Therefore, there is an urgent need for accurate cloud observations to validate climate models and to monitor climate change. Passive satellite imagers measuring radiation at visible to thermal infrared (IR) wavelengths provide a wealth of information on cloud properties. Among others, the cloud top height (CTH) - a crucial parameter to estimate the thermal cloud radiative forcing - can be retrieved. In this paper we investigate the skill of ten current retrieval algorithms to estimate the CTH using observations from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard Meteosat Second Generation (MSG). In the first part we compare ten SEVIRI cloud top pressure (CTP) data sets with each other. The SEVIRI algorithms catch the latitudinal variation of the CTP in a similar way. The agreement is better in the extratropics than in the tropics. In the tropics multi-layer clouds and thin cirrus layers complicate the CTP retrieval, whereas a good agreement among the algorithms is found for trade wind cumulus, marine stratocumulus and the optically thick cores of the deep convective system. In the second part of the paper the SEVIRI retrievals are compared to CTH observations from the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR) instruments. It is important to note that the different measurement techniques cause differences in the retrieved CTH data. SEVIRI measures a radiatively effective CTH, while the CTH of the active instruments is derived from the return time of the emitted radar or lidar signal. Therefore, some systematic differences are expected. On average the CTHs detected by the SEVIRI algorithms are 1.0 to 2.5 kilometers lower than CALIOP observations, and the correlation coefficients between the SEVIRI and the CALIOP data sets range between 0.77 and 0

  19. Remote sensing of cloud top pressure/height from SEVIRI: analysis of ten current retrieval algorithms

    NASA Astrophysics Data System (ADS)

    Hamann, U.; Walther, A.; Baum, B.; Bennartz, R.; Bugliaro, L.; Derrien, M.; Francis, P. N.; Heidinger, A.; Joro, S.; Kniffka, A.; Le Gléau, H.; Lockhoff, M.; Lutz, H.-J.; Meirink, J. F.; Minnis, P.; Palikonda, R.; Roebeling, R.; Thoss, A.; Platnick, S.; Watts, P.; Wind, G.

    2014-09-01

    The role of clouds remains the largest uncertainty in climate projections. They influence solar and thermal radiative transfer and the earth's water cycle. Therefore, there is an urgent need for accurate cloud observations to validate climate models and to monitor climate change. Passive satellite imagers measuring radiation at visible to thermal infrared (IR) wavelengths provide a wealth of information on cloud properties. Among others, the cloud top height (CTH) - a crucial parameter to estimate the thermal cloud radiative forcing - can be retrieved. In this paper we investigate the skill of ten current retrieval algorithms to estimate the CTH using observations from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard Meteosat Second Generation (MSG). In the first part we compare ten SEVIRI cloud top pressure (CTP) data sets with each other. The SEVIRI algorithms catch the latitudinal variation of the CTP in a similar way. The agreement is better in the extratropics than in the tropics. In the tropics multi-layer clouds and thin cirrus layers complicate the CTP retrieval, whereas a good agreement among the algorithms is found for trade wind cumulus, marine stratocumulus and the optically thick cores of the deep convective system. In the second part of the paper the SEVIRI retrievals are compared to CTH observations from the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR) instruments. It is important to note that the different measurement techniques cause differences in the retrieved CTH data. SEVIRI measures a radiatively effective CTH, while the CTH of the active instruments is derived from the return time of the emitted radar or lidar signal. Therefore, some systematic differences are expected. On average the CTHs detected by the SEVIRI algorithms are 1.0 to 2.5 km lower than CALIOP observations, and the correlation coefficients between the SEVIRI and the CALIOP data sets range between 0.77 and 0.90. The

  20. Dependence of the drizzle growth process on the cloud top height and its relevance to the aerosol vertical profile

    NASA Astrophysics Data System (ADS)

    Kawamoto, K.; Suzuki, K.

    2013-12-01

    Transitional processes among cloud droplets, drizzle and raindrops are still uncertain and more efforts are required for the better understanding. In this situation, difference in the drizzle growth process was examined according to the cloud top height using the CloudSat and MODIS synergetic datasets. From the CloudSat products such as 2B-GEOPROF, 2B-TAU, ECMWF-AUX, only one-layered water clouds whose top temperatures were warmer than 273K were extracted over China (a circular area having a diameter of 1800km of the center at 35°N and 120°E) and over ocean (a circular area having a diameter of 1500km of the center at 35°N and 150°E). Then a threshold of 3km of the cloud top height was adopted to divide the extracted clouds into upper and lower cases. First, the probability distribution functions (PDF) of the cloud droplet number density (Nc) and the effective particle radius (Re) were calculated for these four cases (land/ocean/upper/lower). Nc was obtained assuming the adiabatic liquid water content from MODIS-derived cloud optical depth and Re. Oceanic clouds had fewer Nc than land clouds, and almost the same for upper and lower cases. Land clouds had more Nc for the lower case than for the higher case. On the other hand, oceanic clouds had larger Re than land clouds, and almost the same for upper and lower cases. Land clouds had smaller Re for the lower case than for the higher case. These results quite agreed with our existing knowledge on the vertical profile of the aerosol number concentration over ocean (pristine) and land (polluted). Although the number of aerosol particles is fewer and almost the same regardless of the height over the ocean, it is more near the surface and it rapidly decreases according to the height over the land. Next, examining PDF of the radar reflectivity (Ze), we found that although PDFs of Ze were almost the same for oceanic clouds regardless of the cloud top height, PDF of land lower clouds were less frequent at around from

  1. Ground-Based Lidar and Radar Remote Sensing of Tropical Cirrus Clouds at Nauru Island: Cloud Statistics and Radiative Impacts

    SciTech Connect

    Comstock, Jennifer M.; Ackerman, Thomas P.; Mace, Gerald G.

    2002-12-12

    Ground based active and passive remote sensing instrumentation are combined to derive radiative and macrophysical properties of tropical cirrus clouds. Eight months of cirrus observations at the Department of Energy Atmospheric Radiation Measurement site located on Nauru Island provide independent retrieval of cloud height and visible optical depth using lidar and radar techniques. Comparisons reveal the millimeter cloud radar does not detect 13% of cirrus clouds with a cloud base higher than 15 km that are detected by the lidar. Lidar and radar cloud heights demonstrate good agreement when the cloud lies below 15 km. Radar and lidar retrievals of visible optical depth also compare well for all but the optically thinnest clouds. Cloud occurrence at Nauru as measured by lidar, reveal clear sky conditions occur on average 40%, low clouds 16%, and high clouds 44% of the time. Analysis of observed cirrus macrophysical and radiative properties suggests that two different types of cirrus exist in the tropical western Pacific: high, thin, laminar cirrus with cloud base higher than 15 km, and lower, physically thicker, more structured cirrus clouds. Differences in cirrus types are likely linked to their formation mechanisms. Radiosonde profiles of temperature and equivalent potential temperature near the tropical tropopause show a clear transition between neutrally stable and stable air at ~15 km, which may also explain the presence of two distinct cirrus types. Radiative heating rate and cloud forcing calculations for specific cirrus cases reveal the impact of tropical cirrus clouds on the earth?s radiation budget.

  2. A new 500-m resolution map of canopy height for Amazon forest using spaceborne LiDAR and cloud-free MODIS imagery

    NASA Astrophysics Data System (ADS)

    Sawada, Yoshito; Suwa, Rempei; Jindo, Keiji; Endo, Takahiro; Oki, Kazuo; Sawada, Haruo; Arai, Egidio; Shimabukuro, Yosio Edemir; Celes, Carlos Henrique Souza; Campos, Moacir Alberto Assis; Higuchi, Francisco Gasparetto; Lima, Adriano José Nogueira; Higuchi, Niro; Kajimoto, Takuya; Ishizuka, Moriyoshi

    2015-12-01

    In the present study, we aimed to map canopy heights in the Brazilian Amazon mainly on the basis of spaceborne LiDAR and cloud-free MODIS imagery with a new method (the Self-Organizing Relationships method) for spatial modeling of the LiDAR footprint. To evaluate the general versatility, we compared the created canopy height map with two different canopy height estimates on the basis of our original field study plots (799 plots located in eight study sites) and a previously developed canopy height map. The compared canopy height estimates were obtained by: (1) a stem diameter at breast height (D) - tree height (H) relationship specific to each site on the basis of our original field study, (2) a previously developed D-H model involving environmental and structural factors as explanatory variables (Feldpausch et al., 2011), and (3) a previously developed canopy height map derived from the spaceborne LiDAR data with different spatial modeling method and explanatory variables (Simard et al., 2011). As a result, our canopy height map successfully detected a spatial distribution pattern in canopy height estimates based on our original field study data (r = 0.845, p = 8.31 × 10-3) though our canopy height map showed a poor correlation (r = 0.563, p = 0.146) with the canopy height estimate based on a previously developed model by Feldpausch et al. (2011). We also confirmed that the created canopy height map showed a similar pattern with the previously developed canopy height map by Simard et al. (2011). It was concluded that the use of the spaceborne LiDAR data provides a sufficient accuracy in estimating the canopy height at regional scale.

  3. Linear trends in cloud top height from passive observations in the oxygen A-band

    NASA Astrophysics Data System (ADS)

    Lelli, L.; Kokhanovsky, A. A.; Rozanov, V. V.; Vountas, M.; Burrows, J. P.

    2014-06-01

    Measurements by the hyperspectral spectrometers GOME, SCIAMACHY and GOME-2 are used to determine the rate of linear change (and trends) in cloud top height (CTH) in the period between June 1996 and May 2012. The retrievals are obtained from Top-Of-Atmosphere (TOA) backscattered solar light in the oxygen A-band using the Semi-Analytical CloUd Retrieval Algorithm SACURA. The physical framework relies on the asymptotic equations of radiative transfer, valid for optically thick clouds. Using linear least-squares techniques, a global trend of -1.78 ± 2.14 m yr-1 in deseasonalized CTH has been found, in the latitude belt within ±60°, with diverging tendencies over land (+0.27 ± 3.2 m yr-1) and ocean (-2.51 ± 2.8 m yr-1). The El Niño-Southern Oscillation (ENSO), strongly coupled to CTH, forces clouds to lower altitudes. The global ENSO-corrected trend in CTH amounts to -0.49 ± 2.22 m yr-1. At a global scale, no explicit regional pattern of statistically significant trends (at 95% confidence level, estimated with bootstrap technique) have been found, which would be representative of typical natural synoptical features. One exception is North Africa, which exhibits the strongest upward trend in CTH sustained by an increasing trend in water vapour.

  4. Trends in cloud top height from passive observations in the oxygen A-band

    NASA Astrophysics Data System (ADS)

    Lelli, L.; Kokhanovsky, A. A.; Rozanov, V. V.; Vountas, M.; Burrows, J. P.

    2013-12-01

    Measurements by the hyperspectral spectrometers GOME, SCIAMACHY, and GOME-2 are used to determine the rate of linear change (and trends) in cloud top height (CTH) in the period between June 1996 and May 2012. The retrievals are obtained from Top-Of-Atmosphere (TOA) backscattered solar light in the oxygen A-band using the Semi-Analytical CloUd Retrieval Algorithm SACURA. The physical framework relies on the asymptotic equations of radiative transfer, valid for optically thick clouds. Using linear least-squares techniques, a global trend of -1.78 ± 2.14 m yr-1 in deseasonalised CTH has been found, in the latitude belt within ±60°, with diverging tendencies over land (+0.27 ± 3.2 m yr-1) and ocean (-2.51 ± 2.8 m yr-1). The El Niño-Southern Oscillation (ENSO), strongly coupled to CTH, forces clouds to lower altitudes. The global ENSO-corrected trend in CTH amounts to -0.49 ± 2.22 m yr-1. At a~global scale, no explicit regional pattern of statistically significant trends (at 95 % confidence level, estimated with bootstrap technique) have been found, which would be representative of typical natural synoptical features. One exception is North Africa, which exhibits the strongest upward trend in CTH sustained by an increasing trend in water vapor.

  5. Thin and thick cloud top height retrieval algorithm with the Infrared Camera and LIDAR of the JEM-EUSO Space Mission

    NASA Astrophysics Data System (ADS)

    Sáez-Cano, G.; Morales de los Ríos, J. A.; del Peral, L.; Neronov, A.; Wada, S.; Rodríguez Frías, M. D.

    2015-03-01

    The origin of cosmic rays have remained a mistery for more than a century. JEM-EUSO is a pioneer space-based telescope that will be located at the International Space Station (ISS) and its aim is to detect Ultra High Energy Cosmic Rays (UHECR) and Extremely High Energy Cosmic Rays (EHECR) by observing the atmosphere. Unlike ground-based telescopes, JEM-EUSO will observe from upwards, and therefore, for a properly UHECR reconstruction under cloudy conditions, a key element of JEM-EUSO is an Atmospheric Monitoring System (AMS). This AMS consists of a space qualified bi-spectral Infrared Camera, that will provide the cloud coverage and cloud top height in the JEM-EUSO Field of View (FoV) and a LIDAR, that will measure the atmospheric optical depth in the direction it has been shot. In this paper we will explain the effects of clouds for the determination of the UHECR arrival direction. Moreover, since the cloud top height retrieval is crucial to analyze the UHECR and EHECR events under cloudy conditions, the retrieval algorithm that fulfills the technical requierements of the Infrared Camera of JEM-EUSO to reconstruct the cloud top height is presently reported.

  6. A physically based algorithm for non-blackbody correction of the cloud top temperature for the convective clouds

    NASA Astrophysics Data System (ADS)

    Wang, C.; Luo, Z. J.; Chen, X.; Zeng, X.; Tao, W.; Huang, X.

    2012-12-01

    Cloud top temperature is a key parameter to retrieval in the remote sensing of convective clouds. Passive remote sensing cannot directly measure the temperature at the cloud tops. Here we explore a synergistic way of estimating cloud top temperature by making use of the simultaneous passive and active remote sensing of clouds (in this case, CloudSat and MODIS). Weighting function of the MODIS 11μm band is explicitly calculated by feeding cloud hydrometer profiles from CloudSat retrievals and temperature and humidity profiles based on ECMWF ERA-interim reanalysis into a radiation transfer model. Among 19,699 tropical deep convective clouds observed by the CloudSat in 2008, the averaged effective emission level (EEL, where the weighting function attains its maximum) is at optical depth 0.91 with a standard deviation of 0.33. Furthermore, the vertical gradient of CloudSat radar reflectivity, an indicator of the fuzziness of convective cloud top, is linearly proportional to, d_{CTH-EEL}, the distance between the EEL of 11μm channel and cloud top height (CTH) determined by the CloudSat when d_{CTH-EEL}<0.6km. Beyond 0.6km, the distance has little sensitivity to the vertical gradient of CloudSat radar reflectivity. Based on these findings, we derive a formula between the fuzziness in the cloud top region, which is measurable by CloudSat, and the MODIS 11μm brightness temperature assuming that the difference between effective emission temperature and the 11μm brightness temperature is proportional to the cloud top fuzziness. This formula is verified using the simulated deep convective cloud profiles by the Goddard Cumulus Ensemble model. We further discuss the application of this formula in estimating cloud top buoyancy as well as the error characteristics of the radiative calculation within such deep-convective clouds.

  7. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo

    SciTech Connect

    Liu, Y.; Wu, W.; Jensen, M. P.; Toto, T.

    2011-07-21

    This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surface-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fraction, and cloud albedo. The analytical expression is then used to deduce a new approach for inferring cloud albedo from concurrent surface-based measurements of downwelling surface shortwave radiation and cloud fraction. High-resolution decade-long data on cloud albedos are obtained by use of this surface-based approach over the US Department of Energy's Atmospheric Radiaton Measurement (ARM) Program at the Great Southern Plains (SGP) site. The surface-based cloud albedos are further compared against those derived from the coincident GOES satellite measurements. The three long-term (1997-2009) sets of hourly data on shortwave cloud radiative forcing, cloud fraction and cloud albedo collected over the SGP site are analyzed to explore the multiscale (diurnal, annual and inter-annual) variations and covariations. The analytical formulation is useful for diagnosing deficiencies of cloud-radiation parameterizations in climate models.

  8. Novel Spectrograph/Radiometer for Cloud Top Height Measurement Using Three Complementary Techniques

    NASA Technical Reports Server (NTRS)

    Park, Hongwoo; Soulen, Peter F.; Prasad, Coorg R.

    1997-01-01

    A proof-of-concept (POC) instrument system to measure cloud top height from space using three complementary techniques is presented. These techniques use measurements of: (1) thermal infrared (IR); (2) molecular oxygen 'A' band absorption; and (3) filling-in of Fraunhofer lines (the Ring effect), respectively. Combining three techniques is achieved with a single grating spectrograph with bandpass and order sorting filters by measuring I I jim radiation from the zeroth order of the grating for the IR, 750-780 nm radiation from the first order for the 'A' band absorption, and 390-400 mn radiation from the second order for the Ca K and H Fraunhofer line filling-in effect. The POC system and its measurement results with the POC system are described.

  9. Cloud-Based Data Storage

    ERIC Educational Resources Information Center

    Waters, John K.

    2011-01-01

    The vulnerability and inefficiency of backing up data on-site is prompting school districts to switch to more secure, less troublesome cloud-based options. District auditors are pushing for a better way to back up their data than the on-site, tape-based system that had been used for years. About three years ago, Hendrick School District in…

  10. Spatial and Temporal Variation of Boundary Layer Lapse Rate and Cloud-top-height Observed from MODIS, CALIPSO and AMSR-E over Eastern Pacific

    NASA Astrophysics Data System (ADS)

    Adhikari, L.; Xie, F.; Winning, T.

    2015-12-01

    The strong free tropospheric subsidence and the cool sea surface temperatures over the subtropical eastern Pacific Ocean often lead to a shallow and cloudy planetary boundary layer (PBL) capped by a strong inversion. These low PBL clouds are crucial for understanding the ocean-atmosphere interaction and the cloud-radiation feedback processes. However, accurate identification/representation of these clouds remains a key challenge in both satellite observations and global climate model simulations. Specifically, the cloud transition from the near-shore stratocumulus to trade-cumulus remains a huge challenge in climate models and warrants high-quality PBL observations from space. The MODIS collection 6 cloud top height vastly improves the global PBL cloud top heights (CTH) compared to collection 5. However, the MODIS collection 6 CTH still shows systematic higher CTH than CALIPSO in the subtropical subsidence region, which is likely due to the underestimation of lapse rate. This study presents the seasonal climatology of PBL lapse rate derived from multi-year CALIPSO with co-incident MODIS CTT and AMSR-E SST measurements. The lapse rate climatology is validated by the high-resolution radiosonde observations and then used to derive the CTH from MODIS measurements. Comparison of the new lapse rate based MODIS CTH with CALIPSO CTH will be presented. The PBL height derived from the COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) GPS radio occultation (RO) will be used to evaluate the MODIS CTH as an independent dataset. The discrepancies over the transition from stratus to trade-cumuli regions (broken clouds) will also be discussed.

  11. Registration of point cloud data for HDD stamped base inspection

    NASA Astrophysics Data System (ADS)

    Suh, Sungho; Cho, Hansang

    2015-09-01

    As a part of the HDD manufacturing process, HDD stamped base, an exterior container, is one of the most essential components in which various parts become assembled to compose a hard disk drive (HDD). Height errors that are caused by pressing, breaking or cracking can occur on the base, because it is designed by a stamping method. In order to detect the height errors, the inspection process is essential in the production fields. In the current industry, CMM (Coordinate Measurement Machine) is one of the representative machines that inspect certain regions on the product. The machine probes a designated point by an operator and judges the defect by comparing the height of the point to the originally designed height. However, the method takes much time to inspect each designated point resulting in a total of 17 minutes. In order to reduce the total inspection time, we propose an inspection method using 3D point cloud data acquired from a holographic sensor. To compare the height from acquired 3D point cloud data with the one from the originally designed CAD data, the exact point cloud registration is important. There are differences between 2D image registration and 3D point cloud registration, such as translation on each plane, rotation, tilt, and nonlinear transformations. The relationship between the acquired 3D point cloud data and the originally designed CAD data can be obtained by projective transformation. If the projective transformation matrix between the two is obtained, 3D point cloud data registration can be performed. In order to calculate 3D projective transformation matrix, corresponding points between 3D point cloud data and CAD data are required. To find the corresponding points, we use the height map which is projected from 3D point cloud data onto XY plane. The height map has pixel intensity from the height value of each point. If the height maps from 3D point cloud data and CAD data are matched, corresponding points can be estimated. As one of the

  12. Height Distribution Between Cloud and Aerosol Layers from the GLAS Spaceborne Lidar in the Indian Ocean Region

    NASA Technical Reports Server (NTRS)

    Hart, William D.; Spinhirne, James D.; Palm, Steven P.; Hlavka, Dennis L.

    2005-01-01

    The Geoscience Laser Altimeter System (GLAS), a nadir pointing lidar on the Ice Cloud and land Elevation Satellite (ICESat) launched in 2003, now provides important new global measurements of the relationship between the height distribution of cloud and aerosol layers. GLAS data have the capability to detect, locate, and distinguish between cloud and aerosol layers in the atmosphere up to 40 km altitude. The data product algorithm tests the product of the maximum attenuated backscatter coefficient b'(r) and the vertical gradient of b'(r) within a layer against a predetermined threshold. An initial case result for the critical Indian Ocean region is presented. From the results the relative height distribution between collocated aerosol and cloud shows extensive regions where cloud formation is well within dense aerosol scattering layers at the surface. Citation: Hart, W. D., J. D. Spinhime, S. P. Palm, and D. L. Hlavka (2005), Height distribution between cloud and aerosol layers from the GLAS spaceborne lidar in the Indian Ocean region,

  13. A new approach to retrieving cirrus cloud height with a combination of MODIS 1.24- and 1.38-μm channels

    NASA Astrophysics Data System (ADS)

    Wang, Chenxi; Ding, Shouguo; Yang, Ping; Baum, Bryan; Dessler, Andrew E.

    2012-12-01

    An approach is developed for inferring cloud top height (CTH) by using two shortwave infrared (SWIR) channels (i.e., 1.24- and 1.38-μm) with similar cloud scattering and absorption properties but very different water vapor absorption properties. This channel combination is used to accurately infer the column water vapor amount above the clouds, from which the CTH can be retrieved. The approach performs best for ice clouds located in the upper troposphere. For those clouds, our approach performs as well or better than the current operational cloud height retrieval algorithm adopted by the MODIS science team.

  14. Research on ionospheric tomography based on variable pixel height

    NASA Astrophysics Data System (ADS)

    Zheng, Dunyong; Li, Peiqing; He, Jie; Hu, Wusheng; Li, Chaokui

    2016-05-01

    A novel ionospheric tomography technique based on variable pixel height was developed for the tomographic reconstruction of the ionospheric electron density distribution. The method considers the height of each pixel as an unknown variable, which is retrieved during the inversion process together with the electron density values. In contrast to conventional computerized ionospheric tomography (CIT), which parameterizes the model with a fixed pixel height, the variable-pixel-height computerized ionospheric tomography (VHCIT) model applies a disturbance to the height of each pixel. In comparison with conventional CIT models, the VHCIT technique achieved superior results in a numerical simulation. A careful validation of the reliability and superiority of VHCIT was performed. According to the results of the statistical analysis of the average root mean square errors, the proposed model offers an improvement by 15% compared with conventional CIT models.

  15. Integration of Satellite-Derived Cloud Phase, Cloud Top Height, and Liquid Water Path into an Operational Aircraft Icing Nowcasting System

    NASA Technical Reports Server (NTRS)

    Haggerty, Julie; McDonough, Frank; Black, Jennifer; Landott, Scott; Wolff, Cory; Mueller, Steven; Minnis, Patrick; Smith, William, Jr.

    2008-01-01

    Operational products used by the U.S. Federal Aviation Administration to alert pilots of hazardous icing provide nowcast and short-term forecast estimates of the potential for the presence of supercooled liquid water and supercooled large droplets. The Current Icing Product (CIP) system employs basic satellite-derived information, including a cloud mask and cloud top temperature estimates, together with multiple other data sources to produce a gridded, three-dimensional, hourly depiction of icing probability and severity. Advanced satellite-derived cloud products developed at the NASA Langley Research Center (LaRC) provide a more detailed description of cloud properties (primarily at cloud top) compared to the basic satellite-derived information used currently in CIP. Cloud hydrometeor phase, liquid water path, cloud effective temperature, and cloud top height as estimated by the LaRC algorithms are into the CIP fuzzy logic scheme and a confidence value is determined. Examples of CIP products before and after the integration of the LaRC satellite-derived products will be presented at the conference.

  16. The conditional risk probability-based seawall height design method

    NASA Astrophysics Data System (ADS)

    Yang, Xing; Hu, Xiaodong; Li, Zhiqing

    2015-11-01

    The determination of the required seawall height is usually based on the combination of wind speed (or wave height) and still water level according to a specified return period, e.g., 50-year return period wind speed and 50-year return period still water level. In reality, the two variables are be partially correlated. This may be lead to over-design (costs) of seawall structures. The above-mentioned return period for the design of a seawall depends on economy, society and natural environment in the region. This means a specified risk level of overtopping or damage of a seawall structure is usually allowed. The aim of this paper is to present a conditional risk probability-based seawall height design method which incorporates the correlation of the two variables. For purposes of demonstration, the wind speeds and water levels collected from Jiangsu of China are analyzed. The results show this method can improve seawall height design accuracy.

  17. GLITTER: new lidar technique for cloud-base altimetry. Description and initial aircraft measurements.

    PubMed

    Gelbwachs, Jerry A; Farley, Robert W

    2004-05-10

    Knowledge of cloud-base heights is important for climate studies, weather, and military operations. Conventional lidar methods monitor cloud depths by direct transmission of the beam through the cloud and sensing the backscattered returns. These techniques are limited by severe optical scattering by cloud particles to thickness <0.5 km. We have conceived of a novel lidar method measurement for thick-cloud-base altimetry from above that is not restricted by cloud scattering. The new method, known as GLITTER (an acronym for glimpses of the lidar images through the empty regions), relies on cloud porosity and diffuse reflection from land features to sense cloud bottoms. An aircraft GLITTER lidar measured cloud bases at 3.7- and 4.5-km altitudes. These initial results represent a proof-of-principle demonstration of the new lidar method. PMID:15143824

  18. Height estimations based on eye measurements throughout a gait cycle.

    PubMed

    Yang, Sylvia X M; Larsen, Peter K; Alkjær, Tine; Juul-Kristensen, Birgit; Simonsen, Erik B; Lynnerup, Niels

    2014-03-01

    Anthropometric measurements (e.g. the height to the head, nose tip, eyes or shoulders) of a perpetrator based on video material may be used in criminal cases. However, several height measurements may be difficult to assess as the perpetrators may be disguised by clothes or headwear. The eye height (EH) measurement, on the other hand, is less prone to concealment. The purpose of the present study was to investigate: (1) how the eye height varies during the gait cycle, and (2) how the eye height changes with head position. The eyes were plotted manually in APAS for 16 test subjects during a complete gait cycle. The influence of head tilt on the EH was investigated in 20 healthy men. Markers were attached to the face and the subjects were instructed to stand relaxed, tilt their head to the right, to the left, forward and backward. The marker data for the right eye were used to calculate the EH. The respective deviation and SD from the relaxed standing EH and the EH in the Frankfurt plane, left tilted, right tilted, forward tilted and backward tilted, in addition to the corresponding head tilt angles were calculated. There was no correlation between the height of the subject and the maximum vertical displacement of the EH throughout the gait cycle nor between height of the subjects and the variation of the EH throughout the gait cycle. The average maximum vertical displacement for the test subject group was 4.76 cm (± 1.56 cm). The average EH was lower when the subjects were standing in the relaxed position than in the Frankfurt plane. The average EH was higher in the relaxed position than when the subjects tilted their heads, except when they tilted their heads backwards. The subjects had a slightly larger range of motion to the right than to the left, which was not significant. The results of this study provide a range for eye height estimates and may be readily implemented in forensic case work. It can be used as a reference in height estimates in cases with height

  19. Cloud top height retrieval using the imaging polarimeter (3MI) top-of-atmosphere reflectance measurements in the oxygen absorption band

    NASA Astrophysics Data System (ADS)

    Kokhanovsky, Alexander; Munro, Rose

    2016-04-01

    The determination of cloud top height from a satellite has a number of applications both for climate studies and aviation safety. A great variety of methods are applied using both active and passive observation systems in the optical and microwave spectral regions. One of the most popular methods with good spatial coverage is based on the measurement of outgoing radiation in the spectral range where oxygen strongly absorbs incoming solar light. Clouds shield tropospheric oxygen reducing the depth of the corresponding absorption line as detected by a satellite instrument. Radiative transfer models are used to connect the solar light reflectance, e.g., in the oxygen A-band located around 761nm, and the cloud top height. The inverse problem is then solved e.g. using look-up tables, to determine the cloud top height. In this paper we propose a new fast and robust oxygen A-band method for the retrieval of cloud altitude using the Multi-viewing Multi-channel Multi-polarization Imaging instrument (3MI) on board the EUMETSAT Polar System Second Generation (EPS-SG). The 3MI measures the intensity at the wavelengths of 410, 443, 490, 555, 670, 763, 765, 865, 910, 1370, 1650, and 2130nm, and (for selected channels) the second and third Stokes vector components which allows the degree of linear polarization and the polarization orientation angle of reflected solar light to be derived at up to 14 observation angles. The instrument response function (to a first approximation) can be modelled by a Gaussian distribution with the full width at half maximum (FWHM) equal to 20nm for all channels except 765nm, 865nm, 1370nm, 1650nm, and 2130nm, where it is equal to 40nm. The FWHM at 763nm (the oxygen A-band location) is equal to 10nm. The following 3MI channels are used in the retrieval procedure: 670, 763, and 865nm. The channels at 670 and 865 nm are not affected by the oxygen absorption. The channel at 763nm is affected by the oxygen concentration vertical profile. The higher

  20. Subseasonal Vertical Correlations with MBL Cloud Top Heights over the Southeastern Pacific and Cloud Top Height/Vertical Velocity Relationships in a Baroclinic Atmosphere Using Satellite and Re-Analysis Data

    NASA Astrophysics Data System (ADS)

    Kubar, T. L.; Larson, V. E.; Stephens, G. L.; Wood, R.; Lebsock, M. D.

    2014-12-01

    MBL cloud top height (Ztop) is a reflection of the balance between several large-scale terms, including subsidence, which in isolation tends to suppress Ztop, and entrainment, which deepens Ztop, and is inversely proportional to stability. With the use of gridded daily MODIS L3 cloud data and state-of-the-art reanalysis data from ERA-Interim, we extend beyond the traditional constraints of defining stability/dynamic variables with one or two fixed levels by instead computing vertical correlations relative to Ztop. Along a southeast (SE) Pacific cross section centered at 20˚S from the coast to 140˚W, ϴ negatively correlates with Ztop not only just above cloud top, but throughout the lower free troposphere. Below cloud top, ϴ correlations with Ztopare fairly weak. More confounding relationships are found between profiles of pressure vertical velocity (ω) and both Ztop and MBL cloud fraction (CF); especially over the stratocumulus (Sc) and transitional regions, stronger ω (either near Ztop or aloft) is associated with deeper MBL clouds, anomalously low ϴ near and above Ztop, and slightly reduced CF. Over the trade cumulus region, enhanced subsidence is associated with an anomalously cold MBL, increased stability, and suppressed Ztop. For further elucidation, we visit the concept of a baroclinic atmosphere, in which the trough/ridge axes and ϴ anomalies tilt with height, albeit in opposite ways. Along our cross section, in the case of an anomalous surface high to the east of an upper-level high, an eastward tilt with height of ϴ is documented, especially over the transitional and Sc cloud regimes. Anomalous ridging aloft is strongly correlated with suppressed Ztop. Over the transitional and Sc regimes (east of ~105˚W), maximum ω anomalies are located directly between the upper-level anomalous ridge and trough axes. The coldest ϴ anomalies near and above Ztop are located just east of the maximum subsidence, corresponding to reduced stability, deeper Ztop

  1. Point Cloud Based Change Detection - an Automated Approach for Cloud-based Services

    NASA Astrophysics Data System (ADS)

    Collins, Patrick; Bahr, Thomas

    2016-04-01

    The fusion of stereo photogrammetric point clouds with LiDAR data or terrain information derived from SAR interferometry has a significant potential for 3D topographic change detection. In the present case study latest point cloud generation and analysis capabilities are used to examine a landslide that occurred in the village of Malin in Maharashtra, India, on 30 July 2014, and affected an area of ca. 44.000 m2. It focuses on Pléiades high resolution satellite imagery and the Airbus DS WorldDEMTM as a product of the TanDEM-X mission. This case study was performed using the COTS software package ENVI 5.3. Integration of custom processes and automation is supported by IDL (Interactive Data Language). Thus, ENVI analytics is running via the object-oriented and IDL-based ENVITask API. The pre-event topography is represented by the WorldDEMTM product, delivered with a raster of 12 m x 12 m and based on the EGM2008 geoid (called pre-DEM). For the post-event situation a Pléiades 1B stereo image pair of the AOI affected was obtained. The ENVITask "GeneratePointCloudsByDenseImageMatching" was implemented to extract passive point clouds in LAS format from the panchromatic stereo datasets: • A dense image-matching algorithm is used to identify corresponding points in the two images. • A block adjustment is applied to refine the 3D coordinates that describe the scene geometry. • Additionally, the WorldDEMTM was input to constrain the range of heights in the matching area, and subsequently the length of the epipolar line. The "PointCloudFeatureExtraction" task was executed to generate the post-event digital surface model from the photogrammetric point clouds (called post-DEM). Post-processing consisted of the following steps: • Adding the geoid component (EGM 2008) to the post-DEM. • Pre-DEM reprojection to the UTM Zone 43N (WGS-84) coordinate system and resizing. • Subtraction of the pre-DEM from the post-DEM. • Filtering and threshold based classification of

  2. Satellite Inference of Thermals and Cloud Base Updraft Speeds Based on Retrieved Surface and Cloud Base Temperatures

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Rosenfeld, D.; Li, Z.

    2014-12-01

    Updraft speeds of thermals have always been difficult to measure, despite the significant role they play in transporting pollutants and in cloud formation and precipitation. In this study, updraft speeds measured by Doppler lidar are found to be correlated with the observed planetary boundary layer (PBL) and surface properties in the buoyancy-driven PBL over the Southern Great Plains (SGP) site operated by the U.S. Department of Energy's Atmospheric Radiation Program (ARM). Based on the found relationships, two approaches are proposed to estimate both maximum (Wmax ) and cloud base (Wb ) updraft speeds. The required input data are PBL height, 10-m horizontal wind speed, wind shear, surface skin temperature and 2-m air temperature. The application for remote sensing of updraft speeds in cloud-topped PBL from space was tested by using satellite-retrieved surface and cloud base temperature in combination with European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis data. Validation against lidar-measured updraft speeds indicates the feasibility of retrieving Wmax (root-mean-square error, RMSE, is 0.32 m/s) and Wb (RMSE is 0.42 m/s) for global coverage. This information is essential to advance the understanding of aerosol-cloud interactions. This method does not work for stable or mechanically-driven PBL.

  3. Validation of Satellite-Based Objective Overshooting Cloud-Top Detection Methods Using CloudSat Cloud Profiling Radar Observations

    NASA Technical Reports Server (NTRS)

    Bedka, Kristopher M.; Dworak, Richard; Brunner, Jason; Feltz, Wayne

    2012-01-01

    Two satellite infrared-based overshooting convective cloud-top (OT) detection methods have recently been described in the literature: 1) the 11-mm infrared window channel texture (IRW texture) method, which uses IRW channel brightness temperature (BT) spatial gradients and thresholds, and 2) the water vapor minus IRW BT difference (WV-IRW BTD). While both methods show good performance in published case study examples, it is important to quantitatively validate these methods relative to overshooting top events across the globe. Unfortunately, no overshooting top database currently exists that could be used in such study. This study examines National Aeronautics and Space Administration CloudSat Cloud Profiling Radar data to develop an OT detection validation database that is used to evaluate the IRW-texture and WV-IRW BTD OT detection methods. CloudSat data were manually examined over a 1.5-yr period to identify cases in which the cloud top penetrates above the tropopause height defined by a numerical weather prediction model and the surrounding cirrus anvil cloud top, producing 111 confirmed overshooting top events. When applied to Moderate Resolution Imaging Spectroradiometer (MODIS)-based Geostationary Operational Environmental Satellite-R Series (GOES-R) Advanced Baseline Imager proxy data, the IRW-texture (WV-IRW BTD) method offered a 76% (96%) probability of OT detection (POD) and 16% (81%) false-alarm ratio. Case study examples show that WV-IRW BTD.0 K identifies much of the deep convective cloud top, while the IRW-texture method focuses only on regions with a spatial scale near that of commonly observed OTs. The POD decreases by 20% when IRW-texture is applied to current geostationary imager data, highlighting the importance of imager spatial resolution for observing and detecting OT regions.

  4. Height-based Indices of Pubertal Timing in Male Adolescents

    PubMed Central

    Khairullah, Ammar; May, Margaret T.; Tilling, Kate; Howe, Laura D.; Leonard, Gabriel; Perron, Michel; Richer, Louis; Veillette, Suzanne; Pausova, Zdenka; Paus, Tomáš

    2014-01-01

    It is important to account for timing of puberty when studying the adolescent brain and cognition. The use of classical methods for assessing pubertal status may not be feasible in some studies, especially in male adolescents. Using data from a sample of 478 males from a longitudinal birth cohort, we describe the calculations of three independent height-based markers of pubertal timing: Age at Peak Height Velocity (APHV), Height Difference in Standard Deviations (HDSDS), and Percent Achieved of Adult Stature (PAAS). These markers correlate well with each other. In a separate cross-sectional study, we show that the PAAS marker correlates well with testosterone levels and self-reported pubertal-stage scores. We conclude by discussing key considerations for investigators when drawing upon these methods of assessing pubertal timing. PMID:26052478

  5. Camera-based independent couch height verification in radiation oncology.

    PubMed

    Kusters, Martijn; Louwe, Rob; Biemans-van Kastel, Liesbeth; Nieuwenkamp, Henk; Zahradnik, Rien; Claessen, Roy; van Seters, Ronald; Huizenga, Henk

    2015-01-01

    For specific radiation therapy (RT) treatments, it is advantageous to use the isocenter-to-couch distance (ICD) for initial patient setup.(1) Since sagging of the treatment couch is not properly taken into account by the electronic readout of the treatment machine, this readout cannot be used for initial patient positioning using the isocenter-to-couch distance (ICD). Therefore, initial patient positioning to the prescribed ICD has been carried out using a ruler prior to each treatment fraction in our institution. However, the ruler method is laborious and logging of data is not possible. The objective of this study is to replace the ruler-based setup of the couch height with an independent, user-friendly, optical camera-based method whereby the radiation technologists have to move only the couch to the correct couch height, which is visible on a display. A camera-based independent couch height measurement system (ICHS) was developed in cooperation with Panasonic Electric Works Western Europe. Clinical data showed that the ICHS is at least as accurate as the application of a ruler to verify the ICD. The camera-based independent couch height measurement system has been successfully implemented in seven treatment rooms, since 10 September 2012. The benefits of this system are a more streamlined workflow, reduction of human errors during initial patient setup, and logging of the actual couch height at the isocenter. Daily QA shows that the systems are stable and operate within the set 1 mm tolerance. Regular QA of the system is necessary to guarantee that the system works correctly. PMID:26699308

  6. Observation-based Understanding of the Cloud Properties over East China Region

    NASA Astrophysics Data System (ADS)

    Zhao, C.

    2015-12-01

    Cloud properties over East China are described based on observations from satellite (MODIS), ground site and aircraft. Based on satellite observations, 10-year averaged cloud fraction over the whole China region is around 66%, similar to the average value of global, with the largest cloud occurrence in Summer; the cloud fraction increases slightly during last 10 years; more clouds are found at southeast region than at northwest region; cloud droplet effective radius shows the smallest values around 10 um at mid-latitude regions and largest values at high latitude regions; further PDF analysis shows that cloud droplet effective radius demonstrates a bimodal distribution with maximum occurrences around 10-16 um. Ground site observations show that cloud fraction at Taihu site is around 65% for 2013, consistent with that found by MODIS at the closest grid to the site; more clouds are found at night than during day. In-situ aircraft observations over Huanghua city show that cloud droplet effective radius increases with height, with values from 3-5 um at low altitude, 7-9 um at mid altitude, to 10-13 um at high altitude. While the aircraft observation sample volume is limited, the in-situ observed cloud properties demonstrate that cloud droplet re increases with height, consistent with many findings by in-situ aircraft at other locations. The consistency of satellite observed cloud droplet re between East China and other regions is likely caused by the fact that the cloud properties observed by satellite is more representative of those clouds at high altitudes which are weakly affected by the aerosols within the boundary layers. On the other hand, the cloud droplet re at the cloud bases over East China is much smaller than those found at other locations, likely demonstrating the significant impacts by the heavy aerosol loadings at this region. Further studies with more site and aircraft observations over East China are needed.

  7. Aerosol cloud interaction: a multiplatform-scenario-based methodology

    NASA Astrophysics Data System (ADS)

    Landulfo, Eduardo; Lopes, Fabío. J. S.; Guerrero-Rascado, Juan Luis; Alados-Arboledas, Lucas

    2015-10-01

    Suspended atmospheric particles i.e. aerosol particles go through many chemical and physical processes and those interactions and transformations may cause particle change in size, structure and composition regulated by mechanisms, which are also present in clouds. These interactions play a great role in the radiation transfer in the atmosphere and are not completely understood as competing effects might occur which are known as indirect aerosol effects. Performing measurements and experiments in remote sensing to improve the knowledge of these processes are also a challenge. In face of that we propose a multi-platform approach based lidar, sun photometry and satellite observations which should be characterized under a scenario perspective in which given the cloud height, geometric and optical geometries in a diurnal/nocturnal basis will make possible to apply different analytical tools in each a set of product that specify the aerosol present in the vicinity of clouds, their optical and physical properties. These scenarios are meant to aid in tagging the expected products and help in creating a robust database to systematically study the aerosol-cloud interaction.In total we will present 6 scenarios: 3 under daylight conditions, 3 under at nighttime. Each scenario and their counterpart should be able to provide the cloud base/top height, aerosol backscattering profile and cloud optical/geometric thickness. In each instance we should count on a 5 wavelength Raman lidar system measurement, a collocated sun photometer and CALIPSO/MODIS observation from AQUA/TERRA platforms. To further improve the aerosol cloud interaction the Raman lidar system should have a water vapor channel or moreover a liquid water channel. In our study we will present a two-day case study to show the methodology feasibility and its potential application.

  8. Determining Stand Parameters from Uas-Based Point Clouds

    NASA Astrophysics Data System (ADS)

    Yilmaz, V.; Serifoglu, C.; Gungor, O.

    2016-06-01

    In Turkey, forest management plans are produced by terrestrial surveying techniques for 10 or 20 year periods, which can be considered quite long to maintain the sustainability of forests. For a successful forest management plan, it is necessary to collect accurate information about the stand parameters and store them in dynamic and robust databases. The position, number, height and closure of trees are among the most important stand parameters required for a forest management plan. Determining the position of each single tree is challenging in such an area consisting of too many interlocking trees. Hence, in this study, an object-based tree detection methodology has been developed in MATLAB programming language to determine the position of each tree top in a highly closed area. The developed algorithm uses the Canopy Height Model (CHM), which is computed from the Digital Terrain Model (DTM) and Digital Surface Model (DSM) generated by using the point cloud extracted from the images taken from a UAS (Unmanned Aerial System). The heights of trees have been determined by using the CHM. The closure of the trees has been determined with the written MATLAB script. The results show that the developed tree detection methodology detected more than 70% of the trees successfully. It can also be concluded that the stand parameters may be determined by using the UAS-based point clouds depending on the characteristics of the study area. In addition, determination of the stand parameters by using point clouds reduces the time needed to produce forest management plans.

  9. Satellite-observed cloud-top height changes in tornadic thunderstorms

    NASA Technical Reports Server (NTRS)

    Adler, R. F.; Fenn, D. D.

    1981-01-01

    Eleven tornadic storms are evaluated with respect to cloud top temperature changes relative to tornado touchdown. Digital IR data from the SMS/GOES geosynchronous satellites were employed for 10 F2 and one F1 tornadoes. A rapid ascent of the cloud tops 30-45 min before tornado touchdown, a temperature decrease of 0.4 K/min, and an ascent rate of about 3 m/sec were observed. The presence of an operating Doppler radar for three of the sample storms allowed detection of a mesocyclone coincident with the rapid cloud top ascent. The intensification and descent of the vortex to form a tornado is concluded to be due to a weakening of the updraft, the formation of a downdraft, and a shift of the vortex to the updraft-downdraft boundary, leading to dominance of the tilting term in the generation of vorticity.

  10. The effects of cloud inhomogeneities upon radiative fluxes, and the supply of a cloud truth validation dataset

    NASA Technical Reports Server (NTRS)

    Welch, Ronald M.

    1993-01-01

    A series of cloud and sea ice retrieval algorithms are being developed in support of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team objectives. These retrievals include the following: cloud fractional area, cloud optical thickness, cloud phase (water or ice), cloud particle effective radius, cloud top heights, cloud base height, cloud top temperature, cloud emissivity, cloud 3-D structure, cloud field scales of organization, sea ice fractional area, sea ice temperature, sea ice albedo, and sea surface temperature. Due to the problems of accurately retrieving cloud properties over bright surfaces, an advanced cloud classification method was developed which is based upon spectral and textural features and artificial intelligence classifiers.

  11. Correction and Densification of Uas-Based Photogrammetric Thermal Point Cloud

    NASA Astrophysics Data System (ADS)

    Akcay, O.; Erenoglu, R. C.; Erenoglu, O.

    2016-06-01

    Photogrammetric processing algorithms can suffer problems due to either the initial image quality (noise, low radiometric quality, shadows and so on) or to certain surface materials (shiny or textureless objects). This can result in noisy point clouds and/or difficulties in feature extraction. Specifically, dense point clouds which are generated with photogrammetric method using a lightweight thermal camera, are more noisy and sparse than the point clouds of high-resolution digital camera images. In this paper, new method which produces more reliable and dense thermal point cloud using the sparse thermal point cloud and high resolution digital point cloud was considered. Both thermal and digital images were obtained with UAS (Unmanned Aerial System) based lightweight Optris PI 450 and Canon EOS 605D camera images. Thermal and digital point clouds, and orthophotos were produced using photogrammetric methods. Problematic thermal point cloud was transformed to a high density thermal point cloud using image processing methods such as rasterizing, registering, interpolation and filling. The results showed that the obtained thermal point cloud - up to chosen processing parameters - was 87% more densify than the original point cloud. The second improvement was gained at the height accuracy of the thermal point cloud. New densified point cloud has more consistent elevation model while the original thermal point cloud shows serious deviations from the expected surface model.

  12. Observations and trends of clouds based on GOES sounder data

    NASA Astrophysics Data System (ADS)

    Schreiner, Anthony J.; Schmit, Timothy J.; Menzel, W. Paul

    2001-01-01

    A 26 month (November 1997 through December 1999) data set of Geostationary Operational Environmental Satellite (GOES) sounder-derived cloud parameters has been analyzed to discern annual and monthly trends. An important outcome of this study is the identification of diurnal trends made possible by the geostationary satellite frequent observations over specific locations. The area of coverage is 20°N to 50°N and 60°W to 160°W, which corresponds to the continental United States and the surrounding waters. The satellite cloud observations were compared to manually observed Pilot Reports (PIREPs) and were found to be, on average, 35 hPa lower. Comparing the frequency of GOES sounder observations of high cloudiness with observations from the National Oceanic and Atmospheric Administration (NOAA) series of polar orbiting weather satellites reveals a correlation coefficient of 0.79 and a bias of 3.4% for the frequency of occurrence (GOES with a mean higher height). The frequency of occurrence and distribution of clouds, cloud top pressure (CTOP), and effective cloud amount are based on a spatial resolution of ˜40 km (3×3 field of view box) and are shown for eight regions. High clouds (CTOP ≤300 hPa) are found to be more prevalent during the Northern Hemisphere summer than winter for all regions. High clouds for 1998 comprise 8.5% of all observations. Also, in 1998 clear conditions are observed ˜34% of the time. Focusing on the strength of the hourly GOES sounder data, it is found that thin high clouds are most prevalent during the summer and fall seasons, occurring most frequently in the late morning and early afternoon.

  13. Use of Lidar Derived Optical Extinction and Backscattering Coefficients Near Cloud Base to Explore Aerosol-Cloud Interactions

    NASA Astrophysics Data System (ADS)

    Han, Zaw; Wu, Yonhgua; Gross, Barry; Moshary, Fred

    2016-06-01

    Combination of microwave radiometer (MWR) and mutlifilter rotating shadowband radiometer (MFRSR) measurement data together with SBDART radiative transfer model to compute cloud optical depth (COD) and cloud droplet effective radius (Reff). Quantify the first aerosol indirect effect using calculated Reff and aerosol extinction from Raman lidar measurement in urban coastal region. Illustrate comparison between ground-based and satellite retrievals. Demonstrate relationship between surface aerosol (PM2.5) loading and Reff. We also explain the sensitivity of aerosol-cloud-index (ACI) depend on the aerosol layer from cloud base height. Potential used of less noisy elastic backscattering to calculate the ACI instead of using Raman extinction. We also present comparison of elastic backscattering and Raman extinction correlation to Reff.

  14. Comparison of spinal anesthesia dosage based on height and weight versus height alone in patients undergoing elective cesarean section

    PubMed Central

    Siddiqui, Khalid Maudood; Ullah, Hameed

    2016-01-01

    Background Spinal anesthesia with bupivacaine, typically used for elective and emergency cesarean section, is associated with a significant incidence of hypotension resulting from sympathetic blockade. A variety of dosing regimens have been used to administer spinal anesthesia for cesarean section. The objective of this study was to compare the incidence of hypotension following two different fixed dosing regimens. Methods This was a randomized double-blind clinical trial with a two-sided design, 5% significance level and 80% power. After approval of the hospital ethics review committee, 60 patients were divided randomly into two groups. In one group, the local anesthetic dose was adjusted according to height and weight, and in the other, the dose was adjusted according to height only. Results Sixty women with a singleton pregnancy were included. Of the factors that could affect dose and blood pressure, including age, weight, height, and dose, only height differed between the groups. Mean heart rate was similar between the groups. Hypotension was significantly more frequent with dosage based on height alone than with two-factor dose calculation (56.7% vs. 26.7%; P = 0.018). Conclusions Adjusting the dose of isobaric bupivacaine to a patient's height and weight provides adequate anesthesia for elective cesarean section and is associated with a decreased incidence and severity of maternal hypotension and less use of ephedrine. PMID:27066205

  15. Access Control of Cloud Service Based on UCON

    NASA Astrophysics Data System (ADS)

    Danwei, Chen; Xiuli, Huang; Xunyi, Ren

    Cloud computing is an emerging computing paradigm, and cloud service is also becoming increasingly relevant. Most research communities have recently embarked in the area, and research challenges in every aspect. This paper mainly discusses cloud service security. Cloud service is based on Web Services, and it will face all kinds of security problems including what Web Services face. The development of cloud service closely relates to its security, so the research of cloud service security is a very important theme. This paper introduces cloud computing and cloud service firstly, and then gives cloud services access control model based on UCON and negotiation technologies, and also designs the negotiation module.

  16. Raman LIDAR Detection of Cloud Base

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Starr, David; Whiteman, David; Evans, Keith; Hlavka, Dennis; Peravali, Ravindra

    1999-01-01

    Advantages introduced by Raman lidar systems for cloud base determination during precipitating periods are explored using two case studies of light rain and virga conditions. A combination of the Raman lidar derived profiles of water vapor mixing ratio and aerosol scattering ratio, together with the Raman scattered signals from liquid drops, can minimize or even eliminate some of the problems associated with cloud boundary detection using elastic backscatter lidars.

  17. Cloud-based Architecture Capabilities Summary Report

    SciTech Connect

    Vang, Leng; Prescott, Steven R; Smith, Curtis

    2014-09-01

    In collaborating scientific research arena it is important to have an environment where analysts have access to a shared of information documents, software tools and be able to accurately maintain and track historical changes in models. A new cloud-based environment would be accessible remotely from anywhere regardless of computing platforms given that the platform has available of Internet access and proper browser capabilities. Information stored at this environment would be restricted based on user assigned credentials. This report reviews development of a Cloud-based Architecture Capabilities (CAC) as a web portal for PRA tools.

  18. A study of the morphology of winter sprites in the Hokuriku area of Japan in relation to cloud charge height

    NASA Astrophysics Data System (ADS)

    Myokei, K.; Matsudo, Y.; Asano, T.; Suzuki, T.; Hobara, Y.; Michimoto, K.; Hayakawa, M.

    2009-04-01

    Continuous observations of sprites in the Hokuriku area of Japan were performed from two optical sites during the three winter periods. The purpose of this observation is to study the major effect in the appearance of sprites and in determining the morphology of sprites (columns or carrots). Detailed analysis is performed based on the estimation of the height of -10 °C at the time of sprite occurrence. When the height of -10 °C is lower than 1800 m, the occurrence of sprites is infrequent, and the dominant shape is column. Then when it is increased (1800-3000 m), a new situation takes place, namely the occurrence of sprites is very enhanced and more spectacular shapes like carrots tend to be frequently observed in addition to column sprites. These sprite characteristics are first compared with those of parent lightning in the Hokuriku area and with our latest computer simulations on sprite initiation.

  19. Macrophysical and optical properties of midlatitude high-altitude clouds from 4 ground-based lidars and collocated CALIOP observations

    NASA Astrophysics Data System (ADS)

    Dupont, J. C.; Haeffelin, M.; Morille, Y.; Noel, V.; Keckhut, P.; Comstock, J.; Winker, D.; Chervet, P.; Roblin, A.

    2009-04-01

    Cirrus clouds not only play a major role in the energy budget of the Earth-Atmosphere system, but are also important in the hydrological cycle [Stephens et al., 1990; Webster, 1994]. According to satellite passive remote sensing, high-altitude clouds cover as much as 40% of the earth's surface on average (Liou 1986; Stubenrauch et al., 2006) and can reach 70% of cloud cover over the Tropics (Wang et al., 1996; Nazaryan et al., 2008). Hence, given their very large cloud cover, they have a major role in the climate system (Lynch et al. 2001). Cirrus clouds can be classified into three distinct families according to their optical thickness, namely subvisible clouds (OD<0.03), semi-transparent clouds (0.03clouds (0.3clouds represent 50% or more of cirrus cloud population. The radiative effects of cirrus clouds are found to be significant by many studies both at the top of the atmosphere and surface. The contribution of the subvisible and semi-transparent classes is strongly affected by levels of other scatterers in the atmosphere (gases, aerosols). This makes them quite an important topic of study at the global scale. In the present work, we applied the cloud structure analysis algorithm STRAT to long time series of lidar backscatter profiles from multiple locations around the world. Our goal was to establish a Mid-Latitude climatology of cirrus clouds macrophysical properties based on active remote sensing: ground-based lidars at four mid-latitude observatories and the spaceborne instrument CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization). Lidar sampling, macrophysical (cloud base height, cloud top height, cloud thickness) and optical (cloud optical thickness) properties statistics are then evaluated and compared between the four observatories ground-based lidar measurements and quasi-simultaneously CALIOP overpasses. We note an overall good

  20. A Physically Based Algorithm for Non-Blackbody Correction of Cloud-Top Temperature and Application to Convection Study

    NASA Technical Reports Server (NTRS)

    Wang, Chunpeng; Lou, Zhengzhao Johnny; Chen, Xiuhong; Zeng, Xiping; Tao, Wei-Kuo; Huang, Xianglei

    2014-01-01

    Cloud-top temperature (CTT) is an important parameter for convective clouds and is usually different from the 11-micrometers brightness temperature due to non-blackbody effects. This paper presents an algorithm for estimating convective CTT by using simultaneous passive [Moderate Resolution Imaging Spectroradiometer (MODIS)] and active [CloudSat 1 Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)] measurements of clouds to correct for the non-blackbody effect. To do this, a weighting function of the MODIS 11-micrometers band is explicitly calculated by feeding cloud hydrometer profiles from CloudSat and CALIPSO retrievals and temperature and humidity profiles based on ECMWF analyses into a radiation transfer model.Among 16 837 tropical deep convective clouds observed by CloudSat in 2008, the averaged effective emission level (EEL) of the 11-mm channel is located at optical depth; approximately 0.72, with a standard deviation of 0.3. The distance between the EEL and cloud-top height determined by CloudSat is shown to be related to a parameter called cloud-top fuzziness (CTF), defined as the vertical separation between 230 and 10 dBZ of CloudSat radar reflectivity. On the basis of these findings a relationship is then developed between the CTF and the difference between MODIS 11-micrometers brightness temperature and physical CTT, the latter being the non-blackbody correction of CTT. Correction of the non-blackbody effect of CTT is applied to analyze convective cloud-top buoyancy. With this correction, about 70% of the convective cores observed by CloudSat in the height range of 6-10 km have positive buoyancy near cloud top, meaning clouds are still growing vertically, although their final fate cannot be determined by snapshot observations.

  1. Comparison of MODIS and VIIRS cloud properties with ARM ground-based observations over Finland

    NASA Astrophysics Data System (ADS)

    Sporre, Moa K.; O'Connor, Ewan J.; Håkansson, Nina; Thoss, Anke; Swietlicki, Erik; Petäjä, Tuukka

    2016-07-01

    Cloud retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard the satellites Terra and Aqua and the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard the Suomi-NPP satellite are evaluated using a combination of ground-based instruments providing vertical profiles of clouds. The ground-based measurements are obtained from the Atmospheric Radiation Measurement (ARM) programme mobile facility, which was deployed in Hyytiälä, Finland, between February and September 2014 for the Biogenic Aerosols - Effects on Clouds and Climate (BAECC) campaign. The satellite cloud parameters cloud top height (CTH) and liquid water path (LWP) are compared with ground-based CTH obtained from a cloud mask created using lidar and radar data and LWP acquired from a multi-channel microwave radiometer. Clouds from all altitudes in the atmosphere are investigated. The clouds are diagnosed as single or multiple layer using the ground-based cloud mask. For single-layer clouds, satellites overestimated CTH by 326 m (14 %) on average. When including multilayer clouds, satellites underestimated CTH by on average 169 m (5.8 %). MODIS collection 6 overestimated LWP by on average 13 g m-2 (11 %). Interestingly, LWP for MODIS collection 5.1 is slightly overestimated by Aqua (4.56 %) but is underestimated by Terra (14.3 %). This underestimation may be attributed to a known issue with a drift in the reflectance bands of the MODIS instrument on Terra. This evaluation indicates that the satellite cloud parameters selected show reasonable agreement with their ground-based counterparts over Finland, with minimal influence from the large solar zenith angle experienced by the satellites in this high-latitude location.

  2. Development of lidar sensor for cloud-based measurements during convective conditions

    NASA Astrophysics Data System (ADS)

    Vishnu, R.; Bhavani Kumar, Y.; Rao, T. Narayana; Nair, Anish Kumar M.; Jayaraman, A.

    2016-05-01

    Atmospheric convection is a natural phenomena associated with heat transport. Convection is strong during daylight periods and rigorous in summer months. Severe ground heating associated with strong winds experienced during these periods. Tropics are considered as the source regions for strong convection. Formation of thunder storm clouds is common during this period. Location of cloud base and its associated dynamics is important to understand the influence of convection on the atmosphere. Lidars are sensitive to Mie scattering and are the suitable instruments for locating clouds in the atmosphere than instruments utilizing the radio frequency spectrum. Thunder storm clouds are composed of hydrometers and strongly scatter the laser light. Recently, a lidar technique was developed at National Atmospheric Research Laboratory (NARL), a Department of Space (DOS) unit, located at Gadanki near Tirupati. The lidar technique employs slant path operation and provides high resolution measurements on cloud base location in real-time. The laser based remote sensing technique allows measurement of atmosphere for every second at 7.5 m range resolution. The high resolution data permits assessment of updrafts at the cloud base. The lidar also provides real-time convective boundary layer height using aerosols as the tracers of atmospheric dynamics. The developed lidar sensor is planned for up-gradation with scanning facility to understand the cloud dynamics in the spatial direction. In this presentation, we present the lidar sensor technology and utilization of its technology for high resolution cloud base measurements during convective conditions over lidar site, Gadanki.

  3. Adjusting thresholds of satellite-based convective initiation interest fields based on the cloud environment

    NASA Astrophysics Data System (ADS)

    Jewett, Christopher P.; Mecikalski, John R.

    2013-11-01

    The Time-Space Exchangeability (TSE) concept states that similar characteristics of a given property are closely related statistically for objects or features within close proximity. In this exercise, the objects considered are growing cumulus clouds, and the data sets to be considered in a statistical sense are geostationary satellite infrared (IR) fields that help describe cloud growth rates, cloud top heights, and whether cloud tops contain significant amounts of frozen hydrometeors. In this exercise, the TSE concept is applied to alter otherwise static thresholds of IR fields of interest used within a satellite-based convective initiation (CI) nowcasting algorithm. The convective environment in which the clouds develop dictate growth rate and precipitation processes, and cumuli growing within similar mesoscale environments should have similar growth characteristics. Using environmental information provided by regional statistics of the interest fields, the thresholds are examined for adjustment toward improving the accuracy of 0-1 h CI nowcasts. Growing cumulus clouds are observed within a CI algorithm through IR fields for many 1000 s of cumulus cloud objects, from which statistics are generated on mesoscales. Initial results show a reduction in the number of false alarms of ~50%, yet at the cost of eliminating approximately ~20% of the correct CI forecasts. For comparison, static thresholds (i.e., with the same threshold values applied across the entire satellite domain) within the CI algorithm often produce a relatively high probability of detection, with false alarms being a significant problem. In addition to increased algorithm performance, a benefit of using a method like TSE is that a variety of unknown variables that influence cumulus cloud growth can be accounted for without need for explicit near-cloud observations that can be difficult to obtain.

  4. Couch height-based patient setup for abdominal radiation therapy.

    PubMed

    Ohira, Shingo; Ueda, Yoshihiro; Nishiyama, Kinji; Miyazaki, Masayoshi; Isono, Masaru; Tsujii, Katsutomo; Takashina, Masaaki; Koizumi, Masahiko; Kawanabe, Kiyoto; Teshima, Teruki

    2016-01-01

    There are 2 methods commonly used for patient positioning in the anterior-posterior (A-P) direction: one is the skin mark patient setup method (SMPS) and the other is the couch height-based patient setup method (CHPS). This study compared the setup accuracy of these 2 methods for abdominal radiation therapy. The enrollment for this study comprised 23 patients with pancreatic cancer. For treatments (539 sessions), patients were set up by using isocenter skin marks and thereafter treatment couch was shifted so that the distance between the isocenter and the upper side of the treatment couch was equal to that indicated on the computed tomographic (CT) image. Setup deviation in the A-P direction for CHPS was measured by matching the spine of the digitally reconstructed radiograph (DRR) of a lateral beam at simulation with that of the corresponding time-integrated electronic portal image. For SMPS with no correction (SMPS/NC), setup deviation was calculated based on the couch-level difference between SMPS and CHPS. SMPS/NC was corrected using 2 off-line correction protocols: no action level (SMPS/NAL) and extended NAL (SMPS/eNAL) protocols. Margins to compensate for deviations were calculated using the Stroom formula. A-P deviation > 5mm was observed in 17% of SMPS/NC, 4% of SMPS/NAL, and 4% of SMPS/eNAL sessions but only in one CHPS session. For SMPS/NC, 7 patients (30%) showed deviations at an increasing rate of > 0.1mm/fraction, but for CHPS, no such trend was observed. The standard deviations (SDs) of systematic error (Σ) were 2.6, 1.4, 0.6, and 0.8mm and the root mean squares of random error (σ) were 2.1, 2.6, 2.7, and 0.9mm for SMPS/NC, SMPS/NAL, SMPS/eNAL, and CHPS, respectively. Margins to compensate for the deviations were wide for SMPS/NC (6.7mm), smaller for SMPS/NAL (4.6mm) and SMPS/eNAL (3.1mm), and smallest for CHPS (2.2mm). Achieving better setup with smaller margins, CHPS appears to be a reproducible method for abdominal patient setup. PMID:26553471

  5. Interoperating Cloud-based Virtual Farms

    NASA Astrophysics Data System (ADS)

    Bagnasco, S.; Colamaria, F.; Colella, D.; Casula, E.; Elia, D.; Franco, A.; Lusso, S.; Luparello, G.; Masera, M.; Miniello, G.; Mura, D.; Piano, S.; Vallero, S.; Venaruzzo, M.; Vino, G.

    2015-12-01

    The present work aims at optimizing the use of computing resources available at the grid Italian Tier-2 sites of the ALICE experiment at CERN LHC by making them accessible to interactive distributed analysis, thanks to modern solutions based on cloud computing. The scalability and elasticity of the computing resources via dynamic (“on-demand”) provisioning is essentially limited by the size of the computing site, reaching the theoretical optimum only in the asymptotic case of infinite resources. The main challenge of the project is to overcome this limitation by federating different sites through a distributed cloud facility. Storage capacities of the participating sites are seen as a single federated storage area, preventing the need of mirroring data across them: high data access efficiency is guaranteed by location-aware analysis software and storage interfaces, in a transparent way from an end-user perspective. Moreover, the interactive analysis on the federated cloud reduces the execution time with respect to grid batch jobs. The tests of the investigated solutions for both cloud computing and distributed storage on wide area network will be presented.

  6. Subtropical and Polar Cirrus Clouds Characterized by Ground-Based Lidars and CALIPSO/CALIOP Observations

    NASA Astrophysics Data System (ADS)

    Córdoba-Jabonero, Carmen; Lopes, Fabio J. S.; Landulfo, Eduardo; Ochoa, Héctor; Gil-Ojeda, Manuel

    2016-06-01

    Cirrus clouds are product of weather processes, and then their occurrence and macrophysical/optical properties can vary significantly over different regions of the world. Lidars can provide height-resolved measurements with a relatively good both vertical and temporal resolutions, making them the most suitable instrumentation for high-cloud observations. The aim of this work is to show the potential of lidar observations on Cirrus clouds detection in combination with a recently proposed methodology to retrieve the Cirrus clouds macrophysical and optical features. In this sense, a few case studies of cirrus clouds observed at both subtropical and polar latitudes are examined and compared to CALIPSO/CALIOP observations. Lidar measurements are carried out in two stations: the Metropolitan city of Sao Paulo (MSP, Brazil, 23.3°S 46.4°W), located at subtropical latitudes, and the Belgrano II base (BEL, Argentina, 78ºS 35ºW) in the Antarctic continent. Optical (COD-cloud optical depth and LR-Lidar Ratio) and macrophysical (top/base heights and thickness) properties of both the subtropical and polar cirrus clouds are reported. In general, subtropical Cirrus clouds present lower LR values and are found at higher altitudes than those detected at polar latitudes. In general, Cirrus clouds are detected at similar altitudes by CALIOP. However, a poor agreement is achieved in the LR retrieved between ground-based lidars and space-borne CALIOP measurements, likely due to the use of a fixed (or low-variable) LR value in CALIOP inversion procedures.

  7. Statistical analysis of an LES shallow cumulus cloud ensemble using a cloud tracking algorithm

    NASA Astrophysics Data System (ADS)

    Dawe, J. T.; Austin, P. H.

    2012-01-01

    A technique for the tracking of individual clouds in a Large Eddy Simulation (LES) is presented. We use this technique on an LES of a shallow cumulus cloud field based upon the Barbados Oceanographic and Meteorological Experiment (BOMEX) to calculate statistics of cloud height, lifetime, and other physical properties for individual clouds in the model. We also examine the question of nature versus nurture in shallow cumulus clouds: do properties at cloud base determine the upper-level properties of the clouds (nature), or are cloud properties determined by the environmental conditions they encounter (nurture). We find that clouds which ascend through an environment that has been pre-moistened by previous cloud activity are no more likely to reach the inversion than clouds that ascend through a drier environment. Cloud base thermodynamic properties are uncorrelated with upper-level cloud properties, while mean fractional entrainment and detrainment rates display moderate correlations with cloud properties up to the inversion. Conversely, cloud base area correlates well with upper-level cloud area and maximum cloud height. We conclude that cloud thermodynamic properties are primarily influenced by entrainment and detrainment processes, cloud area and height are primarily influenced by cloud base area, and thus nature and nurture both play roles in the dynamics of BOMEX shallow cumulus clouds.

  8. Statistical analysis of a LES shallow cumulus cloud ensemble using a cloud tracking algorithm

    NASA Astrophysics Data System (ADS)

    Dawe, J. T.; Austin, P. H.

    2011-08-01

    A technique for the tracking of individual clouds in a Large Eddy Simulation (LES) is presented. We use this technique on a LES of a shallow cumulus cloud field based upon the Barbados Oceanographic and Meteorological Experiment (BOMEX) to calculate statistics of cloud height, lifetime, and other physical properties for individual clouds in the model. We also examine the question of nature versus nurture in shallow cumulus clouds: do properties at cloud base determine the upper-level properties of the clouds (nature), or are cloud properties determined by the environmental conditions they encounter (nurture). We find that clouds which ascend through an environment that has been pre-moistened by previous cloud activity are no more likely to reach the inversion than clouds that ascend through a drier environment. Cloud base thermodynamic properties are uncorrelated with upper-level cloud properties, while mean fractional entrainment and detrainment rate displays moderate correlations with cloud properties up to the inversion. Conversely, cloud base area correlates well with upper-level cloud area and maximum cloud height. We conclude that cloud thermodynamic properties are primarily influenced by entrainment and detrainment processes, cloud area and height are primarily influenced by cloud base area, and thus nature and nurture both play roles in the dynamics of BOMEX shallow cumulus clouds.

  9. Zonal superrotation above Venus' cloud base induced by the semidiurnal tide and the mean meridional circulation

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Goody, Richard M.; Fels, Stephen B.

    1990-01-01

    The equilibrium zonal wind structure resulting from the interaction of the semidiurnal tide and the mean meridional circulation driven by the zonally averaged solar heating above the Venus cloud base were calculated. The results show that the tidal mechanism proposed by Fels and Lindzen (1974) can account for a substantial fraction (and possibly all) of the increase of the equatorial wind speed above the cloud base. Above the cloud tops, tidal deceleration may be too small to produce the zonal wind decrease with height inferred from thermal data. Tidal forcing does not explain the superrotation below the clouds, and additional eddy sources are needed to account for the zonal wind structure at mid and high latitudes.

  10. Building vulnerability assessment based on cloud model

    NASA Astrophysics Data System (ADS)

    Sun, Xixia; Cai, Chao

    2013-10-01

    This study aims at building a general framework for estimating building vulnerability to blast-fragmentation warhead of a missile. Considering the fuzziness and randomness existing in the damage criterion rules, cloud models are applied to represent the qualitative concepts. On the basis of building geometric description, element criticality analysis, blast wave and fragment movement description, and meeting analysis of fragments and target, kill probabilities of the components are estimated by the shot line method. The damage state of the whole building given the threat is obtained by cloud model based uncertainty reasoning and the proposed similarity measure, enabling both randomness of probability reasoning and the fuzziness of the traditional fuzzy logic to be considered. Experimental results demonstrate that the proposed method can provide useful reference for optimizing warhead design and mission efficiency evaluation.

  11. Cloudy Sounding and Cloud-Top Height Retrieval From AIRS Alone Single Field-of-View Radiance Measurements

    NASA Technical Reports Server (NTRS)

    Weisz, Elisabeth; Li, Jun; Li, Jinlong; Zhou, Daniel K.; Huang, Hung-Lung; Goldberg, Mitchell D.; Yang, Ping

    2007-01-01

    High-spectral resolution measurements from the Atmospheric Infrared Sounder (AIRS) onboard the EOS (Earth Observing System) Aqua satellite provide unique information about atmospheric state, surface and cloud properties. This paper presents an AIRS alone single field-of-view (SFOV) retrieval algorithm to simultaneously retrieve temperature, humidity and ozone profiles under all weather conditions, as well as cloud top pressure (CTP) and cloud optical thickness (COT) under cloudy skies. For optically thick cloud conditions the above-cloud soundings are derived, whereas for clear skies and optically thin cloud conditions the profiles are retrieved from 0.005 hPa down to the earth's surface. Initial validation has been conducted by using the operational MODIS (Moderate Resolution Imaging Spectroradiometer) product, ECMWF (European Center of Medium range Weather Forecasts) analysis fields and radiosonde observations (RAOBs). These inter-comparisons clearly demonstrate the potential of this algorithm to process data from 38 high-spectral infrared (IR) sounder instruments.

  12. Comparing the Cloud Vertical Structure Derived from Several Methods Based on Radiosonde Profiles and Ground-based Remote Sensing Measurements

    SciTech Connect

    Costa-Suros, M.; Calbo, J.; Gonzalez, J. A.; Long, Charles N.

    2014-08-27

    The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, is an important characteristic in order to describe the impact of clouds in a changing climate. In this work several methods to estimate the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering number and position of cloud layers, with a ground based system which is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ on the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study these methods are applied to 125 radiosonde profiles acquired at the ARM Southern Great Plains site during all seasons of year 2009 and endorsed by GOES images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The overall agreement for the methods ranges between 44-88%; four methods produce total agreements around 85%. Further tests and improvements are applied on one of these methods. In addition, we attempt to make this method suitable for low resolution vertical profiles, which could be useful in atmospheric modeling. The total agreement, even when using low resolution profiles, can be improved up to 91% if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.

  13. A global survey of cloud overlap based on CALIPSO and CloudSat measurements

    NASA Astrophysics Data System (ADS)

    Li, J.; Huang, J.; Stamnes, K.; Wang, T.; Lv, Q.; Jin, H.

    2015-01-01

    Using 2B-CLDCLASS-LIDAR (radar-lidar) cloud classification and 2B-FLXHR-LIDAR radiation products from CloudSat over 4 years, this study evaluates the co-occurrence frequencies of different cloud types, analyzes their along-track horizontal scales and cloud radiative effects (CREs), and utilizes the vertical distributions of cloud types to evaluate cloud-overlap assumptions. The statistical results show that high clouds, altostratus (As), altocumulus (Ac) and cumulus (Cu) tend to coexist with other cloud types. However, stratus (St) (or stratocumulus, Sc), nimbostratus (Ns) and convective clouds are much more likely to exhibit individual features than other cloud types. On average, altostratus-over-stratus/stratocumulus cloud systems have a maximum horizontal scale of 17.4 km, with a standard deviation of 23.5 km. Altocumulus-over-cumulus cloud types have a minimum scale of 2.8 km, with a standard deviation of 3.1 km. By considering the weight of each multilayered cloud type, we find that the global mean instantaneous net CREs of multilayered cloud systems during the daytime are approximately -41.3 and -50.2 W m-2, which account for 40.1 and 42.3% of the global mean total net CREs at the top of the atmosphere (TOA) and at the surface, respectively. The radiative contributions of high-over-altocumulus and high-over-stratus/stratocumulus (or cumulus) in the all multilayered cloud systems are dominant due to their frequency. Considering the overlap of cloud types, the cloud fraction based on the random overlap assumption is underestimated over vast oceans, except in the west-central Pacific Ocean warm pool. Obvious overestimations mainly occur over tropical and subtropical land masses. In view of a lower degree of overlap than that predicted by the random overlap assumption to occur over the vast ocean, particularly poleward of 40° S, the study therefore suggests that a linear combination of minimum and random overlap assumptions may further improve the predictions of

  14. Investigation of tropical cirrus cloud properties using ground based lidar measurements

    NASA Astrophysics Data System (ADS)

    Dhaman, Reji K.; Satyanarayana, Malladi; Krishnakumar, V.; Mahadevan Pillai, V. P.; Jayeshlal, G. S.; Raghunath, K.; Venkat Ratnam, M.

    2016-05-01

    Cirrus clouds play a significant role in the Earths radiation budget. Therefore, knowledge of geometrical and optical properties of cirrus cloud is essential for the climate modeling. In this paper, the cirrus clouds microphysical and optical properties are made by using a ground based lidar measurements over an inland tropical station Gadanki (13.5°N, 79.2°E), Andhra Pradesh, India. The variation of cirrus microphysical and optical properties with mid cloud temperature is also studied. The cirrus clouds mean height is generally observed in the range of 9-17km with a peak occurrence at 13- 14km. The cirrus mid cloud temperature ranges from -81°C to -46°C. The cirrus geometrical thickness ranges from 0.9- 4.5km. During the cirrus occurrence days sub-visual, thin and dense cirrus were at 37.5%, 50% and 12.5% respectively. The monthly cirrus optical depth ranges from 0.01-0.47, but most (<80%) of the cirrus have values less than 0.1. Optical depth shows a strong dependence with cirrus geometrical thickness and mid-cloud height. The monthly mean cirrus extinction ranges from 2.8E-06 to 8E-05 and depolarization ratio and lidar ratio varies from 0.13 to 0.77 and 2 to 52 sr respectively. A positive correlation exists for both optical depth and extinction with the mid-cloud temperature. The lidar ratio shows a scattered behavior with mid-cloud temperature.

  15. Macrophysical and optical properties of midlatitude cirrus clouds from four ground-based lidars and collocated CALIOP observations

    SciTech Connect

    Dupont, Jean-Charles; Haeffelin, M.; Morille, Y.; Noel, V.; Keckhut, P.; Winker, D.; Comstock, Jennifer M.; Chervet, P.; Roblin, A.

    2010-05-27

    Ground-based lidar and CALIOP datasets gathered over four mid-latitude sites, two US and two French sites, are used to evaluate the consistency of cloud macrophysical and optical property climatologies that can be derived by such datasets. The consistency in average cloud height (both base and top height) between the CALIOP and ground datasets ranges from -0.4km to +0.5km. The cloud geometrical thickness distributions vary significantly between the different datasets, due in part to the original vertical resolutions of the lidar profiles. Average cloud geometrical thicknesses vary from 1.2 to 1.9km, i.e. by more than 50%. Cloud optical thickness distributions in subvisible, semi-transparent and moderate intervals differ by more than 50% between ground and space-based datasets. The cirrus clouds with 2 optical thickness below 0.1 (not included in historical cloud climatologies) represent 30-50% of the non-opaque cirrus class. The differences in average cloud base altitude between ground and CALIOP datasets of 0.0-0.1 km, 0.0-0.2 km and 0.0-0.2 km can be attributed to irregular sampling of seasonal variations in the ground-based data, to day-night differences in detection capabilities by CALIOP, and to the restriction to situations without low-level clouds in ground-based data, respectively. The cloud geometrical thicknesses are not affected by irregular sampling of seasonal variations in the ground-based data, while up to 0.0-0.2 km and 0.1-0.3 km differences can be attributed to day-night differences in detection capabilities by CALIOP, and to the restriction to situations without lowlevel clouds in ground-based data, respectively.

  16. Is School-Based Height and Weight Screening of Elementary Students Private and Reliable?

    ERIC Educational Resources Information Center

    Stoddard, Sarah A.; Kubik, Martha Y.; Skay, Carol

    2008-01-01

    The Institute of Medicine recommends school-based body mass index (BMI) screening as an obesity prevention strategy. While school nurses have provided height/weight screening for years, little has been published describing measurement reliability or process. This study evaluated the reliability of height/weight measures collected by school nurses…

  17. Cloud-base distribution and cirrus properties based on micropulse lidar measurements at a site in southeastern China

    NASA Astrophysics Data System (ADS)

    Liu, Jianjun; Li, Zhanqing; Zheng, Youfei; Cribb, Maureen

    2015-07-01

    The cloud fraction (CF) and cloud-base heights (CBHs), and cirrus properties, over a site in southeastern China from June 2008 to May 2009, are examined by a ground-based lidar. Results show that clouds occupied the sky 41% of the time. Significant seasonal variations in CF were found with a maximum/minimum during winter/summer and similar magnitudes of CF in spring and autumn. A distinct diurnal cycle in the overall mean CF was seen. Total, daytime, and nighttime annual mean CBHs were 3.05±2.73 km, 2.46±2.08 km, and 3.51±3.07 km, respectively. The lowest/highest CBH occurred around noon/midnight. Cirrus clouds were present ˜36.2% of the time at night with the percentage increased in summer and decreased in spring. Annual mean values for cirrus geometrical properties were 8.89±1.65 km, 9.80±1.70 km, 10.73±1.86 km and 1.83±0.91 km for the base, mid-cloud, top height, and the thickness, respectively. Seasonal variations in cirrus geometrical properties show a maximum/minimum in summer/winter for all cirrus geometrical parameters. The mean cirrus lidar ratio for all cirrus cases in our study was ˜ 25±17 sr, with a smooth seasonal trend. The cirrus optical depth ranged from 0.001 to 2.475, with a mean of 0.34±0.33. Sub-visual, thin, and dense cirrus were observed in ˜12%, 43%, and 45% of the cases, respectively. More frequent, thicker cirrus clouds occurred in summer than in any other season. The properties of cirrus cloud over the site are compared with other lidar-based retrievals of midlatitude cirrus cloud properties.

  18. Evaluation of quantitative satellite-based retrievals of volcanic ash clouds

    NASA Astrophysics Data System (ADS)

    Schneider, D. J.; Pavolonis, M. J.; Bojinski, S.; Siddans, R.; Thomas, G.

    2015-12-01

    Volcanic ash clouds are a serious hazard to aviation, and mitigation requires a robust system of volcano monitoring, eruption detection, characterization of cloud properties, forecast of cloud movement, and communication of warnings. Several research groups have developed quantitative satellite-based volcanic ash products and some of these are in operational use by Volcanic Ash Advisory Centers around the world to aid in characterizing cloud properties and forecasting regions of ash hazard. The algorithms applied to the satellite data utilize a variety of techniques, and thus produce results that differ. The World Meteorological Organization has recently sponsored an intercomparison study of satellite-based retrievals with four goals: 1) to establish a validation protocol for satellite-based volcanic ash products, 2) to quantify and understand differences in products, 3) to develop best practices, and 4) to standardize volcanic cloud geophysical parameters. Six volcanic eruption cases were considered in the intercomparison: Eyjafallajökull, Grimsvötn, Kelut, Kirishimayama, Puyehue-Cordón Caulle, and Sarychev Peak. Twenty-four algorithms were utilized, which retrieved parameters including: ash cloud top height, ash column mass loading, ash effective radius, and ash optical depth at visible and thermal-infrared wavelengths. Results were compared to space-based, airborne, and ground-based lidars; complementary satellite retrievals; and manual "expert evaluation" of ash extent. The intercomparison results will feed into the International Civil Aviation Organization "Roadmap for International Airways Volcano Watch", which integrates volcanic meteorological information into decision support systems for aircraft operations.

  19. Teaching Thousands with Cloud-based GIS

    NASA Astrophysics Data System (ADS)

    Gould, Michael; DiBiase, David; Beale, Linda

    2016-04-01

    Teaching Thousands with Cloud-based GIS Educators often draw a distinction between "teaching about GIS" and "teaching with GIS." Teaching about GIS involves helping students learn what GIS is, what it does, and how it works. On the other hand, teaching with GIS involves using the technology as a means to achieve education objectives in the sciences, social sciences, professional disciplines like engineering and planning, and even the humanities. The same distinction applies to CyberGIS. Understandably, early efforts to develop CyberGIS curricula and educational resources tend to be concerned primarily with CyberGIS itself. However, if CyberGIS becomes as functional, usable and scalable as it aspires to be, teaching with CyberGIS has the potential to enable large and diverse global audiences to perform spatial analysis using hosted data, mapping and analysis services all running in the cloud. Early examples of teaching tens of thousands of students across the globe with cloud-based GIS include the massive open online courses (MOOCs) offered by Penn State University and others, as well as the series of MOOCs more recently developed and offered by Esri. In each case, ArcGIS Online was used to help students achieve educational objectives in subjects like business, geodesign, geospatial intelligence, and spatial analysis, as well as mapping. Feedback from the more than 100,000 total student participants to date, as well as from the educators and staff who supported these offerings, suggest that online education with cloud-based GIS is scalable to very large audiences. Lessons learned from the course design, development, and delivery of these early examples may be useful in informing the continuing development of CyberGIS education. While MOOCs may have passed the peak of their "hype cycle" in higher education, the phenomenon they revealed persists: namely, a global mass market of educated young adults who turn to free online education to expand their horizons. The

  20. Initial assessment of space-based lidar CALIOP aerosol and cloud layer structures through inter-comparison with a ground-based back-scattering lidar and CloudSat

    NASA Astrophysics Data System (ADS)

    Kim, S.-W.; Yoon, S.-C.; Chung, E.-S.; Sohn, B.-J.; Berthier, S.; Raut, J.-C.; Chazette, P.; Dulac, F.

    2009-03-01

    This study presents results of the intercomparison of aerosol/cloud top and bottom heights obtained from a space-borne active sensor Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard CALIPSO, and the Cloud Profiling Radar (CPR) onboard CloudSat, and the space-borne passive sensor Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Aqua, and ground-based 2-wavelenght polarization lidar system (532 and 1064 nm) at Seoul National University (SNU), Seoul, South Korea. This result confirms that the CALIPSO science team algorithms for the discrimination of cloud and aerosol as well as for the detection of layer top and base altitude provide reliable information both under cloud-free conditions and in cases of multiple aerosol layers underlying semi-transparent cirrus clouds. Simultaneous space-borne CALIOP, CPR and ground-based SNU lidar (SNU-L) measurements complement each other and can be combined to provide full information on the vertical distribution of aerosols and clouds, especially for thick opaque clouds. The aerosol extinction profiles from both lidars show good agreement for aerosols within the planetary boundary layer under cloud-free conditions and for the night-time CALIOP flight.

  1. Modeling Cloud Phase Fraction Based on In-situ Observations in Stratiform Clouds

    NASA Astrophysics Data System (ADS)

    Boudala, F. S.; Isaac, G. A.

    2005-12-01

    rates. After the water vapor pressure in mixed-phase cloud was modified based on the Lord et al. (1984) scheme by weighting the saturation water vapor pressure with ice fraction, it was possible to simulate more stable mixed-phase cloud. It was also noted that the ice particle concentration (L>100 μm) in mixed-phase cloud is lower on average by a factor 3 and as a result the parameterization should be corrected for this effect. After accounting for this effect, the parameterized ice fraction agreed well with observed mean ice fraction.

  2. Characteristics of Borneo and Sumatra fire plume heights and smoke clouds and their impact on regional El Niño-induced drought

    NASA Astrophysics Data System (ADS)

    Tosca, Michael; Randerson, James; Zender, Cs; Flanner, Mg; Nelson, Dl; Diner, Dj; Rasch, Pj; Logan, Ja

    2010-05-01

    During the dry season, anthropogenic fires in tropical forests and peatlands in equatorial Asia produce regionally expansive smoke clouds. We estimated the altitude of smoke clouds from these fires, characterized the sensitivity of these clouds to regional drought and El Niño variability, and investigated their effect on climate. We used the MISR satellite product and MISR INteractive eXplorer (MINX) software to estimate the heights of 382 smoke plumes (smoke with a visible surface source and transport direction) on Borneo and 143 plumes on Sumatra for 2001—2009. In addition, we estimated the altitudes of 10 smoke clouds (opaque regions of smoke with no detectable surface source or transport direction) on Borneo during 2006. Most smoke plumes (84%) were observed during El Niño events (2002, 2004, 2006, and 2009); this is consistent with higher numbers of active fire detections and larger aerosol optical depths observed during El Niño years. Annually averaged plume heights on Borneo were positively correlated to the Oceanic Niño Index (ONI), an indicator of El Niño (r2 = 0.53), and the mean plume height for all El Niño years was 772.5 ± 15.9m, compared to 711.4 ± 28.7m for non-El Niño years. The median altitude of the 10 smoke clouds observed on Borneo during 2006 was 1313m, considerably higher than the median of nearby smoke plumes (787m). The difference in height between individual plumes and regional smoke clouds may be related to deeper planetary boundary layers and injection heights later in the afternoon (after the 10:30am MISR overpass) or other atmospheric mixing processes that occur on synoptic timescales. We investigated the climate response to these expansive smoke clouds using the Community Atmosphere Model (CAM). Climate responses to smoke from two 30 year simulations were compared: one simulation was forced with fire emissions typical of a dry (El Niño) burning year, while the other was forced with emissions typical of a low (La Ni

  3. Classification-based scene modeling for urban point clouds

    NASA Astrophysics Data System (ADS)

    Hao, Wen; Wang, Yinghui

    2014-03-01

    The three-dimensional modeling of urban scenes is an important topic that can be used for various applications. We present a comprehensive strategy to reconstruct a scene from urban point clouds. First, the urban point clouds are classified into the ground points, planar points on the ground, and nonplanar points on the ground by using the support vector machine algorithm which takes several differential geometry properties as features. Second, the planar points and nonplanar points on the ground are segmented into patches by using different segmentation methods. A collection of characteristics of point cloud segments like height, size, topological relationship, and ratio between the width and length are applied to extract different objects after removing the unwanted segments. Finally, the buildings, ground, and trees in the scene are reconstructed, resulting in a hybrid model representing the urban scene. Experimental results demonstrate that the proposed method can be used as a robust way to reconstruct the scene from the massive point clouds.

  4. Height Accuracy Based on Different Rtk GPS Method for Ultralight Aircraft Images

    NASA Astrophysics Data System (ADS)

    Tahar, K. N.

    2015-08-01

    Height accuracy is one of the important elements in surveying work especially for control point's establishment which requires an accurate measurement. There are many methods can be used to acquire height value such as tacheometry, leveling and Global Positioning System (GPS). This study has investigated the effect on height accuracy based on different observations which are single based and network based GPS methods. The GPS network is acquired from the local network namely Iskandar network. This network has been setup to provide real-time correction data to rover GPS station while the single network is based on the known GPS station. Nine ground control points were established evenly at the study area. Each ground control points were observed about two and ten minutes. It was found that, the height accuracy give the different result for each observation.

  5. Ground-Based Cloud and Atmospheric Boundary Layer Observations for the Project: High Definition Clouds and Precipitation for Advancing Climate Prediction, HD(CP)2

    NASA Astrophysics Data System (ADS)

    Hirsikko, A.; Ebell, K.; Ulrich, U.; Schween, J. H.; Bohn, B.; Görsdorf, U.; Leinweber, R.; Päschke, E.; Baars, H.; Seifert, P.; Klein Baltink, H.

    2014-12-01

    The German research initiative ''High Definition Clouds and Precipitation for advancing Climate Prediction, HD(CP)2'' aims for an improved representation of clouds and precipitation in climate models. Model development and its evaluation require comprehensive observational datasets. A specific work package was established to create uniform and documented observational datasets for the HD(CP)2 data base. Datasets included ground-based remote-sensing (Doppler lidars, ceilometers, microwave radiometers, and cloud radars) and in-situ (meteorological and radiation sensors) measurements. Four supersites (Jülich ObservatorY for Cloud Evolution (JOYCE), Lindenberg Meteorological Observatory - Richard Assmann Observatory (RAO), and Leipzig Aerosol and Cloud Remote Observations System (LACROS) in Germany, and Cabauw experimental site for atmospheric research (Cesar) in the Netherlands) are finalizing the operational procedures to provide quality controlled (and calibrated if possible) remote-sensing and in-situ observations, retrievals on atmospheric boundary layer state (e.g. winds, mixing layer height, humidity and temperature), and cloud macro and micro physical properties with uncertainty estimations or at least quality flags. During the project new processing and retrieval methods were developed if no commonly agreed or satisfying methods were available. Especially, large progress was made concerning uncertainty estimation and automated quality control. Additionally, the data from JOYCE are used in a radiative closure studies under cloudy conditions to evaluate retrievals of cloud properties. The current status of work progress will be presented.

  6. Comparison of the CALIPSO satellite and ground-based observations of cirrus clouds at the ARM TWP sites

    SciTech Connect

    Thorsen, Tyler J.; Fu, Q.; Comstock, Jennifer M.

    2011-11-10

    Statistics of ice cloud macrophysical and optical properties from the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) instrument on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite are compared with those from ground-based lidar observations over a 31 month period. Ground-based lidar observations are taken from the micropulse lidars (MPL) at the three Department of Energy Atmospheric Radiation Measurement (ARM) tropical western pacific (TWP) sites: Manus, Nauru and Darwin. CALIPSO observations show a larger cloud fraction at high altitudes while the ground-based MPLs show a larger cloud fraction at low altitudes. The difference in mean ice cloud top and base heights at the Manus and Nauru sites are all within 0.51 km, although differences are statistically significant. Mean ice cloud geometrical thickness agree to within 0.05 km at the Manus and Nauru sites. Larger differences exist at Darwin due to excessive degradation of the MPL output power during our sampling period. Both sets of observations show thicker clouds during the nighttime which may be real but could also be partially an artifact of the decreased signal-to-noise ratio during the daytime. The number of ice cloud layers per profile are also shown to be consistent after accounting for the difference in spatial resolution. For cloud optical depths, four different retrieval methods are compared, two for each set of observations. All products show that the majority of ice cloud optical depths ({approx}60%) fall below an optical depth of 0.2. For most comparisons all four retrievals agree to within the uncertainty intervals. We find that both CALIPSO retrievals agree best to ground-based optical depths when the lidar ratio in the latter is retrieved instead of set to a fixed value. Also thoroughly compared is the cloud properties for the subset of ice clouds which reside in the tropical tropopause layer (TTL).

  7. GNSS-SNR-derived water surface heights based on Newton Interval Analysis

    NASA Astrophysics Data System (ADS)

    Reinking, Jörg

    2016-04-01

    The power of Global navigation satellite system (GNSS) signals is commonly recorded as signal-to-noise ratio (SNR) by GNSS receivers. SNR mainly depends on the direct signal but also on the reflected signal. Hence the analysis of SNR data allows the computation of heights of the reflecting surfaces by means of interference pattern technique (IPT). In classical IPT the distance between the antenna and the reflector is derived from the multipath pattern using a Lomb-Scargle Periodogram (LSP) analysis which is calculated separately for every satellite involved. The final reflector height is later estimated combining all those results A more sophisticated approach uses a consistent computation of the reflector height from all observations of all satellites in a single estimation step. This is achieved by replacing LSP analysis by an appropriate common least squares adjustment for all satellites. The sum of squares of residuals from such an adjustment depends on the reflector height and is used as an objective function. The reflector height is than derived in a global optimization process based on interval analysis. This approach additionally reduces the computational efforts compared to LSP. For a constant or only slowly changing reflector height, the height could be treated at least as a quasi-static non-time-depending function for a particular time window. In this one-dimensional case the global optimization can be carried out based on the Interval Newton Method. The method is demonstrated using a data set obtain from a measurement on the Weser river, Germany.

  8. CloudMap: a cloud-based pipeline for analysis of mutant genome sequences.

    PubMed

    Minevich, Gregory; Park, Danny S; Blankenberg, Daniel; Poole, Richard J; Hobert, Oliver

    2012-12-01

    Whole genome sequencing (WGS) allows researchers to pinpoint genetic differences between individuals and significantly shortcuts the costly and time-consuming part of forward genetic analysis in model organism systems. Currently, the most effort-intensive part of WGS is the bioinformatic analysis of the relatively short reads generated by second generation sequencing platforms. We describe here a novel, easily accessible and cloud-based pipeline, called CloudMap, which greatly simplifies the analysis of mutant genome sequences. Available on the Galaxy web platform, CloudMap requires no software installation when run on the cloud, but it can also be run locally or via Amazon's Elastic Compute Cloud (EC2) service. CloudMap uses a series of predefined workflows to pinpoint sequence variations in animal genomes, such as those of premutagenized and mutagenized Caenorhabditis elegans strains. In combination with a variant-based mapping procedure, CloudMap allows users to sharply define genetic map intervals graphically and to retrieve very short lists of candidate variants with a few simple clicks. Automated workflows and extensive video user guides are available to detail the individual analysis steps performed (http://usegalaxy.org/cloudmap). We demonstrate the utility of CloudMap for WGS analysis of C. elegans and Arabidopsis genomes and describe how other organisms (e.g., Zebrafish and Drosophila) can easily be accommodated by this software platform. To accommodate rapid analysis of many mutants from large-scale genetic screens, CloudMap contains an in silico complementation testing tool that allows users to rapidly identify instances where multiple alleles of the same gene are present in the mutant collection. Lastly, we describe the application of a novel mapping/WGS method ("Variant Discovery Mapping") that does not rely on a defined polymorphic mapping strain, and we integrate the application of this method into CloudMap. CloudMap tools and documentation are

  9. Efficient modeling of height datum based on GIS

    NASA Astrophysics Data System (ADS)

    Qiao, Q.

    2014-04-01

    Since the proposal of Digital Earth, its research and applications are continuing to be deepened, and now Smart City is more indepth implementation of the Digital Earth. The unification of global or regional vertical datums has always been one of the main geodesy studies to achieve Smart City, as Smart City must first realize the seamless integration of multi-source geo-dataset. This paper introduces spatio-temporal data management and interactive visualization into the entire process of vertical datum modelling. We demonstrate that the efficiency of modelling is greatly improved. In this paper GIS database is used to manage all dataset such as tidal station data, gravity field model data, GPS leveling data, and vertical datum data for evaluation and analysis. We use geographic information visualization technique to graphically display the results, together with the interactive browsing, to convert tedious digital information to easy-to-understand images. Consequently, researchers can quickly and comprehensively grasp the macro and micro information. Finally, an efficient and interactive prototype operating platforms for vertical datum modeling is constructed based on GIS.

  10. Cloud Based Processing of Large Photometric Surveys

    NASA Astrophysics Data System (ADS)

    Farivar, R.; Brunner, R. J.; Santucci, R.; Campbell, R.

    2013-10-01

    Astronomy, as is the case with many scientific domains, has entered the realm of being a data rich science. Nowhere is this reflected more clearly than in the growth of large area surveys, such as the recently completed Sloan Digital Sky Survey (SDSS) or the Dark Energy Survey, which will soon obtain PB of imaging data. The data processing on these large surveys is a major challenge. In this paper, we demonstrate a new approach to this common problem. We propose the use of cloud-based technologies (e.g., Hadoop MapReduce) to run a data analysis program (e.g., SExtractor) across a cluster. Using the intermediate key/value pair design of Hadoop, our framework matches objects across different SExtractor invocations to create a unified catalog from all SDSS processed data. We conclude by presenting our experimental results on a 432 core cluster and discuss the lessons we have learned in completing this challenge.

  11. Height compensation using ground inclination estimation in inertial sensor-based pedestrian navigation.

    PubMed

    Park, Sang Kyeong; Suh, Young Soo

    2011-01-01

    In an inertial sensor-based pedestrian navigation system, the position is estimated by double integrating external acceleration. A new algorithm is proposed to reduce z axis position (height) error. When a foot is on the ground, a foot angle is estimated using accelerometer output. Using a foot angle, the inclination angle of a road is estimated. Using this road inclination angle, height difference of one walking step is estimated and this estimation is used to reduce height error. Through walking experiments on roads with different inclination angles, the usefulness of the proposed algorithm is verified. PMID:22164061

  12. Variability of cloud optical depth and cloud droplet effective radius in layer clouds: Satellite based analysis

    NASA Astrophysics Data System (ADS)

    Szczodrak, Malgorzata Dorota

    1998-11-01

    Measurements made by the AVHRR (Advanced Very High Resolution Radiometer) on board of five NOAA polar orbiting satellites were used to retrieve cloud optical depth (/tau) and cloud droplet effective radius (reff) for marine boundary layer clouds over the Pacific Ocean west of California and over the Southern Ocean near Tasmania. Retrievals were obtained for 21 days of data acquired between 1987 and 1995 from which over 300 subscenes ~256 km x 256 km in size were extracted. On this spatial scale cloud fields were found to have mean τ between 8 and 32 and mean reff between 6 and 17 /mu m. The frequency distribution of τ is well approximated by a two parameter gamma distribution. The gamma distribution also provides a good fit to the observed reff distribution if the distribution is symmetric or positively skewed but fails for negatively skewed or bi-modal distributions of reff which were also observed. The retrievals show a relationship between τ and reff which is consistent with a simple 'reference' cloud model with reff~τ1/5. The proportionality constant depends on cloud droplet number concentration N and cloud subadiabaticity β through the parameter Nsat=N//sqrt[/beta]. Departures from the reference behaviour occur in scenes with spatially coherent Nsat regimes, separated by a sharp boundary. AVHRR imagery is able to separate two Nsat regimes if they differ by at least 30% in most cases. Satellite retrievals of τ and reff were compared with in situ aircraft measurement near Tasmania. The retrievals overestimated reff by 0.7 to 3.6 /mu m on different flights, in agreement with results from earlier comparison studies. The reff overestimation was found to be an offset independent of /tau. The reference cloud model and the Nsat retrieval were tested on aircraft data and yield results consistent with direct in situ measurements of N and /beta. Spectral and multifractal analyses of the spatial structure of cloud visible radiance, τ and reff fields in 34 satellite

  13. Comparing the cloud vertical structure derived from several methods based on radiosonde profiles and ground-based remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Costa-Surós, M.; Calbó, J.; González, J. A.; Long, C. N.

    2014-08-01

    The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, are important characteristics in order to describe the impact of clouds on climate. In this work, several methods for estimating the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering the number and position of cloud layers, with a ground-based system that is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ in the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study, these methods are applied to 193 radiosonde profiles acquired at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site during all seasons of the year 2009 and endorsed by Geostationary Operational Environmental Satellite (GOES) images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The perfect agreement (i.e., when the whole CVS is estimated correctly) for the methods ranges between 26 and 64%; the methods show additional approximate agreement (i.e., when at least one cloud layer is assessed correctly) from 15 to 41%. Further tests and improvements are applied to one of these methods. In addition, we attempt to make this method suitable for low-resolution vertical profiles, like those from the outputs of reanalysis methods or from the World Meteorological Organization's (WMO) Global Telecommunication System. The perfect agreement, even when using low-resolution profiles, can be improved by up to 67% (plus 25% of the approximate agreement) if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.

  14. Testing the Parameterizations of Cloud Base Mass-Flux for Shallow Cumulus Clouds using Cloud Radar Observations

    NASA Astrophysics Data System (ADS)

    Chandra, A.; Kollias, P.; Albrecht, B. A.; Zhu, P.; Klein, S. A.; Zhang, Y.

    2010-12-01

    Shallow cumulus clouds have significant impact on the vertical distributions of heat and moisture and on surface energy fluxes over land through their effect on incoming shortwave radiation. The present resolutions of General Circulation Model (GCM) and Numerical weather prediction (NWP) models are not fine enough to simulate shallow clouds directly, leaving not much choice other than parameterizations evaluated using either Large Eddy Simulation (LES) and observations. The representation of these clouds in numerical models is an important and challenging issue in model development, because of its potential impacts on near-surface weather and long-term climate simulations. Recent studies through LES have shown that the mass flux is the important parameter for determining the characteristics of cumulus transports within cloud layer. Based on LES results and scaling arguments, substantial efforts have been made to parameterize the cloud base mass flux to improve the interactions between the subcloud and cloud layer. Despite these efforts, what factors control the mass flux and how the interaction between subcloud and cloud layers should be parameterized is not fully understood. From the observational perspective, studies have been done using aircraft and remote sensing platform to address the above issue; there have been insufficient observations to develop detailed composite studies under different conditions. The Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) in Southern Great Plains (SGP) offers unique long-term measurements from cloud radars (35 and 94 GHz) along with synergetic measurements to address the above problem of non-precipitating shallow cumulus clouds over the SGP region. Doppler velocities from the cloud radar are processed to remove the insect contamination using a fuzzy-logic approach before they are used for the mass-flux calculation. The present observations are used to validate the existing mass-flux relations used in

  15. A 25-month database of stratus cloud properties generated from ground-based measurements at the Atmospheric Radiation Measurement Southern Great Plains Site

    SciTech Connect

    Dong, Xiquan; Minnis, Patrick; Ackerman, Thomas P.; Clothiaux, Eugene E.; Mace, Gerald G.; Long, Charles N.; Liljegren, James C.

    2000-02-27

    A 25-month database of the macrophysical, microphysical, and radiative properties of isolated and overcast low-level stratus clouds has been generated using a newly developed parameterization and surface measurements from the Atmospheric Radiation Measurement central facility in Oklahoma. The database (5-min resolution) includes two parts: measurements and retrievals. The former consist of cloud base and top heights, layer-mean temperature, cloud liquid water path, and solar transmission ratio measured by a ground-based lidar/ceilometer and radar pair, radiosondes, a microwave radiometer, and a standard Eppley precision spectral pyranometer, respectively. The retrievals include the cloud-droplet effective radius and number concentration and broadband shortwave optical depth and cloud and top-of-atmosphere albedos. Stratus without any overlying mid or high-level clouds occurred most frequently during winter and least often during summer. Mean cloud-layer altitudes and geometric thicknesses were higher and greater, respectively, in summer than in winter. Both quantities are positively correlated with the cloud-layer mean temperature. Mean cloud-droplet effective radii range from 8.1 {mu}m in winter to 9.7 {mu}m during summer, while cloud-droplet number concentrations during winter are nearly twice those in summer. Since cloud liquid water paths are almost the same in both seasons, cloud optical depth is higher during the winter, leading to greater cloud albedos and lower cloud transmittances. (c) 2000 American Geophysical Union.

  16. Research on cloud-based remote measurement and analysis system

    NASA Astrophysics Data System (ADS)

    Gao, Zhiqiang; He, Lingsong; Su, Wei; Wang, Can; Zhang, Changfan

    2015-02-01

    The promising potential of cloud computing and its convergence with technologies such as cloud storage, cloud push, mobile computing allows for creation and delivery of newer type of cloud service. Combined with the thought of cloud computing, this paper presents a cloud-based remote measurement and analysis system. This system mainly consists of three parts: signal acquisition client, web server deployed on the cloud service, and remote client. This system is a special website developed using asp.net and Flex RIA technology, which solves the selective contradiction between two monitoring modes, B/S and C/S. This platform supplies customer condition monitoring and data analysis service by Internet, which was deployed on the cloud server. Signal acquisition device is responsible for data (sensor data, audio, video, etc.) collection and pushes the monitoring data to the cloud storage database regularly. Data acquisition equipment in this system is only conditioned with the function of data collection and network function such as smartphone and smart sensor. This system's scale can adjust dynamically according to the amount of applications and users, so it won't cause waste of resources. As a representative case study, we developed a prototype system based on Ali cloud service using the rotor test rig as the research object. Experimental results demonstrate that the proposed system architecture is feasible.

  17. 16 year climatology of cirrus clouds over a tropical station in southern India using ground and space-based lidar observations

    NASA Astrophysics Data System (ADS)

    Pandit, A. K.; Gadhavi, H. S.; Venkat Ratnam, M.; Raghunath, K.; Rao, S. V. B.; Jayaraman, A.

    2015-06-01

    16 year (1998-2013) climatology of cirrus clouds and their macrophysical (base height, top height and geometrical thickness) and optical properties (cloud optical thickness) observed using a ground-based lidar over Gadanki (13.5° N, 79.2° E), India, is presented. The climatology obtained from the ground-based lidar is compared with the climatology obtained from seven and half years (June 2006-December 2013) of Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) observations. A very good agreement is found between the two climatologies in spite of their opposite viewing geometries and difference in sampling frequencies. Nearly 50-55% of cirrus clouds were found to possess geometrical thickness less than 2 km. Ground-based lidar is found to detect more number of sub-visible clouds than CALIOP which has implications for global warming studies as sub-visible cirrus clouds have significant positive radiative forcing. Cirrus clouds with mid-cloud temperatures between -50 to -70 °C have a mean geometrical thickness greater than 2 km in contrast to the earlier reported value of 1.7 km. Trend analyses reveal a statistically significant increase in the altitude of sub-visible cirrus clouds which is consistent with the recent climate model simulations. Also, the fraction of sub-visible cirrus cloud is found to be increasing during the last sixteen years (1998 to 2013) which has implications to the temperature and water vapour budget in the tropical tropopause layer.

  18. Retrievals of Cloud Fraction and Cloud Albedo from Surface-based Shortwave Radiation Measurements: A Comparison of 16 Year Measurements

    SciTech Connect

    Xie, Yu; Liu, Yangang; Long, Charles N.; Min, Qilong

    2014-07-27

    Ground-based radiation measurements have been widely conducted to gain information on clouds and the surface radiation budget; here several different techniques for retrieving cloud fraction (Long2006, Min2008 and XL2013) and cloud albedo (Min2008, Liu2011 and XL2013) from ground-based shortwave broadband and spectral radiation measurements are examined, and sixteen years of retrievals collected at the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site are compared. The comparison shows overall good agreement between the retrievals of both cloud fraction and cloud albedo, with noted differences however. The Long2006 and Min2008 cloud fractions are greater on average than the XL2013 values. Compared to Min2008 and Liu2011, the XL2013 retrieval of cloud albedo tends to be greater for thin clouds but smaller for thick clouds, with the differences decreasing with increasing cloud fraction. Further analysis reveals that the approaches that retrieve cloud fraction and cloud albedo separately may suffer from mutual contamination of errors in retrieved cloud fraction and cloud albedo. Potential influences of cloud absorption, land-surface albedo, cloud structure, and measurement instruments are explored.

  19. Body height estimation based on dimensions of sacral and coccygeal vertebrae.

    PubMed

    Pelin, Can; Duyar, Izzet; Kayahan, Esra M; Zağyapan, Ragiba; Ağildere, A Muhteşem; Erar, Aydin

    2005-03-01

    This study is to evaluate whether it is possible to predict living stature from sacral and coccygeal vertebral dimensions. Individual vertebral body heights, sacral height (SH), and sacrococcygeal height (SCH) were recorded from the magnetic resonance images of 42 adult males. Sum of the heights of five sacral vertebrae (sigmaS), the first four coccygeal vertebrae (sigmaC), and the total height of the sacral and the first four coccygeal vertebrae together (sigmaSC) were also recorded. Linear regression equations for stature estimation were produced using the above mentioned variables. The regression equations were constructed and tested by using jack-knife procedure. Statistical analyses indicated that the combined variables (SH, SCH, sigmaS, sigmaC, sigmaSC) were more accurate predictors of stature than the heights of individual vertebrae. The results of the study pointed out that the equations derived from sacrococcygeal dimensions perform somewhat better than ones based on foot and head variables, but worse than those based on long-bone length. As a conclusion, the dimensions of sacral and coccygeal vertebrae could be used for stature estimation when long bones are not available. PMID:15813539

  20. Depolarization Lidar Determination Of Cloud-Base Microphysical Properties

    NASA Astrophysics Data System (ADS)

    Donovan, D. P.; Klein Baltink, H.; Henzing, J. S.; de Roode, S.; Siebesma, A. P.

    2016-06-01

    The links between multiple-scattering induced depolarization and cloud microphysical properties (e.g. cloud particle number density, effective radius, water content) have long been recognised. Previous efforts to use depolarization information in a quantitative manner to retrieve cloud microphysical cloud properties have also been undertaken but with limited scope and, arguably, success. In this work we present a retrieval procedure applicable to liquid stratus clouds with (quasi-)linear LWC profiles and (quasi-)constant number density profiles in the cloud-base region. This set of assumptions allows us to employ a fast and robust inversion procedure based on a lookup-table approach applied to extensive lidar Monte-Carlo multiple-scattering calculations. An example validation case is presented where the results of the inversion procedure are compared with simultaneous cloud radar observations. In non-drizzling conditions it was found, in general, that the lidar- only inversion results can be used to predict the radar reflectivity within the radar calibration uncertainty (2-3 dBZ). Results of a comparison between ground-based aerosol number concentration and lidar-derived cloud base number considerations are also presented. The observed relationship between the two quantities is seen to be consistent with the results of previous studies based on aircraft-based in situ measurements.

  1. Point Cloud Server (pcs) : Point Clouds In-Base Management and Processing

    NASA Astrophysics Data System (ADS)

    Cura, R.; Perret, J.; Paparoditis, N.

    2015-08-01

    In addition to the traditional Geographic Information System (GIS) data such as images and vectors, point cloud data has become more available. It is appreciated for its precision and true three-Dimensional (3D) nature. However, managing the point cloud can be difficult due to scaling problems and specificities of this data type. Several methods exist but are usually fairly specialised and solve only one aspect of the management problem. In this work, we propose a complete and efficient point cloud management system based on a database server that works on groups of points rather than individual points. This system is specifically designed to solve all the needs of point cloud users: fast loading, compressed storage, powerful filtering, easy data access and exporting, and integrated processing. Moreover, the system fully integrates metadata (like sensor position) and can conjointly use point clouds with images, vectors, and other point clouds. The system also offers in-base processing for easy prototyping and parallel processing and can scale well. Lastly, the system is built on open source technologies; therefore it can be easily extended and customised. We test the system will several billion points of point clouds from Lidar (aerial and terrestrial ) and stereo-vision. We demonstrate ~ 400 million pts/h loading speed, user-transparent greater than 2 to 4:1 compression ratio, filtering in the approximately 50 ms range, and output of about a million pts/s, along with classical processing, such as object detection.

  2. RACORO continental boundary layer cloud investigations. 2. Large-eddy simulations of cumulus clouds and evaluation with in-situ and ground-based observations

    SciTech Connect

    Endo, Satoshi; Fridlind, Ann M.; Lin, Wuyin; Vogelmann, Andrew M.; Toto, Tami; Ackerman, Andrew S.; McFarquhar, Greg M.; Jackson, Robert C.; Jonsson, Haflidi H.; Liu, Yangang

    2015-06-19

    A 60-hour case study of continental boundary layer cumulus clouds is examined using two large-eddy simulation (LES) models. The case is based on observations obtained during the RACORO Campaign (Routine Atmospheric Radiation Measurement [ARM] Aerial Facility [AAF] Clouds with Low Optical Water Depths [CLOWD] Optical Radiative Observations) at the ARM Climate Research Facility's Southern Great Plains site. The LES models are driven by continuous large-scale and surface forcings, and are constrained by multi-modal and temporally varying aerosol number size distribution profiles derived from aircraft observations. We compare simulated cloud macrophysical and microphysical properties with ground-based remote sensing and aircraft observations. The LES simulations capture the observed transitions of the evolving cumulus-topped boundary layers during the three daytime periods, and generally reproduce variations of droplet number concentration with liquid water content (LWC), corresponding to the gradient between the cloud centers and cloud edges at given heights. The observed LWC values fall within the range of simulated values; the observed droplet number concentrations are commonly higher than simulated, but differences remain on par with potential estimation errors in the aircraft measurements. Sensitivity studies examine the influences of bin microphysics versus bulk microphysics, aerosol advection, supersaturation treatment, and aerosol hygroscopicity. Simulated macrophysical cloud properties are found to be insensitive in this non-precipitating case, but microphysical properties are especially sensitive to bulk microphysics supersaturation treatment and aerosol hygroscopicity.

  3. RACORO continental boundary layer cloud investigations. 2. Large-eddy simulations of cumulus clouds and evaluation with in-situ and ground-based observations

    DOE PAGESBeta

    Endo, Satoshi; Fridlind, Ann M.; Lin, Wuyin; Vogelmann, Andrew M.; Toto, Tami; Ackerman, Andrew S.; McFarquhar, Greg M.; Jackson, Robert C.; Jonsson, Haflidi H.; Liu, Yangang

    2015-06-19

    A 60-hour case study of continental boundary layer cumulus clouds is examined using two large-eddy simulation (LES) models. The case is based on observations obtained during the RACORO Campaign (Routine Atmospheric Radiation Measurement [ARM] Aerial Facility [AAF] Clouds with Low Optical Water Depths [CLOWD] Optical Radiative Observations) at the ARM Climate Research Facility's Southern Great Plains site. The LES models are driven by continuous large-scale and surface forcings, and are constrained by multi-modal and temporally varying aerosol number size distribution profiles derived from aircraft observations. We compare simulated cloud macrophysical and microphysical properties with ground-based remote sensing and aircraft observations.more » The LES simulations capture the observed transitions of the evolving cumulus-topped boundary layers during the three daytime periods, and generally reproduce variations of droplet number concentration with liquid water content (LWC), corresponding to the gradient between the cloud centers and cloud edges at given heights. The observed LWC values fall within the range of simulated values; the observed droplet number concentrations are commonly higher than simulated, but differences remain on par with potential estimation errors in the aircraft measurements. Sensitivity studies examine the influences of bin microphysics versus bulk microphysics, aerosol advection, supersaturation treatment, and aerosol hygroscopicity. Simulated macrophysical cloud properties are found to be insensitive in this non-precipitating case, but microphysical properties are especially sensitive to bulk microphysics supersaturation treatment and aerosol hygroscopicity.« less

  4. Stereoscopic Retrieval of Smoke Plume Heights and Motion from Space-Based Multi-Angle Imaging, Using the MISR INteractive eXplorer(MINX)

    NASA Technical Reports Server (NTRS)

    Nelson, David L.; Kahn, Ralph A.

    2014-01-01

    Airborne particles desert dust, wildfire smoke, volcanic effluent, urban pollution affect Earth's climate as well as air quality and health. They are found in the atmosphere all over the planet, but vary immensely in amount and properties with season and location. Most aerosol particles are injected into the near-surface boundary layer, but some, especially wildfire smoke, desert dust and volcanic ash, can be injected higher into the atmosphere, where they can stay aloft longer, travel farther, produce larger climate effects, and possibly affect human and ecosystem health far downwind. So monitoring aerosol injection height globally can make important contributions to climate science and air quality studies. The Multi-angle Imaging Spectro-Radiometer (MISR) is a space borne instrument designed to study Earths clouds, aerosols, and surface. Since late February 2000 it has been retrieving aerosol particle amount and properties, as well as cloud height and wind data, globally, about once per week. The MINX visualization and analysis tool complements the operational MISR data products, enabling users to retrieve heights and winds locally for detailed studies of smoke plumes, at higher spatial resolution and with greater precision than the operational product and other space-based, passive remote sensing techniques. MINX software is being used to provide plume height statistics for climatological studies as well as to investigate the dynamics of individual plumes, and to provide parameterizations for climate modeling.

  5. CLOUD BASE SIGNATURE IN TRANSMISSION SPECTRA OF EXOPLANET ATMOSPHERES

    SciTech Connect

    Vahidinia, Sanaz; Cuzzi, Jeffrey N.; Marley, Mark; Fortney, Jonathan

    2014-07-01

    We present an analytical model for the transmission spectrum of a transiting exoplanet, showing that a cloud base can produce an observable inflection point in the spectrum. The wavelength and magnitude of the inflection can be used to break the degeneracy between the atmospheric pressure and the abundance of the main cloud material, however, the abundance still depends on cloud particle size. An observed inflection also provides a specific point on the atmospheric P-T profile, giving us a ''thermometer'' to directly validate or rule out postulated cloud species. We apply the model to the transit spectrum of HD 189733b.

  6. Summer cloud and precipitation properties at Utsteinen, Dronning Maud Land, Antarctica, measured by ground-based remote sensing instruments

    NASA Astrophysics Data System (ADS)

    Gorodetskaya, I. V.; van Lipzig, N. P. M.; Kneifel, S.; Maahn, M.; Crewell, S.; Van den Broeke, M.

    2012-04-01

    A unique comprehensive observatory on meteorological-cloud-precipitation interactions has been built at the new Belgian Princess Elisabeth station, situated on the Utsteinen ridge, at the foot of Sør Rondane mountains in East Antarctica (http://ees.kuleuven.be/hydrant). The instruments already installed include an automatic weather station (AWS) and three ground-based cloud and precipitation remote sensing instruments (ceilometer, infra-red pyrometer and 24GHz vertically pointing radar). The cloud and precipitation instruments have been operating during three summer periods (2009-2010, 2010-2011 and 2011-2012), while the AWS has been operating almost continuously since February 2009 through present time. The measurements are combined in order to obtain basic statistics of clouds properties (height and cloud base temperature), their radiative forcing, as well as frequency and vertical extension of snowfall events, together with the meteorological situation at Utsteinen. Measurements during the first two summer campaigns showed that cloud base temperatures ranged between -200C for low-level clouds (1-1.5 km agl) and -350C - -400C for midlevel clouds (2-4 km agl). The 1-3 km height range was found to have the highest cloud frequency. Synoptic events with and without snowfall have been related to the water vapor transport and local cloud properties. One of the analyzed storms with snowfall in February 2010 showed a two-day evolution with low-level and mid-level clouds observed during the first day, forming multiple layers with short periods of light precipitation, and lowering cloud bases during the second day followed by snowfall and blowing snow. Increase in the cloud base temperature associated both with warm air advection and cloud base lowering (to 1-1.5 km agl) before the snowfall resulted in significant increase in downwelling longwave flux (up to 20 W m-2) recorded by the AWS pyrgeometer. While ceilometer measurements are limited during the storm due to the

  7. Impacts of Tree Height-Dbh Allometry on Lidar-Based Tree Aboveground Biomass Modeling

    NASA Astrophysics Data System (ADS)

    Fang, R.

    2016-06-01

    Lidar has been widely used in tree aboveground biomass (AGB) estimation at plot or stand levels. Lidar-based AGB models are usually constructed with the ground AGB reference as the response variable and lidar canopy indices as predictor variables. Tree diameter at breast height (dbh) is the major variable of most allometric models for estimating reference AGB. However, lidar measurements are mainly related to tree vertical structure. Therefore, tree height-dbh allometric model residuals are expected to have a large impact on lidar-based AGB model performance. This study attempts to investigate sensitivity of lidar-based AGB model to the decreasing strength of height-dbh relationship using a Monte Carlo simulation approach. Striking decrease in R2 and increase in relative RMSE were found in lidar-based AGB model, as the variance of height-dbh model residuals grew. I, therefore, concluded that individual tree height-dbh model residuals fundamentally introduce errors to lidar-AGB models.

  8. Search Engine Prototype System Based on Cloud Computing

    NASA Astrophysics Data System (ADS)

    Han, Jinyu; Hu, Min; Sun, Hongwei

    With the development of Internet, IT support systems need to provide more storage space and faster computing power for Internet applications such as search engine. The emergence of cloud computing can effectively solve these problems. We present a search engine prototype system based on cloud computing platform in this paper.

  9. Community-based complex cloud data center

    NASA Astrophysics Data System (ADS)

    Filiposka, Sonja; Juiz, Carlos

    2015-02-01

    The communication infrastructure is a critical component of a large-scale cloud data center. It needs to provide the best performance available while keeping overprovisioning and, lately even more important, power consumption, to the minimum. Aiming to provide a unified solution that will have high performance together with economical benefits and power consumption reduction, in this paper, we propose a new community-based scale-free model for data center network architecture. By comparing the proposed model to other similar solutions we show that the performance of the network in terms of average path length, bandwidth and resilience is similar to the state-of-the-art models. In our presented detailed analysis of the model properties, our focus is set on exploring how heterogeneity in terms of different type of network equipment influences the basic network properties. We also present solutions and network metrics that can be used in conjunction to the introduced community structure in order to additionally increase the performance.

  10. Development of Satellite-based Climatology of Low-level Cloud and Fog in Mountain Terrain

    NASA Astrophysics Data System (ADS)

    Duan, Y.; Barros, A. P.

    2014-12-01

    The presence of orographic clouds and fog has major environmental and economic implications that the potential shift in the space-time distribution can effectively redistribute freshwater resources and threaten the sustainability of the ecology, geomorphology and hydrology of mountainous regions and adjacent basins. This includes the Southern Appalachian Mountains, which rely closely on the moisture input from fog, cap clouds and light rainfall, as well as cloud forests in the Andes with frequent occurrence of dense fog. However, the applicability of fog forecasting models becomes limited in regions of complex terrain. The motivation of this project is to develop a satellite-based hydroclimatology and physical parameterization of orographic low-level clouds and fog regimes in the Southern Appalachians using a general methodology that can be applied to mountainous regions elsewhere. An algorithm for the detection and extraction of stratus clouds and fog was developed using changes in vertical gradients of CPR reflectivity and liquid water products from almost 5-years of CLOUDSAT and SRTM terrain data. This population of low-level clouds and fog will be analyzed with GOES infrared and visible imagery, MODIS and CALIPSO products, and with airport cloud height and visibility records to expand the spatial coverage beyond narrow satellite sensor swaths. The climatology will be further developed through integration with results from WRF simulations for selected periods since the bulk of the PMM network has been in place (2008-present) to aid in defining meteorological and time-of-day constraints in the interpretation of simulated satellite radar reflectivity profiles. The overarching goal is to infer a representation of the diurnal cycle, seasonal and inter-annual variations of the vertical distribution of LWC and hydrometeors in orographic clouds and fog that vary spatially with landform toward developing a more general parameterization of seeder-feeder interactions in

  11. Comparing the cloud vertical structure derived from several methods based on measured atmospheric profiles and active surface measurements

    NASA Astrophysics Data System (ADS)

    Costa-Surós, M.; Calbó, J.; González, J. A.; Long, C. N.

    2013-06-01

    The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, is an important characteristic in order to describe the impact of clouds in a changing climate. In this work several methods to estimate the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering number and position of cloud layers, with a ground based system which is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ on the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study these methods are applied to 125 radiosonde profiles acquired at the ARM Southern Great Plains site during all seasons of year 2009 and endorsed by GOES images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The overall agreement for the methods ranges between 44-88%; four methods produce total agreements around 85%. Further tests and improvements are applied on one of these methods. In addition, we attempt to make this method suitable for low resolution vertical profiles, which could be useful in atmospheric modeling. The total agreement, even when using low resolution profiles, can be improved up to 91% if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.

  12. Lidar based vegetation height models to quantify carbon stocks in Galveston saltmarshes

    NASA Astrophysics Data System (ADS)

    Kulawardhana, R. W.; Popescu, S. C.; Feagin, R. A.

    2012-12-01

    Concern over global climate change has stimulated much interest in identifying existing and potential carbon sinks. Wetland ecosystems are highly recognized for their high productivity and thus as major terrestrial carbon (C) sinks. The rapid decline in the extent and health of these wetland ecosystems has created a need for non-destructive methods for the study of their C dynamics. However, these biomass estimates are mostly based on vegetation structural properties, particularly based on vegetation height models. Hence, for better quantification of vegetation biomass and C estimates, the accuracy of vegetation height models derived using lidar data is of paramount importance. Yet, unlike in woody vegetation dominated ecosystems, the use of lidar in saltmarshes is limited due to several reasons: 1) relatively dense vegetation cover limits laser penetration affecting the accuracy of terrain and thus vegetation height estimates; and 2) relatively shorter vegetation demands high point density data with high vertical accuracy to capture relatively smaller differences between terrain and vegetation canopy surfaces. Thus, the use of lidar data to characterize saltmarsh vegetation community demands appropriate methodologies. Our overall objective in this study was to develop a methodology for deriving salt marsh vegetation height models using airborne lidar data. More specific objectives involved: (1) understanding the interaction between discrete-return airborne lidar data and marsh vegetation; (2) finding appropriate grid sizes for deriving terrain and vegetation height models; and (3) analyze lidar-derived surface accuracies by comparing estimates to field measurements. In this study, we used 1m point spacing airborne lidar data from Federal Emergency Management Agency (FEMA) program to derive vegetation height models (VHM) for Spartina alterniflora saltmarshes in Galveston, Texas. We first derived digital terrain models (DEMs) and verified their vertical accuracy

  13. Registration algorithm of point clouds based on multiscale normal features

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Peng, Zhongtao; Su, Hang; Xia, GuiHua

    2015-01-01

    The point cloud registration technology for obtaining a three-dimensional digital model is widely applied in many areas. To improve the accuracy and speed of point cloud registration, a registration method based on multiscale normal vectors is proposed. The proposed registration method mainly includes three parts: the selection of key points, the calculation of feature descriptors, and the determining and optimization of correspondences. First, key points are selected from the point cloud based on the changes of magnitude of multiscale curvatures obtained by using principal components analysis. Then the feature descriptor of each key point is proposed, which consists of 21 elements based on multiscale normal vectors and curvatures. The correspondences in a pair of two point clouds are determined according to the descriptor's similarity of key points in the source point cloud and target point cloud. Correspondences are optimized by using a random sampling consistency algorithm and clustering technology. Finally, singular value decomposition is applied to optimized correspondences so that the rigid transformation matrix between two point clouds is obtained. Experimental results show that the proposed point cloud registration algorithm has a faster calculation speed, higher registration accuracy, and better antinoise performance.

  14. The role of cloud contamination, aerosol layer height and aerosol model in the assessment of the OMI near-UV retrievals over the ocean

    NASA Astrophysics Data System (ADS)

    Gassó, Santiago; Torres, Omar

    2016-07-01

    Retrievals of aerosol optical depth (AOD) at 388 nm over the ocean from the Ozone Monitoring Instrument (OMI) two-channel near-UV algorithm (OMAERUV) have been compared with independent AOD measurements. The analysis was carried out over the open ocean (OMI and MODerate-resolution Imaging Spectrometer (MODIS) AOD comparisons) and over coastal and island sites (OMI and AERONET, the AErosol RObotic NETwork). Additionally, a research version of the retrieval algorithm (using MODIS and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) information as constraints) was utilized to evaluate the sensitivity of the retrieval to different assumed aerosol properties. Overall, the comparison resulted in differences (OMI minus independent measurements) within the expected levels of uncertainty for the OMI AOD retrievals (0.1 for AOD < 0.3, 30 % for AOD > 0.3). Using examples from case studies with outliers, the reasons that led to the observed differences were examined with specific purpose to determine whether they are related to instrument limitations (i.e., pixel size, calibration) or algorithm assumptions (such as aerosol shape, aerosol height). The analysis confirms that OMAERUV does an adequate job at rejecting cloudy scenes within the instrument's capabilities. There is a residual cloud contamination in OMI pixels with quality flag 0 (the best conditions for aerosol retrieval according to the algorithm), resulting in a bias towards high AODs in OMAERUV. This bias is more pronounced at low concentrations of absorbing aerosols (AOD 388 nm ˜ < 0.5). For higher aerosol loadings, the bias remains within OMI's AOD uncertainties. In pixels where OMAERUV assigned a dust aerosol model, a fraction of them (< 20 %) had retrieved AODs significantly lower than AERONET and MODIS AODs. In a case study, a detailed examination of the aerosol height from CALIOP and the AODs from MODIS, along with sensitivity tests, was carried out by varying the different assumed parameters in the

  15. Cloud radiative forcing on surface shortwave fluxes: A case study based on Cloud Lidar and Radar Exploratory Test

    SciTech Connect

    Shi, L.

    1994-12-20

    Shortwave downward fluxes for selected stratus, cirrus, and mixed phase cloud cases are analyzed based on cloud and surface radiation measurements from the Cloud Lidar and Radar Exploratory Test conducted in the Denver-Boulder area of Colorado during September-October, 1989. A medium resolution, discrete-ordinate shortwave radiative transfer model is used to provide clear-sky conditions and to examine the cloud shortwave radiative forcing. The model simulation indicates that for stratus clouds the effective radius increases with increasing liquid water path. For cirrus cloud simulation, the model results are within 10% agreement with the surface flux measurements. However, using the one-dimensional plane-parallel model, the model results are in poor agreement for the inhomogeneous mixed phase cloud case. Over the elevated observation site, the reduction in shortwave downward flux by clouds can be as large as 40% for a small cloud water path value of 20 g m{sup {minus}2}. The variation in observed cloud shortwave forcing is highly correlated with the integrated cloud water path. The normalized (by the clear-sky value) cloud shortwave forcing increases rapidly when the cloud water path is small. The rate of increase decreases, and the normalized cloud forcing approaches saturation when cloud water path becomes large. The magnitude of the saturation value depends on cloud optical properties. The variation in observed cloud forcing is consistent with the theoretical curve for cloudy atmospheric albedo variation. At a constant value of cloud water path, the normalized cloud forcing increases with solar zenith angle. The solar zenith angle effect is less significant for larger value of cloud water path. 44 refs., 11 figs.

  16. Characteristics of Borneo and Sumatra fire plume heights and smoke clouds and their impact on regional El Niño-induced drought

    NASA Astrophysics Data System (ADS)

    Tosca, Michael; Randerson, James; Zender, Charles; Flanner, Mark; Nelson, David; Diner, David; Rasch, Phil; Logan, Jennifer

    2010-05-01

    During the dry season, anthropogenic fires burn the tropical forests and peatlands of equatorial Asia and produce regionally expansive smoke clouds. We estimated the altitude of smoke from these fires, characterized the sensitivity of this smoke to regional drought and El Niño variability, and investigated its effect on climate. We used the MISR satellite product and MISR INteractive eXplorer (MINX) software to estimate the heights of 382 smoke plumes (smoke with a visible surface source and transport direction) on Borneo and 121 plumes on Sumatra for 2001-2009. In addition, we estimated the altitudes of 10 smoke clouds (opaque regions of smoke with no detectable surface source or transport direction) on Borneo for 2006. Most smoke plumes (80%) were observed during El Niño events (2002, 2004, 2006, 2009); this is consistent with higher aerosol optical depths observed during El Niño-induced drought. Annually averaged plume heights on Borneo were positively correlated to the Oceanic Niño Index (ONI), an indicator of El Niño (r2 = 0.53). The mean plume height for all El Niño years was 765.8 ± 19.7m, compared to 711.4 ± 28.7 for non-El Niño years. The median altitude of all 10 smoke clouds observed on Borneo during 2006 was 1313m, compared to a median 787m for smoke plume grid cells. The area covered by all smoke plumes from 2006 corresponded to approximately three individual smoke clouds. We investigated the climate response to these expansive smoke clouds using the Community Atmosphere Model (CAM). Climate variables from two 30 year simulations were compared: one simulation was forced with fire emissions typical of a dry (El Niño) burning year, while the other was forced with emissions typical of a low (La Niña) burning year. Fire aerosols reduced net shortwave radiation at the surface during August-October by an average of 10% in the region encompassing most of Sumatra and Borneo (90°E-120°E, 5°S-5°N). The reductions in net radiation cooled both ocean

  17. pCloud: A Cloud-based Power Market Simulation Environment

    SciTech Connect

    Rudkevich, Aleksandr; Goldis, Evgeniy

    2012-12-02

    This research conducted by the Newton Energy Group, LLC (NEG) is dedicated to the development of pCloud: a Cloud-based Power Market Simulation Environment. pCloud is offering power industry stakeholders the capability to model electricity markets and is organized around the Software as a Service (SaaS) concept -- a software application delivery model in which software is centrally hosted and provided to many users via the internet. During the Phase I of this project NEG developed a prototype design for pCloud as a SaaS-based commercial service offering, system architecture supporting that design, ensured feasibility of key architecture's elements, formed technological partnerships and negotiated commercial agreements with partners, conducted market research and other related activities and secured funding for continue development of pCloud between the end of Phase I and beginning of Phase II, if awarded. Based on the results of Phase I activities, NEG has established that the development of a cloud-based power market simulation environment within the Windows Azure platform is technologically feasible, can be accomplished within the budget and timeframe available through the Phase II SBIR award with additional external funding. NEG believes that pCloud has the potential to become a game-changing technology for the modeling and analysis of electricity markets. This potential is due to the following critical advantages of pCloud over its competition: - Standardized access to advanced and proven power market simulators offered by third parties. - Automated parallelization of simulations and dynamic provisioning of computing resources on the cloud. This combination of automation and scalability dramatically reduces turn-around time while offering the capability to increase the number of analyzed scenarios by a factor of 10, 100 or even 1000. - Access to ready-to-use data and to cloud-based resources leading to a reduction in software, hardware, and IT costs

  18. Uav-Based Photogrammetric Point Clouds - Tree STEM Mapping in Open Stands in Comparison to Terrestrial Laser Scanner Point Clouds

    NASA Astrophysics Data System (ADS)

    Fritz, A.; Kattenborn, T.; Koch, B.

    2013-08-01

    in the TLS-point cloud. Only few stems were considered to be fully reconstructed. From the comparison of reconstruction achievement with respect to height above ground, we can state that reconstruction accuracy decreased in the crown layer of the stand. In addition we were cutting 50 [cm] slices in z-direction and applied a robust cylinder fit to the stem slices. Radii of the TLS-cloud and the SFM-cloud surprisingly correlated well with a Pearson's correlation coefficient of r = 0.696. This first study showed promising results for UAV-based forest structure modelling. Yet, there is a demand for additional research with regard to vegetation stages, flight pattern, processing setup and the utilisation of spectral information.

  19. Reconciling Ground-Based and Space-Based Estimates of the Frequency of Occurrence and Radiative Effect of Clouds around Darwin, Australia

    SciTech Connect

    Protat, Alain; Young, Stuart; McFarlane, Sally A.; L'Ecuyer, Tristan; Mace, Gerald G.; Comstock, Jennifer M.; Long, Charles N.; Berry, Elizabeth; Delanoe, Julien

    2014-02-01

    The objective of this paper is to investigate whether estimates of the cloud frequency of occurrence and associated cloud radiative forcing as derived from ground-based and satellite active remote sensing and radiative transfer calculations can be reconciled over a well instrumented active remote sensing site located in Darwin, Australia, despite the very different viewing geometry and instrument characteristics. It is found that the ground-based radar-lidar combination at Darwin does not detect most of the cirrus clouds above 10 km (due to limited lidar detection capability and signal obscuration by low-level clouds) and that the CloudSat radar - Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) combination underreports the hydrometeor frequency of occurrence below 2 km height, due to instrument limitations at these heights. The radiative impact associated with these differences in cloud frequency of occurrence is large on the surface downwelling shortwave fluxes (ground and satellite) and the top-of atmosphere upwelling shortwave and longwave fluxes (ground). Good agreement is found for other radiative fluxes. Large differences in radiative heating rate as derived from ground and satellite radar-lidar instruments and RT calculations are also found above 10 km (up to 0.35 Kday-1 for the shortwave and 0.8 Kday-1 for the longwave). Given that the ground-based and satellite estimates of cloud frequency of occurrence and radiative impact cannot be fully reconciled over Darwin, caution should be exercised when evaluating the representation of clouds and cloud-radiation interactions in large-scale models and limitations of each set of instrumentation should be considered when interpreting model-observations differences.

  20. The Retrieval of Stratocumulus Cloud Properties by Ground-Based Cloud Radar.

    NASA Astrophysics Data System (ADS)

    Fox, Neil I.; Illingworth, Anthony J.

    1997-05-01

    The radiative characteristics of stratocumulus clouds are dependent upon their microphysical properties, primarily the liquid water content and effective radius of the drop population. Aircraft observations of droplet spectra in warm stratocumulus over the North Atlantic and around the British Isles by the Hercules C-130 aircraft of the U.K. Meteorological Office Meteorological Research Flight have been used to calculate the radar reflectivity, liquid water content, and effective radius. Empirically derived relationships, found from more than 4000 km of flight data on 11 separate days, that link reflectivity with either liquid water content or effective radius have been derived. These empirical relationships are significantly different from those predicted if the cloud droplet spectrum is modeled as a gamma function. Occasional drizzle-sized drops are frequently present within the cloud, and even though their concentration is very low, they dominate the reflectivity and these empirical relationships fail. However, although the drizzle drops increase the reflectivity, they have a negligible effect on the liquid water content and effective radius of the cloud. As these drops have a significant fall velocity in comparison to the cloud droplets, it is suggested that a ground-based Doppler radar could separate the components of the reflectivity due to bimodal drop spectra and the vertical structure of the cloud properties that determine radiative transfer could be retrieved.

  1. Stellar Encounters with the Oort Cloud Based on Hipparcos Data

    NASA Technical Reports Server (NTRS)

    Garcia-Sanchez, J.; Preston, R. A.; Jones, D. L.; Weissman, P. R.; Lestrade, J. F.; Latham, D. W.; Stefanik, R. P.

    1998-01-01

    We have combined Hipparcos proper motion and parallax data for nearby stars with ground-based radial velocity measurements to find stars which may have passed (or will pass) close enough to the Sun to perturb the Oort cloud.

  2. Cloud Computing Based E-Learning System

    ERIC Educational Resources Information Center

    Al-Zoube, Mohammed; El-Seoud, Samir Abou; Wyne, Mudasser F.

    2010-01-01

    Cloud computing technologies although in their early stages, have managed to change the way applications are going to be developed and accessed. These technologies are aimed at running applications as services over the internet on a flexible infrastructure. Microsoft office applications, such as word processing, excel spreadsheet, access database…

  3. Verification of sectoral cloud motion based direct normal irradiance nowcasting from satellite imagery

    NASA Astrophysics Data System (ADS)

    Schroedter-Homscheidt, Marion; Gesell, Gerhard

    2016-05-01

    The successful integration of solar electricity from photovoltaics or concentrating solar power plants into the existing electricity supply requires an electricity production forecast for 48 hours, while any improved surface irradiance forecast over the next upcoming hours is relevant for an optimized operation of the power plant. While numerical weather prediction has been widely assessed and is in commercial use, the short-term nowcasting is still a major field of development. European Commission's FP7 DNICast project is especially focusing on this task and this paper reports about parts of DNICast results. A nowcasting scheme based on Meteosat Second Generation cloud imagery and cloud movement tracking has been developed for Southern Spain as part of a solar production forecasting tool (CSP-FoSyS). It avoids the well-known, but not really satisfying standard cloud motion vector approach by using a sectoral approach and asking the question at which time any cloud structure will affect the power plant. It distinguishes between thin cirrus clouds and other clouds, which typically occur in different heights in the atmosphere and move in different directions. Also, their optical properties are very different - especially for the calculation of direct normal irradiances as required by concentrating solar power plants. Results for Southern Spain show a positive impact of up to 8 hours depending of the time of the day and a RMSD reduction of up to 10% in hourly DNI irradiation compared to day ahead forecasts. This paper presents the verification of this scheme at other locations in Europe and Northern Africa (BSRN and EnerMENA stations) with different cloud conditions. Especially for Jordan and Tunisia as the most relevant countries for CSP in this station list, we also find a positive impact of up to 8 hours.

  4. Object-Based Coregistration of Terrestrial Photogrammetric and ALS Point Clouds in Forested Areas

    NASA Astrophysics Data System (ADS)

    Polewski, P.; Erickson, A.; Yao, W.; Coops, N.; Krzystek, P.; Stilla, U.

    2016-06-01

    Airborne Laser Scanning (ALS) and terrestrial photogrammetry are methods applicable for mapping forested environments. While ground-based techniques provide valuable information about the forest understory, the measured point clouds are normally expressed in a local coordinate system, whose transformation into a georeferenced system requires additional effort. In contrast, ALS point clouds are usually georeferenced, yet the point density near the ground may be poor under dense overstory conditions. In this work, we propose to combine the strengths of the two data sources by co-registering the respective point clouds, thus enriching the georeferenced ALS point cloud with detailed understory information in a fully automatic manner. Due to markedly different sensor characteristics, coregistration methods which expect a high geometric similarity between keypoints are not suitable in this setting. Instead, our method focuses on the object (tree stem) level. We first calculate approximate stem positions in the terrestrial and ALS point clouds and construct, for each stem, a descriptor which quantifies the 2D and vertical distances to other stem centers (at ground height). Then, the similarities between all descriptor pairs from the two point clouds are calculated, and standard graph maximum matching techniques are employed to compute corresponding stem pairs (tiepoints). Finally, the tiepoint subset yielding the optimal rigid transformation between the terrestrial and ALS coordinate systems is determined. We test our method on simulated tree positions and a plot situated in the northern interior of the Coast Range in western Oregon, USA, using ALS data (76 x 121 m2) and a photogrammetric point cloud (33 x 35 m2) derived from terrestrial photographs taken with a handheld camera. Results on both simulated and real data show that the proposed stem descriptors are discriminative enough to derive good correspondences. Specifically

  5. HEIGHTS PROGRAM.

    ERIC Educational Resources Information Center

    POTTER, LOUIS A.

    THE "HEIGHTS" PROGRAM, AS PART OF THE GREAT CITIES SCHOOL IMPROVEMENT PROGRAM, IS BASED ON THE BELIEF THAT MUCH CAN BE DONE TO CHANGE THE PATTERNS OF ASPIRATION, ACHIEVEMENT, AND ADJUSTMENT WHICH CULTURALLY DEPRIVED YOUTH TEND TO FOLLOW. TRADITIONAL GOALS OF EDUCATION WILL BE FOLLOWED, BUT THE TEACHERS AND STAFF WILL HAVE AT THEIR DISPOSAL A GROUP…

  6. Hierarchical control of ride height system for electronically controlled air suspension based on variable structure and fuzzy control theory

    NASA Astrophysics Data System (ADS)

    Xu, Xing; Zhou, Kongkang; Zou, Nannan; Jiang, Hong; Cui, Xiaoli

    2015-09-01

    The current research of air suspension mainly focuses on the characteristics and design of the air spring. In fact, electronically controlled air suspension (ECAS) has excellent performance in flexible height adjustment during different driving conditions. However, the nonlinearity of the ride height adjusting system and the uneven distribution of payload affect the control accuracy of ride height and the body attitude. Firstly, the three-point measurement system of three height sensors is used to establish the mathematical model of the ride height adjusting system. The decentralized control of ride height and the centralized control of body attitude are presented to design the ride height control system for ECAS. The exact feedback linearization method is adopted for the nonlinear mathematical model of the ride height system. Secondly, according to the hierarchical control theory, the variable structure control (VSC) technique is used to design a controller that is able to adjust the ride height for the quarter-vehicle anywhere, and each quarter-vehicle height control system is independent. Meanwhile, the three-point height signals obtained by three height sensors are tracked to calculate the body pitch and roll attitude over time, and then by calculating the deviation of pitch and roll and its rates, the height control correction is reassigned based on the fuzzy algorithm. Finally, to verify the effectiveness and performance of the proposed combined control strategy, a validating test of ride height control system with and without road disturbance is carried out. Testing results show that the height adjusting time of both lifting and lowering is over 5 s, and the pitch angle and the roll angle of body attitude are less than 0.15°. This research proposes a hierarchical control method that can guarantee the attitude stability, as well as satisfy the ride height tracking system.

  7. A Hybrid GWR-Based Height Estimation Method for Building Detection in Urban Environments

    NASA Astrophysics Data System (ADS)

    Wei, X.; Yao, X.

    2014-11-01

    LiDAR has become important data sources in urban modelling. Traditional methods of LiDAR data processing for building detection require high spatial resolution data and sophisticated methods. The aerial photos, on the other hand, provide continuous spectral information of buildings. But the segmentation of the aerial photos cannot distinguish between the road surfaces and the building roof. This paper develops a geographically weighted regression (GWR)-based method to identify buildings. The method integrates characteristics derived from the sparse LiDAR data and from aerial photos. In the GWR model, LiDAR data provide the height information of spatial objects which is the dependent variable, while the brightness values from multiple bands of the aerial photo serve as the independent variables. The proposed method can thus estimate the height at each pixel from values of its surrounding pixels with consideration of the distances between the pixels and similarities between their brightness values. Clusters of contiguous pixels with higher estimated height values distinguish themselves from surrounding roads or other surfaces. A case study is conducted to evaluate the performance of the proposed method. It is found that the accuracy of the proposed hybrid method is better than those by image classification of aerial photos along or by height extraction of LiDAR data alone. We argue that this simple and effective method can be very useful for automatic detection of buildings in urban areas.

  8. Aerosol/cloud Base Droplet Size Distribution Characteristics and the Onset of Coalescence in Shallow and Deep Convective Clouds

    NASA Astrophysics Data System (ADS)

    Bruintjes, R. T.; Lawson, P.; Lance, S.; Axisa, D.; Woods, S.

    2014-12-01

    It is clear that aerosols contribute to the observed differences in cloud droplet size distributions between maritime and continental and between non-polluted and polluted convection. In addition, other factors such as cloud base temperature, boundary layer depth, thermodynamic profile (updraft speeds) that vary between land and ocean regions, could also be contributing to the observed differences or acting in concert with aerosol effects. In addition, the initial cloud droplet spectra at cloud base to a large extent determines the microphysical processes of precipitation formation (water and ice) at higher levels in the clouds and thus the vertical transport of aerosols and gases in deep convective clouds. During the 2013 NASA SEAC4RS field campaign we have collected a large amount of microphysical data in both shallow and deep convective clouds. This data will be compared to data from other field campaigns to detect specific characteristics of the cloud base droplet size distribution and relate it to onset and evolution of the coalescence process in clouds. The presentation will provide a survey of the cloud droplet size distributions at cloud base in both shallow and deep convective clouds and will relate them to environmental parameters to better understand aerosol-cloud interactions and the other parameters that play a role in the onset of coalescence in convective clouds. We will relate the airborne aerosol variations (size and concentration in different environments) to the cloud droplet size distribution. Model simulations using a detailed coalescence model will be used to obtain a better understanding of the onset of the coalescence process.

  9. Robust Analysis of Network-Based Real-Time Kinematic for GNSS-Derived Heights.

    PubMed

    Bae, Tae-Suk; Grejner-Brzezinska, Dorota; Mader, Gerald; Dennis, Michael

    2015-01-01

    New guidelines and procedures for real-time (RT) network-based solutions are required in order to support Global Navigation Satellite System (GNSS) derived heights. Two kinds of experiments were carried out to analyze the performance of the network-based real-time kinematic (RTK) solutions. New test marks were installed in different surrounding environments, and the existing GPS benchmarks were used for analyzing the effect of different factors, such as baseline lengths, antenna types, on the final accuracy and reliability of the height estimation. The RT solutions are categorized into three groups: single-base RTK, multiple-epoch network RTK (mRTN), and single-epoch network RTK (sRTN). The RTK solution can be biased up to 9 mm depending on the surrounding environment, but there was no notable bias for a longer reference base station (about 30 km) In addition, the occupation time for the network RTK was investigated in various cases. There is no explicit bias in the solution for different durations, but smoother results were obtained for longer durations. Further investigation is needed into the effect of changing the occupation time between solutions and into the possibility of using single-epoch solutions in precise determination of heights by GNSS. PMID:26516856

  10. Robust Analysis of Network-Based Real-Time Kinematic for GNSS-Derived Heights

    PubMed Central

    Bae, Tae-Suk; Grejner-Brzezinska, Dorota; Mader, Gerald; Dennis, Michael

    2015-01-01

    New guidelines and procedures for real-time (RT) network-based solutions are required in order to support Global Navigation Satellite System (GNSS) derived heights. Two kinds of experiments were carried out to analyze the performance of the network-based real-time kinematic (RTK) solutions. New test marks were installed in different surrounding environments, and the existing GPS benchmarks were used for analyzing the effect of different factors, such as baseline lengths, antenna types, on the final accuracy and reliability of the height estimation. The RT solutions are categorized into three groups: single-base RTK, multiple-epoch network RTK (mRTN), and single-epoch network RTK (sRTN). The RTK solution can be biased up to 9 mm depending on the surrounding environment, but there was no notable bias for a longer reference base station (about 30 km) In addition, the occupation time for the network RTK was investigated in various cases. There is no explicit bias in the solution for different durations, but smoother results were obtained for longer durations. Further investigation is needed into the effect of changing the occupation time between solutions and into the possibility of using single-epoch solutions in precise determination of heights by GNSS. PMID:26516856

  11. Retrieving the Convective Thermals and Updraft Speeds at Cloud Base from VIIRS

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Rosenfeld, D.; Li, Z.

    2015-12-01

    Updraft speeds of thermals have always been difficult to measure, despite significant roles they play in transporting pollutants and in cloud formation and precipitation. To our knowledge, no attempt to date has been made to estimate updraft speed from satellite information in the boundary layer and at the cloud base. In this study, we introduce two methods of retrieving the maximum updraft (Wmax) and updraft at cloud base (Wb) in the planetary boundary layer topped by convective clouds. The first method uses ground-air temperature difference to characterize the surface sensible heat flux, which is found to be correlated with updraft speeds measured by the Doppler lidar over the Southern Great Plains (SGP). Based on the relationship, we use the satellite-retrieved surface skin temperature and reanalysis surface air temperature to estimate the updrafts. The second method is based on a good linear correlation between cloud base height and updrafts, which was found over the SGP, the central Amazon, and on board a ship sailing between Honolulu and Los Angeles. We found a universal relationship for both land and ocean. The performance of these two methods of retrieving updrafts was tested against the lidar and Radar measurements with good agreements found for both methods. Compared with the first method that only works over land, the second method expands its applicability to ocean and is more accurate in retrieving Wmax the with RMSE (root-mean-square error) = 0.38 m/s and MAPE (mean-absolute-percentage-error) = 19%, and Wb with RMSE = 0.34 m/s and MAPE = 21%.

  12. Volcanic plume height measured by seismic waves based on a mechanical model

    NASA Astrophysics Data System (ADS)

    Prejean, Stephanie G.; Brodsky, Emily E.

    2011-01-01

    In August 2008 an unmonitored, largely unstudied Aleutian volcano, Kasatochi, erupted catastrophically. Here we use seismic data to infer the height of large eruptive columns such as those of Kasatochi based on a combination of existing fluid and solid mechanical models. In so doing, we propose a connection between a common, observable, short-period seismic wave amplitude to the physics of an eruptive column. To construct a combined model, we estimate the mass ejection rate of material from the vent on the basis of the plume height, assuming that the height is controlled by thermal buoyancy for a continuous plume. Using the estimated mass ejection rate, we then derive the equivalent vertical force on the Earth through a momentum balance. Finally, we calculate the far-field surface waves resulting from the vertical force. The model performs well for recent eruptions of Kasatochi and Augustine volcanoes if v, the velocity of material exiting the vent, is 120-230 m s-1. The consistency between the seismically inferred and measured plume heights indicates that in these cases the far-field ˜1 s seismic energy radiated by fluctuating flow in the volcanic jet during the eruption is a useful indicator of overall mass ejection rates. Thus, use of the model holds promise for characterizing eruptions and evaluating ash hazards to aircraft in real time on the basis of far-field short-period seismic data. This study emphasizes the need for better measurements of eruptive plume heights and a more detailed understanding of the full spectrum of seismic energy radiated coeruptively.

  13. Volcanic plume height measured by seismic waves based on a mechanical model

    USGS Publications Warehouse

    Prejean, Stephanie G.; Brodsky, Emily E.

    2011-01-01

    In August 2008 an unmonitored, largely unstudied Aleutian volcano, Kasatochi, erupted catastrophically. Here we use seismic data to infer the height of large eruptive columns such as those of Kasatochi based on a combination of existing fluid and solid mechanical models. In so doing, we propose a connection between a common, observable, short-period seismic wave amplitude to the physics of an eruptive column. To construct a combined model, we estimate the mass ejection rate of material from the vent on the basis of the plume height, assuming that the height is controlled by thermal buoyancy for a continuous plume. Using the estimated mass ejection rate, we then derive the equivalent vertical force on the Earth through a momentum balance. Finally, we calculate the far-field surface waves resulting from the vertical force. The model performs well for recent eruptions of Kasatochi and Augustine volcanoes if v, the velocity of material exiting the vent, is 120-230 m s-1. The consistency between the seismically inferred and measured plume heights indicates that in these cases the far-field ~1 s seismic energy radiated by fluctuating flow in the volcanic jet during the eruption is a useful indicator of overall mass ejection rates. Thus, use of the model holds promise for characterizing eruptions and evaluating ash hazards to aircraft in real time on the basis of far-field short-period seismic data. This study emphasizes the need for better measurements of eruptive plume heights and a more detailed understanding of the full spectrum of seismic energy radiated coeruptively.

  14. Cloud and precipitation properties from ground-based remote-sensing instruments in East Antarctica

    NASA Astrophysics Data System (ADS)

    Gorodetskaya, I. V.; Kneifel, S.; Maahn, M.; Thiery, W.; Schween, J. H.; Mangold, A.; Crewell, S.; Van Lipzig, N. P. M.

    2015-02-01

    A new comprehensive cloud-precipitation-meteorological observatory has been established at Princess Elisabeth base, located in the escarpment zone of Dronning Maud Land (DML), East Antarctica. The observatory consists of a set of ground-based remote-sensing instruments (ceilometer, infrared pyrometer and vertically profiling precipitation radar) combined with automatic weather station measurements of near-surface meteorology, radiative fluxes, and snow height. In this paper, the observatory is presented and the potential for studying the evolution of clouds and precipitating systems is illustrated by case studies. It is shown that the synergetic use of the set of instruments allows for distinguishing ice, liquid-containing clouds and precipitating clouds, including some information on their vertical extent. In addition, wind-driven blowing snow events can be distinguished from deeper precipitating systems. Cloud properties largely affect the surface radiative fluxes, with liquid-containing clouds dominating the radiative impact. A statistical analysis of all measurements (in total 14 months mainly during summer-beginning of winter) indicates that these liquid-containing clouds occur during as much as 20% of the cloudy periods. The cloud occurrence shows a strong bimodal distribution with clear-sky conditions 51% of the time and complete overcast conditions 35% of the time. Snowfall occurred during 17% of the cloudy periods with a predominance of light precipitation and only rare events with snowfall >1 mm h-1 water equivalent (w.e.). Three of such intense snowfall events occurred during 2011 contributing to anomalously large annual surface mass balance (SMB). Large accumulation events (>10 mm w.e. day-1) during the radar-measurement period of 26 months were always associated with snowfall, but at the same time other snowfall events did not always lead to accumulation. The multiyear deployment of a precipitation radar in Antarctica allows for assessing the

  15. Cloud-based space situational awareness: initial design and evaluation

    NASA Astrophysics Data System (ADS)

    Liu, Bingwei; Chen, Yu; Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik

    2013-05-01

    The need for a global collaborating space situational awareness (SSA) network, including radars, optical and other sensors for communication and surveillance, has become a top priority for most countries who own or operate man-made space-crafts. Such a SSA system requires vast storage, powerful computing capacity and the ability to serve hundreds of thousands of users to access the same database. These requirements make traditional distributed networking system insufficient. Cloud computing, which features scalable and elastic storage and computing services, has been recognized as an ideal candidate that can meet the challenges of SSA systems' requirements. In this paper, we propose a Cloud-based information fusion system for SSA and examine a prototype that serves space tracking algorithms. We discuss the benefits of using Cloud Computing as an alternative for data processing and storage and explore details of Cloud implementation for a representative SSA system environment.

  16. Practising cloud-based telemedicine in developing countries.

    PubMed

    Puustjärvi, Juha; Puustjärvi, Leena

    2013-01-01

    In industrialised countries, telemedicine has proven to be a valuable tool for enabling access to knowledge and allowing information exchange, and showing that it is possible to provide good quality of healthcare to isolated communities. However, there are many barriers to the widespread implementation of telemedicine in rural areas of developing countries. These include deficient internet connectivity and sophisticated peripheral medical devices. Furthermore, developing countries have very high patients-per-doctor ratios. In this paper, we report our work on developing a cloud-based health information system, which promotes telemedicine and patient-centred healthcare by exploiting modern information and communication technologies such as OWL-ontologies and SQL-triggers. The reason for using cloud technology is twofold. First, cloud service models are easily adaptable for sharing patients health information, which is of prime importance in patient-centred healthcare as well as in telemedicine. Second, the cloud and the consulting physicians may locate anywhere in the internet. PMID:24191340

  17. A Cloud-Based Simulation Architecture for Pandemic Influenza Simulation

    PubMed Central

    Eriksson, Henrik; Raciti, Massimiliano; Basile, Maurizio; Cunsolo, Alessandro; Fröberg, Anders; Leifler, Ola; Ekberg, Joakim; Timpka, Toomas

    2011-01-01

    High-fidelity simulations of pandemic outbreaks are resource consuming. Cluster-based solutions have been suggested for executing such complex computations. We present a cloud-based simulation architecture that utilizes computing resources both locally available and dynamically rented online. The approach uses the Condor framework for job distribution and management of the Amazon Elastic Computing Cloud (EC2) as well as local resources. The architecture has a web-based user interface that allows users to monitor and control simulation execution. In a benchmark test, the best cost-adjusted performance was recorded for the EC2 H-CPU Medium instance, while a field trial showed that the job configuration had significant influence on the execution time and that the network capacity of the master node could become a bottleneck. We conclude that it is possible to develop a scalable simulation environment that uses cloud-based solutions, while providing an easy-to-use graphical user interface. PMID:22195089

  18. A cloud-based simulation architecture for pandemic influenza simulation.

    PubMed

    Eriksson, Henrik; Raciti, Massimiliano; Basile, Maurizio; Cunsolo, Alessandro; Fröberg, Anders; Leifler, Ola; Ekberg, Joakim; Timpka, Toomas

    2011-01-01

    High-fidelity simulations of pandemic outbreaks are resource consuming. Cluster-based solutions have been suggested for executing such complex computations. We present a cloud-based simulation architecture that utilizes computing resources both locally available and dynamically rented online. The approach uses the Condor framework for job distribution and management of the Amazon Elastic Computing Cloud (EC2) as well as local resources. The architecture has a web-based user interface that allows users to monitor and control simulation execution. In a benchmark test, the best cost-adjusted performance was recorded for the EC2 H-CPU Medium instance, while a field trial showed that the job configuration had significant influence on the execution time and that the network capacity of the master node could become a bottleneck. We conclude that it is possible to develop a scalable simulation environment that uses cloud-based solutions, while providing an easy-to-use graphical user interface. PMID:22195089

  19. Global surface-based cloud observation for ISCCP

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Visual observations of cloud cover are hindered at night due to inadequate illumination of the clouds. This usually leads to an underestimation of the average cloud cover at night, especially for the amounts of middle and high clouds, in climatologies on surface observations. The diurnal cycles of cloud amounts, if based on all the surface observations, are therefore in error, but they can be obtained more accurately if the nighttime observations are screened to select those made under sufficient moonlight. Ten years of nighttime weather observations from the northern hemisphere in December were classified according to the illuminance of moonlight or twilight on the cloud tops, and a threshold level of illuminance was determined, above which the clouds are apparently detected adequately. This threshold corresponds to light from a full moon at an elevation angle of 6 degrees or from a partial moon at higher elevation, or twilight from the sun less than 9 degrees below the horizon. It permits the use of about 38% of the observations made with the sun below the horizon. The computed diurnal cycles of total cloud cover are altered considerably when this moonlight criterion is imposed. Maximum cloud cover over much of the ocean is now found to be at night or in the morning, whereas computations obtained without benefit of the moonlight criterion, as in our published atlases, showed the time of maximum to be noon or early afternoon in many regions. Cloud cover is greater at night than during the day over the open oceans far from the continents, particularly in summer. However, near noon maxima are still evident in the coastal regions, so that the global annual average oceanic cloud cover is still slightly greater during the day than at night, by 0.3%. Over land, where daytime maxima are still obtained but with reduced amplitude, average cloud cover is 3.3% greater during the daytime. The diurnal cycles of total cloud cover we obtain are compared with those of ISCCP for a

  20. An extreme value model for maximum wave heights based on weather types

    NASA Astrophysics Data System (ADS)

    Rueda, Ana; Camus, Paula; Méndez, Fernando J.; Tomás, Antonio; Luceño, Alberto

    2016-02-01

    Extreme wave heights are climate-related events. Therefore, special attention should be given to the large-scale weather patterns responsible for wave generation in order to properly understand wave climate variability. We propose a classification of weather patterns to statistically downscale daily significant wave height maxima to a local area of interest. The time-dependent statistical model obtained here is based on the convolution of the stationary extreme value model associated to each weather type. The interdaily dependence is treated by a climate-related extremal index. The model's ability to reproduce different time scales (daily, seasonal, and interannual) is presented by means of its application to three locations in the North Atlantic: Mayo (Ireland), La Palma Island, and Coruña (Spain).

  1. Ground-based remote sensing of methane height profiles with a tunable diode laser heterodyne spectrometer

    SciTech Connect

    Koide, M.; Taguchi, M.; Fukunsishi, H.; Okano, S.

    1995-02-01

    Height distributions of methane in the troposphere and stratosphere were derived from high resolution absorption spectra observed with a ground-based tunable diode laser heterodyne spectrometer. The center wavenumber of the measured methane absorption line is 1223.1561/cm. In the retrieval of methane height profiles, a volume mixing ratio of methane was assumed to have a constant value in the troposphere and to decrease with a constant rate in the stratosphere. The tropospheric mixing ratio and the decreasing rate in stratosphere were derived to be 1.7 +/- 0.1 ppmv and -0.06 ppmv/km, respectively, for measurements at Tsukuba (36.0 deg N, 140.1 deg E) on December 17 and 20, 1991.

  2. The effect of clouds on the earth's radiation budget

    NASA Technical Reports Server (NTRS)

    Ziskin, Daniel; Strobel, Darrell F.

    1991-01-01

    The radiative fluxes from the Earth Radiation Budget Experiment (ERBE) and the cloud properties from the International Satellite Cloud Climatology Project (ISCCP) over Indonesia for the months of June and July of 1985 and 1986 were analyzed to determine the cloud sensitivity coefficients. The method involved a linear least squares regression between co-incident flux and cloud coverage measurements. The calculated slope is identified as the cloud sensitivity. It was found that the correlations between the total cloud fraction and radiation parameters were modest. However, correlations between cloud fraction and IR flux were improved by separating clouds by height. Likewise, correlations between the visible flux and cloud fractions were improved by distinguishing clouds based on optical depth. Calculating correlations between the net fluxes and either height or optical depth segregated cloud fractions were somewhat improved. When clouds were classified in terms of their height and optical depth, correlations among all the radiation components were improved. Mean cloud sensitivities based on the regression of radiative fluxes against height and optical depth separated cloud types are presented. Results are compared to a one-dimensional radiation model with a simple cloud parameterization scheme.

  3. A cloud model-based approach for water quality assessment.

    PubMed

    Wang, Dong; Liu, Dengfeng; Ding, Hao; Singh, Vijay P; Wang, Yuankun; Zeng, Xiankui; Wu, Jichun; Wang, Lachun

    2016-07-01

    Water quality assessment entails essentially a multi-criteria decision-making process accounting for qualitative and quantitative uncertainties and their transformation. Considering uncertainties of randomness and fuzziness in water quality evaluation, a cloud model-based assessment approach is proposed. The cognitive cloud model, derived from information science, can realize the transformation between qualitative concept and quantitative data, based on probability and statistics and fuzzy set theory. When applying the cloud model to practical assessment, three technical issues are considered before the development of a complete cloud model-based approach: (1) bilateral boundary formula with nonlinear boundary regression for parameter estimation, (2) hybrid entropy-analytic hierarchy process technique for calculation of weights, and (3) mean of repeated simulations for determining the degree of final certainty. The cloud model-based approach is tested by evaluating the eutrophication status of 12 typical lakes and reservoirs in China and comparing with other four methods, which are Scoring Index method, Variable Fuzzy Sets method, Hybrid Fuzzy and Optimal model, and Neural Networks method. The proposed approach yields information concerning membership for each water quality status which leads to the final status. The approach is found to be representative of other alternative methods and accurate. PMID:26995351

  4. Comparing the cloud vertical structure derived from several methods based on measured atmospheric profiles and active surface measurements

    NASA Astrophysics Data System (ADS)

    Costa-Surós, M.; Calbó, J.; González, J. A.; Long, C. N.

    2014-04-01

    The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, is an important characteristic in order to describe the impact of clouds on climate. In this work several methods to estimate the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering number and position of cloud layers, with a ground based system which is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ on the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study these methods are applied to 193 radiosonde profiles acquired at the ARM Southern Great Plains site during all seasons of year 2009 and endorsed by GOES images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The perfect agreement (i.e. when the whole CVS is correctly estimated) for the methods ranges between 26-64%; the methods show additional approximate agreement (i.e. when at least one cloud layer is correctly assessed) from 15-41%. Further tests and improvements are applied on one of these methods. In addition, we attempt to make this method suitable for low resolution vertical profiles, like those from the outputs of reanalysis methods or from the WMO's Global Telecommunication System. The perfect agreement, even when using low resolution profiles, can be improved up to 67% (plus 25% of approximate agreement) if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.

  5. Climatology of clouds and precipitation over East Antarctica using ground-based remote sensing at the Princess Elizabeth station

    NASA Astrophysics Data System (ADS)

    Souverijns, Niels; Gossart, Alexandra; Gorodetskaya, Irina; Lhermitte, Stef; Van Tricht, Kristof; Mangold, Alexander; Laffineur, Quentin; Van Lipzig, Nicole

    2016-04-01

    The surface mass balance of the Antarctic ice sheet is highly dependent on the interaction between clouds and precipitation. Our understanding of these processes is challenged by the limited availability of observations over the area and problems in Antarctic climate simulations by state-of-the-art climate models. Improvements are needed in this field, as the Antarctic ice sheet is expected to become a dominant contributor to sea level rise in the 21st century. In 2010, an observational site was established at the Princess Elisabeth (PE) Antarctic station. PE is located in the escarpment area of Dronning Maud Land, East Antarctica (72°S, 23°E). The instruments consist of several ground-based remote sensing instruments: a ceilometer (measuring cloud-base height and vertical structure), a 24-GHz Micro Rain Radar (MRR; providing vertical profiles of radar effective reflectivity and Doppler velocity), and a pyrometer (measuring effective cloud base temperature). An automatic weather station provides info on boundary-layer meteorology (temperature, wind speed and direction, humidity, pressure), as well as broadband radiative fluxes and snow height changes. This set of instruments can be used to infer the role of clouds in the Antarctic climate system, their interaction with radiation and their impact on precipitation. Cloud and precipitation characteristics are derived from 5-year-long measurement series, which is unprecedented for the Antarctic region. Here, we present an overview of the cloud and precipitation climatology. Statistics on cloud occurrence are calculated on annual / seasonal basis and a distinction between liquid / mixed phase and ice clouds is made. One can discriminate between liquid-bearing and ice-only clouds by investigating the ceilometer attenuated backscatter, since liquid phase clouds have a much higher signal. Furthermore, by using pyrometer measurements, we are able to identify the range of temperatures at which liquid / ice clouds are

  6. Reducing discrepancies in ground and satellite-observed eruption heights

    NASA Astrophysics Data System (ADS)

    Tupper, Andrew; Wunderman, Rick

    2009-09-01

    The plume height represents a crucial piece of evidence about an eruption, feeding later assessment of its size, character, and potential impact, and feeding real-time warnings for aviation and ground-based populations. There have been many observed discrepancies between different observations of maximum plume height for the same eruption. A comparison of maximum daily height estimates of volcanic clouds over Indonesia and Papua New Guinea during 1982-2005 shows marked differences between ground and satellite estimates, and a general tendency towards lower height estimates from the ground. Without improvements in the quality of these estimates, reconciled among all available methods, warning systems will be less effective than they should be and the world's record of global volcanism will remain hard to quantify. Examination of particular cases suggests many possible reasons for the discrepancies. Consideration of the satellite and radar cloud observations for the 1991 Pinatubo eruptions shows that marked differences can exist even with apparently good observations. The problem can be understood largely as a sampling issue, as the most widely reported parameter, the maximum cloud height, is highly sensitive to the frequency of observation. Satellite and radar cloud heights also show a pronounced clumping near the height of the tropopause and relative lack of eruptions reaching only the mid-troposphere, reinforcing the importance of the tropopause in determining the eruption height in convectively unstable environments. To reduce the discrepancies between ground and satellite estimates, a number of formal collaboration measures between vulcanological, meteorological and aviation agencies are suggested.

  7. INS/EKF-based stride length, height and direction intent detection for walking assistance robots.

    PubMed

    Brescianini, Dario; Jung, Jun-Young; Jang, In-Hun; Park, Hyun Sub; Riener, Robert

    2011-01-01

    We propose an algorithm used to obtain the information on stride length, height difference, and direction based on user's intent during walking. For exoskeleton robots used to assist paraplegic patients' walking, this information is used to generate gait patterns by themselves in on-line. To obtain this information, we attach an inertial measurement unit(IMU) on crutches and apply an extended kalman filter-based error correction method to reduce the phenomena of drift due to bias of the IMU. The proposed method is verifed in real walking scenarios including walking, climbing up-stairs, and changing direction of walking with normal. PMID:22275567

  8. Cloud-Based Collaborative Writing and the Common Core Standards

    ERIC Educational Resources Information Center

    Yim, Soobin; Warschauer, Mark; Zheng, Binbin; Lawrence, Joshua F.

    2014-01-01

    The Common Core State Standards emphasize the integration of technology skills into English Language Arts (ELA) instruction, recognizing the demand for technology-based literacy skills to be college- and career- ready. This study aims to examine how collaborative cloud-based writing is used in in a Colorado school district, where one-to-one…

  9. Knowledge-Based Object Detection in Laser Scanning Point Clouds

    NASA Astrophysics Data System (ADS)

    Boochs, F.; Karmacharya, A.; Marbs, A.

    2012-07-01

    Object identification and object processing in 3D point clouds have always posed challenges in terms of effectiveness and efficiency. In practice, this process is highly dependent on human interpretation of the scene represented by the point cloud data, as well as the set of modeling tools available for use. Such modeling algorithms are data-driven and concentrate on specific features of the objects, being accessible to numerical models. We present an approach that brings the human expert knowledge about the scene, the objects inside, and their representation by the data and the behavior of algorithms to the machine. This "understanding" enables the machine to assist human interpretation of the scene inside the point cloud. Furthermore, it allows the machine to understand possibilities and limitations of algorithms and to take this into account within the processing chain. This not only assists the researchers in defining optimal processing steps, but also provides suggestions when certain changes or new details emerge from the point cloud. Our approach benefits from the advancement in knowledge technologies within the Semantic Web framework. This advancement has provided a strong base for applications based on knowledge management. In the article we will present and describe the knowledge technologies used for our approach such as Web Ontology Language (OWL), used for formulating the knowledge base and the Semantic Web Rule Language (SWRL) with 3D processing and topologic built-ins, aiming to combine geometrical analysis of 3D point clouds, and specialists' knowledge of the scene and algorithmic processing.

  10. An overview of platforms for cloud based development.

    PubMed

    Fylaktopoulos, G; Goumas, G; Skolarikis, M; Sotiropoulos, A; Maglogiannis, I

    2016-01-01

    This paper provides an overview of the state of the art technologies for software development in cloud environments. The surveyed systems cover the whole spectrum of cloud-based development including integrated programming environments, code repositories, software modeling, composition and documentation tools, and application management and orchestration. In this work we evaluate the existing cloud development ecosystem based on a wide number of characteristics like applicability (e.g. programming and database technologies supported), productivity enhancement (e.g. editor capabilities, debugging tools), support for collaboration (e.g. repository functionality, version control) and post-development application hosting and we compare the surveyed systems. The conducted survey proves that software engineering in the cloud era has made its initial steps showing potential to provide concrete implementation and execution environments for cloud-based applications. However, a number of important challenges need to be addressed for this approach to be viable. These challenges are discussed in the article, while a conclusion is drawn that although several steps have been made, a compact and reliable solution does not yet exist. PMID:26835220

  11. A cloud-based system for automatic glaucoma screening.

    PubMed

    Fengshou Yin; Damon Wing Kee Wong; Ying Quan; Ai Ping Yow; Ngan Meng Tan; Gopalakrishnan, Kavitha; Beng Hai Lee; Yanwu Xu; Zhuo Zhang; Jun Cheng; Jiang Liu

    2015-08-01

    In recent years, there has been increasing interest in the use of automatic computer-based systems for the detection of eye diseases including glaucoma. However, these systems are usually standalone software with basic functions only, limiting their usage in a large scale. In this paper, we introduce an online cloud-based system for automatic glaucoma screening through the use of medical image-based pattern classification technologies. It is designed in a hybrid cloud pattern to offer both accessibility and enhanced security. Raw data including patient's medical condition and fundus image, and resultant medical reports are collected and distributed through the public cloud tier. In the private cloud tier, automatic analysis and assessment of colour retinal fundus images are performed. The ubiquitous anywhere access nature of the system through the cloud platform facilitates a more efficient and cost-effective means of glaucoma screening, allowing the disease to be detected earlier and enabling early intervention for more efficient intervention and disease management. PMID:26736579

  12. Intuitive terrain reconstruction using height observation-based ground segmentation and 3D object boundary estimation.

    PubMed

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-01-01

    Mobile robot operators must make rapid decisions based on information about the robot's surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot's array of sensors, but some upper parts of objects are beyond the sensors' measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances. PMID:23235454

  13. Nuclear spectroscopy pulse height analysis based on digital signal processing techniques

    SciTech Connect

    Simoes, J.B.; Simoes, P.C.P.S.; Correia, C.M.B.A.

    1995-08-01

    A digital approach to pulse height analysis is presented. It consists of entire pulse digitization, using a flash analog-to-digital converter (ADC), being its height estimated by a floating point digital signal processor (DSP) as one parameter of a model best fitting to the pulse samples. The differential nonlinearity (DNL) is reduced by simultaneously adding to the pulse, prior to its digitization, two analog signals provided by a digital-to-analog converter (DAC). One of them is a small amplitude dither signal used to eliminate a bias introduced by the fitting algorithm. The other, with large amplitude, corrects the ADC nonlinearities by a method similar to the well known Gatti`s sliding scale. The simulations carried out showed that, using a 12-bit flash ADC, a 14-bit DAC and a dedicated floating point DSP performing a polynomial fitting to the samples around the pulse peak, it is actually possible to process about 10,000 events per second, with a constant height pulse dispersion of only 4 on 8,192 channels and a very good differential linearity. A prototype system based on the Texas Instruments floating point DSP TMS320C31 and built following the presented methodology has already been tested and performed as expected.

  14. Intuitive Terrain Reconstruction Using Height Observation-Based Ground Segmentation and 3D Object Boundary Estimation

    PubMed Central

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-01-01

    Mobile robot operators must make rapid decisions based on information about the robot’s surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot’s array of sensors, but some upper parts of objects are beyond the sensors’ measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances. PMID:23235454

  15. Automatic Single Tree Detection in Plantations using UAV-based Photogrammetric Point clouds

    NASA Astrophysics Data System (ADS)

    Kattenborn, T.; Sperlich, M.; Bataua, K.; Koch, B.

    2014-08-01

    For reasons of documentation, management and certification there is a high interest in efficient inventories of palm plantations on the single plant level. Recent developments in unmanned aerial vehicle (UAV) technology facilitate spatial and temporal flexible acquisition of high resolution 3D data. Common single tree detection approaches are based on Very High Resolution (VHR) satellite or Airborne Laser Scanning (ALS) data. However, VHR data is often limited to clouds and does commonly not allow for height measurements. VHR and in particualar ALS data are characterized by high relatively high acquisition costs. Sperlich et al. (2013) already demonstrated the high potential of UAV-based photogrammetric point clouds for single tree detection using pouring algorithms. This approach was adjusted and improved for an application on palm plantation. The 9.4ha test site on Tarawa, Kiribati, comprised densely scattered growing palms, as well as abundant undergrowth and trees. Using a standard consumer grade camera mounted on an octocopter two flight campaigns at 70m and 100m altitude were performed to evaluate the effect Ground Sampling Distance (GSD) and image overlap. To avoid comission errors and improve the terrain interpolation the point clouds were classified based on the geometric characteristics of the classes, i.e. (1) palm, (2) other vegetation (3) and ground. The mapping accuracy amounts for 86.1 % for the entire study area and 98.2 % for dense growing palm stands. We conclude that this flexible and automatic approach has high capabilities for operational use.

  16. Comparison of cloud boundaries measured with 8.6 mm radar and 10.6 micrometer lidar

    NASA Technical Reports Server (NTRS)

    Uttal, Taneil; Intrieri, Janet M.

    1993-01-01

    One of the most basic cloud properties is location; the height of cloud base and the height of cloud top. The glossary of meteorology defines cloud base (top) as follows: 'For a given cloud or cloud layer, that lowest (highest) level in the atmosphere at which the air contains a perceptible quantity of cloud particles.' Our studies show that for a 8.66 mm radar, and a 10.6 micrometer lidar, the level at which cloud hydrometers become 'perceptible' can vary significantly as a function of the different wavelengths, powers, beamwidths and sampling rates of the two remote sensors.

  17. Image-Based Airborne LiDAR Point Cloud Encoding for 3d Building Model Retrieval

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Chen; Lin, Chao-Hung

    2016-06-01

    With the development of Web 2.0 and cyber city modeling, an increasing number of 3D models have been available on web-based model-sharing platforms with many applications such as navigation, urban planning, and virtual reality. Based on the concept of data reuse, a 3D model retrieval system is proposed to retrieve building models similar to a user-specified query. The basic idea behind this system is to reuse these existing 3D building models instead of reconstruction from point clouds. To efficiently retrieve models, the models in databases are compactly encoded by using a shape descriptor generally. However, most of the geometric descriptors in related works are applied to polygonal models. In this study, the input query of the model retrieval system is a point cloud acquired by Light Detection and Ranging (LiDAR) systems because of the efficient scene scanning and spatial information collection. Using Point clouds with sparse, noisy, and incomplete sampling as input queries is more difficult than that by using 3D models. Because that the building roof is more informative than other parts in the airborne LiDAR point cloud, an image-based approach is proposed to encode both point clouds from input queries and 3D models in databases. The main goal of data encoding is that the models in the database and input point clouds can be consistently encoded. Firstly, top-view depth images of buildings are generated to represent the geometry surface of a building roof. Secondly, geometric features are extracted from depth images based on height, edge and plane of building. Finally, descriptors can be extracted by spatial histograms and used in 3D model retrieval system. For data retrieval, the models are retrieved by matching the encoding coefficients of point clouds and building models. In experiments, a database including about 900,000 3D models collected from the Internet is used for evaluation of data retrieval. The results of the proposed method show a clear superiority

  18. Tsunami Lead Wave Reconstruction Based on Noisy Sea Surface Height Measurements

    NASA Astrophysics Data System (ADS)

    Yu, Kegen

    2016-06-01

    This paper presents a Tsunami lead wave reconstruction method using noisy sea surface height (SSH) measurements such as observed by a satellite-carried GNSS reflectometry (GNSS-R) sensor. It is proposed to utilize wavelet theory to mitigate the strong noise in the GNSS-R based SSH measurements. Through extracting the noise components by high-pass filters at decomposition stage and shrinking the noise by thresholding prior to reconstruction, the noise is greatly reduced. Real Tsunami data based simulation results demonstrate that in presence of SSH measurement error of standard deviation 50 cm the accuracy in terms of root mean square error (RMSE) of the lead wave height (true value 145.5 cm) and wavelength (true value 592.0 km) estimation is 21.5 cm and 56.2 km, respectively. The results also show that the proposed wavelet based method considerably outperforms the Kalman filter based method on average. The results demonstrate that the proposed wave reconstruction approach has the potential for Tsunami detection and parameter estimation to assist in achieving reliable Tsunami warning.

  19. Determination of the smoke-plume heights and their dynamics with ground-based scanning lidar.

    PubMed

    Kovalev, V; Petkov, A; Wold, C; Urbanski, S; Hao, W M

    2015-03-10

    Lidar-data processing techniques are analyzed, which allow determining smoke-plume heights and their dynamics and can be helpful for the improvement of smoke dispersion and air quality models. The data processing algorithms considered in the paper are based on the analysis of two alternative characteristics related to the smoke dispersion process: the regularized intercept function, extracted directly from the recorded lidar signal, and the square-range corrected backscatter signal, obtained after determining and subtracting the constant offset in the recorded signal. The analysis is performed using experimental data of the scanning lidar obtained in the area of prescribed fires. PMID:25968377

  20. Arctic Cloud Fraction and Microphysical Characteristics from 8-year Space-based Lidar and Radar Measurements

    NASA Astrophysics Data System (ADS)

    Kim, S. W.; Yeo, H.; Jeong, J. H.; Kim, M. H.; Son, S. W.; Kim, B. M.; Kim, S. J.

    2015-12-01

    Arctic clouds are a key factor in determining the energy budget both at the top of the atmosphere and at the suface by modulating the long-wave and short-wave radiative fluxes, which affect the surface temperature and may effect on the growth or retreat of sea ice extent and thickness. In this work, we exmine three-dimensional geometric and microphysical properties of Arctic clouds mainly from 8-year space-borne lidar Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR). Cloud Frations (CFs) from CALIOP-CPR and MODIS show similar seasonal and inter-annual variations, but shows significant different in CF over the opened sea area (i.e., Barents and Kara Sea) and over the sea ice. High occurrences of cloud top height are found below 2 km. But comparably high presences of mid- and high-level clouds are also found, especially in winter-time. This suggests that both low- and high-level clouds over the Arctic may influence on the long-wave radiation budget both at the surface and top of the atmosphere. On the other hand, the top height of winter-time clouds looks consistent with tropopause height. Cloud Optical Depth (COD) over the Arctic shows high in summer and low in winter, which would be contrary to the seasonal/monthly variations of CF. High COD during summer can be explained by enhanced level of liquid cloud droplet number concentrations. The number concentration and effective radius (in parenthesis) of liquid cloud droplet during summner was in the range of about 30 to 80 cm-3 (about 6 ~ 16 mm).

  1. A cloud-based medical image repository

    NASA Astrophysics Data System (ADS)

    Maeder, Anthony J.; Planitz, Birgit M.; El Rifai, Diaa

    2012-02-01

    Many widely used digital medical image collections have been established but these are generally used as raw data sources without related image analysis toolsets. Providing associated functionality to allow specific types of operations to be performed on these images has proved beneficial in some cases (e.g. brain image registration and atlases). However, toolset development to provide generic image analysis functions on medical images has tended to be ad hoc, with Open Source options proliferating (e.g. ITK). Our Automated Medical Image Collection Annotation (AMICA) system is both an image repository, to which the research community can contribute image datasets, and a search/retrieval system that uses automated image annotation. AMICA was designed for the Windows Azure platform to leverage the flexibility and scalability of the cloud. It is intended that AMICA will expand beyond its initial pilot implementation (for brain CT, MR images) to accommodate a wide range of modalities and anatomical regions. This initiative aims to contribute to advances in clinical research by permitting a broader use and reuse of medical image data than is currently attainable. For example, cohort studies for cases with particular physiological or phenotypical profiles will be able to source and include enough cases to provide high statistical power, allowing more individualised risk factors to be assessed and thus allowing screening and staging processes to be optimised. Also, education, training and credentialing of clinicians in image interpretation, will be more effective because it will be possible to select instances of images with specific visual aspects, or correspond to types of cases where reading performance improvement is desirable.

  2. Contextual cloud-based service oriented architecture for clinical workflow.

    PubMed

    Moreno-Conde, Jesús; Moreno-Conde, Alberto; Núñez-Benjumea, Francisco J; Parra-Calderón, Carlos

    2015-01-01

    Given that acceptance of systems within the healthcare domain multiple papers highlighted the importance of integrating tools with the clinical workflow. This paper analyse how clinical context management could be deployed in order to promote the adoption of cloud advanced services and within the clinical workflow. This deployment will be able to be integrated with the eHealth European Interoperability Framework promoted specifications. Throughout this paper, it is proposed a cloud-based service-oriented architecture. This architecture will implement a context management system aligned with the HL7 standard known as CCOW. PMID:25991217

  3. Cloud-Based Technologies: Faculty Development, Support, and Implementation

    ERIC Educational Resources Information Center

    Diaz, Veronica

    2011-01-01

    The number of instructional offerings in higher education that are online, blended, or web-enhanced, including courses and programs, continues to grow exponentially. Alongside the growth of e-learning, higher education has witnessed the explosion of cloud-based or Web 2.0 technologies, a term that refers to the vast array of socially oriented,…

  4. A Cloud-based Approach to Medical NLP

    PubMed Central

    Chard, Kyle; Russell, Michael; Lussier, Yves A.; Mendonça, Eneida A; Silverstein, Jonathan C.

    2011-01-01

    Natural Language Processing (NLP) enables access to deep content embedded in medical texts. To date, NLP has not fulfilled its promise of enabling robust clinical encoding, clinical use, quality improvement, and research. We submit that this is in part due to poor accessibility, scalability, and flexibility of NLP systems. We describe here an approach and system which leverages cloud-based approaches such as virtual machines and Representational State Transfer (REST) to extract, process, synthesize, mine, compare/contrast, explore, and manage medical text data in a flexibly secure and scalable architecture. Available architectures in which our Smntx (pronounced as semantics) system can be deployed include: virtual machines in a HIPAA-protected hospital environment, brought up to run analysis over bulk data and destroyed in a local cloud; a commercial cloud for a large complex multi-institutional trial; and within other architectures such as caGrid, i2b2, or NHIN. PMID:22195072

  5. Game Theory Based Trust Model for Cloud Environment

    PubMed Central

    Gokulnath, K.; Uthariaraj, Rhymend

    2015-01-01

    The aim of this work is to propose a method to establish trust at bootload level in cloud computing environment. This work proposes a game theoretic based approach for achieving trust at bootload level of both resources and users perception. Nash equilibrium (NE) enhances the trust evaluation of the first-time users and providers. It also restricts the service providers and the users to violate service level agreement (SLA). Significantly, the problem of cold start and whitewashing issues are addressed by the proposed method. In addition appropriate mapping of cloud user's application to cloud service provider for segregating trust level is achieved as a part of mapping. Thus, time complexity and space complexity are handled efficiently. Experiments were carried out to compare and contrast the performance of the conventional methods and the proposed method. Several metrics like execution time, accuracy, error identification, and undecidability of the resources were considered. PMID:26380365

  6. Atmospheric Cloud Forecasting in Support of Space Based Applications

    NASA Astrophysics Data System (ADS)

    Alliss, R. J.; Felton, B.; Apling, D.

    2013-09-01

    Many space based applications from imaging to communications are impacted by the atmosphere. Atmospheric impacts such as optical turbulence and clouds are the main drivers for these types of systems. For example, in space based optical communications, clouds will produce channel fades on the order of many hundreds of decibels (dB) thereby breaking the communication link. Optical turbulence can also produce fades but can be compensated for by adaptive optics. The ability to forecast the current and future location and optical thickness of clouds for spaced based to ground optical communications is therefore critical in order to achieve a highly reliable system. We have developed an innovative method for producing such forecasts. These forecasts are intended to provide lead times on the order of several hours so that communication links can be transferred from a current clear ground location to another more desirable ground site. The system is referred to as the Cloud Propagator Forecast (CPF) and it operates on successive, satellite remotely sensed, cloud analyses to produce reliable probability forecasts of future cloud cover conditions at each point location or for the expectation of the amount of skycover in a local skydome about each point location. The forecasting algorithm is a combination of empirical Lagrangian and Eulerian regression over multiple spatial scales, but treats time auto-regressively. Input cloud masks are transformed into proxies first. A cloud cover proxy is a variable which has a more Gaussian distribution than literal cloud cover. For a given pixel, the cloud cover proxy is computed first by determining whether at the initialization time the pixel was clear or cloudy. Clear pixels will be assigned only positive proxies; cloudy pixels will be given only negative proxies. The degree the assigned proxy is different than zero depends on the fraction of pixels in a small neighboring space which have similar cloudy/clearness. The neighboring

  7. Evaluation of Tropical Cirrus Cloud Properties Derived from ECMWF Model Output and Ground Based Measurements over Nauru Island

    SciTech Connect

    Comstock, Jennifer M.; Jakob, Christian

    2004-05-26

    Cirrus clouds play an important role both radiatively and dynamically in the tropics. Understanding the mechanisms responsible for the formation and persistence of tropical cirrus is an important step in accurately predicting cirrus in forecast models. In this study, we compare ground-based measurements of cloud properties with those predicted by the ECMWF model at a location in the tropical western Pacific. Our comparisons of cloud height and optical depth over an 8 month time period indicate that the model and measurements agree relatively well. The ECMWF model predicts cirrus anvils associated with deep convection during convectively active periods, and also isolated cirrus events that are influenced by large-scale vertical ascent. We also show through examination of an upper tropospheric cirrus case that the model produces tropospheric waves that appear to influence the morphology and maintenance of the cirrus layer.

  8. Cloud based emergency health care information service in India.

    PubMed

    Karthikeyan, N; Sukanesh, R

    2012-12-01

    A hospital is a health care organization providing patient treatment by expert physicians, surgeons and equipments. A report from a health care accreditation group says that miscommunication between patients and health care providers is the reason for the gap in providing emergency medical care to people in need. In developing countries, illiteracy is the major key root for deaths resulting from uncertain diseases constituting a serious public health problem. Mentally affected, differently abled and unconscious patients can't communicate about their medical history to the medical practitioners. Also, Medical practitioners can't edit or view DICOM images instantly. Our aim is to provide palm vein pattern recognition based medical record retrieval system, using cloud computing for the above mentioned people. Distributed computing technology is coming in the new forms as Grid computing and Cloud computing. These new forms are assured to bring Information Technology (IT) as a service. In this paper, we have described how these new forms of distributed computing will be helpful for modern health care industries. Cloud Computing is germinating its benefit to industrial sectors especially in medical scenarios. In Cloud Computing, IT-related capabilities and resources are provided as services, via the distributed computing on-demand. This paper is concerned with sprouting software as a service (SaaS) by means of Cloud computing with an aim to bring emergency health care sector in an umbrella with physical secured patient records. In framing the emergency healthcare treatment, the crucial thing considered necessary to decide about patients is their previous health conduct records. Thus a ubiquitous access to appropriate records is essential. Palm vein pattern recognition promises a secured patient record access. Likewise our paper reveals an efficient means to view, edit or transfer the DICOM images instantly which was a challenging task for medical practitioners in the

  9. Ground point filtering of UAV-based photogrammetric point clouds

    NASA Astrophysics Data System (ADS)

    Anders, Niels; Seijmonsbergen, Arie; Masselink, Rens; Keesstra, Saskia

    2016-04-01

    Unmanned Aerial Vehicles (UAVs) have proved invaluable for generating high-resolution and multi-temporal imagery. Based on photographic surveys, 3D surface reconstructions can be derived photogrammetrically so producing point clouds, orthophotos and surface models. For geomorphological or ecological applications it may be necessary to separate ground points from vegetation points. Existing filtering methods are designed for point clouds derived using other methods, e.g. laser scanning. The purpose of this paper is to test three filtering algorithms for the extraction of ground points from point clouds derived from low-altitude aerial photography. Three subareas were selected from a single flight which represent different scenarios: 1) low relief, sparsely vegetated area, 2) low relief, moderately vegetated area, 3) medium relief and moderately vegetated area. The three filtering methods are used to classify ground points in different ways, based on 1) RGB color values from training samples, 2) TIN densification as implemented in LAStools, and 3) an iterative surface lowering algorithm. Ground points are then interpolated into a digital terrain model using inverse distance weighting. The results suggest that different landscapes require different filtering methods for optimal ground point extraction. While iterative surface lowering and TIN densification are fully automated, color-based classification require fine-tuning in order to optimize the filtering results. Finally, we conclude that filtering photogrammetric point clouds could provide a cheap alternative to laser scan surveys for creating digital terrain models in sparsely vegetated areas.

  10. A physical-based statistical method for modeling ocean wave heights

    NASA Astrophysics Data System (ADS)

    Casas-Prat, Mercè; Wang, Xiaolan L.; Sierra, Joan P.

    2014-01-01

    This study proposes a computationally inexpensive statistical method for modeling ocean wave heights, focusing particularly on modeling wave heights in near-shore areas. A multiple linear regression is used to predict significant wave heights (Hs) using predictors derived from the sea level pressure (SLP) field, including the use of squared SLP gradients to represent geostrophic winds. One time step lagged Hs is also included as a predictor, which could be interpreted as the first order derivative in the spectral energy balance governing equation. Further, based on the frequency/directional dispersion theory of waves, the swell component is accounted for by using a set of selected principal components derived from the squared SLP gradient vectors (including magnitudes and directions). The effect of non-Gaussian (non-negative) variables is also assessed by applying two types of transformation to the data. The proposed method is evaluated and shown to have good skills for the study area (Catalan coast). This method can be used to project possible future wave climate change for use in coastal impact assessment studies. It is used in this study to project the wave climate for the study area that corresponds to 5 sets of regional climate model (RCM) atmospheric projections, which were made by different RCMs forced by the same global circulation model (GCM), or by the same RCM forced by two GCMs. For the season analyzed (winter), the results show that the uncertainty due to using different GCMs to drive the same RCM is greater than that due to using different RCMs driven by the same GCM.

  11. Filtering of LIDAR Point Cloud Using a Strip Based Algorithm in Residential Mountainous Areas

    NASA Astrophysics Data System (ADS)

    Hosseini, S. A.; Arefi, H.; Gharib, Z.

    2014-10-01

    Several algorithms have been developed to automatically detect the bare earth in LIDAR point clouds referred to as filtering. Previous experimental study on filtering algorithms determined that in flat and uncomplicated landscapes, algorithms tend to do well. Significant differences in accuracies of filtering appear in landscapes containing steep slopes and discontinuities. A solution for this problem is the segmentation of ALS point clouds. In this paper a new segmentation has been developed. The algorithm starts with first slicing a point cloud into contiguous and parallel profiles in different directions. Then the points in each profile are segmented into polylines based on distance and elevation proximity. The segmentation in each profile yields polylines. The polylines are then linked together through their common points to obtain surface segments. At the final stage, the data is partitioned into some windows in which the strips are exploited to analysis the points with regard to the height differences through them. In this case the whole data could be fully segmented into ground and non-ground measurements, sequentially via the strips which make the algorithm fast to implement.

  12. Streaming Support for Data Intensive Cloud-Based Sequence Analysis

    PubMed Central

    Issa, Shadi A.; Kienzler, Romeo; El-Kalioby, Mohamed; Tonellato, Peter J.; Wall, Dennis; Bruggmann, Rémy; Abouelhoda, Mohamed

    2013-01-01

    Cloud computing provides a promising solution to the genomics data deluge problem resulting from the advent of next-generation sequencing (NGS) technology. Based on the concepts of “resources-on-demand” and “pay-as-you-go”, scientists with no or limited infrastructure can have access to scalable and cost-effective computational resources. However, the large size of NGS data causes a significant data transfer latency from the client's site to the cloud, which presents a bottleneck for using cloud computing services. In this paper, we provide a streaming-based scheme to overcome this problem, where the NGS data is processed while being transferred to the cloud. Our scheme targets the wide class of NGS data analysis tasks, where the NGS sequences can be processed independently from one another. We also provide the elastream package that supports the use of this scheme with individual analysis programs or with workflow systems. Experiments presented in this paper show that our solution mitigates the effect of data transfer latency and saves both time and cost of computation. PMID:23710461

  13. Tunnel Point Cloud Filtering Method Based on Elliptic Cylindrical Model

    NASA Astrophysics Data System (ADS)

    Zhua, Ningning; Jiaa, Yonghong; Luo, Lun

    2016-06-01

    The large number of bolts and screws that attached to the subway shield ring plates, along with the great amount of accessories of metal stents and electrical equipments mounted on the tunnel walls, make the laser point cloud data include lots of non-tunnel section points (hereinafter referred to as non-points), therefore affecting the accuracy for modeling and deformation monitoring. This paper proposed a filtering method for the point cloud based on the elliptic cylindrical model. The original laser point cloud data was firstly projected onto a horizontal plane, and a searching algorithm was given to extract the edging points of both sides, which were used further to fit the tunnel central axis. Along the axis the point cloud was segmented regionally, and then fitted as smooth elliptic cylindrical surface by means of iteration. This processing enabled the automatic filtering of those inner wall non-points. Experiments of two groups showed coincident results, that the elliptic cylindrical model based method could effectively filter out the non-points, and meet the accuracy requirements for subway deformation monitoring. The method provides a new mode for the periodic monitoring of tunnel sections all-around deformation in subways routine operation and maintenance.

  14. The Impacts of an Observationally-Based Cloud Fraction and Condensate Overlap Parameterization on a GCM's Cloud Radiative Effect

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Lee, Dongmin; Norris, Peter; Yuan, Tianle

    2011-01-01

    It has been shown that the details of how cloud fraction overlap is treated in GCMs has substantial impact on shortwave and longwave fluxes. Because cloud condensate is also horizontally heterogeneous at GCM grid scales, another aspect of cloud overlap should in principle also be assessed, namely the vertical overlap of hydrometeor distributions. This type of overlap is usually examined in terms of rank correlations, i.e., linear correlations between hydrometeor amount ranks of the overlapping parts of cloud layers at specific separation distances. The cloud fraction overlap parameter and the rank correlation of hydrometeor amounts can be both expressed as inverse exponential functions of separation distance characterized by their respective decorrelation lengths (e-folding distances). Larger decorrelation lengths mean that hydrometeor fractions and probability distribution functions have high levels of vertical alignment. An analysis of CloudSat and CALIPSO data reveals that the two aspects of cloud overlap are related and their respective decorrelation lengths have a distinct dependence on latitude that can be parameterized and included in a GCM. In our presentation we will contrast the Cloud Radiative Effect (CRE) of the GEOS-5 atmospheric GCM (AGCM) when the observationally-based parameterization of decorrelation lengths is used to represent overlap versus the simpler cases of maximum-random overlap and globally constant decorrelation lengths. The effects of specific overlap representations will be examined for both diagnostic and interactive radiation runs in GEOS-5 and comparisons will be made with observed CREs from CERES and CloudSat (2B-FLXHR product). Since the radiative effects of overlap depend on the cloud property distributions of the AGCM, the availability of two different cloud schemes in GEOS-5 will give us the opportunity to assess a wide range of potential cloud overlap consequences on the model's climate.

  15. Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances

    DOE PAGESBeta

    Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; Feingold, G.; Eloranta, E.; O'Connor, E. J.; Cadeddu, M. P.

    2015-02-16

    Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer cloud using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from large-eddy simulation snapshots of cumulusmore » under stratocumulus, where cloud water path is retrieved with an error of 31 g m−2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the northeast Pacific. Here, retrieved cloud water path agrees well with independent 3-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m−2.« less

  16. Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances

    DOE PAGESBeta

    Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; Feingold, G.; Eloranta, E.; O'Connor, E. J.; Cadeddu, M. P.

    2015-07-02

    Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer clouds using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances under conditions when precipitation does not reach the surface. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievalsmore » using synthetic measurements from large-eddy simulation snapshots of cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g m-2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the Northeast Pacific. Here, retrieved cloud water path agrees well with independent three-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m-2.« less

  17. Evaluating point cloud accuracy of static three-dimensional laser scanning based on point cloud error ellipsoid model

    NASA Astrophysics Data System (ADS)

    Chen, Xijiang; Hua, Xianghong; Zhang, Guang; Wu, Hao; Xuan, Wei; Li, Moxiao

    2015-01-01

    Evaluation of static three-dimensional (3-D) laser scanning point cloud accuracy has become a topical research issue. Point cloud accuracy is typically estimated by comparing terrestrial laser scanning data related to a finite number of check point coordinates against those obtained by an independent source of higher accuracy. These methods can only estimate the point accuracy but not the point cloud accuracy, which is influenced by the positional error and sampling interval. It is proposed that the point cloud error ellipsoid is favorable for inspecting the point cloud accuracy, which is determined by the individual point error ellipsoid volume. The kernel of this method is the computation of the point cloud error ellipsoid volume and the determination of the functional relationship between the error ellipsoid and accuracy. The proposed point cloud accuracy evaluation method is particularly suited for small sampling intervals when there exists an intersection of two error ellipsoids, and is suited not only for planar but also for nonplanar target surfaces. The performance of the proposed method (PM) is verified using both planar and nonplanar board point clouds. The results demonstrate that the proposed evaluation method significantly outperforms the existing methods when the target surface is nonplanar or there exists an intersection of two error ellipsoids. The PM therefore has the potential for improving the reliability of point cloud digital elevation models and static 3-D laser scanning-based deformation monitoring.

  18. Prediction of plantar soft tissue stiffness based on sex, age, bodyweight, height and body mass index.

    PubMed

    Teoh, Jee Chin; Lee, Taeyong

    2016-02-01

    15% of Diabetes Mellitus (DM) patients suffer high risk of ulceration and 85% of the amputation involving DM population is caused by non-healing ulcers. These findings elucidate the fact that foot ulcer can result in major amputation especially to the DM and elderly population. Therefore, early diagnosis of abnormally stiffened plantar soft tissue is needed to prevent the catastrophic tissue damage. In order to differentiate between normal and pathological tissues, a threshold reference value that defines healthy tissue is required. The objective of this study is to perform a multivariate analysis to estimate the healthy plantar tissue stiffness values based on the individuals physical attributes such as bodyweight (BW), height and body mass index (BMI) as well as their age and sex. 100 healthy subjects were recruited. Indentation was performed on 2nd metatarsal head pad at 3 different dorsiflexion angles of 0°, 20°, 40° and the hallux and heel at 0°. The results showed the important influences of BW, height and BMI in determining the plantar tissue stiffness. On the other hand, age and sex only play minimal roles. The study can be further extended to increase the reliability and accuracy of the proposed predictive model by evaluating several other related parameters such as body fat content, footwear usage, frequency of sports participation, etc. PMID:26474035

  19. A cloud-based multimodality case file for mobile devices.

    PubMed

    Balkman, Jason D; Loehfelm, Thomas W

    2014-01-01

    Recent improvements in Web and mobile technology, along with the widespread use of handheld devices in radiology education, provide unique opportunities for creating scalable, universally accessible, portable image-rich radiology case files. A cloud database and a Web-based application for radiologic images were developed to create a mobile case file with reasonable usability, download performance, and image quality for teaching purposes. A total of 75 radiology cases related to breast, thoracic, gastrointestinal, musculoskeletal, and neuroimaging subspecialties were included in the database. Breast imaging cases are the focus of this article, as they best demonstrate handheld display capabilities across a wide variety of modalities. This case subset also illustrates methods for adapting radiologic content to cloud platforms and mobile devices. Readers will gain practical knowledge about storage and retrieval of cloud-based imaging data, an awareness of techniques used to adapt scrollable and high-resolution imaging content for the Web, and an appreciation for optimizing images for handheld devices. The evaluation of this software demonstrates the feasibility of adapting images from most imaging modalities to mobile devices, even in cases of full-field digital mammograms, where high resolution is required to represent subtle pathologic features. The cloud platform allows cases to be added and modified in real time by using only a standard Web browser with no application-specific software. Challenges remain in developing efficient ways to generate, modify, and upload radiologic and supplementary teaching content to this cloud-based platform. Online supplemental material is available for this article. PMID:24819664

  20. TRIDEC Cloud - a Web-based Platform for Tsunami Early Warning tested with NEAMWave14 Scenarios

    NASA Astrophysics Data System (ADS)

    Hammitzsch, Martin; Spazier, Johannes; Reißland, Sven; Necmioglu, Ocal; Comoglu, Mustafa; Ozer Sozdinler, Ceren; Carrilho, Fernando; Wächter, Joachim

    2015-04-01

    the European scale. The TRIDEC Cloud has not been involved officially in Part B of the NEAMWave14 scenarios. However, the scenarios have been used by GFZ, KOERI, and IPMA for testing in exercise runs on October 27-28, 2014. Additionally, the Greek NEAMWave14 scenario has been tested in an exercise run by GFZ only on October 29, 2014 (see ICG/NEAMTWS-XI/13). The exercise runs demonstrated that operators in warning centres and stakeholders of other involved parties just need a standard web browser to access a full-fledged TEWS. The integration of GPU accelerated tsunami simulation computations have been an integral part to foster early warning with on-demand tsunami predictions based on actual source parameters. Thus tsunami travel times, estimated times of arrival and estimated wave heights are available immediately for visualization and for further analysis and processing. The generation of warning messages is based on internationally agreed message structures and includes static and dynamic information based on earthquake information, instant computations of tsunami simulations, and actual measurements. Generated messages are served for review, modification, and addressing in one simple form for dissemination via Cloud Messages, Shared Maps, e-mail, FTP/GTS, SMS, and FAX. Cloud Messages and Shared Maps are complementary channels and integrate interactive event and simulation data. Thus recipients are enabled to interact dynamically with a map and diagrams beyond traditional text information.

  1. 16-year Climatology of Cirrus cloud properties using ground-based Lidar over Gadanki (13.45˚N, 79.18˚E)

    NASA Astrophysics Data System (ADS)

    Pandit, Amit Kumar; Raghunath, Karnam; Jayaraman, Achuthan; Venkat Ratnam, Madineni; Gadhavi, Harish

    Cirrus clouds are ubiquitous high level cold clouds predominantly consisting of ice-crystals. With their highest coverage over the tropics, these are one of the most vital and complex components of Tropical Tropopause Layer (TTL) due to their strong radiative feedback and dehydration in upper troposphere and lower stratosphere (UTLS) regions. The continuous changes in their coverage, position, thickness, and ice-crystal size and shape distributions bring uncertainties in the estimates of cirrus cloud radiative forcing. Long-term changes in the distribution of aerosols and water vapour in the TTL can influence cirrus properties. This necessitates long-term studies of tropical cirrus clouds, which are only few. The present study provides 16-year climatology of physical and optical properties of cirrus clouds observed using a ground-based Lidar located at Gadanki (13.45(°) N, 79.18(°) ˚E and 375 m amsl) in south-India. In general, cirrus clouds occurred for about 44% of the total Lidar observation time. Owing to the increased convective activities, the occurrence of cirrus clouds during the southwest-monsoon season is highest while it is lowest during the winter. Altitude distribution of cirrus clouds reveals that the peak occurrence was about 25% at 14.5 km. The most probable base and top height of cirrus clouds are 14 and 15.5 km, respectively. This is also reflected in the bulk extinction coefficient profile (at 532 nm) of cirrus clouds. These results are compared with the CALIPSO observations. Most of the time cirrus clouds are located within the TTL bounded by convective outflow level and cold-point tropopause. Cirrus clouds are thick during the monsoon season as compared to that during winter. An inverse relation between the thickness of cirrus clouds and TTL thickness is found. The occurrence of cirrus clouds at an altitude close to the tropopause (16 km) showed an increase of 8.4% in the last 16 years. Base and top heights of cirrus clouds also showed

  2. Octree-based region growing for point cloud segmentation

    NASA Astrophysics Data System (ADS)

    Vo, Anh-Vu; Truong-Hong, Linh; Laefer, Debra F.; Bertolotto, Michela

    2015-06-01

    This paper introduces a novel, region-growing algorithm for the fast surface patch segmentation of three-dimensional point clouds of urban environments. The proposed algorithm is composed of two stages based on a coarse-to-fine concept. First, a region-growing step is performed on an octree-based voxelized representation of the input point cloud to extract major (coarse) segments. The output is then passed through a refinement process. As part of this, there are two competing factors related to voxel size selection. To balance the constraints, an adaptive octree is created in two stages. Empirical studies on real terrestrial and airborne laser scanning data for complex buildings and an urban setting show the proposed approach to be at least an order of magnitude faster when compared to a conventional region growing method and able to incorporate semantic-based feature criteria, while achieving precision, recall, and fitness scores of at least 75% and as much as 95%.

  3. Chemical and physical influences on aerosol activation in liquid clouds: an empirical study based on observations from the Jungfraujoch, Switzerland

    NASA Astrophysics Data System (ADS)

    Hoyle, C. R.; Webster, C. S.; Rieder, H. E.; Hammer, E.; Gysel, M.; Bukowiecki, N.; Weingartner, E.; Steinbacher, M.; Baltensperger, U.

    2015-06-01

    A simple empirical model to predict the number of aerosols which activate to form cloud droplets in a warm, free tropospheric cloud has been established, based on data from four summertime Cloud and Aerosol Characterisation Experiments (CLACE) campaigns at the Jungfraujoch (JFJ). It is shown that 76% of the observed variance in droplet numbers can be represented by a model accounting only for the number of potential CCN (defined as number of particles larger than 90 nm in diameter), while the mean errors in the model representation may be reduced by the addition of further explanatory variables, such as the mixing ratios of O3, CO and the height of the measurements above cloud base. The model has similar ability to represent the observed droplet numbers in each of the individual years, as well as for the two predominant local wind directions at the JFJ (north west and south east). Given the central European location of the JFJ, with air masses in summer being representative of the free troposphere with regular boundary layer in-mixing via convection, we expect that this model is applicable to warm, free tropospheric clouds over the European continent.

  4. Smart Learning Services Based on Smart Cloud Computing

    PubMed Central

    Kim, Svetlana; Song, Su-Mi; Yoon, Yong-Ik

    2011-01-01

    Context-aware technologies can make e-learning services smarter and more efficient since context-aware services are based on the user’s behavior. To add those technologies into existing e-learning services, a service architecture model is needed to transform the existing e-learning environment, which is situation-aware, into the environment that understands context as well. The context-awareness in e-learning may include the awareness of user profile and terminal context. In this paper, we propose a new notion of service that provides context-awareness to smart learning content in a cloud computing environment. We suggest the elastic four smarts (E4S)—smart pull, smart prospect, smart content, and smart push—concept to the cloud services so smart learning services are possible. The E4S focuses on meeting the users’ needs by collecting and analyzing users’ behavior, prospecting future services, building corresponding contents, and delivering the contents through cloud computing environment. Users’ behavior can be collected through mobile devices such as smart phones that have built-in sensors. As results, the proposed smart e-learning model in cloud computing environment provides personalized and customized learning services to its users. PMID:22164048

  5. D Land Cover Classification Based on Multispectral LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Zou, Xiaoliang; Zhao, Guihua; Li, Jonathan; Yang, Yuanxi; Fang, Yong

    2016-06-01

    Multispectral Lidar System can emit simultaneous laser pulses at the different wavelengths. The reflected multispectral energy is captured through a receiver of the sensor, and the return signal together with the position and orientation information of sensor is recorded. These recorded data are solved with GNSS/IMU data for further post-processing, forming high density multispectral 3D point clouds. As the first commercial multispectral airborne Lidar sensor, Optech Titan system is capable of collecting point clouds data from all three channels at 532nm visible (Green), at 1064 nm near infrared (NIR) and at 1550nm intermediate infrared (IR). It has become a new source of data for 3D land cover classification. The paper presents an Object Based Image Analysis (OBIA) approach to only use multispectral Lidar point clouds datasets for 3D land cover classification. The approach consists of three steps. Firstly, multispectral intensity images are segmented into image objects on the basis of multi-resolution segmentation integrating different scale parameters. Secondly, intensity objects are classified into nine categories by using the customized features of classification indexes and a combination the multispectral reflectance with the vertical distribution of object features. Finally, accuracy assessment is conducted via comparing random reference samples points from google imagery tiles with the classification results. The classification results show higher overall accuracy for most of the land cover types. Over 90% of overall accuracy is achieved via using multispectral Lidar point clouds for 3D land cover classification.

  6. Influence of Subpixel Scale Cloud Top Structure on Reflectances from Overcast Stratiform Cloud Layers

    NASA Technical Reports Server (NTRS)

    Loeb, N. G.; Varnai, Tamas; Winker, David M.

    1998-01-01

    Recent observational studies have shown that satellite retrievals of cloud optical depth based on plane-parallel model theory suffer from systematic biases that depend on viewing geometry, even when observations are restricted to overcast marine stratus layers, arguably the closest to plane parallel in nature. At moderate to low sun elevations, the plane-parallel model significantly overestimates the reflectance dependence on view angle in the forward-scattering direction but shows a similar dependence in the backscattering direction. Theoretical simulations are performed that show that the likely cause for this discrepancy is because the plane-parallel model assumption does not account for subpixel, scale variations in cloud-top height (i.e., "cloud bumps"). Monte Carlo simulation, comparing ID model radiances to radiances from overcast cloud field with 1) cloud-top height variation, but constant cloud volume extinction; 2) flat tops but horizontal variations in cloud volume extinction; and 3) variations in both cloud top height and cloud extinction are performed over a approximately equal to 4 km x 4 km domain (roughly the size of an individual GAC AVHRR pixel). The comparisons show that when cloud-top height variations are included, departures from 1D theory are remarkably similar (qualitatively) to those obtained observationally. In contrast, when clouds are assumed flat and only cloud extinction is variable, reflectance differences are much smaller and do not show any view-angle dependence. When both cloud-top height and cloud extinction variations are included, however, large increases in cloud extinction variability can enhance reflectance difference. The reason 3D-1D reflectance differences are more sensitive to cloud-top height variations in the forward-scattering direction (at moderate to low, sun elevations) is because photons leaving the cloud field in that direction experience fewer scattering events (low-order scattering) and are restricted to the

  7. Designing the Cloud-based DOE Systems Biology Knowledgebase

    SciTech Connect

    Lansing, Carina S.; Liu, Yan; Yin, Jian; Corrigan, Abigail L.; Guillen, Zoe C.; Kleese van Dam, Kerstin; Gorton, Ian

    2011-09-01

    Systems Biology research, even more than many other scientific domains, is becoming increasingly data-intensive. Not only have advances in experimental and computational technologies lead to an exponential increase in scientific data volumes and their complexity, but increasingly such databases themselves are providing the basis for new scientific discoveries. To engage effectively with these community resources, integrated analyses, synthesis and simulation software is needed, regularly supported by scientific workflows. In order to provide a more collaborative, community driven research environment for this heterogeneous setting, the Department of Energy (DOE) has decided to develop a federated, cloud based cyber infrastructure - the Systems Biology Knowledgebase (Kbase). Pacific Northwest National Laboratory (PNNL) with its long tradition in data intensive science lead two of the five initial pilot projects, these two focusing on defining and testing the basic federated cloud-based system architecture and develop a prototype implementation. Hereby the community wide accessibility of biological data and the capability to integrate and analyze this data within its changing research context were seen as key technical functionalities the Kbase needed to enable. In this paper we describe the results of our investigations into the design of a cloud based federated infrastructure for: (1) Semantics driven data discovery, access and integration; (2) Data annotation, publication and sharing; (3) Workflow enabled data analysis; and (4) Project based collaborative working. We describe our approach, exemplary use cases and our prototype implementation that demonstrates the feasibility of this approach.

  8. Efficient Resources Provisioning Based on Load Forecasting in Cloud

    PubMed Central

    Hu, Rongdong; Jiang, Jingfei; Liu, Guangming; Wang, Lixin

    2014-01-01

    Cloud providers should ensure QoS while maximizing resources utilization. One optimal strategy is to timely allocate resources in a fine-grained mode according to application's actual resources demand. The necessary precondition of this strategy is obtaining future load information in advance. We propose a multi-step-ahead load forecasting method, KSwSVR, based on statistical learning theory which is suitable for the complex and dynamic characteristics of the cloud computing environment. It integrates an improved support vector regression algorithm and Kalman smoother. Public trace data taken from multitypes of resources were used to verify its prediction accuracy, stability, and adaptability, comparing with AR, BPNN, and standard SVR. Subsequently, based on the predicted results, a simple and efficient strategy is proposed for resource provisioning. CPU allocation experiment indicated it can effectively reduce resources consumption while meeting service level agreements requirements. PMID:24701160

  9. Efficient resources provisioning based on load forecasting in cloud.

    PubMed

    Hu, Rongdong; Jiang, Jingfei; Liu, Guangming; Wang, Lixin

    2014-01-01

    Cloud providers should ensure QoS while maximizing resources utilization. One optimal strategy is to timely allocate resources in a fine-grained mode according to application's actual resources demand. The necessary precondition of this strategy is obtaining future load information in advance. We propose a multi-step-ahead load forecasting method, KSwSVR, based on statistical learning theory which is suitable for the complex and dynamic characteristics of the cloud computing environment. It integrates an improved support vector regression algorithm and Kalman smoother. Public trace data taken from multitypes of resources were used to verify its prediction accuracy, stability, and adaptability, comparing with AR, BPNN, and standard SVR. Subsequently, based on the predicted results, a simple and efficient strategy is proposed for resource provisioning. CPU allocation experiment indicated it can effectively reduce resources consumption while meeting service level agreements requirements. PMID:24701160

  10. Cloud Based Metalearning System for Predictive Modeling of Biomedical Data

    PubMed Central

    Vukićević, Milan

    2014-01-01

    Rapid growth and storage of biomedical data enabled many opportunities for predictive modeling and improvement of healthcare processes. On the other side analysis of such large amounts of data is a difficult and computationally intensive task for most existing data mining algorithms. This problem is addressed by proposing a cloud based system that integrates metalearning framework for ranking and selection of best predictive algorithms for data at hand and open source big data technologies for analysis of biomedical data. PMID:24892101