Science.gov

Sample records for based fast bolometric

  1. Bolometric Device Based on Fluxoid Quantization

    NASA Technical Reports Server (NTRS)

    Bonetti, Joseph A.; Kenyon, Matthew E.; Leduc, Henry G.; Day, Peter K.

    2010-01-01

    The temperature dependence of fluxoid quantization in a superconducting loop. The sensitivity of the device is expected to surpass that of other superconducting- based bolometric devices, such as superconducting transition-edge sensors and superconducting nanowire devices. Just as important, the proposed device has advantages in sample fabrication.

  2. Bolometric-Effect-Based Wavelength-Selective Photodetectors Using Sorted Single Chirality Carbon Nanotubes

    PubMed Central

    Zhang, Suoming; Cai, Le; Wang, Tongyu; Shi, Rongmei; Miao, Jinshui; Wei, Li; Chen, Yuan; Sepúlveda, Nelson; Wang, Chuan

    2015-01-01

    This paper exploits the chirality-dependent optical properties of single-wall carbon nanotubes for applications in wavelength-selective photodetectors. We demonstrate that thin-film transistors made with networks of carbon nanotubes work effectively as light sensors under laser illumination. Such photoresponse was attributed to photothermal effect instead of photogenerated carriers and the conclusion is further supported by temperature measurements. Additionally, by using different types of carbon nanotubes, including a single chirality (9,8) nanotube, the devices exhibit wavelength-selective response, which coincides well with the absorption spectra of the corresponding carbon nanotubes. This is one of the first reports of controllable and wavelength-selective bolometric photoresponse in macroscale assemblies of chirality-sorted carbon nanotubes. The results presented here provide a viable route for achieving bolometric-effect-based photodetectors with programmable response spanning from visible to near-infrared by using carbon nanotubes with pre-selected chiralities. PMID:26643777

  3. The solar bolometric imager

    NASA Astrophysics Data System (ADS)

    Rust, D.; Bernasconi, P.; Foukal, P.

    The balloon-borne Solar Bolometric Imager (SBI) will provide the first bolometric (integrated light) maps of the photosphere, to evaluate the photometric contribution of magnetic structures more accurately than has been achievable with spectrally selective imaging over restricted wavebands. More accurate removal of the magnetic feature contribution will enable us to determine if solar irradiance variation mechanisms exist other than the effects of photospheric magnetism. The SBI detector is an array of 320 x 240 ferro -electric thermal IR elements whose spectral absorptance has been extended and flattened by a deposited layer of gold- black. The telescope itself is a 30-cm Dall-Kirkham design with uncoated primary and secondary pyrex mirrors. The combination of telescope and bolometric array provides an image of the sun with a flat spectral response between 0.28 microns and 2.6 microns, over a field of view of 15.2 x 11.4 min, and a pixel size of 2.8 arcsec. After a successful set of ground-based tests, the instrument is being readied for a one-day stratospheric balloon flight that will take place in September 2003. The observing platform will be the gondola previously used for the Flare Genesis Experiment (FGE), retrofitted to house and control the SBI telescope and detector. The balloon flight will enable SBI to image over essentially the full spectral range accepted by non-imaging space-borne radiometers such as ACRIM, making the data sets complementary. The SBI flight will also provide important engineering data to validate the space worthiness of the novel gold-blackened thermal array detectors, and verify the thermal performance of the SBI's uncoated optics in a vacuum environment. This work was funded by NASA under grant NAG5-10998.

  4. The solar bolometric imager

    NASA Astrophysics Data System (ADS)

    Bernasconi, P. N.; Eaton, H. A. C.; Foukal, P.; Rust, D. M.

    2004-01-01

    The balloon-borne Solar Bolometric Imager (SBI) will provide the first bolometric (integrated light) maps of the solar photosphere. It will evaluate the photometric contribution of magnetic structures more accurately than has been possible with spectrally selective imaging over restricted wavebands. More accurate removal of the magnetic feature contribution will enable us to determine if solar irradiance variation mechanisms exist other than the effects of photospheric magnetism. The SBI detector is an array of 320 × 240 ferro-electric thermal IR elements whose spectral absorptance has been extended and flattened by a deposited layer of gold-black. The telescope itself is a 30-cm Dall-Kirkham design with uncoated primary and secondary pyrex mirrors. The combination of telescope and bolometric array provides an image of the Sun with a flat spectral response between 0.28 and 2.6 μm, over a field of view of 917 × 687 arcsec, and a pixel size of 2.8 arcsec. After a successful set of ground-based tests, the instrument is being readied for a one-day stratospheric balloon flight that will take place in September 2003. The observing platform will be the gondola previously used for the Flare Genesis Experiment (FGE), retrofitted to house and control the SBI telescope and detector. The balloon flight will enable SBI to image over essentially the full spectral range accepted by non-imaging space-borne radiometers such as ACRIM, making the data sets complementary. The SBI flight will also provide important engineering data to validate the space worthiness of the novel gold-blackened thermal array detectors, and verify the thermal performance of the SBI's uncoated optics in a vacuum environment.

  5. The Solar Bolometric Imager

    NASA Astrophysics Data System (ADS)

    Bernasconi, P. N.; Foukal, P.; Rust, D. M.

    2002-05-01

    The Solar Bolometric Imager (SBI) is an innovative solar telescope capable of recording images in essentially total photospheric light, with an angular resolution of 5", sufficient to distinguish sunspots, faculae and enhanced network. These are the photospheric magnetic structures so far linked most closely to irradiance variation. The balloon-borne SBI will provide the first bolometric maps of the photosphere, to evaluate the photometric contribution of magnetic structures more accurately than has been achievable so far, using spectrally selective imaging over restricted wavebands. More accurate removal of the magnetic feature contribution will enable us to determine whether other solar irradiance mechanisms exist besides the effects of photospheric magnetism. The SBI detector is an array of 320 X 240 ferro-electric thermal IR elements whose spectral absorptance has been extended and flattened by a deposited layer of gold-black. The telescope itself is a 30-cm Dall-Kirkham design with uncoated primary and secondary pyrex mirrors. The combination of telescope and bolometric array provides an image of the solar irradiance with a flat spectral response between 0.28 um and 2.6 um, over a field of view of 15.2' X 11.4', and a pixel size of 2.8". After a successful set of ground-based tests, the instrument is being readied for a one-day stratospheric balloon flight that will take place in September 2003. The observing platform will be the gondola previously used for the Flare Genesis Experiment project (FGE), retrofitted to house and control the SBI telescope and detector. The balloon flight will enable SBI to image over essentially the full spectral range accepted by non-imaging space borne radiometers such as ACRIM, making the data sets complementary. The SBI flight will also provide important engineering data to validate the space worthiness of the novel gold-blackened thermal array detectors, and verify the thermal performance of the SBI's uncoated optics in a

  6. Comparative study of bolometric and non-bolometric switching elements for microwave phase shifters

    NASA Technical Reports Server (NTRS)

    Tabib-Azar, Massood; Bhasin, Kul B.; Romanofsky, Robert R.

    1991-01-01

    The performance of semiconductor and high critical temperature superconductor switches is compared as they are used in delay-line-type microwave and millimeter-wave phase shifters. Such factors as their ratios of the off-to-on resistances, parasitic reactances, power consumption, speed, input-to-output isolation, ease of fabrication, and physical dimensions are compared. Owing to their almost infinite off-to-on resistance ratio and excellent input-to-output isolation, bolometric superconducting switches appear to be quite suitable for use in microwave phase shifters; their only drawbacks are their speed and size. The SUPERFET, a novel device whose operation is based on the electric field effect in high critical temperature ceramic superconductors is also discussed. Preliminary results indicate that the SUPERFET is fast and that it can be scaled; therefore, it can be fabricated with dimensions comparable to semiconductor field-effect transistors.

  7. Bolometric detection of neutrinos

    NASA Technical Reports Server (NTRS)

    Cabrera, B.; Krauss, L. M.; Wilczek, F.

    1985-01-01

    Elastic neutrino scattering off electrons in crystalline silicon at 1-10 mK results in measurable temperature changes in macroscopic amounts of material, even for low-energy (less than 0.41-MeV) pp neutrinos from the sun. New detectors for bolometric measurement of low-energy neutrino interactions, including coherent nuclear elastic scattering, are proposed. A new and more sensitive search for oscillations of reactor antineutrinos is practical (about 100 kg of Si), and would lay the groundwork for a more ambitious measurement of the spectrum of pp, Be-7, and B-8 solar neutrinos, and of supernovae anywhere in the Galaxy (about 10 tons of Si).

  8. The Millimeter-Wave Bolometric Interferometer

    NASA Technical Reports Server (NTRS)

    Ali, S.; Ade, P. A. R.; Bock, J. J.; Novak, G.; Piccirillo, L.; Timbie, P.; Tucker, G. S.

    2004-01-01

    The Millimeter-wave Bolometric Interferometer (MBI) is a proposed ground-based instrument designed for a wide range of cosmological and astrophysical observations including studies of the polarization of the cosmic microwave background (CMB). MBI combines the advantages of two well-developed technologies - interferometers and bolometric detectors. Interferometers have many advantages over .filled-aperture telescopes and are particularly suitable for high resolution imaging. Cooled bolometers are the highest sensitivity detectors at millimeter and sub-millimeter wavelengths. The combination of these two technologies results in an instrument with both high sensitivity and high angular resolution.

  9. Bolometric measurements in ATF

    SciTech Connect

    Hiroe, S.; Wilgen, J.B.; Batchelor, D.B.; Bigelow, T.S.; Wing, W.R.; Bell, G.L.; Gandy, R.F.; Goldfinger, R.C.; Kindsfather, R.R.

    1989-01-01

    Bolometer measurements are made under various plasma conditions in ATF. Each bolometer module includes four pairs of detectors; each pair consists of a sensor and a reference detector. Two or three detector pairs in each module were installed with various types of aperture masks to serve as radiation detectors. The rest were completely shielded from plasma emissions and used as blind detectors to measure background levels. When electron cyclotron heating (ECH) power was applied to ATF, the radiation signal was more than 10 times higher than that expected for 100 kW of radiated power. Surprisingly, similar signal levels were observed on the blind detectors. It is hypothesized that the bolometers are sensitive to ECH power at 53 GHz. (This problem may be general in near-term fusion experiments, in which microwave power will be an important tool for plasma heating.) In this paper, experiments aimed at proving this hypothesis are reported; bolometric signals before and after chromium gettering are discussed; and measurements of the microwave power deposition profile around the torus, made by using the observed microwave interference with the blind detectors, are presented. 4 refs., 4 figs.

  10. Characterization of Terahertz Single-Photon-Sensitive Bolometric Detectors Using a Pulsed Microwave Technique

    SciTech Connect

    Santavicca, D. F.; Frunzio, L.; Prober, D. E.; Reulet, B.; Karasik, B. S.; Pereverzev, S. V.; Olaya, D.; Gershenson, M. E.

    2009-12-16

    We describe a technique for characterizing bolometric detectors that have sufficient sensitivity to count single terahertz photons. The device is isolated from infrared blackbody radiation and a single terahertz photon is simulated by a fast microwave pulse, where the absorbed energy of the pulse is equal to the photon energy. We have employed this technique to characterize bolometric detectors consisting of a superconducting titanium nanobridge with niobium contacts. Present devices have T{sub c} = 0.3 K and a measured intrinsic energy resolution of approximately 6 terahertz full-width at half-maximum, near the predicted value due to intrinsic thermal fluctuation noise, with a time constant of 2 {mu}s. An intrinsic energy resolution of 1 terahertz should be achievable by reducing the volume of the titanium nanobridge. Such a detector has important applications in future space-based terahertz astronomy missions.

  11. Cloud Structure of Galactic OB Cluster-forming Regions from Combining Ground- and Space-based Bolometric Observations

    NASA Astrophysics Data System (ADS)

    Lin, Yuxin; Liu, Hauyu Baobab; Li, Di; Zhang, Zhi-Yu; Ginsburg, Adam; Pineda, Jaime E.; Qian, Lei; Galván-Madrid, Roberto; McLeod, Anna Faye; Rosolowsky, Erik; Dale, James E.; Immer, Katharina; Koch, Eric; Longmore, Steve; Walker, Daniel; Testi, Leonardo

    2016-09-01

    We have developed an iterative procedure to systematically combine the millimeter and submillimeter images of OB cluster-forming molecular clouds, which were taken by ground-based (CSO, JCMT, APEX, and IRAM-30 m) and space telescopes (Herschel and Planck). For the seven luminous (L\\gt {10}6 L ⊙) Galactic OB cluster-forming molecular clouds selected for our analyses, namely W49A, W43-Main, W43-South, W33, G10.6-0.4, G10.2-0.3, and G10.3-0.1, we have performed single-component, modified blackbody fits to each pixel of the combined (sub)millimeter images, and the Herschel PACS and SPIRE images at shorter wavelengths. The ∼10″ resolution dust column density and temperature maps of these sources revealed dramatically different morphologies, indicating very different modes of OB cluster-formation, or parent molecular cloud structures in different evolutionary stages. The molecular clouds W49A, W33, and G10.6-0.4 show centrally concentrated massive molecular clumps that are connected with approximately radially orientated molecular gas filaments. The W43-Main and W43-South molecular cloud complexes, which are located at the intersection of the Galactic near 3 kpc (or Scutum) arm and the Galactic bar, show a widely scattered distribution of dense molecular clumps/cores over the observed ∼10 pc spatial scale. The relatively evolved sources G10.2-0.3 and G10.3-0.1 appear to be affected by stellar feedback, and show a complicated cloud morphology embedded with abundant dense molecular clumps/cores. We find that with the high angular resolution we achieved, our visual classification of cloud morphology can be linked to the systematically derived statistical quantities (i.e., the enclosed mass profile, the column density probability distribution function (N-PDF), the two-point correlation function of column density, and the probability distribution function of clump/core separations). In particular, the massive molecular gas clumps located at the center of G10

  12. Cloud Structure of Galactic OB Cluster-forming Regions from Combining Ground- and Space-based Bolometric Observations

    NASA Astrophysics Data System (ADS)

    Lin, Yuxin; Liu, Hauyu Baobab; Li, Di; Zhang, Zhi-Yu; Ginsburg, Adam; Pineda, Jaime E.; Qian, Lei; Galván-Madrid, Roberto; McLeod, Anna Faye; Rosolowsky, Erik; Dale, James E.; Immer, Katharina; Koch, Eric; Longmore, Steve; Walker, Daniel; Testi, Leonardo

    2016-09-01

    We have developed an iterative procedure to systematically combine the millimeter and submillimeter images of OB cluster-forming molecular clouds, which were taken by ground-based (CSO, JCMT, APEX, and IRAM-30 m) and space telescopes (Herschel and Planck). For the seven luminous (L\\gt {10}6 L ⊙) Galactic OB cluster-forming molecular clouds selected for our analyses, namely W49A, W43-Main, W43-South, W33, G10.6-0.4, G10.2-0.3, and G10.3-0.1, we have performed single-component, modified blackbody fits to each pixel of the combined (sub)millimeter images, and the Herschel PACS and SPIRE images at shorter wavelengths. The ˜10″ resolution dust column density and temperature maps of these sources revealed dramatically different morphologies, indicating very different modes of OB cluster-formation, or parent molecular cloud structures in different evolutionary stages. The molecular clouds W49A, W33, and G10.6-0.4 show centrally concentrated massive molecular clumps that are connected with approximately radially orientated molecular gas filaments. The W43-Main and W43-South molecular cloud complexes, which are located at the intersection of the Galactic near 3 kpc (or Scutum) arm and the Galactic bar, show a widely scattered distribution of dense molecular clumps/cores over the observed ˜10 pc spatial scale. The relatively evolved sources G10.2-0.3 and G10.3-0.1 appear to be affected by stellar feedback, and show a complicated cloud morphology embedded with abundant dense molecular clumps/cores. We find that with the high angular resolution we achieved, our visual classification of cloud morphology can be linked to the systematically derived statistical quantities (i.e., the enclosed mass profile, the column density probability distribution function (N-PDF), the two-point correlation function of column density, and the probability distribution function of clump/core separations). In particular, the massive molecular gas clumps located at the center of G10.6-0.4 and

  13. Bolometric and UV light curves of core-collapse supernovae

    SciTech Connect

    Pritchard, T. A.; Roming, P. W. A.; Brown, Peter J.; Bayless, Amanda J.; Frey, Lucille H.

    2014-06-01

    The Swift UV-Optical Telescope (UVOT) has been observing core-collapse supernovae (CCSNe) of all subtypes in the UV and optical since 2005. Here we present 50 CCSNe observed with the Swift UVOT, analyzing their UV properties and behavior. Where we have multiple UV detections in all three UV filters (λ {sub c} = 1928-2600 Å), we generate early time bolometric light curves, analyze the properties of these light curves and the UV contribution to them, and derive empirical corrections for the UV-flux contribution to optical-IR based bolometric light curves.

  14. Bolometric detection of magnetoplasma resonances in microwave absorption by two-dimensional electron systems based on doping layer conductivity measurements in GaAs/AlGaAs heterostructures

    SciTech Connect

    Dorozhkin, S. I. Sychev, D. V.; Kapustin, A. A.

    2014-11-28

    We have implemented a new bolometric method to detect resonances in magneto-absorption of microwave radiation by two-dimensional electron systems (2DES) in selectively doped GaAs/AlGaAs heterostructures. Radiation is absorbed by the 2DES and the thermally activated conductivity of the doping layer supplying electrons to the 2DES serves as a thermometer. The resonant absorption brought about by excitation of the confined magnetoplasma modes appears as peaks in the magnetic field dependence of the low-frequency impedance measured between the Schottky gate and 2DES.

  15. Recent progress in HTSC bolometric and non-bolometric detectors

    SciTech Connect

    Kreisler, A.J.; Gaugue, A.; Ayadi, Z.B.; Degardin, A.; Depond, J.M. |

    1996-12-31

    The main phenomena that may be responsible of radiation detecting mechanisms in superconductors are described in the first part of this paper. Several examples are given, ranging from broadband and sensitive bolometric devices to ultrafast nonbolometric infrared detectors. The second part is devoted to the study of various transition edge bolometers designed to be built at low cost. Polycrystalline zirconia substrates have been used, to grow YBaCuO films by both in situ and ex situ oxygenation after radiofrequency sputtering. The voltage responsibility at 10.6 {micro}m wavelength has been studied with respect to the modulation frequency of the incident radiation, both experimentally and theoretically. A 2D thermal model has been developed, allowing to interpret the complex (amplitude and phase) experimental frequency responses of various devices. In particular, the amplitude response can be described as a succession of f{sup {minus}1} and f{sup {minus}1/2} segments. Noise measurements show NEP and detectivity values reaching a very satisfactory level for granular films.

  16. Nonlinear vs. bolometric radiation response and phonon thermal conductance in graphene-superconductor junctions

    SciTech Connect

    Vora, Heli; Nielsen, Bent; Du, Xu

    2014-02-21

    Graphene is a promising candidate for building fast and ultra-sensitive bolometric detectors due to its weak electron-phonon coupling and low heat capacity. In order to realize a practical graphene-based bolometer, several important issues, including the nature of radiation response, coupling efficiency to the radiation and the thermal conductance need to be carefully studied. Addressing these issues, we present graphene-superconductor junctions as a viable option to achieve efficient and sensitive bolometers, with the superconductor contacts serving as hot electron barriers. For a graphene-superconductor device with highly transparent interfaces, the resistance readout in the presence of radio frequency radiation is dominated by non-linear response. On the other hand, a graphene-superconductor tunnel device shows dominantly bolometric response to radiation. For graphene devices fabricated on SiO{sub 2} substrates, we confirm recent theoretical predictions of T{sup 2} temperature dependence of phonon thermal conductance in the presence of disorder in the graphene channel at low temperatures.

  17. Nonlinear vs. bolometric radiation response and phonon thermal conductance in graphene-superconductor junctions

    NASA Astrophysics Data System (ADS)

    Vora, Heli; Nielsen, Bent; Du, Xu

    2014-02-01

    Graphene is a promising candidate for building fast and ultra-sensitive bolometric detectors due to its weak electron-phonon coupling and low heat capacity. In order to realize a practical graphene-based bolometer, several important issues, including the nature of radiation response, coupling efficiency to the radiation and the thermal conductance need to be carefully studied. Addressing these issues, we present graphene-superconductor junctions as a viable option to achieve efficient and sensitive bolometers, with the superconductor contacts serving as hot electron barriers. For a graphene-superconductor device with highly transparent interfaces, the resistance readout in the presence of radio frequency radiation is dominated by non-linear response. On the other hand, a graphene-superconductor tunnel device shows dominantly bolometric response to radiation. For graphene devices fabricated on SiO2 substrates, we confirm recent theoretical predictions of T2 temperature dependence of phonon thermal conductance in the presence of disorder in the graphene channel at low temperatures.

  18. The Millimeter-Wave Bolometric Interferometer

    NASA Astrophysics Data System (ADS)

    Korotkov, Andrei; Ade, P. A.; Ali, S.; Bierman, E.; Bunn, E. F.; Calderon, C.; Gault, A. C.; Hyland, P. O.; Keating, B. G.; Kim, J.; Malu, S. S.; Mauskopf, P. D.; Murphy, J. A.; O'Sullivan, C.; Piccirillo, L.; Timbie, P. T.; Tucker, G. S.; Wandelt, B. D.

    2006-12-01

    We report on the status of the Millimeter-Wave Bolometric Interferometer (MBI), an instrument designed for polarization measurements of the cosmic microwave background (CMB). MBI combines the differencing capabilities of an interferometer with the high sensitivity of bolometers. The design of the ground-based four-channel version of the instrument with 7-degree-FOV corrugated horns (MBI-4) and first measurements results are discussed. Corrugated horn antennas with low sidelobes and nearly symmetric beam patterns minimize spurious instrumental polarization. The MBI-4 optical band is limited by filters with a central frequency of 90 GHz. The antenna separation is chosen so the instrument is sensitive over the multipole range l=150-270. In MBI-4, the signals from antennas are combined with a quasi-optical Fizeau beam combiner and interference fringes are detected by an array of spider-web bolometers with NTD germanium thermistors. In order to separate the visibility signals from the total power detected by each bolometer, the phase of the signal from each antenna is modulated by a ferrite-based waveguide phase shifter. First observations will be from the Pine Bluff Observatory outside Madison, WI. The project is supported by NASA.

  19. The millimeter-wave bolometric interferometer (MBI)

    NASA Astrophysics Data System (ADS)

    Tucker, Gregory S.; Korotkov, Andrei L.; Gault, Amanda C.; Hyland, Peter O.; Malu, Siddharth; Timbie, Peter T.; Bunn, Emory F.; Keating, Brian G.; Bierman, Evan; O'Sullivan, Créidhe; Ade, Peter A. R.; Piccirillo, Lucio

    2008-07-01

    We report on the design and tests of a prototype of the Millimeter-wave Bolometric Interferometer (MBI). MBI is designed to make sensitive measurements of the polarization of the cosmic microwave background (CMB). It combines the differencing capabilities of an interferometer with the high sensitivity of bolometers at millimeter wavelengths. The prototype, which we call MBI-4, views the sky directly through four corrugated horn antennas. MBI ultimately will have ~ 1000 antennas. These antennas have low sidelobes and nearly symmetric beam patterns, so spurious instrumental polarization from reflective optics is avoided. The MBI-4 optical band is defined by filters with a central frequency of 90 GHz. The set of baselines, determined by placement of the four antennas, results in sensitivity to CMB polarization fluctuations over the multipole range l = 150 - 270. The signals are combined with a Fizeau beam combiner and interference fringes are detected by an array of spider-web bolometers. In order to separate the visibility signals from the total power detected by each bolometer, the phase of the signal from each antenna is modulated by a ferrite-based waveguide phase shifter. Initial tests and observations have been made at Pine Bluff Observatory (PBO) outside Madison, WI.

  20. The millimeter-wave bolometric interferometer

    NASA Astrophysics Data System (ADS)

    Korotkov, Andrei L.; Kim, Jaiseung; Tucker, Gregory S.; Gault, Amanda; Hyland, Peter; Malu, Siddharth; Timbie, Peter T.; Bunn, Emory F.; Bierman, Evan; Keating, Brian; Murphy, Anthony; O'Sullivan, Créidhe; Ade, Peter A. R.; Calderon, Carolina; Piccirillo, Lucio

    2006-06-01

    The Millimeter-Wave Bolometric Interferometer (MBI) is designed for sensitive measurements of the polarization of the cosmic microwave background (CMB). MBI combines the differencing capabilities of an interferometer with the high sensitivity of bolometers at millimeter wavelengths. It views the sky directly through corrugated horn antennas with low sidelobes and nearly symmetric beam patterns to avoid spurious instrumental polarization from reflective optics. The design of the first version of the instrument with four 7-degree-FOV corrugated horns (MBI-4) is discussed. The MBI-4 optical band is defined by filters with a central frequency of 90 GHz. The set of baselines determined by the antenna separation makes the instrument sensitive to CMB polarization fluctuations over the multipole range l=150-270. In MBI-4, the signals from antennas are combined with a Fizeau beam combiner and interference fringes are detected by an array of spider-web bolometers with NTD germanium thermistors. In order to separate the visibility signals from the total power detected by each bolometer, the phase of the signal from each antenna is modulated by a ferrite-based waveguide phase shifter. Observations are planned from the Pine Bluff Observatory outside Madison, WI.

  1. The Millimeter-wave Bolometric Interferometer (MBI)

    NASA Astrophysics Data System (ADS)

    Gault, Amanda C.; Ade, P. A. R.; Bierman, E.; Bunn, E. F.; Hyland, P. O.; Keating, B. G.; Korotkov, A. L.; Malu, S. S.; O'Sullivan, C.; Piccirillo, L.; Timbie, P. T.; Tucker, G. S.

    2009-01-01

    We report on the design and tests of a prototype of the Millimeter-wave Bolometric Interferometer (MBI). MBI is designed to make sensitive measurements of the polarization of the cosmic microwave background (CMB). It combines the differencing capabilities of an interferometer with the high sensitivity of bolometers at millimeter wavelengths. The prototype, which we call MBI-4, views the sky directly through four corrugated horn antennas. MBI ultimately will have 1000 antennas. These antennas have low sidelobes and nearly symmetric beam patterns, so spurious instrumental polarization from reflective optics is avoided. The MBI-4 optical band is defined by filters with a central frequency of 90 GHz. The set of baselines, determined by placement of the four antennas, results in sensitivity to CMB polarization fluctuations over the multipole range l = 150 - 270. The signals are combined with a Fizeau beam combiner and interference fringes are detected by an array of spiderweb bolometers. In order to separate the visibility signals from the total power detected by each bolometer, the phase of the signal from each antenna is modulated by a ferrite-based waveguide phase shifter. Initial tests and observations have been made at Pine Bluff Observatory (PBO) outside Madison, WI. This work was supported by NASA grants NAG5-12758, NNX07AG82G, the Rhode Island Space Grant and the Wisconsin Space Grant.

  2. MBI: Millimetre-wave bolometric interferometer

    NASA Astrophysics Data System (ADS)

    Ali, S.; Rossinot, P.; Piccirillo, L.; Gear, W. K.; Mauskopf, P.; Ade, P.; Haynes, V.; Timbie, P.

    2002-05-01

    We present the design of the prototype of a millimeter-wave bolometric interferometer (MBI). This interferometer uses two arrays bolometers as detectors. The combination of high sensitivity bolometers and interferometric imaging appears to be well suited for precision measurements in observational cosmology. .

  3. First Results Of The Solar Bolometric Imager

    NASA Astrophysics Data System (ADS)

    Bernasconi, P. N.; Foukal, P.; Eaton, H. H.; Rust, D. M.

    2003-12-01

    On September 1 2003, the Solar Bolometric Imager (SBI) successfully observed the Sun for several hours while suspended from a balloon in the stratosphere above New Mexico. The SBI represents a totally new approach in finding the sources of the solar irradiance variation. The mission provided the first bolometric (integrated light) maps of the solar photosphere, that will allow to evaluate the photometric contribution of magnetic structures more accurately than has been achievable with spectrally selective imaging over restricted wavebands. The more accurate removal of the magnetic features contribution will enable us to determine if solar irradiance variation mechanisms exist other than the effects of photospheric magnetism. The SBI detector was an array of 320 x 240 thermal IR elements whose spectral absorptance has been extended and flattened by a deposited layer of gold-black. The telescope was a 30-cm Dall-Kirkham with uncoated primary and secondary pyrex mirrors. The combination of telescope and bolometric array provided an image of the Sun with a flat spectral response between 0.28 and 2.6 microns, over a field of view of 917 x 687 arcsec with a pixel size of 2.8 arcsec. The observing platform was the gondola previously used for the Flare Genesis Experiment (FGE), retrofitted to house and control the SBI telescope and detector. During the 9 hours of flight the SBI gathered several thousand bolometric images that are now being processed to produce the first maps of the total solar irradiance. The SBI flight is also providing important engineering data to validate the space worthiness of the novel gold-blackened thermal array detectors, and to verify the thermal performance of the SBI's uncoated optics in a vacuum environment. In this paper we will briefly describe the characteristics of the SBI, its in flight performance, and we will present the first results of the analysis of the bolometric images. This work was funded by NASA under grant# NAG5-10998.

  4. Bolometric Flux Estimation for Cool Evolved Stars

    NASA Astrophysics Data System (ADS)

    van Belle, Gerard T.; Creech-Eakman, Michelle J.; Ruiz-Velasco, Alma E.

    2016-07-01

    Estimation of bolometric fluxes ({F}{{BOL}}) is an essential component of stellar effective temperature determination with optical and near-infrared interferometry. Reliable estimation of {F}{{BOL}} simply from broadband K-band photometry data is a useful tool in those cases were contemporaneous and/or wide-range photometry is unavailable for a detailed spectral energy distribution (SED) fit, as was demonstrated in Dyck et al. Recalibrating the intrinsic {F}{{BOL}} versus observed {F}{{2.2}μ {{m}}} relationship of that study with modern SED fitting routines, which incorporate the significantly non-blackbody, empirical spectral templates of the INGS spectral library (an update of the library in Pickles) and estimation of reddening, serves to greatly improve the accuracy and observational utility of this relationship. We find that {F}{{BOL}} values predicted are roughly 11% less than the corresponding values predicted in Dyck et al., indicating the effects of SED absorption features across bolometric flux curves.

  5. Observations of changes in the bolometric contrast of sunspots

    NASA Technical Reports Server (NTRS)

    Chapman, G. A.; Cookson, A. M.; Dobias, J. J.

    1994-01-01

    Rapid changes in the total solar irradiance from space borne sensors are largely due to the passage of large sunspots across the disk. The effect of sunspots has often been modeled, using ground-based observations, by the use of a sunspot index such as the PSI, which assumes that all sunspots have the same thermal structure, which remains constant with time. In this paper, we report on photometric observations of sunspot groups that show significant differences in their mean bolometric contrast ( up to a factor of 2) and some of which show cooling or warming during their disk transit. Most of these changes can be ascribed to the changing ratio of umbral-to-prenumbral area. By measuring the mean temperature or bolometric contrast, together with corrected (hemispherical) areas, we can determine the instantaneous solar luminosity fluctuation and its diurnal change due to individual sunspot groups. These results show that the use of solar indices based on estimates of sunspot area and fixed sunspot contrast, such as the photometric sunspot index, do not remove all of the significant sunspot effects from satellite measurements of the total solar irradiance.

  6. Improved low frequency stability of bolometric detectors

    NASA Technical Reports Server (NTRS)

    Wilbanks, T.; Devlin, M.; Lange, A. E.; Beeman, J. W.; Sato, S.

    1990-01-01

    An ac bridge readout system has been developed that greatly improves the low-frequency stability of bolometric detectors. The readout can be implemented with a simple circuit appropriate for use in space applications. A matched pair of detectors was used in the readout to achieve system noise within a factor of two of the fundamental noise limit of the detectors at frequencies as low as 10 mHz. The low-frequency stability of the readout system allows slower, more sensitive detectors to be used in many applications, and it facilitates observing strategies that are well suited to spaceborne observations.

  7. Rejection of Alpha Surface Background in Non-scintillating Bolometric Detectors: The ABSuRD Project

    NASA Astrophysics Data System (ADS)

    Biassoni, M.; Brofferio, C.; Bucci, C.; Canonica, L.; di Vacri, M. L.; Gorla, P.; Pavan, M.; Yeh, M.

    2016-08-01

    Due to their excellent energy resolution values and the vast choice of possible materials, bolometric detectors are currently widely used in the physics of rare events. A limiting aspect for bolometers rises from their inability to discriminate among radiation types or surface from bulk events. It has been demonstrated that the main limitation to sensitivity for purely bolometric detectors is represented by surface alpha contaminations, causing a continuous background that cannot be discriminated. A new scintillation-based technique for the rejection of surface alpha background in non-scintillating bolometric experiments is proposed in this work. The idea is to combine a scintillating and a high sensitivity photon detector with a non-scintillating absorber. We present results showing the possibility to reject events due to alpha decay at or nearby the surface of the crystal.

  8. An ac bridge readout for bolometric detectors

    NASA Technical Reports Server (NTRS)

    Rieke, F. M.; Lange, A. E.; Beeman, J. W.; Haller, E. E.

    1989-01-01

    The authors have developed a bolometer readout circuit which greatly improves the low-frequency stability of bolometric detectors. The circuit uses an ac bias voltage and two matched bolometers and allows stable dc bolometer operation for integration times greater than 10 s. In astronomical applications the readout allows for qualitatively different observation modes (e.g. staring or slow-drift scanning) which are particularly well suited for space observations and for the use of arrays. In many applications the readout can increase sensitivity. The authors present noise spectra for 4He temperature bolometers with no excess noise at frequencies greater than 0.1 Hz. The measured optical responsivity of a bolometer operated with the present readout is the same as that of a bolometer operated with a conventional readout.

  9. The millimeter-wave bolometric interferometer

    NASA Astrophysics Data System (ADS)

    Gault, Amanda Charlotte

    The Millimeter-wave Bolometric Interferometer (MBI) is a technology demonstrator for future searches for the B-mode polarization of the Cosmic Microwave Background (CMB). If observed, B-modes would be a direct probe of the energy scale of inflation, an energy scale that is impossible to reach with even the most sophisticated particle accelerators. In this thesis, I outline the technology differences between MBI and conventional interferometers, including the Faraday effect phase modulators (FPM) used both to control systematic effects and to allow for phase sensitive detection of signals. MBI is a four element adding interferometer with a Fizeau optical beam combiner. This allows simple scaling of the instrument to a large numbers of baselines without requiring complicated pair-wise correlations of signals. Interferometers have an advantage over imaging telescopes when measuring the CMB power spectrum as each baseline is sensitive to a single Fourier mode (angular scale) on the sky. Recovering individual baseline information with this combination scheme requires phase modulating the signal from each antenna. MBI performs this modulation with Faraday effect phase modulators. In these novel cryogenic devices a modulated magnetic field switches the phase of a millimeter-wave RF signal by +/- 90 degrees at frequencies up to a few Hertz. MBI's second season of observations occurred in the winter of 2009 at Pine Bluff Observatory a few miles west of Madsion, WI. We successfully observed interference fringes of a microwave test source located in the far field of the instrument that agree well with those expected from simulations. MBI has inspired a second generation bolometric interferometer, QUBIC, which will have hundreds of antennas and thousands of detectors. When it deploys in 2015, it will be sensitive enough to search for B-mode signals from the CMB.

  10. The Einstein polarization interferometer for cosmology (EPIC) and the millimeter-wave bolometric interferometer (MBI)

    NASA Astrophysics Data System (ADS)

    Timbie, P. T.; Tucker, G. S.; Ade, P. A. R.; Ali, S.; Bierman, E.; Bunn, E. F.; Calderon, C.; Gault, A. C.; Hyland, P. O.; Keating, B. G.; Kim, J.; Korotkov, A.; Malu, S. S.; Mauskopf, P.; Murphy, J. A.; O'Sullivan, C.; Piccirillo, L.; Wandelt, B. D.

    2006-12-01

    We provide an overview of a mission concept study underway for the Einstein Inflation Probe (EIP). Our study investigates the advantages and tradeoffs of using an interferometer (EPIC) for the mission. We also report on the status of the millimeter-wave bolometric interferometer (MBI), a ground-based pathfinder optimized for degree-scale CMB polarization measurements at 90 GHz.

  11. Transition edge sensors for bolometric applications: responsivity and saturation

    SciTech Connect

    Goldie, D. J.; Audley, M. D.; Glowacka, D. M.; Tsaneva, V. N.; Withington, S.

    2008-04-15

    Microstrip-coupled transition edge sensors (TESs) combined with waveguide-horn technology produce sensitive bolometric detectors with well-defined, single-mode beam patterns and excellent polarization characteristics. These devices are now being deployed for astronomical observations. In bolometric applications, where power levels are monitored, the critical parameter that characterizes the detection is the power-to-current responsivity s{sub I}({omega}), where {omega} is the postdetection angular frequency. In real applications, such as on a ground-based telescope, the signal of interest is superimposed on a background such as the thermal emission from the atmosphere. The power emitted by the atmosphere changes slowly in time and these changes may change the responsivity of the detector. A detailed understanding of how s{sub I}({omega}) changes as a function of applied power levels and how the TES response saturates is vital for accurate calibration of astronomical data. In this paper we describe measurements of the changes in the current flowing through a TES as a function of the circuit bias and the applied power. From these measurements we calculate the efficiency of the coupling of power into the TES from a closely thermally coupled microstrip termination resistor and we determine the zero frequency responsivity s{sub I}(0) as a function of both the circuit bias and power. The variation of the responsivity is compared with predictions of a small-signal model: for the case when the loop gain L{sub I} is high, when simplifying approximations to the full solution to the electrothermal equations apply; and using the electrothermal parameters of the TES, determined by impedance measurements, as inputs to the full model solution. We find good agreement between theory and measurement in both cases in the relevant regimes.

  12. Bolometric detectors: optimization for differential radiometers.

    PubMed

    Glezer, E N; Lange, A E; Wilbanks, T M

    1992-12-01

    A differential radiometer can be constructed by placing two matched bolometric detectors in an ac bridge, thus producing a signal that is proportional to the difference in power incident on the two detectors. In conditions of large and time-varying common-mode radiative load, the common-mode response resulting from imperfectly matched detectors can limit the stability of the difference signal. For semiconductor thermistor bolometers we find that the bridge can always be trimmed to null the common-mode response for a given instantaneous value of the radiative load. However, subsequent changes in the commonmode radiative load change the operating point of the detectors, giving rise to a second-order common-mode response. This response can be minimized by increasing the electrical-power dissipation in the detectors at the cost of sensitivity. For the case that we are analyzing, and for mismatches in detector parameters that are typical of randomly paired detectors, common-mode rejection ratios in excess of 10(3) can be achieved under 20% changes in radiative load. PMID:20802585

  13. Detectivity comparison of bolometric optical antennas

    NASA Astrophysics Data System (ADS)

    Cuadrado, Alexander; López-Alonso, José M.; Martínez-Antón, Juan C.; Ezquerro, Jose M.; González, Francisco J.; Alda, Javier

    2015-08-01

    The practical application of optical antennas in detection devices strongly depends on its ability to produce an acceptable signal-to-noise ratio for the given task. It is known that, due to the intrinsic problems arising from its sub-wavelength dimensions, optical antennas produce very small signals. The quality of these signals depends on the involved transduction mechanism. The contribution of different types of noise should be adapted to the transducer and to the signal extraction regime. Once noise is evaluated and measured, the specific detectivity, D*, becomes the parameter of interest when comparing the performance of antenna coupled devices with other detectors. However, this parameter involves some magnitudes that can be defined in several ways for optical antennas. In this contribution we are interested in the evaluation and comparison of D_ values for several bolometric optical antennas working in the infrared and involving two materials. At the same time, some material and geometrical parameters involved in the definition of noise and detectivity will be discussed to analyze the suitability of D_ to properly account for the performance of optical antennas.

  14. The Millimeter-wave Bolometric Interferometer

    NASA Astrophysics Data System (ADS)

    Hyland, Peter Owen

    2008-12-01

    The Millimeter-wave Bolometeric Interferometer (MBI) is a novel instrument for measuring signals from the cosmic microwave background (CMB) radiation. MBI is a proof-of-concept designed to control systematic effects with the use of bolometers and interferometry. This scheme extends radio astronomy techniques of spatial interferometry, which rely on coherent receivers, to a system using incoherent detectors. In this thesis we outline the principles upon which MBI works and provide the reader with an understanding of both the particulars involved in the design and operation of MBI as well as the analysis of the resulting data. MBI observes the sky directly with 4 corrugated horn antennas in a band centered on l = 3 mm . A quasi-optical beam combiner forms interference fringes on an array of bolometers cooled to 300 mK. Phase modulation of the signals modulates the fringe patterns on the array and allows decoding of the visibilities formed by each pair of antennas. An altitude-azimuth mounting structure allows the horns to observe any point on the sky; rotation about the boresite extends the u - v coverage of the interferometer and allows for systematics checks and measurements of the Stokes parameters. MBI was deployed at the Pine Bluff Observatory near UW - Madison in winter 2008 for its first test observations of astronomical and artificial sources. Interference fringes were seen from a microwave generator located in the far- field, verifying our basic model of bolometric interferometry. Further analysis is needed to measure the scattering matrix of the instrument and to compare it against simulations.

  15. Changes in the Bolometric Contrast of Sunspots

    NASA Astrophysics Data System (ADS)

    Chapman, G. A.; Cookson, A. M.; Dobias, J. J.

    1993-12-01

    We report on photometric observations of sunspots carried out with the Cartesian Full Disk Telescope (CFDT) at the San Fernando Observatory (SFO). The pixel size is 5.1 arc-sec and the wavelength for the data discussed here is 6723 Angstroms. Fluctuations in total solar irradiance due to sunspots are often modeled using a constant value of alpha, which we are calling the bolometric contrast of a sunspot. We have defined alpha_ {eff} as DEF/(2 times PSI), where DEF is the sunspot's photometric deficit relative to the quiet photosphere, and PSI is the digitally determined Photometric Sunspot Index (Willson et al., 1981). For 40 sunspot groups, we find that alpha_ {eff} = (0.276 +/- 0.051) + (3.22 +/- 0.34) 10(-5) A_s, where A_s is the corrected area of the sunspot in micro-hemispheres. The coefficient of determination is r(2) = 0.1936, which is significant at the p = 0.005 level. We also find that alpha_ {eff} is highly correlated with the ratio of umbral to total spot area (A_u/A_s). For 86 sunspot-days we find alpha_ {eff} = (0.219 +/- 0.018) + (0.643 +/- 0.028) (A_u/A_s) with the linear coefficient of determination r(2) = 0.859. This suggests that an improved PSI can be constructed from knowledge of a sunspot's umbral to total area ratio. The use of such an improved PSI or, better still, actual photometry should reduce the statistical noise in comparisons with spacecraft measurements of the total solar irradiance. This work has been partially supported by grants from NSF and NASA.

  16. Dds-Based Fast Scan Spectrometer

    NASA Astrophysics Data System (ADS)

    Alekseev, E. A.; Motiyenko, R. A.; Margulès, L.

    2010-06-01

    The technique of direct digital synthesis (DDS) has two important features which enable its application in microwave spectroscopy: micro-Hz tuning resolution and extremely fast frequency switching with continuous phase. We have applied a direct digital synthesizer in a PLL-spectrometer based on backward-wave oscillator (BWO). As result we have obtained an instrument that can cover a 100 GHz bandwidth in less than one hour with high spectral resolution and high precision of frequency measurement. The application of the spectrometer to sub-millimeter wave survey spectra records of several isotopic species of astrophysical molecules (methanol, formamide, methyl formate, aziridine) will be discussed. The support of Université de Lille 1 and le Programme National de Physique Chimie du Milieu Interstellaire is gratefully acknowledged.

  17. Calibrating Ultracool Dwarfs: Optical Template Spectra, Bolometric Corrections, and χ Values

    NASA Astrophysics Data System (ADS)

    Schmidt, Sarah J.; West, Andrew A.; Bochanski, John J.; Hawley, Suzanne L.; Kielty, Collin

    2014-07-01

    We present optical template spectra, bolometric corrections, and χ values for ultracool dwarfs. The templates are based on spectra from the Sloan Digital Sky Survey (SDSS) and the Astrophysical Research Consortium 3.5 m telescope. The spectral features and overall shape of the L dwarf templates are consistent with previous spectroscopic standards and the templates have a radial velocity precision of ~10-20 km s-1. We calculate bolometric fluxes (accurate to 10-20%) for 101 late-M and L dwarfs from SDSS, 2MASS, and WISE photometry, SDSS spectra, and BT-Settl model spectra. We find that the z-band and J-band bolometric corrections for late-M and L dwarfs have a strong correlation with z-J and J-KS colors, respectively. The new χ values, which can be used to convert Hα equivalent widths to activity strength, are based on spectrophotometrically calibrated SDSS spectra and the new bolometric fluxes. While the measured χ values have typical uncertainties of ~20%, ultracool dwarf models show the continuum surrounding Hα can vary by up to an order of magnitude with changing surface gravity. Our semiempirical χ values are one to two orders of magnitude larger than previous χ values for mid-to-late L dwarfs, indicating that the upper limits for Hα activity strength on the coolest L dwarfs have been underestimated. This publication is partially based on observations obtained with the Apache Point Observatory 3.5 meter telescope, which is owned and operated by the Astrophysical Research Consortium.

  18. The CUORE Cryostat: A 1-Ton Scale Setup for Bolometric Detectors

    NASA Astrophysics Data System (ADS)

    Ligi, C.; Alduino, C.; Alessandria, F.; Biassoni, M.; Bucci, C.; Caminata, A.; Canonica, L.; Cappelli, L.; Chott, N. I.; Copello, S.; D'Addabbo, A.; Dell'Oro, S.; Drobizhev, A.; Franceschi, M. A.; Gladstone, L.; Gorla, P.; Napolitano, T.; Nucciotti, A.; Orlandi, D.; Ouellet, J.; Pagliarone, C.; Pattavina, L.; Rusconi, C.; Santone, D.; Singh, V.; Taffarello, L.; Terranova, F.; Uttaro, S.

    2015-12-01

    The cryogenic underground observatory for rare events (CUORE) is a 1-ton scale bolometric experiment whose detector consists of an array of 988 TeO_2 crystals arranged in a cylindrical compact structure of 19 towers. This will be the largest bolometric mass ever operated. The experiment will work at a temperature around or below 10 mK. CUORE cryostat consists of a cryogen-free system based on pulse tubes and a custom high power dilution refrigerator, designed to match these specifications. The cryostat has been commissioned in 2014 at the Gran Sasso National Laboratories and reached a record temperature of 6 mK on a cubic meter scale. In this paper, we present results of CUORE commissioning runs. Details on the thermal characteristics and cryogenic performances of the system will be also given.

  19. The CUORE Cryostat: A 1-Ton Scale Setup for Bolometric Detectors

    NASA Astrophysics Data System (ADS)

    Ligi, C.; Alduino, C.; Alessandria, F.; Biassoni, M.; Bucci, C.; Caminata, A.; Canonica, L.; Cappelli, L.; Chott, N. I.; Copello, S.; D'Addabbo, A.; Dell'Oro, S.; Drobizhev, A.; Franceschi, M. A.; Gladstone, L.; Gorla, P.; Napolitano, T.; Nucciotti, A.; Orlandi, D.; Ouellet, J.; Pagliarone, C.; Pattavina, L.; Rusconi, C.; Santone, D.; Singh, V.; Taffarello, L.; Terranova, F.; Uttaro, S.

    2016-08-01

    The cryogenic underground observatory for rare events (CUORE) is a 1-ton scale bolometric experiment whose detector consists of an array of 988 TeO_2 crystals arranged in a cylindrical compact structure of 19 towers. This will be the largest bolometric mass ever operated. The experiment will work at a temperature around or below 10 mK. CUORE cryostat consists of a cryogen-free system based on pulse tubes and a custom high power dilution refrigerator, designed to match these specifications. The cryostat has been commissioned in 2014 at the Gran Sasso National Laboratories and reached a record temperature of 6 mK on a cubic meter scale. In this paper, we present results of CUORE commissioning runs. Details on the thermal characteristics and cryogenic performances of the system will be also given.

  20. Bolometric Array Detectors for Space-Borne Astronomy

    NASA Technical Reports Server (NTRS)

    Lange, Andrew E.

    2000-01-01

    Funding from the NASA Innovative Research Grant was used to develop bolometric detectors. As described in the proposal, silicon nitride micromesh ('spider-web') absorbers had been demonstrated at U.C. Berkeley but not developed to be flight-worthy devices. We proceeded to first fabricate bolometers with Neutron Transmutation Doped (NTD) Ge thermistors that demonstrated high optical coupling (Church et al. 1996) and were developed for a ground-based millimeter-wave receiver (Mauskopf et al. 1997). The next generation of devices used In bump-bonded thermistors to achieve devices with performance product NEP*sqrt(tau) = 3e - 18 j at 300 mK, demonstrating a full order of magnitude improvement over pervious devices. These devices achieved an NEP = 1e-18 W/rtHz (Murray et al. 1996) as promised in the proposal. Sensitivities as good as 1e - 19 W/rtHz appear achievable with the silicon nitride architecture (Bock et al. 1997). Finally, arrays of micromesh bolometers were shown to be feasible in the last year of the program by etching a large number of devices on a single silicon wafer (75 mm). Full arrays were subsequently demonstrated for selection on the ESA/NASA Far-Infrared Space Telescope (FIRST) in competition with detectors provided by CEA in France and GSFC in the US Micromesh bolometer arrays are now baselined for both the ESA/NASA Planck and FIRST missions.

  1. Fast surface design based on sketched networks

    NASA Astrophysics Data System (ADS)

    van Dijk, Casper G. C.

    1992-11-01

    Computer aided design of freeformed surfaces is strongly biased towards input and optimization of surfaces. Input modules are based on digitizing drawings or placing and manipulating spline control vertices. Design, especially during the idea generation (or conceptual) design phase, is poorly supported. We present a system based on direct manipulation of shaded images of the surfaces. The designer sketches profiles on a tablet. The profiles are positioned in object space with a spaceball (6D joystick). A network of crossing curves is built interactively. The system constructs patches over this network in realtime. The designer can correct a profile by sketching. The affected surfaces are updated immediately. Patches are defined by the curves and estimated cross-boundary derivatives. They connect with G1 continuity. Our prototype surface modeler avoids the need for exact dimensions and precise coordinates, as seen in traditional systems. Instead, it supports fast, intuitive generation and evaluation of surfaces. We discuss a comparison with other systems regarding the time needed to model shapes, and some opinions of professional industrial designers.

  2. Fast Beam-Based BPM Calibration

    SciTech Connect

    Bertsche, K.; Loos, H.; Nuhn, H.-D.; Peters, F.; /SLAC

    2012-10-15

    The Alignment Diagnostic System (ADS) of the LCLS undulator system indicates that the 33 undulator quadrupoles have extremely high position stability over many weeks. However, beam trajectory straightness and lasing efficiency degrade more quickly than this. A lengthy Beam Based Alignment (BBA) procedure must be executed every two to four weeks to re-optimize the X-ray beam parameters. The undulator system includes RF cavity Beam Position Monitors (RFBPMs), several of which are utilized by an automatic feedback system to align the incoming electron-beam trajectory to the undulator axis. The beam trajectory straightness degradation has been traced to electronic drifts of the gain and offset of the BPMs used in the beam feedback system. To quickly recover the trajectory straightness, we have developed a fast beam-based procedure to recalibrate the BPMs. This procedure takes advantage of the high-precision monitoring capability of the ADS, which allows highly repeatable positioning of undulator quadrupoles. This report describes the ADS, the position stability of the LCLS undulator quadrupoles, and some results of the new recovery procedure.

  3. Fast SIMDized Kalman filter based track fit

    NASA Astrophysics Data System (ADS)

    Gorbunov, S.; Kebschull, U.; Kisel, I.; Lindenstruth, V.; Müller, W. F. J.

    2008-03-01

    Modern high energy physics experiments have to process terabytes of input data produced in particle collisions. The core of many data reconstruction algorithms in high energy physics is the Kalman filter. Therefore, the speed of Kalman filter based algorithms is of crucial importance in on-line data processing. This is especially true for the combinatorial track finding stage where the Kalman filter based track fit is used very intensively. Therefore, developing fast reconstruction algorithms, which use maximum available power of processors, is important, in particular for the initial selection of events which carry signals of interesting physics. One of such powerful feature supported by almost all up-to-date PC processors is a SIMD instruction set, which allows packing several data items in one register and to operate on all of them, thus achieving more operations per clock cycle. The novel Cell processor extends the parallelization further by combining a general-purpose PowerPC processor core with eight streamlined coprocessing elements which greatly accelerate vector processing applications. In the investigation described here, after a significant memory optimization and a comprehensive numerical analysis, the Kalman filter based track fitting algorithm of the CBM experiment has been vectorized using inline operator overloading. Thus the algorithm continues to be flexible with respect to any CPU family used for data reconstruction. Because of all these changes the SIMDized Kalman filter based track fitting algorithm takes 1 μs per track that is 10000 times faster than the initial version. Porting the algorithm to a Cell Blade computer gives another factor of 10 of the speedup. Finally, we compare performance of the tracking algorithm running on three different CPU architectures: Intel Xeon, AMD Opteron and Cell Broadband Engine.

  4. A CANDU-Based Fast Irradiation Reactor

    SciTech Connect

    Shatilla, Youssef

    2006-07-01

    A new steady-state fast neutron reactor is needed to satisfy the testing needs of Generation IV reactors, the Space Propulsion Program, and the Advanced Fuel Cycle Initiative. This paper presents a new concept for a CANDU-based fast irradiation reactor that is horizontal in orientation, with individual pressure tubes running the entire length of the scattering-medium tank (Calandria) filled with Lead-Bismuth-Eutectic (LBE). This approach for a test reactor will provide more flexibility in refueling, sample removal, and ability to completely re-configure the core to meet different users' requirements. Full core neutronic analysis of several fuel/coolant/geometry combinations showed a small hexagonal, LBE-cooled, U-Pu-10Zr fuel, with a core power of 100 MW{sub th} produced a fast flux (>0.1 MeV) of 1.5 x 10{sup 15} n/cm{sup 2} sec averaged over the whole length of six irradiation channels with a total testing volume of more than 77 liters. In-core breeding allowed the Pu-239 enrichment to be 15.3% which should result in core continuous operation for 180 effective full power days. Other coolants investigated included high pressure water steam and helium. An innovative shutdown/control system which consisted of the six outermost fuel channels was proven to be effective in shutting the core down when flooded with boric acid as a neutron absorber. The new shutdown/control system has the advantage of causing the minimum perturbation of the axial flux shape when the control channels are partially flooded with boric acid. This is because the acid is injected homogeneously along the control channel in contrast to regular control rods that are injected partially causing an axial perturbation in the core flux which in turn reduces safety analysis margins. The new shutdown/control system is not required to penetrate the core in a direction vertical to the fuel channels which allowed the freedom of changing core pitch as deemed necessary. A preliminary thermal hydraulic analysis

  5. Further Studies of the Bolometric Contrast of Sunspots

    NASA Astrophysics Data System (ADS)

    Chapman, G. A.; Cookson, A. M.; Dobias, J. J.; Walton, S. R.

    2002-05-01

    Daily images are obtained at the San Fernando Observatory (SFO) of the full solar disk with two photometric telescopes, CFDT1 and CFDT2. CFDT1 produces images with 5" x 5" pixels while CFDT2 produces images with 2.5" x 2.5" pixels. In a previous paper (Chapman et al. 1994) we reported on the bolometric contrast of sunspots using red images from CFDT1. The bolometric contrast, α eff, is heuristically defined as α eff = Dr/(2 x PSI), where Dr is the photometric deficit in the red image and PSI is the usual Photometric Sunspot Index. Here, we will report on studies of the bolometric contrast from red CFDT2 images. We will examine the effects of higher spatial resolution and we will look for differences in the bolometric contrast between cycle 22 and 23. This research was partially supported by grants from NSF (ATM-9912132) and NASA (NAG5-7191). Reference: Chapman, G.A., Cookson, A.M. and Dobias, J.J. 1994, Ap.J. 432, 403.

  6. A fast dynamic mode in rare earth based glasses

    NASA Astrophysics Data System (ADS)

    Zhao, L. Z.; Xue, R. J.; Zhu, Z. G.; Ngai, K. L.; Wang, W. H.; Bai, H. Y.

    2016-05-01

    Metallic glasses (MGs) usually exhibit only slow β-relaxation peak, and the signature of the fast dynamic is challenging to be observed experimentally in MGs. We report a general and unusual fast dynamic mode in a series of rare earth based MGs manifested as a distinct fast β'-relaxation peak in addition to slow β-relaxation and α-relaxation peaks. We show that the activation energy of the fast β'-relaxation is about 12RTg and is equivalent to the activation of localized flow event. The coupling of these dynamic processes as well as their relationship with glass transition and structural heterogeneity is discussed.

  7. A fast dynamic mode in rare earth based glasses.

    PubMed

    Zhao, L Z; Xue, R J; Zhu, Z G; Ngai, K L; Wang, W H; Bai, H Y

    2016-05-28

    Metallic glasses (MGs) usually exhibit only slow β-relaxation peak, and the signature of the fast dynamic is challenging to be observed experimentally in MGs. We report a general and unusual fast dynamic mode in a series of rare earth based MGs manifested as a distinct fast β'-relaxation peak in addition to slow β-relaxation and α-relaxation peaks. We show that the activation energy of the fast β'-relaxation is about 12RTg and is equivalent to the activation of localized flow event. The coupling of these dynamic processes as well as their relationship with glass transition and structural heterogeneity is discussed. PMID:27250316

  8. ON THE USE OF EMPIRICAL BOLOMETRIC CORRECTIONS FOR STARS

    SciTech Connect

    Torres, Guillermo

    2010-11-15

    When making use of tabulations of empirical bolometric corrections for stars (BC{sub V}), a commonly overlooked fact is that while the zero point is arbitrary, the bolometric magnitude of the Sun (M{sub bol,sun}) that is used in combination with such tables cannot be chosen arbitrarily. It must be consistent with the zero point of BC{sub V} so that the apparent brightness of the Sun is reproduced. The latter is a measured quantity, for which we adopt the value V{sub sun} = -26.76 {+-} 0.03. Inconsistent values of M{sub bol,sun} are listed in many of the most popular sources of BC{sub V}. We quantify errors that are introduced by failure to pay attention to this detail. We also take the opportunity to reprint the BC{sub V} coefficients of the often used polynomial fits by Flower, which were misprinted in the original publication.

  9. Empirical effective temperatures and bolometric corrections for early-type stars

    NASA Technical Reports Server (NTRS)

    Code, A. D.; Bless, R. C.; Davis, J.; Brown, R. H.

    1976-01-01

    An empirical effective temperature for a star can be found by measuring its apparent angular diameter and absolute flux distribution. The angular diameters of 32 bright stars in the spectral range O5f to F8 have recently been measured with the stellar interferometer at Narrabri Observatory, and their absolute flux distributions have been found by combining observations of ultraviolet flux from the Orbiting Astronomical Observatory (OAO-2) with ground-based photometry. In this paper, these data have been combined to derive empirical effective temperatures and bolometric corrections for these 32 stars.

  10. Characterizing Quasar Outflows III: SEDs, and Bolometric Luminosity Estimates

    NASA Astrophysics Data System (ADS)

    Richmond, Joseph; Robbins, J. M.; Ganguly, R.; Stark, M. A.; Christenson, D. H.; Derseweh, J. A.; Townsend, S. L.

    2012-05-01

    Galaxy evolution models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). For this purpose, we are examining a sample of 11000 z=1.7-2.0 quasars from the Sloan Digital Sky Survey. This redshift range permits the following from the SDSS spectra: (1) separation of objects that do and do not exhibit outflows; (2) classification/measurement of outflow properties (ionization, velocity, velocity width); and (3) measurements of UV emission line and continuum parameters. In this poster, we add photometry from both the Two Micron All-Sky Survey (2MASS) and from the Wide-Field Infrared Survey Explorer (WISE). 2MASS photometry covers the rest-frame optical regime of these qusars, while the WISE W1, W2, and W3 bands cover the rest-frame wavelength ranges 0.9-1.27 micron, 1.35-1.75 micron, and 2.52-5.51 micron, respectively. The preliminary release of WISE data cover 3800 of our quasars. In an accompnying poster, we have subjectively divided these quasars into four categories: broad absorption-line quasars (2700 objects), associated absorption-line quasars (1700 objects), reddened quasars (160 objects), and unabsorbed/unreddened quasars (6300 objects). Here, we present average SEDs for these subsamples, estimates of bolometric luminosity, and explore changes in SED based on both outflow properties and quasar physical properties. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 09-ADP09-0016 issued through the

  11. Characterization of bolometric light detectors for rare event searches

    NASA Astrophysics Data System (ADS)

    Beeman, J. W.; Bellini, F.; Casali, N.; Cardani, L.; Dafinei, I.; Di Domizio, S.; Ferroni, F.; Gironi, L.; Nagorny, S.; Orio, F.; Pattavina, L.; Pessina, G.; Piperno, G.; Pirro, S.; Previtali, E.; Rusconi, C.; Tomei, C.; Vignati, M.

    2013-07-01

    Bolometers have proven to be very good detectors to search for rare processes thanks to their excellent energy resolution and their low intrinsic background. Further active background rejection can be obtained by the simultaneous readout of the heat and light signals produced by particles interacting in scintillating bolometers, as proposed by the LUCIFER experiment. In this framework, the choice of the light detector and the optimization of its working conditions play a crucial role. In this paper, we report a study of the performances of a Germanium bolometric light detector in terms of signal amplitude, energy resolution and signal time development. The impact of various operational parameters on the detector performances is discussed.

  12. MEAN SPECTRAL ENERGY DISTRIBUTIONS AND BOLOMETRIC CORRECTIONS FOR LUMINOUS QUASARS

    SciTech Connect

    Krawczyk, Coleman M.; Richards, Gordon T.; Mehta, Sajjan S.; Vogeley, Michael S.; Gallagher, S. C.; Leighly, Karen M.; Ross, Nicholas P.; Schneider, Donald P.

    2013-05-01

    We explore the mid-infrared (mid-IR) through ultraviolet (UV) spectral energy distributions (SEDs) of 119,652 luminous broad-lined quasars with 0.064 < z < 5.46 using mid-IR data from Spitzer and WISE, near-infrared data from the Two Micron All Sky Survey and UKIDSS, optical data from the Sloan Digital Sky Survey, and UV data from the Galaxy Evolution Explorer. The mean SED requires a bolometric correction (relative to 2500 A) of BC{sub 2500A} =2.75 {+-} 0.40 using the integrated light from 1 {mu}m-2 keV, and we further explore the range of bolometric corrections exhibited by individual objects. In addition, we investigate the dependence of the mean SED on various parameters, particularly the UV luminosity for quasars with 0.5 {approx}< z {approx}< 3 and the properties of the UV emission lines for quasars with z {approx}> 1.6; the latter is a possible indicator of the strength of the accretion disk wind, which is expected to be SED-dependent. Luminosity-dependent mean SEDs show that, relative to the high-luminosity SED, low-luminosity SEDs exhibit a harder (bluer) far-UV spectral slope ({alpha}{sub UV}), a redder optical continuum, and less hot dust. Mean SEDs constructed instead as a function of UV emission line properties reveal changes that are consistent with known Principal Component Analysis trends. A potentially important contribution to the bolometric correction is the unseen extreme UV (EUV) continuum. Our work suggests that lower-luminosity quasars and/or quasars with disk-dominated broad emission lines may require an extra continuum component in the EUV that is not present (or much weaker) in high-luminosity quasars with strong accretion disk winds. As such, we consider four possible models and explore the resulting bolometric corrections. Understanding these various SED-dependent effects will be important for accurate determination of quasar accretion rates.

  13. Fast Algorithms for Model-Based Diagnosis

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Barrett, Anthony; Vatan, Farrokh; Mackey, Ryan

    2005-01-01

    Two improved new methods for automated diagnosis of complex engineering systems involve the use of novel algorithms that are more efficient than prior algorithms used for the same purpose. Both the recently developed algorithms and the prior algorithms in question are instances of model-based diagnosis, which is based on exploring the logical inconsistency between an observation and a description of a system to be diagnosed. As engineering systems grow more complex and increasingly autonomous in their functions, the need for automated diagnosis increases concomitantly. In model-based diagnosis, the function of each component and the interconnections among all the components of the system to be diagnosed (for example, see figure) are represented as a logical system, called the system description (SD). Hence, the expected behavior of the system is the set of logical consequences of the SD. Faulty components lead to inconsistency between the observed behaviors of the system and the SD. The task of finding the faulty components (diagnosis) reduces to finding the components, the abnormalities of which could explain all the inconsistencies. Of course, the meaningful solution should be a minimal set of faulty components (called a minimal diagnosis), because the trivial solution, in which all components are assumed to be faulty, always explains all inconsistencies. Although the prior algorithms in question implement powerful methods of diagnosis, they are not practical because they essentially require exhaustive searches among all possible combinations of faulty components and therefore entail the amounts of computation that grow exponentially with the number of components of the system.

  14. Fast musculoskeletal registration based on shape matching.

    PubMed

    Gilles, Benjamin; Pai, Dinesh K

    2008-01-01

    This paper presents a new method for computing elastic and plastic deformations in the context of discrete deformable model-based registration. Internal forces are estimated by averaging local transforms between reference and current particle positions. Our technique can accommodate large non-linear deformations, and is unconditionally stable. Moreover, it is simple to implement and versatile. We show how to tune model stiffness and computational cost, which is important for efficient registration, and demonstrate our technique in the complex problem of inter-patient musculoskeletal registration. PMID:18982681

  15. Bolometric Interferometry for Cosmic Microwave Background Polariztion Measurements

    NASA Astrophysics Data System (ADS)

    Malu, Siddharth

    2009-05-01

    CMB studies are now a data-rich field in astrophysics. The power spectrum of CMB is well measured and cosmological models have been characterized and polarization has been detected in the CMB. All results fit well within and are explained well by the inflationary paradigm. But current evidence for inflation is indirect. The next generation of CMB experiments will aim at providing the most direct evidence for inflation through the detection of B-modes in CMB polarization. Despite improvements in experimental techniques, it is as yet unclear what configuration and approach a CMB polarization experiment should adopt, in view of lack of information about polarization foregrounds and instrument systematic effects. We describe a novel approach to these measurements, called bolometric interferometry, which avoids many of the systematic errors found in imaging systems. In particular, we describe a prototype, the Millimeter-wave Bolometric Interferometer (MBI). We present a few promising approaches from our collaboration (BRAIN/MBI) and discuss plans for feasibility studies for detecting CMB polarization foregrounds and signals with adding interferometers.

  16. GPU-based fast gamma index calculation

    NASA Astrophysics Data System (ADS)

    Gu, Xuejun; Jia, Xun; Jiang, Steve B.

    2011-03-01

    The γ-index dose comparison tool has been widely used to compare dose distributions in cancer radiotherapy. The accurate calculation of γ-index requires an exhaustive search of the closest Euclidean distance in the high-resolution dose-distance space. This is a computational intensive task when dealing with 3D dose distributions. In this work, we combine a geometric method (Ju et al 2008 Med. Phys. 35 879-87) with a radial pre-sorting technique (Wendling et al 2007 Med. Phys. 34 1647-54) and implement them on computer graphics processing units (GPUs). The developed GPU-based γ-index computational tool is evaluated on eight pairs of IMRT dose distributions. The γ-index calculations can be finished within a few seconds for all 3D testing cases on one single NVIDIA Tesla C1060 card, achieving 45-75× speedup compared to CPU computations conducted on an Intel Xeon 2.27 GHz processor. We further investigated the effect of various factors on both CPU and GPU computation time. The strategy of pre-sorting voxels based on their dose difference values speeds up the GPU calculation by about 2.7-5.5 times. For n-dimensional dose distributions, γ-index calculation time on CPU is proportional to the summation of γn over all voxels, while that on GPU is affected by γn distributions and is approximately proportional to the γn summation over all voxels. We found that increasing the resolution of dose distributions leads to a quadratic increase of computation time on CPU, while less-than-quadratic increase on GPU. The values of dose difference and distance-to-agreement criteria also have an impact on γ-index calculation time.

  17. GPU-based fast gamma index calculation.

    PubMed

    Gu, Xuejun; Jia, Xun; Jiang, Steve B

    2011-03-01

    The γ-index dose comparison tool has been widely used to compare dose distributions in cancer radiotherapy. The accurate calculation of γ-index requires an exhaustive search of the closest Euclidean distance in the high-resolution dose-distance space. This is a computational intensive task when dealing with 3D dose distributions. In this work, we combine a geometric method (Ju et al 2008 Med. Phys. 35 879-87) with a radial pre-sorting technique (Wendling et al 2007 Med. Phys. 34 1647-54) and implement them on computer graphics processing units (GPUs). The developed GPU-based γ-index computational tool is evaluated on eight pairs of IMRT dose distributions. The γ-index calculations can be finished within a few seconds for all 3D testing cases on one single NVIDIA Tesla C1060 card, achieving 45-75× speedup compared to CPU computations conducted on an Intel Xeon 2.27 GHz processor. We further investigated the effect of various factors on both CPU and GPU computation time. The strategy of pre-sorting voxels based on their dose difference values speeds up the GPU calculation by about 2.7-5.5 times. For n-dimensional dose distributions, γ-index calculation time on CPU is proportional to the summation of γ(n) over all voxels, while that on GPU is affected by γ(n) distributions and is approximately proportional to the γ(n) summation over all voxels. We found that increasing the resolution of dose distributions leads to a quadratic increase of computation time on CPU, while less-than-quadratic increase on GPU. The values of dose difference and distance-to-agreement criteria also have an impact on γ-index calculation time. PMID:21317484

  18. [Fast spectral modeling based on Voigt peaks].

    PubMed

    Li, Jin-rong; Dai, Lian-kui

    2012-03-01

    Indirect hard modeling (IHM) is a recently introduced method for quantitative spectral analysis, which was applied to the analysis of nonlinear relation between mixture spectrum and component concentration. In addition, IHM is an effectual technology for the analysis of components of mixture with molecular interactions and strongly overlapping bands. Before the establishment of regression model, IHM needs to model the measured spectrum as a sum of Voigt peaks. The precision of the spectral model has immediate impact on the accuracy of the regression model. A spectrum often includes dozens or even hundreds of Voigt peaks, which mean that spectral modeling is a optimization problem with high dimensionality in fact. So, large operation overhead is needed and the solution would not be numerically unique due to the ill-condition of the optimization problem. An improved spectral modeling method is presented in the present paper, which reduces the dimensionality of optimization problem by determining the overlapped peaks in spectrum. Experimental results show that the spectral modeling based on the new method is more accurate and needs much shorter running time than conventional method. PMID:22582612

  19. Fast Electromechanical Switches Based on Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama; Wong, Eric; Epp, Larry

    2008-01-01

    Electrostatically actuated nanoelectromechanical switches based on carbon nanotubes have been fabricated and tested in a continuing effort to develop high-speed switches for a variety of stationary and portable electronic equipment. As explained below, these devices offer advantages over electrostatically actuated microelectromechanical switches, which, heretofore, have represented the state of the art of rapid, highly miniaturized electromechanical switches. Potential applications for these devices include computer memories, cellular telephones, communication networks, scientific instrumentation, and general radiation-hard electronic equipment. A representative device of the present type includes a single-wall carbon nanotube suspended over a trench about 130 nm wide and 20 nm deep in an electrically insulating material. The ends of the carbon nanotube are connected to metal electrodes, denoted the source and drain electrodes. At bottom of the trench is another metal electrode, denoted the pull electrode (see figure). In the off or open switch state, no voltage is applied, and the nanotube remains out of contact with the pull electrode. When a sufficiently large electric potential (switching potential) is applied between the pull electrode and either or both of the source and drain electrodes, the resulting electrostatic attraction bends and stretches the nanotube into contact with the pull electrode, thereby putting the switch into the "on" or "closed" state, in which substantial current (typically as much as hundreds of nanoamperes) is conducted. Devices of this type for use in initial experiments were fabricated on a thermally oxidized Si wafer, onto which Nb was sputter-deposited for use as the pull-electrode layer. Nb was chosen because its refractory nature would enable it to withstand the chemical and thermal conditions to be subsequently imposed for growing carbon nanotubes. A 200- nm-thick layer of SiO2 was formed on top of the Nb layer by plasma

  20. Fast-neutron multiplicity analysis based on liquid scintillation.

    PubMed

    Li, Sufen; Qiu, Suizheng; Zhang, Quanhu; Huo, Yonggang; Lin, Hongtao

    2016-04-01

    In this study, according to the establishment of the classical neutron multiplicity measurement equation, a fast-neutron multiplicity analysis and measurement equation is established, considering the influence of neutron scattering cross-talk, by means of theoretical analysis and computer simulation. Moreover, the fission rate F, multiplication M, and (α, n) reaction rate α in the established equation were solved. A new measurement method of scattering cross-talk was established and the established equation was validated using Geant4 simulation. The fast-neutron multiplicity counting equation has only a smaller deviation from the fast-neutron multiplicity counting system based on liquid scintillation detector, and it has a wider application prospect. PMID:26766037

  1. FastME 2.0: A Comprehensive, Accurate, and Fast Distance-Based Phylogeny Inference Program.

    PubMed

    Lefort, Vincent; Desper, Richard; Gascuel, Olivier

    2015-10-01

    FastME provides distance algorithms to infer phylogenies. FastME is based on balanced minimum evolution, which is the very principle of Neighbor Joining (NJ). FastME improves over NJ by performing topological moves using fast, sophisticated algorithms. The first version of FastME only included Nearest Neighbor Interchange. The new 2.0 version also includes Subtree Pruning and Regrafting, while remaining as fast as NJ and providing a number of facilities: Distance estimation for DNA and proteins with various models and options, bootstrapping, and parallel computations. FastME is available using several interfaces: Command-line (to be integrated in pipelines), PHYLIP-like, and a Web server (http://www.atgc-montpellier.fr/fastme/). PMID:26130081

  2. GEM-based detectors for thermal and fast neutrons

    NASA Astrophysics Data System (ADS)

    Croci, G.; Claps, G.; Cazzaniga, C.; Foggetta, L.; Muraro, A.; Valente, P.

    2015-06-01

    Lately the problem of 3He replacement for neutron detection stimulated an intense activity research on alternative technologies based on alternative neutron converters. This paper presents briefly the results obtained with new GEM detectors optimized for fast and thermal neutrons. For thermal neutrons, we realized a side-on GEM detector based on a series of boron-coated alumina sheets placed perpendicularly to the incident neutron beam direction. This prototype has been tested at n@BTF photo-production neutron facilty in order to test its effectiveness under a very high flux gamma background. For fast neutrons, we developed new GEM detectors (called nGEM) for the CNESM diagnostic system of the SPIDER NBI prototype for ITER (RFX-Consortium, Italy) and as beam monitor for fast neutrons lines at spallation sources. The nGEM is a Triple GEM gaseous detector equipped with a polyethylene layer used to convert fast neutrons into recoil protons through the elastic scattering process. This paper describes the results obtained by testing a medium size (30 × 25 cm2 active area) nGEM detector at the ISIS spallation source on the VESUVIO beam line.

  3. On the effect of cosmic rays in bolometric cosmic microwave background measurements from the stratosphere

    NASA Astrophysics Data System (ADS)

    Masi, S.; Battistelli, E.; de Bernardis, P.; Lamagna, L.; Nati, F.; Nati, L.; Natoli, P.; Polenta, G.; Schillaci, A.

    2010-09-01

    Context. Precision measurements of the anisotropy of the cosmic microwave background (CMB) are able to detect low-level non-Gaussian features caused by either topological defects or the inflation process. These measurements are becoming feasable with the development of large arrays of ultra-sensitive bolometric detectors and their use in balloon-borne or satellite missions. However, the space environment includes a population of cosmic rays (CRs), which produce spurious spikes in bolometric signals. Aims: We analyze the effect of CRs on the measurement of CMB anisotropy maps and the estimate of cosmological non-Gaussianity and angular power spectra of the CMB. Methods: Using accurate simulations of noise and CR events in bolometric detectors, and de-spiking techniques, we produce simulated measured maps and analyze the Gaussianity and power spectrum of the maps for different levels and rates of CR events. Results: We find that a de-spiking technique based on outlier removal in the detector signals contributing to the same sky pixel is effective in removing CR events larger than the noise. However, low level events hidden in the noise produce a positive shift of the average power signal measured by a bolometer, and increase its variance. If the number of hits per pixel is large enough, the data distribution for each sky pixel is approximately Gaussian, but the skewness and the kurtosis of the temperatures of the pixels indicate the presence of some low-level non-Gaussianity. The standard noise estimation pipeline produces a positive bias in the power spectrum at high multipoles. Conclusions: In the case of a typical balloon-borne survey, the CR-induced non-Gaussianity will be marginally detectable in the membrane bolometer channels, but be negligible in the spider-web bolometer channels. In experiments with detector sensitivity better than 100 μK/√{Hz}, in an environment less favorable than the earth stratosphere, the CR-induced non-Gaussianity is likely to

  4. A high dynamic radiation measurement instrument: the Bolometric Oscillation Sensor (BOS)

    NASA Astrophysics Data System (ADS)

    Zhu, P.; van Ruymbeke, M.; Karatekin, Ö.; Noël, J.-P.; Thuillier, G.; Dewitte, S.; Chevalier, A.; Conscience, C.; Janssen, E.; Meftah, M.; Irbah, A.

    2015-05-01

    The Bolometric Oscillation Sensor (BOS) is a broadband radiation measurement instrument onboard the PICARD satellite that was active between 2010 and 2014. The main detector is a thermistor attached black coated surface, which was permanently exposed to space without any optical and aperture accessories. The temperature measurements are used within a transfer function to determine variations in incoming solar irradiance as well as the terrestrial radiation. In the present article, the measurement principle of the BOS and its transfer function are presented. The performance of the instrument is discussed based on laboratory experiments and space observations from the PICARD satellite. The comparison of the short-term variation of total solar irradiance (TSI) with absolute radiometers such as VIRGO/SOHO and TIM/SORCE over the same period of time suggests that the BOS is a relatively much simpler but very effective sensor for monitoring electromagnetic radiation variations from visible to infrared wavelengths.

  5. A high dynamic radiation measurements instrument: the Bolometric Oscillation Sensor (BOS)

    NASA Astrophysics Data System (ADS)

    Zhu, P.; van Ruymbeke, M.; Karatekin, Ö.; Noël, J.-P.; Thuillier, G.; Dewitte, S.; Chevalier, A.; Conscience, C.; Janssen, E.; Meftah, M.; Irbah, A.

    2014-12-01

    The bolometric oscillation sensor (BOS) is a broadband radiation measurement instrument onboard the PICARD satellite that has been active between 2010 and 2014. The main detector is a thermistor attached black coated surface, which was permanently exposed to space without any optical and aperture accessories. The temperature measurements are used within a transfer function to determine variations in incoming solar irradiance as well as the terrestrial radiation. In the present article, the measurement principle of BOS and its transfer function are presented. The performance of the instrument is discussed based on laboratory experiments and space observations from the PICARD satellite. The comparison of the short term variation of Total Solar Irradiance (TSI) with absolute radiometers such as VIRGO/SOHO and TIM/SORCE over the same period of time, suggests that BOS is a relatively much simpler but very effective sensor to monitor electromagnetic radiation variations from visible to infrared wavelengths.

  6. Fast image matching algorithm based on projection characteristics

    NASA Astrophysics Data System (ADS)

    Zhou, Lijuan; Yue, Xiaobo; Zhou, Lijun

    2011-06-01

    Based on analyzing the traditional template matching algorithm, this paper identified the key factors restricting the speed of matching and put forward a brand new fast matching algorithm based on projection. Projecting the grayscale image, this algorithm converts the two-dimensional information of the image into one-dimensional one, and then matches and identifies through one-dimensional correlation, meanwhile, because of normalization has been done, when the image brightness or signal amplitude increasing in proportion, it could also perform correct matching. Experimental results show that the projection characteristics based image registration method proposed in this article could greatly improve the matching speed, which ensuring the matching accuracy as well.

  7. A Fast MEANSHIFT Algorithm-Based Target Tracking System

    PubMed Central

    Sun, Jian

    2012-01-01

    Tracking moving targets in complex scenes using an active video camera is a challenging task. Tracking accuracy and efficiency are two key yet generally incompatible aspects of a Target Tracking System (TTS). A compromise scheme will be studied in this paper. A fast mean-shift-based Target Tracking scheme is designed and realized, which is robust to partial occlusion and changes in object appearance. The physical simulation shows that the image signal processing speed is >50 frame/s. PMID:22969397

  8. Fast wavelet based algorithms for linear evolution equations

    NASA Technical Reports Server (NTRS)

    Engquist, Bjorn; Osher, Stanley; Zhong, Sifen

    1992-01-01

    A class was devised of fast wavelet based algorithms for linear evolution equations whose coefficients are time independent. The method draws on the work of Beylkin, Coifman, and Rokhlin which they applied to general Calderon-Zygmund type integral operators. A modification of their idea is applied to linear hyperbolic and parabolic equations, with spatially varying coefficients. A significant speedup over standard methods is obtained when applied to hyperbolic equations in one space dimension and parabolic equations in multidimensions.

  9. Electrical studies on silver based fast ion conducting glassy materials

    NASA Astrophysics Data System (ADS)

    Rao, B. Appa; Kumar, E. Ramesh; Kumari, K. Rajani; Bhikshamaiah, G.

    2014-04-01

    Among all the available fast ion conductors, silver based glasses exhibit high conductivity. Further, glasses containing silver iodide enhances fast ion conducting behavior at room temperature. Glasses of various compositions of silver based fast ion conductors in the AgI-Ag2O-[(1-x)B2O3-xTeO2] (x=0 to1 mol% in steps of 0.2) glassy system have been prepared by melt quenching method. The glassy nature of the compounds has been confirmed by X-ray diffraction. The electrical conductivity (AC) measurements have been carried out in the frequency range of 1 KHz-3MHz by Impedance Analyzer in the temperature range 303-423K. The DC conductivity measurements were also carried out in the temperature range 300-523K. From both AC and DC conductivity studies, it is found that the conductivity increases and activation energy decreases with increasing the concentration of TeO2 as well as with temperature. The conductivity of the present glass system is found to be of the order of 10-2 S/cm at room temperature. The ionic transport number of these glasses is found to be 0.999 indicating that these glasses can be used as electrolyte in batteries.

  10. Electrical studies on silver based fast ion conducting glassy materials

    SciTech Connect

    Rao, B. Appa Kumar, E. Ramesh Kumari, K. Rajani Bhikshamaiah, G.

    2014-04-24

    Among all the available fast ion conductors, silver based glasses exhibit high conductivity. Further, glasses containing silver iodide enhances fast ion conducting behavior at room temperature. Glasses of various compositions of silver based fast ion conductors in the AgI−Ag{sub 2}O−[(1−x)B{sub 2}O{sub 3}−xTeO{sub 2}] (x=0 to1 mol% in steps of 0.2) glassy system have been prepared by melt quenching method. The glassy nature of the compounds has been confirmed by X-ray diffraction. The electrical conductivity (AC) measurements have been carried out in the frequency range of 1 KHz–3MHz by Impedance Analyzer in the temperature range 303–423K. The DC conductivity measurements were also carried out in the temperature range 300–523K. From both AC and DC conductivity studies, it is found that the conductivity increases and activation energy decreases with increasing the concentration of TeO{sub 2} as well as with temperature. The conductivity of the present glass system is found to be of the order of 10{sup −2} S/cm at room temperature. The ionic transport number of these glasses is found to be 0.999 indicating that these glasses can be used as electrolyte in batteries.

  11. Multiplicative-theorem-based fast Williamson-Hadamard transforms

    NASA Astrophysics Data System (ADS)

    Agaian, Sos S.; Sarukhanian, Hakob; Astola, Jaakko T.

    2002-05-01

    Hadamard matrices have received much attention in recent years, owing to their numerous known and promising applications. The difficulties of construction of N equalsV 0(mod 4)-point Hadamard transforms are related to the existence of Hadamard matrices problem. In this paper algorithms for fast computation of N-point Williamson-Hadamard transform based on multiplicative theorems are presented. Comparative estimates revealing the efficiency of the proposed algorithms with respect to the known ones are given. The results of numerical examples are presented.

  12. Fast Waves at the Base of the Cochlea

    PubMed Central

    Recio-Spinoso, Alberto; Rhode, William S.

    2015-01-01

    Georg von Békésy observed that the onset times of responses to brief-duration stimuli vary as a function of distance from the stapes, with basal regions starting to move earlier than apical ones. He noticed that the speed of signal propagation along the cochlea is slow when compared with the speed of sound in water. Fast traveling waves have been recorded in the cochlea, but their existence is interpreted as the result of an experiment artifact. Accounts of the timing of vibration onsets at the base of the cochlea generally agree with Békésy’s results. Some authors, however, have argued that the measured delays are too short for consistency with Békésy’s theory. To investigate the speed of the traveling wave at the base of the cochlea, we analyzed basilar membrane (BM) responses to clicks recorded at several locations in the base of the chinchilla cochlea. The initial component of the BM response matches remarkably well the initial component of the stapes response, after a 4-μs delay of the latter. A similar conclusion is reached by analyzing onset times of time-domain gain functions, which correspond to BM click responses normalized by middle-ear input. Our results suggest that BM responses to clicks arise from a combination of fast and slow traveling waves. PMID:26062000

  13. FFBSKAT: fast family-based sequence kernel association test.

    PubMed

    Svishcheva, Gulnara R; Belonogova, Nadezhda M; Axenovich, Tatiana I

    2014-01-01

    The kernel machine-based regression is an efficient approach to region-based association analysis aimed at identification of rare genetic variants. However, this method is computationally complex. The running time of kernel-based association analysis becomes especially long for samples with genetic (sub) structures, thus increasing the need to develop new and effective methods, algorithms, and software packages. We have developed a new R-package called fast family-based sequence kernel association test (FFBSKAT) for analysis of quantitative traits in samples of related individuals. This software implements a score-based variance component test to assess the association of a given set of single nucleotide polymorphisms with a continuous phenotype. We compared the performance of our software with that of two existing software for family-based sequence kernel association testing, namely, ASKAT and famSKAT, using the Genetic Analysis Workshop 17 family sample. Results demonstrate that FFBSKAT is several times faster than other available programs. In addition, the calculations of the three-compared software were similarly accurate. With respect to the available analysis modes, we combined the advantages of both ASKAT and famSKAT and added new options to empower FFBSKAT users. The FFBSKAT package is fast, user-friendly, and provides an easy-to-use method to perform whole-exome kernel machine-based regression association analysis of quantitative traits in samples of related individuals. The FFBSKAT package, along with its manual, is available for free download at http://mga.bionet.nsc.ru/soft/FFBSKAT/. PMID:24905468

  14. Fast dye removal from water by starch-based nanocomposites.

    PubMed

    Gomes, Raelle F; de Azevedo, Antonio C Neto; Pereira, Antonio G B; Muniz, Edvani C; Fajardo, André R; Rodrigues, Francisco H A

    2015-09-15

    Robust and efficient methylene blue (MB) adsorbent was prepared based on starch/cellulose nanowhiskers hydrogel composite. Maximum MB adsorption capacity of ∼2050mgperg of dried hydrogel was obtained with the composite at 5wt.% of cellulose nanowhiskers and at pH 5. Adsorption capacity varied from 1450mg/g to 2050mg/g with increasing the initial MB concentration from 1500mg/L to 2500mg/L, respectively. For all the concentrations studied ca. 90% of MB was removed by the adsorbent. Optimal conditions were obtained at pH⩾5 due to the generation of negatively charged groups (COO(-)) in the adsorbent, which can strongly interact with the positive charges from MB. The main advantage of this system over other reported adsorbents, besides the fact of being synthesized from biodegradable polymers (starch and cellulose), is its fast adsorption kinetics that follows the pseudo-second order model, which is based on chimisorption phenomenon. Saturation condition was reached as fast as 1h of experiments owing to the formation of an adsorbed MB monolayer as suggested by the Langmuir isotherm model. Desorption experiments showed 60wt.% of MB loaded can be removed from the adsorbent by immersing it in a pH 1 solution, showing its feasibility to be reused. Therefore, starch/cellulose nanowhiskers hydrogel composite presents outstanding capacity to be employed in the remediation of MB contaminated wastewaters. PMID:26037269

  15. Strong earthquakes knowledge base for calibrating fast damage assessment systems

    NASA Astrophysics Data System (ADS)

    Frolova, N.; Kozlov, M.; Larionov, V.; Nikolaev, A.; Suchshev, S.; Ugarov, A.

    2003-04-01

    At present Systems for fast damage and loss assessment due to strong earthquakes may use as input data: (1) information about event parameters (magnitude, depth and coordinates) issued by Alert Seismological Surveys; (2) wave-form data obtained by strong-motion seismograph network; (3) high resolution space images of the affected area obtained before and after the event. When data about magnidute, depth and location of event are used to simulate possible consequences, the reliability of estimations depends on completeness and reliability of databases on elements at risk (population and built environment); reliability of vulnerability functions of elements at risk; and errors in strong earthquakes' parameters determination by Alert Seismological Surveys. Some of these factors may be taken into account at the expense of the System calibration with usage of well documented past strong earthquakes. The paper is describing the structure and content of the knowledge base about well documented strong events, which occurred in last century. It contains the description of more than 1000 events. The data are distributed almost homogeneously as the losses due to earthquakes are concerned; the most events are in the magnitude range 6.5 -7.9. Software is created to accumulate and analyze the information about these events source parameters and social consequences. Created knowledge base is used for calibration the Fast Damage Assessment Tool, which is at present on duty with the framework of EDRIM Program. It is also used as additional information by experts who analyses the results of computations.

  16. A fast image encryption algorithm based on chaotic map

    NASA Astrophysics Data System (ADS)

    Liu, Wenhao; Sun, Kehui; Zhu, Congxu

    2016-09-01

    Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a new two-dimensional Sine ICMIC modulation map (2D-SIMM) is proposed based on a close-loop modulation coupling (CMC) model, and its chaotic performance is analyzed by means of phase diagram, Lyapunov exponent spectrum and complexity. It shows that this map has good ergodicity, hyperchaotic behavior, large maximum Lyapunov exponent and high complexity. Based on this map, a fast image encryption algorithm is proposed. In this algorithm, the confusion and diffusion processes are combined for one stage. Chaotic shift transform (CST) is proposed to efficiently change the image pixel positions, and the row and column substitutions are applied to scramble the pixel values simultaneously. The simulation and analysis results show that this algorithm has high security, low time complexity, and the abilities of resisting statistical analysis, differential, brute-force, known-plaintext and chosen-plaintext attacks.

  17. Cargo inspection system based on pulsed fast neutron analysis

    NASA Astrophysics Data System (ADS)

    Brown, Douglas R.

    1994-03-01

    This paper describes an automated cargo inspection system (CIS) based on pulsed fast neutron analysis (PFNA). The system uses a pulsed beam of fast neutrons to interrogate the contents of small volume elements--voxels--of a cargo container or truck. The neutrons interact with the elemental contents of each voxel and gamma rays characteristic of the elements are collected in an array of detectors. The elemental signals and their ratios give unique signatures for drugs, explosives, and contraband. From the time of arrival of the gamma rays, the position of the voxel within the truck is determined. Full-scale physics simulation of time-dependent neutron and gamma ray interactions in various cargo materials have aided in the design of the system. These simulations have been benchmarked against laboratory measurements. A scaled model of the PFNA CIS is in operation in SAIC's PFNA facility and has been used to demonstrate the detection of drugs and other contraband concealed in a full-size cargo container with a variety of contents. A full-scale system is presently being designed and fabricated for the U.S. Government's Cargo Container Inspection Technology Testbed at Tacoma, Washington. This system is designed to scan five or more trucks per hour and is scheduled to come into operation in July 1995.

  18. Fast Field Calibration of MIMU Based on the Powell Algorithm

    PubMed Central

    Ma, Lin; Chen, Wanwan; Li, Bin; You, Zheng; Chen, Zhigang

    2014-01-01

    The calibration of micro inertial measurement units is important in ensuring the precision of navigation systems, which are equipped with microelectromechanical system sensors that suffer from various errors. However, traditional calibration methods cannot meet the demand for fast field calibration. This paper presents a fast field calibration method based on the Powell algorithm. As the key points of this calibration, the norm of the accelerometer measurement vector is equal to the gravity magnitude, and the norm of the gyro measurement vector is equal to the rotational velocity inputs. To resolve the error parameters by judging the convergence of the nonlinear equations, the Powell algorithm is applied by establishing a mathematical error model of the novel calibration. All parameters can then be obtained in this manner. A comparison of the proposed method with the traditional calibration method through navigation tests shows the classic performance of the proposed calibration method. The proposed calibration method also saves more time compared with the traditional calibration method. PMID:25177801

  19. A PDE-Based Fast Local Level Set Method

    NASA Astrophysics Data System (ADS)

    Peng, Danping; Merriman, Barry; Osher, Stanley; Zhao, Hongkai; Kang, Myungjoo

    1999-11-01

    We develop a fast method to localize the level set method of Osher and Sethian (1988, J. Comput. Phys.79, 12) and address two important issues that are intrinsic to the level set method: (a) how to extend a quantity that is given only on the interface to a neighborhood of the interface; (b) how to reset the level set function to be a signed distance function to the interface efficiently without appreciably moving the interface. This fast local level set method reduces the computational effort by one order of magnitude, works in as much generality as the original one, and is conceptually simple and easy to implement. Our approach differs from previous related works in that we extract all the information needed from the level set function (or functions in multiphase flow) and do not need to find explicitly the location of the interface in the space domain. The complexity of our method to do tasks such as extension and distance reinitialization is O(N), where N is the number of points in space, not O(N log N) as in works by Sethian (1996, Proc. Nat. Acad. Sci. 93, 1591) and Helmsen and co-workers (1996, SPIE Microlithography IX, p. 253). This complexity estimation is also valid for quite general geometrically based front motion for our localized method.

  20. Multichroic Bolometric Detector Architecture for Cosmic Microwave Background Polarimetry Experiments

    NASA Astrophysics Data System (ADS)

    Suzuki, Aritoki

    Characterization of the Cosmic Microwave Background (CMB) B-mode polarization signal will test models of inflationary cosmology, as well as constrain the sum of the neutrino masses and other cosmological parameters. The low intensity of the B-mode signal combined with the need to remove polarized galactic foregrounds requires a sensitive millimeter receiver and effective methods of foreground removal. Current bolometric detector technology is reaching the sensitivity limit set by the CMB photon noise. Thus, we need to increase the optical throughput to increase an experiment's sensitivity. To increase the throughput without increasing the focal plane size, we can increase the frequency coverage of each pixel. Increased frequency coverage per pixel has additional advantage that we can split the signal into frequency bands to obtain spectral information. The detection of multiple frequency bands allows for removal of the polarized foreground emission from synchrotron radiation and thermal dust emission, by utilizing its spectral dependence. Traditionally, spectral information has been captured with a multi-chroic focal plane consisting of a heterogeneous mix of single-color pixels. To maximize the efficiency of the focal plane area, we developed a multi-chroic pixel. This increases the number of pixels per frequency with same focal plane area. We developed multi-chroic antenna-coupled transition edge sensor (TES) detector array for the CMB polarimetry. In each pixel, a silicon lens-coupled dual polarized sinuous antenna collects light over a two-octave frequency band. The antenna couples the broadband millimeter wave signal into microstrip transmission lines, and on-chip filter banks split the broadband signal into several frequency bands. Separate TES bolometers detect the power in each frequency band and linear polarization. We will describe the design and performance of these devices and present optical data taken with prototype pixels and detector arrays. Our

  1. Fast complex memory polynomial-based adaptive digital predistorter

    NASA Astrophysics Data System (ADS)

    Singh Sappal, Amandeep; Singh Patterh, Manjeet; Sharma, Sanjay

    2011-07-01

    Today's 3G wireless systems require both high linearity and high power amplifier (PA) efficiency. The high peak-to-average ratios of the digital modulation schemes used in 3G wireless systems require that the RF PA maintain high linearity over a large range while maintaining this high efficiency; these two requirements are often at odds with each other with many of the traditional amplifier architectures. In this article, a fast and easy-to-implement adaptive digital predistorter has been presented for Wideband Code Division Multiplexed signals using complex memory polynomial work function. The proposed algorithm has been implemented to test a Motorola LDMOSFET PA. The proposed technique also takes care of the memory effects of the PA, which have been ignored in many proposed techniques in the literature. The results show that the new complex memory polynomial-based adaptive digital predistorter has better linearisation performance than conventional predistortion techniques.

  2. [Fast Implementation Method of Protein Spots Detection Based on CUDA].

    PubMed

    Xiong, Bangshu; Ye, Yijia; Ou, Qiaofeng; Zhang, Haodong

    2016-02-01

    In order to improve the efficiency of protein spots detection, a fast detection method based on CUDA was proposed. Firstly, the parallel algorithms of the three most time-consuming parts in the protein spots detection algorithm: image preprocessing, coarse protein point detection and overlapping point segmentation were studied. Then, according to single instruction multiple threads executive model of CUDA to adopted data space strategy of separating two-dimensional (2D) images into blocks, various optimizing measures such as shared memory and 2D texture memory are adopted in this study. The results show that the operative efficiency of this method is obviously improved compared to CPU calculation. As the image size increased, this method makes more improvement in efficiency, such as for the image with the size of 2,048 x 2,048, the method of CPU needs 52,641 ms, but the GPU needs only 4,384 ms. PMID:27382745

  3. Reducing preoperative fasting time: A trend based on evidence

    PubMed Central

    de Aguilar-Nascimento, José Eduardo; Dock-Nascimento, Diana Borges

    2010-01-01

    Preoperative fasting is mandatory before anesthesia to reduce the risk of aspiration. However, the prescribed 6-8 h of fasting is usually prolonged to 12-16 h for various reasons. Prolonged fasting triggers a metabolic response that precipitates gluconeogenesis and increases the organic response to trauma. Various randomized trials and meta-analyses have consistently shown that is safe to reduce the preoperative fasting time with a carbohydrate-rich drink up to 2 h before surgery. Benefits related to this shorter preoperative fasting include the reduction of postoperative gastrointestinal discomfort and insulin resistance. New formulas containing amino acids such as glutamine and other peptides are being studied and are promising candidates to be used to reduce preoperative fasting time. PMID:21160851

  4. Fast background subtraction for moving cameras based on nonparametric models

    NASA Astrophysics Data System (ADS)

    Sun, Feng; Qin, Kaihuai; Sun, Wei; Guo, Huayuan

    2016-05-01

    In this paper, a fast background subtraction algorithm for freely moving cameras is presented. A nonparametric sample consensus model is employed as the appearance background model. The as-similar-as-possible warping technique, which obtains multiple homographies for different regions of the frame, is introduced to robustly estimate and compensate the camera motion between the consecutive frames. Unlike previous methods, our algorithm does not need any preprocess step for computing the dense optical flow or point trajectories. Instead, a superpixel-based seeded region growing scheme is proposed to extend the motion cue based on the sparse optical flow to the entire image. Then, a superpixel-based temporal coherent Markov random field optimization framework is built on the raw segmentations from the background model and the motion cue, and the final background/foreground labels are obtained using the graph-cut algorithm. Extensive experimental evaluations show that our algorithm achieves satisfactory accuracy, while being much faster than the state-of-the-art competing methods.

  5. Fast and Secure Chaos-Based Cryptosystem for Images

    NASA Astrophysics Data System (ADS)

    Farajallah, Mousa; El Assad, Safwan; Deforges, Olivier

    Nonlinear dynamic cryptosystems or chaos-based cryptosystems have been attracting a large amount of research since 1990. The critical aspect of cryptography is to face the growth of communication and to achieve the design of fast and secure cryptosystems. In this paper, we introduce three versions of a chaos-based cryptosystem based on a similar structure of the Zhang and Fridrich cryptosystems. Each version is composed of two layers: a confusion layer and a diffusion layer. The confusion layer is achieved by using a modified 2-D cat map to overcome the fixed-point problem and some other weaknesses, and also to increase the dynamic key space. The 32-bit logistic map is used as a diffusion layer for the first version, which is more robust than using it in 8-bit. In the other versions, the logistic map is replaced by a modified Finite Skew Tent Map (FSTM) for three reasons: to increase the nonlinearity properties of the diffusion layer, to overcome the fixed-point problem, and to increase the dynamic key space. Finally, all versions of the proposed cryptosystem are more resistant against known attacks and faster than Zhang cryptosystems. Moreover, the dynamic key space is much larger than the one used in Zhang cryptosystems. Performance and security analysis prove that the proposed cryptosystems are suitable for securing real-time applications.

  6. A fast image matching algorithm based on key points

    NASA Astrophysics Data System (ADS)

    Wang, Huilin; Wang, Ying; An, Ru; Yan, Peng

    2014-05-01

    Image matching is a very important technique in image processing. It has been widely used for object recognition and tracking, image retrieval, three-dimensional vision, change detection, aircraft position estimation, and multi-image registration. Based on the requirements of matching algorithm for craft navigation, such as speed, accuracy and adaptability, a fast key point image matching method is investigated and developed. The main research tasks includes: (1) Developing an improved celerity key point detection approach using self-adapting threshold of Features from Accelerated Segment Test (FAST). A method of calculating self-adapting threshold was introduced for images with different contrast. Hessian matrix was adopted to eliminate insecure edge points in order to obtain key points with higher stability. This approach in detecting key points has characteristics of small amount of computation, high positioning accuracy and strong anti-noise ability; (2) PCA-SIFT is utilized to describe key point. 128 dimensional vector are formed based on the SIFT method for the key points extracted. A low dimensional feature space was established by eigenvectors of all the key points, and each eigenvector was projected onto the feature space to form a low dimensional eigenvector. These key points were re-described by dimension-reduced eigenvectors. After reducing the dimension by the PCA, the descriptor was reduced to 20 dimensions from the original 128. This method can reduce dimensions of searching approximately near neighbors thereby increasing overall speed; (3) Distance ratio between the nearest neighbour and second nearest neighbour searching is regarded as the measurement criterion for initial matching points from which the original point pairs matched are obtained. Based on the analysis of the common methods (e.g. RANSAC (random sample consensus) and Hough transform cluster) used for elimination false matching point pairs, a heuristic local geometric restriction

  7. Fast Sampling-Based Whole-Genome Haplotype Block Recognition.

    PubMed

    Taliun, Daniel; Gamper, Johann; Leser, Ulf; Pattaro, Cristian

    2016-01-01

    Scaling linkage disequilibrium (LD) based haplotype block recognition to the entire human genome has always been a challenge. The best-known algorithm has quadratic runtime complexity and, even when sophisticated search space pruning is applied, still requires several days of computations. Here, we propose a novel sampling-based algorithm, called S-MIG (++), where the main idea is to estimate the area that most likely contains all haplotype blocks by sampling a very small number of SNP pairs. A subsequent refinement step computes the exact blocks by considering only the SNP pairs within the estimated area. This approach significantly reduces the number of computed LD statistics, making the recognition of haplotype blocks very fast. We theoretically and empirically prove that the area containing all haplotype blocks can be estimated with a very high degree of certainty. Through experiments on the 243,080 SNPs on chromosome 20 from the 1,000 Genomes Project, we compared our previous algorithm MIG (++) with the new S-MIG (++) and observed a runtime reduction from 2.8 weeks to 34.8 hours. In a parallelized version of the S-MIG (++) algorithm using 32 parallel processes, the runtime was further reduced to 5.1 hours. PMID:27045830

  8. Efficient Video Stitching Based on Fast Structure Deformation.

    PubMed

    Li, Jing; Xu, Wei; Zhang, Jianguo; Zhang, Maojun; Wang, Zhengming; Li, Xuelong

    2015-12-01

    In computer vision, video stitching is a very challenging problem. In this paper, we proposed an efficient and effective wide-view video stitching method based on fast structure deformation that is capable of simultaneously achieving quality stitching and computational efficiency. For a group of synchronized frames, firstly, an effective double-seam selection scheme is designed to search two distinct but structurally corresponding seams in the two original images. The seam location of the previous frame is further considered to preserve the interframe consistency. Secondly, along the double seams, 1-D feature detection and matching is performed to capture the structural relationship between the two adjacent views. Thirdly, after feature matching, we propose an efficient algorithm to linearly propagate the deformation vectors to eliminate structure misalignment. At last, image intensity misalignment is corrected by rapid gradient fusion based on the successive over relaxation iteration (SORI) solver. A principled solution to the initialization of the SORI significantly reduced the number of iterations required. We have compared favorably our method with seven state-of-the-art image and video stitching algorithms as well as traditional ones. Experimental results show that our method outperforms the existing ones compared in terms of overall stitching quality and computational efficiency. PMID:25561603

  9. Fast single image dehazing based on image fusion

    NASA Astrophysics Data System (ADS)

    Liu, Haibo; Yang, Jie; Wu, Zhengping; Zhang, Qingnian

    2015-01-01

    Images captured in foggy weather conditions often fade the colors and reduce the contrast of the observed objects. An efficient image fusion method is proposed to remove haze from a single input image. First, the initial medium transmission is estimated based on the dark channel prior. Second, the method adopts an assumption that the degradation level affected by haze of each region is the same, which is similar to the Retinex theory, and uses a simple Gaussian filter to get the coarse medium transmission. Then, pixel-level fusion is achieved between the initial medium transmission and coarse medium transmission. The proposed method can recover a high-quality haze-free image based on the physical model, and the complexity of the proposed method is only a linear function of the number of input image pixels. Experimental results demonstrate that the proposed method can allow a very fast implementation and achieve better restoration for visibility and color fidelity compared to some state-of-the-art methods.

  10. The Robinson Gravitational Wave Background Telescope (BICEP): a bolometric large angular scale CMB polarimeter

    NASA Astrophysics Data System (ADS)

    Yoon, K. W.; Ade, P. A. R.; Barkats, D.; Battle, J. O.; Bierman, E. M.; Bock, J. J.; Brevik, J. A.; Chiang, H. C.; Crites, A.; Dowell, C. D.; Duband, L.; Griffin, G. S.; Hivon, E. F.; Holzapfel, W. L.; Hristov, V. V.; Keating, B. G.; Kovac, J. M.; Kuo, C. L.; Lange, A. E.; Leitch, E. M.; Mason, P. V.; Nguyen, H. T.; Ponthieu, N.; Takahashi, Y. D.; Renbarger, T.; Weintraub, L. C.; Woolsey, D.

    2006-06-01

    The Robinson Telescope (BICEP) is a ground-based millimeter-wave bolometric array designed to study the polarization of the cosmic microwave background radiation (CMB) and galactic foreground emission. Such measurements probe the energy scale of the inflationary epoch, tighten constraints on cosmological parameters, and verify our current understanding of CMB physics. Robinson consists of a 250-mm aperture refractive telescope that provides an instantaneous field-of-view of 17° with angular resolution of 55' and 37' at 100 GHz and 150 GHz, respectively. Forty-nine pair of polarization-sensitive bolometers are cooled to 250 mK using a 4He/ 3He/ 3He sorption fridge system, and coupled to incoming radiation via corrugated feed horns. The all-refractive optics is cooled to 4 K to minimize polarization systematics and instrument loading. The fully steerable 3-axis mount is capable of continuous boresight rotation or azimuth scanning at speeds up to 5 deg/s. Robinson has begun its first season of observation at the South Pole. Given the measured performance of the instrument along with the excellent observing environment, Robinson will measure the E-mode polarization with high sensitivity, and probe for the B-modes to unprecedented depths. In this paper we discuss aspects of the instrument design and their scientific motivations, scanning and operational strategies, and the results of initial testing and observations.

  11. Biased Randomized Algorithm for Fast Model-Based Diagnosis

    NASA Technical Reports Server (NTRS)

    Williams, Colin; Vartan, Farrokh

    2005-01-01

    A biased randomized algorithm has been developed to enable the rapid computational solution of a propositional- satisfiability (SAT) problem equivalent to a diagnosis problem. The closest competing methods of automated diagnosis are described in the preceding article "Fast Algorithms for Model-Based Diagnosis" and "Two Methods of Efficient Solution of the Hitting-Set Problem" (NPO-30584), which appears elsewhere in this issue. It is necessary to recapitulate some of the information from the cited articles as a prerequisite to a description of the present method. As used here, "diagnosis" signifies, more precisely, a type of model-based diagnosis in which one explores any logical inconsistencies between the observed and expected behaviors of an engineering system. The function of each component and the interconnections among all the components of the engineering system are represented as a logical system. Hence, the expected behavior of the engineering system is represented as a set of logical consequences. Faulty components lead to inconsistency between the observed and expected behaviors of the system, represented by logical inconsistencies. Diagnosis - the task of finding the faulty components - reduces to finding the components, the abnormalities of which could explain all the logical inconsistencies. One seeks a minimal set of faulty components (denoted a minimal diagnosis), because the trivial solution, in which all components are deemed to be faulty, always explains all inconsistencies. In the methods of the cited articles, the minimal-diagnosis problem is treated as equivalent to a minimal-hitting-set problem, which is translated from a combinatorial to a computational problem by mapping it onto the Boolean-satisfiability and integer-programming problems. The integer-programming approach taken in one of the prior methods is complete (in the sense that it is guaranteed to find a solution if one exists) and slow and yields a lower bound on the size of the

  12. Plasmonic and bolometric terahertz detection by graphene field-effect transistor

    NASA Astrophysics Data System (ADS)

    Muraviev, A. V.; Rumyantsev, S. L.; Liu, G.; Balandin, A. A.; Knap, W.; Shur, M. S.

    2013-10-01

    Polarization dependence analysis of back-gated graphene field-effect transistor terahertz responsivity at frequencies ranging from 1.63 to 3.11 THz reveals two independent mechanisms of THz detection by graphene transistor: plasmonic, associated with the transistor nonlinearity, and bolometric, caused by graphene sheet temperature increase due to THz radiation absorption. In the bolometric regime, electron and hole branches demonstrate a very different response to THz radiation, which we link to the asymmetry of the current-voltage characteristics temperature dependence with respect to the Dirac point. Obtained results are important for development of high-efficiency graphene THz detectors.

  13. 128 x 128 pixel uncooled bolometric FPA for IR detection and imaging

    NASA Astrophysics Data System (ADS)

    Jerominek, Hubert; Pope, Timothy D.; Alain, Christine; Zhang, Rose; Lehoux, Mario; Picard, Francis; Fuchs, R. Wayne; Grenier, Carol; Rouleau, Yves; Cayer, Felix; Savard, Simon; Bilodeau, Ghislain; Couillard, Jean-Francois; Larouche, Carl; Ngo, Linh P.

    1998-10-01

    An uncooled IR camera making use of a 128 X 128 pixel bolometric FPA is presented. The reconfigurable bolometric focal plane array consist of 50 micrometer X 50 micrometer pixels and simple on-chip CMOS readout electronics which can be operated in random access, independent row and column clocking, and self-scanning modes. Depending on the selected pixel format and frame rate, the FPA's NETD varies from 0.52 degrees Celsius down to 0.10 degrees Celsius. The modular IR camera is software configured and provides RS170A analog video and 12-bit TTL format digital outputs.

  14. Bolometric luminosities and colors for K and M dwarfs and the subluminous stars of the halo

    NASA Astrophysics Data System (ADS)

    Greenstein, Jesse L.

    1989-09-01

    The H-R diagrams of dM, sdK, and sdM proper-motion stars are examined. A method for integrating energy distributions using discrete weights is proposed. The bolometric corrections are assessed at various wavelengths and a method for obtaining luminosities even if a star lacks IR data is presented. The color-luminosity diagrams suggest that high-velocity, low-metallicity stars of the halo are subluminous. It is found that the apparent cutoff in the halo is a bolometric magnitude of about 12 m.

  15. Fast CEUS image segmentation based on self organizing maps

    NASA Astrophysics Data System (ADS)

    Paire, Julie; Sauvage, Vincent; Albouy-Kissi, Adelaïde; Ladam Marcus, Viviane; Marcus, Claude; Hoeffel, Christine

    2014-03-01

    Contrast-enhanced ultrasound (CEUS) has recently become an important technology for lesion detection and characterization. CEUS is used to investigate the perfusion kinetics in tissue over time, which relates to tissue vascularization. In this paper, we present an interactive segmentation method based on the neural networks, which enables to segment malignant tissue over CEUS sequences. We use Self-Organizing-Maps (SOM), an unsupervised neural network, to project high dimensional data to low dimensional space, named a map of neurons. The algorithm gathers the observations in clusters, respecting the topology of the observations space. This means that a notion of neighborhood between classes is defined. Adjacent observations in variables space belong to the same class or related classes after classification. Thanks to this neighborhood conservation property and associated with suitable feature extraction, this map provides user friendly segmentation tool. It will assist the expert in tumor segmentation with fast and easy intervention. We implement SOM on a Graphics Processing Unit (GPU) to accelerate treatment. This allows a greater number of iterations and the learning process to converge more precisely. We get a better quality of learning so a better classification. Our approach allows us to identify and delineate lesions accurately. Our results show that this method improves markedly the recognition of liver lesions and opens the way for future precise quantification of contrast enhancement.

  16. DUK - A Fast and Efficient Kmer Based Sequence Matching Tool

    SciTech Connect

    Li, Mingkun; Copeland, Alex; Han, James

    2011-03-21

    A new tool, DUK, is developed to perform matching task. Matching is to find whether a query sequence partially or totally matches given reference sequences or not. Matching is similar to alignment. Indeed many traditional analysis tasks like contaminant removal use alignment tools. But for matching, there is no need to know which bases of a query sequence matches which position of a reference sequence, it only need know whether there exists a match or not. This subtle difference can make matching task much faster than alignment. DUK is accurate, versatile, fast, and has efficient memory usage. It uses Kmer hashing method to index reference sequences and Poisson model to calculate p-value. DUK is carefully implemented in C++ in object oriented design. The resulted classes can also be used to develop other tools quickly. DUK have been widely used in JGI for a wide range of applications such as contaminant removal, organelle genome separation, and assembly refinement. Many real applications and simulated dataset demonstrate its power.

  17. Fast recognition of musical sounds based on timbre.

    PubMed

    Agus, Trevor R; Suied, Clara; Thorpe, Simon J; Pressnitzer, Daniel

    2012-05-01

    Human listeners seem to have an impressive ability to recognize a wide variety of natural sounds. However, there is surprisingly little quantitative evidence to characterize this fundamental ability. Here the speed and accuracy of musical-sound recognition were measured psychophysically with a rich but acoustically balanced stimulus set. The set comprised recordings of notes from musical instruments and sung vowels. In a first experiment, reaction times were collected for three target categories: voice, percussion, and strings. In a go/no-go task, listeners reacted as quickly as possible to members of a target category while withholding responses to distractors (a diverse set of musical instruments). Results showed near-perfect accuracy and fast reaction times, particularly for voices. In a second experiment, voices were recognized among strings and vice-versa. Again, reaction times to voices were faster. In a third experiment, auditory chimeras were created to retain only spectral or temporal features of the voice. Chimeras were recognized accurately, but not as quickly as natural voices. Altogether, the data suggest rapid and accurate neural mechanisms for musical-sound recognition based on selectivity to complex spectro-temporal signatures of sound sources. PMID:22559384

  18. [Fast discrimination of edible vegetable oil based on Raman spectroscopy].

    PubMed

    Zhou, Xiu-Jun; Dai, Lian-Kui; Li, Sheng

    2012-07-01

    A novel method to fast discriminate edible vegetable oils by Raman spectroscopy is presented. The training set is composed of different edible vegetable oils with known classes. Based on their original Raman spectra, baseline correction and normalization were applied to obtain standard spectra. Two characteristic peaks describing the unsaturated degree of vegetable oil were selected as feature vectors; then the centers of all classes were calculated. For an edible vegetable oil with unknown class, the same pretreatment and feature extraction methods were used. The Euclidian distances between the feature vector of the unknown sample and the center of each class were calculated, and the class of the unknown sample was finally determined by the minimum distance. For 43 edible vegetable oil samples from seven different classes, experimental results show that the clustering effect of each class was more obvious and the class distance was much larger with the new feature extraction method compared with PCA. The above classification model can be applied to discriminate unknown edible vegetable oils rapidly and accurately. PMID:23016334

  19. Sensitivity Analysis of a process based erosion model using FAST

    NASA Astrophysics Data System (ADS)

    Gabelmann, Petra; Wienhöfer, Jan; Zehe, Erwin

    2015-04-01

    deposition are related to overland flow velocity using the equation of Engelund and Hansen and the sinking velocity of grain sizes, respectively. The sensitivity analysis was performed based on virtual hillslopes similar to those in the Weiherbach catchment. We applied the FAST-method (Fourier Amplitude Sensitivity Test), which provides a global sensitivity analysis with comparably few model runs. We varied model parameters in predefined and, for the Weiherbach catchment, physically meaningful parameter ranges. Those parameters included rainfall intensity, surface roughness, hillslope geometry, land use, erosion resistance, and soil hydraulic parameters. The results of this study allow guiding further modelling efforts in the Weiherbach catchment with respect to data collection and model modification.

  20. Fast parallel algorithm for slicing STL based on pipeline

    NASA Astrophysics Data System (ADS)

    Ma, Xulong; Lin, Feng; Yao, Bo

    2016-04-01

    In Additive Manufacturing field, the current researches of data processing mainly focus on a slicing process of large STL files or complicated CAD models. To improve the efficiency and reduce the slicing time, a parallel algorithm has great advantages. However, traditional algorithms can't make full use of multi-core CPU hardware resources. In the paper, a fast parallel algorithm is presented to speed up data processing. A pipeline mode is adopted to design the parallel algorithm. And the complexity of the pipeline algorithm is analyzed theoretically. To evaluate the performance of the new algorithm, effects of threads number and layers number are investigated by a serial of experiments. The experimental results show that the threads number and layers number are two remarkable factors to the speedup ratio. The tendency of speedup versus threads number reveals a positive relationship which greatly agrees with the Amdahl's law, and the tendency of speedup versus layers number also keeps a positive relationship agreeing with Gustafson's law. The new algorithm uses topological information to compute contours with a parallel method of speedup. Another parallel algorithm based on data parallel is used in experiments to show that pipeline parallel mode is more efficient. A case study at last shows a suspending performance of the new parallel algorithm. Compared with the serial slicing algorithm, the new pipeline parallel algorithm can make full use of the multi-core CPU hardware, accelerate the slicing process, and compared with the data parallel slicing algorithm, the new slicing algorithm in this paper adopts a pipeline parallel model, and a much higher speedup ratio and efficiency is achieved.

  1. Characterization of a GEM-based fast neutron detector

    NASA Astrophysics Data System (ADS)

    Esposito, B.; Marocco, D.; Villari, R.; Murtas, F.; Rodionov, R.

    2014-03-01

    The neutron efficiency of a Gas Electron Multiplier (GEM)-based detector designed for fast neutron measurements in fusion devices was determined through the combined use of Monte Carlo (MCNPX) calculations and analysis of deuterium-deuterium and deuterium-tritium neutron irradiation experiments. The detector, characterized by a triple GEM structure flushed with a Ar/CO2/CF4 - 45/15/40 gas mixture, features a digital read-out system and has two sub-units for the detection of 2.5+14 MeV neutrons and 14 MeV neutrons (UDD and UDT, respectively). The pulse height spectra (PHS) determined from the curves of experimental efficiency as a function of the detector's high voltage (HV) and the MCNPX-simulated PHS were compared using a fitting routine that finds the best match between the experimental and simulated PHS by assuming a parametric model for the relation between HV (that determines the detector's gain) and the energy deposited in the gas. This led to express the experimental neutron efficiency as a function of the discrimination level set on the deposited energy (energy threshold). The detector sensitivity to γ-rays was also analyzed and the operational range in which the γ-ray contribution to the signal is not negligible was determined. It is found that this detector can reach a maximum neutron efficiency of ~1×10-3 counts/n at 2.5 MeV (UDD sub-unit) and of ~4×10-3 counts/n at 14 MeV (UDT and UDD sub-units).

  2. Fast parallel algorithm for slicing STL based on pipeline

    NASA Astrophysics Data System (ADS)

    Ma, Xulong; Lin, Feng; Yao, Bo

    2016-05-01

    In Additive Manufacturing field, the current researches of data processing mainly focus on a slicing process of large STL files or complicated CAD models. To improve the efficiency and reduce the slicing time, a parallel algorithm has great advantages. However, traditional algorithms can't make full use of multi-core CPU hardware resources. In the paper, a fast parallel algorithm is presented to speed up data processing. A pipeline mode is adopted to design the parallel algorithm. And the complexity of the pipeline algorithm is analyzed theoretically. To evaluate the performance of the new algorithm, effects of threads number and layers number are investigated by a serial of experiments. The experimental results show that the threads number and layers number are two remarkable factors to the speedup ratio. The tendency of speedup versus threads number reveals a positive relationship which greatly agrees with the Amdahl's law, and the tendency of speedup versus layers number also keeps a positive relationship agreeing with Gustafson's law. The new algorithm uses topological information to compute contours with a parallel method of speedup. Another parallel algorithm based on data parallel is used in experiments to show that pipeline parallel mode is more efficient. A case study at last shows a suspending performance of the new parallel algorithm. Compared with the serial slicing algorithm, the new pipeline parallel algorithm can make full use of the multi-core CPU hardware, accelerate the slicing process, and compared with the data parallel slicing algorithm, the new slicing algorithm in this paper adopts a pipeline parallel model, and a much higher speedup ratio and efficiency is achieved.

  3. Fast degradable citrate-based bone scaffold promotes spinal fusion

    PubMed Central

    Tang, Jiajun; Guo, Jinshan; Li, Zhen; Yang, Cheng; Xie, Denghui; Chen, Jian; Li, Shengfa; Li, Shaolin; Kim, Gloria B.; Bai, Xiaochun; Zhang, Zhongmin; Yang, Jian

    2015-01-01

    It is well known that high rates of fusion failure and pseudoarthrosis development (5~35%) are concomitant in spinal fusion surgery, which was ascribed to the shortage of suitable materials for bone regeneration. Citrate was recently recognized to play an indispensable role in enhancing osteconductivity and osteoinductivity, and promoting bone formation. To address the material challenges in spinal fusion surgery, we have synthesized mechanically robust and fast degrading citrate-based polymers by incorporating N-methyldiethanolamine (MDEA) into clickable poly(1, 8-octanediol citrates) (POC-click), referred to as POC-M-click. The obtained POC-M-click were fabricated into POC-M-click-HA matchstick scaffolds by compositing with hydroxyapatite (HA) for interbody spinal fusion in a rabbit model. Spinal fusion was analyzed by radiography, manual palpation, biomechanical testing, and histological evaluation. At 4 and 8 weeks post surgery, POC-M-click-HA scaffolds presented optimal degradation rates that facilitated faster new bone formation and higher spinal fusion rates (11.2±3.7, 80±4.5 at week 4 and 8, respectively) than the poly(L-lactic acid)-HA (PLLA-HA) control group (9.3±2.4 and 71.1±4.4) (p<0.05). The POC-M-click-HA scaffold-fused vertebrates possessed a maximum load and stiffness of 880.8±14.5 N and 843.2±22.4 N/mm, respectively, which were also much higher than those of the PLLA-HA group (maximum: 712.0±37.5 N, stiffness: 622.5±28.4 N/mm, p<0.05). Overall, the results suggest that POC-M-click-HA scaffolds could potentially serve as promising bone grafts for spinal fusion applications. PMID:26213625

  4. Bolometric light curves and explosion parameters of 38 stripped-envelope core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Lyman, J. D.; Bersier, D.; James, P. A.; Mazzali, P. A.; Eldridge, J. J.; Fraser, M.; Pian, E.

    2016-03-01

    Literature data are collated for 38 stripped-envelope core-collapse supernovae (SE SNe; i.e. SNe IIb, Ib, Ic and Ic-BL) that have good light-curve coverage in more than one optical band. Using bolometric corrections derived in previous work, the bolometric light curve of each SN is recovered and template bolometric light curves provided. Peak light distributions and decay rates are investigated; SNe subtypes are not cleanly distinguished in this parameter space, although some grouping of types does occur and there is a suggestion of a Phillips-like relation for most SNe Ic-BL. The bolometric light curves are modelled with a simple analytical prescription and compared to results from more detailed modelling. Distributions of the explosion parameters show the extreme nature of SNe Ic-BL in terms of their 56Ni mass and the kinetic energy, however ejected masses are similar to other subtypes. SNe Ib and Ic have very similar distributions of explosion parameters, indicating a similarity in progenitors. SNe IIb are the most homogeneous subtype and have the lowest average values for 56Ni mass, ejected mass, and kinetic energy. Ejecta masses for each subtype and SE SNe as a whole are inconsistent with those expected from very massive stars. The majority of the ejecta mass distribution is well described by more moderately massive progenitors in binaries, indicating these are the dominant progenitor channel for SE SNe.

  5. A Randomized Field Trial of the Fast ForWord Language Computer-Based Training Program

    ERIC Educational Resources Information Center

    Borman, Geoffrey D.; Benson, James G.; Overman, Laura

    2009-01-01

    This article describes an independent assessment of the Fast ForWord Language computer-based training program developed by Scientific Learning Corporation. Previous laboratory research involving children with language-based learning impairments showed strong effects on their abilities to recognize brief and fast sequences of nonspeech and speech…

  6. Fast and accurate line scanner based on white light interferometry

    NASA Astrophysics Data System (ADS)

    Lambelet, Patrick; Moosburger, Rudolf

    2013-04-01

    White-light interferometry is a highly accurate technology for 3D measurements. The principle is widely utilized in surface metrology instruments but rarely adopted for in-line inspection systems. The main challenges for rolling out inspection systems based on white-light interferometry to the production floor are its sensitivity to environmental vibrations and relatively long measurement times: a large quantity of data needs to be acquired and processed in order to obtain a single topographic measurement. Heliotis developed a smart-pixel CMOS camera (lock-in camera) which is specially suited for white-light interferometry. The demodulation of the interference signal is treated at the level of the pixel which typically reduces the acquisition data by one orders of magnitude. Along with the high bandwidth of the dedicated lock-in camera, vertical scan-speeds of more than 40mm/s are reachable. The high scan speed allows for the realization of inspection systems that are rugged against external vibrations as present on the production floor. For many industrial applications such as the inspection of wafer-bumps, surface of mechanical parts and solar-panel, large areas need to be measured. In this case either the instrument or the sample are displaced laterally and several measurements are stitched together. The cycle time of such a system is mostly limited by the stepping time for multiple lateral displacements. A line-scanner based on white light interferometry would eliminate most of the stepping time while maintaining robustness and accuracy. A. Olszak proposed a simple geometry to realize such a lateral scanning interferometer. We demonstrate that such inclined interferometers can benefit significantly from the fast in-pixel demodulation capabilities of the lock-in camera. One drawback of an inclined observation perspective is that its application is limited to objects with scattering surfaces. We therefore propose an alternate geometry where the incident light is

  7. Influence of ceramic package internal components on the performance of vacuum sealed uncooled bolometric detectors

    NASA Astrophysics Data System (ADS)

    Paquet, Alex; Deshaies, Sébastien; Desroches, Yan; Whalin, Jeff; Topart, Patrice

    2013-03-01

    INO has developed a hermetic vacuum packaging technology for uncooled bolometric detectors based on ceramic leadless chip carriers (LCC). Cavity pressures less than 3 mTorr are obtained. Processes are performed in a state-of-the art semi-automated vacuum furnace that allows for independent activation of non-evaporable thin film getters. The getter activation temperature is limited by both the anti-reflection coated silicon or germanium window and the MEMS device built on CMOS circuits. Temperature profiles used to achieve getter activation and vacuum sealing were optimized to meet lifetime and reliability requirements of packaged devices. Internal package components were carefully selected with respect to their outgassing behavior so that a good vacuum performance was obtained. In this paper, INO's packaging process is described. The influence of various package internal components, in particular the CMOS circuits, on vacuum performance is presented. The package cavity pressure was monitored using INO's pressure microsensors and the gas composition was determined by internal vapor analysis. Lifetime was derived from accelerated testing after storage of packaged detectors at various temperatures from room temperature to 120°C. A hermeticity yield over 80% was obtained for batches of twelve devices packaged simultaneously. Packaged FPAs submitted to standard MIL-STD-810 reliability testing (vibration, shock and temperature cycling) exhibited no change in IR response. Results show that vacuum performance strongly depends on CMOS circuit chips. Detectors packaged using a thin film getter show no change in cavity pressure after storage for more than 30 days at 120°C. Moreover, INO's vacuum sealing process is such that even without a thin film getter, a base pressure of less than 10 mTorr is obtained and no pressure change is observed after 40 days at 85°C.

  8. The Millimeter-Wave Bolometric Interferometer: Data analysis, simulations and microwave instrumentation

    NASA Astrophysics Data System (ADS)

    Malu, Siddharth S.

    The following advances have occured in Cosmic Microwave Background (CMB) cosmology in the past decade: (1) A systematic characterization of cosmological models. (2) Accurate Measurements of CMB temperature power spectrum. (3) Detection of CMB polarization. (4) Appearance of large CMB datasets with new techniques for data analysis. Results from CMB theory, experiments and analysis have thus dominated advances in cosmology over the past few years, and are expected to do so with the upcoming experiments and analysis techniques as well. The aforementioned results fit well within and are explained well by the inflationary paradigm. However, current, evidence for inflation is indirect. The next generation of CMB experiments will aim at providing the most direct evidence for the inflationary paradigm through the detection of B-modes in CMB polarization. In this thesis, we describe the design, construction and plans for implementation of a novel instrument, the Millimeter-Wave Bolometric Interferometer (MBI), an interferometer designed to measure the power spectrum of CMB polarization. We introduce novel methods in optics and data analysis and discuss the instrument. MBI is designed for sensitive measurements of the polarization of the CMB with a 7° field-of-view in the multipole range l =150-270. MBI combines the differencing capabilities of an interferometer with the high sensitivity of bolometers in the W-band (75-110 GHz). We introduce a novel beam combination scheme - the Fizeau system - that will be able to extract both images and visibilities and provide spectral information. Gibbs sampling, an efficient and complete Bayesian technique is described and applied to interferometry. Instrumentation and analysis of data from two components - a ferrite-based waveguide phase modulator and an overmoded circular waveguide system - is also discussed. A combination of these techniques, especially the unique abilities of the Fizeau system and the computational efficiency of

  9. Accurate Anisotropic Fast Marching for Diffusion-Based Geodesic Tractography

    PubMed Central

    Jbabdi, S.; Bellec, P.; Toro, R.; Daunizeau, J.; Pélégrini-Issac, M.; Benali, H.

    2008-01-01

    Using geodesics for inferring white matter fibre tracts from diffusion-weighted MR data is an attractive method for at least two reasons: (i) the method optimises a global criterion, and hence is less sensitive to local perturbations such as noise or partial volume effects, and (ii) the method is fast, allowing to infer on a large number of connexions in a reasonable computational time. Here, we propose an improved fast marching algorithm to infer on geodesic paths. Specifically, this procedure is designed to achieve accurate front propagation in an anisotropic elliptic medium, such as DTI data. We evaluate the numerical performance of this approach on simulated datasets, as well as its robustness to local perturbation induced by fiber crossing. On real data, we demonstrate the feasibility of extracting geodesics to connect an extended set of brain regions. PMID:18299703

  10. Uncertainty Assessment for Fast Reactors Based on Nuclear Data Adjustment

    NASA Astrophysics Data System (ADS)

    Ivanova, T.; Ivanov, E.; Ecrabet, F.

    2014-04-01

    The paper presents IRSN's results of the OECD/NEA WPEC Subgroup 33 benchmark exercise which is focused upon combined use of differential and integral data using adjustment technique. The results are generated by BERING code using different sets of input data: integral parameters and sensitivity coefficients for fast benchmark experiments and applications computed by deterministic ERANOS code and Monte Carlo SCALE sequences, COMMARA-2.0 and JENDL-4.0 cross-section-covariance data and integral correlations provided by JAEA. The paper demonstrates results of the adjustment when using different input data and two adjustment algorithms implemented in BERING.

  11. Bolometric detector systems for IR and mm-wave space astronomy

    NASA Technical Reports Server (NTRS)

    Church, S. E.; Lange, A. E.; Mauskopf, P. D.; Hristov, V.; Bock, J. J.; DelCastillo, H. M.; Beeman, J.; Ade, P. A. R.; Griffin, M. J.

    1996-01-01

    Recent developments in bolometric detector systems for millimeter and submillimeter wave space astronomy are described. Current technologies meet all the requirements for the high frequency instrument onboard the cosmic background radiation anisotropy satellite/satellite for the measurement of background anisotropies (COBRAS/SAMBA) platform. It is considered that the technologies that are currently being developed will significantly reduce the effective time constant and/or the cooling requirements of bolometric detectors. These technologies lend themselves to the fabrication of the large format arrays required for the Far Infrared and Submillimeter Space Telescope (FIRST). The scientific goals and detector requirements of the COBRAS/SAMBA platform that will use infrared bolometers are reviewed and the baseline detector system is described, including the feed optics, the infrared filters, the cold amplifiers and the warm readout electronics.

  12. Cargo inspection system based on pulsed fast neutron analysis

    NASA Astrophysics Data System (ADS)

    Brown, Douglas R.; Coates, Allison; Kuo, Stelly N.; Loveman, Robert; Pentaleri, Ed; Rynes, Joel C.

    1997-02-01

    The pulsed fast neutron analysis (PFNA) cargo inspection system (CIS) uses a nanosecond pulsed beam of fast neutrons to interrogate the contents of small volume elements -- voxels -- of a cargo container or truck. A color display shows the three-dimensional location of suspected contraband, such as drugs or explosives. The neutrons interact with the elemental contents of each vowel, and gamma rays characteristic of the elements are collected in an array of detectors. The elemental signals and their ratios give unique signatures for drugs and other contraband. From the time of arrival of the gamma rays, the position of the vowel within the truck is determined. The PFNA CIS is designed to scan five or more trucks per hour. The operator interface has been designed to assist in the rapid identification of drugs, explosives or other contraband. This paper describes the system and the tests for drugs and explosives that have been carried out during the past year. These tests were aimed at exploring the envelope of performance of the system.

  13. Cargo inspection system based on pulsed fast neutron analysis

    NASA Astrophysics Data System (ADS)

    Brown, D. R.; Gozani, T.

    1995-05-01

    Pulsed Fast Neutron Analysis (PFNA) is a technique which uses a collimated pulsed beam of fast neutrons to excite the nuclei of common elements in bulk materials. Direct imaging of the elemental contents of the material is accomplished by using time-of-flight analysis to identify the position of the interactions and gamma-ray spectroscopy to identify the elemental gamma-rays. From the ratios and absolute measurements of elemental abundances the identification of the material can be deduced. The PFNA cargo inspection system uses a volume type negative ion source and a double drift bunching system to create an intense beam of nano-second bunched negative deuterium ions which, after acceleration to around 6 MeV, impinge on a deuterium gas target producing pulsed neutrons. A unique high speed data acquisition system digitizes and analyzes the time-energy data in real time. Experimental studies and computer simulations were extensively employed to characterize and optimize the design parameters of the system.

  14. Research of Fast 3D Imaging Based on Multiple Mode

    NASA Astrophysics Data System (ADS)

    Chen, Shibing; Yan, Huimin; Ni, Xuxiang; Zhang, Xiuda; Wang, Yu

    2016-02-01

    Three-dimensional (3D) imaging has received increasingly extensive attention and has been widely used currently. Lots of efforts have been put on three-dimensional imaging method and system study, in order to meet fast and high accurate requirement. In this article, we realize a fast and high quality stereo matching algorithm on field programmable gate array (FPGA) using the combination of time-of-flight (TOF) camera and binocular camera. Images captured from the two cameras own a same spatial resolution, letting us use the depth maps taken by the TOF camera to figure initial disparity. Under the constraint of the depth map as the stereo pairs when comes to stereo matching, expected disparity of each pixel is limited within a narrow search range. In the meanwhile, using field programmable gate array (FPGA, altera cyclone IV series) concurrent computing we can configure multi core image matching system, thus doing stereo matching on embedded system. The simulation results demonstrate that it can speed up the process of stereo matching and increase matching reliability and stability, realize embedded calculation, expand application range.

  15. The Cosmology Large Angular Scale Surveyor (CLASS): 38 GHz Detector Array of Bolometric Polarimeters

    NASA Technical Reports Server (NTRS)

    Appel, John W.; Ali, Aamir; Amiri, Mandana; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dunner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Gothe, Dominik; Halpern, Mark; Harrington, Kathleen; Kogut, Alan J..; Miller, Nathan; Moseley, Samuel H.; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wollack, Edward

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) experiment aims to map the polarization of the Cosmic Microwave Background (CMB) at angular scales larger than a few degrees. Operating from Cerro Toco in the Atacama Desert of Chile, it will observe over 65% of the sky at 38, 93, 148, and 217 GHz. In this paper we discuss the design, construction, and characterization of the CLASS 38 GHz detector focal plane, the first ever Q-band bolometric polarimeter array.

  16. Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors

    SciTech Connect

    Artusa, D. R.; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; Brofferio, C.; Bucci, C.; Cai, X. Z.; Camacho, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Carbone, L.; Cardani, L.; Carrettoni, M.; Casali, N.; Chiesa, D.; Chott, N.; Clemenza, M.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Dafinei, I.; Dally, A.; Datskov, V.; Biasi, A. De; Deninno, M. M.; Domizio, S. Di; Vacri, M. L. di; Ejzak, L.; Fang, D. Q.; Farach, H. A.; Faverzani, M.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Goett, J.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Heeger, K. M.; Hennings-Yeomans, R.; Huang, H. Z.; Kadel, R.; Kazkaz, K.; Keppel, G.; Kolomensky, Yu. G.; Li, Y. L.; Ligi, C.; Liu, X.; Ma, Y. G.; Maiano, C.; Maino, M.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Moggi, N.; Morganti, S.; Napolitano, T.; Nisi, S.; Norman, E. B.; Nucciotti, A.; O'Donnell, T.; Orio, F.; Orlandi, D.; Ouellet, J. L.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pira, C.; Pirro, S.; Previtali, E.; Rampazzo, V.; Rosenfeld, C.; Rusconi, C.; Sala, E.; Sangiorgio, S.; Scielzo, N. D.; Sisti, M.; Smith, A. R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tian, W. D.; Tomei, C.; Trentalange, S.; Ventura, G.; Vignati, M.; Wang, B. S.; Wang, H. W.; Wielgus, L.; Wilson, J.; Winslow, L. A.; Wise, T.; Woodcraft, A.; Zanotti, L.; Zarra, C.; Zhu, B. X.

    2014-10-15

    Neutrinoless double beta decay (0νββ) is one of the most sensitive probes for physics beyond the Standard Model, providing unique information on the nature of neutrinos. In this paper we review the status and outlook for bolometric 0νββ decay searches. We summarize recent advances in background suppression demonstrated using bolometers with simultaneous readout of heat and light signals. We simulate several configurations of a future CUORE-like bolometer array which would utilize these improvements and present the sensitivity reach of a hypothetical next-generation bolometric0νββ experiment. We demonstrate that a bolometric experiment with the isotope mass of about 1 ton is capable of reaching the sensitivity to the effective Majorana neutrino mass (|mee|) of order 10-20 meV, thus completely exploring the so-called inverted neutrino mass hierarchy region. In conclusion, we highlight the main challenges and identify priorities for an R&D program addressing them.

  17. Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors

    DOE PAGESBeta

    Artusa, D. R.; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; Brofferio, C.; et al

    2014-10-15

    Neutrinoless double beta decay (0νββ) is one of the most sensitive probes for physics beyond the Standard Model, providing unique information on the nature of neutrinos. In this paper we review the status and outlook for bolometric 0νββ decay searches. We summarize recent advances in background suppression demonstrated using bolometers with simultaneous readout of heat and light signals. We simulate several configurations of a future CUORE-like bolometer array which would utilize these improvements and present the sensitivity reach of a hypothetical next-generation bolometric0νββ experiment. We demonstrate that a bolometric experiment with the isotope mass of about 1 ton is capablemore » of reaching the sensitivity to the effective Majorana neutrino mass (|mee|) of order 10-20 meV, thus completely exploring the so-called inverted neutrino mass hierarchy region. In conclusion, we highlight the main challenges and identify priorities for an R&D program addressing them.« less

  18. A Fast Terahertz Spectrometer Based on Frequency Selective Surface Filters

    NASA Astrophysics Data System (ADS)

    Carelli, P.; Chiarello, F.; Cibella, S.; Di Gaspare, A.; Leoni, R.; Ortolani, M.; Torrioli, G.

    2012-05-01

    We present a fast spectrometer working in the 0.7-4.8 THz range. Broadband radiation from a blackbody source is focused first on a rotating silicon wafer, whose surface was patterned with 18 metal band-pass filters, then on the sample under test and finally is detected by a superconducting microbolometer with microsecond time constant. The bolometer sensor is coupled to a spiral antenna whose frequency band matches the spectral range of the filters. The spectral resolution is set by the filters quality factor of about 3. A dynamic range of 100 and a S/N ratio of 20 are achieved by integrating for less than 10 second. The detector can operate up to 6 K in a closed-cycle cooler, hence making the present apparatus suitable for building up a simple terahertz video-rate spectrometer.

  19. A fast Stokes inversion technique based on quadratic regression

    NASA Astrophysics Data System (ADS)

    Teng, Fei; Deng, Yuan-Yong

    2016-05-01

    Stokes inversion calculation is a key process in resolving polarization information on radiation from the Sun and obtaining the associated vector magnetic fields. Even in the cases of simple local thermodynamic equilibrium (LTE) and where the Milne-Eddington approximation is valid, the inversion problem may not be easy to solve. The initial values for the iterations are important in handling the case with multiple minima. In this paper, we develop a fast inversion technique without iterations. The time taken for computation is only 1/100 the time that the iterative algorithm takes. In addition, it can provide available initial values even in cases with lower spectral resolutions. This strategy is useful for a filter-type Stokes spectrograph, such as SDO/HMI and the developed two-dimensional real-time spectrograph (2DS).

  20. Slow-fast effect and generation mechanism of brusselator based on coordinate transformation

    NASA Astrophysics Data System (ADS)

    Li, Xianghong; Hou, Jingyu; Shen, Yongjun

    2016-08-01

    The Brusselator with different time scales, which behaves in the classical slow-fast effect, is investigated, and is characterized by the coupling of the quiescent and spiking states. In order to reveal the generation mechanism by using the slow-fast analysis method, the coordinate transformation is introduced into the classical Brusselator, so that the transformed system can be divided into the fast and slow subsystems. Furthermore, the stability condition and bifurcation phenomenon of the fast subsystem are analyzed, and the attraction domains of different equilibria are presented by theoretical analysis and numerical simulation respectively. Based on the transformed system, it could be found that the generation mechanism between the quiescent and spiking states is Fold bifurcation and change of the attraction domain of the fast subsystem. The results may also be helpful to the similar system with multiple time scales.

  1. Fast grating-based X-ray phase-contrast tomosynthesis.

    PubMed

    Xi, Yan; Zhao, Jun

    2013-01-01

    As an imaging technique with low radiation dose and improved contrast, digital x-ray tomosynthesis is widely used in clinical diagnoses. Based on the superior capability of x-ray phase-contrast imaging (PCI) techniques for imaging low density materials, the combination of X-ray tomosynthesis and PCI can potentially provide higher efficiency in the detection of soft tissues. The goal of this work was to develop a fast imaging method for phase-contrast tomosynthesis, called fast grating-based phase-contrast tomosynthesis (GPC-Tomo), which integrates tomosynthesis with a grating-based PCI technique. Following the interlaced phase-stepping (PS) data collection method, which is much faster than conventional PS method, we propose a novel image reconstruction method called inner-focusing (IF) reconstruction for the fast GPC-Tomo. The proposed IF reconstruction method was validated by real experiments and the results suggested its effectiveness in achieving a fast GPC-Tomo. PMID:24110189

  2. Intrinsic Colors, Temperatures, and Bolometric Corrections of Pre-main-sequence Stars

    NASA Astrophysics Data System (ADS)

    Pecaut, Mark J.; Mamajek, Eric E.

    2013-09-01

    We present an analysis of the intrinsic colors and temperatures of 5-30 Myr old pre-main-sequence (pre-MS) stars using the F0- through M9-type members of nearby, negligibly reddened groups: the η Cha cluster, the TW Hydra Association, the β Pic Moving Group, and the Tucana-Horologium Association. To check the consistency of spectral types from the literature, we estimate new spectral types for 52 nearby pre-MS stars with spectral types F3 through M4 using optical spectra taken with the SMARTS 1.5 m telescope. Combining these new types with published spectral types and photometry from the literature (Johnson-Cousins BVIC , 2MASS JHKS and WISE W1, W2, W3, and W4), we derive a new empirical spectral type-color sequence for 5-30 Myr old pre-MS stars. Colors for pre-MS stars match dwarf colors for some spectral types and colors, but for other spectral types and colors, deviations can exceed 0.3 mag. We estimate effective temperatures (T eff) and bolometric corrections (BCs) for our pre-MS star sample through comparing their photometry to synthetic photometry generated using the BT-Settl grid of model atmosphere spectra. We derive a new T eff and BC scale for pre-MS stars, which should be a more appropriate match for T Tauri stars than often-adopted dwarf star scales. While our new T eff scale for pre-MS stars is within sime100 K of dwarfs at a given spectral type for stars based on an extensive literature survey, (2) a revised Q-method relation for dereddening UBV photometry of OB-type stars, and (3) introduce two candidate spectral standard stars as representatives of spectral types K8V and K9V.

  3. INTRINSIC COLORS, TEMPERATURES, AND BOLOMETRIC CORRECTIONS OF PRE-MAIN-SEQUENCE STARS

    SciTech Connect

    Pecaut, Mark J.; Mamajek, Eric E.

    2013-09-01

    We present an analysis of the intrinsic colors and temperatures of 5-30 Myr old pre-main-sequence (pre-MS) stars using the F0- through M9-type members of nearby, negligibly reddened groups: the η Cha cluster, the TW Hydra Association, the β Pic Moving Group, and the Tucana-Horologium Association. To check the consistency of spectral types from the literature, we estimate new spectral types for 52 nearby pre-MS stars with spectral types F3 through M4 using optical spectra taken with the SMARTS 1.5 m telescope. Combining these new types with published spectral types and photometry from the literature (Johnson-Cousins BVI{sub C} , 2MASS JHK{sub S} and WISE W1, W2, W3, and W4), we derive a new empirical spectral type-color sequence for 5-30 Myr old pre-MS stars. Colors for pre-MS stars match dwarf colors for some spectral types and colors, but for other spectral types and colors, deviations can exceed 0.3 mag. We estimate effective temperatures (T {sub eff}) and bolometric corrections (BCs) for our pre-MS star sample through comparing their photometry to synthetic photometry generated using the BT-Settl grid of model atmosphere spectra. We derive a new T {sub eff} and BC scale for pre-MS stars, which should be a more appropriate match for T Tauri stars than often-adopted dwarf star scales. While our new T {sub eff} scale for pre-MS stars is within ≅100 K of dwarfs at a given spectral type for stars based on an extensive literature survey, (2) a revised Q-method relation for dereddening UBV photometry of OB-type stars, and (3) introduce two candidate spectral standard stars as representatives of spectral types K8V and K9V.

  4. Fast gain and phase recovery of semiconductor optical amplifiers based on submonolayer quantum dots

    SciTech Connect

    Herzog, Bastian Owschimikow, Nina; Kaptan, Yücel; Kolarczik, Mirco; Switaiski, Thomas; Woggon, Ulrike; Schulze, Jan-Hindrik; Rosales, Ricardo; Strittmatter, André; Bimberg, Dieter; Pohl, Udo W.

    2015-11-16

    Submonolayer quantum dots as active medium in opto-electronic devices promise to combine the high density of states of quantum wells with the fast recovery dynamics of self-assembled quantum dots. We investigate the gain and phase recovery dynamics of a semiconductor optical amplifier based on InAs submonolayer quantum dots in the regime of linear operation by one- and two-color heterodyne pump-probe spectroscopy. We find an as fast recovery dynamics as for quantum dot-in-a-well structures, reaching 2 ps at moderate injection currents. The effective quantum well embedding the submonolayer quantum dots acts as a fast and efficient carrier reservoir.

  5. SACRD: a data base for fast reactor safety computer codes, operational procedures

    SciTech Connect

    Forsberg, V.M.; Arwood, J.W.; Greene, N.M.; Raiford, G.B.

    1980-09-01

    SACRD (Safety Analysis Computerized Reactor Data) is a data base of nondesign-related information used in computer codes for fast reactor safety analyses. This document reports the procedures used in SACRD to help assure a reasonable level of integrity of the material contained in the data base. It also serves to document much of the computer software used with the data base.

  6. Fast Numerically Based Modeling for Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Sassen, D. S.; Everett, M. E.

    2007-05-01

    There is a need for computationally fast GPR numerical modeling. This includes circumstances where real time performance is needed, for example discrimination of landmines or UXO's, and in circumstances that require a high number of successive forward problems, for example inversion or imaging. Traditional numerical techniques such as finite difference or finite element are too slow for these applications, but they provide results from general scenarios such as scattering from very complicated shapes with high contrast. Neural networks may fit in the niche between analytical techniques and traditional numerical techniques. Our concept is training a neural network to associate the model inputs of electromagnetic properties of the background and targets, and the size and shape of the targets, with the output generated by a 3-D finite difference model. Successive examples from various electromagnetic properties and targets are displayed to the neural network, until the neural network has adapted itself though optimization. The trained neural network is now used as the forward model by displaying new input parameters and the neural network then generates the appropriate output. The results from the neural network are then compared to results from finite difference models to see how well the neural networks is performing and at what point it breaks down. Areas of poor fit can be addressed through further training. The neural network GPR model can be adapted by displaying additional finite difference results to the neural network, and can also be adapted to a specific field area by actual field data examples. Because of this adaptation ability the neural network GPR model can be optimized for specific environments and applications.

  7. FMFilter: A fast model based variant filtering tool.

    PubMed

    Akgün, Mete; Faruk Gerdan, Ö; Görmez, Zeliha; Demirci, Hüseyin

    2016-04-01

    The availability of whole exome and genome sequencing has completely changed the structure of genetic disease studies. It is now possible to solve the disease causing mechanisms within shorter time and budgets. For this reason, mining out the valuable information from the huge amount of data produced by next generation techniques becomes a challenging task. Current tools analyze sequencing data in various methods. However, there is still need for fast, easy to use and efficacious tools. Considering genetic disease studies, there is a lack of publicly available tools which support compound heterozygous and de novo models. Also, existing tools either require advanced IT expertise or are inefficient for handling large variant files. In this work, we provide FMFilter, an efficient sieving tool for next generation sequencing data produced by genetic disease studies. We develop a software which allows to choose the inheritance model (recessive, dominant, compound heterozygous and de novo), the affected and control individuals. The program provides a user friendly Graphical User Interface which eliminates the requirement of advanced computer techniques. It has various filtering options which enable to eliminate the majority of the false alarms. FMFilter requires negligible memory, therefore it can easily handle very large variant files like multiple whole genomes with ordinary computers. We demonstrate the variant reduction capability and effectiveness of the proposed tool with public and in-house data for different inheritance models. We also compare FMFilter with the existing filtering software. We conclude that FMFilter provides an effective and easy to use environment for analyzing next generation sequencing data from Mendelian diseases. PMID:26925517

  8. A fast and accurate FPGA based QRS detection system.

    PubMed

    Shukla, Ashish; Macchiarulo, Luca

    2008-01-01

    An accurate Field Programmable Gate Array (FPGA) based ECG Analysis system is described in this paper. The design, based on a popular software based QRS detection algorithm, calculates the threshold value for the next peak detection cycle, from the median of eight previously detected peaks. The hardware design has accuracy in excess of 96% in detecting the beats correctly when tested with a subset of five 30 minute data records obtained from the MIT-BIH Arrhythmia database. The design, implemented using a proprietary design tool (System Generator), is an extension of our previous work and uses 76% resources available in a small-sized FPGA device (Xilinx Spartan xc3s500), has a higher detection accuracy as compared to our previous design and takes almost half the analysis time in comparison to software based approach. PMID:19163797

  9. Multiwavelength Energy Distributions and Bolometric Luminosities of the 12 Micron Galaxy Sample

    NASA Astrophysics Data System (ADS)

    Spinoglio, Luigi; Malkan, Matthew A.; Rush, Brian; Carrasco, Luis; Recillas-Cruz, Elsa

    1995-11-01

    Aperture photometry from our own observations and the literature is presented for the 12 microns galaxies in the near-infrared J, H, and K bands and, in some cases, in the L band. These data are corrected to "total" near-infrared magnitudes (with a typical uncertainty of 0.3 mag) for a direct comparison with our IRAS fluxes which apply to the entire galaxy. The corrected data are used to derive integrated total near-infrared and far-infrared luminosities. We then combine these with blue photometry and an estimate of the flux contribution from cold dust at wavelengths longward of 100 microns to derive the first bolometric luminosities for a large sample of galaxies. The presence of nonstellar radiation at 2-3 microns correlates very well with nonstellar IRAS colors. This enables us to identify a universal Seyfert nuclear continuum from near- to far-infrared wavelengths. Thus, there is a sequence of infrared colors which runs from a pure "normal galaxy" to a pure Seyfert/quasar nucleus. Seyfert 2 galaxies fall close to this same sequence, although only a few extreme narrow-line Seyfert galaxies have quasar-like colors, and these show strong evidence of harboring an obscured broad-line region. A corollary is that the host galaxies of Seyfert nuclei have normal near- to far-infrared spectra on average. Starburst galaxies lie significantly off the sequence, having a relative excess of 60 microns emission probably as a result of stochastically heated dust grains. We use these correlations to identify several combinations of infrared colors which discriminate between Seyfert 1 and 2 galaxies, LINERs, and ultraluminous starbursts. In the infrared, Seyfert 2 galaxies are much more like Seyfert 1s than they are like starbursts, presumably because both kinds of Seyferts are heated by a single central source, rather than a distributed region of star formation. Moreover, combining the [25-2.2 mum] color with the [60-12 mum] color, it appears that Seyfert 1 galaxies are

  10. Near midplane scintillator-based fast ion loss detector on DIII-D

    SciTech Connect

    Chen, X.; Heidbrink, W. W.; Fisher, R. K.; Pace, D. C.; Chavez, J. A.; Van Zeeland, M. A.; Garcia-Munoz, M.

    2012-10-15

    A new scintillator-based fast-ion loss detector (FILD) installed near the outer midplane of the plasma has been commissioned on DIII-D. This detector successfully measures coherent fast ion losses produced by fast-ion driven instabilities ({<=}500 kHz). Combined with the first FILD at {approx}45 Degree-Sign below the outer midplane [R. K. Fisher, et al., Rev. Sci. Instrum. 81, 10D307 (2010)], the two-detector system measures poloidal variation of losses. The phase space sensitivity of the new detector (gyroradius r{sub L}{approx}[1.5-8] cm and pitch angle {alpha}{approx}[35 Degree-Sign -85 Degree-Sign ]) is calibrated using neutral beam first orbit loss measurements. Since fast ion losses are localized poloidally, having two FILDs at different poloidal locations allows for the study of losses over a wider range of plasma shapes and types of loss orbits.

  11. Fast Fragmentation of Networks Using Module-Based Attacks.

    PubMed

    Requião da Cunha, Bruno; González-Avella, Juan Carlos; Gonçalves, Sebastián

    2015-01-01

    In the multidisciplinary field of Network Science, optimization of procedures for efficiently breaking complex networks is attracting much attention from a practical point of view. In this contribution, we present a module-based method to efficiently fragment complex networks. The procedure firstly identifies topological communities through which the network can be represented using a well established heuristic algorithm of community finding. Then only the nodes that participate of inter-community links are removed in descending order of their betweenness centrality. We illustrate the method by applying it to a variety of examples in the social, infrastructure, and biological fields. It is shown that the module-based approach always outperforms targeted attacks to vertices based on node degree or betweenness centrality rankings, with gains in efficiency strongly related to the modularity of the network. Remarkably, in the US power grid case, by deleting 3% of the nodes, the proposed method breaks the original network in fragments which are twenty times smaller in size than the fragments left by betweenness-based attack. PMID:26569610

  12. Fast Fragmentation of Networks Using Module-Based Attacks

    PubMed Central

    Requião da Cunha, Bruno; González-Avella, Juan Carlos; Gonçalves, Sebastián

    2015-01-01

    In the multidisciplinary field of Network Science, optimization of procedures for efficiently breaking complex networks is attracting much attention from a practical point of view. In this contribution, we present a module-based method to efficiently fragment complex networks. The procedure firstly identifies topological communities through which the network can be represented using a well established heuristic algorithm of community finding. Then only the nodes that participate of inter-community links are removed in descending order of their betweenness centrality. We illustrate the method by applying it to a variety of examples in the social, infrastructure, and biological fields. It is shown that the module-based approach always outperforms targeted attacks to vertices based on node degree or betweenness centrality rankings, with gains in efficiency strongly related to the modularity of the network. Remarkably, in the US power grid case, by deleting 3% of the nodes, the proposed method breaks the original network in fragments which are twenty times smaller in size than the fragments left by betweenness-based attack. PMID:26569610

  13. Model atmospheres broad-band colors, bolometric corrections and temperature calibrations for O - M stars

    NASA Astrophysics Data System (ADS)

    Bessell, M. S.; Castelli, F.; Plez, B.

    1998-05-01

    Broad band colors and bolometric corrections in the Johnson-Cousins-Glass system (Bessell, 1990; Bessell & Brett, 1988) have been computed from synthetic spectra from new model atmospheres of Kurucz (1995a), Castelli (1997), Plez, Brett & Nordlund (1992), Plez (1995-97), and Brett (1995a,b). These atmospheres are representative of larger grids that are currently being completed. We discuss differences between the different grids and compare theoretical color-temperature relations and the fundamental color temperature relations derived from: (a) the infrared-flux method (IRFM) for A-K stars (Blackwell & Lynas-Gray 1994; Alonso et al. 1996) and M dwarfs (Tsuji et al. 1996a); (b) lunar occultations (Ridgway et al. 1980) and (c) Michelson interferometry (Di Benedetto & Rabbia 1987; Dyck et al. 1996; Perrin et al. 1997) for K-M giants, and (d) eclipsing binaries for M dwarfs. We also compare color - color relations and color - bolometric correction relations and find good agreement except for a few colors. The more realistic fluxes and spectra of the new model grids should enable accurate population synthesis models to be derived and permit the ready calibration of non-standard photometric passbands. As well, the theoretical bolometric corrections and temperature - color relations will permit reliable transformation from observed color magnitude diagrams to theoretical HR diagrams. Tables 1-6 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  14. Bolometric properties of reactively sputtered TiO2-x films for thermal infrared image sensors

    NASA Astrophysics Data System (ADS)

    Reddy, Y. Ashok Kumar; Kang, In-Ku; Shin, Young Bong; Lee, Hee Chul

    2015-09-01

    A heat-sensitive layer (TiO2-x ) was successfully deposited by RF reactive magnetron sputtering for infrared (IR) image sensors at different relative mass flow of oxygen gas (R O2) levels. The deposition rate was decreased with an increase in the percentage of R O2 from 3.4% to 3.7%. TiO2-x samples deposited at room temperature exhibited amorphous characteristics. Oxygen deficiency causes a change in the oxidation state and is assumed to decrease the Ti4+ component on the surfaces of TiO2-x films. The oxygen stoichiometry (x) in TiO2-x films decreased from 0.35 to 0.05 with increasing the R O2 level from 3.4% to 3.7%, respectively. In TiO2-x -test-patterned samples, the resistivity decreased with the temperature, confirming the typical semiconducting property. The bolometric properties of the resistivity, temperature coefficient of resistance (TCR), and the flicker (1/ f) noise parameter were determined at different x values in TiO2-x samples. The rate of TCR dependency with regard to the 1/ f noise parameter is a universal bolometric parameter (β), acting as the dynamic element in a bolometer. It is high when a sample has a relatively low resistivity (0.82 Ω·cm) and a lower 1/ f noise parameter (3.16   ×   10-12). The results of this study indicate that reactively sputtered TiO2-x is a viable bolometric material for uncooled IR image sensor devices.

  15. Fast Marching Tree: a Fast Marching Sampling-Based Method for Optimal Motion Planning in Many Dimensions*

    PubMed Central

    Janson, Lucas; Schmerling, Edward; Clark, Ashley; Pavone, Marco

    2015-01-01

    In this paper we present a novel probabilistic sampling-based motion planning algorithm called the Fast Marching Tree algorithm (FMT*). The algorithm is specifically aimed at solving complex motion planning problems in high-dimensional configuration spaces. This algorithm is proven to be asymptotically optimal and is shown to converge to an optimal solution faster than its state-of-the-art counterparts, chiefly PRM* and RRT*. The FMT* algorithm performs a “lazy” dynamic programming recursion on a predetermined number of probabilistically-drawn samples to grow a tree of paths, which moves steadily outward in cost-to-arrive space. As such, this algorithm combines features of both single-query algorithms (chiefly RRT) and multiple-query algorithms (chiefly PRM), and is reminiscent of the Fast Marching Method for the solution of Eikonal equations. As a departure from previous analysis approaches that are based on the notion of almost sure convergence, the FMT* algorithm is analyzed under the notion of convergence in probability: the extra mathematical flexibility of this approach allows for convergence rate bounds—the first in the field of optimal sampling-based motion planning. Specifically, for a certain selection of tuning parameters and configuration spaces, we obtain a convergence rate bound of order O(n−1/d+ρ), where n is the number of sampled points, d is the dimension of the configuration space, and ρ is an arbitrarily small constant. We go on to demonstrate asymptotic optimality for a number of variations on FMT*, namely when the configuration space is sampled non-uniformly, when the cost is not arc length, and when connections are made based on the number of nearest neighbors instead of a fixed connection radius. Numerical experiments over a range of dimensions and obstacle configurations confirm our the-oretical and heuristic arguments by showing that FMT*, for a given execution time, returns substantially better solutions than either PRM* or RRT

  16. Design and initial operation of lost fast-ion probe based on thin Faraday films in CHS

    SciTech Connect

    Isobe, M.; Goto, K.; Toi, K.; Nagaoka, K.; Suzuki, C.; Yoshimura, Y.; Akiyama, T.; Nishimura, S.; Shimizu, A.; Nishiura, M.; Matsuoka, K.; Okamura, S.; Darrow, D. S.; CHS Team

    2006-10-15

    The purpose of this work is to measure lost fast ions as an ion current so as to make quantitative argument on flux of fast-ion loss possible. We have designed and constructed a lost fast-ion probe based on combination of thin Faraday films and small rectangular apertures, called FLIP, for the Compact Helical System. The current generated by escaping fast ions has been successfully measured with the FLIP in neutral-beam-heated plasmas. The FLIP detected increased flux of escaping fast ions while fast-ion-driven magnetohydrodynamics instabilities appear.

  17. Bolometric detector on the basis of single-wall carbon nanotube/polymer composite

    NASA Astrophysics Data System (ADS)

    Aliev, Ali E.

    2008-10-01

    Infrared imaging sensors that operate without cryogenic cooling have the potential to provide the military or civilian users with infrared vision capabilities packaged in a camera of extremely small size, weight and power consumption. We present here the uncooled bolometric sensor on the basis of single-walled carbon nanotubes (SWNTs) polymer composite with enhanced sensitivity. The voltage responsivity of device working at room temperatures exceeds 150 V/W. The absorption coefficient of single-wall carbon nanotubes was increased by involving Forster type energy transfer from polymer film to dispersed SWNT. The temperature gradient of resistivity was substantially improved by chemical functionalization of SWNT.

  18. Fast vision-based catheter 3D reconstruction.

    PubMed

    Moradi Dalvand, Mohsen; Nahavandi, Saeid; Howe, Robert D

    2016-07-21

    Continuum robots offer better maneuverability and inherent compliance and are well-suited for surgical applications as catheters, where gentle interaction with the environment is desired. However, sensing their shape and tip position is a challenge as traditional sensors can not be employed in the way they are in rigid robotic manipulators. In this paper, a high speed vision-based shape sensing algorithm for real-time 3D reconstruction of continuum robots based on the views of two arbitrary positioned cameras is presented. The algorithm is based on the closed-form analytical solution of the reconstruction of quadratic curves in 3D space from two arbitrary perspective projections. High-speed image processing algorithms are developed for the segmentation and feature extraction from the images. The proposed algorithms are experimentally validated for accuracy by measuring the tip position, length and bending and orientation angles for known circular and elliptical catheter shaped tubes. Sensitivity analysis is also carried out to evaluate the robustness of the algorithm. Experimental results demonstrate good accuracy (maximum errors of  ±0.6 mm and  ±0.5 deg), performance (200 Hz), and robustness (maximum absolute error of 1.74 mm, 3.64 deg for the added noises) of the proposed high speed algorithms. PMID:27352011

  19. Fast dictionary-based reconstruction for diffusion spectrum imaging.

    PubMed

    Bilgic, Berkin; Chatnuntawech, Itthi; Setsompop, Kawin; Cauley, Stephen F; Yendiki, Anastasia; Wald, Lawrence L; Adalsteinsson, Elfar

    2013-11-01

    Diffusion spectrum imaging reveals detailed local diffusion properties at the expense of substantially long imaging times. It is possible to accelerate acquisition by undersampling in q-space, followed by image reconstruction that exploits prior knowledge on the diffusion probability density functions (pdfs). Previously proposed methods impose this prior in the form of sparsity under wavelet and total variation transforms, or under adaptive dictionaries that are trained on example datasets to maximize the sparsity of the representation. These compressed sensing (CS) methods require full-brain processing times on the order of hours using MATLAB running on a workstation. This work presents two dictionary-based reconstruction techniques that use analytical solutions, and are two orders of magnitude faster than the previously proposed dictionary-based CS approach. The first method generates a dictionary from the training data using principal component analysis (PCA), and performs the reconstruction in the PCA space. The second proposed method applies reconstruction using pseudoinverse with Tikhonov regularization with respect to a dictionary. This dictionary can either be obtained using the K-SVD algorithm, or it can simply be the training dataset of pdfs without any training. All of the proposed methods achieve reconstruction times on the order of seconds per imaging slice, and have reconstruction quality comparable to that of dictionary-based CS algorithm. PMID:23846466

  20. Fast vision-based catheter 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Moradi Dalvand, Mohsen; Nahavandi, Saeid; Howe, Robert D.

    2016-07-01

    Continuum robots offer better maneuverability and inherent compliance and are well-suited for surgical applications as catheters, where gentle interaction with the environment is desired. However, sensing their shape and tip position is a challenge as traditional sensors can not be employed in the way they are in rigid robotic manipulators. In this paper, a high speed vision-based shape sensing algorithm for real-time 3D reconstruction of continuum robots based on the views of two arbitrary positioned cameras is presented. The algorithm is based on the closed-form analytical solution of the reconstruction of quadratic curves in 3D space from two arbitrary perspective projections. High-speed image processing algorithms are developed for the segmentation and feature extraction from the images. The proposed algorithms are experimentally validated for accuracy by measuring the tip position, length and bending and orientation angles for known circular and elliptical catheter shaped tubes. Sensitivity analysis is also carried out to evaluate the robustness of the algorithm. Experimental results demonstrate good accuracy (maximum errors of  ±0.6 mm and  ±0.5 deg), performance (200 Hz), and robustness (maximum absolute error of 1.74 mm, 3.64 deg for the added noises) of the proposed high speed algorithms.

  1. Fast optical recording media based on semiconductor nanostructures for image recording and processing

    SciTech Connect

    Kasherininov, P. G. Tomasov, A. A.

    2008-11-15

    Fast optical recording media based on semiconductor nanostructures (CdTe, GaAs) for image recording and processing with a speed to 10{sup 6} cycle/s (which exceeds the speed of known recording media based on metal-insulator-semiconductor-(liquid crystal) (MIS-LC) structures by two to three orders of magnitude), a photosensitivity of 10{sup -2}V/cm{sup 2}, and a spatial resolution of 5-10 (line pairs)/mm are developed. Operating principles of nanostructures as fast optical recording media and methods for reading images recorded in such media are described. Fast optical processors for recording images in incoherent light based on CdTe crystal nanostructures are implemented. The possibility of their application to fabricate image correlators is shown.

  2. Fast Object Motion Estimation Based on Dynamic Stixels.

    PubMed

    Morales, Néstor; Morell, Antonio; Toledo, Jonay; Acosta, Leopoldo

    2016-01-01

    The stixel world is a simplification of the world in which obstacles are represented as vertical instances, called stixels, standing on a surface assumed to be planar. In this paper, previous approaches for stixel tracking are extended using a two-level scheme. In the first level, stixels are tracked by matching them between frames using a bipartite graph in which edges represent a matching cost function. Then, stixels are clustered into sets representing objects in the environment. These objects are matched based on the number of stixels paired inside them. Furthermore, a faster, but less accurate approach is proposed in which only the second level is used. Several configurations of our method are compared to an existing state-of-the-art approach to show how our methodology outperforms it in several areas, including an improvement in the quality of the depth reconstruction. PMID:27483265

  3. Fast magneto-optic switch based on nanosecond pulses

    NASA Astrophysics Data System (ADS)

    Weng, Zi-Hua; Ruan, Jian-Jian; Lin, Shao-Han; Chen, Zhi-Min

    2011-09-01

    The paper studies an all fiber high-speed magneto-optic switch which includes an optical route, a nanosecond pulse generator, and a magnetic field module in order to reduce the switching time of the optical switch in the all optical network. A compact nanosecond pulse generator can be designed based on the special character of the avalanche transistor. The output current pulse of the nanosecond pulse generator is less than 5 ns, while the pulse amplitude is more than 100 V and the pulse width is about 10 to 20 ns, which is able to drive a high-speed magnetic field. A solenoid is used as the magnetic field module, and a bismuth-substituted rare-earth iron garnet single crystal is chosen as the Faraday rotator. By changing the direction of current in the solenoid quickly, the magnetization of the magneto-optic material is reversed, and the optical beam can be rapidly switched. The experimental results indicate that the switching time of the device is about 100 to 400 ns, which can partially meet the demand of the rapid development of the all optical network.

  4. Fast content-based image retrieval using dynamic cluster tree

    NASA Astrophysics Data System (ADS)

    Chen, Jinyan; Sun, Jizhou; Wu, Rongteng; Zhang, Yaping

    2008-03-01

    A novel content-based image retrieval data structure is developed in present work. It can improve the searching efficiency significantly. All images are organized into a tree, in which every node is comprised of images with similar features. Images in a children node have more similarity (less variance) within themselves in relative to its parent. It means that every node is a cluster and each of its children nodes is a sub-cluster. Information contained in a node includes not only the number of images, but also the center and the variance of these images. Upon the addition of new images, the tree structure is capable of dynamically changing to ensure the minimization of total variance of the tree. Subsequently, a heuristic method has been designed to retrieve the information from this tree. Given a sample image, the probability of a tree node that contains the similar images is computed using the center of the node and its variance. If the probability is higher than a certain threshold, this node will be recursively checked to locate the similar images. So will its children nodes if their probability is also higher than that threshold. If no sufficient similar images were founded, a reduced threshold value would be adopted to initiate a new seeking from the root node. The search terminates when it found sufficient similar images or the threshold value is too low to give meaningful sense. Experiments have shown that the proposed dynamic cluster tree is able to improve the searching efficiency notably.

  5. Fast spot-based multiscale simulations of granular drainage

    SciTech Connect

    Rycroft, Chris H.; Wong, Yee Lok; Bazant, Martin Z.

    2009-05-22

    We develop a multiscale simulation method for dense granular drainage, based on the recently proposed spot model, where the particle packing flows by local collective displacements in response to diffusing"spots'" of interstitial free volume. By comparing with discrete-element method (DEM) simulations of 55,000 spheres in a rectangular silo, we show that the spot simulation is able to approximately capture many features of drainage, such as packing statistics, particle mixing, and flow profiles. The spot simulation runs two to three orders of magnitude faster than DEM, making it an appropriate method for real-time control or optimization. We demonstrateextensions for modeling particle heaping and avalanching at the free surface, and for simulating the boundary layers of slower flow near walls. We show that the spot simulations are robust and flexible, by demonstrating that they can be used in both event-driven and fixed timestep approaches, and showing that the elastic relaxation step used in the model can be applied much less frequently and still create good results.

  6. Nanorod-Based Fast-Response Pressure-Sensitive Paints

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy; VanderWal, Randall

    2007-01-01

    A proposed program of research and development would be devoted to exploitation of nanomaterials in pressuresensitive paints (PSPs), which are used on wind-tunnel models for mapping surface pressures associated with flow fields. Heretofore, some success has been achieved in measuring steady-state pressures by use of PSPs, but success in measuring temporally varying pressures has been elusive because of the inherent slowness of the optical responses of these materials. A PSP contains a dye that luminesces in a suitable wavelength range in response to photoexcitation in a shorter wavelength range. The luminescence is quenched by oxygen at a rate proportional to the partial pressure of oxygen and thus proportional to the pressure of air. As a result, the intensity of luminescence varies inversely with the pressure of air. The major problem in developing a PSP that could be easily applied to a wind-tunnel model and could be useful for measuring rapidly varying pressure is to provide very high gas diffusivity for rapid, easy transport of oxygen to and from active dye molecules. Most PSPs include polymer-base binders, which limit the penetration of oxygen to dye molecules, thereby reducing responses to pressure fluctuations. The proposed incorporation of nanomaterials (somewhat more specifically, nanorods) would result in paints having nanostructured surfaces that, relative to conventional PSP surfaces, would afford easier and more nearly complete access of oxygen molecules to dye molecules. One measure of greater access is effective surface area: For a typical PSP as proposed applied to a given solid surface, the nanometer-scale structural features would result in an exposed surface area more than 100 times that of a conventional PSP, and the mass of proposed PSP needed to cover the surface would be less than tenth of the mass of the conventional PSP. One aspect of the proposed development would be to synthesize nanorods of Si/SiO2, in both tangle-mat and regular- array

  7. A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales

    NASA Technical Reports Server (NTRS)

    Fischer, M. L.; Alsop, D. C.; Cheng, E. S.; Clapp, A. C.; Cottingham, D. A.; Gundersen, J. O.; Koch, T. C.; Kreysa, E.; Meinhold, P. R.; Lange, A. E.

    1992-01-01

    We report the performance of a bolometric system designed to measure the anisotropy of the cosmic microwave background (CMB) radiation on angular scales from 0 deg 3 min to 3 deg. The system represents a collaborative effort combining a low-background 1 m diameter balloon-borne telescope with new multimode feed optics, a beam modulation mechanism with high stability, and a four-channel bolometric receiver with passbands centered near frequencies of 3 (90), 6 (180), 9 (270), and 12 (360) cm(exp -1) (GHz). The telescope was flown three times with the bolometric receiver and has demonstrated detector noise limited performance capable of reaching sensitivity levels of Delta(T)/T(sub CMB) is approximately equal to 10(exp -5) with detectors operated at T = 0.3 K.

  8. A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales

    NASA Technical Reports Server (NTRS)

    Fischer, M. L.; Alsop, D. C.; Cheng, E. S.; Clapp, A. C.; Cottingham, D. A.; Gundersen, J. O.; Koch, T. C.; Kreysa, E.; Meinhold, P. R.; Lange, A. E.

    1992-01-01

    The performance of a bolometric system designed to measure the anisotropy of the cosmic microwave background (CMB) radiation on angular scales from 0.3 to 3 deg is presented. The system represents a collaborative effort combining a low-background 1-m diameter balloon-borne telescope with new multimode feed optics, a beam modulation mechanism with high stability, and a four-channel bolometric receiver with passbands centered near frequencies of 3, 6, 9, and 12/cm (90, 180, 270, and 360 GHz). The telescope has been flown three times with the bolometric receiver and has demonstrated detector noise limited performance capable of reaching sensitivity levels of about 0.00001 with detectors operated at 0.3 K.

  9. A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales

    NASA Astrophysics Data System (ADS)

    Fischer, M. L.; Alsop, D. C.; Cheng, E. S.; Clapp, A. C.; Cottingham, D. A.; Gundersen, J. O.; Koch, T. C.; Kreysa, E.; Meinhold, P. R.; Lange, A. E.

    1992-12-01

    We report the performance of a bolometric system designed to measure the anisotropy of the cosmic microwave background (CMB) radiation on angular scales from 0 deg 3 min to 3 deg. The system represents a collaborative effort combining a low-background 1 m diameter balloon-borne telescope with new multimode feed optics, a beam modulation mechanism with high stability, and a four-channel bolometric receiver with passbands centered near frequencies of 3 (90), 6 (180), 9 (270), and 12 (360) cm-1 (GHz). The telescope was flown three times with the bolometric receiver and has demonstrated detector noise limited performance capable of reaching sensitivity levels of Delta(T)/TCMB is approximately equal to 10-5 with detectors operated at T = 0.3 K.

  10. A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales

    NASA Astrophysics Data System (ADS)

    Fischer, M. L.; Alsop, D. C.; Cheng, E. S.; Clapp, A. C.; Cottingham, D. A.; Gundersen, J. O.; Koch, T. C.; Kreysa, E.; Meinhold, P. R.; Lange, A. E.; Lubin, P. M.; Richards, P. L.; Smoot, G. F.

    1992-04-01

    The performance of a bolometric system designed to measure the anisotropy of the cosmic microwave background (CMB) radiation on angular scales from 0.3 to 3 deg is presented. The system represents a collaborative effort combining a low-background 1-m diameter balloon-borne telescope with new multimode feed optics, a beam modulation mechanism with high stability, and a four-channel bolometric receiver with passbands centered near frequencies of 3, 6, 9, and 12/cm (90, 180, 270, and 360 GHz). The telescope has been flown three times with the bolometric receiver and has demonstrated detector noise limited performance capable of reaching sensitivity levels of about 0.00001 with detectors operated at 0.3 K.

  11. Common and Specific Factors Approaches to Home-Based Treatment: I-FAST and MST

    ERIC Educational Resources Information Center

    Lee, Mo Yee; Greene, Gilbert J.; Fraser, J. Scott; Edwards, Shivani G.; Grove, David; Solovey, Andrew D.; Scott, Pamela

    2013-01-01

    Objectives: This study examined the treatment outcomes of integrated families and systems treatment (I-FAST), a moderated common factors approach, in reference to multisystemic therapy (MST), an established specific factor approach, for treating at risk children and adolescents and their families in an intensive community-based setting. Method:…

  12. Fast neutron mutants database and web displays at SoyBase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    SoyBase, the USDA-ARS soybean genetics and genomics database, has been expanded to include data for the fast neutron mutants produced by Bolon, Vance, et al. In addition to the expected text and sequence homology searches and visualization of the indels in the context of the genome sequence viewer, ...

  13. Design Considerations of Fast-cycling Synchrotrons Based on Superconducting Transmission Line Magnets

    SciTech Connect

    Piekarz, H.; Hays, S.; Huang, Y.; Shiltsev, V.; /Fermilab

    2008-06-01

    Fast-cycling synchrotrons are key instruments for accelerator based nuclear and high-energy physics programs. We explore a possibility to construct fast-cycling synchrotrons by using super-ferric, {approx}2 Tesla B-field dipole magnets powered with a superconducting transmission line. We outline both the low temperature (LTS) and the high temperature (HTS) superconductor design options and consider dynamic power losses for an accelerator with operation cycle of 0.5 Hz. We also briefly outline possible power supply system for such accelerator, and discuss the quench protection system for the magnet string powered by a transmission line conductor.

  14. Fast-moving target tracking system based on CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Miao, Zhun; Jiang, Jie; Zhang, Guangjun

    2008-10-01

    This paper introduces a fast-moving target tracking system based on CMOS (Complementary Metal-Oxygen Semiconductor) image sensor. A pipeline parallel architecture of region segmentation and first order moment algorithms on FPGA (Field Programmable Gate Array) platform enables driving the high frame rate CMOS image sensor and processing real-time images at the same time, extracting coordinates of the bright target spots in the high-rate consecutive image frames. In the end of this paper, an experiment proved that this system performs well in tracking fast-moving target in satisfying demand of speed and accuracy.

  15. Efficient Fast Stereo Acoustic Echo Cancellation Based on Pairwise Optimal Weight Realization Technique

    NASA Astrophysics Data System (ADS)

    Yukawa, Masahiro; Murakoshi, Noriaki; Yamada, Isao

    2006-12-01

    In stereophonic acoustic echo cancellation (SAEC) problem, fast and accurate tracking of echo path is strongly required for stable echo cancellation. In this paper, we propose a class of efficient fast SAEC schemes with linear computational complexity (with respect to filter length). The proposed schemes are based on pairwise optimal weight realization (POWER) technique, thus realizing a "best" strategy (in the sense of pairwise and worst-case optimization) to use multiple-state information obtained by preprocessing. Numerical examples demonstrate that the proposed schemes significantly improve the convergence behavior compared with conventional methods in terms of system mismatch as well as echo return loss enhancement (ERLE).

  16. Ultra Fast X-ray Streak Camera for TIM Based Platforms

    SciTech Connect

    Marley, E; Shepherd, R; Fulkerson, E S; James, L; Emig, J; Norman, D

    2012-05-02

    Ultra fast x-ray streak cameras are a staple for time resolved x-ray measurements. There is a need for a ten inch manipulator (TIM) based streak camera that can be fielded in a newer large scale laser facility. The LLNL ultra fast streak camera's drive electronics have been upgraded and redesigned to fit inside a TIM tube. The camera also has a new user interface that allows for remote control and data acquisition. The system has been outfitted with a new sensor package that gives the user more operational awareness and control.

  17. Detection of fast neutrons using detectors based on semi-insulating GaAs

    NASA Astrophysics Data System (ADS)

    Zat'ko, B.; Sedlačková, K.; Dubecký, F.; Boháček, P.; Sekáčová, M.; Nečas, V.

    2011-12-01

    Detectors with AuZn square Schottky contact of the area of 2.5 × 2.5 mm2 were fabricated. On the back side, the whole area AuGeNi eutectic ohmic contact was evaporated. The thickness of the base material (semi-insulating GaAs) was 220 μm. The connection of 4 detectors in parallel was tested to get the detection area of 25 mm2. The 239Pu-Be fast neutron source with energies between 0.5 and 12 MeV was used in experimental measurements. We have investigated the optimal thickness of HDPE (high-density polyethylene) conversion layer for fast neutron detection. The spectra of the neutrons were measured by detectors covered by HDPE converter of different thicknesses. The fast neutron detection efficiency proved experimentally was compared with results from simulations performed by MCNPX (Monte Carlo N-Particle eXtended) code.

  18. Fast and accurate circle detection using gradient-direction-based segmentation.

    PubMed

    Wu, Jianping; Chen, Ke; Gao, Xiaohui

    2013-06-01

    We present what is to our knowledge the first-ever fitting-based circle detection algorithm, namely, the fast and accurate circle (FACILE) detection algorithm, based on gradient-direction-based edge clustering and direct least square fitting. Edges are segmented into sections based on gradient directions, and each section is validated separately; valid arcs are then fitted and further merged to extract more accurate circle information. We implemented the algorithm with the C++ language and compared it with four other algorithms. Testing on simulated data showed FACILE was far superior to the randomized Hough transform, standard Hough transform, and fast circle detection using gradient pair vectors with regard to processing speed and detection reliability. Testing on publicly available standard datasets showed FACILE outperformed robust and precise circular detection, a state-of-art arc detection method, by 35% with regard to recognition rate and is also a significant improvement over the latter in processing speed. PMID:24323106

  19. A new method for estimating the bolometric properties of Ibc supernovae

    NASA Astrophysics Data System (ADS)

    Cano, Zach

    2013-09-01

    The bolometric properties (nickel mass, ejecta mass and kinetic energies) of 61 Ibc supernovae (SNe), including 20 gamma-ray burst and X-ray flash (GRB/XRF), 19 Ib, 13 Ic and nine Ic-BL (broad-lined) SNe are presented. All of the available BVRI photometry in the literature have been collected and used in a new method that utilizes a template supernova (SN 1998bw) and an analytical model to accurately estimate the bolometric properties of each SN. A statistical analysis of the bolometric properties is then performed, where it is found that GRB/XRF SNe are the most energetic, and eject more mass (including nickel content) than Ib, Ic and Ic-BL SNe. The results are then compared to the existing progenitor models of Ibc SNe, where it is concluded that it is highly likely that at least two progenitor channels exist for producing a Ibc SN: most Ibc SNe arise via binary interactions, where the mass of the stellar progenitor is less than what is attributed to a Wolf-Rayet star. Conversely, the progenitors of Ic-BL and GRB/XRF are more massive than those of Ib and Ic SNe, and a key difference between GRB/XRF SNe and Ic-BL SNe is progenitor metallicity, where it is observed that the latter arise from more metal-rich progenitors. As mass loss in massive stars is influenced by metal content, the progenitors of Ic-BL SNe lose more mass, and therefore more angular momentum, before exploding. It is expected that the explosion mechanism in Ic-BL and GRB/XRF SNe is `engine-driven' (i.e. an accreting black hole, or a millisecond magnetar), but the increased mass loss of Ic-BL SNe means the central engine is less powerful than in GRB/XRF SNe. Finally, it is found that the SNe that accompany GRBs and XRFs are statistically indistinguishable, and some mechanism other than metallicity is needed to explain the differences in the high-energy components in these events.

  20. A fluctuation-induced plasma transport diagnostic based upon fast-Fourier transform spectral analysis

    NASA Technical Reports Server (NTRS)

    Powers, E. J.; Kim, Y. C.; Hong, J. Y.; Roth, J. R.; Krawczonek, W. M.

    1978-01-01

    A diagnostic, based on fast Fourier-transform spectral analysis techniques, that provides experimental insight into the relationship between the experimentally observable spectral characteristics of the fluctuations and the fluctuation-induced plasma transport is described. The model upon which the diagnostic technique is based and its experimental implementation is discussed. Some characteristic results obtained during the course of an experimental study of fluctuation-induced transport in the electric field dominated NASA Lewis bumpy torus plasma are presented.

  1. Fast computer simulation of reconstructed image from rainbow hologram based on GPU

    NASA Astrophysics Data System (ADS)

    Shuming, Jiao; Yoshikawa, Hiroshi

    2015-10-01

    A fast computer simulation solution for rainbow hologram reconstruction based on GPU is proposed. In the commonly used segment Fourier transform method for rainbow hologram reconstruction, the computation of 2D Fourier transform on each hologram segment is very time consuming. GPU-based parallel computing can be applied to improve the computing speed. Compared with CPU computing, simulation results indicate that our proposed GPU computing can effectively reduce the computation time by as much as eight times.

  2. Fast-Response Calmodulin-Based Fluorescent Indicators Reveal Rapid Intracellular Calcium Dynamics

    PubMed Central

    Helassa, Nordine; Zhang, Xiao-hua; Conte, Ianina; Scaringi, John; Esposito, Elric; Bradley, Jonathan; Carter, Thomas; Ogden, David; Morad, Martin; Török, Katalin

    2015-01-01

    Faithful reporting of temporal patterns of intracellular Ca2+ dynamics requires the working range of indicators to match the signals. Current genetically encoded calmodulin-based fluorescent indicators are likely to distort fast Ca2+ signals by apparent saturation and integration due to their limiting fluorescence rise and decay kinetics. A series of probes was engineered with a range of Ca2+ affinities and accelerated kinetics by weakening the Ca2+-calmodulin-peptide interactions. At 37 °C, the GCaMP3-derived probe termed GCaMP3fast is 40-fold faster than GCaMP3 with Ca2+ decay and rise times, t1/2, of 3.3 ms and 0.9 ms, respectively, making it the fastest to-date. GCaMP3fast revealed discreet transients with significantly faster Ca2+ dynamics in neonatal cardiac myocytes than GCaMP6f. With 5-fold increased two-photon fluorescence cross-section for Ca2+ at 940 nm, GCaMP3fast is suitable for deep tissue studies. The green fluorescent protein serves as a reporter providing important novel insights into the kinetic mechanism of target recognition by calmodulin. Our strategy to match the probe to the signal by tuning the affinity and hence the Ca2+ kinetics of the indicator is applicable to the emerging new generations of calmodulin-based probes. PMID:26527405

  3. Scintillator-based diagnostic for fast ion loss measurements on DIII-D.

    PubMed

    Fisher, R K; Pace, D C; García-Muñoz, M; Heidbrink, W W; Muscatello, C M; Van Zeeland, M A; Zhu, Y B

    2010-10-01

    A new scintillator-based fast ion loss detector has been installed on DIII-D with the time response (>100 kHz) needed to study energetic ion losses induced by Alfvén eigenmodes and other MHD instabilities. Based on the design used on ASDEX Upgrade, the diagnostic measures the pitch angle and gyroradius of ion losses based on the position of the ions striking the two-dimensional scintillator. For fast time response measurements, a beam splitter and fiberoptics couple a portion of the scintillator light to a photomultiplier. Reverse orbit following techniques trace the lost ions to their possible origin within the plasma. Initial DIII-D results showing prompt losses and energetic ion loss due to MHD instabilities are discussed. PMID:21033833

  4. CUORE and Beyond: Bolometric Techniques to Explore Inverted Neutrino Mass Hierarchy

    NASA Astrophysics Data System (ADS)

    Artusa, D. R.; Avignone, F. T.; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; Brofferio, C.; Bucci, C.; Cai, X. Z.; Camacho, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Carbone, L.; Cardani, L.; Carrettoni, M.; Casali, N.; Chiesa, D.; Chott, N.; Clemenza, M.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Dafinei, I.; Dally, A.; Datskov, V.; De Biasi, A.; Deninno, M. M.; Di Domizio, S.; di Vacri, M. L.; Ejzak, L.; Fang, D. Q.; Farach, H. A.; Faverzani, M.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Goett, J.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Heeger, K. M.; Hennings-Yeomans, R.; Huang, H. Z.; Kadel, R.; Kazkaz, K.; Keppel, G.; Kolomensky, Yu. G.; Li, Y. L.; Ligi, C.; Liu, X.; Ma, Y. G.; Maiano, C.; Maino, M.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Moggi, N.; Morganti, S.; Napolitano, T.; Nisi, S.; Nones, C.; Norman, E. B.; Nucciotti, A.; O'Donnell, T.; Orio, F.; Orlandi, D.; Ouellet, J. L.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pira, C.; Pirro, S.; Previtali, E.; Rampazzo, V.; Rosenfeld, C.; Rusconi, C.; Sala, E.; Sangiorgio, S.; Scielzo, N. D.; Sisti, M.; Smith, A. R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tian, W. D.; Tomei, C.; Trentalange, S.; Ventura, G.; Vignati, M.; Wang, B. S.; Wang, H. W.; Wielgus, L.; Wilson, J.; Winslow, L. A.; Wise, T.; Woodcraft, A.; Zanotti, L.; Zarra, C.; Zhu, B. X.; Zucchelli, S.

    The CUORE (Cryogenic Underground Observatory for Rare Events) experiment will search for neutrinoless double beta decay of 130Te. With 741 kg of TeO2 crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, CUORE will be one of the most competitive neutrinoless double beta decay experiments on the horizon. With five years of live time, CUORE projected neutrinoless double beta decay half-life sensitivity is 1.6 × 1026 y at 1σ (9.5 × 1025 y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40-100 meV (50-130 meV). Further background rejection with auxiliary light detector can significantly improve the search sensitivity and competitiveness of bolometric detectors to fully explore the inverted neutrino mass hierarchy with 130Te and possibly other double beta decay candidate nuclei.

  5. A two-stage 3He- 4He fridge for bolometric photometry

    NASA Astrophysics Data System (ADS)

    Maiani, T.; de Bernardis, P.; De Petris, M.; Granata, S.; Masi, S.; Orlando, A.; Aquilini, E.; Cardoni, P.; Martinis, L.; Scaramuzzi, F.

    1999-09-01

    We describe the design, construction and performance of a double stage 3He- 4He refrigerator, built to cool down a multiband bolometric photometer at the MITO telescope. The fridge was optimized to work without external pumps, with the main cryostat providing a 4.2 K thermostat at sea level and a 4.0 K one at high mountain pressure conditions. The measured ultimate temperature of the fridge is 290 mK, with a hold time of 81 h. The external heat input on the cold flange is ˜35 μW, with the main bath at 4.0 K. The recycle time is 8 h with a heat input on the thermostat during recycling of ˜6800 J. The cryostat can operate without any relevant changes to performance tilted down to 50° from the vertical position, as needed at the telescope focal plane.

  6. Bolometric detectors for the high frequency instrument on the Planck surveyor

    NASA Technical Reports Server (NTRS)

    Koch, T. C.; Paine, C.; Husted, L.; Yun, M.; Lange, A.; Bock, J.; Jones, B.; Ade, P.; Sudiwala, R.

    2002-01-01

    The High Frequency Instrument (HFI) on Planck will obtain all-sky images of the Cosmic Microwave Background (CMB) and other astrophysical sources of emission with resolution of 9 arcniin at 100 GHz, 7 arcmin at 143 GHz and 5 arcniin at 217, 353, 545 and 857 GHz. The HFI focal plane will contain 48 silicon nitride micromesh bolometric detectors operating from a 100 mK heat sink. Four detectors in each of the 6 bands will detect the sum of the power in both linear polarizations. An additional 4 pair of detectors will provide sensitivity to linear polarization of emission at 143, 217 and 353 GHz. We report on the development of these detectors, which are being produced at the JPL Micro Devices Laboratory, packaged at JPL Electronics Packaging, characterized at 100 mK before delivery to our HFI consortium partners at the UWCC, UK.

  7. A Fast Na+/Ca2+-Based Action Potential in a Marine Diatom

    PubMed Central

    Taylor, Alison R.

    2009-01-01

    Background Electrical impulses in animals play essential roles in co-ordinating an array of physiological functions including movement, secretion, environmental sensing and development. Underpinning many of these electrical signals is a fast Na+-based action potential that has been fully characterised only in cells associated with the neuromuscular systems of multicellular animals. Such rapid action potentials are thought to have evolved with the first metazoans, with cnidarians being the earliest representatives. The present study demonstrates that a unicellular protist, the marine diatom Odontella sinensis, can also generate a fast Na+/Ca2+ based action potential that has remarkably similar biophysical and pharmacological properties to invertebrates and vertebrate cardiac and skeletal muscle cells. Methodology/Principal Findings The kinetic, ionic and pharmacological properties of the rapid diatom action potential were examined using single electrode current and voltage clamp techniques. Overall, the characteristics of the fast diatom currents most closely resemble those of vertebrate and invertebrate muscle Na+/Ca2+ currents. Conclusions/Significance This is the first demonstration of voltage-activated Na+ channels and the capacity to generate fast Na+-based action potentials in a unicellular photosynthetic organism. The biophysical and pharmacological characteristics together with the presence of a voltage activated Na+/Ca2+ channel homologue in the recently sequenced genome of the diatom Thalassiosira pseudonana, provides direct evidence supporting the hypothesis that this rapid signalling mechanism arose in ancestral unicellular eukaryotes and has been retained in at least two phylogenetically distant lineages of eukaryotes; opisthokonts and the stramenopiles. The functional role of the fast animal-like action potential in diatoms remains to be elucidated but is likely involved in rapid environmental sensing of these widespread and successful marine protists

  8. Study of wave-particle interaction between fast Magnetosonic and energetic electrons based on numerical simulation

    NASA Astrophysics Data System (ADS)

    Fu, S.

    2015-12-01

    There are many energetic electrons in the radiation belt of Earth. When the geomagnetic activity becomes stronger, the energy flux of energetic electrons will increase to more than ten times in the outer radiation belt, therefore it is very important to study how the energetic electrons generate and the lifetime of energetic electrons for space weather research. The acceleration of electrons in radiation belt is mainly depending on wave-particle interaction: the whistler mode chorus is the main driver for local acceleration mechanism, which could accelerate and loss energetic electrons; the geomagnetic pulsation ULF wave will cause energetic electron inward radial diffusion which will charge the electrons; recently observation results show us that the fast magnetosonic waves may also accelerate energetic electrons. For the reason that we try to study the wave-particle interaction between fast Magnetosonic and energetic electrons based on numerical simulation, in which the most important past is at the storm time the combination of highly warped Earth magnetic field and fast magnetosonic wave field will be applied for the electromagnetic environment of moving test particles. The energy, pitch angle and cross diffusion coefficients will be calculated respectively in this simulation to study how the electrons receive energy from fast magnetosonic wave. The diffusion coefficients within different dipole Earth magnetic field and non-dipole storm magnetic field are compared, while dynamics of electrons at selected initial energys are shown in our study.

  9. Assessing cognitive processes with diffusion model analyses: a tutorial based on fast-dm-30

    PubMed Central

    Voss, Andreas; Voss, Jochen; Lerche, Veronika

    2015-01-01

    Diffusion models can be used to infer cognitive processes involved in fast binary decision tasks. The model assumes that information is accumulated continuously until one of two thresholds is hit. In the analysis, response time distributions from numerous trials of the decision task are used to estimate a set of parameters mapping distinct cognitive processes. In recent years, diffusion model analyses have become more and more popular in different fields of psychology. This increased popularity is based on the recent development of several software solutions for the parameter estimation. Although these programs make the application of the model relatively easy, there is a shortage of knowledge about different steps of a state-of-the-art diffusion model study. In this paper, we give a concise tutorial on diffusion modeling, and we present fast-dm-30, a thoroughly revised and extended version of the fast-dm software (Voss and Voss, 2007) for diffusion model data analysis. The most important improvement of the fast-dm version is the possibility to choose between different optimization criteria (i.e., Maximum Likelihood, Chi-Square, and Kolmogorov-Smirnov), which differ in applicability for different data sets. PMID:25870575

  10. Arikan and Alamouti matrices based on fast block-wise inverse Jacket transform

    NASA Astrophysics Data System (ADS)

    Lee, Moon Ho; Khan, Md Hashem Ali; Kim, Kyeong Jin

    2013-12-01

    Recently, Lee and Hou (IEEE Signal Process Lett 13: 461-464, 2006) proposed one-dimensional and two-dimensional fast algorithms for block-wise inverse Jacket transforms (BIJTs). Their BIJTs are not real inverse Jacket transforms from mathematical point of view because their inverses do not satisfy the usual condition, i.e., the multiplication of a matrix with its inverse matrix is not equal to the identity matrix. Therefore, we mathematically propose a fast block-wise inverse Jacket transform of orders N = 2 k , 3 k , 5 k , and 6 k , where k is a positive integer. Based on the Kronecker product of the successive lower order Jacket matrices and the basis matrix, the fast algorithms for realizing these transforms are obtained. Due to the simple inverse and fast algorithms of Arikan polar binary and Alamouti multiple-input multiple-output (MIMO) non-binary matrices, which are obtained from BIJTs, they can be applied in areas such as 3GPP physical layer for ultra mobile broadband permutation matrices design, first-order q-ary Reed-Muller code design, diagonal channel design, diagonal subchannel decompose for interference alignment, and 4G MIMO long-term evolution Alamouti precoding design.

  11. Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness

    NASA Astrophysics Data System (ADS)

    Gu, Shu-Ying; Jin, Sheng-Peng; Gao, Xie-Feng; Mu, Jian

    2016-05-01

    Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness are presented. For the purpose of fast response and homogeneous dispersion of magnetic nanoparticles, oleic acid was used to improve the dispersibility of Fe3O4 nanoparticles in a polymer matrix. A homogeneous distribution of Fe3O4 nanoparticles in the polymer matrix was obtained for nanocomposites with low Fe3O4 loading content. A small agglomeration was observed for nanocomposites with 6 wt% and 9 wt% loading content, leading to a small decline in the mechanical properties. PLAU and its nanocomposites have glass transition around 52 °C, which can be used as the triggering temperature. PLAU and its nanocomposites have shape fixity ratios above 99%, shape recovery ratios above 82% for the first cycle and shape recovery ratios above 91% for the second cycle. PLAU and its nanocomposites also exhibit a fast water bath or magnetic responsiveness. The magnetic recovery time decreases with an increase in the loading content of Fe3O4 nanoparticles due to an improvement in heating performance for increased weight percentage of fillers. The nanocomposites have fast responses in an alternating magnetic field and have potential application in biomedical areas such as intravascular stent.

  12. Fast Traffic Sign Recognition with a Rotation Invariant Binary Pattern Based Feature

    PubMed Central

    Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun

    2015-01-01

    Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed. PMID:25608217

  13. FPS-RAM: Fast Prefix Search RAM-Based Hardware for Forwarding Engine

    NASA Astrophysics Data System (ADS)

    Zaitsu, Kazuya; Yamamoto, Koji; Kuroda, Yasuto; Inoue, Kazunari; Ata, Shingo; Oka, Ikuo

    Ternary content addressable memory (TCAM) is becoming very popular for designing high-throughput forwarding engines on routers. However, TCAM has potential problems in terms of hardware and power costs, which limits its ability to deploy large amounts of capacity in IP routers. In this paper, we propose new hardware architecture for fast forwarding engines, called fast prefix search RAM-based hardware (FPS-RAM). We designed FPS-RAM hardware with the intent of maintaining the same search performance and physical user interface as TCAM because our objective is to replace the TCAM in the market. Our RAM-based hardware architecture is completely different from that of TCAM and has dramatically reduced the costs and power consumption to 62% and 52%, respectively. We implemented FPS-RAM on an FPGA to examine its lookup operation.

  14. Fast-neutron imaging spectrometer based on liquid scintillator loaded capillaries

    NASA Astrophysics Data System (ADS)

    Mor, I.; Vartsky, D.; Brandis, M.; Goldberg, M. B.; Bar, D.; Mardor, I.; Dangendorf, V.; Bromberger, B.

    2012-04-01

    A fast-neutron imaging detector based on micrometric glass capillaries loaded with high refractive index liquid scintillator has been developed Neutron energy spectrometry is based on event-by-event detection and reconstruction of neutron energy from the measurement of the knock-on proton track length and the amount of light produced in the track. In addition, the detector can provide fast-neutron imaging with position resolution of tens of microns. The detector principle of operation, simulations and experimental results obtained with a small detector prototype are described. We have demonstrated by simulation energy spectrum reconstruction for incident neutrons in the range of 4-20 MeV. The energy resolution in this energy range was 10-15%. Preliminary experimental results of detector spectroscopic capabilities are presented

  15. Fast mode decision for multiview video coding based on depth maps

    NASA Astrophysics Data System (ADS)

    Cernigliaro, Gianluca; Jaureguizar, Fernando; Ortega, Antonio; Cabrera, Julián; García, Narciso

    2009-01-01

    A new fast mode decision (FMD) algorithm for multi-view video coding (MVC) is presented. One of the multiple views is encoded based on traditional methods, which provides a mode decision (MD) map, while encoding of the other views is based on the analysis of the homogeneity of the depth map. This approach reduces the burden of the rate-distortion (RD) motion analysis based on the availability of a depth map, which is assumed to be provided by the acquisition process. Although there is a slight decrease of performance in rate-distortion terms, there is a significant reduction in computational cost.

  16. Simple, fast and accurate eight points amplitude estimation method of sinusoidal signals for DSP based instrumentation

    NASA Astrophysics Data System (ADS)

    Vizireanu, D. N.; Halunga, S. V.

    2012-04-01

    A simple, fast and accurate amplitude estimation algorithm of sinusoidal signals for DSP based instrumentation is proposed. It is shown that eight samples, used in two steps, are sufficient. A practical analytical formula for amplitude estimation is obtained. Numerical results are presented. Simulations have been performed when the sampled signal is affected by white Gaussian noise and when the samples are quantized on a given number of bits.

  17. Fast object tracking based on template matching and region information fusion extraction

    NASA Astrophysics Data System (ADS)

    Liu, Liman; Chen, Yun; Liu, Haihua

    2015-12-01

    In this paper, a fast object tracking algorithm based on template matching and region information fusion extraction is proposed. In the prediction framework, the data connection task is achieved by object template and object information extraction. And then the object is tracked accurately by using the object motion information. We handle the tracking shift by using the confidence estimation strategy. The experiments show that the proposed algorithm has robust performance.

  18. New Fast Shower Max Detector Based on MCP as an Active Element

    NASA Astrophysics Data System (ADS)

    Ronzhin, A.; Los, S.; Ramberg, E.; Spiropulu, M.; Apresyan, A.; Xie, S.; Kim, H.; Zatserklyaniy, A.

    2015-02-01

    One possibility to make a fast and radiation resistant shower maximum (SM) detector is to use a secondary emitter as an active element. We present below test beam results, obtained with different types of photo detectors based on micro channel plates (MCP) as secondary emitter. The SM time resolution - we obtained for this new type of detector is at the level of 20-30 ps. We estimate that a significant contribution to the detector response originates from secondary emission of the MCP.

  19. A FastA based compilation of higher plant mitochondrial tRNA genes.

    PubMed Central

    Sagliano, A; Volpicella, M; Gallerani, R; Ceci, L R

    1998-01-01

    A new version of the compilation of higher plant mitochondrial tRNA genes (http://www.ebi.ac.uk/service ) has been obtained by means of the FastA program for similarity searching in nucleotide sequence Databases. This approach improves the previous collection, which was based on literature data analysis. The current compilation contains 158 sequences with an increase of 43 units. In this paper, some interesting features of the new entries are briefly presented. PMID:9399821

  20. The Suzaku view of highly ionized outflows in AGN - II. Location, energetics and scalings with bolometric luminosity

    NASA Astrophysics Data System (ADS)

    Gofford, J.; Reeves, J. N.; McLaughlin, D. E.; Braito, V.; Turner, T. J.; Tombesi, F.; Cappi, M.

    2015-08-01

    Ongoing studies with XMM-Newton have shown that powerful accretion disc winds, as revealed through highly ionized Fe K-shell absorption at E ≥ 6.7 keV, are present in a significant fraction of active galactic nuclei (AGNs) in the local Universe (Tombesi et al. 2010a). In Gofford et al., we analysed a sample of 51 Suzaku-observed AGNs and independently detected Fe K absorption in ˜40 per cent of the sample, and we measured the properties of the absorbing gas. In this work, we build upon these results to consider the properties of the associated wind. On average, the fast winds (vw > 0.01c) are located ˜ 1015-18 cm (typically ˜102-4 rs) from their black hole, their mass outflow rates are of the order of < dot{M}_w > ˜ 0.01-1 M⊙ yr-1 or {˜ }(0.01-1)dot{M}_Edd and kinetic power is constrained to ˜ 1043-45 erg s-1, equivalent to ˜(0.1-10 per cent)LEdd. We find a fundamental correlation between the source bolometric luminosity and the wind velocity, with v_w ∝ L_bol^{α } and α =0.4^{+0.3}_{-0.2} (90 per cent confidence), which indicates that more luminous AGN tend to harbour faster Fe K winds. The mass outflow rate dot{M}_w, kinetic power Lw and momentum flux dot{p}_w of the winds are also consequently correlated with Lbol, such that more massive and more energetic winds are present in more luminous AGN. We investigate these properties in the framework of a continuum-driven wind, showing that the observed relationships are broadly consistent with a wind being accelerated by continuum-scattering. We find that, globally, a significant fraction (˜85 per cent) of the sample can plausibly exceed the Lw/Lbol ˜ 0.5 per cent threshold thought necessary for feedback, while 45 per cent may also exceed the less conservative ˜5 per cent of Lbol threshold as well. This suggests that the winds may be energetically significant for AGN-host-galaxy feedback processes.

  1. MetaSensing's FastGBSAR: ground based radar for deformation monitoring

    NASA Astrophysics Data System (ADS)

    Rödelsperger, Sabine; Meta, Adriano

    2014-10-01

    The continuous monitoring of ground deformation and structural movement has become an important task in engineering. MetaSensing introduces a novel sensor system, the Fast Ground Based Synthetic Aperture Radar (FastGBSAR), based on innovative technologies that have already been successfully applied to airborne SAR applications. The FastGBSAR allows the remote sensing of deformations of a slope or infrastructure from up to a distance of 4 km. The FastGBSAR can be setup in two different configurations: in Real Aperture Radar (RAR) mode it is capable of accurately measuring displacements along a linear range profile, ideal for monitoring vibrations of structures like bridges and towers (displacement accuracy up to 0.01 mm). Modal parameters can be determined within half an hour. Alternatively, in Synthetic Aperture Radar (SAR) configuration it produces two-dimensional displacement images with an acquisition time of less than 5 seconds, ideal for monitoring areal structures like dams, landslides and open pit mines (displacement accuracy up to 0.1 mm). The MetaSensing FastGBSAR is the first ground based SAR instrument on the market able to produce two-dimensional deformation maps with this high acquisition rate. By that, deformation time series with a high temporal and spatial resolution can be generated, giving detailed information useful to determine the deformation mechanisms involved and eventually to predict an incoming failure. The system is fully portable and can be quickly installed on bedrock or a basement. The data acquisition and processing can be fully automated leading to a low effort in instrument operation and maintenance. Due to the short acquisition time of FastGBSAR, the coherence between two acquisitions is very high and the phase unwrapping is simplified enormously. This yields a high density of resolution cells with good quality and high reliability of the acquired deformations. The deformation maps can directly be used as input into an Early

  2. Early-branching or fast-evolving eukaryotes? An answer based on slowly evolving positions.

    PubMed

    Philippe, H; Lopez, P; Brinkmann, H; Budin, K; Germot, A; Laurent, J; Moreira, D; Müller, M; Le Guyader, H

    2000-06-22

    The current paradigm of eukaryotic evolution is based primarily on comparative analysis of ribosomal RNA sequences. It shows several early-emerging lineages, mostly amitochondriate, which might be living relics of a progressive assembly of the eukaryotic cell. However, the analysis of slow-evolving positions, carried out with the newly developed slow-fast method, reveals that these lineages are, in terms of nucleotide substitution, fast-evolving ones, misplaced at the base of the tree by a long branch attraction artefact. Since the fast-evolving groups are not always the same, depending on which macromolecule is used as a marker, this explains most of the observed incongruent phylogenies. The current paradigm of eukaryotic evolution thus has to be seriously re-examined as the eukaryotic phylogeny is presently best summarized by a multifurcation. This is consistent with the Big Bang hypothesis that all extant eukaryotic lineages are the result of multiple cladogeneses within a relatively brief period, although insufficiency of data is also a possible explanation for the lack of resolution. For further resolution, rare evolutionary events such as shared insertions and/or deletions or gene fusions might be helpful. PMID:10902687

  3. Fast entropy-based CABAC rate estimation for mode decision in HEVC.

    PubMed

    Chen, Wei-Gang; Wang, Xun

    2016-01-01

    High efficiency video coding (HEVC) seeks the best code tree configuration, the best prediction unit division and the prediction mode, by evaluating the rate-distortion functional in a recursive way and using a "try all and select the best" strategy. Further, HEVC only supports context adaptive binary arithmetic coding (CABAC), which has the disadvantage of being highly sequential and having strong data dependencies, as the entropy coder. So, the development of a fast rate estimation algorithm for CABAC-based coding has a great practical significance for mode decision in HEVC. There are three elementary steps in CABAC encoding process: binarization, context modeling, and binary arithmetic coding. Typical approaches to fast CABAC rate estimation simplify or eliminate the last two steps, but leave the binarization step unchanged. To maximize the reduction of computational complexity, we propose a fast entropy-based CABAC rate estimator in this paper. It eliminates not only the modeling and the coding steps, but also the binarization step. Experimental results demonstrate that the proposed estimator is able to reduce the computational complexity of the mode decision in HEVC by 9-23 % with negligible PSNR loss and BD-rate increment, and therefore exhibits applicability to practical HEVC encoder implementation. PMID:27386240

  4. A fast preamplifier concept for SiPM-based time-of-flight PET detectors

    NASA Astrophysics Data System (ADS)

    Huizenga, J.; Seifert, S.; Schreuder, F.; van Dam, H. T.; Dendooven, P.; Löhner, H.; Vinke, R.; Schaart, D. R.

    2012-12-01

    Silicon photomultipliers (SiPMs) offer high gain and fast response to light, making them interesting for fast timing applications such as time-of-flight (TOF) PET. To fully exploit the potential of these photosensors, dedicated preamplifiers that do not deteriorate the rise time and signal-to-noise ratio are crucial. Challenges include the high sensor capacitance, typically >300 pF for a 3 mm×3 mm SiPM sensor, as well as oscillation issues. Here we present a preamplifier concept based on low noise, high speed transistors, designed for optimum timing performance. The input stage consists of a transimpedance common-base amplifier with a very low input impedance even at high frequencies, which assures a good linearity and avoids that the high detector capacitance affects the amplifier bandwidth. The amplifier has a fast timing output as well as a 'slow' energy output optimized for determining the total charge content of the pulse. The rise time of the amplifier is about 300 ps. The measured coincidence resolving time (CRT) for 511 keV photon pairs using the amplifiers in combination with 3 mm×3 mm SiPMs (Hamamatsu MPPC-S10362-33-050C) coupled to 3 mm×3 mm×5 mm LaBr3:Ce and LYSO:Ce crystals equals 95 ps FWHM and 138 ps FWHM, respectively.

  5. A fast multispectral light synthesiser based on LEDs and a diffraction grating

    PubMed Central

    Belušič, Gregor; Ilić, Marko; Meglič, Andrej; Pirih, Primož

    2016-01-01

    Optical experiments often require fast-switching light sources with adjustable bandwidths and intensities. We constructed a wavelength combiner based on a reflective planar diffraction grating and light emitting diodes with emission peaks from 350 to 630 nm that were positioned at the angles corresponding to the first diffraction order of the reversed beam. The combined output beam was launched into a fibre. The spacing between 22 equally wide spectral bands was about 15 nm. The time resolution of the pulse-width modulation drivers was 1 ms. The source was validated with a fast intracellular measurement of the spectral sensitivity of blowfly photoreceptors. In hyperspectral imaging of Xenopus skin circulation, the wavelength resolution was adequate to resolve haemoglobin absorption spectra. The device contains no moving parts, has low stray light and is intrinsically capable of multi-band output. Possible applications include visual physiology, biomedical optics, microscopy and spectroscopy. PMID:27558155

  6. A fast quaternion-based orientation optimizer via virtual rotation for human motion tracking.

    PubMed

    Lee, Jung Keun; Park, Edward J

    2009-05-01

    For real-time ambulatory human motion tracking with low-cost inertial/magnetic sensors, a computationally efficient and robust algorithm for estimating orientation is critical. This paper presents a quaternion-based orientation optimizer for tracking human body motion, using triaxis rate gyro, accelerometer, and magnetometer signals. The proposed optimizer uses a Gauss-Newton (G-N) method for finding the best-fit quaternion. In order to decrease the computing time, the optimizer is formulated using a virtual rotation concept that allows very fast quaternion updates compared to the conventional G-N method. In addition, to guard against the effects of fast body motions and temporary ferromagnetic disturbances, a situational measurement vector selection procedure is adopted in conjunction with the G-N optimizer. The accuracy of orientation estimates is validated experimentally, using arm motion trials. PMID:19473934

  7. Development of fast neutron radiography system based on portable neutron generator

    NASA Astrophysics Data System (ADS)

    Yi, Chia Jia; Nilsuwankosit, Sunchai

    2016-01-01

    Due to the high installation cost, the safety concern and the immobility of the research reactors, the neutron radiography system based on portable neutron generator is proposed. Since the neutrons generated from a portable neutron generator are mostly the fast neutrons, the system is emphasized on using the fast neutrons for the purpose of conducting the radiography. In order to suppress the influence of X-ray produced by the neutron generator, a combination of a shielding material sandwiched between two identical imaging plates is used. A binary XOR operation is then applied for combining the information from the imaging plates. The raw images obtained confirm that the X-ray really has a large effect and that XOR operation can help enhance the effect of the neutrons.

  8. A cargo inspection system based on pulsed fast neutron analysis (PFNA).

    PubMed

    Ipe, N E; Olsher, R; Ryge, P; Mrozack, J; Thieu, J

    2005-01-01

    A cargo inspection system based on pulsed fast neutron analysis (PFNA) is to be used at a border crossing to detect explosives and contraband hidden in trucks and cargo containers. Neutrons are produced by the interaction of deuterons in a deuterium target mounted on a moveable scan arm. The collimated pulsed fast neutron beam is used to determine the location and composition of objects in a cargo container. The neutrons produce secondary gamma rays that are characteristic of the object's elemental composition. The cargo inspection system building consists of an accelerator room and an inspection tunnel. The accelerator room is shielded and houses the injector, accelerator and the neutron production gas target. The inspection tunnel is partially shielded. The truck or container to be inspected will be moved through the inspection tunnel by a conveyor system. The facility and radiation source terms considered in the shielding design are described. PMID:16604657

  9. A fast multispectral light synthesiser based on LEDs and a diffraction grating.

    PubMed

    Belušič, Gregor; Ilić, Marko; Meglič, Andrej; Pirih, Primož

    2016-01-01

    Optical experiments often require fast-switching light sources with adjustable bandwidths and intensities. We constructed a wavelength combiner based on a reflective planar diffraction grating and light emitting diodes with emission peaks from 350 to 630 nm that were positioned at the angles corresponding to the first diffraction order of the reversed beam. The combined output beam was launched into a fibre. The spacing between 22 equally wide spectral bands was about 15 nm. The time resolution of the pulse-width modulation drivers was 1 ms. The source was validated with a fast intracellular measurement of the spectral sensitivity of blowfly photoreceptors. In hyperspectral imaging of Xenopus skin circulation, the wavelength resolution was adequate to resolve haemoglobin absorption spectra. The device contains no moving parts, has low stray light and is intrinsically capable of multi-band output. Possible applications include visual physiology, biomedical optics, microscopy and spectroscopy. PMID:27558155

  10. Dynamical programming based turbulence velocimetry for fast visible imaging of tokamak plasma.

    PubMed

    Banerjee, Santanu; Zushi, H; Nishino, N; Mishra, K; Onchi, T; Kuzmin, A; Nagashima, Y; Hanada, K; Nakamura, K; Idei, H; Hasegawa, M; Fujisawa, A

    2015-03-01

    An orthogonal dynamic programming (ODP) based particle image velocimetry (PIV) technique is developed to measure the time resolved flow field of the fluctuating structures at the plasma edge and scrape off layer (SOL) of tokamaks. This non-intrusive technique can provide two dimensional velocity fields at high spatial and temporal resolution from a fast framing image sequence and hence can provide better insights into plasma flow as compared to conventional probe measurements. Applicability of the technique is tested with simulated image pairs. Finally, it is applied to tangential fast visible images of QUEST plasma to estimate the SOL flow in inboard poloidal null-natural divertor configuration. This technique is also applied to investigate the intricate features of the core of the run-away dominated phase following the injection of a large amount of neutrals in the target Ohmic plasma. Development of the ODP-PIV code and its applicability on actual plasma images is reported. PMID:25832227

  11. A Fast and Robust Ellipse-Detection Method Based on Sorted Merging

    PubMed Central

    Ren, Guanghui; Zhao, Yaqin; Jiang, Lihui

    2014-01-01

    A fast and robust ellipse-detection method based on sorted merging is proposed in this paper. This method first represents the edge bitmap approximately with a set of line segments and then gradually merges the line segments into elliptical arcs and ellipses. To achieve high accuracy, a sorted merging strategy is proposed: the merging degrees of line segments/elliptical arcs are estimated, and line segments/elliptical arcs are merged in descending order of the merging degrees, which significantly improves the merging accuracy. During the merging process, multiple properties of ellipses are utilized to filter line segment/elliptical arc pairs, making the method very efficient. In addition, an ellipse-fitting method is proposed that restricts the maximum ratio of the semimajor axis and the semiminor axis, further improving the merging accuracy. Experimental results indicate that the proposed method is robust to outliers, noise, and partial occlusion and is fast enough for real-time applications. PMID:24782661

  12. Dynamical programming based turbulence velocimetry for fast visible imaging of tokamak plasma

    NASA Astrophysics Data System (ADS)

    Banerjee, Santanu; Zushi, H.; Nishino, N.; Mishra, K.; Onchi, T.; Kuzmin, A.; Nagashima, Y.; Hanada, K.; Nakamura, K.; Idei, H.; Hasegawa, M.; Fujisawa, A.

    2015-03-01

    An orthogonal dynamic programming (ODP) based particle image velocimetry (PIV) technique is developed to measure the time resolved flow field of the fluctuating structures at the plasma edge and scrape off layer (SOL) of tokamaks. This non-intrusive technique can provide two dimensional velocity fields at high spatial and temporal resolution from a fast framing image sequence and hence can provide better insights into plasma flow as compared to conventional probe measurements. Applicability of the technique is tested with simulated image pairs. Finally, it is applied to tangential fast visible images of QUEST plasma to estimate the SOL flow in inboard poloidal null-natural divertor configuration. This technique is also applied to investigate the intricate features of the core of the run-away dominated phase following the injection of a large amount of neutrals in the target Ohmic plasma. Development of the ODP-PIV code and its applicability on actual plasma images is reported.

  13. Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Yin, Xindao; Shi, Luyao; Shu, Huazhong; Luo, Limin; Coatrieux, Jean-Louis; Toumoulin, Christine

    2013-08-01

    In abdomen computed tomography (CT), repeated radiation exposures are often inevitable for cancer patients who receive surgery or radiotherapy guided by CT images. Low-dose scans should thus be considered in order to avoid the harm of accumulative x-ray radiation. This work is aimed at improving abdomen tumor CT images from low-dose scans by using a fast dictionary learning (DL) based processing. Stemming from sparse representation theory, the proposed patch-based DL approach allows effective suppression of both mottled noise and streak artifacts. The experiments carried out on clinical data show that the proposed method brings encouraging improvements in abdomen low-dose CT images with tumors.

  14. Variable disparity-motion estimation based fast three-view video coding

    NASA Astrophysics Data System (ADS)

    Bae, Kyung-Hoon; Kim, Seung-Cheol; Hwang, Yong Seok; Kim, Eun-Soo

    2009-02-01

    In this paper, variable disparity-motion estimation (VDME) based 3-view video coding is proposed. In the encoding, key-frame coding (KFC) based motion estimation and variable disparity estimation (VDE) for effectively fast three-view video encoding are processed. These proposed algorithms enhance the performance of 3-D video encoding/decoding system in terms of accuracy of disparity estimation and computational overhead. From some experiments, stereo sequences of 'Pot Plant' and 'IVO', it is shown that the proposed algorithm's PSNRs is 37.66 and 40.55 dB, and the processing time is 0.139 and 0.124 sec/frame, respectively.

  15. Bolometric temperature and young stars in the Taurus and Ophiuchus complexes

    NASA Technical Reports Server (NTRS)

    Chen, H.; Myers, P. C.; Ladd, E. F.; Wood, D. O. S.

    1995-01-01

    We calculated bolometric temperature (T(sub bol)) and luminosity (L(sub bol)) for 128 young stellar objects (YSOs) in Taurus, 74 in the Ophiuchus 'core', and 33 in the Ophiuchus 'off-core' region. We have constructed the bolometric luminosity-temperature (BLT) diagram, the log-log plot of L(sub bol) versus T(sub bol), for the three samples. T(sub bol) is defined as the temperature of a blackbody having the same frequency as the observed continuum spectrum. It measures the redness (or coldness) of an astronomical source. The BLT diagram is analogous to the H-R diagram and allows for a direct and quantitative comparison of YSOs at a wide variety of evolutionary states, ranging from the most deeply embedded stars to T Tauri stars nearly on the main sequence. We found (1) T(sub bol) increases monotonically from embedded sources (approximately 60-500 K) to classical T Tauri stars (approximately 1000-3000 K) to weak-line T Tauri stars (approximately 2000-5000 K); (2) T(sub bol) correlates reasonably well with the age inferred from the evolutionary models of pre-main-sequence stars and protostars for embedded 'protostars' and weak-line T Tauri stars. There is no significant correlation for the classical T Tauri stars. These results can be understood in terms of dissipation of circumstellar dust envelope and disk during the early stages of stellar evolution. Sources in the three regions have different distributions in the BLT diagram. The Ophiuchus core has the highest fraction of cold sources among the three regions. These cold sources are also more luminous than the YSOs in the other regions. The Ophiuchus off-core sample is dominated by the more evolved pre-main-sequence stars. The Taurus sources have distributions intermediate in L(sub bol), T(sub bol), and age between the Ophiuchus core and off-core distributions. These may suggest differences in the star formation history, and possibly in the stellar masses and mass accretion rates in these star-forming regions.

  16. Accelerated materials design of fast oxygen ionic conductors based on first principles calculations

    NASA Astrophysics Data System (ADS)

    He, Xingfeng; Mo, Yifei

    Over the past decades, significant research efforts have been dedicated to seeking fast oxygen ion conductor materials, which have important technological applications in electrochemical devices such as solid oxide fuel cells, oxygen separation membranes, and sensors. Recently, Na0.5Bi0.5TiO3 (NBT) was reported as a new family of fast oxygen ionic conductor. We will present our first principles computation study aims to understand the O diffusion mechanisms in the NBT material and to design this material with enhanced oxygen ionic conductivity. Using the NBT materials as an example, we demonstrate the computation capability to evaluate the phase stability, chemical stability, and ionic diffusion of the ionic conductor materials. We reveal the effects of local atomistic configurations and dopants on oxygen diffusion and identify the intrinsic limiting factors in increasing the ionic conductivity of the NBT materials. Novel doping strategies were predicted and demonstrated by the first principles calculations. In particular, the K doped NBT compound achieved good phase stability and an order of magnitude increase in oxygen ionic conductivity of up to 0.1 S cm-1 at 900 K compared to the experimental Mg doped compositions. Our results provide new avenues for the future design of the NBT materials and demonstrate the accelerated design of new ionic conductor materials based on first principles techniques. This computation methodology and workflow can be applied to the materials design of any (e.g. Li +, Na +) fast ion-conducting materials.

  17. Fast ellipsometric measurements based on a single crystal photo-elastic modulator.

    PubMed

    Petkovšek, R; Petelin, Jaka; Možina, J; Bammer, F

    2010-09-27

    For quality control in high volume manufacturing of thin layers and for tracking of physical and chemical processes, ellipsometry is a common measurement technology. For such kinds of applications we present a novel approach of fast ellipsometric measurements. Instead of a conventional setup that uses a standard photo-elastic modulator, we use a 92 kHz Single Crystal Photo-Elastic Modulator (SCPEM), which is a LiTaO3 crystal with a size of 28 × 9 × 4 mm. This small, simple, and cost-effective solution also offers the advantage of direct control of the retardation via the current amplitude, which is important for repeatability of the measurements. Instead of a Lock-In Amplifier, an automated digital processing based on a fast analog to digital converter controlled by a highly flexible Field Programmable Gate Array is used. This and the extremely compact and efficient polarization modulation allow fast ellipsometric testing where the upper limit of measurement rates is mainly limited by the desired accuracy and repeatability of the measurements. The standard deviation that is related to the repeatability +/-0.002° for dielectric layers can be easily reached. PMID:20941038

  18. Fast similarity search for protein 3D structures using topological pattern matching based on spatial relations.

    PubMed

    Park, Sung-Hee; Ryu, Keun Ho; Gilbert, David

    2005-08-01

    Similarity search for protein 3D structures become complex and computationally expensive due to the fact that the size of protein structure databases continues to grow tremendously. Recently, fast structural similarity search systems have been required to put them into practical use in protein structure classification whilst existing comparison systems do not provide comparison results on time. Our approach uses multi-step processing that composes of a preprocessing step to represent geometry of protein structures with spatial objects, a filter step to generate a small candidate set using approximate topological string matching, and a refinement step to compute a structural alignment. This paper describes the preprocessing and filtering for fast similarity search using the discovery of topological patterns of secondary structure elements based on spatial relations. Our system is fully implemented by using Oracle 8i spatial. We have previously shown that our approach has the advantage of speed of performance compared with other approach such as DALI. This work shows that the discovery of topological relations of secondary structure elements in protein structures by using spatial relations of spatial databases is practical for fast structural similarity search for proteins. PMID:16187404

  19. A CFD-based wind solver for a fast response transport and dispersion model

    SciTech Connect

    Gowardhan, Akshay A; Brown, Michael J; Pardyjak, Eric R; Senocak, Inanc

    2010-01-01

    In many cities, ambient air quality is deteriorating leading to concerns about the health of city inhabitants. In urban areas with narrow streets surrounded by clusters of tall buildings, called street canyons, air pollution from traffic emissions and other sources is difficult to disperse and may accumulate resulting in high pollutant concentrations. For various situations, including the evacuation of populated areas in the event of an accidental or deliberate release of chemical, biological and radiological agents, it is important that models should be developed that produce urban flow fields quickly. For these reasons it has become important to predict the flow field in urban street canyons. Various computational techniques have been used to calculate these flow fields, but these techniques are often computationally intensive. Most fast response models currently in use are at a disadvantage in these cases as they are unable to correlate highly heterogeneous urban structures with the diagnostic parameterizations on which they are based. In this paper, a fast and reasonably accurate computational fluid dynamics (CFD) technique that solves the Navier-Stokes equations for complex urban areas has been developed called QUIC-CFD (Q-CFD). This technique represents an intermediate balance between fast (on the order of minutes for a several block problem) and reasonably accurate solutions. The paper details the solution procedure and validates this model for various simple and complex urban geometries.

  20. BFL: a node and edge betweenness based fast layout algorithm for large scale networks

    PubMed Central

    Hashimoto, Tatsunori B; Nagasaki, Masao; Kojima, Kaname; Miyano, Satoru

    2009-01-01

    Background Network visualization would serve as a useful first step for analysis. However, current graph layout algorithms for biological pathways are insensitive to biologically important information, e.g. subcellular localization, biological node and graph attributes, or/and not available for large scale networks, e.g. more than 10000 elements. Results To overcome these problems, we propose the use of a biologically important graph metric, betweenness, a measure of network flow. This metric is highly correlated with many biological phenomena such as lethality and clusters. We devise a new fast parallel algorithm calculating betweenness to minimize the preprocessing cost. Using this metric, we also invent a node and edge betweenness based fast layout algorithm (BFL). BFL places the high-betweenness nodes to optimal positions and allows the low-betweenness nodes to reach suboptimal positions. Furthermore, BFL reduces the runtime by combining a sequential insertion algorim with betweenness. For a graph with n nodes, this approach reduces the expected runtime of the algorithm to O(n2) when considering edge crossings, and to O(n log n) when considering only density and edge lengths. Conclusion Our BFL algorithm is compared against fast graph layout algorithms and approaches requiring intensive optimizations. For gene networks, we show that our algorithm is faster than all layout algorithms tested while providing readability on par with intensive optimization algorithms. We achieve a 1.4 second runtime for a graph with 4000 nodes and 12000 edges on a standard desktop computer. PMID:19146673

  1. Wavelet-based vector quantization for high-fidelity compression and fast transmission of medical images.

    PubMed

    Mitra, S; Yang, S; Kustov, V

    1998-11-01

    Compression of medical images has always been viewed with skepticism, since the loss of information involved is thought to affect diagnostic information. However, recent research indicates that some wavelet-based compression techniques may not effectively reduce the image quality, even when subjected to compression ratios up to 30:1. The performance of a recently designed wavelet-based adaptive vector quantization is compared with a well-known wavelet-based scalar quantization technique to demonstrate the superiority of the former technique at compression ratios higher than 30:1. The use of higher compression with high fidelity of the reconstructed images allows fast transmission of images over the Internet for prompt inspection by radiologists at remote locations in an emergency situation, while higher quality images follow in a progressive manner if desired. Such fast and progressive transmission can also be used for downloading large data sets such as the Visible Human at a quality desired by the users for research or education. This new adaptive vector quantization uses a neural networks-based clustering technique for efficient quantization of the wavelet-decomposed subimages, yielding minimal distortion in the reconstructed images undergoing high compression. Results of compression up to 100:1 are shown for 24-bit color and 8-bit monochrome medical images. PMID:9848058

  2. Fast physical and pseudo random number generation based on a nonlinear optoelectronic oscillator

    NASA Astrophysics Data System (ADS)

    Mu, Penghua; Pan, Wei; Xiang, Shuiying; Li, Nianqiang; Liu, Xinkai; Zou, Xihua

    2015-08-01

    High speed random number generation (RNG) utilizing a nonlinear optoelectronic oscillator (OEO) is explored experimentally. It has been found that by simply adjusting either the injected optical power or the gain of the modulator driver, low complexity dynamics such as square wave, and more complex dynamics including fully developed chaos can be experimentally achieved. More importantly, physical RNG based on high-speed-oscilloscope measurements and pseudo RNG based on post-processing are implemented in this paper. The generated bit sequences pass all the standard statistical random tests, indicating that fast physical and pseudo RNG could be achieved based on the same OEO entropy source. Our results could provide further insight into the implementation of RNG based on chaotic optical systems.

  3. CUORE and beyond: Bolometric techniques to explore inverted neutrino mass hierarchy

    DOE PAGESBeta

    Artusa, D. R.; Avignone, F. T.; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; et al

    2015-03-24

    The CUORE (Cryogenic Underground Observatory for Rare Events) experiment will search for neutrinoless double beta decay of 130Te. With 741 kg of TeO2 crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, CUORE will be one of the most competitive neutrinoless double beta decay experiments on the horizon. With five years of live time, CUORE projected neutrinoless double beta decay half-life sensitivity is 1.6 × 1026 y at 1σ (9.5 × 1025 y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40–100 meVmore » (50–130 meV). Further background rejection with auxiliary light detector can significantly improve the search sensitivity and competitiveness of bolometric detectors to fully explore the inverted neutrino mass hierarchy with 130Te and possibly other double beta decay candidate nuclei.« less

  4. The millimeter-wave bolometric interferometer (MBI) for observing the cosmic microwave background polarization

    NASA Astrophysics Data System (ADS)

    Kim, Jaiseung

    This thesis describes the Millimeter-wave Bolometric Interferometer (MBI) to measure the Cosmic Microwave Background Polarization (CMBP) anisotropy at angular scales 0.5°--1° and a center frequency of 90 GHz. The measurement of the CMBP anisotropy on these angular scales will put more stringent constraints on cosmological models and parameters. The prototype instrument employs four corrugated feedhorns and cooled bolometers. Using a Butler beam combiner, beams from four feedhorns are correlated, yielding interferometric measurements of the CMBP. From these interferometric measurements, we can reconstruct the image of polarization by aperture synthesis and estimate the power spectrum of the CMBP by maximum likelihood method. We describe aperture synthesis and maximum likelihood method. We present the result of the image reconstruction and the power spectrum estimation from simulated MBI observations. With the planned sensitivity of the MBI, the MBI will be able to estimate the E mode power spectra of the CMBP in the multipole range (150 <= l <= 300) and put upper bounds on the B mode power spectra in the relevant multipoles. In the end, we describe all-sky imaging method from interferometric measurements developed for the Einstein Probe Interferometer for Cosmology (EPIC), which is the satellite version of the MBI.

  5. Spatially resolved bolometric measurement and electron temperature measurement using diode arrays

    SciTech Connect

    Koguchi, H.; Shimada, T.; Asai, T.; Yagi, Y.; Hirano, Y.; Sakakita, H.

    2004-10-01

    In this article, the measurement system for the total radiation and electron temperature profiles to be installed in a reversed-field pinch machine, toroidal pinch experiment, RX [TPE-RX, R/a=1.72/0.45 m, Ipbolometric measurement in the range from visible light to soft x-ray. Two sets of the arrays are used for the soft-x ray and electron temperature measurements employing a double-filter method. We will use this system to investigate the plasma-wall interaction, radiation loss, and confinement properties in the core plasma region. We will extend the use of this system for tomographic analysis of electron temperature, a concept of which is also presented.

  6. Study of parylene-coated NaI(Tl) at low temperatures for bolometric applications

    NASA Astrophysics Data System (ADS)

    Coron, N.; Cuesta, C.; García, E.; Ginestra, C.; Girard, T. A.; de Marcillac, P.; Martínez, M.; Ortigoza, Y.; Ortiz de Solórzano, A.; Pobes, C.; Puimedón, J.; Redon, T.; Sarsa, M. L.; Torres, L.; Valko, P.; Villar, J. A.

    2013-07-01

    NaI(Tl) is a widely-used scintillator at room temperature, and it is particularly interesting as a target for dark matter searches. Its hygroscopic character however makes it unsuitable for many applications, in particular for bolometric particle detection at very low temperature. Despite that, a NaI scintillating bolometer would provide unique features for dark matter detection, like β/γ background rejection through particle discrimination and thermal quenching factors for nuclear with respect to electron recoils close to one. With the long-term goal of developing a scintillating NaI bolometer, we have tested NaI(Tl) crystals coated by vapor-deposited poly-p-xylylene (parylene) and studied their optical and mechanical behavior in the mK range. We present X-ray excited scintillation spectra of a parylene-coated NaI(Tl) sample at 1.5, 4 and 77 K, and measurements of the light output as function of the temperature over the 1.5-300 K range. At 1.5 K the wavelength of maximum emission is observed at 325 nm. Thermoluminescence peaks are found at around 60, 95 and 150 K. Tests of mechanical and optical resistance to thermal cycles of 45 g parylene-coated NaI(Tl) cylinders are also presented, and the adequacy and effectiveness of this coating technique is discussed.

  7. CUORE and beyond: Bolometric techniques to explore inverted neutrino mass hierarchy

    SciTech Connect

    Artusa, D. R.; Avignone, F. T.; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; Brofferio, C.; Bucci, C.; Cai, X. Z.; Camacho, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Carbone, L.; Cardani, L.; Carrettoni, M.; Casali, N.; Chiesa, D.; Chott, N.; Clemenza, M.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Dafinei, I.; Dally, A.; Datskov, V.; De Biasi, A.; Deninno, M. M.; Di Domizio, S.; di Vacri, M. L.; Ejzak, L.; Fang, D. Q.; Farach, H. A.; Faverzani, M.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Goett, J.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Heeger, K. M.; Hennings-Yeomans, R.; Huang, H. Z.; Kadel, R.; Kazkaz, K.; Keppel, G.; Kolomensky, Yu. G.; Li, Y. L.; Ligi, C.; Liu, X.; Ma, Y. G.; Maiano, C.; Maino, M.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Moggi, N.; Morganti, S.; Napolitano, T.; Nisi, S.; Nones, C.; Norman, E. B.; Nucciotti, A.; O’Donnell, T.; Orio, F.; Orlandi, D.; Ouellet, J. L.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pira, C.; Pirro, S.; Previtali, E.; Rampazzo, V.; Rosenfeld, C.; Rusconi, C.; Sala, E.; Sangiorgio, S.; Scielzo, N. D.; Sisti, M.; Smith, A. R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tian, W. D.; Tomei, C.; Trentalange, S.; Ventura, G.; Vignati, M.; Wang, B. S.; Wang, H. W.; Wielgus, L.; Wilson, J.; Winslow, L. A.; Wise, T.; Woodcraft, A.; Zanotti, L.; Zarra, C.; Zhu, B. X.; Zucchelli, S.

    2015-03-24

    The CUORE (Cryogenic Underground Observatory for Rare Events) experiment will search for neutrinoless double beta decay of 130Te. With 741 kg of TeO2 crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, CUORE will be one of the most competitive neutrinoless double beta decay experiments on the horizon. With five years of live time, CUORE projected neutrinoless double beta decay half-life sensitivity is 1.6 × 1026 y at 1σ (9.5 × 1025 y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40–100 meV (50–130 meV). Further background rejection with auxiliary light detector can significantly improve the search sensitivity and competitiveness of bolometric detectors to fully explore the inverted neutrino mass hierarchy with 130Te and possibly other double beta decay candidate nuclei.

  8. The bolometric light curves and physical parameters of stripped-envelope supernovae

    NASA Astrophysics Data System (ADS)

    Prentice, S. J.; Mazzali, P. A.; Pian, E.; Gal-Yam, A.; Kulkarni, S. R.; Rubin, A.; Corsi, A.; Fremling, C.; Sollerman, J.; Yaron, O.; Arcavi, I.; Zheng, W.; Kasliwal, M. M.; Filippenko, A. V.; Cenko, S. B.; Cao, Y.; Nugent, P. E.

    2016-05-01

    The optical and optical/near-infrared pseudo-bolometric light curves of 85 stripped-envelope supernovae (SNe) are constructed using a consistent method and a standard cosmology. The light curves are analysed to derive temporal characteristics and peak luminosity Lp, enabling the construction of a luminosity function. Subsequently, the mass of 56Ni synthesized in the explosion, along with the ratio of ejecta mass to ejecta kinetic energy, are found. Analysis shows that host-galaxy extinction is an important factor in accurately determining luminosity values as it is significantly greater than Galactic extinction in most cases. It is found that broad-lined SNe Ic (SNe Ic-BL) and gamma-ray burst SNe are the most luminous subtypes with a combined median Lp, in erg s-1, of log(Lp) = 43.00 compared to 42.51 for SNe Ic, 42.50 for SNe Ib, and 42.36 for SNe IIb. It is also found that SNe Ic-BL synthesize approximately twice the amount of 56Ni compared with SNe Ic, Ib, and IIb, with median MNi = 0.34, 0.16, 0.14, and 0.11 M⊙, respectively. SNe Ic-BL, and to a lesser extent SNe Ic, typically rise from Lp/2 to Lp more quickly than SNe Ib/IIb; consequently, their light curves are not as broad.

  9. Bolometric kinetic inductance detector technology for sub-millimeter radiometric imaging

    NASA Astrophysics Data System (ADS)

    Hassel, Juha; Timofeev, Andrey V.; Vesterinen, Visa; Sipola, Hannu; Helistö, Panu; Aikio, Mika; Mäyrä, Aki; Grönberg, Leif; Luukanen, Arttu

    2015-10-01

    Radiometric sub-millimeter imaging is a candidate technology especially in security screening applications utilizing the property of radiation in the band of 0.2 - 1.0 THz to penetrate through dielectric substances such as clothing. The challenge of the passive technology is the fact that the irradiance corresponding to the blackbody radiation is very weak in this spectral band: about two orders of magnitude below that of the infrared band. Therefore the role of the detector technology is of ultimate importance to achieve sufficient sensitivity. In this paper we present results related to our technology relying on superconducting kinetic inductance detectors operating in a thermal (bolometric) mode. The detector technology is motivated by the fact that it is naturally suitable for scalable multiplexed readout systems, and operates with relatively simple cryogenics. We will review the basic concepts of the detectors, and provide experimental figures of merit. Furthermore, we will discuss the issues related to the scale-up of our detector technology into large 2D focal plane arrays.

  10. Material dependence of the distributed bolometric effect in resonant metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Cuadrado, Alexander; González, Francisco J.; Agustí, Jordi; Alda, Javier

    2012-10-01

    Optical antennas and passive resonant structures, as frequency selective surfaces, configure a new kind of optical systems that can be classified as belonging to the resonant optics area. Typical antenna-coupled detectors using microbolometers as transducers have included materials with the largest temperature coefficient of resistance (TCR) value. These materials are located at the feed point of the antenna where the electric current is the largest and the Joule effect dissipates the best. At the same time, the signal delivered to the external circuit is also depending on the resistivity value. This two-material configuration requires al least two e-beam fabrication steps. Although the resistivity values of metals changes substantially, the actual range of TCR values for most of metals is quite narrow. In this contribution we analyze how the choice of the material involved in the fabrication of resonant structures may enhance the bolometric effect. This analysis is made taking into account the electromagnetic interaction of light with the resonant element. The generated heat changes temperature and this variation produces the signal. Finite element package Comsol has been used to properly simulate the situation and predict the effect of changing the fabrication to an unique material, simplifying the manufacturing. Besides, the performance of the structure is depending on the used material.

  11. Fast calculation with point-based method to make CGHs of the polygon model

    NASA Astrophysics Data System (ADS)

    Ogihara, Yuki; Ichikawa, Tsubasa; Sakamoto, Yuji

    2014-02-01

    Holography is one of the three-dimensional technology. Light waves from an object are recorded and reconstructed by using a hologram. Computer generated holograms (CGHs), which are made by simulating light propagation using a computer, are able to represent virtual object. However, an enormous amount of computation time is required to make CGHs. There are two primary methods of calculating CGHs: the polygon-based method and the point-based method. In the polygon-based method with Fourier transforms, CGHs are calculated using a fast Fourier transform (FFT). The calculation of complex objects composed of multiple polygons requires as many FFTs, so unfortunately the calculation time become enormous. In contrast, in the point-based method, it is easy to express complex objects, an enormous calculation time is still required. Graphics processing units (GPUs) have been used to speed up the calculations of point-based method. Because a GPU is specialized for parallel computation and CGH calculation can be calculated independently for each pixel. However, expressing a planar object by the point-based method requires a signi cant increase in the density of points and consequently in the number of point light sources. In this paper, we propose a fast calculation algorithm to express planar objects by the point-based method with a GPU. The proposed method accelerate calculation by obtaining the distance between a pixel and the point light source from the adjacent point light source by a difference method. Under certain speci ed conditions, the difference between adjacent object points becomes constant, so the distance is obtained by only an additions. Experimental results showed that the proposed method is more effective than the polygon-based method with FFT when the number of polygons composing an objects are high.

  12. Fast plasmid based protein expression analysis in insect cells using an automated SplitGFP screen.

    PubMed

    Bleckmann, Maren; Schmelz, Stefan; Schinkowski, Christian; Scrima, Andrea; van den Heuvel, Joop

    2016-09-01

    Recombinant protein expression often presents a bottleneck for the production of proteins for use in many areas of animal-cell biotechnology. Difficult-to-express proteins require the generation of numerous expression constructs, where popular prokaryotic screening systems often fail to identify expression of multi domain or full-length protein constructs. Post-translational modified mammalian proteins require an alternative host system such as insect cells using the Baculovirus Expression Vector System (BEVS). Unfortunately this is time-, labor-, and cost-intensive. It is clearly desirable to find an automated and miniaturized fast multi-sample screening method for protein expression in such systems. With this in mind, in this paper a high-throughput initial expression screening method is described using an automated Microcultivation system in conjunction with fast plasmid based transient transfection in insect cells for the efficient generation of protein constructs. The applicability of the system is demonstrated for the difficult to express Nucleotide-binding Oligomerization Domain-containing protein 2 (NOD2). To enable detection of proper protein expression the rather weak plasmid based expression has been improved by a sensitive inline detection system. Here we present the functionality and application of the sensitive SplitGFP (split green fluorescent protein) detection system in insect cells. The successful expression of constructs is monitored by direct measurement of the fluorescence in the BioLector Microcultivation system. Additionally, we show that the results obtained with our plasmid-based SplitGFP protein expression screen correlate directly to the level of soluble protein produced in BEVS. In conclusion our automated SplitGFP screen outlines a sensitive, fast and reliable method reducing the time and costs required for identifying the optimal expression construct prior to large scale protein production in baculovirus infected insect cells

  13. Data acquisition system based on fast waveform digitizers for large neutrino detectors

    NASA Astrophysics Data System (ADS)

    Lukyanchenko, G.; Litvinovich, E.

    2016-02-01

    For large volume neutrino and antineutrino detectors it is crucial to have an efficient data acquisition system capable of digitizing data from thousands of detection channels. Here we present a flexible DAQ system architecture consisting of a large number of fast waveform digitizers and configurable FPGA-based trigger logic. The current implementation of the system is functioning in the Borexino neutrino detector providing zero dead time spectroscopy data in the energy range from 1 up to 100 MeV. Acquisition complex in combination with our custom analysis software is successfully being used for registration of geoneutrinos, as well as search for neutrino signal from GRBs, solar netrino spectroscopy and other applications.

  14. A Fast and Precise Indoor Localization Algorithm Based on an Online Sequential Extreme Learning Machine †

    PubMed Central

    Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua

    2015-01-01

    Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics. PMID:25599427

  15. A fast and precise indoor localization algorithm based on an online sequential extreme learning machine.

    PubMed

    Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua

    2015-01-01

    Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics. PMID:25599427

  16. Wide-bandwidth electron bolometric mixers - A 2DEG prototype and potential for low-noise THz receivers

    NASA Technical Reports Server (NTRS)

    Yang, Jian-Xun; Agahi, Farid; Dai, Dong; Musante, Charles F.; Grammer, Wes; Lau, Kei M.; Yngvesson, K. S.

    1993-01-01

    This paper presents a new type of electron bolometric ('hot electron') mixer. We have demonstrated a 3 order-of-magnitude improvement in the bandwidth compared with previously known types of electron bolometric mixers, by using the two-dimensional electron gas (2DEG) medium at the heterointerface between AlGaAs and GaAs. We have tested both in-house MOCVD-grown material and MBE material, with similar results. The conversion loss (Lc) at 94 GHz is presently 18 dB for a mixer operating at 20 K, and calculations indicate that Lc can be decreased to about 10 dB in future devices. Calculated and measured curves of Lc versus P(LO), and I(DC), respectively, agree well. We argue that there are several different configurations of electron bolometric mixers, which will all show wide bandwidth, and that these devices are likely to become important as low-noise THz receivers in the future.

  17. A catheterization-training simulator based on a fast multigrid solver.

    PubMed

    Li, Shun; Guo, Jixiang; Wang, Qiong; Meng, Qiang; Chui, Yim-Pan; Qin, Jing; Heng, Pheng-Ann

    2012-01-01

    A VR-based simulator helps trainees develop skills for catheterization, a fundamental but difficult procedure in vascular interventional radiology. A deformable model simulates the complicated behavior of guide wires and catheters, using the principle of minimum total potential energy. A fast, stable multigrid solver ensures realistic simulation and real-time interaction. In addition, the system employs geometrically and topologically accurate vascular models based on improved parallel-transport frames, and it implements efficient collision detection. Experiments evaluated the method's stability, the solver's execution time, how well the simulation preserved the catheter's curved tip, and the catheter deformation's realism. An empirical study based on a typical selective-catheterization procedure assessed the system's feasibility and effectiveness. PMID:24807310

  18. A fast-moving copper-based molecular shuttle: synthesis and dynamic properties.

    PubMed

    Durola, Fabien; Lux, Jacques; Sauvage, Jean-Pierre

    2009-01-01

    Fast-track changes: The synthesis of a new copper-based molecular shuttle is described, with a coordinating macrocycle based on a nonhindering but endocyclic ligand (see scheme), which makes the ligand exchange easier, and thus the motions of the ring along the thread faster.The present report deals with the synthesis of a two-station [2]rotaxane consisting of a dpbiiq-incorporating macrocycle (dpbiiq: 8,8'-diphenyl-3,3'-biisoquinoline) threaded by a coordinating fragment whose complexing units are a dpp and a terpy ligand (dpp: 2,9-diphenyl-1,10-phenanthroline; terpy: 2,2',6',2"-terpyridine). The [2]rotaxane was prepared in 11 steps from commercially available or easy-to-make molecules, without taking into account the preparation of the dpbiiq-containing 39-membered ring, which was available in our group. The ring-incorporated bidentate chelate is at the same time endocyclic and sterically nonhindering, which is a specific property of the dpbiiq-coordinating unit. This unique feature has a profound influence on the rate of the ring-and-copper translation motion between the two stations of the axle. Based on an analogous multistep strategy, a related molecular shuttle has also been prepared that contains exactly the same axle and stoppers as the first compound but whose threaded ring incorporates the sterically hindering dpp chelate. The translation motions of this other system are several orders of magnitude slower than the corresponding movements of the dpbiiq-based compound. The motion corresponding to the rearrangement of the unstable five-coordinate copper(I) form of the compounds is relatively fast for both shuttles; the half lifetime of the five-coordinate Cu(I) species being below 20 ms for the dpbiiq-containing system and below 1 s for the dpp-based molecule. The reverse motion corresponding to the rearrangement of the four-coordinate copper(II) complexes is much slower, especially for the dpp-based system. It is of the order of several hours for the dpp-based

  19. Efficient implementations of pipelined CORDIC-based IIR digital filters using fast orthonormal μ-rotations

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Parhi, Keshab K.; Hekstra, Gerben J.; Deprettere, Ed F. A.

    1998-10-01

    CORDIC based IIR digital filters are orthogonal filters whose internal computations consist of orthogonal transformations. These filters possess desirable properties for VLSI implementations such as regularity, local connection, low sensitivity to finite word-length implementation, and elimination of limit cycles. Recently, fine-grain pipelined CORDIC based IIR digital filter architectures which can perform the filtering operations at arbitrarily high sample rates at the cost of linear increase in hardware complexity have been developed. These pipelined architectures consists of only Givens rotations and a few additions which can be mapped onto CORDIC arithmetic based processors. However, in practical applications, implementations of GIvens rotations using traditional CORDIC arithmetic are quite expensive. For example, for 16 bit accuracy, using floating point data format with 16 bit mantissa and 5 bit exponent, it will require approximately 20 pairs of shift-add operations for one Givens rotation. In this paper, we propose an efficient implementation of pipelined CORDIC based IIR digital filters based on fast orthonormal (mu) -rotations. Using this method, the Givens rotations are approximated by angel corresponding to orthonormal (mu) -rotations, which are based on the idea of CORDIC and can perform rotation with minimal number of shift-add operations. We present various methods of construction for such orthonormal (mu) -rotations. A significant reduction of the number of required shift-add operations is achieved. All types of fast rotations can be implemented as a cascade of only four basic types of shift-add stages. These stages can be executed on a modified floating-point CORDIC architecture, making the pipelined filter highly suitable for VLSI implementations.

  20. GPU-based ultra-fast dose calculation using a finite size pencil beam model

    NASA Astrophysics Data System (ADS)

    Gu, Xuejun; Choi, Dongju; Men, Chunhua; Pan, Hubert; Majumdar, Amitava; Jiang, Steve B.

    2009-10-01

    Online adaptive radiation therapy (ART) is an attractive concept that promises the ability to deliver an optimal treatment in response to the inter-fraction variability in patient anatomy. However, it has yet to be realized due to technical limitations. Fast dose deposit coefficient calculation is a critical component of the online planning process that is required for plan optimization of intensity-modulated radiation therapy (IMRT). Computer graphics processing units (GPUs) are well suited to provide the requisite fast performance for the data-parallel nature of dose calculation. In this work, we develop a dose calculation engine based on a finite-size pencil beam (FSPB) algorithm and a GPU parallel computing framework. The developed framework can accommodate any FSPB model. We test our implementation in the case of a water phantom and the case of a prostate cancer patient with varying beamlet and voxel sizes. All testing scenarios achieved speedup ranging from 200 to 400 times when using a NVIDIA Tesla C1060 card in comparison with a 2.27 GHz Intel Xeon CPU. The computational time for calculating dose deposition coefficients for a nine-field prostate IMRT plan with this new framework is less than 1 s. This indicates that the GPU-based FSPB algorithm is well suited for online re-planning for adaptive radiotherapy.

  1. Distributed Function Mining for Gene Expression Programming Based on Fast Reduction.

    PubMed

    Deng, Song; Yue, Dong; Yang, Le-chan; Fu, Xiong; Feng, Ya-zhou

    2016-01-01

    For high-dimensional and massive data sets, traditional centralized gene expression programming (GEP) or improved algorithms lead to increased run-time and decreased prediction accuracy. To solve this problem, this paper proposes a new improved algorithm called distributed function mining for gene expression programming based on fast reduction (DFMGEP-FR). In DFMGEP-FR, fast attribution reduction in binary search algorithms (FAR-BSA) is proposed to quickly find the optimal attribution set, and the function consistency replacement algorithm is given to solve integration of the local function model. Thorough comparative experiments for DFMGEP-FR, centralized GEP and the parallel gene expression programming algorithm based on simulated annealing (parallel GEPSA) are included in this paper. For the waveform, mushroom, connect-4 and musk datasets, the comparative results show that the average time-consumption of DFMGEP-FR drops by 89.09%%, 88.85%, 85.79% and 93.06%, respectively, in contrast to centralized GEP and by 12.5%, 8.42%, 9.62% and 13.75%, respectively, compared with parallel GEPSA. Six well-studied UCI test data sets demonstrate the efficiency and capability of our proposed DFMGEP-FR algorithm for distributed function mining. PMID:26751200

  2. Predictive-based cross line for fast motion estimation in MPEG-4 videos

    NASA Astrophysics Data System (ADS)

    Fang, Hui; Jiang, Jianmin

    2004-05-01

    Block-based motion estimation is widely used in the field of video compression due to its feature of high processing speed and competitive compression efficiency. In the chain of compression operations, however, motion estimation still remains to be the most time-consuming process. As a result, any improvement in fast motion estimation will enable practical applications of MPEG techniques more efficient and more sustainable in terms of both processing speed and computing cost. To meet the requirements of real-time compression of videos and image sequences, such as video conferencing, remote video surveillance and video phones etc., we propose a new search algorithm and achieve fast motion estimation for MPEG compression standards based on existing algorithm developments. To evaluate the proposed algorithm, we adopted MPEG-4 and the prediction line search algorithm as the benchmarks to design the experiments. Their performances are measured by: (i) reconstructed video quality; (ii) processing time. The results reveal that the proposed algorithm provides a competitive alternative to the existing prediction line search algorithm. In comparison with MPEG-4, the proposed algorithm illustrates significant advantages in terms of processing speed and video quality.

  3. GPU-based ultra-fast dose calculation using a finite size pencil beam model.

    PubMed

    Gu, Xuejun; Choi, Dongju; Men, Chunhua; Pan, Hubert; Majumdar, Amitava; Jiang, Steve B

    2009-10-21

    Online adaptive radiation therapy (ART) is an attractive concept that promises the ability to deliver an optimal treatment in response to the inter-fraction variability in patient anatomy. However, it has yet to be realized due to technical limitations. Fast dose deposit coefficient calculation is a critical component of the online planning process that is required for plan optimization of intensity-modulated radiation therapy (IMRT). Computer graphics processing units (GPUs) are well suited to provide the requisite fast performance for the data-parallel nature of dose calculation. In this work, we develop a dose calculation engine based on a finite-size pencil beam (FSPB) algorithm and a GPU parallel computing framework. The developed framework can accommodate any FSPB model. We test our implementation in the case of a water phantom and the case of a prostate cancer patient with varying beamlet and voxel sizes. All testing scenarios achieved speedup ranging from 200 to 400 times when using a NVIDIA Tesla C1060 card in comparison with a 2.27 GHz Intel Xeon CPU. The computational time for calculating dose deposition coefficients for a nine-field prostate IMRT plan with this new framework is less than 1 s. This indicates that the GPU-based FSPB algorithm is well suited for online re-planning for adaptive radiotherapy. PMID:19794244

  4. TH-E-BRE-08: GPU-Monte Carlo Based Fast IMRT Plan Optimization

    SciTech Connect

    Li, Y; Tian, Z; Shi, F; Jiang, S; Jia, X

    2014-06-15

    Purpose: Intensity-modulated radiation treatment (IMRT) plan optimization needs pre-calculated beamlet dose distribution. Pencil-beam or superposition/convolution type algorithms are typically used because of high computation speed. However, inaccurate beamlet dose distributions, particularly in cases with high levels of inhomogeneity, may mislead optimization, hindering the resulting plan quality. It is desire to use Monte Carlo (MC) methods for beamlet dose calculations. Yet, the long computational time from repeated dose calculations for a number of beamlets prevents this application. It is our objective to integrate a GPU-based MC dose engine in lung IMRT optimization using a novel two-steps workflow. Methods: A GPU-based MC code gDPM is used. Each particle is tagged with an index of a beamlet where the source particle is from. Deposit dose are stored separately for beamlets based on the index. Due to limited GPU memory size, a pyramid space is allocated for each beamlet, and dose outside the space is neglected. A two-steps optimization workflow is proposed for fast MC-based optimization. At first step, rough beamlet dose calculations is conducted with only a small number of particles per beamlet. Plan optimization is followed to get an approximated fluence map. In the second step, more accurate beamlet doses are calculated, where sampled number of particles for a beamlet is proportional to the intensity determined previously. A second-round optimization is conducted, yielding the final Result. Results: For a lung case with 5317 beamlets, 10{sup 5} particles per beamlet in the first round, and 10{sup 8} particles per beam in the second round are enough to get a good plan quality. The total simulation time is 96.4 sec. Conclusion: A fast GPU-based MC dose calculation method along with a novel two-step optimization workflow are developed. The high efficiency allows the use of MC for IMRT optimizations.

  5. Three-dimensional spatiotemporal features for fast content-based retrieval of focal liver lesions.

    PubMed

    Roy, Sharmili; Chi, Yanling; Liu, Jimin; Venkatesh, Sudhakar K; Brown, Michael S

    2014-11-01

    Content-based image retrieval systems for 3-D medical datasets still largely rely on 2-D image-based features extracted from a few representative slices of the image stack. Most 2 -D features that are currently used in the literature not only model a 3-D tumor incompletely but are also highly expensive in terms of computation time, especially for high-resolution datasets. Radiologist-specified semantic labels are sometimes used along with image-based 2-D features to improve the retrieval performance. Since radiological labels show large interuser variability, are often unstructured, and require user interaction, their use as lesion characterizing features is highly subjective, tedious, and slow. In this paper, we propose a 3-D image-based spatiotemporal feature extraction framework for fast content-based retrieval of focal liver lesions. All the features are computer generated and are extracted from four-phase abdominal CT images. Retrieval performance and query processing times for the proposed framework is evaluated on a database of 44 hepatic lesions comprising of five pathological types. Bull's eye percentage score above 85% is achieved for three out of the five lesion pathologies and for 98% of query lesions, at least one same type of lesion is ranked among the top two retrieved results. Experiments show that the proposed system's query processing is more than 20 times faster than other already published systems that use 2-D features. With fast computation time and high retrieval accuracy, the proposed system has the potential to be used as an assistant to radiologists for routine hepatic tumor diagnosis. PMID:24919041

  6. A ZnO nanowire-based photo-inverter with pulse-induced fast recovery

    NASA Astrophysics Data System (ADS)

    Ali Raza, Syed Raza; Lee, Young Tack; Hosseini Shokouh, Seyed Hossein; Ha, Ryong; Choi, Heon-Jin; Im, Seongil

    2013-10-01

    We demonstrate a fast response photo-inverter comprised of one transparent gated ZnO nanowire field-effect transistor (FET) and one opaque FET respectively as the driver and load. Under ultraviolet (UV) light the transfer curve of the transparent gate FET shifts to the negative side and so does the voltage transfer curve (VTC) of the inverter. After termination of UV exposure the recovery of photo-induced current takes a long time in general. This persistent photoconductivity (PPC) is due to hole trapping on the surface of ZnO NWs. Here, we used a positive voltage short pulse after UV exposure, for the first time resolving the PPC issue in nanowire-based photo-detectors by accumulating electrons at the ZnO/dielectric interface. We found that a pulse duration as small as 200 ns was sufficient to reach a full recovery to the dark state from the UV induced state, realizing a fast UV detector with a voltage output.We demonstrate a fast response photo-inverter comprised of one transparent gated ZnO nanowire field-effect transistor (FET) and one opaque FET respectively as the driver and load. Under ultraviolet (UV) light the transfer curve of the transparent gate FET shifts to the negative side and so does the voltage transfer curve (VTC) of the inverter. After termination of UV exposure the recovery of photo-induced current takes a long time in general. This persistent photoconductivity (PPC) is due to hole trapping on the surface of ZnO NWs. Here, we used a positive voltage short pulse after UV exposure, for the first time resolving the PPC issue in nanowire-based photo-detectors by accumulating electrons at the ZnO/dielectric interface. We found that a pulse duration as small as 200 ns was sufficient to reach a full recovery to the dark state from the UV induced state, realizing a fast UV detector with a voltage output. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03801g

  7. Novel processing and properties of high efficiency superconducting infrared bolometric detectors

    NASA Astrophysics Data System (ADS)

    Moxey, Donovan E.

    1998-12-01

    The work in this dissertation involves the design, fabrication, and analysis of superconducting infrared bolometric detectors. These bolometers have been made from superconducting YBasb2Cusb3Osb{7-delta} (YBCO) deposited on silicon (100) substrates utilizing a buffer layer of yttria stabilized zirconia (YSZ). Thin films of undoped and silver(Ag) doped YBCO, as well as stacked layers of undoped/Ag-doped YBCO have been deposited by pulsed laser deposition (PLD). The microstructure and materials properties of these films have been studied using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and secondary ion mass spectroscopy (SIMS). The electrical and transport properties of these films have been investigated using four-point resistance versus temperature measurements. The results of the investigations of the materials and electrical properties of these films show that they are of high quality, and exhibit superconducting characteristics that are conducive for bolometer device applications. For the first time superconducting bolometric detectors have been fabricated using a novel photolithographic and anti-reflective coating (ARC) process. This fabrication process can be used to fabricate any type of device structure that utilizes superconducting YBCO. The use of an anti-reflective coating simplifies the overall device fabrication process and allows this process to be easily integrated with conventional silicon device processing steps. The anti-reflective coating serves as a barrier to moisture and other contaminants that react with YBCO, as well as act as an absorption medium that improves the optical collection efficiency of the device. Optical analysis of these three bolometer device structures has been carried out using a helium neon (HeNe; lambda = 632.8nm) laser. At a bias of 1mA, and chopping frequency of 100Hz; we have measured photoresponse as a function of device temperature, calculated responsivity, and

  8. Feature extraction method of bearing AE signal based on improved FAST-ICA and wavelet packet energy

    NASA Astrophysics Data System (ADS)

    Han, Long; Li, Cheng Wei; Guo, Song Lin; Su, Xun Wen

    2015-10-01

    In order to accomplish the feature extraction from a mixed fault signal of bearings, this paper proposes a feature extraction method based on the improved Fast-ICA algorithm and the wavelet packet energy spectrum. The conventional fast-ICA algorithm can only separate the mixed signals, while the convergence speed is relatively slow and the convergence effect is not sufficient. The method of the third-order Newton iteration is adopted in this paper to improve the Fast-ICA algorithm. Moreover, the improved Fast-ICA algorithm is confirmed to have a faster convergence speed and higher precision than the conventional Fast-ICA algorithm. The improved Fast-ICA algorithm is applied to separate the acoustic emission signal in which two kinds of fault components are comprised. The wavelet packet energy spectrum is used to extract the feature information in the separated samples. In addition, the fault diagnosis is performed based on the SVM algorithm. It is confirmed that the slight damage and fracture of a bearing can accurately be recognized. The results show that the improved FAST-ICA and wavelet packet energy method in feature extraction is sufficiently effective.

  9. Fast vaccine design and development based on correlates of protection (COPs)

    PubMed Central

    van Els, Cécile; Mjaaland, Siri; Næss, Lisbeth; Sarkadi, Julia; Gonczol, Eva; Smith Korsholm, Karen; Hansen, Jon; de Jonge, Jørgen; Kersten, Gideon; Warner, Jennifer; Semper, Amanda; Kruiswijk, Corine; Oftung, Fredrik

    2014-01-01

    New and reemerging infectious diseases call for innovative and efficient control strategies of which fast vaccine design and development represent an important element. In emergency situations, when time is limited, identification and use of correlates of protection (COPs) may play a key role as a strategic tool for accelerated vaccine design, testing, and licensure. We propose that general rules for COP-based vaccine design can be extracted from the existing knowledge of protective immune responses against a large spectrum of relevant viral and bacterial pathogens. Herein, we focus on the applicability of this approach by reviewing the established and up-coming COPs for influenza in the context of traditional and a wide array of new vaccine concepts. The lessons learnt from this field may be applied more generally to COP-based accelerated vaccine design for emerging infections. PMID:25424803

  10. Sensor fault diagnosis for fast steering mirror system based on Kalman filter

    NASA Astrophysics Data System (ADS)

    Wang, Hongju; Bao, Qiliang; Yang, Haifeng; Tao, Sunjie

    2015-10-01

    In this paper, to improve the reliability of a two-axis fast steering mirror system with minimum hardware consumption, a fault diagnosis method based on Kalman filter was developed. The dynamics model of the two-axis FSM was established firstly, and then the state-space form of the FSM was adopted. A bank of Kalman filters for fault detection was designed based on the state-space form. The effects of the sensor faults on the innovation sequence were investigated, and a decision approach called weighted sum-squared residual (WSSR) was adopted to isolate the sensor faults. Sensor faults could be detected and isolated when the decision statistics changed. Experimental studies on a prototype system show that the faulty sensor can be isolated timely and accurately. Meanwhile, the mathematical model of FSM system was used to design fault diagnosis scheme in the proposed method, thus the consumption of the hardware and space is decreased.

  11. A fast and low-power microelectromechanical system-based non-volatile memory device

    PubMed Central

    Lee, Sang Wook; Park, Seung Joo; Campbell, Eleanor E. B.; Park, Yung Woo

    2011-01-01

    Several new generation memory devices have been developed to overcome the low performance of conventional silicon-based flash memory. In this study, we demonstrate a novel non-volatile memory design based on the electromechanical motion of a cantilever to provide fast charging and discharging of a floating-gate electrode. The operation is demonstrated by using an electromechanical metal cantilever to charge a floating gate that controls the charge transport through a carbon nanotube field-effect transistor. The set and reset currents are unchanged after more than 11 h constant operation. Over 500 repeated programming and erasing cycles were demonstrated under atmospheric conditions at room temperature without degradation. Multinary bit programming can be achieved by varying the voltage on the cantilever. The operation speed of the device is faster than a conventional flash memory and the power consumption is lower than other memory devices. PMID:21364559

  12. Rule-based system for the fast identification of species of Indian Anopheline mosquitoes.

    PubMed

    Murty, U S; Jamil, K; Krishna, D; Reddy, P J

    1996-12-01

    In a developing country like India, classification and identification of the species of Anopheline mosquitoes in control operations of mosquito-borne diseases is of paramount importance. The WHO monograph, which describes the taxonomic data in the form of a pictorial key is generally difficult to understand by a non-taxonomist. Utilizing the principles of ID3 algorithm, a novel rule-based system, for the fast identification of unknown species of Indian Anopheline mosquitoes, is developed. The rule-based system is user-friendly, menu-driven and even a novice can make use of it in the identification of the unknown species with little practice. The above software is available on floppy disk and can be obtained with a minimum cost. This program can be ported on 5 1/4" or 3 1/2" floppy disk. PMID:9021267

  13. A fast and low-power microelectromechanical system-based non-volatile memory device.

    PubMed

    Lee, Sang Wook; Park, Seung Joo; Campbell, Eleanor E B; Park, Yung Woo

    2011-01-01

    Several new generation memory devices have been developed to overcome the low performance of conventional silicon-based flash memory. In this study, we demonstrate a novel non-volatile memory design based on the electromechanical motion of a cantilever to provide fast charging and discharging of a floating-gate electrode. The operation is demonstrated by using an electromechanical metal cantilever to charge a floating gate that controls the charge transport through a carbon nanotube field-effect transistor. The set and reset currents are unchanged after more than 11 h constant operation. Over 500 repeated programming and erasing cycles were demonstrated under atmospheric conditions at room temperature without degradation. Multinary bit programming can be achieved by varying the voltage on the cantilever. The operation speed of the device is faster than a conventional flash memory and the power consumption is lower than other memory devices. PMID:21364559

  14. Fast SAR Image Change Detection Using Bayesian Approach Based Difference Image and Modified Statistical Region Merging

    PubMed Central

    Ni, Weiping; Yan, Weidong; Bian, Hui; Wu, Junzheng

    2014-01-01

    A novel fast SAR image change detection method is presented in this paper. Based on a Bayesian approach, the prior information that speckles follow the Nakagami distribution is incorporated into the difference image (DI) generation process. The new DI performs much better than the familiar log ratio (LR) DI as well as the cumulant based Kullback-Leibler divergence (CKLD) DI. The statistical region merging (SRM) approach is first introduced to change detection context. A new clustering procedure with the region variance as the statistical inference variable is exhibited to tailor SAR image change detection purposes, with only two classes in the final map, the unchanged and changed classes. The most prominent advantages of the proposed modified SRM (MSRM) method are the ability to cope with noise corruption and the quick implementation. Experimental results show that the proposed method is superior in both the change detection accuracy and the operation efficiency. PMID:25258740

  15. Fast QRS Detection with an Optimized Knowledge-Based Method: Evaluation on 11 Standard ECG Databases

    PubMed Central

    Elgendi, Mohamed

    2013-01-01

    The current state-of-the-art in automatic QRS detection methods show high robustness and almost negligible error rates. In return, the methods are usually based on machine-learning approaches that require sufficient computational resources. However, simple-fast methods can also achieve high detection rates. There is a need to develop numerically efficient algorithms to accommodate the new trend towards battery-driven ECG devices and to analyze long-term recorded signals in a time-efficient manner. A typical QRS detection method has been reduced to a basic approach consisting of two moving averages that are calibrated by a knowledge base using only two parameters. In contrast to high-accuracy methods, the proposed method can be easily implemented in a digital filter design. PMID:24066054

  16. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems

    NASA Astrophysics Data System (ADS)

    Dykstra, J. E.; Biesheuvel, P. M.; Bruning, H.; Ter Heijne, A.

    2014-07-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density.

  17. Fast multiscale directional filter bank-based speckle mitigation in gallstone ultrasound images.

    PubMed

    Leavline, Epiphany Jebamalar; Sutha, Shunmugam; Singh, Danasingh Asir Antony Gnana

    2014-02-01

    Speckle noise is a multiplicative type of noise commonly seen in medical and remote sensing images. It gives a granular appearance that degrades the quality of the recorded images. These speckle noise components need to be mitigated before the image is used for further processing and analysis. This paper presents a novel approach for removing granular speckle noise in gray scale images. We used an efficient multiscale image representation scheme named fast multiscale directional filter bank (FMDFB) along with simple threshold methods such as Vishushrink for image processing. It is a perfect reconstruction framework that can be used for a wide range of image processing applications because of its directionality and reduced computational complexity. The FMDFB-based speckle mitigation is appealing over other traditional multiscale approaches such as wavelets and Contourlets. Our experimental results show that the despeckling performance of the proposed method outperforms the wavelet and Contourlet-based despeckling methods. PMID:24562027

  18. Fast wavelength calibration method for spectrometers based on waveguide comb optical filter

    SciTech Connect

    Yu, Zhengang; Huang, Meizhen Zou, Ye; Wang, Yang; Sun, Zhenhua; Cao, Zhuangqi

    2015-04-15

    A novel fast wavelength calibration method for spectrometers based on a standard spectrometer and a double metal-cladding waveguide comb optical filter (WCOF) is proposed and demonstrated. By using the WCOF device, a wide-spectrum beam is comb-filtered, which is very suitable for spectrometer wavelength calibration. The influence of waveguide filter’s structural parameters and the beam incident angle on the comb absorption peaks’ wavelength and its bandwidth are also discussed. The verification experiments were carried out in the wavelength range of 200–1100 nm with satisfactory results. Comparing with the traditional wavelength calibration method based on discrete sparse atomic emission or absorption lines, the new method has some advantages: sufficient calibration data, high accuracy, short calibration time, fit for produce process, stability, etc.

  19. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems.

    PubMed

    Dykstra, J E; Biesheuvel, P M; Bruning, H; Ter Heijne, A

    2014-07-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density. PMID:25122405

  20. Fast intensity-modulated arc therapy based on 2-step beam segmentation

    SciTech Connect

    Bratengeier, Klaus; Gainey, Mark; Sauer, Otto A.; Richter, Anne; Flentje, Michael

    2011-01-15

    Purpose: Single or few arc intensity-modulated arc therapy (IMAT) is intended to be a time saving irradiation method, potentially replacing classical intensity-modulated radiotherapy (IMRT). The aim of this work was to evaluate the quality of different IMAT methods with the potential of fast delivery, which also has the possibility of adapting to the daily shape of the target volume. Methods: A planning study was performed. Novel double and triple IMAT techniques based on the geometrical analysis of the target organ at risk geometry (2-step IMAT) were evaluated. They were compared to step and shoot IMRT reference plans generated using direct machine parameter optimization (DMPO). Volumetric arc (VMAT) plans from commercial preclinical software (SMARTARC) were used as an additional benchmark to classify the quality of the novel techniques. Four cases with concave planning target volumes (PTV) with one dominating organ at risk (OAR), viz., the PTV/OAR combination of the ESTRO Quasimodo phantom, breast/lung, spine metastasis/spinal cord, and prostate/rectum, were used for the study. The composite objective value (COV) and other parameters representing the plan quality were studied. Results: The novel 2-step IMAT techniques with geometry based segment definition were as good as or better than DMPO and were superior to the SMARTARC VMAT techniques. For the spine metastasis, the quality measured by the COV differed only by 3%, whereas the COV of the 2-step IMAT for the other three cases decreased by a factor of 1.4-2.4 with respect to the reference plans. Conclusions: Rotational techniques based on geometrical analysis of the optimization problem (2-step IMAT) provide similar or better plan quality than DMPO or the research version of SMARTARC VMAT variants. The results justify pursuing the goal of fast IMAT adaptation based on 2-step IMAT techniques.

  1. Fast infrared response of YBCO thin films

    NASA Technical Reports Server (NTRS)

    Ballentine, P. H.; Kadin, A. M.; Donaldson, W. R.; Scofield, J. H.; Bajuk, L.

    1990-01-01

    The response to short infrared pulses of some epitaxial YBCO films prepared by sputter deposition and by electron-beam evaporation is reported. The response is found to be essentially bolometric on the ns timescale, with some indirect hints of nonequilibrium electron transport on the ps scale. Fast switching could be obtained either by biasing the switch close to the critical current or by cooling the film below about 20 K. These results are encouraging for potential application to a high-current optically-triggered opening switch.

  2. Fast Rotation-Free Feature-Based Image Registration Using Improved N-SIFT and GMM-Based Parallel Optimization.

    PubMed

    Yu, Dongdong; Yang, Feng; Yang, Caiyun; Leng, Chengcai; Cao, Jian; Wang, Yining; Tian, Jie

    2016-08-01

    Image registration is a key problem in a variety of applications, such as computer vision, medical image processing, pattern recognition, etc., while the application of registration is limited by time consumption and the accuracy in the case of large pose differences. Aimed at these two kinds of problems, we propose a fast rotation-free feature-based rigid registration method based on our proposed accelerated-NSIFT and GMM registration-based parallel optimization (PO-GMMREG). Our method is accelerated by using the GPU/CUDA programming and preserving only the location information without constructing the descriptor of each interest point, while its robustness to missing correspondences and outliers is improved by converting the interest point matching to Gaussian mixture model alignment. The accuracy in the case of large pose differences is settled by our proposed PO-GMMREG algorithm by constructing a set of initial transformations. Experimental results demonstrate that our proposed algorithm can fast rigidly register 3-D medical images and is reliable for aligning 3-D scans even when they exhibit a poor initialization. PMID:26259212

  3. Fast Coalescent-Based Computation of Local Branch Support from Quartet Frequencies

    PubMed Central

    Sayyari, Erfan; Mirarab, Siavash

    2016-01-01

    Species tree reconstruction is complicated by effects of incomplete lineage sorting, commonly modeled by the multi-species coalescent model (MSC). While there has been substantial progress in developing methods that estimate a species tree given a collection of gene trees, less attention has been paid to fast and accurate methods of quantifying support. In this article, we propose a fast algorithm to compute quartet-based support for each branch of a given species tree with regard to a given set of gene trees. We then show how the quartet support can be used in the context of the MSC to compute (1) the local posterior probability (PP) that the branch is in the species tree and (2) the length of the branch in coalescent units. We evaluate the precision and recall of the local PP on a wide set of simulated and biological datasets, and show that it has very high precision and improved recall compared with multi-locus bootstrapping. The estimated branch lengths are highly accurate when gene tree estimation error is low, but are underestimated when gene tree estimation error increases. Computation of both the branch length and local PP is implemented as new features in ASTRAL. PMID:27189547

  4. Fast Coalescent-Based Computation of Local Branch Support from Quartet Frequencies.

    PubMed

    Sayyari, Erfan; Mirarab, Siavash

    2016-07-01

    Species tree reconstruction is complicated by effects of incomplete lineage sorting, commonly modeled by the multi-species coalescent model (MSC). While there has been substantial progress in developing methods that estimate a species tree given a collection of gene trees, less attention has been paid to fast and accurate methods of quantifying support. In this article, we propose a fast algorithm to compute quartet-based support for each branch of a given species tree with regard to a given set of gene trees. We then show how the quartet support can be used in the context of the MSC to compute (1) the local posterior probability (PP) that the branch is in the species tree and (2) the length of the branch in coalescent units. We evaluate the precision and recall of the local PP on a wide set of simulated and biological datasets, and show that it has very high precision and improved recall compared with multi-locus bootstrapping. The estimated branch lengths are highly accurate when gene tree estimation error is low, but are underestimated when gene tree estimation error increases. Computation of both the branch length and local PP is implemented as new features in ASTRAL. PMID:27189547

  5. Fast single photon avalanche photodiode-based time-resolved diffuse optical tomography scanner

    PubMed Central

    Mu, Ying; Niedre, Mark

    2015-01-01

    Resolution in diffuse optical tomography (DOT) is a persistent problem and is primarily limited by high degree of light scatter in biological tissue. We showed previously that the reduction in photon scatter between a source and detector pair at early time points following a laser pulse in time-resolved DOT is highly dependent on the temporal response of the instrument. To this end, we developed a new single-photon avalanche photodiode (SPAD) based time-resolved DOT scanner. This instrument uses an array of fast SPADs, a femto-second Titanium Sapphire laser and single photon counting electronics. In combination, the overall instrument temporal impulse response function width was 59 ps. In this paper, we report the design of this instrument and validate its operation in symmetrical and irregularly shaped optical phantoms of approximately small animal size. We were able to accurately reconstruct the size and position of up to 4 absorbing inclusions, with increasing image quality at earlier time windows. We attribute these results primarily to the rapid response time of our instrument. These data illustrate the potential utility of fast SPAD detectors in time-resolved DOT. PMID:26417526

  6. A fast Monte Carlo code for proton transport in radiation therapy based on MCNPX

    PubMed Central

    Jabbari, Keyvan; Seuntjens, Jan

    2014-01-01

    An important requirement for proton therapy is a software for dose calculation. Monte Carlo is the most accurate method for dose calculation, but it is very slow. In this work, a method is developed to improve the speed of dose calculation. The method is based on pre-generated tracks for particle transport. The MCNPX code has been used for generation of tracks. A set of data including the track of the particle was produced in each particular material (water, air, lung tissue, bone, and soft tissue). This code can transport protons in wide range of energies (up to 200 MeV for proton). The validity of the fast Monte Carlo (MC) code is evaluated with data MCNPX as a reference code. While analytical pencil beam algorithm transport shows great errors (up to 10%) near small high density heterogeneities, there was less than 2% deviation of MCNPX results in our dose calculation and isodose distribution. In terms of speed, the code runs 200 times faster than MCNPX. In the Fast MC code which is developed in this work, it takes the system less than 2 minutes to calculate dose for 106 particles in an Intel Core 2 Duo 2.66 GHZ desktop computer. PMID:25190994

  7. Fast multichannel astronomical photometer based on silicon photo multipliers mounted at the Telescopio Nazionale Galileo

    NASA Astrophysics Data System (ADS)

    Ambrosino, Filippo; Meddi, Franco; Rossi, Corinne; Sclavi, Silvia; Nesci, Roberto; Bruni, Ivan; Ghedina, Adriano; Riverol, Luis; Di Fabrizio, Luca

    2014-07-01

    The realization of low-cost instruments with high technical performance is a goal that deserves efforts in an epoch of fast technological developments. Such instruments can be easily reproduced and therefore allow new research programs to be opened in several observatories. We realized a fast optical photometer based on the SiPM (Silicon Photo Multiplier) technology, using commercially available modules. Using low-cost components, we developed a custom electronic chain to extract the signal produced by a commercial MPPC (Multi Pixel Photon Counter) module produced by Hamamatsu Photonics to obtain sub-millisecond sampling of the light curve of astronomical sources (typically pulsars). We built a compact mechanical interface to mount the MPPC at the focal plane of the TNG (Telescopio Nazionale Galileo), using the space available for the slits of the LRS (Low Resolution Spectrograph). On February 2014 we observed the Crab pulsar with the TNG with our prototype photometer, deriving its period and the shape of its light curve, in very good agreement with the results obtained in the past with other much more expensive instruments. After the successful run at the telescope we describe here the lessons learned and the ideas that burst to optimize this instrument and make it more versatile.

  8. Autonomous celestial navigation based on Earth ultraviolet radiance and fast gradient statistic feature extraction

    NASA Astrophysics Data System (ADS)

    Lu, Shan; Zhang, Hanmo

    2016-01-01

    To meet the requirement of autonomous orbit determination, this paper proposes a fast curve fitting method based on earth ultraviolet features to obtain accurate earth vector direction, in order to achieve the high precision autonomous navigation. Firstly, combining the stable characters of earth ultraviolet radiance and the use of transmission model software of atmospheric radiation, the paper simulates earth ultraviolet radiation model on different time and chooses the proper observation band. Then the fast improved edge extracting method combined Sobel operator and local binary pattern (LBP) is utilized, which can both eliminate noises efficiently and extract earth ultraviolet limb features accurately. And earth's centroid locations on simulated images are estimated via the least square fitting method using part of the limb edges. Taken advantage of the estimated earth vector direction and earth distance, Extended Kalman Filter (EKF) is applied to realize the autonomous navigation finally. Experiment results indicate the proposed method can achieve a sub-pixel earth centroid location estimation and extremely enhance autonomous celestial navigation precision.

  9. A thermodynamically based definition of fast verses slow heating in secondary explosives

    NASA Astrophysics Data System (ADS)

    Henson, Bryan; Smilowitz, Laura

    2013-06-01

    The thermal response of energetic materials is often categorized according to the rate of heating as either fast or slow, e.g. slow cook-off. Such categorizations have most often followed some operational rationale, without a material based definition. We have spent several years demonstrating that for the energetic material octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) a single mechanism of thermal response reproduces times to ignition independent of rate or means of heating over the entire range of thermal response. HMX is unique in that bulk melting is rarely observed in either thermal ignition or combustion. We have recently discovered a means of expressing this mechanism for HMX in a reduced form applicable to many secondary explosives. We will show that with this mechanism a natural definition of fast versus slow rates of heating emerges, related to the rate of melting, and we use this to illustrate why HMX does not exhibit melting, and why a number of other secondary explosives do, and require the two separate categories.

  10. Cygrid: A fast Cython-powered convolution-based gridding module for Python

    NASA Astrophysics Data System (ADS)

    Winkel, B.; Lenz, D.; Flöer, L.

    2016-06-01

    Context. Data gridding is a common task in astronomy and many other science disciplines. It refers to the resampling of irregularly sampled data to a regular grid. Aims: We present cygrid, a library module for the general purpose programming language Python. Cygrid can be used to resample data to any collection of target coordinates, although its typical application involves FITS maps or data cubes. The FITS world coordinate system standard is supported. Methods: The regridding algorithm is based on the convolution of the original samples with a kernel of arbitrary shape. We introduce a lookup table scheme that allows us to parallelize the gridding and combine it with the HEALPix tessellation of the sphere for fast neighbor searches. Results: We show that for n input data points, cygrids runtime scales between O(n) and O(nlog n) and analyze the performance gain that is achieved using multiple CPU cores. We also compare the gridding speed with other techniques, such as nearest-neighbor, and linear and cubic spline interpolation. Conclusions: Cygrid is a very fast and versatile gridding library that significantly outperforms other third-party Python modules, such as the linear and cubic spline interpolation provided by SciPy. http://https://github.com/bwinkel/cygrid

  11. A fast continuous magnetic field measurement system based on digital signal processors

    SciTech Connect

    Velev, G.V.; Carcagno, R.; DiMarco, J.; Kotelnikov, S.; Lamm, M.; Makulski, A.; Maroussov, V.; Nehring, R.; Nogiec, J.; Orris, D.; Poukhov, O.; Prakoshyn, F.; Schlabach, P.; Tompkins, J.C.; /Fermilab

    2005-09-01

    In order to study dynamic effects in accelerator magnets, such as the decay of the magnetic field during the dwell at injection and the rapid so-called ''snapback'' during the first few seconds of the resumption of the energy ramp, a fast continuous harmonics measurement system was required. A new magnetic field measurement system, based on the use of digital signal processors (DSP) and Analog to Digital (A/D) converters, was developed and prototyped at Fermilab. This system uses Pentek 6102 16 bit A/D converters and the Pentek 4288 DSP board with the SHARC ADSP-2106 family digital signal processor. It was designed to acquire multiple channels of data with a wide dynamic range of input signals, which are typically generated by a rotating coil probe. Data acquisition is performed under a RTOS, whereas processing and visualization are performed under a host computer. Firmware code was developed for the DSP to perform fast continuous readout of the A/D FIFO memory and integration over specified intervals, synchronized to the probe's rotation in the magnetic field. C, C++ and Java code was written to control the data acquisition devices and to process a continuous stream of data. The paper summarizes the characteristics of the system and presents the results of initial tests and measurements.

  12. Understanding and eliminating the fast creep problem in Fe-based superconductors

    NASA Astrophysics Data System (ADS)

    Civale, Leonardo; Eley, Serena; Maiorov, Boris; Miura, Masashi

    One surprising characteristic of Fe-based superconductors is that they exhibit flux creep rates (S) as large as, or larger than, those found in oxide high temperature superconductors (HTS). This very fast vortex dynamics appears to be inconsistent with the estimate of the influence of the thermal fluctuations as quantified by the Ginzburg number (Gi), which measures the ratio of the thermal energy to the condensation energy in an elemental superconducting volume. In particular, compounds of the AFe2As2 family (``122'') have Gi ~10-5 to 10-4, so S could be expected to lie between that of low Tc materials (where typically Gi ~ 10-8) and HTS such as YBa2Cu3O7 (Gi ~ 10-2) , as indeed occurs in other superconductors with intermediate fluctuations, such as MgB2 (Gi ~10-6 to 10-4) . We have found the solution to this puzzle: the fast creep rates in 122 compounds are due to non-optimized pinning landscapes. Initial evidence comes from our previous studies showing that the introduction of additional disorder by irradiation decreases creep significantly in 122 single crystals, although still remaining well above the ideal limit. We now have new evidence from 122 thin films demonstrating that S can be reduced to the lower limit set by Gi by appropriate engineering of the pinning landscape.

  13. An optimized fast image resizing method based on content-aware

    NASA Astrophysics Data System (ADS)

    Lu, Yan; Gao, Kun; Wang, Kewang; Xu, Tingfa

    2014-11-01

    In traditional image resizing theory based on interpolation, the prominent object may cause distortion, and the image resizing method based on content-aware has become a research focus in image processing because the prominent content and structural features of images are considered in this method. In this paper, we present an optimized fast image resizing method based on content-aware. Firstly, an appropriate energy function model is constructed on the basis of image meshes, and multiple energy constraint templates are established. In addition, this paper deducts the image saliency constraints, and then the problem of image resizing is used to reformulate a kind of convex quadratic program task. Secondly, a method based on neural network is presented in solving the problem of convex quadratic program. The corresponding neural network model is constructed; moreover, some sufficient conditions of the neural network stability are given. Compared with the traditional numerical algorithm such as iterative method, the neural network method is essentially parallel and distributed, which can expedite the calculation speed. Finally, the effects of image resizing by the proposed method and traditional image resizing method based on interpolation are compared by adopting MATLAB software. Experiment results show that this method has a higher performance of identifying the prominent object, and the prominent features can be preserved effectively after the image is resized. It also has the advantages of high portability and good real-time performance with low visual distortion.

  14. A Fast Density-Based Clustering Algorithm for Real-Time Internet of Things Stream

    PubMed Central

    Ying Wah, Teh

    2014-01-01

    Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape clusters, to handle outlier, and it does not need the number of clusters in advance. Therefore, density-based clustering algorithm is a proper choice for clustering IoT streams. Recently, several density-based algorithms have been proposed for clustering data streams. However, density-based clustering in limited time is still a challenging issue. In this paper, we propose a density-based clustering algorithm for IoT streams. The method has fast processing time to be applicable in real-time application of IoT devices. Experimental results show that the proposed approach obtains high quality results with low computation time on real and synthetic datasets. PMID:25110753

  15. A fast density-based clustering algorithm for real-time Internet of Things stream.

    PubMed

    Amini, Amineh; Saboohi, Hadi; Wah, Teh Ying; Herawan, Tutut

    2014-01-01

    Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape clusters, to handle outlier, and it does not need the number of clusters in advance. Therefore, density-based clustering algorithm is a proper choice for clustering IoT streams. Recently, several density-based algorithms have been proposed for clustering data streams. However, density-based clustering in limited time is still a challenging issue. In this paper, we propose a density-based clustering algorithm for IoT streams. The method has fast processing time to be applicable in real-time application of IoT devices. Experimental results show that the proposed approach obtains high quality results with low computation time on real and synthetic datasets. PMID:25110753

  16. PCM-Based Durable Write Cache for Fast Disk I/O

    SciTech Connect

    Liu, Zhuo; Wang, Bin; Carpenter, Patrick; Li, Dong; Vetter, Jeffrey S; Yu, Weikuan

    2012-01-01

    Flash based solid-state devices (FSSDs) have been adopted within the memory hierarchy to improve the performance of hard disk drive (HDD) based storage system. However, with the fast development of storage-class memories, new storage technologies with better performance and higher write endurance than FSSDs are emerging, e.g., phase-change memory (PCM). Understanding how to leverage these state-of-the-art storage technologies for modern computing systems is important to solve challenging data intensive computing problems. In this paper, we propose to leverage PCM for a hybrid PCM-HDD storage architecture. We identify the limitations of traditional LRU caching algorithms for PCM-based caches, and develop a novel hash-based write caching scheme called HALO to improve random write performance of hard disks. To address the limited durability of PCM devices and solve the degraded spatial locality in traditional wear-leveling techniques, we further propose novel PCM management algorithms that provide effective wear-leveling while maximizing access parallelism. We have evaluated this PCM-based hybrid storage architecture using applications with a diverse set of I/O access patterns. Our experimental results demonstrate that the HALO caching scheme leads to an average reduction of 36.8% in execution time compared to the LRU caching scheme, and that the SFC wear leveling extends the lifetime of PCM by a factor of 21.6.

  17. Wavelet-based fast time-resolved magnetic sensing with electronic spins in diamond

    NASA Astrophysics Data System (ADS)

    Xu, Nanyang; Jiang, Fengjian; Tian, Yu; Ye, Jianfeng; Shi, Fazhan; Lv, Haijiang; Wang, Ya; Wrachtrup, Jörg; Du, Jiangfeng

    2016-04-01

    Time-resolved magnetic sensing is of great importance from fundamental studies to applications in physical and biological sciences. Recently, the nitrogen-vacancy defect center in diamond has been developed as a promising sensor of magnetic fields under ambient conditions. However, methods to reconstruct time-resolved magnetic fields with high sensitivity are not yet fully developed. Here, we propose and demonstrate a sensing method based on spin echo and Haar wavelet transformation. Our method is exponentially faster in reconstructing time-resolved magnetic fields with comparable sensitivity than existing methods. It is also easier to implement in experiments. Furthermore, the wavelet's unique features enable our method to extract information from the whole signal with only part of the measuring sequences. We then explore this feature for a fast detection of simulated nerve impulses. These results will be useful to time-resolved magnetic sensing with quantum probes at nanoscale.

  18. Fast approach to infrared image restoration based on shrinkage functions calibration

    NASA Astrophysics Data System (ADS)

    Zhang, Chengshuo; Shi, Zelin; Xu, Baoshu; Feng, Bin

    2016-05-01

    High-quality image restoration in real time is a challenge for infrared imaging systems. We present a fast approach to infrared image restoration based on shrinkage functions calibration. Rather than directly modeling the prior of sharp images to obtain the shrinkage functions, we calibrate them for restoration directly by using the acquirable sharp and blurred image pairs from the same infrared imaging system. The calibration method is employed to minimize the sum of squared errors between sharp images and restored images from the blurred images. Our restoration algorithm is noniterative and its shrinkage functions are stored in the look-up tables, so an architecture solution of pipeline structure can work in real time. We demonstrate the effectiveness of our approach by testing its quantitative performance from simulation experiments and its qualitative performance from a developed wavefront coding infrared imaging system.

  19. A fast image retrieval method based on SVM and imbalanced samples in filtering multimedia message spam

    NASA Astrophysics Data System (ADS)

    Chen, Zhang; Peng, Zhenming; Peng, Lingbing; Liao, Dongyi; He, Xin

    2011-11-01

    With the swift and violent development of the Multimedia Messaging Service (MMS), it becomes an urgent task to filter the Multimedia Message (MM) spam effectively in real-time. For the fact that most MMs contain images or videos, a method based on retrieving images is given in this paper for filtering MM spam. The detection method used in this paper is a combination of skin-color detection, texture detection, and face detection, and the classifier for this imbalanced problem is a very fast multi-classification combining Support vector machine (SVM) with unilateral binary decision tree. The experiments on 3 test sets show that the proposed method is effective, with the interception rate up to 60% and the average detection time for each image less than 1 second.

  20. Nanowire humidity optical sensor system based on fast Fourier transform technique

    NASA Astrophysics Data System (ADS)

    Rota-Rodrigo, S.; Pérez-Herrera, R.; Lopez-Aldaba, A.; López Bautista, M. C.; Esteban, O.; López-Amo, M.

    2015-09-01

    In this paper, a new sensor system for relative humidity measurements based on its interaction with the evanescent field of a nanowire is presented. The interrogation of the sensing head is carried out by monitoring the fast Fourier transform phase variations of one of the nanowire interference frequencies. This method is independent of the signal amplitude and also avoids the necessity of tracking the wavelength evolution in the spectrum, which can be a handicap when there are multiple interference frequency components with different sensitivities. The sensor is operated within a wide humidity range (20%-70% relative humidity) with a maximum sensitivity achieved of 0.14rad/% relative humidity. Finally, due to the system uses an optical interrogator as unique active element, the system presents a cost-effective feature.

  1. Fast Restoration Based on Alternative Wavelength Paths in a Wide Area Optical IP Network

    NASA Astrophysics Data System (ADS)

    Matera, Francesco; Rea, Luca; Venezia, Matteo; Capanna, Lorenzo; Del Prete, Giuseppe

    In this article we describe an experimental investigation of IP network restoration based on wavelength recovery. We propose a procedure for metro and wide area gigabit Ethernet networks that allows us to route the wavelength in case of link failure to another existing link by exploiting wavelength division multiplexing in the fiber. Such a procedure is obtained by means of an optical switch that is managed by a loss-of-light signal that is generated by a router in case of link failure. Such a method has been tested in an IP network consisting of three core routers with optical gigabit Ethernet interfaces connected by means of 50-km-long single-mode fibers between Rome and Pomezia. Compared with other conventional restoration techniques, such as OSPF and MPLS, our method -in very fast (20 ms) and is compatible with real-time TV services and low-cost chips.

  2. Proton linac for hospital-based fast neutron therapy and radioisotope production

    SciTech Connect

    Lennox, A.J.; Hendrickson, F.R.; Swenson, D.A.; Winje, R.A.; Young, D.E.; Rush Univ., Chicago, IL; Science Applications International Corp., Princeton, NJ; Fermi National Accelerator Lab., Batavia, IL )

    1989-09-01

    Recent developments in linac technology have led to the design of a hospital-based proton linac for fast neutron therapy. The 180 microamp average current allows beam to be diverted for radioisotope production during treatments while maintaining an acceptable dose rate. During dedicated operation, dose rates greater than 280 neutron rads per minute are achievable at depth, DMAX = 1.6 cm with source to axis distance, SAD = 190 cm. Maximum machine energy is 70 MeV and several intermediate energies are available for optimizing production of isotopes for Positron Emission Tomography and other medical applications. The linac can be used to produce a horizontal or a gantry can be added to the downstream end of the linac for conventional patient positioning. The 70 MeV protons can also be used for proton therapy for ocular melanomas. 17 refs., 1 fig., 1 tab.

  3. Melting of iron at Earth's inner core boundary based on fast X-ray diffraction.

    PubMed

    Anzellini, S; Dewaele, A; Mezouar, M; Loubeyre, P; Morard, G

    2013-04-26

    Earth's core is structured in a solid inner core, mainly composed of iron, and a liquid outer core. The temperature at the inner core boundary is expected to be close to the melting point of iron at 330 gigapascal (GPa). Despite intensive experimental and theoretical efforts, there is little consensus on the melting behavior of iron at these extreme pressures and temperatures. We present static laser-heated diamond anvil cell experiments up to 200 GPa using synchrotron-based fast x-ray diffraction as a primary melting diagnostic. When extrapolating to higher pressures, we conclude that the melting temperature of iron at the inner core boundary is 6230 ± 500 kelvin. This estimation favors a high heat flux at the core-mantle boundary with a possible partial melting of the mantle. PMID:23620049

  4. Fast residential area extraction from remote sensing image based on Log-Gabor filter

    NASA Astrophysics Data System (ADS)

    Xiao, Jie; Cai, Chao

    2011-11-01

    Monitoring urbanization may help government agencies and urban region planners in updating land maps and forming long-term plans accordingly. In this paper, a novel method for fast extracting residential area from remote sensing images based on log-Gabor filter was proposed. The method is divided in three steps. Firstly, we detect the edge-oriented urban characteristics in a remote sensing image using log-Gabor filter. Secondly, with the filtering orientations perpendicular to each other, we choose two log-Gabor filter response images to suppress the noise and acquire a smooth spatial region. Thirdly, a set of smooth regions served as residential areas can be extracted using Otsu's method. We tested it on diverse aerial and satellite images and encouraging results were acquired. The comparison of our method with the classical texture analyzing method of co-occurrence matrix demonstrated its superiority.

  5. Fast prediction unit selection method for HEVC intra prediction based on salient regions

    NASA Astrophysics Data System (ADS)

    Feng, Lei; Dai, Ming; Zhao, Chun-lei; Xiong, Jing-ying

    2016-07-01

    In order to reduce the computational complexity of the high efficiency video coding (HEVC) standard, a new algorithm for HEVC intra prediction, namely, fast prediction unit (PU) size selection method for HEVC based on salient regions is proposed in this paper. We first build a saliency map for each largest coding unit (LCU) to reduce its texture complexity. Secondly, the optimal PU size is determined via a scheme that implements an information entropy comparison among sub-blocks of saliency maps. Finally, we apply the partitioning result of saliency map on the original LCUs, obtaining the optimal partitioning result. Our algorithm can determine the PU size in advance to the angular prediction in intra coding, reducing computational complexity of HEVC. The experimental results show that our algorithm achieves a 37.9% reduction in encoding time, while producing a negligible loss in Bjontegaard delta bit rate ( BDBR) of 0.62%.

  6. A robust and fast line segment detector based on top-down smaller eigenvalue analysis

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Wang, Yongtao; Tang, Zhi; Lu, Xiaoqing

    2014-01-01

    In this paper, we propose a robust and fast line segment detector, which achieves accurate results with a controlled number of false detections and requires no parameter tuning. It consists of three steps: first, we propose a novel edge point chaining method to extract Canny edge segments (i.e., contiguous chains of Canny edge points) from the input image; second, we propose a top-down scheme based on smaller eigenvalue analysis to extract line segments within each obtained edge segment; third, we employ Desolneux et al.'s method to reject false detections. Experiments demonstrate that it is very efficient and more robust than two state of the art methods—LSD and EDLines.

  7. Fault diagnosis of rolling bearing based on fast nonlocal means and envelop spectrum.

    PubMed

    Lv, Yong; Zhu, Qinglin; Yuan, Rui

    2015-01-01

    The nonlocal means (NL-Means) method that has been widely used in the field of image processing in recent years effectively overcomes the limitations of the neighborhood filter and eliminates the artifact and edge problems caused by the traditional image denoising methods. Although NL-Means is very popular in the field of 2D image signal processing, it has not received enough attention in the field of 1D signal processing. This paper proposes a novel approach that diagnoses the fault of a rolling bearing based on fast NL-Means and the envelop spectrum. The parameters of the rolling bearing signals are optimized in the proposed method, which is the key contribution of this paper. This approach is applied to the fault diagnosis of rolling bearing, and the results have shown the efficiency at detecting roller bearing failures. PMID:25585105

  8. Fault Diagnosis of Rolling Bearing Based on Fast Nonlocal Means and Envelop Spectrum

    PubMed Central

    Lv, Yong; Zhu, Qinglin; Yuan, Rui

    2015-01-01

    The nonlocal means (NL-Means) method that has been widely used in the field of image processing in recent years effectively overcomes the limitations of the neighborhood filter and eliminates the artifact and edge problems caused by the traditional image denoising methods. Although NL-Means is very popular in the field of 2D image signal processing, it has not received enough attention in the field of 1D signal processing. This paper proposes a novel approach that diagnoses the fault of a rolling bearing based on fast NL-Means and the envelop spectrum. The parameters of the rolling bearing signals are optimized in the proposed method, which is the key contribution of this paper. This approach is applied to the fault diagnosis of rolling bearing, and the results have shown the efficiency at detecting roller bearing failures. PMID:25585105

  9. Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition

    SciTech Connect

    Heisler, Ismael A. Moca, Roberta; Meech, Stephen R.; Camargo, Franco V. A.

    2014-06-15

    We report an improved experimental scheme for two-dimensional electronic spectroscopy (2D-ES) based solely on conventional optical components and fast data acquisition. This is accomplished by working with two choppers synchronized to a 10 kHz repetition rate amplified laser system. We demonstrate how scattering and pump-probe contributions can be removed during 2D measurements and how the pump probe and local oscillator spectra can be generated and saved simultaneously with each population time measurement. As an example the 2D-ES spectra for cresyl violet were obtained. The resulting 2D spectra show a significant oscillating signal during population evolution time which can be assigned to an intramolecular vibrational mode.

  10. Fast GPU-based calculations in few-body quantum scattering

    NASA Astrophysics Data System (ADS)

    Pomerantsev, V. N.; Kukulin, V. I.; Rubtsova, O. A.; Sakhiev, S. K.

    2016-07-01

    A principally novel approach towards solving the few-particle (many-dimensional) quantum scattering problems is described. The approach is based on a complete discretization of few-particle continuum and usage of massively parallel computations of integral kernels for scattering equations by means of GPU. The discretization for continuous spectrum of few-particle Hamiltonian is realized with a projection of all scattering operators and wave functions onto the stationary wave-packet basis. Such projection procedure leads to a replacement of singular multidimensional integral equations with linear matrix ones having finite matrix elements. Different aspects of the employment of multithread GPU computing for fast calculation of the matrix kernel of the equation are studied in detail. As a result, the fully realistic three-body scattering problem above the break-up threshold is solved on an ordinary desktop PC with GPU for a rather small computational time.

  11. Fast Dynamic Meshing Method Based on Delaunay Graph and Inverse Distance Weighting Interpolation

    NASA Astrophysics Data System (ADS)

    Wang, Yibin; Qin, Ning; Zhao, Ning

    2016-06-01

    A novel mesh deformation technique is developed based on the Delaunay graph mapping method and the inverse distance weighting (IDW) interpolation. The algorithm maintains the advantages of the efficiency of Delaunay-graph-mapping mesh deformation while possess the ability for better controlling the near surface mesh quality. The Delaunay graph is used to divide the mesh domain into a number of sub-domains. On each of the sub-domains, the inverse distance weighting interpolation is applied to build a much smaller sized translation matrix between the original mesh and the deformed mesh, resulting a similar efficiency for the mesh deformation as compared to the fast Delaunay graph mapping method. The paper will show how the near-wall mesh quality is controlled and improved by the new method while the computational time is compared with the original Delaunay graph mapping method.

  12. Multilevel fast multipole method based on a potential formulation for 3D electromagnetic scattering problems.

    PubMed

    Fall, Mandiaye; Boutami, Salim; Glière, Alain; Stout, Brian; Hazart, Jerome

    2013-06-01

    A combination of the multilevel fast multipole method (MLFMM) and boundary element method (BEM) can solve large scale photonics problems of arbitrary geometry. Here, MLFMM-BEM algorithm based on a scalar and vector potential formulation, instead of the more conventional electric and magnetic field formulations, is described. The method can deal with multiple lossy or lossless dielectric objects of arbitrary geometry, be they nested, in contact, or dispersed. Several examples are used to demonstrate that this method is able to efficiently handle 3D photonic scatterers involving large numbers of unknowns. Absorption, scattering, and extinction efficiencies of gold nanoparticle spheres, calculated by the MLFMM, are compared with Mie's theory. MLFMM calculations of the bistatic radar cross section (RCS) of a gold sphere near the plasmon resonance and of a silica coated gold sphere are also compared with Mie theory predictions. Finally, the bistatic RCS of a nanoparticle gold-silver heterodimer calculated with MLFMM is compared with unmodified BEM calculations. PMID:24323115

  13. Fast GPU-based absolute intensity determination for energy-dispersive X-ray Laue diffraction

    NASA Astrophysics Data System (ADS)

    Alghabi, F.; Send, S.; Schipper, U.; Abboud, A.; Pietsch, U.; Kolb, A.

    2016-01-01

    This paper presents a novel method for fast determination of absolute intensities in the sites of Laue spots generated by a tetragonal hen egg-white lysozyme crystal after exposure to white synchrotron radiation during an energy-dispersive X-ray Laue diffraction experiment. The Laue spots are taken by means of an energy-dispersive X-ray 2D pnCCD detector. Current pnCCD detectors have a spatial resolution of 384 × 384 pixels of size 75 × 75 μm2 each and operate at a maximum of 400 Hz. Future devices are going to have higher spatial resolution and frame rates. The proposed method runs on a computer equipped with multiple Graphics Processing Units (GPUs) which provide fast and parallel processing capabilities. Accordingly, our GPU-based algorithm exploits these capabilities to further analyse the Laue spots of the sample. The main contribution of the paper is therefore an alternative algorithm for determining absolute intensities of Laue spots which are themselves computed from a sequence of pnCCD frames. Moreover, a new method for integrating spectral peak intensities and improved background correction, a different way of calculating mean count rate of the background signal and also a new method for n-dimensional Poisson fitting are presented.We present a comparison of the quality of results from the GPU-based algorithm with the quality of results from a prior (base) algorithm running on CPU. This comparison shows that our algorithm is able to produce results with at least the same quality as the base algorithm. Furthermore, the GPU-based algorithm is able to speed up one of the most time-consuming parts of the base algorithm, which is n-dimensional Poisson fitting, by a factor of more than 3. Also, the entire procedure of extracting Laue spots' positions, energies and absolute intensities from a raw dataset of pnCCD frames is accelerated by a factor of more than 3.

  14. Fast randomized Hough transformation track initiation algorithm based on multi-scale clustering

    NASA Astrophysics Data System (ADS)

    Wan, Minjie; Gu, Guohua; Chen, Qian; Qian, Weixian; Wang, Pengcheng

    2015-10-01

    A fast randomized Hough transformation track initiation algorithm based on multi-scale clustering is proposed to overcome existing problems in traditional infrared search and track system(IRST) which cannot provide movement information of the initial target and select the threshold value of correlation automatically by a two-dimensional track association algorithm based on bearing-only information . Movements of all the targets are presumed to be uniform rectilinear motion throughout this new algorithm. Concepts of space random sampling, parameter space dynamic linking table and convergent mapping of image to parameter space are developed on the basis of fast randomized Hough transformation. Considering the phenomenon of peak value clustering due to shortcomings of peak detection itself which is built on threshold value method, accuracy can only be ensured on condition that parameter space has an obvious peak value. A multi-scale idea is added to the above-mentioned algorithm. Firstly, a primary association is conducted to select several alternative tracks by a low-threshold .Then, alternative tracks are processed by multi-scale clustering methods , through which accurate numbers and parameters of tracks are figured out automatically by means of transforming scale parameters. The first three frames are processed by this algorithm in order to get the first three targets of the track , and then two slightly different gate radius are worked out , mean value of which is used to be the global threshold value of correlation. Moreover, a new model for curvilinear equation correction is applied to the above-mentioned track initiation algorithm for purpose of solving the problem of shape distortion when a space three-dimensional curve is mapped to a two-dimensional bearing-only space. Using sideways-flying, launch and landing as examples to build models and simulate, the application of the proposed approach in simulation proves its effectiveness , accuracy , and adaptivity

  15. Compressive sensing for seismic data reconstruction via fast projection onto convex sets based on seislet transform

    NASA Astrophysics Data System (ADS)

    Gan, Shuwei; Wang, Shoudong; Chen, Yangkang; Chen, Xiaohong; Huang, Weiling; Chen, Hanming

    2016-07-01

    According to the compressive sensing (CS) theory in the signal-processing field, we proposed a new CS approach based on a fast projection onto convex sets (POCS) algorithm with sparsity constraint in the seislet transform domain. The seislet transform appears to be the sparest among the state-of-the-art sparse transforms. The FPOCS can obtain much faster convergence than conventional POCS (about two thirds of conventional iterations can be saved), while maintaining the same recovery performance. The FPOCS can obtain faster and better performance than FISTA for relatively cleaner data but will get slower and worse performance than FISTA, which becomes a reference to decide which algorithm to use in practice according the noise level in the seismic data. The seislet transform based CS approach can achieve obviously better data recovery results than f - k transform based scenarios, considering both signal-to-noise ratio (SNR), local similarity comparison, and visual observation, because of a much sparser structure in the seislet transform domain. We have used both synthetic and field data examples to demonstrate the superior performance of the proposed seislet-based FPOCS approach.

  16. PRIMAL: Fast and Accurate Pedigree-based Imputation from Sequence Data in a Founder Population

    PubMed Central

    Livne, Oren E.; Han, Lide; Alkorta-Aranburu, Gorka; Wentworth-Sheilds, William; Abney, Mark; Ober, Carole; Nicolae, Dan L.

    2015-01-01

    Founder populations and large pedigrees offer many well-known advantages for genetic mapping studies, including cost-efficient study designs. Here, we describe PRIMAL (PedigRee IMputation ALgorithm), a fast and accurate pedigree-based phasing and imputation algorithm for founder populations. PRIMAL incorporates both existing and original ideas, such as a novel indexing strategy of Identity-By-Descent (IBD) segments based on clique graphs. We were able to impute the genomes of 1,317 South Dakota Hutterites, who had genome-wide genotypes for ~300,000 common single nucleotide variants (SNVs), from 98 whole genome sequences. Using a combination of pedigree-based and LD-based imputation, we were able to assign 87% of genotypes with >99% accuracy over the full range of allele frequencies. Using the IBD cliques we were also able to infer the parental origin of 83% of alleles, and genotypes of deceased recent ancestors for whom no genotype information was available. This imputed data set will enable us to better study the relative contribution of rare and common variants on human phenotypes, as well as parental origin effect of disease risk alleles in >1,000 individuals at minimal cost. PMID:25735005

  17. Superconducting Hot-Electron Bolometric Mixer Receivers, and Evolution of Ionized Nebulae

    NASA Astrophysics Data System (ADS)

    Kawamura, Hiroyuki Jonathan

    Receivers incorporating niobium nitride phonon-cooled hot-electron bolometric mixers have been constructed and characterized. The mixer elements are thin-film NbN microbridges with dimensions of ~4 nm thickness, 1-20 μm width and 1.5-4 μm length. These are incorporated in waveguide receivers operating at 200 GHz, 450 GHz, 660 GHz, and 900 GHz. Operating at 4.2 K, the double-sideband receiver noise temperatures in each frequency band were 750 K at 244 GHz, 410 K at 430 GHz, 483 K at 606 GHz, and 1150 K at 800 GHz, a an intermediate frequency of 1.4 GHz and 200 MHz bandwidth. The receiver noise temperature is generally less than 3 GHz K-1 for mixers most recently fabricated. The intermediate frequency bandwidth exceeds 2 GHz, and the local oscillator power for optimal mixing is ~1μW. In addition, the time-evolution of ionized nebulae was studied using difference maps generated by combining new high sensitivity Very Large Array radio interferometrer observations with archived data, separated by a time baseline of ~10 yr. The distances to two bright planetary nebulae are determined by detecting their expansion parallax: the distance to BD +30o3639 is 1.5 ± 0.4 kpc, and to NGC 6572 is 1.2 ± 0.4 kpc. These distances incorporate a new correction term, and are considerably more accurate than those reported previously. The difference mapping technique is for the first time used to study another class of objects, and applied to observe changes in two bright, well-studied compact H scII regions, W 3(OH) and NGC 7538. W 3(OH) is observed to expand at a rate of 3 km s-1, which although significantly smaller than the plasma sound speed, implies an age of ~3×103 yr. This measurement has important consequences for modeling evolution of compact H scII regions. In contrast NGC 7538 exhibits significant changes in the structure whose interpretation is difficult, but nevertheless suggest that structures observed in compact H scII regions are not static.

  18. Development of hot-electron THz bolometric mixers using MgB2 thin films

    NASA Astrophysics Data System (ADS)

    Cunnane, Daniel; Kawamura, Jonathan; Karasik, Boris S.; Wolak, Matthaeus A.; Xi, X. X.

    2014-07-01

    Terahertz high-resolution spectroscopy of interstellar molecular clouds greatly relies on hot-electron superconducting bolometric (HEB) mixers. Current state-of-the-art receivers use mixer devices made from ultrathin (~ 3-5 nm) films of NbN with critical temperature ~ 9-11 K. Such mixers have been deployed on a number of groundbased, suborbital, and orbital platforms including the HIFI instrument on the Hershel Space Observatory. Despite its good sensitivity and well-established fabrication process, the NbN HEB mixer suffers from the narrow intermediate frequency (IF) bandwidth ~ 2-3 GHz and is limited to operation at liquid Helium temperature. As the heterodyne receivers are now trending towards "high THz" frequencies, the need in a larger IF bandwidth becomes more pressing since the same velocity resolution for a Doppler shifted line at 5 THz requires a 5-times greater IF bandwidth than at 1 THz. Our work is focusing on the realization of practical HEB mixers using ultrathin (10-20 nm) MgB2 films. They are prepared using a Hybrid Physical-Chemical Vapor Deposition (HPCVD) process yielding ultrathin films with critical temperature ~ 37-39 K. The expectation is that the combination of small thickness, high acoustic phonon transparency at the interface with the substrate, and very short electron-phonon relaxation time may lead to IF bandwidth ~ 10 GHz or even higher. SiC continues to be the most favorable substrate for MgB2 growth and as a result, a study has been conducted on the transparency of SiC at THz frequencies. FTIR measurements show that semi-insulating SiC substrates are at least as transparent as Si up to 2.5 THz. Currently films are passivated using a thin (10 nm) SiO2 layer which is deposited ex-situ via RF magnetron sputtering. Micron-sized spiral antenna-coupled HEB mixers have been fabricated using MgB2 films as thin as 10 nm. Fabrication was done using contact UV lithography and Ar Ion milling, with E-beam evaporated Au films deposited for the

  19. Navigating the Shift to Value-Based Reimbursement: How Fast Is Too Fast, and How Slow Is Too Slow?

    PubMed

    Greeter, Aimee

    2016-01-01

    Providers are struggling to understand how the macro-level changes occurring in the healthcare industry will affect them on a micro-level, especially as they pertain to the shift toward value-based reimbursement. This article presents a guide to physicians and practice administration, in both the private and hospital-employed practice setting, on how to effectively manage this shift from fee-for-volume to fee-for-value. It analyzes new reimbursement models, population health management trends, and second-generation alignment and compensation models to help the reader understand practical tactics and overarching strategies to prepare for the changing method of reimbursement in the health-care industry. The goal of this article is to provide clarity for decision-makers as they embrace the fee-for-value shift in a historically and predominantly fee-for-service environment. PMID:27443053

  20. Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator

    NASA Astrophysics Data System (ADS)

    Dong, Jing; Bi, Renzhe; Ho, Jun Hui; Thong, Patricia S. P.; Soo, Khee-Chee; Lee, Kijoon

    2012-09-01

    Diffuse correlation spectroscopy (DCS) is an emerging noninvasive technique that probes the deep tissue blood flow, by using the time-averaged intensity autocorrelation function of the fluctuating diffuse reflectance signal. We present a fast Fourier transform (FFT)-based software autocorrelator that utilizes the graphical programming language LabVIEW (National Instruments) to complete data acquisition, recording, and processing tasks. The validation and evaluation experiments were conducted on an in-house flow phantom, human forearm, and photodynamic therapy (PDT) on mouse tumors under the acquisition rate of ˜400 kHz. The software autocorrelator in general has certain advantages, such as flexibility in raw photon count data preprocessing and low cost. In addition to that, our FFT-based software autocorrelator offers smoother starting and ending plateaus when compared to a hardware correlator, which could directly benefit the fitting results without too much sacrifice in speed. We show that the blood flow index (BFI) obtained by using a software autocorrelator exhibits better linear behavior in a phantom control experiment when compared to a hardware one. The results indicate that an FFT-based software autocorrelator can be an alternative solution to the conventional hardware ones in DCS systems with considerable benefits.

  1. Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator.

    PubMed

    Dong, Jing; Bi, Renzhe; Ho, Jun Hui; Thong, Patricia S P; Soo, Khee-Chee; Lee, Kijoon

    2012-09-01

    Diffuse correlation spectroscopy (DCS) is an emerging noninvasive technique that probes the deep tissue blood flow, by using the time-averaged intensity autocorrelation function of the fluctuating diffuse reflectance signal. We present a fast Fourier transform (FFT)-based software autocorrelator that utilizes the graphical programming language LabVIEW (National Instruments) to complete data acquisition, recording, and processing tasks. The validation and evaluation experiments were conducted on an in-house flow phantom, human forearm, and photodynamic therapy (PDT) on mouse tumors under the acquisition rate of ∼400  kHz. The software autocorrelator in general has certain advantages, such as flexibility in raw photon count data preprocessing and low cost. In addition to that, our FFT-based software autocorrelator offers smoother starting and ending plateaus when compared to a hardware correlator, which could directly benefit the fitting results without too much sacrifice in speed. We show that the blood flow index (BFI) obtained by using a software autocorrelator exhibits better linear behavior in a phantom control experiment when compared to a hardware one. The results indicate that an FFT-based software autocorrelator can be an alternative solution to the conventional hardware ones in DCS systems with considerable benefits. PMID:23085922

  2. Cryo-EM Image Alignment Based on Nonuniform Fast Fourier Transform

    PubMed Central

    Yang, Zhengfan; Penczek, Pawel A.

    2008-01-01

    In single particle analysis, two-dimensional (2-D) alignment is a fundamental step intended to put into register various particle projections of biological macromolecules collected at the electron microscope. The efficiency and quality of three-dimensional (3-D) structure reconstruction largely depends on the computational speed and alignment accuracy of this crucial step. In order to improve the performance of alignment, we introduce a new method that takes advantage of the highly accurate interpolation scheme based on the gridding method, a version of the nonuniform Fast Fourier Transform, and utilizes a multi-dimensional optimization algorithm for the refinement of the orientation parameters. Using simulated data, we demonstrate that by using less than half of the sample points and taking twice the runtime, our new 2-D alignment method achieves dramatically better alignment accuracy than that based on quadratic interpolation. We also apply our method to image to volume registration, the key step in the single particle EM structure refinement protocol. We find that in this case the accuracy of the method not only surpasses the accuracy of the commonly used real-space implementation, but results are achieved in much shorter time, making gridding-based alignment a perfect candidate for efficient structure determination in single particle analysis. PMID:18499351

  3. Infrared image guidance for ground vehicle based on fast wavelet image focusing and tracking

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2009-08-01

    We studied the infrared image guidance for ground vehicle based on the fast wavelet image focusing and tracking. Here we uses the image of the uncooled infrared imager mounted on the two axis gimbal system and the developed new auto focusing algorithm on the Daubechies wavelet transform. The developed new focusing algorithm on the Daubechies wavelet transform processes the result of the high pass filter effect to meet the direct detection of the objects. This new focusing gives us the distance information of the outside world smoothly, and the information of the gimbal system gives us the direction of objects in the outside world to match the sense of the spherical coordinate system. We installed this system on the hand made electric ground vehicle platform powered by 24VDC battery. The electric vehicle equips the rotary encoder units and the inertia rate sensor units to make the correct navigation process. The image tracking also uses the developed newt wavelet focusing within several image processing. The size of the hand made electric ground vehicle platform is about 1m long, 0.75m wide, 1m high, and 50kg weight. We tested the infrared image guidance for ground vehicle based on the new wavelet image focusing and tracking using the electric vehicle indoor and outdoor. The test shows the good results by the developed infrared image guidance for ground vehicle based on the new wavelet image focusing and tracking.

  4. Millimeter wave mixing using plasmon and bolometric response in a double-quantum-well field-effect transistor

    NASA Astrophysics Data System (ADS)

    Lee, Mark; Wanke, M. C.; Reno, J. L.

    2005-01-01

    Heterodyne mixing characteristics of a double-quantum-well field-effect transistor (DQW FET) from 94 to 145GHz are reported. The DQW FET exhibits two physically distinct mixing responses. Near pinch-off, the device behaves as a broadband bolometric mixer with intermediate frequency (IF) bandwidth of 620MHz. Away from pinch-off it shows an electrically tunable resonant plasmon response. Mixing on a plasmon resonance yields an IF with significant harmonic distortion, signaling a complicated nonlinear mechanism, and shows a wide IF bandwidth >2GHz.

  5. A fast algorithm for voxel-based deterministic simulation of X-ray imaging

    NASA Astrophysics Data System (ADS)

    Li, Ning; Zhao, Hua-Xia; Cho, Sang-Hyun; Choi, Jung-Gil; Kim, Myoung-Hee

    2008-04-01

    Deterministic method based on ray tracing technique is known as a powerful alternative to the Monte Carlo approach for virtual X-ray imaging. The algorithm speed is a critical issue in the perspective of simulating hundreds of images, notably to simulate tomographic acquisition or even more, to simulate X-ray radiographic video recordings. We present an algorithm for voxel-based deterministic simulation of X-ray imaging using voxel-driven forward and backward perspective projection operations and minimum bounding rectangles (MBRs). The algorithm is fast, easy to implement, and creates high-quality simulated radiographs. As a result, simulated radiographs can typically be obtained in split seconds with a simple personal computer. Program summaryProgram title: X-ray Catalogue identifier: AEAD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 416 257 No. of bytes in distributed program, including test data, etc.: 6 018 263 Distribution format: tar.gz Programming language: C (Visual C++) Computer: Any PC. Tested on DELL Precision 380 based on a Pentium D 3.20 GHz processor with 3.50 GB of RAM Operating system: Windows XP Classification: 14, 21.1 Nature of problem: Radiographic simulation of voxelized objects based on ray tracing technique. Solution method: The core of the simulation is a fast routine for the calculation of ray-box intersections and minimum bounding rectangles, together with voxel-driven forward and backward perspective projection operations. Restrictions: Memory constraints. There are three programs in all. A. Program for test 3.1(1): Object and detector have axis-aligned orientation; B. Program for test 3.1(2): Object in arbitrary orientation; C. Program for test 3.2: Simulation of X-ray video

  6. A Fast SVD-Hidden-nodes based Extreme Learning Machine for Large-Scale Data Analytics.

    PubMed

    Deng, Wan-Yu; Bai, Zuo; Huang, Guang-Bin; Zheng, Qing-Hua

    2016-05-01

    Big dimensional data is a growing trend that is emerging in many real world contexts, extending from web mining, gene expression analysis, protein-protein interaction to high-frequency financial data. Nowadays, there is a growing consensus that the increasing dimensionality poses impeding effects on the performances of classifiers, which is termed as the "peaking phenomenon" in the field of machine intelligence. To address the issue, dimensionality reduction is commonly employed as a preprocessing step on the Big dimensional data before building the classifiers. In this paper, we propose an Extreme Learning Machine (ELM) approach for large-scale data analytic. In contrast to existing approaches, we embed hidden nodes that are designed using singular value decomposition (SVD) into the classical ELM. These SVD nodes in the hidden layer are shown to capture the underlying characteristics of the Big dimensional data well, exhibiting excellent generalization performances. The drawback of using SVD on the entire dataset, however, is the high computational complexity involved. To address this, a fast divide and conquer approximation scheme is introduced to maintain computational tractability on high volume data. The resultant algorithm proposed is labeled here as Fast Singular Value Decomposition-Hidden-nodes based Extreme Learning Machine or FSVD-H-ELM in short. In FSVD-H-ELM, instead of identifying the SVD hidden nodes directly from the entire dataset, SVD hidden nodes are derived from multiple random subsets of data sampled from the original dataset. Comprehensive experiments and comparisons are conducted to assess the FSVD-H-ELM against other state-of-the-art algorithms. The results obtained demonstrated the superior generalization performance and efficiency of the FSVD-H-ELM. PMID:26907860

  7. GPU-based fast Monte Carlo dose calculation for proton therapy

    PubMed Central

    Jia, Xun; Schümann, Jan; Paganetti, Harald; Jiang, Steve B

    2015-01-01

    Accurate radiation dose calculation is essential for successful proton radiotherapy. Monte Carlo (MC) simulation is considered to be the most accurate method. However, the long computation time limits it from routine clinical applications. Recently, graphics processing units (GPUs) have been widely used to accelerate computationally intensive tasks in radiotherapy. We have developed a fast MC dose calculation package, gPMC, for proton dose calculation on a GPU. In gPMC, proton transport is modeled by the class II condensed history simulation scheme with a continuous slowing down approximation. Ionization, elastic and inelastic proton nucleus interactions are considered. Energy straggling and multiple scattering are modeled. Secondary electrons are not transported and their energies are locally deposited. After an inelastic nuclear interaction event, a variety of products are generated using an empirical model. Among them, charged nuclear fragments are terminated with energy locally deposited. Secondary protons are stored in a stack and transported after finishing transport of the primary protons, while secondary neutral particles are neglected. gPMC is implemented on the GPU under the CUDA platform. We have validated gPMC using the TOPAS/Geant4 MC code as the gold standard. For various cases including homogeneous and inhomogeneous phantoms as well as a patient case, good agreements between gPMC and TOPAS/Geant4 are observed. The gamma passing rate for the 2%/2 mm criterion is over 98.7% in the region with dose greater than 10% maximum dose in all cases, excluding low-density air regions. With gPMC it takes only 6–22 s to simulate 10 million source protons to achieve ~1% relative statistical uncertainty, depending on the phantoms and energy. This is an extremely high efficiency compared to the computational time of tens of CPU hours for TOPAS/Geant4. Our fast GPU-based code can thus facilitate the routine use of MC dose calculation in proton therapy. PMID:23128424

  8. GPU-based fast Monte Carlo dose calculation for proton therapy.

    PubMed

    Jia, Xun; Schümann, Jan; Paganetti, Harald; Jiang, Steve B

    2012-12-01

    Accurate radiation dose calculation is essential for successful proton radiotherapy. Monte Carlo (MC) simulation is considered to be the most accurate method. However, the long computation time limits it from routine clinical applications. Recently, graphics processing units (GPUs) have been widely used to accelerate computationally intensive tasks in radiotherapy. We have developed a fast MC dose calculation package, gPMC, for proton dose calculation on a GPU. In gPMC, proton transport is modeled by the class II condensed history simulation scheme with a continuous slowing down approximation. Ionization, elastic and inelastic proton nucleus interactions are considered. Energy straggling and multiple scattering are modeled. Secondary electrons are not transported and their energies are locally deposited. After an inelastic nuclear interaction event, a variety of products are generated using an empirical model. Among them, charged nuclear fragments are terminated with energy locally deposited. Secondary protons are stored in a stack and transported after finishing transport of the primary protons, while secondary neutral particles are neglected. gPMC is implemented on the GPU under the CUDA platform. We have validated gPMC using the TOPAS/Geant4 MC code as the gold standard. For various cases including homogeneous and inhomogeneous phantoms as well as a patient case, good agreements between gPMC and TOPAS/Geant4 are observed. The gamma passing rate for the 2%/2 mm criterion is over 98.7% in the region with dose greater than 10% maximum dose in all cases, excluding low-density air regions. With gPMC it takes only 6-22 s to simulate 10 million source protons to achieve ∼1% relative statistical uncertainty, depending on the phantoms and energy. This is an extremely high efficiency compared to the computational time of tens of CPU hours for TOPAS/Geant4. Our fast GPU-based code can thus facilitate the routine use of MC dose calculation in proton therapy. PMID

  9. Fast mass spectrometry-based enantiomeric excess determination of proteinogenic amino acids.

    PubMed

    Fleischer, Heidi; Thurow, Kerstin

    2013-03-01

    A rapid determination of the enantiomeric excess of proteinogenic amino acids is of great importance in various fields of chemical and biologic research and industries. Owing to their different biologic effects, enantiomers are interesting research subjects in drug development for the design of new and more efficient pharmaceuticals. Usually, the enantiomeric composition of amino acids is determined by conventional analytical methods such as liquid or gas chromatography or capillary electrophoresis. These analytical techniques do not fulfill the requirements of high-throughput screening due to their relative long analysis times. The method presented allows a fast analysis of chiral amino acids without previous time consuming chromatographic separation. The analytical measurements base on parallel kinetic resolution with pseudoenantiomeric mass tagged auxiliaries and were carried out by mass spectrometry with electrospray ionization. All 19 chiral proteinogenic amino acids were tested and Pro, Ser, Trp, His, and Glu were selected as model substrates for verification measurements. The enantiomeric excesses of amino acids with non-polar and aliphatic side chains as well as Trp and Phe (aromatic side chains) were determined with maximum deviations of the expected value less than or equal to 10ee%. Ser, Cys, His, Glu, and Asp were determined with deviations lower or equal to 14ee% and the enantiomeric excess of Tyr were calculated with 17ee% deviation. The total screening process is fully automated from the sample pretreatment to the data processing. The method presented enables fast measurement times about 1.38 min per sample and is applicable in the scope of high-throughput screenings. PMID:23232768

  10. GPU-based fast Monte Carlo dose calculation for proton therapy

    NASA Astrophysics Data System (ADS)

    Jia, Xun; Schümann, Jan; Paganetti, Harald; Jiang, Steve B.

    2012-12-01

    Accurate radiation dose calculation is essential for successful proton radiotherapy. Monte Carlo (MC) simulation is considered to be the most accurate method. However, the long computation time limits it from routine clinical applications. Recently, graphics processing units (GPUs) have been widely used to accelerate computationally intensive tasks in radiotherapy. We have developed a fast MC dose calculation package, gPMC, for proton dose calculation on a GPU. In gPMC, proton transport is modeled by the class II condensed history simulation scheme with a continuous slowing down approximation. Ionization, elastic and inelastic proton nucleus interactions are considered. Energy straggling and multiple scattering are modeled. Secondary electrons are not transported and their energies are locally deposited. After an inelastic nuclear interaction event, a variety of products are generated using an empirical model. Among them, charged nuclear fragments are terminated with energy locally deposited. Secondary protons are stored in a stack and transported after finishing transport of the primary protons, while secondary neutral particles are neglected. gPMC is implemented on the GPU under the CUDA platform. We have validated gPMC using the TOPAS/Geant4 MC code as the gold standard. For various cases including homogeneous and inhomogeneous phantoms as well as a patient case, good agreements between gPMC and TOPAS/Geant4 are observed. The gamma passing rate for the 2%/2 mm criterion is over 98.7% in the region with dose greater than 10% maximum dose in all cases, excluding low-density air regions. With gPMC it takes only 6-22 s to simulate 10 million source protons to achieve ˜1% relative statistical uncertainty, depending on the phantoms and energy. This is an extremely high efficiency compared to the computational time of tens of CPU hours for TOPAS/Geant4. Our fast GPU-based code can thus facilitate the routine use of MC dose calculation in proton therapy.

  11. Automatic building detection based on Purposive FastICA (PFICA) algorithm using monocular high resolution Google Earth images

    NASA Astrophysics Data System (ADS)

    Ghaffarian, Saman; Ghaffarian, Salar

    2014-11-01

    This paper proposes an improved FastICA model named as Purposive FastICA (PFICA) with initializing by a simple color space transformation and a novel masking approach to automatically detect buildings from high resolution Google Earth imagery. ICA and FastICA algorithms are defined as Blind Source Separation (BSS) techniques for unmixing source signals using the reference data sets. In order to overcome the limitations of the ICA and FastICA algorithms and make them purposeful, we developed a novel method involving three main steps: 1-Improving the FastICA algorithm using Moore-Penrose pseudo inverse matrix model, 2-Automated seeding of the PFICA algorithm based on LUV color space and proposed simple rules to split image into three regions; shadow + vegetation, baresoil + roads and buildings, respectively, 3-Masking out the final building detection results from PFICA outputs utilizing the K-means clustering algorithm with two number of clusters and conducting simple morphological operations to remove noises. Evaluation of the results illustrates that buildings detected from dense and suburban districts with divers characteristics and color combinations using our proposed method have 88.6% and 85.5% overall pixel-based and object-based precision performances, respectively.

  12. Fast community detection based on sector edge aggregation metric model in hyperbolic space

    NASA Astrophysics Data System (ADS)

    Wang, Zuxi; Li, Qingguang; Xiong, Wei; Jin, Fengdong; Wu, Yao

    2016-06-01

    By studying the edge aggregation characteristic of nodes in hyperbolic space, Sector Edge Aggregation Metric (SEAM) model is proposed and theoretically proved in this paper. In hyperbolic disk SEAM model determines the minimum angular range of a sector which possesses the maximal edge aggregation of nodes. The set of nodes within such sector has dense internal links, which corresponds with the characteristic of community structure. Based on SEAM model, we propose a fast community detection algorithm called Greedy Optimization Modularity Algorithm (GOMA) which employs greedy optimization strategy and hyperbolic coordinates. GOMA firstly divides initial communities according to the quantitative results of sector edge aggregation given by SEAM and the nodes' hyperbolic coordinates, then based on greedy optimization strategy, only merges the two angular neighboring communities in hyperbolic disk to optimize the network modularity function, and consequently obtains high-quality community detection. The strategies of initial community partition and merger in hyperbolic space greatly improve the speed of searching the most optimal modularity. Experimental results indicate that GOMA is able to detect out high-quality community structure in synthetic and real networks, and performs better when applied to the large-scale and dense networks with strong clustering.

  13. Estimates for Pu-239 loadings in burial ground culverts based on fast/slow neutron measurements

    SciTech Connect

    Winn, W.G.; Hochel, R.C.; Hofstetter, K.J.; Sigg, R.A.

    1989-08-15

    This report provides guideline estimates for Pu-239 mass loadings in selected burial ground culverts. The relatively high recorded Pu-239 contents of these culverts have been appraised as suspect relative to criticality concerns, because they were assayed only with the solid waste monitor (SWM) per gamma-ray counting. After 1985, subsequent waste was also assayed with the neutron coincidence counter (NCC), and a comparison of the assay methods showed that the NCC generally yielded higher assays than the SWM. These higher NCC readings signaled a need to conduct non-destructive/non-intrusive nuclear interrogations of these culverts, and a technical team conducted scoping measurements to illustrate potential assay methods based on neutron and/or gamma counting. A fast/slow neutron method has been developed to estimate the Pu-239 in the culverts. In addition, loading records include the SWM assays of all Pu-239 cuts of some of the culvert drums and these data are useful in estimating the corresponding NCC drum assays from NCC vs SWM data. Together, these methods yield predictions based on direct measurements and statistical inference.

  14. Fast photo-acoustic imaging based on multi-element linear transducer array

    NASA Astrophysics Data System (ADS)

    Yin, Bangzheng; Xing, Da; Yang, Diwu; Tan, Yi; Chen, Qun

    2005-04-01

    Photoacoustic imaging combines the contrast advantage of pure optical imaging and the resolution advantage of pure ultrasonic imaging. It has become a popular research subject at present. A fast photoacoustic imaging system based on multi-element linear transducer array and phase-controlled focus method was developed and tested on phantoms and tissues. A Q switched Nd:YAG laser operating at 532nm was used in our experiment as thermal source. The multi-element linear transducer array consists of 320 elements. By phase-controlled focus method, 64 signals, one of which gathered by 11-group element, make up of an image. Experiment results can map the distribution of the optical absorption correctly. The same transducer array also can operate as a conventional phase array and produced ultrasound imaging. Compared to other existing technology and algorithm, the PA imaging based on transducer array was characterize by speediness and convenience. It can provide a new approach for tissue functional imaging in vivo, and may have potentials in developing into an appliance for clinic diagnosis.

  15. Fast optimization method based on the diffuser dot density for uniformity of the backlight module.

    PubMed

    Huang, Bing-Le; Guo, Tai-Liang

    2016-02-20

    A fast optimization method based on the diffuser dot density (DDD) for uniformity of the backlight module (BLM) is proposed in the paper. First, the relationship between the efficiency of the light emerging and the DDD is analyzed, and then a simulation model that is employed to acquire a serial of simulating data is constructed. Second, a mathematic method to profit the relationship is adopted, and a polynomial relationship is derived. Finally, an algorithm to adjust the DDD and optimize the uniformity of the BLM based on the DDD is constructed. The simulation results prove that only by three times optimization, the uniformity of the BLM can reach 85.6%, and the experimental result indicates that the algorithm proposed in the paper can improve the uniformity rapidly. The final experimental result is that the uniformity of the third optimization reaches 77.4%, which satisfies the target 75% in the phase of designing the BLM. Compared to the conventional optimization method, the method can speed up the procedure and lower the expense of developing the BLM in fabricating the liquid-crystal display. PMID:26906605

  16. GPU-based ultra-fast direct aperture optimization for online adaptive radiation therapy

    NASA Astrophysics Data System (ADS)

    Men, Chunhua; Jia, Xun; Jiang, Steve B.

    2010-08-01

    Online adaptive radiation therapy (ART) has great promise to significantly reduce normal tissue toxicity and/or improve tumor control through real-time treatment adaptations based on the current patient anatomy. However, the major technical obstacle for clinical realization of online ART, namely the inability to achieve real-time efficiency in treatment re-planning, has yet to be solved. To overcome this challenge, this paper presents our work on the implementation of an intensity-modulated radiation therapy (IMRT) direct aperture optimization (DAO) algorithm on the graphics processing unit (GPU) based on our previous work on the CPU. We formulate the DAO problem as a large-scale convex programming problem, and use an exact method called the column generation approach to deal with its extremely large dimensionality on the GPU. Five 9-field prostate and five 5-field head-and-neck IMRT clinical cases with 5 × 5 mm2 beamlet size and 2.5 × 2.5 × 2.5 mm3 voxel size were tested to evaluate our algorithm on the GPU. It takes only 0.7-3.8 s for our implementation to generate high-quality treatment plans on an NVIDIA Tesla C1060 GPU card. Our work has therefore solved a major problem in developing ultra-fast (re-)planning technologies for online ART.

  17. Accurate and Fast Simulation of Channel Noise in Conductance-Based Model Neurons by Diffusion Approximation

    PubMed Central

    Linaro, Daniele; Storace, Marco; Giugliano, Michele

    2011-01-01

    Stochastic channel gating is the major source of intrinsic neuronal noise whose functional consequences at the microcircuit- and network-levels have been only partly explored. A systematic study of this channel noise in large ensembles of biophysically detailed model neurons calls for the availability of fast numerical methods. In fact, exact techniques employ the microscopic simulation of the random opening and closing of individual ion channels, usually based on Markov models, whose computational loads are prohibitive for next generation massive computer models of the brain. In this work, we operatively define a procedure for translating any Markov model describing voltage- or ligand-gated membrane ion-conductances into an effective stochastic version, whose computer simulation is efficient, without compromising accuracy. Our approximation is based on an improved Langevin-like approach, which employs stochastic differential equations and no Montecarlo methods. As opposed to an earlier proposal recently debated in the literature, our approximation reproduces accurately the statistical properties of the exact microscopic simulations, under a variety of conditions, from spontaneous to evoked response features. In addition, our method is not restricted to the Hodgkin-Huxley sodium and potassium currents and is general for a variety of voltage- and ligand-gated ion currents. As a by-product, the analysis of the properties emerging in exact Markov schemes by standard probability calculus enables us for the first time to analytically identify the sources of inaccuracy of the previous proposal, while providing solid ground for its modification and improvement we present here. PMID:21423712

  18. Fast video shot boundary detection based on SVD and pattern matching.

    PubMed

    Lu, Zhe-Ming; Shi, Yong

    2013-12-01

    Video shot boundary detection (SBD) is the first and essential step for content-based video management and structural analysis. Great efforts have been paid to develop SBD algorithms for years. However, the high computational cost in the SBD becomes a block for further applications such as video indexing, browsing, retrieval, and representation. Motivated by the requirement of the real-time interactive applications, a unified fast SBD scheme is proposed in this paper. We adopted a candidate segment selection and singular value decomposition (SVD) to speed up the SBD. Initially, the positions of the shot boundaries and lengths of gradual transitions are predicted using adaptive thresholds and most non-boundary frames are discarded at the same time. Only the candidate segments that may contain the shot boundaries are preserved for further detection. Then, for all frames in each candidate segment, their color histograms in the hue-saturation-value) space are extracted, forming a frame-feature matrix. The SVD is then performed on the frame-feature matrices of all candidate segments to reduce the feature dimension. The refined feature vector of each frame in the candidate segments is obtained as a new metric for boundary detection. Finally, cut and gradual transitions are identified using our pattern matching method based on a new similarity measurement. Experiments on TRECVID 2001 test data and other video materials show that the proposed scheme can achieve a high detection speed and excellent accuracy compared with recent SBD schemes. PMID:24058028

  19. Fast k-space-based evaluation of imaging properties of ultrasound apertures

    NASA Astrophysics Data System (ADS)

    Zapf, M.; Dapp, R.; Hardt, M.; Henning, P. A.; Ruiter, N. V.

    2011-03-01

    At the Karlsruhe Institute of Technology (KIT) a three-dimensional ultrasound computer tomography (3D USCT) system for early breast cancer diagnosis is being developed. This method promises reproducible volume images of the female breast in 3D. Initial measurements and a simulation based optimization method, which took several physical properties into account, led to a new aperture setup. Yet this simulation is computational too demanding to systematically evaluate the different 'virtual' apertures which can be achieved by rotation and lifting of the system. In optics a Fourier based approach is available to simulate imaging systems as linear systems. For the two apertures used in our project and one hypothetical linear array aperture this concept was evaluated and compared to a reference simulation. An acceptable conformity between the new approach and the reference simulation could be shown. With this approach a fast evaluation of optimal 'virtual' apertures for specific measurement objects and imaging constraints can be carried out within an acceptable time constraint.

  20. A laser diode based system for calibration of fast time-of-flight detectors

    NASA Astrophysics Data System (ADS)

    Bertoni, R.; Bonesini, M.; de Bari, A.; Rossella, M.

    2016-05-01

    A system based on commercially available items, such as a laser diode, emitting in the visible range ~ 400 nm, and multimode fiber patches, fused fiber splitters and optical switches may be assembled, for time calibration of multi-channels time-of-flight (TOF) detectors with photomultipliers' (PMTs') readout. As available laser diode sources have unfortunately limited peak power, the main experimental problem is the tight light power budget of such a system. In addition, while the technology for fused fiber splitters is common in the Telecom wavelength range (λ ~ 850, 1300–1500 nm), it is not easily available in the visible one. Therefore, extensive laboratory tests had to be done on purpose, to qualify the used optical components, and a full scale timing calibration prototype was built. Obtained results show that with such a system, a calibration resolution (σ) in the range 20–30 ps may be within reach. Therefore, fast multi-channels TOF detectors, with timing resolutions in the range 50–100 ps, may be easily calibrated in time. Results on tested optical components may be of interest also for time calibration of different light detection systems based on PMTs, as the ones used for detection of the vacuum ultraviolet scintillation light emitted by ionizing particles in large LAr TPCs.

  1. Field calibration of binocular stereo vision based on fast reconstruction of 3D control field

    NASA Astrophysics Data System (ADS)

    Zhang, Haijun; Liu, Changjie; Fu, Luhua; Guo, Yin

    2015-08-01

    Construction of high-speed railway in China has entered a period of rapid growth. To accurately and quickly obtain the dynamic envelope curve of high-speed vehicle is an important guarantee for safe driving. The measuring system is based on binocular stereo vision. Considering the difficulties in field calibration such as environmental changes and time limits, carried out a field calibration method based on fast reconstruction of three-dimensional control field. With the rapid assembly of pre-calibrated three-dimensional control field, whose coordinate accuracy is guaranteed by manufacture accuracy and calibrated by V-STARS, two cameras take a quick shot of it at the same time. The field calibration parameters are then solved by the method combining linear solution with nonlinear optimization. Experimental results showed that the measurement accuracy can reach up to +/- 0.5mm, and more importantly, in the premise of guaranteeing accuracy, the speed of the calibration and the portability of the devices have been improved considerably.

  2. Fast Gaussian kernel learning for classification tasks based on specially structured global optimization.

    PubMed

    Zhong, Shangping; Chen, Tianshun; He, Fengying; Niu, Yuzhen

    2014-09-01

    For a practical pattern classification task solved by kernel methods, the computing time is mainly spent on kernel learning (or training). However, the current kernel learning approaches are based on local optimization techniques, and hard to have good time performances, especially for large datasets. Thus the existing algorithms cannot be easily extended to large-scale tasks. In this paper, we present a fast Gaussian kernel learning method by solving a specially structured global optimization (SSGO) problem. We optimize the Gaussian kernel function by using the formulated kernel target alignment criterion, which is a difference of increasing (d.i.) functions. Through using a power-transformation based convexification method, the objective criterion can be represented as a difference of convex (d.c.) functions with a fixed power-transformation parameter. And the objective programming problem can then be converted to a SSGO problem: globally minimizing a concave function over a convex set. The SSGO problem is classical and has good solvability. Thus, to find the global optimal solution efficiently, we can adopt the improved Hoffman's outer approximation method, which need not repeat the searching procedure with different starting points to locate the best local minimum. Also, the proposed method can be proven to converge to the global solution for any classification task. We evaluate the proposed method on twenty benchmark datasets, and compare it with four other Gaussian kernel learning methods. Experimental results show that the proposed method stably achieves both good time-efficiency performance and good classification performance. PMID:24929345

  3. 70 Group Neutron Fast Reactor Cross Section Set Based on JENDL-2B.

    Energy Science and Technology Software Center (ESTSC)

    1984-02-06

    Version 00 These multigroup cross sections are used in fast reactor calculations. The benchmark calculations for the 23 fast critical assemblies used in the benchmark tests of JFS-2 were performed with one-dimensional diffusion theory by using the JFS-3-J2 set.

  4. FAST ANALYSIS OF BEVERAGES USING A MASS SPECTRAL BASED CHEMICAL SENSOR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Detection of adulteration, contamination or inconsistencies in food and flavor samples should be accurate and fast. Chemical sensors are ideal for these types of applications because they provide fast measurement times (2-6 minutes). While analysis times are crucial, accuracy and precision of the ...

  5. Project FAST.

    ERIC Educational Resources Information Center

    Essexville-Hampton Public Schools, MI.

    Described are components of Project FAST (Functional Analysis Systems Training) a nationally validated project to provide more effective educational and support services to learning disordered children and their regular elementary classroom teachers. The program is seen to be based on a series of modules of delivery systems ranging from mainstream…

  6. Fast Mean-Shift Based Classification of Very High Resolution Images: Application to Forest Cover Mapping

    NASA Astrophysics Data System (ADS)

    Boukir, S.; Jones, S.; Reinke, K.

    2012-07-01

    This paper presents a new unsupervised classification method which aims to effectively and efficiently map remote sensing data. The Mean-Shift (MS) algorithm, a non parametric density-based clustering technique, is at the core of our method. This powerful clustering algorithm has been successfully used for both the classification and the segmentation of gray scale and color images during the last decade. However, very little work has been reported regarding the performance of this technique on remotely sensed images. The main disadvantage of the MS algorithm lies on its high computational costs. Indeed, it is based on an optimization procedure to determine the modes of the pixels density. To investigate the MS algorithm in the difficult context of very high resolution remote sensing imagery, we use a fast version of this algorithm which has been recently proposed, namely the Path-Assigned Mean Shift (PAMS). This algorithm is up to 5 times faster than other fast MS algorithms while inducing a low loss in quality compared to the original MS version. To compensate for this loss, we propose to use the K modes (cluster centroids) obtained after convergence of the PAMS algorithm as an initialization of a K-means clustering algorithm. The latter converges very quickly to a refined solution to the underlying clustering problem. Furthermore, it does not suffer the main drawback of the classic K-means algorithm (the number of clusters K needs to be specified) as K is automatically determined via the MS mode-seeking procedure. We demonstrate the effectiveness of this two-stage clustering method in performing automatic classification of aerial forest images. Both individual bands and band combination trails are presented. When compared to the classical PAMS algorithm, our technique is better in terms of classification quality. The improvement in classification is significant both visually and statistically. The whole classification process is performed in a few seconds on

  7. A Fast and Robust Poisson-Boltzmann Solver Based on Adaptive Cartesian Grids.

    PubMed

    Boschitsch, Alexander H; Fenley, Marcia O

    2011-05-10

    An adaptive Cartesian grid (ACG) concept is presented for the fast and robust numerical solution of the 3D Poisson-Boltzmann Equation (PBE) governing the electrostatic interactions of large-scale biomolecules and highly charged multi-biomolecular assemblies such as ribosomes and viruses. The ACG offers numerous advantages over competing grid topologies such as regular 3D lattices and unstructured grids. For very large biological molecules and multi-biomolecule assemblies, the total number of grid-points is several orders of magnitude less than that required in a conventional lattice grid used in the current PBE solvers thus allowing the end user to obtain accurate and stable nonlinear PBE solutions on a desktop computer. Compared to tetrahedral-based unstructured grids, ACG offers a simpler hierarchical grid structure, which is naturally suited to multigrid, relieves indirect addressing requirements and uses fewer neighboring nodes in the finite difference stencils. Construction of the ACG and determination of the dielectric/ionic maps are straightforward, fast and require minimal user intervention. Charge singularities are eliminated by reformulating the problem to produce the reaction field potential in the molecular interior and the total electrostatic potential in the exterior ionic solvent region. This approach minimizes grid-dependency and alleviates the need for fine grid spacing near atomic charge sites. The technical portion of this paper contains three parts. First, the ACG and its construction for general biomolecular geometries are described. Next, a discrete approximation to the PBE upon this mesh is derived. Finally, the overall solution procedure and multigrid implementation are summarized. Results obtained with the ACG-based PBE solver are presented for: (i) a low dielectric spherical cavity, containing interior point charges, embedded in a high dielectric ionic solvent - analytical solutions are available for this case, thus allowing rigorous

  8. (abstract) A Low-Cost Mission to 2060 Chiron Based on the Pluto Fast Flyby

    NASA Technical Reports Server (NTRS)

    Stern, S. A.; Salvo, C. G.; Wallace, R. A.; Weinstein, S. S.; Weissman, P. R.

    1994-01-01

    The Pluto Fast Flyby-based mission to Chiron described in this paper is a low cost, scientifically rewarding, focused mission in the outer solar system. The proposed mission will make a flyby of 2060 Chiron, an active 'comet' with over 10(sup 4) times the mass of Halley, and an eccentric, Saturn-crossing orbit which ranges from 8.5 to 19 AU. This mission concept achieves the flyby 4.2 years after launch on a direct trajectory from Earth, is independent of Jupiter launch windows, and fits within Discovery cost guidelines. This mission offers the scientific opportunity to examine a class of object left unsampled by the trail-blazing Mariners, Pioneers, Voyagers, and missions to Halley. Spacecraft reconnaissance of Chiron addresses unique objectives relating to cometary science, other small bodies, the structure of quasi-bound atmospheres on modest-sized bodies, and the origin of primitive bodies and the giant planets. Owing to Chiron's large size (180based on the opportunity to use the planned Pluto Flyby spare spacecraft and a Proton Expendable Launch Vehicle (ELV) (the pluto spacecraft is being designed to be compatible with a Proton launch). Backup

  9. Efficient Terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response.

    PubMed

    Viti, Leonardo; Hu, Jin; Coquillat, Dominique; Politano, Antonio; Knap, Wojciech; Vitiello, Miriam S

    2016-01-01

    The ability to convert light into an electrical signal with high efficiencies and controllable dynamics, is a major need in photonics and optoelectronics. In the Terahertz (THz) frequency range, with its exceptional application possibilities in high data rate wireless communications, security, night-vision, biomedical or video-imaging and gas sensing, detection technologies providing efficiency and sensitivity performances that can be "engineered" from scratch, remain elusive. Here, by exploiting the inherent electrical and thermal in-plane anisotropy of a flexible thin flake of black-phosphorus (BP), we devise plasma-wave, thermoelectric and bolometric nano-detectors with a selective, switchable and controllable operating mechanism. All devices operates at room-temperature and are integrated on-chip with planar nanoantennas, which provide remarkable efficiencies through light-harvesting in the strongly sub-wavelength device channel. The achieved selective detection (∼5-8 V/W responsivity) and sensitivity performances (signal-to-noise ratio of 500), are here exploited to demonstrate the first concrete application of a phosphorus-based active THz device, for pharmaceutical and quality control imaging of macroscopic samples, in real-time and in a realistic setting. PMID:26847823

  10. Efficient Terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response

    NASA Astrophysics Data System (ADS)

    Viti, Leonardo; Hu, Jin; Coquillat, Dominique; Politano, Antonio; Knap, Wojciech; Vitiello, Miriam S.

    2016-02-01

    The ability to convert light into an electrical signal with high efficiencies and controllable dynamics, is a major need in photonics and optoelectronics. In the Terahertz (THz) frequency range, with its exceptional application possibilities in high data rate wireless communications, security, night-vision, biomedical or video-imaging and gas sensing, detection technologies providing efficiency and sensitivity performances that can be “engineered” from scratch, remain elusive. Here, by exploiting the inherent electrical and thermal in-plane anisotropy of a flexible thin flake of black-phosphorus (BP), we devise plasma-wave, thermoelectric and bolometric nano-detectors with a selective, switchable and controllable operating mechanism. All devices operates at room-temperature and are integrated on-chip with planar nanoantennas, which provide remarkable efficiencies through light-harvesting in the strongly sub-wavelength device channel. The achieved selective detection (˜5-8 V/W responsivity) and sensitivity performances (signal-to-noise ratio of 500), are here exploited to demonstrate the first concrete application of a phosphorus-based active THz device, for pharmaceutical and quality control imaging of macroscopic samples, in real-time and in a realistic setting.

  11. Efficient Terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response

    PubMed Central

    Viti, Leonardo; Hu, Jin; Coquillat, Dominique; Politano, Antonio; Knap, Wojciech; Vitiello, Miriam S.

    2016-01-01

    The ability to convert light into an electrical signal with high efficiencies and controllable dynamics, is a major need in photonics and optoelectronics. In the Terahertz (THz) frequency range, with its exceptional application possibilities in high data rate wireless communications, security, night-vision, biomedical or video-imaging and gas sensing, detection technologies providing efficiency and sensitivity performances that can be “engineered” from scratch, remain elusive. Here, by exploiting the inherent electrical and thermal in-plane anisotropy of a flexible thin flake of black-phosphorus (BP), we devise plasma-wave, thermoelectric and bolometric nano-detectors with a selective, switchable and controllable operating mechanism. All devices operates at room-temperature and are integrated on-chip with planar nanoantennas, which provide remarkable efficiencies through light-harvesting in the strongly sub-wavelength device channel. The achieved selective detection (∼5–8 V/W responsivity) and sensitivity performances (signal-to-noise ratio of 500), are here exploited to demonstrate the first concrete application of a phosphorus-based active THz device, for pharmaceutical and quality control imaging of macroscopic samples, in real-time and in a realistic setting. PMID:26847823

  12. Antipodally Invariant Metrics for Fast Regression-Based Super-Resolution.

    PubMed

    Perez-Pellitero, Eduardo; Salvador, Jordi; Ruiz-Hidalgo, Javier; Rosenhahn, Bodo

    2016-06-01

    Dictionary-based super-resolution (SR) algorithms usually select dictionary atoms based on the distance or similarity metrics. Although the optimal selection of the nearest neighbors is of central importance for such methods, the impact of using proper metrics for SR has been overlooked in literature, mainly due to the vast usage of Euclidean distance. In this paper, we present a very fast regression-based algorithm, which builds on the densely populated anchored neighborhoods and sublinear search structures. We perform a study of the nature of the features commonly used for SR, observing that those features usually lie in the unitary hypersphere, where every point has a diametrically opposite one, i.e., its antipode, with same module and angle, but the opposite direction. Even though, we validate the benefits of using antipodally invariant metrics, most of the binary splits use Euclidean distance, which does not handle antipodes optimally. In order to benefit from both the worlds, we propose a simple yet effective antipodally invariant transform that can be easily included in the Euclidean distance calculation. We modify the original spherical hashing algorithm with this metric in our antipodally invariant spherical hashing scheme, obtaining the same performance as a pure antipodally invariant metric. We round up our contributions with a novel feature transform that obtains a better coarse approximation of the input image thanks to iterative backprojection. The performance of our method, which we named antipodally invariant SR, improves quality (Peak Signal to Noise Ratio) and it is faster than any other state-of-the-art method. PMID:27046898

  13. Fast and powerful heritability inference for family-based neuroimaging studies

    PubMed Central

    Ganjgahi, Habib; Winkler, Anderson M.; Glahn, David C.; Blangero, John; Kochunov, Peter; Nichols, Thomas E.

    2015-01-01

    Heritability estimation has become an important tool for imaging genetics studies. The large number of voxel- and vertex-wise measurements in imaging genetics studies presents a challenge both in terms of computational intensity and the need to account for elevated false positive risk because of the multiple testing problem. There is a gap in existing tools, as standard neuroimaging software cannot estimate heritability, and yet standard quantitative genetics tools cannot provide essential neuroimaging inferences, like family-wise error corrected voxel-wise or cluster-wiseP-values. Moreover, available heritability tools rely on P-values that can be inaccurate with usual parametric inference methods. In this work we develop fast estimation and inference procedures for voxel-wise heritability, drawing on recent methodological results that simplify heritability likelihood computations (Blangero etal., 2013). We review the family of score and Wald tests and propose novel inference methods based on explained sum of squares of an auxiliary linear model. To address problems with inaccuracies with the standard results used to find P-values, we propose four different permutation schemes to allow semi-parametric inference (parametric likelihood-based estimation, non-parametric sampling distribution). In total, we evaluate 5 different significance tests for heritability, with either asymptotic parametric or permutation-basedP-value computations. We identify a number of tests that are both computationally efficient and powerful, making them ideal candidates for heritability studies in the massive data setting. We illustrate our method on fractional anisotropy measures in 859 subjects from the Genetics of Brain Structure study. PMID:25812717

  14. The relationship between contrast, resolution and detectability in accelerator-based fast neutron radiography

    SciTech Connect

    Ambrosi, R. M.; Watterson, J. I. W.

    1999-06-10

    Fast neutron radiography as a method for non destructive testing is a fast growing field of research. At the Schonland Research Center for Nuclear Sciences we have been engaged in the formulation of a model for the physics of image formation in fast neutron radiography (FNR). This involves examining all the various factors that affect image formation in FNR by experimental and Monte Carlo methods. One of the major problems in the development of a model for fast neutron radiography is the determination of the factors that affect image contrast and resolution. Monte Carlo methods offer an ideal tool for the determination of the origin of many of these factors. In previous work the focus of these methods has been the determination of the scattered neutron field in both a scintillator and a fast neutron radiography facility. As an extension of this work MCNP has been used to evaluate the role neutron scattering in a specimen plays in image detectability. Image processing of fast neutron radiographs is a necessary method of enhancing the detectability of features in an image. MCNP has been used to determine the part it can play in indirectly improving image resolution and aiding in image processing. The role noise plays in fast neutron radiography and its impact on image reconstruction has been evaluated. All these factors aid in the development of a model describing the relationship between contrast, resolution and detectability.

  15. Advanced magnetic suspensions for vibration isolation and fast-attitude control of space-based generic pointing mounts

    NASA Technical Reports Server (NTRS)

    Bosley, Robert W.; Trivedi, Anil N.

    1991-01-01

    Advanced magnetic suspension for vibration isolation and fast-attitude control of space-based generic pointing mounts (GPM) is presented in the form of viewgraphs. The following subject areas are covered: design criteria for GPM; GPM system features; GPM performance characteristics; GPM functional block diagram; and other applications for generic magnetic suspension technologies.

  16. A Fast Framework for Abrupt Change Detection Based on Binary Search Trees and Kolmogorov Statistic.

    PubMed

    Qi, Jin-Peng; Qi, Jie; Zhang, Qing

    2016-01-01

    Change-Point (CP) detection has attracted considerable attention in the fields of data mining and statistics; it is very meaningful to discuss how to quickly and efficiently detect abrupt change from large-scale bioelectric signals. Currently, most of the existing methods, like Kolmogorov-Smirnov (KS) statistic and so forth, are time-consuming, especially for large-scale datasets. In this paper, we propose a fast framework for abrupt change detection based on binary search trees (BSTs) and a modified KS statistic, named BSTKS (binary search trees and Kolmogorov statistic). In this method, first, two binary search trees, termed as BSTcA and BSTcD, are constructed by multilevel Haar Wavelet Transform (HWT); second, three search criteria are introduced in terms of the statistic and variance fluctuations in the diagnosed time series; last, an optimal search path is detected from the root to leaf nodes of two BSTs. The studies on both the synthetic time series samples and the real electroencephalograph (EEG) recordings indicate that the proposed BSTKS can detect abrupt change more quickly and efficiently than KS, t-statistic (t), and Singular-Spectrum Analyses (SSA) methods, with the shortest computation time, the highest hit rate, the smallest error, and the highest accuracy out of four methods. This study suggests that the proposed BSTKS is very helpful for useful information inspection on all kinds of bioelectric time series signals. PMID:27413364

  17. Constrained source space imaging: application to fast, region-based functional MRI.

    PubMed

    Chiew, Mark; Graham, Simon J

    2013-10-01

    A new technique called constrained source space imaging is introduced that holds promise for ultrafast acquisition of functional magnetic resonance imaging data. A sparse set of arbitrarily positioned, coarse voxels is first localized using radiofrequency selective excitation, from which magnetization signals are separated using only the spatial sensitivities of multichannel receiver coils, without the need for k-space encoding using imaging gradients. This method permits very fast acquisitions of targeted magnetization without complex or time-consuming image reconstruction techniques. Furthermore, because the data acquisition is performed without imaging gradients, T2* decays can be densely sampled and processed for contrast enhancement to improve functional magnetic resonance imaging data quality. Here, the constrained source space imaging technique is validated in proof-of-concept form, for a simple functional magnetic resonance imaging motor task using a prototype dual-band stimulated echo acquisition mode excitation to image four voxels at TR = 250 ms. Results demonstrate good voxel signal separation and good characterization of hemodynamic responses in primary motor cortices (M1) and supplementary motor areas through T2* fitting of the measured signals. With further refinement, the constrained source space imaging method has potential utility in a priori ROI-based functional magnetic resonance imaging experiments with TR values under 100 ms. Rapid, multivoxel measurements of other sources of MR signal contrast are also possible. PMID:23225605

  18. 3D Fast Automatic Segmentation of Kidney Based on Modified AAM and Random Forest.

    PubMed

    Jin, Chao; Shi, Fei; Xiang, Dehui; Jiang, Xueqing; Zhang, Bin; Wang, Ximing; Zhu, Weifang; Gao, Enting; Chen, Xinjian

    2016-06-01

    In this paper, a fully automatic method is proposed to segment the kidney into multiple components: renal cortex, renal column, renal medulla and renal pelvis, in clinical 3D CT abdominal images. The proposed fast automatic segmentation method of kidney consists of two main parts: localization of renal cortex and segmentation of kidney components. In the localization of renal cortex phase, a method which fully combines 3D Generalized Hough Transform (GHT) and 3D Active Appearance Models (AAM) is applied to localize the renal cortex. In the segmentation of kidney components phase, a modified Random Forests (RF) method is proposed to segment the kidney into four components based on the result from localization phase. During the implementation, a multithreading technology is applied to speed up the segmentation process. The proposed method was evaluated on a clinical abdomen CT data set, including 37 contrast-enhanced volume data using leave-one-out strategy. The overall true-positive volume fraction and false-positive volume fraction were 93.15%, 0.37% for renal cortex segmentation; 83.09%, 0.97% for renal column segmentation; 81.92%, 0.55% for renal medulla segmentation; and 80.28%, 0.30% for renal pelvis segmentation, respectively. The average computational time of segmenting kidney into four components took 20 seconds. PMID:26742124

  19. Fast and selective extraction of sulfonamides from honey based on magnetic molecularly imprinted polymer.

    PubMed

    Chen, Ligang; Zhang, Xiaopan; Sun, Lei; Xu, Yang; Zeng, Qinglei; Wang, Hui; Xu, Haoyan; Yu, Aimin; Zhang, Hanqi; Ding, Lan

    2009-11-11

    A fast and selective method was developed for the determination of sulfonamides (SAs) in honey based on magnetic molecularly imprinted polymer. The extraction was carried out by blending and stirring the sample, extraction solvent and polymers. When the extraction was complete, the polymers, along with the captured analytes, were easily separated from the sample matrix by an adscititious magnet. The analytes eluted from the polymers were determined by liquid chromatography-tandem mass spectrometry. Under the optimal conditions, the detection limits of SAs are in the range of 1.5-4.3 ng g(-1). The relative standard deviations of intra- and interday ranging from 3.7% to 7.9% and from 4.3% to 9.9% are obtained, respectively. The proposed method was successfully applied to determine SAs including sulfadiazine, sulfamerazine, sulfamethoxydiazine, sulfamonomethoxine, sulfadimethoxine, sulfamethoxazole and sulfaquinoxaline in different honey samples. The recoveries of SAs in these samples from 67.1% to 93.6% were obtained. PMID:19817457

  20. Fast lemons and sour boulders: Testing crossmodal correspondences using an internet-based testing methodology

    PubMed Central

    Woods, Andy T.; Spence, Charles; Butcher, Natalie; Deroy, Ophelia

    2013-01-01

    According to a popular family of hypotheses, crossmodal matches between distinct features hold because they correspond to the same polarity on several conceptual dimensions (such as active–passive, good–bad, etc.) that can be identified using the semantic differential technique. The main problem here resides in turning this hypothesis into testable empirical predictions. In the present study, we outline a series of plausible consequences of the hypothesis and test a variety of well-established and previously untested crossmodal correspondences by means of a novel internet-based testing methodology. The results highlight that the semantic hypothesis cannot easily explain differences in the prevalence of crossmodal associations built on the same semantic pattern (fast lemons, slow prunes, sour boulders, heavy red); furthermore, the semantic hypothesis only minimally predicts what happens when the semantic dimensions and polarities that are supposed to drive such crossmodal associations are made more salient (e.g., by adding emotional cues that ought to make the good/bad dimension more salient); finally, the semantic hypothesis does not explain why reliable matches are no longer observed once intramodal dimensions with congruent connotations are presented (e.g., visually presented shapes and colour do not appear to correspond). PMID:24349696

  1. Fast temporal phase unwrapping method for the fringe reflection technique based on the orthogonal grid fringes.

    PubMed

    Li, Bo; Ma, Suodong; Zhai, Yang

    2015-07-10

    In traditional temporal phase unwrapping (TPU) algorithms, wrapped phases with different spatial frequencies are obtained from several groups of phase shift fringes to calculate the unwrapped phase. Therefore, the necessary quantity of captured fringes is very large, especially for the fringe reflection technique (FRT), since a pair of phases should be unwrapped to get the slopes of two perpendicular directions. In this paper, we propose a fast TPU algorithm based on the orthogonal grid fringes by which only one image is needed to extract the two integer phases for each frequency instead of two groups of phase shift fringes, and then they can be added into the wrapped phases separately to complete the unwrapping. There are ridge errors in the direct unwrapped phases, but they are significantly suppressed by our pseudo-phase-shift strategy without any extra captured fringes. The proposed method is robust and effective where the fringe amount used for unwrapping is only 1/4 of the previous similar algorithm and 1/6-1/8 of the traditional TPU methods. The detailed comparison of measurement time is also given, which demonstrate that the FRT measurement can be accelerated in most cases by our method. The algorithm is validated by the experiments, which still works well for the severely defocusing fringes or complex specimen. PMID:26193405

  2. Metadyn View: Fast web-based viewer of free energy surfaces calculated by metadynamics

    NASA Astrophysics Data System (ADS)

    Hošek, Petr; Spiwok, Vojtěch

    2016-01-01

    Metadynamics is a highly successful enhanced sampling technique for simulation of molecular processes and prediction of their free energy surfaces. An in-depth analysis of data obtained by this method is as important as the simulation itself. Although there are several tools to compute free energy surfaces from metadynamics data, they usually lack user friendliness and a build-in visualization part. Here we introduce Metadyn View as a fast and user friendly viewer of bias potential/free energy surfaces calculated by metadynamics in Plumed package. It is based on modern web technologies including HTML5, JavaScript and Cascade Style Sheets (CSS). It can be used by visiting the web site and uploading a HILLS file. It calculates the bias potential/free energy surface on the client-side, so it can run online or offline without necessity to install additional web engines. Moreover, it includes tools for measurement of free energies and free energy differences and data/image export.

  3. A Fast Framework for Abrupt Change Detection Based on Binary Search Trees and Kolmogorov Statistic

    PubMed Central

    Qi, Jin-Peng; Qi, Jie; Zhang, Qing

    2016-01-01

    Change-Point (CP) detection has attracted considerable attention in the fields of data mining and statistics; it is very meaningful to discuss how to quickly and efficiently detect abrupt change from large-scale bioelectric signals. Currently, most of the existing methods, like Kolmogorov-Smirnov (KS) statistic and so forth, are time-consuming, especially for large-scale datasets. In this paper, we propose a fast framework for abrupt change detection based on binary search trees (BSTs) and a modified KS statistic, named BSTKS (binary search trees and Kolmogorov statistic). In this method, first, two binary search trees, termed as BSTcA and BSTcD, are constructed by multilevel Haar Wavelet Transform (HWT); second, three search criteria are introduced in terms of the statistic and variance fluctuations in the diagnosed time series; last, an optimal search path is detected from the root to leaf nodes of two BSTs. The studies on both the synthetic time series samples and the real electroencephalograph (EEG) recordings indicate that the proposed BSTKS can detect abrupt change more quickly and efficiently than KS, t-statistic (t), and Singular-Spectrum Analyses (SSA) methods, with the shortest computation time, the highest hit rate, the smallest error, and the highest accuracy out of four methods. This study suggests that the proposed BSTKS is very helpful for useful information inspection on all kinds of bioelectric time series signals. PMID:27413364

  4. A fast thermal-curing nanoimprint resist based on cationic polymerizable epoxysiloxane

    PubMed Central

    2012-01-01

    We synthesized a series of epoxysiloxane oligomers with controllable viscosity and polarity and developed upon them a thermal-curable nanoimprint resist that was cross-linked in air at 110°C within 30 s if preexposed to UV light. The oligomers were designed and synthesized via hydrosilylation of 4-vinyl-cyclohexane-1,2-epoxide with poly(methylhydrosiloxane) with tunable viscosity, polarity, and cross-linking density. The resist exhibits excellent chemical and physical properties such as insensitivity toward oxygen, strong mechanical strength, and high etching resistance. Using this resist, nanoscale patterns of different geometries with feature sizes as small as 30 nm were fabricated via a nanoimprint process based on UV-assisted thermal curing. The curing time for the resist was on the order of 10 s at a moderate temperature with the help of UV light preexposure. This fast thermal curing speed was attributed to the large number of active cations generated upon UV exposure that facilitated the thermal polymerization process. PMID:22775987

  5. Fast Multipole Method for Coulomb Interaction Based on Traceless Totally Symmetric Tensor

    NASA Astrophysics Data System (ADS)

    Huang, He; Li, Rui; Chen, Jie; Luo, Li-Shi; Zhang, He

    2015-04-01

    The fast multipole method (FMM) is widely used to calculate the Coulomb interaction between a huge amount of charged particles. The efficiency of FMM scales with O(N) for N particles with any arbitrary distribution. Hence it is apposite for problems with complicated charge distribution or geometry. Under the same FMM framework, there are different approaches, such as using spherical harmonic functions or Maxwell Cartesian tensors. Here we will present a version using traceless totally symmetric Maxwell Cartesian tensor. The previous Maxwell Cartesian tensor based FMM uses totally symmetric tensor. There are (n + 1)(n + 2) / 2 independent elements in a rank n totally symmetric tensor. However, there are only 2 n + 1 independent elements in a rank n traceless totally symmetric tensor, due to which the efficiency of the traceless version is highly improved compared with the old version, especially when high accuracy is needed and high rank tensors are used. Work supported by the Department of Energy, Laboratory Directed Research and Development Funding, under Contract No. DE-AC05-06OR23177.

  6. Fast Contour-Tracing Algorithm Based on a Pixel-Following Method for Image Sensors

    PubMed Central

    Seo, Jonghoon; Chae, Seungho; Shim, Jinwook; Kim, Dongchul; Cheong, Cheolho; Han, Tack-Don

    2016-01-01

    Contour pixels distinguish objects from the background. Tracing and extracting contour pixels are widely used for smart/wearable image sensor devices, because these are simple and useful for detecting objects. In this paper, we present a novel contour-tracing algorithm for fast and accurate contour following. The proposed algorithm classifies the type of contour pixel, based on its local pattern. Then, it traces the next contour using the previous pixel’s type. Therefore, it can classify the type of contour pixels as a straight line, inner corner, outer corner and inner-outer corner, and it can extract pixels of a specific contour type. Moreover, it can trace contour pixels rapidly because it can determine the local minimal path using the contour case. In addition, the proposed algorithm is capable of the compressing data of contour pixels using the representative points and inner-outer corner points, and it can accurately restore the contour image from the data. To compare the performance of the proposed algorithm to that of conventional techniques, we measure their processing time and accuracy. In the experimental results, the proposed algorithm shows better performance compared to the others. Furthermore, it can provide the compressed data of contour pixels and restore them accurately, including the inner-outer corner, which cannot be restored using conventional algorithms. PMID:27005632

  7. Fast terahertz optoelectronic amplitude modulator based on plasmonic metamaterial antenna arrays and graphene

    NASA Astrophysics Data System (ADS)

    Jessop, David S.; Sol, Christian W. O.; Xiao, Long; Kindness, Stephen J.; Braeuninger-Weimer, Philipp; Lin, Hungyen; Griffiths, Jonathan P.; Ren, Yuan; Kamboj, Varun S.; Hofmann, Stephan; Zeitler, J. Axel; Beere, Harvey E.; Ritchie, David A.; Degl'Innocenti, Riccardo

    2016-02-01

    The growing interest in terahertz (THz) technologies in recent years has seen a wide range of demonstrated applications, spanning from security screening, non-destructive testing, gas sensing, to biomedical imaging and communication. Communication with THz radiation offers the advantage of much higher bandwidths than currently available, in an unallocated spectrum. For this to be realized, optoelectronic components capable of manipulating THz radiation at high speeds and high signal-to-noise ratios must be developed. In this work we demonstrate a room temperature frequency dependent optoelectronic amplitude modulator working at around 2 THz, which incorporates graphene as the tuning medium. The architecture of the modulator is an array of plasmonic dipole antennas surrounded by graphene. By electrostatically doping the graphene via a back gate electrode, the reflection characteristics of the modulator are modified. The modulator is electrically characterized to determine the graphene conductivity and optically characterization, by THz time-domain spectroscopy and a single-mode 2 THz quantum cascade laser, to determine the optical modulation depth and cut-off frequency. A maximum optical modulation depth of ~ 30% is estimated and is found to be most (least) sensitive when the electrical modulation is centered at the point of maximum (minimum) differential resistivity of the graphene. A 3 dB cut-off frequency > 5 MHz, limited only by the area of graphene on the device, is reported. The results agree well with theoretical calculations and numerical simulations, and demonstrate the first steps towards ultra-fast, graphene based THz optoelectronic devices.

  8. A portable intra-oral scanner based on sinusoidal pattern of fast phase-shifting

    NASA Astrophysics Data System (ADS)

    Jan, Chia-Ming; Lin, Ying-Chieh

    2016-03-01

    This paper presented our current research about the intra-oral scanner made by MIRDC. Utilizing the sinusoidal pattern for fast phase-shifting technique to deal with 3D digitalization of human dental surface profile, the development of pseudo-phase shifting digital projection can easily achieve one type of full-field scanning instead of the common technique of the laser line scanning. Based on traditional Moiré method, we adopt projecting fringes and retrieve phase reconstruction to forward phase unwrapping. The phase difference between the plane and object can be exactly calculated from the desired fringe images, and the surface profile of object was probably reconstructed by using the phase differences information directly. According to our algorithm of space mapping between projections and capturing orientation exchange of our intra-oral scanning configuration, the system we made certainly can be proved to achieve the required accuracy of +/-10μm to deal with intra-oral scanning on the basis of utilizing active triangulation method. The final purpose aimed to the scanning of object surface profile with its size about 10x10x10mm3.

  9. A Fast Hyperplane-Based Minimum-Volume Enclosing Simplex Algorithm for Blind Hyperspectral Unmixing

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hsiang; Chi, Chong-Yung; Wang, Yu-Hsiang; Chan, Tsung-Han

    2016-04-01

    Hyperspectral unmixing (HU) is a crucial signal processing procedure to identify the underlying materials (or endmembers) and their corresponding proportions (or abundances) from an observed hyperspectral scene. A well-known blind HU criterion, advocated by Craig in early 1990's, considers the vertices of the minimum-volume enclosing simplex of the data cloud as good endmember estimates, and it has been empirically and theoretically found effective even in the scenario of no pure pixels. However, such kind of algorithms may suffer from heavy simplex volume computations in numerical optimization, etc. In this work, without involving any simplex volume computations, by exploiting a convex geometry fact that a simplest simplex of N vertices can be defined by N associated hyperplanes, we propose a fast blind HU algorithm, for which each of the N hyperplanes associated with the Craig's simplex of N vertices is constructed from N-1 affinely independent data pixels, together with an endmember identifiability analysis for its performance support. Without resorting to numerical optimization, the devised algorithm searches for the N(N-1) active data pixels via simple linear algebraic computations, accounting for its computational efficiency. Monte Carlo simulations and real data experiments are provided to demonstrate its superior efficacy over some benchmark Craig-criterion-based algorithms in both computational efficiency and estimation accuracy.

  10. Support vector machine based classification of fast Fourier transform spectroscopy of proteins

    NASA Astrophysics Data System (ADS)

    Lazarevic, Aleksandar; Pokrajac, Dragoljub; Marcano, Aristides; Melikechi, Noureddine

    2009-02-01

    Fast Fourier transform spectroscopy has proved to be a powerful method for study of the secondary structure of proteins since peak positions and their relative amplitude are affected by the number of hydrogen bridges that sustain this secondary structure. However, to our best knowledge, the method has not been used yet for identification of proteins within a complex matrix like a blood sample. The principal reason is the apparent similarity of protein infrared spectra with actual differences usually masked by the solvent contribution and other interactions. In this paper, we propose a novel machine learning based method that uses protein spectra for classification and identification of such proteins within a given sample. The proposed method uses principal component analysis (PCA) to identify most important linear combinations of original spectral components and then employs support vector machine (SVM) classification model applied on such identified combinations to categorize proteins into one of given groups. Our experiments have been performed on the set of four different proteins, namely: Bovine Serum Albumin, Leptin, Insulin-like Growth Factor 2 and Osteopontin. Our proposed method of applying principal component analysis along with support vector machines exhibits excellent classification accuracy when identifying proteins using their infrared spectra.

  11. Fast Contour-Tracing Algorithm Based on a Pixel-Following Method for Image Sensors.

    PubMed

    Seo, Jonghoon; Chae, Seungho; Shim, Jinwook; Kim, Dongchul; Cheong, Cheolho; Han, Tack-Don

    2016-01-01

    Contour pixels distinguish objects from the background. Tracing and extracting contour pixels are widely used for smart/wearable image sensor devices, because these are simple and useful for detecting objects. In this paper, we present a novel contour-tracing algorithm for fast and accurate contour following. The proposed algorithm classifies the type of contour pixel, based on its local pattern. Then, it traces the next contour using the previous pixel's type. Therefore, it can classify the type of contour pixels as a straight line, inner corner, outer corner and inner-outer corner, and it can extract pixels of a specific contour type. Moreover, it can trace contour pixels rapidly because it can determine the local minimal path using the contour case. In addition, the proposed algorithm is capable of the compressing data of contour pixels using the representative points and inner-outer corner points, and it can accurately restore the contour image from the data. To compare the performance of the proposed algorithm to that of conventional techniques, we measure their processing time and accuracy. In the experimental results, the proposed algorithm shows better performance compared to the others. Furthermore, it can provide the compressed data of contour pixels and restore them accurately, including the inner-outer corner, which cannot be restored using conventional algorithms. PMID:27005632

  12. GPU-based beamformer: fast realization of plane wave compounding and synthetic aperture imaging.

    PubMed

    Yiu, Billy Y S; Tsang, Ivan K H; Yu, Alfred C H

    2011-08-01

    Although they show potential to improve ultrasound image quality, plane wave (PW) compounding and synthetic aperture (SA) imaging are computationally demanding and are known to be challenging to implement in real-time. In this work, we have developed a novel beamformer architecture with the real-time parallel processing capacity needed to enable fast realization of PW compounding and SA imaging. The beamformer hardware comprises an array of graphics processing units (GPUs) that are hosted within the same computer workstation. Their parallel computational resources are controlled by a pixel-based software processor that includes the operations of analytic signal conversion, delay-and-sum beamforming, and recursive compounding as required to generate images from the channel-domain data samples acquired using PW compounding and SA imaging principles. When using two GTX-480 GPUs for beamforming and one GTX-470 GPU for recursive compounding, the beamformer can compute compounded 512 x 255 pixel PW and SA images at throughputs of over 4700 fps and 3000 fps, respectively, for imaging depths of 5 cm and 15 cm (32 receive channels, 40 MHz sampling rate). Its processing capacity can be further increased if additional GPUs or more advanced models of GPU are used. PMID:21859591

  13. Fast-response humidity-sensing films based on methylene blue aggregates formed on nanoporous semiconductor films

    NASA Astrophysics Data System (ADS)

    Ishizaki, Ryota; Katoh, Ryuzi

    2016-05-01

    We prepared fast-response colorimetric humidity-sensing (vapochromic) films based on methylene blue adsorption onto nanoporous semiconductor (TiO2, Al2O3) films. Color changes caused by changes of humidity could be easily identified visually. A characteristic feature of the vapochromic films was their fast response to changes of humidity. We found that the response began to occur within 10 ms. The response was rapid because all the methylene blue molecules attached to the nanoporous semiconductor surface were directly exposed to the environment. We also deduced that the color changes were caused by structural changes of the methylene blue aggregates on the surface.

  14. A fast weak motif-finding algorithm based on community detection in graphs

    PubMed Central

    2013-01-01

    Background Identification of transcription factor binding sites (also called ‘motif discovery’) in DNA sequences is a basic step in understanding genetic regulation. Although many successful programs have been developed, the problem is far from being solved on account of diversity in gene expression/regulation and the low specificity of binding sites. State-of-the-art algorithms have their own constraints (e.g., high time or space complexity for finding long motifs, low precision in identification of weak motifs, or the OOPS constraint: one occurrence of the motif instance per sequence) which limit their scope of application. Results In this paper, we present a novel and fast algorithm we call TFBSGroup. It is based on community detection from a graph and is used to discover long and weak (l,d) motifs under the ZOMOPS constraint (zero, one or multiple occurrence(s) of the motif instance(s) per sequence), where l is the length of a motif and d is the maximum number of mutations between a motif instance and the motif itself. Firstly, TFBSGroup transforms the (l, d) motif search in sequences to focus on the discovery of dense subgraphs within a graph. It identifies these subgraphs using a fast community detection method for obtaining coarse-grained candidate motifs. Next, it greedily refines these candidate motifs towards the true motif within their own communities. Empirical studies on synthetic (l, d) samples have shown that TFBSGroup is very efficient (e.g., it can find true (18, 6), (24, 8) motifs within 30 seconds). More importantly, the algorithm has succeeded in rapidly identifying motifs in a large data set of prokaryotic promoters generated from the Escherichia coli database RegulonDB. The algorithm has also accurately identified motifs in ChIP-seq data sets for 12 mouse transcription factors involved in ES cell pluripotency and self-renewal. Conclusions Our novel heuristic algorithm, TFBSGroup, is able to quickly identify nearly exact matches for long

  15. FAST: FAST Analysis of Sequences Toolbox.

    PubMed

    Lawrence, Travis J; Kauffman, Kyle T; Amrine, Katherine C H; Carper, Dana L; Lee, Raymond S; Becich, Peter J; Canales, Claudia J; Ardell, David H

    2015-01-01

    FAST (FAST Analysis of Sequences Toolbox) provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU's Not Unix) Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R, and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics make FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format). Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought. PMID:26042145

  16. FAST: FAST Analysis of Sequences Toolbox

    PubMed Central

    Lawrence, Travis J.; Kauffman, Kyle T.; Amrine, Katherine C. H.; Carper, Dana L.; Lee, Raymond S.; Becich, Peter J.; Canales, Claudia J.; Ardell, David H.

    2015-01-01

    FAST (FAST Analysis of Sequences Toolbox) provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU's Not Unix) Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R, and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics make FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format). Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought. PMID:26042145

  17. Fast valve based on double-layer eddy-current repulsion for disruption mitigation in Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Zhuang, H. D.; Zhang, X. D.

    2015-05-01

    A fast valve based on the double-layer eddy-current repulsion mechanism has been developed on Experimental Advanced Superconducting Tokamak (EAST). In addition to a double-layer eddy-current coil, a preload system was added to improve the security of the valve, whereby the valve opens more quickly and the open-valve time becomes shorter, making it much safer than before. In this contribution, testing platforms, open-valve characteristics, and throughput of the fast valve are discussed. Tests revealed that by choosing appropriate parameters the valve opened within 0.15 ms, and open-valve times were no longer than 2 ms. By adjusting working parameter values, the maximum number of particles injected during this open-valve time was estimated at 7 × 1022. The fast valve will become a useful tool to further explore disruption mitigation experiments on EAST in 2015.

  18. Fast volumetric imaging with patterned illumination via digital micro-mirror device-based temporal focusing multiphoton microscopy

    PubMed Central

    Chang, Chia-Yuan; Hu, Yvonne Yuling; Lin, Chun-Yu; Lin, Cheng-Han; Chang, Hsin-Yu; Tsai, Sheng-Feng; Lin, Tzu-Wei; Chen, Shean-Jen

    2016-01-01

    Temporal focusing multiphoton microscopy (TFMPM) has the advantage of area excitation in an axial confinement of only a few microns; hence, it can offer fast three-dimensional (3D) multiphoton imaging. Herein, fast volumetric imaging via a developed digital micromirror device (DMD)-based TFMPM has been realized through the synchronization of an electron multiplying charge-coupled device (EMCCD) with a dynamic piezoelectric stage for axial scanning. The volumetric imaging rate can achieve 30 volumes per second according to the EMCCD frame rate of more than 400 frames per second, which allows for the 3D Brownian motion of one-micron fluorescent beads to be spatially observed. Furthermore, it is demonstrated that the dynamic HiLo structural multiphoton microscope can reject background noise by way of the fast volumetric imaging with high-speed DMD patterned illumination. PMID:27231617

  19. Fast volumetric imaging with patterned illumination via digital micro-mirror device-based temporal focusing multiphoton microscopy.

    PubMed

    Chang, Chia-Yuan; Hu, Yvonne Yuling; Lin, Chun-Yu; Lin, Cheng-Han; Chang, Hsin-Yu; Tsai, Sheng-Feng; Lin, Tzu-Wei; Chen, Shean-Jen

    2016-05-01

    Temporal focusing multiphoton microscopy (TFMPM) has the advantage of area excitation in an axial confinement of only a few microns; hence, it can offer fast three-dimensional (3D) multiphoton imaging. Herein, fast volumetric imaging via a developed digital micromirror device (DMD)-based TFMPM has been realized through the synchronization of an electron multiplying charge-coupled device (EMCCD) with a dynamic piezoelectric stage for axial scanning. The volumetric imaging rate can achieve 30 volumes per second according to the EMCCD frame rate of more than 400 frames per second, which allows for the 3D Brownian motion of one-micron fluorescent beads to be spatially observed. Furthermore, it is demonstrated that the dynamic HiLo structural multiphoton microscope can reject background noise by way of the fast volumetric imaging with high-speed DMD patterned illumination. PMID:27231617

  20. Fast valve based on double-layer eddy-current repulsion for disruption mitigation in Experimental Advanced Superconducting Tokamak.

    PubMed

    Zhuang, H D; Zhang, X D

    2015-05-01

    A fast valve based on the double-layer eddy-current repulsion mechanism has been developed on Experimental Advanced Superconducting Tokamak (EAST). In addition to a double-layer eddy-current coil, a preload system was added to improve the security of the valve, whereby the valve opens more quickly and the open-valve time becomes shorter, making it much safer than before. In this contribution, testing platforms, open-valve characteristics, and throughput of the fast valve are discussed. Tests revealed that by choosing appropriate parameters the valve opened within 0.15 ms, and open-valve times were no longer than 2 ms. By adjusting working parameter values, the maximum number of particles injected during this open-valve time was estimated at 7 × 10(22). The fast valve will become a useful tool to further explore disruption mitigation experiments on EAST in 2015. PMID:26026520

  1. Evaluation and application of a fast module in a PLC based interlock and control system

    NASA Astrophysics Data System (ADS)

    Zaera-Sanz, M.

    2009-08-01

    The LHC Beam Interlock system requires a controller performing a simple matrix function to collect the different beam dump requests. To satisfy the expected safety level of the Interlock, the system should be robust and reliable. The PLC is a promising candidate to fulfil both aspects but too slow to meet the expected response time which is of the order of μseconds. Siemens has introduced a ``so called'' fast module (FM352-5 Boolean Processor). It provides independent and extremely fast control of a process within a larger control system using an onboard processor, a Field Programmable Gate Array (FPGA), to execute code in parallel which results in extremely fast scan times. It is interesting to investigate its features and to evaluate it as a possible candidate for the beam interlock system. This paper publishes the results of this study. As well, this paper could be useful for other applications requiring fast processing using a PLC.

  2. A fast color image enhancement algorithm based on Max Intensity Channel.

    PubMed

    Sun, Wei; Han, Long; Guo, Baolong; Jia, Wenyan; Sun, Mingui

    2014-03-30

    In this paper, we extend image enhancement techniques based on the retinex theory imitating human visual perception of scenes containing high illumination variations. This extension achieves simultaneous dynamic range modification, color consistency, and lightness rendition without multi-scale Gaussian filtering which has a certain halo effect. The reflection component is analyzed based on the illumination and reflection imaging model. A new prior named Max Intensity Channel (MIC) is implemented assuming that the reflections of some points in the scene are very high in at least one color channel. Using this prior, the illumination of the scene is obtained directly by performing a gray-scale closing operation and a fast cross-bilateral filtering on the MIC of the input color image. Consequently, the reflection component of each RGB color channel can be determined from the illumination and reflection imaging model. The proposed algorithm estimates the illumination component which is relatively smooth and maintains the edge details in different regions. A satisfactory color rendition is achieved for a class of images that do not satisfy the gray-world assumption implicit to the theoretical foundation of the retinex. Experiments are carried out to compare the new method with several spatial and transform domain methods. Our results indicate that the new method is superior in enhancement applications, improves computation speed, and performs well for images with high illumination variations than other methods. Further comparisons of images from National Aeronautics and Space Administration and a wearable camera eButton have shown a high performance of the new method with better color restoration and preservation of image details. PMID:25110395

  3. A fast color image enhancement algorithm based on Max Intensity Channel

    PubMed Central

    Sun, Wei; Han, Long; Guo, Baolong; Jia, Wenyan; Sun, Mingui

    2014-01-01

    In this paper, we extend image enhancement techniques based on the retinex theory imitating human visual perception of scenes containing high illumination variations. This extension achieves simultaneous dynamic range modification, color consistency, and lightness rendition without multi-scale Gaussian filtering which has a certain halo effect. The reflection component is analyzed based on the illumination and reflection imaging model. A new prior named Max Intensity Channel (MIC) is implemented assuming that the reflections of some points in the scene are very high in at least one color channel. Using this prior, the illumination of the scene is obtained directly by performing a gray-scale closing operation and a fast cross-bilateral filtering on the MIC of the input color image. Consequently, the reflection component of each RGB color channel can be determined from the illumination and reflection imaging model. The proposed algorithm estimates the illumination component which is relatively smooth and maintains the edge details in different regions. A satisfactory color rendition is achieved for a class of images that do not satisfy the gray-world assumption implicit to the theoretical foundation of the retinex. Experiments are carried out to compare the new method with several spatial and transform domain methods. Our results indicate that the new method is superior in enhancement applications, improves computation speed, and performs well for images with high illumination variations than other methods. Further comparisons of images from National Aeronautics and Space Administration and a wearable camera eButton have shown a high performance of the new method with better color restoration and preservation of image details. PMID:25110395

  4. A combinatorial chemistry method for fast screening of perovskite-based NO oxidation catalyst.

    PubMed

    Yoon, Dal Young; Lim, Eunho; Kim, Young Jin; Cho, Byong K; Nam, In-Sik; Choung, Jin Woo; Yoo, Seungbeom

    2014-11-10

    A fast parallel screening method based on combinatorial chemistry (combichem) has been developed and applied in the screening tests of perovskite-based oxide (PBO) catalysts for NO oxidation to hit a promising PBO formulation for the oxidation of NO to NO2. This new method involves three consecutive steps: oxidation of NO to NO2 over a PBO catalyst, adsorption of NOx onto the PBO and K2O/Al2O3, and colorimetric assay of the NOx adsorbed thereon. The combichem experimental data have been used for determining the oxidation activity of NO over PBO catalysts as well as three critical parameters, such as the adsorption efficiency of K2O/Al2O3 for NO2 (α) and NO (β), and the time-average fraction of NO included in the NOx feed stream (ξ). The results demonstrated that the amounts of NO2 produced over PBO catalysts by the combichem method under transient conditions correlate well with those from a conventional packed-bed reactor under steady-state conditions. Among the PBO formulations examined, La0.5Ag0.5MnO3 has been identified as the best chemical formulation for oxidation of NO to NO2 by the present combichem method and also confirmed by the conventional packed-bed reactor tests. The superior efficiency of the combichem method for high-throughput catalyst screening test validated in this study is particularly suitable for saving the time and resources required in developing a new formulation of PBO catalyst whose chemical composition may have an enormous number of possible variations. PMID:25321326

  5. Determinants of Fast Food Consumption among Iranian High School Students Based on Planned Behavior Theory

    PubMed Central

    Sharifirad, Gholamreza; Yarmohammadi, Parastoo; Azadbakht, Leila; Morowatisharifabad, Mohammad Ali; Hassanzadeh, Akbar

    2013-01-01

    Objective. This study was conducted to identify some factors (beliefs and norms) which are related to fast food consumption among high school students in Isfahan, Iran. We used the framework of the theory planned behavior (TPB) to predict this behavior. Subjects & Methods. Cross-sectional data were available from high school students (n = 521) who were recruited by cluster randomized sampling. All of the students completed a questionnaire assessing variables of standard TPB model including attitude, subjective norms, perceived behavior control (PBC), and the additional variables past behavior, actual behavior control (ABC). Results. The TPB variables explained 25.7% of the variance in intentions with positive attitude as the strongest (β = 0.31, P < 0.001) and subjective norms as the weakest (β = 0.29, P < 0.001) determinant. Concurrently, intentions accounted for 6% of the variance for fast food consumption. Past behavior and ABC accounted for an additional amount of 20.4% of the variance in fast food consumption. Conclusion. Overall, the present study suggests that the TPB model is useful in predicting related beliefs and norms to the fast food consumption among adolescents. Subjective norms in TPB model and past behavior in TPB model with additional variables (past behavior and actual behavior control) were the most powerful predictors of fast food consumption. Therefore, TPB model may be a useful framework for planning intervention programs to reduce fast food consumption by students. PMID:23936635

  6. Terahertz-optical-asymmetric-demultiplexer (TOAD)-based arithmetic units for ultra-fast optical information processing

    NASA Astrophysics Data System (ADS)

    Cherri, Abdallah K.

    2010-04-01

    In this paper, designs of ultra-fast all-optical based Terahertz-optical-asymmetric-demultiplexer (TOAD)-based devices are reported. Using TOAD switches, adders/subtracters units are demonstrated. The high speed is achieved due to the use of the nonlinear optical materials and the nonbinary modified signed-digit (MSD) number representation. The proposed all-optical circuits are compared in terms of numbers TOAD switches, optical amplifiers and wavelength converters.

  7. Structator: fast index-based search for RNA sequence-structure patterns

    PubMed Central

    2011-01-01

    Background The secondary structure of RNA molecules is intimately related to their function and often more conserved than the sequence. Hence, the important task of searching databases for RNAs requires to match sequence-structure patterns. Unfortunately, current tools for this task have, in the best case, a running time that is only linear in the size of sequence databases. Furthermore, established index data structures for fast sequence matching, like suffix trees or arrays, cannot benefit from the complementarity constraints introduced by the secondary structure of RNAs. Results We present a novel method and readily applicable software for time efficient matching of RNA sequence-structure patterns in sequence databases. Our approach is based on affix arrays, a recently introduced index data structure, preprocessed from the target database. Affix arrays support bidirectional pattern search, which is required for efficiently handling the structural constraints of the pattern. Structural patterns like stem-loops can be matched inside out, such that the loop region is matched first and then the pairing bases on the boundaries are matched consecutively. This allows to exploit base pairing information for search space reduction and leads to an expected running time that is sublinear in the size of the sequence database. The incorporation of a new chaining approach in the search of RNA sequence-structure patterns enables the description of molecules folding into complex secondary structures with multiple ordered patterns. The chaining approach removes spurious matches from the set of intermediate results, in particular of patterns with little specificity. In benchmark experiments on the Rfam database, our method runs up to two orders of magnitude faster than previous methods. Conclusions The presented method's sublinear expected running time makes it well suited for RNA sequence-structure pattern matching in large sequence databases. RNA molecules containing several

  8. Fast-Running Aeroelastic Code Based on Unsteady Linearized Aerodynamic Solver Developed

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Bakhle, Milind A.; Keith, T., Jr.

    2003-01-01

    The NASA Glenn Research Center has been developing aeroelastic analyses for turbomachines for use by NASA and industry. An aeroelastic analysis consists of a structural dynamic model, an unsteady aerodynamic model, and a procedure to couple the two models. The structural models are well developed. Hence, most of the development for the aeroelastic analysis of turbomachines has involved adapting and using unsteady aerodynamic models. Two methods are used in developing unsteady aerodynamic analysis procedures for the flutter and forced response of turbomachines: (1) the time domain method and (2) the frequency domain method. Codes based on time domain methods require considerable computational time and, hence, cannot be used during the design process. Frequency domain methods eliminate the time dependence by assuming harmonic motion and, hence, require less computational time. Early frequency domain analyses methods neglected the important physics of steady loading on the analyses for simplicity. A fast-running unsteady aerodynamic code, LINFLUX, which includes steady loading and is based on the frequency domain method, has been modified for flutter and response calculations. LINFLUX, solves unsteady linearized Euler equations for calculating the unsteady aerodynamic forces on the blades, starting from a steady nonlinear aerodynamic solution. First, we obtained a steady aerodynamic solution for a given flow condition using the nonlinear unsteady aerodynamic code TURBO. A blade vibration analysis was done to determine the frequencies and mode shapes of the vibrating blades, and an interface code was used to convert the steady aerodynamic solution to a form required by LINFLUX. A preprocessor was used to interpolate the mode shapes from the structural dynamic mesh onto the computational dynamics mesh. Then, we used LINFLUX to calculate the unsteady aerodynamic forces for a given mode, frequency, and phase angle. A postprocessor read these unsteady pressures and

  9. Fast Dynamic Simulation-Based Small Signal Stability Assessment and Control

    SciTech Connect

    Acharya, Naresh; Baone, Chaitanya; Veda, Santosh; Dai, Jing; Chaudhuri, Nilanjan; Leonardi, Bruno; Sanches-Gasca, Juan; Diao, Ruisheng; Wu, Di; Huang, Zhenyu; Zhang, Yu; Jin, Shuangshuang; Zheng, Bin; Chen, Yousu

    2014-12-31

    Power grid planning and operation decisions are made based on simulation of the dynamic behavior of the system. Enabling substantial energy savings while increasing the reliability of the aging North American power grid through improved utilization of existing transmission assets hinges on the adoption of wide-area measurement systems (WAMS) for power system stabilization. However, adoption of WAMS alone will not suffice if the power system is to reach its full entitlement in stability and reliability. It is necessary to enhance predictability with "faster than real-time" dynamic simulations that will enable the dynamic stability margins, proactive real-time control, and improve grid resiliency to fast time-scale phenomena such as cascading network failures. Present-day dynamic simulations are performed only during offline planning studies, considering only worst case conditions such as summer peak, winter peak days, etc. With widespread deployment of renewable generation, controllable loads, energy storage devices and plug-in hybrid electric vehicles expected in the near future and greater integration of cyber infrastructure (communications, computation and control), monitoring and controlling the dynamic performance of the grid in real-time would become increasingly important. The state-of-the-art dynamic simulation tools have limited computational speed and are not suitable for real-time applications, given the large set of contingency conditions to be evaluated. These tools are optimized for best performance of single-processor computers, but the simulation is still several times slower than real-time due to its computational complexity. With recent significant advances in numerical methods and computational hardware, the expectations have been rising towards more efficient and faster techniques to be implemented in power system simulators. This is a natural expectation, given that the core solution algorithms of most commercial simulators were developed

  10. A pnCCD-based, fast direct single electron imaging camera for TEM and STEM

    NASA Astrophysics Data System (ADS)

    Ryll, H.; Simson, M.; Hartmann, R.; Holl, P.; Huth, M.; Ihle, S.; Kondo, Y.; Kotula, P.; Liebel, A.; Müller-Caspary, K.; Rosenauer, A.; Sagawa, R.; Schmidt, J.; Soltau, H.; Strüder, L.

    2016-04-01

    We report on a new camera that is based on a pnCCD sensor for applications in scanning transmission electron microscopy. Emerging new microscopy techniques demand improved detectors with regards to readout rate, sensitivity and radiation hardness, especially in scanning mode. The pnCCD is a 2D imaging sensor that meets these requirements. Its intrinsic radiation hardness permits direct detection of electrons. The pnCCD is read out at a rate of 1,150 frames per second with an image area of 264 x 264 pixel. In binning or windowing modes, the readout rate is increased almost linearly, for example to 4000 frames per second at 4× binning (264 x 66 pixel). Single electrons with energies from 300 keV down to 5 keV can be distinguished due to the high sensitivity of the detector. Three applications in scanning transmission electron microscopy are highlighted to demonstrate that the pnCCD satisfies experimental requirements, especially fast recording of 2D images. In the first application, 65536 2D diffraction patterns were recorded in 70 s. STEM images corresponding to intensities of various diffraction peaks were reconstructed. For the second application, the microscope was operated in a Lorentz-like mode. Magnetic domains were imaged in an area of 256 x 256 sample points in less than 37 seconds for a total of 65536 images each with 264 x 132 pixels. Due to information provided by the two-dimensional images, not only the amplitude but also the direction of the magnetic field could be determined. In the third application, millisecond images of a semiconductor nanostructure were recorded to determine the lattice strain in the sample. A speed-up in measurement time by a factor of 200 could be achieved compared to a previously used camera system.

  11. A New Ticket-Based Authentication Mechanism for Fast Handover in Mesh Network.

    PubMed

    Lai, Yan-Ming; Cheng, Pu-Jen; Lee, Cheng-Chi; Ku, Chia-Yi

    2016-01-01

    Due to the ever-growing popularity mobile devices of various kinds have received worldwide, the demands on large-scale wireless network infrastructure development and enhancement have been rapidly swelling in recent years. A mobile device holder can get online at a wireless network access point, which covers a limited area. When the client leaves the access point, there will be a temporary disconnection until he/she enters the coverage of another access point. Even when the coverages of two neighboring access points overlap, there is still work to do to make the wireless connection smoothly continue. The action of one wireless network access point passing a client to another access point is referred to as the handover. During handover, for security concerns, the client and the new access point should perform mutual authentication before any Internet access service is practically gained/provided. If the handover protocol is inefficient, in some cases discontinued Internet service will happen. In 2013, Li et al. proposed a fast handover authentication mechanism for wireless mesh network (WMN) based on tickets. Unfortunately, Li et al.'s work came with some weaknesses. For one thing, some sensitive information such as the time and date of expiration is sent in plaintext, which increases security risks. For another, Li et al.'s protocol includes the use of high-quality tamper-proof devices (TPDs), and this unreasonably high equipment requirement limits its applicability. In this paper, we shall propose a new efficient handover authentication mechanism. The new mechanism offers a higher level of security on a more scalable ground with the client's privacy better preserved. The results of our performance analysis suggest that our new mechanism is superior to some similar mechanisms in terms of authentication delay. PMID:27171160

  12. Fast Reconnection Rates Based on Group Velocity Cones: Whistler Regime and Pair Plasmas

    NASA Astrophysics Data System (ADS)

    Singh, N.

    2009-05-01

    Based on the group velocity vector of the whistler mode, we predict the range of whistler-regime reconnection rate depending on the half width (w) of the current sheet (CS. During the reconnection process electromagnetic perturbations (EMPs) are generated in the localized diffusion region (DR, which acts like an antenna and radiates whistler waves for certain range of CS widths. The reconnection structure (exhaust) is approximately the radiation pattern of the DR antenna and it is determined by the group velocity directions. Since the whistler waves originate from the electromagnetic perturbations (EMPs) localized in the DR, we calculate R over a range of the discrete values of the perpendicular wave number (k'') contained in the Fourier spectrum of the EMPs. We have used such calculations to determine the reconnection rates averaged over the wave number spectrum of a Gaussian shaped EMP as a function of the CS width. We find that has a fairly constant value at ˜ 0.23 for CS widths in the range 0.4 < w/di ˜ 1 and for w < 0.3di it decreases with decreasing w and it attains a value ˜ 0.06 in an extremely thin CS with w ˜ 0.05di, where di is the ion skin depth. We compare the values of and R with those found from simulations and experiments, and find them in good agreement. We also report the properties of the whistler waves radiated from the DR into the exhaust region. We also demonstrate that our theoretical method developed for whistler regime reconnection could be easily adopted to predict fast reconnection rates in pair plasmas, which support inertial Alfven waves.

  13. Fast and automatic depth control of iterative bone ablation based on optical coherence tomography data

    NASA Astrophysics Data System (ADS)

    Fuchs, Alexander; Pengel, Steffen; Bergmeier, Jan; Kahrs, Lüder A.; Ortmaier, Tobias

    2015-07-01

    Laser surgery is an established clinical procedure in dental applications, soft tissue ablation, and ophthalmology. The presented experimental set-up for closed-loop control of laser bone ablation addresses a feedback system and enables safe ablation towards anatomical structures that usually would have high risk of damage. This study is based on combined working volumes of optical coherence tomography (OCT) and Er:YAG cutting laser. High level of automation in fast image data processing and tissue treatment enables reproducible results and shortens the time in the operating room. For registration of the two coordinate systems a cross-like incision is ablated with the Er:YAG laser and segmented with OCT in three distances. The resulting Er:YAG coordinate system is reconstructed. A parameter list defines multiple sets of laser parameters including discrete and specific ablation rates as ablation model. The control algorithm uses this model to plan corrective laser paths for each set of laser parameters and dynamically adapts the distance of the laser focus. With this iterative control cycle consisting of image processing, path planning, ablation, and moistening of tissue the target geometry and desired depth are approximated until no further corrective laser paths can be set. The achieved depth stays within the tolerances of the parameter set with the smallest ablation rate. Specimen trials with fresh porcine bone have been conducted to prove the functionality of the developed concept. Flat bottom surfaces and sharp edges of the outline without visual signs of thermal damage verify the feasibility of automated, OCT controlled laser bone ablation with minimal process time.

  14. A New Ticket-Based Authentication Mechanism for Fast Handover in Mesh Network

    PubMed Central

    Lai, Yan-Ming; Cheng, Pu-Jen; Lee, Cheng-Chi; Ku, Chia-Yi

    2016-01-01

    Due to the ever-growing popularity mobile devices of various kinds have received worldwide, the demands on large-scale wireless network infrastructure development and enhancement have been rapidly swelling in recent years. A mobile device holder can get online at a wireless network access point, which covers a limited area. When the client leaves the access point, there will be a temporary disconnection until he/she enters the coverage of another access point. Even when the coverages of two neighboring access points overlap, there is still work to do to make the wireless connection smoothly continue. The action of one wireless network access point passing a client to another access point is referred to as the handover. During handover, for security concerns, the client and the new access point should perform mutual authentication before any Internet access service is practically gained/provided. If the handover protocol is inefficient, in some cases discontinued Internet service will happen. In 2013, Li et al. proposed a fast handover authentication mechanism for wireless mesh network (WMN) based on tickets. Unfortunately, Li et al.’s work came with some weaknesses. For one thing, some sensitive information such as the time and date of expiration is sent in plaintext, which increases security risks. For another, Li et al.’s protocol includes the use of high-quality tamper-proof devices (TPDs), and this unreasonably high equipment requirement limits its applicability. In this paper, we shall propose a new efficient handover authentication mechanism. The new mechanism offers a higher level of security on a more scalable ground with the client’s privacy better preserved. The results of our performance analysis suggest that our new mechanism is superior to some similar mechanisms in terms of authentication delay. PMID:27171160

  15. Sub 10 ns fast switching and resistance control in lateral GeTe-based phase-change memory

    NASA Astrophysics Data System (ADS)

    Yin, You; Zhang, Yulong; Takehana, Yousuke; Kobayashi, Ryota; Zhang, Hui; Hosaka, Sumio

    2016-06-01

    In this study, we investigated the fast switching and resistance control in a lateral GeTe-based phase-change memory (PCM). The resistivity of GeTe as a function of annealing temperature showed that it changed by more than 6 orders of magnitude in a very narrow temperature range. X-ray diffraction patterns of GeTe films indicated that GeTe had only one crystal structure, that is, face-centered cubic. It was demonstrated that the lateral device with a top conducting layer had a good performance. The operation characteristics of the GeTe-based lateral PCM device showed that it could be operated even when sub-10-ns voltage pulses were applied, making it much faster than a Ge2Sb2Te5-based device. The device resistance was successfully controlled by applying a staircase-like pulse, which enables the device to be used for fast multilevel storage.

  16. A fast key generation method based on dynamic biometrics to secure wireless body sensor networks for p-health.

    PubMed

    Zhang, G H; Poon, Carmen C Y; Zhang, Y T

    2010-01-01

    Body sensor networks (BSNs) have emerged as a new technology for healthcare applications, but the security of communication in BSNs remains a formidable challenge yet to be resolved. The paper discusses the typical attacks faced by BSNs and proposes a fast biometric based approach to generate keys for ensuing confidentiality and authentication in BSN communications. The approach was tested on 900 segments of electrocardiogram. Each segment was 4 seconds long and used to generate a 128-bit key. The results of the study found that entropy of 96% of the keys were above 0.95 and 99% of the hamming distances calculated from any two keys were above 50 bits. Based on the randomness and distinctiveness of these keys, it is concluded that the fast biometric based approach has great potential to be used to secure communication in BSNs for health applications. PMID:21096428

  17. Comprehensive physics-based compact model for fast p-i-n diode using MATLAB and Simulink

    NASA Astrophysics Data System (ADS)

    Xue, Peng; Fu, Guicui; Zhang, Dong

    2016-07-01

    In this study, a physics-based model for the fast p-i-n diode is proposed. The model is based on the 1-D Fourier-based solution of ambipolar diffusion equation (ADE) implemented in MATLAB and Simulink. The physical characteristics of fast diode design concepts such as local lifetime control (LLC), emitter control (EMCON) and deep field stop are taken into account. Based on these fast diode design concepts, the ADE is solved for all injection levels instead of high-level injection only as usually done. The variation of high-level lifetime due to local lifetime control is also included in the solution. With the deep field stop layer taken into consideration, the depletion behavior in the N-base during reverse recovery is redescribed. Some physical effects such as avalanche generation and carrier recombination in the depletion region are also taken into account. To be self contained, a parameter extraction method is proposed to extract all the parameters of the model. In the end, the static and reverse recovery experiments for a commercial EMCON diode and a LLC diode are used to validate the proposed model. The simulation results are compared with experiment results and good agreement is obtained.

  18. Metal Optics Based nanoLEDs: In Search of a Fast, Efficient, Nanoscale Light Emitter

    NASA Astrophysics Data System (ADS)

    Eggleston, Michael Scott

    Since the invention of the laser, stimulated emission has been the de facto king of optical communication. Lasers can be directly modulated at rates as high as 50GHz, much faster than a typical solid state light-emitting diode (LED) that is limited by spontaneous emission to <1GHz. Unfortunately, lasers have a severe scaling problem; they require large cavities operated at high power to achieve efficient lasing. A properly designed LED can be made arbitrarily small and still operate with high-efficiency. On-chip interconnects is an area that is in desperate need of a high-speed, low-power optical emitter that can enable on-chip links to replace current high-loss metal wires. In this work, I will show that by utilizing proper antenna design, a nanoLED can be created that is faster than a laser while still operating at >50% efficiency. I start by formulating an optical antenna circuit model whose elements are based completely off of antenna geometry. This allows for intuitive antenna design and suggests that rate enhancements up to ~3,000x are possible while keeping antenna efficiency >50%. Such a massive speed-up in spontaneous emission would enable an LED that can be directly modulated at 100's of GHz, much faster than any laser. I then use the circuit model to design an arch-dipole antenna, a dipole antenna with an inductive arch across the feedgap. I experimentally demonstrate a free-standing arch-dipole based nanoLED with rate enhancement of 115x and 66% antenna efficiency. Because the emitter is InGaAsP, a common III-V material, I experimentally show that this device can be easily and efficiently coupled into an InP waveguide. Experimental coupling efficiencies up to 70% are demonstrated and directional antennas are employed that offer front to back emission ratios of 3:1. Finally, I show that a nanoLED can still have high quantum yield by using a transition metal dichalcogenide, WSe2, as the emitter material. By coupling a monolayer of WSe2 to a cavity

  19. Fast GPU-based Monte Carlo simulations for LDR prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Bonenfant, Éric; Magnoux, Vincent; Hissoiny, Sami; Ozell, Benoît; Beaulieu, Luc; Després, Philippe

    2015-07-01

    The aim of this study was to evaluate the potential of bGPUMCD, a Monte Carlo algorithm executed on Graphics Processing Units (GPUs), for fast dose calculations in permanent prostate implant dosimetry. It also aimed to validate a low dose rate brachytherapy source in terms of TG-43 metrics and to use this source to compute dose distributions for permanent prostate implant in very short times. The physics of bGPUMCD was reviewed and extended to include Rayleigh scattering and fluorescence from photoelectric interactions for all materials involved. The radial and anisotropy functions were obtained for the Nucletron SelectSeed in TG-43 conditions. These functions were compared to those found in the MD Anderson Imaging and Radiation Oncology Core brachytherapy source registry which are considered the TG-43 reference values. After appropriate calibration of the source, permanent prostate implant dose distributions were calculated for four patients and compared to an already validated Geant4 algorithm. The radial function calculated from bGPUMCD showed excellent agreement (differences within 1.3%) with TG-43 accepted values. The anisotropy functions at r = 1 cm and r = 4 cm were within 2% of TG-43 values for angles over 17.5°. For permanent prostate implants, Monte Carlo-based dose distributions with a statistical uncertainty of 1% or less for the target volume were obtained in 30 s or less for 1 × 1 × 1 mm3 calculation grids. Dosimetric indices were very similar (within 2.7%) to those obtained with a validated, independent Monte Carlo code (Geant4) performing the calculations for the same cases in a much longer time (tens of minutes to more than a hour). bGPUMCD is a promising code that lets envision the use of Monte Carlo techniques in a clinical environment, with sub-minute execution times on a standard workstation. Future work will explore the use of this code with an inverse planning method to provide a complete Monte Carlo-based planning solution.

  20. Fast GPU-based Monte Carlo simulations for LDR prostate brachytherapy.

    PubMed

    Bonenfant, Éric; Magnoux, Vincent; Hissoiny, Sami; Ozell, Benoît; Beaulieu, Luc; Després, Philippe

    2015-07-01

    The aim of this study was to evaluate the potential of bGPUMCD, a Monte Carlo algorithm executed on Graphics Processing Units (GPUs), for fast dose calculations in permanent prostate implant dosimetry. It also aimed to validate a low dose rate brachytherapy source in terms of TG-43 metrics and to use this source to compute dose distributions for permanent prostate implant in very short times. The physics of bGPUMCD was reviewed and extended to include Rayleigh scattering and fluorescence from photoelectric interactions for all materials involved. The radial and anisotropy functions were obtained for the Nucletron SelectSeed in TG-43 conditions. These functions were compared to those found in the MD Anderson Imaging and Radiation Oncology Core brachytherapy source registry which are considered the TG-43 reference values. After appropriate calibration of the source, permanent prostate implant dose distributions were calculated for four patients and compared to an already validated Geant4 algorithm. The radial function calculated from bGPUMCD showed excellent agreement (differences within 1.3%) with TG-43 accepted values. The anisotropy functions at r = 1 cm and r = 4 cm were within 2% of TG-43 values for angles over 17.5°. For permanent prostate implants, Monte Carlo-based dose distributions with a statistical uncertainty of 1% or less for the target volume were obtained in 30 s or less for 1 × 1 × 1 mm(3) calculation grids. Dosimetric indices were very similar (within 2.7%) to those obtained with a validated, independent Monte Carlo code (Geant4) performing the calculations for the same cases in a much longer time (tens of minutes to more than a hour). bGPUMCD is a promising code that lets envision the use of Monte Carlo techniques in a clinical environment, with sub-minute execution times on a standard workstation. Future work will explore the use of this code with an inverse planning method to provide a complete Monte Carlo-based planning solution. PMID

  1. Fast restoration approach for motion blurred image based on deconvolution under the blurring paths

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Song, Jie; Hua, Xia

    2015-12-01

    For the real-time motion deblurring, it is of utmost importance to get a higher processing speed with about the same image quality. This paper presents a fast Richardson-Lucy motion deblurring approach to remove motion blur which rotates blurred image under blurring paths. Hence, the computational time is reduced sharply by using one-dimensional Fast Fourier Transform in one-dimensional Richardson-Lucy method. In order to obtain accurate transformational results, interpolation method is incorporated to fetch the gray values. Experiment results demonstrate that the proposed approach is efficient and effective to reduce motion blur under the blur paths.

  2. A fast InSAR raw signal simulation based on GPGPU

    NASA Astrophysics Data System (ADS)

    He, Zhihua; Yu, Anxi; He, Feng; Liang, Diannong

    2011-10-01

    Under the precision constraint of interferometric SAR simulation applications, a range frequency fast algorithm is proposed to increase the InSAR raw signal simulation efficiency and the GPGPU technique is used to implement the raw signal simulation of large 10km×10km nature scene. The experiment results validate the proposed fast algorithm and the GPGPU technique. The total speedup of GPU over CPU is 4, and some local grogram speedup is over 14, which makes the InSAR raw signal simulation more practical in the InSAR system simulation.

  3. Fast neural network surrogates for very high dimensional physics-based models in computational oceanography.

    PubMed

    van der Merwe, Rudolph; Leen, Todd K; Lu, Zhengdong; Frolov, Sergey; Baptista, Antonio M

    2007-05-01

    We present neural network surrogates that provide extremely fast and accurate emulation of a large-scale circulation model for the coupled Columbia River, its estuary and near ocean regions. The circulation model has O(10(7)) degrees of freedom, is highly nonlinear and is driven by ocean, atmospheric and river influences at its boundaries. The surrogates provide accurate emulation of the full circulation code and run over 1000 times faster. Such fast dynamic surrogates will enable significant advances in ensemble forecasts in oceanography and weather. PMID:17517493

  4. A photodiode-based neutral particle bolometer for characterizing charge-exchanged fast-ion behavior.

    PubMed

    Clary, R; Smirnov, A; Dettrick, S; Knapp, K; Korepanov, S; Ruskov, E; Heidbrink, W W; Zhu, Y

    2012-10-01

    A neutral particle bolometer (NPB) has been designed and implemented on Tri Alpha Energy's C-2 device in order to spatially and temporally resolve the charge-exchange losses of fast-ion populations originating from neutral beam injection into field-reversed configuration plasmas. This instrument employs a silicon photodiode as the detection device with an integrated tungsten filter coating to reduce sensitivity to light radiation. Here we discuss the technical aspects and calibration of the NPB, and report typical NPB measurement results of wall recycling effects on fast-ion losses. PMID:23126887

  5. a Modular Daq System for Next Generation Bolometric ν Mass Experiments

    NASA Astrophysics Data System (ADS)

    Foggetta, Luca; Giuliani, Andrea; Prest, Michela; Vallazza, Erik

    2008-06-01

    This work will describe the development and the present status of the new DAQ system for the MARE experiment. This kind of DAQ system is oriented to a run-time selection and digitization of analog signals coming from a huge number of microbolometers in a cryogenic environment, readout by an array of semiconductor thermistors. The main properties of this DAQ are a full analog signal sampling feature with high speed FPGA-controlled trigger logic for a fast hardware signal selection and trigger. This DAQ system has to be capable to collect and measure the beta spectrum of 187Re with high statistics and energy resolution, essential for the neutrino mass determination.

  6. A novel Fast Gas Chromatography based technique for higher time resolution measurements of speciated monoterpenes in air

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Kajii, Y.

    2013-12-01

    Biogenic emissions supply the largest fraction of non-methane volatile organic compounds (VOC) from the biosphere to the atmospheric boundary layer, and typically comprise a complex mixture of reactive terpenes. Due to this chemical complexity, achieving comprehensive measurements of biogenic VOC (BVOC) in air within a satisfactory time resolution is analytically challenging. To address this, we have developed a novel, fully automated Fast Gas Chromatography (Fast-GC) based technique to provide higher time resolution monitoring of monoterpenes (and selected other C9-C15 terpenes) during plant emission studies and in ambient air. To our knowledge, this is the first study to apply a Fast-GC based separation technique to achieve quantification of terpenes in air. Three chromatography methods have been developed for atmospheric terpene analysis under different sampling scenarios. Each method facilitates chromatographic separation of selected BVOC within a significantly reduced analysis time compared to conventional GC methods, whilst maintaining the ability to quantify individual monoterpene structural isomers. Using this approach, the C10-C15 BVOC composition of single plant emissions may be characterised within a ~ 14 min analysis time. Moreover, in situ quantification of 12 monoterpenes in unpolluted ambient air may be achieved within an ~ 11 min chromatographic separation time (increasing to ~ 19 min when simultaneous quantification of multiple oxygenated C9-C10 terpenoids is required, and/or when concentrations of anthropogenic VOC are significant). This corresponds to a two- to fivefold increase in measurement frequency compared to conventional GC methods. Here we outline the technical details and analytical capability of this chromatographic approach, and present the first in situ Fast-GC observations of 6 monoterpenes and the oxygenated BVOC linalool in ambient air. During this field deployment within a suburban forest ~ 30 km west of central Tokyo, Japan, the

  7. Fast set-based association analysis using summary data from GWAS identifies novel gene loci for human complex traits.

    PubMed

    Bakshi, Andrew; Zhu, Zhihong; Vinkhuyzen, Anna A E; Hill, W David; McRae, Allan F; Visscher, Peter M; Yang, Jian

    2016-01-01

    We propose a method (fastBAT) that performs a fast set-based association analysis for human complex traits using summary-level data from genome-wide association studies (GWAS) and linkage disequilibrium (LD) data from a reference sample with individual-level genotypes. We demonstrate using simulations and analyses of real datasets that fastBAT is more accurate and orders of magnitude faster than the prevailing methods. Using fastBAT, we analyze summary data from the latest meta-analyses of GWAS on 150,064-339,224 individuals for height, body mass index (BMI), and schizophrenia. We identify 6 novel gene loci for height, 2 for BMI, and 3 for schizophrenia at PfastBAT < 5 × 10(-8). The gain of power is due to multiple small independent association signals at these loci (e.g. the THRB and FOXP1 loci for schizophrenia). The method is general and can be applied to GWAS data for all complex traits and diseases in humans and to such data in other species. PMID:27604177

  8. Fast set-based association analysis using summary data from GWAS identifies novel gene loci for human complex traits

    PubMed Central

    Bakshi, Andrew; Zhu, Zhihong; Vinkhuyzen, Anna A. E.; Hill, W. David; McRae, Allan F.; Visscher, Peter M.; Yang, Jian

    2016-01-01

    We propose a method (fastBAT) that performs a fast set-based association analysis for human complex traits using summary-level data from genome-wide association studies (GWAS) and linkage disequilibrium (LD) data from a reference sample with individual-level genotypes. We demonstrate using simulations and analyses of real datasets that fastBAT is more accurate and orders of magnitude faster than the prevailing methods. Using fastBAT, we analyze summary data from the latest meta-analyses of GWAS on 150,064–339,224 individuals for height, body mass index (BMI), and schizophrenia. We identify 6 novel gene loci for height, 2 for BMI, and 3 for schizophrenia at PfastBAT < 5 × 10−8. The gain of power is due to multiple small independent association signals at these loci (e.g. the THRB and FOXP1 loci for schizophrenia). The method is general and can be applied to GWAS data for all complex traits and diseases in humans and to such data in other species. PMID:27604177

  9. Fast 3D reconstruction of tool wear based on monocular vision and multi-color structured light illuminator

    NASA Astrophysics Data System (ADS)

    Wang, Zhongren; Li, Bo; Zhou, Yuebin

    2014-11-01

    Fast 3D reconstruction of tool wear from 2D images has great importance to 3D measuring and objective evaluating tool wear condition, determining accurate tool change and insuring machined part's quality. Extracting 3D information of tool wear zone based on monocular multi-color structured light can realize fast recovery of surface topography of tool wear, which overcomes the problems of traditional methods such as solution diversity and slow convergence when using SFS method and stereo match when using 3D reconstruction from multiple images. In this paper, a kind of new multi-color structured light illuminator was put forward. An information mapping model was established among illuminator's structure parameters, surface morphology and color images. The mathematical model to reconstruct 3D morphology based on monocular multi-color structured light was presented. Experimental results show that this method is effective and efficient to reconstruct the surface morphology of tool wear zone.

  10. REVIEW ARTICLE: Slow and fast light based on coherent population oscillations in erbium-doped fibres

    NASA Astrophysics Data System (ADS)

    Arrieta-Yáñez, Francisco; Calderón, Oscar G.; Melle, Sonia

    2010-10-01

    In this paper we review the main results on slow and fast light induced by coherent population oscillations in optical fibres doped with erbium ions. We explain the physics behind this technique and we describe the experimental realization. Finally, we summarize some recent advances in this field and future goals.

  11. Design and Analysis of Fast Text Compression Based on Quasi-Arithmetic Coding.

    ERIC Educational Resources Information Center

    Howard, Paul G; Vitter, Jeffrey Scott

    1994-01-01

    Describes a detailed algorithm for fast text compression. Related to the PPM (prediction by partial matching) method, it simplifies the modeling phase by eliminating the escape mechanism and speeds up coding by using a combination of quasi-arithmetic coding and Rice coding. Details of the use of quasi-arithmetic code tables are given, and their…

  12. Accelerator-based neutron source for the neutron-capture and fast neutron therapy at hospital

    NASA Astrophysics Data System (ADS)

    Bayanov, B. F.; Belov, V. P.; Bender, E. D.; Bokhovko, M. V.; Dimov, G. I.; Kononov, V. N.; Kononov, O. E.; Kuksanov, N. K.; Palchikov, V. E.; Pivovarov, V. A.; Salimov, R. A.; Silvestrov, G. I.; Skrinsky, A. N.; Soloviov, N. A.; Taskaev, S. Yu.

    The proton accelerator complex for neutron production in lithium target discussed, which can operate in two modes. The first provides a neutron beam kinematically collimated with good forward direction in 25° and average energy of 30 keV, directly applicable for neutron-capture therapy with high efficiency of proton beam use. The proton energy in this mode is 1.883-1.890 MeV that is near the threshold of the 7Li( p, n) 7Be reaction. In the second mode, at proton energy of 2.5 MeV, the complex-produced neutron beam with maximum energy board of 790 keV which can be used directly for fast neutron therapy and for neutron-capture therapy after moderation. The project of such a neutron source is based on the 2.5 MeV original electrostatic accelerator tandem with vacuum insulation developed at BINP which is supplied with a high-voltage rectifier. The rectifier is produced in BINP as a part of ELV-type industrial accelerator. Design features of the tandem determining its high reliability in operation with a high-current (up to 40 mA) H - ion beam are discussed. They are: the absence of ceramic accelerator columns around the beam passage region, good conditions for pumping out of charge-exchange gaseous target region, strong focusing optics and high acceleration rate minimizing the space charge effects. The possibility of stabilization of protons energy with an accuracy level of 0.1% necessary for operation in the near threshold region is considered. The design description of H - continuous ion source with a current of 40 mA is also performed. To operate with a 100 kW proton beam it is proposed to use liquid-lithium targets. A thin lithium layer on the surface of a tungsten disk cooled intensively by a liquid metal heat carrier is proposed for use in case of the vertical beam, and a flat liquid lithium jet flowing through the narrow nozzle - for the horizontal beam.

  13. A novel multi-aperture based sun sensor based on a fast multi-point MEANSHIFT (FMMS) algorithm.

    PubMed

    You, Zheng; Sun, Jian; Xing, Fei; Zhang, Gao-Fei

    2011-01-01

    With the current increased widespread interest in the development and applications of micro/nanosatellites, it was found that we needed to design a small high accuracy satellite attitude determination system, because the star trackers widely used in large satellites are large and heavy, and therefore not suitable for installation on micro/nanosatellites. A Sun sensor + magnetometer is proven to be a better alternative, but the conventional sun sensor has low accuracy, and cannot meet the requirements of the attitude determination systems of micro/nanosatellites, so the development of a small high accuracy sun sensor with high reliability is very significant. This paper presents a multi-aperture based sun sensor, which is composed of a micro-electro-mechanical system (MEMS) mask with 36 apertures and an active pixels sensor (APS) CMOS placed below the mask at a certain distance. A novel fast multi-point MEANSHIFT (FMMS) algorithm is proposed to improve the accuracy and reliability, the two key performance features, of an APS sun sensor. When the sunlight illuminates the sensor, a sun spot array image is formed on the APS detector. Then the sun angles can be derived by analyzing the aperture image location on the detector via the FMMS algorithm. With this system, the centroid accuracy of the sun image can reach 0.01 pixels, without increasing the weight and power consumption, even when some missing apertures and bad pixels appear on the detector due to aging of the devices and operation in a harsh space environment, while the pointing accuracy of the single-aperture sun sensor using the conventional correlation algorithm is only 0.05 pixels. PMID:22163770

  14. A Novel Multi-Aperture Based Sun Sensor Based on a Fast Multi-Point MEANSHIFT (FMMS) Algorithm

    PubMed Central

    You, Zheng; Sun, Jian; Xing, Fei; Zhang, Gao-Fei

    2011-01-01

    With the current increased widespread interest in the development and applications of micro/nanosatellites, it was found that we needed to design a small high accuracy satellite attitude determination system, because the star trackers widely used in large satellites are large and heavy, and therefore not suitable for installation on micro/nanosatellites. A Sun sensor + magnetometer is proven to be a better alternative, but the conventional sun sensor has low accuracy, and cannot meet the requirements of the attitude determination systems of micro/nanosatellites, so the development of a small high accuracy sun sensor with high reliability is very significant. This paper presents a multi-aperture based sun sensor, which is composed of a micro-electro-mechanical system (MEMS) mask with 36 apertures and an active pixels sensor (APS) CMOS placed below the mask at a certain distance. A novel fast multi-point MEANSHIFT (FMMS) algorithm is proposed to improve the accuracy and reliability, the two key performance features, of an APS sun sensor. When the sunlight illuminates the sensor, a sun spot array image is formed on the APS detector. Then the sun angles can be derived by analyzing the aperture image location on the detector via the FMMS algorithm. With this system, the centroid accuracy of the sun image can reach 0.01 pixels, without increasing the weight and power consumption, even when some missing apertures and bad pixels appear on the detector due to aging of the devices and operation in a harsh space environment, while the pointing accuracy of the single-aperture sun sensor using the conventional correlation algorithm is only 0.05 pixels. PMID:22163770

  15. Silica encapsulated lipid-based drug delivery systems for reducing the fed/fasted variations of ziprasidone in vitro.

    PubMed

    Dening, Tahnee J; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A

    2016-04-01

    Ziprasidone is a poorly water-soluble antipsychotic drug that demonstrates low fasted state oral bioavailability and a clinically significant two-fold increase in absorption when dosed postprandially. Owing to significant compliance challenges faced by schizophrenic patients, a novel oral formulation of ziprasidone that demonstrates improved fasted state absorption and a reduced food effect is of major interest, and is therefore the aim of this research. Three lipid-based drug delivery systems (LBDDS) were developed and investigated: (a) a self-nanoemulsifying drug delivery system (SNEDDS), (b) a solid SNEDDS formulation, and (c) silica-lipid hybrid (SLH) microparticles. SNEDDS was developed using Capmul MCM® and Tween 80®, and solid SNEDDS was fabricated by spray-drying SNEDDS with Aerosil 380® silica nanoparticles as the solid carrier. SLH microparticles were prepared in a similar manner to solid SNEDDS using a precursor lipid emulsion composed of Capmul MCM® and soybean lecithin. The performance of the developed formulations was evaluated under simulated digesting conditions using an in vitro lipolysis model, and pure (unformulated) ziprasidone was used as a control. While pure ziprasidone exhibited the lowest rate and extent of drug solubilization under fasting conditions and a significant 2.4-fold increase in drug solubilization under fed conditions, all three LBDDS significantly enhanced the extent of drug solubilization under fasting conditions between 18- and 43-folds in comparison to pure drug. No significant difference in drug solubilization for the fed and fasted states was observed for the three LBDDS systems. To highlight the potential of LBDDS, mechanism(s) of action and various performance characteristics are discussed. Importantly, LBDDS are identified as an appropriate formulation strategy to explore further for the improved oral delivery of ziprasidone. PMID:26812284

  16. New, dense, and fast scintillators based on rare-earth tantalo-niobates

    NASA Astrophysics Data System (ADS)

    Voloshyna, O. V.; Boiaryntseva, I. A.; Baumer, V. N.; Ivanov, A. I.; Korjik, M. V.; Sidletskiy, O. Ts.

    2014-11-01

    Samples of undoped yttrium and gadolinium tantalo-niobates with common formulae RE(NbxTa1-x)O4, where RE=Y or Gd and x=0-1, have been obtained by solid-state reaction. Systematic study of structural, luminescent, and scintillation properties of these compounds was carried out. Lattice parameters and space groups of the mixed compounds were identified. UV- and X-ray luminescence spectra, as well as relative light outputs and scintillation decay times are measured. Gadolinium tantalo-niobate with the formulae GdNb0.2Ta0.8O4 showed the light output around 13 times larger than PbWO4 and fast decay with time constant 12 ns without additional slow component. Gadolinium tantalo-niobates may be considered as promising materials for high energy physics due to extremely high density, substantial light output, and fast decay.

  17. RELATIONSHIP BETWEEN THE KINETIC POWER AND BOLOMETRIC LUMINOSITY OF JETS: LIMITATION FROM BLACK HOLE X-RAY BINARIES, ACTIVE GALACTIC NUCLEI, AND GAMMA-RAY BURSTS

    SciTech Connect

    Ma, Renyi; Hou, Shujin; Xie, Fu-Guo E-mail: fgxie@shao.ac.cn

    2014-01-01

    The correlation between the kinetic power P {sub jet} and intrinsic bolometric luminosity L {sub jet} of jets may reveal the underlying jet physics in various black hole systems. Based on the recent work by Nemmen et al., we re-investigate this correlation with additional sources of black hole X-ray binaries (BXBs) in hard/quiescent states and low-luminosity active galactic nuclei (LLAGNs). The new sample includes 29 sets of data from 7 BXBs and 20 LLAGNs, with P {sub jet} and L {sub jet} being derived from spectral modeling of the quasi-simultaneous multi-band spectra under the accretion jet scenario. Compared to previous works, the range of luminosity is now enlarged to more than 20 decades, i.e., from ∼10{sup 31} erg s{sup –1} to ∼10{sup 52} erg s{sup –1}, which allows for better constraining of the correlation. One notable result is that the jets in BXBs and LLAGNs almost follow the same P {sub jet}-L {sub jet} correlation that was obtained from blazars and gamma-ray bursts. The slope indices we derived are 1.03 ± 0.01 for the whole sample, 0.85 ± 0.06 for the BXB subsample, 0.71 ± 0.11 for the LLAGN subsample, and 1.01 ± 0.05 for the LLAGN-blazar subsample, respectively. The correlation index around unit implies the independence of jet efficiency on the luminosity or kinetic power. Our results may further support the hypothesis that similar physical processes exist in the jets of various black hole systems.

  18. Relationship between the Kinetic Power and Bolometric Luminosity of Jets: Limitation from Black Hole X-Ray Binaries, Active Galactic Nuclei, and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Ma, Renyi; Xie, Fu-Guo; Hou, Shujin

    2014-01-01

    The correlation between the kinetic power P jet and intrinsic bolometric luminosity L jet of jets may reveal the underlying jet physics in various black hole systems. Based on the recent work by Nemmen et al., we re-investigate this correlation with additional sources of black hole X-ray binaries (BXBs) in hard/quiescent states and low-luminosity active galactic nuclei (LLAGNs). The new sample includes 29 sets of data from 7 BXBs and 20 LLAGNs, with P jet and L jet being derived from spectral modeling of the quasi-simultaneous multi-band spectra under the accretion jet scenario. Compared to previous works, the range of luminosity is now enlarged to more than 20 decades, i.e., from ~1031 erg s-1 to ~1052 erg s-1, which allows for better constraining of the correlation. One notable result is that the jets in BXBs and LLAGNs almost follow the same P jet-L jet correlation that was obtained from blazars and gamma-ray bursts. The slope indices we derived are 1.03 ± 0.01 for the whole sample, 0.85 ± 0.06 for the BXB subsample, 0.71 ± 0.11 for the LLAGN subsample, and 1.01 ± 0.05 for the LLAGN-blazar subsample, respectively. The correlation index around unit implies the independence of jet efficiency on the luminosity or kinetic power. Our results may further support the hypothesis that similar physical processes exist in the jets of various black hole systems.

  19. "A Fast Running Program For Minicomputer Based On Exact Derivative Of Optimization Criterions"

    NASA Astrophysics Data System (ADS)

    Hugues, Edgar; Babolat, Claude; Bacchus, J. M.

    1983-10-01

    The very fast evolution of the Hardware and the software brings the optical designer to choice betwen two attitudes. 1) To use the services of a specialized company which is continusly devoloping optical programs. 2) To write its own programs and improve them according to the needs. Theory and experience have to help themselves to realize an harmonious balance in order to get product improvements through programs improvements. CERCO has choosen the second alternative.

  20. PHYML Online—a web server for fast maximum likelihood-based phylogenetic inference

    PubMed Central

    Guindon, Stéphane; Lethiec, Franck; Duroux, Patrice; Gascuel, Olivier

    2005-01-01

    PHYML Online is a web interface to PHYML, a software that implements a fast and accurate heuristic for estimating maximum likelihood phylogenies from DNA and protein sequences. This tool provides the user with a number of options, e.g. nonparametric bootstrap and estimation of various evolutionary parameters, in order to perform comprehensive phylogenetic analyses on large datasets in reasonable computing time. The server and its documentation are available at . PMID:15980534

  1. Fast Marching and Runge-Kutta Based Method for Centreline Extraction of Right Coronary Artery in Human Patients.

    PubMed

    Cui, Hengfei; Wang, Desheng; Wan, Min; Zhang, Jun-Mei; Zhao, Xiaodan; Tan, Ru San; Huang, Weimin; Xiong, Wei; Duan, Yuping; Zhou, Jiayin; Luo, Tong; Kassab, Ghassan S; Zhong, Liang

    2016-06-01

    The CT angiography (CTA) is a clinically indicated test for the assessment of coronary luminal stenosis that requires centerline extractions. There is currently no centerline extraction algorithm that is automatic, real-time and very accurate. Therefore, we sought to (i) develop a hybrid approach by incorporating fast marching and Runge-Kutta based methods for the extraction of coronary artery centerlines from CTA; (ii) evaluate the accuracy of the present method compared to Van's method by using ground truth centerline as a reference; (iii) evaluate the coronary lumen area of our centerline method in comparison with the intravascular ultrasound (IVUS) as the standard of reference. The proposed method was found to be more computationally efficient, and performed better than the Van's method in terms of overlap measures (i.e., OV: [Formula: see text] vs. [Formula: see text]; OF: [Formula: see text] vs. [Formula: see text]; and OT: [Formula: see text] vs. [Formula: see text], all [Formula: see text]). In comparison with IVUS derived coronary lumen area, the proposed approach was more accurate than the Van's method. This hybrid approach by incorporating fast marching and Runge-Kutta based methods could offer fast and accurate extraction of centerline as well as the lumen area. This method may garner wider clinical potential as a real-time coronary stenosis assessment tool. PMID:27140197

  2. License plate localization in complex scenes based on oriented FAST and rotated BRIEF feature

    NASA Astrophysics Data System (ADS)

    Wang, Ran; Xia, Yuanchun; Wang, Guoyou; Tian, Jiangmin

    2015-09-01

    Within intelligent transportation systems, fast and robust license plate localization (LPL) in complex scenes is still a challenging task. Real-world scenes introduce complexities such as variation in license plate size and orientation, uneven illumination, background clutter, and nonplate objects. These complexities lead to poor performance using traditional LPL features, such as color, edge, and texture. Recently, state-of-the-art performance in LPL has been achieved by applying the scale invariant feature transform (SIFT) descriptor to LPL for visual matching. However, for applications that require fast processing, such as mobile phones, SIFT does not meet the efficiency requirement due to its relatively slow computational speed. To address this problem, a new approach for LPL, which uses the oriented FAST and rotated BRIEF (ORB) feature detector, is proposed. The feature extraction in ORB is much more efficient than in SIFT and is invariant to scale and grayscale as well as rotation changes, and hence is able to provide superior performance for LPL. The potential regions of a license plate are detected by considering spatial and color information simultaneously, which is different from previous approaches. The experimental results on a challenging dataset demonstrate the effectiveness and efficiency of the proposed method.

  3. Computer-Based Video Instruction to Teach Students with Intellectual Disabilities to Verbally Respond to Questions and Make Purchases in Fast Food Restaurants

    ERIC Educational Resources Information Center

    Mechling, Linda C.; Pridgen, Leslie S.; Cronin, Beth A.

    2005-01-01

    Computer-based video instruction (CBVI) was used to teach verbal responses to questions presented by cashiers and purchasing skills in fast food restaurants. A multiple probe design across participants was used to evaluate the effectiveness of CBVI. Instruction occurred through simulations of three fast food restaurants on the computer using video…

  4. GPU-accelerated non-uniform fast Fourier transform-based compressive sensing spectral domain optical coherence tomography.

    PubMed

    Xu, Daguang; Huang, Yong; Kang, Jin U

    2014-06-16

    We implemented the graphics processing unit (GPU) accelerated compressive sensing (CS) non-uniform in k-space spectral domain optical coherence tomography (SD OCT). Kaiser-Bessel (KB) function and Gaussian function are used independently as the convolution kernel in the gridding-based non-uniform fast Fourier transform (NUFFT) algorithm with different oversampling ratios and kernel widths. Our implementation is compared with the GPU-accelerated modified non-uniform discrete Fourier transform (MNUDFT) matrix-based CS SD OCT and the GPU-accelerated fast Fourier transform (FFT)-based CS SD OCT. It was found that our implementation has comparable performance to the GPU-accelerated MNUDFT-based CS SD OCT in terms of image quality while providing more than 5 times speed enhancement. When compared to the GPU-accelerated FFT based-CS SD OCT, it shows smaller background noise and less side lobes while eliminating the need for the cumbersome k-space grid filling and the k-linear calibration procedure. Finally, we demonstrated that by using a conventional desktop computer architecture having three GPUs, real-time B-mode imaging can be obtained in excess of 30 fps for the GPU-accelerated NUFFT based CS SD OCT with frame size 2048(axial) × 1,000(lateral). PMID:24977582

  5. GPU-accelerated non-uniform fast Fourier transform-based compressive sensing spectral domain optical coherence tomography

    PubMed Central

    Xu, Daguang; Huang, Yong; Kang, Jin U.

    2014-01-01

    We implemented the graphics processing unit (GPU) accelerated compressive sensing (CS) non-uniform in k-space spectral domain optical coherence tomography (SD OCT). Kaiser-Bessel (KB) function and Gaussian function are used independently as the convolution kernel in the gridding-based non-uniform fast Fourier transform (NUFFT) algorithm with different oversampling ratios and kernel widths. Our implementation is compared with the GPU-accelerated modified non-uniform discrete Fourier transform (MNUDFT) matrix-based CS SD OCT and the GPU-accelerated fast Fourier transform (FFT)-based CS SD OCT. It was found that our implementation has comparable performance to the GPU-accelerated MNUDFT-based CS SD OCT in terms of image quality while providing more than 5 times speed enhancement. When compared to the GPU-accelerated FFT based-CS SD OCT, it shows smaller background noise and less side lobes while eliminating the need for the cumbersome k-space grid filling and the k-linear calibration procedure. Finally, we demonstrated that by using a conventional desktop computer architecture having three GPUs, real-time B-mode imaging can be obtained in excess of 30 fps for the GPU-accelerated NUFFT based CS SD OCT with frame size 2048(axial)×1000(lateral). PMID:24977582

  6. Wide and fast wavelength-swept fiber lasers based on dispersion tuning for real-time OCT

    NASA Astrophysics Data System (ADS)

    Yamashita, S.; Takubo, Y.

    2014-05-01

    Swept-Source Optical coherence tomography (SS-OCT) is a powerful tool for fast medical imaging. For the real-time 3D imaging, the wide tuning range over 100 nm and fast sweep rate over 100 kHz are typically required. We recently proposed a new wavelength-swept laser for SS-OCT. It is based on a principle called dispersion tuning. Since the cavity contains no mechanical components, such as tunable filters, we could achieve the very high sweep rate. In this review paper, we describe the principle of the dispersion-tuned swept lasers in detail and present our recent works on the application to the SS-OCT system.

  7. The role of input chirp on phase shifters based on slow and fast light effects in semiconductor optical amplifiers.

    PubMed

    Xue, Weiqi; Chen, Yaohui; Ohman, Filip; Mørk, Jesper

    2009-02-01

    We experimentally investigate the initial chirp dependence of slow and fast light effects in a semiconductor optical amplifier followed by an optical filter. It is shown that the enhancement of the phase shift due to optical filtering strongly depends on the chirp of the input optical signal. We demonstrate approximately 120 degrees phase delay as well as approximately 170 degrees phase advance at a microwave frequency of 19 GHz for different optimum values of the input chirp. The experimental results are shown to be in good agreement with numerical results based on a four-wave mixing model. Finally, a simple physical explanation based on an analytical perturbative approach is presented. PMID:19188968

  8. Fast O2 Binding at Dicopper Complexes Containing Schiff-Base Dinucleating Ligands

    PubMed Central

    Company, Anna; Gómez, Laura; Mas-Ballesté, Rubén; Korendovych, Ivan V.; Ribas, Xavi; Poater, Albert; Parella, Teodor; Fontrodona, Xavier; Benet-Buchholz, Jordi; Solà, Miquel; Que, Lawrence; Rybak-Akimova, Elena; Costas, Miquel

    2008-01-01

    A new family of dicopper(I) complexes [CuI2RL](X)2, (R = H, 1X, R = tBu, 2X and R = NO2, 3X, X = CF3SO3, ClO4, SbF6 or BArF, BArF = [B{3,5-(CF3)2-C6H3}4]−), where RL is a Schiff-base ligand containing two tridentate binding sites linked by a xylyl spacer have been prepared, characterized, and their reaction with O2 studied. The complexes were designed with the aim of reproducing structural aspects of the active site of type 3 dicopper proteins; they contain two three-coordinate copper sites and a rather flexible podand ligand backbone. The solid state structures of 1ClO4, 2CF3SO3, 2ClO4 and 3BArF·CH3CN have been established by single crystal X-ray diffraction analysis. 1ClO4 adopts a polymeric structure in solution while 2CF3SO3, 2ClO4 and 3BArF·CH3CN are monomeric. The complexes have been studied in solution by means of 1H and 19F NMR spectroscopy, which put forward the presence of dynamic processes in solution. 1-3BArF and 1-3CF3SO3 in acetone react rapidly with O2 to generate metaestable [CuIII2(μ-O)2(RL)]2+ 1-3(O2) and [CuIII2(μ-O)2(CF3SO3)(RL)]+ 1-3(O2)(CF3SO3) species, respectively that have been characterized by UV-vis spectroscopy and resonance Raman analysis. Instead, reaction of 1-3BArF with O2 in CH2Cl2 results in intermolecular O2 binding. DFT methods have been used to study the chemical identities and structural parameters of the O2 adducts, and the relative stability of the CuIII2(μ-O)2 form with respect to the CuII2(μ-η2: η2-peroxo) isomer. The reaction of 1X, X = CF3SO3 and BArF with O2 in acetone has been studied by stopped-flow exhibiting an unexpected very fast reaction rate (k = 3.82(4) × 103 M−1s−1, ΔH‡ = 4.9 ± 0.5 kJ·mol−1, ΔS‡ = −148 ± 5 J·K−1·mol−1), nearly three orders of magnitude faster than in the parent [CuI2(m-XYLMeAN)]2+. Thermal decomposition of 1-3(O2) does not result in aromatic hydroxylation. The mechanism and kinetics of O2 binding to 1X (X = CF3SO3 and BArF) is discussed and compared with those

  9. A local fast marching-based diffusion tensor image registration algorithm by simultaneously considering spatial deformation and tensor orientation.

    PubMed

    Xue, Zhong; Li, Hai; Guo, Lei; Wong, Stephen T C

    2010-08-01

    It is a key step to spatially align diffusion tensor images (DTI) to quantitatively compare neural images obtained from different subjects or the same subject at different timepoints. Different from traditional scalar or multi-channel image registration methods, tensor orientation should be considered in DTI registration. Recently, several DTI registration methods have been proposed in the literature, but deformation fields are purely dependent on the tensor features not the whole tensor information. Other methods, such as the piece-wise affine transformation and the diffeomorphic non-linear registration algorithms, use analytical gradients of the registration objective functions by simultaneously considering the reorientation and deformation of tensors during the registration. However, only relatively local tensor information such as voxel-wise tensor-similarity is utilized. This paper proposes a new DTI image registration algorithm, called local fast marching (FM)-based simultaneous registration. The algorithm not only considers the orientation of tensors during registration but also utilizes the neighborhood tensor information of each voxel to drive the deformation, and such neighborhood tensor information is extracted from a local fast marching algorithm around the voxels of interest. These local fast marching-based tensor features efficiently reflect the diffusion patterns around each voxel within a spherical neighborhood and can capture relatively distinctive features of the anatomical structures. Using simulated and real DTI human brain data the experimental results show that the proposed algorithm is more accurate compared with the FA-based registration and is more efficient than its counterpart, the neighborhood tensor similarity-based registration. PMID:20382233

  10. Fast cat-eye effect target recognition based on saliency extraction

    NASA Astrophysics Data System (ADS)

    Li, Li; Ren, Jianlin; Wang, Xingbin

    2015-09-01

    Background complexity is a main reason that results in false detection in cat-eye target recognition. Human vision has selective attention property which can help search the salient target from complex unknown scenes quickly and precisely. In the paper, we propose a novel cat-eye effect target recognition method named Multi-channel Saliency Processing before Fusion (MSPF). This method combines traditional cat-eye target recognition with the selective characters of visual attention. Furthermore, parallel processing enables it to achieve fast recognition. Experimental results show that the proposed method performs better in accuracy, robustness and speed compared to other methods.

  11. Radar cross-section reduction based on an iterative fast Fourier transform optimized metasurface

    NASA Astrophysics Data System (ADS)

    Song, Yi-Chuan; Ding, Jun; Guo, Chen-Jiang; Ren, Yu-Hui; Zhang, Jia-Kai

    2016-07-01

    A novel polarization insensitive metasurface with over 25 dB monostatic radar cross-section (RCS) reduction is introduced. The proposed metasurface is comprised of carefully arranged unit cells with spatially varied dimension, which enables approximate uniform diffusion of incoming electromagnetic (EM) energy and reduces the threat from bistatic radar system. An iterative fast Fourier transform (FFT) method for conventional antenna array pattern synthesis is innovatively applied to find the best unit cell geometry parameter arrangement. Finally, a metasurface sample is fabricated and tested to validate RCS reduction behavior predicted by full wave simulation software Ansys HFSSTM and marvelous agreement is observed.

  12. Sonoreactor-based technology for fast high-throughput proteolytic digestion of proteins.

    PubMed

    Rial-Otero, R; Carreira, R J; Cordeiro, F M; Moro, A J; Fernandes, L; Moura, I; Capelo, J L

    2007-02-01

    Fast (120 s) and high-throughput (more than six samples at once) in-gel trypsin digestion of proteins using sonoreactor technology has been achieved. Successful protein identification was done by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, MALDI-TOF-MS. Specific identification of the adenylylsulphate reductase alfa subunit from a complex protein mixture from Desulfovibrio desulfuricans ATCC 27774 was done as a proof of the methodology. The new sample treatment is of easy implementation, saves time and money, and can be adapted to online procedures and robotic platforms. PMID:17269750

  13. [Fast segmentation algorithm of high resolution remote sensing image based on multiscale mean shift].

    PubMed

    Wang, Lei-Guang; Zheng, Chen; Lin, Li-Yu; Chen, Rong-Yuan; Mei, Tian-Can

    2011-01-01

    Mean Shift algorithm is a robust approach toward feature space analysis and it has been used wildly for natural scene image and medical image segmentation. However, high computational complexity of the algorithm has constrained its application in remote sensing images with massive information. A fast image segmentation algorithm is presented by extending traditional mean shift method to wavelet domain. In order to evaluate the effectiveness of the proposed algorithm, multispectral remote sensing image and synthetic image are utilized. The results show that the proposed algorithm can improve the speed 5-7 times compared to the traditional MS method in the premise of segmentation quality assurance. PMID:21428083

  14. Fast software-based volume rendering using multimedia instructions on PC platforms and its application to virtual endoscopy

    NASA Astrophysics Data System (ADS)

    Mori, Kensaku; Suenaga, Yasuhito; Toriwaki, Jun-ichiro

    2003-05-01

    This paper describes a software-based fast volume rendering (VolR) method on a PC platform by using multimedia instructions, such as SIMD instructions, which are currently available in PCs' CPUs. This method achieves fast rendering speed through highly optimizing software rather than an improved rendering algorithm. In volume rendering using a ray casting method, the system requires fast execution of the following processes: (a) interpolation of voxel or color values at sample points, (b) computation of normal vectors (gray-level gradient vectors), (c) calculation of shaded values obtained by dot-products of normal vectors and light source direction vectors, (d) memory access to a huge area, and (e) efficient ray skipping at translucent regions. The proposed software implements these fundamental processes in volume rending by using special instruction sets for multimedia processing. The proposed software can generate virtual endoscopic images of a 3-D volume of 512x512x489 voxel size by volume rendering with perspective projection, specular reflection, and on-the-fly normal vector computation on a conventional PC without any special hardware at thirteen frames per second. Semi-translucent display is also possible.

  15. Evaluation of prototype 100mK bolometric detector for Planck Surveyor

    NASA Astrophysics Data System (ADS)

    Sudiwala, R. V.; Maffei, B.; Griffin, M. J.; Haynes, C. V.; Ade, P. A. R.; Bhatia, R. S.; Turner, A. D.; Bock, J. J.; Lange, A. E.; Beeman, J. W.

    2000-04-01

    The High-Frequency Instrument (HFI) for the Planck Surveyor mission will measure anisotropies of the Cosmic Microwave Background (CMB) down to scales of 6 arcmin and to an accuracy of /ΔT/T=2×10-6. Channels ranging in frequency from 100 to 857GHz will use 100mK spider web bolometer detectors with NTD Ge thermistors. The detectors must be photon noise limited and fast enough to preserve signal information at the 1r.p.m. scan rate of the satellite. The prime low-frequency CMB channels at 143 and 217GHz are the most technically demanding owing to the lower background limited NEPs. For the 143GHz channel the requirements are that the time constant /τ<5.7 ms and the NEPbol <1.53×10-17 WHz-1/2 including contribution from amplifier noise. We present here thermal, electrical and optical data on a prototype detector which, although optimised for the 100GHz channel, satisfies most of the requirements of the more demanding 143GHz channel. The measurements are consistent with ideal thermal behaviour of the detector over the appropriate bias and temperature ranges for optimum performance. From optically blanked electrical measurements we determined the dependence of resistance and thermal conductance on temperature over a wide range, 70-200mK. The optical responsivity and NEP were measured under photon background conditions similar to those expected in flight. Measurements of speed of response as a function of bias at different temperatures allowed us to determine the variation of total heat capacity with temperature. Extrapolation of these data show that in principal performance for all the Planck HFI channels can be met.

  16. Synthesis of Cesium Lead Halide Perovskite Nanocrystals in a Droplet-Based Microfluidic Platform: Fast Parametric Space Mapping.

    PubMed

    Lignos, Ioannis; Stavrakis, Stavros; Nedelcu, Georgian; Protesescu, Loredana; deMello, Andrew J; Kovalenko, Maksym V

    2016-03-01

    Prior to this work, fully inorganic nanocrystals of cesium lead halide perovskite (CsPbX3, X = Br, I, Cl and Cl/Br and Br/I mixed halide systems), exhibiting bright and tunable photoluminescence, have been synthesized using conventional batch (flask-based) reactions. Unfortunately, our understanding of the parameters governing the formation of these nanocrystals is still very limited due to extremely fast reaction kinetics and multiple variables involved in ion-metathesis-based synthesis of such multinary halide systems. Herein, we report the use of a droplet-based microfluidic platform for the synthesis of CsPbX3 nanocrystals. The combination of online photoluminescence and absorption measurements and the fast mixing of reagents within such a platform allows the rigorous and rapid mapping of the reaction parameters, including molar ratios of Cs, Pb, and halide precursors, reaction temperatures, and reaction times. This translates into enormous savings in reagent usage and screening times when compared to analogous batch synthetic approaches. The early-stage insight into the mechanism of nucleation of metal halide nanocrystals suggests similarities with multinary metal chalcogenide systems, albeit with much faster reaction kinetics in the case of halides. Furthermore, we show that microfluidics-optimized synthesis parameters are also directly transferrable to the conventional flask-based reaction. PMID:26836149

  17. Fast pseudo-CT synthesis from MRI T1-weighted images using a patch-based approach

    NASA Astrophysics Data System (ADS)

    Torrado-Carvajal, A.; Alcain, E.; Montemayor, A. S.; Herraiz, J. L.; Rozenholc, Y.; Hernandez-Tamames, J. A.; Adalsteinsson, E.; Wald, L. L.; Malpica, N.

    2015-12-01

    MRI-based bone segmentation is a challenging task because bone tissue and air both present low signal intensity on MR images, making it difficult to accurately delimit the bone boundaries. However, estimating bone from MRI images may allow decreasing patient ionization by removing the need of patient-specific CT acquisition in several applications. In this work, we propose a fast GPU-based pseudo-CT generation from a patient-specific MRI T1-weighted image using a group-wise patch-based approach and a limited MRI and CT atlas dictionary. For every voxel in the input MR image, we compute the similarity of the patch containing that voxel with the patches of all MR images in the database, which lie in a certain anatomical neighborhood. The pseudo-CT is obtained as a local weighted linear combination of the CT values of the corresponding patches. The algorithm was implemented in a GPU. The use of patch-based techniques allows a fast and accurate estimation of the pseudo-CT from MR T1-weighted images, with a similar accuracy as the patient-specific CT. The experimental normalized cross correlation reaches 0.9324±0.0048 for an atlas with 10 datasets. The high NCC values indicate how our method can accurately approximate the patient-specific CT. The GPU implementation led to a substantial decrease in computational time making the approach suitable for real applications.

  18. Cargo inspection system based on pulsed fast-neutron analysis: an update

    NASA Astrophysics Data System (ADS)

    Brown, Douglas R.

    1994-10-01

    Pulsed Fast Neutron Analysis (PFNA) is a technique which uses a collimated pulsed beam of fast neutrons to excite the nuclei of common elements in bulk materials. Direct imaging of the elemental contents of the material is accomplished by using time-of-flight analysis to identify the position of the interactions and gamma-ray spectroscopy to identify the elemental gamma rays. From the ratios and absolute measurements of elemental abundances the identification of the material can be deduced. The PFNA Cargo Inspection System uses a volume type negative ion source and a double drift bunching system to create an intense beam of nano-second bunched negative deuterium ions which, after acceleration to around 6 MeV, impinge on a deuterium gas target producing pulsed neutrons. A unique high speed data acquisition system digitizes and analyzes the time-energy data in real time. Experimental studies and computer simulations were extensively employed to characterize and optimize the design parameters of the system. The system described is scheduled for full scale laboratory testing in the fall of 1994 and for field testing at a Government Testbed in Tacoma, WA in 1995.

  19. A Fast Pulse, High Intensity Neutron Source Based Upon The Dense Plasma Focus

    SciTech Connect

    Krishnan, M.; Bures, B.; Madden, R.; Blobner, F.; Elliott, K. Wilson

    2009-12-02

    Alameda Applied Sciences Corporation (AASC) has built a bench-top source of fast neutrons (approx10-30 ns, 2.45 MeV), that is portable and can be scaled to operate at approx100 Hz. The source is a Dense Plasma Focus driven by three different capacitor banks: a 40 J/30 kA/100 Hz driver; a 500 J/130 kA/2 Hz driver and a 3 kJ/350 kA/0.5 Hz driver. At currents of approx130 kA, this source produces approx1x10{sup 7} (DD) n/pulse. The neutron pulse widths are approx10-30 ns and may be controlled by adjusting the DPF electrode geometry and operating parameters. This paper describes the scaling of the fast neutron output with current from such a Dense Plasma Focus source. For each current and driver, different DPF head designs are required to match to the current rise-time, as the operating pressure and anode radius/shape are varied. Doping of the pure D{sub 2} gas fill with Ar or Kr was shown earlier to increase the neutron output. Results are discussed in the light of scaling laws suggested by prior literature.

  20. General Structure Design for Fast Image Processing Algorithms Based upon FPGA DSP Slice

    NASA Astrophysics Data System (ADS)

    Wasfy, Wael; Zheng, Hong

    Increasing the speed and accuracy for a fast image processing algorithms during computing the image intensity for low level 3x3 algorithms with different kernel but having the same parallel calculation method is our target to achieve in this paper. FPGA is one of the fastest embedded systems that can be used for implementing the fast image processing image algorithms by using DSP slice module inside the FPGA we aimed to get the advantage of the DSP slice as a faster, accurate, higher number of bits in calculations and different calculated equation maneuver capabilities. Using a higher number of bits during algorithm calculations will lead to a higher accuracy compared with using the same image algorithm calculations with less number of bits, also reducing FPGA resources as minimum as we can and according to algorithm calculations needs is a very important goal to achieve. So in the recommended design we used as minimum DSP slice as we can and as a benefit of using DSP slice is higher calculations accuracy as the DSP capabilities of having 48 bit accuracy in addition and 18 x 18 bit accuracy in multiplication. For proofing the design, Gaussian filter and Sobelx edge detector image processing algorithms have been chosen to be implemented. Also we made a comparison with another design for proofing the improvements of the accuracy and speed of calculations, the other design as will be mentioned later on this paper is using maximum 12 bit accuracy in adding or multiplying calculations.

  1. An Upper Limit on the Ratio Between the Extreme Ultraviolet and the Bolometric Luminosities of Stars Hosting Habitable Planets

    NASA Astrophysics Data System (ADS)

    Sengupta, Sujan

    2016-06-01

    A large number of terrestrial planets in the classical habitable zone of stars of different spectral types have already been discovered and many are expected to be discovered in the near future. However, owing to the lack of knowledge on the atmospheric properties, the ambient environment of such planets are unknown. It is known that sufficient amount of Extreme Ultraviolet (EUV) radiation from the star can drive hydrodynamic outflow of hydrogen that may drag heavier species from the atmosphere of the planet. If the rate of mass loss is sufficiently high, then substantial amount of volatiles would escape causing the planet to become uninhabitable. Considering energy-limited hydrodynamical mass loss with an escape rate that causes oxygen to escape alongwith hydrogen, an upper limit for the ratio between the EUV and the bolometric luminosities of stars which constrains the habitability of planets around them is presented here. Application of the limit to planet-hosting stars with known EUV luminosities implies that many M-type of stars should not have habitable planets around them.

  2. Speckle-based sensor system for real-time distance and thickness monitoring of fast moving objects

    NASA Astrophysics Data System (ADS)

    Semenov, D. V.; Sidorov, I. S.; Nippolainen, E.; Kamshilin, A. A.

    2010-04-01

    Real-time distance monitoring and thickness measurements of production lines are typical tasks of the manufacturing process. We demonstrate a novel optical sensor prototype capable of providing accurate distance measurements of fast moving objects. The principle of sensor operation is based on spatial filtering of dynamic speckles generated with a scanning laser beam. The sensor is able to measure the distance to opaque (metals, etc) and to multi-scattering materials (papers, plastics, etc). The presented sensor prototype provides measurements and data processing in real time. We verify sensor prototype performance of multi-scattering material (paper web) moving with a speed of 35 m s-1.

  3. HIGH RESOLUTION AND FAST SCANNING SQUID BASED NON-DESTRUCTIVE INSPECTION SYSTEM OF NIOBIUM SHEETS FOR SRF CAVITIES

    SciTech Connect

    SHU, QUAN-SHENG

    2008-06-08

    Applications in high energy physics accelerators and other fields require the use of thousands of superconducting RF (SRF) cavities that are made of high purity Nb material and the purity of niobium is critical for these cavities to reach the highest accelerating fields. Tantalum is the most prolific of metal inclusions, which can cause thermal breakdown and prevent the cavities from reaching their theoretical performance limits of 45-50 MV/m, and DOE Labs are searching for a technology that could detect small impurities in superconducting Nb sheets reaching the highest possible accelerating fields. The proposed innovative SQUID-based Nondestructive system can scan Niobium sheets used in the manufacturing of SRF cavities with both high speed and high resolution. A highly sensitive SQUID system with a gradiometer probe, non-magnetic dewar, data acquisition system, and a scanning system will be developed for fast detection of impurities in planar Nb sheets. In phase I, we will modify our existing SQUID-based eddy current system to detect 100 micron size Ta defects and a great effort will focus on achieving fast scanning of a large number of niobium sheets in a shorter time and with reasonable resolution. An older system operated by moving the sample 1 mm, stopping and waiting for 1-2 seconds, then activating a measurement by the SQUID after the short settle time is modified. A preliminary designed and implemented a SQUID scanning system that is fast and is capable of scanning a 30 cm x 30 cm Nb sheet in 15 minutes by continuously moving the table at speeds up to 10 mm/s while activating the SQUID at 1mm interval is modified and reached the Phase I goal of 100mm resolution. We have successfully demonstrated the feasibility that a fast speed SQUID scanner without sacrificing the resolution of detection can be done, and a data acquisition and analysis system is also preliminary developed. The SQUID based scanner will help reach the highest accelerating field in SRF

  4. Development of a compact low coherence interferometer based on GPGPU for fast microscopic surface measurement on turbine blades

    NASA Astrophysics Data System (ADS)

    Li, Yinan; Kästner, Markus; Reithmeier, Eduard

    2015-05-01

    Vertical scanning interferometry (VSI) techniques are widely used to profile microscopic surface structures of industrial products. This paper introduces a high-precision fast optical measurement system with an optimized small sensor head for the measurement of precision surfaces on a turbine blade or blisks (blade integrated discs). The non-contact measurement system is based on a low coherence interferometer (LCI), which is capable of fast profiling of 3D sample surface with a nanometer resolution and has a larger measurement range compared to conventional microscopes. This results in a large amount of sampled data and a high computational time for the evaluation of the data. For this reason, the used evaluation algorithm in this paper is accelerated by the Compute Unified Device Architecture (CUDA) technology, which allows parallel evaluation of the data stack on independent cores of a General Purpose Graphics Processing Unit (GPGPU). As a result, the GPU-based optimized algorithm is compared with the original CPU-based single-threaded algorithm to show the approximate 60x speedup of computing the Hilbert Transformation, which is used to find the depth position in the correlogram of each pixel of the sampled data. The main advantage of the GPU computing for the evaluation algorithm of the LCI is that it can reduce the time-consuming data evaluation process and further accelerates the whole measurement.

  5. A fast approach to generate large-scale topographic maps based on new Chinese vehicle-borne Lidar system

    NASA Astrophysics Data System (ADS)

    Youmei, Han; Bogang, Yang

    2014-03-01

    Large -scale topographic maps are important basic information for city and regional planning and management. Traditional large- scale mapping methods are mostly based on artificial mapping and photogrammetry. The traditional mapping method is inefficient and limited by the environments. While the photogrammetry methods(such as low-altitude aerial mapping) is an economical and effective way to map wide and regulate range of large scale topographic map but doesn't work well in the small area due to the high cost of manpower and resources. Recent years, the vehicle-borne LIDAR technology has a rapid development, and its application in surveying and mapping is becoming a new topic. The main objective of this investigation is to explore the potential of vehicle-borne LIDAR technology to be used to fast mapping large scale topographic maps based on new Chinese vehicle-borne LIDAR system. It studied how to use the new Chinese vehicle-borne LIDAR system measurement technology to map large scale topographic maps. After the field data capture, it can be mapped in the office based on the LIDAR data (point cloud) by software which programmed by ourselves. In addition, the detailed process and accuracy analysis were proposed by an actual case. The result show that this new technology provides a new fast method to generate large scale topographic maps, which is high efficient and accuracy compared to traditional methods.

  6. Performance analyses for fast variable optical attenuator-based optical current transformer

    NASA Astrophysics Data System (ADS)

    Wei, Pu; Chen, Chen; Wang, Xuefeng; Shan, Xuekang; Sun, Xiaohan

    2014-06-01

    In this paper, we analyze the performance of the electro-optic hybrid optical current transformer (HOCT) proposed by ourselves for high-voltage metering and protective relaying application. The transformer makes use of a fast variable optical attenuator (FVOA) to modulate the lightwave according to the voltage from the primary current sensor, such as low-power current transformer (LPCT). In order to improve the performance of the transformer, we use an optic-electro feedback loop with the PID control algorithm to compensate the nonlinearity of the FVOA. The linearity and accuracy of the transformer were analyzed and tested. The results indicate that the nonlinearity of the FVOA is completely compensated by the loop and the ratio and phase errors are under 0.07% and 5 minutes respectively, under the working power of less than 1 mW power. The transformer can be immune to the polarization and wavelength drift, and also robust against the environmental interference.

  7. Development of a fast scintillator based beam phase measurement system for compact superconducting cyclotrons

    SciTech Connect

    Bhattacharjee, Tanushyam; Kanti Dey, Malay; Dhara, Partha; Roy, Suvodeep; Debnath, Jayanta; Balakrishna Bhole, Rajendra; Dutta, Atanu; Pradhan, Jedidiah; Pal, Sarbajit; Pal, Gautam; Roy, Amitava; Chakrabarti, Alok

    2013-05-15

    In an isochronous cyclotron, measurements of central phase of the ion beam with respect to rf and the phase width provide a way to tune the cyclotron for maximum energy gain per turn and efficient extraction. We report here the development of a phase measurement system and the measurements carried out at the Variable Energy Cyclotron Centre's (VECC's) K= 500 superconducting cyclotron. The technique comprises detecting prompt {gamma}-rays resulting from the interaction of cyclotron ion beam with an aluminium target mounted on a radial probe in coincidence with cyclotron rf. An assembly comprising a fast scintillator and a liquid light-guide inserted inside the cyclotron was used to detect the {gamma}-rays and to transfer the light signal outside the cyclotron where a matching photo-multiplier tube was used for light to electrical signal conversion. The typical beam intensity for this measurement was a few times 10{sup 11} pps.

  8. Contour detection and completion for inpainting and segmentation based on topological gradient and fast marching algorithms.

    PubMed

    Auroux, Didier; Cohen, Laurent D; Masmoudi, Mohamed

    2011-01-01

    We combine in this paper the topological gradient, which is a powerful method for edge detection in image processing, and a variant of the minimal path method in order to find connected contours. The topological gradient provides a more global analysis of the image than the standard gradient and identifies the main edges of an image. Several image processing problems (e.g., inpainting and segmentation) require continuous contours. For this purpose, we consider the fast marching algorithm in order to find minimal paths in the topological gradient image. This coupled algorithm quickly provides accurate and connected contours. We present then two numerical applications, to image inpainting and segmentation, of this hybrid algorithm. PMID:22194734

  9. Spatio-temporal correlation-based fast coding unit depth decision for high efficiency video coding

    NASA Astrophysics Data System (ADS)

    Zhou, Chengtao; Zhou, Fan; Chen, Yaowu

    2013-10-01

    The exhaustive block partition search process in high efficiency video coding (HEVC) imposes a very high computational complexity on test module of HEVC encoder (HM). A fast coding unit (CU) depth algorithm using the spatio-temporal correlation of the depth information to fasten the search process is proposed. The depth of the coding tree unit (CTU) is predicted first by using the depth information of the spatio-temporal neighbor CTUs. Then, the depth information of the adjacent CU is incorporated to skip some specific depths when encoding the sub-CTU. As compared with the original HM encoder, experimental results show that the proposed algorithm can save more than 20% encoding time on average for intra-only, low-delay, low-delay P slices, and random access cases with almost the same rate-distortion performance.

  10. A fast computation method for MUSIC spectrum function based on circular arrays

    NASA Astrophysics Data System (ADS)

    Du, Zhengdong; Wei, Ping

    2015-02-01

    The large computation amount of multiple signal classification (MUSIC) spectrum function seriously affects the timeliness of direction finding system using MUSIC algorithm, especially in the two-dimensional directions of arrival (DOA) estimation of azimuth and elevation with a large antenna array. This paper proposes a fast computation method for MUSIC spectrum. It is suitable for any circular array. First, the circular array is transformed into a virtual uniform circular array, in the process of calculating MUSIC spectrum, for the cyclic characteristics of steering vector, the inner product in the calculation of spatial spectrum is realised by cyclic convolution. The computational amount of MUSIC spectrum is obviously less than that of the conventional method. It is a very practical way for MUSIC spectrum computation in circular arrays.

  11. A Fast Induction Motor Speed Estimation based on Hybrid Particle Swarm Optimization (HPSO)

    NASA Astrophysics Data System (ADS)

    Aryza, Solly; Abdallah, Ahmed N.; Khalidin, Zulkeflee bin; Lubis, Zulkarnain; Jie, Ma

    Intelligent control and estimation of power electronic systems by fuzzy logic and neural network techniques with fast torque and flux show tremendous promise in future. This paper proposed the application of Hybrid Particle Swarm Optimization (HPSO) for losses and operating cost minimization control in the induction motor drives. The main advantages of the proposed technique are; its simple structure and its straightforward maximization of induction motor efficiency and its operating cost for a given load torque. As will be demonstrated, Hybrid Particle Swarm Optimization (HPSO) is so efficient in finding the optimum operating machine's flux level. The results demonstrate the good quality and robustness in the system dynamic response and reduction in the steady-state and transient motor ripple torque.

  12. Fast time-lens-based line-scan single-pixel camera with multi-wavelength source

    PubMed Central

    Guo, Qiang; Chen, Hongwei; Weng, Zhiliang; Chen, Minghua; Yang, Sigang; Xie, Shizhong

    2015-01-01

    A fast time-lens-based line-scan single-pixel camera with multi-wavelength source is proposed and experimentally demonstrated in this paper. A multi-wavelength laser instead of a mode-locked laser is used as the optical source. With a diffraction grating and dispersion compensating fibers, the spatial information of an object is converted into temporal waveforms which are then randomly encoded, temporally compressed and captured by a single-pixel photodetector. Two algorithms (the dictionary learning algorithm and the discrete cosine transform-based algorithm) for image reconstruction are employed, respectively. Results show that the dictionary learning algorithm has greater capability to reduce the number of compressive measurements than the DCT-based algorithm. The effective imaging frame rate increases from 200 kHz to 1 MHz, which shows a significant improvement in imaging speed over conventional single-pixel cameras. PMID:26417527

  13. Conspicuity of Bone Metastases on Fast Dixon-Based Multisequence Whole Body MRI: Clinical Utility per Sequence

    PubMed Central

    Costelloe, Colleen M.; Madewell, John E.; Kundra, Vikas; Harrell, Robyn K.; Bassett, Roland L.; Ma, Jingfei

    2013-01-01

    Purpose To evaluate the conspicuity of bone metastases on each of the numerous sequences produced by fast Dixon-based multisequence whole-body (WB) MRI scanning in order to determine the most clinically useful sequences overall and per anatomic region. Materials and Methods Twenty-seven breast cancer patients with bone metastases were prospectively studied with fast Dixon-based WB MRI including head/neck, chest, abdominal, pelvic, thigh, calf/feet, and either cervical, thoracic and lumbar or cervical/thoracic and thoracic/lumbar regions. Sequences included coronal T2, axial T1 without and with intravenous gadolinium (+C), sagittal T1 spine +C, each associated fat only (FO) and fat saturated (FS) sequence, axial DWI and STIR. Blinded reviewers evaluated lesion conspicuity, a surrogate of clinical utility, on a 5 point scale per anatomic region. Sequences were compared using ANOVA, differences detected with Tukey’s HSD, and the four sequences with highest mean conspicuity were compared to the remainder overall and per anatomic region. Results Overall, a significant lesion conspicuity difference was found (P<0.0001), and lesion conspicuity was significantly higher on FS T1 +C, FO T1 +C, T1 +C sagittal, FS T1 +C axial sequences (P<0.0001). Per region results were the same in head/neck. Other sequences overlapped with these and included: Chest/abdomen-FO T2, DWI; pelvis- DWI, FO T2; thigh-FS T2, FO T2, FO T1 +C; calf/feet-FS T2, DWI, FO T2, STIR. Conclusion Overall, bone lesions were most conspicuous on FS T1 +C sagittal, FO T1 +C sagittal, T1 +C sagittal and FS T1 +C axial fast Dixon WB MRI sequences. PMID:23290478

  14. Complexity reduction in the H.264/AVC using highly adaptive fast mode decision based on macroblock motion activity

    NASA Astrophysics Data System (ADS)

    Abdellah, Skoudarli; Mokhtar, Nibouche; Amina, Serir

    2015-11-01

    The H.264/AVC video coding standard is used in a wide range of applications from video conferencing to high-definition television according to its high compression efficiency. This efficiency is mainly acquired from the newly allowed prediction schemes including variable block modes. However, these schemes require a high complexity to select the optimal mode. Consequently, complexity reduction in the H.264/AVC encoder has recently become a very challenging task in the video compression domain, especially when implementing the encoder in real-time applications. Fast mode decision algorithms play an important role in reducing the overall complexity of the encoder. In this paper, we propose an adaptive fast intermode algorithm based on motion activity, temporal stationarity, and spatial homogeneity. This algorithm predicts the motion activity of the current macroblock from its neighboring blocks and identifies temporal stationary regions and spatially homogeneous regions using adaptive threshold values based on content video features. Extensive experimental work has been done in high profile, and results show that the proposed source-coding algorithm effectively reduces the computational complexity by 53.18% on average compared with the reference software encoder, while maintaining the high-coding efficiency of H.264/AVC by incurring only 0.097 dB in total peak signal-to-noise ratio and 0.228% increment on the total bit rate.

  15. Simple and fast classification of non-LTR retrotransposons based on phylogeny of their RT domain protein sequences

    PubMed Central

    Kapitonov, Vladimir V.; Tempel, Sébastien; Jurka, Jerzy

    2009-01-01

    Rapidly growing number of sequenced genomes requires fast and accurate computational tools for analysis of different transposable elements (TEs). In this paper we focus on rapid and reliable procedure for classification of autonomous non-LTR retrotransposons based on alignment and clustering of their reverse transcriptase (RT) domains. Typically, the RT domain protein sequences encoded by different non-LTR retrotransposons are similar to each other in terms of significant BLASTP E-values. Therefore, they can be easily detected by the routine BLASTP searches of genomic DNA sequences coding for proteins similar to the RT domains of known non-LTR retrotransposons. However, detailed classification of non-LTR retrotransposons, i.e. their assignment to specific clades, is a slow and complex procedure that is not formalized or integrated as a standard set of computational methods and data. Here we describe a tool (RTclass1) designed for the fast and accurate automated assignment of novel non-LTR retrotransposons to known or novel clades using phylogenetic analysis of the RT domain protein sequences. RTclass1 classifies a particular non-LTR retrotransposon based on its RT domain in less than 10 minutes on a standard desktop computer and achieves 99.5% accuracy. RT1class1 works either as a standalone program installed locally or as a web-server that can be accessed distantly by uploading sequence data through the internet (http://www.girinst.org/RTphylogeny/RTclass1). PMID:19651192

  16. Development of the scintillator-based probe for fast-ion losses in the HL-2A tokamak

    SciTech Connect

    Zhang, Y. P. Liu, Yi; Yuan, G. L.; Song, X. Y.; Yang, J. W.; Li, X.; Chen, W.; Li, Y.; Yan, L. W.; Song, X. M.; Yang, Q. W.; Duan, X. R.; Luo, X. B.; Liu, Y. Q.; Hua, Y.; Isobe, M.

    2014-05-15

    A new scintillator-based lost fast-ion probe (SLIP) has been developed and operated in the HL-2A tokamak [L. W. Yan, X. R. Duan, X. T. Ding, J. Q. Dong, Q. W. Yang, Yi Liu, X. L. Zou, D. Q. Liu, W. M. Xuan, L. Y. Chen, J. Rao, X. M. Song, Y. Huang, W. C. Mao, Q. M. Wang, Q. Li, Z. Cao, B. Li, J. Y. Cao, G. J. Lei, J. H. Zhang, X. D. Li, W. Chen, J. Chen, C. H. Cui, Z. Y. Cui, Z. C. Deng, Y. B. Dong, B. B. Feng, Q. D. Gao, X. Y. Han, W. Y. Hong, M. Huang, X. Q. Ji, Z. H. Kang, D. F. Kong, T. Lan, G. S. Li, H. J. Li, Qing Li, W. Li, Y. G. Li, A. D. Liu, Z. T. Liu, C. W. Luo, X. H. Mao, Y. D. Pan, J. F. Peng, Z. B. Shi, S. D. Song, X. Y. Song, H. J. Sun, A. K. Wang, M. X. Wang, Y. Q. Wang, W. W. Xiao, Y. F. Xie, L. H. Yao, D. L. Yu, B. S. Yuan, K. J. Zhao, G. W. Zhong, J. Zhou, J. C. Yan, C. X. Yu, C. H. Pan, Y. Liu, and the HL-2A Team , Nucl. Fusion 51, 094016 (2011)] to measure the losses of neutral beam ions. The design of the probe is based on the concept of the α-particle detectors on Tokamak Fusion Test Reactor (TFTR) using scintillator plates. The probe is capable of traveling across an equatorial plane port and sweeping the aperture angle rotationally with respect to the axis of the probe shaft by two step motors, in order to optimize the radial position and the collimator angle. The energy and the pitch angle of the lost fast ions can be simultaneously measured if the two-dimensional image of scintillation light intensity due to the impact of the lost fast ions is detected. Measurements of the fast-ion losses using the probe have been performed during HL-2A neutral beam injection discharges. The clear experimental evidence of enhanced losses of beam ions during disruptions has been obtained by means of the SLIP system. A detailed description of the probe system and the first experimental results are reported.

  17. Development of the scintillator-based probe for fast-ion losses in the HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Zhang, Y. P.; Liu, Yi; Luo, X. B.; Isobe, M.; Yuan, G. L.; Liu, Y. Q.; Hua, Y.; Song, X. Y.; Yang, J. W.; Li, X.; Chen, W.; Li, Y.; Yan, L. W.; Song, X. M.; Yang, Q. W.; Duan, X. R.

    2014-05-01

    A new scintillator-based lost fast-ion probe (SLIP) has been developed and operated in the HL-2A tokamak [L. W. Yan, X. R. Duan, X. T. Ding, J. Q. Dong, Q. W. Yang, Yi Liu, X. L. Zou, D. Q. Liu, W. M. Xuan, L. Y. Chen, J. Rao, X. M. Song, Y. Huang, W. C. Mao, Q. M. Wang, Q. Li, Z. Cao, B. Li, J. Y. Cao, G. J. Lei, J. H. Zhang, X. D. Li, W. Chen, J. Chen, C. H. Cui, Z. Y. Cui, Z. C. Deng, Y. B. Dong, B. B. Feng, Q. D. Gao, X. Y. Han, W. Y. Hong, M. Huang, X. Q. Ji, Z. H. Kang, D. F. Kong, T. Lan, G. S. Li, H. J. Li, Qing Li, W. Li, Y. G. Li, A. D. Liu, Z. T. Liu, C. W. Luo, X. H. Mao, Y. D. Pan, J. F. Peng, Z. B. Shi, S. D. Song, X. Y. Song, H. J. Sun, A. K. Wang, M. X. Wang, Y. Q. Wang, W. W. Xiao, Y. F. Xie, L. H. Yao, D. L. Yu, B. S. Yuan, K. J. Zhao, G. W. Zhong, J. Zhou, J. C. Yan, C. X. Yu, C. H. Pan, Y. Liu, and the HL-2A Team, Nucl. Fusion 51, 094016 (2011)] to measure the losses of neutral beam ions. The design of the probe is based on the concept of the α-particle detectors on Tokamak Fusion Test Reactor (TFTR) using scintillator plates. The probe is capable of traveling across an equatorial plane port and sweeping the aperture angle rotationally with respect to the axis of the probe shaft by two step motors, in order to optimize the radial position and the collimator angle. The energy and the pitch angle of the lost fast ions can be simultaneously measured if the two-dimensional image of scintillation light intensity due to the impact of the lost fast ions is detected. Measurements of the fast-ion losses using the probe have been performed during HL-2A neutral beam injection discharges. The clear experimental evidence of enhanced losses of beam ions during disruptions has been obtained by means of the SLIP system. A detailed description of the probe system and the first experimental results are reported.

  18. Development of the scintillator-based probe for fast-ion losses in the HL-2A tokamak.

    PubMed

    Zhang, Y P; Liu, Yi; Luo, X B; Isobe, M; Yuan, G L; Liu, Y Q; Hua, Y; Song, X Y; Yang, J W; Li, X; Chen, W; Li, Y; Yan, L W; Song, X M; Yang, Q W; Duan, X R

    2014-05-01

    A new scintillator-based lost fast-ion probe (SLIP) has been developed and operated in the HL-2A tokamak [L. W. Yan, X. R. Duan, X. T. Ding, J. Q. Dong, Q. W. Yang, Yi Liu, X. L. Zou, D. Q. Liu, W. M. Xuan, L. Y. Chen, J. Rao, X. M. Song, Y. Huang, W. C. Mao, Q. M. Wang, Q. Li, Z. Cao, B. Li, J. Y. Cao, G. J. Lei, J. H. Zhang, X. D. Li, W. Chen, J. Chen, C. H. Cui, Z. Y. Cui, Z. C. Deng, Y. B. Dong, B. B. Feng, Q. D. Gao, X. Y. Han, W. Y. Hong, M. Huang, X. Q. Ji, Z. H. Kang, D. F. Kong, T. Lan, G. S. Li, H. J. Li, Qing Li, W. Li, Y. G. Li, A. D. Liu, Z. T. Liu, C. W. Luo, X. H. Mao, Y. D. Pan, J. F. Peng, Z. B. Shi, S. D. Song, X. Y. Song, H. J. Sun, A. K. Wang, M. X. Wang, Y. Q. Wang, W. W. Xiao, Y. F. Xie, L. H. Yao, D. L. Yu, B. S. Yuan, K. J. Zhao, G. W. Zhong, J. Zhou, J. C. Yan, C. X. Yu, C. H. Pan, Y. Liu, and the HL-2A Team, Nucl. Fusion 51, 094016 (2011)] to measure the losses of neutral beam ions. The design of the probe is based on the concept of the α-particle detectors on Tokamak Fusion Test Reactor (TFTR) using scintillator plates. The probe is capable of traveling across an equatorial plane port and sweeping the aperture angle rotationally with respect to the axis of the probe shaft by two step motors, in order to optimize the radial position and the collimator angle. The energy and the pitch angle of the lost fast ions can be simultaneously measured if the two-dimensional image of scintillation light intensity due to the impact of the lost fast ions is detected. Measurements of the fast-ion losses using the probe have been performed during HL-2A neutral beam injection discharges. The clear experimental evidence of enhanced losses of beam ions during disruptions has been obtained by means of the SLIP system. A detailed description of the probe system and the first experimental results are reported. PMID:24880364

  19. Mechanochemical mechanism for fast reaction of metastable intermolecular composites based on dispersion of liquid metal

    NASA Astrophysics Data System (ADS)

    Levitas, Valery I.; Asay, Blaine W.; Son, Steven F.; Pantoya, Michelle

    2007-04-01

    An unexpected mechanism for fast reaction of Al nanoparticles covered by a thin oxide shell during fast heating is proposed and justified theoretically and experimentally. For nanoparticles, the melting of Al occurs before the oxide fracture. The volume change due to melting induces pressures of 1-2 GPa and causes dynamic spallation of the shell. The unbalanced pressure between the Al core and the exposed surface creates an unloading wave with high tensile pressures resulting in dispersion of atomic scale liquid Al clusters. These clusters fly at high velocity and their reaction is not limited by diffusion (this is the opposite of traditional mechanisms for micron particles and for nanoparticles at slow heating). Physical parameters controlling the melt dispersion mechanism are found by our analysis. In addition to an explanation of the extremely short reaction time, the following correspondence between our theory and experiments are obtained: (a) For the particle radius below some critical value, the flame propagation rate and the ignition time delay are independent of the radius; (b) damage of the oxide shell suppresses the melt dispersion mechanism and promotes the traditional diffusive oxidation mechanism; (c) nanoflakes react more like micron size (rather than nanosize) spherical particles. The reasons why the melt dispersion mechanism cannot operate for the micron particles or slow heating of nanoparticles are determined. Methods to promote the melt dispersion mechanism, to expand it to micron particles, and to improve efficiency of energetic metastable intermolecular composites are formulated. In particular, the following could promote the melt dispersion mechanism in micron particles: (a) Increasing the temperature at which the initial oxide shell is formed; (b) creating initial porosity in the Al; (c) mixing of the Al with a material with a low (even negative) thermal expansion coefficient or with a phase transformation accompanied by a volume reduction

  20. Effect of SiO2 coating in bolometric Ge light detectors for rare event searches

    NASA Astrophysics Data System (ADS)

    Beeman, J. W.; Gentils, A.; Giuliani, A.; Mancuso, M.; Pessina, G.; Plantevin, O.; Rusconi, C.

    2013-05-01

    In germanium-based light detectors for scintillating bolometers, a SiO2 anti-reflective coating is often applied on the side of the germanium wafer exposed to light with the aim to improve its light collection efficiency. In this paper, we report about a measurement, performed in the temperature range 25-35 mK, of the light-collection increase obtained thanks to this method, which resulted to be of the order of 20%. The procedure followed has been carefully selected in order to minimize systematic effects. The employed light sources have the same spectral features (peaking at ˜630 nm wavelength) that will characterize future neutrinoless double beta decay experiments on the isotope 82Se and based on ZnSe crystals, such as LUCIFER. The coupling between source and light detector reproduces the configuration used in scintillating bolometers. The present measurement clarifies the role of SiO2 coating and describes a method and a set-up that can be extended to the study of other types of coatings and luminescent materials.

  1. A new fast algorithm for solving the minimum spanning tree problem based on DNA molecules computation.

    PubMed

    Wang, Zhaocai; Huang, Dongmei; Meng, Huajun; Tang, Chengpei

    2013-10-01

    The minimum spanning tree (MST) problem is to find minimum edge connected subsets containing all the vertex of a given undirected graph. It is a vitally important NP-complete problem in graph theory and applied mathematics, having numerous real life applications. Moreover in previous studies, DNA molecular operations usually were used to solve NP-complete head-to-tail path search problems, rarely for NP-hard problems with multi-lateral path solutions result, such as the minimum spanning tree problem. In this paper, we present a new fast DNA algorithm for solving the MST problem using DNA molecular operations. For an undirected graph with n vertex and m edges, we reasonably design flexible length DNA strands representing the vertex and edges, take appropriate steps and get the solutions of the MST problem in proper length range and O(3m+n) time complexity. We extend the application of DNA molecular operations and simultaneity simplify the complexity of the computation. Results of computer simulative experiments show that the proposed method updates some of the best known values with very short time and that the proposed method provides a better performance with solution accuracy over existing algorithms. PMID:23871964

  2. Fast and low-dose computed laminography using compressive sensing based technique

    SciTech Connect

    Abbas, Sajid Park, Miran Cho, Seungryong

    2015-03-31

    Computed laminography (CL) is well known for inspecting microstructures in the materials, weldments and soldering defects in high density packed components or multilayer printed circuit boards. The overload problem on x-ray tube and gross failure of the radio-sensitive electronics devices during a scan are among important issues in CL which needs to be addressed. The sparse-view CL can be one of the viable option to overcome such issues. In this work a numerical aluminum welding phantom was simulated to collect sparsely sampled projection data at only 40 views using a conventional CL scanning scheme i.e. oblique scan. A compressive-sensing inspired total-variation (TV) minimization algorithm was utilized to reconstruct the images. It is found that the images reconstructed using sparse view data are visually comparable with the images reconstructed using full scan data set i.e. at 360 views on regular interval. We have quantitatively confirmed that tiny structures such as copper and tungsten slags, and copper flakes in the reconstructed images from sparsely sampled data are comparable with the corresponding structure present in the fully sampled data case. A blurring effect can be seen near the edges of few pores at the bottom of the reconstructed images from sparsely sampled data, despite the overall image quality is reasonable for fast and low-dose NDT.

  3. Can Nanofluidic Chemical Release Enable Fast, High Resolution Neurotransmitter-Based Neurostimulation?

    PubMed

    Jones, Peter D; Stelzle, Martin

    2016-01-01

    Artificial chemical stimulation could provide improvements over electrical neurostimulation. Physiological neurotransmission between neurons relies on the nanoscale release and propagation of specific chemical signals to spatially-localized receptors. Current knowledge of nanoscale fluid dynamics and nanofluidic technology allows us to envision artificial mechanisms to achieve fast, high resolution neurotransmitter release. Substantial technological development is required to reach this goal. Nanofluidic technology-rather than microfluidic-will be necessary; this should come as no surprise given the nanofluidic nature of neurotransmission. This perspective reviews the state of the art of high resolution electrical neuroprostheses and their anticipated limitations. Chemical release rates from nanopores are compared to rates achieved at synapses and with iontophoresis. A review of microfluidic technology justifies the analysis that microfluidic control of chemical release would be insufficient. Novel nanofluidic mechanisms are discussed, and we propose that hydrophobic gating may allow control of chemical release suitable for mimicking neurotransmission. The limited understanding of hydrophobic gating in artificial nanopores and the challenges of fabrication and large-scale integration of nanofluidic components are emphasized. Development of suitable nanofluidic technology will require dedicated, long-term efforts over many years. PMID:27065794

  4. Can Nanofluidic Chemical Release Enable Fast, High Resolution Neurotransmitter-Based Neurostimulation?

    PubMed Central

    Jones, Peter D.; Stelzle, Martin

    2016-01-01

    Artificial chemical stimulation could provide improvements over electrical neurostimulation. Physiological neurotransmission between neurons relies on the nanoscale release and propagation of specific chemical signals to spatially-localized receptors. Current knowledge of nanoscale fluid dynamics and nanofluidic technology allows us to envision artificial mechanisms to achieve fast, high resolution neurotransmitter release. Substantial technological development is required to reach this goal. Nanofluidic technology—rather than microfluidic—will be necessary; this should come as no surprise given the nanofluidic nature of neurotransmission. This perspective reviews the state of the art of high resolution electrical neuroprostheses and their anticipated limitations. Chemical release rates from nanopores are compared to rates achieved at synapses and with iontophoresis. A review of microfluidic technology justifies the analysis that microfluidic control of chemical release would be insufficient. Novel nanofluidic mechanisms are discussed, and we propose that hydrophobic gating may allow control of chemical release suitable for mimicking neurotransmission. The limited understanding of hydrophobic gating in artificial nanopores and the challenges of fabrication and large-scale integration of nanofluidic components are emphasized. Development of suitable nanofluidic technology will require dedicated, long-term efforts over many years. PMID:27065794

  5. A fast and simple method for the polymerase chain reaction-based sexing of livestock embryos.

    PubMed

    Tavares, K C S; Carneiro, I S; Rios, D B; Feltrin, C; Ribeiro, A K C; Gaudêncio-Neto, S; Martins, L T; Aguiar, L H; Lazzarotto, C R; Calderón, C E M; Lopes, F E M; Teixeira, L P R; Bertolini, M; Bertolini, L R

    2016-01-01

    Embryo sexing is a powerful tool for livestock producers because it allows them to manage their breeding stocks more effectively. However, the cost of supplies and reagents, and the need for trained professionals to biopsy embryos by micromanipulation restrict the worldwide use of the technology to a limited number of specialized groups. The aim of this study was to couple a fast and inexpensive DNA extraction protocol with a practical biopsy approach to create a simple, quick, effective, and dependable embryo sexing procedure. From a total of 1847 sheep and cattle whole embryos or embryo biopsies, the sexing efficiency was 100% for embryo biopsies, 98% for sheep embryos, and 90.2% for cattle embryos. We used a primer pair that was common to both species and only 10% of the total extracted DNA. The whole protocol takes only 2 h to perform, which suggests that the proposed procedure can be readily applied to field conditions. Moreover, in addition to embryo sexing, the procedure can be used for further analyses, such as genotyping and molecular diagnosis in preimplantation embryos. PMID:27050974

  6. Hall-effect based semi-fast AC on-board charging equipment for electric vehicles.

    PubMed

    Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva

    2011-01-01

    The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented. PMID:22163697

  7. [Numerical assessment of impeller features of centrifugal blood pump based on fast hemolysis approximation model].

    PubMed

    Shou, Chen; Guo, Yongjun; Su, Lei; Li, Yongqian

    2014-12-01

    The impeller profile, which is one of the most important factors, determines the creation of shear stress which leads to blood hemolysis in the internal flow of centrifugal blood pump. The investigation of the internal flow field in centrifugal blood pump and the estimation of the hemolysis within different impeller profiles will provide information to improve the performance of centrifugal blood pump. The SST kappa-omega with low Reynolds correction was used in our laboratory to study the internal flow fields for four kinds of impellers of centrifugal blood pump. The flow fields included distributions of pressure field, velocity field and shear stress field. In addition, a fast numerical hemolysis approximation was adopted to calculate the normalized index of hemolysis (NIH). The results indicated that the pressure field distribution in all kinds of blood pump were reasonable, but for the log spiral impeller pump, the vortex and backflow were much lower than those of the other pumps, and the high shear stress zone was just about 0.004%, and the NIH was 0.0089. PMID:25868241

  8. Effect of Fuel Fraction on Small Modified CANDLE Burn-up Based Gas Cooled Fast Reactors

    SciTech Connect

    Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Asiah, Nur; Shafii, M. Ali; Khairurrijal

    2010-12-23

    A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE Burn-up has been performed. The objective of this research is to get optimal design parameters of such type reactors. The parameters of nuclear design including the critical condition, conversion ratio, and burn-up level were compared. These parameters are calculated by variation in the fuel fraction 47.5% up to 70%. Two dimensional full core multi groups diffusion calculations was performed by CITATION code. Group constant preparations are performed by using SRAC code system with JENDL-3.2 nuclear data library. In this design the reactor cores with cylindrical cell two dimensional R-Z core models are subdivided into several parts with the same volume in the axial directions. The placement of fuel in core arranged so that the result of plutonium from natural uranium can be utilized optimally for 10 years reactor operation. Modified CANDLE burn-up was established successfully in a core radial width 1.4 m. Total thermal power output for reference core is 550 MW. Study on the effect of fuel to coolant ratio shows that effective multiplication factor (k{sub eff}) is in almost linear relations with the change of the fuel volume to coolant ratio.

  9. Effect of Fuel Fraction on Small Modified CANDLE Burn-up Based Gas Cooled Fast Reactors

    NASA Astrophysics Data System (ADS)

    Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Khairurrijal, Asiah, Nur; Shafii, M. Ali

    2010-12-01

    A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE Burn-up has been performed. The objective of this research is to get optimal design parameters of such type reactors. The parameters of nuclear design including the critical condition, conversion ratio, and burn-up level were compared. These parameters are calculated by variation in the fuel fraction 47.5% up to 70%. Two dimensional full core multi groups diffusion calculations was performed by CITATION code. Group constant preparations are performed by using SRAC code system with JENDL-3.2 nuclear data library. In this design the reactor cores with cylindrical cell two dimensional R-Z core models are subdivided into several parts with the same volume in the axial directions. The placement of fuel in core arranged so that the result of plutonium from natural uranium can be utilized optimally for 10 years reactor operation. Modified CANDLE burn-up was established successfully in a core radial width 1.4 m. Total thermal power output for reference core is 550 MW. Study on the effect of fuel to coolant ratio shows that effective multiplication factor (keff) is in almost linear relations with the change of the fuel volume to coolant ratio.

  10. A Gateway-Based System for Fast Evaluation of Protein-Protein Interactions in Bacteria

    PubMed Central

    Wille, Thorsten; Barlag, Britta; Jakovljevic, Vladimir; Hensel, Michael; Sourjik, Victor; Gerlach, Roman G.

    2015-01-01

    Protein-protein interactions are important layers of regulation in all kingdoms of life. Identification and characterization of these interactions is one challenging task of the post-genomic era and crucial for understanding of molecular processes within a cell. Several methods have been successfully employed during the past decades to identify protein-protein interactions in bacteria, but most of them include tedious and time-consuming manipulations of DNA. In contrast, the MultiSite Gateway system is a fast tool for transfer of multiple DNA fragments between plasmids enabling simultaneous and site directed cloning of up to four fragments into one construct. Here we developed a new set of Gateway vectors including custom made entry vectors and modular Destination vectors for studying protein-protein interactions via Fluorescence Resonance Energy Transfer (FRET), Bacterial two Hybrid (B2H) and split Gaussia luciferase (Gluc), as well as for fusions with SNAP-tag and HaloTag for dual-color super-resolution microscopy. As proof of principle, we characterized the interaction between the Salmonella effector SipA and its chaperone InvB via split Gluc and B2H approach. The suitability for FRET analysis as well as functionality of fusions with SNAP- and HaloTag could be demonstrated by studying the transient interaction between chemotaxis response regulator CheY and its phosphatase CheZ. PMID:25856398

  11. A Fourier-series-based kernel-independent fast multipole method

    SciTech Connect

    Zhang Bo; Huang Jingfang; Pitsianis, Nikos P.; Sun Xiaobai

    2011-07-01

    We present in this paper a new kernel-independent fast multipole method (FMM), named as FKI-FMM, for pairwise particle interactions with translation-invariant kernel functions. FKI-FMM creates, using numerical techniques, sufficiently accurate and compressive representations of a given kernel function over multi-scale interaction regions in the form of a truncated Fourier series. It provides also economic operators for the multipole-to-multipole, multipole-to-local, and local-to-local translations that are typical and essential in the FMM algorithms. The multipole-to-local translation operator, in particular, is readily diagonal and does not dominate in arithmetic operations. FKI-FMM provides an alternative and competitive option, among other kernel-independent FMM algorithms, for an efficient application of the FMM, especially for applications where the kernel function consists of multi-physics and multi-scale components as those arising in recent studies of biological systems. We present the complexity analysis and demonstrate with experimental results the FKI-FMM performance in accuracy and efficiency.

  12. Capillary electrochromatographic fast enantioseparation based on a chiral metal-organic framework.

    PubMed

    Fei, Zhi-Xin; Zhang, Mei; Xie, Sheng-Ming; Yuan, Li-Ming

    2014-12-01

    Metal-organic frameworks (MOFs) have received great attention because of their unusual properties and fascinating structures in separation sciences. However, to the best of our knowledge, there has been no attempt to utilize chiral MOFs as stationary phases in packed-CEC. Here, a chiral MOF [In3 O(obb)3 (HCO2 )(H2 O)]·solvent (4,4'-oxybisbenzoic acid) was explored as the chiral stationary phase in packed-CEC for separation of chiral compounds and isomers. The fabricated [In3 O(obb)3 (HCO2 )(H2 O)]·solvent packed capillary columns gave fast enantioseparation of (±)-hydrobenzoin, (±)-1-phenyl-1,2-ethanediol, and clenbuterol within 3 min in CEC. Besides, the baseline separations of nitrophenol isomers within 6 min were also achieved. The RSDs for the retention time of run-to-run, day-to-day, and column-to-column reproducibility were 1.51-3.63, 1.83-3.98, and 3.42-5.66%, respectively. These results demonstrate that chiral MOFs are promising for enantioseparation in CEC. PMID:25223618

  13. High Tg and fast curing epoxy-based anisotropic conductive paste for electronic packaging

    NASA Astrophysics Data System (ADS)

    Keeratitham, Waralee; Somwangthanaroj, Anongnat

    2016-03-01

    Herein, our main objective is to prepare the fast curing epoxy system with high glass transition temperature (Tg) by incorporating the multifunctional epoxy resin into the mixture of diglycidyl ether of bisphenol A (DGEBA) as a major epoxy component and aromatic diamine as a hardener. Furthermore, the curing behavior as well as thermal and thermomechanical properties were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and thermomechanical analysis (TMA). It was found that Tg obtained from tan δ of DGEBA/aromatic diamine system increased from 100 °C to 205 °C with the presence of 30 percentage by weight of multifunctional epoxy resin. Additionally, the isothermal DSC results showed that the multifunctional epoxy resin can accelerate the curing reaction of DGEBA/aromatic diamine system. Namely, a high degree of curing (˜90%) was achieved after a few minutes of curing at low temperature of 130 °C, owing to a large number of epoxy ring of multifunctional epoxy resin towards the active hydrogen atoms of aromatic diamine.

  14. Fast and low-dose computed laminography using compressive sensing based technique

    NASA Astrophysics Data System (ADS)

    Abbas, Sajid; Park, Miran; Cho, Seungryong

    2015-03-01

    Computed laminography (CL) is well known for inspecting microstructures in the materials, weldments and soldering defects in high density packed components or multilayer printed circuit boards. The overload problem on x-ray tube and gross failure of the radio-sensitive electronics devices during a scan are among important issues in CL which needs to be addressed. The sparse-view CL can be one of the viable option to overcome such issues. In this work a numerical aluminum welding phantom was simulated to collect sparsely sampled projection data at only 40 views using a conventional CL scanning scheme i.e. oblique scan. A compressive-sensing inspired total-variation (TV) minimization algorithm was utilized to reconstruct the images. It is found that the images reconstructed using sparse view data are visually comparable with the images reconstructed using full scan data set i.e. at 360 views on regular interval. We have quantitatively confirmed that tiny structures such as copper and tungsten slags, and copper flakes in the reconstructed images from sparsely sampled data are comparable with the corresponding structure present in the fully sampled data case. A blurring effect can be seen near the edges of few pores at the bottom of the reconstructed images from sparsely sampled data, despite the overall image quality is reasonable for fast and low-dose NDT.

  15. Hyperspectral imaging based method for fast characterization of kidney stone types

    NASA Astrophysics Data System (ADS)

    Blanco, Francisco; López-Mesas, Montserrat; Serranti, Silvia; Bonifazi, Giuseppe; Havel, Josef; Valiente, Manuel

    2012-07-01

    The formation of kidney stones is a common and highly studied disease, which causes intense pain and presents a high recidivism. In order to find the causes of this problem, the characterization of the main compounds is of great importance. In this sense, the analysis of the composition and structure of the stone can give key information about the urine parameters during the crystal growth. But the usual methods employed are slow, analyst dependent and the information obtained is poor. In the present work, the near infrared (NIR)-hyperspectral imaging technique was used for the analysis of 215 samples of kidney stones, including the main types usually found and their mixtures. The NIR reflectance spectra of the analyzed stones showed significant differences that were used for their classification. To do so, a method was created by the use of artificial neural networks, which showed a probability higher than 90% for right classification of the stones. The promising results, robust methodology, and the fast analytical process, without the need of an expert assistance, lead to an easy implementation at the clinical laboratories, offering the urologist a rapid diagnosis that shall contribute to minimize urolithiasis recidivism.

  16. Fast prostate segmentation for brachytherapy based on joint fusion of images and labels

    NASA Astrophysics Data System (ADS)

    Nouranian, Saman; Ramezani, Mahdi; Mahdavi, S. Sara; Spadinger, Ingrid; Morris, William J.; Salcudean, Septimiu E.; Abolmaesumi, Purang

    2014-03-01

    Brachytherapy as one of the treatment methods for prostate cancer takes place by implantation of radioactive seeds inside the gland. The standard of care for this treatment procedure is to acquire transrectal ultrasound images of the prostate which are segmented in order to plan the appropriate seed placement. The segmentation process is usually performed either manually or semi-automatically and is associated with subjective errors because the prostate visibility is limited in ultrasound images. The current segmentation process also limits the possibility of intra-operative delineation of the prostate to perform real-time dosimetry. In this paper, we propose a computationally inexpensive and fully automatic segmentation approach that takes advantage of previously segmented images to form a joint space of images and their segmentations. We utilize joint Independent Component Analysis method to generate a model which is further employed to produce a probability map of the target segmentation. We evaluate this approach on the transrectal ultrasound volume images of 60 patients using a leave-one-out cross-validation approach. The results are compared with the manually segmented prostate contours that were used by clinicians to plan brachytherapy procedures. We show that the proposed approach is fast with comparable accuracy and precision to those found in previous studies on TRUS segmentation.

  17. Hall-Effect Based Semi-Fast AC On-Board Charging Equipment for Electric Vehicles

    PubMed Central

    Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva

    2011-01-01

    The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented. PMID:22163697

  18. Fast algorithm for minutiae matching based on multiple-ridge information

    NASA Astrophysics Data System (ADS)

    Wang, Guoyou; Hu, Jing

    2001-09-01

    Autonomous real-time fingerprint verification, how to judge whether two fingerprints come from the same finger or not, is an important and difficult problem in AFIS (Automated Fingerprint Identification system). In addition to the nonlinear deformation, two fingerprints from the same finger may also be dissimilar due to translation or rotation, all these factors do make the dissimilarities more great and lead to misjudgment, thus the correct verification rate highly depends on the deformation degree. In this paper, we present a new fast simple algorithm for fingerprint matching, derived from the Chang et al.'s method, to solve the problem of optimal matches between two fingerprints under nonlinear deformation. The proposed algorithm uses not only the feature points of fingerprints but also the multiple information of the ridge to reduce the computational complexity in fingerprint verification. Experiments with a number of fingerprint images have shown that this algorithm has higher efficiency than the existing of methods due to the reduced searching operations.

  19. Model based and model free methods for features extraction to recognize gait using fast wavelet network classifier

    NASA Astrophysics Data System (ADS)

    Dorgham, Aycha; Bouchrika, Tahani; Zaied, Mourad

    2015-12-01

    Human gait is an attractive modality for recognizing people at a distance. Gait recognition systems aims to identify people by studying their manner of walking. In this paper, we contribute by the creation of a new approach for gait recognition based on fast wavelet network (FWN) classifier. To guaranty the effectiveness of our gait recognizer, we have employed both static and dynamic gait characteristics. So, to extract the static features (dimension of the body part), model based method was employed. Thus, for the dynamic features (silhouette appearance and motion), model free method was used. The combination of these two methods aims at strengthens the WN classification results. Experimental results employing universal datasets show that our new gait recognizer performs better than already established ones.

  20. Development of a New Fast Shower Maximum Detector Based on Microchannel Plates Photomultipliers (MCP-PMT) as an Active Element

    SciTech Connect

    Ronzhin, A.; Los, S.; Ramberg, E.; Spiropulu, M.; Apresyan, A.; Xie, S.; Kim, H.; Zatserklyaniy, A.

    2014-09-21

    One possibility to make a fast and radiation resistant shower maximum (SM) detector is to use a secondary emitter as an active element. We present below test beam results, obtained with different types of photodetectors based on microchannel plates (MCPs) as the secondary emitter. We performed the measurements at the Fermilab Test Beam Facility with 120GeV proton beam and 12GeV and 32GeV secondary beams. The goal of the measurement with 120GeV protons was to determine time resolution for minimum ionizing particles (MIPs). The SM time resolution we obtained for this new type of detector is at the level of 20-30ps. We estimate that a significant contribution to the detector response originates from secondary emission of the MCP. This work can be considered as the first step in building a new type of calorimeter based on this principle.

  1. Surface retrievals from Hyperion EO1 using a new, fast, 1D-Var based retrieval code

    NASA Astrophysics Data System (ADS)

    Thelen, Jean-Claude; Havemann, Stephan; Wong, Gerald

    2015-05-01

    We have developed a new algorithm for the simultaneous retrieval of the atmospheric profiles (temperature, humidity, ozone and aerosol) and the surface reflectance from hyperspectral radiance measurements obtained from air/space-borne, hyperspectral imagers such as Hyperion EO-1. The new scheme, proposed here, consists of a fast radiative transfer code, based on empirical orthogonal functions (EOFs), in conjunction with a 1D-Var retrieval scheme. The inclusion of an 'exact' scattering code based on spherical harmonics, allows for an accurate treatment of Rayleigh scattering and scattering by aerosols, water droplets and ice-crystals, thus making it possible to also retrieve cloud and aerosol optical properties, although here we will concentrate on non-cloudy scenes. We successfully tested this new approach using hyperspectral images taken by Hyperion EO-1, an experimental pushbroom imaging spectrometer operated by NASA.

  2. Development of a new fast shower maximum detector based on microchannel plates photomultipliers (MCP-PMT) as an active element

    NASA Astrophysics Data System (ADS)

    Ronzhin, A.; Los, S.; Ramberg, E.; Spiropulu, M.; Apresyan, A.; Xie, S.; Kim, H.; Zatserklyaniy, A.

    2014-09-01

    One possibility to make a fast and radiation resistant shower maximum (SM) detector is to use a secondary emitter as an active element. We present below test beam results, obtained with different types of photodetectors based on microchannel plates (MCPs) as the secondary emitter. We performed the measurements at the Fermilab Test Beam Facility with 120 GeV proton beam and 12 GeV and 32 GeV secondary beams. The goal of the measurement with 120 GeV protons was to determine time resolution for minimum ionizing particles (MIPs). The SM time resolution we obtained for this new type of detector is at the level of 20-30 ps. We estimate that a significant contribution to the detector response originates from secondary emission of the MCP. This work can be considered as the first step in building a new type of calorimeter based on this principle.

  3. Fast generation of three-qubit Greenberger-Horne-Zeilinger state based on the Lewis-Riesenfeld invariants in coupled cavities

    PubMed Central

    Huang, Xiao-Bin; Chen, Ye-Hong; Wang, Zhe

    2016-01-01

    In this paper, we propose an efficient scheme to fast generate three-qubit Greenberger-Horne-Zeilinger (GHZ) state by constructing shortcuts to adiabatic passage (STAP) based on the “Lewis-Riesenfeld (LR) invariants” in spatially separated cavities connected by optical fibers. Numerical simulations illustrate that the scheme is not only fast, but robust against the decoherence caused by atomic spontaneous emission, cavity losses and the fiber photon leakages. This might be useful to realize fast and noise-resistant quantum information processing for multi-qubit systems. PMID:27216575

  4. The solar irradiance registered at a flat- hemispherical field of view- bolometric oscillation sensor on board PICARD satellite

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Karatekin, Ozgur; van Ruymbeke, Michel; Dewitte, Steven; Thuillier, Gerard

    2014-05-01

    The value of the Total Solar Irradiance (TSI) is varying over the 11-year sunspot cycle. The cycle amplitude is about 0.1% solar constant, which could be traced with the absolute radiometers onboard dedicated space missions. The operating principle of the absolute radiometer is measuring the electrical heating power of the heat sensing unit during the closed and opened phase of each measurement cycle. The difference between the power integrated cross the closed phase and the power integrated cross the open phase gives the value of the solar irradiance. The cadence of the measurement is usually from one to several minutes. The final TSI value in physics unit is obtained after taking into account the electronic calibration, correction of the instruments effects, and normalizing to 1 AU. The Bolometric Oscillation Sensor on board PICARD microsatellite is a new designed remote sensing instrument. The BOS is operated continually with a 10 seconds cadence to fill the time gaps between open and close phases of the SOVAP absolute radiometer. The BOS has two sensing surfaces, the main one with a light mass is black coated, the second surface is white painted with a heavier mass. The sensor has a hemispherical field of view. The heat flux absorbed by the main detector is thermally conducted by a thin shunt to the heat sink. The principle of the measurements is that the sum of the power of the blacked coated surface and the power along the shunt is equal to the incoming electromagnetic radiation. However as the BOS has a HFOV, the incoming radiation caught by it, has three kinds of origin: the solar irradiance, the reflected solar visible light form the Earth and the terrestrial infrared radiation. In this work, we are going to discuss the solar irradiance isolated from the measurements of the BOS instrument as well as the comparison with the sunspot number and the TSI composite from the VIRGO/SOHO and TIM/SORCE experiments.

  5. Fast point-based method of a computer-generated hologram for a triangle-patch model by using a graphics processing unit.

    PubMed

    Sugawara, Takuya; Ogihara, Yuki; Sakamoto, Yuji

    2016-01-20

    The point-based method and fast-Fourier-transform-based method are commonly used for calculation methods of computer-generation holograms. This paper proposes a novel fast calculation method for a patch model, which uses the point-based method. The method provides a calculation time that is proportional to the number of patches but not to that of the point light sources. This means that the method is suitable for calculating a wide area covered by patches quickly. Experiments using a graphics processing unit indicated that the proposed method is about 8 times or more faster than the ordinary point-based method. PMID:26835949

  6. fast-matmul

    SciTech Connect

    Grey Ballard, Austin Benson

    2014-11-26

    This software provides implementations of fast matrix multiplication algorithms. These algorithms perform fewer floating point operations than the classical cubic algorithm. The software uses code generation to automatically implement the fast algorithms based on high-level descriptions. The code serves two general purposes. The first is to demonstrate that these fast algorithms can out-perform vendor matrix multiplication algorithms for modest problem sizes on a single machine. The second is to rapidly prototype many variations of fast matrix multiplication algorithms to encourage future research in this area. The implementations target sequential and shared memory parallel execution.

  7. Hollow fiber based quantum cascade laser spectrometer for fast and sensitive drug identification

    NASA Astrophysics Data System (ADS)

    Herbst, J.; Scherer, B.; Ruf, A.; Erb, J.; Lambrecht, A.

    2012-01-01

    Sensitive and fast identification of drugs or drug precursors is important and necessary in scenarios like baggage or container check by customs or police. Fraunhofer IPM is developing a laser spectrometer using external cavity quantum cascade lasers (EC-QCL) to obtain mid-infrared (IR) absorption spectra in the wavelength range of the specific vibrational bands of amphetamines and their precursors. The commercial EC-QCL covers a tuning range of about 225 cm-1 within 1.4 s. The system could be used for different sample types like bulk samples or liquid solutions. A sampling unit evaporates the sample. Because of small sample amounts a 3 m long hollow fiber with an inner volume smaller than 1ml is used as gas cell and wave guide for the laser beam. This setup is suitable as a detector of a gas chromatograph instead of a standard detector (TCD or FID). The advantage is the selective identification of drugs by their IR spectra in addition to the retention time in the gas chromatographic column. In comparison to Fourier Transform IR systems the EC-QCL setup shows a good mechanical robustness and has the advantage of a point light source. Because of the good fiber incoupling performance of the EC-QCL it is possible to use hollow fibers. So, a good absorption signal is achieved because of the long optical path in the small cell volume without significant dilution. In first laboratory experiments a detection limit in the microgram range for pseudo ephedrine is achieved.

  8. a Fast and Flexible Method for Meta-Map Building for Icp Based Slam

    NASA Astrophysics Data System (ADS)

    Kurian, A.; Morin, K. W.

    2016-06-01

    Recent developments in LiDAR sensors make mobile mapping fast and cost effective. These sensors generate a large amount of data which in turn improves the coverage and details of the map. Due to the limited range of the sensor, one has to collect a series of scans to build the entire map of the environment. If we have good GNSS coverage, building a map is a well addressed problem. But in an indoor environment, we have limited GNSS reception and an inertial solution, if available, can quickly diverge. In such situations, simultaneous localization and mapping (SLAM) is used to generate a navigation solution and map concurrently. SLAM using point clouds possesses a number of computational challenges even with modern hardware due to the shear amount of data. In this paper, we propose two strategies for minimizing the cost of computation and storage when a 3D point cloud is used for navigation and real-time map building. We have used the 3D point cloud generated by Leica Geosystems's Pegasus Backpack which is equipped with Velodyne VLP-16 LiDARs scanners. To improve the speed of the conventional iterative closest point (ICP) algorithm, we propose a point cloud sub-sampling strategy which does not throw away any key features and yet significantly reduces the number of points that needs to be processed and stored. In order to speed up the correspondence finding step, a dual kd-tree and circular buffer architecture is proposed. We have shown that the proposed method can run in real time and has excellent navigation accuracy characteristics.

  9. A Fast Robot Identification and Mapping Algorithm Based on Kinect Sensor

    PubMed Central

    Zhang, Liang; Shen, Peiyi; Zhu, Guangming; Wei, Wei; Song, Houbing

    2015-01-01

    Internet of Things (IoT) is driving innovation in an ever-growing set of application domains such as intelligent processing for autonomous robots. For an autonomous robot, one grand challenge is how to sense its surrounding environment effectively. The Simultaneous Localization and Mapping with RGB-D Kinect camera sensor on robot, called RGB-D SLAM, has been developed for this purpose but some technical challenges must be addressed. Firstly, the efficiency of the algorithm cannot satisfy real-time requirements; secondly, the accuracy of the algorithm is unacceptable. In order to address these challenges, this paper proposes a set of novel improvement methods as follows. Firstly, the ORiented Brief (ORB) method is used in feature detection and descriptor extraction. Secondly, a bidirectional Fast Library for Approximate Nearest Neighbors (FLANN) k-Nearest Neighbor (KNN) algorithm is applied to feature match. Then, the improved RANdom SAmple Consensus (RANSAC) estimation method is adopted in the motion transformation. In the meantime, high precision General Iterative Closest Points (GICP) is utilized to register a point cloud in the motion transformation optimization. To improve the accuracy of SLAM, the reduced dynamic covariance scaling (DCS) algorithm is formulated as a global optimization problem under the G2O framework. The effectiveness of the improved algorithm has been verified by testing on standard data and comparing with the ground truth obtained on Freiburg University’s datasets. The Dr Robot X80 equipped with a Kinect camera is also applied in a building corridor to verify the correctness of the improved RGB-D SLAM algorithm. With the above experiments, it can be seen that the proposed algorithm achieves higher processing speed and better accuracy. PMID:26287198

  10. A Fast Robot Identification and Mapping Algorithm Based on Kinect Sensor.

    PubMed

    Zhang, Liang; Shen, Peiyi; Zhu, Guangming; Wei, Wei; Song, Houbing

    2015-01-01

    Internet of Things (IoT) is driving innovation in an ever-growing set of application domains such as intelligent processing for autonomous robots. For an autonomous robot, one grand challenge is how to sense its surrounding environment effectively. The Simultaneous Localization and Mapping with RGB-D Kinect camera sensor on robot, called RGB-D SLAM, has been developed for this purpose but some technical challenges must be addressed. Firstly, the efficiency of the algorithm cannot satisfy real-time requirements; secondly, the accuracy of the algorithm is unacceptable. In order to address these challenges, this paper proposes a set of novel improvement methods as follows. Firstly, the ORiented Brief (ORB) method is used in feature detection and descriptor extraction. Secondly, a bidirectional Fast Library for Approximate Nearest Neighbors (FLANN) k-Nearest Neighbor (KNN) algorithm is applied to feature match. Then, the improved RANdom SAmple Consensus (RANSAC) estimation method is adopted in the motion transformation. In the meantime, high precision General Iterative Closest Points (GICP) is utilized to register a point cloud in the motion transformation optimization. To improve the accuracy of SLAM, the reduced dynamic covariance scaling (DCS) algorithm is formulated as a global optimization problem under the G2O framework. The effectiveness of the improved algorithm has been verified by testing on standard data and comparing with the ground truth obtained on Freiburg University's datasets. The Dr Robot X80 equipped with a Kinect camera is also applied in a building corridor to verify the correctness of the improved RGB-D SLAM algorithm. With the above experiments, it can be seen that the proposed algorithm achieves higher processing speed and better accuracy. PMID:26287198

  11. Analysis of extreme top event frequency percentiles based on fast probability integration

    SciTech Connect

    Staple, B.; Haskin, F.E.

    1993-10-01

    In risk assessments, a primary objective is to determine the frequency with which a collection of initiating and basic events, E{sub e} leads to some undesired top event, T. Uncertainties in the occurrence rates, x{sub t}, assigned to the initiating and basic events cause uncertainty in the top event frequency, z{sub T}. The quantification of the uncertainty in z{sub T} is an essential part of risk assessment called uncertainty analysis. In the past, it has been difficult to evaluate the extreme percentiles of output variables like z{sub T}. Analytic methods such as the method of moments do not provide estimates of output percentiles and the Monte Carlo (MC) method can be used to estimate extreme output percentiles only by resorting to large sample sizes. A promising altemative to these methods is the fast probability integration (FPI) methods. These methods approximate the integrals of multi-variate functions, representing percentiles of interest, without recourse to multi-dimensional numerical integration. FPI methods give precise results and have been demonstrated to be more efficient than MC methods for estimating extreme output percentiles. FPI allows the analyst to choose extreme percentiles of interest and perform sensitivity analyses in those regions. Such analyses can provide valuable insights as to the events driving the top event frequency response in extreme probability regions. In this paper, FPI methods are adapted a) to precisely estimate extreme top event frequency percentiles and b) to allow the quantification of sensitivity measures at these extreme percentiles. In addition, the relative precision and efficiency of alternative methods for treating lognormally distributed inputs is investigated. The methodology is applied to the top event frequency expression for the dominant accident sequence from a risk assessment of Grand Gulf nuclear power plant.

  12. Scintillator based detector for fast-ion losses induced by magnetohydrodynamic instabilities in the ASDEX upgrade tokamak.

    PubMed

    García-Muñoz, M; Fahrbach, H-U; Zohm, H

    2009-05-01

    A scintillator based detector for fast-ion losses has been designed and installed on the ASDEX upgrade (AUG) tokamak [A. Herrmann and O. Gruber, Fusion Sci. Technol. 44, 569 (2003)]. The detector resolves in time the energy and pitch angle of fast-ion losses induced by magnetohydrodynamics (MHD) fluctuations. The use of a novel scintillator material with a very short decay time and high quantum efficiency allows to identify the MHD fluctuations responsible for the ion losses through Fourier analysis. A Faraday cup (secondary scintillator plate) has been embedded behind the scintillator plate for an absolute calibration of the detector. The detector is mounted on a manipulator to vary its radial position with respect to the plasma. A thermocouple on the inner side of the graphite protection enables the safety search for the most adequate radial position. To align the scintillator light pattern with the light detectors a system composed by a lens and a vacuum-compatible halogen lamp has been allocated within the detector head. In this paper, the design of the scintillator probe, as well as the new technique used to analyze the data through spectrograms will be described. A last section is devoted to discuss the diagnosis prospects of this method for ITER [M. Shimada et al., Nucl. Fusion 47, S1 (2007)]. PMID:19499603

  13. Scintillator based detector for fast-ion losses induced by magnetohydrodynamic instabilities in the ASDEX upgrade tokamak

    SciTech Connect

    Garcia-Munoz, M.; Fahrbach, H.-U.; Zohm, H.; Collaboration: ASDEX Upgrade Team

    2009-05-15

    A scintillator based detector for fast-ion losses has been designed and installed on the ASDEX upgrade (AUG) tokamak [A. Herrmann and O. Gruber, Fusion Sci. Technol. 44, 569 (2003)]. The detector resolves in time the energy and pitch angle of fast-ion losses induced by magnetohydrodynamics (MHD) fluctuations. The use of a novel scintillator material with a very short decay time and high quantum efficiency allows to identify the MHD fluctuations responsible for the ion losses through Fourier analysis. A Faraday cup (secondary scintillator plate) has been embedded behind the scintillator plate for an absolute calibration of the detector. The detector is mounted on a manipulator to vary its radial position with respect to the plasma. A thermocouple on the inner side of the graphite protection enables the safety search for the most adequate radial position. To align the scintillator light pattern with the light detectors a system composed by a lens and a vacuum-compatible halogen lamp has been allocated within the detector head. In this paper, the design of the scintillator probe, as well as the new technique used to analyze the data through spectrograms will be described. A last section is devoted to discuss the diagnosis prospects of this method for ITER [M. Shimada et al., Nucl. Fusion 47, S1 (2007)].

  14. Fast response Fabry-Perot interferometer microfluidic refractive index fiber sensor based on concave-core photonic crystal fiber.

    PubMed

    Tian, Jiajun; Lu, Zejin; Quan, Mingran; Jiao, Yuzhu; Yao, Yong

    2016-09-01

    We report a fast response microfluidic Fabry-Perot (FP) interferometer refractive index (RI) fiber sensor based on a concave-core photonic crystal fiber (CPCF), which is formed by directly splicing a section CPCF with a section of single mode fiber. The CPCF is made by cleaving a section of multimode photonic crystal fiber with an axial tension. The shallow concave-core of CPCF naturally forms the FP cavity with a very short cavity length. The inherent large air holes in the cladding of CPCF are used as the open channels to let liquid sample come in and out of FP cavity. In order to shorten the liquid channel length and eliminate the harmful reflection from the outside end face of the CPCF, the CPCF is cleaved with a tilted tensile force. Due to the very small cavity capacity, the short length and the large sectional area of the microfluidic channels, the proposed sensor provides an easy-in and easy-out structure for liquids, leading to great decrement of the measuring time. The proposed sensor exhibits fast measuring speed, the measuring time is less than 359 and 23 ms for distilled water and pure ethanol, respectively. We also experimentally study and demonstrate the superior performances of the sensor in terms of high RI sensitivity, good linear response, low temperature cross-sensitivity and easy fabrication. PMID:27607621

  15. Scintillator based detector for fast-ion losses induced by magnetohydrodynamic instabilities in the ASDEX upgrade tokamak

    NASA Astrophysics Data System (ADS)

    García-Muñoz, M.; Fahrbach, H.-U.; Zohm, H.; ASDEX Upgrade Team

    2009-05-01

    A scintillator based detector for fast-ion losses has been designed and installed on the ASDEX upgrade (AUG) tokamak [A. Herrmann and O. Gruber, Fusion Sci. Technol. 44, 569 (2003)]. The detector resolves in time the energy and pitch angle of fast-ion losses induced by magnetohydrodynamics (MHD) fluctuations. The use of a novel scintillator material with a very short decay time and high quantum efficiency allows to identify the MHD fluctuations responsible for the ion losses through Fourier analysis. A Faraday cup (secondary scintillator plate) has been embedded behind the scintillator plate for an absolute calibration of the detector. The detector is mounted on a manipulator to vary its radial position with respect to the plasma. A thermocouple on the inner side of the graphite protection enables the safety search for the most adequate radial position. To align the scintillator light pattern with the light detectors a system composed by a lens and a vacuum-compatible halogen lamp has been allocated within the detector head. In this paper, the design of the scintillator probe, as well as the new technique used to analyze the data through spectrograms will be described. A last section is devoted to discuss the diagnosis prospects of this method for ITER [M. Shimada et al., Nucl. Fusion 47, S1 (2007)].

  16. The Speed of Feature-Based Attention: Attentional Advantage Is Slow, but Selection Is Fast

    ERIC Educational Resources Information Center

    Huang, Liqiang

    2010-01-01

    When paying attention to a feature (e.g., red), no attentional advantage is gained in perceiving items with this feature in very brief displays. Therefore, feature-based attention seems to be slow. In previous feature-based attention studies, attention has often been measured as the difference in performance in a secondary task. In our recent work…

  17. Fast-Response Turn-on Fluorescent Probes Based on Thiolysis of NBD Amine for H2 S Bioimaging.

    PubMed

    Wang, Runyu; Li, Zhifei; Zhang, Changyu; Li, Yanyan; Xu, Guoce; Zhang, Qiang-Zhe; Li, Lu-Yuan; Yi, Long; Xi, Zhen

    2016-05-17

    Hydrogen sulfide (H2 S) is an important endogenous signaling molecule with multiple biological functions. New selective fluorescent turn-on probes based on fast thiolyling of NBD (7-nitro-1,2,3-benzoxadiazole) amine were explored for sensing H2 S in aqueous buffer and in living cells. The syntheses of both probes are simple and quite straightforward. The probes are highly sensitive and selective toward H2 S over other biologically relevant species. The fluorescein-NBD-based probe showed 65-fold green fluorescent increase upon H2 S activation. The rhodamine-NBD-based probe reacted rapidly with H2 S (t1/2 ≈1 min) to give a 4.5-fold increase in red fluorescence. Moreover, both probes were successfully used for monitoring H2 S in living cells and in mice. Based on such probe-based tools, we could observe H2 O2 -induced H2 S biogenesis in a concentration-dependent and time-dependent fashion in living cells. PMID:26952316

  18. Colorful holographic display of 3D object based on scaled diffraction by using non-uniform fast Fourier transform

    NASA Astrophysics Data System (ADS)

    Chang, Chenliang; Xia, Jun; Lei, Wei

    2015-03-01

    We proposed a new method to calculate the color computer generated hologram of three-dimensional object in holographic display. The three-dimensional object is composed of several tilted planes which are tilted from the hologram. The diffraction from each tilted plane to the hologram plane is calculated based on the coordinate rotation in Fourier spectrum domains. We used the nonuniform fast Fourier transformation (NUFFT) to calculate the nonuniform sampled Fourier spectrum on the tilted plane after coordinate rotation. By using the NUFFT, the diffraction calculation from tilted plane to the hologram plane with variable sampling rates can be achieved, which overcomes the sampling restriction of FFT in the conventional angular spectrum based method. The holograms of red, green and blue component of the polygon-based object are calculated separately by using our NUFFT based method. Then the color hologram is synthesized by placing the red, green and blue component hologram in sequence. The chromatic aberration caused by the wavelength difference can be solved effectively by restricting the sampling rate of the object in the calculation of each wavelength component. The computer simulation shows the feasibility of our method in calculating the color hologram of polygon-based object. The 3D object can be displayed in color with adjustable size and no chromatic aberration in holographic display system, which can be considered as an important application in the colorful holographic three-dimensional display.

  19. Development and validation of a fast voxel-based dose evaluation system in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Lu, Cheng-Chang; Lin, Hsin-Hon; Chuang, Keh-Shih; Dong, Shang-Lung; Wu, Jay; Ni, Yu-Ching; Jan, Meei-Ling

    2014-11-01

    PET imaging has been widely used in the detection and staging of malignancies and the evaluation of patient-specific dosimetry for PET scans is important in nuclear medicine. However, patient-specific dosimetry can be estimated only by Monte Carlo methods which are usually time-consuming. The purpose of this study is to develop a fast dose evaluation system namely SimDOSE. SimDOSE is a Monte Carlo code embedded in SimSET with a dose scoring routine to record the deposited energy of the photons and electrons. Fluorine-18 is one of the most commonly used radionuclides that decay predominantly by positron emission. Only a 635 keV (Emax) positron and two annihilation photons should be concerned in F-18 radiation dosimetry, hence simulation is relatively simple. To evaluate the effects of resolution, an F-18 point source placed in a 20 cm diameter sphere filled with water was simulated by SimDOSE and GATE v6.1. Grid sizes of 1 mm, 3 mm, and 5 mm were tested and each was simulated with a total of 107 decays. The resultant dose distribution functions were compared. Dose evaluation on ORNL phantom was also performed to validate the accuracy of SimDOSE. The grid size of phantom was set as 3 mm and the number of decays was 107. The S-values of liver computed by SimDOSE were compared with GATE and OLINDA (Organ Level INternal Dose Assessment) for 11C, 15O, and 18F.Finally, the CPU time of simulations was compared between SimDOSE and GATE. The dose profiles show the absorption doses located 3 mm outside the center are similar between SimDOSE and GATE. However, 71% (19%) difference of the center dose between SimDOSE and GATE are observed for 1 mm (3 mm) grid. The differences of the profile lie in the assumption in SimDOSE that all kinetic energies of electrons are locally absorbed. The ratios of S values of (SimDOSE/OLINDA) range from 0.95 to 1.11 with a mean value of 1.02±0.043. To compare simulation time from SimDOSE to GATE for calculation of 1 mm, 3 mm, 5 mm gird point

  20. Affinity-based strategies to fast track development of colon cancer biomarkers — EDRN Public Portal

    Cancer.gov

    Our goal is to discover plasma and tissue-based tumor biomarkers that work well enough together to identity colon cancer at early stages, lead to accurate diagnosis and could ultimately allow for individualized treatment.

  1. MTC: A Fast and Robust Graph-Based Transductive Learning Method.

    PubMed

    Zhang, Yan-Ming; Huang, Kaizhu; Geng, Guang-Gang; Liu, Cheng-Lin

    2015-09-01

    Despite the great success of graph-based transductive learning methods, most of them have serious problems in scalability and robustness. In this paper, we propose an efficient and robust graph-based transductive classification method, called minimum tree cut (MTC), which is suitable for large-scale data. Motivated from the sparse representation of graph, we approximate a graph by a spanning tree. Exploiting the simple structure, we develop a linear-time algorithm to label the tree such that the cut size of the tree is minimized. This significantly improves graph-based methods, which typically have a polynomial time complexity. Moreover, we theoretically and empirically show that the performance of MTC is robust to the graph construction, overcoming another big problem of traditional graph-based methods. Extensive experiments on public data sets and applications on web-spam detection and interactive image segmentation demonstrate our method's advantages in aspect of accuracy, speed, and robustness. PMID:25376047

  2. LandEx - Fast, FOSS-Based Application for Query and Retrieval of Land Cover Patterns

    NASA Astrophysics Data System (ADS)

    Netzel, P.; Stepinski, T.

    2012-12-01

    The amount of satellite-based spatial data is continuously increasing making a development of efficient data search tools a priority. The bulk of existing research on searching satellite-gathered data concentrates on images and is based on the concept of Content-Based Image Retrieval (CBIR); however, available solutions are not efficient and robust enough to be put to use as deployable web-based search tools. Here we report on development of a practical, deployable tool that searches classified, rather than raw image. LandEx (Landscape Explorer) is a GeoWeb-based tool for Content-Based Pattern Retrieval (CBPR) contained within the National Land Cover Dataset 2006 (NLCD2006). The USGS-developed NLCD2006 is derived from Landsat multispectral images; it covers the entire conterminous U.S. with the resolution of 30 meters/pixel and it depicts 16 land cover classes. The size of NLCD2006 is about 10 Gpixels (161,000 x 100,000 pixels). LandEx is a multi-tier GeoWeb application based on Open Source Software. Main components are: GeoExt/OpenLayers (user interface), GeoServer (OGC WMS, WCS and WPS server), and GRASS (calculation engine). LandEx performs search using query-by-example approach: user selects a reference scene (exhibiting a chosen pattern of land cover classes) and the tool produces, in real time, a map indicating a degree of similarity between the reference pattern and all local patterns across the U.S. Scene pattern is encapsulated by a 2D histogram of classes and sizes of single-class clumps. Pattern similarity is based on the notion of mutual information. The resultant similarity map can be viewed and navigated in a web browser, or it can download as a GeoTiff file for more in-depth analysis. The LandEx is available at http://sil.uc.edu

  3. Development of a diagnostic technique based on Cherenkov effect for measurements of fast electrons in fusion devices.

    PubMed

    Plyusnin, V V; Jakubowski, L; Zebrowski, J; Duarte, P; Malinowski, K; Fernandes, H; Silva, C; Rabinski, M; Sadowski, M J

    2012-08-01

    A diagnostic technique based on the Cherenkov effect is proposed for detection and characterization of fast (super-thermal and runaway) electrons in fusion devices. The detectors of Cherenkov radiation have been specially designed for measurements in the ISTTOK tokamak. Properties of several materials have been studied to determine the most appropriate one to be used as a radiator of Cherenkov emission in the detector. This technique has enabled the detection of energetic electrons (70 keV and higher) and the determination of their spatial and temporal variations in the ISTTOK discharges. Measurement of hard x-ray emission has also been carried out in experiments for validation of the measuring capabilities of the Cherenkov-type detector and a high correlation was found between the data of both diagnostics. A reasonable agreement was found between experimental data and the results of numerical modeling of the runaway electron generation in ISTTOK. PMID:22938292

  4. Computer simulation of fast crack propagation and arrest in steel plate with temperature gradient based on local fracture stress criterion

    SciTech Connect

    Machida, Susumu; Yoshinari, Hitoshi; Aihara, Shuji

    1997-12-31

    A fracture mechanics model for fast crack propagation and arrest is proposed based on the local fracture stress criterion. Dynamic fracture toughness (K{sub D}) for a propagating crack is calculated as a function of crack velocity and temperature. The model is extended to incorporate the effect of unbroken ligament (UL) formed near the plate surfaces and crack-front-tunneling. The model simulates acceleration, deceleration and arrest of a crack in a ESSO or a double-tension test plate with temperature-gradient. Calculated arrested crack lengths compare well with experimental results. It is shown that the conventional crack arrest toughness calculated from applied stress and arrested crack length depends on temperature-gradient and the toughness is not a unique material property.

  5. Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers.

    PubMed

    Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper

    2009-04-01

    We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of approximately 240 degrees at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique is scalable to more amplifiers and should allow realization of an rf phase shift of 360 degrees. PMID:19340174

  6. Development of a multi-channel readout ASIC for a fast neutron spectrometer based on GEM-TPC

    NASA Astrophysics Data System (ADS)

    He, Li; Deng, Zhi; Liu, Yi-Nong; Li, Yu-Lan

    2014-10-01

    A multi-channel front-end ASIC has been developed for a fast neutron spectrometer based on Gas Electron Multiplier (GEM)-Time Projection Chamber (TPC). Charge Amplifier and Shaping Amplifier for GEM (CASAGEM) integrates 16+1 channels: 16 channels for anodes and 1 channel for cathode. The gain and the shaping time are adjustable from 2 to 40 mV/fC and from 20 to 80 ns, respectively. The prototype ASIC is fabricated in 0.35 μm CMOS process. An evaluation Print Circuit Board (PCB) was also developed for chip tests. In total 20 chips have been tested. The integrated nonlinearity is less than 1%. The equivalent noise electrons is less than 2000e when the input capacitor is 50 pF. The time jitter is less than 1 ns. The design and the test results are presented in the paper.

  7. Development of a diagnostic technique based on Cherenkov effect for measurements of fast electrons in fusion devices

    SciTech Connect

    Plyusnin, V. V.; Duarte, P.; Fernandes, H.; Silva, C.

    2012-08-15

    A diagnostic technique based on the Cherenkov effect is proposed for detection and characterization of fast (super-thermal and runaway) electrons in fusion devices. The detectors of Cherenkov radiation have been specially designed for measurements in the ISTTOK tokamak. Properties of several materials have been studied to determine the most appropriate one to be used as a radiator of Cherenkov emission in the detector. This technique has enabled the detection of energetic electrons (70 keV and higher) and the determination of their spatial and temporal variations in the ISTTOK discharges. Measurement of hard x-ray emission has also been carried out in experiments for validation of the measuring capabilities of the Cherenkov-type detector and a high correlation was found between the data of both diagnostics. A reasonable agreement was found between experimental data and the results of numerical modeling of the runaway electron generation in ISTTOK.

  8. SnO2-MOF-Fabry-Perot humidity optical sensor system based on fast Fourier transform technique

    NASA Astrophysics Data System (ADS)

    Lopez-Aldaba, A.; Lopez-Torres, D.; Ascorbe, J.; Rota-Rodrigo, S.; Elosua, C.; Lopez-Amo, M.; Arregui, F. J.; Corres, J. M.; Auguste, J.-L.; Jamier, R.; Roy, P.

    2016-05-01

    In this paper, a new sensor system for relative humidity measurements based on a SnO2 sputtering deposition on a microstructured optical fiber (MOF) low-finesse Fabry-Perot (FP) sensing head is presented and characterized. The interrogation of the sensing head is carried out by monitoring the Fast Fourier Transform phase variations of the FP interference frequency. This method is low-sensitive to signal amplitude variations and also avoids the necessity of tracking the evolution of peaks and valleys in the spectrum. The sensor is operated within a wide humidity range (20%-90% relative humidity) with a maximum sensitivity achieved of 0.14rad/%. The measurement method uses a commercial optical interrogator as the only active element, this compact solution allows real time analysis of the data.

  9. Fast Estimation of Defect Profiles from the Magnetic Flux Leakage Signal Based on a Multi-Power Affine Projection Algorithm

    PubMed Central

    Han, Wenhua; Shen, Xiaohui; Xu, Jun; Wang, Ping; Tian, Guiyun; Wu, Zhengyang

    2014-01-01

    Magnetic flux leakage (MFL) inspection is one of the most important and sensitive nondestructive testing approaches. For online MFL inspection of a long-range railway track or oil pipeline, a fast and effective defect profile estimating method based on a multi-power affine projection algorithm (MAPA) is proposed, where the depth of a sampling point is related with not only the MFL signals before it, but also the ones after it, and all of the sampling points related to one point appear as serials or multi-power. Defect profile estimation has two steps: regulating a weight vector in an MAPA filter and estimating a defect profile with the MAPA filter. Both simulation and experimental data are used to test the performance of the proposed method. The results demonstrate that the proposed method exhibits high speed while maintaining the estimated profiles clearly close to the desired ones in a noisy environment, thereby meeting the demand of accurate online inspection. PMID:25192314

  10. An aptasensor for selective, sensitive and fast detection of lead(II) based on polyethyleneimine and gold nanoparticles.

    PubMed

    Taghdisi, Seyed Mohammad; Danesh, Noor Mohammad; Lavaee, Parirokh; Ramezani, Mohammad; Abnous, Khalil

    2015-05-01

    Lead (Pb), as a major environmental contaminant, could be harmful to humans when inhaled or ingested. In this study, we developed a sensitive, selective and fast colorimetric aptasensor for Pb(+2) based on polyethylenimine (PEI) and gold nanoparticles (AuNPs). In the absence of Pb(+2), aptamer binds to PEI. So the well-dispersed AuNPs remain stable with a wine-red color. Upon the addition of Pb(+2), a conformational change happens and a G-quadruplex aptamer/Pb(+2) complex is formed, leading to the aggregation of AuNPs and a color change to blue. This sensor showed a high selectivity toward Pb(+2) with a limit of detection (LOD) as low as 702pM. Moreover, our fabricated sensor was successfully applied for Pb(+2) detection in rat serum and tap water. PMID:25989533

  11. Fast estimation of defect profiles from the magnetic flux leakage signal based on a multi-power affine projection algorithm.

    PubMed

    Han, Wenhua; Shen, Xiaohui; Xu, Jun; Wang, Ping; Tian, Guiyun; Wu, Zhengyang

    2014-01-01

    Magnetic flux leakage (MFL) inspection is one of the most important and sensitive nondestructive testing approaches. For online MFL inspection of a long-range railway track or oil pipeline, a fast and effective defect profile estimating method based on a multi-power affine projection algorithm (MAPA) is proposed, where the depth of a sampling point is related with not only the MFL signals before it, but also the ones after it, and all of the sampling points related to one point appear as serials or multi-power. Defect profile estimation has two steps: regulating a weight vector in an MAPA filter and estimating a defect profile with the MAPA filter. Both simulation and experimental data are used to test the performance of the proposed method. The results demonstrate that the proposed method exhibits high speed while maintaining the estimated profiles clearly close to the desired ones in a noisy environment, thereby meeting the demand of accurate online inspection. PMID:25192314

  12. A fast cross-validation method for alignment of electron tomography images based on Beer-Lambert law.

    PubMed

    Yan, Rui; Edwards, Thomas J; Pankratz, Logan M; Kuhn, Richard J; Lanman, Jason K; Liu, Jun; Jiang, Wen

    2015-11-01

    In electron tomography, accurate alignment of tilt series is an essential step in attaining high-resolution 3D reconstructions. Nevertheless, quantitative assessment of alignment quality has remained a challenging issue, even though many alignment methods have been reported. Here, we report a fast and accurate method, tomoAlignEval, based on the Beer-Lambert law, for the evaluation of alignment quality. Our method is able to globally estimate the alignment accuracy by measuring the goodness of log-linear relationship of the beam intensity attenuations at different tilt angles. Extensive tests with experimental data demonstrated its robust performance with stained and cryo samples. Our method is not only significantly faster but also more sensitive than measurements of tomogram resolution using Fourier shell correlation method (FSCe/o). From these tests, we also conclude that while current alignment methods are sufficiently accurate for stained samples, inaccurate alignments remain a major limitation for high resolution cryo-electron tomography. PMID:26455556

  13. GPU Based Fast Free-Wake Calculations For Multiple Horizontal Axis Wind Turbine Rotors

    NASA Astrophysics Data System (ADS)

    Türkal, M.; Novikov, Y.; Üşenmez, S.; Sezer-Uzol, N.; Uzol, O.

    2014-06-01

    Unsteady free-wake solutions of wind turbine flow fields involve computationally intensive interaction calculations, which generally limit the total amount of simulation time or the number of turbines that can be simulated by the method. This problem, however, can be addressed easily using high-level of parallelization. Especially when exploited with a GPU, a Graphics Processing Unit, this property can provide a significant computational speed-up, rendering the most intensive engineering problems realizable in hours of computation time. This paper presents the results of the simulation of the flow field for the NREL Phase VI turbine using a GPU-based in-house free-wake panel method code. Computational parallelism involved in the free-wake methodology is exploited using a GPU, allowing thousands of similar operations to be performed simultaneously. The results are compared to experimental data as well as to those obtained by running a corresponding CPU-based code. Results show that the GPU based code is capable of producing wake and load predictions similar to the CPU- based code and in a substantially reduced amount of time. This capability could allow free- wake based analysis to be used in the possible design and optimization studies of wind farms as well as prediction of multiple turbine flow fields and the investigation of the effects of using different vortex core models, core expansion and stretching models on the turbine rotor interaction problems in multiple turbine wake flow fields.

  14. GPU-based fast cone beam CT reconstruction from undersampled and noisy projection data via total variation

    SciTech Connect

    Jia Xun; Lou Yifei; Li Ruijiang; Song, William Y.; Jiang, Steve B.

    2010-04-15

    Purpose: Cone-beam CT (CBCT) plays an important role in image guided radiation therapy (IGRT). However, the large radiation dose from serial CBCT scans in most IGRT procedures raises a clinical concern, especially for pediatric patients who are essentially excluded from receiving IGRT for this reason. The goal of this work is to develop a fast GPU-based algorithm to reconstruct CBCT from undersampled and noisy projection data so as to lower the imaging dose. Methods: The CBCT is reconstructed by minimizing an energy functional consisting of a data fidelity term and a total variation regularization term. The authors developed a GPU-friendly version of the forward-backward splitting algorithm to solve this model. A multigrid technique is also employed. Results: It is found that 20-40 x-ray projections are sufficient to reconstruct images with satisfactory quality for IGRT. The reconstruction time ranges from 77 to 130 s on an NVIDIA Tesla C1060 (NVIDIA, Santa Clara, CA) GPU card, depending on the number of projections used, which is estimated about 100 times faster than similar iterative reconstruction approaches. Moreover, phantom studies indicate that the algorithm enables the CBCT to be reconstructed under a scanning protocol with as low as 0.1 mA s/projection. Comparing with currently widely used full-fan head and neck scanning protocol of {approx}360 projections with 0.4 mA s/projection, it is estimated that an overall 36-72 times dose reduction has been achieved in our fast CBCT reconstruction algorithm. Conclusions: This work indicates that the developed GPU-based CBCT reconstruction algorithm is capable of lowering imaging dose considerably. The high computation efficiency in this algorithm makes the iterative CBCT reconstruction approach applicable in real clinical environments.

  15. Covariance-based synaptic plasticity in an attractor network model accounts for fast adaptation in free operant learning.

    PubMed

    Neiman, Tal; Loewenstein, Yonatan

    2013-01-23

    In free operant experiments, subjects alternate at will between targets that yield rewards stochastically. Behavior in these experiments is typically characterized by (1) an exponential distribution of stay durations, (2) matching of the relative time spent at a target to its relative share of the total number of rewards, and (3) adaptation after a change in the reward rates that can be very fast. The neural mechanism underlying these regularities is largely unknown. Moreover, current decision-making neural network models typically aim at explaining behavior in discrete-time experiments in which a single decision is made once in every trial, making these models hard to extend to the more natural case of free operant decisions. Here we show that a model based on attractor dynamics, in which transitions are induced by noise and preference is formed via covariance-based synaptic plasticity, can account for the characteristics of behavior in free operant experiments. We compare a specific instance of such a model, in which two recurrently excited populations of neurons compete for higher activity, to the behavior of rats responding on two levers for rewarding brain stimulation on a concurrent variable interval reward schedule (Gallistel et al., 2001). We show that the model is consistent with the rats' behavior, and in particular, with the observed fast adaptation to matching behavior. Further, we show that the neural model can be reduced to a behavioral model, and we use this model to deduce a novel "conservation law," which is consistent with the behavior of the rats. PMID:23345226

  16. A fast 3D surface reconstruction and volume estimation method for grain storage based on priori model

    NASA Astrophysics Data System (ADS)

    Liang, Xian-hua; Sun, Wei-dong

    2011-06-01

    Inventory checking is one of the most significant parts for grain reserves, and plays a very important role on the macro-control of food and food security. Simple, fast and accurate method to obtain internal structure information and further to estimate the volume of the grain storage is needed. Here in our developed system, a special designed multi-site laser scanning system is used to acquire the range data clouds of the internal structure of the grain storage. However, due to the seriously uneven distribution of the range data, this data should firstly be preprocessed by an adaptive re-sampling method to reduce the data redundancy as well as noise. Then the range data is segmented and useful features, such as plane and cylinder information, are extracted. With these features a coarse registration between all of these single-site range data is done, and then an Iterative Closest Point (ICP) algorithm is carried out to achieve fine registration. Taking advantage of the structure of the grain storage being well defined and the types of them are limited, a fast automatic registration method based on the priori model is proposed to register the multi-sites range data more efficiently. Then after the integration of the multi-sites range data, the grain surface is finally reconstructed by a delaunay based algorithm and the grain volume is estimated by a numerical integration method. This proposed new method has been applied to two common types of grain storage, and experimental results shown this method is more effective and accurate, and it can also avoids the cumulative effect of errors when registering the overlapped area pair-wisely.

  17. Chloride-based fast homoepitaxial growth of 4H-SiC films in a vertical hot-wall CVD

    NASA Astrophysics Data System (ADS)

    Guoguo, Yan; Feng, Zhang; Yingxi, Niu; Fei, Yang; Xingfang, Liu; Lei, Wang; Wanshun, Zhao; Guosheng, Sun; Yiping, Zeng

    2016-06-01

    Chloride-based fast homoepitaxial growth of 4H-SiC epilayers was performed on 4° off-axis 4H-SiC substrates in a home-made vertical hot-wall chemical vapor deposition (CVD) system using H2‑SiH4‑C2H4‑HCl. The effect of the SiH4/H2 ratio and reactor pressure on the growth rate of 4H-SiC epilayers has been studied successively. The growth rate increase in proportion to the SiH4/H2 ratio and the influence mechanism of chlorine has been investigated. With the reactor pressure increasing from 40 to 100 Torr, the growth rate increased to 52 μm/hand then decreased to 47 μm/h, which is due to the joint effect of H2 and HCl etching as well as the formation of Si clusters at higher reactor pressure. The surface root mean square (RMS) roughness keeps around 1 nm with the growth rate increasing to 49 μm/h. The scanning electron microscope (SEM), Raman spectroscopy and X-ray diffraction (XRD) demonstrate that 96.7 μm thick 4H-SiC layers of good uniformity in thickness and doping with high crystal quality can be achieved. These results prove that chloride-based fast epitaxy is an advanced growth technique for 4H-SiC homoepitaxy. Project supported by the National High Technology R&D Program of China (No. 2014AA041402), the National Natural Science Foundation of China (Nos. 61474113, 61274007, 61574140), the Beijing Natural Science Foundation of China (Nos. 4132076, 4132074), the Program of State Grid Smart Grid Research Institute (No. SGRI-WD-71-14-004), and the Youth Innovation Promotion Association of CAS.

  18. [Research on fast detecting tomato seedlings nitrogen content based on NIR characteristic spectrum selection].

    PubMed

    Wu, Jing-zhu; Wang, Feng-zhu; Wang, Li-li; Zhang, Xiao-chao; Mao, Wen-hua

    2015-01-01

    In order to improve the accuracy and robustness of detecting tomato seedlings nitrogen content based on near-infrared spectroscopy (NIR), 4 kinds of characteristic spectrum selecting methods were studied in the present paper, i. e. competitive adaptive reweighted sampling (CARS), Monte Carlo uninformative variables elimination (MCUVE), backward interval partial least squares (BiPLS) and synergy interval partial least squares (SiPLS). There were totally 60 tomato seedlings cultivated at 10 different nitrogen-treatment levels (urea concentration from 0 to 120 mg . L-1), with 6 samples at each nitrogen-treatment level. They are in different degrees of over nitrogen, moderate nitrogen, lack of nitrogen and no nitrogen status. Each sample leaves were collected to scan near-infrared spectroscopy from 12 500 to 3 600 cm-1. The quantitative models based on the above 4 methods were established. According to the experimental result, the calibration model based on CARS and MCUVE selecting methods show better performance than those based on BiPLS and SiPLS selecting methods, but their prediction ability is much lower than that of the latter. Among them, the model built by BiPLS has the best prediction performance. The correlation coefficient (r), root mean square error of prediction (RMSEP) and ratio of performance to standard derivate (RPD) is 0. 952 7, 0. 118 3 and 3. 291, respectively. Therefore, NIR technology combined with characteristic spectrum selecting methods can improve the model performance. But the characteristic spectrum selecting methods are not universal. For the built model based or single wavelength variables selection is more sensitive, it is more suitable for the uniform object. While the anti-interference ability of the model built based on wavelength interval selection is much stronger, it is more suitable for the uneven and poor reproducibility object. Therefore, the characteristic spectrum selection will only play a better role in building model

  19. Fast and secure encryption-decryption method based on chaotic dynamics

    DOEpatents

    Protopopescu, Vladimir A.; Santoro, Robert T.; Tolliver, Johnny S.

    1995-01-01

    A method and system for the secure encryption of information. The method comprises the steps of dividing a message of length L into its character components; generating m chaotic iterates from m independent chaotic maps; producing an "initial" value based upon the m chaotic iterates; transforming the "initial" value to create a pseudo-random integer; repeating the steps of generating, producing and transforming until a pseudo-random integer sequence of length L is created; and encrypting the message as ciphertext based upon the pseudo random integer sequence. A system for accomplishing the invention is also provided.

  20. A High-Speed Vision-Based Sensor for Dynamic Vibration Analysis Using Fast Motion Extraction Algorithms.

    PubMed

    Zhang, Dashan; Guo, Jie; Lei, Xiujun; Zhu, Changan

    2016-01-01

    The development of image sensor and optics enables the application of vision-based techniques to the non-contact dynamic vibration analysis of large-scale structures. As an emerging technology, a vision-based approach allows for remote measuring and does not bring any additional mass to the measuring object compared with traditional contact measurements. In this study, a high-speed vision-based sensor system is developed to extract structure vibration signals in real time. A fast motion extraction algorithm is required for this system because the maximum sampling frequency of the charge-coupled device (CCD) sensor can reach up to 1000 Hz. Two efficient subpixel level motion extraction algorithms, namely the modified Taylor approximation refinement algorithm and the localization refinement algorithm, are integrated into the proposed vision sensor. Quantitative analysis shows that both of the two modified algorithms are at least five times faster than conventional upsampled cross-correlation approaches and achieve satisfactory error performance. The practicability of the developed sensor is evaluated by an experiment in a laboratory environment and a field test. Experimental results indicate that the developed high-speed vision-based sensor system can extract accurate dynamic structure vibration signals by tracking either artificial targets or natural features. PMID:27110784

  1. A High-Speed Vision-Based Sensor for Dynamic Vibration Analysis Using Fast Motion Extraction Algorithms

    PubMed Central

    Zhang, Dashan; Guo, Jie; Lei, Xiujun; Zhu, Changan

    2016-01-01

    The development of image sensor and optics enables the application of vision-based techniques to the non-contact dynamic vibration analysis of large-scale structures. As an emerging technology, a vision-based approach allows for remote measuring and does not bring any additional mass to the measuring object compared with traditional contact measurements. In this study, a high-speed vision-based sensor system is developed to extract structure vibration signals in real time. A fast motion extraction algorithm is required for this system because the maximum sampling frequency of the charge-coupled device (CCD) sensor can reach up to 1000 Hz. Two efficient subpixel level motion extraction algorithms, namely the modified Taylor approximation refinement algorithm and the localization refinement algorithm, are integrated into the proposed vision sensor. Quantitative analysis shows that both of the two modified algorithms are at least five times faster than conventional upsampled cross-correlation approaches and achieve satisfactory error performance. The practicability of the developed sensor is evaluated by an experiment in a laboratory environment and a field test. Experimental results indicate that the developed high-speed vision-based sensor system can extract accurate dynamic structure vibration signals by tracking either artificial targets or natural features. PMID:27110784

  2. Potential effect of physical activity based menu labels on the calorie content of selected fast food meals.

    PubMed

    Dowray, Sunaina; Swartz, Jonas J; Braxton, Danielle; Viera, Anthony J

    2013-03-01

    In this study we examined the effect of physical activity based labels on the calorie content of meals selected from a sample fast food menu. Using a web-based survey, participants were randomly assigned to one of four menus which differed only in their labeling schemes (n=802): (1) a menu with no nutritional information, (2) a menu with calorie information, (3) a menu with calorie information and minutes to walk to burn those calories, or (4) a menu with calorie information and miles to walk to burn those calories. There was a significant difference in the mean number of calories ordered based on menu type (p=0.02), with an average of 1020 calories ordered from a menu with no nutritional information, 927 calories ordered from a menu with only calorie information, 916 calories ordered from a menu with both calorie information and minutes to walk to burn those calories, and 826 calories ordered from the menu with calorie information and the number of miles to walk to burn those calories. The menu with calories and the number of miles to walk to burn those calories appeared the most effective in influencing the selection of lower calorie meals (p=0.0007) when compared to the menu with no nutritional information provided. The majority of participants (82%) reported a preference for physical activity based menu labels over labels with calorie information alone and no nutritional information. Whether these labels are effective in real-life scenarios remains to be tested. PMID:23220355

  3. Imaging of moving fiducial markers during radiotherapy using a fast, efficient active pixel sensor based EPID

    SciTech Connect

    Osmond, John P. F.; Zin, Hafiz M.; Harris, Emma J.; Lupica, Giovanni; Allinson, Nigel M.; Evans, Philip M.

    2011-11-15

    ms the smallest marker became difficult to detect when moving. The detection of moving markers using the a-Si EPID was difficult even at the maximum dose-rate of 592 MU min{sup -1} due to the lower QE and longer integration time of 400 ms. Conclusions: This work demonstrates that a fast read-out, high QE APS may be useful in the tracking of moving fiducial markers during radiotherapy. Further study is required to investigate the tracking of markers moving in 3D in a treatment beam attenuated by moving patient anatomy. This will require a larger sensor with ROI read-out to maintain speed and a manageable data-rate.

  4. Propagating Spectroscopic Effects through WPL Terms when Using a Fast Laser-Based Open-Path CH4 Analyzer

    NASA Astrophysics Data System (ADS)

    Burba, George; McDermitt, Dayle; Anderson, Tyler; Komissarov, Anatoly

    2013-04-01

    Eddy flux is computed using a covariance between fast changes in gas density and vertical wind speed. The measured changes in gas density happen due to gas flux itself, thermal expansion and contraction of the sampled gas, water vapor dilution, and pressure-related expansions and contractions. These are standard processes described by the Ideal Gas Law and by the Law of Partial Pressures, and are often called density effects. The gas flux is usually corrected for such density effects using Webb-Pearman-Leuning terms (WPL). When gas density is measured by laser spectroscopy, there are also spectroscopic effects affecting measured gas density depending on fluctuations in temperature, water vapor and pressure, in addition to the density effects. The spectroscopic effects are related to changes in the shape of the absorption line due to changes in gas temperature, pressure and the presence of water vapor. These effects are specific for each specific absorption line, and the measurement technique. The majority of density effects and spectroscopic effects are reduced or eliminated in the closed-path analyzers, when: (a) intake tube is very long, (b) gas sample is dried, and (c) pressure fluctuations are very small. However, the use of long intake tubes and drying of the air sample also lead to a significant increase in power demand, and to increased uncertainties due to excess attenuation of the fluctuations of the gas in the drier. Not drying the air sample leads to a need for applying a density correction for dilution, and spectroscopic corrections for gas absorption due to fast fluctuations in water vapor pressure. For both of these corrections water vapor should be measured accurately at high-speed inside the closed-path device, which increases measurements costs. In addition, current fast closed-path analyzers based on laser spectroscopy have to operate under significantly reduced pressures, and require powerful pumps and grid power (400-1500 Watts). Power demands

  5. Fast Tracking the Underserved: A High School Succeeds at Retaining Its Large Latino Base

    ERIC Educational Resources Information Center

    Diaz-Booz, Ana

    2011-01-01

    In this article, the author discusses her school's ability to retain its Latino students through a college-going culture based on non-negotiables. The School of International Business of the Kearny High School community, which is part of the San Diego Unified Schools, has flourished during its seven-year history despite constant budget uncertainty…

  6. Web-Based Training and Constructivism. In Brief: Fast Facts for Policy and Practice, No. 2.

    ERIC Educational Resources Information Center

    Wonacott, Michael E.

    To many educators, Web-based training (WBT) is the constructivist ideal--learners can construct meaning through self-directed inquiry, guided activity, and group collaboration on the information highway, the digital library, cyberspace, or the global village. Although research on the effectiveness of WBT as a vehicle for constructivist learning is…

  7. A Fast Method for Embattling Optimization of Ground-Based Radar Surveillance Network

    NASA Astrophysics Data System (ADS)

    Jiang, H.; Cheng, H.; Zhang, Y.; Liu, J.

    A growing number of space activities have created an orbital debris environment that poses increasing impact risks to existing space systems and human space flight. For the safety of in-orbit spacecraft, a lot of observation facilities are needed to catalog space objects, especially in low earth orbit. Surveillance of Low earth orbit objects are mainly rely on ground-based radar, due to the ability limitation of exist radar facilities, a large number of ground-based radar need to build in the next few years in order to meet the current space surveillance demands. How to optimize the embattling of ground-based radar surveillance network is a problem to need to be solved. The traditional method for embattling optimization of ground-based radar surveillance network is mainly through to the detection simulation of all possible stations with cataloged data, and makes a comprehensive comparative analysis of various simulation results with the combinational method, and then selects an optimal result as station layout scheme. This method is time consuming for single simulation and high computational complexity for the combinational analysis, when the number of stations increases, the complexity of optimization problem will be increased exponentially, and cannot be solved with traditional method. There is no better way to solve this problem till now. In this paper, target detection procedure was simplified. Firstly, the space coverage of ground-based radar was simplified, a space coverage projection model of radar facilities in different orbit altitudes was built; then a simplified objects cross the radar coverage model was established according to the characteristics of space objects orbit motion; after two steps simplification, the computational complexity of the target detection was greatly simplified, and simulation results shown the correctness of the simplified results. In addition, the detection areas of ground-based radar network can be easily computed with the

  8. Fast time-of-flight camera based surface registration for radiotherapy patient positioning

    SciTech Connect

    Placht, Simon; Stancanello, Joseph; Schaller, Christian; Balda, Michael; Angelopoulou, Elli

    2012-01-15

    Purpose: This work introduces a rigid registration framework for patient positioning in radiotherapy, based on real-time surface acquisition by a time-of-flight (ToF) camera. Dynamic properties of the system are also investigated for future gating/tracking strategies. Methods: A novel preregistration algorithm, based on translation and rotation-invariant features representing surface structures, was developed. Using these features, corresponding three-dimensional points were computed in order to determine initial registration parameters. These parameters became a robust input to an accelerated version of the iterative closest point (ICP) algorithm for the fine-tuning of the registration result. Distance calibration and Kalman filtering were used to compensate for ToF-camera dependent noise. Additionally, the advantage of using the feature based preregistration over an ''ICP only'' strategy was evaluated, as well as the robustness of the rigid-transformation-based method to deformation. Results: The proposed surface registration method was validated using phantom data. A mean target registration error (TRE) for translations and rotations of 1.62 {+-} 1.08 mm and 0.07 deg. {+-} 0.05 deg., respectively, was achieved. There was a temporal delay of about 65 ms in the registration output, which can be seen as negligible considering the dynamics of biological systems. Feature based preregistration allowed for accurate and robust registrations even at very large initial displacements. Deformations affected the accuracy of the results, necessitating particular care in cases of deformed surfaces. Conclusions: The proposed solution is able to solve surface registration problems with an accuracy suitable for radiotherapy cases where external surfaces offer primary or complementary information to patient positioning. The system shows promising dynamic properties for its use in gating/tracking applications. The overall system is competitive with commonly-used surface

  9. Science Concierge: A Fast Content-Based Recommendation System for Scientific Publications.

    PubMed

    Achakulvisut, Titipat; Acuna, Daniel E; Ruangrong, Tulakan; Kording, Konrad

    2016-01-01

    Finding relevant publications is important for scientists who have to cope with exponentially increasing numbers of scholarly material. Algorithms can help with this task as they help for music, movie, and product recommendations. However, we know little about the performance of these algorithms with scholarly material. Here, we develop an algorithm, and an accompanying Python library, that implements a recommendation system based on the content of articles. Design principles are to adapt to new content, provide near-real time suggestions, and be open source. We tested the library on 15K posters from the Society of Neuroscience Conference 2015. Human curated topics are used to cross validate parameters in the algorithm and produce a similarity metric that maximally correlates with human judgments. We show that our algorithm significantly outperformed suggestions based on keywords. The work presented here promises to make the exploration of scholarly material faster and more accurate. PMID:27383424

  10. Ultra-Fast Data-Mining Hardware Architecture Based on Stochastic Computing

    PubMed Central

    Oliver, Antoni; Alomar, Miquel L.

    2015-01-01

    Minimal hardware implementations able to cope with the processing of large amounts of data in reasonable times are highly desired in our information-driven society. In this work we review the application of stochastic computing to probabilistic-based pattern-recognition analysis of huge database sets. The proposed technique consists in the hardware implementation of a parallel architecture implementing a similarity search of data with respect to different pre-stored categories. We design pulse-based stochastic-logic blocks to obtain an efficient pattern recognition system. The proposed architecture speeds up the screening process of huge databases by a factor of 7 when compared to a conventional digital implementation using the same hardware area. PMID:25955274

  11. Ultra-fast data-mining hardware architecture based on stochastic computing.

    PubMed

    Morro, Antoni; Canals, Vincent; Oliver, Antoni; Alomar, Miquel L; Rossello, Josep L

    2015-01-01

    Minimal hardware implementations able to cope with the processing of large amounts of data in reasonable times are highly desired in our information-driven society. In this work we review the application of stochastic computing to probabilistic-based pattern-recognition analysis of huge database sets. The proposed technique consists in the hardware implementation of a parallel architecture implementing a similarity search of data with respect to different pre-stored categories. We design pulse-based stochastic-logic blocks to obtain an efficient pattern recognition system. The proposed architecture speeds up the screening process of huge databases by a factor of 7 when compared to a conventional digital implementation using the same hardware area. PMID:25955274

  12. Fast Measurement of Soluble Solid Content in Mango Based on Visible and Infrared Spectroscopy Technique

    NASA Astrophysics Data System (ADS)

    Yu, Jiajia; He, Yong

    Mango is a kind of popular tropical fruit, and the soluble solid content is an important in this study visible and short-wave near-infrared spectroscopy (VIS/SWNIR) technique was applied. For sake of investigating the feasibility of using VIS/SWNIR spectroscopy to measure the soluble solid content in mango, and validating the performance of selected sensitive bands, for the calibration set was formed by 135 mango samples, while the remaining 45 mango samples for the prediction set. The combination of partial least squares and backpropagation artificial neural networks (PLS-BP) was used to calculate the prediction model based on raw spectrum data. Based on PLS-BP, the determination coefficient for prediction (Rp) was 0.757 and root mean square and the process is simple and easy to operate. Compared with the Partial least squares (PLS) result, the performance of PLS-BP is better.

  13. Fast and Precise 3D Fluorophore Localization based on Gradient Fitting

    NASA Astrophysics Data System (ADS)

    Ma, Hongqiang; Xu, Jianquan; Jin, Jingyi; Gao, Ying; Lan, Li; Liu, Yang

    2015-09-01

    Astigmatism imaging approach has been widely used to encode the fluorophore’s 3D position in single-particle tracking and super-resolution localization microscopy. Here, we present a new high-speed localization algorithm based on gradient fitting to precisely decode the 3D subpixel position of the fluorophore. This algebraic algorithm determines the center of the fluorescent emitter by finding the position with the best-fit gradient direction distribution to the measured point spread function (PSF), and can retrieve the 3D subpixel position of the fluorophore in a single iteration. Through numerical simulation and experiments with mammalian cells, we demonstrate that our algorithm yields comparable localization precision to the traditional iterative Gaussian function fitting (GF) based method, while exhibits over two orders-of-magnitude faster execution speed. Our algorithm is a promising high-speed analyzing method for 3D particle tracking and super-resolution localization microscopy.

  14. Fast heap transform-based QR-decomposition of real and complex matrices: algorithms and codes

    NASA Astrophysics Data System (ADS)

    Grigoryan, Artyom M.

    2015-03-01

    In this paper, we describe a new look on the application of Givens rotations to the QR-decomposition problem, which is similar to the method of Householder transformations. We apply the concept of the discrete heap transform, or signal-induced unitary transforms which had been introduced by Grigoryan (2006) and used in signal and image processing. Both cases of real and complex nonsingular matrices are considered and examples of performing QR-decomposition of square matrices are given. The proposed method of QR-decomposition for the complex matrix is novel and differs from the known method of complex Givens rotation and is based on analytical equations for the heap transforms. Many examples illustrated the proposed heap transform method of QR-decomposition are given, algorithms are described in detail, and MATLAB-based codes are included.

  15. Fast parallel molecular algorithms for DNA-based computation: factoring integers.

    PubMed

    Chang, Weng-Long; Guo, Minyi; Ho, Michael Shan-Hui

    2005-06-01

    The RSA public-key cryptosystem is an algorithm that converts input data to an unrecognizable encryption and converts the unrecognizable data back into its original decryption form. The security of the RSA public-key cryptosystem is based on the difficulty of factoring the product of two large prime numbers. This paper demonstrates to factor the product of two large prime numbers, and is a breakthrough in basic biological operations using a molecular computer. In order to achieve this, we propose three DNA-based algorithms for parallel subtractor, parallel comparator, and parallel modular arithmetic that formally verify our designed molecular solutions for factoring the product of two large prime numbers. Furthermore, this work indicates that the cryptosystems using public-key are perhaps insecure and also presents clear evidence of the ability of molecular computing to perform complicated mathematical operations. PMID:16117023

  16. Science Concierge: A Fast Content-Based Recommendation System for Scientific Publications

    PubMed Central

    Achakulvisut, Titipat; Acuna, Daniel E.; Ruangrong, Tulakan; Kording, Konrad

    2016-01-01

    Finding relevant publications is important for scientists who have to cope with exponentially increasing numbers of scholarly material. Algorithms can help with this task as they help for music, movie, and product recommendations. However, we know little about the performance of these algorithms with scholarly material. Here, we develop an algorithm, and an accompanying Python library, that implements a recommendation system based on the content of articles. Design principles are to adapt to new content, provide near-real time suggestions, and be open source. We tested the library on 15K posters from the Society of Neuroscience Conference 2015. Human curated topics are used to cross validate parameters in the algorithm and produce a similarity metric that maximally correlates with human judgments. We show that our algorithm significantly outperformed suggestions based on keywords. The work presented here promises to make the exploration of scholarly material faster and more accurate. PMID:27383424

  17. Fast and Precise 3D Fluorophore Localization based on Gradient Fitting

    PubMed Central

    Ma, Hongqiang; Xu, Jianquan; Jin, Jingyi; Gao, Ying; Lan, Li; Liu, Yang

    2015-01-01

    Astigmatism imaging approach has been widely used to encode the fluorophore’s 3D position in single-particle tracking and super-resolution localization microscopy. Here, we present a new high-speed localization algorithm based on gradient fitting to precisely decode the 3D subpixel position of the fluorophore. This algebraic algorithm determines the center of the fluorescent emitter by finding the position with the best-fit gradient direction distribution to the measured point spread function (PSF), and can retrieve the 3D subpixel position of the fluorophore in a single iteration. Through numerical simulation and experiments with mammalian cells, we demonstrate that our algorithm yields comparable localization precision to the traditional iterative Gaussian function fitting (GF) based method, while exhibits over two orders-of-magnitude faster execution speed. Our algorithm is a promising high-speed analyzing method for 3D particle tracking and super-resolution localization microscopy. PMID:26390959

  18. Lab-on-Chip-Based Platform for Fast Molecular Diagnosis of Multidrug-Resistant Tuberculosis

    PubMed Central

    Cabibbe, Andrea M.; Miotto, Paolo; Moure, Raquel; Alcaide, Fernando; Feuerriegel, Silke; Pozzi, Gianni; Nikolayevskyy, Vladislav; Drobniewski, Francis; Niemann, Stefan; Reither, Klaus

    2015-01-01

    We evaluated the performance of the molecular lab-on-chip-based VerePLEX Biosystem for detection of multidrug-resistant tuberculosis (MDR-TB), obtaining a diagnostic accuracy of more than 97.8% compared to sequencing and MTBDRplus assay for Mycobacterium tuberculosis complex and rifampin and isoniazid resistance detection on clinical isolates and smear-positive specimens. The speed, user-friendly interface, and versatility make it suitable for routine laboratory use. PMID:26246486

  19. A fast algorithm for attribute reduction based on Trie tree and rough set theory

    NASA Astrophysics Data System (ADS)

    Hu, Feng; Wang, Xiao-yan; Luo, Chuan-jiang

    2013-03-01

    Attribute reduction is an important issue in rough set theory. Many efficient algorithms have been proposed, however, few of them can process huge data sets quickly. In this paper, combining the Trie tree, the algorithms for computing positive region of decision table are proposed. After that, a new algorithm for attribute reduction based on Trie tree is developed, which can be used to process the attribute reduction of large data sets quickly. Experiment results show its high efficiency.

  20. High speed all-optical data processing in fast semiconductor and optical fiber based devices

    NASA Astrophysics Data System (ADS)

    Sun, Hongzhi

    Future generations of communication systems demand ultra high speed data processing and switching components. Conventional electrical parts have reached their bottleneck both speed-wise and efficiency-wise. The idea of manipulating high speed data in optical domain is gaining more popularity. In this PhD thesis work, we proposed and demonstrated various schemes of all-optical Boolean logic gate at data rate as high as 80Gb/s by using semiconductor optical amplifier (SOA), SOA Mach-Zehnder interferometer (SOA-MZI), highly nonlinear fiber (HNLF) and optical fiber based components. With the invention of quantum dot (QD) based semiconductor devices, speed limit of all optical data processing has a chance to boost up to 250Gb/s. We proposed and simulated QD-SOA based Boolean functions, and their application such as shift register and pseudorandom bit sequence generation (PRBS). Clock and data recovery of high speed data signals has been simulated and demonstrated by injection lock and phase lock loop techniques in a fiber and SOA ring and an optical-electrical (OE) feedback loop.