Science.gov

Sample records for based hybrid system

  1. A hybrid base isolation system

    SciTech Connect

    Hart, G.C.; Lobo, R.F.; Srinivasan, M.; Asher, J.W.

    1995-12-01

    This paper proposes a new analysis procedure for hybrid base isolation buildings when considering the displacement response of a base isolated building to wind loads. The system is considered hybrid because of the presence of viscous dampers in the building above the isolator level. The proposed analysis approach incorporates a detailed site specific wind study combined with a dynamic nonlinear analysis of the building response.

  2. Model-Based Prognostics of Hybrid Systems

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Roychoudhury, Indranil; Bregon, Anibal

    2015-01-01

    Model-based prognostics has become a popular approach to solving the prognostics problem. However, almost all work has focused on prognostics of systems with continuous dynamics. In this paper, we extend the model-based prognostics framework to hybrid systems models that combine both continuous and discrete dynamics. In general, most systems are hybrid in nature, including those that combine physical processes with software. We generalize the model-based prognostics formulation to hybrid systems, and describe the challenges involved. We present a general approach for modeling hybrid systems, and overview methods for solving estimation and prediction in hybrid systems. As a case study, we consider the problem of conflict (i.e., loss of separation) prediction in the National Airspace System, in which the aircraft models are hybrid dynamical systems.

  3. A hybrid MEMS-based microfluidic system for cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Ortiz, Pedro; Keegan, Neil; Spoors, Julia; Hedley, John; Harris, Alun; Burdess, Jim; Burnett, Richard; Velten, Thomas; Biehl, Margit; Knoll, Thorsten; Haberer, Werner; Solomon, Matthew; Campitelli, Andrew; McNeil, Calum

    2008-12-01

    A microfluidic system for cancer diagnosis based around a core MEMS biosensor technology is presented in this paper. The principle of the MEMS biosensor is introduced and the functionalisation strategy for cancer marker recognition is described. In addition, the successful packaging and integration of functional MEMS biosensor devices are reported herein. This ongoing work represents one of the first hybrid systems to integrate a PCB packaged silicon MEMS device into a disposable microfluidic cartridge.

  4. Hidden Behavior Prediction of Complex Systems Based on Hybrid Information.

    PubMed

    Zhou, Zhi-Jie; Hu, Chang-Hua; Zhang, Bang-Cheng; Xu, Dong-Ling; Chen, Yu-Wang

    2013-04-01

    It is important to predict both observable and hidden behaviors in complex engineering systems. However, compared with observable behavior, it is often difficult to establish a forecasting model for hidden behavior. The existing methods for predicting the hidden behavior cannot effectively and simultaneously use the hybrid information with uncertainties that include qualitative knowledge and quantitative data. Although belief rule base (BRB) has been employed to predict the observable behavior using the hybrid information with uncertainties, it is still not applicable to predict the hidden behavior directly. As such, in this paper, a new BRB-based model is proposed to predict the hidden behavior. In the proposed BRB-based model, the initial values of parameters are usually given by experts, thus some of them may not be accurate, which can lead to inaccurate prediction results. In order to solve the problem, a parameter estimation algorithm for training the parameters of the forecasting model is further proposed on the basis of maximum likelihood algorithm. Using the hybrid information with uncertainties, the proposed model can combine together with the parameter estimation algorithm and improve the forecasting precision in an integrated and effective manner. A case study is conducted to demonstrate the capability and potential applications of the proposed forecasting model with the parameter estimation algorithm. PMID:22907969

  5. An online hybrid BCI system based on SSVEP and EMG

    NASA Astrophysics Data System (ADS)

    Lin, Ke; Cinetto, Andrea; Wang, Yijun; Chen, Xiaogang; Gao, Shangkai; Gao, Xiaorong

    2016-04-01

    Objective. A hybrid brain-computer interface (BCI) is a device combined with at least one other communication system that takes advantage of both parts to build a link between humans and machines. To increase the number of targets and the information transfer rate (ITR), electromyogram (EMG) and steady-state visual evoked potential (SSVEP) were combined to implement a hybrid BCI. A multi-choice selection method based on EMG was developed to enhance the system performance. Approach. A 60-target hybrid BCI speller was built in this study. A single trial was divided into two stages: a stimulation stage and an output selection stage. In the stimulation stage, SSVEP and EMG were used together. Every stimulus flickered at its given frequency to elicit SSVEP. All of the stimuli were divided equally into four sections with the same frequency set. The frequency of each stimulus in a section was different. SSVEPs were used to discriminate targets in the same section. Different sections were classified using EMG signals from the forearm. Subjects were asked to make different number of fists according to the target section. Canonical Correlation Analysis (CCA) and mean filtering was used to classify SSVEP and EMG separately. In the output selection stage, the top two optimal choices were given. The first choice with the highest probability of an accurate classification was the default output of the system. Subjects were required to make a fist to select the second choice only if the second choice was correct. Main results. The online results obtained from ten subjects showed that the mean accurate classification rate and ITR were 81.0% and 83.6 bits min-1 respectively only using the first choice selection. The ITR of the hybrid system was significantly higher than the ITR of any of the two single modalities (EMG: 30.7 bits min-1, SSVEP: 60.2 bits min-1). After the addition of the second choice selection and the correction task, the accurate classification rate and ITR was

  6. Hybrid diagnostic system: beacon-based exception analysis for multimissions - Livingstone integration

    NASA Technical Reports Server (NTRS)

    Park, Han G.; Cannon, Howard; Bajwa, Anupa; Mackey, Ryan; James, Mark; Maul, William

    2004-01-01

    This paper describes the initial integration of a hybrid reasoning system utilizing a continuous domain feature-based detector, Beacon-based Exceptions Analysis for Multimissions (BEAM), and a discrete domain model-based reasoner, Livingstone.

  7. Hybrid resist systems based on α-substituted acrylate copolymers

    NASA Astrophysics Data System (ADS)

    Ito, Hiroshi; Sundberg, Linda K.; Bozano, Luisa; Lofano, Elizabeth M.; Yamanaka, Kazuhiro; Terui, Yoshiharu; Fujiwara, Masaki

    2009-03-01

    Classical electron-beam resists such as poly(methyl methacrylate) (PMMA) and Nippon Zeon's ZEP function as high resolution and low roughness positive resists on the basis of radiation induced main chain scission to reduce the molecular weight while chemical amplification resists utilized in device manufacturing function on the basis of acidcatalyzed deprotection to change the polarity. In an attempt to increase the resolution and reduce the line roughness of chemical amplification resists, we prepared copolymers that undergo radiation induced main chain scission and acidcatalyzed deprotection. In another word, we wanted to increase the sensitivity of the PMMA resist by incorporating the acid-catalyzed deprotection mechanism in polymers that undergo main chain scission, maintaining the high resolution and low roughness of PMMA. To synthesize such hybrid resist polymers, we selected α-substituted acrylates and α- substituted styrenes. The former included methyl methacrylate (MMA), t-butyl methacrylate (TBMA), methyl α- fluoroacrylate (MFA), t-butyl α-fluoroacrylate (TBFA), and t-butyl α-trifluoromethylacrylate (TBTFMA) and the latter α-methylstyrene (αMEST), α-methyleneindane (αMEIN), and α-methylenetetralin (αMETL). The α-substituted tbutyl acrylic esters were copolymerized with the methyl esters and also with α-substituted styrenic monomers using 2, 2'-azobis(isobutyronitrile) (AIBN). Hybrid resists were formulated by adding a photochemical acid generator and a base quencher to the copolymers and developers were selected by studying the dissolution behavior of unexposed and 254 nm exposed resist films using a quartz crystal microbalance (QCM). In addition to the difference in the imaging mechanism, PMMA and ZEP differ from the chemical amplification resists in developers; organic solvent vs. aqueous base. We were interested in looking also into the influence of the developer on the lithographic performance. Contrast curves were generated by exposing

  8. A tearing-based hybrid parallel banded linear system solver

    NASA Astrophysics Data System (ADS)

    Naumov, Maxim; Sameh, Ahmed H.

    2009-04-01

    A new parallel algorithm for the solution of banded linear systems is proposed. The scheme tears the coefficient matrix into several overlapped independent blocks in which the size of the overlap is equal to the system's bandwidth. A corresponding splitting of the right-hand side is also provided. The resulting independent, and smaller size, linear systems are solved under the constraint that the solutions corresponding to the overlap regions are identical. This results in a linear system whose size is proportional to the sum of the overlap regions which we refer to as the "balance" system. We propose a solution strategy that does not require obtaining this "balance" system explicitly. Once the balance system is solved, retrieving the rest of the solution can be realized with almost perfect parallelism. Our proposed algorithm is a hybrid scheme that combines direct and iterative methods for solving a single banded system of linear equations on parallel architectures. It has broad applications in finite-element analysis, particularly as a parallel solver of banded preconditioners that can be used in conjunction with outer Krylov iterative schemes.

  9. Bidirectional hybrid PM-based RoF and VCSEL-based VLLC system.

    PubMed

    Li, Chung-Yi; Lu, Hai-Han; Chang, Ching-Hung; Lin, Chun-Yu; Wu, Po-Yi; Zheng, Jun-Ren; Lin, Chia-Rung

    2014-06-30

    A bidirectional hybrid phase modulation (PM)-based radio-over-fiber (RoF) and vertical cavity surface emitting laser (VCSEL)-based visible laser light communication (VLLC) systems employing injection-locked VCSEL-based PM-to-intensity modulation (IM) converters and optical interleavers (ILs) is proposed and demonstrated. To be the first one of using injection-locked VCSEL-based PM-to-IM converters and optical ILs in such bidirectional hybrid RoF and VLLC systems, the downstream light is successfully phase-remodulated with RoF signal for up-link transmission. Through a serious investigation in systems, bit error rate (BER) and eye diagram perform brilliantly over a 40-km single-mode fiber (SMF) transport and a 12-m free-space transmission. Such a bidirectional hybrid RoF and VLLC system would be very attractive for the integration of fiber backbone and in-door networks to provide broadband integrated services, including Internet and telecommunication services. PMID:24977870

  10. A hybrid lightwave transport system based on a BLS with an OSNR enhancement scheme

    NASA Astrophysics Data System (ADS)

    Ying, Cheng-Ling; Lu, Hai-Han; Li, Chung-Yi; Lin, Chun-Yu; Wu, Chang-Jen; Lin, Hung-Hsien

    2016-04-01

    A hybrid lightwave transport system based on a broadband light source (BLS) with an optical signal-to-noise ratio (OSNR) enhancement scheme for millimeter-wave (MMW)/radio-over-fiber (RoF)/cable television (CATV) signal transmission is proposed and experimentally demonstrated. Unlike traditional hybrid lightwave transport systems for signal transmission, in which a transmitting site needs multiple wavelength-selected distributed feedback laser diodes (DFB LDs) to support various services, such proposed systems employ a phase modulator to provide multiple optical carriers for various applications. Over an 80 km single-mode fiber (SMF) transmission, the bit error rate (BER)/carrier-to-noise ratio (CNR)/composite second-order (CSO)/composite triple-beat (CTB) perform brilliantly for hybrid 100 GHz MMW/50 GHz MMW/10 GHz RoF/550 MHz CATV signal transmission. Such a hybrid lightwave transport system would be attractive for fiber trunk applications to provide broadband integrated services.

  11. Hybrid slime mould-based system for unconventional computing

    NASA Astrophysics Data System (ADS)

    Berzina, T.; Dimonte, A.; Cifarelli, A.; Erokhin, V.

    2015-04-01

    Physarum polycephalum is considered to be promising for the realization of unconventional computational systems. In this work, we present results of three slime mould-based systems. We have demonstrated the possibility of transporting biocompatible microparticles using attractors, repellents and a DEFLECTOR. The latter is an external tool that enables to conduct Physarum motion. We also present interactions between slime mould and conducting polymers, resulting in a variation of their colour and conductivity. Finally, incorporation of the Physarum into the organic memristive device resulted in a variation of its electrical characteristics due to the slime mould internal activity.

  12. Students’ perception towards the problem based learning tutorial session in a system-based hybrid curriculum

    PubMed Central

    Al-Drees, Abdulmajeed A.; Khalil, Mahmoud S.; Irshad, Mohammad; Abdulghani, Hamza M.

    2015-01-01

    Objectives: To evaluate students’ perception towards the problem based learning (PBL) session in a system-based hybrid curriculum. Methods: We conducted a cross-sectional study in the College of Medicine, King Saud University, Saudi Arabia at the end of the 2012-2013 academic year. The survey questionnaire was self-administered, and examined perceptions of PBL session benefits, appropriate running of sessions, and tutor’s roles. Results: Out of 510 students, 275 (53.9%) completed the questionnaire. Most of the students reported that PBL sessions were helpful in understanding basic sciences concepts (p=0.04). In addition, they agreed that PBL sessions increased their knowledge of basic sciences (p=0.01). Most students reported that PBL sessions encouraged self-directed learning, collaborative learning, and improved decision making skills. However, 54.5% of students reported lack of proper training before starting the PBL sessions, and only 25.1% of students agreed that the teaching staff are well prepared to run the sessions. Most students used the internet (93.1%), lecture notes (76.7%), and books (64.4%) as learning resources. Most students reported repetition of topics between PBL sessions and lectures (p=0.07). Conclusion: The study highlighted the significant role of PBL in a system-based hybrid curriculum and helped students improve their knowledge and different learning skills. Students and staff training is required before the utilizing the PBL as an instructional method. PMID:25737178

  13. Systems for hybrid cars

    NASA Astrophysics Data System (ADS)

    Bitsche, Otmar; Gutmann, Guenter

    Not only sharp competition but also legislation are pushing development of hybrid drive trains. Based on conventional internal combustion engine (ICE) vehicles, these drive trains offer a wide range of benefits from reduced fuel consumption and emission to multifaceted performance improvements. Hybrid electric drive trains may also facilitate the introduction of fuel cells (FC). The battery is the key component for all hybrid drive trains, as it dominates cost and performance issues. The selection of the right battery technology for the specific automotive application is an important task with an impact on costs of development and use. Safety, power, and high cycle life are a must for all hybrid applications. The greatest pressure to reduce cost is in soft hybrids, where lead-acid embedded in a considerate management presents the cheapest solution, with a considerable improvement in performance needed. From mild to full hybridization, an improvement in specific power makes higher costs more acceptable, provided that the battery's service life is equivalent to the vehicle's lifetime. Today, this is proven for the nickel-metal hydride system. Lithium ion batteries, which make use of a multiple safety concept, and with some development anticipated, provide even better prospects in terms of performance and costs. Also, their scalability permits their application in battery electric vehicles—the basis for better performance and enhanced user acceptance. Development targets for the batteries are discussed with a focus on system aspects such as electrical and thermal management and safety.

  14. Hybrid knowledge systems

    NASA Technical Reports Server (NTRS)

    Subrahmanian, V. S.

    1994-01-01

    An architecture called hybrid knowledge system (HKS) is described that can be used to interoperate between a specification of the control laws describing a physical system, a collection of databases, knowledge bases and/or other data structures reflecting information about the world in which the physical system controlled resides, observations (e.g. sensor information) from the external world, and actions that must be taken in response to external observations.

  15. Automatic generation of smart earthquake-resistant building system: Hybrid system of base-isolation and building-connection.

    PubMed

    Kasagi, M; Fujita, K; Tsuji, M; Takewaki, I

    2016-02-01

    A base-isolated building may sometimes exhibit an undesirable large response to a long-duration, long-period earthquake ground motion and a connected building system without base-isolation may show a large response to a near-fault (rather high-frequency) earthquake ground motion. To overcome both deficiencies, a new hybrid control system of base-isolation and building-connection is proposed and investigated. In this new hybrid building system, a base-isolated building is connected to a stiffer free wall with oil dampers. It has been demonstrated in a preliminary research that the proposed hybrid system is effective both for near-fault (rather high-frequency) and long-duration, long-period earthquake ground motions and has sufficient redundancy and robustness for a broad range of earthquake ground motions.An automatic generation algorithm of this kind of smart structures of base-isolation and building-connection hybrid systems is presented in this paper. It is shown that, while the proposed algorithm does not work well in a building without the connecting-damper system, it works well in the proposed smart hybrid system with the connecting damper system. PMID:27441248

  16. A hybrid system identification methodology for wireless structural health monitoring systems based on dynamic substructuring

    NASA Astrophysics Data System (ADS)

    Dragos, Kosmas; Smarsly, Kay

    2016-04-01

    System identification has been employed in numerous structural health monitoring (SHM) applications. Traditional system identification methods usually rely on centralized processing of structural response data to extract information on structural parameters. However, in wireless SHM systems the centralized processing of structural response data introduces a significant communication bottleneck. Exploiting the merits of decentralization and on-board processing power of wireless SHM systems, many system identification methods have been successfully implemented in wireless sensor networks. While several system identification approaches for wireless SHM systems have been proposed, little attention has been paid to obtaining information on the physical parameters (e.g. stiffness, damping) of the monitored structure. This paper presents a hybrid system identification methodology suitable for wireless sensor networks based on the principles of component mode synthesis (dynamic substructuring). A numerical model of the monitored structure is embedded into the wireless sensor nodes in a distributed manner, i.e. the entire model is segmented into sub-models, each embedded into one sensor node corresponding to the substructure the sensor node is assigned to. The parameters of each sub-model are estimated by extracting local mode shapes and by applying the equations of the Craig-Bampton method on dynamic substructuring. The proposed methodology is validated in a laboratory test conducted on a four-story frame structure to demonstrate the ability of the methodology to yield accurate estimates of stiffness parameters. Finally, the test results are discussed and an outlook on future research directions is provided.

  17. Qualitative Fault Isolation of Hybrid Systems: A Structural Model Decomposition-Based Approach

    NASA Technical Reports Server (NTRS)

    Bregon, Anibal; Daigle, Matthew; Roychoudhury, Indranil

    2016-01-01

    Quick and robust fault diagnosis is critical to ensuring safe operation of complex engineering systems. A large number of techniques are available to provide fault diagnosis in systems with continuous dynamics. However, many systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete behavioral modes, each with its own continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task computationally more complex due to the large number of possible system modes and the existence of autonomous mode transitions. This paper presents a qualitative fault isolation framework for hybrid systems based on structural model decomposition. The fault isolation is performed by analyzing the qualitative information of the residual deviations. However, in hybrid systems this process becomes complex due to possible existence of observation delays, which can cause observed deviations to be inconsistent with the expected deviations for the current mode in the system. The great advantage of structural model decomposition is that (i) it allows to design residuals that respond to only a subset of the faults, and (ii) every time a mode change occurs, only a subset of the residuals will need to be reconfigured, thus reducing the complexity of the reasoning process for isolation purposes. To demonstrate and test the validity of our approach, we use an electric circuit simulation as the case study.

  18. An Efficient Model-based Diagnosis Engine for Hybrid Systems Using Structural Model Decomposition

    NASA Technical Reports Server (NTRS)

    Bregon, Anibal; Narasimhan, Sriram; Roychoudhury, Indranil; Daigle, Matthew; Pulido, Belarmino

    2013-01-01

    Complex hybrid systems are present in a large range of engineering applications, like mechanical systems, electrical circuits, or embedded computation systems. The behavior of these systems is made up of continuous and discrete event dynamics that increase the difficulties for accurate and timely online fault diagnosis. The Hybrid Diagnosis Engine (HyDE) offers flexibility to the diagnosis application designer to choose the modeling paradigm and the reasoning algorithms. The HyDE architecture supports the use of multiple modeling paradigms at the component and system level. However, HyDE faces some problems regarding performance in terms of complexity and time. Our focus in this paper is on developing efficient model-based methodologies for online fault diagnosis in complex hybrid systems. To do this, we propose a diagnosis framework where structural model decomposition is integrated within the HyDE diagnosis framework to reduce the computational complexity associated with the fault diagnosis of hybrid systems. As a case study, we apply our approach to a diagnostic testbed, the Advanced Diagnostics and Prognostics Testbed (ADAPT), using real data.

  19. GNSS-based passive radar sensing using hybrid-aperture system

    NASA Astrophysics Data System (ADS)

    Silver, Randy; Zhang, Yan Rockee; Suarez, Hernan; Pan, Yu; Huang, Yih-Ru

    2013-05-01

    A hybrid-aperture radar system is being developed for passive, GNSS-based sensing and imaging missions. Different from previous work, the real aperture (RA) array has excellent cross-range resolution and electronic scanning capability, and synthetic aperture processing is applied for the dimension along the UAV/aircraft flight path. The hybrid aperture thus provides real-time, combined sensing capability and multiple functions. Multi-level signal synchronization and tracking is used to ensure the signal phase coherency and integrity. The advantages of covert radar sensing and reduced onboard computing complexity of this sensor are being demonstrated through experiments.

  20. Hybrid wireless-over-fiber transmission system based on multiple injection-locked FP LDs.

    PubMed

    Li, Chung-Yi; Lu, Hai-Han; Chu, Chien-An; Ying, Cheng-Ling; Lu, Ting-Chien; Peng, Peng-Chun

    2015-07-27

    A hybrid wireless-over-fiber (WoF) transmission system based on multiple injection-locked Fabry-Perot laser diodes (FP LDs) is proposed and experimentally demonstrated. Unlike the traditional hybrid WoF transmission systems that require multiple distributed feedback (DFB) LDs to support different kinds of services, the proposed system employs multiple injection-locked FP LDs to provide different kinds of applications. Such a hybrid WoF transmission system delivers downstream intensity-modulated 20-GHz microwave (MW)/60-GHz millimeter-wave (MMW)/550-MHz cable television (CATV) signals and upstream phase-remodulated 20-GHz MW signal. Excellent bit error rate (BER), carrier-to-noise ratio (CNR), composite second-order (CSO), and composite triple-beat (CTB) are observed over a 40-km single-mode fiber (SMF) and a 4-m radio frequency (RF) wireless transport. Such a hybrid WoF transmission system has practical applications for fiber-wireless convergence to provide broadband integrated services, including telecommunication, data communication, and CATV services. PMID:26367647

  1. A Self-Powered Hybrid Energy Scavenging System Utilizing RF and Vibration Based Electromagnetic Harvesters

    NASA Astrophysics Data System (ADS)

    Uluşan, H.; Gharehbaghi, K.; Zorlu, Ö.; Muhtaroğlu, A.; Külah, H.

    2015-12-01

    This study presents a novel hybrid system that combines the power generated simultaneously by a vibration-based Electromagnetic (EM) harvester and a UHF band RF harvester. The novel hybrid scavenger interface uses a power management circuit in 180 nm CMOS technology to step-up and to regulate the combined output. At the first stage of the system, the RF harvester generates positive DC output with a 7-stage threshold compensated rectifier, while the EM harvester generates negative DC output with a self-powered AC/DC negative doubler circuit. At the second stage, the generated voltages are serially added, stepped-up with an on-chip charge pump circuit, and regulated to a typical battery voltage of 3 V. Test results indicate that the hybrid operation enables generation of 9 μW at 3 V output for a wide range of input stimulations, which could not be attained with either harvesting mode by itself. Moreover the hybrid system behaves as a typical battery, and keeps the output voltage stable at 3 V up to 18 μW of output power. The presented system is the first battery-like harvester to our knowledge that generates energy from two independent sources and regulates the output to a stable DC voltage.

  2. Hybrid neural network and rule-based pattern recognition system capable of self-modification

    SciTech Connect

    Glover, C.W.; Silliman, M.; Walker, M.; Spelt, P.F. ); Rao, N.S.V. . Dept. of Computer Science)

    1990-01-01

    This paper describes a hybrid neural network and rule-based pattern recognition system architecture which is capable of self-modification or learning. The central research issue to be addressed for a multiclassifier hybrid system is whether such a system can perform better than the two classifiers taken by themselves. The hybrid system employs a hierarchical architecture, and it can be interfaced with one or more sensors. Feature extraction routines operating on raw sensor data produce feature vectors which serve as inputs to neural network classifiers at the next level in the hierarchy. These low-level neural networks are trained to provide further discrimination of the sensor data. A set of feature vectors is formed from a concatenation of information from the feature extraction routines and the low-level neural network results. A rule-based classifier system uses this feature set to determine if certain expected environmental states, conditions, or objects are present in the sensors' current data stream. The rule-based system has been given an a priori set of models of the expected environmental states, conditions, or objects which it is expected to identify. The rule-based system forms many candidate directed graphs of various combinations of incoming features vectors, and it uses a suitably chosen metric to measure the similarity between candidate and model directed graphs. The rule-based system must decide if there is a match between one of the candidate graphs and a model graph. If a match is found, then the rule-based system invokes a routine to create and train a new high-level neural network from the appropriate feature vector data to recognize when this model state is present in future sensor data streams. 12 refs., 3 figs.

  3. Characterisation of a hybrid, fuel-cell-based propulsion system for small unmanned aircraft

    NASA Astrophysics Data System (ADS)

    Verstraete, D.; Lehmkuehler, K.; Gong, A.; Harvey, J. R.; Brian, G.; Palmer, J. L.

    2014-03-01

    Advanced hybrid powerplants combining a fuel cell and battery can enable significantly higher endurance for small, electrically powered unmanned aircraft systems, compared with batteries alone. However, detailed investigations of the static and dynamic performance of such systems are required to address integration challenges. This article describes a series of tests used to characterise the Horizon Energy Systems' AeroStack hybrid, fuel-cell-based powertrain. The results demonstrate that a significant difference can exist between the dynamic performance of the fuel-cell system and its static polarisation curve, confirming the need for detailed measurements. The results also confirm that the AeroStack's lithium-polymer battery plays a crucial role in its response to dynamic load changes and protects the fuel cell from membrane dehydration and fuel starvation. At low static loads, the AeroStack fuel cell recharges the battery with currents up to 1 A, which leads to further differences with the polarisation curve.

  4. Managing hybrid marketing systems.

    PubMed

    Moriarty, R T; Moran, U

    1990-01-01

    As competition increases and costs become critical, companies that once went to market only one way are adding new channels and using new methods - creating hybrid marketing systems. These hybrid marketing systems hold the promise of greater coverage and reduced costs. But they are also hard to manage; they inevitably raise questions of conflict and control: conflict because marketing units compete for customers; control because new indirect channels are less subject to management authority. Hard as they are to manage, however, hybrid marketing systems promise to become the dominant design, replacing the "purebred" channel strategy in all kinds of businesses. The trick to managing the hybrid is to analyze tasks and channels within and across a marketing system. A map - the hybrid grid - can help managers make sense of their hybrid system. What the chart reveals is that channels are not the basic building blocks of a marketing system; marketing tasks are. The hybrid grid forces managers to consider various combinations of channels and tasks that will optimize both cost and coverage. Managing conflict is also an important element of a successful hybrid system. Managers should first acknowledge the inevitability of conflict. Then they should move to bound it by creating guidelines that spell out which customers to serve through which methods. Finally, a marketing and sales productivity (MSP) system, consisting of a central marketing database, can act as the central nervous system of a hybrid marketing system, helping managers create customized channels and service for specific customer segments. PMID:10107959

  5. An Improved Hybrid Recommender System Using Multi-Based Clustering Method

    NASA Astrophysics Data System (ADS)

    Puntheeranurak, Sutheera; Tsuji, Hidekazu

    Recommender systems have become an important research area as they provide some kind of intelligent web techniques to search through the enormous volume of information available on the internet. Content-based filtering and collaborative filtering methods are the most widely recommendation techniques adopted to date. Each of them has both advantages and disadvantages in providing high quality recommendations therefore a hybrid recommendation mechanism incorporating components from both of these methods would yield satisfactory results in many situations. In this paper, we present an elegant and effective framework for combining content-based filtering and collaborative filtering methods. Our approach clusters on user information and item information for content-based filtering to enhance existing user data and item data. Based on the result from the first step, we calculate the predicted rating data for collaborative filtering. We then do cluster on predicted rating data in the last step to enhance the scalability of our proposed system. We call our proposal multi-based clustering method. We show that our proposed system can solve a cold start problem, a sparsity problem, suitable for various situations in real-life applications. It thus contributes to the improvement of prediction quality of a hybrid recommender system as shown in the experimental results.

  6. Hybrid neural net and rule based system for boiler monitoring and diagnosis

    SciTech Connect

    Kraft, T.; Okagaki, K.; Ishii, R.; Surko, P. ); Brandon, A.; DeWeese, A.; Peterson, S.; Bjordal, R. )

    1991-01-01

    A fully recurrent neural net is coupled with a rule-based expert system in this operator adviser system. The neural net has been trained to recognize normal high-efficiency operating behavior of the power plant boiler, and the rule-based expert system diagnoses problems and suggests maintenance and/or operator actions when the boiler strays outside the envelope of normal operating conditions. The fully recurrent neural net provides an accurate model of a boiler even when the load demand is changing rapidly and the boiler operating conditions varying over a wide range. The hybrid system has been quicker and easier to generate than a strictly rule-based one, and has been designed to be more easily portable to other units This paper describes the ongoing development work for monitoring SDGE and E's South Bay Plant, Unit. 1.

  7. Mem-PHybrid: hybrid features-based prediction system for classifying membrane protein types.

    PubMed

    Hayat, Maqsood; Khan, Asifullah

    2012-05-01

    Membrane proteins are a major class of proteins and encoded by approximately 20% to 30% of genes in most organisms. In this work, a two-layer novel membrane protein prediction system, called Mem-PHybrid, is proposed. It is able to first identify the protein query as a membrane or nonmembrane protein. In the second level, it further identifies the type of membrane protein. The proposed Mem-PHybrid prediction system is based on hybrid features, whereby a fusion of both the physicochemical and split amino acid composition-based features is performed. This enables the proposed Mem-PHybrid to exploit the discrimination capabilities of both types of feature extraction strategy. In addition, minimum redundancy and maximum relevance has also been applied to reduce the dimensionality of a feature vector. We employ random forest, evidence-theoretic K-nearest neighbor, and support vector machine (SVM) as classifiers and analyze their performance on two datasets. SVM using hybrid features yields the highest accuracy of 89.6% and 97.3% on dataset1 and 91.5% and 95.5% on dataset2 for jackknife and independent dataset tests, respectively. The enhanced prediction performance of Mem-PHybrid is largely attributed to the exploitation of the discrimination power of the hybrid features and of the learning capability of SVM. Mem-PHybrid is accessible at http://www.111.68.99.218/Mem-PHybrid. PMID:22342883

  8. Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems.

    PubMed

    Li, Jianfeng; Huang, Zhitong; Liu, Xiaoshuang; Ji, Yuefeng

    2015-01-12

    A novel hybrid time-frequency domain equalization scheme is proposed and experimentally demonstrated to mitigate the white light emitting diode (LED) nonlinearity in visible light communication (VLC) systems based on orthogonal frequency division multiplexing (OFDM). We handle the linear and nonlinear distortion separately in a nonlinear OFDM system. The linear part is equalized in frequency domain and the nonlinear part is compensated by an adaptive nonlinear time domain equalizer (N-TDE). The experimental results show that with only a small number of parameters the nonlinear equalizer can efficiently mitigate the LED nonlinearity. With the N-TDE the modulation index (MI) and BER performance can be significantly enhanced. PMID:25835706

  9. A PDMS-Based Cylindrical Hybrid Lens for Enhanced Fluorescence Detection in Microfluidic Systems

    PubMed Central

    Lin, Bor-Shyh; Yang, Yu-Ching; Ho, Chong-Yi; Yang, Han-Yu; Wang, Hsiang-Yu

    2014-01-01

    Microfluidic systems based on fluorescence detection have been developed and applied for many biological and chemical applications. Because of the tiny amount of sample in the system; the induced fluorescence can be weak. Therefore, most microfluidic systems deploy multiple optical components or sophisticated equipment to enhance the efficiency of fluorescence detection. However, these strategies encounter common issues of complex manufacturing processes and high costs. In this study; a miniature, cylindrical and hybrid lens made of polydimethylsiloxane (PDMS) to improve the fluorescence detection in microfluidic systems is proposed. The hybrid lens integrates a laser focusing lens and a fluorescence collecting lens to achieve dual functions and simplify optical setup. Moreover, PDMS has advantages of low-cost and straightforward fabrication compared with conventional optical components. The performance of the proposed lens is first examined with two fluorescent dyes and the results show that the lens provides satisfactory enhancement for fluorescence detection of Rhodamine 6G and Nile Red. The overall increments in collected fluorescence signal and detection sensitivity are more than 220% of those without lens, and the detection limits of Rhodamine 6G and Nile red are lowered to 0.01 μg/mL and 0.05 μg/mL, respectively. The hybrid lens is further applied to the detection of Nile red-labeled Chlorella vulgaris cells and it increases both signal intensity and detection sensitivity by more than 520%. The proposed hybrid lens also dramatically reduces the variation in detected signal caused by the deviation in incident angle of excitation light. PMID:24531300

  10. Thermally conductive polyamide 6/carbon filler composites based on a hybrid filler system

    NASA Astrophysics Data System (ADS)

    Ha, Sung Min; Kwon, O. Hwan; Gyeong Oh, Yu; Kim, Yong Seok; Lee, Sung-Goo; Won, Jong Chan; Cho, Kwang Soo; Gak Kim, Byoung; Yoo, Youngjae

    2015-12-01

    We explored the use of a hybrid filler consisting of graphite nanoplatelets (GNPs) and single walled carbon nanotubes (SWCNTs) in a polyamide 6 (PA 6) matrix. The composites containing PA 6, powdered GNP, and SWCNT were melt-processed and the effect of filler content in the single filler and hybrid filler systems on the thermal conductivity of the composites was examined. The thermal diffusivities of the composites were measured by the standard laser flash method. Composites containing the hybrid filler system showed enhanced thermal conductivity with values as high as 8.8 W (m · K)-1, which is a 35-fold increase compared to the thermal conductivity of pure PA 6. Thermographic images of heat conduction and heat release behaviors were consistent with the thermal conductivity results, and showed rapid temperature jumps and drops, respectively, for the composites. A composite model based on the Lewis-Nielsen theory was developed to treat GNP and SWCNT as two separate types of fillers. Two approaches, the additive and multiplicative approaches, give rather good quantitative agreement between the predicted values of thermal conductivity and those measured experimentally.

  11. Photodetectors based on graphene, other two-dimensional materials and hybrid systems.

    PubMed

    Koppens, F H L; Mueller, T; Avouris, Ph; Ferrari, A C; Vitiello, M S; Polini, M

    2014-10-01

    Graphene and other two-dimensional materials, such as transition metal dichalcogenides, have rapidly established themselves as intriguing building blocks for optoelectronic applications, with a strong focus on various photodetection platforms. The versatility of these material systems enables their application in areas including ultrafast and ultrasensitive detection of light in the ultraviolet, visible, infrared and terahertz frequency ranges. These detectors can be integrated with other photonic components based on the same material, as well as with silicon photonic and electronic technologies. Here, we provide an overview and evaluation of state-of-the-art photodetectors based on graphene, other two-dimensional materials, and hybrid systems based on the combination of different two-dimensional crystals or of two-dimensional crystals and other (nano)materials, such as plasmonic nanoparticles, semiconductors, quantum dots, or their integration with (silicon) waveguides. PMID:25286273

  12. Leveling Intermittent Renewable Energy Production Through Biomass Gasification-Based Hybrid Systems

    SciTech Connect

    Dean, J.; Braun, R.; Penev, M.; Kinchin, C.; Munoz, D.

    2010-01-01

    The increased use of intermittent renewable power in the United States is forcing utilities to manage increasingly complex supply and demand interactions. This paper evaluates biomass pathways for hydrogen production and how they can be integrated with renewable resources to improve the efficiency, reliability, dispatchability, and cost of other renewable technologies. Two hybrid concepts were analyzed that involve co-production of gaseous hydrogen and electric power from thermochemical biorefineries. Both of the concepts analyzed share the basic idea of combining intermittent wind-generated electricity with a biomass gasification plant. The systems were studied in detail for process feasibility and economic performance. The best performing system was estimated to produce hydrogen at a cost of $1.67/kg. The proposed hybrid systems seek to either fill energy shortfalls by supplying hydrogen to a peaking natural gas turbine or to absorb excess renewable power during low-demand hours. Direct leveling of intermittent renewable electricity production is accomplished with either an indirectly heated biomass gasifier, or a directly heated biomass gasifier. The indirect gasification concepts studied were found to be cost competitive in cases where value is placed on controlling carbon emissions. A carbon tax in the range of $26-40 per metric ton of CO{sub 2} equivalent (CO{sub 2}e) emission makes the systems studied cost competitive with steam methane reforming (SMR) to produce hydrogen. However, some additional value must be placed on energy peaking or sinking for these plants to be economically viable. The direct gasification concept studied replaces the air separation unit (ASU) with an electrolyzer bank and is unlikely to be cost competitive in the near future. High electrolyzer costs and wind power requirements make the hybridization difficult to justify economically without downsizing the system. Based on a direct replacement of the ASU with electrolyzers, hydrogen

  13. Cavity QED Based on Collective Magnetic Dipole Coupling: Spin Ensembles as Hybrid Two-Level Systems

    NASA Astrophysics Data System (ADS)

    Imamoǧlu, Atac

    2009-02-01

    We analyze the magnetic dipole coupling of an ensemble of spins to a superconducting microwave stripline structure, incorporating a Josephson junction based transmon qubit. We show that this system is described by an embedded Jaynes-Cummings model: in the strong coupling regime, collective spin-wave excitations of the ensemble of spins pick up the nonlinearity of the cavity mode, such that the two lowest eigenstates of the coupled spin wave-microwave cavity-Josephson junction system define a hybrid two-level system. The proposal described here enables new avenues for nonlinear optics using optical photons coupled to spin ensembles via Raman transitions. The possibility of strong coupling cavity QED with magnetic dipole transitions also opens up the possibility of extending quantum information processing protocols to spins in silicon or graphene, without the need for single-spin confinement.

  14. N-Screen Aware Multicriteria Hybrid Recommender System Using Weight Based Subspace Clustering

    PubMed Central

    Ullah, Farman; Lee, Sungchang

    2014-01-01

    This paper presents a recommender system for N-screen services in which users have multiple devices with different capabilities. In N-screen services, a user can use various devices in different locations and time and can change a device while the service is running. N-screen aware recommendation seeks to improve the user experience with recommended content by considering the user N-screen device attributes such as screen resolution, media codec, remaining battery time, and access network and the user temporal usage pattern information that are not considered in existing recommender systems. For N-screen aware recommendation support, this work introduces a user device profile collaboration agent, manager, and N-screen control server to acquire and manage the user N-screen devices profile. Furthermore, a multicriteria hybrid framework is suggested that incorporates the N-screen devices information with user preferences and demographics. In addition, we propose an individual feature and subspace weight based clustering (IFSWC) to assign different weights to each subspace and each feature within a subspace in the hybrid framework. The proposed system improves the accuracy, precision, scalability, sparsity, and cold start issues. The simulation results demonstrate the effectiveness and prove the aforementioned statements. PMID:25152921

  15. N-screen aware multicriteria hybrid recommender system using weight based subspace clustering.

    PubMed

    Ullah, Farman; Sarwar, Ghulam; Lee, Sungchang

    2014-01-01

    This paper presents a recommender system for N-screen services in which users have multiple devices with different capabilities. In N-screen services, a user can use various devices in different locations and time and can change a device while the service is running. N-screen aware recommendation seeks to improve the user experience with recommended content by considering the user N-screen device attributes such as screen resolution, media codec, remaining battery time, and access network and the user temporal usage pattern information that are not considered in existing recommender systems. For N-screen aware recommendation support, this work introduces a user device profile collaboration agent, manager, and N-screen control server to acquire and manage the user N-screen devices profile. Furthermore, a multicriteria hybrid framework is suggested that incorporates the N-screen devices information with user preferences and demographics. In addition, we propose an individual feature and subspace weight based clustering (IFSWC) to assign different weights to each subspace and each feature within a subspace in the hybrid framework. The proposed system improves the accuracy, precision, scalability, sparsity, and cold start issues. The simulation results demonstrate the effectiveness and prove the aforementioned statements. PMID:25152921

  16. Cellular Decomposition Based Hybrid-Hierarchical Control Systems with Applications to Flight Management Systems

    NASA Technical Reports Server (NTRS)

    Caines, P. E.

    1999-01-01

    The work in this research project has been focused on the construction of a hierarchical hybrid control theory which is applicable to flight management systems. The motivation and underlying philosophical position for this work has been that the scale, inherent complexity and the large number of agents (aircraft) involved in an air traffic system imply that a hierarchical modelling and control methodology is required for its management and real time control. In the current work the complex discrete or continuous state space of a system with a small number of agents is aggregated in such a way that discrete (finite state machine or supervisory automaton) controlled dynamics are abstracted from the system's behaviour. High level control may then be either directly applied at this abstracted level, or, if this is in itself of significant complexity, further layers of abstractions may be created to produce a system with an acceptable degree of complexity at each level. By the nature of this construction, high level commands are necessarily realizable at lower levels in the system.

  17. A component mode synthesis based hybrid method for the dynamic analysis of complex systems

    NASA Astrophysics Data System (ADS)

    Roibás Millán, E.; Chimeno Manguán, M.; Simón Hidalgo, F.

    2015-11-01

    A hybrid method is presented for predicting the dynamic response of complex systems across a broad frequency range. In the mid-frequency range it is quite common to find a mixture of long wavelength motion, global modes, which spans several sub-structures, together with weakly phase correlated local motion, local modes, that is confined to individual sub-structures. In this work, the use of a Component Mode Synthesis allows us to relate Finite Element Method sub-structuring with the modes location within the different sub-structures defined in a Statistical Energy Analysis model. The method proposed here, the Hybrid Analysis based on Component Mode Synthesis sub-structuring (HA-CMS) method provides a greater flexibility defining the applicability range of each one of the calculation methods. Deterministic description of the global behaviour of the system is combined with a statistical description of the local one, taking into account the energy transfer between global and local scales. The application of the HA-CMS method is illustrated with a numerical validation example.

  18. A Hybrid Multiuser Detector Based on MMSE and AFSA for TDRS System Forward Link

    PubMed Central

    Yin, Zhendong; Liu, Xiaohui

    2014-01-01

    This study mainly focuses on multiuser detection in tracking and data relay satellite (TDRS) system forward link. Minimum mean square error (MMSE) is a low complexity multiuser detection method, but MMSE detector cannot achieve satisfactory bit error ratio and near-far resistance, whereas artificial fish swarm algorithm (AFSA) is expert in optimization and it can realize the global convergence efficiently. Therefore, a hybrid multiuser detector based on MMSE and AFSA (MMSE-AFSA) is proposed in this paper. The result of MMSE and its modified formations are used as the initial values of artificial fishes to accelerate the speed of global convergence and reduce the iteration times for AFSA. The simulation results show that the bit error ratio and near-far resistance performances of the proposed detector are much better, compared with MF, DEC, and MMSE, and are quite close to OMD. Furthermore, the proposed MMSE-AFSA detector also has a large system capacity. PMID:24883418

  19. Exact Hybrid Particle/Population Simulation of Rule-Based Models of Biochemical Systems

    PubMed Central

    Stover, Lori J.; Nair, Niketh S.; Faeder, James R.

    2014-01-01

    Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This “network-free” approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of “partial network expansion” into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory

  20. Exact hybrid particle/population simulation of rule-based models of biochemical systems.

    PubMed

    Hogg, Justin S; Harris, Leonard A; Stover, Lori J; Nair, Niketh S; Faeder, James R

    2014-04-01

    Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings

  1. Power Management Based Current Control Technique for Photovoltaic-Battery Assisted Wind-Hydro Hybrid System

    NASA Astrophysics Data System (ADS)

    Ram Prabhakar, J.; Ragavan, K.

    2013-07-01

    This article proposes new power management based current control strategy for integrated wind-solar-hydro system equipped with battery storage mechanism. In this control technique, an indirect estimation of load current is done, through energy balance model, DC-link voltage control and droop control. This system features simpler energy management strategy and necessitates few power electronic converters, thereby minimizing the cost of the system. The generation-demand (G-D) management diagram is formulated based on the stochastic weather conditions and demand, which would likely moderate the gap between both. The features of management strategy deploying energy balance model include (1) regulating DC-link voltage within specified tolerances, (2) isolated operation without relying on external electric power transmission network, (3) indirect current control of hydro turbine driven induction generator and (4) seamless transition between grid-connected and off-grid operation modes. Furthermore, structuring of the hybrid system with appropriate selection of control variables enables power sharing among each energy conversion systems and battery storage mechanism. By addressing these intricacies, it is viable to regulate the frequency and voltage of the remote network at load end. The performance of the proposed composite scheme is demonstrated through time-domain simulation in MATLAB/Simulink environment.

  2. Performance of OVERFLOW-D Applications based on Hybrid and MPI Paradigms on IBM Power4 System

    NASA Technical Reports Server (NTRS)

    Djomehri, M. Jahed; Biegel, Bryan (Technical Monitor)

    2002-01-01

    This report briefly discusses our preliminary performance experiments with parallel versions of OVERFLOW-D applications. These applications are based on MPI and hybrid paradigms on the IBM Power4 system here at the NAS Division. This work is part of an effort to determine the suitability of the system and its parallel libraries (MPI/OpenMP) for specific scientific computing objectives.

  3. PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems.

    PubMed

    Mohamed, Mohamed A; Eltamaly, Ali M; Alolah, Abdulrahman I

    2016-01-01

    This paper introduces an optimal sizing algorithm for a hybrid renewable energy system using smart grid load management application based on the available generation. This algorithm aims to maximize the system energy production and meet the load demand with minimum cost and highest reliability. This system is formed by photovoltaic array, wind turbines, storage batteries, and diesel generator as a backup source of energy. Demand profile shaping as one of the smart grid applications is introduced in this paper using load shifting-based load priority. Particle swarm optimization is used in this algorithm to determine the optimum size of the system components. The results obtained from this algorithm are compared with those from the iterative optimization technique to assess the adequacy of the proposed algorithm. The study in this paper is performed in some of the remote areas in Saudi Arabia and can be expanded to any similar regions around the world. Numerous valuable results are extracted from this study that could help researchers and decision makers. PMID:27513000

  4. PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems

    PubMed Central

    Mohamed, Mohamed A.; Eltamaly, Ali M.; Alolah, Abdulrahman I.

    2016-01-01

    This paper introduces an optimal sizing algorithm for a hybrid renewable energy system using smart grid load management application based on the available generation. This algorithm aims to maximize the system energy production and meet the load demand with minimum cost and highest reliability. This system is formed by photovoltaic array, wind turbines, storage batteries, and diesel generator as a backup source of energy. Demand profile shaping as one of the smart grid applications is introduced in this paper using load shifting-based load priority. Particle swarm optimization is used in this algorithm to determine the optimum size of the system components. The results obtained from this algorithm are compared with those from the iterative optimization technique to assess the adequacy of the proposed algorithm. The study in this paper is performed in some of the remote areas in Saudi Arabia and can be expanded to any similar regions around the world. Numerous valuable results are extracted from this study that could help researchers and decision makers. PMID:27513000

  5. Hybrid grammar-based approach to nonlinear dynamical system identification from biological time series

    NASA Astrophysics Data System (ADS)

    McKinney, B. A.; Crowe, J. E., Jr.; Voss, H. U.; Crooke, P. S.; Barney, N.; Moore, J. H.

    2006-02-01

    We introduce a grammar-based hybrid approach to reverse engineering nonlinear ordinary differential equation models from observed time series. This hybrid approach combines a genetic algorithm to search the space of model architectures with a Kalman filter to estimate the model parameters. Domain-specific knowledge is used in a context-free grammar to restrict the search space for the functional form of the target model. We find that the hybrid approach outperforms a pure evolutionary algorithm method, and we observe features in the evolution of the dynamical models that correspond with the emergence of favorable model components. We apply the hybrid method to both artificially generated time series and experimentally observed protein levels from subjects who received the smallpox vaccine. From the observed data, we infer a cytokine protein interaction network for an individual’s response to the smallpox vaccine.

  6. Development of a magneto-rheological fluid based hybrid actuation system

    NASA Astrophysics Data System (ADS)

    John, Shaju

    A hybrid hydraulic actuation system is proposed as an active pitch link for rotorcraft applications. Such an active pitch link can be used to implement Individual Blade Control (IBC) techniques for vibration and noise reduction, in addition to providing primary control for the helicopter. Conventional technologies like electric motors and hydraulic actuators have major disadvantages when it come to applications on a rotating environment. Centralized hydraulic system require the use of mechanically complex hydraulic slip rings and electric motors have high precision mechanical moving parts that make them unattractive in application with high centrifugal load. The high energy density of smart materials can be used to design hydraulic actuators in a compact package. MagnetoRheological (MR) fluids can be used as the working fluid in such a hybrid hydraulic actuation system to implement a valving system with no moving parts. Thus, such an actuation system can be theoretically well-suited for application in a rotating environment. To develop an actuation system based on an active material stack and MR fluidic valves, a fundamental understanding of the hydraulic circuit is essential. In order to address this issue, a theoretical model was developed to understand the effect of pumping chamber geometry on the pressure losses in the pumping chamber. Three dimensional analytical models were developed for steady and unsteady flow and the results were correlated to results obtained from Computation Fluid Dynamic simulation of fluid flow inside the pumping chamber. Fundamental understanding regarding the pressure losses in a pumping chamber are obtained from the modeling process. Vortices that form in the pumping chamber (during intake) and the discharge tube (during discharge) are identified as a major cause of pressure loss in the chamber. The role of vortices during dynamic operation is also captured through a frequency domain model. Extensive experimental studies were

  7. Hybrid Stochastic Search Technique based Suboptimal AGC Regulator Design for Power System using Constrained Feedback Control Strategy

    NASA Astrophysics Data System (ADS)

    Ibraheem, Omveer, Hasan, N.

    2010-10-01

    A new hybrid stochastic search technique is proposed to design of suboptimal AGC regulator for a two area interconnected non reheat thermal power system incorporating DC link in parallel with AC tie-line. In this technique, we are proposing the hybrid form of Genetic Algorithm (GA) and simulated annealing (SA) based regulator. GASA has been successfully applied to constrained feedback control problems where other PI based techniques have often failed. The main idea in this scheme is to seek a feasible PI based suboptimal solution at each sampling time. The feasible solution decreases the cost function rather than minimizing the cost function.

  8. Hybrid Automaton Based Controller Design for Damage Mitigation of Islanded Power Systems

    NASA Astrophysics Data System (ADS)

    Lahiri, Sudipta

    some of these limitations, we derive a hybrid automaton model of a power system as a Discrete Event System (DES) plant and controller. The DES plant consists of a switched continuous system with an interface. The system state space is categorized based on safety criteria and discrete control specifications are embedded as transition rules within the DES controller. The DES controller searches for feasible control policies that drive the system trajectories from unsafe states to safe states. We define metrics to quantify the performance of these policies, thus allowing the derivation of the most suitable policy for a set of design specifications and disturbance type. Applications in voltage control, frequency control and dynamic service restoration is presented on a benchmark power system with approximately forty continuous states and eighteen thousand discrete states. To enable the analysis, we build a computational framework based on efficient symbolic computation tools in Mathematica and numerical integration tools in Matlab / Simulink so that the methodology can be replicated for a wide variety of applications. The framework is quite general, and may be expanded to problems beyond power systems.

  9. Hybrid Ant Bee Algorithm for Fuzzy Expert System Based Sample Classification.

    PubMed

    GaneshKumar, Pugalendhi; Rani, Chellasamy; Devaraj, Durairaj; Victoire, T Aruldoss Albert

    2014-01-01

    Accuracy maximization and complexity minimization are the two main goals of a fuzzy expert system based microarray data classification. Our previous Genetic Swarm Algorithm (GSA) approach has improved the classification accuracy of the fuzzy expert system at the cost of their interpretability. The if-then rules produced by the GSA are lengthy and complex which is difficult for the physician to understand. To address this interpretability-accuracy tradeoff, the rule set is represented using integer numbers and the task of rule generation is treated as a combinatorial optimization task. Ant colony optimization (ACO) with local and global pheromone updations are applied to find out the fuzzy partition based on the gene expression values for generating simpler rule set. In order to address the formless and continuous expression values of a gene, this paper employs artificial bee colony (ABC) algorithm to evolve the points of membership function. Mutual Information is used for idenfication of informative genes. The performance of the proposed hybrid Ant Bee Algorithm (ABA) is evaluated using six gene expression data sets. From the simulation study, it is found that the proposed approach generated an accurate fuzzy system with highly interpretable and compact rules for all the data sets when compared with other approaches. PMID:26355782

  10. A miniature batteryless health and usage monitoring system based on hybrid energy harvesting

    NASA Astrophysics Data System (ADS)

    Huang, Chenling; Chakrabartty, Shantanu

    2011-04-01

    The cost and size of the state-of-the-art health and usage monitoring systems (HUMS) are determined by capacity of on-board energy storage which limits their large scale deployment. In this paper, we present a miniature low-cost mechanical HUMS integrated circuit (IC) based on the concept of hybrid energy harvesting where continuous monitoring is achieved by self-powering, where as the programming, localization and communication with the sensor is achieved using remote RF powering. The self-powered component of the proposed HUMS is based on our previous result which used a controllable hot electron injection on floatinggate transistor as an ultra-low power signal processor. We show that the HUMS IC can seamlessly switch between different energy harvesting modes based on the availability of ambient RF power and that the configuration, programming and communication functions can be remotely performed without physically accessing the HUMS device. All the measured results presented in this paper have been obtained from prototypes fabricated in a 0.5 micron standard CMOS process and the entire system has been successfully integrated on a 1.5cm x 1.5cm package.

  11. A Novel Mittag-Leffler Kernel Based Hybrid Fault Diagnosis Method for Wheeled Robot Driving System

    PubMed Central

    Yuan, Xianfeng; Song, Mumin; Zhou, Fengyu; Chen, Zhumin; Li, Yan

    2015-01-01

    The wheeled robots have been successfully applied in many aspects, such as industrial handling vehicles, and wheeled service robots. To improve the safety and reliability of wheeled robots, this paper presents a novel hybrid fault diagnosis framework based on Mittag-Leffler kernel (ML-kernel) support vector machine (SVM) and Dempster-Shafer (D-S) fusion. Using sensor data sampled under different running conditions, the proposed approach initially establishes multiple principal component analysis (PCA) models for fault feature extraction. The fault feature vectors are then applied to train the probabilistic SVM (PSVM) classifiers that arrive at a preliminary fault diagnosis. To improve the accuracy of preliminary results, a novel ML-kernel based PSVM classifier is proposed in this paper, and the positive definiteness of the ML-kernel is proved as well. The basic probability assignments (BPAs) are defined based on the preliminary fault diagnosis results and their confidence values. Eventually, the final fault diagnosis result is archived by the fusion of the BPAs. Experimental results show that the proposed framework not only is capable of detecting and identifying the faults in the robot driving system, but also has better performance in stability and diagnosis accuracy compared with the traditional methods. PMID:26229526

  12. A Novel Mittag-Leffler Kernel Based Hybrid Fault Diagnosis Method for Wheeled Robot Driving System.

    PubMed

    Yuan, Xianfeng; Song, Mumin; Zhou, Fengyu; Chen, Zhumin; Li, Yan

    2015-01-01

    The wheeled robots have been successfully applied in many aspects, such as industrial handling vehicles, and wheeled service robots. To improve the safety and reliability of wheeled robots, this paper presents a novel hybrid fault diagnosis framework based on Mittag-Leffler kernel (ML-kernel) support vector machine (SVM) and Dempster-Shafer (D-S) fusion. Using sensor data sampled under different running conditions, the proposed approach initially establishes multiple principal component analysis (PCA) models for fault feature extraction. The fault feature vectors are then applied to train the probabilistic SVM (PSVM) classifiers that arrive at a preliminary fault diagnosis. To improve the accuracy of preliminary results, a novel ML-kernel based PSVM classifier is proposed in this paper, and the positive definiteness of the ML-kernel is proved as well. The basic probability assignments (BPAs) are defined based on the preliminary fault diagnosis results and their confidence values. Eventually, the final fault diagnosis result is archived by the fusion of the BPAs. Experimental results show that the proposed framework not only is capable of detecting and identifying the faults in the robot driving system, but also has better performance in stability and diagnosis accuracy compared with the traditional methods. PMID:26229526

  13. A speech recognition system based on hybrid wavelet network including a fuzzy decision support system

    NASA Astrophysics Data System (ADS)

    Jemai, Olfa; Ejbali, Ridha; Zaied, Mourad; Ben Amar, Chokri

    2015-02-01

    This paper aims at developing a novel approach for speech recognition based on wavelet network learnt by fast wavelet transform (FWN) including a fuzzy decision support system (FDSS). Our contributions reside in, first, proposing a novel learning algorithm for speech recognition based on the fast wavelet transform (FWT) which has many advantages compared to other algorithms and in which major problems of the previous works to compute connection weights were solved. They were determined by a direct solution which requires computing matrix inversion, which may be intensive. However, the new algorithm was realized by the iterative application of FWT to compute connection weights. Second, proposing a new classification way for this speech recognition system. It operated a human reasoning mode employing a FDSS to compute similarity degrees between test and training signals. Extensive empirical experiments were conducted to compare the proposed approach with other approaches. Obtained results show that the new speech recognition system has a better performance than previously established ones.

  14. Entanglement purification based on hybrid entangled state using quantum-dot and microcavity coupled system.

    PubMed

    Wang, Chuan; Zhang, Yong; Zhang, Ru

    2011-12-01

    We theoretically investigate an entanglement purification protocol with photon and electron hybrid entangled state resorting to quantum-dot spin and microcavity coupled system. The present system is used to construct the parity check gate which allows a quantum non-demolition measurement on the spin parity. The cavity-spin coupled system provides a novel experimental platform of quantum information processing with photon and solid qubit. PMID:22273961

  15. Structure of hybrids based on TEOS-cyclic forms of siloxane system

    NASA Astrophysics Data System (ADS)

    Nocun, Marek; Cholewa-Kowalska, Katarzyna; Łączka, Maria

    2009-12-01

    Hybrid glasses based on tetraethoxysilane (TEOS) modified by addition of selected cyclosiloxanes have been prepared by sol-gel method. Octamethylcyclotetrasiloxane (D4) and 2,4,6,8-tetramethyl-2,4,6,8-tetravinylsiloxane (VMC) have been chosen as an organic modifier of the silica matrix. Molar ratio of TEOS to cyclosiloxane varied from 1:0 to 1:0.5. Structure of prepared hybrids has been studied by infrared spectroscopy (FTIR), photoelectron spectroscopy (XPS) and nuclear magnetic resonance spectroscopy (NMR). Optical properties of bulk glasses in the visible range have also been reported.

  16. Combining Particle Filters and Consistency-Based Approaches for Monitoring and Diagnosis of Stochastic Hybrid Systems

    NASA Technical Reports Server (NTRS)

    Narasimhan, Sriram; Dearden, Richard; Benazera, Emmanuel

    2004-01-01

    Fault detection and isolation are critical tasks to ensure correct operation of systems. When we consider stochastic hybrid systems, diagnosis algorithms need to track both the discrete mode and the continuous state of the system in the presence of noise. Deterministic techniques like Livingstone cannot deal with the stochasticity in the system and models. Conversely Bayesian belief update techniques such as particle filters may require many computational resources to get a good approximation of the true belief state. In this paper we propose a fault detection and isolation architecture for stochastic hybrid systems that combines look-ahead Rao-Blackwellized Particle Filters (RBPF) with the Livingstone 3 (L3) diagnosis engine. In this approach RBPF is used to track the nominal behavior, a novel n-step prediction scheme is used for fault detection and L3 is used to generate a set of candidates that are consistent with the discrepant observations which then continue to be tracked by the RBPF scheme.

  17. Printed hybrid systems

    NASA Astrophysics Data System (ADS)

    Karioja, Pentti; Mäkinen, Jukka-Tapani; Keränen, Kimmo; Aikio, Janne; Alajoki, Teemu; Jaakola, Tuomo; Koponen, Matti; Keränen, Antti; Heikkinen, Mikko; Tuomikoski, Markus; Suhonen, Riikka; Hakalahti, Leena; Kopola, Pälvi; Hast, Jukka; Liedert, Ralf; Hiltunen, Jussi; Masuda, Noriyuki; Kemppainen, Antti; Rönkä, Kari; Korhonen, Raimo

    2012-04-01

    This paper presents research activities carried out at VTT Technical Research Centre of Finland in the field of hybrid integration of optics, electronics and mechanics. Main focus area in our research is the manufacturing of electronic modules and product structures with printed electronics, film-over-molding and polymer sheet lamination technologies and the goal is in the next generation of smart systems utilizing monolithic polymer packages. The combination of manufacturing technologies such as roll-to-roll -printing, injection molding and traditional component assembly is called Printed Hybrid Systems (PHS). Several demonstrator structures have been made, which show the potential of polymer packaging technology. One demonstrator example is a laminated structure with embedded LED chips. Element thickness is only 0.3mm and the flexible stack of foils can be bent in two directions after assembly process and was shaped curved using heat and pressure. The combination of printed flexible circuit boards and injection molding has also been demonstrated with several functional modules. The demonstrators illustrate the potential of origami electronics, which can be cut and folded to 3D shapes. It shows that several manufacturing process steps can be eliminated by Printed Hybrid Systems technology. The main benefits of this combination are small size, ruggedness and conformality. The devices are ideally suited for medical applications as the sensitive electronic components are well protected inside the plastic and the structures can be cleaned easily due to the fact that they have no joints or seams that can accumulate dirt or bacteria.

  18. Barcoded materials based on photoluminescent hybrid system of lanthanide ions-doped metal organic framework and silica via ion exchange.

    PubMed

    Shen, Xiang; Yan, Bing

    2016-04-15

    A multicolored photoluminescent hybrid system based on lanthanide ions-doped metal organic frameworks/silica composite host has potential in display and barcode applications. By controlling the stoichiometry of the lanthanides via cation exchange, proportional various lanthanide ions are successfully introduced into metal organic frameworks, whose emission intensity is correspondingly proportional to its amount. The resulting luminescent barcodes depend on the lanthanide ions ratios and compositions. Subsequently, the lanthanide ions located in the channels of metal organic frameworks are protected from any interaction with the environment after the modification of silica on the surface. The optical and thermal stability of the hybrid materials are improved for technological application. PMID:26852345

  19. Development of energy management system based on a power sharing strategy for a fuel cell-battery-supercapacitor hybrid tramway

    NASA Astrophysics Data System (ADS)

    Li, Qi; Chen, Weirong; Liu, Zhixiang; Li, Ming; Ma, Lei

    2015-04-01

    A hybrid powertrain configuration based on a proton exchange membrane (PEMFC), a battery and a supercapacitor (SC) is designed without grid connection for the LF-LRV tramway. In order to avoid rapid changes of power demand and achieve high efficiency without degrading the mechanism performance, a power sharing strategy based on a combination of fuzzy logic control (FLC) and Haar wavelet transform (Haar-WT) is proposed for an energy management system of the hybrid tramway. The results demonstrate that the proposed energy management system is able to ensure the major positive portion of the low frequency components of power demand can be deals with the PEMFC. The battery can help provide a portion of the positive low frequency components of power demand to reduce the PEMFC burden while the SC bank can supply all the high frequency components which could damage the PEMFC membrane. Therefore, the energy management system of high-power hybrid tramway is able to guarantee a safe operating condition with transient free for the PEMFC and extend the lifetime of each power source. Finally, the comparisons with other control strategies verify that the proposed energy management system can achieve better energy efficiency of the overall hybrid tramway.

  20. Technical Study of a Standalone Photovoltaic–Wind Energy Based Hybrid Power Supply Systems for Island Electrification in Malaysia

    PubMed Central

    Samrat, Nahidul Hoque; Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Taha, Zahari

    2015-01-01

    Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions. PMID:26121032

  1. Strategies for efficient numerical implementation of hybrid multi-scale agent-based models to describe biological systems

    PubMed Central

    Cilfone, Nicholas A.; Kirschner, Denise E.; Linderman, Jennifer J.

    2015-01-01

    Biologically related processes operate across multiple spatiotemporal scales. For computational modeling methodologies to mimic this biological complexity, individual scale models must be linked in ways that allow for dynamic exchange of information across scales. A powerful methodology is to combine a discrete modeling approach, agent-based models (ABMs), with continuum models to form hybrid models. Hybrid multi-scale ABMs have been used to simulate emergent responses of biological systems. Here, we review two aspects of hybrid multi-scale ABMs: linking individual scale models and efficiently solving the resulting model. We discuss the computational choices associated with aspects of linking individual scale models while simultaneously maintaining model tractability. We demonstrate implementations of existing numerical methods in the context of hybrid multi-scale ABMs. Using an example model describing Mycobacterium tuberculosis infection, we show relative computational speeds of various combinations of numerical methods. Efficient linking and solution of hybrid multi-scale ABMs is key to model portability, modularity, and their use in understanding biological phenomena at a systems level. PMID:26366228

  2. Technical Study of a Standalone Photovoltaic-Wind Energy Based Hybrid Power Supply Systems for Island Electrification in Malaysia.

    PubMed

    Samrat, Nahidul Hoque; Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Taha, Zahari

    2015-01-01

    Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions. PMID:26121032

  3. An arc control and protection system for the JET lower hybrid antenna based on an imaging system.

    PubMed

    Figueiredo, J; Mailloux, J; Kirov, K; Kinna, D; Stamp, M; Devaux, S; Arnoux, G; Edwards, J S; Stephen, A V; McCullen, P; Hogben, C

    2014-11-01

    Arcs are the potentially most dangerous events related to Lower Hybrid (LH) antenna operation. If left uncontrolled they can produce damage and cause plasma disruption by impurity influx. To address this issue an arc real time control and protection imaging system for the Joint European Torus (JET) LH antenna has been implemented. The LH system is one of the additional heating systems at JET. It comprises 24 microwave generators (klystrons, operating at 3.7 GHz) providing up to 5 MW of heating and current drive to the JET plasma. This is done through an antenna composed of an array of waveguides facing the plasma. The protection system presented here is based primarily on an imaging arc detection and real time control system. It has adapted the ITER like wall hotspot protection system using an identical CCD camera and real time image processing unit. A filter has been installed to avoid saturation and spurious system triggers caused by ionization light. The antenna is divided in 24 Regions Of Interest (ROIs) each one corresponding to one klystron. If an arc precursor is detected in a ROI, power is reduced locally with subsequent potential damage and plasma disruption avoided. The power is subsequently reinstated if, during a defined interval of time, arcing is confirmed not to be present by image analysis. This system was successfully commissioned during the restart phase and beginning of the 2013 scientific campaign. Since its installation and commissioning, arcs and related phenomena have been prevented. In this contribution we briefly describe the camera, image processing, and real time control systems. Most importantly, we demonstrate that an LH antenna arc protection system based on CCD camera imaging systems works. Examples of both controlled and uncontrolled LH arc events and their consequences are shown. PMID:25430371

  4. An arc control and protection system for the JET lower hybrid antenna based on an imaging system

    NASA Astrophysics Data System (ADS)

    Figueiredo, J.; Mailloux, J.; Kirov, K.; Kinna, D.; Stamp, M.; Devaux, S.; Arnoux, G.; Edwards, J. S.; Stephen, A. V.; McCullen, P.; Hogben, C.

    2014-11-01

    Arcs are the potentially most dangerous events related to Lower Hybrid (LH) antenna operation. If left uncontrolled they can produce damage and cause plasma disruption by impurity influx. To address this issue an arc real time control and protection imaging system for the Joint European Torus (JET) LH antenna has been implemented. The LH system is one of the additional heating systems at JET. It comprises 24 microwave generators (klystrons, operating at 3.7 GHz) providing up to 5 MW of heating and current drive to the JET plasma. This is done through an antenna composed of an array of waveguides facing the plasma. The protection system presented here is based primarily on an imaging arc detection and real time control system. It has adapted the ITER like wall hotspot protection system using an identical CCD camera and real time image processing unit. A filter has been installed to avoid saturation and spurious system triggers caused by ionization light. The antenna is divided in 24 Regions Of Interest (ROIs) each one corresponding to one klystron. If an arc precursor is detected in a ROI, power is reduced locally with subsequent potential damage and plasma disruption avoided. The power is subsequently reinstated if, during a defined interval of time, arcing is confirmed not to be present by image analysis. This system was successfully commissioned during the restart phase and beginning of the 2013 scientific campaign. Since its installation and commissioning, arcs and related phenomena have been prevented. In this contribution we briefly describe the camera, image processing, and real time control systems. Most importantly, we demonstrate that an LH antenna arc protection system based on CCD camera imaging systems works. Examples of both controlled and uncontrolled LH arc events and their consequences are shown.

  5. An arc control and protection system for the JET lower hybrid antenna based on an imaging system

    SciTech Connect

    Figueiredo, J.

    2014-11-15

    Arcs are the potentially most dangerous events related to Lower Hybrid (LH) antenna operation. If left uncontrolled they can produce damage and cause plasma disruption by impurity influx. To address this issue an arc real time control and protection imaging system for the Joint European Torus (JET) LH antenna has been implemented. The LH system is one of the additional heating systems at JET. It comprises 24 microwave generators (klystrons, operating at 3.7 GHz) providing up to 5 MW of heating and current drive to the JET plasma. This is done through an antenna composed of an array of waveguides facing the plasma. The protection system presented here is based primarily on an imaging arc detection and real time control system. It has adapted the ITER like wall hotspot protection system using an identical CCD camera and real time image processing unit. A filter has been installed to avoid saturation and spurious system triggers caused by ionization light. The antenna is divided in 24 Regions Of Interest (ROIs) each one corresponding to one klystron. If an arc precursor is detected in a ROI, power is reduced locally with subsequent potential damage and plasma disruption avoided. The power is subsequently reinstated if, during a defined interval of time, arcing is confirmed not to be present by image analysis. This system was successfully commissioned during the restart phase and beginning of the 2013 scientific campaign. Since its installation and commissioning, arcs and related phenomena have been prevented. In this contribution we briefly describe the camera, image processing, and real time control systems. Most importantly, we demonstrate that an LH antenna arc protection system based on CCD camera imaging systems works. Examples of both controlled and uncontrolled LH arc events and their consequences are shown.

  6. Stirling based fuel cell hybrid systems: An alternative for molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Sánchez, D.; Chacartegui, R.; Torres, M.; Sánchez, T.

    This paper presents a new design for high temperature fuel cell and bottoming thermal engine hybrid systems. Now, instead of the commonly used gas turbine engine, an externally fired - Stirling - piston engine is used, showing outstanding performance when compared to previous designs. Firstly, a comparison between three thermal cycles potentially usable for recovering waste heat from the cell is presented, concluding the interest of the Stirling engine against other solutions used in the past. Secondly, the interest shown in the previous section is confirmed when the complete hybrid system is analyzed. Advantages are not only related to pure thermal and electrochemical parameters like specific power or overall efficiency. Additionally, further benefits can be obtained from the atmospheric operation of the fuel cell and the possibility to disconnect the bottoming engine from the cell to operate the latter on stand alone mode. This analysis includes on design and off design operation.

  7. A Packaged Self-Powered System with Universal Connectors Based on Hybridized Nanogenerators.

    PubMed

    Shi, Bojing; Zheng, Qiang; Jiang, Wen; Yan, Ling; Wang, Xinxin; Liu, Hong; Yao, Yan; Li, Zhou; Wang, Zhong Lin

    2016-02-01

    A packaged self-powered system by hybridizing nanogenerators (PSNGS) is demonstrated. The performance of the PSNGS is tested in a biofluid and used for powering an electronic thermometer. Select waterproof universal connectors are designed and fabricated for energy and signal transmission. This PSNGS and the connectors can significantly advance the development of self-powered implanted medical devices and wearable/portable electronics. PMID:26634808

  8. A high-throughput system for two-hybrid screening based on growth curve analysis in microtiter plates.

    PubMed

    Diaz-Camino, Claudia; Risseeuw, Eddy P; Liu, Enwu; Crosby, William L

    2003-05-15

    The yeast two-hybrid system is a powerful tool for identifying novel protein-protein interactions. In general, biochemical marker genes such as lacZ are exploited for indirect quantification of the interaction, and commonly involve the conduct of rather laborious beta-galactosidase assays. This paper describes a simple alternative method based on growth curve analysis of yeast cultures that is amenable to microtiter plate format, and therefore allows the quantification of large numbers of yeast two-hybrid combinations. The analyzed results of yeast cultures grown in microtiter plates were compared with those obtained from the classical beta-galactosidase assay. We conclude that the method presented here is reproducible, of equal or greater sensitivity than the beta-galactosidase assay, and can be further adapted for application to the conduct of large-scale, automated yeast two-hybrid experiments. PMID:12711337

  9. Hybrid community energy systems.

    SciTech Connect

    Jody, B. J.; Daniels, E. J.; Karvelas, D. E.; Energy Systems

    2000-01-01

    The availability of efficient, economical, and reliable energy supplies can help attract industry and commercial businesses to a municipality or a region. Efficient use of energy can also improve the air quality and reduce pollution. Therefore, municipalities should explore and encourage the development and implementation of efficient energy systems. Integrated hybrid energy systems can be designed to meet the total energy requirements of large and small communities. These systems can yield significant energy and cost savings when compared with independent systems serving individual units or when compared with the conventional practice of buying power from a utility and producing thermal energy on-site. To maximize energy and cost savings, the design engineer should look beyond the conventional when designing such systems.

  10. Control Synthesis for a Class of Hybrid Systems Subject to Configuration-Based Safety Constraints

    NASA Technical Reports Server (NTRS)

    Heymann, Michael; Lin, Feng; Meyer, George

    1997-01-01

    We examine a class of hybrid systems which we call Composite Hybrid Machines (CHM's) that consists of the concurrent (and partially synchronized) operation of Elementary Hybrid Machines (EHM's). Legal behavior, specified by a set of illegal configurations that the CHM may not enter, is to be achieved by the concurrent operation of the CHM with a suitably designed legal controller. In the present paper we focus on the problem of synthesizing a legal controller, whenever such a controller exists. More specifically, we address the problem of synthesizing the minimally restrictive legal controller. A controller is minimally restrictive if, when composed to operate concurrently with another legal controller, it will never interfere with the operation of the other controller and, therefore, can be composed to operate concurrently with any other controller that may be designed to achieve liveness specifications or optimality requirements without the need to reinvestigate or reverify legality of the composite controller. We confine our attention to a special class of CHM's where system dynamics is rate-limited and legal guards are conjunctions or disjunctions of atomic formulas in the dynamic variables (of the type x less than or equal to x(sub 0), or x greater than or equal to x(sub 0)). We present an algorithm for synthesis of the minimally restrictive legal controller. We demonstrate our approach by synthesizing a minimally restrictive controller for a steam boiler (the verification of which recently received a great deal of attention).

  11. Probabilistic Analysis of Solid Oxide Fuel Cell Based Hybrid Gas Turbine System

    NASA Technical Reports Server (NTRS)

    Gorla, Rama S. R.; Pai, Shantaram S.; Rusick, Jeffrey J.

    2003-01-01

    The emergence of fuel cell systems and hybrid fuel cell systems requires the evolution of analysis strategies for evaluating thermodynamic performance. A gas turbine thermodynamic cycle integrated with a fuel cell was computationally simulated and probabilistically evaluated in view of the several uncertainties in the thermodynamic performance parameters. Cumulative distribution functions and sensitivity factors were computed for the overall thermal efficiency and net specific power output due to the uncertainties in the thermodynamic random variables. These results can be used to quickly identify the most critical design variables in order to optimize the design and make it cost effective. The analysis leads to the selection of criteria for gas turbine performance.

  12. A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems

    SciTech Connect

    Onar, Omer C

    2012-01-01

    This manuscript focuses on a novel actively controlled hybrid magnetic battery/ultracapacitor based energy storage system (ESS) for vehicular propulsion systems. A stand-alone battery system might not be sufficient to satisfy peak power demand and transient load variations in hybrid and plug-in hybrid electric vehicles (HEV, PHEV). Active battery/ultracapacitor hybrid ESS provides a better solution in terms of efficient power management and control flexibility. Moreover, the voltage of the battery pack can be selected to be different than that of the ultracapacitor, which will result in flexibility of design as well as cost and size reduction of the battery pack. In addition, the ultracapacitor bank can supply or recapture a large burst of power and it can be used with high C-rates. Hence, the battery is not subjected to supply peak and sharp power variations, and the stress on the battery will be reduced and the battery lifetime would be increased. Utilizing ultracapacitor results in effective capturing of the braking energy, especially in sudden braking conditions.

  13. Hybrid multitarget tracking system

    NASA Astrophysics Data System (ADS)

    Subramanian, Aswinikumar; Hassebrook, Laurence G.; Ghosal, Sugata; Kim, Michael

    1992-11-01

    A common function for human being is to detect the movement of an object against a stationary background and then to lock on to and trace its motion. This natural process becomes very tedious in industrial or military environments where the database of images to be searched is huge or where the function is to be repeated continuously. Thus automation can assist people carrying out such tasks. This is the case in security systems, military reconnaissance, military targeting, aircraft tracking, assembly line manufacturing systems, and quality control. We present a hybrid system to do such tasks. The technique is simulated on computer using numerical algorithms and is successful under many situations. For implementation an ideal system using optical components is presented. This hybrid system employs three main subsystems which are combined in such a way as to compensate for each other's drawbacks yet enhance each other's virtues. The first system is a velocity correlation system which correlates two adjacent frames in a sequence of image frames. The resultant velocity correlations are searched to find the potential velocity profiles at which an object may be moving. These velocity profiles are then processed by the multi-frame mean subsystem which performs a geometric (or arithmetic mean) operation on the image frames. These frames are displaced by the selected velocity profiles and thereby aligning the object in the given frames for detection. Algorithms have been developed and tested to perform this technique on selected databases. Also algorithms to synthesize test images have been developed and the results are presented.

  14. Hybrid Systems Diagnosis

    NASA Technical Reports Server (NTRS)

    McIlraith, Sheila; Biswas, Gautam; Clancy, Dan; Gupta, Vineet

    2005-01-01

    This paper reports on an on-going Project to investigate techniques to diagnose complex dynamical systems that are modeled as hybrid systems. In particular, we examine continuous systems with embedded supervisory controllers that experience abrupt, partial or full failure of component devices. We cast the diagnosis problem as a model selection problem. To reduce the space of potential models under consideration, we exploit techniques from qualitative reasoning to conjecture an initial set of qualitative candidate diagnoses, which induce a smaller set of models. We refine these diagnoses using parameter estimation and model fitting techniques. As a motivating case study, we have examined the problem of diagnosing NASA's Sprint AERCam, a small spherical robotic camera unit with 12 thrusters that enable both linear and rotational motion.

  15. A hybrid lightwave transmission system based on light injection/optoelectronic feedback techniques and fiber-VLLC integration

    NASA Astrophysics Data System (ADS)

    Tsai, Wen-Shing; Lu, Hai-Han; Li, Chung-Yi; Chen, Bo-Rui; Lin, Hung-Hsien; Lin, Dai-Hua

    2016-04-01

    A hybrid lightwave transmission system based on light injection/optoelectronic feedback techniques and fiber-visible laser light communication (VLLC) integration is proposed and experimentally demonstrated. To be the first one of its kind in employing light injection and optoelectronic feedback techniques in a fiber-VLLC integration lightwave transmission system, the light is successfully directly modulated with Community Access Television (CATV), 16-QAM, and 16-QAM-OFDM signals. Over a 40 km SMF and a 10 m free-space VLLC transport, good performances of carrier-to-noise ratio (CNR)/composite second-order (CSO)/composite triple-beat (CTB)/bit error rate (BER) are achieved for CATV/16-QAM/16-QAM-OFDM signals transmission. Such a hybrid lightwave transmission system would be very useful since it can provide broadband integrated services including CATV, Internet, and telecommunication services over both distribute fiber and in-building networks.

  16. Development of a fully automated CFD system for three-dimensional flow simulations based on hybrid prismatic-tetrahedral grids

    SciTech Connect

    Berg, J.W. van der; Maseland, J.E.J.; Oskam, B.

    1996-12-31

    In this paper an assessment of CFD methods based on the underlying grid type is made. It is safe to say that emerging CFD methods based on hybrid body-fitted grids of tetrahedral and prismatic cells using unstructured data storage schemes have the potential to satisfy the basic requirements of problem-turnaround-time and accuracy for complex geometries. The CFD system described in this paper is based on the hybrid prismatic-tetrahedral grid approach. In an analysis it is shown that the cells in the prismatic layer have to satisfy a central symmetry property in order to obtain a second-order accurate approximation of the viscous terms in the Reynolds-averaged Navier-Stokes equations. Prismatic grid generation is demonstrated for the ONERA M6 wing-alone configuration and the AS28G wing/body configuration.

  17. Bandwidth based methodology for designing a hybrid energy storage system for a series hybrid electric vehicle with limited all electric mode

    NASA Astrophysics Data System (ADS)

    Shahverdi, Masood

    The cost and fuel economy of hybrid electrical vehicles (HEVs) are significantly dependent on the power-train energy storage system (ESS). A series HEV with a minimal all-electric mode (AEM) permits minimizing the size and cost of the ESS. This manuscript, pursuing the minimal size tactic, introduces a bandwidth based methodology for designing an efficient ESS. First, for a mid-size reference vehicle, a parametric study is carried out over various minimal-size ESSs, both hybrid (HESS) and non-hybrid (ESS), for finding the highest fuel economy. The results show that a specific type of high power battery with 4.5 kWh capacity can be selected as the winning candidate to study for further minimization. In a second study, following the twin goals of maximizing Fuel Economy (FE) and improving consumer acceptance, a sports car class Series-HEV (SHEV) was considered as a potential application which requires even more ESS minimization. The challenge with this vehicle is to reduce the ESS size compared to 4.5 kWh, because the available space allocation is only one fourth of the allowed battery size in the mid-size study by volume. Therefore, an advanced bandwidth-based controller is developed that allows a hybridized Subaru BRZ model to be realized with a light ESS. The result allows a SHEV to be realized with 1.13 kWh ESS capacity. In a third study, the objective is to find optimum SHEV designs with minimal AEM assumption which cover the design space between the fuel economies in the mid-size car study and the sports car study. Maximizing FE while minimizing ESS cost is more aligned with customer acceptance in the current state of market. The techniques applied to manage the power flow between energy sources of the power-train significantly affect the results of this optimization. A Pareto Frontier, including ESS cost and FE, for a SHEV with limited AEM, is introduced using an advanced bandwidth-based control strategy teamed up with duty ratio control. This controller

  18. Hybrid solid state laser system using a neodymium-based master oscillator and an ytterbium-based power amplifier

    DOEpatents

    Payne, Stephen A.; Marshall, Christopher D.; Powell, Howard T.; Krupke, William F.

    2001-01-01

    In a master oscillator-power amplifier (MOPA) hybrid laser system, the master oscillator (MO) utilizes a Nd.sup.3+ -doped gain medium and the power amplifier (PA) utilizes a diode-pumped Yb.sup.3+ -doped material. The use of two different laser gain media in the hybrid MOPA system provides advantages that are otherwise not available. The Nd-doped gain medium preferably serves as the MO because such gain media offer the lowest threshold of operation and have already been engineered as practical systems. The Yb-doped gain medium preferably serves in the diode-pumped PA to store pump energy effectively and efficiently by virtue of the long emission lifetime, thereby reducing diode pump costs. One crucial constraint on the MO and PA gain media is that the Nd and Yb lasers must operate at nearly the same wavelength. The 1.047 .mu.m Nd:YLF/Yb:S-FAP [Nd:LiYF.sub.4 /Yb:Sr.sub.5 (PO.sub.4).sub.3 F] hybrid MOPA system is a preferred embodiment of the hybrid Nd/Yb MOPA.

  19. An RFI monitoring system based on a hybrid configuration for radioastronomy

    NASA Astrophysics Data System (ADS)

    Melis, Andrea; Gaudiomonte, Francesco; Barbaro, Massimo; Concu, Raimondo; Migoni, Carlo; Trois, Alessio; Valente, Giuseppe

    2014-07-01

    Radio Frequency Interferences (RFI) represents one of the major issues especially in single-dish low frequency radioastronomic observations. Several solutions have been investigated to face the problem. Among them a wide-band digital spectrometer is used together to a RFI monitoring station placed close to the radio-telescope and eventually supported by a RFI mobile laboratory. In this paper a system combining such as approaches is described. The first one is a wide-band FFT spectrometer designed for RFI purposes, then the second consists of a station dedicated to RF environment monitoring. Advantages and drawbacks of this hybrid approach will be shown.

  20. Hybrid optical-digital encryption system based on wavefront coding paradigm

    NASA Astrophysics Data System (ADS)

    Konnik, Mikhail V.

    2012-04-01

    The wavefront coding is a widely used in the optical systems to compensate aberrations and increase the depth of field. This paper presents experimental results on application of the wavefront coding paradigm for data encryption. We use a synthesised diffractive optical element (DOE) to deliberately introduce a phase distortion during the images registration process to encode the acquired image. In this case, an optical convolution of the input image with the point spread function (PSF) of the DOE is registered. The encryption is performed optically, and is therefore is fast and secure. Since the introduced distortion is the same across the image, the decryption is performed digitally using deconvolution methods. However, due to noise and finite accuracy of a photosensor, the reconstructed image is degraded but still readable. The experimental results, which are presented in this paper, indicate that the proposed hybrid optical-digital system can be implemented as a portable device using inexpensive off-the-shelf components. We present the results of optical encryption and digital restoration with quantitative estimations of the images quality. Details of hardware optical implementation of the hybrid optical-digital encryption system are discussed.

  1. A low-cost EEG system-based hybrid brain-computer interface for humanoid robot navigation and recognition.

    PubMed

    Choi, Bongjae; Jo, Sungho

    2013-01-01

    This paper describes a hybrid brain-computer interface (BCI) technique that combines the P300 potential, the steady state visually evoked potential (SSVEP), and event related de-synchronization (ERD) to solve a complicated multi-task problem consisting of humanoid robot navigation and control along with object recognition using a low-cost BCI system. Our approach enables subjects to control the navigation and exploration of a humanoid robot and recognize a desired object among candidates. This study aims to demonstrate the possibility of a hybrid BCI based on a low-cost system for a realistic and complex task. It also shows that the use of a simple image processing technique, combined with BCI, can further aid in making these complex tasks simpler. An experimental scenario is proposed in which a subject remotely controls a humanoid robot in a properly sized maze. The subject sees what the surrogate robot sees through visual feedback and can navigate the surrogate robot. While navigating, the robot encounters objects located in the maze. It then recognizes if the encountered object is of interest to the subject. The subject communicates with the robot through SSVEP and ERD-based BCIs to navigate and explore with the robot, and P300-based BCI to allow the surrogate robot recognize their favorites. Using several evaluation metrics, the performances of five subjects navigating the robot were quite comparable to manual keyboard control. During object recognition mode, favorite objects were successfully selected from two to four choices. Subjects conducted humanoid navigation and recognition tasks as if they embodied the robot. Analysis of the data supports the potential usefulness of the proposed hybrid BCI system for extended applications. This work presents an important implication for the future work that a hybridization of simple BCI protocols provide extended controllability to carry out complicated tasks even with a low-cost system. PMID:24023953

  2. Design and Implementation of a Set-Top Box–Based Homecare System Using Hybrid Cloud

    PubMed Central

    Lin, Bor-Shing; Hsiao, Pei-Chi; Cheng, Po-Hsun; Jan, Gene Eu

    2015-01-01

    Abstract Introduction: Telemedicine has become a prevalent topic in recent years, and several telemedicine systems have been proposed; however, such systems are an unsuitable fit for the daily requirements of users. Materials and Methods: The system proposed in this study was developed as a set-top box integrated with the Android™ (Google, Mountain View, CA) operating system to provide a convenient and user-friendly interface. The proposed system can assist with family healthcare management, telemedicine service delivery, and information exchange among hospitals. To manage the system, a novel type of hybrid cloud architecture was also developed. Results: Updated information is stored on a public cloud, enabling medical staff members to rapidly access information when diagnosing patients. In the long term, the stored data can be reduced to improve the efficiency of the database. Conclusions: The proposed design offers a robust architecture for storing data in a homecare system and can thus resolve network overload and congestion resulting from accumulating data, which are inherent problems in centralized architectures, thereby improving system efficiency. PMID:26075333

  3. An Alginate-based Hybrid System for Growth Factor Delivery in the Functional Repair of Large Bone Defects

    PubMed Central

    Kolambkar, Yash M.; Dupont, Kenneth M.; Boerckel, Joel D.; Huebsch, Nathaniel; Mooney, David J.; Hutmacher, Dietmar W.

    2010-01-01

    The treatment of challenging fractures and large osseous defects presents a formidable problem for orthopaedic surgeons. Tissue engineering/regenerative medicine approaches seek to solve this problem by delivering osteogenic signals within scaffolding biomaterials. In this study, we introduce a hybrid growth factor delivery system that consists of an electrospun nanofiber mesh tube for guiding bone regeneration combined with peptide-modified alginate hydrogel injected inside the tube for sustained growth factor release. We tested the ability of this system to deliver recombinant bone morphogenetic protein-2 (rhBMP-2) for the repair of critically-sized segmental bone defects in a rat model. Longitudinal μ-CT analysis and torsional testing provided quantitative assessment of bone regeneration. Our results indicate that the hybrid delivery system resulted in consistent bony bridging of the challenging bone defects. However, in the absence of rhBMP-2, the use of nanofiber mesh tube and alginate did not result in substantial bone formation. Perforations in the nanofiber mesh accelerated the rhBMP-2 mediated bone repair, and resulted in functional restoration of the regenerated bone. μ-CT based angiography indicated that perforations did not significantly affect the revascularization of defects, suggesting that some other interaction with the tissue surrounding the defect such as improved infiltration of osteoprogenitor cells contributed to the observed differences in repair. Overall, our results indicate that the hybrid alginate/nanofiber mesh system is a promising growth factor delivery strategy for the repair of challenging bone injuries. PMID:20864165

  4. Hybrid powertrain system

    DOEpatents

    Grillo, Ricardo C.; O'Neil, Walter K.; Preston, David M.

    2005-09-20

    A hybrid powertrain system is provided that includes a first prime mover having a rotational output, a second prime mover having a rotational output, and a transmission having a main shaft supporting at least two main shaft gears thereon. The transmission includes a first independent countershaft drivingly connected to the first prime mover and including at least one ratio gear supported thereon that meshes with a respective main shaft gear. A second independent countershaft is drivingly connected to the second prime mover and includes at least one ratio gear supported thereon that meshes with a respective main shaft gear. The ratio gears on the first and second countershafts cooperate with the main shaft gears to provide at least one gear ratio between the first and second countershafts and the main shaft. A shift control mechanism selectively engages and disengages the first and second countershafts for rotation with the main shaft.

  5. Hybrid radiator cooling system

    DOEpatents

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  6. Hybrid spread spectrum radio system

    DOEpatents

    Smith, Stephen F [London, TN; Dress, William B [Camas, WA

    2010-02-09

    Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.

  7. Optimization-based power management of hybrid power systems with applications in advanced hybrid electric vehicles and wind farms with battery storage

    NASA Astrophysics Data System (ADS)

    Borhan, Hoseinali

    Modern hybrid electric vehicles and many stationary renewable power generation systems combine multiple power generating and energy storage devices to achieve an overall system-level efficiency and flexibility which is higher than their individual components. The power or energy management control, "brain" of these "hybrid" systems, determines adaptively and based on the power demand the power split between multiple subsystems and plays a critical role in overall system-level efficiency. This dissertation proposes that a receding horizon optimal control (aka Model Predictive Control) approach can be a natural and systematic framework for formulating this type of power management controls. More importantly the dissertation develops new results based on the classical theory of optimal control that allow solving the resulting optimal control problem in real-time, in spite of the complexities that arise due to several system nonlinearities and constraints. The dissertation focus is on two classes of hybrid systems: hybrid electric vehicles in the first part and wind farms with battery storage in the second part. The first part of the dissertation proposes and fully develops a real-time optimization-based power management strategy for hybrid electric vehicles. Current industry practice uses rule-based control techniques with "else-then-if" logic and look-up maps and tables in the power management of production hybrid vehicles. These algorithms are not guaranteed to result in the best possible fuel economy and there exists a gap between their performance and a minimum possible fuel economy benchmark. Furthermore, considerable time and effort are spent calibrating the control system in the vehicle development phase, and there is little flexibility in real-time handling of constraints and re-optimization of the system operation in the event of changing operating conditions and varying parameters. In addition, a proliferation of different powertrain configurations may

  8. A HYBRID KNOWLEDGE-BASED/ALGORITHMIC APPROACH TO THE DESIGN OF WASTE TREATMENT SYSTEMS

    EPA Science Inventory

    Synthesizing a wastewater treatment system design involves selecting the combination, arrangement, and sizing of unit treatment processes that will meet all treatment objectives. A computer based method for the initial phase of treatment system design is developed. It identifies ...

  9. Particle filter based hybrid prognostics for health monitoring of uncertain systems in bond graph framework

    NASA Astrophysics Data System (ADS)

    Jha, Mayank Shekhar; Dauphin-Tanguy, G.; Ould-Bouamama, B.

    2016-06-01

    The paper's main objective is to address the problem of health monitoring of system parameters in Bond Graph (BG) modeling framework, by exploiting its structural and causal properties. The system in feedback control loop is considered uncertain globally. Parametric uncertainty is modeled in interval form. The system parameter is undergoing degradation (prognostic candidate) and its degradation model is assumed to be known a priori. The detection of degradation commencement is done in a passive manner which involves interval valued robust adaptive thresholds over the nominal part of the uncertain BG-derived interval valued analytical redundancy relations (I-ARRs). The latter forms an efficient diagnostic module. The prognostics problem is cast as joint state-parameter estimation problem, a hybrid prognostic approach, wherein the fault model is constructed by considering the statistical degradation model of the system parameter (prognostic candidate). The observation equation is constructed from nominal part of the I-ARR. Using particle filter (PF) algorithms; the estimation of state of health (state of prognostic candidate) and associated hidden time-varying degradation progression parameters is achieved in probabilistic terms. A simplified variance adaptation scheme is proposed. Associated uncertainties which arise out of noisy measurements, parametric degradation process, environmental conditions etc. are effectively managed by PF. This allows the production of effective predictions of the remaining useful life of the prognostic candidate with suitable confidence bounds. The effectiveness of the novel methodology is demonstrated through simulations and experiments on a mechatronic system.

  10. Forced Oscillations for Hybrid Systems

    NASA Astrophysics Data System (ADS)

    Cheshankov, B.

    2009-11-01

    The hybrid system in the paper means a mechanical system which consists from two parts with different structure—a part with distributed parameters and a part with discrete parameters. More concrete the forced longitudinal oscillations of a rod connected with a simple oscillator are considered. The oscillations of the separate parts of the system are very well known. It turned out that the oscillations of this hybrid system propose some difficulties when investigating. The paper proposes an approach to overcome these difficulties.

  11. Limited-angle hybrid optical diffraction tomography system with total-variation-minimization-based reconstruction

    NASA Astrophysics Data System (ADS)

    Krauze, Wojciech; Kuś, Arkadiusz; Kujawinska, Malgorzata

    2015-05-01

    The case of diffraction tomography with limited angle of projections is discussed from the algorithmic and experimental points of view. To reconstruct a three-dimensional distribution of refractive index of a micro-object under study, we use a hybrid approach based on the simultaneous algebraic reconstruction technique (SART) enhanced by a compressed sensing reconstruction technique. It enables us to apply the standard computed tomography algorithms (which assume that the rays are traveling in straight lines through the object) for phase data obtained by means of digital holography. We present the results of analysis of a phantom and real objects obtained by applying SART with anisotropic total variation (ATV) minimization. The real data are acquired from an experimental setup based on a Mach-Zehnder interferometer configuration. Also, it is proven that in the case of simulated data, the limited number of projections captured in a limited angular range can be compensated by a higher number of iterations of the algorithm. We also show that the SART + ATV method applied for experimental data gives better results than the data replenishment algorithm.

  12. Hybrid CATV/MMW/BB lightwave transmission system based on fiber-wired/fiber-wireless/fiber-VLLC integrations.

    PubMed

    Li, Chung-Yi; Lu, Hai-Han; Lu, Ting-Chieh; Chu, Chien-An; Chen, Bo-Rui; Lin, Chun-Yu; Peng, Peng-Chun

    2015-12-14

    A hybrid lightwave transmission system for cable television (CATV)/millimeter-wave (MMW)/baseband (BB) signal transmission based on fiber-wired/fiber-wireless/fiber-visible laser light communication (VLLC) integrations is proposed and demonstrated. For down-link transmission, the light is intensity-modulated with 50-550 MHz CATV signal and optically promoted from 25 GHz radio frequency (RF) signal to 10 Gbps/50 GHz and 20 Gbps/100 GHz MMW data signals based on fiber-wired and fiber-wireless integrations. Good performances of carrier-to-noise ratio (CNR), composite second-order (CSO), composite triple-beat (CTB), and bit error rate (BER) are obtained over a 40-km single-mode fiber (SMF) and a 10-m RF wireless transport. For up-link transmission, the light is successfully intensity-remodulated with 5-Gbps BB data stream based on fiber-VLLC integration. Good BER performance is achieved over a 40-km SMF and a 10-m free-space VLLC transport. Such a hybrid CATV/MMW/BB lightwave transmission system is an attractive alternative, it gives the benefits of a communication link for broader bandwidth and higher transmission rate. PMID:26698972

  13. Hybrid-Vehicle Transmission System

    NASA Technical Reports Server (NTRS)

    Lupo, G.; Dotti, G.

    1985-01-01

    Continuously-variable transmission system for hybrid vehicles couples internal-combustion engine and electric motor section, either individually or in parallel, to power vehicle wheels during steering and braking.

  14. Hybrid solar lighting systems and components

    DOEpatents

    Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.

    2007-06-12

    A hybrid solar lighting system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates each component.

  15. Hybrid solar lighting distribution systems and components

    DOEpatents

    Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.

    2011-07-05

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  16. A hybrid knowledge based system for therapy adjustment in gestational diabetes.

    PubMed

    Hernando, M E; Gómez, E J; Corcoy, R; del Pozo, F; Arredondo, M T

    1994-01-01

    This poster describes a system to analyze self-monitoring data of gestational diabetic patients, for obtaining an assessment of their metabolic control with the final goal of supporting decision-making in therapy adjustment. The system is able to manage incomplete data and to make temporal reasoning under uncertainty, the two most important constraints when analyzing ambulatory monitoring data. Two different formalism have been used to represent and manage the knowledge: a dynamic Bayesian network and a production system based on rules. The outcomes provided by the whole system are: information on possible patient transgressions of the prescribed treatment and recommendations of treatment adjustments. PMID:7950077

  17. Prodiag--a hybrid artificial intelligence based reactor diagnostic system for process faults

    SciTech Connect

    Reifman, J.; Wei, T.Y.C.; Vitela, J.E.; Applequist, C. A.; Chasensky, T.M.

    1996-03-01

    Commonwealth Research Corporation (CRC) and Argonne National Laboratory (ANL) are collaborating on a DOE-sponsored Cooperative Research and Development Agreement (CRADA), project to perform feasibility studies on a novel approach to Artificial Intelligence (Al) based diagnostics for component faults in nuclear power plants. Investigations are being performed in the construction of a first-principles physics-based plant level process diagnostic expert system (ES) and the identification of component-level fault patterns through operating component characteristics using artificial neural networks (ANNs). The purpose of the proof-of-concept project is to develop a computer-based system using this Al approach to assist process plant operators during off-normal plant conditions. The proposed computer-based system will use thermal hydraulic (T-H) signals complemented by other non-T-H signals available in the data stream to provide the process operator with the component which most likely caused the observed process disturbance.To demonstrate the scale-up feasibility of the proposed diagnostic system it is being developed for use with the Chemical Volume Control System (CVCS) of a nuclear power plant. A full-scope operator training simulator representing the Commonwealth Edison Braidwood nuclear power plant is being used both as the source of development data and as the means to evaluate the advantages of the proposed diagnostic system. This is an ongoing multi-year project and this paper presents the results to date of the CRADA phase.

  18. The conceptual Design of a hybrid Life Support System based on the Evaluation and Comparison of Terrestrial Testbeds

    NASA Astrophysics Data System (ADS)

    Czupalla, M.; Horneck, G.; Blome, H. J.

    This report summarizes a trade study which was conducted at the DLR in Cologne as part of an Aerospace Engineering Thesis for the University of Applied Sciences at Aachen. The goal of this study was the evaluation of bioregenerative options of a Life Support System (LSS) and a subsequent conceptual design of a hybrid LSS. This concept is supported by previous work on P/C LSS. Baseline for the evaluation of bioregenerative options were the terrestrial experiments in the LSS area. The experiments considered for the study were as follows. MELISSA (ESA's Microbial LSS Approach) BIOS (Russia experiments on CELSS) ALS Project (American practical and theoretical work on LSS) Computer models including mass flows were established for each of the systems with the goal of closing system loops to the extent possible. The terrestrial test initiatives achieved different levels of maturity as of supported crew size and the provided nutrition. For comparison, all systems were scaled for supporting a crew of six as given in the NASA Design Reference Mission Scenario (DRM). In addition one uniform nutritional baseline, as of calories, was applied to all models. Equivalent System Mass analysis was used to compare the scaled terrestrial designs against each other. Following the comparison of the terrestrial systems, the system specific subsystem options for Food Supply, Waste Processing, Water Management and Atmosphere Revitalization were evaluated separately in a trade study. Resulting technologies were integrated into an overall design solution based on mass flow relationships. The bioregenerative part of the LSS was hereby supplemented with P/C LSS technologies in order to enhance system performance and to minimize re-supply requirements. Eventually an iterated conceptual hybrid LSS for DRM type mission was designed and will be presented.

  19. HYCONES: a hybrid connectionist expert system.

    PubMed Central

    Leão, B. de F.; Reátegui, E. B.

    1993-01-01

    This paper describes HYCONES, a tightly-coupled Hybrid Connectionist Expert System that integrates neural networks with a symbolic approach (frames). The symbolic paradigm provides rich and flexible constructs to describe the domain knowledge, while the connectionist one provides the system with learning capabilities. The paper describes the architecture of the system, focusing on the hybrid aspects of the knowledge base and on its automatic knowledge acquisition technique from a case database. The first validation of the system is presented. At the end, a comparison with related research efforts and future developments are discussed. PMID:8130516

  20. Power quality control of an autonomous wind-diesel power system based on hybrid intelligent controller.

    PubMed

    Ko, Hee-Sang; Lee, Kwang Y; Kang, Min-Jae; Kim, Ho-Chan

    2008-12-01

    Wind power generation is gaining popularity as the power industry in the world is moving toward more liberalized trade of energy along with public concerns of more environmentally friendly mode of electricity generation. The weakness of wind power generation is its dependence on nature-the power output varies in quite a wide range due to the change of wind speed, which is difficult to model and predict. The excess fluctuation of power output and voltages can influence negatively the quality of electricity in the distribution system connected to the wind power generation plant. In this paper, the authors propose an intelligent adaptive system to control the output of a wind power generation plant to maintain the quality of electricity in the distribution system. The target wind generator is a cost-effective induction generator, while the plant is equipped with a small capacity energy storage based on conventional batteries, heater load for co-generation and braking, and a voltage smoothing device such as a static Var compensator (SVC). Fuzzy logic controller provides a flexible controller covering a wide range of energy/voltage compensation. A neural network inverse model is designed to provide compensating control amount for a system. The system can be optimized to cope with the fluctuating market-based electricity price conditions to lower the cost of electricity consumption or to maximize the power sales opportunities from the wind generation plant. PMID:18996680

  1. Single-cell-based sensors and synchrotron FTIR spectroscopy: a hybrid system towards bacterial detection.

    PubMed

    Veiseh, Mandana; Veiseh, Omid; Martin, Michael C; Bertozzi, Carolyn; Zhang, Miqin

    2007-09-30

    Microarrays of single macrophage cell-based sensors were developed and demonstrated for potential real-time bacterium detection by synchrotron FTIR microscopy. The cells were patterned on gold electrodes of silicon oxide substrates by a surface engineering technique, in which the gold electrodes were immobilized with fibronectin to mediate cell adhesion and the silicon oxide background was passivated with polyethylene glycol (PEG) to resist protein adsorption and cell adhesion. Cell morphology and IR spectra of single, double, and triple cells on gold electrodes exposed to lipopolysaccharide (LPS) of different concentrations were compared to reveal the detection capability of this cell-based sensing platform. The single-cell-based system was found to generate the most significant and consistent IR spectrum shifts upon exposure to LPS, thus providing the highest detection sensitivity. Changes in cell morphology and IR shifts upon cell exposure to LPS were found to be dependent on the LPS concentration and exposure time, which established a method for the identification of LPS concentration and infected cell population. Possibility of using this single-cell system with conventional IR spectroscopy as well as its limitation was investigated by comparing IR spectra of single-cell arrays with gold electrode surface areas of 25, 100, and 400 microm2 using both synchrotron and conventional FTIR spectromicroscopes. This cell-based platform may potentially provide real-time, label-free, and rapid bacterial detection, and allow for high-throughput statistical analyses, and portability. PMID:17560777

  2. Base-acid hybrid water electrolysis.

    PubMed

    Chen, Long; Dong, Xiaoli; Wang, Fei; Wang, Yonggang; Xia, Yongyao

    2016-02-21

    A base-acid hybrid electrolytic system with a low onset voltage of 0.78 V for water electrolysis was developed by using a ceramic Li-ion exchange membrane to separate the oxygen-evolving reaction (OER) in a basic electrolyte solution containing the Li-ion and hydrogen-evolving reaction (HER) in an acidic electrolyte solution. PMID:26804323

  3. Hybrid systems based on "drug - in cyclodextrin - in nanoclays" for improving oxaprozin dissolution properties.

    PubMed

    Mura, Paola; Maestrelli, Francesca; Aguzzi, Carola; Viseras, César

    2016-07-25

    A combined approach based on drug complexation with cyclodextrins, and complex entrapment in nanoclays has been investigated, to join in a single delivery system the benefits of these carriers and potentiate their ability to improve the dissolution properties of oxaprozin (OXA), a poorly water-soluble anti-inflammatory drug. Based on previous studies, randomly methylated ß-cyclodextrin (RAMEB) was chosen as the most effective cyclodextrin for OXA complexation. Adsorption equilibrium studies performed on three different clays (sepiolite, attapulgite, bentonite) allowed selection of sepiolite (SV) for its greater adsorption power towards OXA. DSC and XRPD studies indicated drug amorphization in both binary OXA-RAMEB coground and OXA-SV cofused products, due to its complexation or very fine dispersion in the clay structure, respectively. The drug amorphous state was maintained also in the ternary OXA-RAMEB-SV cofused system. Dissolution studies evidenced a clear synergistic effect of RAMEB complexation and clay nanoencapsulation in improving the OXA dissolution properties, with an almost 100% increase in percent dissolved and dissolution efficiency compared to the OXA-RAMEB coground system. Therefore, the proposed combined approach represents an interesting tool for improving the therapeutic effectiveness of poorly soluble drugs, and reducing the CD amount necessary for obtaining the desired drug solubility and dissolution rate increase. PMID:27188644

  4. Composite plate low energy impact localization system based on FBG sensing network and hybrid algorithm

    NASA Astrophysics Data System (ADS)

    Sai, Yaozhang; Jiang, Mingshun; Sui, Qingmei; Lu, Shizeng; Jia, Lei

    2015-08-01

    This paper proposed an impact localization system using fiber Bragg grating (FBG) network which is based on quasi-Newton algorithm and particle swarm optimization (PSO) algorithm. The FBG sensing network, formed by eight FBGs, was used to detect impact signals. And Shannon wavelet transform was employed to extract time differences. According to time differences and the coordinates of FBGs, nonlinear equations model of impact localization was established. Based on quasi-Newton algorithm and PSO algorithm, the nonlinear equations can be solved to obtain the coordinate of impact source. Testing experiments were carried out on a composite plate within 400 mm × 400 mm monitoring area. The experimental results showed that the maximum and average errors are 3.2 mm and 1.73 mm, respectively. The computational time is less than 2 s.

  5. The conceptual design of a hybrid life support system based on the evaluation and comparison of terrestrial testbeds

    NASA Astrophysics Data System (ADS)

    Czupalla, M.; Horneck, G.; Blome, H. J.

    This report summarizes a trade study of different options of a bioregenerative Life Support System (LSS) and a subsequent conceptual design of a hybrid LSS. The evaluation was based mainly on the terrestrial testbed projects MELISSA (ESA) and BIOS (Russia). In addition, some methods suggested by the Advanced Life Support Project (NASA) were considered. Computer models, including mass flows were established for each of the systems with the goal of closing system loops to the extent possible. In order to cope with the differences in the supported crew size and provided nutrition, all systems were scaled for supporting a crew of six for a 780 day Mars mission (180 days transport to Mars; 600 days surface period) as given in the NASA Design Reference Mission Scenario [Hoffman, S.J., Kaplan, D.L. Human exploration of Mars: the Reference Mission of the NASA Mars Exploratory Study, 1997]. All models were scaled to provide the same daily allowances, as of calories, to the crew. Equivalent System Mass (ESM) analysis was used to compare the investigated system models against each other. Following the comparison of the terrestrial systems, the system specific subsystem options for Food Supply, Solid Waste Processing, Water Management and Atmosphere Revitalization were evaluated in a separate trade study. The best subsystem technologies from the trade study were integrated into an overall design solution based on mass flow relationships. The optimized LSS is mainly a bioregenerative system, complemented by a few physico-chemical elements, with a total ESM of 18,088 kg, which is about 4 times higher than that of a pure physico-chemical LSS, as designed in an earlier study.

  6. The conceptual design of a hybrid life support system based on the evaluation and comparison of terrestrial testbeds.

    PubMed

    Czupalla, M; Horneck, G; Blome, H J

    2005-01-01

    This report summarizes a trade study of different options of a bioregenerative Life Support System (LSS) and a subsequent conceptual design of a hybrid LSS. The evaluation was based mainly on the terrestrial testbed projects MELISSA (ESA) and BIOS (Russia). In addition, some methods suggested by the Advanced Life Support Project (NASA) were considered. Computer models, including mass flows were established for each of the systems with the goal of closing system loops to the extent possible. In order to cope with the differences in the supported crew size and provided nutrition, all systems were scaled for supporting a crew of six for a 780 day Mars mission (180 days transport to Mars; 600 days surface period) as given in the NASA Design Reference Mission Scenario [Hoffman, S.J., Kaplan, D.L. Human exploration of Mars: the Reference Mission of the NASA Mars Exploratory Study, 1997]. All models were scaled to provide the same daily allowances, as of calories, to the crew. Equivalent System Mass (ESM) analysis was used to compare the investigated system models against each other. Following the comparison of the terrestrial systems, the system specific subsystem options for Food Supply, Solid Waste Processing, Water Management and Atmosphere Revitalization were evaluated in a separate trade study. The best subsystem technologies from the trade study were integrated into an overall design solution based on mass flow relationships. The optimized LSS is mainly a bioregenerative system, complemented by a few physico-chemical elements, with a total ESM of 18,088 kg, which is about 4 times higher than that of a pure physico-chemical LSS, as designed in an earlier study. PMID:16175693

  7. Framework for the Economic Analysis of Hybrid Systems Based on Exergy Consumption

    SciTech Connect

    Cristian Rabiti; Robert S. Cherry; Wesley R. Deason; Piyush Sabharwall; Shannon M. Bragg-Sitton; Richard D. Boardman

    2014-08-01

    Starting from an overview of the dynamic behavior of the electricity market the need of the introduction of energy users that will provide a damping capability to the system is derived as also a qualitative analysis of the impact of uncertainty, both in the demand and supply side, is performed. Then it follows an introduction to the investment analysis methodologies based on the discounting of the cash flow, and then work concludes with the illustration and application of the exergonomic principles to provide a sound methodology for the cost accounting of the plant components to be used in the cash flow analysis.

  8. Ag/ZnO hybrid systems studied with scanning tunnelling microscopy-based luminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Pascua, Leandro; Stavale, Fernando; Nilius, Niklas; Freund, Hans-Joachim

    2016-03-01

    Coupled metal/oxide systems are prepared by depositing and embedding Ag nanoparticles into crystalline ZnO films grown on Au(111) supports. The morphology and optical properties of the compounds are investigated by topographic imaging and luminescence spectroscopy performed in a scanning tunnelling microscope (STM). The luminescence of bare ZnO is governed by the band-recombination and a Zn-vacancy related peak. After Ag deposition, two additional maxima are detected that are assigned to the in-plane and out-of-plane plasmon in Ag nanoparticles and have energies below and slightly above the oxide band-gap, respectively. Upon coating the particles with additional ZnO, the out-of-plane plasmon redshifts and loses intensity, indicating strong coupling to the oxide electronic system, while the in-plane mode broadens but remains detectable. The original situation can be restored by gently heating the sample, which drives the silver back to the surface. However, the optical response of pristine ZnO is not recovered even after silver evaporation at high temperature. Small discrepancies are explained with changes in the ZnO defect landscape, e.g., due to silver incorporation. Our experiments demonstrate how energy-transfer processes can be investigated in well-defined metal/oxide systems by means of STM-based spectroscopic techniques.

  9. Bioelectronic Device Mimicking Human Sensory System based on Nanovesicle-Carbon Nanotube Hybrid Structure

    NASA Astrophysics Data System (ADS)

    Kim, Daesan; Jin, Hye; Lee, San; Kim, Tae; Park, Juhun; Song, Hyun; Park, Tai; Hong, Seunghun

    2013-03-01

    We have developed a nanovesicle-based bioelectronic nose (NBN) that could mimic the receptor-mediated signal transmission of human olfactory systems and recognize a specific odorant. The NBN was comprised of a single-walled carbon nanotube (CNT)-based field effect transistor and cell-derived nanovesicles containing human olfactory receptors and calcium ion signal pathways. Importantly, the NBN took advantages of cell signal pathways for sensing signal amplification. It enabled ~100 times higher sensitivity than that of previous bioelectronic noses based on only olfactory receptor protein and CNT transistors. The NBN sensors exhibited a high sensitivity of 1 fM detection limit and a human-like selectivity with single-carbon-atomic resolution. Furthermore, these sensors could mimic a receptor-mediated cellular signal transmission in live cells. This versatile sensor platform should be useful for the study of molecular recognition and biological processes on cell membranes and also for various practical applications such as food conditioning and medical diagnostics.

  10. Hybrid power management system and method

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J. (Inventor)

    2007-01-01

    A system and method for hybrid power management. The system includes photovoltaic cells, ultracapacitors, and pulse generators. In one embodiment, the hybrid power management system is used to provide power for a highway safety flasher.

  11. Hybrid Power Management System and Method

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J. (Inventor)

    2008-01-01

    A system and method for hybrid power management. The system includes photovoltaic cells, ultracapacitors, and pulse generators. In one embodiment, the hybrid power management system is used to provide power for a highway safety flasher.

  12. Hybrid optical-electrochemical electronic nose system based on Zn-porphyrin and multi-walled carbon nanotube composite.

    PubMed

    Kladsomboon, Sumana; Lutz, Mario; Pogfay, Tawee; Puntheeranurak, Theeraporn; Kerdcharoen, Teerakiat

    2012-07-01

    In this work, we have enhanced the capability of an e-nose system based on combined optical and electrochemical transduction within a single gas sensor array. The optical part of this e-nose is based on detection of the absorption changes of light emitted from eight light emitting diodes (LEDs) as measured by a CMOS photo-detector. The electrochemical part works by measuring the change in electrical resistivity of the sensing materials upon contact with the sample vapor. Zinc-5,10,15,20-tetra-phenyl-21H,23H-porphyrin (ZnTPP) and multi-walled carbon nanotube (MWCNT) composite was used as the sensing materials based on its good optoelectronic properties. This sensing layer was characterized by UV-Vis spectroscopy and atomic force microscope and tested with various VOC vapors. Density functional theory (DFT) calculations were performed to investigate the electronic properties and interaction energies between ZnTPP and analyte molecules. It can be clearly seen that this hybrid optical-electrochemical electronic nose system can classify the vapor of different volatile organic compounds. PMID:22966552

  13. In vivo nanotoxicology of hybrid systems based on copolymer/silica/anticancer drug

    NASA Astrophysics Data System (ADS)

    Silveira, C. P.; Paula, A. J.; Apolinário, L. M.; Fávaro, W. J.; Durán, N.

    2015-05-01

    One of the major problems in cancer therapies is the high occurrence of side effects intrinsic of anticancer drugs. Doxorrubicin is a conventional anticancer molecule used to treat a wide range of cancer, such as breast, ovarian and prostate. However, its use is associated with a number of side effects like multidrug resistance and cardiotoxicity. The association with nanomaterials has been considered in the past decade to overcome the high toxicity of these drugs. In this context, mesoporous silica nanoparticles are great candidates to be used as carriers once they are very biocompatible. Taking into account the combination of nanoparticles and doxorrubicin, we treated rats with chemically induced prostate cancer with systems based on mesoporous silica nanoparticles and a thermoreversible block copolymer (Pluronic F-127) containing doxorrubicin. Preliminary results show a possible improvement in tumor conditions proportional to the concentration of the nanoparticles, opening a perspective to use mesoporous silica nanoparticles as carrier for doxorrubicin in prostate cancer treatment.

  14. Smell Nanobiosensors: Hybrid systems based on the electrical response to odorant capture Theory And Experiment

    NASA Astrophysics Data System (ADS)

    Alfinito, Eleonora; Pennetta, Cecilia; Reggiani, Lino

    2009-05-01

    Mammalian olfactory system is the bio-archetype of smell sensor devices. It is based on a very articulated mechanism which translate the odorant capture information performed by the olfactory receptors (ORs) into a code. Finally, the code is sent to the brain for aroma recognition. Our aim is to partially mimick this system to produce a biosensor on nanometric scale. The active part of the device is constituted of nanosomes containing specific ORs. Each nanosome is interfaced with nanoelectrodes and the odorant capture is converted into an electric signal. Specifically, the electrical response is correlated with the conformational change that a single OR undergoes when it captures a specific odorant molecule. An array of nanodevices should be able to produce specific response profiles. In this paper we present a possible theoretical framework in which the experimental results should be embedded. It consists of the description of the protein in terms of an impedance network able to simulate the electrical characteristics associated with the protein topology.

  15. Hybrid cable television and orthogonal-frequency-division-multiplexing transport system basing on single wavelength polarization and amplitude remodulation schemes.

    PubMed

    Chang, Ching-Hung; Liu, Wei-Chen; Peng, Peng-Chun; Lu, Hai-Han; Wu, Po-Yi; Wang, Jyun-Bo

    2011-05-01

    A hybrid community antenna television (CATV) and orthogonal-frequency-division-multiplexing (OFDM) transport system is proposed and experimentally demonstrated to transmit multiple CATV channels and bi-directional radio frequency signals on a single optical carrier. By polarization remodulating an optical CATV signal with downstream OFDM signals and then amplitude remodulating upstream OFDM signals with the hybrid CATV/OFDM signals, this architecture can efficiently utilize only one optical carrier to support optical analog/digital CATV transmission and bi-directional wireless broadband services for each client. Good experimental results prove that this architecture provides a proper wavelength utilization scheme for future multiwavelength optical transport systems. PMID:21540979

  16. Modeling and Simulation of Water Allocation System Based on Simulated Annealing Hybrid Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Zhu, Jiulong; Wang, Shijun

    Presently water resource in most watersheds in China is distributed in terms of administrative instructions. This kind of allocation method has many disadvantages and hampers the instructional effect of market mechanism on water allocation. The paper studies South-to-North Water Transfer Project and discusses water allocation of the node lakes along the Project. Firstly, it advanced four assumptions. Secondly, it analyzed constraint conditions of water allocation in terms of present state of water allocation in China. Thirdly, it established a goal model of water allocation and set up a systematic model from the angle of comprehensive profits of water utilization and profits of the node lakes. Fourthly, it discussed calculation method of the model by means of Simulated Annealing Hybrid Genetic Algorithm (SHGA). Finally, it validated the rationality and validity of the model by a simulation testing.

  17. Hybrid2 - The hybrid power system simulation model

    SciTech Connect

    Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van; Manwell, J.F.

    1996-12-31

    There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.

  18. An LED-Based Gain Monitoring System for the PrimEx Hybrid Calorimeter at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Underwood, Jarreas

    2003-10-01

    The PrimEx Collaboration is preparing to perform a high precision ( ˜ 1.4%) measurement of the neutral pion decay width through two gamma decay mode. Knowledge of the pion decay width with such high accuracy will provide a stringent test of the fundamental symmetry breaking issue in QCD - the chiral anomaly. The theoretical prediction of the decay width is precise, and the 1.4% level measurement in PrimEx is adequate for this test. Pions will be produced in nuclear targets by the coherent photoproduction in the Coulomb field of a nucleus at small angles (Primakoff effect). The energy and coordinates of the resultant decay photons will be detected in a high resolution HYbrid CALorimeter (HYCAL) which consists of about 1200 lead tungstate crystal scintillators surrounded by ˜ 600 lead glass Cherenkov counters. HYCAL will be furnished with precise ˜ 0.1% gain monitoring system based on blue super-bright light emitting diodes. A 700-channel prototype system has been constructed for the prototype HYCAL-0 calorimeter. This system has been tested for both long-term stability and performance in the CEBAF photon beam. Additionally, fluctuations in the calorimeter high voltages were simulated during the beam test. The results of these tests will be presented. This project is being supported by NSF grants PHY-0079840 and PHY-0072466

  19. Hybrid lipid-based nanostructures

    NASA Astrophysics Data System (ADS)

    Dayani, Yasaman

    Biological membranes serve several important roles, such as structural support of cells and organelles, regulation of ionic and molecular transport, barriers to non-mediated transport, contact between cells within tissues, and accommodation of membrane proteins. Membrane proteins and other vital biomolecules incorporated into the membrane need a lipid membrane to function. Due to importance of lipid bilayers and their vital function in governing many processes in the cell, the development of various models as artificial lipid membranes that can mimic cell membranes has become a subject of great interest. Using different models of artificial lipid membranes, such as liposomes, planar lipid bilayers and supported or tethered lipid bilayers, we are able to study many biophysical processes in biological membranes. The ability of different molecules to interact with and change the structure of lipid membranes can be also investigated in artificial lipid membranes. An important application of lipid bilayer-containing interfaces is characterization of novel membrane proteins for high throughput drug screening studies to investigate receptor-drug interactions and develop biosensor systems. Membrane proteins need a lipid bilayer environment to preserve their stability and functionality. Fabrication of materials that can interact with biomolecules like proteins necessitates the use of lipid bilayers as a mimic of cell membranes. The objective of this research is to develop novel hybrid lipid-based nanostructures mimicking biological membranes. Toward this aim, two hybrid biocompatible structures are introduced: lipid bilayer-coated multi-walled carbon nanotubes (MWCNTs) and hydrogel-anchored liposomes with double-stranded DNA anchors. These structures have potential applications in biosensing, drug targeting, drug delivery, and biophysical studies of cell membranes. In the first developed nanostructure, lipid molecules are covalently attached to the surfaces of MWCNTs, and

  20. Gravity inversion using wavelet-based compression on parallel hybrid CPU/GPU systems: application to southwest Ghana

    NASA Astrophysics Data System (ADS)

    Martin, Roland; Monteiller, Vadim; Komatitsch, Dimitri; Perrouty, Stéphane; Jessell, Mark; Bonvalot, Sylvain; Lindsay, Mark

    2013-12-01

    We solve the 3-D gravity inverse problem using a massively parallel voxel (or finite element) implementation on a hybrid multi-CPU/multi-GPU (graphics processing units/GPUs) cluster. This allows us to obtain information on density distributions in heterogeneous media with an efficient computational time. In a new software package called TOMOFAST3D, the inversion is solved with an iterative least-square or a gradient technique, which minimizes a hybrid L1-/L2-norm-based misfit function. It is drastically accelerated using either Haar or fourth-order Daubechies wavelet compression operators, which are applied to the sensitivity matrix kernels involved in the misfit minimization. The compression process behaves like a pre-conditioning of the huge linear system to be solved and a reduction of two or three orders of magnitude of the computational time can be obtained for a given number of CPU processor cores. The memory storage required is also significantly reduced by a similar factor. Finally, we show how this CPU parallel inversion code can be accelerated further by a factor between 3.5 and 10 using GPU computing. Performance levels are given for an application to Ghana, and physical information obtained after 3-D inversion using a sensitivity matrix with around 5.37 trillion elements is discussed. Using compression the whole inversion process can last from a few minutes to less than an hour for a given number of processor cores instead of tens of hours for a similar number of processor cores when compression is not used.

  1. Hybrid Microgrid Model based on Solar Photovoltaics with Batteries and Fuel Cells system for intermittent applications

    NASA Astrophysics Data System (ADS)

    Patterson, Maxx

    Microgrids are a subset of the modern power structure; using distributed generation (DG) to supply power to communities rather than vast regions. The reduced scale mitigates loss allowing the power produced to do more with better control, giving greater security, reliability, and design flexibility. This paper explores the performance and cost viability of a hybrid grid-tied microgrid that utilizes Photovoltaic (PV), batteries, and fuel cell (FC) technology. The concept proposes that each community home is equipped with more PV than is required for normal operation. As the homes are part of a microgrid, excess or unused energy from one home is collected for use elsewhere within the microgrid footprint. The surplus power that would have been discarded becomes a community asset, and is used to run intermittent services. In this paper, the modeled community does not have parking adjacent to each home allowing for the installment of a privately owned slower Level 2 charger, making EV ownership option untenable. A solution is to provide a Level 3 DC Quick Charger (DCQC) as the intermittent service. The addition of batteries and Fuel Cells are meant to increase load leveling, reliability, and instill limited island capability.

  2. Desiccant-Based Combined Systems: Integrated Active Desiccant Rooftop Hybrid System Development and Testing Final Report- Phase 4

    SciTech Connect

    Fischer, J

    2005-05-06

    This report summarizes the results of a research and development (R&D) program to design and optimize an active desiccant-vapor compression hybrid rooftop system. The primary objective was to combine the strengths of both technologies to produce a compact, high-performing, energy-efficient system that could accommodate any percentage of outdoor air and deliver essentially any required combination of temperature and humidity, or sensible heat ratio (SHR). In doing so, such a product would address the significant challenges imposed on the performance capabilities of conventional packaged rooftop equipment by standards 62 and 90.1 of the American Society of Heating, Refrigerating and Air-Conditioning Engineers. The body of work completed as part of this program built upon previous R&D efforts supported by the U.S. Department of Energy and summarized by the Phase 3b report ''Active Desiccant Dehumidification Module Integration with Rooftop Packaged HVAC Units'' (Fischer and Sand 2002), in addition to Fischer, Hallstrom, and Sand 2000; Fischer 2000; and Fischer and Sand 2004. All initial design objectives established for this development program were successfully achieved. The performance flexibility desired was accomplished by a down-sized active desiccant wheel that processes only a portion of the supply airflow, which is pre-conditioned by a novel vapor compression cycle. Variable-speed compressors are used to deliver the capacity control required by a system handling a high percentage of outdoor air. An integrated direct digital control system allows for control capabilities not generally offered by conventional packaged rooftop systems. A 3000-cfm prototype system was constructed and tested in the SEMCO engineering test laboratory in Columbia, MO, and was found to operate in an energy-efficient fashion relative to more conventional systems. Most important, the system offered the capability to independently control the supply air temperature and humidity content to

  3. Hybrid powertrain system

    DOEpatents

    Hughes, Douglas A.

    2007-09-25

    A powertrain system is provided that includes a first prime mover and change-gear transmission having a first input shaft and a second input shaft. A twin clutch is disposed between the first prime mover and the transmission. The twin clutch includes a first main clutch positioned between the first prime mover and the first input shaft and a second main clutch positioned between the first prime mover and the second input shaft. The powertrain system also includes a second prime mover operably connected to one of the first and second input shafts.

  4. Hybrid powertrain system

    DOEpatents

    Hughes, Douglas A.

    2006-08-01

    A powertrain system is provided that includes a first prime mover and change-gear transmission having a first input shaft and a second input shaft. A twin clutch is disposed between the first prime mover and the transmission. The twin clutch includes a first main clutch positioned between the first prime mover and the first input shaft and a second main clutch positioned between the first prime mover and the second input shaft. The powertrain system also includes a second prime mover operably connected to one of the first and second input shafts.

  5. Data-based system modeling using a type-2 fuzzy neural network with a hybrid learning algorithm.

    PubMed

    Yeh, Chi-Yuan; Jeng, Wen-Hau Roger; Lee, Shie-Jue

    2011-12-01

    We propose a novel approach for building a type-2 neural-fuzzy system from a given set of input-output training data. A self-constructing fuzzy clustering method is used to partition the training dataset into clusters through input-similarity and output-similarity tests. The membership function associated with each cluster is defined with the mean and deviation of the data points included in the cluster. Then a type-2 fuzzy Takagi-Sugeno-Kang IF-THEN rule is derived from each cluster to form a fuzzy rule base. A fuzzy neural network is constructed accordingly and the associated parameters are refined by a hybrid learning algorithm which incorporates particle swarm optimization and a least squares estimation. For a new input, a corresponding crisp output of the system is obtained by combining the inferred results of all the rules into a type-2 fuzzy set, which is then defuzzified by applying a refined type reduction algorithm. Experimental results are presented to demonstrate the effectiveness of our proposed approach. PMID:22010148

  6. Monitoring and fault diagnosis of hybrid systems.

    PubMed

    Zhao, Feng; Koutsoukos, Xenofon; Haussecker, Horst; Reich, Jim; Cheung, Patrick

    2005-12-01

    Many networked embedded sensing and control systems can be modeled as hybrid systems with interacting continuous and discrete dynamics. These systems present significant challenges for monitoring and diagnosis. Many existing model-based approaches focus on diagnostic reasoning assuming appropriate fault signatures have been generated. However, an important missing piece is the integration of model-based techniques with the acquisition and processing of sensor signals and the modeling of faults to support diagnostic reasoning. This paper addresses key modeling and computational problems at the interface between model-based diagnosis techniques and signature analysis to enable the efficient detection and isolation of incipient and abrupt faults in hybrid systems. A hybrid automata model that parameterizes abrupt and incipient faults is introduced. Based on this model, an approach for diagnoser design is presented. The paper also develops a novel mode estimation algorithm that uses model-based prediction to focus distributed processing signal algorithms. Finally, the paper describes a diagnostic system architecture that integrates the modeling, prediction, and diagnosis components. The implemented architecture is applied to fault diagnosis of a complex electro-mechanical machine, the Xerox DC265 printer, and the experimental results presented validate the approach. A number of design trade-offs that were made to support implementation of the algorithms for online applications are also described. PMID:16366248

  7. A novel integrated thermal-/membrane-based solar energy-driven hybrid desalination system: Concept description and simulation results.

    PubMed

    Kim, Young-Deuk; Thu, Kyaw; Ng, Kim Choon; Amy, Gary L; Ghaffour, Noreddine

    2016-09-01

    In this paper, a hybrid desalination system consisting of vacuum membrane distillation (VMD) and adsorption desalination (AD) units, designated as VMD-AD cycle, is proposed. The synergetic integration of the VMD and AD is demonstrated where a useful effect of the AD cycle is channelled to boost the operation of the VMD process, namely the low vacuum environment to maintain the high pressure gradient across the microporous hydrophobic membrane. A solar-assisted multi-stage VMD-AD hybrid desalination system with temperature modulating unit is first designed, and its performance is then examined with a mathematical model of each component in the system and compared with the VMD-only system with temperature modulating and heat recovery units. The total water production and water recovery ratio of a solar-assisted 24-stage VMD-AD hybrid system are found to be about 21% and 23% higher, respectively, as compared to the VMD-only system. For the solar-assisted 24-stage VMD-AD desalination system having 150 m(2) of evacuated-tube collectors and 10 m(3) seawater storage tanks, both annual collector efficiency and solar fraction are close to 60%. PMID:27176649

  8. Conducting hybrid polymeric systems

    SciTech Connect

    Aldissi, M.; White, J.W.; Agnew, S.; Jorgensen, B.S.

    1987-09-01

    The studies took advantage of the opportunities offered by copolymerization for gaining insight into electrical conduction, morphology, phase separation, polymer-polymer interfaces, and solubility. Copolymerization is technologically important for it allows one to tailor-make products with specifically desired properties. However, the utility of copolymerization involving conjugated, rigid components could be different from that of conventional polymers. This paper is focused on the synthesis and properties of various materials: Rod-coil systems such as polyisoprene/polyacetylene diblock copolymers (resonance raman and small angle neutron scattering studies correlated to conductivity); and alternating copolymers such as poly (arylpyrroles) (electrochemical synthesis and characterization). 8 refs., 4 figs.

  9. Performance Analysis and Optimum Operation Planning of Distributed Energy System Based on Micro Gas Turbine-Solid Oxide Fuel Cell Hybrid Power Generation

    NASA Astrophysics Data System (ADS)

    Morita, Aina; Kimijima, Shinji

    In this paper, the economical and energy saving advantages of the distributed energy system, which consists of a micro gas turbine-solid oxide fuel cell hybrid power generation system, waste heat recovery devices and air-conditioning equipments, are investigated. Firstly, the thermodynamical performance evaluation of the hybrid system with the heat recovery devices is discussed to estimate the energy conversion efficiency of the whole system. Secondly, by using 1inear programming technique, the optimum operation planning of the cogeneration plant based on the hybrid system is discussed to predict the reduction of the primary fuel consumption and utility cost. Throughout detailed investigation, it is found that the energy conversion efficiency, which includes the waste heat utilization, reaches over 80% (LHV). In addition, the optimum operation of the hybrid system, of which power generation capacity is appropriate for the energy demand, achieve the highly effective energy saving against the traditional energy supply scheme, that is, the fuel reduction reaches around 40% to the conventional value.

  10. A Rule-Based System for Hybrid Search and Delivery of Learning Objects to Learners

    ERIC Educational Resources Information Center

    Biletskiy, Yevgen; Baghi, Hamidreza; Steele, Jarrett; Vovk, Ruslan

    2012-01-01

    Purpose: Presently, searching the internet for learning material relevant to ones own interest continues to be a time-consuming task. Systems that can suggest learning material (learning objects) to a learner would reduce time spent searching for material, and enable the learner to spend more time for actual learning. The purpose of this paper is…

  11. Hybrid chirped pulse amplification system

    DOEpatents

    Barty, Christopher P.; Jovanovic, Igor

    2005-03-29

    A hybrid chirped pulse amplification system wherein a short-pulse oscillator generates an oscillator pulse. The oscillator pulse is stretched to produce a stretched oscillator seed pulse. A pump laser generates a pump laser pulse. The stretched oscillator seed pulse and the pump laser pulse are directed into an optical parametric amplifier producing an optical parametric amplifier output amplified signal pulse and an optical parametric amplifier output unconverted pump pulse. The optical parametric amplifier output amplified signal pulse and the optical parametric amplifier output laser pulse are directed into a laser amplifier producing a laser amplifier output pulse. The laser amplifier output pulse is compressed to produce a recompressed hybrid chirped pulse amplification pulse.

  12. Ultrasensitive immunoassay based on a pseudobienzyme amplifying system of choline oxidase and luminol-reduced Pt@Au hybrid nanoflowers.

    PubMed

    Zhou, Ying; Zhuo, Ying; Liao, Ni; Chai, Yaqin; Yuan, Ruo

    2014-12-01

    A multi-functional luminol-reduced Pt@Au hybrid flower-like nanocomposite (luminol-Pt@AuNF) which not only acts as an efficient signal probe but also constitutes a pseudobienzyme amplifying system with choline oxidase (ChOx) was firstly synthesized and applied to the construction of a solid-state luminol electrochemiluminescence (ECL) immunosensor for cardiac troponin I (cTnI) detection. PMID:25313990

  13. Hybrid spread spectrum radio system

    DOEpatents

    Smith, Stephen F.; Dress, William B.

    2010-02-02

    Systems and methods are described for hybrid spread spectrum radio systems. A method includes modulating a signal by utilizing a subset of bits from a pseudo-random code generator to control an amplification circuit that provides a gain to the signal. Another method includes: modulating a signal by utilizing a subset of bits from a pseudo-random code generator to control a fast hopping frequency synthesizer; and fast frequency hopping the signal with the fast hopping frequency synthesizer, wherein multiple frequency hops occur within a single data-bit time.

  14. Performance-based design of active/hybrid protective systems for vibration reduction of buildings

    NASA Astrophysics Data System (ADS)

    Yang, Jann N.; Lin, Silian; Jabbari, Faryar

    2001-07-01

    In this paper, we present two control strategies for applications to civil engineering structures, referred to as the generalized H2 control and L1 control, respectively. Both control strategies are capable of addressing the performance-based design of structures, in the sense that the design requirements for the peak response quantities, such as peak interstory drifts, peak shear forces, peak floor accelerations, etc., can be satisfied. Likewise, these two controllers minimize the upper bound of the peak response of the controlled output vector. The design procedures for these two controllers are formulated in the framework of linear matrix inequalities (LMIs) so that the LMI toolbox in MATLAB can be used effectively and conveniently for the controller design. These control strategies are applied herein to the wind-excited benchmark problem to demonstrate their applicability to practical problems as well as their control performances. Simulation results illustrate that the performances of both the generalized H2 controller and the L1 controller are very plausible in comparison with the LQG control method.

  15. Hybrid slab-microchannel gel electrophoresis system

    DOEpatents

    Balch, Joseph W.; Carrano, Anthony V.; Davidson, James C.; Koo, Jackson C.

    1998-01-01

    A hybrid slab-microchannel gel electrophoresis system. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate.

  16. Quantum technologies with hybrid systems

    PubMed Central

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-01-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558

  17. Calculating the Energy Cost of CO2 Removal in a Coal Based Gas Turbine Fuel Cell Hybrid Power Generation System with an Isolated Anode Stream

    SciTech Connect

    Vanosdol, J G; Gemmen, R S; Liese, E A

    2007-10-01

    In recent years there has been significant interest in identifying carbon capturing technologies that can be applied to fossil fuel power generation plants.CO2 capture technologies seek to reduce the amount of CO2 that would normally be emitted into the atmosphere from the daily operation of these plants. In terms of system efficiency and operating costs, this carbon capture is expensive. Further, the additional equipment that would be used to capture CO2 emissions greatly adds to the complexity of the system. There has also been significant interest in coal based gas turbine fuel cell hybrid power plants. A hybrid power plant can have much greater system efficiency than a normal gas turbine power plant because the heat that is normally unused in a standalone solid oxide fuel cell (SOFC) is recovered and used to drive a power producing turbine. It is thought that the increased system efficiency of the hybrid system might compensate for the increased expense of performing carbon capture. In order to provide some analytical insight on this tradeoff we present a 100 MW class coal fired gas turbine SOFC hybrid power generation system. The hybrid system operates at a pressure ratio of 6, and uses heat recuperation and cathode air recirculation to control the SOFC inlet temperature and the temperature change across the SOFC. A carbon capture scheme is added to this system in order to calculate the relative energy cost in terms of system efficiency due to CO2 compression. The carbon capture is performed by burning the unused fuel from the SOFC in an isolated anode stream using pure O2 injection. The resulting heat that is generated from this process is then used to drive a secondary turbine that is placed in the anode exhaust stream where more work is extracted. With an isolated anode stream, the products of combustion from this secondary combustion process are mostly water and carbon dioxide. The water by-product is

  18. Using a Hybrid of Student-Sourced Data and Web-Based Data for an Undergraduate Earth System Science Course

    NASA Astrophysics Data System (ADS)

    Sinton, C.

    2014-12-01

    In an undergraduate Earth System Science (ESS) course, students learn about the processes in which material and energy move between the different earth spheres. It is critical that quantitative analysis be part of the class in order to have students understand rates and magnitudes of these processes. It is even better if the students generate the data and research questions. At Ithaca College, ESS is a requirement for all Environmental Science majors and is their introduction into earth science. The majority of the lab periods for the class are devoted to research-based exercises in which students are asked to generate research questions and working hypotheses prior to data gathering. Several exercises use a hybrid of student-generated data and information available from on-line sources such as NOAA and USGS. For example, student groups gather water data from four water bodies on the campus over the course of the semester (e.g., temperature, pH, turbidity, conductivity) while at the same time accessing NOAA climatic data from a nearby weather station. The advantages of this approach include student ownership (and responsibility) and rich, diverse datasets that can be used to answer a variety of questions. Disadvantages include the inability of the instructor to fully anticipate the results, which can make planning difficult. In addition, considerable time is required to have students wade through the data, make mistakes, and then correct the mistakes. Nevertheless, the overall approach results in a richer and more effective learning experience compared to lab exercises that use data sets provided by the instructor.

  19. Mirror-based hybrids of recent design

    NASA Astrophysics Data System (ADS)

    Moir, R. W.; Martovetsky, N. N.; Molvik, A. W.; Ryutov, Dimitri; Simonen, T. C.

    2012-06-01

    Early application of the simple axisymmetric mirror, requiring intermediate performance between a neutron source for materials testing Q=Pfusion/Pinput ˜0.05 and pure fusion Q>10, are the hybrid applications. The Axisymmetric Mirror has attractive features as a driver for a fusion-fission hybrid system: geometrical simplicity, as well as the typical mirror features of inherently steady-state operation, and natural divertors in the form of end tanks. Operation at Q˜0.7 allows for relatively low electron temperatures, in the range of 3 keV, for the DT injection energy ˜ 80 keV from existing positive ion neutral beams designed for steady state. This level of physics performance has the virtue of being low risk with only modest R&D needed; and its simplicity promises economy advantages. A simple mirror with the plasma diameter of 1 m and mirror-to-mirror 2.5 T solenoid length of 40 m is discussed. Simple circular steady state superconducting coils at each end are based on 15 T technology development of the ITER central solenoid. Hybrids obtain important revenues from the sale of both electricity and fuel production or waste burning. Burning fission reactor wastes by fissioning transuranics in the hybrid will multiply fusion's neutron energy by a factor of ˜10 or more and diminish the Q needed to overcome the cost of recirculating power for good economics to less than 2 and for minor actinides with multiplication over 50 to Q˜0.2. Hybrids that produce fissile fuel with fissioning blankets might need Q<2 while suppressing fissioning might be the most economical application of fusion but will require Q>4.

  20. HOPIS: hybrid omnidirectional and perspective imaging system for mobile robots.

    PubMed

    Lin, Huei-Yung; Wang, Min-Liang

    2014-01-01

    In this paper, we present a framework for the hybrid omnidirectional and perspective robot vision system. Based on the hybrid imaging geometry, a generalized stereo approach is developed via the construction of virtual cameras. It is then used to rectify the hybrid image pair using the perspective projection model. The proposed method not only simplifies the computation of epipolar geometry for the hybrid imaging system, but also facilitates the stereo matching between the heterogeneous image formation. Experimental results for both the synthetic data and real scene images have demonstrated the feasibility of our approach. PMID:25192317

  1. HOPIS: Hybrid Omnidirectional and Perspective Imaging System for Mobile Robots

    PubMed Central

    Lin, Huei-Yung.; Wang, Min-Liang.

    2014-01-01

    In this paper, we present a framework for the hybrid omnidirectional and perspective robot vision system. Based on the hybrid imaging geometry, a generalized stereo approach is developed via the construction of virtual cameras. It is then used to rectify the hybrid image pair using the perspective projection model. The proposed method not only simplifies the computation of epipolar geometry for the hybrid imaging system, but also facilitates the stereo matching between the heterogeneous image formation. Experimental results for both the synthetic data and real scene images have demonstrated the feasibility of our approach. PMID:25192317

  2. System for controlling a hybrid energy system

    DOEpatents

    Hoff, Brian D.; Akasam, Sivaprasad

    2013-01-29

    A method includes identifying a first operating sequence of a repeated operation of at least one non-traction load. The method also includes determining first and second parameters respectively indicative of a requested energy and output energy of the at least one non-traction load and comparing the determined first and second parameters at a plurality of time increments of the first operating sequence. The method also includes determining a third parameter of the hybrid energy system indicative of energy regenerated from the at least one non-traction load and monitoring the third parameter at the plurality of time increments of the first operating sequence. The method also includes determining at least one of an energy deficiency or an energy surplus associated with the non-traction load of the hybrid energy system and selectively adjusting energy stored within the storage device during at least a portion of a second operating sequence.

  3. Innovative sponge-based moving bed-osmotic membrane bioreactor hybrid system using a new class of draw solution for municipal wastewater treatment.

    PubMed

    Nguyen, Nguyen Cong; Chen, Shiao-Shing; Nguyen, Hau Thi; Ray, Saikat Sinha; Ngo, Huu Hao; Guo, Wenshan; Lin, Po-Hsun

    2016-03-15

    For the first time, an innovative concept of combining sponge-based moving bed (SMB) and an osmotic membrane bioreactor (OsMBR), known as the SMB-OsMBR hybrid system, were investigated using Triton X-114 surfactant coupled with MgCl2 salt as the draw solution. Compared to traditional activated sludge OsMBR, the SMB-OsMBR system was able to remove more nutrients due to the thick-biofilm layer on sponge carriers. Subsequently less membrane fouling was observed during the wastewater treatment process. A water flux of 11.38 L/(m(2) h) and a negligible reverse salt flux were documented when deionized water served as the feed solution and a mixture of 1.5 M MgCl2 and 1.5 mM Triton X-114 was used as the draw solution. The SMB-OsMBR hybrid system indicated that a stable water flux of 10.5 L/(m(2) h) and low salt accumulation were achieved in a 90-day operation. Moreover, the nutrient removal efficiency of the proposed system was close to 100%, confirming the effectiveness of simultaneous nitrification and denitrification in the biofilm layer on sponge carriers. The overall performance of the SMB-OsMBR hybrid system using MgCl2 coupled with Triton X-114 as the draw solution demonstrates its potential application in wastewater treatment. PMID:26803266

  4. Hybrid and Electric Advanced Vehicle Systems Simulation

    NASA Technical Reports Server (NTRS)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  5. High speed hybrid active system

    NASA Astrophysics Data System (ADS)

    Gonzalez, Ignacio F.; Chang, Fu-Kuo; Qing, Peter X.; Kumar, Amrita; Zhang, David

    2005-05-01

    A novel piezoelectric/fiber-optic system is developed for long-term health monitoring of aerospace vehicles and structures. The hybrid diagnostic system uses the piezoelectric actuators to input a controlled excitation to the structure and the fiber optic sensors to capture the corresponding structural response. The aim of the system is to detect changes in structures such as those found in aerospace applications (damage, cracks, aging, etc.). This system involves the use of fiber Bragg gratings, which may be either bonded to the surface of the material or embedded within it in order to detect the linear strain component produced by the excitation waves generate by an arbitrary waveform generator. Interrogation of the Bragg gratings is carried out using a high speed fiber grating demodulation unit and a high speed data acquisition card to provide actuation input. With data collection and information processing; is able to determine the condition of the structure. The demands on a system suitable for detecting ultrasonic acoustic waves are different than for the more common strain and temperature systems. On the one hand, the frequency is much higher, with typical values for ultrasonic frequencies used in non-destructive testing ranging from 100 kHz up to several MHz. On the other hand, the related strain levels are much lower, normally in the μstrain range. Fiber-optic solutions for this problem do exist and are particularly attractive for ultrasonic sensing as the sensors offer broadband detection capability.

  6. Hybrid systems for distributed power generation based on pressurisation and heat recovering of an existing 100 kW molten carbonate fuel cell

    NASA Astrophysics Data System (ADS)

    Grillo, Olivia; Magistri, Loredana; Massardo, Aristide F.

    In this paper, different pressurisation and heat recovering techniques for an existing 100 kW molten carbonate fuel cell developed by Ansaldo fuel cells (formerly Ansaldo Ricerche) such as electrically driven compressors for anode (fuel) and cathode side (air), turbocharger, simple cycle gas turbine and regenerated gas turbine are analysed and discussed. The analysis has been carried out using for the FCS-MCFC stack simulation a model developed by the Thermochemical Power Group of the University of Genoa carefully tested with available experimental design point data. The design point hybrid system configurations have been analysed in detail using the code HS-MCFC based on the cited MCFC stack model and developed using Simulink language [Master Thesis, University of Genoa, 2001]. The different hybrid systems design point performance are presented and discussed in great detail, taking into account efficiency, specific power, costs, feasibility, and the need of modification of the existing FC-MCFC systems. Due to the size of the hybrid systems investigated (100-150 kW) they are very interesting for distributed power generation applications.

  7. A comparison between molten carbonate fuel cells based hybrid systems using air and supercritical carbon dioxide Brayton cycles with state of the art technology

    NASA Astrophysics Data System (ADS)

    Sánchez, D.; Muñoz de Escalona, J. M.; Chacartegui, R.; Muñoz, A.; Sánchez, T.

    A proposal for high efficiency hybrid systems based on molten carbonate fuel cells is presented in this paper. This proposal is based on adopting a closed cycle bottoming gas turbine using supercritical carbon dioxide as working fluid as opposed to open cycle hot air turbines typically used in this type of power generators. First, both bottoming cycles are compared for the same operating conditions, showing that their performances do not differ as much as initially expected, even if the initial objective of reducing compression work is accomplished satisfactorily. In view of these results, a profound review of research and industrial literature is carried out in order to determine realistic specifications for the principal components of the bottoming systems. From this analysis, it is concluded that an appropriate set of specifications must be developed for each bottoming cycle as the performances of compressor, turbine and recuperator differ significantly from one working fluid to another. Thus, when the operating conditions are updated, the performances of the resulting systems show a remarkable advantage of carbon dioxide based systems over conventional air units. Actually, the proposed hybrid system shows its capability to achieve 60% net efficiency, what represents a 10% increase with respect to the reference system.

  8. Development of 100 terawatt hybrid laser system on base of photochemically driven XeF(C-A) amplifier

    NASA Astrophysics Data System (ADS)

    Losev, V.; Alekseev, S.; Ivanov, N.; Kovalchuk, B.; Mikheev, L.; Mesyats, G.; Panchenko, Yu.; Ratakhin, N.; Yastremsky, A.

    2012-07-01

    Development of terawatt hybrid (solid state/gas) laser (THL-100) system on the basis of Ti:sapphire starting complex and photochemical XeF(C-A) amplifier with the aperture of 24 cm is presented. Laser system is built at Institute of High Current Electronics SD RAS, Tomsk, Russia. The results of numerical modeling of the output parameters are discussed and first experimental results are presented. Simulation is shown that active medium of XeF(C-A) amplifier has gain in range of (1.8-4.5)×10-3cm-1 and it allows to extract by femtosecond pulse up to 3 J. This promises 60 TW output power to be produced in 50 fs pulse. In the first experiments when 2 mJ and 1 ps pulse was injected in XeF(C-A) amplifier the ˜1 J output energy and ˜10 TW power of was obtained.

  9. Advanced propulsion system for hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Norrup, L. V.; Lintz, A. T.

    1980-01-01

    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery.

  10. Adaptive hybrid system for automatic sleep staging.

    PubMed

    Hassaan, Amr A; Morsy, Ahmed A

    2008-01-01

    We present a new adaptive system for automated sleep staging. The proposed system relies on each subject's own data for self-training. Conventional automatic sleep staging algorithms are either rule based, which typically fail to accurately model the complex nature of sleep signals, or numerical methods that use multi-patient training schemes, which suffer from inaccuracies caused by inherent inter-patient variability. The proposed system employs two stages. The first stage is a rule based reasoning engine that can be tuned conservatively to decrease or eliminate false positives, generating just enough samples to train the second stage, which is comprised of a neural network classifier. Results show that this hybrid approach provides an adaptive training scheme that performs more accurately compared to one of the popular commercially available systems. PMID:19162989

  11. Hybrid systems process mixed wastes

    SciTech Connect

    Chertow, M.R.

    1989-10-01

    Some technologies, developed recently in Europe, combine several processes to separate and reuse materials from solid waste. These plants have in common, generally, that they are reasonably small, have a composting component for the organic portion, and often have a refuse-derived fuel component for combustible waste. Many European communities also have very effective drop-off center programs for recyclables such as bottles and cans. By maintaining the integrity of several different fractions of the waste, there is a less to landfill and less to burn. The importance of these hybrid systems is that they introduce in one plant an approach that encompasses the key concept of today's solid waste planning; recover as much as possible and landfill as little as possible. The plants also introduce various risks, particularly of finding secure markets. There are a number of companies offering various combinations of materials recovery, composting, and waste combustion. Four examples are included: multiple materials recovery and refuse-derived fuel production in Eden Prairie, Minnesota; multiple materials recovery, composting and refuse-derived fuel production in Perugia, Italy; composting, refuse-derived fuel, and gasification in Tolmezzo, Italy; and a front-end system on a mass burning waste-to-energy plant in Neuchatel, Switzerland.

  12. Advanced propulsion system concept for hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Bhate, S.; Chen, H.; Dochat, G.

    1980-01-01

    A series hybrid system, utilizing a free piston Stirling engine with a linear alternator, and a parallel hybrid system, incorporating a kinematic Stirling engine, are analyzed for various specified reference missions/vehicles ranging from a small two passenger commuter vehicle to a van. Parametric studies for each configuration, detail tradeoff studies to determine engine, battery and system definition, short term energy storage evaluation, and detail life cycle cost studies were performed. Results indicate that the selection of a parallel Stirling engine/electric, hybrid propulsion system can significantly reduce petroleum consumption by 70 percent over present conventional vehicles.

  13. Silicon based quantum dot hybrid qubits

    NASA Astrophysics Data System (ADS)

    Kim, Dohun

    2015-03-01

    The charge and spin degrees of freedom of an electron constitute natural bases for constructing quantum two level systems, or qubits, in semiconductor quantum dots. The quantum dot charge qubit offers a simple architecture and high-speed operation, but generally suffers from fast dephasing due to strong coupling of the environment to the electron's charge. On the other hand, quantum dot spin qubits have demonstrated long coherence times, but their manipulation is often slower than desired for important future applications. This talk will present experimental progress of a `hybrid' qubit, formed by three electrons in a Si/SiGe double quantum dot, which combines desirable characteristics (speed and coherence) in the past found separately in qubits based on either charge or spin degrees of freedom. Using resonant microwaves, we first discuss qubit operations near the `sweet spot' for charge qubit operation. Along with fast (>GHz) manipulation rates for any rotation axis on the Bloch sphere, we implement two independent tomographic characterization schemes in the charge qubit regime: traditional quantum process tomography (QPT) and gate set tomography (GST). We also present resonant qubit operations of the hybrid qubit performed on the same device, DC pulsed gate operations of which were recently demonstrated. We demonstrate three-axis control and the implementation of dynamic decoupling pulse sequences. Performing QPT on the hybrid qubit, we show that AC gating yields π rotation process fidelities higher than 93% for X-axis and 96% for Z-axis rotations, which demonstrates efficient quantum control of semiconductor qubits using resonant microwaves. We discuss a path forward for achieving fidelities better than the threshold for quantum error correction using surface codes. This work was supported in part by ARO (W911NF-12-0607), NSF (PHY-1104660), DOE (DE-FG02-03ER46028), and by the Laboratory Directed Research and Development program at Sandia National Laboratories

  14. Hybrid slab-microchannel gel electrophoresis system

    DOEpatents

    Balch, J.W.; Carrano, A.V.; Davidson, J.C.; Koo, J.C.

    1998-05-05

    A hybrid slab-microchannel gel electrophoresis system is described. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate. 4 figs.

  15. High power battery systems for hybrid vehicles

    NASA Astrophysics Data System (ADS)

    Corson, Donald W.

    Pure electric and hybrid vehicles have differing demands on the battery system of a vehicle. This results in correspondingly different demands on the battery management of a hybrid vehicle. Examples show the differing usage patterns. The consequences for the battery cells and the battery management are discussed. The importance of good thermal management is underlined.

  16. A modified NARMAX model-based self-tuner with fault tolerance for unknown nonlinear stochastic hybrid systems with an input-output direct feed-through term.

    PubMed

    Tsai, Jason S-H; Hsu, Wen-Teng; Lin, Long-Guei; Guo, Shu-Mei; Tann, Joseph W

    2014-01-01

    A modified nonlinear autoregressive moving average with exogenous inputs (NARMAX) model-based state-space self-tuner with fault tolerance is proposed in this paper for the unknown nonlinear stochastic hybrid system with a direct transmission matrix from input to output. Through the off-line observer/Kalman filter identification method, one has a good initial guess of modified NARMAX model to reduce the on-line system identification process time. Then, based on the modified NARMAX-based system identification, a corresponding adaptive digital control scheme is presented for the unknown continuous-time nonlinear system, with an input-output direct transmission term, which also has measurement and system noises and inaccessible system states. Besides, an effective state space self-turner with fault tolerance scheme is presented for the unknown multivariable stochastic system. A quantitative criterion is suggested by comparing the innovation process error estimated by the Kalman filter estimation algorithm, so that a weighting matrix resetting technique by adjusting and resetting the covariance matrices of parameter estimate obtained by the Kalman filter estimation algorithm is utilized to achieve the parameter estimation for faulty system recovery. Consequently, the proposed method can effectively cope with partially abrupt and/or gradual system faults and input failures by the fault detection. PMID:24012389

  17. An Ensemble System Based on Hybrid EGARCH-ANN with Different Distributional Assumptions to Predict S&P 500 Intraday Volatility

    NASA Astrophysics Data System (ADS)

    Lahmiri, S.; Boukadoum, M.

    2015-10-01

    Accurate forecasting of stock market volatility is an important issue in portfolio risk management. In this paper, an ensemble system for stock market volatility is presented. It is composed of three different models that hybridize the exponential generalized autoregressive conditional heteroscedasticity (GARCH) process and the artificial neural network trained with the backpropagation algorithm (BPNN) to forecast stock market volatility under normal, t-Student, and generalized error distribution (GED) assumption separately. The goal is to design an ensemble system where each single hybrid model is capable to capture normality, excess skewness, or excess kurtosis in the data to achieve complementarity. The performance of each EGARCH-BPNN and the ensemble system is evaluated by the closeness of the volatility forecasts to realized volatility. Based on mean absolute error and mean of squared errors, the experimental results show that proposed ensemble model used to capture normality, skewness, and kurtosis in data is more accurate than the individual EGARCH-BPNN models in forecasting the S&P 500 intra-day volatility based on one and five-minute time horizons data.

  18. An integrated sensing system for detection of cholesterol based on TiO₂-graphene-Pt-Pd hybrid nanocomposites.

    PubMed

    Cao, Shurui; Zhang, Lei; Chai, Yaqin; Yuan, Ruo

    2013-04-15

    In this article, we used the TiO₂-graphene-Pt-Pd hybrid nanocomposites (TGPHs) as an enhanced element of the integrated sensing platform for increasing the surface area as well as improving the electronic transmission rate. Subsequently, Au nanoparticles (AuNPS) and cholesterol oxidase (ChOx) were successively self-assembled to TGPHs with high load amount and superior biological activity. The morphology of TGPHs and stepwise fabrication processes were characterized with cyclic voltammetry (CV), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Based on the efficiently catalytic ability of TGPHs and AuNPS, the fabricated biosensor exhibited wide linear ranges of responses to cholesterol in the concentration ranges of 5.0×10⁻⁸-5.9×10⁻⁴ M, the limit of detection was 0.017 μM (S/N=3). The response time was less than 7 s and the Michaelis-Menten constant (K(m)(app)) was found as 0.21 mM. The fabricated biosensor was further tested using real food samples egg, meat, margarine and fish oil, showing that the biosensor has the potential to be used as a facile cholesterol detection tool in food and supplement quality control. PMID:23247336

  19. A Structural Model Decomposition Framework for Hybrid Systems Diagnosis

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Bregon, Anibal; Roychoudhury, Indranil

    2015-01-01

    Nowadays, a large number of practical systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete modes of behavior, each defined by a set of continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task very challenging. In this work, we present a new modeling and diagnosis framework for hybrid systems. Models are composed from sets of user-defined components using a compositional modeling approach. Submodels for residual generation are then generated for a given mode, and reconfigured efficiently when the mode changes. Efficient reconfiguration is established by exploiting causality information within the hybrid system models. The submodels can then be used for fault diagnosis based on residual generation and analysis. We demonstrate the efficient causality reassignment, submodel reconfiguration, and residual generation for fault diagnosis using an electrical circuit case study.

  20. Powertrain system for a hybrid electric vehicle

    DOEpatents

    Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  1. Powertrain system for a hybrid electric vehicle

    DOEpatents

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  2. Analysis of Hybrid Hydrogen Systems: Final Report

    SciTech Connect

    Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

    2010-01-01

    Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

  3. Stable and accurate hybrid finite volume methods based on pure convexity arguments for hyperbolic systems of conservation law

    NASA Astrophysics Data System (ADS)

    De Vuyst, Florian

    2004-01-01

    This exploratory work tries to present first results of a novel approach for the numerical approximation of solutions of hyperbolic systems of conservation laws. The objective is to define stable and "reasonably" accurate numerical schemes while being free from any upwind process and from any computation of derivatives or mean Jacobian matrices. That means that we only want to perform flux evaluations. This would be useful for "complicated" systems like those of two-phase models where solutions of Riemann problems are hard, see impossible to compute. For Riemann or Roe-like solvers, each fluid model needs the particular computation of the Jacobian matrix of the flux and the hyperbolicity property which can be conditional for some of these models makes the matrices be not R-diagonalizable everywhere in the admissible state space. In this paper, we rather propose some numerical schemes where the stability is obtained using convexity considerations. A certain rate of accuracy is also expected. For that, we propose to build numerical hybrid fluxes that are convex combinations of the second-order Lax-Wendroff scheme flux and the first-order modified Lax-Friedrichs scheme flux with an "optimal" combination rate that ensures both minimal numerical dissipation and good accuracy. The resulting scheme is a central scheme-like method. We will also need and propose a definition of local dissipation by convexity for hyperbolic or elliptic-hyperbolic systems. This convexity argument allows us to overcome the difficulty of nonexistence of classical entropy-flux pairs for certain systems. We emphasize the systematic feature of the method which can be fastly implemented or adapted to any kind of systems, with general analytical or data-tabulated equations of state. The numerical results presented in the paper are not superior to many existing state-of-the-art numerical methods for conservation laws such as ENO, MUSCL or central scheme of Tadmor and coworkers. The interest is rather

  4. Real-time detection of DNA hybridization on microarray using a CCD-based imaging system equipped with a rotated microlens array disk.

    PubMed

    Mogi, Takeyuki; Hatakeyama, Keiichi; Taguchi, Tomoyuki; Wake, Hitoshi; Tanaami, Takeo; Hosokawa, Masahito; Tanaka, Tsuyoshi; Matsunaga, Tadashi

    2011-01-15

    This work describes a novel charge-coupled device (CCD)-based imaging system (MB Biochip Reader™) for real-time detection of DNA hybridization to DNA microarrays. The MB Biochip Reader™ consisted of a laser light source (532 nm), a microlens array for generation of a multi-beam laser, and a CCD for 2-D signal imaging. The MB Biochip Reader™ with a rotated microlens array, allowed large-field imaging (6.2 mm × 7.6 mm with 6.45 μm resolution) with fast time-resolution at 0.2 s without speckle noise. Furthermore, real-time detection of DNA hybridization, which is sufficient to obtain accurate data from tens of thousands of array element per field, was successfully performed without the need for laser scanning. The performance of the MB Biochip Reader™ for DNA microarray imaging was similar to the commercially available photomultiplier tube (PMT)-based microarray scanner, ScanArray Lite. The system potentially could be applied toward real-time analysis in many other fluorescent techniques in addition to real-time DNA microarray analysis. PMID:20951567

  5. Characterization of a Solid Oxide Fuel Cell Gas Turbine Hybrid System Based on a Factorial Design of Experiments Using Hardware Simulation

    SciTech Connect

    Restrepo, Bernardo; Banta, Larry E.; Tucker, David

    2012-10-01

    A full factorial experimental design and a replicated fractional factorial design were carried out using the Hybrid Performance (HyPer) project facility installed at the National Energy Technology Laboratory (NETL), U.S. Department of Energy to simulate gasifer/fuel cell/turbine hybrid power systems. The HyPer facility uses hardware in the loop (HIL) technology that couples a modified recuperated gas turbine cycle with hardware driven by a solid oxide fuel cell model. A 34 full factorial design (FFD) was selected to study the effects of four factors: cold-air, hot-air, bleed-air bypass valves, and the electric load on different parameters such as cathode and turbine inlet temperatures, pressure and mass flow. The results obtained, compared with former results where the experiments were made using one-factor-at-a-time (OFAT), show that no strong interactions between the factors are present in the different parameters of the system. This work also presents a fractional factorial design (ffd) 34-2 in order to analyze replication of the experiments. In addition, a new envelope is described based on the results of the design of experiments (DoE), compared with OFAT experiments, and analyzed in an off-design integrated fuel cell/gas turbine framework. This paper describes the methodology, strategy, and results of these experiments that bring new knowledge concerning the operating state space for this kind of power generation system.

  6. Manzanita Hybrid Power system Project Final Report

    SciTech Connect

    Trisha Frank

    2005-03-31

    The Manzanita Indian Reservation is located in southeastern San Diego County, California. The Tribe has long recognized that the Reservation has an abundant wind resource that could be commercially utilized to its benefit, and in 1995 the Tribe established the Manzanita Renewable Energy Office. Through the U.S. Department of Energy's Tribal Energy Program the Band received funds to install a hybrid renewable power system to provide electricity to one of the tribal community buildings, the Manzanita Activities Center (MAC building). The project began September 30, 1999 and was completed March 31, 2005. The system was designed and the equipment supplied by Northern Power Systems, Inc, an engineering company with expertise in renewable hybrid system design and development. Personnel of the National Renewable Energy Laboratory provided technical assistance in system design, and continued to provide technical assistance in system monitoring. The grid-connected renewable hybrid wind/photovoltaic system provides a demonstration of a solar/wind energy hybrid power-generating project on Manzanita Tribal land. During the system design phase, the National Renewable Energy Lab estimated that the wind turbine is expected to produce 10,000-kilowatt hours per year and the solar array 2,000-kilowatt hours per year. The hybrid system was designed to provide approximately 80 percent of the electricity used annually in the MAC building. The project proposed to demonstrate that this kind of a system design would provide highly reliable renewable power for community uses.

  7. Laser inertial fusion-based energy: Neutronic design aspects of a hybrid fusion-fission nuclear energy system

    NASA Astrophysics Data System (ADS)

    Kramer, Kevin James

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 mum of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb 83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles having a packing fraction of 20% in 2 cm diameter fuel pebbles. The fission blanket is cooled by

  8. Set-membership parity space hybrid system diagnosis

    NASA Astrophysics Data System (ADS)

    Vento, Jorge; Blesa, Joaquim; Puig, Vicenç; Sarrate, Ramon

    2015-04-01

    In this paper, diagnosis for hybrid systems using a parity space approach that considers model uncertainty is proposed. The hybrid diagnoser is composed of modules which carry out the mode recognition and diagnosis tasks interacting each other, since the diagnosis module adapts accordingly to the current hybrid system mode. Moreover, the methodology takes into account the unknown but bounded uncertainty in parameters and additive errors (including noise and discretisation errors) using a passive robust strategy based on the set-membership approach. An adaptive threshold that bounds the effect of model uncertainty in residuals is generated for residual evaluation using zonotopes, and the parity space approach is used to design a set of residuals for each mode. The proposed fault diagnosis approach for hybrid systems is illustrated on a piece of the Barcelona sewer network.

  9. Design of a Hybrid Propulsion System for Orbit Raising Applications

    NASA Astrophysics Data System (ADS)

    Boman, N.; Ford, M.

    2004-10-01

    A trade off between conventional liquid apogee engines used for orbit raising applications and hybrid rocket engines (HRE) has been performed using a case study approach. Current requirements for lower cost and enhanced safety places hybrid propulsion systems in the spotlight. For evaluating and design of a hybrid rocket engine a parametric engineering code is developed, based on the combustion chamber characteristics of selected propellants. A single port cylindrical section of fuel grain is considered. Polyethylene (PE) and hydroxyl-terminated polybutadiene (HTPB) represents the fuels investigated. The engine design is optimized to minimize the propulsion system volume and mass, while keeping the system as simple as possible. It is found that the fuel grain L/D ratio boundary condition has a major impact on the overall hybrid rocket engine design.

  10. Enhancing dissolved oxygen control using an on-line hybrid fuzzy-neural soft-sensing model-based control system in an anaerobic/anoxic/oxic process.

    PubMed

    Huang, Mingzhi; Wan, Jinquan; Hu, Kang; Ma, Yongwen; Wang, Yan

    2013-12-01

    An on-line hybrid fuzzy-neural soft-sensing model-based control system was developed to optimize dissolved oxygen concentration in a bench-scale anaerobic/anoxic/oxic (A(2)/O) process. In order to improve the performance of the control system, a self-adapted fuzzy c-means clustering algorithm and adaptive network-based fuzzy inference system (ANFIS) models were employed. The proposed control system permits the on-line implementation of every operating strategy of the experimental system. A set of experiments involving variable hydraulic retention time (HRT), influent pH (pH), dissolved oxygen in the aerobic reactor (DO), and mixed-liquid return ratio (r) was carried out. Using the proposed system, the amount of COD in the effluent stabilized at the set-point and below. The improvement was achieved with optimum dissolved oxygen concentration because the performance of the treatment process was optimized using operating rules implemented in real time. The system allows various expert operational approaches to be deployed with the goal of minimizing organic substances in the outlet while using the minimum amount of energy. PMID:24052227

  11. A neurocomputer based on an analog-digital hybrid architecture

    NASA Technical Reports Server (NTRS)

    Moopenn, A.; Thakoor, A. P.; Duong, T.; Khanna, S. K.

    1987-01-01

    A novel analog-digital hybrid architecture based on the utilization of high density digital random access memories for the storage of the synaptic weights of a neural network, and high speed analog hardware to perform neural computation is described. An electronic neurocomputer based on such an architecture is ideally suited for investigating the dynamics, associative recall properties, and computational capabilities of neural networks and provides significant speed improvement in comparison to conventional software based neural network simulations. As a demonstration of the feasibility of the hybrid architectural concept, a prototype breadboard hybrid neurocomputer system with 32 neurons has been designed and fabricated with off-the-shelf hardware components. The performance of the breadboard system has been tested for variety of applications including associative memory and combinatorial problem solving such as Graph Coloring, and is discussed in this paper.

  12. Hybrid Power Management-Based Vehicle Architecture

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2011-01-01

    Hybrid Power Management (HPM) is the integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications (s ee figure). The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The basic vehicle architecture consists of a primary power source, and possibly other power sources, that provides all power to a common energy storage system that is used to power the drive motors and vehicle accessory systems. This architecture also provides power as an emergency power system. Each component is independent, permitting it to be optimized for its intended purpose. The key element of HPM is the energy storage system. All generated power is sent to the energy storage system, and all loads derive their power from that system. This can significantly reduce the power requirement of the primary power source, while increasing the vehicle reliability. Ultracapacitors are ideal for an HPM-based energy storage system due to their exceptionally long cycle life, high reliability, high efficiency, high power density, and excellent low-temperature performance. Multiple power sources and multiple loads are easily incorporated into an HPM-based vehicle. A gas turbine is a good primary power source because of its high efficiency, high power density, long life, high reliability, and ability to operate on a wide range of fuels. An HPM controller maintains optimal control over each vehicle component. This flexible operating system can be applied to all vehicles to considerably improve vehicle efficiency, reliability, safety, security, and performance. The HPM-based vehicle architecture has many advantages over conventional vehicle architectures. Ultracapacitors have a much longer cycle life than batteries, which greatly improves system reliability, reduces life-of-system costs, and reduces environmental impact as ultracapacitors will probably never need to be

  13. Split-gene system for hybrid wheat seed production

    PubMed Central

    Kempe, Katja; Rubtsova, Myroslava; Gils, Mario

    2014-01-01

    Hybrid wheat plants are superior in yield and growth characteristics compared with their homozygous parents. The commercial production of wheat hybrids is difficult because of the inbreeding nature of wheat and the lack of a practical fertility control that enforces outcrossing. We describe a hybrid wheat system that relies on the expression of a phytotoxic barnase and provides for male sterility. The barnase coding information is divided and distributed at two loci that are located on allelic positions of the host chromosome and are therefore “linked in repulsion.” Functional complementation of the loci is achieved through coexpression of the barnase fragments and intein-mediated ligation of the barnase protein fragments. This system allows for growth and maintenance of male-sterile female crossing partners, whereas the hybrids are fertile. The technology does not require fertility restorers and is based solely on the genetic modification of the female crossing partner. PMID:24821800

  14. Polyester based hybrid organic coatings

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojiang

    Polyesters are a class of polymers widely used in organic coatings applications. In this work, four types of organic coatings based on polyester polyols were prepared: UV-curable polyester/poly(meth)acrylate coatings, thermal curable polyester polyurethane-urea coatings, thermal curable non-isocyanate polyurethane coatings, and UV-curable non-isocyanate polyurethane coatings. Polyester/poly(meth)acrylate block copolymers are synthesized using a combination of polycondensation and Atom-Transfer Radical Polymerization (ATRP). All block copolymers are characterized by means of Nuclear Magnetic Resonance (NMR) and Gel Permeation Chromatography (GPC). In the case of unsaturated-polyester-based block copolymers the main chain double bond in the polyester backbone remains almost unaffected during ATRP. The unsaturated block copolymers are crosslinkable and can form networks upon photo-irradiation in the presence of a suitable photoinitiator. These copolymers might be interesting candidates for coatings with better overall properties than those based on neat polyesters. Thermal curable polyester polyol based Polyurethane-Urea (PUU) coatings were formulated using Partially Blocked HDI isocyanurate (PBH), Isophorone Diamine (IPDA), and polyester polyol. As a comparison, the polyurethane coatings (PU) without adding IPDA were also prepared. The mechanical and viscoelastic properties of the PUU and PU coating were investigated by using tensile test and Dynamic Mechanical Thermal Analyzer (DMTA). It was found that PUU coating exhibited higher crosslink density, Tg, tensile modulus and strength than the corresponding PU coating. Thermal curable non-isocyanate polyurethane coatings were prepared by using polyamine and cyclic carbonate terminated polyester. Cyclic carbonate terminated polyester was synthesized from the reaction of the carbon dioxide and epoxidized polyester which was prepared from the polyester polyol. The properties of the epoxidized and cyclic carbonate

  15. Superconductor-Diamond Hybrid Quantum System

    NASA Astrophysics Data System (ADS)

    Semba, Kouichi; Yoshihara, Fumiki; Johansson, Jan E. S.; Zhu, Xiaobo; Mizuochi, Norikazu; Munro, William J.; Saito, Shiro; Kakuyanagi, Kosuke; Matsuzaki, Yuichiro

    This chapter describes recent progress on research into superconducting flux qubit, NV diamond, and superconductor-diamond hybrid quantum systems. First, we describe important physical properties of superconducting macroscopic artificial atoms i.e., the tunability of the qubit energy level spacing, the coherence property, an example of strong coupling to another quantum system such as an LC harmonic oscillator, and qubit state readout through a Josephson bifurcation amplifier. We then introduce the NV center in diamond as an intriguing candidate for quantum information processing, which offers excellent multiple accessibility via visible light, microwaves and magnetic fields. Finally, we describe the superconducting flux qubit - NV centers in a diamond hybrid quantum system.

  16. Lewis hybrid computing system, users manual

    NASA Technical Reports Server (NTRS)

    Bruton, W. M.; Cwynar, D. S.

    1979-01-01

    The Lewis Research Center's Hybrid Simulation Lab contains a collection of analog, digital, and hybrid (combined analog and digital) computing equipment suitable for the dynamic simulation and analysis of complex systems. This report is intended as a guide to users of these computing systems. The report describes the available equipment' and outlines procedures for its use. Particular is given to the operation of the PACER 100 digital processor. System software to accomplish the usual digital tasks such as compiling, editing, etc. and Lewis-developed special purpose software are described.

  17. Visible-range hybrid femtosecond systems based on a XeF(C-A) amplifier: state of the art and prospects

    NASA Astrophysics Data System (ADS)

    Alekseev, S. V.; Aristov, A. I.; Grudtsyn, Ya V.; Ivanov, N. G.; Koval'chuk, B. M.; Losev, B. F.; Mamaev, S. B.; Mesyats, Gennadii A.; Mikheev, L. D.; Panchenko, Yu N.; Polivin, A. V.; Stepanov, S. G.; Ratakhin, N. A.; Yalovoi, V. I.; Yastremskii, Arkadii G.

    2013-03-01

    Results of experimental and theoretical investigations of the hybrid (solid state/gas) visible-range femtosecond systems THL-100 (IHCE SB RAS) and THL-30 (P.N. Lebedev Physics Institute) based on a Ti : sapphire front end and a photochemical XeF(C-A) amplifier are reported. The front end generates 50-fs optical pulses with the second-harmonic (475 nm) energy of up to 5 mJ. The active medium of the amplifier is produced in a mixture XeF2 - N2 subjected to VUV radiation of xenon excited by an electron beam. The computer model is developed for calculating parameters of the XeF(C - A) amplifier, which is in a good agreement with experiments. In the THL-100 system with the 25-cm output aperture of the XeF(C-A) amplifier, a record visible-range femtosecond radiation peak power of 14 GW was obtained in a 50-fs pulse with the time contrast of above 108. The measured power of an amplified spontaneous emission of the XeF(C-A) amplifier in the angle of 0.2 mrad was 32 W. The result obtained testifies that the hybrid approach to the development of ultrahigh-power systems provides a high time contrast of radiation (greater than 1012 for the projected peak power of 100 TW). In the THL-30 system, prospects for shortening an amplified femtosecond pulse are studied and it is experimentally shown that by compensating a third-order dispersion in a hybrid system one can obtain pulses with duration of at least 27 fs with a recompression of amplified pulses in bulk glass. Also, a new phenomenon was observed of spectrum broadening and self-compression of negatively chirped femtosecond pulses in the visible range under a nonlinear interaction of wide-aperture beams with fused silica. This result opens prospects for development of the new methods of selfcompression for femtosecond pulses that are lacking physical limitations on pulse energy and realisation of self-compression of amplified pulses in the output window of the XeF(C-A) amplifier.

  18. Control system for a hybrid powertrain system

    DOEpatents

    Naqvi, Ali K.; Demirovic, Besim; Gupta, Pinaki; Kaminsky, Lawrence A.

    2014-09-09

    A vehicle includes a powertrain with an engine, first and second torque machines, and a hybrid transmission. A method for operating the vehicle includes operating the engine in an unfueled state, releasing an off-going clutch which when engaged effects operation of the hybrid transmission in a first continuously variable mode, and applying a friction braking torque to a wheel of the vehicle to compensate for an increase in an output torque of the hybrid transmission resulting from releasing the off-going clutch. Subsequent to releasing the off-going clutch, an oncoming clutch which when engaged effects operation of the hybrid transmission in a second continuously variable mode is synchronized. Subsequent to synchronization of the oncoming clutch, the oncoming clutch is engaged.

  19. Efficient Synthesis of a Maghemite/Gold Hybrid Nanoparticle System as a Magnetic Carrier for the Transport of Platinum-Based Metallotherapeutics

    PubMed Central

    Štarha, Pavel; Smola, David; Tuček, Jiří; Trávníček, Zdeněk

    2015-01-01

    The preparation and thorough characterization of a hybrid magnetic carrier system for the possible transport of activated platinum-based anticancer drugs, as demonstrated for cisplatin (cis-[Pt(NH3)2Cl2], CDDP), are described. The final functionalized mag/Au–LA–CDDP* system consists of maghemite/gold nanoparticles (mag/Au) coated by lipoic acid (HLA; LA stands for deprotonated form of lipoic acid) and functionalized by activated cisplatin in the form of cis-[Pt(NH3)2(H2O)2]2+ (CDDP*). The relevant techniques (XPS, EDS, ICP-MS) proved the incorporation of the platinum-containing species on the surface of the studied hybrid system. HRTEM, TEM and SEM images showed the nanoparticles as spherical with an average size of 12 nm, while their superparamagnetic feature was proven by 57Fe Mössbauer spectroscopy. In the case of mag/Au, mag/Au–HLA and mag/Au–LA–CDDP*, weaker magnetic interactions among the Fe3+ centers of maghemite, as compared to maghemite nanoparticles (mag), were detected, which can be associated with the non-covalent coating of the maghemite surface by gold. The pH and time-dependent stability of the mag/Au–LA–CDDP* system in different media, represented by acetate (pH 5.0), phosphate (pH 7.0) and carbonate (pH 9.0) buffers and connected with the release of the platinum-containing species, showed the ability of CDDP* to be released from the functionalized nanosystem. PMID:25603182

  20. Efficient synthesis of a maghemite/gold hybrid nanoparticle system as a magnetic carrier for the transport of platinum-based metallotherapeutics.

    PubMed

    Štarha, Pavel; Smola, David; Tuček, Jiří; Trávníček, Zdeněk

    2015-01-01

    The preparation and thorough characterization of a hybrid magnetic carrier system for the possible transport of activated platinum-based anticancer drugs, as demonstrated for cisplatin (cis-[Pt(NH3)2Cl2], CDDP), are described. The final functionalized mag/Au-LA-CDDP* system consists of maghemite/gold nanoparticles (mag/Au) coated by lipoic acid (HLA; LA stands for deprotonated form of lipoic acid) and functionalized by activated cisplatin in the form of cis-[Pt(NH3)2(H2O)2]2+ (CDDP*). The relevant techniques (XPS, EDS, ICP-MS) proved the incorporation of the platinum-containing species on the surface of the studied hybrid system. HRTEM, TEM and SEM images showed the nanoparticles as spherical with an average size of 12 nm, while their superparamagnetic feature was proven by 57Fe Mössbauer spectroscopy. In the case of mag/Au, mag/Au-HLA and mag/Au-LA-CDDP*, weaker magnetic interactions among the Fe3+ centers of maghemite, as compared to maghemite nanoparticles (mag), were detected, which can be associated with the non-covalent coating of the maghemite surface by gold. The pH and time-dependent stability of the mag/Au-LA-CDDP* system in different media, represented by acetate (pH 5.0), phosphate (pH 7.0) and carbonate (pH 9.0) buffers and connected with the release of the platinum-containing species, showed the ability of CDDP* to be released from the functionalized nanosystem. PMID:25603182

  1. A novel surface-enhanced Raman spectroscopy substrate based on a large area of MoS2 and Ag nanoparticles hybrid system

    NASA Astrophysics Data System (ADS)

    Chen, P. X.; Qiu, H. W.; Xu, S. C.; Liu, X. Y.; Li, Z.; Hu, L. T.; Li, C. H.; Guo, J.; Jiang, S. Z.; Huo, Y. Y.

    2016-07-01

    Few layers MoS2 were directly synthesized on Ag nanoparticles (AgNPs) by thermal decomposion method to fabricate a MoS2/AgNPs hybrid system for surface-enhanced Raman scattering (SERS). The MoS2/AgNPs hybrid system shows high performance in terms of sensitivity, signal-to-noise ratio, reproducibility and stability. The minimum detected concentration from MoS2/AgNPs hybrid system for R6 G can reach 10-9 M, which is one order of magnitude lower than that from AgNPs system. The hybrid system shows the reasonable linear response between the Raman intensity and concentration that R2 is reached to 0.988. The maximum deviations of SERS intensities from 20 positions of the SERS substrate are less than 13%. Besides, the hybrid system has a good stability, the Raman intensity only drop by 20% in a month. This work can provide a basis for the fabrication of novel SERS substrates.

  2. Quinoline-based antimalarial hybrid compounds.

    PubMed

    Vandekerckhove, Stéphanie; D'hooghe, Matthias

    2015-08-15

    Quinoline-containing compounds, such as quinine and chloroquine, have a long-standing history as potent antimalarial agents. However, the increasing resistance of the Plasmodium parasite against these drugs and the lack of licensed malaria vaccines have forced chemists to develop synthetic strategies toward novel biologically active molecules. A strategy that has attracted considerable attention in current medicinal chemistry is based on the conjugation of two biologically active molecules into one hybrid compound. Since quinolines are considered to be privileged antimalarial building blocks, the synthesis of quinoline-containing antimalarial hybrids has been elaborated extensively in recent years. This review provides a literature overview of antimalarial hybrid molecules containing a quinoline core, covering publications between 2009 and 2014. PMID:25593097

  3. Hierarchical models and iterative optimization of hybrid systems

    NASA Astrophysics Data System (ADS)

    Rasina, Irina V.; Baturina, Olga V.; Nasatueva, Soelma N.

    2016-06-01

    A class of hybrid control systems on the base of two-level discrete-continuous model is considered. The concept of this model was proposed and developed in preceding works as a concretization of the general multi-step system with related optimality conditions. A new iterative optimization procedure for such systems is developed on the base of localization of the global optimality conditions via contraction the control set.

  4. POWER (power optimization for wireless energy requirements): A MATLAB based algorithm for design of hybrid energy systems

    NASA Astrophysics Data System (ADS)

    Cook, K. A.; Albano, F.; Nevius, P. E.; Sastry, A. M.

    We have expanded and implemented an algorithm for selecting power supplies into a turnkey MATLAB code, "POWER" (power optimization for wireless energy requirements). Our algorithm uses three approaches to system design, specifying either: (1) a single, aggregate power profile; (2) a power system designed to satisfy several power ranges (micro-, milli- and Watt); or (3) a power system designed to be housed within specified spaces within the system. POWER was verified by conducting two case studies on hearing prosthetics: the TICA (LZ 3001) (Baumann group at the Tübingen University) and Amadeus cochlear implant (CI) (WIMS-ERC at the University of Michigan) based on a volume constraint of 2 cm 3. The most suitable solution identified by POWER for the TICA device came from Approach 1, wherein one secondary cell provided 26,000 cycles of 16 h operation. POWER identified Approach 2 as the solution for the WIMS-ERC Amadeus CI, which consisted of 1 cell for the microWatt power range and 1 cell for the milliWatt range (4.43 cm 3, ∼55% higher than the target volume), and provided 3280 cycles of 16 h operation (including re-charge of the batteries). Future work will be focused on continuously improving our present tool.

  5. Hybrid piezoelectric energy harvesting transducer system

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor); Rehrig, Paul W. (Inventor); Hackenberger, Wesley S. (Inventor)

    2008-01-01

    A hybrid piezoelectric energy harvesting transducer system includes: (a) first and second symmetric, pre-curved piezoelectric elements mounted separately on a frame so that their concave major surfaces are positioned opposite to each other; and (b) a linear piezoelectric element mounted separately on the frame and positioned between the pre-curved piezoelectric elements. The pre-curved piezoelectric elements and the linear piezoelectric element are spaced from one another and communicate with energy harvesting circuitry having contact points on the frame. The hybrid piezoelectric energy harvesting transducer system has a higher electromechanical energy conversion efficiency than any known piezoelectric transducer.

  6. Systems Engineering of Electric and Hybrid Vehicles

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.; Levin, R. R.

    1986-01-01

    Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.

  7. Formal methods for modeling and analysis of hybrid systems

    NASA Technical Reports Server (NTRS)

    Tiwari, Ashish (Inventor); Lincoln, Patrick D. (Inventor)

    2009-01-01

    A technique based on the use of a quantifier elimination decision procedure for real closed fields and simple theorem proving to construct a series of successively finer qualitative abstractions of hybrid automata is taught. The resulting abstractions are always discrete transition systems which can then be used by any traditional analysis tool. The constructed abstractions are conservative and can be used to establish safety properties of the original system. The technique works on linear and non-linear polynomial hybrid systems: the guards on discrete transitions and the continuous flows in all modes can be specified using arbitrary polynomial expressions over the continuous variables. An exemplar tool in the SAL environment built over the theorem prover PVS is detailed. The technique scales well to large and complex hybrid systems.

  8. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    Nguyen Minh

    2004-07-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the January to June 2004 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  9. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    Faress Rahman; Nguyen Minh

    2004-01-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  10. Status and modeling improvements of hybrid wind/PV/diesel power systems for Brazilian applications

    SciTech Connect

    McGowan, J.G.; Manwell, J.F.; Avelar, C.; Taylor, R.

    1997-12-31

    This paper present a summary of the ongoing work on the modeling and system design of hybrid wind/PV/diesel systems for two different sites in the Amazonia region of Brazil. The work incorporates the latest resource data and is based on the use of the Hybrid2 simulation code developed by the University of Massachusetts and NREL. Details of the baseline operating hybrid systems are reviewed, and the results of the latest detailed hybrid system evaluation for each site are summarized. Based on the system modeling results, separate recommendations for system modification and improvements are made.

  11. Hybrid clustering based fuzzy structure for vibration control - Part 1: A novel algorithm for building neuro-fuzzy system

    NASA Astrophysics Data System (ADS)

    Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok

    2015-01-01

    This paper presents a new algorithm for building an adaptive neuro-fuzzy inference system (ANFIS) from a training data set called B-ANFIS. In order to increase accuracy of the model, the following issues are executed. Firstly, a data merging rule is proposed to build and perform a data-clustering strategy. Subsequently, a combination of clustering processes in the input data space and in the joint input-output data space is presented. Crucial reason of this task is to overcome problems related to initialization and contradictory fuzzy rules, which usually happen when building ANFIS. The clustering process in the input data space is accomplished based on a proposed merging-possibilistic clustering (MPC) algorithm. The effectiveness of this process is evaluated to resume a clustering process in the joint input-output data space. The optimal parameters obtained after completion of the clustering process are used to build ANFIS. Simulations based on a numerical data, 'Daily Data of Stock A', and measured data sets of a smart damper are performed to analyze and estimate accuracy. In addition, convergence and robustness of the proposed algorithm are investigated based on both theoretical and testing approaches.

  12. Diagnosing Hybrid Systems: a Bayesian Model Selection Approach

    NASA Technical Reports Server (NTRS)

    McIlraith, Sheila A.

    2005-01-01

    In this paper we examine the problem of monitoring and diagnosing noisy complex dynamical systems that are modeled as hybrid systems-models of continuous behavior, interleaved by discrete transitions. In particular, we examine continuous systems with embedded supervisory controllers that experience abrupt, partial or full failure of component devices. Building on our previous work in this area (MBCG99;MBCG00), our specific focus in this paper ins on the mathematical formulation of the hybrid monitoring and diagnosis task as a Bayesian model tracking algorithm. The nonlinear dynamics of many hybrid systems present challenges to probabilistic tracking. Further, probabilistic tracking of a system for the purposes of diagnosis is problematic because the models of the system corresponding to failure modes are numerous and generally very unlikely. To focus tracking on these unlikely models and to reduce the number of potential models under consideration, we exploit logic-based techniques for qualitative model-based diagnosis to conjecture a limited initial set of consistent candidate models. In this paper we discuss alternative tracking techniques that are relevant to different classes of hybrid systems, focusing specifically on a method for tracking multiple models of nonlinear behavior simultaneously using factored sampling and conditional density propagation. To illustrate and motivate the approach described in this paper we examine the problem of monitoring and diganosing NASA's Sprint AERCam, a small spherical robotic camera unit with 12 thrusters that enable both linear and rotational motion.

  13. Using hybrid expert system approaches for engineering applications

    NASA Technical Reports Server (NTRS)

    Allen, R. H.; Boarnet, M. G.; Culbert, C. J.; Savely, R. T.

    1987-01-01

    In this paper, the use of hybrid expert system shells and hybrid (i.e., algorithmic and heuristic) approaches for solving engineering problems is reported. Aspects of various engineering problem domains are reviewed for a number of examples with specific applications made to recently developed prototype expert systems. Based on this prototyping experience, critical evaluations of and comparisons between commercially available tools, and some research tools, in the United States and Australia, and their underlying problem-solving paradigms are made. Characteristics of the implementation tool and the engineering domain are compared and practical software engineering issues are discussed with respect to hybrid tools and approaches. Finally, guidelines are offered with the hope that expert system development will be less time consuming, more effective, and more cost-effective than it has been in the past.

  14. Assume-Guarantee Abstraction Refinement Meets Hybrid Systems

    NASA Technical Reports Server (NTRS)

    Bogomolov, Sergiy; Frehse, Goran; Greitschus, Marius; Grosu, Radu; Pasareanu, Corina S.; Podelski, Andreas; Strump, Thomas

    2014-01-01

    Compositional verification techniques in the assume- guarantee style have been successfully applied to transition systems to efficiently reduce the search space by leveraging the compositional nature of the systems under consideration. We adapt these techniques to the domain of hybrid systems with affine dynamics. To build assumptions we introduce an abstraction based on location merging. We integrate the assume-guarantee style analysis with automatic abstraction refinement. We have implemented our approach in the symbolic hybrid model checker SpaceEx. The evaluation shows its practical potential. To the best of our knowledge, this is the first work combining assume-guarantee reasoning with automatic abstraction-refinement in the context of hybrid automata.

  15. Hybrid Molten Salt Reactor (HMSR) System Study

    SciTech Connect

    Woolley, Robert D; Miller, Laurence F

    2014-04-01

    Can the hybrid system combination of (1) a critical fission Molten Salt Reactor (MSR) having a thermal spectrum and a high Conversion Ratio (CR) with (2) an external source of high energy neutrons provide an attractive solution to the world's expanding demand for energy? The present study indicates the answer is an emphatic yes.

  16. HybridPlan: A Capacity Planning Technique for Projecting Storage Requirements in Hybrid Storage Systems

    SciTech Connect

    Kim, Youngjae; Gupta, Aayush; Urgaonkar, Bhuvan; Piotr, Berman; Sivasubramaniam, Anand

    2014-01-01

    Economic forces, driven by the desire to introduce flash into the high-end storage market without changing existing software-base, have resulted in the emergence of solid-state drives (SSDs), flash packaged in HDD form factors and capable of working with device drivers and I/O buses designed for HDDs. Unlike the use of DRAM for caching or buffering, however, certain idiosyncrasies of NAND Flash-based solid-state drives (SSDs) make their integration into hard disk drive (HDD)-based storage systems nontrivial. Flash memory suffers from limits on its reliability, is an order of magnitude more expensive than the magnetic hard disk drives (HDDs), and can sometimes be as slow as the HDD (due to excessive garbage collection (GC) induced by high intensity of random writes). Given the complementary properties of HDDs and SSDs in terms of cost, performance, and lifetime, the current consensus among several storage experts is to view SSDs not as a replacement for HDD, but rather as a complementary device within the high-performance storage hierarchy. Thus, we design and evaluate such a hybrid storage system with HybridPlan that is an improved capacity planning technique to administrators with the overall goal of operating within cost-budgets. HybridPlan is able to find the most cost-effective hybrid storage configuration with different types of SSDs and HDDs

  17. Hybrid Energy System Modeling in Modelica

    SciTech Connect

    William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia

    2014-03-01

    In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.

  18. ICDTag: A Prototype for a Web-Based System for Organizing Physician-Written Blog Posts Using a Hybrid Taxonomy-Folksonomy Approach

    PubMed Central

    2013-01-01

    Background Medical blogs have emerged as new media, extending to a wider range of medical audiences, including health professionals and patients to share health-related information. However, extraction of quality health-related information from medical blogs is challenging primarily because these blogs lack systematic methods to organize their posts. Medical blogs can be categorized according to their author into (1) physician-written blogs, (2) nurse-written blogs, and (3) patient-written blogs. This study focuses on how to organize physician-written blog posts that discuss disease-related issues and how to extract quality information from these posts. Objective The goal of this study was to create and implement a prototype for a Web-based system, called ICDTag, based on a hybrid taxonomy–folksonomy approach that follows a combination of a taxonomy classification schemes and user-generated tags to organize physician-written blog posts and extract information from these posts. Methods First, the design specifications for the Web-based system were identified. This system included two modules: (1) a blogging module that was implemented as one or more blogs, and (2) an aggregator module that aggregated posts from different blogs into an aggregator website. We then developed a prototype for this system in which the blogging module included two blogs, the cardiology blog and the gastroenterology blog. To analyze the usage patterns of the prototype, we conducted an experiment with data provided by cardiologists and gastroenterologists. Next, we conducted two evaluation types: (1) an evaluation of the ICDTag blog, in which the browsing functionalities of the blogging module were evaluated from the end-user’s perspective using an online questionnaire, and (2) an evaluation of information quality, in which the quality of the content on the aggregator website was assessed from the perspective of medical experts using an emailed questionnaire. Results Participants of this

  19. Compact Hybrid Automotive Propulsion System

    NASA Technical Reports Server (NTRS)

    Lupo, G.

    1986-01-01

    Power train proposed for experimental vehicle powered by internal combustion engine and electric motor. Intended for front-wheel drive automobile, power train mass produced using existing technology. System includes internal-combustion engine, electric motor, continuously variable transmission, torque converter, differential, and control and adjustment systems for electric motor and transmission. Continuously variable transmission integrated into hydraulic system that also handles power steering and power brakes. Batteries for electric motor mounted elsewhere in vehicle.

  20. A methodology for risk analysis based on hybrid Bayesian networks: application to the regasification system of liquefied natural gas onboard a floating storage and regasification unit.

    PubMed

    Martins, Marcelo Ramos; Schleder, Adriana Miralles; Droguett, Enrique López

    2014-12-01

    This article presents an iterative six-step risk analysis methodology based on hybrid Bayesian networks (BNs). In typical risk analysis, systems are usually modeled as discrete and Boolean variables with constant failure rates via fault trees. Nevertheless, in many cases, it is not possible to perform an efficient analysis using only discrete and Boolean variables. The approach put forward by the proposed methodology makes use of BNs and incorporates recent developments that facilitate the use of continuous variables whose values may have any probability distributions. Thus, this approach makes the methodology particularly useful in cases where the available data for quantification of hazardous events probabilities are scarce or nonexistent, there is dependence among events, or when nonbinary events are involved. The methodology is applied to the risk analysis of a regasification system of liquefied natural gas (LNG) on board an FSRU (floating, storage, and regasification unit). LNG is becoming an important energy source option and the world's capacity to produce LNG is surging. Large reserves of natural gas exist worldwide, particularly in areas where the resources exceed the demand. Thus, this natural gas is liquefied for shipping and the storage and regasification process usually occurs at onshore plants. However, a new option for LNG storage and regasification has been proposed: the FSRU. As very few FSRUs have been put into operation, relevant failure data on FSRU systems are scarce. The results show the usefulness of the proposed methodology for cases where the risk analysis must be performed under considerable uncertainty. PMID:25041168

  1. Stability analysis and controller synthesis for hybrid dynamical systems.

    PubMed

    Heemels, W P M H; De Schutter, B; Lunze, J; Lazar, M

    2010-11-13

    Wherever continuous and discrete dynamics interact, hybrid systems arise. This is especially the case in many technological systems in which logic decision-making and embedded control actions are combined with continuous physical processes. Also for many mechanical, biological, electrical and economical systems the use of hybrid models is essential to adequately describe their behaviour. To capture the evolution of these systems, mathematical models are needed that combine in one way or another the dynamics of the continuous parts of the system with the dynamics of the logic and discrete parts. These mathematical models come in all kinds of variations, but basically consist of some form of differential or difference equations on the one hand and automata or other discrete-event models on the other hand. The collection of analysis and synthesis techniques based on these models forms the research area of hybrid systems theory, which plays an important role in the multi-disciplinary design of many technological systems that surround us. This paper presents an overview from the perspective of the control community on modelling, analysis and control design for hybrid dynamical systems and surveys the major research lines in this appealing and lively research area. PMID:20921005

  2. Overview of a hybrid underwater camera system

    NASA Astrophysics Data System (ADS)

    Church, Philip; Hou, Weilin; Fournier, Georges; Dalgleish, Fraser; Butler, Derek; Pari, Sergio; Jamieson, Michael; Pike, David

    2014-05-01

    The paper provides an overview of a Hybrid Underwater Camera (HUC) system combining sonar with a range-gated laser camera system. The sonar is the BlueView P900-45, operating at 900kHz with a field of view of 45 degrees and ranging capability of 60m. The range-gated laser camera system is based on the third generation LUCIE (Laser Underwater Camera Image Enhancer) sensor originally developed by the Defence Research and Development Canada. LUCIE uses an eye-safe laser generating 1ns pulses at a wavelength of 532nm and at the rate of 25kHz. An intensified CCD camera operates with a gating mechanism synchronized with the laser pulse. The gate opens to let the camera capture photons from a given range of interest and can be set from a minimum delay of 5ns with increments of 200ps. The output of the sensor is a 30Hz video signal. Automatic ranging is achieved using a sonar altimeter. The BlueView sonar and LUCIE sensors are integrated with an underwater computer that controls the sensors parameters and displays the real-time data for the sonar and the laser camera. As an initial step for data integration, graphics overlays representing the laser camera field-of-view along with the gate position and width are overlaid on the sonar display. The HUC system can be manually handled by a diver and can also be controlled from a surface vessel through an umbilical cord. Recent test data obtained from the HUC system operated in a controlled underwater environment will be presented along with measured performance characteristics.

  3. Hybrid system of semiconductor and photosynthetic protein.

    PubMed

    Kim, Younghye; Shin, Seon Ae; Lee, Jaehun; Yang, Ki Dong; Nam, Ki Tae

    2014-08-29

    Photosynthetic protein has the potential to be a new attractive material for solar energy absorption and conversion. The development of semiconductor/photosynthetic protein hybrids is an example of recent progress toward efficient, clean and nanostructured photoelectric systems. In the review, two biohybrid systems interacting through different communicating methods are addressed: (1) a photosynthetic protein immobilized semiconductor electrode operating via electron transfer and (2) a hybrid of semiconductor quantum dots and photosynthetic protein operating via energy transfer. The proper selection of materials and functional and structural modification of the components and optimal conjugation between them are the main issues discussed in the review. In conclusion, we propose the direction of future biohybrid systems for solar energy conversion systems, optical biosensors and photoelectric devices. PMID:25091409

  4. Analysis of hybrid solar systems

    NASA Astrophysics Data System (ADS)

    Swisher, J.

    1980-10-01

    The TRNSYS simulation program was used to evaluate the performance of active charge/passive discharge solar systems with water as the working fluid. TRNSYS simulations are used to evaluate the heating performance and cooling augmentation provided by systems in several climates. The results of the simulations are used to develop a simplified analysis tool similar to the F-chart and Phi-bar procedures used for active systems. This tool, currently in a preliminary stage, should provide the designer with quantitative performance estimates for comparison with other passive, active, and nonsolar heating and cooling designs.

  5. A mammalian cell-based reverse two-hybrid system for functional analysis of 3C viral protease of human enterovirus 71.

    PubMed

    Lee, Jin-Ching; Shih, Shin-Ru; Chang, Ten-Yuan; Tseng, Huan-Yi; Shih, Ya-Feng; Yen, Kuei-Jung; Chen, Wei-Chun; Shie, Jiun-Jie; Fang, Jim-Min; Liang, Po-Huang; Chao, Yu-Sheng; Hsu, John T-A

    2008-04-01

    Although several cell-based reporter assays have been developed for screening of viral protease inhibitors, most of these assays have a significant limitation in that numerous false positives can be generated for the compounds that are interfering with reporter gene detection due to the cellular viability. To improve, we developed a mammalian cell-based assay based on the reverse two-hybrid system to monitor the proteolytic activity of human enterovirus 71 (EV71) 3C protease and to validate the cytotoxicity of compounds at the same time. In this system, the GAL4 DNA binding domain (M3) and transactivation domain (VP16) were fused, in-frame, with 3C or 3C(mut). The 3C(mut) was an inactivated protease with mutations at the predicted catalytic triad. The reporter plasmid contains a secreted alkaline phosphatase (SEAP) gene under the control of GAL4 activating sequences. We demonstrated that M3-3C-VP16 failed to turn on the expression of SEAP due to the separation of M3 and the VP16 domains by self-cleavage of 3C. In contrast, SEAP expression was induced by the M3-3C(mut)-VP16 fusion protein or the M3-3C-VP16 in cells treated with AG7088, a potent inhibitor of human rhinoviruses (HRVs) 3C protease. Potentially, this protease detection system should greatly facilitate anti-EV71 drug discovery through a high-throughput screening. PMID:18190777

  6. Hybrid collagen-based hydrogels with embedded montmorillonite nanoparticles.

    PubMed

    Nistor, Manuela Tatiana; Vasile, Cornelia; Chiriac, Aurica P

    2015-08-01

    Montmorillonite nanoparticles have been physically incorporated within a crosslinked collagen/poly(N-isopropyl acrylamide) network in order to adjust the properties of the stimuli-responsive hybrid systems. The research underlines both the influence of hydrogel composition and nanoparticle type on hybrid hydrogel properties. The dispersion of the montmorillonite nanoparticles in polymeric matrix have been visualized by SEM, TEM and AFM techniques and quantitatively and qualitatively estimated using near infrared chemical imaging. The electrical charge of the nanoparticles influenced the polymeric chain arrangement and the pore size. The morphologies of the nanoparticulated layers are partially exfoliated or intercalated and uniformly dispersed through the polymeric semi-interpenetrated network based on collagen and poly(N-isopropyl acrylamide). The hybrid hydrogels exhibit pseudoplastic behavior and the addition of nanoparticles has resulted in the increase of the complex viscosity. The adhesion capacity was affected mainly by the presence of organically modified montmorillonites. PMID:26042709

  7. Optimization strategy for element sizing in hybrid power systems

    NASA Astrophysics Data System (ADS)

    del Real, Alejandro J.; Arce, Alicia; Bordons, Carlos

    This paper presents a procedure to evaluate the optimal element sizing of hybrid power systems. In order to generalize the problem, this work exploits the "energy hub" formulation previously presented in the literature, defining an energy hub as an interface among energy producers, consumers and the transportation infrastructure. The resulting optimization minimizes an objective function which is based on costs and efficiencies of the system elements, while taking into account the hub model, energy and power constraints and estimated operational conditions, such as energy prices, input power flow availability and output energy demand. The resulting optimal architecture also constitutes a framework for further real-time control designs. Moreover, an example of a hybrid storage system is considered. In particular, the architecture of a hybrid plant incorporating a wind generator, batteries and intermediate hydrogen storage is optimized, based on real wind data and averaged residential demands, also taking into account possible estimation errors. The hydrogen system integrates an electrolyzer, a fuel cell stack and hydrogen tanks. The resulting optimal cost of such hybrid power plant is compared with the equivalent hydrogen-only and battery-only systems, showing improvements in investment costs of almost 30% in the worst case.

  8. Hybrid sodium heat pipe receivers for dish/Stirling systems

    SciTech Connect

    Laing, D.; Reusch, M.

    1997-12-31

    The design of a hybrid solar/gas heat pipe receiver for the SBP 9 kW dish/Stirling system using a United Stirling AB V160 Stirling engine and the results of on-sun testing in alternative and parallel mode will be reported. The receiver is designed to transfer a thermal power of 35 kW. The heat pipe operates at around 800 C, working fluid is sodium. Operational options are solar-only, gas augmented and gas-only mode. Also the design of a second generation hybrid heat pipe receiver currently developed under a EU-funded project, based on the experience gained with the first hybrid receiver, will be reported. This receiver is designed for the improved SPB/L. and C.-10 kW dish/Stirling system with the reworked SOLO V161 Stirling engine.

  9. Analysis of village hybrid systems in Chile

    SciTech Connect

    Lew, D J; Corbus, D; Holz, R

    1996-06-01

    Chile recently began a major rural electrification program to electrify those 240,000 families (about half of the rural people) who lack electricity access. In this paper, we discuss a pilot project to electrify three remote villages in Chile`s Region IX using wind/genset/battery hybrids. The intent of this project is to demonstrate the reliability and cost-effectiveness of wind/genset/battery hybrids and to encourage replication of these types of systems in Chile`s electrification program. For each village, electricity connections are planned for several residences, and also schools, health posts, community centers, or chapels. Projected average daily loads are small, ranging from 4 to 10 kWh. Using the optimization program HOMER and the simulation program Hybrid2, we evaluated options to maximize technical performance, minimize costs, and gain experience with a variety of systems and components. We find that wind/genset/battery hybrids will be able to provide cost-effective, reliable power for these sites. More importantly, their inherent flexibility allows for variations in load and resource without greatly affecting the cost of energy.

  10. Improving long-term operation of power sources in off-grid hybrid systems based on renewable energy, hydrogen and battery

    NASA Astrophysics Data System (ADS)

    García, Pablo; Torreglosa, Juan P.; Fernández, Luis M.; Jurado, Francisco

    2014-11-01

    This paper presents two novel hourly energy supervisory controls (ESC) for improving long-term operation of off-grid hybrid systems (HS) integrating renewable energy sources (wind turbine and photovoltaic solar panels), hydrogen system (fuel cell, hydrogen tank and electrolyzer) and battery. The first ESC tries to improve the power supplied by the HS and the power stored in the battery and/or in the hydrogen tank, whereas the second one tries to minimize the number of needed elements (batteries, fuel cells and electrolyzers) throughout the expected life of the HS (25 years). Moreover, in both ESC, the battery state-of-charge (SOC) and the hydrogen tank level are controlled and maintained between optimum operating margins. Finally, a comparative study between the controls is carried out by models of the commercially available components used in the HS under study in this work. These ESC are also compared with a third ESC, already published by the authors, and based on reducing the utilization costs of the energy storage devices. The comparative study proves the right performance of the ESC and their differences.

  11. Microfluidic Integration of a Cloth-Based Hybridization Array System (CHAS) for Rapid, Colorimetric Detection of Enterohemorrhagic Escherichia coli (EHEC) Using an Articulated, Centrifugal Platform.

    PubMed

    Geissler, Matthias; Clime, Liviu; Hoa, Xuyen D; Morton, Keith J; Hébert, Harold; Poncelet, Lucas; Mounier, Maxence; Deschênes, Mylène; Gauthier, Martine E; Huszczynski, George; Corneau, Nathalie; Blais, Burton W; Veres, Teodor

    2015-10-20

    We describe the translation of a cloth-based hybridization array system (CHAS), a colorimetric DNA detection method that is used by food inspection laboratories for colony screening of pathogenic agents, onto a microfluidic chip format. We also introduce an articulated centrifugal platform with a novel fluid manipulation concept based on changes in the orientation of the chip with respect to the centrifugal force field to time the passage of multiple components required for the process. The platform features two movable and motorized carriers that can be reoriented on demand between 0 and 360° during stage rotation. Articulation of the chip can be used to trigger on-the-fly fluid dispensing through independently addressable siphon structures or to relocate solutions against the centrifugal force field, making them newly accessible for downstream transfer. With the microfluidic CHAS, we achieved significant reduction in the size of the cloth substrate as well as the volume of reagents and wash solutions. Both the chip design and the operational protocol were optimized to perform the entire process in a reliable, fully automated fashion. A demonstration with PCR-amplified genomic DNA confirms on-chip detection and identification of Escherichia coli O157:H7 from colony isolates in a colorimetric multiplex assay using rfbO157, fliCH7, vt1, and vt2 genes. PMID:26416260

  12. Plant hybrid zones affect biodiversity: Tools for a genetic-based understanding of community structure

    SciTech Connect

    Whitham, T.G.; Martinsen, G.D.; Keim, P.; Floate, K.D.; Dungey, H.S. |; Potts, B.M.

    1999-03-01

    Plant hybrid zones are dynamic centers of ecological and evolutionary processes for plants and their associated communities. Studies in the wild and in gardens with synthetic crosses showed that hybrid eucalypts supports the greatest species richness and abundances of insect and fungal taxa. In an updated review of 152 case studies of taxa associated with diverse hybridizing systems, there were 43 (28%) cases of hybrids being more susceptible than their parent species, 7 (5%) resistant, 35 (23%) additive, 35 (23%) dominant, and 32 (21%) showed no response to hybridization. Thus, most taxa respond to hybrids in ways that result in equal or greater abundance, and hybrids tend to accumulate the taxa of their parent species. These studies suggest that genetic-based plant traits affect the distribution of many species and that the variation in hybrids can be used as tools to examine the genetic components of community structure and biodiversity.

  13. Viewing hybrid systems as products of control systems and automata

    NASA Technical Reports Server (NTRS)

    Grossman, R. L.; Larson, R. G.

    1992-01-01

    The purpose of this note is to show how hybrid systems may be modeled as products of nonlinear control systems and finite state automata. By a hybrid system, we mean a network of consisting of continuous, nonlinear control system connected to discrete, finite state automata. Our point of view is that the automata switches between the control systems, and that this switching is a function of the discrete input symbols or letters that it receives. We show how a nonlinear control system may be viewed as a pair consisting of a bialgebra of operators coding the dynamics, and an algebra of observations coding the state space. We also show that a finite automata has a similar representation. A hybrid system is then modeled by taking suitable products of the bialgebras coding the dynamics and the observation algebras coding the state spaces.

  14. Hybrid Multiagent System for Automatic Object Learning Classification

    NASA Astrophysics Data System (ADS)

    Gil, Ana; de La Prieta, Fernando; López, Vivian F.

    The rapid evolution within the context of e-learning is closely linked to international efforts on the standardization of learning object metadata, which provides learners in a web-based educational system with ubiquitous access to multiple distributed repositories. This article presents a hybrid agent-based architecture that enables the recovery of learning objects tagged in Learning Object Metadata (LOM) and provides individualized help with selecting learning materials to make the most suitable choice among many alternatives.

  15. Spectral Selectivity Applied To Hybrid Concentration Systems

    NASA Astrophysics Data System (ADS)

    Hamdy, M. A.; Luttmann, F.; Osborn, D. E.; Jacobson, M. R.; MacLeod, H. A.

    1985-12-01

    The efficiency of conversion of concentrated solar energy can be improved by separating the solar spectrum into portions matched to specific photoquantum processes and the balance used for photothermal conversion. The basic approaches of spectrally selective beam splitters are presented. A detailed simulation analysis using TRNSYS is developed for a spectrally selective hybrid photovoltaic/photothermal concentrating system. The analysis shows definite benefits to a spectrally selective approach.

  16. Hybrid-Based Dense Stereo Matching

    NASA Astrophysics Data System (ADS)

    Chuang, T. Y.; Ting, H. W.; Jaw, J. J.

    2016-06-01

    Stereo matching generating accurate and dense disparity maps is an indispensable technique for 3D exploitation of imagery in the fields of Computer vision and Photogrammetry. Although numerous solutions and advances have been proposed in the literature, occlusions, disparity discontinuities, sparse texture, image distortion, and illumination changes still lead to problematic issues and await better treatment. In this paper, a hybrid-based method based on semi-global matching is presented to tackle the challenges on dense stereo matching. To ease the sensitiveness of SGM cost aggregation towards penalty parameters, a formal way to provide proper penalty estimates is proposed. To this end, the study manipulates a shape-adaptive cross-based matching with an edge constraint to generate an initial disparity map for penalty estimation. Image edges, indicating the potential locations of occlusions as well as disparity discontinuities, are approved by the edge drawing algorithm to ensure the local support regions not to cover significant disparity changes. Besides, an additional penalty parameter 𝑃𝑒 is imposed onto the energy function of SGM cost aggregation to specifically handle edge pixels. Furthermore, the final disparities of edge pixels are found by weighting both values derived from the SGM cost aggregation and the U-SURF matching, providing more reliable estimates at disparity discontinuity areas. Evaluations on Middlebury stereo benchmarks demonstrate satisfactory performance and reveal the potency of the hybrid-based dense stereo matching method.

  17. Spatial Self-Organization of Vegetation Subject to Climatic Stress—Insights from a System Dynamics—Individual-Based Hybrid Model

    PubMed Central

    Vincenot, Christian E.; Carteni, Fabrizio; Mazzoleni, Stefano; Rietkerk, Max; Giannino, Francesco

    2016-01-01

    In simulation models of populations or communities, individual plants have often been obfuscated in favor of aggregated vegetation. This simplification comes with a loss of biological detail and a smoothing out of the demographic noise engendered by stochastic individual-scale processes and heterogeneities, which is significant among others when studying the viability of small populations facing challenging fluctuating environmental conditions. This consideration has motivated the development of precise plant-centered models. The accuracy gained in the representation of plant biology has then, however, often been balanced by the disappearance in models of important plant-soil interactions (esp. water dynamics) due to the inability of most individual-based frameworks to simulate complex continuous processes. In this study, we used a hybrid modeling approach, namely integrated System Dynamics (SD)—Individual-based (IB), to illustrate the importance of individual plant dynamics to explain spatial self-organization of vegetation in arid environments. We analyzed the behavior of this model under different parameter sets either related to individual plant properties (such as seed dispersal distance and reproductive age) or the environment (such as intensity and yearly distribution of precipitation events). While the results of this work confirmed the prevailing theory on vegetation patterning, they also revealed the importance therein of plant-level processes that cannot be rendered by reaction-diffusion models. Initial spatial distribution of plants, reproductive age, and average seed dispersal distance, by impacting patch size and vegetation aggregation, affected pattern formation and population survival under climatic variations. Besides, changes in precipitation regime altered the demographic structure and spatial organization of vegetation patches by affecting plants differentially depending on their age and biomass. Water availability influenced non

  18. Spatial Self-Organization of Vegetation Subject to Climatic Stress-Insights from a System Dynamics-Individual-Based Hybrid Model.

    PubMed

    Vincenot, Christian E; Carteni, Fabrizio; Mazzoleni, Stefano; Rietkerk, Max; Giannino, Francesco

    2016-01-01

    In simulation models of populations or communities, individual plants have often been obfuscated in favor of aggregated vegetation. This simplification comes with a loss of biological detail and a smoothing out of the demographic noise engendered by stochastic individual-scale processes and heterogeneities, which is significant among others when studying the viability of small populations facing challenging fluctuating environmental conditions. This consideration has motivated the development of precise plant-centered models. The accuracy gained in the representation of plant biology has then, however, often been balanced by the disappearance in models of important plant-soil interactions (esp. water dynamics) due to the inability of most individual-based frameworks to simulate complex continuous processes. In this study, we used a hybrid modeling approach, namely integrated System Dynamics (SD)-Individual-based (IB), to illustrate the importance of individual plant dynamics to explain spatial self-organization of vegetation in arid environments. We analyzed the behavior of this model under different parameter sets either related to individual plant properties (such as seed dispersal distance and reproductive age) or the environment (such as intensity and yearly distribution of precipitation events). While the results of this work confirmed the prevailing theory on vegetation patterning, they also revealed the importance therein of plant-level processes that cannot be rendered by reaction-diffusion models. Initial spatial distribution of plants, reproductive age, and average seed dispersal distance, by impacting patch size and vegetation aggregation, affected pattern formation and population survival under climatic variations. Besides, changes in precipitation regime altered the demographic structure and spatial organization of vegetation patches by affecting plants differentially depending on their age and biomass. Water availability influenced non-linearly total

  19. Dynamics of Hybrid Electronic-Neuronal Systems

    NASA Astrophysics Data System (ADS)

    Breen, Barbara; Garcia, Paul; Furman, Michael D.; Lindner, John; Ditto, William

    2001-03-01

    Hybrid systems of neurons and nonlinear electrical components may make possible a new breed of computer optimized for such applications as pattern recognition and the combinatorially explosive problems that are the bane of traditional computers. Because the dynamics of arrays of neurons are high dimensional, and as they are difficult to measure and control, we have focused our initial efforts on more manageable hybrid silicon-neuron systems. Here we present results from our numerical simulations and biological experiments involving a neuron coupled to Chua’s famous chaotic circuit. The results of our simulations reinforce the possibility of using the dynamics of hybrid systems for encoding numbers and performing computation [1]. For example, bi-directionally coupling the FitzHugh-Nagumo model neuron to the Chua model circuit resulted in co-existing stable limit cycles, which can be used to store information. The coupling was also able to convert periodic neuronal spiking to chaotic bursting. We observed similar results with the more physiologically relevant Pinsky-Rinzel [2] model neuron, which facilitated our transition to a living neuron, the rodent hippocampal CA3 pyramidal cell, which we coupled to an analog Chua circuit. [1] Sinha, S., Ditto, W.L., Phys. Rev. Lett., 81, 2156-2159 (1998); Sinha, S., Ditto, W.L., Phys. Rev. E, 60, 363-377 (1999) [2] Pinsky, P., Rinzel, J., Journ. Comp. Neuroscience, 1, 39-60 (1994)

  20. Determination of catecholamine in human serum by a fluorescent quenching method based on a water-soluble fluorescent conjugated polymer-enzyme hybrid system.

    PubMed

    Huang, Hui; Gao, Yuan; Shi, Fanping; Wang, Guannan; Shah, Syed Mazhar; Su, Xingguang

    2012-03-21

    In this paper, a sensitive water-soluble fluorescent conjugated polymer biosensor for catecholamine (dopamine DA, adrenaline AD and norepinephrine NE) was developed. In the presence of horse radish peroxidase (HRP) and H(2)O(2), catecholamine could be oxidized and the oxidation product of catecholamine could quench the photoluminescence (PL) intensity of poly(2,5-bis(3-sulfonatopropoxy)-1,4-phenylethynylenealt-1,4-poly(phenylene ethynylene)) (PPESO(3)). The quenching PL intensity of PPESO(3) (I(0)/I) was proportional to the concentration of DA, AD and NE in the concentration ranges of 5.0 × 10(-7) to 1.4 × 10(-4), 5.0 × 10(-6) to 5.0 × 10(-4), and 5.0 × 10(-6) to 5.0 × 10(-4) mol L(-1), respectively. The detection limit for DA, AD and NE was 1.4 × 10(-7) mol L(-1), 1.0 × 10(-6) and 1.0 × 10(-6) mol L(-1), respectively. The PPESO(3)-enzyme hybrid system based on the fluorescence quenching method was successfully applied for the determination of catecholamine in human serum samples with good accuracy and satisfactory recovery. The results were in good agreement with those provided by the HPLC-MS method. PMID:22314795

  1. pH-responsive drug delivery system based on luminescent CaF(2):Ce(3+)/Tb(3+)-poly(acrylic acid) hybrid microspheres.

    PubMed

    Dai, Yunlu; Zhang, Cuimiao; Cheng, Ziyong; Ma, Ping'an; Li, Chunxia; Kang, Xiaojiao; Yang, Dongmei; Lin, Jun

    2012-03-01

    In this study, we design a controlled release system based on CaF(2):Ce(3+)/Tb(3+)-poly(acrylic acid) (PAA) composite microspheres, which were fabricated by filling the pH-responsive PAA inside CaF(2):Ce(3+)/Tb(3+) hollow spheres via photopolymerization route. The CaF(2):Ce(3+)/Tb(3+) hollow spheres prepared by hydrothermal route possess mesoporous structure and show strong green fluorescence from Tb(3+) under UV excitation. Doxorubicin hydrochloride (DOX), a widely used anti-cancer drug, was used as a model drug to evaluate the loading and controlled release behaviors of the composite microspheres due to the good biocompatibility of the samples using MTT assay. The composite carriers provide a strongly pH-dependent drug release behavior owing to the intrinsic property of PAA and its interactions with DOX. The endocytosis process of drug-loaded microspheres was observed using confocal laser scanning microscopy (CLSM) and the in vitro cytotoxic effect against SKOV3 ovarian cancer cells of the DOX-loaded carriers was investigated. In addition, the extent of drug release could be monitored by the altering of photoluminescence (PL) intensity of CaF(2):Ce(3+)/Tb(3+). Considering the good biocompatibility, high drug loading content and pH-dependent drug release of the materials, these hybrid luminescent microspheres have potential applications in drug controlled release and disease therapy. PMID:22196902

  2. Enhancing ethylbenzene vapors degradation in a hybrid system based on photocatalytic oxidation UV/TiO2-In and a biofiltration process.

    PubMed

    Hinojosa-Reyes, M; Rodríguez-González, V; Arriaga, S

    2012-03-30

    The use of hybrid processes for the continuous degradation of ethylbenzene (EB) vapors has been evaluated. The hybrid system consists of an UV/TiO(2)-In photooxidation coupled with a biofiltration process. Both the photocatalytic system using P25-Degussa or indium-doped TiO(2) catalysts and the photolytic process were performed at UV-wavelengths of 254 nm and 365 nm. The experiments were carried out in an annular plug flow photoreactor packed with granular perlite previously impregnated with the catalysts, and in a glass biofilter packed with perlite and inoculated with a microbial consortium. Both reactors were operated at an inlet loading rate of 127 g m(-3)h(-1). The greatest degradation rate of EB (0.414 ng m(-2)min(-1)) was obtained with the TiO(2)-In 1%/365 nm photocatalytic system. The elimination capacity (EC) obtained in the control biofilter had values ≈ 60 g m(-3)h(-1). Consequently, the coupled system was operated for 15 days, and a maximal EC of 275 g m(-3)h(-1). Thus, the results indicate that the use of hybrid processes enhanced the EB vapor degradation and that this could be a promising technology for the abatement of recalcitrant volatile organic compounds. PMID:22296707

  3. CPV hybrid system in ISFOC building, first results

    NASA Astrophysics Data System (ADS)

    Trujillo, Pablo; Alamillo, César; Gil, Eduardo; de la Rubia, Óscar; Martínez, María; Rubio, Francisca; Cadavid, Andros; Navarro, José; Hillenbrand, Sascha; Ballesteros-Sánchez, Isabel; Castillo-Cagigal, Manuel; Masa-Bote, Daniel; Matallanas, Eduardo; Caamaño-Martín, Estefanía; Gutiérrez, Álvaro

    2012-10-01

    PV Off-Grid systems have demonstrated to be a good solution for the electrification of remote areas [1]. A hybrid system is one kind of these systems. The principal characteristic is that it uses PV as the main generator and has a backup power supply, like a diesel generator, for instance, that is used when the CPV generation is not enough to meet demand. To study the use of CPV in these systems, ISFOC has installed a demonstration hybrid system at its headquarters. This hybrid system uses CPV technology as main generator and the utility grid as the backup generator. A group of batteries have been mounted as well to store the remaining energy from the CPV generator when nedeed. The energy flows are managed by a SMA system based on Sunny Island inverters and a Multicluster-Box (figure 1). The Load is the air-conditioning system of the building, as it has a consumption profile higher than the CPV generator and can be controlled by software [2]. The first results of this system, as well as the first chances of improvement, as the need of a bigger CPV generator and a better management of the energy stored in the batteries, are presented in this paper.

  4. Analysis of UAS hybrid propulsion systems

    NASA Astrophysics Data System (ADS)

    Rupe, Ryan M.

    Hybrid propulsion technology has been growing over last several years. With the steadily increasing cost of fuel and demand for unmanned aircraft systems to meet an ever expanding variety of responsibilities, research must be conducted into the development of alternative propulsion systems to reduce operating costs and optimize for strategic missions. One of the primary roles of unmanned aircraft systems is to provide aerial surveillance without detection. While electric propulsion systems provide a great option for lower acoustic signatures due to the lack of combustion and exhaust noise, they typically have low flight endurance due to battery limitations. Gas burning propulsion systems are ideal for long range/endurance missions due to the high energy density of hydrocarbon fuel, but can be much easier to detect. Research is conducted into the feasibility of gas/electric hybrid propulsion systems and the tradeoffs involved for reconnaissance mission scenarios. An analysis program is developed to optimize each component of the system and examine their effects on the overall performance of the aircraft. Each subsystem is parameterized and simulated within the program and tradeoffs between payload weight, range, and endurance are tested and evaluated to fulfill mission requirements.

  5. Economic Dispatch Using Genetic Algorithm Based Hybrid Approach

    SciTech Connect

    Tahir Nadeem Malik; Aftab Ahmad; Shahab Khushnood

    2006-07-01

    Power Economic Dispatch (ED) is vital and essential daily optimization procedure in the system operation. Present day large power generating units with multi-valves steam turbines exhibit a large variation in the input-output characteristic functions, thus non-convexity appears in the characteristic curves. Various mathematical and optimization techniques have been developed, applied to solve economic dispatch (ED) problem. Most of these are calculus-based optimization algorithms that are based on successive linearization and use the first and second order differentiations of objective function and its constraint equations as the search direction. They usually require heat input, power output characteristics of generators to be of monotonically increasing nature or of piecewise linearity. These simplifying assumptions result in an inaccurate dispatch. Genetic algorithms have used to solve the economic dispatch problem independently and in conjunction with other AI tools and mathematical programming approaches. Genetic algorithms have inherent ability to reach the global minimum region of search space in a short time, but then take longer time to converge the solution. GA based hybrid approaches get around this problem and produce encouraging results. This paper presents brief survey on hybrid approaches for economic dispatch, an architecture of extensible computational framework as common environment for conventional, genetic algorithm and hybrid approaches based solution for power economic dispatch, the implementation of three algorithms in the developed framework. The framework tested on standard test systems for its performance evaluation. (authors)

  6. Parametric systems analysis for tandem mirror hybrids

    SciTech Connect

    Lee, J.D.; Chapin, D.L.; Chi, J.W.H.

    1980-09-01

    Fusion fission systems, consisting of fissile producing fusion hybrids combining a tandem mirror fusion driver with various blanket types and net fissile consuming LWR's, have been modeled and analyzed parametrically. Analysis to date indicates that hybrids can be competitive with mined uranium when U/sub 3/O/sub 8/ cost is about 100 $/lb., adding less than 25% to present day cost of power from LWR's. Of the three blanket types considered, uranium fast fission (UFF), thorium fast fission (ThFF), and thorium fission supressed (ThFS), the ThFS blanket has a modest economic advantage under most conditions but has higher support ratios and potential safety advantages under all conditions.

  7. Advanced hybrid vehicle propulsion system study

    NASA Technical Reports Server (NTRS)

    Schwarz, R.

    1982-01-01

    Results are presented of a study of an advanced heat engine/electric automotive hybrid propulsion system. The system uses a rotary stratified charge engine and ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system paramaters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 1/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227 a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  8. Hybrid electric vehicle power management system

    DOEpatents

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  9. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect

    Faress Rahman; Nguyen Minh

    2003-07-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the January 2003 to June 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. This report summarizes the results obtained to date on: System performance analysis and model optimization; Reliability and cost model development; System control including dynamic model development; Heat exchanger material tests and life analysis; Pressurized SOFC evaluation; and Pre-baseline system definition for coal gasification fuel cell system concept.

  10. Hybridization of a sigma-delta-based CMOS hybrid detector

    NASA Astrophysics Data System (ADS)

    Kolb, K. E.; Stoffel, N. C.; Douglas, B.; Maloney, C. W.; Raisanen, A. D.; Ashe, B.; Figer, D. F.; Tamagawa, T.; Halpern, B.; Ignjatovic, Zeljko

    2010-07-01

    The Rochester Imaging Detector Laboratory, University of Rochester, Infotonics Technology Center, and Jet Process Corporation developed a hybrid silicon detector with an on-chip sigma-delta (ΣΔ) ADC. This paper describes the process and reports the results of developing a fabrication process to robustly produce high-quality bump bonds to hybridize a back-illuminated detector with its ΣΔ ADC. The design utilizes aluminum pads on both the readout circuit and the photodiode array with interconnecting indium bumps between them. The development of the bump bonding process is discussed, including specific material choices, interim process structures, and final functionality. Results include measurements of bond integrity, cross-wafer uniformity of indium bumps, and effects of process parameters on the final product. Future plans for improving the bump bonding process are summarized.

  11. Renewable Electricity Generation via Solar-Powered Methanol Reforming: Hybrid Proton Exchange Membrane Fuel Cell Systems Based on Novel Non-Concentrating, Intermediate-Temperature Solar Collectors

    NASA Astrophysics Data System (ADS)

    Real, Daniel J.

    Tremendous research efforts have been conducted studying the capturing and conversion of solar energy. Solar thermal power systems offer a compelling opportunity for renewable energy utilization with high efficiencies and excellent cost-effectiveness. The goal of this work was to design a non-concentrating collector capable of reaching temperatures above 250 °C, use this collector to power methanol steam reforming, and operate a proton exchange membrane (PEM) fuel cell using the generated hydrogen. The study presents the construction and characterization of a non-concentrating, intermediate-temperature, fin-in-tube evacuated solar collector, made of copper and capable of reaching stagnation temperatures of 268.5 °C at 1000 W/m2 irradiance. The collector was used to power methanol steam reforming, including the initial heating and vaporization of liquid reactants and the final heating of the gaseous reactants. A preferential oxidation (PROX) catalyst was used to remove CO from simulated reformate gas, and this product gas was used to operate a PEM fuel cell. The results show 1) that the outlet temperature is not limited by heat transfer from the absorber coating to the heat transfer fluid, but by the amount of solar energy absorbed. This implicates a constant heat flux description of the heat transfer process and allows for the usage of materials with lower thermal conductivity than copper. 2) It is possible to operate a PEM fuel cell from reformate gas if a PROX catalyst is used to remove CO from the gas. 3) The performance of the fuel cell is only slightly decreased (~4%) by CO2 dilution present in the reformate and PROX gas. These results provide a foundation for the first renewable electricity generation via solar-powered methanol reforming through a hybrid PEM fuel cell system based on novel non-concentrating, intermediate-temperature solar collectors.

  12. Electrically heated particulate filter regeneration methods and systems for hybrid vehicles

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2010-10-12

    A control system for controlling regeneration of a particulate filter for a hybrid vehicle is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate regeneration. An engine control module controls operation of an engine of the hybrid vehicle based on the control of the current to the particulate filter.

  13. Flexible substructure online hybrid test system using conventional testing devices

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Nakashima, Masayoshi

    2013-09-01

    This paper presents a substructure online hybrid test system that is extensible for geographically distributed tests. This system consists of a set of devices conventionally used for cyclic tests to load the tested substructures onto the target displacement or the target force. Due to their robustness and portability, individual sets of conventional loading devices can be transported and reconfigured to realize physical loading in geographically remote laboratories. Another appealing feature is the flexible displacement-force mixed control that is particularly suitable for specimens having large disparities in stiffness during various performance stages. To conduct a substructure online hybrid test, an extensible framework is developed, which is equipped with a generalized interface to encapsulate each substructure. Multiple tested substructures and analyzed substructures using various structural program codes can be accommodated within the single framework, simply interfaced with the boundary displacements and forces. A coordinator program is developed to keep the boundaries among all substructures compatible and equilibrated. An Internet-based data exchange scheme is also devised to transfer data among computers equipped with different software environments. A series of online hybrid tests are introduced, and the portability, flexibility, and extensibility of the online hybrid test system are demonstrated.

  14. Nanodevices based on Membrane-Carbon Nanotube Hybrid Structures

    NASA Astrophysics Data System (ADS)

    Jin, Hye Jun; Kim, Tae Hyun; Namgung, Seon; Hong, Seunghun; Lee, Sang Hun; Park, Tai Hyun

    2010-03-01

    Proteins in cell membrane have been drawing attention due to their versatile functionalities such as ion transfer for neuronal activity and selective binding for sensory systems. However, it is still very difficult to manipulate and study those proteins because they easily lose their functionalities without lipid membranes. We developed a method to coat lipid membranes containing various functional membrane proteins on single-walled carbon nanotube (swCNT)-based field effect transistors (FETs). In this hybrid structure, the activity of membrane proteins can be monitored by underlying swCNT-FETs, allowing us to easily study the functionalities of membrane proteins. Furthermore, we built advanced devices based on these hybrid structures. For an example, we coated lipid membrane containing `olfactory receptors' on swCNT-FETs, resulting in `bioelectric nose' systems. The bioelectric nose system had high sensitivity and human nose-like selectivity to odorant molecules. This talk will also discuss about the future prospect of these membrane-CNT hybrid structures.

  15. Hybrid holographic non-destructive test system

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L. (Inventor)

    1978-01-01

    An automatic hybrid holographic non-destructive testing (HNDT) method and system capable of detecting flaws or debonds contained within certain materials are described. This system incorporates the techniques of optical holography, acoustical/optical holography and holographic correlation in determining the structural integrity of a test object. An automatic processing system including a detector and automatic data processor is used in conjunction with the three holographic techniques for correlating and interpreting the information supplied by the non-destructive systems. The automatic system also includes a sensor which directly translates an optical data format produced by the holographic techniques into electrical signals and then transmits this information to a digital computer for indicating the structural properties of the test object. The computer interprets the data gathered and determines whether further testing is necessary as well as the format of this new testing procedure.

  16. Hybrid membrane with TiO2 based bio-catalytic nanoparticle suspension system for the degradation of bisphenol-A.

    PubMed

    Hou, Jingwei; Dong, Guangxi; Luu, Belinda; Sengpiel, Robert G; Ye, Yun; Wessling, Matthias; Chen, Vicki

    2014-10-01

    The removal of micropollutant in wastewater treatment has become a key environmental challenge for many industrialized countries. One approach is to use enzymes such as laccase for the degradation of micropollutants such as bisphenol-A. In this work, laccase was covalently immobilized on APTES modified TiO2 nanoparticles, and the effects of particle modification on the bio-catalytic performance were examined and optimized. These bio-catalytic particles were then suspended in a hybrid membrane reactor for BPA removal with good BPA degradation efficiency observed. Substantial improvement in laccase stability was achieved in the hybrid system compared with free laccase under simulated harsh industrial wastewater treatment conditions (such as a wide range of pH and presence of inhibitors). Kinetic study provided insight of the effect of immobilization on the bio-degradation reaction. PMID:25084046

  17. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  18. Neural-network hybrid control for antilock braking systems.

    PubMed

    Lin, Chih-Min; Hsu, C F

    2003-01-01

    The antilock braking systems are designed to maximize wheel traction by preventing the wheels from locking during braking, while also maintaining adequate vehicle steerability; however, the performance is often degraded under harsh road conditions. In this paper, a hybrid control system with a recurrent neural network (RNN) observer is developed for antilock braking systems. This hybrid control system is comprised of an ideal controller and a compensation controller. The ideal controller, containing an RNN uncertainty observer, is the principal controller; and the compensation controller is a compensator for the difference between the system uncertainty and the estimated uncertainty. Since for dynamic response the RNN has capabilities superior to the feedforward NN, it is utilized for the uncertainty observer. The Taylor linearization technique is employed to increase the learning ability of the RNN. In addition, the on-line parameter adaptation laws are derived based on a Lyapunov function, so the stability of the system can be guaranteed. Simulations are performed to demonstrate the effectiveness of the proposed NN hybrid control system for antilock braking control under various road conditions. PMID:18238018

  19. Nuclear-renewable hybrid energy systems: Opportunities, interconnections, and needs

    SciTech Connect

    Mark F. Ruth; Owen R. Zinaman; Mark Antkowiak; Richard D. Boardman; Robert S. Cherry; Morgan D. Bazilian

    2014-02-01

    As the U.S. energy system evolves, the amount of electricity from variable-generation sources is likely to increase, which could result in additional times when electricity demand is lower than available production. Thus, purveyors of technologies that traditionally have provided base-load electricity—such as nuclear power plants—can explore new operating procedures to deal with the associated market signals. Concurrently, innovations in nuclear reactor design coupled with sophisticated control systems now allow for more complex apportionment of heat within an integrated system such as one linked to energy-intensive chemical processes. This paper explores one opportunity – nuclear-renewable hybrid energy systems. These are defined as integrated facilities comprised of nuclear reactors, renewable energy generation, and industrial processes that can simultaneously address the need for grid flexibility, greenhouse gas emission reductions, and optimal use of investment capital. Six aspects of interaction (interconnections) between elements of nuclear-renewable hybrid energy systems are identified: Thermal, electrical, chemical, hydrogen, mechanical, and information. Additionally, system-level aspects affect selection, design, and operation of this hybrid system type. Throughout the paper, gaps and research needs are identified to promote further exploration of the topic.

  20. Topological superconductivity in quantum Hall-superconductor hybrid systems

    NASA Astrophysics Data System (ADS)

    Zocher, Björn; Rosenow, Bernd

    2016-06-01

    We develop a scenario to engineer a topological phase with Majorana edge states based on an integer quantum Hall (QH) system proximity coupled to a superconductor (SC). Due to the vortices in the SC order parameter, the SC-QH hybrid system is described by a Bloch problem with ten unpaired momenta, corresponding to the maxima and saddle points of the SC order parameter. For external potentials respecting the symmetry of the vortex lattice, the states with unpaired momenta have degeneracies such that the system always is in a trivial phase. However, an incommensurate potential can lift the degeneracies and drive the system into a topologically nontrivial phase.

  1. Nuclear Hybrid Energy Systems Regional Studies: West Texas & Northeastern Arizona

    SciTech Connect

    Garcia, Humberto E.; Chen, Jun; Kim, Jong Suk; McKellar, Michael George; Deason, Wesley R; Richard B. Vilim; Bragg-Sitton, Shannon M.; Boardman, Richard D.

    2015-04-01

    The primary objective of this study is to conduct a preliminary dynamic analysis of two realistic hybrid energy systems (HES) including a nuclear reactor as the main baseload heat generator (denoted as nuclear HES or nuclear hybrid energy systems [[NHES]) and to assess the local (e.g., HES owners) and system (e.g., the electric grid) benefits attainable by the application of NHES in scenarios with multiple commodity production and high penetration of renewable energy. It is performed for regional cases not generic examples based on available resources, existing infrastructure, and markets within the selected regions. This study also briefly addresses the computational capabilities developed to conduct such analyses, reviews technical gaps, and suggests some research paths forward.

  2. Bimode uninterruptible power supply compatibility in renewable hybrid energy systems

    SciTech Connect

    Bower, W. ); O'Sullivan, G. )

    1990-08-01

    Inverters installed in renewable hybrid energy systems are typically used in a stand-alone mode to supply ac power to loads from battery storage when the engine-generator is not being used. Similarities in topology and in the performance requirements of the standby uninterruptible power supply (UPS) system and the hybrid system suggest the UPS could be used in hybrid energy systems. Another alternative to inverters with add-on charging circuits or standby UPS hardware is the Bimode UPS. The bimode UPS uses common circuitry and power components for dc to ac inversion and battery charging. It also provides an automatic and nearly instantaneous ac power transfer function when the engine-generator is started or stopped. The measured operating and transfer characteristics of a bimode UPS in a utility system and in a hybrid system are presented. The applicability of the bimode UPS to hybrid systems and its compatibility in a PV/engine-generator hybrid system are given.

  3. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOEpatents

    Bockelmann, Thomas R.; Beaty, Kevin D.; Zou, Zhanijang; Kang, Xiaosong

    2009-07-21

    A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.

  4. Concepts leading to the IMAGE-100 hybrid interactive system

    NASA Technical Reports Server (NTRS)

    Mackin, T. F.; Sulester, J. M. (Principal Investigator)

    1979-01-01

    As LACIE Procedure 1 evolved from the Classification and Mensuration Subsystem smallfields procedures, it became evident that two computational systems would have merit-the LACIE/Earth Resources Interactive Processing System based on a large IBM-360 computer oriented for operational use with high computational throughput, and a smaller, highly interactive system based on a PDP 11-45 minicomputer and its display system, the IMAGE-100. The latter had advantages for certain phases; notably, interactive spectral aids could be implemented quite rapidly. This would allow testing and development of Procedure 1 before its implementation on the LACIE/Earth Resources Interactive Processing System. The resulting minicomputer system, called the Classification and Mensuration Subsystem IMAGE-100 Hybrid System, allowed Procedure-1 operations to be performed interactively, except for clustering, classification, and automatic selection of best acquisitions, which were offloaded to the LACIE/Earth Resources Interactive Processing System.

  5. A hybrid approach for detecting and isolating faults in nuclear power plant interacting systems

    SciTech Connect

    Hines, J.W.; Miller, D.W.; Hajek, B.K.

    1996-09-01

    A fault detection and isolation (FDI) system is presented that can detect and isolate nuclear power plant (NPP) faults occurring in interacting systems. The proposed methodology combines two tools, observer-based residual generation and neural network pattern matching, into a powerful, hybrid diagnostic system. A computer-based model of a commercial boiling water reactor (BWR) is used as the reference plant. Two FDI methods are implemented on each of two BWR systems, and their performance characteristics are compared. One method uses conventional neural network techniques that use parameter values for input, and a second, hybrid methodology uses system models to create residuals for input to a neural network. Both FDI systems show good generalization abilities, but only the hybrid system decouples system interactions. Although implementation is impractical for all NPP systems, this hybrid technique is most useful in specific applications where operators have difficulty diagnosing faults in strongly interacting systems.

  6. Flagellar motor based micro hybrid devices.

    PubMed

    Tung, S; Kim, J-W

    2004-01-01

    We are in the process of developing a series of micro hybrid devices based on tethered flagellar motors. Examples of the devices include a microfluidic pump and a micro AC dynamo. The microfluidic pump is realized through the tethering of a harmless strain of Escherichia coli cells to a MEMS based micro channel. Each E. coli cell is about 3 mum long and 1 mum in diameter, with several flagella that are driven at the base by molecular rotary motors. The operational principle of the micro pump is based on the viscous pumping effect where continuous rotation of the tethered cells forms a fluidic conveyor belt that 'drags' fluid from one end of the channel to the other. We used hydrodynamic loading to synchronize cell rotation in order to maximize the fluid pumping capability. The micro dynamo is realized through the integration of tethered flagellar motors with micro ferromagnetic beads and micro copper coils. The micro dynamo generates AC power by using the tethered cells to create a rotating magnetic field around the copper coils. Preliminary result indicates a high power density when compared to other biologically based micro power generators. PMID:17270806

  7. Hybrid metric-Palatini brane system

    NASA Astrophysics Data System (ADS)

    Fu, Qi-Ming; Zhao, Li; Gu, Bao-Min; Yang, Ke; Liu, Yu-Xiao

    2016-07-01

    It is known that the metric and Palatini formalisms of gravity theories have their own interesting features but also suffer from some different drawbacks. Recently, a novel gravity theory called hybrid metric-Palatini gravity was put forward to cure or improve their individual deficiencies. The action of this gravity theory is a hybrid combination of the usual Einstein-Hilbert action and a f (R ) term constructed by the Palatini formalism. Interestingly, it seems that the existence of a light and long-range scalar field in this gravity may modify the cosmological and galactic dynamics without conflicting with the laboratory and Solar System tests. In this paper, we focus on the tensor and scalar perturbations of the thick branes in this novel gravity theory. We consider two models as examples, namely, the thick branes constructed by a background scalar field and by pure gravity. The thick branes in both models have no inner structure. However, affected by the hybrid combination of the metric and Palatini formalisms, the graviton zero mode in the first model has inner structure when the parameter in this model is larger than its critical value, which is different from the cases of general relativity and Palatini f (R ) gravity. We find that the effective four-dimensional gravity can be reproduced on the brane for both models and the scalar zero mode in the model without a background scalar field cannot be localized on the brane, which avoids a fifth force. Moreover, the stability of both brane systems against the linear perturbations can also be ensured.

  8. Biocomposites and hybrid biomaterials based on calcium orthophosphates

    PubMed Central

    Dorozhkin, Sergey V.

    2011-01-01

    The state-of-the-art of biocomposites and hybrid biomaterials based on calcium orthophosphates that are suitable for biomedical applications is presented in this review. Since these types of biomaterials offer many significant and exciting possibilities for hard tissue regeneration, this subject belongs to a rapidly expanding area of biomedical research. Through successful combinations of the desired properties of matrix materials with those of fillers (in such systems, calcium orthophosphates might play either role), innovative bone graft biomaterials can be designed. Various types of biocomposites and hybrid biomaterials based on calcium orthophosphates, either those already in use or being investigated for biomedical applications, are extensively discussed. Many different formulations, in terms of the material constituents, fabrication technologies, structural and bioactive properties as well as both in vitro and in vivo characteristics, have already been proposed. Among the others, the nanostructurally controlled biocomposites, those containing nanodimensional compounds, biomimetically fabricated formulations with collagen, chitin and/or gelatin as well as various functionally graded structures seem to be the most promising candidates for clinical applications. The specific advantages of using biocomposites and hybrid biomaterials based on calcium orthophosphates in the selected applications are highlighted. As the way from the laboratory to the hospital is a long one, and the prospective biomedical candidates have to meet many different necessities, this review also examines the critical issues and scientific challenges that require further research and development. PMID:23507726

  9. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    PubMed Central

    Rahman, Md. Mahbubur; Li, Xiao-Bo; Lopa, Nasrin Siraj; Ahn, Sang Jung; Lee, Jae-Joon

    2015-01-01

    Conducting polymers (CPs) are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective. PMID:25664436

  10. Nuclear Hybrid Energy Systems: Challenges and Opportunities

    SciTech Connect

    P. Sabharwall; S.B. Sitton; S.J. Yoon; C. Stoots

    2014-07-01

    With growing demand of energy and costs of the fossil fuels, coupled with the environmental concerns have resulted in an increased interest in alternative energy sources. Nuclear hybrid energy systems (NHES) are being considered which incorporates renewable energy sources such as solar and wind energy combined with nuclear reactor and energy storage to meet the peak hours demand imposed on the grid, along with providing process heat for other potential industrial applications. This concept could potentially satisfy various energy demands and improve reliability, robustness and resilience for the entire system as a whole, along with economic and net efficiency gains. This paper provides a brief understanding of potential NHES system and architecture along with the challenges