Science.gov

Sample records for based grid job

  1. Application of rule-based data mining techniques to real time ATLAS Grid job monitoring data

    NASA Astrophysics Data System (ADS)

    Ahrens, R.; Harenberg, T.; Kalinin, S.; Mättig, P.; Sandhoff, M.; dos Santos, T.; Volkmer, F.

    2012-12-01

    The Job Execution Monitor (JEM) is a job-centric grid job monitoring software developed at the University of Wuppertal and integrated into the pilot-based PanDA job brokerage system leveraging physics analysis and Monte Carlo event production for the ATLAS experiment on the Worldwide LHC Computing Grid (WLCG). With JEM, job progress and grid worker node health can be supervised in real time by users, site admins and shift personnel. Imminent error conditions can be detected early and countermeasures can be initiated by the Job's owner immedeatly. Grid site admins can access aggregated data of all monitored jobs to infer the site status and to detect job and Grid worker node misbehavior. Shifters can use the same aggregated data to quickly react to site error conditions and broken production tasks. In this work, the application of novel data-centric rule based methods and data-mining techniques to the real time monitoring data is discussed. The usage of such automatic inference techniques on monitoring data to provide job and site health summary information to users and admins is presented. Finally, the provision of a secure real-time control and steering channel to the job as extension of the presented monitoring software is considered and a possible model of such the control method is presented.

  2. A grid job monitoring system

    SciTech Connect

    Dumitrescu, Catalin; Nowack, Andreas; Padhi, Sanjay; Sarkar, Subir; /INFN, Pisa /Pisa, Scuola Normale Superiore

    2010-01-01

    This paper presents a web-based Job Monitoring framework for individual Grid sites that allows users to follow in detail their jobs in quasi-real time. The framework consists of several independent components: (a) a set of sensors that run on the site CE and worker nodes and update a database, (b) a simple yet extensible web services framework and (c) an Ajax powered web interface having a look-and-feel and control similar to a desktop application. The monitoring framework supports LSF, Condor and PBS-like batch systems. This is one of the first monitoring systems where an X.509 authenticated web interface can be seamlessly accessed by both end-users and site administrators. While a site administrator has access to all the possible information, a user can only view the jobs for the Virtual Organizations (VO) he/she is a part of. The monitoring framework design supports several possible deployment scenarios. For a site running a supported batch system, the system may be deployed as a whole, or existing site sensors can be adapted and reused with the web services components. A site may even prefer to build the web server independently and choose to use only the Ajax powered web interface. Finally, the system is being used to monitor a glideinWMS instance. This broadens the scope significantly, allowing it to monitor jobs over multiple sites.

  3. Job Scheduling in a Heterogeneous Grid Environment

    NASA Technical Reports Server (NTRS)

    Shan, Hong-Zhang; Smith, Warren; Oliker, Leonid; Biswas, Rupak

    2004-01-01

    Computational grids have the potential for solving large-scale scientific problems using heterogeneous and geographically distributed resources. However, a number of major technical hurdles must be overcome before this potential can be realized. One problem that is critical to effective utilization of computational grids is the efficient scheduling of jobs. This work addresses this problem by describing and evaluating a grid scheduling architecture and three job migration algorithms. The architecture is scalable and does not assume control of local site resources. The job migration policies use the availability and performance of computer systems, the network bandwidth available between systems, and the volume of input and output data associated with each job. An extensive performance comparison is presented using real workloads from leading computational centers. The results, based on several key metrics, demonstrate that the performance of our distributed migration algorithms is significantly greater than that of a local scheduling framework and comparable to a non-scalable global scheduling approach.

  4. Job scheduling in a heterogenous grid environment

    SciTech Connect

    Oliker, Leonid; Biswas, Rupak; Shan, Hongzhang; Smith, Warren

    2004-02-11

    Computational grids have the potential for solving large-scale scientific problems using heterogeneous and geographically distributed resources. However, a number of major technical hurdles must be overcome before this potential can be realized. One problem that is critical to effective utilization of computational grids is the efficient scheduling of jobs. This work addresses this problem by describing and evaluating a grid scheduling architecture and three job migration algorithms. The architecture is scalable and does not assume control of local site resources. The job migration policies use the availability and performance of computer systems, the network bandwidth available between systems, and the volume of input and output data associated with each job. An extensive performance comparison is presented using real workloads from leading computational centers. The results, based on several key metrics, demonstrate that the performance of our distributed migration algorithms is significantly greater than that of a local scheduling framework and comparable to a non-scalable global scheduling approach.

  5. Mediated definite delegation - Certified Grid jobs in ALICE and beyond

    NASA Astrophysics Data System (ADS)

    Schreiner, Steffen; Grigoras, Costin; Litmaath, Maarten; Betev, Latchezar; Buchmann, Johannes

    2012-12-01

    Grid computing infrastructures need to provide traceability and accounting of their users’ activity and protection against misuse and privilege escalation, where the delegation of privileges in the course of a job submission is a key concern. This work describes an improved handling of Multi-user Grid Jobs in the ALICE Grid Services. A security analysis of the ALICE Grid job model is presented with derived security objectives, followed by a discussion of existing approaches of unrestricted delegation based on X.509 proxy certificates and the Grid middleware gLExec. Unrestricted delegation has severe security consequences and limitations, most importantly allowing for identity theft and forgery of jobs and data. These limitations are discussed and formulated, both in general and with respect to an adoption in line with Multi-user Grid Jobs. A new general model of mediated definite delegation is developed, allowing a broker to dynamically process and assign Grid jobs to agents while providing strong accountability and long-term traceability. A prototype implementation allowing for fully certified Grid jobs is presented as well as a potential interaction with gLExec. The achieved improvements regarding system security, malicious job exploitation, identity protection, and accountability are emphasized, including a discussion of non-repudiation in the face of malicious Grid jobs.

  6. Real Time Monitor of Grid job executions

    NASA Astrophysics Data System (ADS)

    Colling, D. J.; Martyniak, J.; McGough, A. S.; Křenek, A.; Sitera, J.; Mulač, M.; Dvořák, F.

    2010-04-01

    In this paper we describe the architecture and operation of the Real Time Monitor (RTM), developed by the Grid team in the HEP group at Imperial College London. This is arguably the most popular dissemination tool within the EGEE [1] Grid. Having been used, on many occasions including GridFest and LHC inauguration events held at CERN in October 2008. The RTM gathers information from EGEE sites hosting Logging and Bookkeeping (LB) services. Information is cached locally at a dedicated server at Imperial College London and made available for clients to use in near real time. The system consists of three main components: the RTM server, enquirer and an apache Web Server which is queried by clients. The RTM server queries the LB servers at fixed time intervals, collecting job related information and storing this in a local database. Job related data includes not only job state (i.e. Scheduled, Waiting, Running or Done) along with timing information but also other attributes such as Virtual Organization and Computing Element (CE) queue - if known. The job data stored in the RTM database is read by the enquirer every minute and converted to an XML format which is stored on a Web Server. This decouples the RTM server database from the client removing the bottleneck problem caused by many clients simultaneously accessing the database. This information can be visualized through either a 2D or 3D Java based client with live job data either being overlaid on to a 2 dimensional map of the world or rendered in 3 dimensions over a globe map using OpenGL.

  7. Pilot job accounting and auditing in Open Science Grid

    SciTech Connect

    Sfiligoi, Igor; Green, Chris; Quinn, Greg; Thain, Greg; /Wisconsin U., Madison

    2008-06-01

    The Grid accounting and auditing mechanisms were designed under the assumption that users would submit their jobs directly to the Grid gatekeepers. However, many groups are starting to use pilot-based systems, where users submit jobs to a centralized queue and are successively transferred to the Grid resources by the pilot infrastructure. While this approach greatly improves the user experience, it does disrupt the established accounting and auditing procedures. Open Science Grid deploys gLExec on the worker nodes to keep the pilot-related accounting and auditing information and centralizes the accounting collection with GRATIA.

  8. A Novel Particle Swarm Optimization Approach for Grid Job Scheduling

    NASA Astrophysics Data System (ADS)

    Izakian, Hesam; Tork Ladani, Behrouz; Zamanifar, Kamran; Abraham, Ajith

    This paper represents a Particle Swarm Optimization (PSO) algorithm, for grid job scheduling. PSO is a population-based search algorithm based on the simulation of the social behavior of bird flocking and fish schooling. Particles fly in problem search space to find optimal or near-optimal solutions. In this paper we used a PSO approach for grid job scheduling. The scheduler aims at minimizing makespan and flowtime simultaneously. Experimental studies show that the proposed novel approach is more efficient than the PSO approach reported in the literature.

  9. Job schedul in Grid batch farms

    NASA Astrophysics Data System (ADS)

    Gellrich, Andreas

    2014-06-01

    We present here a study for a scheduler which cooperates with the queueing system TORQUE and is tailored to the needs of a HEP-dominated large Grid site with around 10000 jobs slots. Triggered by severe scaling problems of MAUI, a scheduler, referred to as MYSCHED, was developed and put into operation. We discuss conceptional aspects as well as experiences after almost two years of running.

  10. Grid Service for User-Centric Job

    SciTech Connect

    Lauret, Jerome

    2009-07-31

    The User Centric Monitoring (UCM) project was aimed at developing a toolkit that provides the Virtual Organization (VO) with tools to build systems that serve a rich set of intuitive job and application monitoring information to the VO’s scientists so that they can be more productive. The tools help collect and serve the status and error information through a Web interface. The proposed UCM toolkit is composed of a set of library functions, a database schema, and a Web portal that will collect and filter available job monitoring information from various resources and present it to users in a user-centric view rather than and administrative-centric point of view. The goal is to create a set of tools that can be used to augment grid job scheduling systems, meta-schedulers, applications, and script sets in order to provide the UCM information. The system provides various levels of an application programming interface that is useful through out the Grid environment and at the application level for logging messages, which are combined with the other user-centric monitoring information in a abstracted “data store”. A planned monitoring portal will also dynamically present the information to users in their web browser in a secure manor, which is also easily integrated into any JSR-compliant portal deployment that a VO might employ. The UCM is meant to be flexible and modular in the ways that it can be adopted to give the VO many choices to build a solution that works for them with special attention to the smaller VOs that do not have the resources to implement home-grown solutions.

  11. Minimizing draining waste through extending the lifetime of pilot jobs in Grid environments

    NASA Astrophysics Data System (ADS)

    Sfiligoi, I.; Martin, T.; Bockelman, B. P.; Bradley, D. C.; Würthwein, F.

    2014-06-01

    The computing landscape is moving at an accelerated pace to many-core computing. Nowadays, it is not unusual to get 32 cores on a single physical node. As a consequence, there is increased pressure in the pilot systems domain to move from purely single-core scheduling and allow multi-core jobs as well. In order to allow for a gradual transition from single-core to multi-core user jobs, it is envisioned that pilot jobs will have to handle both kinds of user jobs at the same time, by requesting several cores at a time from Grid providers and then partitioning them between the user jobs at runtime. Unfortunately, the current Grid ecosystem only allows for relatively short lifetime of pilot jobs, requiring frequent draining, with the relative waste of compute resources due to varying lifetimes of the user jobs. Significantly extending the lifetime of pilot jobs is thus highly desirable, but must come without any adverse effects for the Grid resource providers. In this paper we present a mechanism, based on communication between the pilot jobs and the Grid provider, that allows for pilot jobs to run for extended periods of time when there are available resources, but also allows the Grid provider to reclaim the resources in a short amount of time when needed. We also present the experience of running a prototype system using the above mechanism on a few US-based Grid sites.

  12. A Web portal for CMS Grid job submission and management

    NASA Astrophysics Data System (ADS)

    Braun, David; Neumeister, Norbert

    2010-04-01

    We present a Web portal for CMS Grid submission and management. The portal is built using a JBoss application server. It has a three tier architecture; presentation, business logic and data. Bean based business logic interacts with the underlying Grid infrastructure and pre-existing external applications, while the presentation layer uses AJAX to offer an intuitive, functional interface to the back-end. Application data aggregating information from the portal as well as the external applications is persisted to the server memory cache and then to a backend database. We describe how the portal exploits standard, off-the-shelf commodity software together with existing Grid infrastructures in order to facilitate job submission and monitoring for the CMS collaboration. This paper describes the design, development, current functionality and plans for future enhancements of the portal.

  13. Jobs masonry in LHCb with elastic Grid Jobs

    NASA Astrophysics Data System (ADS)

    Stagni, F.; Charpentier, Ph

    2015-12-01

    In any distributed computing infrastructure, a job is normally forbidden to run for an indefinite amount of time. This limitation is implemented using different technologies, the most common one being the CPU time limit implemented by batch queues. It is therefore important to have a good estimate of how much CPU work a job will require: otherwise, it might be killed by the batch system, or by whatever system is controlling the jobs’ execution. In many modern interwares, the jobs are actually executed by pilot jobs, that can use the whole available time in running multiple consecutive jobs. If at some point the available time in a pilot is too short for the execution of any job, it should be released, while it could have been used efficiently by a shorter job. Within LHCbDIRAC, the LHCb extension of the DIRAC interware, we developed a simple way to fully exploit computing capabilities available to a pilot, even for resources with limited time capabilities, by adding elasticity to production MonteCarlo (MC) simulation jobs. With our approach, independently of the time available, LHCbDIRAC will always have the possibility to execute a MC job, whose length will be adapted to the available amount of time: therefore the same job, running on different computing resources with different time limits, will produce different amounts of events. The decision on the number of events to be produced is made just in time at the start of the job, when the capabilities of the resource are known. In order to know how many events a MC job will be instructed to produce, LHCbDIRAC simply requires three values: the CPU-work per event for that type of job, the power of the machine it is running on, and the time left for the job before being killed. Knowing these values, we can estimate the number of events the job will be able to simulate with the available CPU time. This paper will demonstrate that, using this simple but effective solution, LHCb manages to make a more efficient use of

  14. Smart Grid Cybersecurity: Job Performance Model Report

    SciTech Connect

    O'Neil, Lori Ross; Assante, Michael; Tobey, David

    2012-08-01

    This is the project report to DOE OE-30 for the completion of Phase 1 of a 3 phase report. This report outlines the work done to develop a smart grid cybersecurity certification. This work is being done with the subcontractor NBISE.

  15. Job Superscheduler Architecture and Performance in Computational Grid Environments

    NASA Technical Reports Server (NTRS)

    Shan, Hongzhang; Oliker, Leonid; Biswas, Rupak

    2003-01-01

    Computational grids hold great promise in utilizing geographically separated heterogeneous resources to solve large-scale complex scientific problems. However, a number of major technical hurdles, including distributed resource management and effective job scheduling, stand in the way of realizing these gains. In this paper, we propose a novel grid superscheduler architecture and three distributed job migration algorithms. We also model the critical interaction between the superscheduler and autonomous local schedulers. Extensive performance comparisons with ideal, central, and local schemes using real workloads from leading computational centers are conducted in a simulation environment. Additionally, synthetic workloads are used to perform a detailed sensitivity analysis of our superscheduler. Several key metrics demonstrate that substantial performance gains can be achieved via smart superscheduling in distributed computational grids.

  16. Data location-aware job scheduling in the grid. Application to the GridWay metascheduler

    NASA Astrophysics Data System (ADS)

    Delgado Peris, Antonio; Hernandez, Jose; Huedo, Eduardo; Llorente, Ignacio M.

    2010-04-01

    Grid infrastructures constitute nowadays the core of the computing facilities of the biggest LHC experiments. These experiments produce and manage petabytes of data per year and run thousands of computing jobs every day to process that data. It is the duty of metaschedulers to allocate the tasks to the most appropriate resources at the proper time. Our work reviews the policies that have been proposed for the scheduling of grid jobs in the context of very data-intensive applications. We indicate some of the practical problems that such models will face and describe what we consider essential characteristics of an optimum scheduling system: aim to minimise not only job turnaround time but also data replication, flexibility to support different virtual organisation requirements and capability to coordinate the tasks of data placement and job allocation while keeping their execution decoupled. These ideas have guided the development of an enhanced prototype for GridWay, a general purpose metascheduler, part of the Globus Toolkit and member of the EGEE's RESPECT program. Current GridWay's scheduling algorithm is unaware of data location. Our prototype makes it possible for job requests to set data needs not only as absolute requirements but also as functions for resource ranking. As our tests show, this makes it more flexible than currently used resource brokers to implement different data-aware scheduling algorithms.

  17. Multicore job scheduling in the Worldwide LHC Computing Grid

    NASA Astrophysics Data System (ADS)

    Forti, A.; Pérez-Calero Yzquierdo, A.; Hartmann, T.; Alef, M.; Lahiff, A.; Templon, J.; Dal Pra, S.; Gila, M.; Skipsey, S.; Acosta-Silva, C.; Filipcic, A.; Walker, R.; Walker, C. J.; Traynor, D.; Gadrat, S.

    2015-12-01

    After the successful first run of the LHC, data taking is scheduled to restart in Summer 2015 with experimental conditions leading to increased data volumes and event complexity. In order to process the data generated in such scenario and exploit the multicore architectures of current CPUs, the LHC experiments have developed parallelized software for data reconstruction and simulation. However, a good fraction of their computing effort is still expected to be executed as single-core tasks. Therefore, jobs with diverse resources requirements will be distributed across the Worldwide LHC Computing Grid (WLCG), making workload scheduling a complex problem in itself. In response to this challenge, the WLCG Multicore Deployment Task Force has been created in order to coordinate the joint effort from experiments and WLCG sites. The main objective is to ensure the convergence of approaches from the different LHC Virtual Organizations (VOs) to make the best use of the shared resources in order to satisfy their new computing needs, minimizing any inefficiency originated from the scheduling mechanisms, and without imposing unnecessary complexities in the way sites manage their resources. This paper describes the activities and progress of the Task Force related to the aforementioned topics, including experiences from key sites on how to best use different batch system technologies, the evolution of workload submission tools by the experiments and the knowledge gained from scale tests of the different proposed job submission strategies.

  18. Exploring virtualisation tools with a new virtualisation provisioning method to test dynamic grid environments for ALICE grid jobs over ARC grid middleware

    NASA Astrophysics Data System (ADS)

    Wagner, B.; Kileng, B.; Alice Collaboration

    2014-06-01

    The Nordic Tier-1 centre for LHC is distributed over several computing centres. It uses ARC as the internal computing grid middleware. ALICE uses its own grid middleware AliEn to distribute jobs and the necessary software application stack. To make use of most of the AliEn infrastructure and software deployment methods for running ALICE grid jobs on ARC, we are investigating different possible virtualisation technologies. For this a testbed and possible framework for bridging different middleware systems is under development. It allows us to test a variety of virtualisation methods and software deployment technologies in the form of different virtual machines.

  19. Grid-based HPC astrophysical applications at INAF Catania.

    NASA Astrophysics Data System (ADS)

    Costa, A.; Calanducci, A.; Becciani, U.; Capuzzo Dolcetta, R.

    The research activity on grid area at INAF Catania has been devoted to two main goals: the integration of a multiprocessor supercomputer (IBM SP4) within INFN-GRID middleware and the developing of a web-portal, Astrocomp-G, for the submission of astrophysical jobs into the grid infrastructure. Most of the actual grid implementation infrastructure is based on common hardware, i.e. i386 architecture machines (Intel Celeron, Pentium III, IV, Amd Duron, Athlon) using Linux RedHat OS. We were the first institute to integrate a totally different machine, an IBM SP with RISC architecture and AIX OS, as a powerful Worker Node inside a grid infrastructure. We identified and ported to AIX OS the grid components dealing with job monitoring and execution and properly tuned the Computing Element to delivery jobs into this special Worker Node. For testing purpose we used MARA, an astrophysical application for the analysis of light curve sequences. Astrocomp-G is a user-friendly front end to our grid site. Users who want to submit the astrophysical applications already available in the portal need to own a valid personal X509 certificate in addiction to a username and password released by the grid portal web master. The personal X509 certificate is a prerequisite for the creation of a short or long-term proxy certificate that allows the grid infrastructure services to identify clearly whether the owner of the job has the permissions to use resources and data. X509 and proxy certificates are part of GSI (Grid Security Infrastructure), a standard security tool adopted by all major grid sites around the world.

  20. Remote Job Testing for the Neutron Science TeraGrid Gateway

    SciTech Connect

    Lynch, Vickie E; Cobb, John W; Miller, Stephen D; Reuter, Michael A; Smith, Bradford C

    2009-01-01

    Remote job execution gives neutron science facilities access to high performance computing such as the TeraGrid. A scientific community can use community software with a community certificate and account through a common interface of a portal. Results show this approach is successful, but with more testing and problem solving, we expect remote job executions to become more reliable.

  1. The Grid[Way] Job Template Manager, a tool for parameter sweeping

    NASA Astrophysics Data System (ADS)

    Lorca, Alejandro; Huedo, Eduardo; Llorente, Ignacio M.

    2011-04-01

    Parameter sweeping is a widely used algorithmic technique in computational science. It is specially suited for high-throughput computing since the jobs evaluating the parameter space are loosely coupled or independent. A tool that integrates the modeling of a parameter study with the control of jobs in a distributed architecture is presented. The main task is to facilitate the creation and deletion of job templates, which are the elements describing the jobs to be run. Extra functionality relies upon the GridWay Metascheduler, acting as the middleware layer for job submission and control. It supports interesting features like multi-dimensional sweeping space, wildcarding of parameters, functional evaluation of ranges, value-skipping and job template automatic indexation. The use of this tool increases the reliability of the parameter sweep study thanks to the systematic bookkeeping of job templates and respective job statuses. Furthermore, it simplifies the porting of the target application to the grid reducing the required amount of time and effort. Program summaryProgram title: Grid[Way] Job Template Manager (version 1.0) Catalogue identifier: AEIE_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIE_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Apache license 2.0 No. of lines in distributed program, including test data, etc.: 3545 No. of bytes in distributed program, including test data, etc.: 126 879 Distribution format: tar.gz Programming language: Perl 5.8.5 and above Computer: Any (tested on PC x86 and x86_64) Operating system: Unix, GNU/Linux (tested on Ubuntu 9.04, Scientific Linux 4.7, centOS 5.4), Mac OS X (tested on Snow Leopard 10.6) RAM: 10 MB Classification: 6.5 External routines: The GridWay Metascheduler [1]. Nature of problem: To parameterize and manage an application running on a grid or cluster. Solution method: Generation of job templates as a cross product of

  2. Impact of admission and cache replacement policies on response times of jobs on data grids

    SciTech Connect

    Otoo, Ekow J.; Rotem, Doron; Shoshani, Arie

    2003-04-21

    Caching techniques have been used widely to improve the performance gaps of storage hierarchies in computing systems. Little is known about the impact of policies on the response times of jobs that access and process very large files in data grids particularly when data and computations on the data have to be co-located on the same host. In data intensive applications that access large data files over wide area network environment, such as data-grids, the combination of policies for job servicing (or scheduling), caching and cache replacement can significantly impact the performance of grid jobs. We present some preliminary results of a simulation study that combines an admission policy with a cache replacement policy when servicing jobs submitted to a storage resource manager. The results show that, in comparison to a first come first serve policy, the response times of jobs are significantly improved, for practical limits of disk cache sizes, when the jobs that are back-logged to access the same files are taken into consideration in scheduling the next file to be retrieved into the disk cache. Not only are the response times of jobs improved, but also the metric measures for caching policies, such as the hit ratio and the average cost per retrieval, are improved irrespective of the cache replacement policy.

  3. A modify ant colony optimization for the grid jobs scheduling problem with QoS requirements

    NASA Astrophysics Data System (ADS)

    Pu, Xun; Lu, XianLiang

    2011-10-01

    Job scheduling with customers' quality of service (QoS) requirement is challenging in grid environment. In this paper, we present a modify Ant colony optimization (MACO) for the Job scheduling problem in grid. Instead of using the conventional construction approach to construct feasible schedules, the proposed algorithm employs a decomposition method to satisfy the customer's deadline and cost requirements. Besides, a new mechanism of service instances state updating is embedded to improve the convergence of MACO. Experiments demonstrate the effectiveness of the proposed algorithm.

  4. A History-based Estimation for LHCb job requirements

    NASA Astrophysics Data System (ADS)

    Rauschmayr, Nathalie

    2015-12-01

    The main goal of a Workload Management System (WMS) is to find and allocate resources for the given tasks. The more and better job information the WMS receives, the easier will be to accomplish its task, which directly translates into higher utilization of resources. Traditionally, the information associated with each job, like expected runtime, is defined beforehand by the Production Manager in best case and fixed arbitrary values by default. In the case of LHCb's Workload Management System no mechanisms are provided which automate the estimation of job requirements. As a result, much more CPU time is normally requested than actually needed. Particularly, in the context of multicore jobs this presents a major problem, since single- and multicore jobs shall share the same resources. Consequently, grid sites need to rely on estimations given by the VOs in order to not decrease the utilization of their worker nodes when making multicore job slots available. The main reason for going to multicore jobs is the reduction of the overall memory footprint. Therefore, it also needs to be studied how memory consumption of jobs can be estimated. A detailed workload analysis of past LHCb jobs is presented. It includes a study of job features and their correlation with runtime and memory consumption. Following the features, a supervised learning algorithm is developed based on a history based prediction. The aim is to learn over time how jobs’ runtime and memory evolve influenced due to changes in experiment conditions and software versions. It will be shown that estimation can be notably improved if experiment conditions are taken into account.

  5. Using ssh and sshfs to virtualize Grid job submission with RCondor

    NASA Astrophysics Data System (ADS)

    Sfiligoi, I.; Dost, J. M.

    2014-06-01

    The HTCondor based glideinWMS has become the product of choice for exploiting Grid resources for many communities. Unfortunately, its default operational model expects users to log into a machine running a HTCondor schedd before being able to submit their jobs. Many users would instead prefer to use their local workstation for everything. A product that addresses this problem is RCondor, a module delivered with the HTCondor package. RCondor provides command line tools that simulate the behavior of a local HTCondor installation, while using ssh under the hood to execute commands on the remote node instead. RCondor also interfaces with sshfs, virtualizing access to remote files, thus giving the user the impression of a truly local HTCondor installation. This paper presents a detailed description of RCondor, as well as comparing it to the other methods currently available for accessing remote HTCondor schedds.

  6. Wavelet-Based Grid Generation

    NASA Technical Reports Server (NTRS)

    Jameson, Leland

    1996-01-01

    Wavelets can provide a basis set in which the basis functions are constructed by dilating and translating a fixed function known as the mother wavelet. The mother wavelet can be seen as a high pass filter in the frequency domain. The process of dilating and expanding this high-pass filter can be seen as altering the frequency range that is 'passed' or detected. The process of translation moves this high-pass filter throughout the domain, thereby providing a mechanism to detect the frequencies or scales of information at every location. This is exactly the type of information that is needed for effective grid generation. This paper provides motivation to use wavelets for grid generation in addition to providing the final product: source code for wavelet-based grid generation.

  7. On the Optimization of GLite-Based Job Submission

    NASA Astrophysics Data System (ADS)

    Misurelli, Giuseppe; Palmieri, Francesco; Pardi, Silvio; Veronesi, Paolo

    2011-12-01

    A Grid is a very dynamic, complex and heterogeneous system, whose reliability can be adversely conditioned by several different factors such as communications and hardware faults, middleware bugs or wrong configurations due to human errors. As the infrastructure scales, spanning a large number of sites, each hosting hundreds or thousands of hosts/resources, the occurrence of runtime faults following job submission becomes a very frequent and phenomenon. Therefore, fault avoidance becomes a fundamental aim in modern Grids since the dependability of individual resources spread upon widely distributed computing infrastructures and often used outside of their native organizational boundaries, cannot be guaranteed in any systematic way. Accordingly, we propose a simple job optimization solution based on a user-driven fault avoidance strategy. Such strategy starts from the introduction within the grid information system of several on-line service-monitoring metrics that can be used as specific hints to the workload management system for driving resource discovery operations according to a fault-free resource-scheduling plan. This solution, whose main goal is to minimize the execution time by avoiding execution failures, demonstrated to be very effective in incrementing both the user perceivable quality and the overall grid performance.

  8. Grid-based Meteorological and Crisis Applications

    NASA Astrophysics Data System (ADS)

    Hluchy, Ladislav; Bartok, Juraj; Tran, Viet; Lucny, Andrej; Gazak, Martin

    2010-05-01

    forecast model is a subject of the parameterization and parameter optimization before its real deployment. The parameter optimization requires tens of evaluations of the parameterized model accuracy and each evaluation of the model parameters requires re-running of the hundreds of meteorological situations collected over the years and comparison of the model output with the observed data. The architecture and inherent heterogeneity of both examples and their computational complexity and their interfaces to other systems and services make them well suited for decomposition into a set of web and grid services. Such decomposition has been performed within several projects we participated or participate in cooperation with academic sphere, namely int.eu.grid (dispersion model deployed as a pilot application to an interactive grid), SEMCO-WS (semantic composition of the web and grid services), DMM (development of a significant meteorological phenomena prediction system based on the data mining), VEGA 2009-2011 and EGEE III. We present useful and practical applications of technologies of high performance computing. The use of grid technology provides access to much higher computation power not only for modeling and simulation, but also for the model parameterization and validation. This results in the model parameters optimization and more accurate simulation outputs. Having taken into account that the simulations are used for the aviation, road traffic and crisis management, even small improvement in accuracy of predictions may result in significant improvement of safety as well as cost reduction. We found grid computing useful for our applications. We are satisfied with this technology and our experience encourages us to extend its use. Within an ongoing project (DMM) we plan to include processing of satellite images which extends our requirement on computation very rapidly. We believe that thanks to grid computing we are able to handle the job almost in real time.

  9. Output-based Job Descriptions: Beyond Skills and Competencies.

    ERIC Educational Resources Information Center

    Thomas, Mary Norris

    2000-01-01

    Explains output-based job descriptions, which describe the work rather than the worker. Topics include identifying job outputs; job analyses; identifying skills and competencies as support elements; and benefits over traditional job descriptions, including help in achieving business goals, use in strategic planning, clarifying role relationships,…

  10. Arc Length Based Grid Distribution For Surface and Volume Grids

    NASA Technical Reports Server (NTRS)

    Mastin, C. Wayne

    1996-01-01

    Techniques are presented for distributing grid points on parametric surfaces and in volumes according to a specified distribution of arc length. Interpolation techniques are introduced which permit a given distribution of grid points on the edges of a three-dimensional grid block to be propagated through the surface and volume grids. Examples demonstrate how these methods can be used to improve the quality of grids generated by transfinite interpolation.

  11. Final Report for 'An Abstract Job Handling Grid Service for Dataset Analysis'

    SciTech Connect

    David A Alexander

    2005-07-11

    For Phase I of the Job Handling project, Tech-X has built a Grid service for processing analysis requests, as well as a Graphical User Interface (GUI) client that uses the service. The service is designed to generically support High-Energy Physics (HEP) experimental analysis tasks. It has an extensible, flexible, open architecture and language. The service uses the Solenoidal Tracker At RHIC (STAR) experiment as a working example. STAR is an experiment at the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory (BNL). STAR and other experiments at BNL generate multiple Petabytes of HEP data. The raw data is captured as millions of input files stored in a distributed data catalog. Potentially using thousands of files as input, analysis requests are submitted to a processing environment containing thousands of nodes. The Grid service provides a standard interface to the processing farm. It enables researchers to run large-scale, massively parallel analysis tasks, regardless of the computational resources available in their location.

  12. Space-based Science Operations Grid Prototype

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Welch, Clara L.; Redman, Sandra

    2004-01-01

    Grid technology is the up and coming technology that is enabling widely disparate services to be offered to users that is very economical, easy to use and not available on a wide basis. Under the Grid concept disparate organizations generally defined as "virtual organizations" can share services i.e. sharing discipline specific computer applications, required to accomplish the specific scientific and engineering organizational goals and objectives. Grids are emerging as the new technology of the future. Grid technology has been enabled by the evolution of increasingly high speed networking. Without the evolution of high speed networking Grid technology would not have emerged. NASA/Marshall Space Flight Center's (MSFC) Flight Projects Directorate, Ground Systems Department is developing a Space-based Science Operations Grid prototype to provide to scientists and engineers the tools necessary to operate space-based science payloads/experiments and for scientists to conduct public and educational outreach. In addition Grid technology can provide new services not currently available to users. These services include mission voice and video, application sharing, telemetry management and display, payload and experiment commanding, data mining, high order data processing, discipline specific application sharing and data storage, all from a single grid portal. The Prototype will provide most of these services in a first step demonstration of integrated Grid and space-based science operations technologies. It will initially be based on the International Space Station science operational services located at the Payload Operations Integration Center at MSFC, but can be applied to many NASA projects including free flying satellites and future projects. The Prototype will use the Internet2 Abilene Research and Education Network that is currently a 10 Gb backbone network to reach the University of Alabama at Huntsville and several other, as yet unidentified, Space Station based

  13. Grid artifact reduction for direct digital radiography detectors based on rotated stationary grids with homomorphic filtering

    SciTech Connect

    Kim, Dong Sik; Lee, Sanggyun

    2013-06-15

    Purpose: Grid artifacts are caused when using the antiscatter grid in obtaining digital x-ray images. In this paper, research on grid artifact reduction techniques is conducted especially for the direct detectors, which are based on amorphous selenium. Methods: In order to analyze and reduce the grid artifacts, the authors consider a multiplicative grid image model and propose a homomorphic filtering technique. For minimal damage due to filters, which are used to suppress the grid artifacts, rotated grids with respect to the sampling direction are employed, and min-max optimization problems for searching optimal grid frequencies and angles for given sampling frequencies are established. The authors then propose algorithms for the grid artifact reduction based on the band-stop filters as well as low-pass filters. Results: The proposed algorithms are experimentally tested for digital x-ray images, which are obtained from direct detectors with the rotated grids, and are compared with other algorithms. It is shown that the proposed algorithms can successfully reduce the grid artifacts for direct detectors. Conclusions: By employing the homomorphic filtering technique, the authors can considerably suppress the strong grid artifacts with relatively narrow-bandwidth filters compared to the normal filtering case. Using rotated grids also significantly reduces the ringing artifact. Furthermore, for specific grid frequencies and angles, the authors can use simple homomorphic low-pass filters in the spatial domain, and thus alleviate the grid artifacts with very low implementation complexity.

  14. Expected-Credibility-Based Job Scheduling for Reliable Volunteer Computing

    NASA Astrophysics Data System (ADS)

    Watanabe, Kan; Fukushi, Masaru; Horiguchi, Susumu

    This paper presents a proposal of an expected-credibility-based job scheduling method for volunteer computing (VC) systems with malicious participants who return erroneous results. Credibility-based voting is a promising approach to guaranteeing the computational correctness of VC systems. However, it relies on a simple round-robin job scheduling method that does not consider the jobs' order of execution, thereby resulting in numerous unnecessary job allocations and performance degradation of VC systems. To improve the performance of VC systems, the proposed job scheduling method selects a job to be executed prior to others dynamically based on two novel metrics: expected credibility and the expected number of results for each job. Simulation of VCs shows that the proposed method can improve the VC system performance up to 11%; It always outperforms the original round-robin method irrespective of the value of unknown parameters such as population and behavior of saboteurs.

  15. The Construction of Job Families Based on Company Specific PAQ Job Dimensions.

    ERIC Educational Resources Information Center

    Taylor, L. R.; Colbert, G. A.

    1978-01-01

    Research is presented on the construction of job families based on Position Analysis Questionnaire data. The data were subjected to a component analysis. Results were interpreted as sufficiently encouraging to proceed with analyses of validity generalization within the job families. (Editor/RK)

  16. KARDIONET: telecardiology based on GRID technology.

    PubMed

    Sierdzinski, Janusz; Bala, Piotr; Rudowski, Robert; Grabowski, Marcin; Karpinski, Grzegorz; Kaczynski, Bartosz

    2009-01-01

    The telecardiological system Kardionet is being developed to support interventional cardiology. The main aim of the system is to collect specific and systemized patient data from the distant medical centers and to organize it in the best possible way to diagnose quickly and choose the medical treatment. It is the distributed GRID type system operating in shortest achievable time. Computational GRID solutions together with distributed archive data GRID support creation, implementation and operations of software using considerable computational power. Kardionet system devoted to cardiology purposes includes specially developed data bases for the multimodal data and metadata, including information on a patient and his/her medical examination results. As Kardionet uses modern technology and methods we expect it could have a considerable impact on telemedicine development in Poland. The presented telecardiological system can provide a number of important gains for the national health care system if it is implemented nationwide. PMID:19745355

  17. Space-based Operations Grid Prototype

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Welch, Clara L.

    2003-01-01

    The Space based Operations Grid is intended to integrate the "high end" network services and compute resources that a remote payload investigator needs. This includes integrating and enhancing existing services such as access to telemetry, payload commanding, payload planning and internet voice distribution as well as the addition of services such as video conferencing, collaborative design, modeling or visualization, text messaging, application sharing, and access to existing compute or data grids. Grid technology addresses some of the greatest challenges and opportunities presented by the current trends in technology, i.e. how to take advantage of ever increasing bandwidth, how to manage virtual organizations and how to deal with the increasing threats to information technology security. We will discuss the pros and cons of using grid technology in space-based operations and share current plans for the prototype. It is hoped that early on the prototype can incorporate many of the existing as well as future services that are discussed in the first paragraph above to cooperating International Space Station Principle Investigators both nationally and internationally.

  18. Technology for a NASA Space-Based Science Operations Grid

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Redman, Sandra H.

    2003-01-01

    This viewgraph representation presents an overview of a proposal to develop a space-based operations grid in support of space-based science experiments. The development of such a grid would provide a dynamic, secure and scalable architecture based on standards and next-generation reusable software and would enable greater science collaboration and productivity through the use of shared resources and distributed computing. The authors propose developing this concept for use on payload experiments carried aboard the International Space Station. Topics covered include: grid definitions, portals, grid development and coordination, grid technology and potential uses of such a grid.

  19. Grid-based platform for training in Earth Observation

    NASA Astrophysics Data System (ADS)

    Petcu, Dana; Zaharie, Daniela; Panica, Silviu; Frincu, Marc; Neagul, Marian; Gorgan, Dorian; Stefanut, Teodor

    2010-05-01

    found in [4]. The Workload Management System (WMS) provides two types of resource managers. The first one will be based on Condor HTC and use Condor as a job manager for task dispatching and working nodes (for development purposes) while the second one will use GT4 GRAM (for production purposes). The WMS main component, the Grid Task Dispatcher (GTD), is responsible for the interaction with other internal services as the composition engine in order to facilitate access to the processing platform. Its main responsibilities are to receive tasks from the workflow engine or directly from user interface, to use a task description language (the ClassAd meta language in case of Condor HTC) for job units, to submit and check the status of jobs inside the workload management system and to retrieve job logs for debugging purposes. More details can be found in [4]. A particular component of the platform is eGLE, the eLearning environment. It provides the functionalities necessary to create the visual appearance of the lessons through the usage of visual containers like tools, patterns and templates. The teacher uses the platform for testing the already created lessons, as well as for developing new lesson resources, such as new images and workflows describing graph-based processing. The students execute the lessons or describe and experiment with new workflows or different data. The eGLE database includes several workflow-based lesson descriptions, teaching materials and lesson resources, selected satellite and spatial data. More details can be found in [5]. A first training event of using the platform was organized in September 2009 during 11th SYNASC symposium (links to the demos, testing interface, and exercises are available on project site [1]). The eGLE component was presented at 4th GPC conference in May 2009. Moreover, the functionality of the platform will be presented as demo in April 2010 at 5th EGEE User forum. References: [1] GiSHEO consortium, Project site, http

  20. HLRmon: a role-based grid accounting report web tool

    NASA Astrophysics Data System (ADS)

    Pra, S. D.; Fattibene, E.; Misurelli, G.; Pescarmona, F.; Gaido, L.

    2008-07-01

    Both Grid users and Grid operators need ways to get CPU usage statistics about jobs executed in a given time period at various different levels, depending on their specific Grid's role and rights. While a Grid user is interested in reports about its own jobs and should not get access to other's data, Site or Virtual Organization (VO) or Regional Operation Centre (ROC) manager would also like to see how resources are used through the Grid in a per Site or per VO basis, or both. The whole set of different reports turns out to be quite large, and various existing tools made to create them tend to better satisfy a single user's category, eventually despite of another. HLRmon[1] results from our efforts to generate suitable reports for all existing categories and has been designed to serve them within a unified layout. Thanks to its ability to authenticate clients through certificate and related authorization rights, it can a-priori restrict the selectable items range offered to the web user, so that sensitive information can only be provided to specifically enabled people. Information are gathered by HLRmon from a Home Location Register (HLR) which stores complete accounting data in a per job basis. Depending on the kind of reports that are to be generated, it directly queries the HLR server using an ad-hoc Distributed Grid Accounting System (DGAS[2]) query tool (tipically user's level detail info), or a local RDBMS table with daily aggregate information in a per Day, Site, VO basis, thus saving connection delay time and needless load on the HLR server.

  1. GridLAB-D: An Agent-Based Simulation Framework for Smart Grids

    DOE PAGESBeta

    Chassin, David P.; Fuller, Jason C.; Djilali, Ned

    2014-01-01

    Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore » design, and integration of wind power in a smart grid.« less

  2. GridLAB-D: An Agent-Based Simulation Framework for Smart Grids

    SciTech Connect

    Chassin, David P.; Fuller, Jason C.; Djilali, Ned

    2014-06-23

    Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control system design, and integration of wind power in a smart grid.

  3. A Grid-based solution for management and analysis of microarrays in distributed experiments

    PubMed Central

    Porro, Ivan; Torterolo, Livia; Corradi, Luca; Fato, Marco; Papadimitropoulos, Adam; Scaglione, Silvia; Schenone, Andrea; Viti, Federica

    2007-01-01

    Several systems have been presented in the last years in order to manage the complexity of large microarray experiments. Although good results have been achieved, most systems tend to lack in one or more fields. A Grid based approach may provide a shared, standardized and reliable solution for storage and analysis of biological data, in order to maximize the results of experimental efforts. A Grid framework has been therefore adopted due to the necessity of remotely accessing large amounts of distributed data as well as to scale computational performances for terabyte datasets. Two different biological studies have been planned in order to highlight the benefits that can emerge from our Grid based platform. The described environment relies on storage services and computational services provided by the gLite Grid middleware. The Grid environment is also able to exploit the added value of metadata in order to let users better classify and search experiments. A state-of-art Grid portal has been implemented in order to hide the complexity of framework from end users and to make them able to easily access available services and data. The functional architecture of the portal is described. As a first test of the system performances, a gene expression analysis has been performed on a dataset of Affymetrix GeneChip® Rat Expression Array RAE230A, from the ArrayExpress database. The sequence of analysis includes three steps: (i) group opening and image set uploading, (ii) normalization, and (iii) model based gene expression (based on PM/MM difference model). Two different Linux versions (sequential and parallel) of the dChip software have been developed to implement the analysis and have been tested on a cluster. From results, it emerges that the parallelization of the analysis process and the execution of parallel jobs on distributed computational resources actually improve the performances. Moreover, the Grid environment have been tested both against the possibility of

  4. Decentralized Service Allocation in a Broker Overlay Based Grid

    NASA Astrophysics Data System (ADS)

    Azab, Abdulrahman; Meling, Hein

    Grid computing is based on coordinated resource sharing in a dynamic environment of multi-institutional virtual organizations. Data exchanges, and service allocation, are challenging problems in the field of Grid computing. This is due to the decentralization of Grid systems. Building decentralized Grid systems with efficient resource management and software component mechanisms is a need for achieving the required efficiency and usability of Grid systems. In this work, a decentralized Grid system model is presented in which, the system is divided into virtual organizations each controlled by a broker. An overlay network of brokers is responsible for global resource management and managing allocation of services. Experimental results show that, the system achieves dependable performance with various loads of services, and broker failures.

  5. Team Primacy Concept (TPC) Based Employee Evaluation and Job Performance

    ERIC Educational Resources Information Center

    Muniute, Eivina I.; Alfred, Mary V.

    2007-01-01

    This qualitative study explored how employees learn from Team Primacy Concept (TPC) based employee evaluation and how they use the feedback in performing their jobs. TPC based evaluation is a form of multirater evaluation, during which the employee's performance is discussed by one's peers in a face-to-face team setting. The study used Kolb's…

  6. Feature combination analysis in smart grid based using SOM for Sudan national grid

    NASA Astrophysics Data System (ADS)

    Bohari, Z. H.; Yusof, M. A. M.; Jali, M. H.; Sulaima, M. F.; Nasir, M. N. M.

    2015-12-01

    In the investigation of power grid security, the cascading failure in multicontingency situations has been a test because of its topological unpredictability and computational expense. Both system investigations and burden positioning routines have their limits. In this project, in view of sorting toward Self Organizing Maps (SOM), incorporated methodology consolidating spatial feature (distance)-based grouping with electrical attributes (load) to evaluate the vulnerability and cascading impact of various part sets in the force lattice. Utilizing the grouping result from SOM, sets of overwhelming stacked beginning victimized people to perform assault conspires and asses the consequent falling impact of their failures, and this SOM-based approach viably distinguishes the more powerless sets of substations than those from the conventional burden positioning and other bunching strategies. The robustness of power grids is a central topic in the design of the so called "smart grid". In this paper, to analyze the measures of importance of the nodes in a power grid under cascading failure. With these efforts, we can distinguish the most vulnerable nodes and protect them, improving the safety of the power grid. Also we can measure if a structure is proper for power grids.

  7. School-Based Job Placement Service Model. Final Report.

    ERIC Educational Resources Information Center

    Columbia-Montour Area Vocational-Technical School, Bloomsburg, PA.

    A school-based job placement service model, designed to help seniors find suitable employment, has been operational at the Columbia-Montour Area Vocational-Technical School since April 1974. The final report discusses the activities of the model since its inception, with emphasis on the period from July 1, 1974 to June 30, 1975 (Phase 3).…

  8. DEM Based Modeling: Grid or TIN? The Answer Depends

    NASA Astrophysics Data System (ADS)

    Ogden, F. L.; Moreno, H. A.

    2015-12-01

    The availability of petascale supercomputing power has enabled process-based hydrological simulations on large watersheds and two-way coupling with mesoscale atmospheric models. Of course with increasing watershed scale come corresponding increases in watershed complexity, including wide ranging water management infrastructure and objectives, and ever increasing demands for forcing data. Simulations of large watersheds using grid-based models apply a fixed resolution over the entire watershed. In large watersheds, this means an enormous number of grids, or coarsening of the grid resolution to reduce memory requirements. One alternative to grid-based methods is the triangular irregular network (TIN) approach. TINs provide the flexibility of variable resolution, which allows optimization of computational resources by providing high resolution where necessary and low resolution elsewhere. TINs also increase required effort in model setup, parameter estimation, and coupling with forcing data which are often gridded. This presentation discusses the costs and benefits of the use of TINs compared to grid-based methods, in the context of large watershed simulations within the traditional gridded WRF-HYDRO framework and the new TIN-based ADHydro high performance computing watershed simulator.

  9. Grid-based electronic structure calculations: The tensor decomposition approach

    NASA Astrophysics Data System (ADS)

    Rakhuba, M. V.; Oseledets, I. V.

    2016-05-01

    We present a fully grid-based approach for solving Hartree-Fock and all-electron Kohn-Sham equations based on low-rank approximation of three-dimensional electron orbitals. Due to the low-rank structure the total complexity of the algorithm depends linearly with respect to the one-dimensional grid size. Linear complexity allows for the usage of fine grids, e.g. 81923 and, thus, cheap extrapolation procedure. We test the proposed approach on closed-shell atoms up to the argon, several molecules and clusters of hydrogen atoms. All tests show systematical convergence with the required accuracy.

  10. ISS Space-Based Science Operations Grid for the Ground Systems Architecture Workshop (GSAW)

    NASA Technical Reports Server (NTRS)

    Welch, Clara; Bradford, Bob

    2003-01-01

    Contents include the following:What is grid? Benefits of a grid to space-based science operations. Our approach. Score of prototype grid. The security question. Short term objectives. Long term objectives. Space-based services required for operations. The prototype. Score of prototype grid. Prototype service layout. Space-based science grid service components.

  11. Jobs for JOBS: Toward a Work-Based Welfare System. Occasional Paper 1993-1.

    ERIC Educational Resources Information Center

    Levitan, Sar A.; Gallo, Frank

    The Job Opportunities and Basic Skills (JOBS) program, a component of the 1988 Family Support Act, emphasizes education and occupational training for welfare recipients, but it has not provided sufficient corrective measures to promote work among recipients of Aid for Families with Dependent Children (AFDC). The most serious deficiency of JOBS is…

  12. Supersampling method for efficient grid-based electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Ryu, Seongok; Choi, Sunghwan; Hong, Kwangwoo; Kim, Woo Youn

    2016-03-01

    The egg-box effect, the spurious variation of energy and force due to the discretization of continuous space, is an inherent vexing problem in grid-based electronic structure calculations. Its effective suppression allowing for large grid spacing is thus crucial for accurate and efficient computations. We here report that the supersampling method drastically alleviates it by eliminating the rapidly varying part of a target function along both radial and angular directions. In particular, the use of the sinc filtering function performs best because as an ideal low pass filter it clearly cuts out the high frequency region beyond allowed by a given grid spacing.

  13. Supersampling method for efficient grid-based electronic structure calculations.

    PubMed

    Ryu, Seongok; Choi, Sunghwan; Hong, Kwangwoo; Kim, Woo Youn

    2016-03-01

    The egg-box effect, the spurious variation of energy and force due to the discretization of continuous space, is an inherent vexing problem in grid-based electronic structure calculations. Its effective suppression allowing for large grid spacing is thus crucial for accurate and efficient computations. We here report that the supersampling method drastically alleviates it by eliminating the rapidly varying part of a target function along both radial and angular directions. In particular, the use of the sinc filtering function performs best because as an ideal low pass filter it clearly cuts out the high frequency region beyond allowed by a given grid spacing. PMID:26957151

  14. Deploying web-based visual exploration tools on the grid

    SciTech Connect

    Jankun-Kelly, T.J.; Kreylos, Oliver; Shalf, John; Ma, Kwan-Liu; Hamann, Bernd; Joy, Kenneth; Bethel, E. Wes

    2002-02-01

    We discuss a web-based portal for the exploration, encapsulation, and dissemination of visualization results over the Grid. This portal integrates three components: an interface client for structured visualization exploration, a visualization web application to manage the generation and capture of the visualization results, and a centralized portal application server to access and manage grid resources. We demonstrate the usefulness of the developed system using an example for Adaptive Mesh Refinement (AMR) data visualization.

  15. Protecting the Smart Grid: A Risk Based Approach

    SciTech Connect

    Clements, Samuel L.; Kirkham, Harold; Elizondo, Marcelo A.; Lu, Shuai

    2011-10-10

    This paper describes a risk-based approach to security that has been used for years in protecting physical assets, and shows how it could be modified to help secure the digital aspects of the smart grid and control systems in general. One way the smart grid has been said to be vulnerable is that mass load fluctuations could be created by quickly turning off and on large quantities of smart meters. We investigate the plausibility.

  16. GRID-BASED EXPLORATION OF COSMOLOGICAL PARAMETER SPACE WITH SNAKE

    SciTech Connect

    Mikkelsen, K.; Næss, S. K.; Eriksen, H. K.

    2013-11-10

    We present a fully parallelized grid-based parameter estimation algorithm for investigating multidimensional likelihoods called Snake, and apply it to cosmological parameter estimation. The basic idea is to map out the likelihood grid-cell by grid-cell according to decreasing likelihood, and stop when a certain threshold has been reached. This approach improves vastly on the 'curse of dimensionality' problem plaguing standard grid-based parameter estimation simply by disregarding grid cells with negligible likelihood. The main advantages of this method compared to standard Metropolis-Hastings Markov Chain Monte Carlo methods include (1) trivial extraction of arbitrary conditional distributions; (2) direct access to Bayesian evidences; (3) better sampling of the tails of the distribution; and (4) nearly perfect parallelization scaling. The main disadvantage is, as in the case of brute-force grid-based evaluation, a dependency on the number of parameters, N{sub par}. One of the main goals of the present paper is to determine how large N{sub par} can be, while still maintaining reasonable computational efficiency; we find that N{sub par} = 12 is well within the capabilities of the method. The performance of the code is tested by comparing cosmological parameters estimated using Snake and the WMAP-7 data with those obtained using CosmoMC, the current standard code in the field. We find fully consistent results, with similar computational expenses, but shorter wall time due to the perfect parallelization scheme.

  17. Grid-based Exploration of Cosmological Parameter Space with Snake

    NASA Astrophysics Data System (ADS)

    Mikkelsen, K.; Næss, S. K.; Eriksen, H. K.

    2013-11-01

    We present a fully parallelized grid-based parameter estimation algorithm for investigating multidimensional likelihoods called Snake, and apply it to cosmological parameter estimation. The basic idea is to map out the likelihood grid-cell by grid-cell according to decreasing likelihood, and stop when a certain threshold has been reached. This approach improves vastly on the "curse of dimensionality" problem plaguing standard grid-based parameter estimation simply by disregarding grid cells with negligible likelihood. The main advantages of this method compared to standard Metropolis-Hastings Markov Chain Monte Carlo methods include (1) trivial extraction of arbitrary conditional distributions; (2) direct access to Bayesian evidences; (3) better sampling of the tails of the distribution; and (4) nearly perfect parallelization scaling. The main disadvantage is, as in the case of brute-force grid-based evaluation, a dependency on the number of parameters, N par. One of the main goals of the present paper is to determine how large N par can be, while still maintaining reasonable computational efficiency; we find that N par = 12 is well within the capabilities of the method. The performance of the code is tested by comparing cosmological parameters estimated using Snake and the WMAP-7 data with those obtained using CosmoMC, the current standard code in the field. We find fully consistent results, with similar computational expenses, but shorter wall time due to the perfect parallelization scheme.

  18. Design of Grid Portal System Based on RIA

    NASA Astrophysics Data System (ADS)

    Cao, Caifeng; Luo, Jianguo; Qiu, Zhixin

    Grid portal is an important branch of grid research. In order to solve the weak expressive force, the poor interaction, the low operating efficiency and other insufficiencies of the first and second generation of grid portal system, RIA technology was introduced to it. A new portal architecture was designed based on RIA and Web service. The concrete realizing scheme of portal system was presented by using Adobe Flex/Flash technology, which formed a new design pattern. In system architecture, the design pattern has B/S and C/S superiorities, balances server and its client side, optimizes the system performance, realizes platform irrelevance. In system function, the design pattern realizes grid service call, provides client interface with rich user experience, integrates local resources by using FABridge, LCDS, Flash player and some other components.

  19. Grist : grid-based data mining for astronomy

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph C.; Katz, Daniel S.; Miller, Craig D.; Walia, Harshpreet; Williams, Roy; Djorgovski, S. George; Graham, Matthew J.; Mahabal, Ashish; Babu, Jogesh; Berk, Daniel E. Vanden; Nichol, Robert

    2004-01-01

    The Grist project is developing a grid-technology based system as a research environment for astronomy with massive and complex datasets. This knowledge extraction system will consist of a library of distributed grid services controlled by a workflow system, compliant with standards emerging from the grid computing, web services, and virtual observatory communities. This new technology is being used to find high redshift quasars, study peculiar variable objects, search for transients in real time, and fit SDSS QSO spectra to measure black hole masses. Grist services are also a component of the 'hyperatlas' project to serve high-resolution multi-wavelength imagery over the Internet. In support of these science and outreach objectives, the Grist framework will provide the enabling fabric to tie together distributed grid services in the areas of data access, federation, mining, subsetting, source extraction, image mosaicking, statistics, and visualization.

  20. Advances in Distance-Based Hole Cuts on Overset Grids

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Pandya, Shishir A.

    2015-01-01

    An automatic and efficient method to determine appropriate hole cuts based on distances to the wall and donor stencil maps for overset grids is presented. A new robust procedure is developed to create a closed surface triangulation representation of each geometric component for accurate determination of the minimum hole. Hole boundaries are then displaced away from the tight grid-spacing regions near solid walls to allow grid overlap to occur away from the walls where cell sizes from neighboring grids are more comparable. The placement of hole boundaries is efficiently determined using a mid-distance rule and Cartesian maps of potential valid donor stencils with minimal user input. Application of this procedure typically results in a spatially-variable offset of the hole boundaries from the minimum hole with only a small number of orphan points remaining. Test cases on complex configurations are presented to demonstrate the new scheme.

  1. Market-Based Indian Grid Integration Study Options: Preprint

    SciTech Connect

    Stoltenberg, B.; Clark, K.; Negi, S. K.

    2012-03-01

    The Indian state of Gujarat is forecasting solar and wind generation expansion from 16% to 32% of installed generation capacity by 2015. Some states in India are already experiencing heavy wind power curtailment. Understanding how to integrate variable generation (VG) into the grid is of great interest to local transmission companies and India's Ministry of New and Renewable Energy. This paper describes the nature of a market-based integration study and how this approach, while new to Indian grid operation and planning, is necessary to understand how to operate and expand the grid to best accommodate the expansion of VG. Second, it discusses options in defining a study's scope, such as data granularity, generation modeling, and geographic scope. The paper also explores how Gujarat's method of grid operation and current system reliability will affect how an integration study can be performed.

  2. Base-Flow Index Grid for the Conterminous United States

    USGS Publications Warehouse

    Wolock, David M.

    2003-01-01

    This 1-kilometer raster (grid) dataset for the conterminous United States was created by interpolating base-flow index (BFI) values estimated at U.S. Geological Survey (USGS) streamgages. Base flow is the component of streamflow that can be attributed to ground-water discharge into streams.

  3. Software-Based Challenges of Developing the Future Distribution Grid

    SciTech Connect

    Stewart, Emma; Kiliccote, Sila; McParland, Charles

    2014-06-01

    distribution grid modeling, and measured data sources are a key missing element . Modeling tools need to be calibrated based on measured grid data to validate their output in varied conditions such as high renewables penetration and rapidly changing topology. In addition, establishing a standardized data modeling format would enable users to transfer data among tools to take advantage of different analysis features. ?

  4. Correspondence between Video-Based Preference Assessment and Subsequent Community Job Performance

    ERIC Educational Resources Information Center

    Morgan, Robert L.; Horrocks, Erin L.

    2011-01-01

    Researchers identified high and low preference jobs using a video web-based assessment program with three young adults ages 18 to 19 with intellectual disabilities. Individual participants were then taught to perform high and low preference jobs in community locations. The order of 25-min high and low preference job sessions was randomized. A…

  5. School-Based Job Placement Service Model: Phase I, Planning. Final Report.

    ERIC Educational Resources Information Center

    Gingerich, Garland E.

    To assist school administrators and guidance personnel in providing job placement services, a study was conducted to: (1) develop a model design for a school-based job placement system, (2) identify students to be served by the model, (3) list specific services provided to students, and (4) develop job descriptions for each individual responsible…

  6. A Grid Infrastructure for Supporting Space-based Science Operations

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Redman, Sandra H.; McNair, Ann R. (Technical Monitor)

    2002-01-01

    Emerging technologies for computational grid infrastructures have the potential for revolutionizing the way computers are used in all aspects of our lives. Computational grids are currently being implemented to provide a large-scale, dynamic, and secure research and engineering environments based on standards and next-generation reusable software, enabling greater science and engineering productivity through shared resources and distributed computing for less cost than traditional architectures. Combined with the emerging technologies of high-performance networks, grids provide researchers, scientists and engineers the first real opportunity for an effective distributed collaborative environment with access to resources such as computational and storage systems, instruments, and software tools and services for the most computationally challenging applications.

  7. A data grid for imaging-based clinical trials

    NASA Astrophysics Data System (ADS)

    Zhou, Zheng; Chao, Sander S.; Lee, Jasper; Liu, Brent; Documet, Jorge; Huang, H. K.

    2007-03-01

    Clinical trials play a crucial role in testing new drugs or devices in modern medicine. Medical imaging has also become an important tool in clinical trials because images provide a unique and fast diagnosis with visual observation and quantitative assessment. A typical imaging-based clinical trial consists of: 1) A well-defined rigorous clinical trial protocol, 2) a radiology core that has a quality control mechanism, a biostatistics component, and a server for storing and distributing data and analysis results; and 3) many field sites that generate and send image studies to the radiology core. As the number of clinical trials increases, it becomes a challenge for a radiology core servicing multiple trials to have a server robust enough to administrate and quickly distribute information to participating radiologists/clinicians worldwide. The Data Grid can satisfy the aforementioned requirements of imaging based clinical trials. In this paper, we present a Data Grid architecture for imaging-based clinical trials. A Data Grid prototype has been implemented in the Image Processing and Informatics (IPI) Laboratory at the University of Southern California to test and evaluate performance in storing trial images and analysis results for a clinical trial. The implementation methodology and evaluation protocol of the Data Grid are presented.

  8. The biometric-based module of smart grid system

    NASA Astrophysics Data System (ADS)

    Engel, E.; Kovalev, I. V.; Ermoshkina, A.

    2015-10-01

    Within Smart Grid concept the flexible biometric-based module base on Principal Component Analysis (PCA) and selective Neural Network is developed. The formation of the selective Neural Network the biometric-based module uses the method which includes three main stages: preliminary processing of the image, face localization and face recognition. Experiments on the Yale face database show that (i) selective Neural Network exhibits promising classification capability for face detection, recognition problems; and (ii) the proposed biometric-based module achieves near real-time face detection, recognition speed and the competitive performance, as compared to some existing subspaces-based methods.

  9. A geometry-based adaptive unstructured grid generation algorithm for complex geological media

    NASA Astrophysics Data System (ADS)

    Bahrainian, Seyed Saied; Dezfuli, Alireza Daneh

    2014-07-01

    In this paper a novel unstructured grid generation algorithm is presented that considers the effect of geological features and well locations in grid resolution. The proposed grid generation algorithm presents a strategy for definition and construction of an initial grid based on the geological model, geometry adaptation of geological features, and grid resolution control. The algorithm is applied to seismotectonic map of the Masjed-i-Soleiman reservoir. Comparison of grid results with the “Triangle” program shows a more suitable permeability contrast. Immiscible two-phase flow solutions are presented for a fractured porous media test case using different grid resolutions. Adapted grid on the fracture geometry gave identical results with that of a fine grid. The adapted grid employed 88.2% less CPU time when compared to the solutions obtained by the fine grid.

  10. GRID based Thermal Images Processing for volcanic activity monitoring

    NASA Astrophysics Data System (ADS)

    Mangiagli, S.; Coco, S.; Drago, L.; Laudani, A.,; Lodato, L.; Pollicino, G.; Torrisi, O.

    2009-04-01

    evolution. Clearly the analysis of this amount of data requires a lot of CPU and storage resources and this represent a serious limitation, and often this can overwhelm the performance capability of a workstation. Fortunately the INGV and the University of Catania are involved in a project for the development of a GRID infrastructure (a virtual supercomputer created by using a network of independent, geographically dispersed, computing clusters which act like a grid) and in software for this GRID. The performance of the VTA can be improved by using GRID thanks to its kernel thought to perform analysis for each thermal image independently from the others, and consequently it can be adequately parallelized in such a way the different parts of the same computation job can run on a multiplicity of machines. In particular the VTA grid version has been conceived considering the application as a Direct Acyclic Graph (DAG): the analysis task is first subdivided in the major number of machines available and then another part of the program proved the aggregation of the results. Consequently the porting of this software in the GRID environment greatly enhanced VTA's potentialities, allowing us to perform faster and multiple analysis on huge set of data, proving itself as a really usefull instrument for scientific research.

  11. Relationship between bases of power and job stresses: role of mentoring.

    PubMed

    Lo, May-Chiun; Thurasamy, Ramayah; Liew, Wei Tak

    2014-01-01

    Building upon the social exchange theory, this paper hypothesized the direct effect of bases of power on job stress with mentoring as moderator. Power bases and job stresses were conceptualized as 7- and 3- dimensional constructs, respectively. One hundred and ninety-five Malaysian managers and executives working in large-scale multinational companies participated in this study. The results have indicated that bases of power as possessed by supervisors have strong effect on employees' job stress and mentoring was found to have moderated the relationship between power bases and job stress. Implications of the findings, potential limitations of the study, and directions for future research were discussed further. PMID:25157334

  12. Grid-Based Fourier Transform Phase Contrast Imaging

    NASA Astrophysics Data System (ADS)

    Tahir, Sajjad

    Low contrast in x-ray attenuation imaging between different materials of low electron density is a limitation of traditional x-ray radiography. Phase contrast imaging offers the potential to improve the contrast between such materials, but due to the requirements on the spatial coherence of the x-ray beam, practical implementation of such systems with tabletop (i.e. non-synchrotron) sources has been limited. One recently developed phase imaging technique employs multiple fine-pitched gratings. However, the strict manufacturing tolerances and precise alignment requirements have limited the widespread adoption of grating-based techniques. In this work, we have investigated a technique recently demonstrated by Bennett et al. that utilizes a single grid of much coarser pitch. Our system consisted of a low power 100 microm spot Mo source, a CCD with 22 microm pixel pitch, and either a focused mammography linear grid or a stainless steel woven mesh. Phase is extracted from a single image by windowing and comparing data localized about harmonics of the grid in the Fourier domain. A Matlab code was written to perform the image processing. For the first time, the effects on the diffraction phase contrast and scattering amplitude images of varying grid types and periods, and of varying the window function type used to separate the harmonics, and the window widths, were investigated. Using the wire mesh, derivatives of the phase along two orthogonal directions were obtained and new methods investigated to form improved phase contrast images.

  13. Grid-based representation and dynamic visualization of ionospheric tomography

    NASA Astrophysics Data System (ADS)

    He, L. M.; Yang, Y.; Su, C.; Yu, J. Q.; Yang, F.; Wu, L. X.

    2013-10-01

    The ionosphere is a dynamic system with complex structures. With the development of abundant global navigation satellite systems, the ionospheric electron density in different altitudes and its time variations can be obtained by ionospheric tomography technique using GNSS observations collected by the continuously operating GNSS tracking stations distributed over globe. However, it is difficult to represent and analyze global and local ionospheric electron density variations in three-dimensional (3D) space due to its complex structures. In this paper, we introduce a grid-based system to overcome this constraint. First, we give the principles, algorithms and procedures of GNSS-based ionospheric tomography technique. Then, the earth system spatial grid (ESSG) based on the spheroid degenerated octree grid (SDOG) is introduced in detail. Finally, more than 400 continuously operating GNSS receivers from the International GNSS Service are utilized to realize global ionospheric tomography, and then the ESSG is used to organize and express the tomography results in 4D, including 3 spatial dimensions and time.

  14. A Fully Automatic Method for Gridding Bright Field Images of Bead-Based Microarrays.

    PubMed

    Datta, Abhik; Wai-Kin Kong, Adams; Yow, Kin-Choong

    2016-07-01

    In this paper, a fully automatic method for gridding bright field images of bead-based microarrays is proposed. There have been numerous techniques developed for gridding fluorescence images of traditional spotted microarrays but to our best knowledge, no algorithm has yet been developed for gridding bright field images of bead-based microarrays. The proposed gridding method is designed for automatic quality control during fabrication and assembly of bead-based microarrays. The method begins by estimating the grid parameters using an evolutionary algorithm. This is followed by a grid-fitting step that rigidly aligns an ideal grid with the image. Finally, a grid refinement step deforms the ideal grid to better fit the image. The grid fitting and refinement are performed locally and the final grid is a nonlinear (piecewise affine) grid. To deal with extreme corruptions in the image, the initial grid parameter estimation and grid-fitting steps employ robust search techniques. The proposed method does not have any free parameters that need tuning. The method is capable of identifying the grid structure even in the presence of extreme amounts of artifacts and distortions. Evaluation results on a variety of images are presented. PMID:26011899

  15. Jobs, Jobs, Jobs!

    ERIC Educational Resources Information Center

    Jacobson, Linda

    2011-01-01

    Teaching is not the safe career bet that it once was. The thinking used to be: New students will always be entering the public schools, and older teachers will always be retiring, so new teachers will always be needed. But teaching jobs aren't secure enough to stand up to the "Great Recession," as this drawn-out downturn has been called. Across…

  16. An agent-based multilayer architecture for bioinformatics grids.

    PubMed

    Bartocci, Ezio; Cacciagrano, Diletta; Cannata, Nicola; Corradini, Flavio; Merelli, Emanuela; Milanesi, Luciano; Romano, Paolo

    2007-06-01

    Due to the huge volume and complexity of biological data available today, a fundamental component of biomedical research is now in silico analysis. This includes modelling and simulation of biological systems and processes, as well as automated bioinformatics analysis of high-throughput data. The quest for bioinformatics resources (including databases, tools, and knowledge) becomes therefore of extreme importance. Bioinformatics itself is in rapid evolution and dedicated Grid cyberinfrastructures already offer easier access and sharing of resources. Furthermore, the concept of the Grid is progressively interleaving with those of Web Services, semantics, and software agents. Agent-based systems can play a key role in learning, planning, interaction, and coordination. Agents constitute also a natural paradigm to engineer simulations of complex systems like the molecular ones. We present here an agent-based, multilayer architecture for bioinformatics Grids. It is intended to support both the execution of complex in silico experiments and the simulation of biological systems. In the architecture a pivotal role is assigned to an "alive" semantic index of resources, which is also expected to facilitate users' awareness of the bioinformatics domain. PMID:17695749

  17. MonALISA-based Grid monitoring and control

    NASA Astrophysics Data System (ADS)

    Grigoras, C.; Voicu, R.; Tapus, N.; Legrand, I.; Carminati, F.; Betev, L.

    2011-01-01

    High-Energy Physics experiments like ALICE at LHC require petabytes of storage and thousand of CPU working in parallel to store, reconstruct and analyze the collected data. This computing power is provided by aggregating the resources of hundreds of institutes and research centers and in addition several purpose-built large computing centers. All these resources are transparently available to the users under the umbrella of ALICE Grid. To ensure smooth operation of this complex distributed machinery we have developed a set of tools to monitor and control the various services, based on the MonALISA monitoring framework. By integrating monitoring information in the system we have achieved a high degree of automation and have significantly reduced the burden on the Grid managers. In this article we present how we collect the monitoring information and a few of the tools that make use of it.

  18. Design and Implementation of Real-Time Off-Grid Detection Tool Based on FNET/GridEye

    SciTech Connect

    Guo, Jiahui; Zhang, Ye; Liu, Yilu; Young II, Marcus Aaron; Irminger, Philip; Dimitrovski, Aleksandar D; Willging, Patrick

    2014-01-01

    Real-time situational awareness tools are of critical importance to power system operators, especially during emergencies. The availability of electric power has become a linchpin of most post disaster response efforts as it is the primary dependency for public and private sector services, as well as individuals. Knowledge of the scope and extent of facilities impacted, as well as the duration of their dependence on backup power, enables emergency response officials to plan for contingencies and provide better overall response. Based on real-time data acquired by Frequency Disturbance Recorders (FDRs) deployed in the North American power grid, a real-time detection method is proposed. This method monitors critical electrical loads and detects the transition of these loads from an on-grid state, where the loads are fed by the power grid to an off-grid state, where the loads are fed by an Uninterrupted Power Supply (UPS) or a backup generation system. The details of the proposed detection algorithm are presented, and some case studies and off-grid detection scenarios are also provided to verify the effectiveness and robustness. Meanwhile, the algorithm has already been implemented based on the Grid Solutions Framework (GSF) and has effectively detected several off-grid situations.

  19. Organizational and Environmental Predictors of Job Satisfaction in Community-based HIV/AIDS Service Organizations.

    ERIC Educational Resources Information Center

    Gimbel, Ronald W.; Lehrman, Sue; Strosberg, Martin A.; Ziac, Veronica; Freedman, Jay; Savicki, Karen; Tackley, Lisa

    2002-01-01

    Using variables measuring organizational characteristics and environmental influences, this study analyzed job satisfaction in community-based HIV/AIDS organizations. Organizational characteristics were found to predict job satisfaction among employees with varying intensity based on position within the organization. Environmental influences had…

  20. Classroom-Based Interventions and Teachers' Perceived Job Stressors and Confidence: Evidence from a Randomized Trial in Head Start Settings

    ERIC Educational Resources Information Center

    Zhai, Fuhua; Raver, C. Cybele; Li-Grining, Christine

    2011-01-01

    Preschool teachers' job stressors have received increasing attention but have been understudied in the literature. We investigated the impacts of a classroom-based intervention, the Chicago School Readiness Project (CSRP), on teachers' perceived job stressors and confidence, as indexed by their perceptions of job control, job resources, job…

  1. On NUFFT-based gridding for non-Cartesian MRI

    NASA Astrophysics Data System (ADS)

    Fessler, Jeffrey A.

    2007-10-01

    For MRI with non-Cartesian sampling, the conventional approach to reconstructing images is to use the gridding method with a Kaiser-Bessel (KB) interpolation kernel. Recently, Sha et al. [L. Sha, H. Guo, A.W. Song, An improved gridding method for spiral MRI using nonuniform fast Fourier transform, J. Magn. Reson. 162(2) (2003) 250-258] proposed an alternative method based on a nonuniform FFT (NUFFT) with least-squares (LS) design of the interpolation coefficients. They described this LS_NUFFT method as shift variant and reported that it yielded smaller reconstruction approximation errors than the conventional shift-invariant KB approach. This paper analyzes the LS_NUFFT approach in detail. We show that when one accounts for a certain linear phase factor, the core of the LS_NUFFT interpolator is in fact real and shift invariant. Furthermore, we find that the KB approach yields smaller errors than the original LS_NUFFT approach. We show that optimizing certain scaling factors can lead to a somewhat improved LS_NUFFT approach, but the high computation cost seems to outweigh the modest reduction in reconstruction error. We conclude that the standard KB approach, with appropriate parameters as described in the literature, remains the practical method of choice for gridding reconstruction in MRI.

  2. On NUFFT-based gridding for non-Cartesian MRI.

    PubMed

    Fessler, Jeffrey A

    2007-10-01

    For MRI with non-Cartesian sampling, the conventional approach to reconstructing images is to use the gridding method with a Kaiser-Bessel (KB) interpolation kernel. Recently, Sha et al. [L. Sha, H. Guo, A.W. Song, An improved gridding method for spiral MRI using nonuniform fast Fourier transform, J. Magn. Reson. 162(2) (2003) 250-258] proposed an alternative method based on a nonuniform FFT (NUFFT) with least-squares (LS) design of the interpolation coefficients. They described this LS_NUFFT method as shift variant and reported that it yielded smaller reconstruction approximation errors than the conventional shift-invariant KB approach. This paper analyzes the LS_NUFFT approach in detail. We show that when one accounts for a certain linear phase factor, the core of the LS_NUFFT interpolator is in fact real and shift invariant. Furthermore, we find that the KB approach yields smaller errors than the original LS_NUFFT approach. We show that optimizing certain scaling factors can lead to a somewhat improved LS_NUFFT approach, but the high computation cost seems to outweigh the modest reduction in reconstruction error. We conclude that the standard KB approach, with appropriate parameters as described in the literature, remains the practical method of choice for gridding reconstruction in MRI. PMID:17689121

  3. Priority-Based Job Scheduling in Distributed Systems

    NASA Astrophysics Data System (ADS)

    Bansal, Sunita; Hota, Chittaranjan

    Global computing systems like SETI@home tie together the unused CPU cycles, buffer space and secondary storage resources over the Internet for solving large scale computing problems like weather forecasting, and image processing that require high volume of computing power. In this paper we address issues that are critical to distributed scheduling environments such as job priorities, length of jobs, and resource heterogeneity. However, researchers have used metrics like resource availability at the new location, and response time of jobs in deciding upon the job transfer. Our load sharing algorithms use dynamic sender initiated approach to transfer a job. We implemented distributed algorithms using a centralized approach that improves average response time of jobs while considering their priorities. The job arrival process and the CPU service times are modeled using M/M/1 queuing model. We compared the performance of our algorithms with similar algorithms in the literature. We evaluated our algorithms using simulation and presented the results that show the effectiveness of our approach.

  4. Grid Task Execution

    NASA Technical Reports Server (NTRS)

    Hu, Chaumin

    2007-01-01

    IPG Execution Service is a framework that reliably executes complex jobs on a computational grid, and is part of the IPG service architecture designed to support location-independent computing. The new grid service enables users to describe the platform on which they need a job to run, which allows the service to locate the desired platform, configure it for the required application, and execute the job. After a job is submitted, users can monitor it through periodic notifications, or through queries. Each job consists of a set of tasks that performs actions such as executing applications and managing data. Each task is executed based on a starting condition that is an expression of the states of other tasks. This formulation allows tasks to be executed in parallel, and also allows a user to specify tasks to execute when other tasks succeed, fail, or are canceled. The two core components of the Execution Service are the Task Database, which stores tasks that have been submitted for execution, and the Task Manager, which executes tasks in the proper order, based on the user-specified starting conditions, and avoids overloading local and remote resources while executing tasks.

  5. A personality trait-based interactionist model of job performance.

    PubMed

    Tett, Robert P; Burnett, Dawn D

    2003-06-01

    Evidence for situational specificity of personality-job performance relations calls for better understanding of how personality is expressed as valued work behavior. On the basis of an interactionist principle of trait activation (R. P. Tett & H. A. Guterman, 2000), a model is proposed that distinguishes among 5 situational features relevant to trait expression (job demands, distracters, constraints, releasers, and facilitators), operating at task, social, and organizational levels. Trait-expressive work behavior is distinguished from (valued) job performance in clarifying the conditions favoring personality use in selection efforts. The model frames linkages between situational taxonomies (e.g., J. L. Holland's [1985] RIASEC model) and the Big Five and promotes useful discussion of critical issues, including situational specificity, personality-oriented job analysis, team building, and work motivation. PMID:12814298

  6. The Knowledge Base Interface for Parametric Grid Information

    SciTech Connect

    Hipp, James R.; Simons, Randall W.; Young, Chris J.

    1999-08-03

    The parametric grid capability of the Knowledge Base (KBase) provides an efficient robust way to store and access interpolatable information that is needed to monitor the Comprehensive Nuclear Test Ban Treaty. To meet both the accuracy and performance requirements of operational monitoring systems, we use an approach which combines the error estimation of kriging with the speed and robustness of Natural Neighbor Interpolation. The method involves three basic steps: data preparation, data storage, and data access. In past presentations we have discussed in detail the first step. In this paper we focus on the latter two, describing in detail the type of information which must be stored and the interface used to retrieve parametric grid data from the Knowledge Base. Once data have been properly prepared, the information (tessellation and associated value surfaces) needed to support the interface functionality, can be entered into the KBase. The primary types of parametric grid data that must be stored include (1) generic header information; (2) base model, station, and phase names and associated ID's used to construct surface identifiers; (3) surface accounting information; (4) tessellation accounting information; (5) mesh data for each tessellation; (6) correction data defined for each surface at each node of the surfaces owning tessellation (7) mesh refinement calculation set-up and flag information; and (8) kriging calculation set-up and flag information. The eight data components not only represent the results of the data preparation process but also include all required input information for several population tools that would enable the complete regeneration of the data results if that should be necessary.

  7. Improving merge methods for grid-based digital elevation models

    NASA Astrophysics Data System (ADS)

    Leitão, J. P.; Prodanović, D.; Maksimović, Č.

    2016-03-01

    Digital Elevation Models (DEMs) are used to represent the terrain in applications such as, for example, overland flow modelling or viewshed analysis. DEMs generated from digitising contour lines or obtained by LiDAR or satellite data are now widely available. However, in some cases, the area of study is covered by more than one of the available elevation data sets. In these cases the relevant DEMs may need to be merged. The merged DEM must retain the most accurate elevation information available while generating consistent slopes and aspects. In this paper we present a thorough analysis of three conventional grid-based DEM merging methods that are available in commercial GIS software. These methods are evaluated for their applicability in merging DEMs and, based on evaluation results, a method for improving the merging of grid-based DEMs is proposed. DEMs generated by the proposed method, called MBlend, showed significant improvements when compared to DEMs produced by the three conventional methods in terms of elevation, slope and aspect accuracy, ensuring also smooth elevation transitions between the original DEMs. The results produced by the improved method are highly relevant different applications in terrain analysis, e.g., visibility, or spotting irregularities in landforms and for modelling terrain phenomena, such as overland flow.

  8. A framework for graph-based synthesis, analysis, and visualization of HPC cluster job data.

    SciTech Connect

    Mayo, Jackson R.; Kegelmeyer, W. Philip, Jr.; Wong, Matthew H.; Pebay, Philippe Pierre; Gentile, Ann C.; Thompson, David C.; Roe, Diana C.; De Sapio, Vincent; Brandt, James M.

    2010-08-01

    The monitoring and system analysis of high performance computing (HPC) clusters is of increasing importance to the HPC community. Analysis of HPC job data can be used to characterize system usage and diagnose and examine failure modes and their effects. This analysis is not straightforward, however, due to the complex relationships that exist between jobs. These relationships are based on a number of factors, including shared compute nodes between jobs, proximity of jobs in time, etc. Graph-based techniques represent an approach that is particularly well suited to this problem, and provide an effective technique for discovering important relationships in job queuing and execution data. The efficacy of these techniques is rooted in the use of a semantic graph as a knowledge representation tool. In a semantic graph job data, represented in a combination of numerical and textual forms, can be flexibly processed into edges, with corresponding weights, expressing relationships between jobs, nodes, users, and other relevant entities. This graph-based representation permits formal manipulation by a number of analysis algorithms. This report presents a methodology and software implementation that leverages semantic graph-based techniques for the system-level monitoring and analysis of HPC clusters based on job queuing and execution data. Ontology development and graph synthesis is discussed with respect to the domain of HPC job data. The framework developed automates the synthesis of graphs from a database of job information. It also provides a front end, enabling visualization of the synthesized graphs. Additionally, an analysis engine is incorporated that provides performance analysis, graph-based clustering, and failure prediction capabilities for HPC systems.

  9. Improving mobile robot localization: grid-based approach

    NASA Astrophysics Data System (ADS)

    Yan, Junchi

    2012-02-01

    Autonomous mobile robots have been widely studied not only as advanced facilities for industrial and daily life automation, but also as a testbed in robotics competitions for extending the frontier of current artificial intelligence. In many of such contests, the robot is supposed to navigate on the ground with a grid layout. Based on this observation, we present a localization error correction method by exploring the geometric feature of the tile patterns. On top of the classical inertia-based positioning, our approach employs three fiber-optic sensors that are assembled under the bottom of the robot, presenting an equilateral triangle layout. The sensor apparatus, together with the proposed supporting algorithm, are designed to detect a line's direction (vertical or horizontal) by monitoring the grid crossing events. As a result, the line coordinate information can be fused to rectify the cumulative localization deviation from inertia positioning. The proposed method is analyzed theoretically in terms of its error bound and also has been implemented and tested on a customary developed two-wheel autonomous mobile robot.

  10. Environmental applications based on GIS and GRID technologies

    NASA Astrophysics Data System (ADS)

    Demontis, R.; Lorrai, E.; Marrone, V. A.; Muscas, L.; Spanu, V.; Vacca, A.; Valera, P.

    2009-04-01

    In the last decades, the collection and use of environmental data has enormously increased in a wide range of applications. Simultaneously, the explosive development of information technology and its ever wider data accessibility have made it possible to store and manipulate huge quantities of data. In this context, the GRID approach is emerging worldwide as a tool allowing to provision a computational task with administratively-distant resources. The aim of this paper is to present three environmental applications (Land Suitability, Desertification Risk Assessment, Georesources and Environmental Geochemistry) foreseen within the AGISGRID (Access and query of a distributed GIS/Database within the GRID infrastructure, http://grida3.crs4.it/enginframe/agisgrid/index.xml) activities of the GRIDA3 (Administrator of sharing resources for data analysis and environmental applications, http://grida3.crs4.it) project. This project, co-funded by the Italian Ministry of research, is based on the use of shared environmental data through GRID technologies and accessible by a WEB interface, aimed at public and private users in the field of environmental management and land use planning. The technologies used for AGISGRID include: - the client-server-middleware iRODS™ (Integrated Rule-Oriented Data System) (https://irods.org); - the EnginFrame system (http://www.nice-italy.com/main/index.php?id=32), the grid portal that supplies a frame to make available, via Intranet/Internet, the developed GRID applications; - the software GIS GRASS (Geographic Resources Analysis Support System) (http://grass.itc.it); - the relational database PostgreSQL (http://www.posgresql.org) and the spatial database extension PostGis; - the open source multiplatform Mapserver (http://mapserver.gis.umn.edu), used to represent the geospatial data through typical WEB GIS functionalities. Three GRID nodes are directly involved in the applications: the application workflow is implemented at the CRS4 (Pula

  11. 75 FR 24990 - Proposed Information Collection for the Evaluation of the Community-Based Job Training Grants...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ...-Based Job Training Grants; Comment Request AGENCY: Employment and Training Administration. ACTION... comments on a new data collection for the Evaluation of the Community- Based Job Training Grants. A copy of...@DOL.gov . SUPPLEMENTARY INFORMATION: I. Background The Community-Based Job Training Grants...

  12. Towards observation based gridded runoff estimates for Europe

    NASA Astrophysics Data System (ADS)

    Gudmundsson, L.; Seneviratne, S. I.

    2014-11-01

    Terrestrial water variables are the key to understanding ecosystem processes, feed back on weather and climate, and are a prerequisite for human activities. To provide context for local investigations and to better understand phenomena that only emerge at large spatial scales, reliable information on continental scale freshwater dynamics is necessary. To date streamflow is among the best observed variables of terrestrial water systems. However, observation networks have a limited station density and often incomplete temporal coverage, limiting investigations to locations and times with observations. This paper presents a methodology to estimate continental scale runoff on a 0.5° spatial grid with monthly resolution. The methodology is based on statistical up-scaling of observed streamflow from small catchments in Europe and exploits readily available gridded atmospheric forcing data combined with the capability of machine learning techniques. The resulting runoff estimates are validated against (1) runoff from small catchments that were not used for model training, (2) river discharge from nine continental scale river basins and (3) independent estimates of long-term mean evapotranspiration at the pan-European scale. In addition it is shown that the produced gridded runoff compares on average better to observations than a multi-model ensemble of comprehensive Land Surface Models (LSMs), making it an ideal candidate for model evaluation and model development. In particular, the presented machine learning approach may help determining which factors are most relevant for an efficient modelling of runoff at regional scales. Finally, the resulting data product is used to derive a comprehensive runoff-climatology for Europe and its potential for drought monitoring is illustrated.

  13. Towards observation-based gridded runoff estimates for Europe

    NASA Astrophysics Data System (ADS)

    Gudmundsson, L.; Seneviratne, S. I.

    2015-06-01

    Terrestrial water variables are the key to understanding ecosystem processes, feed back on weather and climate, and are a prerequisite for human activities. To provide context for local investigations and to better understand phenomena that only emerge at large spatial scales, reliable information on continental-scale freshwater dynamics is necessary. To date streamflow is among the best-observed variables of terrestrial water systems. However, observation networks have a limited station density and often incomplete temporal coverage, limiting investigations to locations and times with observations. This paper presents a methodology to estimate continental-scale runoff on a 0.5° spatial grid with monthly resolution. The methodology is based on statistical upscaling of observed streamflow from small catchments in Europe and exploits readily available gridded atmospheric forcing data combined with the capability of machine learning techniques. The resulting runoff estimates are validated against (1) runoff from small catchments that were not used for model training, (2) river discharge from nine continental-scale river basins and (3) independent estimates of long-term mean evapotranspiration at the pan-European scale. In addition it is shown that the produced gridded runoff compares on average better to observations than a multi-model ensemble of comprehensive land surface models (LSMs), making it an ideal candidate for model evaluation and model development. In particular, the presented machine learning approach may help determining which factors are most relevant for an efficient modelling of runoff at regional scales. Finally, the resulting data product is used to derive a comprehensive runoff climatology for Europe and its potential for drought monitoring is illustrated.

  14. Seamless integration of data services between spatial information Grid and TeraGrid based on broker-based data management model

    NASA Astrophysics Data System (ADS)

    Zeng, Yi; Liu, Dingsheng; Li, Guoqing; Yu, Wenyang; Huang, Zhenchun; Song, Carol

    2009-10-01

    Most of the space agencies have built Grid systems to manage large volumes of spatial data archives and products. However, the heterogeneous data structure, the distributed storage location, and the gradual progress of building data service systems, make such spatial grid systems to be grid islands. The broker-based manage model can hide complexity and heterogeneity of spatial data sources, so that the research on broker-based data service is meaningful to promote inter-Grid collaboration for earth observation applications. This paper discusses the special problems of spatial information integration and some features of broker-based data management model. We demonstrate the prototype of building broker-based model to integrate heterogeneous data grid. This work securely provides querying and managing geospatial data and services, and transparent access to the related sources under Grid and Web Service environment. The paper also describe our experiences of case study on seamless integration with Purdue TeraGrid Data by using Storage Resource Broker, which is based on the extensible data service interfaces of China Spatial Information Grid.

  15. Transaction-Based Controls for Building-Grid Integration: VOLTTRON™

    SciTech Connect

    Akyol, Bora A.; Haack, Jereme N.; Hernandez, George; Katipamula, Srinivas; Widergren, Steven E.

    2015-07-01

    The U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) is supporting the development of a “transactional network” concept that supports energy, operational, and financial transactions between building systems (e.g., rooftop units -- RTUs), and the electric power grid using applications, or 'agents', that reside either on the equipment, on local building controllers, or in the Cloud. The transactional network vision is delivered using a real-time, scalable reference platform called VOLTTRON that supports the needs of the changing energy system. VOLTTRON is an agent execution and an innovative distributed control and sensing software platform that supports modern control strategies, including agent-based and transaction-based controls. It enables mobile and stationary software agents to perform information gathering, processing, and control actions.

  16. Knowledge-based zonal grid generation for computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Andrews, Alison E.

    1988-01-01

    Automation of flow field zoning in two dimensions is an important step towards reducing the difficulty of three-dimensional grid generation in computational fluid dynamics. Using a knowledge-based approach makes sense, but problems arise which are caused by aspects of zoning involving perception, lack of expert consensus, and design processes. These obstacles are overcome by means of a simple shape and configuration language, a tunable zoning archetype, and a method of assembling plans from selected, predefined subplans. A demonstration system for knowledge-based two-dimensional flow field zoning has been successfully implemented and tested on representative aerodynamic configurations. The results show that this approach can produce flow field zonings that are acceptable to experts with differing evaluation criteria.

  17. On NUFFT-based gridding for non-Cartesian MRI

    PubMed Central

    Fessler, Jeffrey A.

    2007-01-01

    For MRI with non-Cartesian sampling, the conventional approach to reconstructing images is to use the gridding method with a Kaiser-Bessel (KB) interpolation kernel. Recently, Sha et al. [1] proposed an alternative method based on a nonuniform FFT (NUFFT) with least-squares (LS) design of the interpolation coefficients. They described this LS_NUFFT method as shift variant and reported that it yielded smaller reconstruction approximation errors than the conventional shift-invariant KB approach. This paper analyzes the LS_NUFFT approach in detail. We show that when one accounts for a certain linear phase factor, the core of the LS_NUFFT interpolator is in fact real and shift invariant. Furthermore, we find that the KB approach yields smaller errors than the original LS_NUFFT approach. We show that optimizing certain scaling factors can lead to a somewhat improved LS_NUFFT approach, but the high computation cost seems to outweigh the modest reduction in reconstruction error. We conclude that the standard KB approach, with appropriate parameters as described in the literature, remains the practical method of choice for gridding reconstruction in MRI. PMID:17689121

  18. GSIMF : a web service based software and database management system for the generation grids.

    SciTech Connect

    Wang, N.; Ananthan, B.; Gieraltowski, G.; May, E.; Vaniachine, A.; Tech-X Corp.

    2008-01-01

    To process the vast amount of data from high energy physics experiments, physicists rely on Computational and Data Grids; yet, the distribution, installation, and updating of a myriad of different versions of different programs over the Grid environment is complicated, time-consuming, and error-prone. Our Grid Software Installation Management Framework (GSIMF) is a set of Grid Services that has been developed for managing versioned and interdependent software applications and file-based databases over the Grid infrastructure. This set of Grid services provide a mechanism to install software packages on distributed Grid computing elements, thus automating the software and database installation management process on behalf of the users. This enables users to remotely install programs and tap into the computing power provided by Grids.

  19. Grid regulation services for energy storage devices based on grid frequency

    SciTech Connect

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2014-04-15

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  20. Grid regulation services for energy storage devices based on grid frequency

    SciTech Connect

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2013-07-02

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  1. DICOM image communication in globus-based medical grids.

    PubMed

    Vossberg, Michal; Tolxdorff, Thomas; Krefting, Dagmar

    2008-03-01

    Grid computing, the collaboration of distributed resources across institutional borders, is an emerging technology to meet the rising demand on computing power and storage capacity in fields such as high-energy physics, climate modeling, or more recently, life sciences. A secure, reliable, and highly efficient data transport plays an integral role in such grid environments and even more so in medical grids. Unfortunately, many grid middleware distributions, such as the well-known Globus Toolkit, lack the integration of the world-wide medical image communication standard Digital Imaging and Communication in Medicine (DICOM). Currently, the DICOM protocol first needs to be converted to the file transfer protocol (FTP) that is offered by the grid middleware. This effectively reduces most of the advantages and security an integrated network of DICOM devices offers. In this paper, a solution is proposed that adapts the DICOM protocol to the Globus grid security infrastructure and utilizes routers to transparently route traffic to and from DICOM systems. Thus, all legacy DICOM devices can be seamlessly integrated into the grid without modifications. A prototype of the grid routers with the most important DICOM functionality has been developed and successfully tested in the MediGRID test bed, the German grid project for life sciences. PMID:18348944

  2. Guidelines for School-Based Job Placement Programs.

    ERIC Educational Resources Information Center

    Heil, Carolyn

    This document, developed in Pennsylvania, contains guidelines formulated to provide local school districts and vocational/technical schools with step-by-step procedures that will assist in the development and implementation of successful job placement programs. The guide is organized in five chapters. The first chapter introduces the project,…

  3. The agent-based spatial information semantic grid

    NASA Astrophysics Data System (ADS)

    Cui, Wei; Zhu, YaQiong; Zhou, Yong; Li, Deren

    2006-10-01

    Analyzing the characteristic of multi-Agent and geographic Ontology, The concept of the Agent-based Spatial Information Semantic Grid (ASISG) is defined and the architecture of the ASISG is advanced. ASISG is composed with Multi-Agents and geographic Ontology. The Multi-Agent Systems are composed with User Agents, General Ontology Agent, Geo-Agents, Broker Agents, Resource Agents, Spatial Data Analysis Agents, Spatial Data Access Agents, Task Execution Agent and Monitor Agent. The architecture of ASISG have three layers, they are the fabric layer, the grid management layer and the application layer. The fabric layer what is composed with Data Access Agent, Resource Agent and Geo-Agent encapsulates the data of spatial information system so that exhibits a conceptual interface for the Grid management layer. The Grid management layer, which is composed with General Ontology Agent, Task Execution Agent and Monitor Agent and Data Analysis Agent, used a hybrid method to manage all resources that were registered in a General Ontology Agent that is described by a General Ontology System. The hybrid method is assembled by resource dissemination and resource discovery. The resource dissemination push resource from Local Ontology Agent to General Ontology Agent and the resource discovery pull resource from the General Ontology Agent to Local Ontology Agents. The Local Ontology Agent is derived from special domain and describes the semantic information of local GIS. The nature of the Local Ontology Agents can be filtrated to construct a virtual organization what could provides a global scheme. The virtual organization lightens the burdens of guests because they need not search information site by site manually. The application layer what is composed with User Agent, Geo-Agent and Task Execution Agent can apply a corresponding interface to a domain user. The functions that ASISG should provide are: 1) It integrates different spatial information systems on the semantic The Grid

  4. Integrating grid-based and topological maps for mobile robot navigation

    SciTech Connect

    Thrun, S.; Buecken, A.

    1996-12-31

    Research on mobile robot navigation has produced two major paradigms for mapping indoor environments: grid-based and topological. While grid-based methods produce accurate metric maps, their complexity often prohibits efficient planning and problem solving in large-scale indoor environments. Topological maps, on the other hand, can be used much more efficiently, yet accurate and consistent topological maps are considerably difficult to learn in large-scale environments. This paper describes an approach that integrates both paradigms: grid-based and topological. Grid-based maps are learned using artificial neural networks and Bayesian integration. Topological maps are generated on top of the grid-based maps, by partitioning the latter into coherent regions. By combining both paradigms-grid-based and topological, the approach presented here gains the best of both worlds: accuracy/consistency and efficiency. The paper gives results for autonomously operating a mobile robot equipped with sonar sensors in populated multi-room environments.

  5. Grid-based Methods in Relativistic Hydrodynamics and Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Martí, José María; Müller, Ewald

    2015-12-01

    An overview of grid-based numerical methods used in relativistic hydrodynamics (RHD) and magnetohydrodynamics (RMHD) is presented. Special emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods. Results of a set of demanding test bench simulations obtained with different numerical methods are compared in an attempt to assess the present capabilities and limits of the various numerical strategies. Applications to three astrophysical phenomena are briefly discussed to motivate the need for and to demonstrate the success of RHD and RMHD simulations in their understanding. The review further provides FORTRAN programs to compute the exact solution of the Riemann problem in RMHD, and to simulate 1D RMHD flows in Cartesian coordinates.

  6. Grid-Based Hydrodynamics in Astrophysical Fluid Flows

    NASA Astrophysics Data System (ADS)

    Teyssier, Romain

    2015-08-01

    In this review, the equations of hydrodynamics, magnetohydrodynamics, and radiation hydrodynamics are presented, together with their corresponding nonideal source terms. I overview the current landscape of modern grid-based numerical techniques with an emphasis on numerical diffusion, which plays a fundamental role in stabilizing the solution but is also the main source of errors associated with these numerical techniques. I discuss in great detail the inclusion of additional important source terms, such as cooling and gravity. I also show how to modify classic operator-splitting techniques to avoid undesirable numerical errors associated with these additional source terms, in particular in the presence of highly supersonic flows. I finally present various mesh adaptation strategies that can be used to minimize these numerical errors. To conclude, I review existing astrophysical software that is publicly available to perform simulations for such astrophysical fluids.

  7. On the applications of algebraic grid generation methods based on transfinite interpolation

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung Lee

    1989-01-01

    Algebraic grid generation methods based on transfinite interpolation called the two-boundary and four-boundary methods are applied for generating grids with highly complex boundaries. These methods yield grid point distributions that allow for accurate application to regions of sharp gradients in the physical domain or time-dependent problems with small length scale phenomena. Algebraic grids are derived using the two-boundary and four-boundary methods for applications in both two- and three-dimensional domains. Grids are developed for distinctly different geometrical problems and the two-boundary and four-boundary methods are demonstrated to be applicable to a wide class of geometries.

  8. CardioGRID: a framework for the analysis of cardiological signals in GRID computing

    NASA Astrophysics Data System (ADS)

    Francisco Garcia Eijo, Juan; Risk, Marcelo; Prieto Castrillo, Francisco; Suarez Ortega, Cesar; Boton Fernandez, Maria; Pardo Diaz, Alfonso; Rubio del Solar, Manuel; Ramos Pollan, Raul

    2011-09-01

    The present paper describes the development of the CardioGRID framework into the GRID infrastructure. The core GRID services; Workload Management System (WMS), Data Management System and Grid Authentication have been implemented. Additionally, a web-based tool -the CardioGRID portal- has been developed to facilitate the user interaction with the GRID. As a result, the user is able to process the electrocardiogram (ECG) signals obtained form a portable data acquisition device and to process it on the GRID. Once the CardioGRID portal is prompted and the user identity is verified through a digital X.509 certificate, the operator may either upload new raw ECG data to the GRID Storage Elements or use already stored data. Then, subsequent analytics from these data are performed as GRID jobs and relevant medical quantities are derived through middle-ware job retrieval mechanism. In summary in this paper was described the development of a medical GRID based system, and its integration to an existing platform for Digital Repositories Infrastructure.

  9. Suit alleges Chicago schools denied job based on HIV.

    PubMed

    1997-04-18

    In 1996, the Lambda Legal Defense and Education Fund persuaded the Chicago Board of Education to revoke a policy that demands applicants to disclose their HIV status. The Board promised to revise the policy, but on March 27, 1997 Lambda filed suit in U.S. District Court against the school board on behalf of an applicant who says he continues to be denied a teaching job because of his positive HIV status. The lawsuit claims that the board of education's requirement for any job applicant to provide a complete medical history and to submit to a medical examination is tantamount to requiring HIV status disclosure. The lawsuit states that the board is violating the Americans with Disabilities Act (ADA), the Rehabilitation Act, and Federal and State constitutional guarantees to privacy and equal protection under the law. The suit also says the board lacks procedural safeguards to ensure confidentiality of applicants' medical information. PMID:11364234

  10. The Construction of an Ontology-Based Ubiquitous Learning Grid

    ERIC Educational Resources Information Center

    Liao, Ching-Jung; Chou, Chien-Chih; Yang, Jin-Tan David

    2009-01-01

    The purpose of this study is to incorporate adaptive ontology into ubiquitous learning grid to achieve seamless learning environment. Ubiquitous learning grid uses ubiquitous computing environment to infer and determine the most adaptive learning contents and procedures in anytime, any place and with any device. To achieve the goal, an…

  11. Comparing Anisotropic Output-Based Grid Adaptation Methods by Decomposition

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Loseille, Adrien; Krakos, Joshua A.; Michal, Todd

    2015-01-01

    Anisotropic grid adaptation is examined by decomposing the steps of flow solution, ad- joint solution, error estimation, metric construction, and simplex grid adaptation. Multiple implementations of each of these steps are evaluated by comparison to each other and expected analytic results when available. For example, grids are adapted to analytic metric fields and grid measures are computed to illustrate the properties of multiple independent implementations of grid adaptation mechanics. Different implementations of each step in the adaptation process can be evaluated in a system where the other components of the adaptive cycle are fixed. Detailed examination of these properties allows comparison of different methods to identify the current state of the art and where further development should be targeted.

  12. The Prediction of Job Ability Requirements Using Attribute Data Based Upon the Position Analysis Questionnaire (PAQ). Technical Report No. 1.

    ERIC Educational Resources Information Center

    Shaw, James B.; McCormick, Ernest J.

    The study was directed towards the further exploration of the use of attribute ratings as the basis for establishing the job component validity of tests, in particular by using different methods of combining "attribute-based" data with "job analysis" data to form estimates of the aptitude requirements of jobs. The primary focus of the study…

  13. Environmental applications based on GIS and GRID technologies

    NASA Astrophysics Data System (ADS)

    Demontis, R.; Lorrai, E.; Marrone, V. A.; Muscas, L.; Spanu, V.; Vacca, A.; Valera, P.

    2009-04-01

    In the last decades, the collection and use of environmental data has enormously increased in a wide range of applications. Simultaneously, the explosive development of information technology and its ever wider data accessibility have made it possible to store and manipulate huge quantities of data. In this context, the GRID approach is emerging worldwide as a tool allowing to provision a computational task with administratively-distant resources. The aim of this paper is to present three environmental applications (Land Suitability, Desertification Risk Assessment, Georesources and Environmental Geochemistry) foreseen within the AGISGRID (Access and query of a distributed GIS/Database within the GRID infrastructure, http://grida3.crs4.it/enginframe/agisgrid/index.xml) activities of the GRIDA3 (Administrator of sharing resources for data analysis and environmental applications, http://grida3.crs4.it) project. This project, co-funded by the Italian Ministry of research, is based on the use of shared environmental data through GRID technologies and accessible by a WEB interface, aimed at public and private users in the field of environmental management and land use planning. The technologies used for AGISGRID include: - the client-server-middleware iRODS™ (Integrated Rule-Oriented Data System) (https://irods.org); - the EnginFrame system (http://www.nice-italy.com/main/index.php?id=32), the grid portal that supplies a frame to make available, via Intranet/Internet, the developed GRID applications; - the software GIS GRASS (Geographic Resources Analysis Support System) (http://grass.itc.it); - the relational database PostgreSQL (http://www.posgresql.org) and the spatial database extension PostGis; - the open source multiplatform Mapserver (http://mapserver.gis.umn.edu), used to represent the geospatial data through typical WEB GIS functionalities. Three GRID nodes are directly involved in the applications: the application workflow is implemented at the CRS4 (Pula

  14. Analyzing data flows of WLCG jobs at batch job level

    NASA Astrophysics Data System (ADS)

    Kuehn, Eileen; Fischer, Max; Giffels, Manuel; Jung, Christopher; Petzold, Andreas

    2015-05-01

    With the introduction of federated data access to the workflows of WLCG, it is becoming increasingly important for data centers to understand specific data flows regarding storage element accesses, firewall configurations, as well as the scheduling of batch jobs themselves. As existing batch system monitoring and related system monitoring tools do not support measurements at batch job level, a new tool has been developed and put into operation at the GridKa Tier 1 center for monitoring continuous data streams and characteristics of WLCG jobs and pilots. Long term measurements and data collection are in progress. These measurements already have been proven to be useful analyzing misbehaviors and various issues. Therefore we aim for an automated, realtime approach for anomaly detection. As a requirement, prototypes for standard workflows have to be examined. Based on measurements of several months, different features of HEP jobs are evaluated regarding their effectiveness for data mining approaches to identify these common workflows. The paper will introduce the actual measurement approach and statistics as well as the general concept and first results classifying different HEP job workflows derived from the measurements at GridKa.

  15. Surviving managed care: the effect on job satisfaction in hospital-based nursing.

    PubMed

    Buiser, M

    2000-06-01

    Major changes brought about by managed care have redefined the nursing profession. Current trends such as case management, downsizing, restructuring of the workforce, and changes in the patient profile have had numerous effects, particularly on job satisfaction among hospital-based nurses. Strategies to improve job satisfaction during this era of increased managed care penetration include enhanced communication mechanisms, support from hospital administration, implementation of care models that promote professional nursing practice, adequate staffing, and competitive salaries and benefits. PMID:11033702

  16. Work stress and job satisfaction in hospital-based home care.

    PubMed

    Beck-Friis, B; Strang, P; Sjödén, P O

    1991-01-01

    The entire staff of the hospital-based home care (HBHC) at Motala (n = 35) participated in a study concerning work stress and job satisfaction. A significant number of the patients in the HBHC have advanced malignancies and most of them are terminally ill. A total of 219 questions about stress and job satisfaction were asked in a self-administered questionnaire. Only 3%-17% of the staff often or very often experienced stress factors such as high expectations, confusing orders, or lack of information. Instead, a majority stated that they often/very often experienced different aspects of job satisfaction, such as meaningfulness, security, and stimulation. Staff members stating that they often were proud/very proud of their jobs, members feeling that their skill and experience were needed, as well as staff members who often received praise from their superiors, were less prone to look for other jobs (p less than 0.01, p less than 0.05, and p less than 0.05, respectively). Those who often/very often were allowed to take initiatives of their own more often regarded their jobs as non-monotonous (p less than 0.05) and stimulating to their personal development (p less than 0.001). Despite demanding jobs with severely ill patients, most of the staff gave high ratings for different aspects of job satisfaction. This positive spirit was also reflected in the exceptionally low job turnover among them. Possible explanations may be a careful selection of personnel and an organization which both stimulates the staff's own initiatives and provides support when necessary. PMID:1941357

  17. The 2004 knowledge base parametric grid data software suite.

    SciTech Connect

    Wilkening, Lisa K.; Simons, Randall W.; Ballard, Sandy; Jensen, Lee A.; Chang, Marcus C.; Hipp, James Richard

    2004-08-01

    One of the most important types of data in the National Nuclear Security Administration (NNSA) Ground-Based Nuclear Explosion Monitoring Research and Engineering (GNEM R&E) Knowledge Base (KB) is parametric grid (PG) data. PG data can be used to improve signal detection, signal association, and event discrimination, but so far their greatest use has been for improving event location by providing ground-truth-based corrections to travel-time base models. In this presentation we discuss the latest versions of the complete suite of Knowledge Base PG tools developed by NNSA to create, access, manage, and view PG data. The primary PG population tool is the Knowledge Base calibration integration tool (KBCIT). KBCIT is an interactive computer application to produce interpolated calibration-based information that can be used to improve monitoring performance by improving precision of model predictions and by providing proper characterizations of uncertainty. It is used to analyze raw data and produce kriged correction surfaces that can be included in the Knowledge Base. KBCIT not only produces the surfaces but also records all steps in the analysis for later review and possible revision. New features in KBCIT include a new variogram autofit algorithm; the storage of database identifiers with a surface; the ability to merge surfaces; and improved surface-smoothing algorithms. The Parametric Grid Library (PGL) provides the interface to access the data and models stored in a PGL file database. The PGL represents the core software library used by all the GNEM R&E tools that read or write PGL data (e.g., KBCIT and LocOO). The library provides data representations and software models to support accurate and efficient seismic phase association and event location. Recent improvements include conversion of the flat-file database (FDB) to an Oracle database representation; automatic access of station/phase tagged models from the FDB during location; modification of the core

  18. Faster GPU-based convolutional gridding via thread coarsening

    NASA Astrophysics Data System (ADS)

    Merry, B.

    2016-07-01

    Convolutional gridding is a processor-intensive step in interferometric imaging. While it is possible to use graphics processing units (GPUs) to accelerate this operation, existing methods use only a fraction of the available flops. We apply thread coarsening to improve the efficiency of an existing algorithm, and observe performance gains of up to 3.2 × for single-polarization gridding and 1.9 × for quad-polarization gridding on a GeForce GTX 980, and smaller but still significant gains on a Radeon R9 290X.

  19. Grid-based platform for training in Earth Observation

    NASA Astrophysics Data System (ADS)

    Petcu, Dana; Zaharie, Daniela; Panica, Silviu; Frincu, Marc; Neagul, Marian; Gorgan, Dorian; Stefanut, Teodor

    2010-05-01

    GiSHEO platform [1] providing on-demand services for training and high education in Earth Observation is developed, in the frame of an ESA funded project through its PECS programme, to respond to the needs of powerful education resources in remote sensing field. It intends to be a Grid-based platform of which potential for experimentation and extensibility are the key benefits compared with a desktop software solution. Near-real time applications requiring simultaneous multiple short-time-response data-intensive tasks, as in the case of a short time training event, are the ones that are proved to be ideal for this platform. The platform is based on Globus Toolkit 4 facilities for security and process management, and on the clusters of four academic institutions involved in the project. The authorization uses a VOMS service. The main public services are the followings: the EO processing services (represented through special WSRF-type services); the workflow service exposing a particular workflow engine; the data indexing and discovery service for accessing the data management mechanisms; the processing services, a collection allowing easy access to the processing platform. The WSRF-type services for basic satellite image processing are reusing free image processing tools, OpenCV and GDAL. New algorithms and workflows were develop to tackle with challenging problems like detecting the underground remains of old fortifications, walls or houses. More details can be found in [2]. Composed services can be specified through workflows and are easy to be deployed. The workflow engine, OSyRIS (Orchestration System using a Rule based Inference Solution), is based on DROOLS, and a new rule-based workflow language, SILK (SImple Language for worKflow), has been built. Workflow creation in SILK can be done with or without a visual designing tools. The basics of SILK are the tasks and relations (rules) between them. It is similar with the SCUFL language, but not relying on XML in

  20. CMS Configuration Editor: GUI based application for user analysis job

    NASA Astrophysics Data System (ADS)

    de Cosa, A.

    2011-12-01

    We present the user interface and the software architecture of the Configuration Editor for the CMS experiment. The analysis workflow is organized in a modular way integrated within the CMS framework that organizes in a flexible way user analysis code. The Python scripting language is adopted to define the job configuration that drives the analysis workflow. It could be a challenging task for users, especially for newcomers, to develop analysis jobs managing the configuration of many required modules. For this reason a graphical tool has been conceived in order to edit and inspect configuration files. A set of common analysis tools defined in the CMS Physics Analysis Toolkit (PAT) can be steered and configured using the Config Editor. A user-defined analysis workflow can be produced starting from a standard configuration file, applying and configuring PAT tools according to the specific user requirements. CMS users can adopt this tool, the Config Editor, to create their analysis visualizing in real time which are the effects of their actions. They can visualize the structure of their configuration, look at the modules included in the workflow, inspect the dependences existing among the modules and check the data flow. They can visualize at which values parameters are set and change them according to what is required by their analysis task. The integration of common tools in the GUI needed to adopt an object-oriented structure in the Python definition of the PAT tools and the definition of a layer of abstraction from which all PAT tools inherit.

  1. Integrating reconfigurable hardware-based grid for high performance computing.

    PubMed

    Dondo Gazzano, Julio; Sanchez Molina, Francisco; Rincon, Fernando; López, Juan Carlos

    2015-01-01

    FPGAs have shown several characteristics that make them very attractive for high performance computing (HPC). The impressive speed-up factors that they are able to achieve, the reduced power consumption, and the easiness and flexibility of the design process with fast iterations between consecutive versions are examples of benefits obtained with their use. However, there are still some difficulties when using reconfigurable platforms as accelerator that need to be addressed: the need of an in-depth application study to identify potential acceleration, the lack of tools for the deployment of computational problems in distributed hardware platforms, and the low portability of components, among others. This work proposes a complete grid infrastructure for distributed high performance computing based on dynamically reconfigurable FPGAs. Besides, a set of services designed to facilitate the application deployment is described. An example application and a comparison with other hardware and software implementations are shown. Experimental results show that the proposed architecture offers encouraging advantages for deployment of high performance distributed applications simplifying development process. PMID:25874241

  2. Integrating Reconfigurable Hardware-Based Grid for High Performance Computing

    PubMed Central

    Dondo Gazzano, Julio; Sanchez Molina, Francisco; Rincon, Fernando; López, Juan Carlos

    2015-01-01

    FPGAs have shown several characteristics that make them very attractive for high performance computing (HPC). The impressive speed-up factors that they are able to achieve, the reduced power consumption, and the easiness and flexibility of the design process with fast iterations between consecutive versions are examples of benefits obtained with their use. However, there are still some difficulties when using reconfigurable platforms as accelerator that need to be addressed: the need of an in-depth application study to identify potential acceleration, the lack of tools for the deployment of computational problems in distributed hardware platforms, and the low portability of components, among others. This work proposes a complete grid infrastructure for distributed high performance computing based on dynamically reconfigurable FPGAs. Besides, a set of services designed to facilitate the application deployment is described. An example application and a comparison with other hardware and software implementations are shown. Experimental results show that the proposed architecture offers encouraging advantages for deployment of high performance distributed applications simplifying development process. PMID:25874241

  3. Optimal grid-based methods for thin film micromagnetics simulations

    NASA Astrophysics Data System (ADS)

    Muratov, C. B.; Osipov, V. V.

    2006-08-01

    Thin film micromagnetics are a broad class of materials with many technological applications, primarily in magnetic memory. The dynamics of the magnetization distribution in these materials is traditionally modeled by the Landau-Lifshitz-Gilbert (LLG) equation. Numerical simulations of the LLG equation are complicated by the need to compute the stray field due to the inhomogeneities in the magnetization which presents the chief bottleneck for the simulation speed. Here, we introduce a new method for computing the stray field in a sample for a reduced model of ultra-thin film micromagnetics. The method uses a recently proposed idea of optimal finite difference grids for approximating Neumann-to-Dirichlet maps and has an advantage of being able to use non-uniform discretization in the film plane, as well as an efficient way of dealing with the boundary conditions at infinity for the stray field. We present several examples of the method's implementation and give a detailed comparison of its performance for studying domain wall structures compared to the conventional FFT-based methods.

  4. Risk Aware Overbooking for Commercial Grids

    NASA Astrophysics Data System (ADS)

    Birkenheuer, Georg; Brinkmann, André; Karl, Holger

    The commercial exploitation of the emerging Grid and Cloud markets needs SLAs to sell computing run times. Job traces show that users have a limited ability to estimate the resource needs of their applications. This offers the possibility to apply overbooking to negotiation, but overbooking increases the risk of SLA violations. This work presents an overbooking approach with an integrated risk assessment model. Simulations for this model, which are based on real-world job traces, show that overbooking offers significant opportunities for Grid and Cloud providers.

  5. A Grid storage accounting system based on DGAS and HLRmon

    NASA Astrophysics Data System (ADS)

    Cristofori, A.; Fattibene, E.; Gaido, L.; Guarise, A.; Veronesi, P.

    2012-12-01

    Accounting in a production-level Grid infrastructure is of paramount importance in order to measure the utilization of the available resources. While several CPU accounting systems are deployed within the European Grid Infrastructure (EGI), storage accounting systems, stable enough to be adopted in a production environment are not yet available. As a consequence, there is a growing interest in storage accounting and work on this is being carried out in the Open Grid Forum (OGF) where a Usage Record (UR) definition suitable for storage resources has been proposed for standardization. In this paper we present a storage accounting system which is composed of three parts: a sensor layer, a data repository with a transport layer (Distributed Grid Accounting System - DGAS) and a web portal providing graphical and tabular reports (HLRmon). The sensor layer is responsible for the creation of URs according to the schema (described in this paper) that is currently being discussed within OGF. DGAS is one of the CPU accounting systems used within EGI, in particular by the Italian Grid Infrastructure (IGI) and some other National Grid Initiatives (NGIs) and projects. DGAS architecture is evolving in order to collect Usage Records for different types of resources. This improvement allows DGAS to be used as a ‘general’ data repository and transport layer. HLRmon is the web portal acting as an interface to DGAS. It has been improved to retrieve storage accounting data from the DGAS repository and create reports in an easy way. This is very useful not only for the Grid users and administrators but also for the stakeholders.

  6. OPNET/Simulink Based Testbed for Disturbance Detection in the Smart Grid

    SciTech Connect

    Sadi, Mohammad A. H.; Dasgupta, Dipankar; Ali, Mohammad Hassan; Abercrombie, Robert K

    2015-01-01

    The important backbone of the smart grid is the cyber/information infrastructure, which is primarily used to communicate with different grid components. A smart grid is a complex cyber physical system containing a numerous and variety number of sources, devices, controllers and loads. Therefore, the smart grid is vulnerable to grid related disturbances. For such dynamic system, disturbance and intrusion detection is a paramount issue. This paper presents a Simulink and Opnet based co-simulated platform to carry out a cyber-intrusion in cyber network for modern power systems and the smart grid. The IEEE 30 bus power system model is used to demonstrate the effectiveness of the simulated testbed. The experiments were performed by disturbing the circuit breakers reclosing time through a cyber-attack. Different disturbance situations in the considered test system are considered and the results indicate the effectiveness of the proposed co-simulated scheme.

  7. Grid Work

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pointwise Inc.'s, Gridgen Software is a system for the generation of 3D (three dimensional) multiple block, structured grids. Gridgen is a visually-oriented, graphics-based interactive code used to decompose a 3D domain into blocks, distribute grid points on curves, initialize and refine grid points on surfaces and initialize volume grid points. Gridgen is available to U.S. citizens and American-owned companies by license.

  8. Grid-based matching for full-field large-area deformation measurement

    NASA Astrophysics Data System (ADS)

    Du, Xian; Anthony, Brian W.; C. Kojimoto, Nigel

    2015-03-01

    Grid-based measurement can facilitate metrology and inspection of flexible electronics manufacturing. Multiple fundamental difficulties, however, arise in the large-area and full-field deformation measurement of deformable grid patterns including noise, occlusions, and artifacts. This paper addresses one of the key issues in deformation measurement: the registration and matching of deformed grid patterns. The emphasis is on accurate and robust periodicity tracing registration and constellation matching algorithms for grid pattern fidelity. The registration algorithm uses deviation metrics in deformed grids to estimate global translation, rotation and scaling; the matching algorithm uses the constellation reference grid to mine buried deformed point patterns. Using synthetic data, the validity of the registration algorithm is proved by registering noisy deformed grid patterns with various distortion scales and transformations; the validity of the matching algorithm is proved by matching deformed grid point patterns with various distortion scales, extra point rates and missing point rates. Compared to established non-rigid registration and point pattern matching algorithms, our algorithms demonstrate higher speed, sub-pixel accuracy and robustness in the matching of highly-deformed and noisy grids.

  9. The Anatomy of a Grid portal

    NASA Astrophysics Data System (ADS)

    Licari, Daniele; Calzolari, Federico

    2011-12-01

    In this paper we introduce a new way to deal with Grid portals referring to our implementation. L-GRID is a light portal to access the EGEE/EGI Grid infrastructure via Web, allowing users to submit their jobs from a common Web browser in a few minutes, without any knowledge about the Grid infrastructure. It provides the control over the complete lifecycle of a Grid Job, from its submission and status monitoring, to the output retrieval. The system, implemented as client-server architecture, is based on the Globus Grid middleware. The client side application is based on a java applet; the server relies on a Globus User Interface. There is no need of user registration on the server side, and the user needs only his own X.509 personal certificate. The system is user-friendly, secure (it uses SSL protocol, mechanism for dynamic delegation and identity creation in public key infrastructures), highly customizable, open source, and easy to install. The X.509 personal certificate does not get out from the local machine. It allows to reduce the time spent for the job submission, granting at the same time a higher efficiency and a better security level in proxy delegation and management.

  10. VIM-based dynamic sparse grid approach to partial differential equations.

    PubMed

    Mei, Shu-Li

    2014-01-01

    Combining the variational iteration method (VIM) with the sparse grid theory, a dynamic sparse grid approach for nonlinear PDEs is proposed in this paper. In this method, a multilevel interpolation operator is constructed based on the sparse grids theory firstly. The operator is based on the linear combination of the basic functions and independent of them. Second, by means of the precise integration method (PIM), the VIM is developed to solve the nonlinear system of ODEs which is obtained from the discretization of the PDEs. In addition, a dynamic choice scheme on both of the inner and external grid points is proposed. It is different from the traditional interval wavelet collocation method in which the choice of both of the inner and external grid points is dynamic. The numerical experiments show that our method is better than the traditional wavelet collocation method, especially in solving the PDEs with the Nuemann boundary conditions. PMID:24723805

  11. VIM-Based Dynamic Sparse Grid Approach to Partial Differential Equations

    PubMed Central

    Mei, Shu-Li

    2014-01-01

    Combining the variational iteration method (VIM) with the sparse grid theory, a dynamic sparse grid approach for nonlinear PDEs is proposed in this paper. In this method, a multilevel interpolation operator is constructed based on the sparse grids theory firstly. The operator is based on the linear combination of the basic functions and independent of them. Second, by means of the precise integration method (PIM), the VIM is developed to solve the nonlinear system of ODEs which is obtained from the discretization of the PDEs. In addition, a dynamic choice scheme on both of the inner and external grid points is proposed. It is different from the traditional interval wavelet collocation method in which the choice of both of the inner and external grid points is dynamic. The numerical experiments show that our method is better than the traditional wavelet collocation method, especially in solving the PDEs with the Nuemann boundary conditions. PMID:24723805

  12. A Gis-based Agro-meteorological Decision System Based On Gridded Climatology.

    NASA Astrophysics Data System (ADS)

    Tveito, O. E.; Bjørdal, I.; Skjelvåg, A. O.

    The introduction of GIS has opened new possibilities in combining different sources of geographical information. In Norway, an agro-meteorological decision system is under development combining gridded climate information with soil and crop devel- opment data. The system is based on a daily scale water balance model driven by climatological input. Climate information is based on in-situ observations, and spatial interpolation schemes are used to establish fine mesh grids of these variables over the model domain. These interpolation schemes use other geographical information like topography. The soil moisture model is used to estimate the soil water content, which is the determinant of soil suitability for tillage and sowing. The system also includes a model for identification of suitable days to combine harvesting of cereals. Interpo- lation of the climatological fields is based upon all available in-situ observations. The different elements are interpolated by different interpolation techniques. Snow depth, precipitation, cloud cover, relative humidity and wind are in this first version inter- polated by using inverse distance weighting. Temperature is interpolated by using a residual kriging approach including five independent predictors in the trend equation. Evaporation for each grid-cell is estimated by using Penman2 formula based on the grid-estimates of the climatological elements. The soil water model opens for the use of fixed soil parameters like water holding capacity and capillary characteristics, or for the use of digital soil and landuse maps. This approach is a good demonstration of the benefits of applying GIS on distributed geo-data in cross-disciplinary applications.

  13. Examining Reactions to Employer Information Using a Simulated Web-Based Job Fair

    ERIC Educational Resources Information Center

    Highhouse, Scott; Stanton, Jeffrey M.; Reeve, Charlie L.

    2004-01-01

    The approach taken in the present investigation was to examine reactions to positive and negative employer information by eliciting online (i.e., moment-to-moment) reactions in a simulated computer-based job fair. Reactions to positive and negative information commonly reveal a negatively biased asymmetry. Positively biased asymmetries have been…

  14. Organizational Culture's Role in the Relationship between Power Bases and Job Stress

    ERIC Educational Resources Information Center

    Erkutlu, Hakan; Chafra, Jamel; Bumin, Birol

    2011-01-01

    The purpose of this research is to examine the moderating role of organizational culture in the relationship between leader's power bases and subordinate's job stress. Totally 622 lecturers and their superiors (deans) from 13 state universities chosen by random method in Ankara, Istanbul, Izmir, Antalya, Samsun, Erzurum and Gaziantep in 2008-2009…

  15. Community Based Organizations. The Challenges of the Job Training Partnership Act.

    ERIC Educational Resources Information Center

    Brown, Larry

    The advent of the Job Training Partnership Act (JTPA) has not been favorable to community-based organizations (CBOs) serving unemployed young people. The overall decline in the amount of money available for employment training is one reason for the reduction in services, but it is not the sole reason. The transition to the new act itself is also…

  16. Characteristics of the Community-Based Job Training Grant (CBJTG) Program

    ERIC Educational Resources Information Center

    Eyster, Lauren; Stanczyk, Alexandra; Nightingale, Demetra Smith; Martinson, Karin; Trutko, John

    2009-01-01

    This is the first report from the evaluation of the Community-Based Job Training Grants (CBJTG) being conducted by the Urban Institute, with its partners Johns Hopkins University and Capital Research Corporation. The CBJTG program focuses on building the capacity of community colleges to provide training to workers for high-growth, high-demand…

  17. Academic Job Placements in Library and Information Science Field: A Case Study Performed on ALISE Web-Based Postings

    ERIC Educational Resources Information Center

    Abouserie, Hossam Eldin Mohamed Refaat

    2010-01-01

    The study investigated and analyzed the state of academic web-based job announcements in Library and Information Science Field. The purpose of study was to get in depth understanding about main characteristics and trends of academic job market in Library and Information science field. The study focused on web-based version announcement as it was…

  18. Cell-based representation and analysis of social-economic data in grid-city construction

    NASA Astrophysics Data System (ADS)

    Liu, Xiangnan; Huang, Fang; Wang, Ping

    2007-06-01

    Grid-city management currently attracts a wider audience globally. Socio-economic data is an essential part of grid-city management system. Social-economic data of an urban is characterized by discrete, time-varying, statistical, distributed and complicated. Most of data are with no exactly spatial location or from various statistical units. There is obvious gap while matching social-economic data with existing grid map of natural geographical elements emerges. It may cause many difficulties in data input, organization, processing and analysis while the grid system constructing and executing. The issue of how to allocate and integrate the huge social-economic data into each grid effectively is crucial for grid-city construction. In this paper, we discussed the characteristics of social-economic data in a grid-city systematically, thereafter a cell-based model for social-economic data representing and analyzing is presented in this paper. The kernel issues of the cell-based model establishment include cell size determining, cell capabilities developing for multi-dimension representation and evaluation, and cell dynamic simulation functions designing. The cell-based model supplements the methods system of spatial data mining, and is also promising in application to the spatialization of statistical data obtained from other researches including environmental monitoring, hydrological and meteorological observation.

  19. Spherical gauge for in-pipe inspection based on the optical fiber grid

    NASA Astrophysics Data System (ADS)

    Vinogradova, Irina L.; Vinogradov, Sergey L.; Yantilina, Liliya Z.; Lyubopytov, Vladimir S.; Sultanov, Albert K.

    2015-03-01

    In this paper the possibility of pipeline diagnostics using the optical fiber grid spherical gauge is considered. Constructions of a fiber grid on the basis of multimode fibers and fiber Bragg gratings have been investigated. Breadboard models of different gauge constructions have been implemented and investigated. It has been established experimentally, that the gauge design based on the fiber Bragg gratings possesses higher sensitivity for deformation. However, the gauge based on the multimode fiber is more robust to the temperature influence.

  20. Modeling and Control of VSC Based DC Connection for Active Stall Wind Farms to Grid

    NASA Astrophysics Data System (ADS)

    Iov, Florin; Sørensen, Poul; Hansen, Anca Daniela; Blaabjerg, Frede

    Currently, there is an increasing trend to connect large MW wind farms to the transmission system. Therefore the power system becomes more vulnerable and dependent on the wind energy production. At the same time requirements that focus on the influence of the farms on the grid stability and power quality, and on the control capabilities of wind farms have already been established. The main trends of modern wind turbines/farms are clearly the variable speed operation and a grid connection through a power electronic interface, especially using doubly-fed induction generators. Using power electronics the control capabilities of these wind turbines/farms are extended and thus the grid requirements are fulfilled. However, the traditional squirrel-cage generators based wind turbines/wind farms directly connected to the grid does not have such control capabilities. They produce maximum possible power in continuous operation and are becoming disconnected in the case of a grid fault. Moreover, these wind turbines/farms cannot regulate their production and contribute to power system stability. A DC transmission system for connection of the active stall wind farms to the grid can be a solution to these problems. Such a system has special regulating properties e.g. decoupled control of active and reactive power, continuous AC voltage regulation, variable frequency control, black-start capability, etc. This paper focuses on the modeling of such systems and proposes a control method of a voltage source converter based DC transmission system for connecting active stall wind farms to the grid.

  1. Micro-grid platform based on NODE.JS architecture, implemented in electrical network instrumentation

    NASA Astrophysics Data System (ADS)

    Duque, M.; Cando, E.; Aguinaga, A.; Llulluna, F.; Jara, N.; Moreno, T.

    2016-05-01

    In this document, I propose a theory about the impact of systems based on microgrids in non-industrialized countries that have the goal to improve energy exploitation through alternatives methods of a clean and renewable energy generation and the creation of the app to manage the behavior of the micro-grids based on the NodeJS, Django and IOJS technologies. The micro-grids allow the optimal way to manage energy flow by electric injection directly in electric network small urban's cells in a low cost and available way. In difference from conventional systems, micro-grids can communicate between them to carry energy to places that have higher demand in accurate moments. This system does not require energy storage, so, costs are lower than conventional systems like fuel cells, solar panels or else; even though micro-grids are independent systems, they are not isolated. The impact that this analysis will generate, is the improvement of the electrical network without having greater control than an intelligent network (SMART-GRID); this leads to move to a 20% increase in energy use in a specified network; that suggest there are others sources of energy generation; but for today's needs, we need to standardize methods and remain in place to support all future technologies and the best option are the Smart Grids and Micro-Grids.

  2. Job Stress of School-Based Speech-Language Pathologists

    ERIC Educational Resources Information Center

    Harris, Stephanie Ferney; Prater, Mary Anne; Dyches, Tina Taylor; Heath, Melissa Allen

    2009-01-01

    Stress and burnout contribute significantly to the shortages of school-based speech-language pathologists (SLPs). At the request of the Utah State Office of Education, the researchers measured the stress levels of 97 school-based SLPs using the "Speech-Language Pathologist Stress Inventory." Results indicated that participants' emotional-fatigue…

  3. Smart Energy Management and Control for Fuel Cell Based Micro-Grid Connected Neighborhoods

    SciTech Connect

    Dr. Mohammad S. Alam

    2006-03-15

    Fuel cell power generation promises to be an efficient, pollution-free, reliable power source in both large scale and small scale, remote applications. DOE formed the Solid State Energy Conversion Alliance with the intention of breaking one of the last barriers remaining for cost effective fuel cell power generation. The Alliance’s goal is to produce a core solid-state fuel cell module at a cost of no more than $400 per kilowatt and ready for commercial application by 2010. With their inherently high, 60-70% conversion efficiencies, significantly reduced carbon dioxide emissions, and negligible emissions of other pollutants, fuel cells will be the obvious choice for a broad variety of commercial and residential applications when their cost effectiveness is improved. In a research program funded by the Department of Energy, the research team has been investigating smart fuel cell-operated residential micro-grid communities. This research has focused on using smart control systems in conjunction with fuel cell power plants, with the goal to reduce energy consumption, reduce demand peaks and still meet the energy requirements of any household in a micro-grid community environment. In Phases I and II, a SEMaC was developed and extended to a micro-grid community. In addition, an optimal configuration was determined for a single fuel cell power plant supplying power to a ten-home micro-grid community. In Phase III, the plan is to expand this work to fuel cell based micro-grid connected neighborhoods (mini-grid). The economic implications of hydrogen cogeneration will be investigated. These efforts are consistent with DOE’s mission to decentralize domestic electric power generation and to accelerate the onset of the hydrogen economy. A major challenge facing the routine implementation and use of a fuel cell based mini-grid is the varying electrical demand of the individual micro-grids, and, therefore, analyzing these issues is vital. Efforts are needed to determine

  4. Fourier transform image processing techniques for grid-based phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Tahir, Sajjad; Bashir, Sajid; Petruccelli, Jonathan C.; MacDonald, C. A.

    2014-09-01

    A recently developed technique for phase imaging using table top sources is to use multiple fine-pitch gratings. However, the strict manufacturing tolerences and precise alignment required have limited the widespread adoption of grating-based techniques. In this work, we employ a technique recently demonstrated by Bennett et al.1 that ultilizes a single grid of much coarser pitch. Phase is extracted using Fourier processing on a single raw image taken using a focused mammography grid. The effects on the final image of varying grid, object, and detector distances, window widths, and of a variety of windowing functions, used to separate the harmonics, were investigated.

  5. Application of remote debugging techniques in user-centric job monitoring

    NASA Astrophysics Data System (ADS)

    dos Santos, T.; Mättig, P.; Wulff, N.; Harenberg, T.; Volkmer, F.; Beermann, T.; Kalinin, S.; Ahrens, R.

    2012-06-01

    With the Job Execution Monitor, a user-centric job monitoring software developed at the University of Wuppertal and integrated into the job brokerage systems of the WLCG, job progress and grid worker node health can be supervised in real time. Imminent error conditions can thus be detected early by the submitter and countermeasures can be taken. Grid site admins can access aggregated data of all monitored jobs to infer the site status and to detect job misbehaviour. To remove the last "blind spot" from this monitoring, a remote debugging technique based on the GNU C compiler suite was developed and integrated into the software; its design concept and architecture is described in this paper and its application discussed.

  6. Professional confidence and job satisfaction: an examination of counselors' perceptions in faith-based and non-faith-based drug treatment programs.

    PubMed

    Chu, Doris C; Sung, Hung-En

    2014-08-01

    Understanding substance abuse counselors' professional confidence and job satisfaction is important since such confidence and satisfaction can affect the way counselors go about their jobs. Analyzing data derived from a random sample of 110 counselors from faith-based and non-faith-based treatment programs, this study examines counselors' professional confidence and job satisfaction in both faith-based and non-faith-based programs. The multivariate analyses indicate years of experience and being a certified counselor were the only significant predictors of professional confidence. There was no significant difference in perceived job satisfaction and confidence between counselors in faith-based and non-faith-based programs. A majority of counselors in both groups expressed a high level of satisfaction with their job. Job experience in drug counseling and prior experience as an abuser were perceived by counselors as important components to facilitate counseling skills. Policy implications are discussed. PMID:23788288

  7. SIRE-technology-based biosensors: will they do the job?

    NASA Astrophysics Data System (ADS)

    Kriz, Dario

    1997-06-01

    A new biosensor technology (SIRE--sensors based on injectable recognition elements) is described. Its application in laboratory equipment, medical survey equipment and process monitoring is reviewed. Furthermore, the promising practical and commercial relevance of SIRE- Biosensors is discussed.

  8. Job Stress, Stress Related to Performance-Based Accreditation, Locus of Control, Age, and Gender As Related to Job Satisfaction and Burnout in Teachers and Principals.

    ERIC Educational Resources Information Center

    Hipps, Elizabeth Smith; Halpin, Glennelle

    The purpose of the study described here was to: (1) determine the amount of variance in burnout and job satisfaction in public school teachers and principals which could be accounted for by stress related to the state's performance-based accreditation standards; (2) examine the relationship between stress related to state standards and the age and…

  9. A grid-based infrastructure for ecological forecasting of rice land Anopheles arabiensis aquatic larval habitats

    PubMed Central

    Jacob, Benjamin G; Muturi, Ephantus J; Funes, Jose E; Shililu, Josephat I; Githure, John I; Kakoma, Ibulaimu I; Novak, Robert J

    2006-01-01

    Background For remote identification of mosquito habitats the first step is often to construct a discrete tessellation of the region. In applications where complex geometries do not need to be represented such as urban habitats, regular orthogonal grids are constructed in GIS and overlaid on satellite images. However, rice land vector mosquito aquatic habitats are rarely uniform in space or character. An orthogonal grid overlaid on satellite data of rice-land areas may fail to capture physical or man-made structures, i.e paddies, canals, berms at these habitats. Unlike an orthogonal grid, digitizing each habitat converts a polygon into a grid cell, which may conform to rice-land habitat boundaries. This research illustrates the application of a random sampling methodology, comparing an orthogonal and a digitized grid for assessment of rice land habitats. Methods A land cover map was generated in Erdas Imagine V8.7® using QuickBird data acquired July 2005, for three villages within the Mwea Rice Scheme, Kenya. An orthogonal grid was overlaid on the images. In the digitized dataset, each habitat was traced in Arc Info 9.1®. All habitats in each study site were stratified based on levels of rice stage Results The orthogonal grid did not identify any habitat while the digitized grid identified every habitat by strata and study site. An analysis of variance test indicated the relative abundance of An. arabiensis at the three study sites to be significantly higher during the post-transplanting stage of the rice cycle. Conclusion Regions of higher Anopheles abundance, based on digitized grid cell information probably reflect underlying differences in abundance of mosquito habitats in a rice land environment, which is where limited control resources could be concentrated to reduce vector abundance. PMID:17062142

  10. Improving scientists' interaction with complex computational-visualization environments based on a distributed grid infrastructure.

    PubMed

    Kalawsky, R S; O'Brien, J; Coveney, P V

    2005-08-15

    The grid has the potential to transform collaborative scientific investigations through the use of closely coupled computational and visualization resources, which may be geographically distributed, in order to harness greater power than is available at a single site. Scientific applications to benefit from the grid include visualization, computational science, environmental modelling and medical imaging. Unfortunately, the diversity, scale and location of the required resources can present a dilemma for the scientific worker because of the complexity of the underlying technology. As the scale of the scientific problem under investigation increases so does the nature of the scientist's interaction with the supporting infrastructure. The increased distribution of people and resources within a grid-based environment can make resource sharing and collaborative interaction a critical factor to their success. Unless the technological barriers affecting user accessibility are reduced, there is a danger that the only scientists to benefit will be those with reasonably high levels of computer literacy. This paper examines a number of important human factors of user interaction with the grid and expresses this in the context of the science undertaken by RealityGrid, a project funded by the UK e-Science programme. Critical user interaction issues will also be highlighted by comparing grid computational steering with supervisory control systems for local and remote access to the scientific environment. Finally, implications for future grid developers will be discussed with a particular emphasis on how to improve the scientists' access to what will be an increasingly important resource. PMID:16099754

  11. Grid-based Moment Tensor Inversion Technique Apply for Earthquakes Offshore of Northeast Taiwan

    NASA Astrophysics Data System (ADS)

    Cheng, H.; Lee, S.; Ma, K.

    2010-12-01

    We use a grid-based moment tensor inversion technique and broadband continuous recordings to real-time monitoring the earthquakes offshore northeast Taiwan. The moment tensor inversion technique and a grid search scheme are applied to obtain the information of source parameters, including the hypocenter, moment magnitude, and focal mechanism. In Taiwan, the routine moment tensor solutions are reported by CWB(Central Weather Bureau) and BATS(Broadband Array in Taiwan for Seismology) which both require some lag time for the information on event time and location before doing CMT(Centroid Moment Tensor) analysis. By using the Grid-based moment tensor inversion technique, the event location and focal mechanism could be obtained simultaneously within about two minutes after the occurrence of the earthquake. This inversion procedure is based on a 1-D Green’s functions database calculated by frequency-wavenumber(fk) method. The northeast offshore of Taiwan has been taken into account as our first test area which covers the region of 121.5E to 123E, 23.5N to 25N, and the depth to 136 km. A 3D grid system is set in this study area with average grid size of 10 x 10 x 10 km3. We compare our results with the past earthquakes from 2008 to 2010 which had analyzed by BATS CMT. We also compare the event time detected by GridMT with the CWB earthquake reports. The results indicate that the grid-based moment tensor inversion system is efficient and realizable to be applied real-time on monitoring the local seismic activity. Our long-term goal is to use the GridMT technique with fully 3-D Green’s functions for the whole Taiwan in the future.

  12. Creating Better Child Care Jobs: Model Work Standards for Teaching Staff in Center-Based Child Care.

    ERIC Educational Resources Information Center

    Center for the Child Care Workforce, Washington, DC.

    This document presents model work standards articulating components of the child care center-based work environment that enable teachers to do their jobs well. These standards establish criteria to assess child care work environments and identify areas to improve in order to assure good jobs for adults and good care for children. The standards are…

  13. A Computer-Based, Interactive Videodisc Job Aid and Expert System for Electron Beam Lithography Integration and Diagnostic Procedures.

    ERIC Educational Resources Information Center

    Stevenson, Kimberly

    This master's thesis describes the development of an expert system and interactive videodisc computer-based instructional job aid used for assisting in the integration of electron beam lithography devices. Comparable to all comprehensive training, expert system and job aid development require a criterion-referenced systems approach treatment to…

  14. A Correlational Study of Telework Frequency, Information Communication Technology, and Job Satisfaction of Home-Based Teleworkers

    ERIC Educational Resources Information Center

    Webster-Trotman, Shana P.

    2010-01-01

    In 2008, 33.7 million Americans teleworked from home. The Telework Enhancement Act (S. 707) and the Telework Improvements Act (H.R. 1722) of 2009 were designed to increase the number of teleworkers. The research problem addressed was the lack of understanding of factors that influence home-based teleworkers' job satisfaction. Job dissatisfaction…

  15. Community and job satisfactions: an argument for reciprocal influence based on the principle of stimulus generalization

    SciTech Connect

    Gavin, J.; Montgomery, J.C.

    1982-10-01

    The principle of stimulus generalization provided the underlying argument for a test of hypotheses regarding the association of community and job satisfactions and a critique of related theory and research. Two-stage least squares (2SLS) analysis made possible the examination of reciprocal causation, a notion inherent in the theoretical argument. Data were obtained from 276 employees of a Western U.S. coal mine as part of a work attitudes survey. The 2SLS analysis indicated a significant impact of community satisfaction on job satisfaction and an effect of borderline significance of job on community satisfaction. Theory-based correlational comparisons were made on groups of employees residing in four distinct communities, high and low tenure groups, males and females, and different levels in the mine's hierarchy. The pattern of correlations was generally consistent with predictions, but significance tests for differences yielded equivocal support. When considered in the context of previous studies, the data upheld a reciprocal causal model and the explanatory principle of stimulus generalization for understanding the relation of community and job satisfactions. Sample characteristics necessitate cautious interpretation and the model per se might best be viewed as a heuristic framework for more definitive research.

  16. Burnout in Medical Residents: A Study Based on the Job Demands-Resources Model

    PubMed Central

    2014-01-01

    Purpose. Burnout is a prolonged response to chronic emotional and interpersonal stressors on the job. The purpose of our cross-sectional study was to estimate the burnout rates among medical residents in the largest Greek hospital in 2012 and identify factors associated with it, based on the job demands-resources model (JD-R). Method. Job demands were examined via a 17-item questionnaire assessing 4 characteristics (emotional demands, intellectual demands, workload, and home-work demands' interface) and job resources were measured via a 14-item questionnaire assessing 4 characteristics (autonomy, opportunities for professional development, support from colleagues, and supervisor's support). The Maslach Burnout Inventory (MBI) was used to measure burnout. Results. Of the 290 eligible residents, 90.7% responded. In total 14.4% of the residents were found to experience burnout. Multiple logistic regression analysis revealed that each increased point in the JD-R questionnaire score regarding home-work interface was associated with an increase in the odds of burnout by 25.5%. Conversely, each increased point for autonomy, opportunities in professional development, and each extra resident per specialist were associated with a decrease in the odds of burnout by 37.1%, 39.4%, and 59.0%, respectively. Conclusions. Burnout among medical residents is associated with home-work interface, autonomy, professional development, and resident to specialist ratio. PMID:25531003

  17. Grid base plate for an electrode plate for a storage battery and method of manufacture thereof

    SciTech Connect

    Sano, I.; Suzuki, Y.

    1981-06-02

    A grid base plate and its method of manufacture is described. The method is comprised of intermittently conveying a thin elongated metallic sheet longitudinally in one direction through successive first, second and third stations, the sheet being stopped in each of the stations between successive conveying steps. In the first station , the sheet is bent to form a peripheral upwardly projecting portion in a frame region surrounding an inner grid region. In the second station, a plurality of openings are punched in the grid region and in the third station, the sheet is punched along an outer peripheral edge surface to separate the base plate from the sheet. The upwardly projecting portion forms a space with the grid region which is filled with an active material of a thickness determined by the height of the upwardly projecting portion. The upwardly projecting portion has an outer bend region with an end surface constituting a peripheral edge of the frame which faces laterally outwards and is disposed vertically. The outer bend region has a lower surface disposed in the same horizontal plane as a lower surface of an inner region in the vicinity of the juncture of the projecting portion and the grid region. Thereby, when the base plate is placed on a horizontal planar surface, the peripheral frame region will rest on the horizontal surface along two lines of contact respectively at the bottom of the edge surface and at the lower surface at the juncture of the frame region and the grid region.

  18. Developing Information Power Grid Based Algorithms and Software

    NASA Technical Reports Server (NTRS)

    Dongarra, Jack

    1998-01-01

    This was an exploratory study to enhance our understanding of problems involved in developing large scale applications in a heterogeneous distributed environment. It is likely that the large scale applications of the future will be built by coupling specialized computational modules together. For example, efforts now exist to couple ocean and atmospheric prediction codes to simulate a more complete climate system. These two applications differ in many respects. They have different grids, the data is in different unit systems and the algorithms for inte,-rating in time are different. In addition the code for each application is likely to have been developed on different architectures and tend to have poor performance when run on an architecture for which the code was not designed, if it runs at all. Architectural differences may also induce differences in data representation which effect precision and convergence criteria as well as data transfer issues. In order to couple such dissimilar codes some form of translation must be present. This translation should be able to handle interpolation from one grid to another as well as construction of the correct data field in the correct units from available data. Even if a code is to be developed from scratch, a modular approach will likely be followed in that standard scientific packages will be used to do the more mundane tasks such as linear algebra or Fourier transform operations. This approach allows the developers to concentrate on their science rather than becoming experts in linear algebra or signal processing. Problems associated with this development approach include difficulties associated with data extraction and translation from one module to another, module performance on different nodal architectures, and others. In addition to these data and software issues there exists operational issues such as platform stability and resource management.

  19. AVQS: Attack Route-Based Vulnerability Quantification Scheme for Smart Grid

    PubMed Central

    Lim, Hyunwoo; Lee, Seokjun; Shon, Taeshik

    2014-01-01

    A smart grid is a large, consolidated electrical grid system that includes heterogeneous networks and systems. Based on the data, a smart grid system has a potential security threat in its network connectivity. To solve this problem, we develop and apply a novel scheme to measure the vulnerability in a smart grid domain. Vulnerability quantification can be the first step in security analysis because it can help prioritize the security problems. However, existing vulnerability quantification schemes are not suitable for smart grid because they do not consider network vulnerabilities. We propose a novel attack route-based vulnerability quantification scheme using a network vulnerability score and an end-to-end security score, depending on the specific smart grid network environment to calculate the vulnerability score for a particular attack route. To evaluate the proposed approach, we derive several attack scenarios from the advanced metering infrastructure domain. The experimental results of the proposed approach and the existing common vulnerability scoring system clearly show that we need to consider network connectivity for more optimized vulnerability quantification. PMID:25152923

  20. AVQS: attack route-based vulnerability quantification scheme for smart grid.

    PubMed

    Ko, Jongbin; Lim, Hyunwoo; Lee, Seokjun; Shon, Taeshik

    2014-01-01

    A smart grid is a large, consolidated electrical grid system that includes heterogeneous networks and systems. Based on the data, a smart grid system has a potential security threat in its network connectivity. To solve this problem, we develop and apply a novel scheme to measure the vulnerability in a smart grid domain. Vulnerability quantification can be the first step in security analysis because it can help prioritize the security problems. However, existing vulnerability quantification schemes are not suitable for smart grid because they do not consider network vulnerabilities. We propose a novel attack route-based vulnerability quantification scheme using a network vulnerability score and an end-to-end security score, depending on the specific smart grid network environment to calculate the vulnerability score for a particular attack route. To evaluate the proposed approach, we derive several attack scenarios from the advanced metering infrastructure domain. The experimental results of the proposed approach and the existing common vulnerability scoring system clearly show that we need to consider network connectivity for more optimized vulnerability quantification. PMID:25152923

  1. Risk-based generation dispatch in the power grid for resilience against extreme weather events

    NASA Astrophysics Data System (ADS)

    Javanbakht, Pirooz

    Natural disasters have been considered as one of the main causes of the largest blackouts in North America. When it comes to power grid resiliency against natural hazards, different solutions exist that are mainly categorized based on the time-frame of analysis. At the design stage, robustness and resiliency may be improved through redundant designs and inclusion of advanced measurement, monitoring, control and protection systems. However, since massive destructive energy may be released during the course of a natural disaster (such as a hurricane) causing large-scale and widespread disturbances, design-stage remedies may not be sufficient for ensuring power grid robustness. As a result, to limit the consequent impacts on the operation of the power grid, the system operator may be forced to take immediate remedial actions in real-time. To effectively manage the disturbances caused by severe weather events, weather forecast information should be incorporated into the operational model of the power grid in order to predict imminent contingencies. In this work, a weather-driven generation dispatch model is developed based on stochastic programming to provide a proactive solution for power grid resiliency against imminent large-scale disturbances. Hurricanes and ice storms are studied as example disaster events to provide numerical results. In this approach, the statistics of the natural disaster event are taken into account along with the expected impact on various power grid components in order to determine the availability of the grid. Then, a generation dispatch strategy is devised that helps operate the grid subject to weather-driven operational constraints.

  2. The Particle Physics Data Grid. Final Report

    SciTech Connect

    Livny, Miron

    2002-08-16

    The main objective of the Particle Physics Data Grid (PPDG) project has been to implement and evaluate distributed (Grid-enabled) data access and management technology for current and future particle and nuclear physics experiments. The specific goals of PPDG have been to design, implement, and deploy a Grid-based software infrastructure capable of supporting the data generation, processing and analysis needs common to the physics experiments represented by the participants, and to adapt experiment-specific software to operate in the Grid environment and to exploit this infrastructure. To accomplish these goals, the PPDG focused on the implementation and deployment of several critical services: reliable and efficient file replication service, high-speed data transfer services, multisite file caching and staging service, and reliable and recoverable job management services. The focus of the activity was the job management services and the interplay between these services and distributed data access in a Grid environment. Software was developed to study the interaction between HENP applications and distributed data storage fabric. One key conclusion was the need for a reliable and recoverable tool for managing large collections of interdependent jobs. An attached document provides an overview of the current status of the Directed Acyclic Graph Manager (DAGMan) with its main features and capabilities.

  3. Design and implementation of GRID-based PACS in a hospital with multiple imaging departments

    NASA Astrophysics Data System (ADS)

    Yang, Yuanyuan; Jin, Jin; Sun, Jianyong; Zhang, Jianguo

    2008-03-01

    Usually, there were multiple clinical departments providing imaging-enabled healthcare services in enterprise healthcare environment, such as radiology, oncology, pathology, and cardiology, the picture archiving and communication system (PACS) is now required to support not only radiology-based image display, workflow and data flow management, but also to have more specific expertise imaging processing and management tools for other departments providing imaging-guided diagnosis and therapy, and there were urgent demand to integrate the multiple PACSs together to provide patient-oriented imaging services for enterprise collaborative healthcare. In this paper, we give the design method and implementation strategy of developing grid-based PACS (Grid-PACS) for a hospital with multiple imaging departments or centers. The Grid-PACS functions as a middleware between the traditional PACS archiving servers and workstations or image viewing clients and provide DICOM image communication and WADO services to the end users. The images can be stored in distributed multiple archiving servers, but can be managed with central mode. The grid-based PACS has auto image backup and disaster recovery services and can provide best image retrieval path to the image requesters based on the optimal algorithms. The designed grid-based PACS has been implemented in Shanghai Huadong Hospital and been running for two years smoothly.

  4. The Utility of Job Dimensions Based on Form B of the Position Analysis Questionnaire (PAQ) in a Job Component Validation Model. Report No. 5.

    ERIC Educational Resources Information Center

    Marquardt, Lloyd D.; McCormick, Ernest J.

    The study involved the use of a structured job analysis instrument called the Position Analysis Questionnaire (PAQ) as the direct basis for the establishment of the job component validity of aptitude tests (that is, a procedure for estimating the aptitude requirements for jobs strictly on the basis of job analysis data). The sample of jobs used…

  5. AMP: a science-driven web-based application for the TeraGrid

    NASA Astrophysics Data System (ADS)

    Woitaszek, M.; Metcalfe, T.; Shorrock, I.

    The Asteroseismic Modeling Portal (AMP) provides a web-based interface for astronomers to run and view simulations that derive the properties of Sun-like stars from observations of their pulsation frequencies. In this paper, we describe the architecture and implementation of AMP, highlighting the lightweight design principles and tools used to produce a functional fully-custom web-based science application in less than a year. Targeted as a TeraGrid science gateway, AMP's architecture and implementation are intended to simplify its orchestration of TeraGrid computational resources. AMP's web-based interface was developed as a traditional standalone database-backed web application using the Python-based Django web development framework, allowing us to leverage the Django framework's capabilities while cleanly separating the user interface development from the grid interface development. We have found this combination of tools flexible and effective for rapid gateway development and deployment.

  6. Are health workers motivated by income? Job motivation of Cambodian primary health workers implementing performance-based financing

    PubMed Central

    Khim, Keovathanak

    2016-01-01

    Background Financial incentives are widely used in performance-based financing (PBF) schemes, but their contribution to health workers’ incomes and job motivation is poorly understood. Cambodia undertook health sector reform from the middle of 2009 and PBF was employed as a part of the reform process. Objective This study examines job motivation for primary health workers (PHWs) under PBF reform in Cambodia and assesses the relationship between job motivation and income. Design A cross-sectional self-administered survey was conducted on 266 PHWs, from 54 health centers in the 15 districts involved in the reform. The health workers were asked to report all sources of income from public sector jobs and provide answers to 20 items related to job motivation. Factor analysis was conducted to identify the latent variables of job motivation. Factors associated with motivation were identified through multivariable regression. Results PHWs reported multiple sources of income and an average total income of US$190 per month. Financial incentives under the PBF scheme account for 42% of the average total income. PHWs had an index motivation score of 4.9 (on a scale from one to six), suggesting they had generally high job motivation that was related to a sense of community service, respect, and job benefits. Regression analysis indicated that income and the perception of a fair distribution of incentives were both statistically significant in association with higher job motivation scores. Conclusions Financial incentives used in the reform formed a significant part of health workers’ income and influenced their job motivation. Improving job motivation requires fixing payment mechanisms and increasing the size of incentives. PBF is more likely to succeed when income, training needs, and the desire for a sense of community service are addressed and institutionalized within the health system. PMID:27319575

  7. Microcontroller based spectrophotometer using compact disc as diffraction grid

    NASA Astrophysics Data System (ADS)

    Bano, Saleha; Altaf, Talat; Akbar, Sunila

    2010-12-01

    This paper describes the design and implementation of a portable, inexpensive and cost effective spectrophotometer. The device combines the use of compact disc (CD) media as diffraction grid and 60 watt bulb as a light source. Moreover it employs a moving slit along with stepper motor for obtaining a monochromatic light, photocell with spectral sensitivity in visible region to determine the intensity of light and an amplifier with a very high gain as well as an advanced virtual RISC (AVR) microcontroller ATmega32 as a control unit. The device was successfully applied to determine the absorbance and transmittance of KMnO4 and the unknown concentration of KMnO4 with the help of calibration curve. For comparison purpose a commercial spectrophotometer was used. There are not significant differences between the absorbance and transmittance values estimated by the two instruments. Furthermore, good results are obtained at all visible wavelengths of light. Therefore, the designed instrument offers an economically feasible alternative for spectrophotometric sample analysis in small routine, research and teaching laboratories, because the components used in the designing of the device are cheap and of easy acquisition.

  8. OGC and Grid Interoperability in enviroGRIDS Project

    NASA Astrophysics Data System (ADS)

    Gorgan, Dorian; Rodila, Denisa; Bacu, Victor; Giuliani, Gregory; Ray, Nicolas

    2010-05-01

    EnviroGRIDS (Black Sea Catchment Observation and Assessment System supporting Sustainable Development) [1] is a 4-years FP7 Project aiming to address the subjects of ecologically unsustainable development and inadequate resource management. The project develops a Spatial Data Infrastructure of the Black Sea Catchment region. The geospatial technologies offer very specialized functionality for Earth Science oriented applications as well as the Grid oriented technology that is able to support distributed and parallel processing. One challenge of the enviroGRIDS project is the interoperability between geospatial and Grid infrastructures by providing the basic and the extended features of the both technologies. The geospatial interoperability technology has been promoted as a way of dealing with large volumes of geospatial data in distributed environments through the development of interoperable Web service specifications proposed by the Open Geospatial Consortium (OGC), with applications spread across multiple fields but especially in Earth observation research. Due to the huge volumes of data available in the geospatial domain and the additional introduced issues (data management, secure data transfer, data distribution and data computation), the need for an infrastructure capable to manage all those problems becomes an important aspect. The Grid promotes and facilitates the secure interoperations of geospatial heterogeneous distributed data within a distributed environment, the creation and management of large distributed computational jobs and assures a security level for communication and transfer of messages based on certificates. This presentation analysis and discusses the most significant use cases for enabling the OGC Web services interoperability with the Grid environment and focuses on the description and implementation of the most promising one. In these use cases we give a special attention to issues such as: the relations between computational grid and

  9. a Pressure-Based Composite Grid Method for Complex Fluid Flows.

    NASA Astrophysics Data System (ADS)

    Wright, Jeffrey Allen

    In this work, a pressure-based composite grid algorithm is developed for solving the incompressible Navier -Stokes equations on domains composed of an arbitrary number of overlapping subgrids. The governing equations are solved independently within each of the subgrids and a staggered grid is used to store the dependent variables. The primary emphasis is on the development of a conservative interface treatment for transferring information between the subgrids of the system. The differences between the conservative interface scheme developed for a staggered grid and that for a nonstaggered grid are discussed. An organizational scheme is developed in order to provide a general and more flexible means for handling arbitrarily overlain subgrids. In order to provide improved computational efficiency, a multigrid technique previously implemented for a single grid solution algorithm has been adopted for use with the composite grid algorithm. In the current procedure, the composite grid method operates as an independent module within the framework of the outer multigrid shell. Results for simple configurations show that composite gridding has little detrimental effect on overall multigrid performance, and that even for geometrically complex flows the current composite multigrid method can largely maintain its effectiveness. With the extension of the current method to natural convection flows it is demonstrated that a locally conservative procedure for exchanging information between subgrids, for the energy and/or species equations, can allow a non-unique solution jump across block interfaces. A new scheme, based on a linear interpolation with global correction is employed which allows the proper solution continuity across internal block interfaces to be maintained. To demonstrate the overall effectiveness of the technique, the double-diffusive flow in a solar pond-type configuration is computed. With an initially gravitationally stable system consisting of a two

  10. gLExec: gluing grid computing to the Unix world

    NASA Astrophysics Data System (ADS)

    Groep, D.; Koeroo, O.; Venekamp, G.

    2008-07-01

    The majority of compute resources in todays scientific grids are based on Unix and Unix-like operating systems. In this world, user and user-group management are based around the concepts of a numeric 'user ID' and 'group ID' that are local to the resource. In contrast, grid concepts of user and group management are centered around globally assigned identifiers and VO membership, structures that are independent of any specific resource. At the fabric boundary, these 'grid identities' have to be translated to Unix user IDs. New job submission methodologies, such as job-execution web services, community-deployed local schedulers, and the late binding of user jobs in a grid-wide overlay network of 'pilot jobs', push this fabric boundary ever further down into the resource. gLExec, a light-weight (and thereby auditable) credential mapping and authorization system, addresses these issues. It can be run both on fabric boundary, as part of an execution web service, and on the worker node in a late-binding scenario. In this contribution we describe the rationale for gLExec, how it interacts with the site authorization and credential mapping frameworks such as LCAS, LCMAPS and GUMS, and how it can be used to improve site control and traceability in a pilot-job system.

  11. Global 3D-Grids Based on Great Circle Arc QTM Sphere Octree and Its Application

    NASA Astrophysics Data System (ADS)

    Wang, J. X.; Li, Y. H.; Zheng, Y. S.; Liu, J. N.

    2013-10-01

    With the development of computers, network communications, scientific computing, mapping remote sensing and geographic information technologies, Discrete Global Grids (DGGs) and Earth System Spatial Grid(ESSG)have become the integrated spatial data model facing the large-scale and global-scale problems and the complex geo-computation. This paper discusses the property and character of the global spatial data at first. Then it introduces the grid division system based on large arc QTM octree and compares this scheme with degradation octree scheme. At last, it introduces the application of the scheme in land surface, underground and aerial geographic entity modeling. The study suggests that: the grid division system based on large arc QTM octree has the potential to integrate the whole spatial data of different layers of the geospatial. And it will have a broad application prospect in complex large-scale geographic computing.

  12. Discrete Adjoint-Based Design Optimization of Unsteady Turbulent Flows on Dynamic Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.; Diskin, Boris; Yamaleev, Nail K.

    2009-01-01

    An adjoint-based methodology for design optimization of unsteady turbulent flows on dynamic unstructured grids is described. The implementation relies on an existing unsteady three-dimensional unstructured grid solver capable of dynamic mesh simulations and discrete adjoint capabilities previously developed for steady flows. The discrete equations for the primal and adjoint systems are presented for the backward-difference family of time-integration schemes on both static and dynamic grids. The consistency of sensitivity derivatives is established via comparisons with complex-variable computations. The current work is believed to be the first verified implementation of an adjoint-based optimization methodology for the true time-dependent formulation of the Navier-Stokes equations in a practical computational code. Large-scale shape optimizations are demonstrated for turbulent flows over a tiltrotor geometry and a simulated aeroelastic motion of a fighter jet.

  13. Design of a nonlinear backstepping control strategy of grid interconnected wind power system based PMSG

    NASA Astrophysics Data System (ADS)

    Errami, Y.; Obbadi, A.; Sahnoun, S.; Benhmida, M.; Ouassaid, M.; Maaroufi, M.

    2016-07-01

    This paper presents nonlinear backstepping control for Wind Power Generation System (WPGS) based Permanent Magnet Synchronous Generator (PMSG) and connected to utility grid. The block diagram of the WPGS with PMSG and the grid side back-to-back converter is established with the dq frame of axes. This control scheme emphasises the regulation of the dc-link voltage and the control of the power factor at changing wind speed. Besides, in the proposed control strategy of WPGS, Maximum Power Point Tracking (MPPT) technique and pitch control are provided. The stability of the regulators is assured by employing Lyapunov analysis. The proposed control strategy for the system has been validated by MATLAB simulations under varying wind velocity and the grid fault condition. In addition, a comparison of simulation results based on the proposed Backstepping strategy and conventional Vector Control is provided.

  14. A methodology toward manufacturing grid-based virtual enterprise operation platform

    NASA Astrophysics Data System (ADS)

    Tan, Wenan; Xu, Yicheng; Xu, Wei; Xu, Lida; Zhao, Xianhua; Wang, Li; Fu, Liuliu

    2010-08-01

    Virtual enterprises (VEs) have become one of main types of organisations in the manufacturing sector through which the consortium companies organise their manufacturing activities. To be competitive, a VE relies on the complementary core competences among members through resource sharing and agile manufacturing capacity. Manufacturing grid (M-Grid) is a platform in which the production resources can be shared. In this article, an M-Grid-based VE operation platform (MGVEOP) is presented as it enables the sharing of production resources among geographically distributed enterprises. The performance management system of the MGVEOP is based on the balanced scorecard and has the capacity of self-learning. The study shows that a MGVEOP can make a semi-automated process possible for a VE, and the proposed MGVEOP is efficient and agile.

  15. Off-Grid DOA Estimation Based on Analysis of the Convexity of Maximum Likelihood Function

    NASA Astrophysics Data System (ADS)

    LIU, Liang; WEI, Ping; LIAO, Hong Shu

    Spatial compressive sensing (SCS) has recently been applied to direction-of-arrival (DOA) estimation owing to advantages over conventional ones. However the performance of compressive sensing (CS)-based estimation methods decreases when true DOAs are not exactly on the discretized sampling grid. We solve the off-grid DOA estimation problem using the deterministic maximum likelihood (DML) estimation method. In this work, we analyze the convexity of the DML function in the vicinity of the global solution. Especially under the condition of large array, we search for an approximately convex range around the ture DOAs to guarantee the DML function convex. Based on the convexity of the DML function, we propose a computationally efficient algorithm framework for off-grid DOA estimation. Numerical experiments show that the rough convex range accords well with the exact convex range of the DML function with large array and demonstrate the superior performance of the proposed methods in terms of accuracy, robustness and speed.

  16. A propagation method with adaptive mesh grid based on wave characteristics for wave optics simulation

    NASA Astrophysics Data System (ADS)

    Tang, Qiuyan; Wang, Jing; Lv, Pin; Sun, Quan

    2015-10-01

    Propagation simulation method and choosing mesh grid are both very important to get the correct propagation results in wave optics simulation. A new angular spectrum propagation method with alterable mesh grid based on the traditional angular spectrum method and the direct FFT method is introduced. With this method, the sampling space after propagation is not limited to propagation methods no more, but freely alterable. However, choosing mesh grid on target board influences the validity of simulation results directly. So an adaptive mesh choosing method based on wave characteristics is proposed with the introduced propagation method. We can calculate appropriate mesh grids on target board to get satisfying results. And for complex initial wave field or propagation through inhomogeneous media, we can also calculate and set the mesh grid rationally according to above method. Finally, though comparing with theoretical results, it's shown that the simulation result with the proposed method coinciding with theory. And by comparing with the traditional angular spectrum method and the direct FFT method, it's known that the proposed method is able to adapt to a wider range of Fresnel number conditions. That is to say, the method can simulate propagation results efficiently and correctly with propagation distance of almost zero to infinity. So it can provide better support for more wave propagation applications such as atmospheric optics, laser propagation and so on.

  17. Grid-based asynchronous migration of execution context in Java virtual machines

    SciTech Connect

    von Laszewski, G.; Shudo, K.; Muraoka, Y.

    2000-06-15

    Previous research efforts for building thread migration systems have concentrated on the development of frameworks dealing with a small local environment controlled by a single user. Computational Grids provide the opportunity to utilize a large-scale environment controlled over different organizational boundaries. Using this class of large-scale computational resources as part of a thread migration system provides a significant challenge previously not addressed by this community. In this paper the authors present a framework that integrates Grid services to enhance the functionality of a thread migration system. To accommodate future Grid services, the design of the framework is both flexible and extensible. Currently, the thread migration system contains Grid services for authentication, registration, lookup, and automatic software installation. In the context of distributed applications executed on a Grid-based infrastructure, the asynchronous migration of an execution context can help solve problems such as remote execution, load balancing, and the development of mobile agents. The prototype is based on the migration of Java threads, allowing asynchronous and heterogeneous migration of the execution context of the running code.

  18. PDEs on moving surfaces via the closest point method and a modified grid based particle method

    NASA Astrophysics Data System (ADS)

    Petras, A.; Ruuth, S. J.

    2016-05-01

    Partial differential equations (PDEs) on surfaces arise in a wide range of applications. The closest point method (Ruuth and Merriman (2008) [20]) is a recent embedding method that has been used to solve a variety of PDEs on smooth surfaces using a closest point representation of the surface and standard Cartesian grid methods in the embedding space. The original closest point method (CPM) was designed for problems posed on static surfaces, however the solution of PDEs on moving surfaces is of considerable interest as well. Here we propose solving PDEs on moving surfaces using a combination of the CPM and a modification of the grid based particle method (Leung and Zhao (2009) [12]). The grid based particle method (GBPM) represents and tracks surfaces using meshless particles and an Eulerian reference grid. Our modification of the GBPM introduces a reconstruction step into the original method to ensure that all the grid points within a computational tube surrounding the surface are active. We present a number of examples to illustrate the numerical convergence properties of our combined method. Experiments for advection-diffusion equations that are strongly coupled to the velocity of the surface are also presented.

  19. A Cosmic Dust Sensor Based on an Array of Grid Electrodes

    NASA Astrophysics Data System (ADS)

    Li, Y. W.; Bugiel, S.; Strack, H.; Srama, R.

    2014-04-01

    We described a low mass and high sensitivity cosmic dust trajectory sensor using a array of grid segments[1]. the sensor determines the particle velocity vector and the particle mass. An impact target is used for the detection of the impact plasma of high speed particles like interplanetary dust grains or high speed ejecta. Slower particles are measured by three planes of grid electrodes using charge induction. In contrast to conventional Dust Trajectory Sensor based on wire electrodes, grid electrodes a robust and sensitive design with a trajectory resolution of a few degree. Coulomb simulation and laboratory tests were performed in order to verify the instrument design. The signal shapes are used to derive the particle plane intersection points and to derive the exact particle trajectory. The accuracy of the instrument for the incident angle depends on the particle charge, the position of the intersection point and the signal-to-noise of the charge sensitive amplifier (CSA). There are some advantages of this grid-electrodes based design with respect to conventional trajectory sensor using individual wire electrodes: the grid segment electrodes show higher amplitudes (close to 100%induced charge) and the overall number of measurement channels can be reduced. This allows a compact instrument with low power and mass requirements.

  20. Job attitudes.

    PubMed

    Judge, Timothy A; Kammeyer-Mueller, John D

    2012-01-01

    Job attitudes research is arguably the most venerable and popular topic in organizational psychology. This article surveys the field as it has been constituted in the past several years. Definitional issues are addressed first, in an attempt to clarify the nature, scope, and structure of job attitudes. The distinction between cognitive and affective bases of job attitudes has been an issue of debate, and recent research using within-persons designs has done much to inform this discussion. Recent research has also begun to reformulate the question of dispositional or situational influences on employee attitudes by addressing how these factors might work together to influence attitudes. Finally, there has also been a continual growth in research investigating how employee attitudes are related to a variety of behaviors at both the individual and aggregated level of analysis. PMID:22129457

  1. Monitoring System for the GRID Monte Carlo Mass Production in the H1 Experiment at DESY

    NASA Astrophysics Data System (ADS)

    Bystritskaya, Elena; Fomenko, Alexander; Gogitidze, Nelly; Lobodzinski, Bogdan

    2014-06-01

    The H1 Virtual Organization (VO), as one of the small VOs, employs most components of the EMI or gLite Middleware. In this framework, a monitoring system is designed for the H1 Experiment to identify and recognize within the GRID the best suitable resources for execution of CPU-time consuming Monte Carlo (MC) simulation tasks (jobs). Monitored resources are Computer Elements (CEs), Storage Elements (SEs), WMS-servers (WMSs), CernVM File System (CVMFS) available to the VO HONE and local GRID User Interfaces (UIs). The general principle of monitoring GRID elements is based on the execution of short test jobs on different CE queues using submission through various WMSs and directly to the CREAM-CEs as well. Real H1 MC Production jobs with a small number of events are used to perform the tests. Test jobs are periodically submitted into GRID queues, the status of these jobs is checked, output files of completed jobs are retrieved, the result of each job is analyzed and the waiting time and run time are derived. Using this information, the status of the GRID elements is estimated and the most suitable ones are included in the automatically generated configuration files for use in the H1 MC production. The monitoring system allows for identification of problems in the GRID sites and promptly reacts on it (for example by sending GGUS (Global Grid User Support) trouble tickets). The system can easily be adapted to identify the optimal resources for tasks other than MC production, simply by changing to the relevant test jobs. The monitoring system is written mostly in Python and Perl with insertion of a few shell scripts. In addition to the test monitoring system we use information from real production jobs to monitor the availability and quality of the GRID resources. The monitoring tools register the number of job resubmissions, the percentage of failed and finished jobs relative to all jobs on the CEs and determine the average values of waiting and running time for the

  2. A Fast and Robust Poisson-Boltzmann Solver Based on Adaptive Cartesian Grids.

    PubMed

    Boschitsch, Alexander H; Fenley, Marcia O

    2011-05-10

    An adaptive Cartesian grid (ACG) concept is presented for the fast and robust numerical solution of the 3D Poisson-Boltzmann Equation (PBE) governing the electrostatic interactions of large-scale biomolecules and highly charged multi-biomolecular assemblies such as ribosomes and viruses. The ACG offers numerous advantages over competing grid topologies such as regular 3D lattices and unstructured grids. For very large biological molecules and multi-biomolecule assemblies, the total number of grid-points is several orders of magnitude less than that required in a conventional lattice grid used in the current PBE solvers thus allowing the end user to obtain accurate and stable nonlinear PBE solutions on a desktop computer. Compared to tetrahedral-based unstructured grids, ACG offers a simpler hierarchical grid structure, which is naturally suited to multigrid, relieves indirect addressing requirements and uses fewer neighboring nodes in the finite difference stencils. Construction of the ACG and determination of the dielectric/ionic maps are straightforward, fast and require minimal user intervention. Charge singularities are eliminated by reformulating the problem to produce the reaction field potential in the molecular interior and the total electrostatic potential in the exterior ionic solvent region. This approach minimizes grid-dependency and alleviates the need for fine grid spacing near atomic charge sites. The technical portion of this paper contains three parts. First, the ACG and its construction for general biomolecular geometries are described. Next, a discrete approximation to the PBE upon this mesh is derived. Finally, the overall solution procedure and multigrid implementation are summarized. Results obtained with the ACG-based PBE solver are presented for: (i) a low dielectric spherical cavity, containing interior point charges, embedded in a high dielectric ionic solvent - analytical solutions are available for this case, thus allowing rigorous

  3. Arogyasree: an enhanced grid-based approach to mobile telemedicine.

    PubMed

    Kailasam, Sriram; Kumar, Santosh; Dharanipragada, Janakiram

    2010-01-01

    A typical telemedicine system involves a small set of hospitals providing remote healthcare services to a small section of the society using dedicated nodal centers. However, in developing nations like India where majority live in rural areas that lack specialist care, we envision the need for much larger Internet-based telemedicine systems that would enable a large pool of doctors and hospitals to collectively provide healthcare services to entire populations. We propose a scalable, Internet-based P2P architecture for telemedicine integrating multiple hospitals, mobile medical specialists, and rural mobile units. This system, based on the store and forward model, features a distributed context-aware scheduler for providing timely and location-aware telemedicine services. Other features like zone-based overlay structure and persistent object space abstraction make the system efficient and easy to use. Lastly, the system uses the existing internet infrastructure and supports mobility at doctor and patient ends. PMID:20467560

  4. Arogyasree: An Enhanced Grid-Based Approach to Mobile Telemedicine

    PubMed Central

    Kailasam, Sriram; Kumar, Santosh; Dharanipragada, Janakiram

    2010-01-01

    A typical telemedicine system involves a small set of hospitals providing remote healthcare services to a small section of the society using dedicated nodal centers. However, in developing nations like India where majority live in rural areas that lack specialist care, we envision the need for much larger Internet-based telemedicine systems that would enable a large pool of doctors and hospitals to collectively provide healthcare services to entire populations. We propose a scalable, Internet-based P2P architecture for telemedicine integrating multiple hospitals, mobile medical specialists, and rural mobile units. This system, based on the store and forward model, features a distributed context-aware scheduler for providing timely and location-aware telemedicine services. Other features like zone-based overlay structure and persistent object space abstraction make the system efficient and easy to use. Lastly, the system uses the existing internet infrastructure and supports mobility at doctor and patient ends. PMID:20467560

  5. Simulating Runoff from a Grid Based Mercury Model: Flow Comparisons

    EPA Science Inventory

    Several mercury cycling models, including general mass balance approaches, mixed-batch reactors in streams or lakes, or regional process-based models, exist to assess the ecological exposure risks associated with anthropogenically increased atmospheric mercury (Hg) deposition, so...

  6. HPM-based dynamic sparse grid approach for Perona-Malik equation.

    PubMed

    Mei, Shu-Li; Zhu, De-Hai

    2014-01-01

    The Perona-Malik equation is a famous image edge-preserved denoising model, which is represented as a nonlinear 2-dimension partial differential equation. Based on the homotopy perturbation method (HPM) and the multiscale interpolation theory, a dynamic sparse grid method for Perona-Malik was constructed in this paper. Compared with the traditional multiscale numerical techniques, the proposed method is independent of the basis function. In this method, a dynamic choice scheme of external grid points is proposed to eliminate the artifacts introduced by the partitioning technique. In order to decrease the calculation amount introduced by the change of the external grid points, the Newton interpolation technique is employed instead of the traditional Lagrange interpolation operator, and the condition number of the discretized matrix different equations is taken into account of the choice of the external grid points. Using the new numerical scheme, the time complexity of the sparse grid method for the image denoising is decreased to O(4 (J+2j)) from O(4(3J)), (j ≪ J). The experiment results show that the dynamic choice scheme of the external gird points can eliminate the boundary effect effectively and the efficiency can also be improved greatly comparing with the classical interval wavelets numerical methods. PMID:25050394

  7. Elliptic Curve Cryptography-Based Authentication with Identity Protection for Smart Grids.

    PubMed

    Zhang, Liping; Tang, Shanyu; Luo, He

    2016-01-01

    In a smart grid, the power service provider enables the expected power generation amount to be measured according to current power consumption, thus stabilizing the power system. However, the data transmitted over smart grids are not protected, and then suffer from several types of security threats and attacks. Thus, a robust and efficient authentication protocol should be provided to strength the security of smart grid networks. As the Supervisory Control and Data Acquisition system provides the security protection between the control center and substations in most smart grid environments, we focus on how to secure the communications between the substations and smart appliances. Existing security approaches fail to address the performance-security balance. In this study, we suggest a mitigation authentication protocol based on Elliptic Curve Cryptography with privacy protection by using a tamper-resistant device at the smart appliance side to achieve a delicate balance between performance and security of smart grids. The proposed protocol provides some attractive features such as identity protection, mutual authentication and key agreement. Finally, we demonstrate the completeness of the proposed protocol using the Gong-Needham-Yahalom logic. PMID:27007951

  8. HPM-Based Dynamic Sparse Grid Approach for Perona-Malik Equation

    PubMed Central

    Mei, Shu-Li; Zhu, De-Hai

    2014-01-01

    The Perona-Malik equation is a famous image edge-preserved denoising model, which is represented as a nonlinear 2-dimension partial differential equation. Based on the homotopy perturbation method (HPM) and the multiscale interpolation theory, a dynamic sparse grid method for Perona-Malik was constructed in this paper. Compared with the traditional multiscale numerical techniques, the proposed method is independent of the basis function. In this method, a dynamic choice scheme of external grid points is proposed to eliminate the artifacts introduced by the partitioning technique. In order to decrease the calculation amount introduced by the change of the external grid points, the Newton interpolation technique is employed instead of the traditional Lagrange interpolation operator, and the condition number of the discretized matrix different equations is taken into account of the choice of the external grid points. Using the new numerical scheme, the time complexity of the sparse grid method for the image denoising is decreased to O(4J+2j) from O(43J), (j ≪ J). The experiment results show that the dynamic choice scheme of the external gird points can eliminate the boundary effect effectively and the efficiency can also be improved greatly comparing with the classical interval wavelets numerical methods. PMID:25050394

  9. Video Stabilization Based on Feature Trajectory Augmentation and Selection and Robust Mesh Grid Warping.

    PubMed

    Koh, Yeong Jun; Lee, Chulwoo; Kim, Chang-Su

    2015-12-01

    We propose a video stabilization algorithm, which extracts a guaranteed number of reliable feature trajectories for robust mesh grid warping. We first estimate feature trajectories through a video sequence and transform the feature positions into rolling-free smoothed positions. When the number of the estimated trajectories is insufficient, we generate virtual trajectories by augmenting incomplete trajectories using a low-rank matrix completion scheme. Next, we detect feature points on a large moving object and exclude them so as to stabilize camera movements, rather than object movements. With the selected feature points, we set a mesh grid on each frame and warp each grid cell by moving the original feature positions to the smoothed ones. For robust warping, we formulate a cost function based on the reliability weights of each feature point and each grid cell. The cost function consists of a data term, a structure-preserving term, and a regularization term. By minimizing the cost function, we determine the robust mesh grid warping and achieve the stabilization. Experimental results demonstrate that the proposed algorithm reconstructs videos more stably than the conventional algorithms. PMID:26394425

  10. Cygrid: A fast Cython-powered convolution-based gridding module for Python

    NASA Astrophysics Data System (ADS)

    Winkel, B.; Lenz, D.; Flöer, L.

    2016-06-01

    Context. Data gridding is a common task in astronomy and many other science disciplines. It refers to the resampling of irregularly sampled data to a regular grid. Aims: We present cygrid, a library module for the general purpose programming language Python. Cygrid can be used to resample data to any collection of target coordinates, although its typical application involves FITS maps or data cubes. The FITS world coordinate system standard is supported. Methods: The regridding algorithm is based on the convolution of the original samples with a kernel of arbitrary shape. We introduce a lookup table scheme that allows us to parallelize the gridding and combine it with the HEALPix tessellation of the sphere for fast neighbor searches. Results: We show that for n input data points, cygrids runtime scales between O(n) and O(nlog n) and analyze the performance gain that is achieved using multiple CPU cores. We also compare the gridding speed with other techniques, such as nearest-neighbor, and linear and cubic spline interpolation. Conclusions: Cygrid is a very fast and versatile gridding library that significantly outperforms other third-party Python modules, such as the linear and cubic spline interpolation provided by SciPy. http://https://github.com/bwinkel/cygrid

  11. Elliptic Curve Cryptography-Based Authentication with Identity Protection for Smart Grids

    PubMed Central

    Zhang, Liping; Tang, Shanyu; Luo, He

    2016-01-01

    In a smart grid, the power service provider enables the expected power generation amount to be measured according to current power consumption, thus stabilizing the power system. However, the data transmitted over smart grids are not protected, and then suffer from several types of security threats and attacks. Thus, a robust and efficient authentication protocol should be provided to strength the security of smart grid networks. As the Supervisory Control and Data Acquisition system provides the security protection between the control center and substations in most smart grid environments, we focus on how to secure the communications between the substations and smart appliances. Existing security approaches fail to address the performance-security balance. In this study, we suggest a mitigation authentication protocol based on Elliptic Curve Cryptography with privacy protection by using a tamper-resistant device at the smart appliance side to achieve a delicate balance between performance and security of smart grids. The proposed protocol provides some attractive features such as identity protection, mutual authentication and key agreement. Finally, we demonstrate the completeness of the proposed protocol using the Gong-Needham- Yahalom logic. PMID:27007951

  12. Application of a Scalable, Parallel, Unstructured-Grid-Based Navier-Stokes Solver

    NASA Technical Reports Server (NTRS)

    Parikh, Paresh

    2001-01-01

    A parallel version of an unstructured-grid based Navier-Stokes solver, USM3Dns, previously developed for efficient operation on a variety of parallel computers, has been enhanced to incorporate upgrades made to the serial version. The resultant parallel code has been extensively tested on a variety of problems of aerospace interest and on two sets of parallel computers to understand and document its characteristics. An innovative grid renumbering construct and use of non-blocking communication are shown to produce superlinear computing performance. Preliminary results from parallelization of a recently introduced "porous surface" boundary condition are also presented.

  13. A Grid-resolved Analysis of Base Flowfield for a Four-Engine Clustered Nozzle Configuration

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    1993-01-01

    The objective of this study is to propose a computational methodology that can effectively anchor the base flowfield of a four-engine clustered nozzle configuration. This computational methodology is based on a three-dimensional, viscous flow, pressure-based computational fluid dynamics (CFD) formulation. For efficient CFD calculation, a Prandtl-Meyer solution treatment is applied to the algebraic grid lines for initial plume expansion resolution. As the solution evolves, the computational grid is adapted to the pertinent flow gradients. The CFD model employs an upwind scheme in which second- and fourth-order central differencing schemes with artificial dissipation are used. The computed quantitative base flow properties such as the radial base pressure distributions, model centerline static pressure, Mach number and impact pressure variations, and base pressure characteristic curve agreed reasonably well with those of the measurement.

  14. CHARACTERIZING SPATIAL AND TEMPORAL DYNAMICS: DEVELOPMENT OF A GRID-BASED WATERSHED MERCURY LOADING MODEL

    EPA Science Inventory

    A distributed grid-based watershed mercury loading model has been developed to characterize spatial and temporal dynamics of mercury from both point and non-point sources. The model simulates flow, sediment transport, and mercury dynamics on a daily time step across a diverse lan...

  15. A new distributed computing model of mobile spatial information service grid based on mobile agent

    NASA Astrophysics Data System (ADS)

    Tian, Gen; Liu, Miao-long

    2009-10-01

    A new distributed computing model of mobile spatial information service is studied based on grid computing environment. Key technologies are presented in the model, including mobile agent (MA) distributed computing, grid computing, spatial data model, location based service (LBS), global positioning system (GPS), code division multiple access (CDMA), transfer control protocol/internet protocol (TCP/IP), and user datagram protocol (UDP). In order to deal with the narrow bandwidth and instability of the wireless internet, distributed organization of tremendous spatial data, limited processing speed and low memory of mobile devices, a new mobile agent based mobile spatial information service grid (MSISG) architecture is further proposed that has good load balance, high processing efficiency, less network communication and thus suitable for mobile distributed computing environment. It can provide applications of spatial information distributed computing and mobile service. The theories and technologies architecture of MSISG are built originally from the base, including spatial information mobile agent model, distributed grid geographic information system (GIS) server model, mobile agent server model and mobile GIS client model. An application system for MSISG is therefore developed authorship by visual c++ and embedded visual c++. A field test is carried out through this system in Shanghai, and the results show that the proposed model and methods are feasible and adaptable for mobile spatial information service.

  16. A new distributed computing model of mobile spatial information service grid based on mobile agent

    NASA Astrophysics Data System (ADS)

    Tian, Gen; Liu, Miao-long

    2008-10-01

    A new distributed computing model of mobile spatial information service is studied based on grid computing environment. Key technologies are presented in the model, including mobile agent (MA) distributed computing, grid computing, spatial data model, location based service (LBS), global positioning system (GPS), code division multiple access (CDMA), transfer control protocol/internet protocol (TCP/IP), and user datagram protocol (UDP). In order to deal with the narrow bandwidth and instability of the wireless internet, distributed organization of tremendous spatial data, limited processing speed and low memory of mobile devices, a new mobile agent based mobile spatial information service grid (MSISG) architecture is further proposed that has good load balance, high processing efficiency, less network communication and thus suitable for mobile distributed computing environment. It can provide applications of spatial information distributed computing and mobile service. The theories and technologies architecture of MSISG are built originally from the base, including spatial information mobile agent model, distributed grid geographic information system (GIS) server model, mobile agent server model and mobile GIS client model. An application system for MSISG is therefore developed authorship by visual c++ and embedded visual c++. A field test is carried out through this system in Shanghai, and the results show that the proposed model and methods are feasible and adaptable for mobile spatial information service.

  17. Implementation of fuzzy-sliding mode based control of a grid connected photovoltaic system.

    PubMed

    Menadi, Abdelkrim; Abdeddaim, Sabrina; Ghamri, Ahmed; Betka, Achour

    2015-09-01

    The present work describes an optimal operation of a small scale photovoltaic system connected to a micro-grid, based on both sliding mode and fuzzy logic control. Real time implementation is done through a dSPACE 1104 single board, controlling a boost chopper on the PV array side and a voltage source inverter (VSI) on the grid side. The sliding mode controller tracks permanently the maximum power of the PV array regardless of atmospheric condition variations, while The fuzzy logic controller (FLC) regulates the DC-link voltage, and ensures via current control of the VSI a quasi-total transit of the extracted PV power to the grid under a unity power factor operation. Simulation results, carried out via Matlab-Simulink package were approved through experiment, showing the effectiveness of the proposed control techniques. PMID:26243440

  18. An unstructured grid, three-dimensional model based on the shallow water equations

    USGS Publications Warehouse

    Casulli, V.; Walters, R.A.

    2000-01-01

    A semi-implicit finite difference model based on the three-dimensional shallow water equations is modified to use unstructured grids. There are obvious advantages in using unstructured grids in problems with a complicated geometry. In this development, the concept of unstructured orthogonal grids is introduced and applied to this model. The governing differential equations are discretized by means of a semi-implicit algorithm that is robust, stable and very efficient. The resulting model is relatively simple, conserves mass, can fit complicated boundaries and yet is sufficiently flexible to permit local mesh refinements in areas of interest. Moreover, the simulation of the flooding and drying is included in a natural and straightforward manner. These features are illustrated by a test case for studies of convergence rates and by examples of flooding on a river plain and flow in a shallow estuary. Copyright ?? 2000 John Wiley & Sons, Ltd.

  19. Self-adaptive Fault-Tolerance of HLA-Based Simulations in the Grid Environment

    NASA Astrophysics Data System (ADS)

    Huang, Jijie; Chai, Xudong; Zhang, Lin; Li, Bo Hu

    The objects of a HLA-based simulation can access model services to update their attributes. However, the grid server may be overloaded and refuse the model service to handle objects accesses. Because these objects have been accessed this model service during last simulation loop and their medium state are stored in this server, this may terminate the simulation. A fault-tolerance mechanism must be introduced into simulations. But the traditional fault-tolerance methods cannot meet the above needs because the transmission latency between a federate and the RTI in grid environment varies from several hundred milliseconds to several seconds. By adding model service URLs to the OMT and expanding the HLA services and model services with some interfaces, this paper proposes a self-adaptive fault-tolerance mechanism of simulations according to the characteristics of federates accessing model services. Benchmark experiments indicate that the expanded HLA/RTI can make simulations self-adaptively run in the grid environment.

  20. Air Pollution Monitoring and Mining Based on Sensor Grid in London

    PubMed Central

    Ma, Yajie; Richards, Mark; Ghanem, Moustafa; Guo, Yike; Hassard, John

    2008-01-01

    In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We present a two-layer network framework, a P2P e-Science Grid architecture, and the distributed data mining algorithm as the solutions to address the challenges. We simulated the system in TinyOS to examine the operation of each sensor as well as the networking performance. We also present the distributed data mining result to examine the effectiveness of the algorithm.

  1. Probability-Based Software for Grid Optimization: Improved Power System Operations Using Advanced Stochastic Optimization

    SciTech Connect

    2012-02-24

    GENI Project: Sandia National Laboratories is working with several commercial and university partners to develop software for market management systems (MMSs) that enable greater use of renewable energy sources throughout the grid. MMSs are used to securely and optimally determine which energy resources should be used to service energy demand across the country. Contributions of electricity to the grid from renewable energy sources such as wind and solar are intermittent, introducing complications for MMSs, which have trouble accommodating the multiple sources of price and supply uncertainties associated with bringing these new types of energy into the grid. Sandia’s software will bring a new, probability-based formulation to account for these uncertainties. By factoring in various probability scenarios for electricity production from renewable energy sources in real time, Sandia’s formula can reduce the risk of inefficient electricity transmission, save ratepayers money, conserve power, and support the future use of renewable energy.

  2. Experience with Remote Job Execution

    SciTech Connect

    Lynch, Vickie E; Cobb, John W; Green, Mark L; Kohl, James Arthur; Miller, Stephen D; Ren, Shelly; Smith, Bradford C; Vazhkudai, Sudharshan S

    2008-01-01

    The Neutron Science Portal at Oak Ridge National Laboratory submits jobs to the TeraGrid for remote job execution. The TeraGrid is a network of high performance computers supported by the US National Science Foundation. There are eleven partner facilities with over a petaflop of peak computing performance and sixty petabytes of long-term storage. Globus is installed on a local machine and used for job submission. The graphical user interface is produced by java coding that reads an XML file. After submission, the status of the job is displayed in a Job Information Service window which queries globus for the status. The output folder produced in the scratch directory of the TeraGrid machine is returned to the portal with globus-url-copy command that uses the gridftp servers on the TeraGrid machines. This folder is copied from the stage-in directory of the community account to the user's results directory where the output can be plotted using the portal's visualization services. The primary problem with remote job execution is diagnosing execution problems. We have daily tests of submitting multiple remote jobs from the portal. When these jobs fail on a computer, it is difficult to diagnose the problem from the globus output. Successes and problems will be presented.

  3. Agent-based simulation of building evacuation using a grid graph-based model

    NASA Astrophysics Data System (ADS)

    Tan, L.; Lin, H.; Hu, M.; Che, W.

    2014-02-01

    Shifting from macroscope models to microscope models, the agent-based approach has been widely used to model crowd evacuation as more attentions are paid on individualized behaviour. Since indoor evacuation behaviour is closely related to spatial features of the building, effective representation of indoor space is essential for the simulation of building evacuation. The traditional cell-based representation has limitations in reflecting spatial structure and is not suitable for topology analysis. Aiming at incorporating powerful topology analysis functions of GIS to facilitate agent-based simulation of building evacuation, we used a grid graph-based model in this study to represent the indoor space. Such model allows us to establish an evacuation network at a micro level. Potential escape routes from each node thus could be analysed through GIS functions of network analysis considering both the spatial structure and route capacity. This would better support agent-based modelling of evacuees' behaviour including route choice and local movements. As a case study, we conducted a simulation of emergency evacuation from the second floor of an official building using Agent Analyst as the simulation platform. The results demonstrate the feasibility of the proposed method, as well as the potential of GIS in visualizing and analysing simulation results.

  4. Classroom-based Interventions and Teachers’ Perceived Job Stressors and Confidence: Evidence from a Randomized Trial in Head Start Settings

    PubMed Central

    Zhai, Fuhua; Raver, C. Cybele; Li-Grining, Christine

    2011-01-01

    Preschool teachers’ job stressors have received increasing attention but have been understudied in the literature. We investigated the impacts of a classroom-based intervention, the Chicago School Readiness Project (CSRP), on teachers’ perceived job stressors and confidence, as indexed by their perceptions of job control, job resources, job demands, and confidence in behavior management. Using a clustered randomized controlled trial (RCT) design, the CSRP provided multifaceted services to the treatment group, including teacher training and mental health consultation, which were accompanied by stress-reduction services and workshops. Overall, 90 teachers in 35 classrooms at 18 Head Start sites participated in the study. After adjusting for teacher and classroom factors and site fixed effects, we found that the CSRP had significant effects on the improvement of teachers’ perceived job control and work-related resources. We also found that the CSRP decreased teachers’ confidence in behavior management and had no statistically significant effects on job demands. Overall, we did not find significant moderation effects of teacher race/ethnicity, education, teaching experience, or teacher type. The implications for research and policy are discussed. PMID:21927538

  5. Grid occupancy estimation for environment perception based on belief functions and PCR6

    NASA Astrophysics Data System (ADS)

    Moras, Julien; Dezert, Jean; Pannetier, Benjamin

    2015-05-01

    In this contribution, we propose to improve the grid map occupancy estimation method developed so far based on belief function modeling and the classical Dempster's rule of combination. Grid map offers a useful representation of the perceived world for mobile robotics navigation. It will play a major role for the security (obstacle avoidance) of next generations of terrestrial vehicles, as well as for future autonomous navigation systems. In a grid map, the occupancy of each cell representing a small piece of the surrounding area of the robot must be estimated at first from sensors measurements (typically LIDAR, or camera), and then it must also be classified into different classes in order to get a complete and precise perception of the dynamic environment where the robot moves. So far, the estimation and the grid map updating have been done using fusion techniques based on the probabilistic framework, or on the classical belief function framework thanks to an inverse model of the sensors. Mainly because the latter offers an interesting management of uncertainties when the quality of available information is low, and when the sources of information appear as conflicting. To improve the performances of the grid map estimation, we propose in this paper to replace Dempster's rule of combination by the PCR6 rule (Proportional Conflict Redistribution rule #6) proposed in DSmT (Dezert-Smarandache) Theory. As an illustrating scenario, we consider a platform moving in dynamic area and we compare our new realistic simulation results (based on a LIDAR sensor) with those obtained by the probabilistic and the classical belief-based approaches.

  6. A priori parameter estimates for a distributed, grid-based Xinanjiang model using geographically based information

    NASA Astrophysics Data System (ADS)

    Yao, Cheng; Li, Zhijia; Yu, Zhongbo; Zhang, Ke

    2012-10-01

    SummaryAn improved form of spatially distributed Grid-Xinanjiang model (GXM), which integrates features of a well-tested conceptual rainfall-runoff model and a physically based flow routing model, has been proposed for simulating hydrologic processes and forecasting flood events in watersheds. The digital elevation model (DEM) is utilized in the GXM to derive computational flow direction, routing sequencing, and hillslope and channel slopes. The processes in the model include canopy interception, direct channel precipitation, evapotranspiration, as well as runoff generation via a saturation excess mechanism. A two-step finite difference solution of the diffusion wave approximation of the St. Venant equations with second-order accuracy is used in the model to simulate the flow routed along the hillslope and channel on a cell basis with consideration of upstream inflow and flow partition to the channels. A physically, empirically based approach using geographically based information such as topography, soil data and land use/land cover data is employed for estimating spatially varied parameters. GXM is applied at a 1-km grid scale to a nested watershed located in Anhui province, China. The parent Tunxi watershed, with a drainage area of 2692.7 km2, contains five internal points with available observed streamflow data, allowing us to evaluate model's ability to simulate the hydrologic processes within the watershed. Calibration and verification of the proposed GXM are carried out for both daily and hourly time scales using daily rainfall-runoff data and hourly streamflow data. Model performance is assessed by comparing simulated and observed flows at the watershed outlet and interior gauging stations. Initial tests indicate that the parameter estimation approach is efficient and the developed model can satisfactorily simulate not only the streamflow at the parent watershed outlet, but also the flood hydrograph at the interior gauging points without model recalibration

  7. Focused grid-based resampling for protein docking and mapping.

    PubMed

    Mamonov, Artem B; Moghadasi, Mohammad; Mirzaei, Hanieh; Zarbafian, Shahrooz; Grove, Laurie E; Bohnuud, Tanggis; Vakili, Pirooz; Ch Paschalidis, Ioannis; Vajda, Sandor; Kozakov, Dima

    2016-04-30

    The fast Fourier transform (FFT) sampling algorithm has been used with success in application to protein-protein docking and for protein mapping, the latter docking a variety of small organic molecules for the identification of binding hot spots on the target protein. Here we explore the local rather than global usage of the FFT sampling approach in docking applications. If the global FFT based search yields a near-native cluster of docked structures for a protein complex, then focused resampling of the cluster generally leads to a substantial increase in the number of conformations close to the native structure. In protein mapping, focused resampling of the selected hot spot regions generally reveals further hot spots that, while not as strong as the primary hot spots, also contribute to ligand binding. The detection of additional ligand binding regions is shown by the improved overlap between hot spots and bound ligands. © 2016 Wiley Periodicals, Inc. PMID:26837000

  8. Locating and navigation mechanism based on place-cell and grid-cell models.

    PubMed

    Yan, Chuankui; Wang, Rubin; Qu, Jingyi; Chen, Guanrong

    2016-08-01

    Extensive experiments on rats have shown that environmental cues play an important role in goal locating and navigation. Major studies about locating and navigation are carried out based only on place cells. Nevertheless, it is known that navigation may also rely on grid cells. Therefore, we model locating and navigation based on both, thus developing a novel grid-cell model, from which firing fields of grid cells can be obtained. We found a continuous-time dynamic system to describe learning and direction selection. In our simulation experiment, according to the results from physiology experiments, we successfully rebuild place fields of place cells and firing fields of grid cells. We analyzed the factors affecting the locating accuracy. Results show that the learning rate, firing threshold and cell number can influence the outcomes from various tasks. We used our system model to perform a goal navigation task and showed that paths that are changed for every run in one experiment converged to a stable one after several runs. PMID:27468322

  9. The CrossGrid project

    NASA Astrophysics Data System (ADS)

    Kunze, M.; CrossGrid Collaboration

    2003-04-01

    There are many large-scale problems that require new approaches to computing, such as earth observation, environmental management, biomedicine, industrial and scientific modeling. The CrossGrid project addresses realistic problems in medicine, environmental protection, flood prediction, and physics analysis and is oriented towards specific end-users: Medical doctors, who could obtain new tools to help them to obtain correct diagnoses and to guide them during operations; industries, that could be advised on the best timing for some critical operations involving risk of pollution; flood crisis teams, that could predict the risk of a flood on the basis of historical records and actual hydrological and meteorological data; physicists, who could optimize the analysis of massive volumes of data distributed across countries and continents. Corresponding applications will be based on Grid technology and could be complex and difficult to use: the CrossGrid project aims at developing several tools that will make the Grid more friendly for average users. Portals for specific applications will be designed, that should allow for easy connection to the Grid, create a customized work environment, and provide users with all necessary information to get their job done.

  10. Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results

    PubMed Central

    Humada, Ali M.; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M.; Ahmed, Mushtaq N.

    2016-01-01

    A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions. PMID:27035575

  11. Power Grid Maintenance Scheduling Intelligence Arrangement Supporting System Based on Power Flow Forecasting

    NASA Astrophysics Data System (ADS)

    Xie, Chang; Wen, Jing; Liu, Wenying; Wang, Jiaming

    With the development of intelligent dispatching, the intelligence level of network control center full-service urgent need to raise. As an important daily work of network control center, the application of maintenance scheduling intelligent arrangement to achieve high-quality and safety operation of power grid is very important. By analyzing the shortages of the traditional maintenance scheduling software, this paper designs a power grid maintenance scheduling intelligence arrangement supporting system based on power flow forecasting, which uses the advanced technologies in maintenance scheduling, such as artificial intelligence, online security checking, intelligent visualization techniques. It implements the online security checking of maintenance scheduling based on power flow forecasting and power flow adjusting based on visualization, in order to make the maintenance scheduling arrangement moreintelligent and visual.

  12. Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results.

    PubMed

    Humada, Ali M; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M; Ahmed, Mushtaq N

    2016-01-01

    A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions. PMID:27035575

  13. PLL Based Energy Efficient PV System with Fuzzy Logic Based Power Tracker for Smart Grid Applications.

    PubMed

    Rohini, G; Jamuna, V

    2016-01-01

    This work aims at improving the dynamic performance of the available photovoltaic (PV) system and maximizing the power obtained from it by the use of cascaded converters with intelligent control techniques. Fuzzy logic based maximum power point technique is embedded on the first conversion stage to obtain the maximum power from the available PV array. The cascading of second converter is needed to maintain the terminal voltage at grid potential. The soft-switching region of three-stage converter is increased with the proposed phase-locked loop based control strategy. The proposed strategy leads to reduction in the ripple content, rating of components, and switching losses. The PV array is mathematically modeled and the system is simulated and the results are analyzed. The performance of the system is compared with the existing maximum power point tracking algorithms. The authors have endeavored to accomplish maximum power and improved reliability for the same insolation of the PV system. Hardware results of the system are also discussed to prove the validity of the simulation results. PMID:27294189

  14. PLL Based Energy Efficient PV System with Fuzzy Logic Based Power Tracker for Smart Grid Applications

    PubMed Central

    Rohini, G.; Jamuna, V.

    2016-01-01

    This work aims at improving the dynamic performance of the available photovoltaic (PV) system and maximizing the power obtained from it by the use of cascaded converters with intelligent control techniques. Fuzzy logic based maximum power point technique is embedded on the first conversion stage to obtain the maximum power from the available PV array. The cascading of second converter is needed to maintain the terminal voltage at grid potential. The soft-switching region of three-stage converter is increased with the proposed phase-locked loop based control strategy. The proposed strategy leads to reduction in the ripple content, rating of components, and switching losses. The PV array is mathematically modeled and the system is simulated and the results are analyzed. The performance of the system is compared with the existing maximum power point tracking algorithms. The authors have endeavored to accomplish maximum power and improved reliability for the same insolation of the PV system. Hardware results of the system are also discussed to prove the validity of the simulation results. PMID:27294189

  15. An Introduction to Competency-Based Employment and Training Programming for Youth under the Job Training Partnership Act.

    ERIC Educational Resources Information Center

    Druian, Greg; Spill, Rick

    This guide provides an introduction to competency-based employment and training under the Job Training Partnership Act (JTPA). The guide describes in general terms the steps service delivery areas should take to implement competency-based employment and training systems for youth. The content is based on the experiences of practitioners, and it is…

  16. Analysis of the Multi Strategy Goal Programming for Micro-Grid Based on Dynamic ant Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Qiu, J. P.; Niu, D. X.

    Micro-grid is one of the key technologies of the future energy supplies. Take economic planning. reliability, and environmental protection of micro grid as a basis for the analysis of multi-strategy objective programming problems for micro grid which contains wind power, solar power, and battery and micro gas turbine. Establish the mathematical model of each power generation characteristics and energy dissipation. and change micro grid planning multi-objective function under different operating strategies to a single objective model based on AHP method. Example analysis shows that in combination with dynamic ant mixed genetic algorithm can get the optimal power output of this model.

  17. AstroGrid-D: Grid technology for astronomical science

    NASA Astrophysics Data System (ADS)

    Enke, Harry; Steinmetz, Matthias; Adorf, Hans-Martin; Beck-Ratzka, Alexander; Breitling, Frank; Brüsemeister, Thomas; Carlson, Arthur; Ensslin, Torsten; Högqvist, Mikael; Nickelt, Iliya; Radke, Thomas; Reinefeld, Alexander; Reiser, Angelika; Scholl, Tobias; Spurzem, Rainer; Steinacker, Jürgen; Voges, Wolfgang; Wambsganß, Joachim; White, Steve

    2011-02-01

    We present status and results of AstroGrid-D, a joint effort of astrophysicists and computer scientists to employ grid technology for scientific applications. AstroGrid-D provides access to a network of distributed machines with a set of commands as well as software interfaces. It allows simple use of computer and storage facilities and to schedule or monitor compute tasks and data management. It is based on the Globus Toolkit middleware (GT4). Chapter 1 describes the context which led to the demand for advanced software solutions in Astrophysics, and we state the goals of the project. We then present characteristic astrophysical applications that have been implemented on AstroGrid-D in chapter 2. We describe simulations of different complexity, compute-intensive calculations running on multiple sites (Section 2.1), and advanced applications for specific scientific purposes (Section 2.2), such as a connection to robotic telescopes (Section 2.2.3). We can show from these examples how grid execution improves e.g. the scientific workflow. Chapter 3 explains the software tools and services that we adapted or newly developed. Section 3.1 is focused on the administrative aspects of the infrastructure, to manage users and monitor activity. Section 3.2 characterises the central components of our architecture: The AstroGrid-D information service to collect and store metadata, a file management system, the data management system, and a job manager for automatic submission of compute tasks. We summarise the successfully established infrastructure in chapter 4, concluding with our future plans to establish AstroGrid-D as a platform of modern e-Astronomy.

  18. Efficient calibration of a distributed pde-based hydrological model using grid coarsening

    NASA Astrophysics Data System (ADS)

    von Gunten, D.; Wöhling, T.; Haslauer, C.; Merchán, D.; Causapé, J.; Cirpka, O. A.

    2014-11-01

    Partial-differential-equation based integrated hydrological models are now regularly used at catchment scale. They rely on the shallow water equations for surface flow and on the Richards' equations for subsurface flow, allowing a spatially explicit representation of properties and states. However, these models usually come at high computational costs, which limit their accessibility to state-of-the-art methods of parameter estimation and uncertainty quantification, because these methods require a large number of model evaluations. In this study, we present an efficient model calibration strategy, based on a hierarchy of grid resolutions, each of them resolving the same zonation of subsurface and land-surface units. We first analyze which model outputs show the highest similarities between the original model and two differently coarsened grids. Then we calibrate the coarser models by comparing these similar outputs to the measurements. We finish the calibration using the fully resolved model, taking the result of the preliminary calibration as starting point. We apply the proposed approach to the well monitored Lerma catchment in North-East Spain, using the model HydroGeoSphere. The original model grid with 80,000 finite elements was complemented with two other model variants with approximately 16,000 and 10,000 elements, respectively. Comparing the model results for these different grids, we observe differences in peak discharge, evapotranspiration, and near-surface saturation. Hydraulic heads and low flow, however, are very similar for all tested parameter sets, which allows the use of these variables to calibrate our model. The calibration results are satisfactory and the duration of the calibration has been greatly decreased by using different model grid resolutions.

  19. Hierarchical Grid-based Multi-People Tracking-by-Detection With Global Optimization.

    PubMed

    Chen, Lili; Wang, Wei; Panin, Giorgio; Knoll, Alois

    2015-11-01

    We present a hierarchical grid-based, globally optimal tracking-by-detection approach to track an unknown number of targets in complex and dense scenarios, particularly addressing the challenges of complex interaction and mutual occlusion. Frame-by-frame detection is performed by hierarchical likelihood grids, matching shape templates through a fast oriented distance transform. To allow recovery from misdetections, common heuristics such as nonmaxima suppression within observations is eschewed. Within a discretized state-space, the data association problem is formulated as a grid-based network flow model, resulting in a convex problem casted into an integer linear programming form, giving a global optimal solution. In addition, we show how a behavior cue (body orientation) can be integrated into our association affinity model, providing valuable hints for resolving ambiguities between crossing trajectories. Unlike traditional motion-based approaches, we estimate body orientation by a hybrid methodology, which combines the merits of motion-based and 3D appearance-based orientation estimation, thus being capable of dealing also with still-standing or slowly moving targets. The performance of our method is demonstrated through experiments on a large variety of benchmark video sequences, including both indoor and outdoor scenarios. PMID:26151936

  20. Grid generation strategies for turbomachinery configurations

    NASA Astrophysics Data System (ADS)

    Lee, K. D.; Henderson, T. L.

    1991-01-01

    Turbomachinery flow fields involve unique grid generation issues due to their geometrical and physical characteristics. Several strategic approaches are discussed to generate quality grids. The grid quality is further enhanced through blending and adapting. Grid blending smooths the grids locally through averaging and diffusion operators. Grid adaptation redistributes the grid points based on a grid quality assessment. These methods are demonstrated with several examples.

  1. A Current Sensor Based on the Giant Magnetoresistance Effect: Design and Potential Smart Grid Applications

    PubMed Central

    Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X.

    2012-01-01

    Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A−1, linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C−1 with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids. PMID:23202221

  2. Solving large-scale real-world telecommunication problems using a grid-based genetic algorithm

    NASA Astrophysics Data System (ADS)

    Luna, Francisco; Nebro, Antonio; Alba, Enrique; Durillo, Juan

    2008-11-01

    This article analyses the use of a grid-based genetic algorithm (GrEA) to solve a real-world instance of a problem from the telecommunication domain. The problem, known as automatic frequency planning (AFP), is used in a global system for mobile communications (GSM) networks to assign a number of fixed frequencies to a set of GSM transceivers located in the antennae of a cellular phone network. Real data instances of the AFP are very difficult to solve owing to the NP-hard nature of the problem, so combining grid computing and metaheuristics turns out to be a way to provide satisfactory solutions in a reasonable amount of time. GrEA has been deployed on a grid with up to 300 processors to solve an AFP instance of 2612 transceivers. The results not only show that significant running time reductions are achieved, but that the search capability of GrEA clearly outperforms that of the equivalent non-grid algorithm.

  3. A current sensor based on the giant magnetoresistance effect: design and potential smart grid applications.

    PubMed

    Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X

    2012-01-01

    Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A(-1), linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C(-1) with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids. PMID:23202221

  4. A Grid-Based Architecture for Coupling Hydro-Meteorological Models

    NASA Astrophysics Data System (ADS)

    Schiffers, Michael; Straube, Christian; gentschen Felde, Nils; Clematis, Andrea; Galizia, Antonella; D'Agostino, Daniele; Danovaro, Emanuele

    2014-05-01

    Computational hydro-meteorological research (HMR) requires the execution of various meteorological, hydrological, hydraulic, and impact models, either standalone or as well-orchestrated chains (workflows). While the former approach is straightforward, the latter one is not because consecutive models may depend on different execution environments, on organizational constraints, and on separate data formats and semantics to be bridged. Consequently, in order to gain the most benefit from HMR model chains, it is of paramount interest a) to seamlessly couple heterogeneous models; b) to access models and data in various administrative domains; c) to execute models on the most appropriate resources available in right time. In this contribution we present our experience in using a Grid-based computing infrastructure for HMR. In particular we will first explore various coupling mechanisms. We then specify an enabling Grid infrastructure to support dynamic model chains. Using the DRIHM project as an example we report on implementation details, especially in the context of the European Grid Infrastructure (EGI). Finally, we apply the architecture for hydro-meteorological disaster management and elaborate on the opportunities the Grid infrastructure approach offers in a worldwide context.

  5. Calibrating a population-based job-exposure matrix using inspection measurements to estimate historical occupational exposure to lead for a population-based cohort in Shanghai, China.

    PubMed

    Koh, Dong-Hee; Bhatti, Parveen; Coble, Joseph B; Stewart, Patricia A; Lu, Wei; Shu, Xiao-Ou; Ji, Bu-Tian; Xue, Shouzheng; Locke, Sarah J; Portengen, Lutzen; Yang, Gong; Chow, Wong-Ho; Gao, Yu-Tang; Rothman, Nathaniel; Vermeulen, Roel; Friesen, Melissa C

    2014-01-01

    The epidemiologic evidence for the carcinogenicity of lead is inconsistent and requires improved exposure assessment to estimate risk. We evaluated historical occupational lead exposure for a population-based cohort of women (n=74,942) by calibrating a job-exposure matrix (JEM) with lead fume (n=20,084) and lead dust (n=5383) measurements collected over four decades in Shanghai, China. Using mixed-effect models, we calibrated intensity JEM ratings to the measurements using fixed-effects terms for year and JEM rating. We developed job/industry-specific estimates from the random-effects terms for job and industry. The model estimates were applied to subjects' jobs when the JEM probability rating was high for either job or industry; remaining jobs were considered unexposed. The models predicted that exposure increased monotonically with JEM intensity rating and decreased 20-50-fold over time. The cumulative calibrated JEM estimates and job/industry-specific estimates were highly correlated (Pearson correlation=0.79-0.84). Overall, 5% of the person-years and 8% of the women were exposed to lead fume; 2% of the person-years and 4% of the women were exposed to lead dust. The most common lead-exposed jobs were manufacturing electronic equipment. These historical lead estimates should enhance our ability to detect associations between lead exposure and cancer risk in the future epidemiologic analyses. PMID:22910004

  6. Calibrating a population-based job-exposure matrix using inspection measurements to estimate historical occupational exposure to lead for a population-based cohort in Shanghai, China

    PubMed Central

    Koh, Dong-Hee; Bhatti, Parveen; Coble, Joseph B.; Stewart, Patricia A; Lu, Wei; Shu, Xiao-Ou; Ji, Bu-Tian; Xue, Shouzheng; Locke, Sarah J.; Portengen, Lutzen; Yang, Gong; Chow, Wong-Ho; Gao, Yu-Tang; Rothman, Nathaniel; Vermeulen, Roel; Friesen, Melissa C.

    2012-01-01

    The epidemiologic evidence for the carcinogenicity of lead is inconsistent and requires improved exposure assessment to estimate risk. We evaluated historical occupational lead exposure for a population-based cohort of women (n=74,942) by calibrating a job-exposure matrix (JEM) with lead fume (n=20,084) and lead dust (n=5,383) measurements collected over four decades in Shanghai, China. Using mixed-effect models, we calibrated intensity JEM ratings to the measurements using fixed-effects terms for year and JEM rating. We developed job/industry-specific estimates from the random-effects terms for job and industry. The model estimates were applied to subjects’ jobs when the JEM probability rating was high for either job or industry; remaining jobs were considered unexposed. The models predicted that exposure increased monotonically with JEM intensity rating and decreased 20–50-fold over time. The cumulative calibrated JEM estimates and job/industry-specific estimates were highly correlated (Pearson correlation=0.79–0.84). Overall, 5% of the person-years and 8% of the women were exposed to lead fume; 2% of the person-years and 4% of the women were exposed to lead dust. The most common lead-exposed jobs were manufacturing electronic equipment. These historical lead estimates should enhance our ability to detect associations between lead exposure and cancer risk in future epidemiologic analyses. PMID:22910004

  7. Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates

    DOE PAGESBeta

    Jakeman, J. D.; Wildey, T.

    2015-01-01

    In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity. We show that utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this papermore » we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less

  8. Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates

    SciTech Connect

    Jakeman, J. D.; Wildey, T.

    2015-01-01

    In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity. We show that utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.

  9. CDF way to the GRID

    NASA Astrophysics Data System (ADS)

    Delli Paoli, F.

    2006-11-01

    The improvements of the peak instantaneous luminosity of the Tevatron Collider require large increases in computing requirements for the CDF experiment which has to be able to increase proportionally the amount of Monte Carlo data it produces and to satisfy the computing needs for future data analysis. This is, in turn, forcing the CDF Collaboration to move beyond the used dedicated resources and start exploiting Grid resources. CDF has been running a set of CDF Analysis Farm (CAFs), which are submission portals to dedicated pools. In this paper will be presented the CDF strategy to access Grid resources. GlideCAF, a new CAF implementation based on Condor Glide-in technology, has been developed to access resources in specific Grid Sites and is currently in production status at CNAF Tier-1 in Italy. Recently have been configured GlideCAFs also in San Diego (US), Fermilab and Lyon Tier-1 Center (France). GlideCAF model has been used also to implement OsgCAF, which is a Fermilab project to exploit OSG resources in US. LcgCAF is basically a reimplementation of the CAF model in order to access Grid resources by using the LCG/EGEE Middleware components in a total standard Grid way. LcgCAF is constituted by a set of services each of them responsible for accepting, submitting and monitoring CDF user jobs during theirs lifetimes in the Grid environment. An overview of the Grid Environment and of the specific Middleware services used will be presented; GlideCAF and LcgCAF implementations will be discussed in detail. Some details on OsgCAF project will be also given.

  10. Scalability of grid- and subbasin-based land surface modeling approaches for hydrologic simulations

    SciTech Connect

    Tesfa, Teklu K.; Leung, Lai-Yung R.; Huang, Maoyi; Li, Hongyi; Voisin, Nathalie; Wigmosta, Mark S.

    2014-03-27

    This paper investigates the relative merits of grid- and subbasin-based land surface modeling approaches for hydrologic simulations, with a focus on their scalability (i.e., abilities to perform consistently across a range of spatial resolutions) in simulating runoff generation. Simulations produced by the grid- and subbasin-based configurations of the Community Land Model (CLM) are compared at four spatial resolutions (0.125o, 0.25o, 0.5o and 1o) over the topographically diverse region of the U.S. Pacific Northwest. Using the 0.125o resolution simulation as the “reference”, statistical skill metrics are calculated and compared across simulations at 0.25o, 0.5o and 1o spatial resolutions of each modeling approach at basin and topographic region levels. Results suggest significant scalability advantage for the subbasin-based approach compared to the grid-based approach for runoff generation. Basin level annual average relative errors of surface runoff at 0.25o, 0.5o, and 1o compared to 0.125o are 3%, 4%, and 6% for the subbasin-based configuration and 4%, 7%, and 11% for the grid-based configuration, respectively. The scalability advantages of the subbasin-based approach are more pronounced during winter/spring and over mountainous regions. The source of runoff scalability is found to be related to the scalability of major meteorological and land surface parameters of runoff generation. More specifically, the subbasin-based approach is more consistent across spatial scales than the grid-based approach in snowfall/rainfall partitioning, which is related to air temperature and surface elevation. Scalability of a topographic parameter used in the runoff parameterization also contributes to improved scalability of the rain driven saturated surface runoff component, particularly during winter. Hence this study demonstrates the importance of spatial structure for multi-scale modeling of hydrological processes, with implications to surface heat fluxes in coupled land

  11. A Modified Rife Algorithm for Off-Grid DOA Estimation Based on Sparse Representations.

    PubMed

    Chen, Tao; Wu, Huanxin; Guo, Limin; Liu, Lutao

    2015-01-01

    In this paper we address the problem of off-grid direction of arrival (DOA) estimation based on sparse representations in the situation of multiple measurement vectors (MMV). A novel sparse DOA estimation method which changes MMV problem to SMV is proposed. This method uses sparse representations based on weighted eigenvectors (SRBWEV) to deal with the MMV problem. MMV problem can be changed to single measurement vector (SMV) problem by using the linear combination of eigenvectors of array covariance matrix in signal subspace as a new SMV for sparse solution calculation. So the complexity of this proposed algorithm is smaller than other DOA estimation algorithms of MMV. Meanwhile, it can overcome the limitation of the conventional sparsity-based DOA estimation approaches that the unknown directions belong to a predefined discrete angular grid, so it can further improve the DOA estimation accuracy. The modified Rife algorithm for DOA estimation (MRife-DOA) is simulated based on SRBWEV algorithm. In this proposed algorithm, the largest and sub-largest inner products between the measurement vector or its residual and the atoms in the dictionary are utilized to further modify DOA estimation according to the principle of Rife algorithm and the basic idea of coarse-to-fine estimation. Finally, simulation experiments show that the proposed algorithm is effective and can reduce the DOA estimation error caused by grid effect with lower complexity. PMID:26610521

  12. A Modified Rife Algorithm for Off-Grid DOA Estimation Based on Sparse Representations

    PubMed Central

    Chen, Tao; Wu, Huanxin; Guo, Limin; Liu, Lutao

    2015-01-01

    In this paper we address the problem of off-grid direction of arrival (DOA) estimation based on sparse representations in the situation of multiple measurement vectors (MMV). A novel sparse DOA estimation method which changes MMV problem to SMV is proposed. This method uses sparse representations based on weighted eigenvectors (SRBWEV) to deal with the MMV problem. MMV problem can be changed to single measurement vector (SMV) problem by using the linear combination of eigenvectors of array covariance matrix in signal subspace as a new SMV for sparse solution calculation. So the complexity of this proposed algorithm is smaller than other DOA estimation algorithms of MMV. Meanwhile, it can overcome the limitation of the conventional sparsity-based DOA estimation approaches that the unknown directions belong to a predefined discrete angular grid, so it can further improve the DOA estimation accuracy. The modified Rife algorithm for DOA estimation (MRife-DOA) is simulated based on SRBWEV algorithm. In this proposed algorithm, the largest and sub-largest inner products between the measurement vector or its residual and the atoms in the dictionary are utilized to further modify DOA estimation according to the principle of Rife algorithm and the basic idea of coarse-to-fine estimation. Finally, simulation experiments show that the proposed algorithm is effective and can reduce the DOA estimation error caused by grid effect with lower complexity. PMID:26610521

  13. Creative Engineering Based Education with Autonomous Robots Considering Job Search Support

    NASA Astrophysics Data System (ADS)

    Takezawa, Satoshi; Nagamatsu, Masao; Takashima, Akihiko; Nakamura, Kaeko; Ohtake, Hideo; Yoshida, Kanou

    The Robotics Course in our Mechanical Systems Engineering Department offers “Robotics Exercise Lessons” as one of its Problem-Solution Based Specialized Subjects. This is intended to motivate students learning and to help them acquire fundamental items and skills on mechanical engineering and improve understanding of Robotics Basic Theory. Our current curriculum was established to accomplish this objective based on two pieces of research in 2005: an evaluation questionnaire on the education of our Mechanical Systems Engineering Department for graduates and a survey on the kind of human resources which companies are seeking and their expectations for our department. This paper reports the academic results and reflections of job search support in recent years as inherited and developed from the previous curriculum.

  14. Grid-based modeling for land use planning and environmental resource mapping.

    SciTech Connect

    Kuiper, J. A.

    1999-08-04

    Geographic Information System (GIS) technology is used by land managers and natural resource planners for examining resource distribution and conducting project planning, often by visually interpreting spatial data representing environmental or regulatory variables. Frequently, many variables influence the decision-making process, and modeling can improve results with even a small investment of time and effort. Presented are several grid-based GIS modeling projects, including: (1) land use optimization under environmental and regulatory constraints; (2) identification of suitable wetland mitigation sites; and (3) predictive mapping of prehistoric cultural resource sites. As different as the applications are, each follows a similar process of problem conceptualization, implementation of a practical grid-based GIS model, and evaluation of results.

  15. Improved halftoning method for autostereoscopic display based on float grid-division multiplexing.

    PubMed

    Chen, Duo; Sang, Xinzhu; Yu, Xunbo; Chen, Zhidong; Wang, Peng; Gao, Xin; Guo, Nan; Xie, Songlin

    2016-08-01

    Autostereoscopic printing is one of the most common ways for three-dimensional display, because it can present finer results by printing higher dots per inches (DPI). However, there are some problems for current methods. First, errors caused by dislocation between integer grids and non-customized lenticular lens result in severe vision quality. Second, the view-number and gray-level cannot be set arbitrarily. In this paper, an improved halftoning method for autostereoscopic printing based on float grid-division multiplexing (fGDM) is proposed. FGDM effectively addresses above two problems. GPU based program of fGDM is enabled to achieve the result very fast. Films with lenticular lens array are implemented in experiments to verify the effectiveness of proposed method which provides an improved three-dimensional performance, compared with the AM screening and random screening. PMID:27505777

  16. Discrete Adjoint-Based Design for Unsteady Turbulent Flows On Dynamic Overset Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.; Diskin, Boris

    2012-01-01

    A discrete adjoint-based design methodology for unsteady turbulent flows on three-dimensional dynamic overset unstructured grids is formulated, implemented, and verified. The methodology supports both compressible and incompressible flows and is amenable to massively parallel computing environments. The approach provides a general framework for performing highly efficient and discretely consistent sensitivity analysis for problems involving arbitrary combinations of overset unstructured grids which may be static, undergoing rigid or deforming motions, or any combination thereof. General parent-child motions are also accommodated, and the accuracy of the implementation is established using an independent verification based on a complex-variable approach. The methodology is used to demonstrate aerodynamic optimizations of a wind turbine geometry, a biologically-inspired flapping wing, and a complex helicopter configuration subject to trimming constraints. The objective function for each problem is successfully reduced and all specified constraints are satisfied.

  17. An automated method for gridding and clustering-based segmentation of cDNA microarray images.

    PubMed

    Giannakeas, Nikolaos; Fotiadis, Dimitrios I

    2009-01-01

    Microarrays are widely used to quantify gene expression levels. Microarray image analysis is one of the tools, which are necessary when dealing with vast amounts of biological data. In this work we propose a new method for the automated analysis of microarray images. The proposed method consists of two stages: gridding and segmentation. Initially, the microarray images are preprocessed using template matching, and block and spot finding takes place. Then, the non-expressed spots are detected and a grid is fit on the image using a Voronoi diagram. In the segmentation stage, K-means and Fuzzy C means (FCM) clustering are employed. The proposed method was evaluated using images from the Stanford Microarray Database (SMD). The results that are presented in the segmentation stage show the efficiency of our Fuzzy C means-based work compared to the two already developed K-means-based methods. The proposed method can handle images with artefacts and it is fully automated. PMID:19046850

  18. A computational-grid based system for continental drainage network extraction using SRTM digital elevation models

    NASA Technical Reports Server (NTRS)

    Curkendall, David W.; Fielding, Eric J.; Pohl, Josef M.; Cheng, Tsan-Huei

    2003-01-01

    We describe a new effort for the computation of elevation derivatives using the Shuttle Radar Topography Mission (SRTM) results. Jet Propulsion Laboratory's (JPL) SRTM has produced a near global database of highly accurate elevation data. The scope of this database enables computing precise stream drainage maps and other derivatives on Continental scales. We describe a computing architecture for this computationally very complex task based on NASA's Information Power Grid (IPG), a distributed high performance computing network based on the GLOBUS infrastructure. The SRTM data characteristics and unique problems they present are discussed. A new algorithm for organizing the conventional extraction algorithms [1] into a cooperating parallel grid is presented as an essential component to adapt to the IPG computing structure. Preliminary results are presented for a Southern California test area, established for comparing SRTM and its results against those produced using the USGS National Elevation Data (NED) model.

  19. A comprehensive WSN-based approach to efficiently manage a Smart Grid.

    PubMed

    Martinez-Sandoval, Ruben; Garcia-Sanchez, Antonio-Javier; Garcia-Sanchez, Felipe; Garcia-Haro, Joan; Flynn, David

    2014-01-01

    The Smart Grid (SG) is conceived as the evolution of the current electrical grid representing a big leap in terms of efficiency, reliability and flexibility compared to today's electrical network. To achieve this goal, the Wireless Sensor Networks (WSNs) are considered by the scientific/engineering community to be one of the most suitable technologies to apply SG technology to due to their low-cost, collaborative and long-standing nature. However, the SG has posed significant challenges to utility operators-mainly very harsh radio propagation conditions and the lack of appropriate systems to empower WSN devices-making most of the commercial widespread solutions inadequate. In this context, and as a main contribution, we have designed a comprehensive ad-hoc WSN-based solution for the Smart Grid (SENSED-SG) that focuses on specific implementations of the MAC, the network and the application layers to attain maximum performance and to successfully deal with any arising hurdles. Our approach has been exhaustively evaluated by computer simulations and mathematical analysis, as well as validation within real test-beds deployed in controlled environments. In particular, these test-beds cover two of the main scenarios found in a SG; on one hand, an indoor electrical substation environment, implemented in a High Voltage AC/DC laboratory, and, on the other hand, an outdoor case, deployed in the Transmission and Distribution segment of a power grid. The results obtained show that SENSED-SG performs better and is more suitable for the Smart Grid than the popular ZigBee WSN approach. PMID:25310468

  20. WebGIS based on semantic grid model and web services

    NASA Astrophysics Data System (ADS)

    Zhang, WangFei; Yue, CaiRong; Gao, JianGuo

    2009-10-01

    ontology based on Grid technology and Web Services.

  1. A Comprehensive WSN-Based Approach to Efficiently Manage a Smart Grid

    PubMed Central

    Martinez-Sandoval, Ruben; Garcia-Sanchez, Antonio-Javier; Garcia-Sanchez, Felipe; Garcia-Haro, Joan; Flynn, David

    2014-01-01

    The Smart Grid (SG) is conceived as the evolution of the current electrical grid representing a big leap in terms of efficiency, reliability and flexibility compared to today's electrical network. To achieve this goal, the Wireless Sensor Networks (WSNs) are considered by the scientific/engineering community to be one of the most suitable technologies to apply SG technology to due to their low-cost, collaborative and long-standing nature. However, the SG has posed significant challenges to utility operators—mainly very harsh radio propagation conditions and the lack of appropriate systems to empower WSN devices—making most of the commercial widespread solutions inadequate. In this context, and as a main contribution, we have designed a comprehensive ad-hoc WSN-based solution for the Smart Grid (SENSED-SG) that focuses on specific implementations of the MAC, the network and the application layers to attain maximum performance and to successfully deal with any arising hurdles. Our approach has been exhaustively evaluated by computer simulations and mathematical analysis, as well as validation within real test-beds deployed in controlled environments. In particular, these test-beds cover two of the main scenarios found in a SG; on one hand, an indoor electrical substation environment, implemented in a High Voltage AC/DC laboratory, and, on the other hand, an outdoor case, deployed in the Transmission and Distribution segment of a power grid. The results obtained show that SENSED-SG performs better and is more suitable for the Smart Grid than the popular ZigBee WSN approach. PMID:25310468

  2. Detection of Power Grid Harmonic Pollution Sources based on Upgraded Power Meters

    NASA Astrophysics Data System (ADS)

    Petković, Predrag; Stevanović, Dejan

    2014-05-01

    The paper suggests a new and efficient method for location of nonlinear loads on a grid. It is based on measuring of distortion power. The paper reviews different definitions of distortion power and proves that the method is feasible independently on particular definition. The obtained results of simulation and measurement confirm the effectiveness and applicability of the method. The proposed solution is suitable for software update of existing electronic power-meters or can be implement as hardware upgrade.

  3. An Analysis for an Internet Grid to Support Space Based Operations

    NASA Technical Reports Server (NTRS)

    Bradford, Robert; McNair, Ann R. (Technical Monitor)

    2002-01-01

    Currently, and in the past, dedicated communication circuits and "network services" with very stringent performance requirements have been used to support manned and unmanned mission critical ground operations at GSFC, JSC, MSFC, KSC and other NASA facilities. Because of the evolution of network technology, it is time to investigate other approaches to providing mission services for space ground and flight operations. In various scientific disciplines, effort is under way to develop network/komputing grids. These grids consisting of networks and computing equipment are enabling lower cost science. Specifically, earthquake research is headed in this direction. With a standard for network and computing interfaces using a grid, a researcher would not be required to develop and engineer NASA/DoD specific interfaces with the attendant increased cost. Use of the Internet Protocol (IP), CCSDS packet spec, and reed-solomon for satellite error correction etc. can be adopted/standardized to provide these interfaces. Generally most interfaces are developed at least to some degree end to end. This study would investigate the feasibility of using existing standards and protocols necessary to implement a SpaceOps Grid. New interface definitions or adoption/modification of existing ones for the various space operational services is required for voice both space based and ground, video, telemetry, commanding and planning may play a role to some undefined level. Security will be a separate focus in the study since security is such a large issue in using public networks. This SpaceOps Grid would be transparent to users. It would be anagulous to the Ethernet protocol's ease of use in that a researcher would plug in their experiment or instrument at one end and would be connected to the appropriate host or server without further intervention. Free flyers would be in this category as well. They would be launched and would transmit without any further intervention with the researcher or

  4. Structuring Job Related Information on the Intranet: An Experimental Comparison of Task vs. an Organization-Based Approach

    ERIC Educational Resources Information Center

    Cozijn, Reinier; Maes, Alfons; Schackman, Didie; Ummelen, Nicole

    2007-01-01

    In this article, we present a usability experiment in which participants were asked to make intensive use of information on an intranet in order to execute job-related tasks. Participants had to work with one of two versions of an intranet: one with an organization-based hyperlink structure, and one with a task-based hyperlink structure.…

  5. 20 CFR 670.520 - Are students permitted to hold jobs other than work-based learning opportunities?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Are students permitted to hold jobs other than work-based learning opportunities? 670.520 Section 670.520 Employees' Benefits EMPLOYMENT AND...-based learning opportunities? Yes, a center operator may authorize a student to participate in...

  6. 20 CFR 670.520 - Are students permitted to hold jobs other than work-based learning opportunities?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Are students permitted to hold jobs other than work-based learning opportunities? 670.520 Section 670.520 Employees' Benefits EMPLOYMENT AND...-based learning opportunities? Yes, a center operator may authorize a student to participate in...

  7. 20 CFR 670.520 - Are students permitted to hold jobs other than work-based learning opportunities?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false Are students permitted to hold jobs other than work-based learning opportunities? 670.520 Section 670.520 Employees' Benefits EMPLOYMENT AND... than work-based learning opportunities? Yes, a center operator may authorize a student to...

  8. 20 CFR 670.520 - Are students permitted to hold jobs other than work-based learning opportunities?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false Are students permitted to hold jobs other than work-based learning opportunities? 670.520 Section 670.520 Employees' Benefits EMPLOYMENT AND... than work-based learning opportunities? Yes, a center operator may authorize a student to...

  9. 20 CFR 670.520 - Are students permitted to hold jobs other than work-based learning opportunities?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false Are students permitted to hold jobs other than work-based learning opportunities? 670.520 Section 670.520 Employees' Benefits EMPLOYMENT AND... than work-based learning opportunities? Yes, a center operator may authorize a student to...

  10. The Differences in Teachers' and Principals' General Job Stress and Stress Related to Performance-Based Accreditation.

    ERIC Educational Resources Information Center

    Hipps, Elizabeth Smith; Halpin, Glennelle

    Whether different amounts of general job stress and stress related to the Alabama Performance-Based Accreditation Standards were experienced by teachers and principals was studied in a sample of 65 principals and 242 teachers from 9 Alabama school systems. All subjects completed the Alabama Performance-Based Accreditation Standards Stress Measure,…

  11. Grid-based lattice summation of electrostatic potentials by assembled rank-structured tensor approximation

    NASA Astrophysics Data System (ADS)

    Khoromskaia, Venera; Khoromskij, Boris N.

    2014-12-01

    Our recent method for low-rank tensor representation of sums of the arbitrarily positioned electrostatic potentials discretized on a 3D Cartesian grid reduces the 3D tensor summation to operations involving only 1D vectors however retaining the linear complexity scaling in the number of potentials. Here, we introduce and study a novel tensor approach for fast and accurate assembled summation of a large number of lattice-allocated potentials represented on 3D N×N×N grid with the computational requirements only weakly dependent on the number of summed potentials. It is based on the assembled low-rank canonical tensor representations of the collected potentials using pointwise sums of shifted canonical vectors representing the single generating function, say the Newton kernel. For a sum of electrostatic potentials over L×L×L lattice embedded in a box the required storage scales linearly in the 1D grid-size, O(N), while the numerical cost is estimated by O(NL). For periodic boundary conditions, the storage demand remains proportional to the 1D grid-size of a unit cell, n=N/L, while the numerical cost reduces to O(N), that outperforms the FFT-based Ewald-type summation algorithms of complexity O(N3logN). The complexity in the grid parameter N can be reduced even to the logarithmic scale O(logN) by using data-sparse representation of canonical N-vectors via the quantics tensor approximation. For justification, we prove an upper bound on the quantics ranks for the canonical vectors in the overall lattice sum. The presented approach is beneficial in applications which require further functional calculus with the lattice potential, say, scalar product with a function, integration or differentiation, which can be performed easily in tensor arithmetics on large 3D grids with 1D cost. Numerical tests illustrate the performance of the tensor summation method and confirm the estimated bounds on the tensor ranks.

  12. Navigation in Grid Space with the NAS Grid Benchmarks

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Hood, Robert; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    We present a navigational tool for computational grids. The navigational process is based on measuring the grid characteristics with the NAS Grid Benchmarks (NGB) and using the measurements to assign tasks of a grid application to the grid machines. The tool allows the user to explore the grid space and to navigate the execution at a grid application to minimize its turnaround time. We introduce the notion of gridscape as a user view of the grid and show how it can be me assured by NGB, Then we demonstrate how the gridscape can be used with two different schedulers to navigate a grid application through a rudimentary grid.

  13. The Job-Oriented Approach to Beginning Accounting

    ERIC Educational Resources Information Center

    Spanswick, Ralph

    1976-01-01

    An instructional approach for high school students, based on employment opportunities, is described in four phases: exploring accounting jobs, the accounting cycle, job training, and job placement. (MS)

  14. Spatial services grid

    NASA Astrophysics Data System (ADS)

    Cao, Jian; Li, Qi; Cheng, Jicheng

    2005-10-01

    This paper discusses the concept, key technologies and main application of Spatial Services Grid. The technologies of Grid computing and Webservice is playing a revolutionary role in studying the spatial information services. The concept of the SSG (Spatial Services Grid) is put forward based on the SIG (Spatial Information Grid) and OGSA (open grid service architecture). Firstly, the grid computing is reviewed and the key technologies of SIG and their main applications are reviewed. Secondly, the grid computing and three kinds of SIG (in broad sense)--SDG (spatial data grid), SIG (spatial information grid) and SSG (spatial services grid) and their relationships are proposed. Thirdly, the key technologies of the SSG (spatial services grid) is put forward. Finally, three representative applications of SSG (spatial services grid) are discussed. The first application is urban location based services gird, which is a typical spatial services grid and can be constructed on OGSA (Open Grid Services Architecture) and digital city platform. The second application is region sustainable development grid which is the key to the urban development. The third application is Region disaster and emergency management services grid.

  15. Design and implementation of a web-based data grid management system for enterprise PACS backup and disaster recovery

    NASA Astrophysics Data System (ADS)

    Zhou, Zheng; Ma, Kevin; Talini, Elisa; Documet, Jorge; Lee, Jasper; Liu, Brent

    2007-03-01

    A cross-continental Data Grid infrastructure has been developed at the Image Processing and Informatics (IPI) research laboratory as a fault-tolerant image data backup and disaster recovery solution for Enterprise PACS. The Data Grid stores multiple copies of the imaging studies as well as the metadata, such as patient and study information, in geographically distributed computers and storage devices involving three different continents: America, Asia and Europe. This effectively prevents loss of image data and accelerates data recovery in the case of disaster. However, the lack of centralized management system makes the administration of the current Data Grid difficult. Three major challenges exist in current Data Grid management: 1. No single user interface to access and administrate each geographically separate component; 2. No graphical user interface available, resulting in command-line-based administration; 3. No single sign-on access to the Data Grid; administrators have to log into every Grid component with different corresponding user names/passwords. In this paper we are presenting a prototype of a unique web-based access interface for both Data Grid administrators and users. The interface has been designed to be user-friendly; it provides necessary instruments to constantly monitor the current status of the Data Grid components and their contents from any locations, contributing to longer system up-time.

  16. A sparse grid based method for generative dimensionality reduction of high-dimensional data

    NASA Astrophysics Data System (ADS)

    Bohn, Bastian; Garcke, Jochen; Griebel, Michael

    2016-03-01

    Generative dimensionality reduction methods play an important role in machine learning applications because they construct an explicit mapping from a low-dimensional space to the high-dimensional data space. We discuss a general framework to describe generative dimensionality reduction methods, where the main focus lies on a regularized principal manifold learning variant. Since most generative dimensionality reduction algorithms exploit the representer theorem for reproducing kernel Hilbert spaces, their computational costs grow at least quadratically in the number n of data. Instead, we introduce a grid-based discretization approach which automatically scales just linearly in n. To circumvent the curse of dimensionality of full tensor product grids, we use the concept of sparse grids. Furthermore, in real-world applications, some embedding directions are usually more important than others and it is reasonable to refine the underlying discretization space only in these directions. To this end, we employ a dimension-adaptive algorithm which is based on the ANOVA (analysis of variance) decomposition of a function. In particular, the reconstruction error is used to measure the quality of an embedding. As an application, the study of large simulation data from an engineering application in the automotive industry (car crash simulation) is performed.

  17. Evaluation of a Positive Youth Development Program Based on the Repertory Grid Test

    PubMed Central

    Shek, Daniel T. L.

    2012-01-01

    The repertory grid test, based on personal construct psychology, was used to evaluate the effectiveness of Project P.A.T.H.S. (Positive Adolescent Training through Holistic Social Programmes) in Hong Kong. One hundred and four program participants (n = 104) were randomly invited to complete a repertory grid based on personal construct theory in order to provide both quantitative and qualitative data for measuring self-identity changes after joining the program. Findings generally showed that the participants perceived that they understood themselves better and had stronger resilience after joining the program. Participants also saw themselves as closer to their ideal selves and other positive role figures (but farther away from a loser) after joining the program. This study provides additional support for the effectiveness of the Tier 1 Program of Project P.A.T.H.S. in the Chinese context. This study also shows that the repertory grid test is a useful evaluation method to measure self-identity changes in participants in positive youth development programs. PMID:22593680

  18. Evaluation of a positive youth development program based on the repertory grid test.

    PubMed

    Shek, Daniel T L

    2012-01-01

    The repertory grid test, based on personal construct psychology, was used to evaluate the effectiveness of Project P.A.T.H.S. (Positive Adolescent Training through Holistic Social Programmes) in Hong Kong. One hundred and four program participants (n = 104) were randomly invited to complete a repertory grid based on personal construct theory in order to provide both quantitative and qualitative data for measuring self-identity changes after joining the program. Findings generally showed that the participants perceived that they understood themselves better and had stronger resilience after joining the program. Participants also saw themselves as closer to their ideal selves and other positive role figures (but farther away from a loser) after joining the program. This study provides additional support for the effectiveness of the Tier 1 Program of Project P.A.T.H.S. in the Chinese context. This study also shows that the repertory grid test is a useful evaluation method to measure self-identity changes in participants in positive youth development programs. PMID:22593680

  19. A Goal-Directed Spatial Navigation Model Using Forward Trajectory Planning Based on Grid Cells

    PubMed Central

    Erdem, Uğur Murat; Hasselmo, Michael E.

    2012-01-01

    A goal-directed navigation model is proposed based on forward linear look-ahead probe of trajectories in a network of head direction cells, grid cells, place cells, and prefrontal cortex (PFC) cells. The model allows selection of new goal-directed trajectories. In a novel environment, the virtual rat incrementally creates a map composed of place cells and PFC cells by random exploration. After exploration, the rat retrieves memory of the goal location, picks its next movement direction by forward linear look-ahead probe of trajectories in several candidate directions while stationary in one location, and finds the one activating PFC cells with the highest reward signal. Each probe direction involves activation of a static pattern of head direction cells to drive an interference model of grid cells to update their phases in a specific direction. The updating of grid cell spiking drives place cells along the probed look-ahead trajectory similar to the forward replay during waking seen in place cell recordings. Directions are probed until the look-ahead trajectory activates the reward signal and the corresponding direction is used to guide goal-finding behavior. We report simulation results in several mazes with and without barriers. Navigation with barriers requires a PFC map topology based on the temporal vicinity of visited place cells and a reward signal diffusion process. The interaction of the forward linear look-ahead trajectory probes with the reward diffusion allows discovery of never before experienced shortcuts towards a goal location. PMID:22393918

  20. Coupling ensemble weather predictions based on TIGGE database with Grid-Xinanjiang model for flood forecast

    NASA Astrophysics Data System (ADS)

    Bao, H.-J.; Zhao, L.-N.; He, Y.; Li, Z.-J.; Wetterhall, F.; Cloke, H. L.; Pappenberger, F.; Manful, D.

    2011-02-01

    The incorporation of numerical weather predictions (NWP) into a flood forecasting system can increase forecast lead times from a few hours to a few days. A single NWP forecast from a single forecast centre, however, is insufficient as it involves considerable non-predictable uncertainties and lead to a high number of false alarms. The availability of global ensemble numerical weather prediction systems through the THORPEX Interactive Grand Global Ensemble' (TIGGE) offers a new opportunity for flood forecast. The Grid-Xinanjiang distributed hydrological model, which is based on the Xinanjiang model theory and the topographical information of each grid cell extracted from the Digital Elevation Model (DEM), is coupled with ensemble weather predictions based on the TIGGE database (CMC, CMA, ECWMF, UKMO, NCEP) for flood forecast. This paper presents a case study using the coupled flood forecasting model on the Xixian catchment (a drainage area of 8826 km2) located in Henan province, China. A probabilistic discharge is provided as the end product of flood forecast. Results show that the association of the Grid-Xinanjiang model and the TIGGE database gives a promising tool for an early warning of flood events several days ahead.

  1. Grid digital elevation model based algorithms for determination of hillslope width functions through flow distance transforms

    NASA Astrophysics Data System (ADS)

    Liu, Jintao; Chen, Xi; Zhang, Xingnan; Hoagland, Kyle D.

    2012-04-01

    Recently developed hillslope storage dynamics theory can represent the essential physical behavior of a natural system by accounting explicitly for the plan shape of a hillslope in an elegant and simple way. As a result, this theory is promising for improving catchment-scale hydrologic modeling. In this study, grid digital elevation model (DEM) based algorithms for determination of hillslope geometric characteristics (e.g., hillslope units and width functions in hillslope storage dynamics models) are presented. This study further develops a method for hillslope partitioning, established by Fan and Bras (1998), by applying it on a grid network. On the basis of hillslope unit derivation, a flow distance transforms method (TD∞) is suggested in order to decrease the systematic error of grid DEM-based flow distance calculation caused by flow direction approximation to streamlines. Hillslope width transfer functions are then derived to convert the probability density functions of flow distance into hillslope width functions. These algorithms are applied and evaluated on five abstract hillslopes, and detailed tests and analyses are carried out by comparing the derivation results with theoretical width functions. The results demonstrate that the TD∞ improves estimations of the flow distance and thus hillslope width function. As the proposed procedures are further applied in a natural catchment, we find that the natural hillslope width function can be well fitted by the Gaussian function. This finding is very important for applying the newly developed hillslope storage dynamics models in a real catchment.

  2. First-principles calculation method for electron transport based on the grid Lippmann-Schwinger equation.

    PubMed

    Egami, Yoshiyuki; Iwase, Shigeru; Tsukamoto, Shigeru; Ono, Tomoya; Hirose, Kikuji

    2015-09-01

    We develop a first-principles electron-transport simulator based on the Lippmann-Schwinger (LS) equation within the framework of the real-space finite-difference scheme. In our fully real-space-based LS (grid LS) method, the ratio expression technique for the scattering wave functions and the Green's function elements of the reference system is employed to avoid numerical collapse. Furthermore, we present analytical expressions and/or prominent calculation procedures for the retarded Green's function, which are utilized in the grid LS approach. In order to demonstrate the performance of the grid LS method, we simulate the electron-transport properties of the semiconductor-oxide interfaces sandwiched between semi-infinite jellium electrodes. The results confirm that the leakage current through the (001)Si-SiO_{2} model becomes much larger when the dangling-bond state is induced by a defect in the oxygen layer, while that through the (001)Ge-GeO_{2} model is insensitive to the dangling bond state. PMID:26465580

  3. First-principles calculation method for electron transport based on the grid Lippmann-Schwinger equation

    NASA Astrophysics Data System (ADS)

    Egami, Yoshiyuki; Iwase, Shigeru; Tsukamoto, Shigeru; Ono, Tomoya; Hirose, Kikuji

    2015-09-01

    We develop a first-principles electron-transport simulator based on the Lippmann-Schwinger (LS) equation within the framework of the real-space finite-difference scheme. In our fully real-space-based LS (grid LS) method, the ratio expression technique for the scattering wave functions and the Green's function elements of the reference system is employed to avoid numerical collapse. Furthermore, we present analytical expressions and/or prominent calculation procedures for the retarded Green's function, which are utilized in the grid LS approach. In order to demonstrate the performance of the grid LS method, we simulate the electron-transport properties of the semiconductor-oxide interfaces sandwiched between semi-infinite jellium electrodes. The results confirm that the leakage current through the (001 )Si -SiO2 model becomes much larger when the dangling-bond state is induced by a defect in the oxygen layer, while that through the (001 )Ge -GeO2 model is insensitive to the dangling bond state.

  4. Three hybridization models based on local search scheme for job shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Balbi Fraga, Tatiana

    2015-05-01

    This work presents three different hybridization models based on the general schema of Local Search Heuristics, named Hybrid Successive Application, Hybrid Neighborhood, and Hybrid Improved Neighborhood. Despite similar approaches might have already been presented in the literature in other contexts, in this work these models are applied to analyzes the solution of the job shop scheduling problem, with the heuristics Taboo Search and Particle Swarm Optimization. Besides, we investigate some aspects that must be considered in order to achieve better solutions than those obtained by the original heuristics. The results demonstrate that the algorithms derived from these three hybrid models are more robust than the original algorithms and able to get better results than those found by the single Taboo Search.

  5. Novel grid-based optical Braille conversion: from scanning to wording

    NASA Astrophysics Data System (ADS)

    Yoosefi Babadi, Majid; Jafari, Shahram

    2011-12-01

    Grid-based optical Braille conversion (GOBCO) is explained in this article. The grid-fitting technique involves processing scanned images taken from old hard-copy Braille manuscripts, recognising and converting them into English ASCII text documents inside a computer. The resulted words are verified using the relevant dictionary to provide the final output. The algorithms employed in this article can be easily modified to be implemented on other visual pattern recognition systems and text extraction applications. This technique has several advantages including: simplicity of the algorithm, high speed of execution, ability to help visually impaired persons and blind people to work with fax machines and the like, and the ability to help sighted people with no prior knowledge of Braille to understand hard-copy Braille manuscripts.

  6. Grid Computing

    NASA Astrophysics Data System (ADS)

    Foster, Ian

    2001-08-01

    The term "Grid Computing" refers to the use, for computational purposes, of emerging distributed Grid infrastructures: that is, network and middleware services designed to provide on-demand and high-performance access to all important computational resources within an organization or community. Grid computing promises to enable both evolutionary and revolutionary changes in the practice of computational science and engineering based on new application modalities such as high-speed distributed analysis of large datasets, collaborative engineering and visualization, desktop access to computation via "science portals," rapid parameter studies and Monte Carlo simulations that use all available resources within an organization, and online analysis of data from scientific instruments. In this article, I examine the status of Grid computing circa 2000, briefly reviewing some relevant history, outlining major current Grid research and development activities, and pointing out likely directions for future work. I also present a number of case studies, selected to illustrate the potential of Grid computing in various areas of science.

  7. Reconsidering vocational interests for personnel selection: the validity of an interest-based selection test in relation to job knowledge, job performance, and continuance intentions.

    PubMed

    Van Iddekinge, Chad H; Putka, Dan J; Campbell, John P

    2011-01-01

    Although vocational interests have a long history in vocational psychology, they have received extremely limited attention within the recent personnel selection literature. We reconsider some widely held beliefs concerning the (low) validity of interests for predicting criteria important to selection researchers, and we review theory and empirical evidence that challenge such beliefs. We then describe the development and validation of an interests-based selection measure. Results of a large validation study (N = 418) reveal that interests predicted a diverse set of criteria—including measures of job knowledge, job performance, and continuance intentions—with corrected, cross-validated Rs that ranged from .25 to .46 across the criteria (mean R = .31). Interests also provided incremental validity beyond measures of general cognitive aptitude and facets of the Big Five personality dimensions in relation to each criterion. Furthermore, with a couple exceptions, the interest scales were associated with small to medium subgroup differences, which in most cases favored women and racial minorities. Taken as a whole, these results appear to call into question the prevailing thought that vocational interests have limited usefulness for selection. PMID:20919794

  8. How do people differentiate between jobs: and how do they define a good job?

    PubMed

    Jones, Wendy; Haslam, Roger; Haslam, Cheryl

    2012-01-01

    Employed individuals from a range of jobs (n=18) were interviewed using a repertory grid technique, to explore the criteria they used to distinguish between different jobs. The concepts of 'a good job' and 'a job good for health' were also discussed. Interactions with others and the job itself were the most commonly used criteria and were also the most common features of a 'good job'. Pay and security were mentioned frequently but were less important when comparing jobs and when defining a 'good job'. Physical activity was rarely associated by interviewees with a 'good job' but was frequently associated with a 'job good for health'. A comprehensive definition of a 'good job' needs to take all these factors into account. PMID:22316822

  9. Job enrichment, work motivation, and job satisfaction in hospital wards: testing the job characteristics model.

    PubMed

    Kivimäki, M; Voutilainen, P; Koskinen, P

    1995-03-01

    This study investigated work motivation and job satisfaction at hospital wards with high and low levels of job enrichment. Primary nursing was assumed to represent a highly enriched job, whereas functional nursing represented a job with a low level of enrichment. Five surgical wards were divided into these two categories based on the structured interviews with head nurses. Work motivation and job satisfaction among ward personnel were assessed by a questionnaire. The ward personnel occupying highly enriched jobs reported significantly higher work motivation and satisfaction with the management than the personnel occupying jobs with a low level of enrichment. PMID:7735655

  10. The Cluster Analysis of Jobs Based on Data from the Position Analysis Questionnaire (PAQ). Report No. 7.

    ERIC Educational Resources Information Center

    DeNisi, Angelo S.; McCormick, Ernest J.

    The Position Analysis Questionnaire (PAQ) is a structured job analysis procedure that provides for the analysis of jobs in terms of each of 187 job elements, these job elements being grouped into six divisions: information input, mental processes, work output, relationships with other persons, job context, and other job characteristics. Two…

  11. SoilGrids1km — Global Soil Information Based on Automated Mapping

    PubMed Central

    Hengl, Tomislav; de Jesus, Jorge Mendes; MacMillan, Robert A.; Batjes, Niels H.; Heuvelink, Gerard B. M.; Ribeiro, Eloi; Samuel-Rosa, Alessandro; Kempen, Bas; Leenaars, Johan G. B.; Walsh, Markus G.; Gonzalez, Maria Ruiperez

    2014-01-01

    Background Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. Methodology/Principal Findings We present SoilGrids1km — a global 3D soil information system at 1 km resolution — containing spatial predictions for a selection of soil properties (at six standard depths): soil organic carbon (g kg−1), soil pH, sand, silt and clay fractions (%), bulk density (kg m−3), cation-exchange capacity (cmol+/kg), coarse fragments (%), soil organic carbon stock (t ha−1), depth to bedrock (cm), World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles), and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images), lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database). Prediction accuracies assessed using 5–fold cross-validation were between 23–51%. Conclusions/Significance SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1) weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2) difficulty to obtain covariates that capture soil forming factors, (3) low sampling density and spatial clustering of soil profile locations. However, as the SoilGrids

  12. Observation-based gridded runoff estimates for Europe (E-RUN version 1.1)

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Lukas; Seneviratne, Sonia I.

    2016-07-01

    River runoff is an essential climate variable as it is directly linked to the terrestrial water balance and controls a wide range of climatological and ecological processes. Despite its scientific and societal importance, there are to date no pan-European observation-based runoff estimates available. Here we employ a recently developed methodology to estimate monthly runoff rates on regular spatial grid in Europe. For this we first assemble an unprecedented collection of river flow observations, combining information from three distinct databases. Observed monthly runoff rates are subsequently tested for homogeneity and then related to gridded atmospheric variables (E-OBS version 12) using machine learning. The resulting statistical model is then used to estimate monthly runoff rates (December 1950-December 2015) on a 0.5° × 0.5° grid. The performance of the newly derived runoff estimates is assessed in terms of cross validation. The paper closes with example applications, illustrating the potential of the new runoff estimates for climatological assessments and drought monitoring. The newly derived data are made publicly available at doi:10.1594/PANGAEA.861371.

  13. Predicting Teacher Job Satisfaction Based on Principals' Instructional Supervision Behaviours: A Study of Turkish Teachers

    ERIC Educational Resources Information Center

    Ilgan, Abdurrahman; Parylo, Oksana; Sungu, Hilmi

    2015-01-01

    This quantitative research examined instructional supervision behaviours of school principals as a predictor of teacher job satisfaction through the analysis of Turkish teachers' perceptions of principals' instructional supervision behaviours. There was a statistically significant difference found between the teachers' job satisfaction level and…

  14. Job Designs: A Community Based Program for Students with Emotional and Behavioral Disorders.

    ERIC Educational Resources Information Center

    Lehman, Constance

    1992-01-01

    The Job Designs Project, a 3-year federally funded project, provides students (ages 16-22) at an Oregon residential treatment center for youth with emotional and behavioral disorders with supported paid employment in the community. The project has provided job supported employment services to 36 students working in such positions as restaurant bus…

  15. The Construction of Job Families Based on the Component and Overall Dimensions of the PAQ.

    ERIC Educational Resources Information Center

    Taylor, L. R.

    1978-01-01

    Seventy-six insurance company jobs were analyzed by 203 raters in an effort to assess the potential usefulness of the Position Analysis Questionnaire (PAQ) as a job analysis device to be employed in a more extensive, company-wide research program. (Editor/RK)

  16. Incentive-compatible demand-side management for smart grids based on review strategies

    NASA Astrophysics Data System (ADS)

    Xu, Jie; van der Schaar, Mihaela

    2015-12-01

    Demand-side load management is able to significantly improve the energy efficiency of smart grids. Since the electricity production cost depends on the aggregate energy usage of multiple consumers, an important incentive problem emerges: self-interested consumers want to increase their own utilities by consuming more than the socially optimal amount of energy during peak hours since the increased cost is shared among the entire set of consumers. To incentivize self-interested consumers to take the socially optimal scheduling actions, we design a new class of protocols based on review strategies. These strategies work as follows: first, a review stage takes place in which a statistical test is performed based on the daily prices of the previous billing cycle to determine whether or not the other consumers schedule their electricity loads in a socially optimal way. If the test fails, the consumers trigger a punishment phase in which, for a certain time, they adjust their energy scheduling in such a way that everybody in the consumer set is punished due to an increased price. Using a carefully designed protocol based on such review strategies, consumers then have incentives to take the socially optimal load scheduling to avoid entering this punishment phase. We rigorously characterize the impact of deploying protocols based on review strategies on the system's as well as the users' performance and determine the optimal design (optimal billing cycle, punishment length, etc.) for various smart grid deployment scenarios. Even though this paper considers a simplified smart grid model, our analysis provides important and useful insights for designing incentive-compatible demand-side management schemes based on aggregate energy usage information in a variety of practical scenarios.

  17. Grid-based methods for biochemical ab initio quantum chemical applications

    SciTech Connect

    Colvin, M.E.; Nelson, J.S.; Mori, E.

    1997-01-01

    A initio quantum chemical methods are seeing increased application in a large variety of real-world problems including biomedical applications ranging from drug design to the understanding of environmental mutagens. The vast majority of these quantum chemical methods are {open_quotes}spectral{close_quotes}, that is they describe the charge distribution around the nuclear framework in terms of a fixed analytic basis set. Despite the additional complexity they bring, methods involving grid representations of the electron or solvent charge can provide more efficient schemes for evaluating spectral operators, inexpensive methods for calculating electron correlation, and methods for treating the electrostatic energy of salvation in polar solvents. The advantage of mixed or {open_quotes}pseudospectral{close_quotes} methods is that they allow individual non-linear operators in the partial differential equations, such as coulomb operators, to be calculated in the most appropriate regime. Moreover, these molecular grids can be used to integrate empirical functionals of the electron density. These so-called density functional methods (DFT) are an extremely promising alternative to conventional post-Hartree Fock quantum chemical methods. The introduction of a grid at the molecular solvent-accessible surface allows a very sophisticated treatment of a polarizable continuum solvent model (PCM). Where most PCM approaches use a truncated expansion of the solute`s electric multipole expansion, e.g. net charge (Born model) or dipole moment (Onsager model), such a grid-based boundary-element method (BEM) yields a nearly exact treatment of the solute`s electric field. This report describes the use of both DFT and BEM methods in several biomedical chemical applications.

  18. Enabling Campus Grids with Open Science Grid Technology

    NASA Astrophysics Data System (ADS)

    Weitzel, Derek; Bockelman, Brian; Fraser, Dan; Pordes, Ruth; Swanson, David

    2011-12-01

    The Open Science Grid is a recognized key component of the US national cyber-infrastructure enabling scientific discovery through advanced high throughput computing. The principles and techniques that underlie the Open Science Grid can also be applied to Campus Grids since many of the requirements are the same, even if the implementation technologies differ. We find five requirements for a campus grid: trust relationships, job submission, resource independence, accounting, and data management. The Holland Computing Center's campus grid at the University of Nebraska-Lincoln was designed to fulfill the requirements of a campus grid. A bridging daemon was designed to bring non-Condor clusters into a grid managed by Condor. Condor features which make it possible to bridge Condor sites into a multi-campus grid have been exploited at the Holland Computing Center as well.

  19. Faculty in Faith-Based Institutions: Participation in Decision-Making and Its Impact on Job Satisfaction

    ERIC Educational Resources Information Center

    Metheny, Glen A.; West, G. Bud; Winston, Bruce E.; Wood, J. Andy

    2015-01-01

    This study examined full-time faculty in Christian, faith-based colleges and universities and investigated the type of impact their participation in the decision-making process had on job satisfaction. Previous studies have examined relationships among faculty at state universities and community colleges, yet little research has been examined in…

  20. Facilitating Integration of Electron Beam Lithography Devices with Interactive Videodisc, Computer-Based Simulation and Job Aids.

    ERIC Educational Resources Information Center

    Von Der Linn, Robert Christopher

    A needs assessment of the Grumman E-Beam Systems Group identified the requirement for additional skill mastery for the engineers who assemble, integrate, and maintain devices used to manufacture integrated circuits. Further analysis of the tasks involved led to the decision to develop interactive videodisc, computer-based job aids to enable…

  1. New gridded daily climatology of Finland: Permutation-based uncertainty estimates and temporal trends in climate

    NASA Astrophysics Data System (ADS)

    Aalto, Juha; Pirinen, Pentti; Jylhä, Kirsti

    2016-04-01

    Long-term time series of key climate variables with a relevant spatiotemporal resolution are essential for environmental science. Moreover, such spatially continuous data, based on weather observations, are commonly used in, e.g., downscaling and bias correcting of climate model simulations. Here we conducted a comprehensive spatial interpolation scheme where seven climate variables (daily mean, maximum, and minimum surface air temperatures, daily precipitation sum, relative humidity, sea level air pressure, and snow depth) were interpolated over Finland at the spatial resolution of 10 × 10 km2. More precisely, (1) we produced daily gridded time series (FMI_ClimGrid) of the variables covering the period of 1961-2010, with a special focus on evaluation and permutation-based uncertainty estimates, and (2) we investigated temporal trends in the climate variables based on the gridded data. National climate station observations were supplemented by records from the surrounding countries, and kriging interpolation was applied to account for topography and water bodies. For daily precipitation sum and snow depth, a two-stage interpolation with a binary classifier was deployed for an accurate delineation of areas with no precipitation or snow. A robust cross-validation indicated a good agreement between the observed and interpolated values especially for the temperature variables and air pressure, although the effect of seasons was evident. Permutation-based analysis suggested increased uncertainty toward northern areas, thus identifying regions with suboptimal station density. Finally, several variables had a statistically significant trend indicating a clear but locally varying signal of climate change during the last five decades.

  2. Development of a fully automated CFD system for three-dimensional flow simulations based on hybrid prismatic-tetrahedral grids

    SciTech Connect

    Berg, J.W. van der; Maseland, J.E.J.; Oskam, B.

    1996-12-31

    In this paper an assessment of CFD methods based on the underlying grid type is made. It is safe to say that emerging CFD methods based on hybrid body-fitted grids of tetrahedral and prismatic cells using unstructured data storage schemes have the potential to satisfy the basic requirements of problem-turnaround-time and accuracy for complex geometries. The CFD system described in this paper is based on the hybrid prismatic-tetrahedral grid approach. In an analysis it is shown that the cells in the prismatic layer have to satisfy a central symmetry property in order to obtain a second-order accurate approximation of the viscous terms in the Reynolds-averaged Navier-Stokes equations. Prismatic grid generation is demonstrated for the ONERA M6 wing-alone configuration and the AS28G wing/body configuration.

  3. Use of job aids to improve facility-based postnatal counseling and care in rural Benin.

    PubMed

    Jennings, L; Yebadokpo, A; Affo, J; Agbogbe, M

    2015-03-01

    This study examined the effect of a job aids-focused intervention on quality of facility-based postnatal counseling, and whether increased communication improved in-hospital newborn care and maternal knowledge of home practices and danger signs requiring urgent care. Ensuring mothers and newborns receive essential postnatal services, including health counseling, is integral to their survival. Yet, quality of clinic-based postnatal services is often low, and evidence on effective improvement strategies is scarce. Using a pre-post randomized design, data were drawn from direct observations and interviews with 411 mother-newborn pairs. Multi-level regression models with difference-in-differences analyses estimated the intervention's relative effect, adjusting for changes in the comparison arm. The mean percent of recommended messages provided to recently-delivered women significantly improved in the intervention arm as compared to the control (difference-in-differences [∆i - ∆c] +30.9, 95 % confidence interval (CI) 19.3, 42.5), and the proportion of newborns thermally protected within the first hour (∆i - ∆c +33.7, 95 % CI 19.0, 48.4) and delayed for bathing (∆i - ∆c +23.9, 95 % CI 9.4, 38.4) significantly increased. No significant changes were observed in early breastfeeding (∆i - ∆c +6.8, 95 % CI -2.8, 16.4) which was nearly universal. Omitting traditional umbilical cord substances rose slightly, but was insignificant (∆i - ∆c +8.5, 95 % CI -2.8, 19.9). The proportion of mothers with correct knowledge of maternal (∆i - ∆c +27.8, 95 % CI 11.0, 44.6) and newborn (∆i - ∆c +40.3, 95 % CI 22.2, 58.4) danger signs grew substantially, as did awareness of several home-care practices (∆i - ∆c +26.0, 95 % CI 7.7, 44.3). Counseling job aids can improve the quality of postnatal services. However, achieving reduction goals in maternal and neonatal mortality will likely require more comprehensive approaches to link enhanced facility services with

  4. Web-based interactive visualization in a Grid-enabled neuroimaging application using HTML5.

    PubMed

    Siewert, René; Specovius, Svenja; Wu, Jie; Krefting, Dagmar

    2012-01-01

    Interactive visualization and correction of intermediate results are required in many medical image analysis pipelines. To allow certain interaction in the remote execution of compute- and data-intensive applications, new features of HTML5 are used. They allow for transparent integration of user interaction into Grid- or Cloud-enabled scientific workflows. Both 2D and 3D visualization and data manipulation can be performed through a scientific gateway without the need to install specific software or web browser plugins. The possibilities of web-based visualization are presented along the FreeSurfer-pipeline, a popular compute- and data-intensive software tool for quantitative neuroimaging. PMID:22942008

  5. Power-based control with integral action for wind turbines connected to the grid

    NASA Astrophysics Data System (ADS)

    Peña, R. R.; Fernández, R. D.; Mantz, R. J.; Battaiotto, P. E.

    2015-10-01

    In this paper, a power shaping control with integral action is employed to control active and reactive powers of wind turbines connected to the grid. As it is well known, power shaping allows finding a Lyapunov function which ensures stability. In contrast to other passivity-based control theories, the power shaping controller design allows to use easily measurable variables, such as voltages and currents which simplify the physical interpretation and, therefore, the controller synthesis. The strategy proposed is evaluated in the context of severe operating conditions, such as abrupt changes in the wind speed and voltage drops.

  6. Cygrid: Cython-powered convolution-based gridding module for Python

    NASA Astrophysics Data System (ADS)

    Winkel, B.; Lenz, D.; Flöer, L.

    2016-06-01

    The Python module Cygrid grids (resamples) data to any collection of spherical target coordinates, although its typical application involves FITS maps or data cubes. The module supports the FITS world coordinate system (WCS) standard; its underlying algorithm is based on the convolution of the original samples with a 2D Gaussian kernel. A lookup table scheme allows parallelization of the code and is combined with the HEALPix tessellation of the sphere for fast neighbor searches. Cygrid's runtime scales between O(n) and O(nlog n), with n being the number of input samples.

  7. Optimisation of sensing time and transmission time in cognitive radio-based smart grid networks

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Fu, Yuli; Yang, Junjie

    2016-07-01

    Cognitive radio (CR)-based smart grid (SG) networks have been widely recognised as emerging communication paradigms in power grids. However, a sufficient spectrum resource and reliability are two major challenges for real-time applications in CR-based SG networks. In this article, we study the traffic data collection problem. Based on the two-stage power pricing model, the power price is associated with the efficient received traffic data in a metre data management system (MDMS). In order to minimise the system power price, a wideband hybrid access strategy is proposed and analysed, to share the spectrum between the SG nodes and CR networks. The sensing time and transmission time are jointly optimised, while both the interference to primary users and the spectrum opportunity loss of secondary users are considered. Two algorithms are proposed to solve the joint optimisation problem. Simulation results show that the proposed joint optimisation algorithms outperform the fixed parameters (sensing time and transmission time) algorithms, and the power cost is reduced efficiently.

  8. A strategy to suppress recurrence in grid-based Vlasov solvers

    NASA Astrophysics Data System (ADS)

    Einkemmer, Lukas; Ostermann, Alexander

    2014-07-01

    In this paper we propose a strategy to suppress the recurrence effect present in grid-based Vlasov solvers. This method is formulated by introducing a cutoff frequency in Fourier space. Since this cutoff only has to be performed after a number of time steps, the scheme can be implemented efficiently and can relatively easily be incorporated into existing Vlasov solvers. Furthermore, the scheme proposed retains the advantage of grid-based methods in that high accuracy can be achieved. This is due to the fact that in contrast to the scheme proposed by Abbasi et al. no statistical noise is introduced into the simulation. We will illustrate the utility of the method proposed by performing a number of numerical simulations, including the plasma echo phenomenon, using a discontinuous Galerkin approximation in space and a Strang splitting based time integration. Contribution to the Topical Issue "Theory and Applications of the Vlasov Equation", edited by Francesco Pegoraro, Francesco Califano, Giovanni Manfredi and Philip J. Morrison.

  9. Production of BaBar Skimmed Analysis Datasets Using the Grid

    SciTech Connect

    Brew, C.A.J.; Wilson, F.F.; Castelli, G.; Adye, T.; Roethel, W.; Luppi, E.; Andreotti, D.; Smith, D.; Khan, A.; Barrett, M.; Barlow, R.; Bailey, D.; /Manchester U.

    2011-11-10

    The BABAR Collaboration, based at Stanford Linear Accelerator Center (SLAC), Stanford, US, has been performing physics reconstruction, simulation studies and data analysis for 8 years using a number of compute farms around the world. Recent developments in Grid technologies could provide a way to manage the distributed resources in a single coherent structure. We describe enhancements to the BABAR experiment's distributed skimmed dataset production system to make use of European Grid resources and present the results with regard to BABAR's latest cycle of skimmed dataset production. We compare the benefits of a local and Grid-based systems, the ease with which the system is managed and the challenges of integrating the Grid with legacy software. We compare job success rates and manageability issues between Grid and non-Grid production.

  10. Planning for distributed workflows: constraint-based coscheduling of computational jobs and data placement in distributed environments

    NASA Astrophysics Data System (ADS)

    Makatun, Dzmitry; Lauret, Jérôme; Rudová, Hana; Šumbera, Michal

    2015-05-01

    When running data intensive applications on distributed computational resources long I/O overheads may be observed as access to remotely stored data is performed. Latencies and bandwidth can become the major limiting factor for the overall computation performance and can reduce the CPU/WallTime ratio to excessive IO wait. Reusing the knowledge of our previous research, we propose a constraint programming based planner that schedules computational jobs and data placements (transfers) in a distributed environment in order to optimize resource utilization and reduce the overall processing completion time. The optimization is achieved by ensuring that none of the resources (network links, data storages and CPUs) are oversaturated at any moment of time and either (a) that the data is pre-placed at the site where the job runs or (b) that the jobs are scheduled where the data is already present. Such an approach eliminates the idle CPU cycles occurring when the job is waiting for the I/O from a remote site and would have wide application in the community. Our planner was evaluated and simulated based on data extracted from log files of batch and data management systems of the STAR experiment. The results of evaluation and estimation of performance improvements are discussed in this paper.

  11. Unstructured hexahedral mesh generation of complex vascular trees using a multi-block grid-based approach.

    PubMed

    Bols, Joris; Taelman, L; De Santis, G; Degroote, J; Verhegghe, B; Segers, P; Vierendeels, J

    2016-01-01

    The trend towards realistic numerical models of (pathologic) patient-specific vascular structures brings along larger computational domains and more complex geometries, increasing both the computation time and the operator time. Hexahedral grids effectively lower the computational run time and the required computational infrastructure, but at high cost in terms of operator time and minimal cell quality, especially when the computational analyses are targeting complex geometries such as aneurysm necks, severe stenoses and bifurcations. Moreover, such grids generally do not allow local refinements. As an attempt to overcome these limitations, a novel approach to hexahedral meshing is proposed in this paper, which combines the automated generation of multi-block structures with a grid-based method. The robustness of the novel approach is tested on common complex geometries, such as tree-like structures (including trifurcations), stenoses, and aneurysms. Additionally, the performance of the generated grid is assessed using two numerical examples. In the first example, a grid sensitivity analysis is performed for blood flow simulated in an abdominal mouse aorta and compared to tetrahedral grids with a prismatic boundary layer. In the second example, the fluid-structure interaction in a model of an aorta with aortic coarctation is simulated and the effect of local grid refinement is analyzed. PMID:26208183

  12. Toward a Career-Based Theory of Job Involvement: A Study of Scientists and Engineers

    ERIC Educational Resources Information Center

    McKelvey, Bill; Sekaran, Uma

    1977-01-01

    Multiple regression analyses are used to determine the relative importance of 49 factors to job involvement in a study of 441 scientists and engineers. Of particular importance are career and personality factors. (Author)

  13. Grid Collector: Facilitating Efficient Selective Access from DataGrids

    SciTech Connect

    Wu, Kesheng; Gu, Junmin; Lauret, Jerome; Poskanzer, Arthur M.; Shoshani, Arie; Sim, Alexander; Zhang, Wei-Ming

    2005-05-17

    The Grid Collector is a system that facilitates the effective analysis and spontaneous exploration of scientific data. It combines an efficient indexing technology with a Grid file management technology to speed up common analysis jobs on high-energy physics data and to enable some previously impractical analysis jobs. To analyze a set of high-energy collision events, one typically specifies the files containing the events of interest, reads all the events in the files, and filters out unwanted ones. Since most analysis jobs filter out significant number of events, a considerable amount of time is wasted by reading the unwanted events. The Grid Collector removes this inefficiency by allowing users to specify more precisely what events are of interest and to read only the selected events. This speeds up most analysis jobs. In existing analysis frameworks, the responsibility of bringing files from tertiary storages or remote sites to local disks falls on the users. This forces most of analysis jobs to be performed at centralized computer facilities where commonly used files are kept on large shared file systems. The Grid Collector automates file management tasks and eliminates the labor-intensive manual file transfers. This makes it much easier to perform analyses that require data files on tertiary storages and remote sites. It also makes more computer resources available for analysis jobs since they are no longer bound to the centralized facilities.

  14. Job Placement Handbook.

    ERIC Educational Resources Information Center

    Los Angeles Unified School District, CA. Div. of Career and Continuing Education.

    Designed to serve as a guide for job placement personnel, this handbook is written from the point of view of a school or job preparation facility, based on methodology applicable to the placement function in any setting. Factors identified as critical to a successful placement operation are utilization of a systems approach, establishment of…

  15. Prediction of Job Satisfaction Based on Workplace Facets for Adjunct Business Faculty at Four-Year Universities

    ERIC Educational Resources Information Center

    Lewis, Vance Johnson

    2012-01-01

    The purpose of this study was to examine the job satisfaction of adjuncts in the curriculum area of business at four-year universities and to determine the roles that individual job facets play in creating overall job satisfaction. To explore which job facets and demographics predict job satisfaction for the population, participants were asked to…

  16. A Study of ATLAS Grid Performance for Distributed Analysis

    NASA Astrophysics Data System (ADS)

    Panitkin, Sergey; Fine, Valery; Wenaus, Torre

    2012-12-01

    In the past two years the ATLAS Collaboration at the LHC has collected a large volume of data and published a number of ground breaking papers. The Grid-based ATLAS distributed computing infrastructure played a crucial role in enabling timely analysis of the data. We will present a study of the performance and usage of the ATLAS Grid as platform for physics analysis in 2011. This includes studies of general properties as well as timing properties of user jobs (wait time, run time, etc). These studies are based on mining of data archived by the PanDA workload management system.

  17. Multi-Hop Localization Algorithm Based on Grid-Scanning for Wireless Sensor Networks*

    PubMed Central

    Wan, Jiangwen; Guo, Xiaolei; Yu, Ning; Wu, Yinfeng; Feng, Renjian

    2011-01-01

    For large-scale wireless sensor networks (WSNs) with a minority of anchor nodes, multi-hop localization is a popular scheme for determining the geographical positions of the normal nodes. However, in practice existing multi-hop localization methods suffer from various kinds of problems, such as poor adaptability to irregular topology, high computational complexity, low positioning accuracy, etc. To address these issues in this paper, we propose a novel Multi-hop Localization algorithm based on Grid-Scanning (MLGS). First, the factors that influence the multi-hop distance estimation are studied and a more realistic multi-hop localization model is constructed. Then, the feasible regions of the normal nodes are determined according to the intersection of bounding square rings. Finally, a verifiably good approximation scheme based on grid-scanning is developed to estimate the coordinates of the normal nodes. Additionally, the positioning accuracy of the normal nodes can be improved through neighbors’ collaboration. Extensive simulations are performed in isotropic and anisotropic networks. The comparisons with some typical algorithms of node localization confirm the effectiveness and efficiency of our algorithm. PMID:22163828

  18. An Adaptive Reputation-Based Algorithm for Grid Virtual Organization Formation

    NASA Astrophysics Data System (ADS)

    Cui, Yongrui; Li, Mingchu; Ren, Yizhi; Sakurai, Kouichi

    A novel adaptive reputation-based virtual organization formation is proposed. It restrains the bad performers effectively based on the consideration of the global experience of the evaluator and evaluates the direct trust relation between two grid nodes accurately by consulting the previous trust value rationally. It also consults and improves the reputation evaluation process in PathTrust model by taking account of the inter-organizational trust relationship and combines it with direct and recommended trust in a weighted way, which makes the algorithm more robust against collusion attacks. Additionally, the proposed algorithm considers the perspective of the VO creator and takes required VO services as one of the most important fine-grained evaluation criterion, which makes the algorithm more suitable for constructing VOs in grid environments that include autonomous organizations. Simulation results show that our algorithm restrains the bad performers and resists against fake transaction attacks and badmouth attacks effectively. It provides a clear advantage in the design of a VO infrastructure.

  19. Spectrum survey for reliable communications of cognitive radio based smart grid network

    NASA Astrophysics Data System (ADS)

    Farah Aqilah, Wan; Jayavalan, Shanjeevan; Mohd Aripin, Norazizah; Mohamad, Hafizal; Ismail, Aiman

    2013-06-01

    The smart grid (SG) system is expected to involve huge amount of data with different levels of priorities to different applications or users. The traditional grid which tend to deploy propriety networks with limited coverage and bandwidth, is not sufficient to support large scale SG network. Cognitive radio (CR) is a promising communication platform for SG network by utilizing potentially all available spectrum resources, subject to interference constraint. In order to develop a reliable communication framework for CR based SG network, thorough investigations on the current radio spectrum are required. This paper presents the spectrum utilization in Malaysia, specifically in the UHF/VHF bands, cellular (GSM 900, GSM 1800 and 3G), WiMAX, ISM and LTE band. The goal is to determine the potential spectrum that can be exploit by the CR users in the SG network. Measurements was conducted for 24 hours to quantify the average spectrum usage and the amount of available bandwidth. The findings in this paper are important to provide insight of actual spectrum utilization prior to developing a reliable communication platform for CR based SG network.

  20. PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems.

    PubMed

    Mohamed, Mohamed A; Eltamaly, Ali M; Alolah, Abdulrahman I

    2016-01-01

    This paper introduces an optimal sizing algorithm for a hybrid renewable energy system using smart grid load management application based on the available generation. This algorithm aims to maximize the system energy production and meet the load demand with minimum cost and highest reliability. This system is formed by photovoltaic array, wind turbines, storage batteries, and diesel generator as a backup source of energy. Demand profile shaping as one of the smart grid applications is introduced in this paper using load shifting-based load priority. Particle swarm optimization is used in this algorithm to determine the optimum size of the system components. The results obtained from this algorithm are compared with those from the iterative optimization technique to assess the adequacy of the proposed algorithm. The study in this paper is performed in some of the remote areas in Saudi Arabia and can be expanded to any similar regions around the world. Numerous valuable results are extracted from this study that could help researchers and decision makers. PMID:27513000

  1. PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems

    PubMed Central

    Mohamed, Mohamed A.; Eltamaly, Ali M.; Alolah, Abdulrahman I.

    2016-01-01

    This paper introduces an optimal sizing algorithm for a hybrid renewable energy system using smart grid load management application based on the available generation. This algorithm aims to maximize the system energy production and meet the load demand with minimum cost and highest reliability. This system is formed by photovoltaic array, wind turbines, storage batteries, and diesel generator as a backup source of energy. Demand profile shaping as one of the smart grid applications is introduced in this paper using load shifting-based load priority. Particle swarm optimization is used in this algorithm to determine the optimum size of the system components. The results obtained from this algorithm are compared with those from the iterative optimization technique to assess the adequacy of the proposed algorithm. The study in this paper is performed in some of the remote areas in Saudi Arabia and can be expanded to any similar regions around the world. Numerous valuable results are extracted from this study that could help researchers and decision makers. PMID:27513000

  2. Time-domain analysis of planar microstrip devices using a generalized Yee-algorithm based on unstructured grids

    NASA Technical Reports Server (NTRS)

    Gedney, Stephen D.; Lansing, Faiza

    1993-01-01

    The generalized Yee-algorithm is presented for the temporal full-wave analysis of planar microstrip devices. This algorithm has the significant advantage over the traditional Yee-algorithm in that it is based on unstructured and irregular grids. The robustness of the generalized Yee-algorithm is that structures that contain curved conductors or complex three-dimensional geometries can be more accurately, and much more conveniently modeled using standard automatic grid generation techniques. This generalized Yee-algorithm is based on the the time-marching solution of the discrete form of Maxwell's equations in their integral form. To this end, the electric and magnetic fields are discretized over a dual, irregular, and unstructured grid. The primary grid is assumed to be composed of general fitted polyhedra distributed throughout the volume. The secondary grid (or dual grid) is built up of the closed polyhedra whose edges connect the centroid's of adjacent primary cells, penetrating shared faces. Faraday's law and Ampere's law are used to update the fields normal to the primary and secondary grid faces, respectively. Subsequently, a correction scheme is introduced to project the normal fields onto the grid edges. It is shown that this scheme is stable, maintains second-order accuracy, and preserves the divergenceless nature of the flux densities. Finally, for computational efficiency the algorithm is structured as a series of sparse matrix-vector multiplications. Based on this scheme, the generalized Yee-algorithm has been implemented on vector and parallel high performance computers in a highly efficient manner.

  3. Adult Competency Education Kit. Basic Skills in Speaking, Math, and Reading for Employment. Part G. ACE Competency Based Job Descriptions: #22--Refrigerator Mechanic; #24--Motorcycle Repairperson.

    ERIC Educational Resources Information Center

    San Mateo County Office of Education, Redwood City, CA. Career Preparation Centers.

    This fourth of fifteen sets of Adult Competency Education (ACE) Competency Based Job Descriptions in the ACE kit contains job descriptions for Refrigerator Mechanic and Motorcycle Repairperson. Each begins with a fact sheet that includes this information: occupational title, D.O.T. code, ACE number, career ladder, D.O.T. general educational…

  4. Computer-Based Video Instruction to Teach Young Adults with Moderate Intellectual Disabilities to Perform Multiple Step, Job Tasks in a Generalized Setting

    ERIC Educational Resources Information Center

    Mechling, Linda C.; Ortega-Hurndon, Fanny

    2007-01-01

    This study evaluated the effectiveness of computer-based video instruction (CBVI) to teach three young adults with moderate intellectual disabilities to perform complex, multiple step, job tasks in a generalized setting. A multiple probe design across three job tasks and replicated across three students was used to evaluate the effectiveness of…

  5. CDF GlideinWMS usage in Grid computing of high energy physics

    NASA Astrophysics Data System (ADS)

    Zvada, Marian; Benjamin, Doug; Sfiligoi, Igor

    2010-04-01

    Many members of large science collaborations already have specialized grids available to advance their research in the need of getting more computing resources for data analysis. This has forced the Collider Detector at Fermilab (CDF) collaboration to move beyond the usage of dedicated resources and start exploiting Grid resources. Nowadays, CDF experiment is increasingly relying on glidein-based computing pools for data reconstruction. Especially, Monte Carlo production and user data analysis, serving over 400 users by central analysis farm middleware (CAF) on the top of Condor batch system and CDF Grid infrastructure. Condor is designed as distributed architecture and its glidein mechanism of pilot jobs is ideal for abstracting the Grid computing by making a virtual private computing pool. We would like to present the first production use of the generic pilot-based Workload Management System (glideinWMS), which is an implementation of the pilot mechanism based on the Condor distributed infrastructure. CDF Grid computing uses glideinWMS for its data reconstruction on the FNAL campus Grid, user analysis and Monte Carlo production across Open Science Grid (OSG). We review this computing model and setup used including CDF specific configuration within the glideinWMS system which provides powerful scalability and makes Grid computing working like in a local batch environment with ability to handle more than 10000 running jobs at a time.

  6. CDF GlideinWMS usage in grid computing of high energy physics

    SciTech Connect

    Zvada, Marian; Benjamin, Doug; Sfiligoi, Igor; /Fermilab

    2010-01-01

    Many members of large science collaborations already have specialized grids available to advance their research in the need of getting more computing resources for data analysis. This has forced the Collider Detector at Fermilab (CDF) collaboration to move beyond the usage of dedicated resources and start exploiting Grid resources. Nowadays, CDF experiment is increasingly relying on glidein-based computing pools for data reconstruction. Especially, Monte Carlo production and user data analysis, serving over 400 users by central analysis farm middleware (CAF) on the top of Condor batch system and CDF Grid infrastructure. Condor is designed as distributed architecture and its glidein mechanism of pilot jobs is ideal for abstracting the Grid computing by making a virtual private computing pool. We would like to present the first production use of the generic pilot-based Workload Management System (glideinWMS), which is an implementation of the pilot mechanism based on the Condor distributed infrastructure. CDF Grid computing uses glideinWMS for its data reconstruction on the FNAL campus Grid, user analysis and Monte Carlo production across Open Science Grid (OSG). We review this computing model and setup used including CDF specific configuration within the glideinWMS system which provides powerful scalability and makes Grid computing working like in a local batch environment with ability to handle more than 10000 running jobs at a time.

  7. Model atmospheres for M (sub)dwarf stars. 1: The base model grid

    NASA Technical Reports Server (NTRS)

    Allard, France; Hauschildt, Peter H.

    1995-01-01

    We have calculated a grid of more than 700 model atmospheres valid for a wide range of parameters encompassing the coolest known M dwarfs, M subdwarfs, and brown dwarf candidates: 1500 less than or equal to T(sub eff) less than or equal to 4000 K, 3.5 less than or equal to log g less than or equal to 5.5, and -4.0 less than or equal to (M/H) less than or equal to +0.5. Our equation of state includes 105 molecules and up to 27 ionization stages of 39 elements. In the calculations of the base grid of model atmospheres presented here, we include over 300 molecular bands of four molecules (TiO, VO, CaH, FeH) in the JOLA approximation, the water opacity of Ludwig (1971), collision-induced opacities, b-f and f-f atomic processes, as well as about 2 million spectral lines selected from a list with more than 42 million atomic and 24 million molecular (H2, CH, NH, OH, MgH, SiH, C2, CN, CO, SiO) lines. High-resolution synthetic spectra are obtained using an opacity sampling method. The model atmospheres and spectra are calculated with the generalized stellar atmosphere code PHOENIX, assuming LTE, plane-parallel geometry, energy (radiative plus convective) conservation, and hydrostatic equilibrium. The model spectra give close agreement with observations of M dwarfs across a wide spectral range from the blue to the near-IR, with one notable exception: the fit to the water bands. We discuss several practical applications of our model grid, e.g., broadband colors derived from the synthetic spectra. In light of current efforts to identify genuine brown dwarfs, we also show how low-resolution spectra of cool dwarfs vary with surface gravity, and how the high-regulation line profile of the Li I resonance doublet depends on the Li abundance.

  8. A brief comparison between grid based real space algorithms andspectrum algorithms for electronic structure calculations

    SciTech Connect

    Wang, Lin-Wang

    2006-12-01

    Quantum mechanical ab initio calculation constitutes the biggest portion of the computer time in material science and chemical science simulations. As a computer center like NERSC, to better serve these communities, it will be very useful to have a prediction for the future trends of ab initio calculations in these areas. Such prediction can help us to decide what future computer architecture can be most useful for these communities, and what should be emphasized on in future supercomputer procurement. As the size of the computer and the size of the simulated physical systems increase, there is a renewed interest in using the real space grid method in electronic structure calculations. This is fueled by two factors. First, it is generally assumed that the real space grid method is more suitable for parallel computation for its limited communication requirement, compared with spectrum method where a global FFT is required. Second, as the size N of the calculated system increases together with the computer power, O(N) scaling approaches become more favorable than the traditional direct O(N{sup 3}) scaling methods. These O(N) methods are usually based on localized orbital in real space, which can be described more naturally by the real space basis. In this report, the author compares the real space methods versus the traditional plane wave (PW) spectrum methods, for their technical pros and cons, and the possible of future trends. For the real space method, the author focuses on the regular grid finite different (FD) method and the finite element (FE) method. These are the methods used mostly in material science simulation. As for chemical science, the predominant methods are still Gaussian basis method, and sometime the atomic orbital basis method. These two basis sets are localized in real space, and there is no indication that their roles in quantum chemical simulation will change anytime soon. The author focuses on the density functional theory (DFT), which is the

  9. Overview of the NASA Glenn Flux Reconstruction Based High-Order Unstructured Grid Code

    NASA Technical Reports Server (NTRS)

    Spiegel, Seth C.; DeBonis, James R.; Huynh, H. T.

    2016-01-01

    A computational fluid dynamics code based on the flux reconstruction (FR) method is currently being developed at NASA Glenn Research Center to ultimately provide a large- eddy simulation capability that is both accurate and efficient for complex aeropropulsion flows. The FR approach offers a simple and efficient method that is easy to implement and accurate to an arbitrary order on common grid cell geometries. The governing compressible Navier-Stokes equations are discretized in time using various explicit Runge-Kutta schemes, with the default being the 3-stage/3rd-order strong stability preserving scheme. The code is written in modern Fortran (i.e., Fortran 2008) and parallelization is attained through MPI for execution on distributed-memory high-performance computing systems. An h- refinement study of the isentropic Euler vortex problem is able to empirically demonstrate the capability of the FR method to achieve super-accuracy for inviscid flows. Additionally, the code is applied to the Taylor-Green vortex problem, performing numerous implicit large-eddy simulations across a range of grid resolutions and solution orders. The solution found by a pseudo-spectral code is commonly used as a reference solution to this problem, and the FR code is able to reproduce this solution using approximately the same grid resolution. Finally, an examination of the code's performance demonstrates good parallel scaling, as well as an implementation of the FR method with a computational cost/degree- of-freedom/time-step that is essentially independent of the solution order of accuracy for structured geometries.

  10. Climate Simulations based on a different-grid nested and coupled model

    NASA Astrophysics Data System (ADS)

    Li, Dan; Ji, Jinjun; Li, Yinpeng

    2002-05-01

    An atmosphere-vegetation interaction model (A VIM) has been coupled with a nine-layer General Cir-culation Model (GCM) of Institute of Atmospheic Physics/State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (IAP/LASG), which is rhomboidally truncated at zonal wave number 15, to simulate global climatic mean states. A VIM is a model having inter-feedback between land surface processes and eco-physiological processes on land. As the first step to couple land with atmosphere completely, the physiological processes are fixed and only the physical part (generally named the SVAT (soil-vegetation-atmosphere-transfer scheme) model) of AVIM is nested into IAP/LASG L9R15 GCM. The ocean part of GCM is prescribed and its monthly sea surface temperature (SST) is the climatic mean value. With respect to the low resolution of GCM, i.e., each grid cell having lon-gitude 7.5° and latitude 4.5°, the vegetation is given a high resolution of 1.5° by 1.5° to nest and couple the fine grid cells of land with the coarse grid cells of atmosphere. The coupling model has been integrated for 15 years and its last ten-year mean of outputs was chosen for analysis. Compared with observed data and NCEP reanalysis, the coupled model simulates the main characteris-tics of global atmospheric circulation and the fields of temperature and moisture. In particular, the simu-lated precipitation and surface air temperature have sound results. The work creates a solid base on coupling climate models with the biosphere.

  11. The CMS integration grid testbed

    SciTech Connect

    Graham, Gregory E.

    2004-08-26

    The CMS Integration Grid Testbed (IGT) comprises USCMS Tier-1 and Tier-2 hardware at the following sites: the California Institute of Technology, Fermi National Accelerator Laboratory, the University of California at San Diego, and the University of Florida at Gainesville. The IGT runs jobs using the Globus Toolkit with a DAGMan and Condor-G front end. The virtual organization (VO) is managed using VO management scripts from the European Data Grid (EDG). Gridwide monitoring is accomplished using local tools such as Ganglia interfaced into the Globus Metadata Directory Service (MDS) and the agent based Mona Lisa. Domain specific software is packaged and installed using the Distribution After Release (DAR) tool of CMS, while middleware under the auspices of the Virtual Data Toolkit (VDT) is distributed using Pacman. During a continuous two month span in Fall of 2002, over 1 million official CMS GEANT based Monte Carlo events were generated and returned to CERN for analysis while being demonstrated at SC2002. In this paper, we describe the process that led to one of the world's first continuously available, functioning grids.

  12. A High Performance Computing Platform for Performing High-Volume Studies With Windows-based Power Grid Tools

    SciTech Connect

    Chen, Yousu; Huang, Zhenyu

    2014-08-31

    Serial Windows-based programs are widely used in power utilities. For applications that require high volume simulations, the single CPU runtime can be on the order of days or weeks. The lengthy runtime, along with the availability of low cost hardware, is leading utilities to seriously consider High Performance Computing (HPC) techniques. However, the vast majority of the HPC computers are still Linux-based and many HPC applications have been custom developed external to the core simulation engine without consideration for ease of use. This has created a technical gap for applying HPC-based tools to today’s power grid studies. To fill this gap and accelerate the acceptance and adoption of HPC for power grid applications, this paper presents a prototype of generic HPC platform for running Windows-based power grid programs on Linux-based HPC environment. The preliminary results show that the runtime can be reduced from weeks to hours to improve work efficiency.

  13. The research of package for CdZnTe detector based on the capacitive Frisch grid structure

    NASA Astrophysics Data System (ADS)

    Qin, Kai-feng; Wang, Lin-jun; Min, Jia-hua; Teng, Jianyong; Shi, Zhu-bin; Zhou, Chen-ying; Zhang, Ji-jun; Huang, Jian; Xia, Yiben

    2009-07-01

    In this paper, the design and fabrication of a capacitive Frisch grid structure for CdZnTe (CZT) detector were investigated. The aging tests were first used to investigate the degradation of the mechanical and electrical characteristics of the CdZnTe detector based on the capacitive frisch grid structure. The effects of the degradation on the performance of CdZnTe detectors were investigated by scanning acoustic microscopy (SAM) test, current-voltage test, and multichannel pulse-height spectrum analysis. In particular, a passivation layer obtained by a two-step passivation processing, combined with a Teflon tape, was used as an insulated layer of the capacitive Frisch grid detector, improving its stability effectively at high voltages. However, further improvements in material and device fabrication (including insulated layer) were required to realize the potential of CZT detectors with the capacitive Frisch grid structure.

  14. Job center

    NASA Astrophysics Data System (ADS)

    To better meet the needs of AGU members, a program has been started to increase the effectiveness of the Job Center activity at the Spring and Fall Meetings. As a result, participation in the Job Center at the 1988 AGU Spring Meeting in Baltimore increased substantially compared to previous Spring Meetings. The number of employers, applicants, and interviews scheduled more than doubled compared to the 1987 Spring Job Center.In order to make the meeting Job Centers even better, a survey is being conducted of employers and applicants who participated in the 1988 Spring Job Center. Evaluation of this survey will be useful in continuing increased participation in and the effectiveness of the Job Center at the 1988 Fall Meeting. Past participants and those interested in the future of the Job Center are encouraged to forward comments and suggestions to AGU, Member Programs Division, 2000 Florida Ave., N.W., Washington, DC 20009.

  15. NGP: Defining a grid generation paradigm based on NURBS and solid modeling topology

    SciTech Connect

    Gaither, A.; Jean, B.; Remotigue, M.; Whitmire, J.

    1996-12-31

    A grid generation paradigm is presented that allows a user to build both structured and unstructured grids within the same environment. It provides the user with a flexible, efficient and accurate way to generate these grids. The paradigm utilizes a Boundary Representation (B-rep) radial edge non-manifold solid modeling topology data structure for all geometric and grid interrogations. Non-Uniform Rational B-Splines (NURBS) are utilized as the geometric representation to ensure accuracy and provide generality for both geometric and grid manipulations.

  16. 3D inversion based on multi-grid approach of magnetotelluric data from Northern Scandinavia

    NASA Astrophysics Data System (ADS)

    Cherevatova, M.; Smirnov, M.; Korja, T. J.; Egbert, G. D.

    2012-12-01

    In this work we investigate the geoelectrical structure of the cratonic margin of Fennoscandian Shield by means of magnetotelluric (MT) measurements carried out in Northern Norway and Sweden during summer 2011-2012. The project Magnetotellurics in the Scandes (MaSca) focuses on the investigation of the crust, upper mantle and lithospheric structure in a transition zone from a stable Precambrian cratonic interior to a passive continental margin beneath the Caledonian Orogen and the Scandes Mountains in western Fennoscandia. Recent MT profiles in the central and southern Scandes indicated a large contrast in resistivity between Caledonides and Precambrian basement. The alum shales as a highly conductive layers between the resistive Precambrian basement and the overlying Caledonian nappes are revealed from this profiles. Additional measurements in the Northern Scandes were required. All together data from 60 synchronous long period (LMT) and about 200 broad band (BMT) sites were acquired. The array stretches from Lofoten and Bodo (Norway) in the west to Kiruna and Skeleftea (Sweden) in the east covering an area of 500x500 square kilometers. LMT sites were occupied for about two months, while most of the BMT sites were measured during one day. We have used new multi-grid approach for 3D electromagnetic (EM) inversion and modelling. Our approach is based on the OcTree discretization where the spatial domain is represented by rectangular cells, each of which might be subdivided (recursively) into eight sub-cells. In this simplified implementation the grid is refined only in the horizontal direction, uniformly in each vertical layer. Using multi-grid we manage to have a high grid resolution near the surface (for instance, to tackle with galvanic distortions) and lower resolution at greater depth as the EM fields decay in the Earth according to the diffusion equation. We also have a benefit in computational costs as number of unknowns decrease. The multi-grid forward

  17. Power system voltage stability and agent based distribution automation in smart grid

    NASA Astrophysics Data System (ADS)

    Nguyen, Cuong Phuc

    2011-12-01

    Our interconnected electric power system is presently facing many challenges that it was not originally designed and engineered to handle. The increased inter-area power transfers, aging infrastructure, and old technologies, have caused many problems including voltage instability, widespread blackouts, slow control response, among others. These problems have created an urgent need to transform the present electric power system to a highly stable, reliable, efficient, and self-healing electric power system of the future, which has been termed "smart grid". This dissertation begins with an investigation of voltage stability in bulk transmission networks. A new continuation power flow tool for studying the impacts of generator merit order based dispatch on inter-area transfer capability and static voltage stability is presented. The load demands are represented by lumped load models on the transmission system. While this representation is acceptable in traditional power system analysis, it may not be valid in the future smart grid where the distribution system will be integrated with intelligent and quick control capabilities to mitigate voltage problems before they propagate into the entire system. Therefore, before analyzing the operation of the whole smart grid, it is important to understand the distribution system first. The second part of this dissertation presents a new platform for studying and testing emerging technologies in advanced Distribution Automation (DA) within smart grids. Due to the key benefits over the traditional centralized approach, namely flexible deployment, scalability, and avoidance of single-point-of-failure, a new distributed approach is employed to design and develop all elements of the platform. A multi-agent system (MAS), which has the three key characteristics of autonomy, local view, and decentralization, is selected to implement the advanced DA functions. The intelligent agents utilize a communication network for cooperation and

  18. Interview for the Job. Job Search. Competency 4.0.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This competency booklet for individualized competency-based instruction is the fourth of five in the Job Search Skills package. (Instructor program and guides are available separately as CE 031 965 and 966, the other booklets as CE 031 967-971.) It contains 13 operational units related to the job search competency of interviewing for the job. (The…

  19. Differential Evolution Based IDWNN Controller for Fault Ride-Through of Grid-Connected Doubly Fed Induction Wind Generators

    PubMed Central

    Manonmani, N.; Subbiah, V.; Sivakumar, L.

    2015-01-01

    The key objective of wind turbine development is to ensure that output power is continuously increased. It is authenticated that wind turbines (WTs) supply the necessary reactive power to the grid at the time of fault and after fault to aid the flowing grid voltage. At this juncture, this paper introduces a novel heuristic based controller module employing differential evolution and neural network architecture to improve the low-voltage ride-through rate of grid-connected wind turbines, which are connected along with doubly fed induction generators (DFIGs). The traditional crowbar-based systems were basically applied to secure the rotor-side converter during the occurrence of grid faults. This traditional controller is found not to satisfy the desired requirement, since DFIG during the connection of crowbar acts like a squirrel cage module and absorbs the reactive power from the grid. This limitation is taken care of in this paper by introducing heuristic controllers that remove the usage of crowbar and ensure that wind turbines supply necessary reactive power to the grid during faults. The controller is designed in this paper to enhance the DFIG converter during the grid fault and this controller takes care of the ride-through fault without employing any other hardware modules. The paper introduces a double wavelet neural network controller which is appropriately tuned employing differential evolution. To validate the proposed controller module, a case study of wind farm with 1.5 MW wind turbines connected to a 25 kV distribution system exporting power to a 120 kV grid through a 30 km 25 kV feeder is carried out by simulation. PMID:26516636

  20. Differential Evolution Based IDWNN Controller for Fault Ride-Through of Grid-Connected Doubly Fed Induction Wind Generators.

    PubMed

    Manonmani, N; Subbiah, V; Sivakumar, L

    2015-01-01

    The key objective of wind turbine development is to ensure that output power is continuously increased. It is authenticated that wind turbines (WTs) supply the necessary reactive power to the grid at the time of fault and after fault to aid the flowing grid voltage. At this juncture, this paper introduces a novel heuristic based controller module employing differential evolution and neural network architecture to improve the low-voltage ride-through rate of grid-connected wind turbines, which are connected along with doubly fed induction generators (DFIGs). The traditional crowbar-based systems were basically applied to secure the rotor-side converter during the occurrence of grid faults. This traditional controller is found not to satisfy the desired requirement, since DFIG during the connection of crowbar acts like a squirrel cage module and absorbs the reactive power from the grid. This limitation is taken care of in this paper by introducing heuristic controllers that remove the usage of crowbar and ensure that wind turbines supply necessary reactive power to the grid during faults. The controller is designed in this paper to enhance the DFIG converter during the grid fault and this controller takes care of the ride-through fault without employing any other hardware modules. The paper introduces a double wavelet neural network controller which is appropriately tuned employing differential evolution. To validate the proposed controller module, a case study of wind farm with 1.5 MW wind turbines connected to a 25 kV distribution system exporting power to a 120 kV grid through a 30 km 25 kV feeder is carried out by simulation. PMID:26516636

  1. Calcium-based multi-element chemistry for grid-scale electrochemical energy storage

    PubMed Central

    Ouchi, Takanari; Kim, Hojong; Spatocco, Brian L.; Sadoway, Donald R.

    2016-01-01

    Calcium is an attractive material for the negative electrode in a rechargeable battery due to its low electronegativity (high cell voltage), double valence, earth abundance and low cost; however, the use of calcium has historically eluded researchers due to its high melting temperature, high reactivity and unfavorably high solubility in molten salts. Here we demonstrate a long-cycle-life calcium-metal-based rechargeable battery for grid-scale energy storage. By deploying a multi-cation binary electrolyte in concert with an alloyed negative electrode, calcium solubility in the electrolyte is suppressed and operating temperature is reduced. These chemical mitigation strategies also engage another element in energy storage reactions resulting in a multi-element battery. These initial results demonstrate how the synergistic effects of deploying multiple chemical mitigation strategies coupled with the relaxation of the requirement of a single itinerant ion can unlock calcium-based chemistries and produce a battery with enhanced performance. PMID:27001915

  2. MEDUSA - An overset grid flow solver for network-based parallel computer systems

    NASA Technical Reports Server (NTRS)

    Smith, Merritt H.; Pallis, Jani M.

    1993-01-01

    Continuing improvement in processing speed has made it feasible to solve the Reynolds-Averaged Navier-Stokes equations for simple three-dimensional flows on advanced workstations. Combining multiple workstations into a network-based heterogeneous parallel computer allows the application of programming principles learned on MIMD (Multiple Instruction Multiple Data) distributed memory parallel computers to the solution of larger problems. An overset-grid flow solution code has been developed which uses a cluster of workstations as a network-based parallel computer. Inter-process communication is provided by the Parallel Virtual Machine (PVM) software. Solution speed equivalent to one-third of a Cray-YMP processor has been achieved from a cluster of nine commonly used engineering workstation processors. Load imbalance and communication overhead are the principal impediments to parallel efficiency in this application.

  3. A Selective Vision and Landmark based Approach to Improve the Efficiency of Position Probability Grid Localization

    NASA Astrophysics Data System (ADS)

    Loukianov, Andrey A.; Sugisaka, Masanori

    This paper presents a vision and landmark based approach to improve the efficiency of probability grid Markov localization for mobile robots. The proposed approach uses visual landmarks that can be detected by a rotating video camera on the robot. We assume that visual landmark positions in the map are known and that each landmark can be assigned to a certain landmark class. The method uses classes of observed landmarks and their relative arrangement to select regions in the robot posture space where the location probability density function is to be updated. Subsequent computations are performed only in these selected update regions thus the computational workload is significantly reduced. Probabilistic landmark-based localization method, details of the map and robot perception are discussed. A technique to compute the update regions and their parameters for selective computation is introduced. Simulation results are presented to show the effectiveness of the approach.

  4. Calcium-based multi-element chemistry for grid-scale electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Ouchi, Takanari; Kim, Hojong; Spatocco, Brian L.; Sadoway, Donald R.

    2016-03-01

    Calcium is an attractive material for the negative electrode in a rechargeable battery due to its low electronegativity (high cell voltage), double valence, earth abundance and low cost; however, the use of calcium has historically eluded researchers due to its high melting temperature, high reactivity and unfavorably high solubility in molten salts. Here we demonstrate a long-cycle-life calcium-metal-based rechargeable battery for grid-scale energy storage. By deploying a multi-cation binary electrolyte in concert with an alloyed negative electrode, calcium solubility in the electrolyte is suppressed and operating temperature is reduced. These chemical mitigation strategies also engage another element in energy storage reactions resulting in a multi-element battery. These initial results demonstrate how the synergistic effects of deploying multiple chemical mitigation strategies coupled with the relaxation of the requirement of a single itinerant ion can unlock calcium-based chemistries and produce a battery with enhanced performance.

  5. A new algorithm for grid-based hydrologic analysis by incorporating stormwater infrastructure

    NASA Astrophysics Data System (ADS)

    Choi, Yosoon; Yi, Huiuk; Park, Hyeong-Dong

    2011-08-01

    We developed a new algorithm, the Adaptive Stormwater Infrastructure (ASI) algorithm, to incorporate ancillary data sets related to stormwater infrastructure into the grid-based hydrologic analysis. The algorithm simultaneously considers the effects of the surface stormwater collector network (e.g., diversions, roadside ditches, and canals) and underground stormwater conveyance systems (e.g., waterway tunnels, collector pipes, and culverts). The surface drainage flows controlled by the surface runoff collector network are superimposed onto the flow directions derived from a DEM. After examining the connections between inlets and outfalls in the underground stormwater conveyance system, the flow accumulation and delineation of watersheds are calculated based on recursive computations. Application of the algorithm to the Sangdong tailings dam in Korea revealed superior performance to that of a conventional D8 single-flow algorithm in terms of providing reasonable hydrologic information on watersheds with stormwater infrastructure.

  6. Calcium-based multi-element chemistry for grid-scale electrochemical energy storage.

    PubMed

    Ouchi, Takanari; Kim, Hojong; Spatocco, Brian L; Sadoway, Donald R

    2016-01-01

    Calcium is an attractive material for the negative electrode in a rechargeable battery due to its low electronegativity (high cell voltage), double valence, earth abundance and low cost; however, the use of calcium has historically eluded researchers due to its high melting temperature, high reactivity and unfavorably high solubility in molten salts. Here we demonstrate a long-cycle-life calcium-metal-based rechargeable battery for grid-scale energy storage. By deploying a multi-cation binary electrolyte in concert with an alloyed negative electrode, calcium solubility in the electrolyte is suppressed and operating temperature is reduced. These chemical mitigation strategies also engage another element in energy storage reactions resulting in a multi-element battery. These initial results demonstrate how the synergistic effects of deploying multiple chemical mitigation strategies coupled with the relaxation of the requirement of a single itinerant ion can unlock calcium-based chemistries and produce a battery with enhanced performance. PMID:27001915

  7. Implementation of data node in spatial information grid based on WS resource framework and WS notification

    NASA Astrophysics Data System (ADS)

    Zhang, Dengrong; Yu, Le

    2006-10-01

    Abstract-An approach of constructing a data node in spatial information grid (SIG) based on Web Service Resource Framework (WSRF) and Web Service Notification (WSN) is described in this paper. Attentions are paid to construct and implement SIG's resource layer, which is the most important part. A study on this layer find out, it is impossible to require persistent interaction with the clients of the services in common SIG architecture because of inheriting "stateless" and "not persistent" limitations of Web Service. A WSRF/WSN-based data node is designed to hurdle this short comes. Three different access modes are employed to test the availability of this node. Experimental results demonstrate this service node can successfully respond to standard OGC requests and returns specific spatial data in different network environment, also is stateful, dynamic and persistent.

  8. A Development of Lightweight Grid Interface

    NASA Astrophysics Data System (ADS)

    Iwai, G.; Kawai, Y.; Sasaki, T.; Watase, Y.

    2011-12-01

    In order to help a rapid development of Grid/Cloud aware applications, we have developed API to abstract the distributed computing infrastructures based on SAGA (A Simple API for Grid Applications). SAGA, which is standardized in the OGF (Open Grid Forum), defines API specifications to access distributed computing infrastructures, such as Grid, Cloud and local computing resources. The Universal Grid API (UGAPI), which is a set of command line interfaces (CLI) and APIs, aims to offer simpler API to combine several SAGA interfaces with richer functionalities. These CLIs of the UGAPI offer typical functionalities required by end users for job management and file access to the different distributed computing infrastructures as well as local computing resources. We have also built a web interface for the particle therapy simulation and demonstrated the large scale calculation using the different infrastructures at the same time. In this paper, we would like to present how the web interface based on UGAPI and SAGA achieve more efficient utilization of computing resources over the different infrastructures with technical details and practical experiences.

  9. Web-based visualization of gridded dataset usings OceanBrowser

    NASA Astrophysics Data System (ADS)

    Barth, Alexander; Watelet, Sylvain; Troupin, Charles; Beckers, Jean-Marie

    2015-04-01

    OceanBrowser is a web-based visualization tool for gridded oceanographic data sets. Those data sets are typically four-dimensional (longitude, latitude, depth and time). OceanBrowser allows one to visualize horizontal sections at a given depth and time to examine the horizontal distribution of a given variable. It also offers the possibility to display the results on an arbitrary vertical section. To study the evolution of the variable in time, the horizontal and vertical sections can also be animated. Vertical section can be generated by using a fixed distance from coast or fixed ocean depth. The user can customize the plot by changing the color-map, the range of the color-bar, the type of the plot (linearly interpolated color, simple contours, filled contours) and download the current view as a simple image or as Keyhole Markup Language (KML) file for visualization in applications such as Google Earth. The data products can also be accessed as NetCDF files and through OPeNDAP. Third-party layers from a web map service can also be integrated. OceanBrowser is used in the frame of the SeaDataNet project (http://gher-diva.phys.ulg.ac.be/web-vis/) and EMODNET Chemistry (http://oceanbrowser.net/emodnet/) to distribute gridded data sets interpolated from in situ observation using DIVA (Data-Interpolating Variational Analysis).

  10. Increasing accuracy of dispersal kernels in grid-based population models

    USGS Publications Warehouse

    Slone, D.H.

    2011-01-01

    Dispersal kernels in grid-based population models specify the proportion, distance and direction of movements within the model landscape. Spatial errors in dispersal kernels can have large compounding effects on model accuracy. Circular Gaussian and Laplacian dispersal kernels at a range of spatial resolutions were investigated, and methods for minimizing errors caused by the discretizing process were explored. Kernels of progressively smaller sizes relative to the landscape grid size were calculated using cell-integration and cell-center methods. These kernels were convolved repeatedly, and the final distribution was compared with a reference analytical solution. For large Gaussian kernels (σ > 10 cells), the total kernel error was <10 &sup-11; compared to analytical results. Using an invasion model that tracked the time a population took to reach a defined goal, the discrete model results were comparable to the analytical reference. With Gaussian kernels that had σ ≤ 0.12 using the cell integration method, or σ ≤ 0.22 using the cell center method, the kernel error was greater than 10%, which resulted in invasion times that were orders of magnitude different than theoretical results. A goal-seeking routine was developed to adjust the kernels to minimize overall error. With this, corrections for small kernels were found that decreased overall kernel error to <10-11 and invasion time error to <5%.

  11. Branch-based centralized data collection for smart grids using wireless sensor networks.

    PubMed

    Kim, Kwangsoo; Jin, Seong-il

    2015-01-01

    A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method. PMID:26007734

  12. Branch-Based Centralized Data Collection for Smart Grids Using Wireless Sensor Networks

    PubMed Central

    Kim, Kwangsoo; Jin, Seong-il

    2015-01-01

    A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method. PMID:26007734

  13. Grid-cell-based crop water accounting for the famine early warning system

    USGS Publications Warehouse

    Verdin, J.; Klaver, R.

    2002-01-01

    Rainfall monitoring is a regular activity of food security analysts for sub-Saharan Africa due to the potentially disastrous impact of drought. Crop water accounting schemes are used to track rainfall timing and amounts relative to phenological requirements, to infer water limitation impacts on yield. Unfortunately, many rain gauge reports are available only after significant delays, and the gauge locations leave large gaps in coverage. As an alternative, a grid-cell-based formulation for the water requirement satisfaction index (WRSI) was tested for maize in Southern Africa. Grids of input variables were obtained from remote sensing estimates of rainfall, meteorological models, and digital soil maps. The spatial WRSI was computed for the 1996-97 and 1997-98 growing seasons. Maize yields were estimated by regression and compared with a limited number of reports from the field for the 1996-97 season in Zimbabwe. Agreement at a useful level (r = 0.80) was observed. This is comparable to results from traditional analysis with station data. The findings demonstrate the complementary role that remote sensing, modelling, and geospatial analysis can play in an era when field data collection in sub-Saharan Africa is suffering an unfortunate decline. Published in 2002 by John Wiley & Sons, Ltd.

  14. Lambda Station: On-demand flow based routing for data intensive Grid applications over multitopology networks

    SciTech Connect

    Bobyshev, A.; Crawford, M.; DeMar, P.; Grigaliunas, V.; Grigoriev, M.; Moibenko, A.; Petravick, D.; Rechenmacher, R.; Newman, H.; Bunn, J.; Van Lingen, F.; Nae, D.; Ravot, S.; Steenberg, C.; Su, X.; Thomas, M.; Xia, Y.; /Caltech

    2006-08-01

    Lambda Station is an ongoing project of Fermi National Accelerator Laboratory and the California Institute of Technology. The goal of this project is to design, develop and deploy network services for path selection, admission control and flow based forwarding of traffic among data-intensive Grid applications such as are used in High Energy Physics and other communities. Lambda Station deals with the last-mile problem in local area networks, connecting production clusters through a rich array of wide area networks. Selective forwarding of traffic is controlled dynamically at the demand of applications. This paper introduces the motivation of this project, design principles and current status. Integration of Lambda Station client API with the essential Grid middleware such as the dCache/SRM Storage Resource Manager is also described. Finally, the results of applying Lambda Station services to development and production clusters at Fermilab and Caltech over advanced networks such as DOE's UltraScience Net and NSF's UltraLight is covered.

  15. NaradaBrokering as Middleware Fabric for Grid-based Remote Visualization Services

    NASA Astrophysics Data System (ADS)

    Pallickara, S.; Erlebacher, G.; Yuen, D.; Fox, G.; Pierce, M.

    2003-12-01

    Remote Visualization Services (RVS) have tended to rely on approaches based on the client server paradigm. The simplicity in these approaches is offset by problems such as single-point-of-failures, scaling and availability. Furthermore, as the complexity, scale and scope of the services hosted on this paradigm increase, this approach becomes increasingly unsuitable. We propose a scheme based on top of a distributed brokering infrastructure, NaradaBrokering, which comprises a distributed network of broker nodes. These broker nodes are organized in a cluster-based architecture that can scale to very large sizes. The broker network is resilient to broker failures and efficiently routes interactions to entities that expressed an interest in them. In our approach to RVS, services advertise their capabilities to the broker network, which manages these service advertisements. Among the services considered within our system are those that perform graphic transformations, mediate access to specialized datasets and finally those that manage the execution of specified tasks. There could be multiple instances of each of these services and the system ensures that load for a given service is distributed efficiently over these service instances. Among the features provided in our approach are efficient discovery of services and asynchronous interactions between services and service requestors (which could themselves be other services). Entities need not be online during the execution of the service request. The system also ensures that entities can be notified about task executions, partial results and failures that might have taken place during service execution. The system also facilitates specification of task overrides, distribution of execution results to alternate devices (which were not used to originally request service execution) and to multiple users. These RVS services could of course be either OGSA (Open Grid Services Architecture) based Grid services or traditional

  16. Thread Group Multithreading: Accelerating the Computation of an Agent-Based Power System Modeling and Simulation Tool -- C GridLAB-D

    SciTech Connect

    Jin, Shuangshuang; Chassin, David P.

    2014-01-06

    GridLAB-DTM is an open source next generation agent-based smart-grid simulator that provides unprecedented capability to model the performance of smart grid technologies. Over the past few years, GridLAB-D has been used to conduct important analyses of smart grid concepts, but it is still quite limited by its computational performance. In order to break through the performance bottleneck to meet the need for large scale power grid simulations, we develop a thread group mechanism to implement highly granular multithreaded computation in GridLAB-D. We achieve close to linear speedups on multithreading version compared against the single-thread version of the same code running on general purpose multi-core commodity for a benchmark simple house model. The performance of the multithreading code shows favorable scalability properties and resource utilization, and much shorter execution time for large-scale power grid simulations.

  17. Department 1824 Job Card System: A new web-based business tool

    SciTech Connect

    Brangan, J.R.

    1998-02-01

    The Analytical Chemistry Department uses a system of job cards to control and monitor the work through the organization. In the past, many different systems have been developed to allow each laboratory to monitor their individual work and report data. Unfortunately, these systems were separate and unique which caused difficulty in ascertaining any overall picture of the Department`s workload. To overcome these shortcomings, a new Job Card System was developed on Lotus Notes/Domino{trademark} for tracking the work through the laboratory. This application is groupware/database software and is located on the Sandia Intranet which allows users of any type of computer running a network browser to access the system. Security is provided through the use of logons and passwords for users who must add and/or modify information on the system. Customers may view the jobs in process by entering the system as an anonymous user. An overall view of the work in the department can be obtained by selecting from a variety of on screen reports. This enables the analysts, customers, customer contacts, and the Department Manager to quickly evaluate the work in process, the resources required, and the availability of equipment. On-line approval of the work and e-mail messaging of completed jobs has been provided to streamline the review and approval cycle. This paper provides a guide for the use of the Job Card System and information on maintenance of the system.

  18. The Contribution of Sex Distribution, Job Content, and Occupational Classification to Job Sextyping: Two Studies.

    ERIC Educational Resources Information Center

    Krefting, Linda A.; And Others

    1978-01-01

    The distribution of males and females on a job, occupational classification, and job content were examined as predictors of job sex stereotypes in two studies. Results indicate that the base rate of males and females in the job is the most important predictor of job sextypes. (Author)

  19. Empowering the Older Job Seeker: Experimental Evaluation of the Older Worker Job Club.

    ERIC Educational Resources Information Center

    Gray, Denis

    Because older job seekers have been shown to exhibit less job search motivation and competence than other groups, a job club program based on learning and self help principles was developed to empower the older job seeker. Of persons (N=48) who requested assistance from a local area agency on aging, half entered the job club program and half were…

  20. Old and Unemployable? How Age‐Based Stereotypes Affect Willingness to Hire Job Candidates

    PubMed Central

    Swift, Hannah J.; Drury, Lisbeth

    2016-01-01

    Across the world, people are required, or want, to work until an increasingly old age. But how might prospective employers view job applicants who have skills and qualities that they associate with older adults? This article draws on social role theory, age stereotypes and research on hiring biases, and reports three studies using age‐diverse North American participants. These studies reveal that: (1) positive older age stereotype characteristics are viewed less favorably as criteria for job hire, (2) even when the job role is low‐status, a younger stereotype profile tends to be preferred, and (3) an older stereotype profile is only considered hirable when the role is explicitly cast as subordinate to that of a candidate with a younger age profile. Implications for age‐positive selection procedures and ways to reduce the impact of implicit age biases are discussed.

  1. Medical Data GRIDs as approach towards secure cross enterprise document sharing (based on IHE XDS).

    PubMed

    Wozak, Florian; Ammenwerth, Elske; Breu, Micheal; Penz, Robert; Schabetsberger, Thomas; Vogl, Raimund; Wurz, Manfred

    2006-01-01

    Quality and efficiency of health care services is expected to be improved by the electronic processing and trans-institutional availability of medical data. A prototype architecture based on the IHE-XDS profile is currently being developed. Due to legal and organizational requirements specific adaptations to the IHE-XDS profile have been made. In this work the services of the health@net reference architecture are described in details, which have been developed with focus on compliance to both, the IHE-XDS profile and the legal situation in Austria. We expect to gain knowledge about the development of a shared electronic health record using Medical Data Grids as an Open Source reference implementation and how proprietary Hospital Information systems can be integrated in this environment. PMID:17108551

  2. A caGRID-ENABLED, LEARNING BASED IMAGE SEGMENTATION METHOD FOR HISTOPATHOLOGY SPECIMENS

    PubMed Central

    Foran, David J.; Yang, Lin; Tuzel, Oncel; Chen, Wenjin; Hu, Jun; Kurc, Tahsin M.; Ferreira, Renato; Saltz, Joel H.

    2009-01-01

    Accurate segmentation of tissue microarrays is a challenging topic because of some of the similarities exhibited by normal tissue and tumor regions. Processing speed is another consideration when dealing with imaged tissue microarrays as each microscopic slide may contain hundreds of digitized tissue discs. In this paper, a fast and accurate image segmentation algorithm is presented. Both a whole disc delineation algorithm and a learning based tumor region segmentation approach which utilizes multiple scale texton histograms are introduced. The algorithm is completely automatic and computationally efficient. The mean pixel-wise segmentation accuracy is about 90%. It requires about 1 second for whole disc (1024×1024 pixels) segmentation and less than 5 seconds for segmenting tumor regions. In order to enable remote access to the algorithm and collaborative studies, an analytical service is implemented using the caGrid infrastructure. This service wraps the algorithm and provides interfaces for remote clients to submit images for analysis and retrieve analysis results. PMID:19936299

  3. GLIDE: a grid-based light-weight infrastructure for data-intensive environments

    NASA Technical Reports Server (NTRS)

    Mattmann, Chris A.; Malek, Sam; Beckman, Nels; Mikic-Rakic, Marija; Medvidovic, Nenad; Chrichton, Daniel J.

    2005-01-01

    The promise of the grid is that it will enable public access and sharing of immense amounts of computational and data resources among dynamic coalitions of individuals and institutions. However, the current grid solutions make several limiting assumptions that curtail their widespread adoption. To address these limitations, we present GLIDE, a prototype light-weight, data-intensive middleware infrastructure that enables access to the robust data and computational power of the grid on DREAM platforms.

  4. QoS Differential Scheduling in Cognitive-Radio-Based Smart Grid Networks: An Adaptive Dynamic Programming Approach.

    PubMed

    Yu, Rong; Zhong, Weifeng; Xie, Shengli; Zhang, Yan; Zhang, Yun

    2016-02-01

    As the next-generation power grid, smart grid will be integrated with a variety of novel communication technologies to support the explosive data traffic and the diverse requirements of quality of service (QoS). Cognitive radio (CR), which has the favorable ability to improve the spectrum utilization, provides an efficient and reliable solution for smart grid communications networks. In this paper, we study the QoS differential scheduling problem in the CR-based smart grid communications networks. The scheduler is responsible for managing the spectrum resources and arranging the data transmissions of smart grid users (SGUs). To guarantee the differential QoS, the SGUs are assigned to have different priorities according to their roles and their current situations in the smart grid. Based on the QoS-aware priority policy, the scheduler adjusts the channels allocation to minimize the transmission delay of SGUs. The entire transmission scheduling problem is formulated as a semi-Markov decision process and solved by the methodology of adaptive dynamic programming. A heuristic dynamic programming (HDP) architecture is established for the scheduling problem. By the online network training, the HDP can learn from the activities of primary users and SGUs, and adjust the scheduling decision to achieve the purpose of transmission delay minimization. Simulation results illustrate that the proposed priority policy ensures the low transmission delay of high priority SGUs. In addition, the emergency data transmission delay is also reduced to a significantly low level, guaranteeing the differential QoS in smart grid. PMID:25910254

  5. Beginning Teachers' Job Satisfaction: The Impact of School-Based Factors

    ERIC Educational Resources Information Center

    Lam, Bick-har; Yan, Hoi-fai

    2011-01-01

    Using a longitudinal design, the job satisfaction and career development of beginning teachers are explored in the present study. Beginning teachers were initially interviewed after graduation from the teacher training programme and then after gaining a two-year teaching experience. The results are presented in a fourfold typology in which the…

  6. A grid-based implementation of XDS-I as a part of a metropolitan EHR in Shanghai

    NASA Astrophysics Data System (ADS)

    Zhang, Jianguo; Zhang, Chenghao; Sun, Jianyong, Sr.; Yang, Yuanyuan; Jin, Jin; Yu, Fenghai; He, Zhenyu; Zheng, Xichuang; Qin, Huanrong; Feng, Jie; Zhang, Guozheng

    2007-03-01

    A number of hospitals in Shanghai are piloting the development of an EHR solution based on a grid concept with a service-oriented architecture (SOA). The first phase of the project targets the Diagnostic Imaging domain and allows seamless sharing of images and reports across the multiple hospitals. The EHR solution is fully aligned with the IHE XDS-I integration profile and consists of the components of the XDS-I Registry, Repository, Source and Consumer actors. By using SOA, the solution uses ebXML over secured http for all transactions with in the grid. However, communication with the PACS and RIS is DICOM and HL7 v3.x. The solution was installed in three hospitals and one date center in Shanghai and tested for performance of data publication, user query and image retrieval. The results are extremely positive and demonstrate that the EHR solution based on SOA with grid concept can scale effectively to server a regional implementation.

  7. Long Range Debye-Hückel Correction for Computation of Grid-based Electrostatic Forces Between Biomacromolecules

    SciTech Connect

    Mereghetti, Paolo; Martinez, M.; Wade, Rebecca C.

    2014-06-17

    Brownian dynamics (BD) simulations can be used to study very large molecular systems, such as models of the intracellular environment, using atomic-detail structures. Such simulations require strategies to contain the computational costs, especially for the computation of interaction forces and energies. A common approach is to compute interaction forces between macromolecules by precomputing their interaction potentials on three-dimensional discretized grids. For long-range interactions, such as electrostatics, grid-based methods are subject to finite size errors. We describe here the implementation of a Debye-Hückel correction to the grid-based electrostatic potential used in the SDA BD simulation software that was applied to simulate solutions of bovine serum albumin and of hen egg white lysozyme.

  8. Evolutionary programming-based methodology for economical output power from PEM fuel cell for micro-grid application

    NASA Astrophysics Data System (ADS)

    El-Sharkh, M. Y.; Rahman, A.; Alam, M. S.

    This paper presents a methodology for finding the optimal output power from a PEM fuel cell power plant (FCPP). The FCPP is used to supply power to a small micro-grid community. The technique used is based on evolutionary programming (EP) to find a near-optimal solution of the problem. The method incorporates the Hill-Climbing technique (HCT) to maintain feasibility during the solution process. An economic model of the FCPP is used. The model considers the production cost of energy and the possibility of selling and buying electrical energy from the local grid. In addition, the model takes into account the thermal energy output from the FCPP and the thermal energy requirement for the micro-grid community. The results obtained are compared against a solution based on genetic algorithms. Results are encouraging and indicate viability of the proposed technique.

  9. Relation between lung asbestos fibre burden and exposure indices based on job history.

    PubMed Central

    Takahashi, K; Case, B W; Dufresne, A; Fraser, R; Higashi, T; Siemiatycki, J

    1994-01-01

    Lung asbestos burden was compared with exposure indices derived from job history interviews in 42 male subjects originating from the Montréal Case-Control Study project, 12 of whom had documented asbestos exposed job histories. Job interview data consisting of a chronological timetable of job histories were translated into detailed exposure indices by an expert group of hygienists and chemists. Total and individual asbestos fibre type concentrations were quantified by transmission electron microscopy with fibre identification by energy dispersive chi ray spectrometry after deparaffinisation of tissue blocks and low temperature plasma ashing. Geometric mean or median asbestos content was higher in subjects with an asbestos exposed job history than those without for retained dose of amosite, total commercial amphiboles, and total asbestos fibre. Except for crocidolite fibre diameter, which was significantly less in the lungs of exposed workers, no consistent differences were found in measurements of fibre dimension for any fibre type. Subgroups of subjects exposed to silica, metals, or smokers and non-smokers without significant occupational exposure showed varying patterns of lung asbestos fibre type deficit compared with the asbestos exposed subgroup. There was an overall trend for higher lung asbestos content proportional to higher exposure indices for asbestos representing concentration, frequency, and reliability. These exposure indices as well as duration of exposure (in years) were independent predictors of total asbestos content in regression analyses when combined in a model with age. Stepwise regression indicated that exposure concentration was the most important variable, explaining 32% of the total variation in total asbestos content. Smoking, whether expressed in ever or never smoked dichotomy or in smoked-years, had no relation to lung asbestos content in this model. PMID:8044245

  10. FermiGrid - experience and future plans

    SciTech Connect

    Chadwick, K.; Berman, E.; Canal, P.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Timm, S.; Yocum, D.; /Fermilab

    2007-09-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid and the WLCG. FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the Open Science Grid (OSG), EGEE and the Worldwide LHC Computing Grid Collaboration (WLCG). Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure--the successes and the problems.

  11. Active Job Monitoring in Pilots

    NASA Astrophysics Data System (ADS)

    Kuehn, Eileen; Fischer, Max; Giffels, Manuel; Jung, Christopher; Petzold, Andreas

    2015-12-01

    Recent developments in high energy physics (HEP) including multi-core jobs and multi-core pilots require data centres to gain a deep understanding of the system to monitor, design, and upgrade computing clusters. Networking is a critical component. Especially the increased usage of data federations, for example in diskless computing centres or as a fallback solution, relies on WAN connectivity and availability. The specific demands of different experiments and communities, but also the need for identification of misbehaving batch jobs, requires an active monitoring. Existing monitoring tools are not capable of measuring fine-grained information at batch job level. This complicates network-aware scheduling and optimisations. In addition, pilots add another layer of abstraction. They behave like batch systems themselves by managing and executing payloads of jobs internally. The number of real jobs being executed is unknown, as the original batch system has no access to internal information about the scheduling process inside the pilots. Therefore, the comparability of jobs and pilots for predicting run-time behaviour or network performance cannot be ensured. Hence, identifying the actual payload is important. At the GridKa Tier 1 centre a specific tool is in use that allows the monitoring of network traffic information at batch job level. This contribution presents the current monitoring approach and discusses recent efforts and importance to identify pilots and their substructures inside the batch system. It will also show how to determine monitoring data of specific jobs from identified pilots. Finally, the approach is evaluated.

  12. Analysis and Validation of Grid dem Generation Based on Gaussian Markov Random Field

    NASA Astrophysics Data System (ADS)

    Aguilar, F. J.; Aguilar, M. A.; Blanco, J. L.; Nemmaoui, A.; García Lorca, A. M.

    2016-06-01

    Digital Elevation Models (DEMs) are considered as one of the most relevant geospatial data to carry out land-cover and land-use classification. This work deals with the application of a mathematical framework based on a Gaussian Markov Random Field (GMRF) to interpolate grid DEMs from scattered elevation data. The performance of the GMRF interpolation model was tested on a set of LiDAR data (0.87 points/m2) provided by the Spanish Government (PNOA Programme) over a complex working area mainly covered by greenhouses in Almería, Spain. The original LiDAR data was decimated by randomly removing different fractions of the original points (from 10% to up to 99% of points removed). In every case, the remaining points (scattered observed points) were used to obtain a 1 m grid spacing GMRF-interpolated Digital Surface Model (DSM) whose accuracy was assessed by means of the set of previously extracted checkpoints. The GMRF accuracy results were compared with those provided by the widely known Triangulation with Linear Interpolation (TLI). Finally, the GMRF method was applied to a real-world case consisting of filling the LiDAR-derived DSM gaps after manually filtering out non-ground points to obtain a Digital Terrain Model (DTM). Regarding accuracy, both GMRF and TLI produced visually pleasing and similar results in terms of vertical accuracy. As an added bonus, the GMRF mathematical framework makes possible to both retrieve the estimated uncertainty for every interpolated elevation point (the DEM uncertainty) and include break lines or terrain discontinuities between adjacent cells to produce higher quality DTMs.

  13. IDL Grid Web Portal

    NASA Astrophysics Data System (ADS)

    Massimino, P.; Costa, A.

    2008-08-01

    Image Data Language is a software for data analysis, visualization and cross-platform application development. The potentiality of IDL is well-known in the academic scientific world, especially in the astronomical environment where thousands of procedures are developed by using IDL. The typical use of IDL is the interactive mode but it is also possible to run IDL programs that do not require any interaction with the user, submitting them in batch or background modality. Through the interactive mode the user immediately receives images or other data produced in the running phase of the program; in batch or background mode, the user will have to wait for the end of the program, sometime for many hours or days to obtain images or data that IDL produced as output: in fact in Grid environment it is possible to access to or retrieve data only after completion of the program. The work that we present gives flexibility to IDL procedures submitted to the Grid computer infrastructure. For this purpose we have developed an IDL Grid Web Portal to allow the user to access the Grid and to submit IDL programs granting a full job control and the access to images and data generated during the running phase, without waiting for their completion. We have used the PHP technology and we have given the same level of security that Grid normally offers to its users. In this way, when the user notices that the intermediate program results are not those expected, he can stop the job, change the parameters to better satisfy the computational algorithm and resubmit the program, without consuming the CPU time and other Grid resources. The IDL Grid Web Portal allows you to obtain IDL generated images, graphics and data tables by using a normal browser. All conversations from the user and the Grid resources occur via Web, as well as authentication phases. The IDL user has not to change the program source much because the Portal will automatically introduce the appropriate modification before

  14. Adapting a commercial power system simulator for smart grid based system study and vulnerability assessment

    NASA Astrophysics Data System (ADS)

    Navaratne, Uditha Sudheera

    The smart grid is the future of the power grid. Smart meters and the associated network play a major role in the distributed system of the smart grid. Advance Metering Infrastructure (AMI) can enhance the reliability of the grid, generate efficient energy management opportunities and many innovations around the future smart grid. These innovations involve intense research not only on the AMI network itself but as also on the influence an AMI network can have upon the rest of the power grid. This research describes a smart meter testbed with hardware in loop that can facilitate future research in an AMI network. The smart meters in the testbed were developed such that their functionality can be customized to simulate any given scenario such as integrating new hardware components into a smart meter or developing new encryption algorithms in firmware. These smart meters were integrated into the power system simulator to simulate the power flow variation in the power grid on different AMI activities. Each smart meter in the network also provides a communication interface to the home area network. This research delivers a testbed for emulating the AMI activities and monitoring their effect on the smart grid.

  15. Job Enrichment

    ERIC Educational Resources Information Center

    Sanders, Rick

    1970-01-01

    Job enrichment means giving people more decision-making power, more responsibility, more grasp of the totality of the job, and a sense of their own importance in the company. This article presents evidence of the successful working of this approach (Donnelly Mirrors), and the lack of success with an opposing approach (General Motors). (NL)

  16. Software Based Barriers To Integration Of Renewables To The Future Distribution Grid

    SciTech Connect

    Stewart, Emma; Kiliccote, Sila

    2014-06-01

    The future distribution grid has complex analysis needs, which may not be met with the existing processes and tools. In addition there is a growing number of measured and grid model data sources becoming available. For these sources to be useful they must be accurate, and interpreted correctly. Data accuracy is a key barrier to the growth of the future distribution grid. A key goal for California, and the United States, is increasing the renewable penetration on the distribution grid. To increase this penetration measured and modeled representations of generation must be accurate and validated, giving distribution planners and operators confidence in their performance. This study will review the current state of these software and modeling barriers and opportunities for the future distribution grid.

  17. Motivating medical information system performance by system quality, service quality, and job satisfaction for evidence-based practice

    PubMed Central

    2012-01-01

    Background No previous studies have addressed the integrated relationships among system quality, service quality, job satisfaction, and system performance; this study attempts to bridge such a gap with evidence-based practice study. Methods The convenience sampling method was applied to the information system users of three hospitals in southern Taiwan. A total of 500 copies of questionnaires were distributed, and 283 returned copies were valid, suggesting a valid response rate of 56.6%. SPSS 17.0 and AMOS 17.0 (structural equation modeling) statistical software packages were used for data analysis and processing. Results The findings are as follows: System quality has a positive influence on service quality (γ11= 0.55), job satisfaction (γ21= 0.32), and system performance (γ31= 0.47). Service quality (β31= 0.38) and job satisfaction (β32= 0.46) will positively influence system performance. Conclusions It is thus recommended that the information office of hospitals and developers take enhancement of service quality and user satisfaction into consideration in addition to placing b on system quality and information quality when designing, developing, or purchasing an information system, in order to improve benefits and gain more achievements generated by hospital information systems. PMID:23171394

  18. glideinWMS - A generic pilot-based Workload Management System

    SciTech Connect

    Sfiligoi, Igor; /Fermilab

    2007-09-01

    The Grid resources are distributed among hundreds of independent Grid sites, requiring a higher level Workload Management System (WMS) to be used efficiently. Pilot jobs have been used for this purpose by many communities, bringing increased reliability, global fair share and just in time resource matching. GlideinWMS is a WMS based on the Condor glidein concept, i.e. a regular Condor pool, with the Condor daemons (startds) being started by pilot jobs, and real jobs being vanilla, standard or MPI universe jobs. The glideinWMS is composed of a set of Glidein Factories, handling the submission of pilot jobs to a set of Grid sites, and a set of VO Frontends, requesting pilot submission based on the status of user jobs. This paper contains the structural overview of glideinWMS as well as a detailed description of the current implementation and the current scalability limits.

  19. glideinWMS—a generic pilot-based workload management system

    NASA Astrophysics Data System (ADS)

    Sfiligoi, I.

    2008-07-01

    The Grid resources are distributed among hundreds of independent Grid sites, requiring a higher level Workload Management System (WMS) to be used efficiently. Pilot jobs have been used for this purpose by many communities, bringing increased reliability, global fair share and just in time resource matching. glideinWMS is a WMS based on the Condor glidein concept, i.e. a regular Condor pool, with the Condor daemons (startds) being started by pilot jobs, and real jobs being vanilla, standard or MPI universe jobs. The glideinWMS is composed of a set of Glidein Factories, handling the submission of pilot jobs to a set of Grid sites, and a set of VO Frontends, requesting pilot submission based on the status of user jobs. This paper contains the structural overview of glideinWMS as well as a detailed description of the current implementation and the current scalability limits.

  20. Unstructured Grids on NURBS Surfaces

    NASA Technical Reports Server (NTRS)

    Samareh-Abolhassani, Jamshid

    1993-01-01

    A simple and efficient computational method is presented for unstructured surface grid generation. This method is built upon an advancing front technique combined with grid projection. The projection technique is based on a Newton-Raphson method. This combined approach has been successfully implemented for structured and unstructured grids. In this paper, the implementation for unstructured grid is discussed.

  1. A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies

    SciTech Connect

    Eça, L.; Hoekstra, M.

    2014-04-01

    This paper offers a procedure for the estimation of the numerical uncertainty of any integral or local flow quantity as a result of a fluid flow computation; the procedure requires solutions on systematically refined grids. The error is estimated with power series expansions as a function of the typical cell size. These expansions, of which four types are used, are fitted to the data in the least-squares sense. The selection of the best error estimate is based on the standard deviation of the fits. The error estimate is converted into an uncertainty with a safety factor that depends on the observed order of grid convergence and on the standard deviation of the fit. For well-behaved data sets, i.e. monotonic convergence with the expected observed order of grid convergence and no scatter in the data, the method reduces to the well known Grid Convergence Index. Examples of application of the procedure are included. - Highlights: • Estimation of the numerical uncertainty of any integral or local flow quantity. • Least squares fits to power series expansions to handle noisy data. • Excellent results obtained for manufactured solutions. • Consistent results obtained for practical CFD calculations. • Reduces to the well known Grid Convergence Index for well-behaved data sets.

  2. An on-the-job mindfulness-based intervention for pediatric ICU nurses: a pilot.

    PubMed

    Gauthier, Tina; Meyer, Rika M L; Grefe, Dagmar; Gold, Jeffrey I

    2015-01-01

    The feasibility of a 5-minute mindfulness meditation for PICU nurses before each work-shift to investigate change in nursing stress, burnout, self-compassion, mindfulness, and job satisfaction was explored. Thirty-eight nurses completed measures (Nursing Stress Scale, Maslach Burnout Inventory, Mindfulness Attention Awareness Scale and Self-Compassion Scale) at baseline, post-intervention and 1 month after. The intervention was found to be feasible for nurses on the PICU. A repeated measures ANOVA revealed significant decreases in stress from baseline to post intervention and maintained 1 month following the intervention. Findings may inform future interventions that support on-the-job self-care and stress-reduction within a critical care setting. PMID:25450445

  3. DISTRIBUTED GRID-CONNECTED PHOTOVOLTAIC POWER SYSTEM EMISSION OFFSET ASSESSMENT: STATISTICAL TEST OF SIMULATED- AND MEASURED-BASED DATA

    EPA Science Inventory

    This study assessed the pollutant emission offset potential of distributed grid-connected photovoltaic (PV) power systems. Computer-simulated performance results were utilized for 211 PV systems located across the U.S. The PV systems' monthly electrical energy outputs were based ...

  4. Development of Smart Grid for Community and Cyber based Landslide Hazard Monitoring and Early Warning System

    NASA Astrophysics Data System (ADS)

    Karnawati, D.; Wilopo, W.; Fathani, T. F.; Fukuoka, H.; Andayani, B.

    2012-12-01

    A Smart Grid is a cyber-based tool to facilitate a network of sensors for monitoring and communicating the landslide hazard and providing the early warning. The sensor is designed as an electronic sensor installed in the existing monitoring and early warning instruments, and also as the human sensors which comprise selected committed-people at the local community, such as the local surveyor, local observer, member of the local task force for disaster risk reduction, and any person at the local community who has been registered to dedicate their commitments for sending reports related to the landslide symptoms observed at their living environment. This tool is designed to be capable to receive up to thousands of reports/information at the same time through the electronic sensors, text message (mobile phone), the on-line participatory web as well as various social media such as Twitter and Face book. The information that should be recorded/ reported by the sensors is related to the parameters of landslide symptoms, for example the progress of cracks occurrence, ground subsidence or ground deformation. Within 10 minutes, this tool will be able to automatically elaborate and analyse the reported symptoms to predict the landslide hazard and risk levels. The predicted level of hazard/ risk can be sent back to the network of electronic and human sensors as the early warning information. The key parameters indicating the symptoms of landslide hazard were recorded/ monitored by the electrical and the human sensors. Those parameters were identified based on the investigation on geological and geotechnical conditions, supported with the laboratory analysis. The cause and triggering mechanism of landslide in the study area was also analysed in order to define the critical condition to launch the early warning. However, not only the technical but also social system were developed to raise community awareness and commitments to serve the mission as the human sensors, which will

  5. Near-Body Grid Adaption for Overset Grids

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.; Pulliam, Thomas H.

    2016-01-01

    A solution adaption capability for curvilinear near-body grids has been implemented in the OVERFLOW overset grid computational fluid dynamics code. The approach follows closely that used for the Cartesian off-body grids, but inserts refined grids in the computational space of original near-body grids. Refined curvilinear grids are generated using parametric cubic interpolation, with one-sided biasing based on curvature and stretching ratio of the original grid. Sensor functions, grid marking, and solution interpolation tasks are implemented in the same fashion as for off-body grids. A goal-oriented procedure, based on largest error first, is included for controlling growth rate and maximum size of the adapted grid system. The adaption process is almost entirely parallelized using MPI, resulting in a capability suitable for viscous, moving body simulations. Two- and three-dimensional examples are presented.

  6. A generalized grid connectivity-based parameterization for subsurface flow model calibration

    NASA Astrophysics Data System (ADS)

    Bhark, Eric W.; Jafarpour, Behnam; Datta-Gupta, Akhil

    2011-06-01

    We develop a novel method of parameterization for spatial hydraulic property characterization to mitigate the challenges associated with the nonlinear inverse problem of subsurface flow model calibration. The parameterization is performed by the projection of the estimable hydraulic property field onto an orthonormal basis derived from the grid connectivity structure. The basis functions represent the modal shapes or harmonics of the grid, are defined by a modal frequency, and converge to special cases of the discrete Fourier series under certain grid geometries and boundary assumptions; therefore, hydraulic property updates are performed in the spectral domain and merge with Fourier analysis in ideal cases. Dependence on the grid alone implies that the basis may characterize any grid geometry, including corner point and unstructured, is model independent, and is constructed off-line and only once prior to flow data assimilation. We apply the parameterization in an adaptive multiscale model calibration workflow for three subsurface flow models. Several different grid geometries are considered. In each case the prior hydraulic property model is updated using a parameterized multiplier field that is superimposed onto the grid and assigned an initial value of unity at each cell. The special case corresponding to a constant multiplier is always applied through the constant basis function. Higher modes are adaptively employed during minimization of data misfit to resolve multiscale heterogeneity in the geomodel. The parameterization demonstrates selective updating of heterogeneity at locations and spatial scales sensitive to the available data, otherwise leaving the prior model unchanged as desired.

  7. Sound Source Localization for HRI Using FOC-Based Time Difference Feature and Spatial Grid Matching.

    PubMed

    Li, Xiaofei; Liu, Hong

    2013-08-01

    In human-robot interaction (HRI), speech sound source localization (SSL) is a convenient and efficient way to obtain the relative position between a speaker and a robot. However, implementing a SSL system based on TDOA method encounters many problems, such as noise of real environments, the solution of nonlinear equations, switch between far field and near field. In this paper, fourth-order cumulant spectrum is derived, based on which a time delay estimation (TDE) algorithm that is available for speech signal and immune to spatially correlated Gaussian noise is proposed. Furthermore, time difference feature of sound source and its spatial distribution are analyzed, and a spatial grid matching (SGM) algorithm is proposed for localization step, which handles some problems that geometric positioning method faces effectively. Valid feature detection algorithm and a decision tree method are also suggested to improve localization performance and reduce computational complexity. Experiments are carried out in real environments on a mobile robot platform, in which thousands of sets of speech data with noise collected by four microphones are tested in 3D space. The effectiveness of our TDE method and SGM algorithm is verified. PMID:26502430

  8. GRID-based three-dimensional pharmacophores I: FLAPpharm, a novel approach for pharmacophore elucidation.

    PubMed

    Cross, Simon; Baroni, Massimo; Goracci, Laura; Cruciani, Gabriele

    2012-10-22

    Pharmacophore elucidation approaches are routinely used in drug discovery, primarily with the aim of determining the three-dimensional arrangement of common features shared by ligands interacting at the site of interest; these features can then be used to investigate the structure-activity relationship between the ligands and also to screen for other molecules possessing the relevant features. Here we present a novel approach based on GRID molecular interaction fields and the derivative method FLAP that has been previously described, which provides a common reference framework to compare both small molecule ligands and macromolecular protein targets. Unlike classical pharmacophore elucidation approaches that extract simplistic molecular features, determine those which are common across the data set, and use these features to align the structures, FLAPpharm first aligns the structures and subsequently extracts the common interacting features in terms of their molecular interaction fields, pseudofields, and atomic points, representing the common pharmacophore as a more comprehensive pharmacophoric pseudomolecule. The approach is applied to a number of data sets to investigate performance in terms of reproducing the X-ray crystallography-based alignment, in terms of its discriminatory ability when applied to virtual screening and also to illustrate its ability to explain alternative binding modes. In part two of this publication, a comprehensive benchmark data set for pharmacophore elucidation is presented and the performance of FLAPpharm discussed. PMID:22970894

  9. RTDS-Based Design and Simulation of Distributed P-Q Power Resources in Smart Grid

    NASA Astrophysics Data System (ADS)

    Taylor, Zachariah David

    In this Thesis, we propose to utilize a battery system together with its power electronics interfaces and bidirectional charger as a distributed P-Q resource in power distribution networks. First, we present an optimization-based approach to operate such distributed P-Q resources based on the characteristics of the battery and charger system as well as the features and needs of the power distribution network. Then, we use the RTDS Simulator, which is an industry-standard simulation tool of power systems, to develop two RTDS-based design approaches. The first design is based on an ideal four-quadrant distributed P-Q power resource. The second design is based on a detailed four-quadrant distributed P-Q power resource that is developed using power electronics components. The hardware and power electronics circuitry as well as the control units are explained for the second design. After that, given the two-RTDS designs, we conducted extensive RTDS simulations to assess the performance of the designed distributed P-Q Power Resource in an IEEE 13 bus test system. We observed that the proposed design can noticeably improve the operational performance of the power distribution grid in at least four key aspects: reducing power loss, active power peak load shaving at substation, reactive power peak load shaving at substation, and voltage regulation. We examine these performance measures across three design cases: Case 1: There is no P-Q Power Resource available on the power distribution network. Case 2: The installed P-Q Power Resource only supports active power, i.e., it only utilizes its battery component. Case 3: The installed P-Q Power Resource supports both active and reactive power, i.e., it utilizes both its battery component and its power electronics charger component. In the end, we present insightful interpretations on the simulation results and suggest some future works.

  10. Comparison of two expert-based assessments of diesel exhaust exposure in a case-control study: Programmable decision rules versus expert review of individual jobs

    PubMed Central

    Pronk, Anjoeka; Stewart, Patricia A.; Coble, Joseph B.; Katki, Hormuzd A.; Wheeler, David C.; Colt, Joanne S.; Baris, Dalsu; Schwenn, Molly; Karagas, Margaret R.; Johnson, Alison; Waddell, Richard; Verrill, Castine; Cherala, Sai; Silverman, Debra T.; Friesen, Melissa C.

    2012-01-01

    Objectives Professional judgment is necessary to assess occupational exposure in population-based case-control studies; however, the assessments lack transparency and are time-consuming to perform. To improve transparency and efficiency, we systematically applied decision rules to the questionnaire responses to assess diesel exhaust exposure in the New England Bladder Cancer Study, a population-based case-control study. Methods 2,631 participants reported 14,983 jobs; 2,749 jobs were administered questionnaires (‘modules’) with diesel-relevant questions. We applied decision rules to assign exposure metrics based solely on the occupational history responses (OH estimates) and based on the module responses (module estimates); we combined the separate OH and module estimates (OH/module estimates). Each job was also reviewed one at a time to assign exposure (one-by-one review estimates). We evaluated the agreement between the OH, OH/module, and one-by-one review estimates. Results The proportion of exposed jobs was 20–25% for all jobs, depending on approach, and 54–60% for jobs with diesel-relevant modules. The OH/module and one-by-one review had moderately high agreement for all jobs (κw=0.68–0.81) and for jobs with diesel-relevant modules (κw=0.62–0.78) for the probability, intensity, and frequency metrics. For exposed subjects, the Spearman correlation statistic was 0.72 between the cumulative OH/module and one-by-one review estimates. Conclusions The agreement seen here may represent an upper level of agreement because the algorithm and one-by-one review estimates were not fully independent. This study shows that applying decision-based rules can reproduce a one-by-one review, increase transparency and efficiency, and provide a mechanism to replicate exposure decisions in other studies. PMID:22843440

  11. Information Theoretically Secure, Enhanced Johnson Noise Based Key Distribution over the Smart Grid with Switched Filters

    PubMed Central

    2013-01-01

    We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions. PMID:23936164

  12. Information theoretically secure, enhanced Johnson noise based key distribution over the smart grid with switched filters.

    PubMed

    Gonzalez, Elias; Kish, Laszlo B; Balog, Robert S; Enjeti, Prasad

    2013-01-01

    We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions. PMID:23936164

  13. Smart grid initialization reduces the computational complexity of multi-objective image registration based on a dual-dynamic transformation model to account for large anatomical differences

    NASA Astrophysics Data System (ADS)

    Bosman, Peter A. N.; Alderliesten, Tanja

    2016-03-01

    We recently demonstrated the strong potential of using dual-dynamic transformation models when tackling deformable image registration problems involving large anatomical differences. Dual-dynamic transformation models employ two moving grids instead of the common single moving grid for the target image (and single fixed grid for the source image). We previously employed powerful optimization algorithms to make use of the additional flexibility offered by a dual-dynamic transformation model with good results, directly obtaining insight into the trade-off between important registration objectives as a result of taking a multi-objective approach to optimization. However, optimization has so far been initialized using two regular grids, which still leaves a great potential of dual-dynamic transformation models untapped: a-priori grid alignment with image structures/areas that are expected to deform more. This allows (far) less grid points to be used, compared to using a sufficiently refined regular grid, leading to (far) more efficient optimization, or, equivalently, more accurate results using the same number of grid points. We study the implications of exploiting this potential by experimenting with two new smart grid initialization procedures: one manual expert-based and one automated image-feature-based. We consider a CT test case with large differences in bladder volume with and without a multi-resolution scheme and find a substantial benefit of using smart grid initialization.

  14. Individual Skills Based Volunteerism and Life Satisfaction among Healthcare Volunteers in Malaysia: Role of Employer Encouragement, Self-Esteem and Job Performance, A Cross-Sectional Study

    PubMed Central

    Veerasamy, Chanthiran; Sambasivan, Murali; Kumar, Naresh

    2013-01-01

    The purpose of this paper is to analyze two important outcomes of individual skills-based volunteerism (ISB-V) among healthcare volunteers in Malaysia. The outcomes are: job performance and life satisfaction. This study has empirically tested the impact of individual dimensions of ISB-V along with their inter-relationships in explaining the life satisfaction and job performance. Besides, the effects of employer encouragement to the volunteers, demographic characteristics of volunteers, and self-esteem of volunteers on job performance and life satisfaction have been studied. The data were collected through a questionnaire distributed to 1000 volunteers of St. John Ambulance in Malaysia. Three hundred and sixty six volunteers responded by giving their feedback. The model was tested using Structural Equation Modeling (SEM). The main results of this study are: (1) Volunteer duration and nature of contact affects life satisfaction, (2) volunteer frequency has impact on volunteer duration, (3) self-esteem of volunteers has significant relationships with volunteer frequency, job performance and life satisfaction, (4) job performance of volunteers affect their life satisfaction and (5) current employment level has significant relationships with duration of volunteering, self esteem, employer encouragement and job performance of volunteers. The model in this study has been able to explain 39% of the variance in life satisfaction and 45% of the variance in job performance. The current study adds significantly to the body of knowledge on healthcare volunteerism. PMID:24194894

  15. Individual skills based volunteerism and life satisfaction among healthcare volunteers in Malaysia: role of employer encouragement, self-esteem and job performance, a cross-sectional study.

    PubMed

    Veerasamy, Chanthiran; Sambasivan, Murali; Kumar, Naresh

    2013-01-01

    The purpose of this paper is to analyze two important outcomes of individual skills-based volunteerism (ISB-V) among healthcare volunteers in Malaysia. The outcomes are: job performance and life satisfaction. This study has empirically tested the impact of individual dimensions of ISB-V along with their inter-relationships in explaining the life satisfaction and job performance. Besides, the effects of employer encouragement to the volunteers, demographic characteristics of volunteers, and self-esteem of volunteers on job performance and life satisfaction have been studied. The data were collected through a questionnaire distributed to 1000 volunteers of St. John Ambulance in Malaysia. Three hundred and sixty six volunteers responded by giving their feedback. The model was tested using Structural Equation Modeling (SEM). The main results of this study are: (1) Volunteer duration and nature of contact affects life satisfaction, (2) volunteer frequency has impact on volunteer duration, (3) self-esteem of volunteers has significant relationships with volunteer frequency, job performance and life satisfaction, (4) job performance of volunteers affect their life satisfaction and (5) current employment level has significant relationships with duration of volunteering, self esteem, employer encouragement and job performance of volunteers. The model in this study has been able to explain 39% of the variance in life satisfaction and 45% of the variance in job performance. The current study adds significantly to the body of knowledge on healthcare volunteerism. PMID:24194894

  16. Competency-based on-the-job training for aviation maintenance and inspection--a human factors approach.

    PubMed

    Walter, D

    2000-08-01

    More than 90% of the critical skills that an aviation maintenance technician uses are acquired through on-the-job training (OJT). Yet many aviation maintenance technicians rely on a 'degenerating buddy system', 'follow Joe around', or unstructured approach to OJT. Many aspects of the aviation maintenance environment point to the need for a structured OJT program, but perhaps the most significant is the practice of job bidding which can create rapid turnover of technicians. The task analytic training system (TATS), a model for developing team-driven structured OJT was developed by the author, and first introduced in Boeing Commercial Airplane Group to provide competency-based OJT for aviation maintenance and inspection personnel. The goal of the model was not only to provide a comprehensive, highly structured training system that could be applied to any maintenance and inspection task, but also to improve team coordination, attitude and morale. The first goal was accomplished by following the systems eight-step process, the latter through incorporating human factors principles such as decision making, communication, team building and conflict resolution into the process itself. In general, the process helps to instill mutual respect and trust, enhance goal-directed behavior, strengthen technicians' self-esteem and responsiveness to new ideas and encourage technicians to make worthwhile contributions. The theoretical background of the model is addressed by illustrating how the proven training methodologies of job task analysis and job instruction training are blended with human factors principles resulting in a unique team-driven approach to training. The paper discusses major elements of the model including needs identification, outlining targeted jobs, writing and verifying training procedures, an approval system, sequencing of training, certifying trainers, implementing, employing tracking mechanisms, evaluating, and establishing a maintenance/audit plan

  17. Grid-based precision aim system and method for disrupting suspect objects

    SciTech Connect

    Gladwell, Thomas Scott; Garretson, Justin; Hobart, Clinton G.; Monda, Mark J.

    2014-06-10

    A system and method for disrupting at least one component of a suspect object is provided. The system has a source for passing radiation through the suspect object, a grid board positionable adjacent the suspect object (the grid board having a plurality of grid areas, the radiation from the source passing through the grid board), a screen for receiving the radiation passing through the suspect object and generating at least one image, a weapon for deploying a discharge, and a targeting unit for displaying the image of the suspect object and aiming the weapon according to a disruption point on the displayed image and deploying the discharge into the suspect object to disable the suspect object.

  18. Three-dimensional grid generation method based on a variational principle

    NASA Astrophysics Data System (ADS)

    Jacquotte, O.-P.; Cabello, J.

    This paper reviews the main stages of construction of a variational method to optimize and adapt two- and three-dimensional grids. A measure of the cell deformation can be built on the basis of geometric axioms. The grid is optimized with respect to a global measure of the mesh quality obtained by summation of the elementary contributions. A convexity property is also prescribed that ensures the optimization problem is correctly stated, and that the solver is efficient. Mechanical and geometric interpretations of the method are given. In particular, a volume control term can be used to adapt grids according to a given criterion. Several examples of optimized and adapted grids are presented, to show the method's possibilities.

  19. Uncertainty Analysis of Power Grid Investment Capacity Based on Monte Carlo

    NASA Astrophysics Data System (ADS)

    Qin, Junsong; Liu, Bingyi; Niu, Dongxiao

    By analyzing the influence factors of the investment capacity of power grid, to depreciation cost, sales price and sales quantity, net profit, financing and GDP of the second industry as the dependent variable to build the investment capacity analysis model. After carrying out Kolmogorov-Smirnov test, get the probability distribution of each influence factor. Finally, obtained the grid investment capacity uncertainty of analysis results by Monte Carlo simulation.

  20. AIRS Observations Based Evaluation of Relative Climate Feedback Strengths on a GCM Grid-Scale

    NASA Astrophysics Data System (ADS)

    Molnar, G. I.; Susskind, J.

    2012-12-01

    Climate feedback strengths, especially those associated with moist processes, still have a rather wide range in GCMs, the primary tools to predict future climate changes associated with man's ever increasing influences on our planet. Here, we make use of the first 10 years of AIRS observations to evaluate interrelationships/correlations of atmospheric moist parameter anomalies computed from AIRS Version 5 Level-3 products, and demonstrate their usefulness to assess relative feedback strengths. Although one may argue about the possible usability of shorter-term, observed climate parameter anomalies for estimating the strength of various (mostly moist processes related) feedbacks, recent works, in particular analyses by Dessler [2008, 2010], have demonstrated their usefulness in assessing global water vapor and cloud feedbacks. First, we create AIRS-observed monthly anomaly time-series (ATs) of outgoing longwave radiation, water vapor, clouds and temperature profile over a 10-year long (Sept. 2002 through Aug. 2012) period using 1x1 degree resolution (a common GCM grid-scale). Next, we evaluate the interrelationships of ATs of the above parameters with the corresponding 1x1 degree, as well as global surface temperature ATs. The latter provides insight comparable with more traditional climate feedback definitions (e. g., Zelinka and Hartmann, 2012) whilst the former is related to a new definition of "local (in surface temperature too) feedback strengths" on a GCM grid-scale. Comparing the correlation maps generated provides valuable new information on the spatial distribution of relative climate feedback strengths. We argue that for GCMs to be trusted for predicting longer-term climate variability, they should be able to reproduce these observed relationships/metrics as closely as possible. For this time period the main climate "forcing" was associated with the El Niño/La Niña variability (e. g., Dessler, 2010), so these assessments may not be descriptive of longer

  1. Synchrophasor Sensing and Processing based Smart Grid Security Assessment for Renewable Energy Integration

    NASA Astrophysics Data System (ADS)

    Jiang, Huaiguang

    With the evolution of energy and power systems, the emerging Smart Grid (SG) is mainly featured by distributed renewable energy generations, demand-response control and huge amount of heterogeneous data sources. Widely distributed synchrophasor sensors, such as phasor measurement units (PMUs) and fault disturbance recorders (FDRs), can record multi-modal signals, for power system situational awareness and renewable energy integration. An effective and economical approach is proposed for wide-area security assessment. This approach is based on wavelet analysis for detecting and locating the short-term and long-term faults in SG, using voltage signals collected by distributed synchrophasor sensors. A data-driven approach for fault detection, identification and location is proposed and studied. This approach is based on matching pursuit decomposition (MPD) using Gaussian atom dictionary, hidden Markov model (HMM) of real-time frequency and voltage variation features, and fault contour maps generated by machine learning algorithms in SG systems. In addition, considering the economic issues, the placement optimization of distributed synchrophasor sensors is studied to reduce the number of the sensors without affecting the accuracy and effectiveness of the proposed approach. Furthermore, because the natural hazards is a critical issue for power system security, this approach is studied under different types of faults caused by natural hazards. A fast steady-state approach is proposed for voltage security of power systems with a wind power plant connected. The impedance matrix can be calculated by the voltage and current information collected by the PMUs. Based on the impedance matrix, locations in SG can be identified, where cause the greatest impact on the voltage at the wind power plants point of interconnection. Furthermore, because this dynamic voltage security assessment method relies on time-domain simulations of faults at different locations, the proposed approach

  2. Using Grid Benchmarks for Dynamic Scheduling of Grid Applications

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Hood, Robert

    2003-01-01

    Navigation or dynamic scheduling of applications on computational grids can be improved through the use of an application-specific characterization of grid resources. Current grid information systems provide a description of the resources, but do not contain any application-specific information. We define a GridScape as dynamic state of the grid resources. We measure the dynamic performance of these resources using the grid benchmarks. Then we use the GridScape for automatic assignment of the tasks of a grid application to grid resources. The scalability of the system is achieved by limiting the navigation overhead to a few percent of the application resource requirements. Our task submission and assignment protocol guarantees that the navigation system does not cause grid congestion. On a synthetic data mining application we demonstrate that Gridscape-based task assignment reduces the application tunaround time.

  3. Grid-based Thomas-Fermi-Amaldi equation with the molecular cusp condition.

    PubMed

    Kim, Min Sung; Youn, Sung-Kie; Kang, Jeung Ku

    2006-03-28

    First, the Thomas-Fermi-Amaldi (TFA) equation was formulated with a newly derived condition to remove the singularities at the nuclei, which coincided with the molecular cusp condition. Next, the collocation method was applied to the TFA equation using the grid-based density functional theory. In this paper, the electron densities and the radial probabilities for specific atoms (He, Be, Ne, Mg, Ar, Ca) were found to agree with those from the Thomas-Fermi-Dirac (TFD) method. Total energies for specific atoms (He, Ne, Ar, Kr, Xe, Rn) and molecules (H2,CH4) were also found to be close to those from the Hartree-Fock method using the Pople basis set 6-311G relative to the TFD method. In addition, the computational expense to determine the electron density and its corresponding energy for a large scale structure, such as a carbon nanotube, is shown to be much more efficient compared to the conventional Hartree-Fock method using the 6-31G Pople basis set. PMID:16599662

  4. Fast temporal phase unwrapping method for the fringe reflection technique based on the orthogonal grid fringes.

    PubMed

    Li, Bo; Ma, Suodong; Zhai, Yang

    2015-07-10

    In traditional temporal phase unwrapping (TPU) algorithms, wrapped phases with different spatial frequencies are obtained from several groups of phase shift fringes to calculate the unwrapped phase. Therefore, the necessary quantity of captured fringes is very large, especially for the fringe reflection technique (FRT), since a pair of phases should be unwrapped to get the slopes of two perpendicular directions. In this paper, we propose a fast TPU algorithm based on the orthogonal grid fringes by which only one image is needed to extract the two integer phases for each frequency instead of two groups of phase shift fringes, and then they can be added into the wrapped phases separately to complete the unwrapping. There are ridge errors in the direct unwrapped phases, but they are significantly suppressed by our pseudo-phase-shift strategy without any extra captured fringes. The proposed method is robust and effective where the fringe amount used for unwrapping is only 1/4 of the previous similar algorithm and 1/6-1/8 of the traditional TPU methods. The detailed comparison of measurement time is also given, which demonstrate that the FRT measurement can be accelerated in most cases by our method. The algorithm is validated by the experiments, which still works well for the severely defocusing fringes or complex specimen. PMID:26193405

  5. Implementation of nonlinear registration of brain atlas based on piecewise grid system

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Gu, Lixu; Xu, Jianrong

    2007-12-01

    In this paper, a multi-step registration method of brain atlas and clinical Magnetic Resonance Imaging (MRI) data based on Thin-Plate Splines (TPS) and Piecewise Grid System (PGS) is presented. The method can help doctors to determine the corresponding anatomical structure between patient image and the brain atlas by piecewise nonlinear registration. Since doctors mostly pay attention to particular Region of Interest (ROI), and a global nonlinear registration is quite time-consuming which is not suitable for real-time clinical application, we propose a novel method to conduct linear registration in global area before nonlinear registration is performed in selected ROI. The homogenous feature points are defined to calculate the transform matrix between patient data and the brain atlas to conclude the mapping function. Finally, we integrate the proposed approach into an application of neurosurgical planning and guidance system which lends great efficiency in both neuro-anatomical education and guiding of neurosurgical operations. The experimental results reveal that the proposed approach can keep an average registration error of 0.25mm in near real-time manner.

  6. Location-aware dynamic session-key management for grid-based Wireless Sensor Networks.

    PubMed

    Chen, Chin-Ling; Lin, I-Hsien

    2010-01-01

    Security is a critical issue for sensor networks used in hostile environments. When wireless sensor nodes in a wireless sensor network are distributed in an insecure hostile environment, the sensor nodes must be protected: a secret key must be used to protect the nodes transmitting messages. If the nodes are not protected and become compromised, many types of attacks against the network may result. Such is the case with existing schemes, which are vulnerable to attacks because they mostly provide a hop-by-hop paradigm, which is insufficient to defend against known attacks. We propose a location-aware dynamic session-key management protocol for grid-based wireless sensor networks. The proposed protocol improves the security of a secret key. The proposed scheme also includes a key that is dynamically updated. This dynamic update can lower the probability of the key being guessed correctly. Thus currently known attacks can be defended. By utilizing the local information, the proposed scheme can also limit the flooding region in order to reduce the energy that is consumed in discovering routing paths. PMID:22163606

  7. Location-Aware Dynamic Session-Key Management for Grid-Based Wireless Sensor Networks

    PubMed Central

    Chen, Chin-Ling; Lin, I-Hsien

    2010-01-01

    Security is a critical issue for sensor networks used in hostile environments. When wireless sensor nodes in a wireless sensor network are distributed in an insecure hostile environment, the sensor nodes must be protected: a secret key must be used to protect the nodes transmitting messages. If the nodes are not protected and become compromised, many types of attacks against the network may result. Such is the case with existing schemes, which are vulnerable to attacks because they mostly provide a hop-by-hop paradigm, which is insufficient to defend against known attacks. We propose a location-aware dynamic session-key management protocol for grid-based wireless sensor networks. The proposed protocol improves the security of a secret key. The proposed scheme also includes a key that is dynamically updated. This dynamic update can lower the probability of the key being guessed correctly. Thus currently known attacks can be defended. By utilizing the local information, the proposed scheme can also limit the flooding region in order to reduce the energy that is consumed in discovering routing paths. PMID:22163606

  8. Modeling and assessment of civil aircraft evacuation based on finer-grid

    NASA Astrophysics Data System (ADS)

    Fang, Zhi-Ming; Lv, Wei; Jiang, Li-Xue; Xu, Qing-Feng; Song, Wei-Guo

    2016-04-01

    Studying civil aircraft emergency evacuation process by using computer model is an effective way. In this study, the evacuation of Airbus A380 is simulated using a Finer-Grid Civil Aircraft Evacuation (FGCAE) model. In this model, the effect of seat area and others on escape process and pedestrian's "hesitation" before leaving exits are considered, and an optimized rule of exit choice is defined. Simulations reproduce typical characteristics of aircraft evacuation, such as the movement synchronization between adjacent pedestrians, route choice and so on, and indicate that evacuation efficiency will be determined by pedestrian's "preference" and "hesitation". Based on the model, an assessment procedure of aircraft evacuation safety is presented. The assessment and comparison with the actual evacuation test demonstrate that the available exit setting of "one exit from each exit pair" used by practical demonstration test is not the worst scenario. The half exits of one end of the cabin are all unavailable is the worst one, that should be paid more attention to, and even be adopted in the certification test. The model and method presented in this study could be useful for assessing, validating and improving the evacuation performance of aircraft.

  9. Optimal RTP Based Power Scheduling for Residential Load in Smart Grid

    NASA Astrophysics Data System (ADS)

    Joshi, Hemant I.; Pandya, Vivek J.

    2015-12-01

    To match supply and demand, shifting of load from peak period to off-peak period is one of the effective solutions. Presently flat rate tariff is used in major part of the world. This type of tariff doesn't give incentives to the customers if they use electrical energy during off-peak period. If real time pricing (RTP) tariff is used, consumers can be encouraged to use energy during off-peak period. Due to advancement in information and communication technology, two-way communications is possible between consumers and utility. To implement this technique in smart grid, home energy controller (HEC), smart meters, home area network (HAN) and communication link between consumers and utility are required. HEC interacts automatically by running an algorithm to find optimal energy consumption schedule for each consumer. However, all the consumers are not allowed to shift their load simultaneously during off-peak period to avoid rebound peak condition. Peak to average ratio (PAR) is considered while carrying out minimization problem. Linear programming problem (LPP) method is used for minimization. The simulation results of this work show the effectiveness of the minimization method adopted. The hardware work is in progress and the program based on the method described here will be made to solve real problem.

  10. Grid-based Infrastructure and Distributed Data Mining for Virtual Observatories

    NASA Astrophysics Data System (ADS)

    Karimabadi, H.; Sipes, T.; Ferenci, S.; Fujimoto, R.; Olschanowsky, R.; Balac, N.; Roberts, A.

    2006-12-01

    Data access as well as analysis of geographically distributed data sets are challenges common to a wide variety of fields. To address this problem, we have been working on the development of two pieces of technology: a grid-based software called IDDAT that supports processing and remote data analysis of widely distributed data and RemoteMiner which is a parallel, distributed data mining software. IDDAT and RemoteMiner work seamlessly and provide the necessary backend functionalities hidden from the user. The user accesses the system through a single web portal where data selection is performed and data mining functions are planned. The data mining functions are prepared for execution by IDDat services. Preparation can include moving data to the processing location via services built over Storage Resource Broker (SRB), preprocessing data, and allocating computation and storage resources. IDDat services also initiate and monitor data mining functions and provide services to allow the results to be shared among other users. In this presentation, we illustrate a general user workflow and the provided functionalities. We will also provide an overview of the technical issues and design features such as storage scheduling, efficient network traffic management and resource selection.

  11. Grid-based Molecular Footprint Comparison Method for Docking and De Novo Design: Application to HIVgp41

    PubMed Central

    Mukherjee, Sudipto; Rizzo, Robert C.

    2014-01-01

    Scoring functions are a critically important component of computer-aided screening methods for the identification of lead compounds during early stages of drug discovery. Here, we present a new multi-grid implementation of the footprint similarity (FPS) scoring function that was recently developed in our laboratory which has proven useful for identification of compounds which bind to a protein on a per-residue basis in a way that resembles a known reference. The grid-based FPS method is much faster than its Cartesian-space counterpart which makes it computationally tractable for on-the-fly docking, virtual screening, or de novo design. In this work, we establish that: (i) relatively few grids can be used to accurately approximate Cartesian space footprint similarity, (ii) the method yields improved success over the standard DOCK energy function for pose identification across a large test set of experimental co-crystal structures, for crossdocking, and for database enrichment, and (iii) grid-based FPS scoring can be used to tailor construction of new molecules to have specific properties, as demonstrated in a series of test cases targeting the viral protein HIVgp41. The method will be made available in the program DOCK6. PMID:23436713

  12. ReSS: A Resource Selection Service for the Open Science Grid

    SciTech Connect

    Garzoglio, Gabriele; Levshina, Tanya; Mhashilkar, Parag; Timm, Steve; /Fermilab

    2008-01-01

    The Open Science Grid offers access to hundreds of computing and storage resources via standard Grid interfaces. Before the deployment of an automated resource selection system, users had to submit jobs directly to these resources. They would manually select a resource and specify all relevant attributes in the job description prior to submitting the job. The necessity of a human intervention in resource selection and attribute specification hinders automated job management components from accessing OSG resources and it is inconvenient for the users. The Resource Selection Service (ReSS) project addresses these shortcomings. The system integrates condor technology, for the core match making service, with the gLite CEMon component, for gathering and publishing resource information in the Glue Schema format. Each one of these components communicates over secure protocols via web services interfaces. The system is currently used in production on OSG by the DZero Experiment, the Engagement Virtual Organization, and the Dark Energy. It is also the resource selection service for the Fermilab Campus Grid, FermiGrid. ReSS is considered a lightweight solution to push-based workload management. This paper describes the architecture, performance, and typical usage of the system.

  13. Parametric Grid Information in the DOE Knowledge Base: Data Preparation, Storage, and Access

    SciTech Connect

    HIPP,JAMES R.; MOORE,SUSAN G.; MYERS,STEPHEN C.; SCHULTZ,CRAIG A.; SHEPHERD,ELLEN; YOUNG,CHRISTOPHER J.

    1999-10-01

    The parametric grid capability of the Knowledge Base provides an efficient, robust way to store and access interpolatable information which is needed to monitor the Comprehensive Nuclear Test Ban Treaty. To meet both the accuracy and performance requirements of operational monitoring systems, we use a new approach which combines the error estimation of kriging with the speed and robustness of Natural Neighbor Interpolation (NNI). The method involves three basic steps: data preparation (DP), data storage (DS), and data access (DA). The goal of data preparation is to process a set of raw data points to produce a sufficient basis for accurate NNI of value and error estimates in the Data Access step. This basis includes a set of nodes and their connectedness, collectively known as a tessellation, and the corresponding values and errors that map to each node, which we call surfaces. In many cases, the raw data point distribution is not sufficiently dense to guarantee accurate error estimates from the NNI, so the original data set must be densified using a newly developed interpolation technique known as Modified Bayesian Kriging. Once appropriate kriging parameters have been determined by variogram analysis, the optimum basis for NNI is determined in a process they call mesh refinement, which involves iterative kriging, new node insertion, and Delauny triangle smoothing. The process terminates when an NNI basis has been calculated which will fir the kriged values within a specified tolerance. In the data storage step, the tessellations and surfaces are stored in the Knowledge Base, currently in a binary flatfile format but perhaps in the future in a spatially-indexed database. Finally, in the data access step, a client application makes a request for an interpolated value, which triggers a data fetch from the Knowledge Base through the libKBI interface, a walking triangle search for the containing triangle, and finally the NNI interpolation.

  14. Parametric Grid Information in the DOE Knowledge Base: Data Preparation, Storage and Access.

    SciTech Connect

    Hipp, J. R.; Young, C. J.; Moore, S. G.; Shepherd, E. R.; Schultz, C. A.; Myers, S. C.

    1999-10-01

    The parametric grid capability of the Knowledge Base provides an efficient, robust way to store and access interpolatable information which is needed to monitor the Comprehensive Nuclear Test Ban Treaty. To meet both the accuracy and performance requirements of operational monitoring systems, we use a new approach which combines the error estimation of kriging with the speed and robustness of Natural Neighbor Interpolation (NNI). The method involves three basic steps: data preparation (DP), data storage (DS), and data access (DA). The goal of data preparation is to process a set of raw data points to produce a sufficient basis for accurate NNI of value and error estimates in the Data Access step. This basis includes a set of nodes and their connectedness, collectively known as a tessellation, and the corresponding values and errors that map to each node, which we call surfaces. In many cases, the raw data point distribution is not sufficiently dense to guarantee accurate error estimates from the NNI, so the original data set must be densified using a newly developed interpolation technique known as Modified Bayesian Kriging. Once appropriate kriging parameters have been determined by variogram analysis, the optimum basis for NNI is determined in a process we call mesh refinement, which involves iterative kriging, new node insertion, and Delauny triangle smoothing. The process terminates when an NNI basis has been calculated which will fit the kriged values within a specified tolerance. In the data storage step, the tessellations and surfaces are stored in the Knowledge Base, currently in a binary flatfile format but perhaps in the future in a spatially-indexed database. Finally, in the data access step, a client application makes a request for an interpolated value, which triggers a data fetch from the Knowledge Base through the libKBI interface, a walking triangle search for the containing triangle, and finally the NNI interpolation.

  15. An Investigation of Wavelet Bases for Grid-Based Multi-Scale Simulations Final Report

    SciTech Connect

    Baty, R.S.; Burns, S.P.; Christon, M.A.; Roach, D.W.; Trucano, T.G.; Voth, T.E.; Weatherby, J.R.; Womble, D.E.

    1998-11-01

    The research summarized in this report is the result of a two-year effort that has focused on evaluating the viability of wavelet bases for the solution of partial differential equations. The primary objective for this work has been to establish a foundation for hierarchical/wavelet simulation methods based upon numerical performance, computational efficiency, and the ability to exploit the hierarchical adaptive nature of wavelets. This work has demonstrated that hierarchical bases can be effective for problems with a dominant elliptic character. However, the strict enforcement of orthogonality was found to be less desirable than weaker semi-orthogonality or bi-orthogonality for solving partial differential equations. This conclusion has led to the development of a multi-scale linear finite element based on a hierarchical change of basis. The reproducing kernel particle method has been found to yield extremely accurate phase characteristics for hyperbolic problems while providing a convenient framework for multi-scale analyses.

  16. An expert-based job exposure matrix for large scale epidemiologic studies of primary hip and knee osteoarthritis: The Lower Body JEM

    PubMed Central

    2014-01-01

    Background When conducting large scale epidemiologic studies, it is a challenge to obtain quantitative exposure estimates, which do not rely on self-report where estimates may be influenced by symptoms and knowledge of disease status. In this study we developed a job exposure matrix (JEM) for use in population studies of the work-relatedness of hip and knee osteoarthritis. Methods Based on all 2227 occupational titles in the Danish version of the International Standard Classification of Occupations (D-ISCO 88), we constructed 121 job groups comprising occupational titles with expected homogeneous exposure patterns in addition to a minimally exposed job group, which was not included in the JEM. The job groups were allocated the mean value of five experts’ ratings of daily duration (hours/day) of standing/walking, kneeling/squatting, and whole-body vibration as well as total load lifted (kg/day), and frequency of lifting loads weighing ≥20 kg (times/day). Weighted kappa statistics were used to evaluate inter-rater agreement on rankings of the job groups for four of these exposures (whole-body vibration could not be evaluated due to few exposed job groups). Two external experts checked the face validity of the rankings of the mean values. Results A JEM was constructed and English ISCO codes were provided where possible. The experts’ ratings showed fair to moderate agreement with respect to rankings of the job groups (mean weighted kappa values between 0.36 and 0.49). The external experts agreed on 586 of the 605 rankings. Conclusion The Lower Body JEM based on experts’ ratings was established. Experts agreed on rankings of the job groups, and rankings based on mean values were in accordance with the opinion of external experts. PMID:24927760

  17. Correspondence between Video CD-ROM and Community-Based Job Preferences for Individuals with Developmental Disabilities

    ERIC Educational Resources Information Center

    Ellerd, David A.; Morgan, Robert L.; Salzberg, Charles L.

    2006-01-01

    This study examined correspondence in selections of job preference across a video CD-ROM assessment program, community jobs observed during employment site visits, and photographs of employment sites. For 20 participants ages 18 - 22 with developmental disabilities, the video CD-ROM program was initially administered to identify preferred jobs,…

  18. Job Satisfaction of NAIA Head Coaches at Small Faith-Based Colleges: The Teacher-Coach Model

    ERIC Educational Resources Information Center

    Stiemsma, Craig L.

    2010-01-01

    The head coaches at smaller colleges usually have other job responsibilities that include teaching, along with the responsibilities of coaching, recruiting, scheduling, and other coaching-related jobs. There is often a dual role involved for these coaches who try to juggle two different jobs that sometimes require different skill sets and involve…

  19. The Application of Structured Job Analysis Information Based on the Position Analysis Questionnaire (PAQ). Final Report No. 9.

    ERIC Educational Resources Information Center

    McCormick, Ernest J.

    The Position Analysis Questionnaire (PAQ) is a job analysis instrument consisting of 187 job elements organized into six divisions. The PAQ was used in the eight studies summarized in this final report. The studies were: (1) ratings of the attribute requirements of PAQ job elements, (2) a series of principal components analyses of these attribute…

  20. Optimal file-bundle caching algorithms for data-grids

    SciTech Connect

    Otoo, Ekow; Rotem, Doron; Romosan, Alexandru

    2004-04-24

    The file-bundle caching problem arises frequently in scientific applications where jobs need to process several files simultaneously. Consider a host system in a data-grid that maintains a staging disk or disk cache for servicing jobs of file requests. In this environment, a job can only be serviced if all its file requests are present in the disk cache. Files must be admitted into the cache or replaced in sets of file-bundles, i.e. the set of files that must all be processed simultaneously. In this paper we show that traditional caching algorithms based on file popularity measures do not perform well in such caching environments since they are not sensitive to the inter-file dependencies and may hold in the cache non-relevant combinations of files. We present and analyze a new caching algorithm for maximizing the throughput of jobs and minimizing data replacement costs to such data-grid hosts. We tested the new algorithm using a disk cache simulation model under a wide range of conditions such as file request distributions, relative cache size, file size distribution, etc. In all these cases, the results show significant improvement as compared with traditional caching algorithms.

  1. Visualization, analysis, and design of COMBO-FISH probes in the grid-based GLOBE 3D genome platform.

    PubMed

    Kepper, Nick; Schmitt, Eberhard; Lesnussa, Michael; Weiland, Yanina; Eussen, Hubert B; Grosveld, Frank G; Hausmann, Michael; Knoch, Tobias A

    2010-01-01

    The genome architecture in cell nuclei plays an important role in modern microscopy for the monitoring of medical diagnosis and therapy since changes of function and dynamics of genes are interlinked with changing geometrical parameters. The planning of corresponding diagnostic experiments and their imaging is a complex and often interactive IT intensive challenge and thus makes high-performance grids a necessity. To detect genetic changes we recently developed a new form of fluorescence in situ hybridization (FISH) - COMBinatorial Oligonucleotide FISH (COMBO-FISH) - which labels small nucleotide sequences clustering at a desired genomic location. To achieve a unique hybridization spot other side clusters have to be excluded. Therefore, we have designed an interactive pipeline using the grid-based GLOBE 3D Genome Viewer and Platform to design and display different labelling variants of candidate probe sets. Thus, we have created a grid-based virtual "paper" tool for easy interactive calculation, analysis, management, and representation for COMBO-FISH probe design with many an advantage: Since all the calculations and analysis run in a grid, one can instantly and with great visual ease locate duplications of gene subsequences to guide the elimination of side clustering sequences during the probe design process, as well as get at least an impression of the 3D architectural embedding of the respective chromosome region, which is of major importance to estimate the hybridization probe dynamics. Beyond, even several people at different locations could work on the same process in a team wise manner. Consequently, we present how a complex interactive process can profit from grid infrastructure technology using our unique GLOBE 3D Genome Platform gateway towards a real interactive curative diagnosis planning and therapy monitoring. PMID:20543436

  2. Securing smart grid technology

    NASA Astrophysics Data System (ADS)

    Chaitanya Krishna, E.; Kosaleswara Reddy, T.; Reddy, M. YogaTeja; Reddy G. M., Sreerama; Madhusudhan, E.; AlMuhteb, Sulaiman

    2013-03-01

    In the developing countries electrical energy is very important for its all-round improvement by saving thousands of dollars and investing them in other sector for development. For Growing needs of power existing hierarchical, centrally controlled grid of the 20th Century is not sufficient. To produce and utilize effective power supply for industries or people we should have Smarter Electrical grids that address the challenges of the existing power grid. The Smart grid can be considered as a modern electric power grid infrastructure for enhanced efficiency and reliability through automated control, high-power converters, modern communications infrastructure along with modern IT services, sensing and metering technologies, and modern energy management techniques based on the optimization of demand, energy and network availability and so on. The main objective of this paper is to provide a contemporary look at the current state of the art in smart grid communications as well as critical issues on smart grid technologies primarily in terms of information and communication technology (ICT) issues like security, efficiency to communications layer field. In this paper we propose new model for security in Smart Grid Technology that contains Security Module(SM) along with DEM which will enhance security in Grid. It is expected that this paper will provide a better understanding of the technologies, potential advantages and research challenges of the smart grid and provoke interest among the research community to further explore this promising research area.

  3. ASCI Grid Services summary report.

    SciTech Connect

    Hiebert-Dodd, Kathie L.

    2004-03-01

    The ASCI Grid Services (initially called Distributed Resource Management) project was started under DisCom{sup 2} when distant and distributed computing was identified as a technology critical to the success of the ASCI Program. The goals of the Grid Services project has and continues to be to provide easy, consistent access to all the ASCI hardware and software resources across the nuclear weapons complex using computational grid technologies, increase the usability of ASCI hardware and software resources by providing interfaces for resource monitoring, job submission, job monitoring, and job control, and enable the effective use of high-end computing capability through complex-wide resource scheduling and brokering. In order to increase acceptance of the new technology, the goal included providing these services in both the unclassified as well as the classified user's environment. This paper summarizes the many accomplishments and lessons learned over approximately five years of the ASCI Grid Services Project. It also provides suggestions on how to renew/restart the effort for grid services capability when the situation is right for that need.

  4. An Adaptive Unstructured Grid Method by Grid Subdivision, Local Remeshing, and Grid Movement

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    1999-01-01

    An unstructured grid adaptation technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The approach is based on a combination of grid subdivision, local remeshing, and grid movement. For solution adaptive grids, the surface triangulation is locally refined by grid subdivision, and the tetrahedral grid in the field is partially remeshed at locations of dominant flow features. A grid redistribution strategy is employed for geometric adaptation of volume grids to moving or deforming surfaces. The method is automatic and fast and is designed for modular coupling with different solvers. Several steady state test cases with different inviscid flow features were tested for grid/solution adaptation. In all cases, the dominant flow features, such as shocks and vortices, were accurately and efficiently predicted with the present approach. A new and robust method of moving tetrahedral "viscous" grids is also presented and demonstrated on a three-dimensional example.

  5. Automatic Integration Testbeds validation on Open Science Grid

    NASA Astrophysics Data System (ADS)

    Caballero, J.; Thapa, S.; Gardner, R.; Potekhin, M.

    2011-12-01

    A recurring challenge in deploying high quality production middleware is the extent to which realistic testing occurs before release of the software into the production environment. We describe here an automated system for validating releases of the Open Science Grid software stack that leverages the (pilot-based) PanDA job management system developed and used by the ATLAS experiment. The system was motivated by a desire to subject the OSG Integration Testbed to more realistic validation tests. In particular those which resemble to every extent possible actual job workflows used by the experiments thus utilizing job scheduling at the compute element (CE), use of the worker node execution environment, transfer of data to/from the local storage element (SE), etc. The context is that candidate releases of OSG compute and storage elements can be tested by injecting large numbers of synthetic jobs varying in complexity and coverage of services tested. The native capabilities of the PanDA system can thus be used to define jobs, monitor their execution, and archive the resulting run statistics including success and failure modes. A repository of generic workflows and job types to measure various metrics of interest has been created. A command-line toolset has been developed so that testbed managers can quickly submit "VO-like" jobs into the system when newly deployed services are ready for testing. A system for automatic submission has been crafted to send jobs to integration testbed sites, collecting the results in a central service and generating regular reports for performance and reliability.

  6. Job Task Analysis.

    ERIC Educational Resources Information Center

    Clemson Univ., SC.

    This publication consists of job task analyses for jobs in textile manufacturing. Information provided for each job in the greige and finishing plants includes job title, job purpose, and job duties with related educational objectives, curriculum, assessment, and outcome. These job titles are included: yarn manufacturing head overhauler, yarn…

  7. Low-bit-rate representation of cylindrical volume grids using Chebyshev bases: direct section computation, synthesis, and reconstruction

    NASA Astrophysics Data System (ADS)

    Desai, Ranjit P.; Menon, Jai P.

    1998-12-01

    A large class of high-speed visualization applications use image acquisition and 3D volume reconstruction techniques in cylindrical sampling grids; these include real-time 3D medical reconstruction, and reverse engineering. This paper presents the novel use of Chebyshev bases in such cylindrical grid- based volume applications, to allow efficient computation of cross-sectional planes of interest and partial volumes without the computationally expensive step of volume rendering, for subsequent transmission in constrained bitrate environments. This has important consequences for low-bitrate applications such as video-conferencing and internet-based visualization environments, where interaction and fusion between independently sampled heterogenous data streams (images, video and 3D volumes) from multiple sources is beginning to play an important part. Volumes often embody widely varying physical signals such as those acquired by X-rays, ultrasound sensors in addition to standard c.c.d. cameras. Several benefits of Chebyshev expansions such as fast convergence, bounded error, computational efficiency, and their optimality for cylindrical grids are taken into account. In addition, our method exploits knowledge about the sampling strategy (e.g. position and trajectory of the sensor) used to acquire the original ensemble of images, which in turn makes the overall approach very amenable to internet-based low-bitrate applications.

  8. Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security

    PubMed Central

    Islam, M. A.; Hasanuzzaman, M.; Rahim, N. A.; Nahar, A.; Hosenuzzaman, M.

    2014-01-01

    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration. PMID:25243201

  9. Global renewable energy-based electricity generation and smart grid system for energy security.

    PubMed

    Islam, M A; Hasanuzzaman, M; Rahim, N A; Nahar, A; Hosenuzzaman, M

    2014-01-01

    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration. PMID:25243201

  10. Verification & Validation of High-Order Short-Characteristics-Based Deterministic Transport Methodology on Unstructured Grids

    SciTech Connect

    Azmy, Yousry; Wang, Yaqi

    2013-12-20

    The research team has developed a practical, high-order, discrete-ordinates, short characteristics neutron transport code for three-dimensional configurations represented on unstructured tetrahedral grids that can be used for realistic reactor physics applications at both the assembly and core levels. This project will perform a comprehensive verification and validation of this new computational tool against both a continuous-energy Monte Carlo simulation (e.g. MCNP) and experimentally measured data, an essential prerequisite for its deployment in reactor core modeling. Verification is divided into three phases. The team will first conduct spatial mesh and expansion order refinement studies to monitor convergence of the numerical solution to reference solutions. This is quantified by convergence rates that are based on integral error norms computed from the cell-by-cell difference between the code’s numerical solution and its reference counterpart. The latter is either analytic or very fine- mesh numerical solutions from independent computational tools. For the second phase, the team will create a suite of code-independent benchmark configurations to enable testing the theoretical order of accuracy of any particular discretization of the discrete ordinates approximation of the transport equation. For each tested case (i.e. mesh and spatial approximation order), researchers will execute the code and compare the resulting numerical solution to the exact solution on a per cell basis to determine the distribution of the numerical error. The final activity comprises a comparison to continuous-energy Monte Carlo solutions for zero-power critical configuration measurements at Idaho National Laboratory’s Advanced Test Reactor (ATR). Results of this comparison will allow the investigators to distinguish between modeling errors and the above-listed discretization errors introduced by the deterministic method, and to separate the sources of uncertainty.

  11. A SUNTANS-based unstructured grid local exact particle tracking model

    NASA Astrophysics Data System (ADS)

    Liu, Guangliang; Chua, Vivien P.

    2016-07-01

    A parallel particle tracking model, which employs the local exact integration method to achieve high accuracy, has been developed and embedded in an unstructured-grid coastal ocean model, Stanford Unstructured Nonhydrostatic Terrain-following Adaptive Navier-Stokes Simulator (SUNTANS). The particle tracking model is verified and compared with traditional numerical integration methods, such as Runge-Kutta fourth-order methods using several test cases. In two-dimensional linear steady rotating flow, the local exact particle tracking model is able to track particles along the circular streamline accurately, while Runge-Kutta fourth-order methods produce trajectories that deviate from the streamlines. In periodically varying double-gyre flow, the trajectories produced by local exact particle tracking model with time step of 1.0 × 10- 2 s are similar to those trajectories obtained from the numerical integration methods with reduced time steps of 1.0 × 10- 4 s. In three-dimensional steady Arnold-Beltrami-Childress (ABC) flow, the trajectories integrated with the local exact particle tracking model compares well with the approximated true path. The trajectories spiral upward and their projection on the x- y plane is a periodic ellipse. The trajectories derived with the Runge-Kutta fourth-order method deviate from the approximated true path, and their projections on the x- y plane are unclosed ellipses with growing long and short axes. The spatial temporal resolution needs to be carefully chosen before particle tracking models are applied. Our results show that the developed local exact particle tracking model is accurate and suitable for marine Lagrangian (trajectory-based)-related research.

  12. a Hadoop-Based Algorithm of Generating dem Grid from Point Cloud Data

    NASA Astrophysics Data System (ADS)

    Jian, X.; Xiao, X.; Chengfang, H.; Zhizhong, Z.; Zhaohui, W.; Dengzhong, Z.

    2015-04-01

    Airborne LiDAR technology has proven to be the most powerful tools to obtain high-density, high-accuracy and significantly detailed surface information of terrain and surface objects within a short time, and from which the Digital Elevation Model of high quality can be extracted. Point cloud data generated from the pre-processed data should be classified by segmentation algorithms, so as to differ the terrain points from disorganized points, then followed by a procedure of interpolating the selected points to turn points into DEM data. The whole procedure takes a long time and huge computing resource due to high-density, that is concentrated on by a number of researches. Hadoop is a distributed system infrastructure developed by the Apache Foundation, which contains a highly fault-tolerant distributed file system (HDFS) with high transmission rate and a parallel programming model (Map/Reduce). Such a framework is appropriate for DEM generation algorithms to improve efficiency. Point cloud data of Dongting Lake acquired by Riegl LMS-Q680i laser scanner was utilized as the original data to generate DEM by a Hadoop-based algorithms implemented in Linux, then followed by another traditional procedure programmed by C++ as the comparative experiment. Then the algorithm's efficiency, coding complexity, and performance-cost ratio were discussed for the comparison. The results demonstrate that the algorithm's speed depends on size of point set and density of DEM grid, and the non-Hadoop implementation can achieve a high performance when memory is big enough, but the multiple Hadoop implementation can achieve a higher performance-cost ratio, while point set is of vast quantities on the other hand.

  13. A SUNTANS-based unstructured grid local exact particle tracking model

    NASA Astrophysics Data System (ADS)

    Liu, Guangliang; Chua, Vivien P.

    2016-04-01

    A parallel particle tracking model, which employs the local exact integration method to achieve high accuracy, has been developed and embedded in an unstructured-grid coastal ocean model, Stanford Unstructured Nonhydrostatic Terrain-following Adaptive Navier-Stokes Simulator (SUNTANS). The particle tracking model is verified and compared with traditional numerical integration methods, such as Runge-Kutta fourth-order methods using several test cases. In two-dimensional linear steady rotating flow, the local exact particle tracking model is able to track particles along the circular streamline accurately, while Runge-Kutta fourth-order methods produce trajectories that deviate from the streamlines. In periodically varying double-gyre flow, the trajectories produced by local exact particle tracking model with time step of 1.0 × 10- 2 s are similar to those trajectories obtained from the numerical integration methods with reduced time steps of 1.0 × 10- 4 s. In three-dimensional steady Arnold-Beltrami-Childress (ABC) flow, the trajectories integrated with the local exact particle tracking model compares well with the approximated true path. The trajectories spiral upward and their projection on the x-y plane is a periodic ellipse. The trajectories derived with the Runge-Kutta fourth-order method deviate from the approximated true path, and their projections on the x-y plane are unclosed ellipses with growing long and short axes. The spatial temporal resolution needs to be carefully chosen before particle tracking models are applied. Our results show that the developed local exact particle tracking model is accurate and suitable for marine Lagrangian (trajectory-based)-related research.

  14. Grid-based performance evaluation of GCM-RCM combinations for rainfall reproduction

    NASA Astrophysics Data System (ADS)

    Danandeh Mehr, Ali; Kahya, Ercan

    2016-03-01

    Prior to hydrological assessment of climate change at catchment scale, an applied methodology is necessary to evaluate the performance of climate models available for a given catchment. This study presents a grid-based performance evaluation approach as well as an intercomparison framework to evaluate the uncertainty of climate models for rainfall reproduction. For this purpose, we used outputs of two general circulation models (GCMs), namely ECHAM5 and CCSM3, downscaled by a regional climate model (RCM), namely RegCM3, over ten small to mid-size catchments in Rize Province, Turkey. To this end, five rainfall-borne climatic statistics are computed from the outputs of ECHAM5-RegCM3 and CCSM3-RegCM3 combinations in order to compare with those of observations in the province for the reference period 1961-1990. Performance of each combination is tested by means of scatter diagram, bias, mean absolute bias, root mean squared error, and model performance index (MPI) measures. Our results indicated that ECHAM5-RegCM3 overestimates the total monthly rainfall observations whereas CCSM3-RegCM3 tends to underestimate. In terms of maximum monthly and annual maximum rainfall reproduction, ECHAM5-RegCM3 shows higher performance than CCSM3-RegCM3, particularly in the coastland areas. In contrast, CCSM3-RegCM3 outperforms ECHAM5-RegCM3 in reproducing the number of rainy days, especially in the inland areas. The results also revealed that if a GCM-RCM combination performs well for a portion (statistic) of a catchment, it is not necessarily appropriate for the other portions (statistics). Moreover, the MPI measure demonstrated the superiority of ECHAM5-RegCM3 to CCSM3-RegCM3 up to 33 % excelling for annual rainfall reproduction in Rize Province.

  15. Comparisons Between SPH and Grid-Based Simulations of the Common Envelope Phase

    NASA Astrophysics Data System (ADS)

    Passy, Jean-Claude; Fryer, C. L.; Diehl, S.; De Marco, O.; Mac Low, M.; Herwig, F.; Oishi, J. S.

    2011-01-01

    The common envelope (CE) interaction between a giant star and a lower-mass companion provides a formation channel leading eventually to Type Ia supernovae, sdB stars and bipolar PNe. More broadly, it is an essential ingredient for any population synthesis study including binaries, e.g. cataclysmic variables. Occurring on a short time scale - typically between one and ten years, the CE interaction itself has so far never been observed with certainty but the existence of companions in close orbits around evolved stars, whose precursor's radius was larger than today's orbital separation, vouches for such interaction taking place frequently. Via a detailed study of the energetics and the use of stellar evolution models, we derived in our previous paper the efficiency α of the CE interaction from a carefully selected and statistically analyzed sample of systems thought to be outcomes of a CE interaction. We deduced the initial configuration of those systems using stellar models, and derived a possible inverse dependence of α with the companion to primary mass ratio. Here, we compare these predictions to numerical simulations with two different codes. Enzo is a 3D adaptive mesh refinement grid-based code. For our stellar problem we have modified the way gravity and boundary conditions are treated in this code. The SNSPH code is a 3D hydrodynamics SPH code using tree gravity. The results from both codes for different companion masses and different types of primary stars are consistent with each other. Those results include a resolution study of a 0.88 M⊙ red giant interacting with a 0.9, 0.6 and 0.3 M⊙ white dwarf, respectively. Those systems reach a final separation of 25, 18 and 10 R⊙, respectively. In this contribution, we present and discuss those results and compare them to our predictions. This research was funded by NSF grant 0607111.

  16. A gridded hourly rainfall dataset for the UK applied to a national physically-based modelling system

    NASA Astrophysics Data System (ADS)

    Lewis, Elizabeth; Blenkinsop, Stephen; Quinn, Niall; Freer, Jim; Coxon, Gemma; Woods, Ross; Bates, Paul; Fowler, Hayley

    2016-04-01

    An hourly gridded rainfall product has great potential for use in many hydrological applications that require high temporal resolution meteorological data. One important example of this is flood risk management, with flooding in the UK highly dependent on sub-daily rainfall intensities amongst other factors. Knowledge of sub-daily rainfall intensities is therefore critical to designing hydraulic structures or flood defences to appropriate levels of service. Sub-daily rainfall rates are also essential inputs for flood forecasting, allowing for estimates of peak flows and stage for flood warning and response. In addition, an hourly gridded rainfall dataset has significant potential for practical applications such as better representation of extremes and pluvial flash flooding, validation of high resolution climate models and improving the representation of sub-daily rainfall in weather generators. A new 1km gridded hourly rainfall dataset for the UK has been created by disaggregating the daily Gridded Estimates of Areal Rainfall (CEH-GEAR) dataset using comprehensively quality-controlled hourly rain gauge data from over 1300 observation stations across the country. Quality control measures include identification of frequent tips, daily accumulations and dry spells, comparison of daily totals against the CEH-GEAR daily dataset, and nearest neighbour checks. The quality control procedure was validated against historic extreme rainfall events and the UKCP09 5km daily rainfall dataset. General use of the dataset has been demonstrated by testing the sensitivity of a physically-based hydrological modelling system for Great Britain to the distribution and rates of rainfall and potential evapotranspiration. Of the sensitivity tests undertaken, the largest improvements in model performance were seen when an hourly gridded rainfall dataset was combined with potential evapotranspiration disaggregated to hourly intervals, with 61% of catchments showing an increase in NSE between

  17. APHRODITE: Constructing a Long-term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges

    NASA Astrophysics Data System (ADS)

    Yatagai, A.; Yasutomi, N.; Hamada, A.; Kitoh, A.; Kamiguchi, K.; Arakawa, O.

    2012-04-01

    A daily gridded precipitation dataset for the period 1951-2007 was created by collecting and analyzing rain-gauge observation data across Asia through the activities of the Asian Precipitation - Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE's water resources) project. APHRODITE's daily gridded precipitation is presently the only long-term continental-scale high-resolution daily product. Our product is based on data collected at 5000 to 12,000 stations, which represents 2.3 to 4.5 times the data available through the Global Telecommunication System (GTS) network that are used for most daily gridded precipitation products. Hence, the APHRODITE project has substantially improved the depiction of the areal distribution and variability of precipitation around the Himalayas, Southeast Asia and mountainous regions of the Middle East. The APHRODITE project now contributes to studies such as the determination of Asian monsoon precipitation change, evaluation of water resources, verification of high-resolution model simulations and satellite precipitation estimates, and improvement of forecasts. We released APHRO_V1101 datasets for Monsoon Asia, the Middle East and Russia (on 0.5 × 0.5 degree and 0.25 × 0.25 degree grids) and the APHRO_JP_V1005 dataset for Japan (on a 0.05 × 0.05 degree grid) on the website (http://www.chikyu.ac.jp/precip/ and http://aphrodite.suiri.tsukuba.ac.jp/). The major differences of APHRO_V1101 to that of the previous version (APHRO_V1003R1) are 1) improved quality control (QC) scheme and more input data (Belarus, Bhutan, South Korea, Saudi Arabia, Thailand, Taiwan and E-Obs). We are developing a daily gridded temperature dataset for Asia and a flag to discriminate between rain and snow will be added to the APHRODITE daily precipitation product. The combination of daily mean temperature, precipitation and rain/snow information in this high-resolution gridded format would be useful as input to river

  18. New Jobs, Old Occupational Stereotypes: Gender and Jobs in the New Economy

    ERIC Educational Resources Information Center

    Miller, Linda; Hayward, Rowena

    2006-01-01

    This paper reports data from a questionnaire-based UK study that examined occupational sex-role stereotypes, perceived occupational gender segregation, job knowledge and job preferences of male and female pupils aged 14-18 for 23 jobs. Data were collected from 508 pupils in total. Both boys and girls perceived the majority of the jobs as being…

  19. MAGNETIC GRID

    DOEpatents

    Post, R.F.

    1960-08-01

    An electronic grid is designed employing magnetic forces for controlling the passage of charged particles. The grid is particularly applicable to use in gas-filled tubes such as ignitrons. thyratrons, etc., since the magnetic grid action is impartial to the polarity of the charged particles and, accordingly. the sheath effects encountered with electrostatic grids are not present. The grid comprises a conductor having sections spaced apart and extending in substantially opposite directions in the same plane, the ends of the conductor being adapted for connection to a current source.

  20. ReSS: Resource Selection Service for National and Campus Grid Infrastructure

    NASA Astrophysics Data System (ADS)

    Mhashilkar, Parag; Garzoglio, Gabriele; Levshina, Tanya; Timm, Steve

    2010-04-01

    The Open Science Grid (OSG) offers access to around hundred Compute elements (CE) and storage elements (SE) via standard Grid interfaces. The Resource Selection Service (ReSS) is a push-based workload management system that is integrated with the OSG information systems and resources. ReSS integrates standard Grid tools such as Condor, as a brokering service and the gLite CEMon, for gathering and publishing resource information in GLUE Schema format. ReSS is used in OSG by Virtual Organizations (VO) such as Dark Energy Survey (DES), DZero and Engagement VO. ReSS is also used as a Resource Selection Service for Campus Grids, such as FermiGrid. VOs use ReSS to automate the resource selection in their workload management system to run jobs over the grid. In the past year, the system has been enhanced to enable publication and selection of storage resources and of any special software or software libraries (like MPI libraries) installed at computing resources. In this paper, we discuss the Resource Selection Service, its typical usage on the two scales of a National Cyber Infrastructure Grid, such as OSG, and of a campus Grid, such as FermiGrid.

  1. Interoperability of GADU in using heterogeneous Grid resources for bioinformatics applications.

    SciTech Connect

    Sulakhe, D.; Rodriguez, A.; Wilde, M.; Foster, I.; Maltsev, N.; Univ. of Chicago

    2008-03-01

    Bioinformatics tools used for efficient and computationally intensive analysis of genetic sequences require large-scale computational resources to accommodate the growing data. Grid computational resources such as the Open Science Grid and TeraGrid have proved useful for scientific discovery. The genome analysis and database update system (GADU) is a high-throughput computational system developed to automate the steps involved in accessing the Grid resources for running bioinformatics applications. This paper describes the requirements for building an automated scalable system such as GADU that can run jobs on different Grids. The paper describes the resource-independent configuration of GADU using the Pegasus-based virtual data system that makes high-throughput computational tools interoperable on heterogeneous Grid resources. The paper also highlights the features implemented to make GADU a gateway to computationally intensive bioinformatics applications on the Grid. The paper will not go into the details of problems involved or the lessons learned in using individual Grid resources as it has already been published in our paper on genome analysis research environment (GNARE) and will focus primarily on the architecture that makes GADU resource independent and interoperable across heterogeneous Grid resources.

  2. ReSS: Resource Selection Service for National and Campus Grid Infrastructure

    SciTech Connect

    Mhashilkar, Parag; Garzoglio, Gabriele; Levshina, Tanya; Timm, Steve; /Fermilab

    2009-05-01

    The Open Science Grid (OSG) offers access to around hundred Compute elements (CE) and storage elements (SE) via standard Grid interfaces. The Resource Selection Service (ReSS) is a push-based workload management system that is integrated with the OSG information systems and resources. ReSS integrates standard Grid tools such as Condor, as a brokering service and the gLite CEMon, for gathering and publishing resource information in GLUE Schema format. ReSS is used in OSG by Virtual Organizations (VO) such as Dark Energy Survey (DES), DZero and Engagement VO. ReSS is also used as a Resource Selection Service for Campus Grids, such as FermiGrid. VOs use ReSS to automate the resource selection in their workload management system to run jobs over the grid. In the past year, the system has been enhanced to enable publication and selection of storage resources and of any special software or software libraries (like MPI libraries) installed at computing resources. In this paper, we discuss the Resource Selection Service, its typical usage on the two scales of a National Cyber Infrastructure Grid, such as OSG, and of a campus Grid, such as FermiGrid.

  3. Geometric grid generation

    NASA Technical Reports Server (NTRS)

    Ives, David

    1995-01-01

    This paper presents a highly automated hexahedral grid generator based on extensive geometrical and solid modeling operations developed in response to a vision of a designer-driven one day turnaround CFD process which implies a designer-driven one hour grid generation process.

  4. Internet 2 Access Grid.

    ERIC Educational Resources Information Center

    Simco, Greg

    2002-01-01

    Discussion of the Internet 2 Initiative, which is based on collaboration among universities, businesses, and government, focuses on the Access Grid, a Computational Grid that includes interactive multimedia within high-speed networks to provide resources to enable remote collaboration among the research community. (Author/LRW)

  5. Computational fluid dynamics for propulsion technology: Geometric grid visualization in CFD-based propulsion technology research

    NASA Technical Reports Server (NTRS)

    Ziebarth, John P.; Meyer, Doug

    1992-01-01

    The coordination is examined of necessary resources, facilities, and special personnel to provide technical integration activities in the area of computational fluid dynamics applied to propulsion technology. Involved is the coordination of CFD activities between government, industry, and universities. Current geometry modeling, grid generation, and graphical methods are established to use in the analysis of CFD design methodologies.

  6. Grid-Assembly: An oligonucleotide composition-based partitioning strategy to aid metagenomic sequence assembly.

    PubMed

    Ghosh, Tarini Shankar; Mehra, Varun; Mande, Sharmila S

    2015-06-01

    Metagenomics approach involves extraction, sequencing and characterization of the genomic content of entire community of microbes present in a given environment. In contrast to genomic data, accurate assembly of metagenomic sequences is a challenging task. Given the huge volume and the diverse taxonomic origin of metagenomic sequences, direct application of single genome assembly methods on metagenomes are likely to not only lead to an immense increase in requirements of computational infrastructure, but also result in the formation of chimeric contigs. A strategy to address the above challenge would be to partition metagenomic sequence datasets into clusters and assemble separately the sequences in individual clusters using any single-genome assembly method. The current study presents such an approach that uses tetranucleotide usage patterns to first represent sequences as points in a three dimensional (3D) space. The 3D space is subsequently partitioned into "Grids". Sequences within overlapping grids are then progressively assembled using any available assembler. We demonstrate the applicability of the current Grid-Assembly method using various categories of assemblers as well as different simulated metagenomic datasets. Validation results indicate that the Grid-Assembly approach helps in improving the overall quality of assembly, in terms of the purity and volume of the assembled contigs. PMID:25790784

  7. Thin electrodes based on rolled Pb-Sn-Ca grids for VRLA batteries

    NASA Astrophysics Data System (ADS)

    Caballero, A.; Cruz, M.; Hernán, L.; Morales, J.; Sánchez, L.

    Electrodes 0.5 mm thick (i.e. much thinner than conventional ones) and suitable for lead-acid batteries were prepared by using a special pasting procedure that allows plate thickness to be readily controlled. Novel rolled grids of Pb-Sn-low Ca alloys (0.35 mm thick) were used as substrates. Preliminary galvanostatic corrosion tests of the grids revealed an increased corrosion rate relative to conventional casted grids of Pb-Sn alloys (1 mm thick). Cells made with these thin electrodes were cycled under different discharge regimes and the active material at different charge/discharge cycling stages was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and chemical analysis. At a depth of discharge (DOD) of 100%, the cell exhibited a premature capacity loss after the fifth cycle and delivered only a 20% of its nominal capacity after the 10th. By contrast, cycling performance of the electrode was significantly improved at a DOD of 60%. The capacity loss observed at a DOD of 100% can be ascribed to a rapid growth of PbSO 4 crystals reaching several microns in size. Such large crystals tend to deposit onto the grid surface and form an insulating layer that hinders electron transfer at the active material/grid interface. For this reason, the cell fails after few cycles in spite of the high PbO 2 content in the positive active material (PAM). On the other hand, at 60% DOD the submicronic particles produced after formation of the PAM retain their small size, thereby ensuring reversibility in the PbO 2⇔PbSO 4 transformation.

  8. Gridding-based direct Fourier inversion of the three-dimensional ray transform.

    PubMed

    Penczek, Pawel A; Renka, Robert; Schomberg, Hermann

    2004-04-01

    We describe a fast and accurate direct Fourier method for reconstructing a function f of three variables from a number of its parallel beam projections. The main application of our method is in single particle analysis, where the goal is to reconstruct the mass density of a biological macromolecule. Typically, the number of projections is extremely large, and each projection is extremely noisy. The projection directions are random and initially unknown. However, it is possible to determine both the directions and f by an iterative procedure; during each stage of the iteration, one has to solve a reconstruction problem of the type considered here. Our reconstruction algorithm is distinguished from other direct Fourier methods by the use of gridding techniques that provide an efficient means to compute a uniformly sampled version of a function g from a nonuniformly sampled version of Fg, the Fourier transform of g, or vice versa. We apply the two-dimensional reverse gridding method to each available projection of f, the function to be reconstructed, in order to obtain Ff on a special spherical grid. Then we use the three-dimensional gridding method to reconstruct f from this sampled version of Ff. This stage requires a proper weighting of the samples of Ff to compensate for their nonuniform distribution. We use a fast method for computing appropriate weights that exploits the special properties of the spherical sampling grid for Ff and involves the computation of a Voronoi diagram on the unit sphere. We demonstrate the excellent speed and accuracy of our method by using simulated data. PMID:15078020

  9. Experimental Demonstration of a Self-organized Architecture for Emerging Grid Computing Applications on OBS Testbed

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Hong, Xiaobin; Wu, Jian; Lin, Jintong

    As Grid computing continues to gain popularity in the industry and research community, it also attracts more attention from the customer level. The large number of users and high frequency of job requests in the consumer market make it challenging. Clearly, all the current Client/Server(C/S)-based architecture will become unfeasible for supporting large-scale Grid applications due to its poor scalability and poor fault-tolerance. In this paper, based on our previous works [1, 2], a novel self-organized architecture to realize a highly scalable and flexible platform for Grids is proposed. Experimental results show that this architecture is suitable and efficient for consumer-oriented Grids.

  10. GSHR-Tree: a spatial index tree based on dynamic spatial slot and hash table in grid environments

    NASA Astrophysics Data System (ADS)

    Chen, Zhanlong; Wu, Xin-cai; Wu, Liang

    2008-12-01

    Computation Grids enable the coordinated sharing of large-scale distributed heterogeneous computing resources that can be used to solve computationally intensive problems in science, engineering, and commerce. Grid spatial applications are made possible by high-speed networks and a new generation of Grid middleware that resides between networks and traditional GIS applications. The integration of the multi-sources and heterogeneous spatial information and the management of the distributed spatial resources and the sharing and cooperative of the spatial data and Grid services are the key problems to resolve in the development of the Grid GIS. The performance of the spatial index mechanism is the key technology of the Grid GIS and spatial database affects the holistic performance of the GIS in Grid Environments. In order to improve the efficiency of parallel processing of a spatial mass data under the distributed parallel computing grid environment, this paper presents a new grid slot hash parallel spatial index GSHR-Tree structure established in the parallel spatial indexing mechanism. Based on the hash table and dynamic spatial slot, this paper has improved the structure of the classical parallel R tree index. The GSHR-Tree index makes full use of the good qualities of R-Tree and hash data structure. This paper has constructed a new parallel spatial index that can meet the needs of parallel grid computing about the magnanimous spatial data in the distributed network. This arithmetic splits space in to multi-slots by multiplying and reverting and maps these slots to sites in distributed and parallel system. Each sites constructs the spatial objects in its spatial slot into an R tree. On the basis of this tree structure, the index data was distributed among multiple nodes in the grid networks by using large node R-tree method. The unbalance during process can be quickly adjusted by means of a dynamical adjusting algorithm. This tree structure has considered the

  11. Grid-based molecular footprint comparison method for docking and de novo design: application to HIVgp41.

    PubMed

    Balius, Trent E; Allen, William J; Mukherjee, Sudipto; Rizzo, Robert C

    2013-05-30

    Scoring functions are a critically important component of computer-aided screening methods for the identification of lead compounds during early stages of drug discovery. Here, we present a new multigrid implementation of the footprint similarity (FPS) scoring function that was recently developed in our laboratory which has proven useful for identification of compounds which bind to a protein on a per-residue basis in a way that resembles a known reference. The grid-based FPS method is much faster than its Cartesian-space counterpart, which makes it computationally tractable for on-the-fly docking, virtual screening, or de novo design. In this work, we establish that: (i) relatively few grids can be used to accurately approximate Cartesian space footprint similarity, (ii) the method yields improved success over the standard DOCK energy function for pose identification across a large test set of experimental co-crystal structures, for crossdocking, and for database enrichment, and (iii) grid-based FPS scoring can be used to tailor construction of new molecules to have specific properties, as demonstrated in a series of test cases targeting the viral protein HIVgp41. The method is available in the program DOCK6. PMID:23436713

  12. Job Ready.

    ERIC Educational Resources Information Center

    Easter Seal Society for Crippled Children and Adults of Washington, Seattle.

    Intended for use by employers for assessing how "job-ready" their particular business environment may be, the booklet provides information illustrating what physical changes could be made to allow persons with mobility limitations to enter and conduct business independently in a particular building. Illustrations along with brief explanations are…

  13. Your Job.

    ERIC Educational Resources Information Center

    Torre, Liz; And Others

    Information and accompanying exercises are provided in this learning module to reinforce basic reading, writing, and math skills and, at the same time, introduce personal assessment and job-seeking techniques. The module's first section provides suggestions for assessing personal interests and identifying the assets one has to offer an employer.…

  14. Establishing the macular grading grid by means of fovea centre detection using anatomical-based and visual-based features.

    PubMed

    Aquino, Arturo

    2014-12-01

    This paper presents a methodology for establishing the macular grading grid in digital retinal images by means of fovea centre detection. To this effect, visual and anatomical feature-based criteria are combined with the aim of exploiting the benefits of both techniques. First, acceptable fovea centre estimation is obtained by using a priori known anatomical features with respect to the optic disc and the vascular tree. Second, a type of morphological processing is employed in an attempt to improve the obtained fovea centre estimation when the fovea is detectable in the image; otherwise, it is declared indistinguishable and the first result is retained. The methodology was tested on the MESSIDOR and DIARETDB1 databases making use of a distance criterion between the obtained and the real fovea centre. Fovea centres in the brackets between the categories Excellent and Fair (fovea centres primarily accepted as valid in the literature) made up for 98.24% and 94.38% of the cases in the MESSIDOR and DIARETDB1, respectively. PMID:25450220

  15. Adventures in Computational Grids

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Sometimes one supercomputer is not enough. Or your local supercomputers are busy, or not configured for your job. Or you don't have any supercomputers. You might be trying to simulate worldwide weather changes in real time, requiring more compute power than you could get from any one machine. Or you might be collecting microbiological samples on an island, and need to examine them with a special microscope located on the other side of the continent. These are the times when you need a computational grid.

  16. Creating long-term gridded fields of reference evapotranspiration in Alpine terrain based on a recalibrated Hargreaves method

    NASA Astrophysics Data System (ADS)

    Haslinger, Klaus; Bartsch, Annett

    2016-03-01

    A new approach for the construction of high-resolution gridded fields of reference evapotranspiration for the Austrian domain on a daily time step is presented. Gridded data of minimum and maximum temperatures are used to estimate reference evapotranspiration based on the formulation of Hargreaves. The calibration constant in the Hargreaves equation is recalibrated to the Penman-Monteith equation in a monthly and station-wise assessment. This ensures, on one hand, eliminated biases of the Hargreaves approach compared to the formulation of Penman-Monteith and, on the other hand, also reduced root mean square errors and relative errors on a daily timescale. The resulting new calibration parameters are interpolated over time to a daily temporal resolution for a standard year of 365 days. The overall novelty of the approach is the use of surface elevation as the only predictor to estimate the recalibrated Hargreaves parameter in space. A third-order polynomial is fitted to the recalibrated parameters against elevation at every station which yields a statistical model for assessing these new parameters in space by using the underlying digital elevation model of the temperature fields. With these newly calibrated parameters for every day of year and every grid point, the Hargreaves method is applied to the temperature fields, yielding reference evapotranspiration for the entire grid and time period from 1961-2013. This approach is opening opportunities to create high-resolution reference evapotranspiration fields based only temperature observations, but being as close as possible to the estimates of the Penman-Monteith approach.

  17. Job submission and management through web services: the experience with the CREAM service

    NASA Astrophysics Data System (ADS)

    Aiftimiei, C.; Andreetto, P.; Bertocco, S.; Fina, S. D.; Ronco, S. D.; Dorigo, A.; Gianelle, A.; Marzolla, M.; Mazzucato, M.; Sgaravatto, M.; Verlato, M.; Zangrando, L.; Corvo, M.; Miccio, V.; Sciaba, A.; Cesini, D.; Dongiovanni, D.; Grandi, C.

    2008-07-01

    Modern Grid middleware is built around components providing basic functionality, such as data storage, authentication, security, job management, resource monitoring and reservation. In this paper we describe the Computing Resource Execution and Management (CREAM) service. CREAM provides a Web service-based job execution and management capability for Grid systems; in particular, it is being used within the gLite middleware. CREAM exposes a Web service interface allowing conforming clients to submit and manage computational jobs to a Local Resource Management System. We developed a special component, called ICE (Interface to CREAM Environment) to integrate CREAM in gLite. ICE transfers job submissions and cancellations from the Workload Management System, allowing users to manage CREAM jobs from the gLite User Interface. This paper describes some recent studies aimed at assessing the performance and reliability of CREAM and ICE; those tests have been performed as part of the acceptance tests for integration of CREAM and ICE in gLite. We also discuss recent work towards enhancing CREAM with a BES and JSDL compliant interface.

  18. The Grid

    SciTech Connect

    White, Vicky

    2003-05-21

    By now almost everyone has heard of 'The Grid', or 'Grid Computing' as it should more properly be described. There are frequent articles in both the popular and scientific press talking about 'The Grid' or about some specific Grid project. Run II Experiments, US-CMS, BTeV, the Sloane Digital Sky Survey and the Lattice QCD folks are all incorporating aspects of Grid Computing in their plans, and the Fermilab Computing Division is supporting and encouraging these efforts. Why are we doing this and what does it have to do with running a physics experiment or getting scientific results? I will explore some of these questions and try to give an overview, not so much of the technical aspects of Grid Computing, rather of what the phenomenon means for our field.

  19. ATLAS job monitoring in the Dashboard Framework

    NASA Astrophysics Data System (ADS)

    Andreeva, J.; Campana, S.; Karavakis, E.; Kokoszkiewicz, L.; Saiz, P.; Sargsyan, L.; Schovancova, J.; Tuckett, D.

    2012-12-01

    Monitoring of the large-scale data processing of the ATLAS experiment includes monitoring of production and user analysis jobs. The Experiment Dashboard provides a common job monitoring solution, which is shared by ATLAS and CMS experiments. This includes an accounting portal as well as real-time monitoring. Dashboard job monitoring for ATLAS combines information from the PanDA job processing database, Production system database and monitoring information from jobs submitted through GANGA to Workload Management System (WMS) or local batch systems. Usage of Dashboard-based job monitoring applications will decrease load on the PanDA database and overcome scale limitations in PanDA monitoring caused by the short job rotation cycle in the PanDA database. Aggregation of the task/job metrics from different sources provides complete view of job processing activity in ATLAS scope.

  20. Experimental demonstration of an OpenFlow based software-defined optical network employing packet, fixed and flexible DWDM grid technologies on an international multi-domain testbed.

    PubMed

    Channegowda, M; Nejabati, R; Rashidi Fard, M; Peng, S; Amaya, N; Zervas, G; Simeonidou, D; Vilalta, R; Casellas, R; Martínez, R; Muñoz, R; Liu, L; Tsuritani, T; Morita, I; Autenrieth, A; Elbers, J P; Kostecki, P; Kaczmarek, P

    2013-03-11

    Software defined networking (SDN) and flexible grid optical transport technology are two key technologies that allow network operators to customize their infrastructure based on application requirements and therefore minimizing the extra capital and operational costs required for hosting new applications. In this paper, for the first time we report on design, implementation & demonstration of a novel OpenFlow based SDN unified control plane allowing seamless operation across heterogeneous state-of-the-art optical and packet transport domains. We verify and experimentally evaluate OpenFlow protocol extensions for flexible DWDM grid transport technology along with its integration with fixed DWDM grid and layer-2 packet switching. PMID:23482120

  1. Urban spatial information services based on service-oriented grid architecture

    NASA Astrophysics Data System (ADS)

    Mou, Naixia; Zhang, Lingxian; Ai, Bo; Liu, Wenbao

    2007-11-01

    The need of spatial data sharing is increasing with the rapid urban expansion. However, the methods for spatial data sharing have not been well developed so far. In this paper, we establish a tri-layer geoinformation service framework using the Grid, SOA and web service. First, we integrated three modes that use geoinformation, which were: 1) the simple mode of viewing spatial data, 2) the analysis mode of querying and analyzing geoinformation, and 3) the peer mode of complex computing capabilities. Second, we designed a reasonable, flexible architecture of geoinformation service according to the three modes and expatiated the principles of each part. Then we argued that the middleware should be context-sensitive to provide intelligent services. We also discussed how to decide context detailedly and illustrated the principles of context-sensitive middleware. We found that the service-oriented grid architecture could realize data sharing and service more smoothly and accessibly.

  2. Grid Inertial Response-Based Probabilistic Determination of Energy Storage System Capacity Under High Solar Penetration

    DOE PAGESBeta

    Yue, Meng; Wang, Xiaoyu

    2015-07-01

    It is well-known that responsive battery energy storage systems (BESSs) are an effective means to improve the grid inertial response to various disturbances including the variability of the renewable generation. One of the major issues associated with its implementation is the difficulty in determining the required BESS capacity mainly due to the large amount of inherent uncertainties that cannot be accounted for deterministically. In this study, a probabilistic approach is proposed to properly size the BESS from the perspective of the system inertial response, as an application of probabilistic risk assessment (PRA). The proposed approach enables a risk-informed decision-making processmore » regarding (1) the acceptable level of solar penetration in a given system and (2) the desired BESS capacity (and minimum cost) to achieve an acceptable grid inertial response with a certain confidence level.« less

  3. Grid Inertial Response-Based Probabilistic Determination of Energy Storage System Capacity Under High Solar Penetration

    SciTech Connect

    Yue, Meng; Wang, Xiaoyu

    2015-07-01

    It is well-known that responsive battery energy storage systems (BESSs) are an effective means to improve the grid inertial response to various disturbances including the variability of the renewable generation. One of the major issues associated with its implementation is the difficulty in determining the required BESS capacity mainly due to the large amount of inherent uncertainties that cannot be accounted for deterministically. In this study, a probabilistic approach is proposed to properly size the BESS from the perspective of the system inertial response, as an application of probabilistic risk assessment (PRA). The proposed approach enables a risk-informed decision-making process regarding (1) the acceptable level of solar penetration in a given system and (2) the desired BESS capacity (and minimum cost) to achieve an acceptable grid inertial response with a certain confidence level.

  4. Autonomous, Decentralized Grid Architecture: Prosumer-Based Distributed Autonomous Cyber-Physical Architecture for Ultra-Reliable Green Electricity Networks

    SciTech Connect

    2012-01-11

    GENI Project: Georgia Tech is developing a decentralized, autonomous, internet-like control architecture and control software system for the electric power grid. Georgia Tech’s new architecture is based on the emerging concept of electricity prosumers—economically motivated actors that can produce, consume, or store electricity. Under Georgia Tech’s architecture, all of the actors in an energy system are empowered to offer associated energy services based on their capabilities. The actors achieve their sustainability, efficiency, reliability, and economic objectives, while contributing to system-wide reliability and efficiency goals. This is in marked contrast to the current one-way, centralized control paradigm.

  5. Expanding access to off-grid rural electrification in Africa: An analysis of community-based micro-grids in Kenya

    NASA Astrophysics Data System (ADS)

    Kirubi, Charles Gathu

    Community micro-grids have played a central role in increasing access to off-grid rural electrification (RE) in many regions of the developing world, notably South Asia. However, the promise of community micro-grids in sub-Sahara Africa remains largely unexplored. My study explores the potential and limits of community micro-grids as options for increasing access to off-grid RE in sub-Sahara Africa. Contextualized in five community micro-grids in rural Kenya, my study is framed through theories of collective action and combines qualitative and quantitative methods, including household surveys, electronic data logging and regression analysis. The main contribution of my research is demonstrating the circumstances under which community micro-grids can contribute to rural development and the conditions under which individuals are likely to initiate and participate in such projects collectively. With regard to rural development, I demonstrate that access to electricity enables the use of electric equipment and tools by small and micro-enterprises, resulting in significant improvement in productivity per worker (100--200% depending on the task at hand) and a corresponding growth in income levels in the order of 20--70%, depending on the product made. Access to electricity simultaneously enables and improves delivery of social and business services from a wide range of village-level infrastructure (e.g. schools, markets, water pumps) while improving the productivity of agricultural activities. Moreover, when local electricity users have an ability to charge and enforce cost-reflective tariffs and electricity consumption is closely linked to productive uses that generate incomes, cost recovery is feasible. By their nature---a new technology delivering highly valued services by the elites and other members, limited local experience and expertise, high capital costs---community micro-grids are good candidates for elite-domination. Even so, elite control does not necessarily

  6. Fabrication of a flexible Ag-grid transparent electrode using ac based electrohydrodynamic Jet printing

    NASA Astrophysics Data System (ADS)

    Park, Jaehong; Hwang, Jungho

    2014-10-01

    In the dc voltage-applied electrohydrodynamic (EHD) jet printing of metal nanoparticles, the residual charge of droplets deposited on a substrate changes the electrostatic field distribution and interrupts the subsequent printing behaviour, especially for insulating substrates that have slow charge decay rates. In this paper, a sinusoidal ac voltage was used in the EHD jet printing process to switch the charge polarity of droplets containing Ag nanoparticles, thereby neutralizing the charge on a polyethylene terephthalate (PET) substrate. Printed Ag lines with a width of 10 µm were invisible to the naked eye. After sintering lines with 500 µm of line pitch at 180 °C, a grid-type transparent electrode (TE) with a sheet resistance of ˜7 Ω sq-1 and a dc to optical conductivity ratio of ˜300 at ˜84.2% optical transmittance was obtained, values that were superior to previously reported results. In order to evaluate the durability of the TE under bending stresses, the sheet resistance was measured as the number of bending cycles was increased. The sheet resistance of the Ag grid electrode increased only slightly, by less than 20% from its original value, even after 500 cycles. To the best of our knowledge, this is the first time that Ag (invisible) grid TEs have been fabricated on PET substrates by ac voltage applied EHD jet printing.

  7. Grid generation research at OSU

    NASA Technical Reports Server (NTRS)

    Nakamura, S.

    1992-01-01

    In the last two years, effort was concentrated on: (1) surface modeling; (2) surface grid generation; and (3) 3-D flow space grid generation. The surface modeling shares the same objectives as the surface modeling in computer aided design (CAD), so software available in CAD can in principle be used for solid modeling. Unfortunately, however, the CAD software cannot be easily used in practice for grid generation purposes, because they are not designed to provide appropriate data base for grid generation. Therefore, we started developing a generalized surface modeling software from scratch, that provides the data base for the surface grid generation. Generating surface grid is an important step in generating a 3-D space for flow space. To generate a surface grid on a given surface representation, we developed a unique algorithm that works on any non-smooth surfaces. Once the surface grid is generated, a 3-D space can be generated. For this purpose, we also developed a new algorithm, which is a hybrid of the hyperbolic and the elliptic grid generation methods. With this hybrid method, orthogonality of the grid near the solid boundary can be easily achieved without introducing empirical fudge factors. Work to develop 2-D and 3-D grids for turbomachinery blade geometries was performed, and as an extension of this research we are planning to develop an adaptive grid procedure with an interactive grid environment.

  8. Creating long term gridded fields of reference evapotranspiration in Alpine terrain based on a re-calibrated Hargreaves method

    NASA Astrophysics Data System (ADS)

    Haslinger, K.; Bartsch, A.

    2015-05-01

    A new approach for the construction of high resolution gridded fields of reference evapotranspiration for the Austrian domain on a daily time step is presented. Forcing fields of gridded data of minimum and maximum temperatures are used to estimate reference evapotranspiration based on the formulation of Hargreaves. The calibration constant in the Hargreaves equation is recalibrated to the Penman-Monteith equation, which is recommended by the FAO, in a monthly and station-wise assessment. This ensures on one hand eliminated biases of the Hargreaves approach compared to the formulation of Penman-Monteith and on the other hand also reduced root mean square errors and relative errors on a daily time scale. The resulting new calibration parameters are interpolated in time to a daily temporal resolution for a standard year of 365 days. The overall novelty of the approach is the conduction of surface elevation as a predictor to estimate the re-calibrated Hargreaves parameter in space. A third order spline is fitted to the re-calibrated parameters against elevation at every station and yields the statistical model for assessing these new parameters in space by using the underlying digital elevation model of the temperature fields. Having newly calibrated parameters for every day of year and every grid point, the Hargreaves method is applied to the temperature fields, yielding reference evapotranspiration for the entire grid and time period from 1961-2013. With this approach it is possible to generate high resolution reference evapotranspiration fields starting when only temperature observations are available but re-calibrated to meet the requirements of the recommendations defined by the FAO.

  9. Uncertainty Analysis Based on Sparse Grid Collocation and Quasi-Monte Carlo Sampling with Application in Groundwater Modeling

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Lu, D.; Ye, M.; Gunzburger, M.

    2011-12-01

    Markov Chain Monte Carlo (MCMC) methods have been widely used in many fields of uncertainty analysis to estimate the posterior distributions of parameters and credible intervals of predictions in the Bayesian framework. However, in practice, MCMC may be computationally unaffordable due to slow convergence and the excessive number of forward model executions required, especially when the forward model is expensive to compute. Both disadvantages arise from the curse of dimensionality, i.e., the posterior distribution is usually a multivariate function of parameters. Recently, sparse grid method has been demonstrated to be an effective technique for coping with high-dimensional interpolation or integration problems. Thus, in order to accelerate the forward model and avoid the slow convergence of MCMC, we propose a new method for uncertainty analysis based on sparse grid interpolation and quasi-Monte Carlo sampling. First, we construct a polynomial approximation of the forward model in the parameter space by using the sparse grid interpolation. This approximation then defines an accurate surrogate posterior distribution that can be evaluated repeatedly at minimal computational cost. Second, instead of using MCMC, a quasi-Monte Carlo method is applied to draw samples in the parameter space. Then, the desired probability density function of each prediction is approximated by accumulating the posterior density values of all the samples according to the prediction values. Our method has the following advantages: (1) the polynomial approximation of the forward model on the sparse grid provides a very efficient evaluation of the surrogate posterior distribution; (2) the quasi-Monte Carlo method retains the same accuracy in approximating the PDF of predictions but avoids all disadvantages of MCMC. The proposed method is applied to a controlled numerical experiment of groundwater flow modeling. The results show that our method attains the same accuracy much more efficiently

  10. Job-Preference and Job-Matching Assessment Results and Their Association with Job Performance and Satisfaction among Young Adults with Developmental Disabilities

    ERIC Educational Resources Information Center

    Hall, Julie; Morgan, Robert L.; Salzberg, Charles L.

    2014-01-01

    We investigated the effects of preference and degree of match on job performance of four 19 to 20-year-old young adults with developmental disabilities placed in community-based job conditions. We identified high-preference, high-matched and low-preference, low-matched job tasks using a video web-based assessment program. The job matching…

  11. Fibonacci Grids

    NASA Technical Reports Server (NTRS)

    Swinbank, Richard; Purser, James

    2006-01-01

    Recent years have seen a resurgence of interest in a variety of non-standard computational grids for global numerical prediction. The motivation has been to reduce problems associated with the converging meridians and the polar singularities of conventional regular latitude-longitude grids. A further impetus has come from the adoption of massively parallel computers, for which it is necessary to distribute work equitably across the processors; this is more practicable for some non-standard grids. Desirable attributes of a grid for high-order spatial finite differencing are: (i) geometrical regularity; (ii) a homogeneous and approximately isotropic spatial resolution; (iii) a low proportion of the grid points where the numerical procedures require special customization (such as near coordinate singularities or grid edges). One family of grid arrangements which, to our knowledge, has never before been applied to numerical weather prediction, but which appears to offer several technical advantages, are what we shall refer to as "Fibonacci grids". They can be thought of as mathematically ideal generalizations of the patterns occurring naturally in the spiral arrangements of seeds and fruit found in sunflower heads and pineapples (to give two of the many botanical examples). These grids possess virtually uniform and highly isotropic resolution, with an equal area for each grid point. There are only two compact singular regions on a sphere that require customized numerics. We demonstrate the practicality of these grids in shallow water simulations, and discuss the prospects for efficiently using these frameworks in three-dimensional semi-implicit and semi-Lagrangian weather prediction or climate models.

  12. Improving Work Efficiency: Job Training Based on Engineering Principles. Innovations: AAMR Research to Practice Series, Number 5.

    ERIC Educational Resources Information Center

    Browder, Diane M.; Lim, Levan

    Employees with mental retardation can lose their jobs because their productivity is low due to an inability to perform their jobs quickly and with a minimum of extraneous movements. This guide presents procedures, borrowed from the business world, that can be used to assist people with mental retardation to improve their work quality and…

  13. MUJER: Mothers United for Jobs, Education, and Results. 1997-8 Project FORWARD Project-based Learning Project Summary.

    ERIC Educational Resources Information Center

    Green, Anson M.

    Students in the Culebra Road GED/JOBS (General Educational Development/Job Opportunities and Basic Skills) class, an adult education class for Temporary Assistance for Needy Families (TANF) students, created their own website. First, students completed a computer literacy survey to gauge their computer skills. Next, students were encouraged to…

  14. Using Adventure-Based Cooperation Training To Develop Job Related Social Skills for Adolescents with Severe Behavioral and Emotional Problems.

    ERIC Educational Resources Information Center

    Reganick, Karol

    This practicum addressed the attitudes and behaviors of 10 adolescents with severe behavioral and emotional problems participating in a cooperative job training program. The intervention used an adventure approach to help the students replace aggression and misconduct with job-related social skills. A needs assessment was conducted to identify…

  15. Grid enabled Service Support Environment - SSE Grid

    NASA Astrophysics Data System (ADS)

    Goor, Erwin; Paepen, Martine

    2010-05-01

    The SSEGrid project is an ESA/ESRIN project which started in 2009 and is executed by two Belgian companies, Spacebel and VITO, and one Dutch company, Dutch Space. The main project objectives are the introduction of a Grid-based processing on demand infrastructure at the Image Processing Centre for earth observation products at VITO and the inclusion of Grid processing services in the Service Support Environment (SSE) at ESRIN. The Grid-based processing on demand infrastructure is meant to support a Grid processing on demand model for Principal Investigators (PI) and allow the design and execution of multi-sensor applications with geographically spread data while minimising the transfer of huge volumes of data. In the first scenario, 'support a Grid processing on demand model for Principal Investigators', we aim to provide processing power close to the EO-data at the processing and archiving centres. We will allow a PI (non-Grid expert user) to upload his own algorithm, as a process, and his own auxiliary data from the SSE Portal and use them in an earth observation workflow on the SSEGrid Infrastructure. The PI can design and submit workflows using his own processes, processes made available by VITO/ESRIN and possibly processes from other users that are available on the Grid. These activities must be user-friendly and not requiring detailed knowledge about the underlying Grid middleware. In the second scenario we aim to design, implement and demonstrate a methodology to set up an earth observation processing facility, which uses large volumes of data from various geographically spread sensors. The aim is to provide solutions for problems that we face today, like wasting bandwidth by copying large volumes of data to one location. We will avoid this by processing the data where they are. The multi-mission Grid-based processing on demand infrastructure will allow developing and executing complex and massive multi-sensor data (re-)processing applications more

  16. A Study of the Impact of a School-Based, Job-Embedded Professional Development Program on Elementary and Middle School Teacher Efficacy for Technology Integration

    ERIC Educational Resources Information Center

    Skoretz, Yvonne M.

    2011-01-01

    The purpose of this study was to determine the impact of a school-based, job-embedded professional development program on elementary and middle school teacher efficacy for technology integration. Teacher efficacy has been identified as a strong predictor of whether the content of professional development will transfer to classroom practice…

  17. Personal vulnerability and work-home interaction: the effect of job performance-based self-esteem on work/home conflict and facilitation.

    PubMed

    Innstrand, Siw Tone; Langballe, Ellen Melbye; Espnes, Geir Arild; Aasland, Olaf Gjerløw; Falkum, Erik

    2010-12-01

    The aim of the present study was to examine the longitudinal relationship between job performance-based self-esteem (JPB-SE) and work-home interaction (WHI) in terms of the direction of the interaction (work-to-home vs. home-to-work) and the effect (conflict vs. facilitation). A sample of 3,475 respondents from eight different occupational groups (lawyers, physicians, nurses, teachers, church ministers, bus drivers, and people working in advertising and information technology) supplied data at two points of time with a two-year time interval. The two-wave, cross-lagged structural equations modeling (SEM) analysis demonstrated reciprocal relationships between these variables, i.e., job performance-based self-esteem may act as a precursor as well as an outcome of work-home interaction. The strongest association was between job performance-based self-esteem and work-to-home conflict. Previous research on work-home interaction has mainly focused on situational factors. This longitudinal study expands the work-home literature by demonstrating how individual vulnerability (job performance-based self-esteem) contributes to the explanation of work-home interactions. PMID:20338010

  18. Identifying Success Factors in Community College Grants Awarded under the U.S. Department of Labor's Community-Based Job Training Grants Program, 2005-2008

    ERIC Educational Resources Information Center

    Garrison, Debra Linley

    2010-01-01

    This study provides an in-depth analysis of the Community-Based Job Training Grants awarded by the U.S. Department of Labor from 2005 to 2008. The primary research question is designed to identify the most important factors in meeting grant-training outcomes; however, numerous secondary questions were addressed to provide the reader with in-depth…

  19. How Female Professionals Successfully Process and Negotiate Involuntary Job Loss at Faith-Based Colleges and Universities: A Grounded Theory Study

    ERIC Educational Resources Information Center

    Cunningham, Debra Jayne

    2013-01-01

    Using a constructivist grounded theory approach (Charmaz, 2006), this qualitative study examined how 8 female senior-level professionals employed at faith-based colleges and universities processed and navigated the experience of involuntary job loss and successfully transitioned to another position. The purpose of this research was to contribute…

  20. How Female Professionals Successfully Process and Negotiate Involuntary Job Loss at Faith-Based Colleges and Universities: A Grounded Theory Study

    ERIC Educational Resources Information Center

    Cunningham, Debra Jayne

    2015-01-01

    Using a constructivist grounded theory approach (Charmaz, 2006), this qualitative study examined how eight female senior-level professionals employed at faith-based colleges and universities processed and navigated the experience of involuntary job loss and successfully transitioned to another position. The theoretical framework of psychological…

  1. Competency-Based Job Related Basic Skills Training through a Model Partnership. Final Report and Final Evaluation Report of National Workplace Literacy Project.

    ERIC Educational Resources Information Center

    Hacker, James C.

    A workplace literacy demonstration project was implemented through a partnership among the Michigan Department of Education, Michigan Institute for Adult Learning and Literacy, and the United Auto Workers/General Motors (UAW/GM) Human Resource Center. Competency-based, job-related foundation skills training was provided for 400 employees, and…

  2. Variance-based global sensitivity analysis for multiple scenarios and models with implementation using sparse grid collocation

    NASA Astrophysics Data System (ADS)

    Dai, Heng; Ye, Ming

    2015-09-01

    Sensitivity analysis is a vital tool in hydrological modeling to identify influential parameters for inverse modeling and uncertainty analysis, and variance-based global sensitivity analysis has gained popularity. However, the conventional global sensitivity indices are defined with consideration of only parametric uncertainty. Based on a hierarchical structure of parameter, model, and scenario uncertainties and on recently developed techniques of model- and scenario-averaging, this study derives new global sensitivity indices for multiple models and multiple scenarios. To reduce computational cost of variance-based global sensitivity analysis, sparse grid collocation method is used to evaluate the mean and variance terms involved in the variance-based global sensitivity analysis. In a simple synthetic case of groundwater flow and reactive transport, it is demonstrated that the global sensitivity indices vary substantially between the four models and three scenarios. Not considering the model and scenario uncertainties, might result in biased identification of important model parameters. This problem is resolved by using the new indices defined for multiple models and/or multiple scenarios. This is particularly true when the sensitivity indices and model/scenario probabilities vary substantially. The sparse grid collocation method dramatically reduces the computational cost, in comparison with the popular quasi-random sampling method. The new framework of global sensitivity analysis is mathematically general, and can be applied to a wide range of hydrologic and environmental problems.

  3. The climate of Europe during the Holocene: a gridded pollen-based reconstruction and its multi-proxy evaluation

    NASA Astrophysics Data System (ADS)

    Mauri, A.; Davis, B. A. S.; Collins, P. M.; Kaplan, J. O.

    2015-03-01

    We present a new gridded climate reconstruction for Europe for the last 12,000 years based on pollen data. The reconstruction is an update of Davis et al. (2003) using the same methodology, but with a greatly expanded fossil and surface-sample dataset and more rigorous quality-control. The modern pollen dataset has been increased by more than 80%, and the fossil pollen dataset by more than 50%, representing almost 60,000 individual pollen samples. The climate parameters reconstructed include summer/winter and annual temperatures and precipitation, as well as a measure of moisture balance, and growing degree-days above 5 °C. Confidence limits were established for the reconstruction based on transfer function and interpolation uncertainties. The reconstruction takes account of post-glacial isostatic readjustment which resulted in a potential warming bias of up to +1-2 °C for parts of Fennoscandia in the early Holocene, as well as changes in palaeogeography resulting from decaying ice sheets and rising post-glacial sea-levels. This new dataset has been evaluated against previously published independent quantitative climate reconstructions from a variety of archives on a site-by-site basis across Europe. The results of this comparison are generally very good; only chironomid-based reconstructions showed substantial differences with our values. Our reconstruction is available for download as gridded maps throughout the Holocene on a 1000-year time-step. The gridded format makes our reconstructions suitable for comparison with climate model output and for other applications such as vegetation and land-use modelling. Our new climate reconstruction suggests that warming in Europe during the mid-Holocene was greater in winter than in summer, an apparent paradox that is not consistent with current climate model simulations and traditional interpretations of Milankovitch theory.

  4. Grid-based versus big region approach for inverting CO emissions using Measurement of Pollution in the Troposphere (MOPITT) data

    NASA Astrophysics Data System (ADS)

    Stavrakou, T.; Müller, J.-F.

    2006-08-01

    The CO columns retrieved by the Measurement of Pollution in the Troposphere (MOPITT) satellite instrument between May 2000 and April 2001 are used together with the Intermediate Model for the Annual and Global Evolution of Species (IMAGES) global chemistry transport model and its adjoint to provide top-down estimates for anthropogenic, biomass burning, and biogenic CO emissions on the global scale, as well as for the biogenic volatile organic compounds (VOC) fluxes, whose oxidation constitutes a major indirect CO source. For this purpose, the big region and grid-based Bayesian inversion methods are presented and compared. In the former setup, the monthly emissions over large geographical regions are quantified. In the grid-based setup, the fluxes are optimized at the spatial resolution of the model and on a monthly basis. Source-specific spatiotemporal correlations among errors on the prior emissions are introduced in order to better constrain the inversion problem. Both inversion techniques bring the model columns much closer to the measurements at all latitudes, but the grid-based analysis achieves a higher reduction of the overall model/data bias. Further comparisons with observed mixing ratios at NOAA Climate Monitoring and Diagnostics Laboratory and Global Atmosphere Watch sites, as well as with airborne measurements are also presented. The inferred emission estimates are weakly dependent on the prior errors and correlations. Our best estimate for the global CO source amounts to 2900 Tg CO/yr in both inversion approaches, about 5% higher than the prior. The global anthropogenic emission estimate is 18% larger than the prior, with the biggest increase for east Asia and a substantial decrease in south Asia. The vegetation fire emission estimates decrease as well, from the prior 467 Tg CO/yr to 450 Tg CO/yr in the grid-based solution and 434 Tg CO/yr in the monthly big region setup, mainly due to a significant reduction of African savanna fire emissions. The

  5. Experimental demonstration of OpenFlow-based control plane for elastic lightpath provisioning in Flexi-Grid optical networks.

    PubMed

    Zhang, Jiawei; Zhang, Jie; Zhao, Yongli; Yang, Hui; Yu, Xiaosong; Wang, Lei; Fu, Xihua

    2013-01-28

    Due to the prominent performance on networking virtualization and programmability, OpenFlow is widely regarded as a promising control plane technology in packet-switched IP networks as well as wavelength-switched optical networks. For the purpose of applying software programmable feature to future optical networks, we propose an OpenFlow-based control plane in Flexi-Grid optical networks. Experimental results demonstrate its feasibility of dynamic lightpath establishment and adjustment via extended OpenFlow protocol. Wireshark captures of the signaling procedure are printed out. Additionally, the overall latency including signaling and hardware for lightpath setup and adjustment is also reported. PMID:23389119

  6. A Java commodity grid kit.

    SciTech Connect

    von Laszewski, G.; Foster, I.; Gawor, J.; Lane, P.; Mathematics and Computer Science

    2001-07-01

    In this paper we report on the features of the Java Commodity Grid Kit. The Java CoG Kit provides middleware for accessing Grid functionality from the Java framework. Java CoG Kit middleware is general enough to design a variety of advanced Grid applications with quite different user requirements. Access to the Grid is established via Globus protocols, allowing the Java CoG Kit to communicate also with the C Globus reference implementation. Thus, the Java CoG Kit provides Grid developers with the ability to utilize the Grid, as well as numerous additional libraries and frameworks developed by the Java community to enable network, Internet, enterprise, and peer-to peer computing. A variety of projects have successfully used the client libraries of the Java CoG Kit to access Grids driven by the C Globus software. In this paper we also report on the efforts to develop server side Java CoG Kit components. As part of this research we have implemented a prototype pure Java resource management system that enables one to run Globus jobs on platforms on which a Java virtual machine is supported, including Windows NT machines.

  7. A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system

    SciTech Connect

    Chaouachi, Aymen; Kamel, Rashad M.; Nagasaka, Ken

    2010-12-15

    This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology, comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P and O) algorithm dispositive. (author)

  8. The two-double mechanism of grid GIS resource discovery based on P2P

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Gao, Jinsong; Meng, Lingkui

    2006-10-01

    This paper researches on how to realize fast spatial resource discovery in distributed, heterogeneous Grid GIS environment. The characteristic of spatial data as multi-resource, huge volume, heterogeneous formats and time relativity decides that resource discovery in Grid environment is a very complex and exigent problem. Combining the central control with distributed management technology, this paper supposes a two-double resource discovery mechanism with both distributed resource catalog and dynamic hash table, which is just fit to the spatial data access characteristics that distributed in wide area but concentrated in local area. This method overcomes the single node bottleneck by setting up the dynamic service sections among middle layer metadata servers, and utilizes the improved DHT technology to route queries in high efficiency. With the new method, people multi-attribute resource discovery could be supported that not limited by the special keyword as P2P does. It is helpful to solve the spatial information discovery problem in complex environment, which could also enhance the extendibility and credibility of system.

  9. Different landslide sampling strategies in a grid-based bi-variate statistical susceptibility model

    NASA Astrophysics Data System (ADS)

    Hussin, Haydar Y.; Zumpano, Veronica; Reichenbach, Paola; Sterlacchini, Simone; Micu, Mihai; van Westen, Cees; Bălteanu, Dan

    2016-01-01

    This study had three aims. The first was to assess the performance of the weights-of-evidence (WofE) landslide susceptibility model in areas that are very different in terms of size, geoenvironmental settings, and landslide types. The second was to test the appropriate strategies to sample the mapped landslide polygon. The final aim was to evaluate the performance of the method to changes in the landslide sample size used to train the model. The method was applied to two areas: the Fella River basin (eastern Italian Alps) containing debris flows, and Buzau County (Romanian Carpathians) with shallow landslides. The three landslide sampling strategies used were: (1) the landslide scarp centroid, (2) points populating the scarp on a 50-m grid, and (3) the entire scarp polygon. The highest success rates were obtained when sampling shallow landslides as 50-m grid-points and debris flow scarps as polygons. Prediction rates were highest when using the entire scarp polygon method for both landslide types. The sample size test using the landslide centroids showed that a sample of 104 debris flow scarps was sufficient to predict the remaining 941 debris flows in the Fella River basin, while 161 shallow landslides was the minimum required number to predict the remaining 1451 scarps in Buzau County. Below these landslide sample thresholds, model performance was too low. However, using more landslides than the threshold produced a plateau effect with little to no increase in the model performance rates.

  10. Optimal Operation Method of Smart House by Controllable Loads based on Smart Grid Topology

    NASA Astrophysics Data System (ADS)

    Yoza, Akihiro; Uchida, Kosuke; Yona, Atsushi; Senju, Tomonobu

    2013-08-01

    From the perspective of global warming suppression and depletion of energy resources, renewable energy such as wind generation (WG) and photovoltaic generation (PV) are getting attention in distribution systems. Additionally, all electrification apartment house or residence such as DC smart house have increased in recent years. However, due to fluctuating power from renewable energy sources and loads, supply-demand balancing fluctuations of power system become problematic. Therefore, "smart grid" has become very popular in the worldwide. This article presents a methodology for optimal operation of a smart grid to minimize the interconnection point power flow fluctuations. To achieve the proposed optimal operation, we use distributed controllable loads such as battery and heat pump. By minimizing the interconnection point power flow fluctuations, it is possible to reduce the maximum electric power consumption and the electric cost. This system consists of photovoltaics generator, heat pump, battery, solar collector, and load. In order to verify the effectiveness of the proposed system, MATLAB is used in simulations.

  11. Adjoint-Based, Three-Dimensional Error Prediction and Grid Adaptation

    NASA Technical Reports Server (NTRS)

    Park, Michael A.

    2002-01-01

    Engineering computational fluid dynamics (CFD) analysis and design applications focus on output functions (e.g., lift, drag). Errors in these output functions are generally unknown and conservatively accurate solutions may be computed. Computable error estimates can offer the possibility to minimize computational work for a prescribed error tolerance. Such an estimate can be computed by solving the flow equations and the linear adjoint problem for the functional of interest. The computational mesh can be modified to minimize the uncertainty of a computed error estimate. This robust mesh-adaptation procedure automatically terminates when the simulation is within a user specified error tolerance. This procedure for estimating and adapting to error in a functional is demonstrated for three-dimensional Euler problems. An adaptive mesh procedure that links to a Computer Aided Design (CAD) surface representation is demonstrated for wing, wing-body, and extruded high lift airfoil configurations. The error estimation and adaptation procedure yielded corrected functions that are as accurate as functions calculated on uniformly refined grids with ten times as many grid points.

  12. Simulation of plasma based semiconductor processing using block structured locally refined grids

    SciTech Connect

    Wake, D.D.

    1998-01-01

    We have described a new numerical method for plasma simulation. Calculations have been presented which show that the method is accurate and suggest the regimes in which the method provides savings in CPU time and memory requirements. A steady state simulation of a four centimeter domain was modeled with sheath scale (150 microns) resolution using only 40 grid points. Simulations of semiconductor processing equipment have been performed which imply the usefulness of the method for engineering applications. It is the author`s opinion that these accomplishments represent a significant contribution to plasma simulation and the efficient numerical solution of certain systems of non-linear partial differential equations. More work needs to be done, however, for the algorithm to be of practical use in an engineering environment. Despite our success at avoiding the dielectric relaxation timestep restrictions the algorithm is still conditionally stable and requires timesteps which are relatively small. This represents a prohibitive runtime for steady state solutions on high resolution grids. Current research suggests that these limitations may be overcome and the use of much larger timesteps will be possible.

  13. A wide field-of-view microscope based on holographic focus grid

    NASA Astrophysics Data System (ADS)

    Wu, Jigang; Cui, Xiquan; Zheng, Guoan; Lee, Lap Man; Yang, Changhuei

    2010-02-01

    We have developed a novel microscope technique that can achieve wide field-of-view (FOV) imaging and yet possess resolution that is comparable to conventional microscope. The principle of wide FOV microscope system breaks the link between resolution and FOV magnitude of traditional microscopes. Furthermore, by eliminating bulky optical elements from its design and utilizing holographic optical elements, the wide FOV microscope system is more cost-effective. In our system, a hologram was made to focus incoming collimated beam into a focus grid. The sample is put in the focal plane and the transmissions of the focuses are detected by an imaging sensor. By scanning the incident angle of the incoming beam, the focus grid will scan across the sample and the time-varying transmission can be detected. We can then reconstruct the transmission image of the sample. The resolution of microscopic image is limited by the size of the focus formed by the hologram. The scanning area of each focus spot is determined by the separation of the focus spots and can be made small for fast imaging speed. We have fabricated a prototype system with a 2.4-mm FOV and 1-μm resolution. The prototype system was used to image onion skin cells for a demonstration. The preliminary experiments prove the feasibility of the wide FOV microscope technique, and the possibility of a wider FOV system with better resolution.

  14. Research on Error Modelling and Identification of 3 Axis NC Machine Tools Based on Cross Grid Encoder Measurement

    NASA Astrophysics Data System (ADS)

    Du, Z. C.; Lv, C. F.; Hong, M. S.

    2006-10-01

    A new error modelling and identification method based on the cross grid encoder is proposed in this paper. Generally, there are 21 error components in the geometric error of the 3 axis NC machine tools. However according our theoretical analysis, the squareness error among different guide ways affects not only the translation error component, but also the rotational ones. Therefore, a revised synthetic error model is developed. And the mapping relationship between the error component and radial motion error of round workpiece manufactured on the NC machine tools are deduced. This mapping relationship shows that the radial error of circular motion is the comprehensive function result of all the error components of link, worktable, sliding table and main spindle block. Aiming to overcome the solution singularity shortcoming of traditional error component identification method, a new multi-step identification method of error component by using the Cross Grid Encoder measurement technology is proposed based on the kinematic error model of NC machine tool. Firstly, the 12 translational error components of the NC machine tool are measured and identified by using the least square method (LSM) when the NC machine tools go linear motion in the three orthogonal planes: XOY plane, XOZ plane and YOZ plane. Secondly, the circular error tracks are measured when the NC machine tools go circular motion in the same above orthogonal planes by using the cross grid encoder Heidenhain KGM 182. Therefore 9 rotational errors can be identified by using LSM. Finally the experimental validation of the above modelling theory and identification method is carried out in the 3 axis CNC vertical machining centre Cincinnati 750 Arrow. The entire 21 error components have been successfully measured out by the above method. Research shows the multi-step modelling and identification method is very suitable for 'on machine measurement'.

  15. The effect of job organizational factors on job satisfaction in two automotive industries in Malaysia.

    PubMed

    Dawal, Siti Zawiah Md; Taha, Zahari

    2007-12-01

    A methodology is developed in diagnosing the effect of job organizational factors on job satisfaction in two automotive industries in Malaysia. One hundred and seventy male subjects of age 18-40 years with the mean age of 26.8 and standard deviation (SD) of 5.3 years and the mean work experience of 6.5 years and SD of 4.9 years took part in the study. Five job organizational factors were tested in the study including job rotation, work method, training, problem solving and goal setting. A job organization questionnaire was designed and was based on respondents' perception in relation to job satisfaction. The results showed that job organization factors were significantly related to job satisfaction. Job rotation, work method, training and goal setting showed strong correlation with job satisfaction while problem solving had intermediate correlation in the first automotive industry. On the other hand, most job organization factors showed intermediate correlation with job satisfaction in the second automotive industry except the training factor which had low correlation with job satisfaction. These results highlight that job rotation, work methods, problem solving and goal setting are outstanding factors in the study of job satisfaction for automotive industries. PMID:18572797

  16. A grid spacing control technique for algebraic grid generation methods

    NASA Technical Reports Server (NTRS)

    Smith, R. E.; Kudlinski, R. A.; Everton, E. L.

    1982-01-01

    A technique which controls the spacing of grid points in algebraically defined coordinate transformations is described. The technique is based on the generation of control functions which map a uniformly distributed computational grid onto parametric variables defining the physical grid. The control functions are smoothed cubic splines. Sets of control points are input for each coordinate directions to outline the control functions. Smoothed cubic spline functions are then generated to approximate the input data. The technique works best in an interactive graphics environment where control inputs and grid displays are nearly instantaneous. The technique is illustrated with the two-boundary grid generation algorithm.

  17. Job Clusters as Perceived by High School Students.

    ERIC Educational Resources Information Center

    Vivekananthan, Pathe S.; Weber, Larry J.

    Career awareness is described as the manner by which students cluster jobs. The clustering of jobs was based on the students perceptions of similarities among job titles. Interest inventories were used as the bases to select 36 job titles. Seventy-eight high school students sorted the stimuli into several categories. The multidimensional scaling…

  18. An efficient overset grid technique for computational fluid dynamics based on method coupling and feature tracking

    NASA Astrophysics Data System (ADS)

    Snyder, Richard Dean

    A new overset grid method that permits different fluid models to be coupled in a single simulation is presented. High fidelity methods applied in regions of complex fluid flow can be coupled with simpler methods to save computer simulation time without sacrificing accuracy. A mechanism for automatically moving grid zones to track unsteady flow features complements the method. The coupling method is quite general and will support a variety of governing equations and discretization methods. Furthermore, there are no restrictions on the geometrical layout of the coupling. Four sets of governing equations have been implemented to date: the Navier-Stokes, full Euler, Cartesian Euler, and linearized Euler equations. In all cases, the MacCormack explicit predictor-corrector scheme was used to discretize the equations. The overset coupling technique was applied to a variety of configurations in one, two, and three dimensions. Steady configurations include the flow over a bump, a NACA0012 airfoil, and an F-5 wing. Unsteady configurations include two aeroacoustic benchmark problems and a NACA64A006 airfoil with an oscillating simple flap. Solutions obtained with the overset coupling method are compared with other numerical results and, when available, with experimental data. Results from the NACA0012 airfoil and F-5 wing show a 30% reduction in simulation time without a loss of accuracy when the linearized Euler equations were coupled with the full Euler equations. A 25% reduction was recorded for the NACA0012 airfoil when the Euler equations were solved together with the Navier-Stokes equations. Feature tracking was used in the aeroacoustic benchmark and NACA64A006 problems and was found to be very effective in minimizing the dispersion error in the vicinity of shocks. The computer program developed to implement the overset grid method coupling technique was written entirely in C++, an object-oriented programming language. The principles of object-oriented programming were

  19. Impact of Heterogeneity-Based Dose Calculation Using a Deterministic Grid-Based Boltzmann Equation Solver for Intracavitary Brachytherapy

    SciTech Connect

    Mikell, Justin K.; Klopp, Ann H.; Gonzalez, Graciela M.N.; Kisling, Kelly D.; Price, Michael J.; Berner, Paula A.; Eifel, Patricia J.; Mourtada, Firas

    2012-07-01

    Purpose: To investigate the dosimetric impact of the heterogeneity dose calculation Acuros (Transpire Inc., Gig Harbor, WA), a grid-based Boltzmann equation solver (GBBS), for brachytherapy in a cohort of cervical cancer patients. Methods and Materials: The impact of heterogeneities was retrospectively assessed in treatment plans for 26 patients who had previously received {sup 192}Ir intracavitary brachytherapy for cervical cancer with computed tomography (CT)/magnetic resonance-compatible tandems and unshielded colpostats. The GBBS models sources, patient boundaries, applicators, and tissue heterogeneities. Multiple GBBS calculations were performed with and without solid model applicator, with and without overriding the patient contour to 1 g/cm{sup 3} muscle, and with and without overriding contrast materials to muscle or 2.25 g/cm{sup 3} bone. Impact of source and boundary modeling, applicator, tissue heterogeneities, and sensitivity of CT-to-material mapping of contrast were derived from the multiple calculations. American Association of Physicists in Medicine Task Group 43 (TG-43) guidelines and the GBBS were compared for the following clinical dosimetric parameters: Manchester points A and B, International Commission on Radiation Units and Measurements (ICRU) report 38 rectal and bladder points, three and nine o'clock, and {sub D2cm3} to the bladder, rectum, and sigmoid. Results: Points A and B, D{sub 2} cm{sup 3} bladder, ICRU bladder, and three and nine o'clock were within 5% of TG-43 for all GBBS calculations. The source and boundary and applicator account for most of the differences between the GBBS and TG-43 guidelines. The D{sub 2cm3} rectum (n = 3), D{sub 2cm3} sigmoid (n = 1), and ICRU rectum (n = 6) had differences of >5% from TG-43 for the worst case incorrect mapping of contrast to bone. Clinical dosimetric parameters were within 5% of TG-43 when rectal and balloon contrast were mapped to bone and radiopaque packing was not overridden. Conclusions

  20. Impact of heterogeneity-based dose calculation using a deterministic grid-based Boltzmann equation solver for intracavitary brachytherapy

    PubMed Central

    Mikell, Justin K.; Klopp, Ann H.; Gonzalez, Graciela M. N.; Kisling, Kelly D.; Price, Michael J.; Berner, Paula A.; Eifel, Patricia J.; Mourtada, and Firas

    2014-01-01

    Purpose To investigate the dosimetric impact of the heterogeneity dose calculation Acuros, a grid-based Boltzmann equation solver (GBBS), for brachytherapy in a cohort of cervical cancer patients. Methods and Materials The impact of heterogeneities was retrospectively assessed in treatment plans for 26 patients who had previously received 192Ir intracavitary brachytherapy for cervical cancer with computed tomography (CT)/magnetic resonance (MR)-compatible tandems and unshielded colpostats. The GBBS models sources, patient boundaries, applicators, and tissue heterogeneities. Multiple GBBS calculations were performed: with and without solid model applicator, with and without overriding the patient contour to 1g/cc muscle, and with and without overriding contrast materials to muscle or 2.25 g/cc bone. Impact of source and boundary modeling, applicator, tissue heterogeneities, and sensitivity of CT-to-material mapping of contrast were derived from the multiple calculations. TG-43 and the GBBS were compared for the following clinical dosimetric parameters: Manchester points A and B, ICRU report #38 rectal and bladder points, three and nine o'clock, and D2cc to the bladder, rectum, and sigmoid. Results Points A, B, D2cc bladder, ICRU bladder, and three and nine o'clock were within 5% of TG-43 for all GBBS calculations. The source and boundary and applicator account for most of the differences between the GBBS and TG-43. The D2cc rectum (n=3), D2cc sigmoid (n=1), and ICRU rectum (n=6) had differences > 5% from TG-43 for the worst case incorrect mapping of contrast to bone. Clinical dosimetric parameters were within 5% of TG-43 when rectal and balloon contrast mapped to bone and radiopaque packing was not overridden. Conclusions The GBBS has minimal impact on clinical parameters for this cohort of GYN patients with unshielded applicators. The incorrect mapping of rectal and balloon contrast does not have a significant impact on clinical parameters. Rectal parameters may be

  1. Full time and full coverage global observation system for ecological monitoring base on MEO satellite grid constellation

    NASA Astrophysics Data System (ADS)

    You, Rui; Liu, Shuhao

    Human life more and more rely on earth environment and atmosphere, environmental information required by space based monitor is a crucial importance, although GEO and polar weather satellite in orbit by several countries, but it can’t monitor all zone of earth with real time. This paper present a conception proposal which can realize stable, continue and real time observation for any zone(include arctic and ant-arctic zone) of earth and its atmosphere, it base on walker constellation in 20000Km high medium orbit with 24 satellites, payloads configuration with infrared spectrometer, visible camera, ultraviolet ray camera, millimeter wave radiometer, leaser radar, spatial resolution are 1km@ infrared,0.5km@ visible optical. This satellite of grid constellation can monitor any zone of global with 1-3hours retrial observation cycles. Air pollution, ozone of atmosphere, earth surface pollution, desert storm, water pollution, vegetation change, natural disasters, man-made emergency situations, agriculture and climate change can monitor by this MEO satellite grid constellation. This system is a international space infrastructure, use of mature technologies and products, can build by co-operation with multi countries.

  2. A China-US collaborative effort to build a web-based grid computational environment for geodynamics

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Shi, Y.; Liu, M.; Wu, Z.; Li, Q.

    2005-12-01

    Information technology is causing a revolution in geosciences research: various cyberinfrastructures now provide easy access to vast amount of multidisciplinary data; low-cost computer clusters and grids offer unprecedented computing power. Geodynamics modeling, which is to turn data into knowledge and understanding, plays a key role in this revolution. However, developing proper computer codes to take full advantage of the data and hardware resources is beyond most users. To address this challenge, we are developing a web-based community modeling environment that will allow users to generate and run finite element codes on parallel computers by providing only the basic mathematical description of the physical processes to be modeled. We have developed preliminary modules for a variety of geodynamic problems, including global mental convection and lithospheric deformation. Collaborating with GEON and PRAGMA, we are adapting the system for grid computing and developing a web-based service. In this presentation we will introduce this modeling environment, show some examples, and discuss some of the challenges we are facing.

  3. Comparisons of Ship-based Observations of Air-Sea Energy Budgets with Gridded Flux Products

    NASA Astrophysics Data System (ADS)

    Fairall, C. W.; Blomquist, B.

    2015-12-01

    Air-surface interactions are characterized directly by the fluxes of momentum, heat, moisture, trace gases, and particles near the interface. In the last 20 years advances in observation technologies have greatly expanded the database of high-quality direct (covariance) turbulent flux and irradiance observations from research vessels. In this paper, we will summarize observations from the NOAA sea-going flux system from participation in various field programs executed since 1999 and discuss comparisons with several gridded flux products. We will focus on comparisons of turbulent heat fluxes and solar and IR radiative fluxes. The comparisons are done for observing programs in the equatorial Pacific and Indian Oceans and SE subtropical Pacific.

  4. Grid-based Parallel Data Streaming Implemented for the Gyrokinetic Toroidal Code

    SciTech Connect

    S. Klasky; S. Ethier; Z. Lin; K. Martins; D. McCune; R. Samtaney

    2003-09-15

    We have developed a threaded parallel data streaming approach using Globus to transfer multi-terabyte simulation data from a remote supercomputer to the scientist's home analysis/visualization cluster, as the simulation executes, with negligible overhead. Data transfer experiments show that this concurrent data transfer approach is more favorable compared with writing to local disk and then transferring this data to be post-processed. The present approach is conducive to using the grid to pipeline the simulation with post-processing and visualization. We have applied this method to the Gyrokinetic Toroidal Code (GTC), a 3-dimensional particle-in-cell code used to study microturbulence in magnetic confinement fusion from first principles plasma theory.

  5. RNAVLab: A virtual laboratory for studying RNA secondary structures based on grid computing technology

    PubMed Central

    Taufer, Michela; Leung, Ming-Ying; Solorio, Thamar; Licon, Abel; Mireles, David; Araiza, Roberto; Johnson, Kyle L.

    2009-01-01

    As ribonucleic acid (RNA) molecules play important roles in many biological processes including gene expression and regulation, their secondary structures have been the focus of many recent studies. Despite the computing power of supercomputers, computationally predicting secondary structures with thermodynamic methods is still not feasible when the RNA molecules have long nucleotide sequences and include complex motifs such as pseudoknots. This paper presents RNAVLab (RNA Virtual Laboratory), a virtual laboratory for studying RNA secondary structures including pseudoknots that allows scientists to address this challenge. Two important case studies show the versatility and functionalities of RNAVLab. The first study quantifies its capability to rebuild longer secondary structures from motifs found in systematically sampled nucleotide segments. The extensive sampling and predictions are made feasible in a short turnaround time because of the grid technology used. The second study shows how RNAVLab allows scientists to study the viral RNA genome replication mechanisms used by members of the virus family Nodaviridae. PMID:19885376

  6. Multigrid-based simulation code for mantle convection in spherical shell using Yin Yang grid

    NASA Astrophysics Data System (ADS)

    Kameyama, Masanori; Kageyama, Akira; Sato, Tetsuya

    2008-12-01

    A new simulation code of mantle convection in a three-dimensional spherical shell is presented. Major innovation of the code comes from an combination of two numerical techniques, namely Yin-Yang grid and ACuTE algorithm, which we had developed for large-scale simulations of solid earth sciences. Benchmark comparisons for the steady convection for low Rayleigh numbers ( Ra) with previous calculations revealed that accurate results are successfully reproduced not only for isoviscous cases but also for the cases where the mild temperature-dependence of viscosity is included. We also demonstrated that our code can reproduce the change in convective flow patterns into the "sluggish-lid" regime with increasing the viscosity variation rη up to 104.

  7. Magnetic field extraction of trap-based electron beams using a high-permeability grid

    NASA Astrophysics Data System (ADS)

    Hurst, N. C.; Danielson, J. R.; Surko, C. M.

    2015-07-01

    A method to form high quality electrostatically guided lepton beams is explored. Test electron beams are extracted from tailored plasmas confined in a Penning-Malmberg trap. The particles are then extracted from the confining axial magnetic field by passing them through a high magnetic permeability grid with radial tines (a so-called "magnetic spider"). An Einzel lens is used to focus and analyze the beam properties. Numerical simulations are used to model non-adiabatic effects due to the spider, and the predictions are compared with the experimental results. Improvements in beam quality are discussed relative to the use of a hole in a high permeability shield (i.e., in lieu of the spider), and areas for further improvement are described.

  8. Magnetic field extraction of trap-based electron beams using a high-permeability grid

    SciTech Connect

    Hurst, N. C.; Danielson, J. R.; Surko, C. M.

    2015-07-15

    A method to form high quality electrostatically guided lepton beams is explored. Test electron beams are extracted from tailored plasmas confined in a Penning-Malmberg trap. The particles are then extracted from the confining axial magnetic field by passing them through a high magnetic permeability grid with radial tines (a so-called “magnetic spider”). An Einzel lens is used to focus and analyze the beam properties. Numerical simulations are used to model non-adiabatic effects due to the spider, and the predictions are compared with the experimental results. Improvements in beam quality are discussed relative to the use of a hole in a high permeability shield (i.e., in lieu of the spider), and areas for further improvement are described.

  9. Inspection Robot Based Mobile Sensing and Power Line Tracking for Smart Grid.

    PubMed

    Byambasuren, Bat-Erdene; Kim, Donghan; Oyun-Erdene, Mandakh; Bold, Chinguun; Yura, Jargalbaatar

    2016-01-01

    Smart sensing and power line tracking is very important in a smart grid system. Illegal electricity usage can be detected by remote current measurement on overhead power lines using an inspection robot. There is a need for accurate detection methods of illegal electricity usage. Stable and correct power line tracking is a very prominent issue. In order to correctly track and make accurate measurements, the swing path of a power line should be previously fitted and predicted by a mathematical function using an inspection robot. After this, the remote inspection robot can follow the power line and measure the current. This paper presents a new power line tracking method using parabolic and circle fitting algorithms for illegal electricity detection. We demonstrate the effectiveness of the proposed tracking method by simulation and experimental results. PMID:26907274

  10. Regional study on investment for transmission infrastructure in China based on the State Grid data

    NASA Astrophysics Data System (ADS)

    Wei, Wendong; Wu, Xudong; Wu, Xiaofang; Xi, Qiangmin; Ji, Xi; Li, Guoping

    2016-06-01

    Transmission infrastructure is an integral component of safeguarding the stability of electricity delivery. However, existing studies of transmission infrastructure mostly rely on a simple review of the network, while the analysis of investments remains rudimentary. This study conducted the first regionally focused analysis of investments in transmission infrastructure in China to help optimize its structure and reduce investment costs. Using State Grid data, the investment costs, under various voltages, for transmission lines and transformer substations are calculated. By analyzing the regional profile of cumulative investment in transmission infrastructure, we assess correlations between investment, population, and economic development across the regions. The recent development of ultra-high-voltage transmission networks will provide policy-makers new options for policy development.

  11. Analysis of cascading failure in electric grid based on power flow entropy

    NASA Astrophysics Data System (ADS)

    Bao, Z. J.; Cao, Y. J.; Wang, G. Z.; Ding, L. J.

    2009-08-01

    Large-scale blackouts are an intrinsic drawback of electric power transmission grids. Here we propose a concept of power flow entropy to quantify the overall heterogeneity of load distribution and then investigate the relationship between the power flow entropy and cascading failure. Simulation results, from the small-world 300-node test system and the IEEE 300-bus system, show that the power flow entropy has close relations with the cascading failure in terms of both the dynamic propagation course and the static blackout size. Particularly, at the early stage of failure spreading the potential large blackout can be identified according to the power flow entropy. The power flow entropy can serve as an index not only for long-term planning, but also for short-term operational defense to large-scale blackouts.

  12. Inspection Robot Based Mobile Sensing and Power Line Tracking for Smart Grid

    PubMed Central

    Byambasuren, Bat-erdene; Kim, Donghan; Oyun-Erdene, Mandakh; Bold, Chinguun; Yura, Jargalbaatar

    2016-01-01

    Smart sensing and power line tracking is very important in a smart grid system. Illegal electricity usage can be detected by remote current measurement on overhead power lines using an inspection robot. There is a need for accurate detection methods of illegal electricity usage. Stable and correct power line tracking is a very prominent issue. In order to correctly track and make accurate measurements, the swing path of a power line should be previously fitted and predicted by a mathematical function using an inspection robot. After this, the remote inspection robot can follow the power line and measure the current. This paper presents a new power line tracking method using parabolic and circle fitting algorithms for illegal electricity detection. We demonstrate the effectiveness of the proposed tracking method by simulation and experimental results. PMID:26907274

  13. GaInN-based light emitting diodes embedded with wire grid polarizers

    NASA Astrophysics Data System (ADS)

    Cho, Jaehee; Meyaard, David S.; Ma, Ming; Schubert, E. Fred

    2015-02-01

    The use of liquid crystal displays (LCDs) has become prevalent in our modern, technology driven society. We demonstrate a linearly polarized GaInN light-emitting diode (LED) embedded with a wire-grid polarizer (WGP). A derivation of rigorous coupled-wave analysis is given; starting from Maxwell’s equations and finishing by matching the boundary conditions in the grating and other regions of interest. Simulated results are shown for various grating parameters, including different metals used for the grating and the metal-line dimensions. An LED fabrication process is developed for demonstrating WGP-LEDs. A clear polarization preference for the light coming out of the WGP-LED is experimentally demonstrated with a polarization ratio over 0.90, which is in good agreement with simulation results.

  14. Association rule mining on grid monitoring data to detect error sources

    NASA Astrophysics Data System (ADS)

    Maier, Gerhild; Schiffers, Michael; Kranzlmueller, Dieter; Gaidioz, Benjamin

    2010-04-01

    Error handling is a crucial task in an infrastructure as complex as a grid. There are several monitoring tools put in place, which report failing grid jobs including exit codes. However, the exit codes do not always denote the actual fault, which caused the job failure. Human time and knowledge is required to manually trace back errors to the real fault underlying an error. We perform association rule mining on grid job monitoring data to automatically retrieve knowledge about the grid components' behavior by taking dependencies between grid job characteristics into account. Therewith, problematic grid components are located automatically and this information - expressed by association rules - is visualized in a web interface. This work achieves a decrease in time for fault recovery and yields an improvement of a grid's reliability.

  15. Wireless Communications in Smart Grid

    NASA Astrophysics Data System (ADS)

    Bojkovic, Zoran; Bakmaz, Bojan

    Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.

  16. Grid oscillators

    NASA Technical Reports Server (NTRS)

    Popovic, Zorana B.; Kim, Moonil; Rutledge, David B.

    1988-01-01

    Loading a two-dimensional grid with active devices offers a means of combining the power of solid-state oscillators in the microwave and millimeter-wave range. The grid structure allows a large number of negative resistance devices to be combined. This approach is attractive because the active devices do not require an external locking signal, and the combining is done in free space. In addition, the loaded grid is a planar structure amenable to monolithic integration. Measurements on a 25-MESFET grid at 9.7 GHz show power-combining and frequency-locking without an external locking signal, with an ERP of 37 W. Experimental far-field patterns agree with theoretical results obtained using reciprocity.

  17. Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams

    NASA Astrophysics Data System (ADS)

    Vassiliev, Oleg N.; Wareing, Todd A.; McGhee, John; Failla, Gregory; Salehpour, Mohammad R.; Mourtada, Firas

    2010-02-01

    A new grid-based Boltzmann equation solver, Acuros™, was developed specifically for performing accurate and rapid radiotherapy dose calculations. In this study we benchmarked its performance against Monte Carlo for 6 and 18 MV photon beams in heterogeneous media. Acuros solves the coupled Boltzmann transport equations for neutral and charged particles on a locally adaptive Cartesian grid. The Acuros solver is an optimized rewrite of the general purpose Attila© software, and for comparable accuracy levels, it is roughly an order of magnitude faster than Attila. Comparisons were made between Monte Carlo (EGSnrc) and Acuros for 6 and 18 MV photon beams impinging on a slab phantom comprising tissue, bone and lung materials. To provide an accurate reference solution, Monte Carlo simulations were run to a tight statistical uncertainty (σ ≈ 0.1%) and fine resolution (1-2 mm). Acuros results were output on a 2 mm cubic voxel grid encompassing the entire phantom. Comparisons were also made for a breast treatment plan on an anthropomorphic phantom. For the slab phantom in regions where the dose exceeded 10% of the maximum dose, agreement between Acuros and Monte Carlo was within 2% of the local dose or 1 mm distance to agreement. For the breast case, agreement was within 2% of local dose or 2 mm distance to agreement in 99.9% of voxels where the dose exceeded 10% of the prescription dose. Elsewhere, in low dose regions, agreement for all cases was within 1% of the maximum dose. Since all Acuros calculations required less than 5 min on a dual-core two-processor workstation, it is efficient enough for routine clinical use. Additionally, since Acuros calculation times are only weakly dependent on the number of beams, Acuros may ideally be suited to arc therapies, where current clinical algorithms may incur long calculation times.

  18. Using remote sensing and grid-based meteorological datasets for regional soybean crop yield prediction and crop monitoring

    NASA Astrophysics Data System (ADS)

    Mali, Preeti

    Regional crop yield estimations using crop models is a national priority due to its contributions to crop security assessment and food pricing policies. Many of these crop yield assessments are performed using time-consuming, intensive field surveys. This research was initiated to test the applicability of remote sensing and grid-based meteorological model data for providing improved and efficient predictive capabilities for crop bio-productivity. The soybean prediction model (Sinclair model) used in this research, requires daily data inputs to simulate yield which are temperature, precipitation, solar radiation, day length initialization of certain soil moisture parameters for each model run. The traditional meteorological datasets were compared with simulated South American Land Data Assimilation System (SALDAS) meteorological datasets for Sinclair model runs and for initializing soil moisture inputs. Considering the fact that grid-based meteorological data has the resolution of 1/8th of a degree, the estimations demonstrated a reasonable accuracy level and showed promise for increase in efficiency for regional level yield predictions. The research tested daily composited Normalized Difference Vegetation Index (NDVI) from Moderate Resolution Imaging Spectroradiometer (MODIS) sensor (both AQUA and TERRA platform) and simulated Visible/Infrared Imager Radiometer Suite (VIIRS) sensor product (a new sensor planned to be launched in the near future) for crop growth and development based on phenological events. The AQUA and TERRA fusion based daily MODIS NDVI was utilized to develop a planting date estimation method. The results have shown that daily MODIS composited NDVI values have the capability for enhanced monitoring of soybean crop growth and development. The method was able to predict planting date within +/-3.4 days. A geoprocessing framework for extracting data from the grid data sources was developed. Overall, this study was able to demonstrate the utility of

  19. RBioCloud: A Light-Weight Framework for Bioconductor and R-based Jobs on the Cloud.

    PubMed

    Varghese, Blesson; Patel, Ishan; Barker, Adam

    2015-01-01

    Large-scale ad hoc analytics of genomic data is popular using the R-programming language supported by over 700 software packages provided by Bioconductor. More recently, analytical jobs are benefitting from on-demand computing and storage, their scalability and their low maintenance cost, all of which are offered by the cloud. While biologists and bioinformaticists can take an analytical job and execute it on their personal workstations, it remains challenging to seamlessly execute the job on the cloud infrastructure without extensive knowledge of the cloud dashboard. How analytical jobs can not only with minimum effort be executed on the cloud, but also how both the resources and data required by the job can be managed is explored in this paper. An open-source light-weight framework for executing R-scripts using Bioconductor packages, referred to as `RBioCloud', is designed and developed. RBioCloud offers a set of simple command-line tools for managing the cloud resources, the data and the execution of the job. Three biological test cases validate the feasibility of RBioCloud. The framework is available from http://www.rbiocloud.com. PMID:26357328

  20. Grid infrastructure to support science portals for large scale instruments.

    SciTech Connect

    von Laszewski, G.; Foster, I.

    1999-09-29

    Soon, a new generation of scientific workbenches will be developed as a collaborative effort among various research institutions in the US. These scientific workbenches will be accessed in the Web via portals. Reusable components are needed to build such portals for different scientific disciplines, allowing uniform desktop access to remote resources. Such components will include tools and services enabling easy collaboration, job submission, job monitoring, component discovery, and persistent object storage. Based on experience gained from Grand Challenge applications for large-scale instruments, we demonstrate how Grid infrastructure components can be used to support the implementation of science portals. The availability of these components will simplify the prototype implementation of a common portal architecture.