Science.gov

Sample records for based indentation technique

  1. A Load-Based Multiple-Partial Unloading Micro-Indentation Technique for Mechanical Property Evaluation

    SciTech Connect

    C. Feng; J.M. Tannenbaum; B.S. Kang; M.A. Alvin

    2009-07-23

    A load-based multiple-partial unloading microindentation technique has been developed for evaluating mechanical properties of materials. Comparing to the current prevailing nano/micro-indentation methods, which require precise measurements of the indentation depth and load, the proposed technique only measures indentation load and the overall indentation displacement (i.e. including displacement of the loading apparatus). Coupled with a multiple-partial unloading procedure during the indentation process, this technique results in a load-depth sensing indentation system capable of determining Young’s modulus of metallic alloys with flat, tubular, or curved architectures. Test results show consistent and correct elastic modulus values when performing indentation tests on standard alloys such as steel, aluminum, bronze, and single crystal superalloys. The proposed micro-indentation technique has led to the development of a portable loaddepth sensing indentation system capable of on-site, in-situ material property measurement.

  2. A Load-based Micro-indentation Technique for Mechanical Property and NDE Evaluation

    SciTech Connect

    Bruce S. Kang; Chuanyu Feng; Jared M. Tannenbaum; M.A. Alvin

    2009-06-04

    A load-based micro-indentation technique has been developed for evaluating mechanical properties of materials. Instead of using measured indentation depth or contact area as a necessary parameter, the new technique is based on the indentation load, coupled with a multiple-partial unloading procedure for mechanical property evaluation. The proposed load-based micro-indentation method is capable of determining Young’s modulus of metals, superalloys, and single crystal matrices, and stiffness of coated material systems with flat, tubular, or curved architectures. This micro-indentation technique can be viewed as a viable non-destructive evaluation (NDE) technique for determining as-manufactured and process-exposed metal, superalloy, single crystal, and TBC-coated material properties. Based on this technique, several bond coated substrates were tested at various stages of thermal cycles. The time-series evaluation of test material surface stiffness reveals the status of coating strength without any alternation of the coating surface, making it a true time-series NDE investigation. The microindentation test results show good correlation with post mortem microstructural analyses. This technique also shows promise for the development of a portable instrument for on-line, in-situ NDE and mechanical properties measurement of structural components.

  3. A Load-based Depth-sensing Indentation Technique for NDE and Life Assessment of Thermal Barrier Coatings

    SciTech Connect

    B. S.-J. Kang; C. Feng; J. M. Tannenbaum; M.A. Alvin

    2009-06-12

    In this paper, we present a load-based micro-indentation technique for evaluating material mechanical properties as well as degradation evaluation and debonding/spallation detection of thermal barrier coating (TBC) materials. Instead of using contact area as a necessary parameter, the new technique is based on the indentation load. Coupled with a multiple-partial unloading procedure during the indentation process, this technique results in a load-depth sensing indentation system capable of determining Young’s modulus of metals, superalloys, and single crystal matrices, and stiffness of coated material systems with flat, tubular, or curved architectures. This micro-indentation technique can be viewed as a viable non-destructive evaluation (NDE) technique for determining as-manufactured and process-exposed metal, superalloy, single crystal, and TBC-coated material properties. This technique also shows promise for the development of a portable instrument for on-line, in-situ NDE and mechanical properties measurement of structural components.

  4. Viscoelastic properties of healthy human artery measured in saline solution by AFM based indentation technique

    SciTech Connect

    Lundkvist, A.; Lilleodden, E.; Sickhaus, W.; Kinney, J.; Pruitt, L.; Balooch, M.

    1998-02-09

    Using an Atomic Force Microscope with an attachment for indentation, we have measured local, in vitro mechanical properties of healthy femoral artery tissue held in saline solution. The elastic modulus (34. 3 kPa) and viscoelastic response ({tau}sub{epsilon} {equals} 16.9 s and {tau}sub{sigma} {equals} 29.3 s) of the unstretched,intimal vessel wall have been determined using Sneddon theory and a three element model(standard linear solid) for viscoelastic materials. The procedures necessary to employ the indenting attachment to detect elastic moduli in the kPa range in liquid are described.

  5. Evaluation for rheological constitutive relations, using the indentation technique

    NASA Astrophysics Data System (ADS)

    Fang, Lei

    1992-01-01

    A simple experimental method of determining the rheological constitutive relations is proposed. The method relies upon an analysis of the frictionless contact of a rigid spherical indenter and the rheological materials. The proposal addresses problems in two fields: rheological constitutive models and contact mechanics. It attempts to evaluate the rheological constitutive relations using an indentation technique. A systematic, optimization-based material parameter/function indentation model is proposed. The identification algorithm is based on a modified Marquardt-Levenberg method. A new integral constitutive equation for viscoelastic materials is derived. The derivation is carried out so that a damage function is included in the model in a relatively convenient form. Inclusion of damage effects makes this constitutive equation considerably more general than the widely accepted K-BKZ integral model. The single-step and double-step stress relaxation indentation experiments on asphalt materials were performed. The K-BKZ, Wagner, and nonlinear Volterra models were evaluated. It is demonstrated that the new integral constitutive model shows a very good agreement with the experimental data. The idea of damage function is introduced not only to have a better fit of data, but the damage (or irreversibility) is observed experimentally. Also, the creep indentation tests on composites were presented. A multiaxial theory of creep deformation for particle-strengthened metal matrix composites (Zhu-Weng Theory) was evaluated. The goal of the proposed research is to develop the indentation technique for use in basic mechanical studies. From the indentation test, material response is measured. The data are used in conjunction with the material parameter identification model to optimally back calculate the constitutive relations. indentation test and other experiment method demonstrates the viability of the proposed approach.

  6. Use of indentation technique to measure elastic modulus of plasma-sprayed zirconia thermal barrier coating

    SciTech Connect

    Singh, J.P.; Sutaria, M.; Ferber, M.

    1997-01-01

    Elastic modulus of an yttria partially stabilized zirconia (YSZ) thermal barrier coating (TBC) was evaluated with a Knoop indentation technique. The measured elastic modulus values for the coating ranged from 68.4 {+-} 22.6 GPa at an indentation load of 50 g to 35.7 {+-} 9.8 at an indentation load of 300 g. At higher loads, the elastic modulus values did not change significantly. This steady-state value of 35.7 GPa for ZrO{sub 2} TBC agreed well with literature values obtained by the Hertzian indentation method. Furthermore, the measured elastic modulus for the TBC is lower than that reported for bulk ZrO{sub 2} ({approx} 190 GPa). This difference is believed to be due to the presence of a significant amount of porosity and microcracks in the TBCs. Hardness was also measured.

  7. Measuring Depth-dependent Dislocation Densities and Elastic Strains in an Indented Ni-based Superalloy

    SciTech Connect

    Barabash, O.M.; Santella, M.; Barabash, R.I.; Ice, G.E.; Tischler, J.

    2011-12-14

    The indentation-induced elastic-plastic zone in an IN 740 Ni-based superalloy was studied by three-dimensional (3-D) x-ray microdiffraction and electron back scattering diffraction (EBSD). Large lattice reorientations and the formation of geometrically necessary dislocations are observed in the area with a radius of {approx}75 {mu}m. A residual compression zone is found close to the indent edge. An elastic-plastic transition is observed at {approx}20 {mu}m from the indent edge. Depth dependent dislocation densities are determined at different distances from the indent edge.

  8. NON-DESTRUCTIVE THERMAL BARRIER COATING SPALLATION PREDICTION BY A LOADBASED MICRO-INDENTATION TECHNIQUE

    SciTech Connect

    J. M. Tannenbaum; K. Lee; B. S.-J. Kang; M.A. Alvin

    2010-11-18

    Currently, the durability and life cycle of thermal barrier coatings (TBC) applied to gas turbine blades and combustor components are limiting the maximum temperature and subsequent efficiency at which gas turbine engines operate. The development of new materials, coating technologies and evaluation techniques is required if enhanced efficiency is to be achieved. Of the current ceramic coating materials used in gas turbine engines, yttria stabilized zirconia (YSZ) is most prevalent, its low thermal conductivity, high thermal expansion coefficient and outstanding mechanical strength make it ideal for use in TBC systems. However, residual stresses caused by coefficients of thermal expansion mismatches within the TBC system and unstable thermally grown oxides are considered the primary causes for its premature and erratic spallation failure. Through finite element simulations, it is shown that the residual stresses generated within the thermally grown oxide (TGO), bond coat (BC), YSZ and their interfaces create slight variations in indentation unloading surface stiffness response prior to spallation failure. In this research, seven air plasma sprayed and one electron beam physical vapor deposition yttria partially stabilized zirconia TBCs were subjected to isothermal and cyclic loadings at 1100°C. The associated coating degradation was evaluated using a non-destructive multiple partial unloading micro-indentation procedure. The results show that the proposed non-destructive micro-indentation evaluation technique can be an effective and specimenindependent TBC failure prediction tool capable of determining the location of initial spallation failure prior to its actual occurrence.

  9. Mechanical Characterization of Copper-Copper Wires Joined by Friction Welding Using Instrumented Indentation Technique

    NASA Astrophysics Data System (ADS)

    Morales, M.; Xuriguera, E.; Martínez, M.; Padilla, J. A.; Molera, J.; Ferrer, N.; Segarra, M.; Espiell, F.

    2014-11-01

    Friction welding samples of both the fire-refined high-conductivity (FRHC) and electrolytically tough pitch (ETP) copper alloy wires have been mechanically characterized by instrumented indentation technique and tensile test. Hardness profiles in the perpendicular direction to the weld interface, in both the central and peripheral zones, of the as-welded FRHC-FRHC and ETP-ETP samples have been investigated at nano-/micrometric scale. The microstructures of welds have been observed using both the optical microscopy and scanning electronic microscopy. The results show the typical friction welding zones: the interface zone, the thermo-mechanically affected zone (TMAZ), and the transition zone between the TMAZ and the base metal zone (BMZ) that present a microstructure and hardness close to the base metal. No presence of a heat-affected zone is observed. Although both welds show the same tendency in hardness distribution, FHRC-FHRC weld presents a TMAZ narrower than ETP-ETP one, which produces a stronger drop in hardness with increasing of the distance from welding central line, and a higher difference in hardness between the central and peripheral zones. The tensile tests of ETP-ETP welds showed that all samples broke by the BMZ that is far away from the interface of the welded joint, while the most of the FRHC-FRHC welds are broken at the TMAZ region at low strengths. These appreciable differences in mechanical properties for the FHRC-FHRC welds are probably generated by a stronger variation in their microstructural properties. Therefore, it may justify the welding failures in the FHRC-FHRC weld at the typical tensile stress for an industrial cold-drawn process of wires.

  10. Determining interfacial properties of submicron low-k films on Si substrate by using wedge indentation technique

    NASA Astrophysics Data System (ADS)

    Yeap, Kong Boon; Zeng, Kaiyang; Jiang, Haiyan; Shen, Lu; Chi, Dongzhi

    2007-06-01

    This article presents studies on using a wedge indentation technique to determine interfacial adhesion properties of low-k dielectric films, namely, methyl-silsesquioxane (MSQ) and black diamond (BD™)films, both on a Si substrate. Interfacial crack initiation and propagation processes in the MSQ/Si system are studied by using focused-ion-beam sectioning of the indentation impressions created by wedge tips with 90° and 120° of inclusion angles, respectively. Furthermore, the indentation induced stress is found to be proportional to the ratio of the indentation volume and the interface delamination crack volume for both plane strain and nonplane strain cases. With this analysis, the interface toughness of the MSQ/Si and BD/Si system, in terms of the strain energy release rate, is determined. The interface toughness for the MSQ/Si system is found to be a value of 1.89±0.28J/m2 for the 90° wedge tip indentation and 1.92±0.08J/m2 for the 120° wedge tip indentation. In addition, using the 120° wedge tip, the interface toughnesses of the BD films on the Si substrate with 200 and 500nm thicknesses are found to be the values of 6.62±1.52 and 6.35±2.27J/m2, respectively.

  11. Indentation Behavior of Zr-Based Metallic-Glass Films via Molecular-Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Wang, Yun-Che; Wu, Chun-Yi; Chu, Jinn P.; Liaw, Peter K.

    2010-11-01

    Molecular dynamics (MD) models of the Zr-based metallic-glass film (Zr47Cu31Al13Ni9, in atomic percent) were constructed by simulating sputter depositions on the titanium substrate. The as-deposited films were used as initial structures for subsequent nanoindentation simulations. For the deposition simulations, a many-body, tight-binding (TB) potential was adopted for interatomic interactions among the multiple species of atoms. The interactions between the metallic atoms and working gas (Ar+) were modeled with the pairwise Moliere potential. The TB potential parameters for unlike atoms were chosen to be the algebraic average of those for like ones, and hence, the MD simulations provide qualitative information. The deposition simulations revealed an amorphous morphology in the as-deposited films. Indentation simulations with a right-angle conical indenter tip showed a homogeneous flow to form pileups on the surface of the metallic glass around the indent. The pileup index calculated from MD is consistent with that obtained from the experiment. Moreover, our MD results show that the pileup index exhibits anomalies, which are defined as unusual changes in the values of the pileup index, around the experimentally found glass-transformation temperature through in situ indentation simulations at elevated temperatures. From indentation load-displacement curves at various temperatures, indentation modulus and hardness obtained from MD simulations were in qualitative agreement with experimental findings in terms of their decreasing rates with respect to the temperature. Three-dimensional atomic-strain calculations revealed strain localization and propagation of shear bands under the indenter tip at their initial evolution stages after the formation of shear transformation zones. In addition, higher loading rates decrease hardness, cause larger disturbed regions under the indent, and enlarge shear-banding patterns.

  12. Nano-indentation study on the (001) face of KDP crystal based on SPH method

    NASA Astrophysics Data System (ADS)

    Xiaoguang, Guo; Ziyuan, Liu; Hang, Gao; Dongming, Guo

    2015-08-01

    In order to avoid the defects of mesh distortion when dealing with large deformation problems through using the finite element method, a mess-free simulation method—smooth particle hydrodynamics (SPH) has been introduced. The material constitutive model of KDP crystal has been established based on the elastic-plastic theory. Then the nano-indentation on the (001) face of KDP crystal has been carried out using SPH method. Simulation results show that the maximum equivalent stress and the maximum plastic strain concentrate on the area that located near the tip of the indenter during the loading process. The distribution shape of Von Mises stress is similar to concentric circles. During the unloading process, no obvious variation of plastic strain distribution exists. The maximum Von Mises stress is mainly located at the indentation and its edge at the end of the unloading process. The approximate direct proportion relationship between the maximum indentation depth and the depth of the maximum Von Mises stress distribution has been discovered when the maximum load is lower than 8 mN. In addition, the nano-indentation experiments on KDP crystal's (001) face have been carried out. Both the material parameters and the adjusted stress-strain curve have been verified. The hindering role of the affected layer has been found and analyzed. Project supported by the National Basic Research Program of China (No. 51135002), and the Science Fund for Creative Research Groups (No. 51321004).

  13. Evaluation of flow properties in the weldments of vanadium alloys using a novel indentation technique

    SciTech Connect

    Gubbi, A.N.; Rowcliffe, A.F.; Lee, E.H.; King, J.F.; Goodwin, G.M.

    1996-10-01

    Automated Ball Indentation (ABI) testing, was successfully employed to determine the flow properties of the fusion zone, heat affected zone (HAZ), and base metal of the gas tungsten arc (GTA) and electron beam (EB) welds of the V-4Cr-4Ti (large heat no. 832665) and the V-5Cr-5Ti (heat 832394) alloys. ABI test results showed a clear distinction among the properties of the fusion zone, HAZ, and base metal in both GTA and EB welds of the two alloys. GTA and EB welds of both V-4Cr-4Ti and V-5Cr-5Ti alloys show strengthening of both the fusion zone and the HAZ (compared to base metal) with the fusion zone having higher strength than the HAZ. These data correlate well with the Brinell hardness. On the other hand, GTA welds of both alloys, after a post-weld heat treatment of 950{degrees}C for 2 h, show a recovery of the properties to base metal values with V-5Cr-5Ti showing a higher degree of recovery compared to V-4Cr-4Ti. These measurements correlate with the reported recovery of the Charpy impact properties.

  14. [Comparison of cell elasticity analysis methods based on atomic force microscopy indentation].

    PubMed

    Wang, Zhe; Hao, Fengtao; Chen, Xiaohu; Yang, Zhouqi; Ding, Chong; Shang, Peng

    2014-10-01

    In order to investigate in greater detail the two methods based on Hertz model for analyzing force-distance curve obtained by atomic force microscopy, we acquired the force-distance curves of Hela and MCF-7 cells by atomic force microscopy (AFM) indentation in this study. After the determination of contact point, Young's modulus in different indentation depth were calculated with two analysis methods of "two point" and "slope fitting". The results showed that the Young's modulus of Hela cell was higher than that of MCF-7 cell,which is in accordance with the F-actin distribution of the two types of cell. We found that the Young's modulus of the cells was decreased with increasing indentation depth and the curve trends by "slope fitting". This indicated that the "slope fitting" method could reduce the error caused by the miscalculation of contact point. The purpose of this study was to provide a guidance for researcher to choose an appropriate method for analyzing AFM indentation force-distance curve. PMID:25764725

  15. Analysis of Indentation-Derived Power-Law Creep Response

    NASA Astrophysics Data System (ADS)

    Martinez, Nicholas J.; Shen, Yu-Lin

    2016-03-01

    The use of instrumented indentation to characterize power-law creep is studied by computational modeling. Systematic finite element analyses were conducted to examine how indentation creep tests can be employed to retrieve the steady-state creep parameters pertaining to regular uniaxial loading. The constant indentation load hold and constant indentation-strain-rate methods were considered, first using tin (Sn)-based materials as a model system. The simulated indentation-strain rate-creep stress relations were compared against the uniaxial counterparts serving as model input. It was found that the constant indentation-strain-rate method can help establish steady-state creep, and leads to a more uniform behavior than the constant-load hold method. An expanded parametric analysis was then performed using the constant indentation-strain-rate method, taking into account a wide range of possible power-law creep parameters. The indentation technique was found to give rise to accurate stress exponents, and a certain trend for the ratio between indentation strain rate and uniaxial strain rate was identified. A contour-map representation of the findings serves as practical guidance for determining the uniaxial power-law creep response based on the indentation technique.

  16. Probing mechanical properties of thin film and ceramic materials in micro- and nano-scale using indentation techniques

    NASA Astrophysics Data System (ADS)

    Charitidis, Costas A.

    2010-10-01

    In this study, we report on the mechanical properties, failure and fracture modes in two cases of engineering materials; that is transparent silicon oxide thin films onto poly(ethylene terephthalate) (PET) membranes and glass-ceramic materials. The first system was studied by the quazi-static indentation technique at the nano-scale and the second by the static indentation technique at the micro-scale. Nanocomposite laminates of silicon oxide thin films onto PET were found to sustain higher scratch induced stresses and were effective as protective coating material for PET membranes. Glass-ceramic materials with separated crystallites of different morphologies sustained a mixed crack propagation pattern in brittle fracture mode.

  17. Inference of the phase-to-mechanical property link via coupled X-ray spectrometry and indentation analysis: Application to cement-based materials

    SciTech Connect

    Krakowiak, Konrad J.; Wilson, William; James, Simon; Musso, Simone; Ulm, Franz-Josef

    2015-01-15

    A novel approach for the chemo-mechanical characterization of cement-based materials is presented, which combines the classical grid indentation technique with elemental mapping by scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDS). It is illustrated through application to an oil-well cement system with siliceous filler. The characteristic X-rays of major elements (silicon, calcium and aluminum) are measured over the indentation region and mapped back on the indentation points. Measured intensities together with indentation hardness and modulus are considered in a clustering analysis within the framework of Finite Mixture Models with Gaussian component density function. The method is able to successfully isolate the calcium-silica-hydrate gel at the indentation scale from its mixtures with other products of cement hydration and anhydrous phases; thus providing a convenient means to link mechanical response to the calcium-to-silicon ratio quantified independently via X-ray wavelength dispersive spectroscopy. A discussion of uncertainty quantification of the estimated chemo-mechanical properties and phase volume fractions, as well as the effect of chemical observables on phase assessment is also included.

  18. Experimental layering development by indenter technique and application to fault rheology differentiation

    NASA Astrophysics Data System (ADS)

    Gratier, J. P.; Noiriel, C. N.; Renard, F.

    2014-12-01

    Natural deformation of rocks is often associated with differentiation processes leading to irreversible transformations of their microstructural thus leading in turn to modifications of their rheological properties. The mechanisms of development of such processes at work during diagenesis, metamorphism or fault differentiation are poorly known as they are not easy to reproduce in the laboratory due to the long duration required for most of chemically controlled differentiation processes. Here we show that experimental compaction with layering development, similar to what happens in natural deformation, can be obtained in the laboratory by indenter techniques. Samples of plaster mixed with clay and samples of diatomite loosely interbedded with clays were loaded during several months at 40°C (plaster) and 150°C (diatomite) in presence of their saturated solutions. High-resolution X-ray tomography and SEM studies show that the layering development is a self-organized process. Stress driven dissolution of the soluble minerals (gypsum in plaster, silica in diatomite) is initiated in the zones initially richer in clays because the kinetics of diffusive mass transfer along the clay/soluble mineral interfaces is much faster than along the healed boundaries of the soluble minerals. The passive concentration of the clay minerals amplifies the localization of the dissolution along some layers oriented perpendicular to the maximum compressive stress component. Conversely, in the areas with initial low content in clay and clustered soluble minerals, dissolution is more difficult as the grain boundaries of the soluble species are healed together. These areas are less deformed and they act as rigid objects that concentrate the dissolution near their boundaries thus amplifying the differentiation. Applications to fault processes are discussed: i) localized pressure solution and sealing processes may lead to fault rheology differentiation with a partition between two end

  19. Review of Instrumented Indentation

    PubMed Central

    VanLandingham, Mark R.

    2003-01-01

    Instrumented indentation, also known as depth-sensing indentation or nanoindentation, is increasingly being used to probe the mechanical response of materials from metals and ceramics to polymeric and biological materials. The additional levels of control, sensitivity, and data acquisition offered by instrumented indentation systems have resulted in numerous advances in materials science, particularly regarding fundamental mechanisms of mechanical behavior at micrometer and even sub-micrometer length scales. Continued improvements of instrumented indentation testing towards absolute quantification of a wide range of material properties and behavior will require advances in instrument calibration, measurement protocols, and analysis tools and techniques. In this paper, an overview of instrumented indentation is given with regard to current instrument technology and analysis methods. Research efforts at the National Institute of Standards and Technology (NIST) aimed at improving the related measurement science are discussed.

  20. Indentation of a Punch with Chemical or Heat Distribution at Its Base into Transversely Isotropic Half-Space: Application to Local Thermal and Electrochemical Probes

    SciTech Connect

    Karapetian, E.; Kalinin, Sergei V

    2013-01-01

    The exact solution to the coupled problem of indentation of the punch, subjected to either heat or chemical substance distribution at its base, into three-dimensional semi-infinite transversely isotropic material is presented. The entire set of field components are derived in terms of integrals of elementary functions using methods of the potential theory and recently obtained, by the authors, results for the general solution of the field equations in terms of four harmonic potential functions. The exact solution for the stiffness relations that relate applied force, total chemical diffusion/heat flux in the domain of the contact, with indenter displacement, temperature, or chemical substance distribution of diffusing species at the base, and materials' chemo/thermo-elastic properties are obtained in closed form and in terms of elementary functions. These results can be used to understand the image formation mechanisms in techniques such as thermal scanning probe microscopy and electrochemical strain microscopy

  1. Indentation of a punch with chemical or heat distribution at its base into transversely isotropic half-space: Application to local thermal and electrochemical probes

    NASA Astrophysics Data System (ADS)

    Karapetian, Edgar; Kalinin, Sergei V.

    2013-05-01

    The exact solution to the coupled problem of indentation of the punch, subjected to either heat or chemical substance distribution at its base, into three-dimensional semi-infinite transversely isotropic material is presented. The entire set of field components are derived in terms of integrals of elementary functions using methods of the potential theory and recently obtained, by the authors, results for the general solution of the field equations in terms of four harmonic potential functions. The exact solution for the stiffness relations that relate applied force, total chemical diffusion/heat flux in the domain of the contact, with indenter displacement, temperature, or chemical substance distribution of diffusing species at the base, and materials' chemo/thermo-elastic properties are obtained in closed form and in terms of elementary functions. These results can be used to understand the image formation mechanisms in techniques such as thermal scanning probe microscopy and electrochemical strain microscopy.

  2. Single fiber push-out characterization of interfacial mechanical properties in unidirectional CVI-C/SiC composites by the nano-indentation technique

    NASA Astrophysics Data System (ADS)

    Zhang, Lifeng; Ren, Chengzu; Zhou, Changling; Xu, Hongzhao; Jin, Xinmin

    2015-12-01

    The characterization of interfaces in woven ceramic matrix composites is one of the most challenging problems in composite application. In this investigation, a new model material consisting of the chemical vapor infiltration unidirectional C/SiC composites with PyC fiber coating were prepared and evaluated to predict the interfacial mechanic properties of woven composites. Single fiber push-out/push-back tests with the Berkovich indenter were conducted on the thin sliced specimens using nano-indentation technique. To give a detailed illustration of the interfacial crack propagation and failure mechanism, each sector during the push-out process was analyzed at length. The test results show that there is no detectable difference between testing a fiber in a direct vicinity to an already tested fiber and testing a fiber in vicinity to not-pushed fibers. Moreover, the interface debonding and fiber sliding mainly occur at the PyC coating, and both the fiber and surrounding matrix have no plastic deformation throughout the process. Obtained from the load-displacement curve, the interfacial debonding strength (IDS) and friction stress (IFS) amount to, respectively, 35 ± 5 MPa and 10 ± 1 MPa. Based on the findings, the interfacial properties with PyC fiber coating can be predicted. Furthermore, it is expected to provide a useful guideline for the design, evaluation and optimal application of CVI-C/SiC.

  3. Microscopic Shape Memory and Superelastic Effects in Shape Memory Alloys and Thin Films Studied by Indentation Techniques

    NASA Astrophysics Data System (ADS)

    Ni, Wangyang; Cheng, Yang-Tse; Grummon, David S.

    2003-03-01

    Although shape memory alloys were discovered more than 50 years ago, there is a growing interest in shape memory thin films and coatings for applications ranging from MEMs to tribology. While the macroscopic shape memory (SM) and superelastic (SE) behavior of NiTi alloys are well known, very few studies have been conducted to investigate the SM and SE effects at the micro- and nano-meter length scales. In this presentation, instrumented indentation experiments with spherical, Vickers, and Berkovich indenters were used to study the mechanical behavior of NiTi alloys and thin films at the micro- and nano- meter scales. The indentation load-displacement curves for the shape memory and superelastic NiTi were obtained under a range of indentation conditions. The SM effect was quantified by the depth recovery ratio of the indents measured by a surface profilometer and atomic force microscope; the SE effect was determined by the ratio of reversible work to total work. We show that SM and SE effects exist under both spherical and pyramidal indenters for a wide range of indentation loads and depths. However, the magnitude of these effects depends strongly on indenter geometry. These observations were rationalized using the concept of representative strain and maximum strain under the spherical and pyramidal indenters. These studies provide new insights into the mechanisms of SM and SE effects at multiple length scales.

  4. Temperature-dependent indentation behavior of transformation-toughened zirconia-based ceramics

    NASA Technical Reports Server (NTRS)

    Tikare, Veena; Heuer, Arthur H.

    1991-01-01

    Indentation behavior of Ce-TZP, Y-TZP, and Mg-PSZ between room temperature and 1300 C was investigated. Hardness decreased with increasing temperature for all three materials, but indentation cracking increased with increasing temperature. The opposing temperature dependences are discussed in terms of dislocation and transformation plasticity.

  5. Determination of the mechanical and physical properties of cartilage by coupling poroelastic-based finite element models of indentation with artificial neural networks.

    PubMed

    Arbabi, Vahid; Pouran, Behdad; Campoli, Gianni; Weinans, Harrie; Zadpoor, Amir A

    2016-03-21

    One of the most widely used techniques to determine the mechanical properties of cartilage is based on indentation tests and interpretation of the obtained force-time or displacement-time data. In the current computational approaches, one needs to simulate the indentation test with finite element models and use an optimization algorithm to estimate the mechanical properties of cartilage. The modeling procedure is cumbersome, and the simulations need to be repeated for every new experiment. For the first time, we propose a method for fast and accurate estimation of the mechanical and physical properties of cartilage as a poroelastic material with the aid of artificial neural networks. In our study, we used finite element models to simulate the indentation for poroelastic materials with wide combinations of mechanical and physical properties. The obtained force-time curves are then divided into three parts: the first two parts of the data is used for training and validation of an artificial neural network, while the third part is used for testing the trained network. The trained neural network receives the force-time curves as the input and provides the properties of cartilage as the output. We observed that the trained network could accurately predict the properties of cartilage within the range of properties for which it was trained. The mechanical and physical properties of cartilage could therefore be estimated very fast, since no additional finite element modeling is required once the neural network is trained. The robustness of the trained artificial neural network in determining the properties of cartilage based on noisy force-time data was assessed by introducing noise to the simulated force-time data. We found that the training procedure could be optimized so as to maximize the robustness of the neural network against noisy force-time data. PMID:26944689

  6. Interaction of Cracks Between Two Adjacent Indents in Glass

    NASA Technical Reports Server (NTRS)

    Choi, S. R.; Salem, J. A.

    1993-01-01

    Experimental observations of the interaction behavior of cracks between two adjacent indents were made using an indentation technique in soda-lime glass. It was specifically demonstrated how one indent crack initiates and propagates in the vicinity of another indent crack. Several types of crack interactions were examined by changing the orientation and distance of one indent relative to the other. It was found that the residual stress field produced by elastic/plastic indentation has a significant influence on controlling the mode of crack interaction. The interaction of an indent crack with a free surface was also investigated for glass and ceramic specimens.

  7. Reference point indentation is not indicative of whole mouse bone measures of stress intensity fracture toughness

    PubMed Central

    Carriero, Alessandra; Bruse, Jan L.; Oldknow, Karla J.; Millán, José Luis; Farquharson, Colin; Shefelbine, Sandra J.

    2014-01-01

    Bone fragility is a concern for aged and diseased bone. Measuring bone toughness and understanding fracture properties of the bone are critical for predicting fracture risk associated with age and disease and for preclinical testing of therapies. A reference point indentation technique (BioDent) has recently been developed to determine bone's resistance to fracture in a minimally invasive way by measuring the indentation distance increase (IDI) between the first and last indentations over cyclic indentations in the same position. In this study, we investigate the relationship between fracture toughness KC and reference point indentation parameters (i.e. IDI, total indentation distance (TID) and creep indentation distance (CID)) in bones from 38 mice from six types (C57Bl/6, Balb, oim/oim, oim/+, Phospho1−/− and Phospho1 wild type counterpart). These mice bone are models of healthy and diseased bone spanning a range of fracture toughness from very brittle (oim/oim) to ductile (Phospho1−/−). Left femora were dissected, notched and tested in 3-point bending until complete failure. Contralateral femora were dissected and indented in 10 sites of their anterior and posterior shaft surface over 10 indentation cycles. IDI, TID and CID were measured. Results from this study suggest that reference point indentation parameters are not indicative of stress intensity fracture toughness in mouse bone. In particular, the IDI values at the anterior mid-diaphysis across mouse types overlapped, making it difficult to discern differences between mouse types, despite having extreme differences in stress intensity based toughness measures. When more locations of indentation were considered, the normalised IDIs could distinguish between mouse types. Future studies should investigate the relationship of the reference point indentation parameters for mouse bone in other material properties of the bone tissue in order to determine their use for measuring bone quality. PMID:25280470

  8. An analysis of fully plastic Brinell indentation

    NASA Astrophysics Data System (ADS)

    Biwa, Shiro; Storåkers, Bertil

    1995-08-01

    Indentation of a hard sphere into inelastic solids, Brinell indentation, is examined theoretically and numerically by aid of classical plastic flow theory. With the main interest focused on fully plastic behaviour at indentation the mechanical analysis is carried out for power-law hardening rigid-plastic materials where self-similarity features play a dominant role. It is explained in detail how the problem of a moving contact boundary may be reduced to a stationary one by an appropriate transformation of field variables. Within this setting classical empirical findings by Meyer (1908) and O'Neill (1944) are established on a rigorous theoretical ground. In particular, it is shown to advantage also for nonlinear materials how intermediate solutions for a flat die may by cumulative superposition generate solutions for a class of curved indenters. In the case of perfect plasticity it turns out in the present context that indentation hardness is independent of die profiles. For hardening solids when the material behaviour is history dependent, reduction to a stationary geometry is achieved also by expressing the accumulated strain by cumulative superposition. The intermediate flat die problem is then solved for a variety of hardening exponents by a finite element procedure designed to account for material incompressibility. With finite element computations as a basis desired solutions are obtained by straightforward numerical superposition procedures. Detailed results are then given for bulk quantities such as the mean contact pressure as well as relevant field variables. The influence of hardening characteristics on sinking-in and piling-up of indented surfaces and contact pressure distributions are discussed in the light of earlier findings based on deformation theory of plasticity and available discriminating experiments. Correlation is particularly sought with the celebrated universal hardness parameters proposed by Tabor (1951) and the existence of representative

  9. Determination of fracture toughness of calcium phosphate coatings deposited onto Ti6Al4V substrate by using indentation technique

    NASA Astrophysics Data System (ADS)

    Aydin, Ibrahim; Cetinel, Hakan; Pasinli, Ahmet

    2012-09-01

    In this study, fracture toughness values of calcium phosphate (CaP) coatings deposited onto Ti6Al4V substrate were determined by using Vickers indentation method. In this new patent holding method, the activation processes were performed with NaOH and NaOH+H2O2 on the Ti6Al4V material surface. Thicknesses of CaP coatings were measured from cross-sections of the samples by using optical microscopy. Vickers indentation tests were performed by using microhardness tester. Young's modulus values of the coatings were determined by using ultra microhardness tester. As a result, fracture toughness (K1C) values of the CaP coatings produced by using two different activation processes, were calculated by using experimental study results. These were found to be 0.43 MPa m1/2 and 0.39 MPa m1/2, respectively. It was determined that the CaP coating on Ti6Al4V activated by NaOH+H2O2 had higher fracture toughness than the CaP coating on Ti6Al4V activated by NaOH.

  10. A different type of indentation size effect

    SciTech Connect

    Shim, Sang Hoon; Bei, Hongbin; George, Easo P; Pharr, George Mathews

    2008-01-01

    Pop-in during nanoindentation, which indicates the onset of dislocation plasticity, was systematically investigated in annealed and pre-strained single crystals of nickel using spherical indenters with different tip radii. As the indenter radius and pre-strain decrease, the maximum shear stresses determined from the pop-in loads increase. This represents a new type of indentation size effect (ISE), based not on the measured hardness as in conventional ISE, but on the stress needed to initiate dislocation plasticity.

  11. Viscoelastic Characterization of Polytetrafluoroethylene (PTFE) Polymer by Sharp Indentation

    NASA Astrophysics Data System (ADS)

    Stan, Felicia; Munteanu, Ana V.; Fetecau, Catalin

    2011-01-01

    In this paper, indentation of polytetrafluoroethylene (PTFE) polymer with a sharp indenter is investigated in order to identify the material parameters. The indentation creep, i.e., the relative change of the indentation depth under constant load, is investigated based on a hereditary integral and on a rheological model which describes a viscoelastic plastic response. Experimental data were fitted to the model in order to identify the model parameters.

  12. Identification and design of novel polymer-based mechanical transducers: A nano-structural model for thin film indentation

    NASA Astrophysics Data System (ADS)

    Villanueva, Joshua; Huang, Qian; Sirbuly, Donald J.

    2014-09-01

    Mechanical characterization is important for understanding small-scale systems and developing devices, particularly at the interface of biology, medicine, and nanotechnology. Yet, monitoring sub-surface forces is challenging with current technologies like atomic force microscopes (AFMs) or optical tweezers due to their probe sizes and sophisticated feedback mechanisms. An alternative transducer design relying on the indentation mechanics of a compressible thin polymer would be an ideal system for more compact and versatile probes, facilitating measurements in situ or in vivo. However, application-specific tuning of a polymer's mechanical properties can be burdensome via experimental optimization. Therefore, efficient transducer design requires a fundamental understanding of how synthetic parameters such as the molecular weight and grafting density influence the bulk material properties that determine the force response. In this work, we apply molecular-level polymer scaling laws to a first order elastic foundation model, relating the conformational state of individual polymer chains to the macroscopic compression of thin film systems. A parameter sweep analysis was conducted to observe predicted model trends under various system conditions and to understand how nano-structural elements influence the material stiffness. We validate the model by comparing predicted force profiles to experimental AFM curves for a real polymer system and show that it has reasonable predictive power for initial estimates of the force response, displaying excellent agreement with experimental force curves. We also present an analysis of the force sensitivity of an example transducer system to demonstrate identification of synthetic protocols based on desired mechanical properties. These results highlight the usefulness of this simple model as an aid for the design of a new class of compact and tunable nanomechanical force transducers.

  13. Identification and design of novel polymer-based mechanical transducers: A nano-structural model for thin film indentation

    SciTech Connect

    Villanueva, Joshua; Huang, Qian; Sirbuly, Donald J.

    2014-09-14

    Mechanical characterization is important for understanding small-scale systems and developing devices, particularly at the interface of biology, medicine, and nanotechnology. Yet, monitoring sub-surface forces is challenging with current technologies like atomic force microscopes (AFMs) or optical tweezers due to their probe sizes and sophisticated feedback mechanisms. An alternative transducer design relying on the indentation mechanics of a compressible thin polymer would be an ideal system for more compact and versatile probes, facilitating measurements in situ or in vivo. However, application-specific tuning of a polymer's mechanical properties can be burdensome via experimental optimization. Therefore, efficient transducer design requires a fundamental understanding of how synthetic parameters such as the molecular weight and grafting density influence the bulk material properties that determine the force response. In this work, we apply molecular-level polymer scaling laws to a first order elastic foundation model, relating the conformational state of individual polymer chains to the macroscopic compression of thin film systems. A parameter sweep analysis was conducted to observe predicted model trends under various system conditions and to understand how nano-structural elements influence the material stiffness. We validate the model by comparing predicted force profiles to experimental AFM curves for a real polymer system and show that it has reasonable predictive power for initial estimates of the force response, displaying excellent agreement with experimental force curves. We also present an analysis of the force sensitivity of an example transducer system to demonstrate identification of synthetic protocols based on desired mechanical properties. These results highlight the usefulness of this simple model as an aid for the design of a new class of compact and tunable nanomechanical force transducers.

  14. Indentation modulus and hardness of viscoelastic thin films by atomic force microscopy: A case study.

    PubMed

    Passeri, D; Bettucci, A; Biagioni, A; Rossi, M; Alippi, A; Tamburri, E; Lucci, M; Davoli, I; Berezina, S

    2009-11-01

    We propose a nanoindentation technique based on atomic force microscopy (AFM) that allows one to deduce both indentation modulus and hardness of viscoelastic materials from the force versus penetration depth dependence, obtained by recording the AFM cantilever deflection as a function of the sample vertical displacement when the tip is pressed against (loading phase) and then removed from (unloading phase) the surface of the sample. Reliable quantitative measurements of both indentation modulus and hardness of the investigated sample are obtained by calibrating the technique through a set of different polymeric samples, used as reference materials, whose mechanical properties have been previously determined by standard indentation tests. By analyzing the dependence of the cantilever deflection versus time, the proposed technique allows one to evaluate and correct the effect of viscoelastic properties of the investigated materials, by adapting a post-experiment data processing procedure well-established for standard depth sensing indentation tests. The technique is described in the case of the measurement of indentation modulus and hardness of a thin film of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate), deposited by chronoamperometry on an indium tin oxide (ITO) substrate. PMID:19674843

  15. Evaluation of coating adhesion using a radial speckle interferometer combined with a micro-indentation test

    NASA Astrophysics Data System (ADS)

    Tendela, Lucas P.; Kaufmann, Guillermo H.

    2012-06-01

    This paper presents a technique to investigate coating adhesion which combines a radial in-plane speckle interferometer and a micro-indentation test. The proposed technique is based on the measurement of the radial in-plane displacement field produced by a micro-indentation introduced on the coated surface of the specimen. Using steel specimens coated with a thin coating of epoxy paint and subjected to different adhesive conditions, it is demonstrated that digital speckle pattern interferometry can be successfully used to measure the small local deformations generated by a micro-indentation. An empirical model, which allows to quantify the adhesion of a given coated-substrate system by the proposed combined technique, is finally presented.

  16. Indentation Methods in Advanced Materials Research Introduction

    SciTech Connect

    Pharr, George Mathews; Cheng, Yang-Tse; Hutchings, Ian; Sakai, Mototsugu; Moody, Neville; Sundararajan, G.; Swain, Michael V.

    2009-01-01

    Since its commercialization early in the 20th century, indentation testing has played a key role in the development of new materials and understanding their mechanical behavior. Progr3ess in the field has relied on a close marriage between research in the mechanical behavior of materials and contact mechanics. The seminal work of Hertz laid the foundations for bringing these two together, with his contributions still widely utilized today in examining elastic behavior and the physics of fracture. Later, the pioneering work of Tabor, as published in his classic text 'The Hardness of Metals', exapdned this understanding to address the complexities of plasticity. Enormous progress in the field has been achieved in the last decade, made possible both by advances in instrumentation, for example, load and depth-sensing indentation and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) based in situ testing, as well as improved modeling capabilities that use computationally intensive techniques such as finite element analysis and molecular dynamics simulation. The purpose of this special focus issue is to present recent state of the art developments in the field.

  17. Shear-banding Induced Indentation Size Effect in Metallic Glasses

    PubMed Central

    Lu, Y. M.; Sun, B. A.; Zhao, L. Z.; Wang, W. H.; Pan, M. X.; Liu, C. T.; Yang, Y.

    2016-01-01

    Shear-banding is commonly regarded as the “plasticity carrier” of metallic glasses (MGs), which usually causes severe strain localization and catastrophic failure if unhindered. However, through the use of the high-throughput dynamic nanoindentation technique, here we reveal that nano-scale shear-banding in different MGs evolves from a “distributed” fashion to a “localized” mode when the resultant plastic flow extends over a critical length scale. Consequently, a pronounced indentation size effect arises from the distributed shear-banding but vanishes when shear-banding becomes localized. Based on the critical length scales obtained for a variety of MGs, we unveil an intrinsic interplay between elasticity and fragility that governs the nanoscale plasticity transition in MGs. Our current findings provide a quantitative insight into the indentation size effect and transition mechanisms of nano-scale plasticity in MGs. PMID:27324835

  18. Discrete dislocation plasticity analysis of the wedge indentation of films

    NASA Astrophysics Data System (ADS)

    Balint, D. S.; Deshpande, V. S.; Needleman, A.; Van der Giessen, E.

    2006-11-01

    The plane strain indentation of single crystal films on a rigid substrate by a rigid wedge indenter is analyzed using discrete dislocation plasticity. The crystals have three slip systems at ±35.3∘ and 90∘ with respect to the indentation direction. The analyses are carried out for three values of the film thickness, 2, 10 and 50 μm, and with the dislocations all of edge character modeled as line singularities in a linear elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and dislocation annihilation are incorporated through a set of constitutive rules. Over the range of indentation depths considered, the indentation pressure for the 10 and 50 μm thick films decreases with increasing contact size and attains a contact size-independent value for contact lengths A>4 μm. On the other hand, for the 2 μm films, the indentation pressure first decreases with increasing contact size and subsequently increases as the plastic zone reaches the rigid substrate. For the 10 and 50 μm thick films sink-in occurs around the indenter, while pile-up occurs in the 2 μm film when the plastic zone reaches the substrate. Comparisons are made with predictions obtained from other formulations: (i) the contact size-independent indentation pressure is compared with that given by continuum crystal plasticity; (ii) the scaling of the indentation pressure with indentation depth is compared with the relation proposed by Nix and Gao [1998. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 43, 411-423]; and (iii) the computed contact area is compared with that obtained from the estimation procedure of Oliver and Pharr [1992. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7, 1564-1583].

  19. Application of reference point indentation for micro-mechanical surface characterization of calcium silicate based dental materials.

    PubMed

    Antonijević, Djordje; Milovanović, Petar; Riedel, Christoph; Hahn, Michael; Amling, Michael; Busse, Björn; Djurić, Marija

    2016-04-01

    The objective of this study was to elucidate micromechanical properties of Biodentine and two experimental calcium silicate cements (CSCs) using Reference Point Indentation (RPI). Biomechanical characteristics of the cement type and the effects of a radiopacifier, liquid components, acid etching treatment and bioactivation in simulated body fluid (SBF) were investigated by measuring the microhardness, average unloading slope (Avg US) and indentation distance increase (IDI). Biodentine had a greater microhardness than the experimental CSCs, while the Avg US and IDI values were not significantly different among investigated materials. There was a statistically significant difference in microhardness and IDI values between pure CSCs and radiopacified cements (p < 0.05). Micromechanical properties were not affected by different liquid components used. Acid-etching treatment reduced Biodentine's microhardness while cements' immersion in SBF resulted in greater microhardness and higher IDI values compared to the control group. Clearly, the physiological environment and the cements' composition affect their surface micromechanical properties. The addition of calcium chloride and CSCs' immersion in SBF are beneficial for CSCs' micromechanical performance, while the addition of radiopacifiers and acid etching treatment weaken the CSCs' surface. Application of RPI aids with the characterization of micromechanical properties of synthetic materials' surfaces. PMID:26888441

  20. Evaluation of the degradation of plasma sprayed thermal barrier coatings using nano-indentation.

    PubMed

    Kim, Dae-Jin; Cho, Sung-Keun; Choi, Jung-Hun; Koo, Jae-Mean; Seok, Chang-Sung; Kim, Moon-Young

    2009-12-01

    In this study, the disk type of a thermal barrier coating (TBC) system for a gas turbine blade was isothermally aged at 1100 degrees C for various times up to 400 hours. For each aging condition, the thickness of the thermally grown oxide (TGO) was measured by optical microscope and mechanical properties such as the elastic modulus and hardness were measured by micro-indentation and nano-indentation on the cross-section of a coating specimen. In the case of micro-indentation, the mechanical properties of a Ni-base superalloy substrate and MCrAlY bond coat material did not significantly change with an increase in exposure time. In the case of nano-indentation, the gamma-Ni phase and beta-NiAl phase in the bond coat and top coat material show no significant change in their properties. However, the elastic modulus and the hardness of TGO show a remarkable decrease from 100 h to 200 h then remain nearly constant after 200 h due to the internal delamination of TBC. It has been confirmed that the nano-indentation technique is a very effective way to evaluate the degradation of a thermal barrier coating system. PMID:19908771

  1. Plastically deformed region around indentations on Si angle crystal

    NASA Astrophysics Data System (ADS)

    Yoshioka, M.

    1994-12-01

    Expansion of a hemispherical shell by inner pressure has been widely applied for the model of the deformation by an indentation on a flat surface; however, the deformed region is not necessarily spherically symmetric, especially in anisotropic materials such as single crystals. Therefore, whether the spherical model is applicable in an indentation process for objective materials must always be kept in mind. Indentations have been made on the (111) surface of silicon crystal at various temperatures. The three-dimensional shape of the plastically deformed region was experimentally measured by means of an etching technique and its difference from the hemisphere was observed. It was never spherical but much more complicated, similar to a bottle gourd. The slip mechanism, which resulted in the observed shape of the plastic region, is discussed further. The plastic region was analytically obtained also on the assumption that the stress distribution was spherically symmetrical. The result is approximately in accordance with the observed shape. It is therefore concluded that the stress distribution is nearly spherical although the plastic region is far from it. The yield strength of silicon crystals and their temperature dependence were obtained based on the spherical model.

  2. Non-contact, ultrasound-based indentation method for measuring elastic properties of biological tissues using Harmonic Motion Imaging (HMI)

    NASA Astrophysics Data System (ADS)

    Vappou, Jonathan; Hou, Gary Y.; Marquet, Fabrice; Shahmirzadi, Danial; Grondin, Julien; Konofagou, Elisa E.

    2015-04-01

    Noninvasive measurement of mechanical properties of biological tissues in vivo could play a significant role in improving the current understanding of tissue biomechanics. In this study, we propose a method for measuring elastic properties non-invasively by using internal indentation as generated by harmonic motion imaging (HMI). In HMI, an oscillating acoustic radiation force is produced by a focused ultrasound transducer at the focal region, and the resulting displacements are estimated by tracking radiofrequency signals acquired by an imaging transducer. In this study, the focal spot region was modeled as a rigid cylindrical piston that exerts an oscillatory, uniform internal force to the underlying tissue. The HMI elastic modulus EHMI was defined as the ratio of the applied force to the axial strain measured by 1D ultrasound imaging. The accuracy and the precision of the EHMI estimate were assessed both numerically and experimentally in polyacrylamide tissue-mimicking phantoms. Initial feasibility of this method in soft tissues was also shown in canine liver specimens in vitro. Very good correlation and agreement was found between the measured Young’s modulus and the HMI modulus in the numerical study (r2 > 0.99, relative error <10%) and on polyacrylamide gels (r2 = 0.95, relative error <24%). The average HMI modulus on five liver samples was found to EHMI = 2.62  ±  0.41 kPa, compared to EMechTesting = 4.2  ±  2.58 kPa measured by rheometry. This study has demonstrated for the first time the initial feasibility of a non-invasive, model-independent method to estimate local elastic properties of biological tissues at a submillimeter scale using an internal indentation-like approach. Ongoing studies include in vitro experiments in a larger number of samples and feasibility testing in in vivo models as well as pathological human specimens.

  3. Non-contact, Ultrasound-based Indentation Method for Measuring Elastic Properties of Biological Tissues Using Harmonic Motion Imaging (HMI)

    PubMed Central

    Vappou, Jonathan; Hou, Gary Y.; Marquet, Fabrice; Shahmirzadi, Danial; Grondin, Julien; Konofagou, Elisa E.

    2015-01-01

    Noninvasive measurement of mechanical properties of biological tissues in vivo could play a significant role in improving the current understanding of tissue biomechanics. In this study, we propose a method for measuring elastic properties non-invasively by using internal indentation as generated by Harmonic Motion Imaging (HMI). In HMI, an oscillating acoustic radiation force is produced by a focused ultrasound transducer at the focal region, and the resulting displacements are estimated by tracking RF signals acquired by an imaging transducer. In this study, the focal spot region was modeled as a rigid cylindrical piston that exerts an oscillatory, uniform internal force to the underlying tissue. The HMI elastic modulus EHMI was defined as the ratio of the applied force to the axial strain measured by 1D ultrasound imaging. The accuracy and the precision of the EHMI estimate were assessed both numerically and experimentally in polyacrylamide tissue-mimicking phantoms. Initial feasibility of this method in soft tissues was also shown in canine liver specimens in vitro. Very good correlation and agreement was found between the actual Young’s modulus and the HMI modulus in the numerical study (r2>0.99, relative error <10%) and on polyacrylamide gels (r2=0.95, relative error <24%). The average HMI modulus on five liver samples was found to EHMI=2.62±0.41 kPa, compared to EMechTesting=4.2±2.58 kPa measured by rheometry. This study has demonstrated for the first time the initial feasibility of a non-invasive, model-independent method to estimate local elastic properties of biological tissues at a submillimeter scale using an internal indentation-like approach. Ongoing studies include in vitro experiments in a larger number of samples and feasibility testing in in vivo models as well as pathological human specimens. PMID:25776065

  4. Giant pop-ins and amorphization in germanium during indentation

    NASA Astrophysics Data System (ADS)

    Oliver, David J.; Bradby, Jodie E.; Williams, Jim S.; Swain, Michael V.; Munroe, Paul

    2007-02-01

    Sudden excursions of unusually large magnitude (>1 μm), "giant pop-ins," have been observed in the force-displacement curve for high load indentation of crystalline germanium (Ge). A range of techniques including Raman microspectroscopy, focused ion-beam cross sectioning, and transmission electron microscopy, are applied to study this phenomenon. Amorphous material is observed in residual indents following the giant pop-in. The giant pop-in is shown to be a material removal event, triggered by the development of shallow lateral cracks adjacent to the indent. Enhanced depth recovery, or "elbowing," observed in the force-displacement curve following the giant pop-in is explained in terms of a compliant response of plates of material around the indent detached by lateral cracking. The possible causes of amorphization are discussed, and the implications in light of earlier indentation studies of Ge are considered.

  5. Aerodynamic measurement techniques. [laser based diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Hunter, W. W., Jr.

    1976-01-01

    Laser characteristics of intensity, monochromatic, spatial coherence, and temporal coherence were developed to advance laser based diagnostic techniques for aerodynamic related research. Two broad categories of visualization and optical measurements were considered, and three techniques received significant attention. These are holography, laser velocimetry, and Raman scattering. Examples of the quantitative laser velocimeter and Raman scattering measurements of velocity, temperature, and density indicated the potential of these nonintrusive techniques.

  6. Practical limitations to indentation testing of thin films

    SciTech Connect

    Schneider, J.A.; McCarty, K.F.; Heffelfinger, J.R.; Moody, N.R.

    1998-11-01

    A method that is becoming increasingly common for measuring the mechanical behavior of thin films is low-load indentation testing. However, there can be complications in interpreting the results as many factors can affect hardness and moduli measurements such as surface roughness and determination of the indentation contact area. To further the understanding, the mechanical properties of thin (50 nm) films of AlN on sapphire substrates were evaluated using a scanning force microscopy (SFM) based pico-indentation device to allow imaging of the surface and indentations. The primary emphasis was the types of problems or limitations involved in testing very thin, as deposited films in which properties are desired over indentation depths less than 50 nm.

  7. Validation of cartilage thickness calculations using indentation analysis.

    PubMed

    Koff, Matthew F; Chong, Le Roy; Virtue, Patrick; Chen, Dan; Wang, Xioanan; Wright, Timothy; Potter, Hollis G

    2010-04-01

    Different methods have been used to cross-validate cartilage thickness measurements from magnetic resonance images (MRIs); however, a majority of these methods rely on interpolated data points, regional mean and/or maximal thickness, or surface mean thickness for data analysis. Furthermore, the accuracy of MRI cartilage thickness measurements from commercially available software packages has not necessarily been validated and may lead to an under- or overestimation of cartilage thickness. The goal of this study was to perform a matching point-to-point validation of indirect cartilage thickness calculations using a magnetic resonance (MR) image data set with direct cartilage thickness measurements using biomechanical indentation testing at the same anatomical locations. Seven bovine distal femoral condyles were prepared and a novel phantom filled with dilute gadolinium solution was rigidly attached to each specimen. High resolution MR images were acquired, and thickness indentation analysis of the cartilage was performed immediately after scanning. Segmentation of the MR data and cartilage thickness calculation was performed using semi-automated software. Registration of MR and indentation data was performed using the fluid filled phantom. The inter- and intra-examiner differences of the measurements were also determined. A total of 105 paired MRI-indentation thickness data points were analyzed, and a significant correlation between them was found (r=0.88, p<0.0001). The mean difference (+/-std. dev.) between measurement techniques was 0.00+/-0.23 mm, with Bland-Altman limits of agreement of 0.45 mm and -0.46 mm. The intra- and inter-examiner measurement differences were 0.03+/-0.22 mm and 0.05+/-0.24 mm, respectively. This study validated cartilage thickness measurements from MR images with thickness measurements from indentation by using a novel phantom to register the image-based and laboratory-based data sets. The accuracy of the measurements was comparable to

  8. Improved Indentation Test for Measuring Nonlinear Elasticity

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.

    2004-01-01

    A cylindrical-punch indentation technique has been developed as a means of measuring the nonlinear elastic responses of materials -- more specifically, for measuring the moduli of elasticity of materials in cases in which these moduli vary with applied loads. This technique offers no advantage for characterizing materials that exhibit purely linear elastic responses (constant moduli of elasticity, independent of applied loads). However, the technique offers a significant advantage for characterizing such important materials as plasma-sprayed thermal-barrier coatings, which, in cyclic loading, exhibit nonlinear elasticity with hysteresis related to compaction and sliding within their microstructures.

  9. Occurrence of spherical ceramic debris in indentation and sliding contact

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    Indenting experiments were conducted with the silicon carbide (0001) surface in contact with a spherical diamond indenter in air. Sliding friction experiments were also conducted with silicon carbide in contact with iron and iron-based binary alloys at room temperature and 800 C. Fracture pits with a spherical particle and spherical wear debris were observed as a result of indenting and sliding. Spherical debris may be produced by a mechanism that involves a spherical-shaped fracture along the circular or spherical stress trajectories under the inelastic deformation zone.

  10. Fatigue Life of Postbuckled Structures with Indentation Damages

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Bisagni, Chiara

    2016-01-01

    The fatigue life of composite stiffened panels with indentation damage was investigated experimentally using single stringer compression specimens. Indentation damage was induced on one of the two flanges of each stringer. The experiments were conducted using advanced instrumentation, including digital image correlation, passive thermography, and in-situ ultrasonic scanning. Specimens with initial indentation damage lengths of 32 millimeters to 56 millimeters were tested quasi-statically and in fatigue, and the effects of cyclic load amplitude and damage size were studied. A means of comparison of the damage propagation rates and collapse loads based on a stress intensity measure and the Paris law is proposed.

  11. Fatigue Life of Postbuckled Structures with Indentation Damage

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Bisagni, Chiara

    2016-01-01

    The fatigue life of composite stiffened panels with indentation damage was investigated experimentally using single stringer compression specimens. Indentation damage was induced on one of the two flanges of the stringer. The experiments were conducted using advanced instrumentation, including digital image correlation, passive thermography, and in-situ ultrasonic scanning. Specimens with initial indentation damage lengths of 37 millimeters to 56 millimeters were tested in fatigue and the effects of cyclic load amplitude and damage size were studied. A means of comparison of the damage propagation rates and collapse loads based on a stress intensity measure and the Paris law is proposed.

  12. Hardness and damage associated with pointed indentations in armor ceramics

    NASA Astrophysics Data System (ADS)

    Swab, Jeffrey J.

    It is empirically known that an armor ceramic should be as hard as or harder than the projectile it intends to defeat. Quasi-static indentation testing is one of the most widely utilized techniques for determining the hardness of armor ceramics. Hardness measurements can also be used to generate other property values (fracture toughness, elastic properties and even the yield strength) that may be relevant to ballistic performance. While the indentation methodologies are simple and straightforward the resultant hardness values for ceramic materials can be influenced by the indenter geometry, indentation load, loading rate, specimen surface finish and ceramic microstructure. This presentation will summarize the results of a study to determine the hardness of a variety of armor-grade ceramics (Al2O3, B 4C, SiC, and WC) with different indenter geometries (Vickers and Knoop) over a range of indentation loads (0.98N to 98N) and discuss the implications for armor ceramics. The resulting data strongly indicates that the best means of determining the hardness of armor ceramics is the use of 19.6N Knoop indentations. While the hardness data and the subsequent analysis clearly support the use of the Knoop methodology to determine the hardness, it does not take into account the response of the ceramic to the indentation process. One response that is continually overlooked is the role of damage and cracking. A detailed understanding of the damage and cracking that occurs during indentation may provide valuable insights to the ballistic performance of the armor ceramics during the earliest stages of impact. To explore this material response a detailed examination of the topography of the indents and the damage and cracking that develops underneath both Knoop and Vickers indentations in a WC and SiC armor ceramic was conducted. The analysis shows that while the same types of cracks are produced in both materials the magnitude of these cracks as well as the type of damage that is

  13. Effects of water molecules on tribological behavior and property measurements in nano-indentation processes - a numerical analysis

    PubMed Central

    2013-01-01

    Nano/micro-manufacturing under wet condition is an important consideration for various tool-based processes such as indentation, scratching, and machining. The existence of liquids adds complexity to the system, changes the tool/work interfacial condition, and affects material behaviors. For indentation, it may also affect material property measurements. However, little effort has been made to study this challenging issue at nano- or atomistic scale. In this study, we tackle this challenge by investigating nano-indentation processes submerged in water using the molecular dynamics (MD) simulation approach. Compared with dry indentation in which no water molecules are present, the existence of water molecules causes the increase of indentation force in initial penetration, but the decrease of indentation force in full penetration. It also reduces the sticking phenomenon between the work and tool atoms during indenter retraction, such that the indentation geometry can be better retained. Meanwhile, nano-indentation under wet condition exhibits the indentation size effect, while dry nano-indentation exhibits the reverse indentation size effect. The existence of water leads to higher computed hardness values at low indentation loads and a smaller value of Young's modulus. In addition, the friction along the tool/work interface is significantly reduced under wet indentation. PMID:24044504

  14. Determining Tension-Compression Nonlinear Mechanical Properties of Articular Cartilage from Indentation Testing.

    PubMed

    Chen, Xingyu; Zhou, Yilu; Wang, Liyun; Santare, Michael H; Wan, Leo Q; Lu, X Lucas

    2016-04-01

    The indentation test is widely used to determine the in situ biomechanical properties of articular cartilage. The mechanical parameters estimated from the test depend on the constitutive model adopted to analyze the data. Similar to most connective tissues, the solid matrix of cartilage displays different mechanical properties under tension and compression, termed tension-compression nonlinearity (TCN). In this study, cartilage was modeled as a porous elastic material with either a conewise linear elastic matrix with cubic symmetry or a solid matrix reinforced by a continuous fiber distribution. Both models are commonly used to describe the TCN of cartilage. The roles of each mechanical property in determining the indentation response of cartilage were identified by finite element simulation. Under constant loading, the equilibrium deformation of cartilage is mainly dependent on the compressive modulus, while the initial transient creep behavior is largely regulated by the tensile stiffness. More importantly, altering the permeability does not change the shape of the indentation creep curves, but introduces a parallel shift along the horizontal direction on a logarithmic time scale. Based on these findings, a highly efficient curve-fitting algorithm was designed, which can uniquely determine the three major mechanical properties of cartilage (compressive modulus, tensile modulus, and permeability) from a single indentation test. The new technique was tested on adult bovine knee cartilage and compared with results from the classic biphasic linear elastic curve-fitting program. PMID:26240062

  15. The compelling case for indentation as a functional exploratory and characterization tool

    SciTech Connect

    Tandon, Rajan; Marshall, David B.; Cook, Robert F.; Padture, Nitin P.; Oyen, Michelle L.; Pajares, Antonia; Bradby, Jodie E.; Reimanis, Ivar E.; Page, Trevor F.; Pharr, George M.; Lawn, Brian R.

    2015-07-30

    The utility of indentation testing for characterizing a wide range of mechanical properties of brittle materials is highlighted in light of recent articles questioning its validity, specifically in relation to the measurement of toughness. Contrary to assertion by some critics, indentation fracture theory is fundamentally founded in Griffith–Irwin fracture mechanics, based on model crack systems evolving within inhomogeneous but well-documented elastic and elastic–plastic contact stress fields. Notwithstanding some numerical uncertainty in associated stress intensity factor relations, the technique remains an unrivalled quick, convenient and economical means for comparative, site-specific toughness evaluation. Most importantly, indentation patterns are unique fingerprints of mechanical behavior and thereby afford a powerful functional tool for exploring the richness of material diversity. At the same time, it is cautioned that unconditional usage without due attention to the conformation of the indentation patterns can lead to overstated toughness values. Limitations of an alternative, more engineering approach to fracture evaluation, that of propagating a precrack through a “standard” machined specimen, are also outlined. Thus misconceptions in the critical literature concerning the fundamental nature of crack equilibrium and stability within contact and other inhomogeneous stress fields are discussed.

  16. The compelling case for indentation as a functional exploratory and characterization tool

    DOE PAGESBeta

    Tandon, Rajan; Marshall, David B.; Cook, Robert F.; Padture, Nitin P.; Oyen, Michelle L.; Pajares, Antonia; Bradby, Jodie E.; Reimanis, Ivar E.; Page, Trevor F.; Pharr, George M.; et al

    2015-07-30

    The utility of indentation testing for characterizing a wide range of mechanical properties of brittle materials is highlighted in light of recent articles questioning its validity, specifically in relation to the measurement of toughness. Contrary to assertion by some critics, indentation fracture theory is fundamentally founded in Griffith–Irwin fracture mechanics, based on model crack systems evolving within inhomogeneous but well-documented elastic and elastic–plastic contact stress fields. Notwithstanding some numerical uncertainty in associated stress intensity factor relations, the technique remains an unrivalled quick, convenient and economical means for comparative, site-specific toughness evaluation. Most importantly, indentation patterns are unique fingerprints of mechanicalmore » behavior and thereby afford a powerful functional tool for exploring the richness of material diversity. At the same time, it is cautioned that unconditional usage without due attention to the conformation of the indentation patterns can lead to overstated toughness values. Limitations of an alternative, more engineering approach to fracture evaluation, that of propagating a precrack through a “standard” machined specimen, are also outlined. Thus misconceptions in the critical literature concerning the fundamental nature of crack equilibrium and stability within contact and other inhomogeneous stress fields are discussed.« less

  17. Measuring soft tissue material properties using stereovision and indentation: a proof-of-concept study

    NASA Astrophysics Data System (ADS)

    Ji, Songbai; Fan, Xiaoyao; Hartov, Alex; Roberts, David W.; Paulsen, Keith D.

    2013-03-01

    Accurate measurement of soft tissue material properties is critical for characterizing its biomechanical behaviors but can be challenging especially for the human brain. Recently, we have applied stereovision to track motion of the exposed cortical surface noninvasively for patients undergoing open skull neurosurgical operations. In this paper, we conduct a proof-of-concept study to evaluate the feasibility of the technique in measuring material properties of soft tissue in vivo using a tofu phantom. A block of soft tofu was prepared with black pepper randomly sprinkled on the top surface to provide texture to facilitate image-based displacement mapping. A disk-shaped indenter made of high-density tungsten was placed on the top surface to induce deformation through its weight. Stereoscopic images were acquired before and after indentation using a pair of stereovision cameras mounted on a surgical microscope with its optical path perpendicular to the imaging surface. Rectified left camera images obtained from stereovision reconstructions were then co-registered using optical flow motion tracking from which a 2D surface displacement field around the indenter disk was derived. A corresponding finite element model of the tofu was created subjected to the indenter weight and a hyperelastic material model was chosen to account for large deformation around the intender edges. By successively assigning different shear stiffness constant, computed tofu surface deformation was obtained, and an optimal shear stiffness was obtained that matched the model-derived surface displacements with those measured from the images. The resulting quasi-static, long-term shear stiffness for the tofu was 1.04 k Pa, similar to that reported in the literature. We show that the stereovision and free-weight indentation techniques coupled with an FE model are feasible for in vivo measurement of the human brain material properties, and it may also be feasible for other soft tissues.

  18. Crack nucleation criterion and its application to impact indentation in glasses.

    PubMed

    Luo, Jian; Vargheese, K Deenamma; Tandia, Adama; Hu, Guangli; Mauro, John C

    2016-01-01

    Molecular dynamics (MD) simulations are used to directly observe nucleation of median cracks in oxide glasses under indentation. Indenters with sharp angles can nucleate median cracks in samples with no pre-existing flaws, while indenters with larger indenter angles cannot. Increasing the tip radius increases the critical load for nucleation of the median crack. Based upon an independent set of simulations under homogeneous loading, the fracture criterion in the domain of the principal stresses is constructed. The fracture criterion, or "fracture locus", can quantitatively explain the observed effects of indenter angle and indenter tip radius on median crack nucleation. Our simulations suggest that beyond the maximum principal stress, plasticity and multi-axial stresses should also be considered for crack nucleation under indentation, even for brittle glassy systems. PMID:27079431

  19. Crack nucleation criterion and its application to impact indentation in glasses

    PubMed Central

    Luo, Jian; Vargheese, K. Deenamma; Tandia, Adama; Hu, Guangli; Mauro, John C

    2016-01-01

    Molecular dynamics (MD) simulations are used to directly observe nucleation of median cracks in oxide glasses under indentation. Indenters with sharp angles can nucleate median cracks in samples with no pre-existing flaws, while indenters with larger indenter angles cannot. Increasing the tip radius increases the critical load for nucleation of the median crack. Based upon an independent set of simulations under homogeneous loading, the fracture criterion in the domain of the principal stresses is constructed. The fracture criterion, or “fracture locus”, can quantitatively explain the observed effects of indenter angle and indenter tip radius on median crack nucleation. Our simulations suggest that beyond the maximum principal stress, plasticity and multi-axial stresses should also be considered for crack nucleation under indentation, even for brittle glassy systems. PMID:27079431

  20. Characterization of viscoelastic properties of molybdenum disulphide filled polyamide by indentation

    NASA Astrophysics Data System (ADS)

    Stan, Felicia; Fetecau, Catalin

    2013-05-01

    In this paper, the creep behavior of molybdenum disulphide (MoS2) filled polyamide 66 composite was investigated through sharp indentation at room temperature. Two types of indentation creep test, the 3-step indentation test, and the 5-step indentation test were considered in order to explore whether the measured creep response is mainly viscoelastic or includes a significant contribution from the plastic deformation developed during the loading phase. The experimental indentation creep data were analyzed within an analytical framework based on the hereditary integral operator for the ramp creep and a viscoelastic-plastic (VEP) model in order to determine the indentation creep compliance function including the short- and long-time modulus. The equivalent shear modulus calculated from the creep compliance function was compared to the indentation plane strain modulus derived from the initial slope of the unloading curve in order to investigate the validity of the Oliver and Pharr method.

  1. Crack nucleation criterion and its application to impact indentation in glasses

    NASA Astrophysics Data System (ADS)

    Luo, Jian; Vargheese, K. Deenamma; Tandia, Adama; Hu, Guangli; Mauro, John C.

    2016-04-01

    Molecular dynamics (MD) simulations are used to directly observe nucleation of median cracks in oxide glasses under indentation. Indenters with sharp angles can nucleate median cracks in samples with no pre-existing flaws, while indenters with larger indenter angles cannot. Increasing the tip radius increases the critical load for nucleation of the median crack. Based upon an independent set of simulations under homogeneous loading, the fracture criterion in the domain of the principal stresses is constructed. The fracture criterion, or “fracture locus”, can quantitatively explain the observed effects of indenter angle and indenter tip radius on median crack nucleation. Our simulations suggest that beyond the maximum principal stress, plasticity and multi-axial stresses should also be considered for crack nucleation under indentation, even for brittle glassy systems.

  2. Indentation plasticity and fracture in silicon

    NASA Technical Reports Server (NTRS)

    Rybicki, George C.; Pirouz, P.

    1988-01-01

    Measurements of the ductile-brittle transition temperature of heavily doped silicon were carried out using indentation techniques. Diamond pyramid hardness tests were performed on the (100) face of heavily doped N-type and P-type and intrinsic silicon single crystals. Tests were performed over the range 200 C to 850 C and loads of 100 to 500 g were used. Samples were subsequently etched to reveal dislocation rosettes produced by indentation. Intrinsic silicon underwent a ductile-brittle transition at 660 C, P-type at 645 C and N-type at 625 C. Hardness values varied from 1.1 GPa at 700 C to 11.7 GPa at 200 C. Significant effects of hardness on doping were present only at the highest temperatures. Lower loads generally produced higher hardness but load did not affect the Ductile-Brittle Transition Temperature (DBTT). Fracture toughness values ranged from 0.9 MPa m(1/2) at 200 C to 2.75 MPa m(1/2) near the DBTT. Doping did not affect the fracture toughness of silicon. P-type doping increased the size of dislocation rosettes observed after indentation, but N-type did not, in contradiction of the expected results. Results are discussed in terms of the effect of doping on the dislocation mobility in silicon.

  3. Evaluation of biological cell properties using dynamic indentation measurement.

    PubMed

    Cao, Guoxin; Chandra, Namas

    2010-02-01

    Viscoelastic mechanical properties of biological cells are commonly measured using atomic force microscope (AFM) dynamic indentation with spherical tips. A semiempirical analysis based on numerical simulation is built to determine the cell mechanical properties. It is shown that the existing analysis cannot reflect the accurate values of cell elastic/dynamic modulus due to the effects of substrate, indenter tip size, and cell size. Among these factors, substrate not only increases the true contact radius but also interferes the indentation stress field, which can cause the overestimation of cell moduli. Typically, the substrate effect is much stronger than the other two influences in cell indentation; and, thus, the cell modulii are usually overestimated. It is estimated that the moduli can be overestimated by as high as over 200% using the existing analysis. In order to obtain the accurate properties of cells, correction factors that account for these effects are required in the existing analysis. PMID:20365612

  4. Inverse finite-element modeling for tissue parameter identification using a rolling indentation probe.

    PubMed

    Liu, Hongbin; Sangpradit, Kiattisak; Li, Min; Dasgupta, Prokar; Althoefer, Kaspar; Seneviratne, Lakmal D

    2014-01-01

    This paper investigates the use of inverse finite-element modeling (IFEM)-based methods for tissue parameter identification using a rolling indentation probe for surgical palpation. An IFEM-based algorithm is proposed for tissue parameter identification through uniaxial indentation. IFEM-based algorithms are also created for locating and identifying the properties of an embedded tumor through rolling indentation of the soft tissue. Two types of parameter identification for the tissue tumor are investigated (1) identifying the stiffness (μ) of a tumor at a known depth and (2) estimating the depth of the tumor (D) with known mechanical properties. The efficiency of proposed methods has been evaluated through silicone and porcine kidney experiments for both uniaxial indentation and rolling indentation. The results show that both of the proposed IFEM methods for uniaxial indentation and rolling indentation have good robustness and can rapidly converge to the correct results. The tissue properties estimated using the developed method are generic and in good agreement with results obtained from standard material tests. The estimation error of μ through uniaxial indentation is below 3 % for both silicone and kidney; the estimation error of μ for the tumor through rolling indentation is 7-9 %. The estimation error of D through rolling indentation is 1-2 mm. PMID:24037385

  5. Influence of Hydroxyapatite Nano-particles on the Mechanical and Tribological Properties of Orthopedic Cement-Based Nano-composites Measured by Nano-indentation and Nano-scratch Experiments

    NASA Astrophysics Data System (ADS)

    Asgharzadeh Shirazi, H.; Ayatollahi, M. R.; Naimi-Jamal, M. R.

    2015-09-01

    The aim of this study was to examine the mechanical and tribological properties of a commercially available bone cement by incorporating nano-sized hydroxyapatite using nano-indentation and nano-scratch experiments. In order to achieve this goal, the nano-composite cement samples with different amounts of commercial nano-hydroxyapatite (HAc), as a bone compatible nano-filler, were prepared via vacuum mixing method. The results indicated that nano-indentation and nano-scratch experiments are acceptable methods for measuring the mechanical and tribological properties of orthopedic cement-based nano-composites. Moreover, it was found that the nano-composite of 10 wt.% HAc exhibits the optimum performance compared to the other nano-composite samples in terms of mechanical and tribological properties. These findings can play an important role in achieving the goal of clinical and biomechanical function optimization of bone cement, especially in the field of orthopedic surgery.

  6. Indentation fracture of brittle materials

    SciTech Connect

    Lucas, B.N.; Wert, J.J. ); Oliver, W.C. )

    1990-01-01

    The response of four transparent materials, soda-lime glass, fused silica, single crystal (0001) Al{sub 2}O{sub 3} and Y{sub 2}O{sub 3}-ZrO{sub 2}, to contact by a sharp indenter has been studied. In-situ observation and continuous monitoring of the load and displacement throughout the test allowed the indentation fracture sequence of the transparent materials to be characterized and also permitted the effects of these fracture events on the corresponding load displacement curves to be noted. It was found that if the cracks produced during indentation grew discontinuously, they manifested themselves in discontinuities in displacement on the corresponding load-displacement curve. 6 refs., 5 figs., 1 tab.

  7. Indentation law for composite laminates

    NASA Technical Reports Server (NTRS)

    Yang, S. H.

    1981-01-01

    Static indentation tests are described for glass/epoxy and graphite/epoxy composite laminates with steel balls as the indentor. Beam specimens clamped at various spans were used for the tests. Loading, unloading, and reloading data were obtained and fitted into power laws. Results show that: (1) contact behavior is not appreciably affected by the span; (2) loading and reloading curves seem to follow the 1.5 power law; and (3) unloading curves are described quite well by a 2.5 power law. In addition, values were determined for the critical indentation, alpha sub cr which can be used to predict permanent indentations in unloading. Since alpha sub cr only depends on composite material properties, only the loading and an unloading curve are needed to establish the complete loading-unloading-reloading behavior.

  8. In situ spectroscopic study of the plastic deformation of amorphous silicon under nonhydrostatic conditions induced by indentation

    DOE PAGESBeta

    Gerbig, Yvonne B.; Michaels, C. A.; Bradby, Jodie E.; Haberl, Bianca; Cook, Robert F.

    2015-12-17

    Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique (IIT). The occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were observed. Furthermore, the obtained experimental results are linked with previously published work on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a model for the deformation behavior of a-Si under indentation loading.

  9. Residual stress and plastic anisotropy in indented 2024-T351 aluminum disks

    SciTech Connect

    Clausen, Bjorn; Prime, Michael B; Saurabh, Kabra; Brown, Donald W; Pagliaro, Pierluigi; Backlund, Peter; Shaw, Sanjiv; Criss, Everett

    2009-01-01

    Recent studies have proven that generating a well defined residual stress state using the indented disk approach is an excellent way to validate experimental and modeling techniques for measuring and predicting residual stresses. The previous studies dealt with indented stainless steel disks, and included experimental determination of residual stresses using the Contour Method and neutron diffraction measurements. The measured residual stress states showed good agreement between the techniques, and a Finite Element Model predicted residual stress state based upon material properties determined form standard tension and compression/tension tests was also in good agreement with the measurements. In the present work, disks of 2024-T351 Aluminum were investigated. As before, the residual stress profile was measured using neutron diffraction and the Contour Method and Finite Element Modeling was employed to predict the residual stress profile. Analysis and comparison of the three techniques were complicated by the fact that the experimental data shows evidence of plastic anisotropy and strong Bauschinger effect within the indented disks.

  10. Review of fracture properties of nuclear materials determined by Hertzian indentation

    SciTech Connect

    Routbort, J.; Matzke, H.

    1985-01-01

    A brief description of the determination of the surface fracture energy and the fracture toughness from a Hertzian indentation test is given. A number of theoretical and experimental problems are discussed. Results obtained on a variety of nuclear fuels and nuclear-waste-containment materials are reviewed and compared with values measured by other techniques. The Hertzian indentation test yields reliable fracture parameters.

  11. Indentation device for in situ Raman spectroscopic and optical studies

    NASA Astrophysics Data System (ADS)

    Gerbig, Y. B.; Michaels, C. A.; Forster, A. M.; Hettenhouser, J. W.; Byrd, W. E.; Morris, D. J.; Cook, R. F.

    2012-12-01

    Instrumented indentation is a widely used technique to study the mechanical behavior of materials at small length scales. Mechanical tests of bulk materials, microscopic, and spectroscopic studies may be conducted to complement indentation and enable the determination of the kinetics and physics involved in the mechanical deformation of materials at the crystallographic and molecular level, e.g., strain build-up in crystal lattices, phase transformations, and changes in crystallinity or orientation. However, many of these phenomena occurring during indentation can only be observed in their entirety and analyzed in depth under in situ conditions. This paper describes the design, calibration, and operation of an indentation device that is coupled with a Raman microscope to conduct in situ spectroscopic and optical analysis of mechanically deformed regions of Raman-active, transparent bulk material, thin films or fibers under contact loading. The capabilities of the presented device are demonstrated by in situ studies of the indentation-induced phase transformations of Si thin films and modifications of molecular conformations in high density polyethylene films.

  12. Traceable Micro-Force Sensor for Instrumented Indentation Calibration

    SciTech Connect

    Smith, D T; Shaw, G A; Seugling, R M; Xiang, D; Pratt, J R

    2007-04-02

    Instrumented indentation testing (IIT), commonly referred to as nanoindentation when small forces are used, is a popular technique for determining the mechanical properties of small volumes of material. Sample preparation is relatively easy, usually requiring only that a smooth surface of the material to be tested be accessible to a contact probe, and instruments that combine sophisticated automation with straightforward user interfaces are available commercially from several manufacturers. In addition, documentary standards are now becoming available from both the International Standards Organization (ISO 14577) and ASTM International (E28 WK382) that define test methods and standard practices for IIT, and will allow the technique to be used to produce material property data that can be used in product specifications. These standards also define the required level of accuracy of the force data produced by IIT instruments, as well as methods to verify that accuracy. For forces below 10 mN, these requirements can be difficult to meet, particularly for instrument owners who need to verify the performance of their instrument as it is installed at their site. In this paper, we describe the development, performance and application of an SI-traceable force sensor system for potential use in the field calibration of commercial IIT instruments. The force sensor itself, based on an elastically deforming capacitance gauge, is small enough to mount in a commercial instrument as if it were a test specimen, and is used in conjunction with an ultra-high accuracy capacitance bridge. The sensor system is calibrated with NIST-traceable masses over the range 5.0 {micro}N through 5.0 mN. We will present data on its accuracy and precision, as well its potential application to the verification of force in commercial instrumented indentation instruments.

  13. Characterization of Local Mechanical Properties of Polymer Thin Films and Polymer Nanocomposites via AFM indentations

    NASA Astrophysics Data System (ADS)

    Cheng, Xu

    AFM indentation has become a tool with great potential in the characterization of nano-mechanical properties of materials. Thanks to the nanometer sized probes, AFM indentation is capable of capturing the changes of multiple properties within the range of tens of nanometers, such task would otherwise be difficult by using other experiment instruments. Despite the great potentials of AFM indentation, it operates based on a simple mechanism: driving the delicate AFM probe to indent the sample surface, and recording the force-displacement response. With limited information provided by AFM indentation, efforts are still required for any practice to successfully extract the desired nano-scale properties from specific materials. In this thesis, we focus on the mechanical properties of interphase between polymer and inorganic materials. It is known that in nanocomposites, a region of polymer exist around nanoparticles with altered molecular structures and improved properties, which is named as interphase polymer. The system with polymer thin films and inorganic material substrates is widely used to simulate the interphase effect in nanocomposites. In this thesis, we developed an efficient and reliable method to process film/substrate samples and characterize the changes of local mechanical properties inside the interphase region with ultra-high resolution AFM mechanical mapping technique. Applying this newly developed method, the interphase of several film/substrate pairs were examined and compared. The local mechanical properties on the other side of the polymer thin film, the free surface side, was also investigated using AFM indentation equipped with surface modified probes. In order to extract the full spectrum of local elastic modulus inside the surface region in the range of only tens of nanometers, the different contact mechanics models were studied and compared, and a Finite Element model was also established. Though the film/substrate system has been wide used as

  14. Indentation Measurements to Validate Dynamic Elasticity Imaging Methods.

    PubMed

    Altahhan, Khaldoon N; Wang, Yue; Sobh, Nahil; Insana, Michael F

    2016-09-01

    We describe macro-indentation techniques for estimating the elastic modulus of soft hydrogels. Our study describes (a) conditions under which quasi-static indentation can validate dynamic shear-wave imaging estimates and (b) how each of these techniques uniquely biases modulus estimates as they couple to the sample geometry. Harmonic shear waves between 25 and 400 Hz were imaged using ultrasonic Doppler and optical coherence tomography methods to estimate shear dispersion. From the shear-wave speed of sound, average elastic moduli of homogeneous samples were estimated. These results are compared directly with macroscopic indentation measurements measured two ways. One set of measurements applied Hertzian theory to the loading phase of the force-displacement curves using samples treated to minimize surface adhesion forces. A second set of measurements applied Johnson-Kendall-Roberts theory to the unloading phase of the force-displacement curve when surface adhesions were significant. All measurements were made using gelatin hydrogel samples of different sizes and concentrations. Agreement within 5% among elastic modulus estimates was achieved for a range of experimental conditions. Consequently, a simple quasi-static indentation measurement using a common gel can provide elastic modulus measurements that help validate dynamic shear-wave imaging estimates. PMID:26376923

  15. Buccal mucosa ridging and tongue indentation: incidence and associated factors.

    PubMed

    Piquero, K; Ando, T; Sakurai, K

    1999-05-01

    Buccal mucosa ridging and tongue indentation have been considered as one of the visible and reliable signs of bruxism. However, there have not been any reports justifying this relationship scientifically. Moreover, there have not been any studies reporting specific procedures to assess them. Thus, the purpose of the present study was to determine the clinical incidence of buccal mucosa ridging and tongue indentation and assess the possible relationship between certain factors that can influence their occurrence. A total of 244 (178 males and 66 females) dentulous adults from 20 to 59 years of age, who were employees at the Bank of Yokohama, were randomly selected. At first, the buccal mucosa ridging and tongue indentation were classified into three groups based in their intensity: none, mild, and severe. The incidence of both conditions in the different age groups, as well as the incidence by gender was evaluated. Furthermore, the possible relationships between buccal mucosa ridging and tongue indentation and age, gender, clenching awareness, grinding awareness, headache, neck stiffness, vertical dimension, temporomandibular joint (TMJ) pain to palpation, masticatory muscle tenderness to palpation, and the presence of premature contacts were evaluated using the chi-square test. A positive relationship was found between the occurrence of buccal mucosa ridging and tongue indentation and gender (p < 0.01); both conditions were observed more frequently in females than in males. A positive relationship was also found to age; the group between 20-29 years old showed the highest incidence. The vertical dimension had a positive relationship with the occurrence of both buccal mucosa ridging and tongue indentation. Other factors evaluated did not show any correlation. PMID:10825817

  16. Measurement of corneal tangent modulus using ultrasound indentation.

    PubMed

    Wang, Li-Ke; Huang, Yan-Ping; Tian, Lei; Kee, Chea-Su; Zheng, Yong-Ping

    2016-09-01

    Biomechanical properties are potential information for the diagnosis of corneal pathologies. An ultrasound indentation probe consisting of a load cell and a miniature ultrasound transducer as indenter was developed to detect the force-indentation relationship of the cornea. The key idea was to utilize the ultrasound transducer to compress the cornea and to ultrasonically measure the corneal deformation with the eyeball overall displacement compensated. Twelve corneal silicone phantoms were fabricated with different stiffness for the validation of measurement with reference to an extension test. In addition, fifteen fresh porcine eyes were measured by the developed system in vitro. The tangent moduli of the corneal phantoms calculated using the ultrasound indentation data agreed well with the results from the tensile test of the corresponding phantom strips (R(2)=0.96). The mean tangent moduli of the porcine corneas measured by the proposed method were 0.089±0.026MPa at intraocular pressure (IOP) of 15mmHg and 0.220±0.053MPa at IOP of 30mmHg, respectively. The coefficient of variation (CV) and intraclass correlation coefficient (ICC) of tangent modulus were 14.4% and 0.765 at 15mmHg, and 8.6% and 0.870 at 30mmHg, respectively. The preliminary study showed that ultrasound indentation could be applied to the measurement of corneal tangent modulus with good repeatability and improved measurement accuracy compared to conventional surface displacement-based measurement method. The ultrasound indentation can be a potential tool for the corneal biomechanical properties measurement in vivo. PMID:27262352

  17. An Improved Approach to Fracture Toughness Assessment of Brittle Coating on Ductile Substrate Systems under Indentation

    NASA Astrophysics Data System (ADS)

    Demidova, Natalia V.

    Fracture toughness is an important material property that determines the structural integrity of a component with pre-existing or service-generated flaws. In the present research, an indentation-based method and the associated fracture mechanics model are proposed for fracture toughness assessment of brittle coating/ductile substrate systems. The proposed models consider well-developed radial/median cracks generated under sharp indentation, despite that the crack formation process may have gone through crack initiation and propagation phases. For generality, the geometry of a well-developed crack is assumed to be semi-elliptical in shape. The driving force of the crack is considered to stem from the residual plastic zone expansion under the indenter, as well as the far-field Boussinesq (elastic) stress. Three well-defined configurations are studied. For the first configuration, a crack with a depth of less than 7% of the coating thickness is considered. In this case, the problem is treated as the one for the monolithic material with the coating material properties. For the second configuration, a crack that runs deeper than 7% of the coating thickness but is still within the coating layer is analyzed. In this case, the composite hardness is introduced into the analysis to account for the influence of the substrate material properties; and furthermore, an interface correction factor is proposed to take into account the presence of the coating/substrate interface and its influence on the stress intensity factor of the well-developed elliptical cracks. For the third configuration, a crack penetrating into the substrate is considered. In this case, based on the condition of deformation compatibility across the coating/substrate interface, the bulk modulus for the coating/substrate system is introduced into the analysis. A series of indentation tests are conducted on a WC/10Co/4Cr coating/1080 low carbon steel substrate specimen, which is a brittle coating on a ductile

  18. Prediction of Indentation Behavior of Superelastic TiNi

    NASA Astrophysics Data System (ADS)

    Neupane, Rabin; Farhat, Zoheir

    2014-09-01

    Superelastic TiNi shape memory alloys have been extensively used in various applications. The great interest in TiNi alloys is due to its unique shape memory and superelastic effects, along with its superior wear and dent resistance. Assessment of mechanical properties and dent resistance of superelastic TiNi is commonly performed using indentation techniques. However, the coupling of deformation and reversible martensitic transformation of TiNi under indentation conditions makes the interpretation of results challenging. An attempt is made to enhance current interpretation of indentation data. A load-depth curve is predicted that takes into consideration the reversible martensitic transformation. The predicted curve is in good agreement with experimental results. It is found in this study that the elastic modulus is a function of indentation depth. At shallow depths, the elastic modulus is high due to austenite dominance, while at high depths, the elastic modulus drops as the depth increases due to austenite to martensite transition, i.e., martensite dominance. It is also found that TiNi exhibits superior dent resistance compared to AISI 304 steel. There is two orders of magnitude improvement in dent resistance of TiNi in comparison to AISI 304 steel.

  19. Defect formation by pristine indenter at the initial stage of nanoindentation

    NASA Astrophysics Data System (ADS)

    Chen, I.-Hsien; Hsiao, Chun-I.; Behera, Rakesh K.; Hsu, Wen-Dung

    2013-12-01

    Nano-indentation is a sophisticated method to characterize mechanical properties of materials. This method samples a very small amount of material during each indentation. Therefore, this method is extremely useful to measure mechanical properties of nano-materials. The measurements using nanoindentation is very sensitive to the surface topology of the indenter and the indenting surfaces. The mechanisms involved in the entire process of nanoindentation require an atomic level understanding of the interplay between the indenter and the substrate. In this paper, we have used atomistic simulation methods with empirical potentials to investigate the effect of various types of pristine indenter on the defect nucleation and growth. Using molecular dynamics simulations, we have predicted the load-depth curve for conical, vickers, and sperical tip. The results are analyzed based on the coherency between the indenter tip and substrate surface for a fixed depth of 20 Å. The depth of defect nucleation and growth is observed to be dependent on the tip geometry. A tip with larger apex angle nucleates defects at a shallower depth. However, the type of defect generated is dependent on the crystalline orientation of the tip and substrate. For coherent systems, prismatic loops were generated, which released into the substrate along the close-packed directions with continued indentation. For incoherent systems, pyramidal shaped dislocation junctions formed in the FCC systems and disordered atomic clusters formed in the BCC systems. These defect nucleation and growth process provide the atomistic mechanisms responsible for the observed load-depth response during nanoindentation.

  20. Radial in-plane digital speckle pattern interferometer combined with instrumented indentation

    NASA Astrophysics Data System (ADS)

    Viotti, Matias R.; Albertazzi, Armando; Bonomo, Danilo; Fontana, Filipe

    2015-08-01

    This paper presents a modular device based on digital speckle pattern interferometry (DSPI) which is combined with instrumented indentation. The interferometric module uses a diffractive optical element that confers radial in-plane sensitivity enabling the measurement of whole displacement field generated by the shallow indentation print on the surface of the material under testing. The indentation module uses a piezoelectric loading cell and an inductive transducer to simultaneously measure the loading applied on the ball indenter tip as well as its penetration on the material under testing. A mechanical/hydraulic scheme was developed to achieve a high loading capability with a compact indentation module, suitably sized with the interferometric module. A finite element simulation was carried out for a generic low carbon steel material without residual stresses and under a tensile external loading of 25%, 50% and 75% of its yielding stress. In the same way, a steel bar was experimentally indented by using the compact indenter module and the radial in-plane displacements around the indentation were measured with the measurement module. Good agreement was found between the simulated and measured displacement fields. In addition, the influence of the tensile load on the measured displacement fields was clearly observed by the measurement module.

  1. NON-DESTRUCTIVE TBC SPALLATION DETECTION BY A MICRO-INDENTATION METHOD

    SciTech Connect

    J. M. Tannenbaum; B.S.-J. Kang; M.A. Alvin

    2010-06-18

    In this research, a load-based depth-sensing micro-indentation method for spallation detection and damage assessment of thermal barrier coating (TBC) materials is presented. A non-destructive multiple loading/partial unloading testing methodology was developed where in stiffness responses of TBC coupons subjected to various thermal cyclic loading conditions were analyzed to predict the spallation site and assess TBC degradation state. The measured stiffness responses at various thermal loading cycles were used to generate time-series color maps for correlation with accumulation of TBC residual stress states. The regions with higher stiffness responses can be linked to a rise in out-of-plane residual stress located near or at the yttria stabilized zirconia (YSZ)/thermally grown oxide (TGO) interface, which is ultimately responsible for initiating TBC spallation failure. A TBC thermal exposure testing plan was carried out where time-series cross-sectional microstructural analyses of damage accumulation and spallation failure associated with the evolution of bond coat/TGO/top coat composite (e.g. thickness, ratcheting, localized oxidations, etc.) of air plasma sprayed (APS) TBCs were evaluated and correlated to the measured stiffness responses at various thermal cycles. The results show that the load-based micro-indentation test methodology is capable of identifying the spallation site(s) before actual occurrence. This micro-indentation technique can be viewed as a viable non-destructive evaluation (NDE) technique for determining as-manufactured and process-exposed TBCs. This technique also shows promise for the development of a portable instrument for on-line, in-situ spallation detection/prediction of industrial-size TBC turbine components.

  2. In situ spectroscopic study of the plastic deformation of amorphous silicon under nonhydrostatic conditions induced by indentation

    SciTech Connect

    Gerbig, Yvonne B.; Michaels, C. A.; Bradby, Jodie E.; Haberl, Bianca; Cook, Robert F.

    2015-12-17

    Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique (IIT). The occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were observed. Furthermore, the obtained experimental results are linked with previously published work on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a model for the deformation behavior of a-Si under indentation loading.

  3. SPHERICAL INDENTATION OF SiC

    SciTech Connect

    Wereszczak, Andrew A; Johanns, Kurt E

    2007-01-01

    Instrumented Hertzian indentation testing was performed on several grades of SiCs and the results and preliminary interpretations are presented. The grades included hot-pressed and sintered compositions. One of the hot-pressed grades was additionally subjected to high temperature heat treatment to produce a coarsened grain microstructure to enable the examination of exaggerated grain size on indentation response. Diamond spherical indenters were used in the testing. Indentation load, indentation depth of penetration, and acoustic activity were continually measured during each indentation test. Indentation response and postmortem analysis of induced damage (e.g., ring/cone, radial and median cracking, quasi-plasticity) are compared and qualitatively as a function of grain size. For the case of SiC-N, the instrumented spherical indentation showed that yielding initiated at an average contact stress 12-13 GPa and that there was another event (i.e., a noticeable rate increase in compliance probably associated with extensive ring and radial crack formations) occurring around an estimated average contact stress of 19 GPa.

  4. Morphometric Analysis of Major Catchments Draining the Adriatic Indenter

    NASA Astrophysics Data System (ADS)

    Robl, Jörg; Heberer, Bianca; Neubauer, Franz; Prasicek, Günther; Hergarten, Stefan

    2016-04-01

    Topography and relief in collisional orogens such as the European Alps result from the interplay of uplift driven by plate convergence and crustal shortening, and erosional surface processes that act along evolving topographic gradients and counteract topography formation. Due to ongoing indentation of the Adriatic indenter into the Eastern Alps, the eastern segment of the Adriatic indenter is one of the tectonically most active zones of the Central Mediterranean region. The region is characterized by numerous earthquakes, distinct spatial gradients in recent uplift rates and exhumation level, and active faulting. However, the predominance of carbonaceous lithology hindered low-temperature thermochronology and cosmogenic nuclide dating, so that timing, rates and drivers of south-alpine topography development are still not well constrained. Further on, a systematic morphometric analysis of rivers draining the south-alpine indenter is still missing. In this study we fill this gap and investigate the interplay of tectonics and climate by a morphometric analysis of drainage systems of the eastern segment of the Adriatic indenter. We systematically extract a variety of characteristic channel metrics of four major drainage systems (Adige, Brenta, Piave, and Tagliamento) of this domain and interpret the morphometric results in terms of (a) lithological effects such as erodibility contrasts and karstification, (b) spatially variable uplift rates, (c) base level lowering caused by glacial erosion and possible Messinian preconditioning, and (d) the migration of drainage divides. We find a clear correlation between the normalized steepness index (ksn) and bedrock type. ksn - values are systematically increased whenever rivers incise into the basement of the south-alpine indenter. However, the outcrop of the basement indicates a high level of exhumation and thus the highest overall uplift of the domain such that both increased uplift rates and low rock erodibility may be

  5. Surface tension measurement from the indentation of clamped thin films.

    PubMed

    Xu, Xuejuan; Jagota, Anand; Paretkar, Dadhichi; Hui, Chung-Yuen

    2016-06-21

    We developed an indentation technique to measure the surface tension of relatively stiff solids. In the proposed method, a suspended thin solid film is indented by a rigid sphere and its deflection is measured by optical interferometry. The film deflection is jointly resisted by surface tension, elasticity and residual stress. Using a version of nonlinear von Karman plate theory that includes surface tension, we are able to separate the contribution of elasticity to the total tension in the film. Surface tension is determined by extrapolating the sum of surface tension and residual stress to zero film thickness. We measured the surface tension of polydimethylsiloxane (PDMS) using this technique and obtained a value of 19.5 ± 3.6 mN m(-1), consistent with the surface energy of PDMS reported in the literature. PMID:27189735

  6. Water jet indentation for local elasticity measurements of soft materials.

    PubMed

    Chevalier, N R; Dantan, Ph; Gazquez, E; Cornelissen, A J M; Fleury, V

    2016-01-01

    We present a novel elastography method for soft materials (100Pa-100kPa) based on indentation by a μm-sized water jet. We show that the jet creates a localized deformation ("cavity") of the material that can be easily visualized. We study experimentally how cavity width and depth depend on jet speed, height, incidence angle and sample elasticity. We describe how to calibrate the indenter using gels of known stiffness. We then demonstrate that the indenter yields quantitative elasticity values within 10% of those measured by shear rheometry. We corroborate our experimental findings with fluid-solid finite-element simulations that quantitatively predict the cavity profile and fluid flow lines. The water jet indenter permits in situ local stiffness measurements of 2D or 3D gels used for cell culture in physiological buffer, is able to assess stiffness heterogeneities with a lateral resolution in the range 50-500μm (at the tissue scale) and can be assembled at low cost with standard material from a biology laboratory. We therefore believe it will become a valuable method to measure the stiffness of a wide range of soft, synthetic or biological materials. PMID:26830759

  7. Measuring the mechanical properties of plant cells by combining micro-indentation with osmotic treatments

    PubMed Central

    Weber, Alain; Braybrook, Siobhan; Huflejt, Michal; Mosca, Gabriella; Routier-Kierzkowska, Anne-Lise; Smith, Richard S.

    2015-01-01

    Growth in plants results from the interaction between genetic and signalling networks and the mechanical properties of cells and tissues. There has been a recent resurgence in research directed at understanding the mechanical aspects of growth, and their feedback on genetic regulation. This has been driven in part by the development of new micro-indentation techniques to measure the mechanical properties of plant cells in vivo. However, the interpretation of indentation experiments remains a challenge, since the force measures results from a combination of turgor pressure, cell wall stiffness, and cell and indenter geometry. In order to interpret the measurements, an accurate mechanical model of the experiment is required. Here, we used a plant cell system with a simple geometry, Nicotiana tabacum Bright Yellow-2 (BY-2) cells, to examine the sensitivity of micro-indentation to a variety of mechanical and experimental parameters. Using a finite-element mechanical model, we found that, for indentations of a few microns on turgid cells, the measurements were mostly sensitive to turgor pressure and the radius of the cell, and not to the exact indenter shape or elastic properties of the cell wall. By complementing indentation experiments with osmotic experiments to measure the elastic strain in turgid cells, we could fit the model to both turgor pressure and cell wall elasticity. This allowed us to interpret apparent stiffness values in terms of meaningful physical parameters that are relevant for morphogenesis. PMID:25873663

  8. Evaluation of Fracture Toughness of Tantalum Carbide Ceramic Layer: A Vickers Indentation Method

    NASA Astrophysics Data System (ADS)

    Song, Ke; Xu, Yunhua; Zhao, Nana; Zhong, Lisheng; Shang, Zhao; Shen, Liuliu; Wang, Juan

    2016-06-01

    A tantalum carbide (TaC) ceramic layer was produced on gray cast iron matrix by in situ technique comprising a casting process and a subsequent heat treatment at 1135 °C for 45 min. Indentation fracture toughness in TaC ceramic layer was determined by the Vickers indentation test for various loads. A Niihara approach was chosen to assess the fracture toughness of TaC ceramic layer under condition of the Palmqvist mode in the experiment. The results reveal that K IC evaluation of TaC ceramic layer by the Vickers indentation method strongly depends on the selection of crack system and K IC equations. The critical indentation load for Vickers crack initiation in TaC ceramic layer lies between 1 and 2 N and the cracks show typical intergranular fracture characteristics. Indentation fracture toughness calculated by the indentation method is independent of the indentation load on the specimen. The fracture toughness of TaC ceramic layer is 6.63 ± 0.34 MPa m1/2, and the toughening mechanism is mainly crack deflection.

  9. Evaluation of Fracture Toughness of Tantalum Carbide Ceramic Layer: A Vickers Indentation Method

    NASA Astrophysics Data System (ADS)

    Song, Ke; Xu, Yunhua; Zhao, Nana; Zhong, Lisheng; Shang, Zhao; Shen, Liuliu; Wang, Juan

    2016-07-01

    A tantalum carbide (TaC) ceramic layer was produced on gray cast iron matrix by in situ technique comprising a casting process and a subsequent heat treatment at 1135 °C for 45 min. Indentation fracture toughness in TaC ceramic layer was determined by the Vickers indentation test for various loads. A Niihara approach was chosen to assess the fracture toughness of TaC ceramic layer under condition of the Palmqvist mode in the experiment. The results reveal that K IC evaluation of TaC ceramic layer by the Vickers indentation method strongly depends on the selection of crack system and K IC equations. The critical indentation load for Vickers crack initiation in TaC ceramic layer lies between 1 and 2 N and the cracks show typical intergranular fracture characteristics. Indentation fracture toughness calculated by the indentation method is independent of the indentation load on the specimen. The fracture toughness of TaC ceramic layer is 6.63 ± 0.34 MPa m1/2, and the toughening mechanism is mainly crack deflection.

  10. Effects of B + implantation on Palmqvist and Hertzian indentation response of Ti coated glass

    NASA Astrophysics Data System (ADS)

    Laugier, M. T.

    1991-07-01

    Effects of 1 × 10 16 ions cm -2 100 keV B + implantation on stress and cracking behaviour of Ti magnetron sputtered glass are investigated using indentation techniques. Compressive coating stresses ( ~ 0.3 GPa before implantation, -0.5 GPa after implantation) were determined from reduced Palmqvist indentation crack lengths and inhibition of partial ring cracks, and lateral breakout in sliding Hertzian tests was observed in addition to reduced Palmqvist cracking.

  11. Correction Method of Young's Modulus Measurement for Top Coat of Thermal Barrier Coatings by Instrumented Indentation Test with Spherical Indenter

    NASA Astrophysics Data System (ADS)

    Ohki, Motofumi; Ishibashi, Tatsuya

    Understanding of Young’s modulus of Thermal Barrier Coatings (TBCs) top coat is one of the important factors about improvement reliability of TBCs that is key technology of increasing thermal efficiency of gas turbine. Some measurement procedures have been proposed, but not established yet. Indentation test evaluated only hardness value before, but recently it has developed to be able to evaluate other mechanical properties such as yield strength, Young’s modulus, etc. From such background, application of indentation test for measurement of Young’s modulus of TBCs top coat is effective means. Although pyramidal indenter and calculation method regulated by ISO14577 is usually selected for measurement of Young’s modulus of TBCs top coat, author have proposed spherical indenter and calculation method based on elastic contact theory by Hertz. In this study, influence of different correcting specimens on measurement Young's modulus of TBCs top coat was discussed and it was concluded that the results of HMV500 hardness standard specimen show high uniformity on measured Young’s modulus of TBCs top coat (i.e. less load dependency).

  12. Ceramic wear in indentation and sliding

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    The various wear mechanisms involved with single-crystal ceramic materials in indentation and in sliding contacts. Experiments simulating interfacial events have been conducted with hemispherical, conical and pyramidal indenters (riders). With spherical riders, under either abrasive or adhesive conditions, two types of fracture pits have been observed. First, spherical-shaped fracture pits and wear particles are found as a result of either indenting or sliding. These are shown to be due to a spherical-shaped fracture along the circular or spherical stress trajectories. Second, polyhedral fracture pits and debris, produced by anisotropic fracture, and also found both during indenting and sliding. These are primarily controlled by surface and subsurface cracking along cleavage planes. Several quantitative results have also been obtained from this work. For example, using a pyramidal diamond, crack length of Mn-Zn ferrite in the indentation process grows linearly with increasing normal load. Moreover, the critical load to fracture both in indentation and sliding is essentially isotropic and is found to be directly proportional to the indenter radius.

  13. Thermomechanical indentation of shape memory polymers.

    SciTech Connect

    Long, Kevin N.; Nguyen, Thao D.; Castro, Francisco; Qi, H. Jerry; Dunn, Martin L.; Shandas, Robin

    2007-04-01

    Shape memory polymers (SMPs) are receiving increasing attention because of their ability to store a temporary shape for a prescribed period of time, and then when subjected to an environmental stimulus, recover an original programmed shape. They are attractive candidates for a wide range of applications in microsystems, biomedical devices, deployable aerospace structures, and morphing structures. In this paper we investigate the thermomechanical behavior of shape memory polymers due to instrumented indentation, a loading/deformation scenario that represents complex multiaxial deformation. The SMP sample is indented using a spherical indenter at a temperature T{sub 1} (>T{sub g}). The temperature is then lowered to T{sub 2} (indenter is kept in place. After removal of the indenter at T{sub 2}, an indentation impression exists. Shape memory is then activated by increasing the temperature to T{sub 1} (>T{sub g}) during free recovery the indentation impression disappears and the surface of the SMP recovers to its original profile. A recently-developed three-dimensional finite deformation constitutive model for the thermomechanical behavior of SMPs is then used with the finite element method to simulate this process. Measurement and simulation results are compared for cases of free and constrained recovery and good agreement is obtained, suggesting the appropriateness of the simulation approach for complex multiaxial loading/deformations that are likely to occur in applications.

  14. Full-surface deformation measurement of anisotropic tissues under indentation.

    PubMed

    Genovese, Katia; Montes, Areli; Martínez, Amalia; Evans, Sam L

    2015-05-01

    Inverse finite element-based analysis of soft biological tissues is an important tool to investigate their complex mechanical behavior and to develop physical models for medical simulations. Although there have recently been advances in dealing with the computational complexities of modeling biological materials, the collection of a sufficiently dense set of experimental data to properly capture their typically regionally varying properties still remains a critical issue. The aim of this work was to develop and test an optical system that combines 2D-Digital Image Correlation (DIC) and a novel Fringe Projection method with radial sensitivity (RFP) to test soft biological tissues under in vitro indentation. This system has the distinctive capability of using a single camera to retrieve the shape and 3D deformation of the whole upper surface of the indented sample without any blind measurement areas (with exception of the area under the indenter), with nominal depth and in-plane resolution of 0.05 mm and 0.004 mm, respectively. To test and illustrate the capabilities of the developed DIC/RFP system, the in vitro response to indentation of a homogeneous and isotropic latex foam is presented against the response of a slab of porcine ventricular myocardium, a highly in-homogeneous and anisotropic tissue. Our results illustrate the enhanced capabilities of the developed method to capture asymmetry in deformation with respect to standard indentation tests. This feature, together with the possibility of miniaturizing the system into a hand-held probe, makes this method potentially extendable to in vivo settings, alone or in combination with ultrasound measurements. PMID:25857545

  15. Quay crane scheduling for an indented berth

    NASA Astrophysics Data System (ADS)

    Lee, Der-Horng; Chen, Jiang Hang; Cao, Jin Xin

    2011-09-01

    This article explores the quay crane scheduling problem at an indented berth. The indented berth is known as an innovative implementation in the container terminals to tackle the challenge from the emergence of more and more mega-containerships. A mixed integer programming model by considering the non-crossing and safety distance constraints is formulated. A Tabu search heuristic is developed to solve the proposed problem. The computational results from this research indicate that the designed Tabu search is an effective method to handle the quay crane scheduling problem at an indented berth.

  16. A novel pillar indentation splitting test for measuring fracture toughness of thin ceramic coatings

    SciTech Connect

    Sebastiani, Marco; Johanns, K. E.; Herbert, Erik G.; Carassiti, Fabio; Pharr, George Mathews

    2014-05-16

    Fracture toughness is an important material property that plays a role in determining the in-service mechanical performance and adhesion of thin ceramic films. Unfortunately, measuring thin film fracture toughness is affected by influences from the substrate and the large residual stresses that can exist in the films. In this paper, we explore a promising new technique that potentially overcomes these problems based on nanoindentation testing of micro-pillars produced by focused ion beam milling of the films. By making the pillar diameter approximately equal to its length, the residual stress in the pillar’s upper portion is almost fully relaxed, and when indented with a sharp Berkovich indenter, the pillars fracture by splitting at reproducible loads that are readily quantified by a sudden displacement excursion in the load displacement behavior. Cohesive finite element simulations are used to analyze and develop, for a given material, a simple relation between the critical load at failure, pillar radius, and fracture toughness. The main novel aspect of this work is that neither crack geometries nor crack sizes need to be measured post test. Furthermore, the residual stress can be measured at the same time with toughness, by comparing the indentation results from the stress-free pillars and the as-deposited film. The method is tested on three different hard coatings formed by physical vapor deposition: titanium nitride, chromium nitride, and a CrAlN/Si3N4 nanocomposite. Results compare well to independently measured values of fracture toughness for the three brittle films. The technique offers several benefits over existing methods.

  17. A novel pillar indentation splitting test for measuring fracture toughness of thin ceramic coatings

    NASA Astrophysics Data System (ADS)

    Sebastiani, M.; Johanns, K. E.; Herbert, E. G.; Carassiti, F.; Pharr, G. M.

    2015-06-01

    The fracture toughness of thin ceramic films is an important material property that plays a role in determining the in-service mechanical performance and adhesion of this important class of engineering materials. Unfortunately, measurement of thin film fracture toughness is affected by influences from the substrate and the large residual stresses that can exist in the films. In this paper, we explore a promising new technique that potentially overcomes these issues based on nanoindentation testing of micro-pillars produced by focused ion beam milling of the films. By making the pillar diameter approximately equal to its length, the residual stress in the upper portion of the pillar is almost fully relaxed, and when indented with a sharp Berkovich indenter, the pillars fracture by splitting at reproducible loads that are readily quantified by a sudden displacement excursion in the load displacement behaviour. Cohesive finite element simulations are used for analysis and development of a simple relationship between the critical load at failure, pillar radius and fracture toughness for a given material. The main novel aspect of this work is that neither crack geometries nor crack sizes need to be measured post test. In addition, the residual stress can be measured at the same time with toughness, by comparison of the indentation results obtained on the stress-free pillars and the as-deposited film. The method is tested on three different hard coatings created by physical vapour deposition, namely titanium nitride, chromium nitride and a CrAlN/Si3N4 nanocomposite. Results compare well to independently measured values of fracture toughness for the three brittle films. The technique offers several benefits over existing methods.

  18. A novel pillar indentation splitting test for measuring fracture toughness of thin ceramic coatings

    DOE PAGESBeta

    Sebastiani, Marco; Johanns, K. E.; Herbert, Erik G.; Carassiti, Fabio; Pharr, George Mathews

    2014-05-16

    Fracture toughness is an important material property that plays a role in determining the in-service mechanical performance and adhesion of thin ceramic films. Unfortunately, measuring thin film fracture toughness is affected by influences from the substrate and the large residual stresses that can exist in the films. In this paper, we explore a promising new technique that potentially overcomes these problems based on nanoindentation testing of micro-pillars produced by focused ion beam milling of the films. By making the pillar diameter approximately equal to its length, the residual stress in the pillar’s upper portion is almost fully relaxed, and whenmore » indented with a sharp Berkovich indenter, the pillars fracture by splitting at reproducible loads that are readily quantified by a sudden displacement excursion in the load displacement behavior. Cohesive finite element simulations are used to analyze and develop, for a given material, a simple relation between the critical load at failure, pillar radius, and fracture toughness. The main novel aspect of this work is that neither crack geometries nor crack sizes need to be measured post test. Furthermore, the residual stress can be measured at the same time with toughness, by comparing the indentation results from the stress-free pillars and the as-deposited film. The method is tested on three different hard coatings formed by physical vapor deposition: titanium nitride, chromium nitride, and a CrAlN/Si3N4 nanocomposite. Results compare well to independently measured values of fracture toughness for the three brittle films. The technique offers several benefits over existing methods.« less

  19. Comparison of Spherical and Flat Tips for Indentation of Hydrogels

    NASA Astrophysics Data System (ADS)

    Tong, Kelly J.; Ebenstein, Donna M.

    2015-04-01

    Although both spherical and flat tips have been used in nanoindentation studies of soft biomaterials, care must be taken in selecting and validating a tip for a specific application. This article compares the moduli measured using spherical nanoindentation, flat tip (specifically, a flattened cone) nanoindentation, and unconfined compression testing of three polyacrylamide gels with nominal moduli between 10 kPa and 50 kPa. Although spherical indentation moduli were consistent with compression testing moduli and were independent of indentation depth, the flat tip results showed a significant increase in modulus with depth when analyzed using a flat punch model. Alternative methods are proposed to analyze the flat tip data to bring the flat tip results into alignment with the moduli measured using the other mechanical testing techniques.

  20. Surface Form Memory in NiTi: Energy Density of Constrained Recovery During Indent Replication

    NASA Astrophysics Data System (ADS)

    Fei, Xueling; O'Connell, Corey J.; Grummon, David S.; Cheng, Yang-Tse

    2009-08-01

    Spherical indentation of NiTi shape memory alloys (SMA) to depths greater than about 3% of the indenter radius results in two-way shape-memory training in a deformation zone beneath the indent. If deep spherical or cylindrical indents are subsequently machined away just sufficiently to remove traces of the original indent (in the martensitic condition), a thermally induced and cyclically reversible flat-to-protruded surface topography is enabled. We term the phenomenon surface form memory. The amplitude of cyclic protrusions, or ‘exdents’, is related to the existence of a subsurface deformation zone in which indentation has resulted in plastic strains beyond that which can be accomplished by martensite detwinning reactions. Dislocation generation in this zone is thought to underlie the observed two-way shape-memory (TWSME) training effect. In this article, we show that these cyclic exdents can perform appreciable mechanical work when displacing under load against a base-metal substrate (constrained recovery). This “non-Hertzian” indentation, which appears to be able to exert the full energy density of SMA actuation, may have use for assembly of micromachines, bond-release, microforging, microjoining, electrical switching, microconnectors, and variable heat transfer devices, among many other potential applications.

  1. Determination of mechanical properties from depth-sensing indentation data and results of finite element modeling

    NASA Astrophysics Data System (ADS)

    Isaenkova, M. G.; Perlovich, Yu A.; Krymskaya, O. A.; Zhuk, D. I.

    2016-04-01

    3D finite element model of indentation process with Berkovich tip was created. Using this model with different type of test materials, several series of calculations were made. These calculations lead to determination of material behavior features during indentation. Relations between material properties and its behavior during instrumented indentation were used for construction of dimensionless functions required for development the calculation algorithm, suitable to determine mechanical properties of materials by results of the depth-sensing indentation. Results of mechanical properties determination using elaborated algorithm for AISI 1020 steel grade were compared to properties obtained with standard compression tests. These two results differ by less than 10% for yield stress that evidence of a good accuracy of the proposed technique.

  2. Indentation of pressurized viscoplastic polymer spherical shells

    NASA Astrophysics Data System (ADS)

    Tvergaard, V.; Needleman, A.

    2016-08-01

    The indentation response of polymer spherical shells is investigated. Finite deformation analyses are carried out with the polymer characterized as a viscoelastic/viscoplastic solid. Both pressurized and unpressurized shells are considered. Attention is restricted to axisymmetric deformations with a conical indenter. The response is analyzed for various values of the shell thickness to radius ratio and various values of the internal pressure. Two sets of material parameters are considered: one set having network stiffening at a moderate strain and the other having no network stiffening until very large strains are attained. The transition from an indentation type mode of deformation to a structural mode of deformation involving bending that occurs as the indentation depth increases is studied. The results show the effects of shell thickness, internal pressure and polymer constitutive characterization on this transition and on the deformation modes in each of these regimes.

  3. Experimental Validation of the New Modular Application of the Upper Bound Theorem in Indentation

    PubMed Central

    Bermudo, Carolina; Martín, Francisco; Martín, María Jesús; Sevilla, Lorenzo

    2015-01-01

    Nowadays, thanks to the new manufacturing processes, indentation is becoming an essential part of the new arising processes such as the Incremental Forming Processes. This work presents the experimental validation of the analytical model developed for an indentation-based process. The analytical model is originated from the Upper Bound Theorem application by means of its new modular distribution. The modules considered are composed of two Triangular Rigid Zones each. The experimental validation is performed through a series of indentation tests with work-pieces of annealed aluminium EN AW-2030 and punches of steel AISI 304, under plane strain conditions. The results are compared with the ones obtained from the application of this new modular distribution of the Upper Bound Theorem, showing a good approximation and suitability of the model developed for an indentation-based process. PMID:25826738

  4. Experimental validation of the new modular application of the upper bound theorem in indentation.

    PubMed

    Bermudo, Carolina; Martín, Francisco; Martín, María Jesús; Sevilla, Lorenzo

    2015-01-01

    Nowadays, thanks to the new manufacturing processes, indentation is becoming an essential part of the new arising processes such as the Incremental Forming Processes. This work presents the experimental validation of the analytical model developed for an indentation-based process. The analytical model is originated from the Upper Bound Theorem application by means of its new modular distribution. The modules considered are composed of two Triangular Rigid Zones each. The experimental validation is performed through a series of indentation tests with work-pieces of annealed aluminium EN AW-2030 and punches of steel AISI 304, under plane strain conditions. The results are compared with the ones obtained from the application of this new modular distribution of the Upper Bound Theorem, showing a good approximation and suitability of the model developed for an indentation-based process. PMID:25826738

  5. Feature-Based Registration Techniques

    NASA Astrophysics Data System (ADS)

    Lorenz, Cristian; Klinder, Tobias; von Berg, Jens

    In contrast to intensity-based image registration, where a similarity measure is typically evaluated at each voxel location, feature-based registration works on a sparse set of image locations. Therefore, it needs an explicit step of interpolation to supply a dense deformation field. In this chapter, the application of feature-based registration to pulmonary image registration as well as hybrid methods, combining feature-based with intensity-based registration, is discussed. In contrast to pure feature based registration methods, hybrid methods are increasingly proposed in the pulmonary context and have the potential to out-perform purely intensity based registration methods. Available approaches will be classified along the categories feature type, correspondence definition, and interpolation type to finally achieve a dense deformation field.

  6. Lattice rotation caused by wedge indentation of a single crystal: Dislocation dynamics compared to crystal plasticity simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Yunhe; Gao, Yanfei; Nicola, Lucia

    2014-08-01

    A number of recent experimental efforts such as electron back scattering technique and three-dimensional X-ray structural microscopy have revealed the intriguing formation of sectors of lattice rotation fields under indentation. In the case of wedge indentation, the in-plane rotation changes sign from one sector to another. Although the lattice rotation fields can be used to compute the geometrically necessary dislocation (GND) densities, it remains unclear how these sectors can be related to the hardness and therefore to the indentation size effects, i.e., the increase of indentation hardness with the decrease of indentation depth. Crystal plasticity simulations in this work reproduce the experimental findings at large indentation depth. On the contrary, discrete dislocation plasticity can only capture the sectors found experimentally when there is a high obstacle density and large obstacle strength. Obstacle density and strength, however, have little effect on the hardness. In other words, there is no one-to-one correspondence between the lattice rotation patterns and the indentation size effects. The presence of obstacles favors the dislocation arrangements that lead to the experimentally found rotation sectors. Using the similarity solutions of indentation fields and the solution of localized deformation fields near a stationary crack, a simple model is developed that explains the dislocation pattern evolution, its relationship to the lattice misorientations, and more importantly its dependence on obstacles.

  7. Indentation measurements on the eardrum with automated projection moiré profilometry

    NASA Astrophysics Data System (ADS)

    Buytaert, J. A. N.; Aernouts, J. E. F.; Dirckx, J. J. J.

    2009-03-01

    Computer modeling of middle ear mechanics is an important tool to investigate its complex behavior, but correct mechanical and elastic parameters are needed to obtain realistic simulations. A possible way to determine eardrum elasticity in situ is the use of point indentation measurements. The eardrum is, however, a small fragile membrane, so a non-contacting high-resolution technique is needed to measure the shape change caused by point indentation. We have developed a projection moiré interferometer combined with an indentation actuator and a high-resolution force sensor. The apparatus applies deformations up to 1 mm with a resolution of 1 μm, while the indentation force is measured with a resolution better than 1 mN. The moiré setup delivers height data on 512×512 points through phase-shifting, with a height resolution of 15 μm. Shape recordings are made on a rabbit eardrum at different indentation distances, and indentation force is recorded simultaneously.

  8. Quasi-Plastic Deformation of WC-Co Composites Loaded with a Spherical Indenter

    NASA Astrophysics Data System (ADS)

    Zhang, Haibo; Fang, Zhigang Zak; Belnap, J. Daniel

    2007-03-01

    The quasi-plastic deformation behavior of cemented tungsten carbide (WC-Co) materials was studied using Hertzian indentation techniques. The indentation stress-strain curves of three WC-10 wt pct Co alloys with different hardness values demonstrate that WC-Co alloys exhibit “quasi-plasticity” behavior under indentation load and the increase of indentation stress vs indentation strain bears similarity to “strain hardening” in ductile metals. The analysis of the subsurface indentation damage shows that the mechanisms of the quasi-plastic deformation of WC-Co material are the formation of microcracks. Microcracks were found at heavily damaged areas in all three alloys, and the number of microcracks was higher for the sample with the higher apparent quasi-plasticity. The threshold stress values for the onset of quasi-plastic deformation and formation of ring cracks were determined and used to evaluate the brittleness index of these materials. The correlation of the brittleness index with hardness values gives insight with regard to the brittle or quasi-plastic responses of WC-Co materials.

  9. Indentation of a Power Law Creeping Solid

    NASA Astrophysics Data System (ADS)

    Bower, A. F.; Fleck, N. A.; Needleman, A.; Ogbonna, N.

    1993-04-01

    The aim of this paper is to establish a rigorous theoretical basis for interpreting the results of hardness tests on creeping specimens. We investigate the deformation of a creeping half-space with uniaxial stress-strain behaviour dot{ɛ}=dot{ɛ}0(σ /σ 0)m, which is indented by a rigid punch. Both axisymmetric and plane indenters are considered. The shape of the punch is described by a general expression which includes most indenter profiles of practical importance. Two methods are used to solve the problem. The main results are found using a transformation method suggested by R. Hill. It is shown that the creep indentation problem may be reduced to a form which is independent of the geometry of the punch, and depends only on the material properties through m. The reduced problem consists of a nonlinear elastic half-space, which is indented to a unit depth by a rigid flat punch of unit radius (in the axisymmetric case), or unit semi-width (in the plane case). Exact solutions are given for m = 1 and m = ∞ . For m between these two limits, the reduced problem has been solved using the finite element method. The results enable the load on the indenter and the contact radius to be calculated in terms of the indentation depth and rate of penetration. The stress, strain and displacement fields in the half-space may also be deduced. The accuracy of the solution is demonstrated by comparing the results with full-field finite element calculations. The predictions of the theory are shown to be consistent with experimental observations of hardness tests on creeping materials reported in the literature.

  10. Evaluation of barely visible indentation damage (BVID) in CF/EP sandwich composites using guided wave signals

    NASA Astrophysics Data System (ADS)

    Mustapha, Samir; Ye, Lin; Dong, Xingjian; Alamdari, Mehrisadat Makki

    2016-08-01

    Barely visible indentation damage after quasi-static indentation in sandwich CF/EP composites was assessed using ultrasonic guided wave signals. Finite element analyses were conducted to investigate the interaction between guided waves and damage, further to assist in the selection process of the Lamb wave sensitive modes for debonding identification. Composite sandwich beams and panels structures were investigated. Using the beam structure, a damage index was defined based on the change in the peak magnitude of the captured wave signals before and after the indentation, and the damage index was correlated with the residual deformation (defined as the depth of the dent), that was further correlated with the amount of crushing within the core. Both A0 and S0 Lamb wave modes showed high sensitivity to the presence of barely visible indentation damage with residual deformation of 0.2 mm. Furthermore, barely visible indentation damage was assessed in composite sandwich panels after indenting to 3 and 5 mm, and the damage index was defined, based on (a) the peak magnitude of the wave signals before and after indentation or (b) the mismatch between the original and reconstructed wave signals based on a time-reversal algorithm, and was subsequently applied to locate the position of indentation.

  11. A hybrid approach to determining cornea mechanical properties in vivo using a combination of nano-indentation and inverse finite element analysis.

    PubMed

    Abyaneh, M H; Wildman, R D; Ashcroft, I A; Ruiz, P D

    2013-11-01

    An analysis of the material properties of porcine corneas has been performed. A simple stress relaxation test was performed to determine the viscoelastic properties and a rheological model was built based on the Generalized Maxwell (GM) approach. A validation experiment using nano-indentation showed that an isotropic GM model was insufficient for describing the corneal material behaviour when exposed to a complex stress state. A new technique was proposed for determining the properties, using a combination of nano-indentation experiment, an isotropic and orthotropic GM model and inverse finite element method. The good agreement using this method suggests that this is a promising technique for measuring material properties in vivo and further work should focus on the reliability of the approach in practice. PMID:23816808

  12. Dent Resistance and Effect of Indentation Loading Rate on Superelastic TiNi Alloy

    NASA Astrophysics Data System (ADS)

    Farhat, Zoheir; Jarjoura, George; Shahirnia, Meisam

    2013-08-01

    The large recoverable deformation associated with reversible stress-induced martensitic transformation for superelastic TiNi alloys has been widely exploited in many applications. However, to employ superelastic TiNi in applications where high impact loading is expected, as in bearings, the effect of loading rate on superelasticity needs to be understood. In the current article, the effect of indentation loading rate on dent resistance and superelasticity of TiNi is studied. Indentation tests are performed, at different loading rates on superelastic TiNi alloy and correlated to tensile stress-strain data. It is found that the reversible deformation drops as loading rate is increased and superelasticity diminishes. Based on data collected and results analysis it is proposed that the loss in superelastic behavior under high indentation loading rate is related to retardation of the stress-induced martensitic transformation. Furthermore, a simple heat model was proposed and showed that the temperature rise during indentation is not significant.

  13. Measurement of deformation during spherical indentation of metals

    SciTech Connect

    Mulford, R. N.; Benson, D. C.; Hampel, F. G.; Asaro, R. J.

    2004-01-01

    Spherical indentation provides an easy measure of approximate mechanical properties, particularly those of small samples or regions that are not easily measured by other means. Spherical indentation data was analyzed by two methods. An analytical method based on powerlaw hardening yields a stress-strain curve. Finite element modelling based on the Mechanical Threshold Strength (MTS) constitutive model yields constitutive parameters with adequate accuracy. Understanding dynamic fracture requires understanding of the deformation characteristics of the material of interest. A small-scale test is convenient for evaluating local properties of a material, both before and after it has been subjected to dynamic loading, including fracture or spall processes. Systematic changes in the materials properties may also include spatial variation, changes due to aging, or changes resulting from annealing or other treatment. Spherical indentation provides a simple, inexpensive test for evaluating the mechanical properties of materials, requiring only small samples. In order to examine the sensitivity of this type of measurement to changes in strength, hardening, or other deformation characteristics, we must better understand the limits of the analysis, and the sensitivity of the analysis methods to variations in material properties. Variations in the data that arise from uncontrolled characteristics of the sample must also be examined, for example the number of grains sampled, the orientation of particular grains sampled, or the location of the indent relative to grain boundaries. These variations are characteristic of the sample, and samples discussed here may or may not be typical. Several ductile materials are examined to distinguish characteristics of the method from those of the sample.

  14. An Investigation of the Influence of Body Size and Indentation Asymmetry of the Effectiveness of Body Indentation in Combination with a Cambered Wing

    NASA Technical Reports Server (NTRS)

    Patterson, James C., Jr.; Loving, Donald L.

    1961-01-01

    An investigation has been made of a 450 sweptback cambered wing in combination with an unindented body and a body symmetrically indented with respect to its axes designed for a Mach number of 1.2. The ratio of body frontal area to wing planform area was 0.08 for these wing-body combinations. In order to determine the influence of body size on the effectiveness of indentation, the test data have been compared with previously obtained data for similar configurations having a ratio of body frontal area to wing planform area of 0.04. Also, in order to investigate the relative effectiveness of indentation asymmetry, a specially indented body designed to account for the wing camber and also designed for a Mach number of 1.2 has been included in these tests. The investigation was conducted in the Langley 8-Foot Tunnels Branch at Mach numbers from 0.80 to 1.43 and a Reynolds number of approximately 1.85 x 10(exp 6), based on a mean aerodynamic chord length of 5.955 inches. The data indicate that the configurations with larger ratio of body frontal area to wing planform area had smaller reductions in zero-lift wave drag associated with body indentation than the configurations with smaller ratio of body frontal area to wing planform area. The 0.08-area-ratio configurations also had correspondingly smaller increases in the values of maximum lift-drag ratio than the 0.04-area-ratio configurations. The consideration of wing camber in the body indentation design resulted in a 35.5-percent reduction in zero-lift wave drag, compared with a 21.5-percent reduction associated with the symmetrical indentation, but had a negligible effect on the values of maximum lift-drag ratio.

  15. Indentation Size Effects in Single Crystal Copper as Revealed by Synchrotron X-ray Microdiffraction

    SciTech Connect

    Feng, G.; Budiman, A. S.; Nix, W. D.; Tamura, N.; Patel, J. R.

    2007-11-19

    The indentation size effect (ISE) has been observed in numerous nanoindentation studies on crystalline materials; it is found that the hardness increases dramatically with decreasing indentation size - a 'smaller is stronger' phenomenon. Some have attributed the ISE to the existence of strain gradients and the geometrically necessary dislocations (GNDs). Since the GND density is directly related to the local lattice curvature, the Scanning X-ray Microdiffraction ({mu}SXRD) technique, which can quantitatively measure relative lattice rotations through the streaking of Laue diffractions, can used to study the strain gradients. The synchrotron {mu}SXRD technique we use - which was developed at the Advanced Light Source (ALS), Berkeley Lab - allows for probing the local plastic behavior of crystals with sub-micrometer resolution. Using this technique, we studied the local plasticity for indentations of different depths in a Cu single crystal. Broadening of Laue diffractions (streaking) was observed, showing local crystal lattice rotation due to the indentation-induced plastic deformation. A quantitative analysis of the streaking allows us to estimate the average GND density in the indentation plastic zones. The size dependence of the hardness, as found by nanoindentation, will be described, and its correlation to the observed lattice rotations will be discussed.

  16. Defect formation by pristine indenter at the initial stage of nanoindentation

    SciTech Connect

    Chen, I-Hsien; Hsiao, Chun-I; Behera, Rakesh K.; Hsu, Wen-Dung

    2013-12-07

    Nano-indentation is a sophisticated method to characterize mechanical properties of materials. This method samples a very small amount of material during each indentation. Therefore, this method is extremely useful to measure mechanical properties of nano-materials. The measurements using nanoindentation is very sensitive to the surface topology of the indenter and the indenting surfaces. The mechanisms involved in the entire process of nanoindentation require an atomic level understanding of the interplay between the indenter and the substrate. In this paper, we have used atomistic simulation methods with empirical potentials to investigate the effect of various types of pristine indenter on the defect nucleation and growth. Using molecular dynamics simulations, we have predicted the load-depth curve for conical, vickers, and sperical tip. The results are analyzed based on the coherency between the indenter tip and substrate surface for a fixed depth of 20 Å. The depth of defect nucleation and growth is observed to be dependent on the tip geometry. A tip with larger apex angle nucleates defects at a shallower depth. However, the type of defect generated is dependent on the crystalline orientation of the tip and substrate. For coherent systems, prismatic loops were generated, which released into the substrate along the close-packed directions with continued indentation. For incoherent systems, pyramidal shaped dislocation junctions formed in the FCC systems and disordered atomic clusters formed in the BCC systems. These defect nucleation and growth process provide the atomistic mechanisms responsible for the observed load-depth response during nanoindentation.

  17. Study of Damage and Fracture Toughness Due to Influence of Creep and Fatigue of Commercially Pure Copper by Monotonic and Cyclic Indentation

    NASA Astrophysics Data System (ADS)

    Ghosh, Sabita; Prakash, Raghu V.

    2013-01-01

    Fracture toughness is the ability of a component containing a flow to resist fracture. In the current study, the Ball indentation (BI) test technique, which is well acknowledged as an alternative approach to evaluate mechanical properties of materials due to its semi-nondestructive, fast, and high accurate qualities is used to estimate damage and the fracture toughness for copper samples subjected to varying levels of creep and fatigue. The indentation fracture toughness shows the degradation of Cu samples when they are subjected to different creep conditions. Axial fatigue cycling increases the strength at the mid-gauge section compared to other regions of the samples due to initial strain hardening. The advancement of indentation depth with indentation fatigue cycles experiences transient stage, i.e., jump in indentation depth has been observed, which may be an indication of failure and followed by a steady state with almost constant depth propagation with indentation cycles.

  18. Indenter size effect on the reversible incipient plasticity of Al (001) surface: Quasicontinuum study

    NASA Astrophysics Data System (ADS)

    Tang, Dan; Shao, Yu-Fei; Li, Jiu-Hui; Zhao, Xing; Qi, Yang

    2015-08-01

    Indenter size effect on the reversible incipient plasticity of Al (001) surface is studied by quasicontinuum simulations. Results show that the incipient plasticity under small indenter, the radius of which is less than ten nanometers, is dominated by a simple planar fault defect that can be fully removed after withdrawal of the indenter; otherwise, irreversible incipient plastic deformation driven by a complex dislocation activity is preferred, and the debris of deformation twins, dislocations, and stacking fault ribbons still remain beneath the surface when the indenter has been completely retracted. Based on stress distributions calculated at an atomic level, the reason why the dislocation burst instead of a simple fault ribbon is observed under a large indenter is the release of the intensely accumulated shear stress. Finally, the critical load analysis implies that there exists a reversible-irreversible transition of incipient plasticity induced by indenter size. Our findings provide a further insight into the incipient surface plasticity of face-centered-cubic metals in nano-sized contact issues. Project supported by the National Natural Science Foundation of China (Grant No. 51172040), the National Basic Research Program of China (Grant No. 2011CB606403), and the General Project of Scientific Research from Liaoning Educational Committee, China (Grant No. L2014135).

  19. Mechanical evaluation of five flowable resin composites by the dynamic micro-indentation method

    PubMed Central

    Hirayama, Satoshi; Iwai, Hirotoshi

    2014-01-01

    Measurement of the strength of brittle materials, such as resin composites, is extremely difficult. Micro-indentation hardness testing is a convenient way of investigating the mechanical properties of a small volume of material. In this study, the mechanical properties of five commercially available flowable resin composites were investigated by the dynamic micro-indentation method. Additionally, the effects of inorganic-filler content on the dynamic hardness and elastic modulus of flowable composites obtained by this method were investigated. The weight percentages of the inorganic fillers in the resin composites were determined by the ashing technique. The results indicate that the mechanical properties of flowable composites are affected by not only the filler content but also the properties of the resin matrix. In conclusion, the dynamic micro-indentation method is a useful technique for determining the mechanical behavior of dental resin composites as brittle material. PMID:25342983

  20. Techniques for Enhancing Web-Based Education.

    ERIC Educational Resources Information Center

    Barbieri, Kathy; Mehringer, Susan

    The Virtual Workshop is a World Wide Web-based set of modules on high performance computing developed at the Cornell Theory Center (CTC) (New York). This approach reaches a large audience, leverages staff effort, and poses challenges for developing interesting presentation techniques. This paper describes the following techniques with their…

  1. Axisymmetric indentation of curved elastic membranes by a convex rigid indenter

    PubMed Central

    Pearce, S.P.; King, J.R.; Holdsworth, M.J.

    2011-01-01

    Motivated by applications to seed germination, we consider the transverse deflection that results from the axisymmetric indentation of an elastic membrane by a rigid body. The elastic membrane is fixed around its boundary, with or without an initial pre-stretch, and may be initially curved prior to indentation. General indenter shapes are considered, and the load–indentation curves that result for a range of spheroidal tips are obtained for both flat and curved membranes. Wrinkling may occur when the membrane is initially curved, and a relaxed strain-energy function is used to calculate the deformed profile in this case. Applications to experiments designed to measure the mechanical properties of seed endosperms are discussed. PMID:22298913

  2. Mechanical characterization of soft materials using transparent indenter testing system and finite element simulation

    NASA Astrophysics Data System (ADS)

    Xuan, Yue

    Background. Soft materials such as polymers and soft tissues have diverse applications in bioengineering, medical care, and industry. Quantitative mechanical characterization of soft materials at multiscales is required to assure that appropriate mechanical properties are presented to support the normal material function. Indentation test has been widely used to characterize soft material. However, the measurement of in situ contact area is always difficult. Method of Approach. A transparent indenter method was introduced to characterize the nonlinear behaviors of soft materials under large deformation. This approach made the direct measurement of contact area and local deformation possible. A microscope was used to capture the contact area evolution as well as the surface deformation. Based on this transparent indenter method, a novel transparent indentation measurement systems has been built and multiple soft materials including polymers and pericardial tissue have been characterized. Seven different indenters have been used to study the strain distribution on the contact surface, inner layer and vertical layer. Finite element models have been built to simulate the hyperelastic and anisotropic material behaviors. Proper material constants were obtained by fitting the experimental results. Results.Homogeneous and anisotropic silicone rubber and porcine pericardial tissue have been examined. Contact area and local deformation were measured by real time imaging the contact interface. The experimental results were compared with the predictions from the Hertzian equations. The accurate measurement of contact area results in more reliable Young's modulus, which is critical for soft materials. For the fiber reinforced anisotropic silicone rubber, the projected contact area under a hemispherical indenter exhibited elliptical shape. The local surface deformation under indenter was mapped using digital image correlation program. Punch test has been applied to thin films of

  3. A numerical investigation on mechanical property improvement of styrene butadine rubber by static straight blade indentation

    NASA Astrophysics Data System (ADS)

    Setiyana, B.; Ismail, R.; Jamari, J.; Schipper, D. J.

    2016-04-01

    Mechanical property improvement of rubber is widely carried out by adding carbon black or silica as a filler in rubber. In general, this improvement aims on the increase of stiffness and abrasion resistance. By means of the static straight blade indentation technique, this paper studies the mechanical properties of Unfilled Styrene Butadiene Rubber (SBR-0) and Filled Styrene Butadiene Rubber that is compounded with carbon black (SBR-25). The numerical method applied was Finite Element Analysis (FEA) in which the rubber was modeled as a hyper-elastic material and indented by a blade indenter with various wedge angles i.e. 30, 45 and 60 degrees. At the same depth of indentation, the results showed that there was an increase in both rubber stiffness and maximum stress if the rubber was compounded. However, it is found that the rubber stiffness showed a regular slight increase, while the maximum stress experienced an irregularly significant increase. Especially for the 30 degree wedge angle, the maximum stress extremely increased at a certain depth of indentation.

  4. Substrate-dependent cell elasticity measured by optical tweezers indentation

    NASA Astrophysics Data System (ADS)

    Yousafzai, Muhammad S.; Ndoye, Fatou; Coceano, Giovanna; Niemela, Joseph; Bonin, Serena; Scoles, Giacinto; Cojoc, Dan

    2016-01-01

    In the last decade, cell elasticity has been widely investigated as a potential label free indicator for cellular alteration in different diseases, cancer included. Cell elasticity can be locally measured by pulling membrane tethers, stretching or indenting the cell using optical tweezers. In this paper, we propose a simple approach to perform cell indentation at pN forces by axially moving the cell against a trapped microbead. The elastic modulus is calculated using the Hertz-model. Besides the axial component, the setup also allows us to examine the lateral cell-bead interaction. This technique has been applied to measure the local elasticity of HBL-100 cells, an immortalized human cell line, originally derived from the milk of a woman with no evidence of breast cancer lesions. In addition, we have studied the influence of substrate stiffness on cell elasticity by performing experiments on cells cultured on two substrates, bare and collagen-coated, having different stiffness. The mean value of the cell elastic modulus measured during indentation was 26±9 Pa for the bare substrate, while for the collagen-coated substrate it diminished to 19±7 Pa. The same trend was obtained for the elastic modulus measured during the retraction of the cell: 23±10 Pa and 13±7 Pa, respectively. These results show the cells adapt their stiffness to that of the substrate and demonstrate the potential of this setup for low-force probing of modifications to cell mechanics induced by the surrounding environment (e.g. extracellular matrix or other cells).

  5. In situ spectroscopic study of the plastic deformation of amorphous silicon under nonhydrostatic conditions induced by indentation

    NASA Astrophysics Data System (ADS)

    Gerbig, Y. B.; Michaels, C. A.; Bradby, J. E.; Haberl, B.; Cook, R. F.

    2015-12-01

    Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique. Quantitative analyses of the generated in situ Raman maps provide unique insight into the phase behavior of as-implanted a-Si. In particular, the occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were measured. The experimental results are linked with previously published papers on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a sequence for the development of deformation of a-Si under indentation loading. The sequence involves three distinct deformation mechanisms of a-Si: (1) reversible deformation, (2) increase in coordination defects (onset of plastic deformation), and (3) phase transformation. Estimated conditions for the occurrence of these mechanisms are given with respect to relevant intrinsic and extrinsic parameters, such as indentation stress, volumetric strain, and bond angle distribution (a measure for the structural order of the amorphous network). The induced volumetric strains are accommodated solely by reversible deformation of the tetrahedral network when exposed to small indentation stresses. At greater indentation stresses, the increased volumetric strains in the tetrahedral network lead to the formation of predominately fivefold coordination defects, which seems to mark the onset of irreversible or plastic deformation of the a-Si thin film. Further increase in the indentation stress appears to initiate the formation of sixfold coordinated atomic arrangements. These sixfold coordinated arrangements may maintain their amorphous tetrahedral structure with a high density of coordination defects or nucleate as a new crystalline

  6. In situ spectroscopic study of the plastic deformation of amorphous silicon under non-hydrostatic conditions induced by indentation

    PubMed Central

    Gerbig, Y.B; Michaels, C.A.; Bradby, J.E.; Haberl, B.; Cook, R.F.

    2016-01-01

    Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique. Quantitative analyses of the generated in situ Raman maps provide unique, new insight into the phase behavior of as-implanted a-Si. In particular, the occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were measured. The experimental results are linked with previously published work on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a sequence for the development of deformation of a-Si under indentation loading. The sequence involves three distinct deformation mechanisms of a-Si: (1) reversible deformation, (2) increase in coordination defects (onset of plastic deformation), and (3) phase transformation. Estimated conditions for the occurrence of these mechanisms are given with respect to relevant intrinsic and extrinsic parameters, such as indentation stress, volumetric strain, and bond angle distribution (a measure for the structural order of the amorphous network). The induced volumetric strains are accommodated solely by reversible deformation of the tetrahedral network when exposed to small indentation stresses. At greater indentation stresses, the increased volumetric strains in the tetrahedral network lead to the formation of predominately five-fold coordination defects, which seems to mark the onset of irreversible or plastic deformation of the a-Si thin film. Further increase in the indentation stress appears to initiate the formation of six-fold coordinated atomic arrangements. These six-fold coordinated arrangements may maintain their amorphous tetrahedral structure with a high density of coordination defects or nucleate as a new crystalline

  7. THE RESPONSE OF SOLIDS TO ELASTIC/ PLASTIC INDENTATION

    SciTech Connect

    Chiang, S. S.; Marshall, D. B.; Evans, A. G.

    1980-11-01

    A new approach for analysing indentation plasticity and indentation fracture is presented, The analysis permits relations to be established between material properties (notably hardness, yield strength and elastic modulus) and the dimensions of the indentation and plastic zone. The predictions are demonstrated to be fully consistent with observations performed on a wide range of materials. The indentation stress fields can also be adapted to generate predictions of indentation fracture thresholds for the three dominant crack types: radial, median and lateral cracks. The predictions are generally consistent with experimental observations.

  8. Indentation Tests Reveal Geometry-Regulated Stiffening of Nanotube Junctions.

    PubMed

    Ozden, Sehmus; Yang, Yang; Tiwary, Chandra Sekhar; Bhowmick, Sanjit; Asif, Syed; Penev, Evgeni S; Yakobson, Boris I; Ajayan, Pulickel M

    2016-01-13

    Here we report a unique method to locally determine the mechanical response of individual covalent junctions between carbon nanotubes (CNTs), in various configurations such as "X", "Y", and "Λ"-like. The setup is based on in situ indentation using a picoindenter integrated within a scanning electron microscope. This allows for precise mapping between junction geometry and mechanical behavior and uncovers geometry-regulated junction stiffening. Molecular dynamics simulations reveal that the dominant contribution to the nanoindentation response is due to the CNT walls stretching at the junction. Targeted synthesis of desired junction geometries can therefore provide a "structural alphabet" for construction of macroscopic CNT networks with tunable mechanical response. PMID:26618517

  9. Rebound indentation problem for a viscoelastic half-space and axisymmetric indenter - Solution by the method of dimensionality reduction

    NASA Astrophysics Data System (ADS)

    Argatov, Ivan I.; Popov, Valentin L.

    2016-08-01

    The method of dimensionality reduction (MDR) is extended for the axisymmetric frictionless unilateral Hertz-type contact problem for a viscoelastic half-space and an arbitrary axisymmetric rigid indenter under the assumption that an arbitrarily evolving in time circular contact area remains singly connected during the whole process of indentation. In particular, the MDR is applied to study in detail the so-called rebound indentation problem, where the contact radius has a single maximum. It is shown that the obtained closed-form analytical solution for the rebound indentation displacement (recorded in the recovery phase, when the contact force vanishes) does not depend on the indenter shape.

  10. Study of indentation of a sample equine bone using finite element simulation and single cycle reference point indentation.

    PubMed

    Hoffseth, Kevin; Randall, Connor; Hansma, Paul; Yang, Henry T Y

    2015-02-01

    In an attempt to study the mechanical behavior of bone under indentation, methods of analyses and experimental validations have been developed, with a selected test material. The test material chosen is from an equine cortical bone. Stress-strain relationships are first obtained from conventional mechanical property tests. A finite element simulation procedure is developed for indentation analyses. The simulation results are experimentally validated by determining (1) the maximum depth of indentation with a single cycle type of reference point indentation, and (2) the profile and depth of the unloaded, permanent indentation with atomic force microscopy. The advantage of incorporating in the simulation a yield criterion calibrated by tested mechanical properties, with different values in tension and compression, is demonstrated. In addition, the benefit of including damage through a reduction in Young's modulus is shown in predicting the permanent indentation after unloading and recovery. The expected differences in response between two indenter tips with different sharpness are predicted and experimentally observed. Results show predicted indentation depths agree with experimental data. Thus, finite element simulation methods with experimental validation, and with damage approximation by a reduction of Young's modulus, may provide a good approach for analysis of indentation of cortical bone. These methods reveal that multiple factors affect measured indentation depth and that the shape of the permanent indentation contains useful information about bone material properties. Only further work can determine if these methods or extensions to these methods can give useful insights into bone pathology, for example the bone fragility of thoroughbred racehorses. PMID:25528690

  11. Indentation of poroviscoelastic vocal fold tissue using an atomic force microscope.

    PubMed

    Heris, Hossein K; Miri, Amir K; Tripathy, Umakanta; Barthelat, Francois; Mongeau, Luc

    2013-12-01

    The elastic properties of the vocal folds (VFs) vary as a function of depth relative to the epithelial surface. The poroelastic anisotropic properties of porcine VFs, at various depths, were measured using atomic force microscopy (AFM)-based indentation. The minimum tip diameter to effectively capture the local properties was found to be 25µm, based on nonlinear laser scanning microscopy data and image analysis. The effects of AFM tip dimensions and AFM cantilever stiffness were systematically investigated. The indentation tests were performed along the sagittal and coronal planes for an evaluation of the VF anisotropy. Hertzian contact theory was used along with the governing equations of linear poroelasticity to calculate the diffusivity coefficient of the tissue from AFM indentation creep testing. The permeability coefficient of the porcine VF was found to be 1.80±0.32×10(-15)m(4)/Ns. PMID:23829979

  12. Experimental validation of a flat punch indentation methodology calibrated against unconfined compression tests for determination of soft tissue biomechanics.

    PubMed

    Delaine-Smith, R M; Burney, S; Balkwill, F R; Knight, M M

    2016-07-01

    Mechanical characterisation of soft biological tissues using standard compression or tensile testing presents a significant challenge due to specimen geometrical irregularities, difficulties in cutting intact and appropriately sized test samples, and issues with slippage or damage at the grips. Indentation can overcome these problems but requires fitting a model to the resulting load-displacement data in order to calculate moduli. Despite the widespread use of this technique, few studies experimentally validate their chosen model or compensate for boundary effects. In this study, viscoelastic hydrogels of different concentrations and dimensions were used to calibrate an indentation technique performed at large specimen-strain deformation (20%) and analysed with a range of routinely used mathematical models. A rigid, flat-ended cylindrical indenter was applied to each specimen from which 'indentation moduli' and relaxation properties were calculated and compared against values obtained from unconfined compression. Only one indentation model showed good agreement (<10% difference) with all moduli values obtained from compression. A sample thickness to indenter diameter ratio ≥1:1 and sample diameter to indenter diameter ratio ≥4:1 was necessary to achieve the greatest accuracy. However, it is not always possible to use biological samples within these limits, therefore we developed a series of correction factors. The approach was validated using human diseased omentum and bovine articular cartilage resulting in mechanical properties closely matching compression values. We therefore present a widely useable indentation analysis method to allow more accurate calculation of material mechanics which is important in the study of soft tissue development, ageing, health and disease. PMID:26974584

  13. A Comparison of Quasi-Static Indentation to Low-Velocity Impact

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.; Douglas, M. J.

    2000-01-01

    A static test method for modeling low-velocity foreign object impact events to composites would prove to be very beneficial to researchers since much more data can be obtained from a static test than from an impact test. In order to examine if this is feasible, a series of static indentation and low-velocity impact tests were carried out and compared. Square specimens of many sizes and thicknesses were utilized to cover the array of types of low velocity impact events. Laminates with a pi/4 stacking sequence were employed since this is by far the most common type of engineering laminate. Three distinct flexural rigidities -under two different boundary conditions were tested in order to obtain damage ranging from that due to large deflection to contact stresses and levels in-between to examine if the static indentation-impact comparisons are valid under the spectrum of damage modes that can be experienced. Comparisons between static indentation and low-velocity impact tests were based on the maximum applied transverse load. The dependent parameters examined included dent depth, back surface crack length, delamination area, and to a limited extent, load-deflection behavior. Results showed that no distinct differences could be seen between the static indentation tests and the low-velocity impact tests, indicating that static indentation can be used to represent a low-velocity impact event.

  14. A Comparison of Quasi-Static Indentation Testing to Low Velocity Impact Testing

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Douglas, Michael J.

    2001-01-01

    The need for a static test method for modeling low-velocity foreign object impact events to composites would prove to be very beneficial to researchers since much more data can be obtained from a static test than from an impact test. In order to examine if this is feasible, a series of static indentation and low velocity impact tests were carried out and compared. Square specimens of many sizes and thickness were utilized to cover the array of types of low velocity impact events. Laminates with a n/4 stacking sequence were employed since this is by the most common type of engineering laminate. Three distinct flexural rigidities under two different boundary conditions were tested in order to obtain damage due to large deflections, contact stresses and both to examine if the static indentation-impact comparisons are valid under the spectrum of damage modes that can be experienced. Comparisons between static indentation and low velocity impact tests were based on the maximum applied transverse load. The dependent parameters examined included dent depth, back surface crack length, delamination area and to a limited extent, load-deflection behavior. Results showed that no distinct differences could be seen between the static indentation tests and the low velocity impact tests, indicating that static indentation can be used to represent a low velocity impact event.

  15. Autofluorescence based diagnostic techniques for oral cancer

    PubMed Central

    Balasubramaniam, A. Murali; Sriraman, Rajkumari; Sindhuja, P.; Mohideen, Khadijah; Parameswar, R. Arjun; Muhamed Haris, K. T.

    2015-01-01

    Oral cancer is one of the most common cancers worldwide. Despite of various advancements in the treatment modalities, oral cancer mortalities are more, particularly in developing countries like India. This is mainly due to the delay in diagnosis of oral cancer. Delay in diagnosis greatly reduces prognosis of the treatment and also cause increased morbidity and mortality rates. Early diagnosis plays a key role in effective management of oral cancer. A rapid diagnostic technique can greatly aid in the early diagnosis of oral cancer. Now a day's many adjunctive oral cancer screening techniques are available for the early diagnosis of cancer. Among these, autofluorescence based diagnostic techniques are rapidly emerging as a powerful tool. These techniques are broadly discussed in this review. PMID:26538880

  16. Non-ideal effects in indentation testing of soft tissues.

    PubMed

    Finan, John D; Fox, Patrick M; Morrison, Barclay

    2014-06-01

    Indentation has several advantages as a loading mode for determining constitutive behavior of soft, biological tissues. However, indentation induces a complex, spatially heterogeneous deformation field that creates analytical challenges for the calculation of constitutive parameters. As a result, investigators commonly assume small indentation depths and large sample thicknesses to simplify analysis and then restrict indentation depth and sample geometry to satisfy these assumptions. These restrictions limit experimental resolution in some fields, such as brain biomechanics. However, recent experimental evidence suggests that conventionally applied limits are in fact excessively conservative. We conducted a parametric study of indentation loading with various indenter geometries, surface interface conditions, sample compressibility, sample geometry and indentation depth to quantitatively describe the deviation from previous treatments that results from violation of the assumptions of small indentation depth and large sample thickness. We found that the classical solution was surprisingly robust to violation of the assumption of small strain but highly sensitive to violation of the assumption of large sample thickness, particularly if the indenter was cylindrical. The ramifications of these findings for design of indentation experiments are discussed and correction factors are presented to allow future investigators to account for these effects without recreating our finite element models. PMID:23928858

  17. Equivalency of Berkovich and conical load-indentation curves

    NASA Astrophysics Data System (ADS)

    Swaddiwudhipong, S.; Hua, J.; Tho, K. K.; Liu, Z. S.

    2006-01-01

    The Berkovich indenter, which is one of the most commonly used indenter tips in instrumented indentation experiments, requires a tedious 3D finite element simulation. The indenter is widely idealized as a conical indenter of 70.3° half-angle to enable a substantially less demanding 2D axisymmetric modelling. Although the approach has been commonly adopted, limited studies have been performed to investigate possible deviations due to this simplification. The present study attempts to address the equivalency of the two indenters by performing extensively both 3D and 2D finite element analyses to simulate the load-displacement response of a wide range of elasto-plastic materials obeying power law strain-hardening during indentation for both Berkovich and conical indenters, respectively. It is demonstrated that the equivalency between these two indenters in terms of curvature of the loading curve is not valid across the range of material properties under study. However, it is established that if only the ratio of the remaining work done (WR) and the total work done (WT) of the load-indentation curve is of interest, this simplification can be adopted with satisfactory results.

  18. Indentation quantification for in-liquid nanomechanical measurement of soft material using an atomic force microscope: Rate-dependent elastic modulus of live cells

    NASA Astrophysics Data System (ADS)

    Ren, Juan; Yu, Shiyan; Gao, Nan; Zou, Qingze

    2013-11-01

    In this paper, a control-based approach to replace the conventional method to achieve accurate indentation quantification is proposed for nanomechanical measurement of live cells using atomic force microscope. Accurate indentation quantification is central to probe-based nanomechanical property measurement. The conventional method for in-liquid nanomechanical measurement of live cells, however, fails to accurately quantify the indentation as effects of the relative probe acceleration and the hydrodynamic force are not addressed. As a result, significant errors and uncertainties are induced in the nanomechanical properties measured. In this paper, a control-based approach is proposed to account for these adverse effects by tracking the same excitation force profile on both a live cell and a hard reference sample through the use of an advanced control technique, and by quantifying the indentation from the difference of the cantilever base displacement in these two measurements. The proposed control-based approach not only eliminates the relative probe acceleration effect with no need to calibrate the parameters involved, but it also reduces the hydrodynamic force effect significantly when the force load rate becomes high. We further hypothesize that, by using the proposed control-based approach, the rate-dependent elastic modulus of live human epithelial cells under different stress conditions can be reliably quantified to predict the elasticity evolution of cell membranes, and hence can be used to predict cellular behaviors. By implementing the proposed approach, the elastic modulus of HeLa cells before and after the stress process were quantified as the force load rate was changed over three orders of magnitude from 0.1 to 100 Hz, where the amplitude of the applied force and the indentation were at 0.4-2 nN and 250-450 nm, respectively. The measured elastic modulus of HeLa cells showed a clear power-law dependence on the load rate, both before and after the stress

  19. Indentation quantification for in-liquid nanomechanical measurement of soft material using an atomic force microscope: rate-dependent elastic modulus of live cells.

    PubMed

    Ren, Juan; Yu, Shiyan; Gao, Nan; Zou, Qingze

    2013-11-01

    In this paper, a control-based approach to replace the conventional method to achieve accurate indentation quantification is proposed for nanomechanical measurement of live cells using atomic force microscope. Accurate indentation quantification is central to probe-based nanomechanical property measurement. The conventional method for in-liquid nanomechanical measurement of live cells, however, fails to accurately quantify the indentation as effects of the relative probe acceleration and the hydrodynamic force are not addressed. As a result, significant errors and uncertainties are induced in the nanomechanical properties measured. In this paper, a control-based approach is proposed to account for these adverse effects by tracking the same excitation force profile on both a live cell and a hard reference sample through the use of an advanced control technique, and by quantifying the indentation from the difference of the cantilever base displacement in these two measurements. The proposed control-based approach not only eliminates the relative probe acceleration effect with no need to calibrate the parameters involved, but it also reduces the hydrodynamic force effect significantly when the force load rate becomes high. We further hypothesize that, by using the proposed control-based approach, the rate-dependent elastic modulus of live human epithelial cells under different stress conditions can be reliably quantified to predict the elasticity evolution of cell membranes, and hence can be used to predict cellular behaviors. By implementing the proposed approach, the elastic modulus of HeLa cells before and after the stress process were quantified as the force load rate was changed over three orders of magnitude from 0.1 to 100 Hz, where the amplitude of the applied force and the indentation were at 0.4-2 nN and 250-450 nm, respectively. The measured elastic modulus of HeLa cells showed a clear power-law dependence on the load rate, both before and after the stress

  20. Indentation testing and optimized property identification for viscoelastic materials using the finite element method

    NASA Astrophysics Data System (ADS)

    Resapu, Rajeswara Reddy

    tested in a Dynamic Mechanical Analyzer (DMA) via indentation. Two dimensional finite element models are developed to characterize the optimal material properties of PVC film and wire from the experimental load-displacement data. The aging of the PVC film is studied by characterizing the optimal material properties at different aging times; it is demonstrated that the thermally aged film and wires show degradation effects in terms of increased modulus with aging (i.e. increasingly brittle response). This indentation-finite element analysis approach has also been used to characterize the properties of pristine high and low density polyethylene (PE) films using both sharp (Vickers) and spherical indenters; the comparison of the results from both the indenters is performed. The mechanical properties of lamb and cow liver tissue have also been investigated by indentation. Specifically, tests using a spherical indenter is carried out on liver using both DMA (displacement controlled) and dead-weight loading (force controlled) in a Micro Computed Tomography (Micro-CT) chamber. Material properties are initially calculated using the 2D model from the DMA tests. The material properties are later validated by a 3D finite element model generated by image reconstruction through the X-Ray images of the specimen taken by the Micro-CT. These studies used a hyperelastic (Neo-Hookean) viscoelasticity material model to account for large strain effects. The approach used in this study successfully characterizes mechanical properties of polymers and tissues using non-destructive test methods. The properties obtained are validated by predicting the response of the material under other loading conditions. Good correlation between the experimental and finite element results has been obtained. The study also provides ideas for future work which can lead to improvements to this new technique.

  1. Mechanical indentation improves cerebral blood oxygenation signal quality of functional near-infrared spectroscopy (fNIRS) during breath holding

    NASA Astrophysics Data System (ADS)

    Vogt, William C.; Romero, Edwin; LaConte, Stephen M.; Rylander, Christopher G.

    2013-03-01

    Functional near-infrared spectroscopy (fNIRS) is a well-known technique for non-invasively measuring cerebral blood oxygenation, and many studies have demonstrated that fNIRS signals can be related to cognitive function. However, the fNIRS signal is attenuated by the skin, while scalp blood content has been reported to influence cerebral oxygenation measurements. Mechanical indentation has been shown to increase light transmission through soft tissues by causing interstitial water and blood flow away from the compressed region. To study the effects of indentation on fNIRS, a commercial fNIRS system with 16 emitter/detector pairs was used to measure cerebral blood oxygenation at 2 Hz. This device used diffuse reflectance at 730 nm and 850 nm to calculate deoxy- and oxy-hemoglobin concentrations. A borosilicate glass hemisphere was epoxied over each sensor to function as both an indenter and a lens. After placing the indenter/sensor assembly on the forehead, a pair of plastic bands was placed on top of the fNIRS headband and strapped to the head to provide uniform pressure and tightened to approx. 15 N per strap. Cerebral blood oxygenation was recorded during a breath holding regime (15 second hold, 15 second rest, 6 cycles) in 4 human subjects both with and without the indenter array. Results showed that indentation increased raw signal intensity by 85 +/- 35%, and that indentation increased amplitude of hemoglobin changes during breath cycles by 313% +/- 105%. These results suggest that indentation improves sensing of cerebral blood oxygenation, and may potentially enable sensing of deeper brain tissues.

  2. Quantitative Imaging of Young's Modulus of Soft Tissues from Ultrasound Water Jet Indentation: A Finite Element Study

    PubMed Central

    Lu, Min-Hua; Mao, Rui; Lu, Yin; Liu, Zheng; Wang, Tian-Fu; Chen, Si-Ping

    2012-01-01

    Indentation testing is a widely used approach to evaluate mechanical characteristics of soft tissues quantitatively. Young's modulus of soft tissue can be calculated from the force-deformation data with known tissue thickness and Poisson's ratio using Hayes' equation. Our group previously developed a noncontact indentation system using a water jet as a soft indenter as well as the coupling medium for the propagation of high-frequency ultrasound. The novel system has shown its ability to detect the early degeneration of articular cartilage. However, there is still lack of a quantitative method to extract the intrinsic mechanical properties of soft tissue from water jet indentation. The purpose of this study is to investigate the relationship between the loading-unloading curves and the mechanical properties of soft tissues to provide an imaging technique of tissue mechanical properties. A 3D finite element model of water jet indentation was developed with consideration of finite deformation effect. An improved Hayes' equation has been derived by introducing a new scaling factor which is dependent on Poisson's ratios v, aspect ratio a/h (the radius of the indenter/the thickness of the test tissue), and deformation ratio d/h. With this model, the Young's modulus of soft tissue can be quantitatively evaluated and imaged with the error no more than 2%. PMID:22927890

  3. Quantitative imaging of young's modulus of soft tissues from ultrasound water jet indentation: a finite element study.

    PubMed

    Lu, Min-Hua; Mao, Rui; Lu, Yin; Liu, Zheng; Wang, Tian-Fu; Chen, Si-Ping

    2012-01-01

    Indentation testing is a widely used approach to evaluate mechanical characteristics of soft tissues quantitatively. Young's modulus of soft tissue can be calculated from the force-deformation data with known tissue thickness and Poisson's ratio using Hayes' equation. Our group previously developed a noncontact indentation system using a water jet as a soft indenter as well as the coupling medium for the propagation of high-frequency ultrasound. The novel system has shown its ability to detect the early degeneration of articular cartilage. However, there is still lack of a quantitative method to extract the intrinsic mechanical properties of soft tissue from water jet indentation. The purpose of this study is to investigate the relationship between the loading-unloading curves and the mechanical properties of soft tissues to provide an imaging technique of tissue mechanical properties. A 3D finite element model of water jet indentation was developed with consideration of finite deformation effect. An improved Hayes' equation has been derived by introducing a new scaling factor which is dependent on Poisson's ratios v, aspect ratio a/h (the radius of the indenter/the thickness of the test tissue), and deformation ratio d/h. With this model, the Young's modulus of soft tissue can be quantitatively evaluated and imaged with the error no more than 2%. PMID:22927890

  4. Effect of viscoplastic material parameters on polymer indentation

    NASA Astrophysics Data System (ADS)

    Tvergaard, V.; Needleman, A.

    2012-09-01

    The effect of material parameters characterizing viscoplastic flow on the indentation response of polymers is investigated using three-dimensional finite element analyses and a one-dimensional expanding spherical cavity model. The polymer is characterized by a finite strain elastic-viscoplastic constitutive relation and two indenter shapes are considered; a conical indenter and a pyramidal indenter. The ability of the simpler expanding spherical cavity model to reproduce the trends obtained from the finite element solutions is assessed for both indenter shapes. Within the range of parameter variations considered, it is found that two material stress parameters characterizing the plastic flow resistance have the largest effect on the value of the indentation hardness although variations in other material parameters can lead to significant variations.

  5. On the determination of elastic coefficients from indentation experiments

    NASA Astrophysics Data System (ADS)

    Tardieu, N.; Constantinescu, A.

    2000-06-01

    The main result of this paper is the extension of the adjoint state method to variational inequalities. This is done for the Signorini contact problem (Kikuchi N and Oden J T 1988 Contact Problems in Elasticity: a Study of Variational Inequalities and Finite Element Methods (Philadelphia: SIAM)) and used for the identification of elastic coefficients from an indentation test. The result is obtained by two independent approaches based on the penalized and respectively, mixed formulations of the direct problem, a Signorini contact problem. An important and astonishing result is that the obtained adjoint problem is a linear problem with Dirichlet boundary conditions. This is expected for problems described with variational equalities (Bui H D 1993 Introduction Aux Problèmes Inverses en Mécanique des Matériaux (Paris: Eyrolles) (Engl. Transl. (Boca Raton, FL: CRC Press)), Lions J L 1968 Contrôle Optimal des Systèmes Gouvernés par des Équations aux Dérivées Partielles (Dunod)), but is a new result for problems described with variational inequalities. As an application, the elastic coefficients of an isotropic body have been identified from the knowledge of a displacement-force curve measured during an indentation test. The efficiency of the method is illustrated on numerical examples for the identification of a bimaterial and a functional gradient material.

  6. The effect of friction on indentation test results

    NASA Astrophysics Data System (ADS)

    Harsono, E.; Swaddiwudhipong, S.; Liu, Z. S.

    2008-09-01

    A smooth contact analysis is commonly adopted in simulated indentation. Limited studies have been performed to investigate the possibility of deviation due to this simplification. This study involves the finite element simulation of indentation by conical indenters and the Berkovich family of indenters with three different apex angles of indenter tips of 50°, 60° and 70.3°. Loading curvatures and the ratio of the remaining work done to the total work done of the load-indentation curves resulting from the simulated indentation tests considering friction and smooth contact surfaces were compared and discussed. A wide range of elasto-plastic materials obeying the power law strain hardening model were considered in this study. The results as presented herein demonstrate that the effect of friction on the two essential basic parameters from the load-indentation curves, namely, the loading curvatures and the ratio of the work done, varies depending on both mechanical properties of the target materials and the geometries of the indenter tips adopted in the investigation.

  7. Multiview video codec based on KTA techniques

    NASA Astrophysics Data System (ADS)

    Seo, Jungdong; Kim, Donghyun; Ryu, Seungchul; Sohn, Kwanghoon

    2011-03-01

    Multi-view video coding (MVC) is a video coding standard developed by MPEG and VCEG for multi-view video. It showed average PSNR gain of 1.5dB compared with view-independent coding by H.264/AVC. However, because resolutions of multi-view video are getting higher for more realistic 3D effect, high performance video codec is needed. MVC adopted hierarchical B-picture structure and inter-view prediction as core techniques. The hierarchical B-picture structure removes the temporal redundancy, and the inter-view prediction reduces the inter-view redundancy by compensated prediction from the reconstructed neighboring views. Nevertheless, MVC has inherent limitation in coding efficiency, because it is based on H.264/AVC. To overcome the limit, an enhanced video codec for multi-view video based on Key Technology Area (KTA) is proposed. KTA is a high efficiency video codec by Video Coding Expert Group (VCEG), and it was carried out for coding efficiency beyond H.264/AVC. The KTA software showed better coding gain than H.264/AVC by using additional coding techniques. The techniques and the inter-view prediction are implemented into the proposed codec, which showed high coding gain compared with the view-independent coding result by KTA. The results presents that the inter-view prediction can achieve higher efficiency in a multi-view video codec based on a high performance video codec such as HEVC.

  8. Laser Remote Sensing: Velocimetry Based Techniques

    NASA Astrophysics Data System (ADS)

    Molebny, Vasyl; Steinvall, Ove

    Laser-based velocity measurement is an area of the field of remote sensing where the coherent properties of laser radiation are the most exposed. Much of the published literature deals with the theory and techniques of remote sensing. We restrict our discussion to current trends in this area, gathered from recent conferences and professional journals. Remote wind sensing and vibrometry are promising in their new scientific, industrial, military, and biomedical applications, including improving flight safety, precise weapon correction, non-contact mine detection, optimization of wind farm operation, object identification based on its vibration signature, fluid flow studies, and vibrometry-associated diagnosis.

  9. Indentation Schmid factor and orientation dependence of nanoindentation pop-in behavior of NiAl single crystals

    SciTech Connect

    Li, Tianlei; Gao, Yanfei; Bei, Hongbin; George, Easo P

    2011-01-01

    Instrumented nanoindentation techniques have been widely used to characterize the small-scale mechanical behavior of materials. The elastic-plastic transition during nanoindentation is often indicated by a sudden displacement burst (pop-in) in the measured load-displacement curve. In defect-free single crystals, the pop-in is believed to be the result of homogeneous dislocation nucleation because the maximum shear stress corresponding to the pop-in load approaches the theoretical strength of the materials and because the statistical distribution of pop-in stresses is consistent with what is expected for a thermally activated process of homogeneous dislocation nucleation. This paper investigates whether this process is affected by crystallography and stress components other than the resolved shear stress. A Stroh formalism coupled with the two-dimensional Fourier transformation is used to derive the analytical stress fields in elastically anisotropic solids under Hertzian contact, which allows the determination of an indentation Schmid factor, namely, the ratio of maximum resolved shear stress to the maximum contact pressure. Nanoindentation tests were conducted on B2-structured NiAl single crystals with different surface normal directions. This material was chosen because it deforms at room temperature by {110}<001> slip and thus avoids the complexity of partial dislocation nucleation. Good agreement is obtained between the experimental data and the theoretically predicted orientation dependence of pop-in loads based on the indentation Schmid factor. Pop-in load is lowest for indentation directions close to <111> and highest for those close to <001>. In nanoindentation, since the stress component normal to the slip plane is typically comparable in magnitude to the resolved shear stress, we find that the pressure sensitivity of homogeneous dislocation nucleation cannot be determined from pop-in tests. Our statistical measurements generally confirm the thermal

  10. Estimation of local anisotropy of plexiform bone: Comparison between depth sensing micro-indentation and Reference Point Indentation.

    PubMed

    Dall'Ara, E; Grabowski, P; Zioupos, P; Viceconti, M

    2015-11-26

    The recently developed Reference Point Indentation (RPI) allows the measurements of bone properties at the tissue level in vivo. The goal of this study was to compare the local anisotropic behaviour of bovine plexiform bone measured with depth sensing micro-indentation tests and with RPI. Fifteen plexiform bone specimens were extracted from a bovine femur and polished down to 0.05µm alumina paste for indentations along the axial, radial and circumferential directions (N=5 per group). Twenty-four micro-indentations (2.5µm in depth, 10% of them were excluded for testing problems) and four RPI-indentations (~50µm in depth) were performed on each sample. The local indentation modulus Eind was found to be highest for the axial direction (24.3±2.5GPa) compared to the one for the circumferential indentations (19% less stiff) and for the radial direction (30% less stiff). RPI measurements were also found to be dependent on indentation direction (p<0.001) with the exception of the Indentation Distance Increase (IDI) (p=0.173). In particular, the unloading slope US1 followed similar trends compared to the Eind: 0.47±0.03N/µm for axial, 11% lower for circumferential and 17% lower for radial. Significant correlations were found between US1 and Eind (p=0.001; R(2)=0.58), while no significant relationship was found between IDI and any of the micro-indentation measurements (p>0.157). In conclusion some of the RPI measurements can provide information about local anisotropy but IDI cannot. Moreover, there is a linear relationship between most local mechanical properties measured with RPI and with micro-indentations, but IDI does not correlate with any micro-indentation measurements. PMID:26477406

  11. An Approximate Formulation of the Effective Indentation Modulus of Elastically Anisotropic Film-on-Substrate Systems

    SciTech Connect

    Li, Tianlei; Lee, Jinhaeng; Gao, Yanfei

    2009-01-01

    Frictionless contact between an arbitrarily-shaped rigid indenter and an elastically anisotropic film-on-substrate system can be regarded as being superposed incrementally by a flat-ended punch contact, the shape and size of which are determined by the indenter shape, indentation depth (or applied load) and elastic properties of film and substrate. For typical nanoindentation applications, the indentation modulus can thus be approximated from the response of a circular contact with pressure of the form of [1 - (r/a){sup 2}]{sup -1/2}, where r is the radial coordinate and a is the contact radius. The surface-displacement Green's function for elastically anisotropic film-on-substrate system is derived in closed-form by using the Stroh formalism and the two-dimensional Fourier transform. The predicted dependence of the effective modulus on the ratio of film thickness to contact radius agrees well with detailed finite element simulations. Implications in evaluating film modulus by nanoindentation technique are also discussed.

  12. Intraoperative measurement of indenter-induced brain deformation: a feasibility study

    NASA Astrophysics Data System (ADS)

    Ji, Songbai; Fan, Xiaoyao; Roberts, David W.; Paulsen, Keith D.

    2014-03-01

    Accurate measurement of soft tissue material properties is critical for characterizing its biomechanical behaviors but can be challenging especially for the human brain in vivo. In this study, we investigated the feasibility of inducing and detecting cortical surface deformation intraoperatively for patients undergoing open skull neurosurgeries. A custom diskshaped indenter made of high-density tungsten (diameter of 15 mm with a thickness of 6 mm) was used to induce deformation on the brain cortical surface immediately after dural opening. Before and after placing the indenter, sequences (typically 250 frames at 15 frames-per-second, or ~17 seconds) of high-resolution stereo image pairs were acquired to capture the harmonic motion of the exposed cortical surface as due to blood pressure pulsation and respiration. For each sequence with the first left image serving as a baseline, an optical-flow motion-tracking algorithm was used to detect in-sequence cortical surface deformation. The resulting displacements of the exposed features within the craniotomy were spatially averaged to identify the temporal frames corresponding to motion peak magnitudes. Corresponding image pairs were then selected to reconstruct full-field three-dimensional (3D) cortical surfaces before and after indentation, respectively, from which full 3D displacement fields were obtained by registering their projection images. With one clinical patient case, we illustrate the feasibility of the technique in detecting indenter-induced cortical surface deformation in order to allow subsequent processing to determine material properties of the brain in vivo.

  13. Grid indentation analysis of mechanical properties of composite electrodes in Li-ion batteries

    DOE PAGESBeta

    Vasconcelos, Luize Scalco de; Xu, Rong; Li, Jianlin; Zhao, Kejie

    2016-03-09

    We report that electrodes in commercial rechargeable batteries are microscopically heterogeneous materials. The constituent components, including active materials, polymeric binders, and porous conductive matrix, often have large variation in their mechanical properties, making the mechanical characterization of composite electrodes a challenging task. In a model system of LiNi0.5Mn0.3Co0.2O2 cathode, we employ the instrumented grid indentation to determine the elastic modulus and hardness of the constituent phases. The approach relies on a large array of nanoindentation experiments and statistical analysis of the resulting data provided that the maximum indentation depth is carefully chosen. The statistically extracted properties of the active particlesmore » and the surrounding medium are in good agreement with the tests of targeted indentation at selected sites. Lastly, the combinatory technique of grid indentation and statistical deconvolution represents a fast and reliable route to quantify the mechanical properties of composite electrodes that feed the parametric input for the mechanics models.« less

  14. Neutron-based nonintrusive inspection techniques

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi

    1997-02-01

    Non-intrusive inspection of large objects such as trucks, sea-going shipping containers, air cargo containers and pallets is gaining attention as a vital tool in combating terrorism, drug smuggling and other violation of international and national transportation and Customs laws. Neutrons are the preferred probing radiation when material specificity is required, which is most often the case. Great strides have been made in neutron based inspection techniques. Fast and thermal neutrons, whether in steady state or in microsecond, or even nanosecond pulses are being employed to interrogate, at high speeds, for explosives, drugs, chemical agents, and nuclear and many other smuggled materials. Existing neutron techniques will be compared and their current status reported.

  15. Computational and experimental methodology for site-matched investigations of the influence of mineral mass fraction and collagen orientation on the axial indentation modulus of lamellar bone☆

    PubMed Central

    Spiesz, Ewa M.; Reisinger, Andreas G.; Kaminsky, Werner; Roschger, Paul; Pahr, Dieter H.; Zysset, Philippe K.

    2013-01-01

    Relationships between mineralization, collagen orientation and indentation modulus were investigated in bone structural units from the mid-shaft of human femora using a site-matched design. Mineral mass fraction, collagen fibril angle and indentation moduli were measured in registered anatomical sites using backscattered electron imaging, polarized light microscopy and nano-indentation, respectively. Theoretical indentation moduli were calculated with a homogenization model from the quantified mineral densities and mean collagen fibril orientations. The average indentation moduli predicted based on local mineralization and collagen fibers arrangement were not significantly different from the average measured experimentally with nanoindentation (p=0.9). Surprisingly, no substantial correlation of the measured indentation moduli with tissue mineralization and/or collagen fiber arrangement was found. Nano-porosity, micro-damage, collagen cross-links, non-collagenous proteins or other parameters affect the indentation measurements. Additional testing/simulation methods need to be considered to properly understand the variability of indentation moduli, beyond the mineralization and collagen arrangement in bone structural units. PMID:23994944

  16. The nano-epsilon dot method for strain rate viscoelastic characterisation of soft biomaterials by spherical nano-indentation.

    PubMed

    Mattei, G; Gruca, G; Rijnveld, N; Ahluwalia, A

    2015-10-01

    Nano-indentation is widely used for probing the micromechanical properties of materials. Based on the indentation of surfaces using probes with a well-defined geometry, the elastic and viscoelastic constants of materials can be determined by relating indenter geometry and measured load and displacement to parameters which represent stress and deformation. Here we describe a method to derive the viscoelastic properties of soft hydrated materials at the micro-scale using constant strain rates and stress-free initial conditions. Using a new self-consistent definition of indentation stress and strain and corresponding unique depth-independent expression for indentation strain rate, the epsilon dot method, which is suitable for bulk compression testing, is transformed to nano-indentation. We demonstrate how two materials can be tested with a displacement controlled commercial nano-indentor using the nano-espilon dot method (nano-ε̇M) to give values of instantaneous and equilibrium elastic moduli and time constants with high precision. As samples are tested in stress-free initial conditions, the nano-ε̇M could be useful for characterising the micro-mechanical behaviour of soft materials such as hydrogels and biological tissues at cell length scales. PMID:26143307

  17. Nanoscale Etching and Indentation of Silicon Surfaces with Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Dzegilenko, Fedor N.; Srivastava, Deepak; Saini, Subhash

    1998-01-01

    The possibility of nanolithography of silicon and germanium surfaces with bare carbon nanotube tips of scanning probe microscopy devices is considered with large scale classical molecular dynamics (MD) simulations employing Tersoff's reactive many-body potential for heteroatomic C/Si/Ge system. Lithography plays a key role in semiconductor manufacturing, and it is expected that future molecular and quantum electronic devices will be fabricated with nanolithographic and nanodeposition techniques. Carbon nanotubes, rolled up sheets of graphene made of carbon, are excellent candidates for use in nanolithography because they are extremely strong along axial direction and yet extremely elastic along radial direction. In the simulations, the interaction of a carbon nanotube tip with silicon surfaces is explored in two regimes. In the first scenario, the nanotubes barely touch the surface, while in the second they are pushed into the surface to make "nano holes". The first - gentle scenario mimics the nanotube-surface chemical reaction induced by the vertical mechanical manipulation of the nanotube. The second -digging - scenario intends to study the indentation profiles. The following results are reported in the two cases. In the first regime, depending on the surface impact site, two major outcomes outcomes are the selective removal of either a single surface atom or a surface dimer off the silicon surface. In the second regime, the indentation of a silicon substrate by the nanotube is observed. Upon the nanotube withdrawal, several surface silicon atoms are adsorbed at the tip of the nanotube causing significant rearrangements of atoms comprising the surface layer of the silicon substrate. The results are explained in terms of relative strength of C-C, C-Si, and Si-Si bonds. The proposed method is very robust and does not require applied voltage between the nanotube tips and the surface. The implications of the reported controllable etching and hole-creating for

  18. The bone diagnostic instrument II: Indentation distance increase

    NASA Astrophysics Data System (ADS)

    Hansma, Paul; Turner, Patricia; Drake, Barney; Yurtsev, Eugene; Proctor, Alexander; Mathews, Phillip; Lelujian, Jason; Randall, Connor; Adams, Jonathan; Jungmann, Ralf; Garza-de-Leon, Federico; Fantner, Georg; Mkrtchyan, Haykaz; Pontin, Michael; Weaver, Aaron; Brown, Morton B.; Sahar, Nadder; Rossello, Ricardo; Kohn, David

    2008-06-01

    The bone diagnostic instrument (BDI) is being developed with the long-term goal of providing a way for researchers and clinicians to measure bone material properties of human bone in vivo. Such measurements could contribute to the overall assessment of bone fragility in the future. Here, we describe an improved BDI, the Osteoprobe II™. In the Osteoprobe II™, the probe assembly, which is designed to penetrate soft tissue, consists of a reference probe (a 22 gauge hypodermic needle) and a test probe (a small diameter, sharpened rod) which slides through the inside of the reference probe. The probe assembly is inserted through the skin to rest on the bone. The distance that the test probe is indented into the bone can be measured relative to the position of the reference probe. At this stage of development, the indentation distance increase (IDI) with repeated cycling to a fixed force appears to best distinguish bone that is more easily fractured from bone that is less easily fractured. Specifically, in three model systems, in which previous mechanical testing and/or tests reported here found degraded mechanical properties such as toughness and postyield strain, the BDI found increased IDI. However, it must be emphasized that, at this time, neither the IDI nor any other mechanical measurement by any technique has been shown clinically to correlate with fracture risk. Further, we do not yet understand the mechanism responsible for determining IDI beyond noting that it is a measure of the continuing damage that results from repeated loading. As such, it is more a measure of plasticity than elasticity in the bone.

  19. Insights into Reference Point Indentation Involving Human Cortical Bone: Sensitivity to Tissue Anisotropy and Mechanical Behavior

    PubMed Central

    Granke, Mathilde; Coulmier, Aurélie; Uppuganti, Sasidhar; Gaddy, Jennifer A; Does, Mark D; Nyman, Jeffry S

    2014-01-01

    Reference point indentation (RPI) is a microindentation technique involving 20 cycles of loading in “force-control” that can directly assess a patient’s bone tissue properties. Even though preliminary clinical studies indicate a capability for fracture discrimination, little is known about what mechanical behavior the various RPI properties characterize and how these properties relate to traditional mechanical properties of bone. To address this, the present study investigated the sensitivity of RPI properties to anatomical location and tissue organization as well as examined to what extent RPI measurements explain the intrinsic mechanical properties of human cortical bone. Multiple indents with a target force of 10 N were done in 2 orthogonal directions (longitudinal and transverse) per quadrant (anterior, medial, posterior, and lateral) of the femoral mid-shaft acquired from 26 donors (25–101 years old). Additional RPI measurements were acquired for 3 orthogonal directions (medial only). Independent of age, most RPI properties did not vary among these locations, but they did exhibit transverse isotropy such that resistance to indentation is greater in the longitudinal (axial) direction than in the transverse direction (radial or circumferential). Next, beam specimens (~ 2 mm × 5 mm × 40 mm) were extracted from the medial cortex of femoral mid-shafts, acquired from 34 donors (21–99 years old). After monotonically loading the specimens in three-point bending to failure, RPI properties were acquired from an adjacent region outside the span. Indent direction was orthogonal to the bending axis. A significant inverse relationship was found between resistance to indentation and the apparent-level mechanical properties. Indentation distance increase (IDI) and a linear combination of IDI and the loading slope, averaged over cycles 3 through 20, provided the best explanation of the variance in ultimate stress (r2=0.25, p=0.003) and toughness (r2=0.35, p=0

  20. Compression of nanowires using a flat indenter: diametrical elasticity measurement.

    PubMed

    Wang, Zhao; Mook, William M; Niederberger, Christoph; Ghisleni, Rudy; Philippe, Laetitia; Michler, Johann

    2012-05-01

    A new experimental approach for the characterization of the diametrical elastic modulus of individual nanowires is proposed by implementing a micro/nanoscale diametrical compression test geometry, using a flat punch indenter. A 250 nm diameter single crystal silicon nanowire is compressed inside of a scanning electron microscope. Since silicon is highly anisotropic, the wire crystal orientation in the compression axis is determined by electron backscatter diffraction. In order to analyze the load-displacement compression data, a two-dimensional analytical closed-form solution based on a classical contact model is proposed. The results of the analytical model are compared with those of finite element simulations and to the experimental diametrical compression results and show good agreement. PMID:22432959

  1. Influence of Penetration Rate and Indenter Diameter in Strength Measurement by Indentation Testing on Small Rock Specimens

    NASA Astrophysics Data System (ADS)

    Haftani, Mohammad; Bohloli, Bahman; Nouri, Alireza; Javan, Mohammad Reza Maleki; Moosavi, Mahdi; Moradi, Majid

    2015-03-01

    Indentation testing has been developed as an unconventional method to determine intact rock strength using small rock specimens within the size of drill cuttings. In previous investigations involving indentation testing, researchers have used different indenter stylus geometries, penetration rate (PR) and specimen sizes. These dissimilarities can restrict applications of this method for strength measurement and lead to non-comparable results. This paper investigates the influence of indenter diameter (ID) and PR on indentation indices for carbonate rocks to provide objective comparison and application of the existing correlations. As part of this research, several indentation tests were conducted using different IDs and PRs. The laboratory test results showed that indentation indices can be affected by ID while PR has only minor effect on the indentation indices. Thus, a normalizing function was presented to reduce the dependency of test results to ID. Verification of the findings with independent data confirms the suitability of the suggested normalizing function in determining the rock uniaxial compressive strength using testing data obtained from various IDs and PRs.

  2. Rapid Disaster Analysis based on SAR Techniques

    NASA Astrophysics Data System (ADS)

    Yang, C. H.; Soergel, U.

    2015-03-01

    Due to all-day and all-weather capability spaceborne SAR is a valuable means for rapid mapping during and after disaster. In this paper, three change detection techniques based on SAR data are discussed: (1) initial coarse change detection, (2) flooded area detection, and (3) linear-feature change detection. The 2011 Tohoku Earthquake and Tsunami is used as case study, where earthquake and tsunami events provide a complex case for this study. In (1), pre- and post-event TerraSAR-X images are coregistered accurately to produce a false-color image. Such image provides a quick and rough overview of potential changes, which is useful for initial decision making and identifies areas worthwhile to be analysed further in more depth. In (2), the post-event TerraSAR-X image is used to extract the flooded area by morphological approaches. In (3), we are interested in detecting changes of linear shape as indicator for modified man-made objects. Morphological approaches, e.g. thresholding, simply extract pixel-based changes in the difference image. However, in this manner many irrelevant changes are highlighted, too (e.g., farming activity, speckle). In this study, Curvelet filtering is applied in the difference image not only to suppress false alarms but also to enhance the change signals of linear-feature form (e.g. buildings) in settlements. Afterwards, thresholding is conducted to extract linear-shaped changed areas. These three techniques mentioned above are designed to be simple and applicable in timely disaster analysis. They are all validated by comparing with the change map produced by Center for Satellite Based Crisis Information, DLR.

  3. AFM indentation study of breast cancer cells

    SciTech Connect

    Li, Q.S.; Lee, G.Y.H.; Ong, C.N.; Lim, C.T.

    2008-10-03

    Mechanical properties of individual living cells are known to be closely related to the health and function of the human body. Here, atomic force microscopy (AFM) indentation using a micro-sized spherical probe was carried out to characterize the elasticity of benign (MCF-10A) and cancerous (MCF-7) human breast epithelial cells. AFM imaging and confocal fluorescence imaging were also used to investigate their corresponding sub-membrane cytoskeletal structures. Malignant (MCF-7) breast cells were found to have an apparent Young's modulus significantly lower (1.4-1.8 times) than that of their non-malignant (MCF-10A) counterparts at physiological temperature (37 deg. C), and their apparent Young's modulus increase with loading rate. Both confocal and AFM images showed a significant difference in the organization of their sub-membrane actin structures which directly contribute to their difference in cell elasticity. This change may have facilitated easy migration and invasion of malignant cells during metastasis.

  4. Indentation Load Effect on Young's Modulus and Hardness of Porous Sialon Ceramic by Depth Sensing Indentation Tests

    NASA Astrophysics Data System (ADS)

    Osman, Sahin

    2007-11-01

    Depth sensing indentation (DSI) tests at the range of 200-1800 mN are performed on porous sialon ceramic to determine the indentation load on Young's modulus and hardness values. The Young modulus and hardness (Dynamic and Martens) values are deduced by analysing the unloading segments of the DSI test load-displacement curves using the Oliver-Pharr method. It is found that Young's modulus Er, the dynamic hardness HD and the Martens hardness HM exhibit significant indentation load dependences. The values of Young's modulus and hardness decrease with the increasing indentation load, as a result of indentation load effect. The experimental hf/hm ratios lower than the critical value 0.7, with hm being the maximum penetration depth during loading and hf the final unloading depth, indicate that our sample shows the work hardening behaviour.

  5. Some Techniques for Computer-Based Assessment in Medical Education.

    ERIC Educational Resources Information Center

    Mooney, G. A.; Bligh, J. G.; Leinster, S. J.

    1998-01-01

    Presents a system of classification for describing computer-based assessment techniques based on the level of action and educational activity they offer. Illustrates 10 computer-based assessment techniques and discusses their educational value. Contains 14 references. (Author)

  6. Finite Element Analysis of Deformation Due to Ball Indentation and Evaluation of Tensile Properties of Tempered P92 Steel

    NASA Astrophysics Data System (ADS)

    Barbadikar, Dipika R.; Ballal, A. R.; Peshwe, D. R.; Mathew, M. D.

    2015-08-01

    Ball indentation (BI) technique has been effectively used to evaluate the tensile properties with minimal volume of material. In the present investigation, BI test carried out on P92 steel (9Cr-0.5Mo-1.8W), using 0.76 mm diameter silicon nitride ball indenter was modeled using finite element (FE) method and analyzed. The effect of test temperature [300 K and 923 K (27 °C and 650 °C)], tempering temperature [1013 K, 1033 K, and 1053 K (740 °C, 760 °C, and 780 °C)], and coefficient of friction of steel (0.0 to 0.5) on the tensile strength and material pile-up was investigated. The stress and strain distributions underneath the indenter and along the top elements of the model have been studied to understand the deformation behavior. The tensile strength was found to decrease with increase in tempering and test temperatures. The increased pile-up around the indentation was attributed to the decrease in strain hardening exponent ( n) with increase in the test temperature. The pile-up height determined from profilometry studies and FE analysis as well as the load depth curve from BI and FE analysis was in agreement. The maximum strain location below the indentation changes with the test temperature. Stress-strain curves obtained by conventional tensile, BI test, and representative stress-strain concepts of FE model were found exactly matching.

  7. Bending stress determination in pipes using a radial in-plane digital speckle pattern interferometer combined with instrumented indentation

    NASA Astrophysics Data System (ADS)

    Fontana, Filipe; Viotti, Matias R.; Albertazzi G., Armando, Jr.

    2015-05-01

    This paper presents a modular device based on digital speckle pattern interferometry (DSPI) combined with an instrumented indenter. The system is divided in two modules, the interferometric and the indentation module. The former uses a diffractive optical element (DOE) to obtain radial in-plane sensitivity. This module measures the whole shallow displacement field generated by the indentation print on the surface of the material under testing. The latter module is sized suitably with the interferometric module. The indentation module uses a mechanical/hydraulic scheme to provide the system a high loading capability. A piezoelectric loading cell and an inductive transducer are used to simultaneously measure the load applied on the ball indenter and its penetration on the material. For the experimental tests, a bench capable to apply in a specific pipe a very well-known bending moment was used. This bench is mounted with two 12- meters pipes disposed horizontally. A transverse load is applied in the central cross-section of both pipes. The load application is made by a hydraulic actuator and measured with a load cell. Strain-gages are also used in a half-bridge configuration to measure the strain in the 8 cross-sections distributed along the pipe length. Each cross-section was measured by the proposed instrumented indentation system and compared with the strain-gages and load cell measurements. The results obtained show an uncertainty level around 20-30% of the measured bending stress. Good agreement was found between the computed bending stress using the strain-gages, load cell and the proposed method using the instrumented indentation system.

  8. Indentation-flexure and low-velocity impact damage in graphite/epoxy laminates

    NASA Technical Reports Server (NTRS)

    Kwon, Young S.; Sankar, Bhavani V.

    1992-01-01

    Static indentation and low velocity impact tests were performed on quasi-isotropic and cross ply graphite/epoxy composite laminates. The load deflection relations in static tests and impact force history in the impact tests were recorded. The damage was assessed by using ultrasonic C-scanning and photomicrographic techniques. The static behavior of the laminates and damage progression during loading, unloading, and reloading were explained by a simple plate delamination model. A good correlation existed between the static and impact responses. It was found that results from a few static indentation-flexture tests can be used to predict the response and damage in composite laminates due to a class of low velocity impact events.

  9. Measuring the compressive viscoelastic mechanical properties of human cervical tissue using indentation.

    PubMed

    Yao, Wang; Yoshida, Kyoko; Fernandez, Michael; Vink, Joy; Wapner, Ronald J; Ananth, Cande V; Oyen, Michelle L; Myers, Kristin M

    2014-06-01

    The human cervix is an important mechanical barrier in pregnancy which must withstand the compressive and tensile forces generated from the growing fetus. Premature cervical shortening resulting from premature cervical remodeling and alterations of cervical material properties are known to increase a woman׳s risk of preterm birth (PTB). To understand the mechanical role of the cervix during pregnancy and to potentially develop indentation techniques for in vivo diagnostics to identify women who are at risk for premature cervical remodeling and thus preterm birth, we developed a spherical indentation technique to measure the time-dependent material properties of human cervical tissue taken from patients undergoing hysterectomy. In this study we present an inverse finite element analysis (IFEA) that optimizes material parameters of a viscoelastic material model to fit the stress-relaxation response of excised tissue slices to spherical indentation. Here we detail our IFEA methodology, report compressive viscoelastic material parameters for cervical tissue slices from nonpregnant (NP) and pregnant (PG) hysterectomy patients, and report slice-by-slice data for whole cervical tissue specimens. The material parameters reported here for human cervical tissue can be used to model the compressive time-dependent behavior of the tissue within a small strain regime of 25%. PMID:24548950

  10. Artificial neural network model for material characterization by indentation

    NASA Astrophysics Data System (ADS)

    Tho, K. K.; Swaddiwudhipong, S.; Liu, Z. S.; Hua, J.

    2004-09-01

    Analytical methods to interpret the indentation load-displacement curves are difficult to formulate and solve due to material and geometric nonlinearities as well as complex contact interactions. In this study, large strain-large deformation finite element analyses were carried out to simulate indentation experiments. An artificial neural network model was constructed for the interpretation of indentation load-displacement curves. The data from finite element analyses were used to train and validate the artificial neural network model. The artificial neural network model was able to accurately determine the material properties when presented with the load-displacement curves that were not used in the training process. The proposed artificial neural network model is robust and directly relates the characteristics of the indentation load-displacement curve to the elasto-plastic material properties.

  11. Nuclear based techniques for detection of contraband

    SciTech Connect

    Gozani, T.

    1993-12-31

    The detection of contraband such as explosives and drugs concealed in luggage or other container can be quite difficult. Nuclear techniques offer capabilities which are essential to having effective detection devices. This report describes the features of various nuclear techniques and instrumentation.

  12. Indenter growth in analogue models of Alpine-type deformation

    NASA Astrophysics Data System (ADS)

    Bonini, Marco; Sokoutis, Dimitrios; Talbot, Christopher J.; Boccaletti, Mario; Milnes, Alan G.

    1999-02-01

    A series of analogue experiments were carried out to simulate continental convergence, as seen in a profile through the Central Alps. A rigid indenter, representing the Adriatic plate, was driven laterally into a sand pack representing the brittle upper crust of Europe, detached and thickening above its subducting ductile lower crust. The rigid indenter advanced at the same steady rate in each experiment, but the dip of its front face was steepened in 15° increments from 15° to 90°. Where the rigid indenter face dipped at 45° or less, a sand wedge rose and was bound by a series of forekinks that nucleated at the toe of the indenter. Where the face of the rigid indenter dipped 60° or more, the wedge was defined by a single forekink and one or more backkinks that nucleated from a point advancing in front of the indenter toe. We interpret these results as indicating that slices of the sand pack and rising wedge are transferred across kink bands to build an "effective" indenter with a frontal dip closer to that dictated by the changing shear strength of the sand pile, which thickens vertically as it shortens laterally. One of our models (with a rigid indenter dipping 75°) simulates most of the major structures shown in recent syntheses of surface geology and deep seismic data in the Central Alps, without the isostatic lithospheric depression. This model accounts for the late collisional stage (Oligocene to Present) complex strain and metamorphic histories in the core of the orogenic wedge, the rapid rise and extrusion of small pips of Alpine eclogites, and the current passivity of the Insubric Line. It also emphasizes that lateral extension along gently dipping "thrusts" (orogen-normal horizontal escape) is confined to the extruded portion of the rising wedge.

  13. Chipping fracture resistance of dental CAD/CAM restorative materials: Part 2. Phenomenological model and the effect of indenter type

    PubMed Central

    Quinn, G.D.; Giuseppetti, A.A.; Hoffman, K.H.

    2014-01-01

    The edge chipping resistances of six CAD/CAM dental restoration materials are analyzed and correlated to other mechanical properties. A new quadratic relationship that is based on a phenomenological model is presented. Objective The purpose of this study was to further analyze the edge chipping resistance of the brittle materials evaluated in Part 1. One objective was to determine why some force-distance trends were linear and others were nonlinear. A second objective was to account for differences in chipping resistance with indenter type. Methods Edge chipping experiments were conducted with different indenters, including some custom-made sharp conical indenters. A new force – distance quadratic expression was correlated to the data and compared to the linear and power law trends. Results The new quadratic function was an excellent fit in every instance. It can account for why some materials can be fit by a linear trend, while others can be fit by the power law trend. The effects of indenter type are accounted for variations in crack initiation and by the wedging stresses once an indentation hole is created. Significance The new quadratic force – edge distance function can be used with edge chipping data for all brittle materials, not just those evaluated in this study. The data trends vary from linear to nonlinear depending upon the material’s hardness, fracture toughness, and elastic modulus. PMID:24685179

  14. Molecular dynamics simulation of VN thin films under indentation

    NASA Astrophysics Data System (ADS)

    Fu, Tao; Peng, Xianghe; Huang, Cheng; Yin, Deqiang; Li, Qibin; Wang, Zhongchang

    2015-12-01

    We investigated with molecular dynamics simulation the mechanical responses of VN (0 0 1) thin films subjected to indentation with a diamond columnar indenter. We calculated the generalized stacking-fault energies as a function of the displacement in the rbond2 1 1 0lbond2 directions on the {0 0 1}, {1 1 0}, and {1 1 1} planes, and analyzed systematically the microstructures and their evolution during the indentation with the centro-symmetry parameters and the slices of the VN films. We found the slips on {1 1 0}rbond2 1 1 0lbond2 of the VN film under indentation at the initial stage. With the increase of indentation depth, slips are also activated on {1 1 1}rbond2 1 1 0lbond2 and {1 0 0}rbond2 0 1 1lbond2 systems. We further found that the slip system is determined by the stacking-fault energy rather than the layer spacing. The indentations with other different parameters were also performed, and the results further prove the validity of the conclusion.

  15. DCT-based cyber defense techniques

    NASA Astrophysics Data System (ADS)

    Amsalem, Yaron; Puzanov, Anton; Bedinerman, Anton; Kutcher, Maxim; Hadar, Ofer

    2015-09-01

    With the increasing popularity of video streaming services and multimedia sharing via social networks, there is a need to protect the multimedia from malicious use. An attacker may use steganography and watermarking techniques to embed malicious content, in order to attack the end user. Most of the attack algorithms are robust to basic image processing techniques such as filtering, compression, noise addition, etc. Hence, in this article two novel, real-time, defense techniques are proposed: Smart threshold and anomaly correction. Both techniques operate at the DCT domain, and are applicable for JPEG images and H.264 I-Frames. The defense performance was evaluated against a highly robust attack, and the perceptual quality degradation was measured by the well-known PSNR and SSIM quality assessment metrics. A set of defense techniques is suggested for improving the defense efficiency. For the most aggressive attack configuration, the combination of all the defense techniques results in 80% protection against cyber-attacks with PSNR of 25.74 db.

  16. Variable temperature thin film indentation with a flat punch.

    PubMed

    Cross, Graham L W; O'Connell, Barry S; Pethica, John B; Rowland, Harry; King, William P

    2008-01-01

    We present modifications to conventional nanoindentation that realize variable temperature, flat punch indentation of ultrathin films. The technique provides generation of large strain, thin film extrusion of precise geometries that idealize the essential flows of nanoimprint lithography, and approximate constant area squeeze flow rheometry performed on thin, macroscopic soft matter samples. Punch radii as small as 185 nm have been realized in ten-to-one confinement ratio testing of 36 nm thick polymer films controllably squeezed in the melt state to a gap width of a few nanometers. Self-consistent, compressive stress versus strain measurements of a wide variety of mechanical testing conditions are provided by using a single die-sample system with temperatures ranging from 20 to 125 degrees C and loading rates spanning two decades. Low roughness, well aligned flat punch dies with large contact areas provide precise detection of soft surfaces with standard nanoindenter stiffness sensitivity. Independent heating and thermometry with heaters and thermocouples attached to the die and sample allow introduction of a novel directional heat flux measurement method to ensure isothermal contact conditions. This is a crucial requirement for interpreting the mechanical response in temperature sensitive soft matter systems. Instrumented imprint is a new nanomechanics material testing platform that enables measurements of polymer and soft matter properties during large strains in confined, thin film geometries and extends materials testing capabilities of nanoindentation into low modulus, low strength glassy, and viscoelastic materials. PMID:18248047

  17. Flood alert system based on bayesian techniques

    NASA Astrophysics Data System (ADS)

    Gulliver, Z.; Herrero, J.; Viesca, C.; Polo, M. J.

    2012-04-01

    The problem of floods in the Mediterranean regions is closely linked to the occurrence of torrential storms in dry regions, where even the water supply relies on adequate water management. Like other Mediterranean basins in Southern Spain, the Guadalhorce River Basin is a medium sized watershed (3856 km2) where recurrent yearly floods occur , mainly in autumn and spring periods, driven by cold front phenomena. The torrential character of the precipitation in such small basins, with a concentration time of less than 12 hours, produces flash flood events with catastrophic effects over the city of Malaga (600000 inhabitants). From this fact arises the need for specific alert tools which can forecast these kinds of phenomena. Bayesian networks (BN) have been emerging in the last decade as a very useful and reliable computational tool for water resources and for the decision making process. The joint use of Artificial Neural Networks (ANN) and BN have served us to recognize and simulate the two different types of hydrological behaviour in the basin: natural and regulated. This led to the establishment of causal relationships between precipitation, discharge from upstream reservoirs, and water levels at a gauging station. It was seen that a recurrent ANN model working at an hourly scale, considering daily precipitation and the two previous hourly values of reservoir discharge and water level, could provide R2 values of 0.86. BN's results slightly improve this fit, but contribute with uncertainty to the prediction. In our current work to Design a Weather Warning Service based on Bayesian techniques the first steps were carried out through an analysis of the correlations between the water level and rainfall at certain representative points in the basin, along with the upstream reservoir discharge. The lower correlation found between precipitation and water level emphasizes the highly regulated condition of the stream. The autocorrelations of the variables were also

  18. Applying knowledge compilation techniques to model-based reasoning

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.

    1991-01-01

    Researchers in the area of knowledge compilation are developing general purpose techniques for improving the efficiency of knowledge-based systems. In this article, an attempt is made to define knowledge compilation, to characterize several classes of knowledge compilation techniques, and to illustrate how some of these techniques can be applied to improve the performance of model-based reasoning systems.

  19. Liquid refractometer based on fringe projection technique

    NASA Astrophysics Data System (ADS)

    de Angelis, Marco; De Nicola, Sergio; Ferraro, Pietro; Finizio, Andrea; Pierattini, Giovanni

    1999-08-01

    Measurement of the refractive index of liquids is of great importance in applications such as characterization and control of adulteration of liquid commonly used and in pollution monitoring. We present and discuss a fringe projection technique for measuring the index of refraction of transparent liquid materials.

  20. Single Cell Wall Nonlinear Mechanics Revealed by a Multiscale Analysis of AFM Force-Indentation Curves.

    PubMed

    Digiuni, Simona; Berne-Dedieu, Annik; Martinez-Torres, Cristina; Szecsi, Judit; Bendahmane, Mohammed; Arneodo, Alain; Argoul, Françoise

    2015-05-01

    Individual plant cells are rather complex mechanical objects. Despite the fact that their wall mechanical strength may be weakened by comparison with their original tissue template, they nevertheless retain some generic properties of the mother tissue, namely the viscoelasticity and the shape of their walls, which are driven by their internal hydrostatic turgor pressure. This viscoelastic behavior, which affects the power-law response of these cells when indented by an atomic force cantilever with a pyramidal tip, is also very sensitive to the culture media. To our knowledge, we develop here an original analyzing method, based on a multiscale decomposition of force-indentation curves, that reveals and quantifies for the first time the nonlinearity of the mechanical response of living single plant cells upon mechanical deformation. Further comparing the nonlinear strain responses of these isolated cells in three different media, we reveal an alteration of their linear bending elastic regime in both hyper- and hypotonic conditions. PMID:25954881

  1. Contribution to the Determination of In Vivo Mechanical Characteristics of Human Skin by Indentation Test

    PubMed Central

    Zahouani, Hassan

    2013-01-01

    This paper proposes a triphasic model of intact skin in vivo based on a general phenomenological thermohydromechanical and physicochemical (THMPC) approach of heterogeneous media. The skin is seen here as a deforming stratified medium composed of four layers and made out of different fluid-saturated materials which contain also an ionic component. All the layers are treated as linear, isotropic materials described by their own behaviour law. The numerical simulations of in vivo indentation test performed on human skin are given. The numerical results correlate reasonably well with the typical observations of indented human skin. The discussion shows the versatility of this approach to obtain a better understanding on the mechanical behaviour of human skin layers separately. PMID:24324525

  2. Single Cell Wall Nonlinear Mechanics Revealed by a Multiscale Analysis of AFM Force-Indentation Curves

    PubMed Central

    Digiuni, Simona; Berne-Dedieu, Annik; Martinez-Torres, Cristina; Szecsi, Judit; Bendahmane, Mohammed; Arneodo, Alain; Argoul, Françoise

    2015-01-01

    Individual plant cells are rather complex mechanical objects. Despite the fact that their wall mechanical strength may be weakened by comparison with their original tissue template, they nevertheless retain some generic properties of the mother tissue, namely the viscoelasticity and the shape of their walls, which are driven by their internal hydrostatic turgor pressure. This viscoelastic behavior, which affects the power-law response of these cells when indented by an atomic force cantilever with a pyramidal tip, is also very sensitive to the culture media. To our knowledge, we develop here an original analyzing method, based on a multiscale decomposition of force-indentation curves, that reveals and quantifies for the first time the nonlinearity of the mechanical response of living single plant cells upon mechanical deformation. Further comparing the nonlinear strain responses of these isolated cells in three different media, we reveal an alteration of their linear bending elastic regime in both hyper- and hypotonic conditions. PMID:25954881

  3. Mechanophore activation in a crosslinked polymer matrix via instrumented indentation

    NASA Astrophysics Data System (ADS)

    Davis, Chelsea; Forster, Aaron; Woodcock, Jeremiah; Wang, Muzhou; Gilman, Jeffrey; Material Measurement Laboratory Team

    Recent advances in mechanically-activated fluorophores will enable a host of unique scientific challenges and opportunities to be addressed. Several mechanophores (MPs) in polymers have been reported, yet the specific deformation required to activate these molecules in a bulk polymer network has not been sufficiently specified. In an effort to develop the mechano-activation/deformation relationship of a spirolactam-based MP, scratches were applied to a MP-functionalized glassy crosslinked material at varying normal loads and lateral displacement rates. This experimental design allowed strain and strain rate effects to be decoupled. The fluorescence activation was then observed with a laser scanning confocal microscope. Areas of elastic and plastic deformation as well as brittle fracture were observed within each scratch as the normal loading of the indenter increased. The fluorescence intensity increased with increasing strain. Contact mechanics models are employed to demonstrate that relatively high degrees of strain are required to initiate the ring-opening activation transition within the spirolactam-based MP. These self-reporting damage sensors can be incorporated within polymeric coatings to allow real time structural health monitoring for a myriad of applications.

  4. A robotic indenter for minimally invasive measurement and characterization of soft tissue response.

    PubMed

    Samur, Evren; Sedef, Mert; Basdogan, Cagatay; Avtan, Levent; Duzgun, Oktay

    2007-08-01

    The lack of experimental data in current literature on material properties of soft tissues in living condition has been a significant obstacle in the development of realistic soft tissue models for virtual reality based surgical simulators used in medical training. A robotic indenter was developed for minimally invasive measurement of soft tissue properties in abdominal region during a laparoscopic surgery. Using the robotic indenter, force versus displacement and force versus time responses of pig liver under static and dynamic loading conditions were successfully measured to characterize its material properties in three consecutive steps. First, the effective elastic modulus of pig liver was estimated as 10-15 kPa from the force versus displacement data of static indentations based on the small deformation assumption. Then, the stress relaxation function, relating the variation of stress with respect to time, was determined from the force versus time response data via curve fitting. Finally, an inverse finite element solution was developed using ANSYS finite element package to estimate the optimum values of viscoelastic and nonlinear hyperelastic material properties of pig liver through iterations. The initial estimates of the material properties for the iterations were extracted from the experimental data for faster convergence of the solutions. PMID:17509927

  5. Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen I matrices.

    PubMed

    Staunton, Jack R; Doss, Bryant L; Lindsay, Stuart; Ros, Robert

    2016-01-01

    Mechanical interactions between cells and their microenvironment dictate cell phenotype and behavior, calling for cell mechanics measurements in three-dimensional (3D) extracellular matrices (ECM). Here we describe a novel technique for quantitative mechanical characterization of soft, heterogeneous samples in 3D. The technique is based on the integration of atomic force microscopy (AFM) based deep indentation, confocal fluorescence microscopy, finite element (FE) simulations and analytical modeling. With this method, the force response of a cell embedded in 3D ECM can be decoupled from that of its surroundings, enabling quantitative determination of the elastic properties of both the cell and the matrix. We applied the technique to the quantification of the elastic properties of metastatic breast adenocarcinoma cells invading into collagen hydrogels. We found that actively invading and fully embedded cells are significantly stiffer than cells remaining on top of the collagen, a clear example of phenotypical change in response to the 3D environment. Treatment with Rho-associated protein kinase (ROCK) inhibitor significantly reduces this stiffening, indicating that actomyosin contractility plays a major role in the initial steps of metastatic invasion. PMID:26813872

  6. Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen I matrices

    PubMed Central

    Staunton, Jack R.; Doss, Bryant L.; Lindsay, Stuart; Ros, Robert

    2016-01-01

    Mechanical interactions between cells and their microenvironment dictate cell phenotype and behavior, calling for cell mechanics measurements in three-dimensional (3D) extracellular matrices (ECM). Here we describe a novel technique for quantitative mechanical characterization of soft, heterogeneous samples in 3D. The technique is based on the integration of atomic force microscopy (AFM) based deep indentation, confocal fluorescence microscopy, finite element (FE) simulations and analytical modeling. With this method, the force response of a cell embedded in 3D ECM can be decoupled from that of its surroundings, enabling quantitative determination of the elastic properties of both the cell and the matrix. We applied the technique to the quantification of the elastic properties of metastatic breast adenocarcinoma cells invading into collagen hydrogels. We found that actively invading and fully embedded cells are significantly stiffer than cells remaining on top of the collagen, a clear example of phenotypical change in response to the 3D environment. Treatment with Rho-associated protein kinase (ROCK) inhibitor significantly reduces this stiffening, indicating that actomyosin contractility plays a major role in the initial steps of metastatic invasion. PMID:26813872

  7. Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen I matrices

    NASA Astrophysics Data System (ADS)

    Staunton, Jack R.; Doss, Bryant L.; Lindsay, Stuart; Ros, Robert

    2016-01-01

    Mechanical interactions between cells and their microenvironment dictate cell phenotype and behavior, calling for cell mechanics measurements in three-dimensional (3D) extracellular matrices (ECM). Here we describe a novel technique for quantitative mechanical characterization of soft, heterogeneous samples in 3D. The technique is based on the integration of atomic force microscopy (AFM) based deep indentation, confocal fluorescence microscopy, finite element (FE) simulations and analytical modeling. With this method, the force response of a cell embedded in 3D ECM can be decoupled from that of its surroundings, enabling quantitative determination of the elastic properties of both the cell and the matrix. We applied the technique to the quantification of the elastic properties of metastatic breast adenocarcinoma cells invading into collagen hydrogels. We found that actively invading and fully embedded cells are significantly stiffer than cells remaining on top of the collagen, a clear example of phenotypical change in response to the 3D environment. Treatment with Rho-associated protein kinase (ROCK) inhibitor significantly reduces this stiffening, indicating that actomyosin contractility plays a major role in the initial steps of metastatic invasion.

  8. DLC coatings on inner walls of PET bottles by a simplified PBII technique

    NASA Astrophysics Data System (ADS)

    Ikeyama, M.; Miyagawa, S.; Nakao, S.; Choi, J.; Miyajima, T.

    2007-04-01

    We have proposed a simple way to coat diamond-like carbon (DLC) on the inner walls of bottles using modified plasma based ion implantation (PBII) technique. Using this way, we have succeeded in DLC coating on inner walls of poly-(ethylene terephthalate) (PET) bottles. We have also succeeded in printing some characters, as "AIST". Meyer hardness and Young's modulus of the DLC-coated PET films were estimated from penetration depth-load relationship obtained by a depth sensing indenter with a diamond spherical-conical indenter (0.83 μm in radius and 90° in angle). It was revealed that Meyer hardness and Young's modulus increased with the DLC coatings. For the 5-min coated PET film, the Meyer hardness and Young's modulus were about 8 and 4 times larger than those of the uncoated PET film, respectively. The results of the indentation tests agreed well with the results of micro-scratch tests.

  9. The cast aluminum denture base. Part II: Technique.

    PubMed

    Halperin, A R; Halperin, G C

    1980-07-01

    A technique to wax-up and cast an aluminum base and a method to incorporate the base into the final denture base has been discussed. This technique does not use induction casting, rather it uses two casting ovens and a centrifugal casting machine. PMID:6991680

  10. Liquid Tunable Microlenses based on MEMS techniques

    PubMed Central

    Zeng, Xuefeng; Jiang, Hongrui

    2013-01-01

    The recent rapid development in microlens technology has provided many opportunities for miniaturized optical systems, and has found a wide range of applications. Of these microlenses, tunable-focus microlenses are of special interest as their focal lengths can be tuned using micro-scale actuators integrated with the lens structure. Realization of such tunable microlens generally relies on the microelectromechanical system (MEMS) technologies. Here, we review the recent progress in tunable liquid microlenses. The underlying physics relevant to these microlenses are first discussed, followed by description of three main categories of tunable microlenses involving MEMS techniques, mechanically driven, electrically driven, and those integrated within microfluidic systems. PMID:24163480

  11. Liquid tunable microlenses based on MEMS techniques

    NASA Astrophysics Data System (ADS)

    Zeng, Xuefeng; Jiang, Hongrui

    2013-08-01

    The recent rapid development in microlens technology has provided many opportunities for miniaturized optical systems, and has found a wide range of applications. Of these microlenses, tunable-focus microlenses are of special interest as their focal lengths can be tuned using micro-scale actuators integrated with the lens structure. Realization of such tunable microlens generally relies on the microelectromechanical system (MEMS) technologies. Here, we review the recent progress in tunable liquid microlenses. The underlying physics relevant to these microlenses are first discussed, followed by description of three main categories of tunable microlenses involving MEMS techniques, mechanically driven, electrically driven and those integrated within microfluidic systems.

  12. Speech recognition based on pattern recognition techniques

    NASA Astrophysics Data System (ADS)

    Rabiner, Lawrence R.

    1990-05-01

    Algorithms for speech recognition can be characterized broadly as pattern recognition approaches and acoustic phonetic approaches. To date, the greatest degree of success in speech recognition has been obtained using pattern recognition paradigms. The use of pattern recognition techniques were applied to the problems of isolated word (or discrete utterance) recognition, connected word recognition, and continuous speech recognition. It is shown that understanding (and consequently the resulting recognizer performance) is best to the simplest recognition tasks and is considerably less well developed for large scale recognition systems.

  13. Spherical indentation of free-standing acellular extracellular matrix membranes.

    PubMed

    Cloonan, Aidan J; O'Donnell, Michael R; Lee, William T; Walsh, Michael T; De Barra, Eamonn; McGloughlin, Tim M

    2012-01-01

    Numerous scaffold materials have been developed for tissue engineering and regenerative medicine applications to replace or repair damaged tissues and organs. Naturally occurring scaffold materials derived from acellular xenogeneic and autologous extracellular matrix (ECM) are currently in clinical use. These biological scaffold materials possess inherent variations in mechanical properties. Spherical indentation or ball burst testing has commonly been used to evaluate ECM and harvested tissue due to its ease of use and simulation of physiological biaxial loading, but has been limited by complex material deformation profiles. An analytical methodology has been developed and applied to experimental load-deflection data of a model hyperelastic material and lyophilized ECM scaffolds. An optimum rehydration protocol was developed based on water absorption, hydration relaxation and dynamic mechanical analysis. The analytical methodology was compared with finite element simulations of the tests and excellent correlation was seen between the computed biaxial stress resultants and geometry deformations. A minimum rehydration period of 5 min at 37°C was sufficient for the evaluated multilaminated ECM materials. The proposed approach may be implemented for convenient comparative analysis of ECM materials and source tissues, process optimization or during lot release testing. PMID:21864728

  14. Self-Similarity Simplification Approaches for the Modeling and Analysis of Rockwell Hardness Indentation

    PubMed Central

    Ma, Li; Zhou, Jack; Lau, Alan; Low, Samuel; deWit, Roland

    2002-01-01

    The indentation process of pressing a Rockwell diamond indenter into inelastic material has been studied to provide a means for the analysis, simulation and prediction of Rockwell hardness tests. The geometrical characteristics of the spheroconical-shaped Rockwell indenter are discussed and fit to a general function in a self-similar way. The complicated moving boundary problem in Rockwell hardness tests is simplified to an intermediate stationary one for a flat die indenter using principle of similarity and cumulative superposition approach. This method is applied to both strain hardening and strain rate dependent materials. The effects of different material properties and indenter geometries on the indentation depth are discussed. PMID:27446740

  15. Trends and Techniques for Space Base Electronics

    NASA Technical Reports Server (NTRS)

    Trotter, J. D.; Wade, T. E.; Gassaway, J. D.

    1979-01-01

    Simulations of various phosphorus and boron diffusions in SOS were completed and a sputtering system, furnaces, and photolithography related equipment were set up. Double layer metal experiments initially utilized wet chemistry techniques. By incorporating ultrasonic etching of the vias, premetal cleaning a modified buffered HF, phosphorus doped vapox, and extended sintering, yields of 98% were obtained using the standard test pattern. A two dimensional modeling program was written for simulating short channel MOSFETs with nonuniform substrate doping. A key simplifying assumption used is that the majority carriers can be represented by a sheet charge at the silicon dioxide silicon interface. Although the program is incomplete, the two dimensional Poisson equation for the potential distribution was achieved. The status of other Z-D MOSFET simulation programs is summarized.

  16. Techniques for detumbling a disabled space base

    NASA Technical Reports Server (NTRS)

    Kaplan, M. H.

    1973-01-01

    Techniques and conceptual devices for carrying out detumbling operations are examined, and progress in the development of these concepts is discussed. Devices which reduce tumble to simple spin through active linear motion of a small mass are described, together with a Module for Automatic Dock and Detumble (MADD) that could perform an orbital transfer from the shuttle in order to track and dock at a preselected point on the distressed craft. Once docked, MADD could apply torques by firing thrustors to detumble the passive vehicle. Optimum combinations of mass-motion and external devices for various situation should be developed. The need for completely formulating the automatic control logic of MADD is also emphasized.

  17. Thermal wave imaging of indented diamond coated WC

    SciTech Connect

    Feldman, A.

    1997-07-01

    Photothermal radiometry has been used to obtain thermal wave images in the vicinity of indentations in WC{endash}6{percent}Ni coated with chemical vapor deposited (CVD) diamond. Features in the magnitude and phase of the thermal signal profile are consistent with a one dimensional thermal wave theory that assumes (i) an air gap extending well beyond the visibly observable indented region, and (ii) a thermal resistance interface between the diamond film and the substrate over the entire coated surface. The theory allows us to estimate the air gap thickness, which decreases as the distance from the indented region increases. Air gap variations of tens of nanometers appear to be easily detectable. {copyright} {ital 1997 Materials Research Society.}

  18. Influence of indenter tip geometry on elastic deformation during nanoindentation

    SciTech Connect

    Bei, Hongbin; George, Easo P; Hay, J. L.; Pharr, George Mathews

    2005-01-01

    Nanoindentation with a Berkovich indenter is commonly used to investigate the mechanical behavior of small volumes of materials. To date, most investigators have made the simplifying assumption that the tip is spherical. In reality, indenter tips are much more complex. Here, we develop a new method to describe the tip shape using the experimentally determined area function of the indenter at small depths (0--100 nm). Our analysis accurately predicts the elastic load-displacement curve and allows the theoretical strength of a material to be determined from pop-in data. Application of our new method to single crystal Cr{sub 3}Si shows that the predicted theoretical strengths are within 12% of the ideal strength G/2{pi}, where G is the shear modulus.

  19. A new method for theoretical analysis of static indentation test.

    PubMed

    Sakamoto, M; Li, G; Hara, T; Chao, E Y

    1996-05-01

    A new mathematical method was developed to study the indentation problem of an infinite elastic layer overlaid on a rigid foundation. Rigid, flat-ended cylindrical or spherical indenters are pressed onto the upper surface of the elastic layer causing a small deformation mode. Shear stresses between the indenter and the layer are assumed negligible and the layer is assumed to be either bonded or unbonded to the rigid foundation. The problem is equivalent to a mixed boundary-value problem of the theory of elasticity. Instead of using the Fredholm integral equation reported in the literature, the new approach obtained closed-form solutions through an infinite series. Convergence can be achieved using less than 10 terms of the series. PMID:8707798

  20. Indentation size effect and the plastic compressibility of glass

    SciTech Connect

    Smedskjaer, Morten M.

    2014-06-23

    Oxide glasses exhibit significant densification under an applied isostatic pressure at the glass transition temperature. The glass compressibility is correlated with the chemical composition and atomic packing density, e.g., borate glasses with planar triangular BO{sub 3} units are more disposed for densification than silicate glasses with tetrahedral units. We here show that there is a direct relation between the plastic compressibility following hot isostatic compression and the extent of the indentation size effect (ISE), which is the decrease of hardness with indentation load exhibited by most materials. This could suggest that the ISE is correlated with indentation-induced shear bands, which should form in greater density when the glass network is more adaptable to volume changes through structural and topological rearrangements under an applied pressure.

  1. Elastic anisotropy of uniaxial mineralized collagen fibers measured using two-directional indentation. Effects of hydration state and indentation depth.

    PubMed

    Spiesz, Ewa M; Roschger, Paul; Zysset, Philippe K

    2012-08-01

    Mineralized turkey leg tendon (MTLT) is an attractive model of mineralized collagen fibers, which are also present in bone. Its longitudinal structure is advantageous for the relative simplicity in modeling, yet its anisotropic elastic properties remain unknown. The aim of this study was to quantify the extent of elastic anisotropy of mineralized collagen fibers by using nano- and microindentation to probe a number on MTLT samples in two orthogonal directions. The large dataset allowed the quantification of the extent of anisotropy, depending on the final indentation depth and on the hydration state of the sample. Anisotropy was observed to increase with the sample re-hydration process. Artifacts of indentation in a transverse direction to the main axis of the mineralized tendons in re-hydrated condition were observed. The indentation size effect, that is, the increase of the measured elastic properties with decreasing sampling volume, reported previously on variety of materials, was also observed in MTLT. Indentation work was quantified for both directions of indentation in dried and re-hydrated conditions. As hypothesized, MTLT showed a higher extent of anisotropy compared to cortical and trabecular bone, presumably due to the alignment of mineralized collagen fibers in this tissue. PMID:22664658

  2. Accelerator based techniques for contraband detection

    NASA Astrophysics Data System (ADS)

    Vourvopoulos, George

    1994-05-01

    It has been shown that narcotics, explosives, and other contraband materials, contain various chemical elements such as H, C, N, O, P, S, and Cl in quantities and ratios that differentiate them from each other and from other innocuous substances. Neutrons and γ-rays have the ability to penetrate through various materials at large depths. They are thus able, in a non-intrusive way, to interrogate volumes ranging from suitcases to Sea-Land containers, and have the ability to image the object with an appreciable degree of reliability. Neutron induced reactions such as (n, γ), (n, n') (n, p) or proton induced γ-resonance absorption are some of the reactions currently investigated for the identification of the chemical elements mentioned above. Various DC and pulsed techniques are discussed and their advantages, characteristics, and current progress are shown. Areas where use of these methods is currently under evaluation are detection of hidden explosives, illicit drug interdiction, chemical war agents identification, nuclear waste assay, nuclear weapons destruction and others.

  3. A New Tissue Resonator Indenter Device and Reliability Study

    PubMed Central

    Jia, Ming; Zu, Jean W.; Hariri, Alireza

    2011-01-01

    Knowledge of tissue mechanical properties is widely required by medical applications, such as disease diagnostics, surgery operation, simulation, planning, and training. A new portable device, called Tissue Resonator Indenter Device (TRID), has been developed for measurement of regional viscoelastic properties of soft tissues at the Bio-instrument and Biomechanics Lab of the University of Toronto. As a device for soft tissue properties in-vivo measurements, the reliability of TRID is crucial. This paper presents TRID’s working principle and the experimental study of TRID’s reliability with respect to inter-reliability, intra-reliability, and the indenter misalignment effect as well. PMID:22346623

  4. FDI and Accommodation Using NN Based Techniques

    NASA Astrophysics Data System (ADS)

    Garcia, Ramon Ferreiro; de Miguel Catoira, Alberto; Sanz, Beatriz Ferreiro

    Massive application of dynamic backpropagation neural networks is used on closed loop control FDI (fault detection and isolation) tasks. The process dynamics is mapped by means of a trained backpropagation NN to be applied on residual generation. Process supervision is then applied to discriminate faults on process sensors, and process plant parameters. A rule based expert system is used to implement the decision making task and the corresponding solution in terms of faults accommodation and/or reconfiguration. Results show an efficient and robust FDI system which could be used as the core of an SCADA or alternatively as a complement supervision tool operating in parallel with the SCADA when applied on a heat exchanger.

  5. Indentation experiments and simulation of ovine bone using a viscoelastic-plastic damage model

    PubMed Central

    Zhao, Yang; Wu, Ziheng; Turner, Simon; MacLeay, Jennifer; Niebur, Glen L.; Ovaert, Timothy C.

    2015-01-01

    Indentation methods have been widely used to study bone at the micro- and nanoscales. It has been shown that bone exhibits viscoelastic behavior with permanent deformation during indentation. At the same time, damage due to microcracks is induced due to the stresses beneath the indenter tip. In this work, a simplified viscoelastic-plastic damage model was developed to more closely simulate indentation creep data, and the effect of the model parameters on the indentation curve was investigated. Experimentally, baseline and 2-year postovariectomized (OVX-2) ovine (sheep) bone samples were prepared and indented. The damage model was then applied via finite element analysis to simulate the bone indentation data. The mechanical properties of yielding, viscosity, and damage parameter were obtained from the simulations. The results suggest that damage develops more quickly for OVX-2 samples under the same indentation load conditions as the baseline data. PMID:26136623

  6. Flexible control techniques for a lunar base

    NASA Technical Reports Server (NTRS)

    Kraus, Thomas W.

    1992-01-01

    applications with little or no customization. This means that lunar process control projects will not be delayed by unforeseen problems or last minute process modifications. The software will include all of the tools needed to adapt to virtually any changes. In contrast to other space programs which required the development of tremendous amounts of custom software, lunar-based processing facilities will benefit from the use of existing software technology which is being proven in commercial applications on Earth.

  7. A simple measuring device for laboratory indentation tests on cartilage.

    PubMed

    Koeller, Wolfgang; Kunow, Julius; Ostermeyer, Oliver; Stomberg, Peter; Boos, Carsten; Russlies, Martin

    2008-04-01

    Mechanical testing of articular cartilage and repair tissue enables judgment of their capacity in withstanding mechanical loading. In the past, different methods have been developed requiring a complex technical setup and extensive data analysis. Therefore, the aim of the present project was to build up a simple measuring apparatus for laboratory indentation tests. The device consists of an incremental optical displacement transducer with a sleeve bearing guided plunger and a spherical tip made of polished steel (radius: 0.75 or 1.5 mm), a sensitive load cell and a stiff frame. The indentation force results from the plunger's gravity plus the force of the spring inside the displacement transducer and levels at 0.170 N or 0.765 N. The displacement transducer is fixed to the frame via the load cell that enables one to detect the initial contact of the tip with the tissue. The load cell has a standard uncertainty of 2 mN and the displacement transducer of 1 microm. From indentation-creep tests, a "0.25-s elastic modulus" is calculated. Measurements on thin rubber sheets were carried out to determine the quality of the measuring device. Compression tests on cylinders made of these rubber sheets yielded control data, and a good agreement with the "0.25-s elastic modulus" was found. Indentation tests on cartilage at different sites of sheep femoral condyles yielded a very good repeatability of the measurement results (+/-7.5%). PMID:18979621

  8. Membrane indentation triggers clathrin lattice reorganization and fluidization.

    PubMed

    Cordella, Nicholas; Lampo, Thomas J; Melosh, Nicholas; Spakowitz, Andrew J

    2015-01-21

    Clathrin-mediated endocytosis involves the coordinated assembly of clathrin cages around membrane indentations, necessitating fluid-like reorganization followed by solid-like stabilization. This apparent duality in clathrin's in vivo behavior provides some indication that the physical interactions between clathrin triskelia and the membrane effect a local response that triggers fluid-solid transformations within the clathrin lattice. We develop a computational model to study the response of clathrin protein lattices to spherical deformations of the underlying flexible membrane. These deformations are similar to the shapes assumed during intracellular trafficking of nanoparticles. Through Monte Carlo simulations of clathrin-on-membrane systems, we observe that these membrane indentations give rise to a greater than normal defect density within the overlaid clathrin lattice. In many cases, the bulk surrounding lattice remains in a crystalline phase, and the extra defects are localized to the regions of large curvature. This can be explained by the fact that the in-plane elastic stress in the clathrin lattice are reduced by coupling defects to highly curved regions. The presence of defects brought about by indentation can result in the fluidization of a lattice that would otherwise be crystalline, resulting in an indentation-driven, defect-mediated phase transition. Altering subunit elasticity or membrane properties is shown to drive a similar transition, and we present phase diagrams that map out the combined effects of these parameters on clathrin lattice properties. PMID:25412023

  9. Rigid indented cylindrical cathode for X-ray tube

    DOEpatents

    Hudgens, Claude R.

    1985-01-01

    A cathode assembly for a vacuum tube includes a wire filament, a straight bular anode parallel to and surrounding the wire filament, and insulating spacers for rigidly fastening the filament with respect to the anode, and with one side of the anode indented or flattened such that only one portion of the anode is heated to emitting temperatures by the filament.

  10. Low Temperature Plasticity of Olivine Determined by Nano-indentation

    NASA Astrophysics Data System (ADS)

    Skemer, P. A.; Kranjc, K.; Rouse, Z.; Flores, K.

    2015-12-01

    Earth's upper mantle is thought to deform mainly by dislocation creep, during which strain-rate and stress are related by a simple power law equation. However at much higher stresses there is a break-down in the power law relationship and strain-rate depends exponentially on stress. This phenomenon, known as low temperature plasticity, may be important in the shallow ductile or semi-brittle regions of the lithosphere, at the tips of cracks, or during high-stress laboratory experiments. Several studies have attempted to constrain the low-temperature rheology of olivine using micro-indentation or high pressure experiments. In this study we provide the first measurements of olivine rheology at low temperature using instrumented nano-indention. Although nano-indentation has been widely used in the materials sciences, its application in the Earth sciences has been very limited. Nano-indentation methods provide rheological measurements that are significantly more precise than other mechanical tests at high pressure and temperature. Moreover, experiments are rapid and largely non-destructive, so many tests can be conducted in a short amount of time. In this study, olivine single crystal and polycrystalline samples were tested using a Hysitron TI950 TriboIndenter. Temperature was varied using a cooling/heating stage from 0-175°C. Experiments were conducted under quasi-static and constant strain-rate conditions. Indentation hardness measurements were converted to uniaxial rheological properties to facilitate direct comparison with previous studies. Yield strengths for olivine range from 4.19 GPa at 175°C to 4.60 GPa at 0°C. Using various models for obstacles to dislocation motion, data are extrapolated to 0 Kelvin to extract a Peierls stress for olivine (5.32-6.45 GPa), which is at the lower end of the range of values determined in previous studies. This study demonstrates the efficacy of the nano-indentation method for the study of mineral rheology, and opens a

  11. Anterior-posterior asymmetry in iris mechanics measured by indentation.

    PubMed

    Whitcomb, Julie E; Amini, Rouzbeh; Simha, Narendra K; Barocas, Victor H

    2011-10-01

    Indentation and histological analysis of the porcine iris were done to assess the relative stiffness of the anterior (stroma) and posterior (dilator and sphincter) layers. The dimensions of the constituent structures were documented histologically by staining with a monoclonal anti-human α-smooth muscle actin antibody to determine the location of the stroma, sphincter, and dilator. Intact porcine irides (4-8 h post-mortem) were bisected into two equal C-shaped halves to indent both surfaces. Indentation experiments were performed using a 1 mm cylindrical indenter tip. The load-displacement curve for each experiment was used to estimate effective instantaneous and equilibrium moduli for the anterior and posterior surfaces of the tissue. A total of 18 irides (9 pairs) with 3-5 indentations per iris surface was performed. The average thickness of the samples was 550 μm; the indentation depth was limited to 60-100 μm depending on the thickness of the sample at each point. Posterior surface indentation gave larger forces than anterior, with the resulting instantaneous modulus of 6.0 ± 0.6 kPa versus 4.0 ± 0.5 kPa (mean ± 95% CI, n = 45, p < 0.001) and equilibrium modulus of 4.4 ± 0.9 versus 2.3 ± 0.3 (p = 0.007). The stress-relaxation analysis revealed that the anterior surface had a shorter relaxation time (121.31 ± 6.84 s) than the posterior surface (210.61 ± 9.41 s, p = 0.03), perhaps due to the permeability of the stroma. Recognizing that our effective modulus calculations in this study did not account for heterogeneity, viscoelasticity, or poroelasticity, we conclude that the posterior components of the iris - dilator, pigment epithelium, and sphincter - are on average stiffer than the stroma and anterior border layer. PMID:21787771

  12. Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation.

    PubMed

    Coceano, G; Yousafzai, M S; Ma, W; Ndoye, F; Venturelli, L; Hussain, I; Bonin, S; Niemela, J; Scoles, G; Cojoc, D; Ferrari, E

    2016-02-12

    Investigating the mechanical properties of cells could reveal a potential source of label-free markers of cancer progression, based on measurable viscoelastic parameters. The Young's modulus has proved to be the most thoroughly studied so far, however, even for the same cell type, the elastic modulus reported in different studies spans a wide range of values, mainly due to the application of different experimental conditions. This complicates the reliable use of elasticity for the mechanical phenotyping of cells. Here we combine two complementary techniques, atomic force microscopy (AFM) and optical tweezer microscopy (OTM), providing a comprehensive mechanical comparison of three human breast cell lines: normal myoepithelial (HBL-100), luminal breast cancer (MCF-7) and basal breast cancer (MDA-MB-231) cells. The elastic modulus was measured locally by AFM and OTM on single cells, using similar indentation approaches but different measurement parameters. Peak force tapping AFM was employed at nanonewton forces and high loading rates to draw a viscoelastic map of each cell and the results indicated that the region on top of the nucleus provided the most meaningful results. OTM was employed at those locations at piconewton forces and low loading rates, to measure the elastic modulus in a real elastic regime and rule out the contribution of viscous forces typical of AFM. When measured by either AFM or OTM, the cell lines' elasticity trend was similar for the aggressive MDA-MB-231 cells, which were found to be significantly softer than the other two cell types in both measurements. However, when comparing HBL-100 and MCF-7 cells, we found significant differences only when using OTM. PMID:26683826

  13. Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation

    NASA Astrophysics Data System (ADS)

    Coceano, G.; Yousafzai, M. S.; Ma, W.; Ndoye, F.; Venturelli, L.; Hussain, I.; Bonin, S.; Niemela, J.; Scoles, G.; Cojoc, D.; Ferrari, E.

    2016-02-01

    Investigating the mechanical properties of cells could reveal a potential source of label-free markers of cancer progression, based on measurable viscoelastic parameters. The Young’s modulus has proved to be the most thoroughly studied so far, however, even for the same cell type, the elastic modulus reported in different studies spans a wide range of values, mainly due to the application of different experimental conditions. This complicates the reliable use of elasticity for the mechanical phenotyping of cells. Here we combine two complementary techniques, atomic force microscopy (AFM) and optical tweezer microscopy (OTM), providing a comprehensive mechanical comparison of three human breast cell lines: normal myoepithelial (HBL-100), luminal breast cancer (MCF-7) and basal breast cancer (MDA-MB-231) cells. The elastic modulus was measured locally by AFM and OTM on single cells, using similar indentation approaches but different measurement parameters. Peak force tapping AFM was employed at nanonewton forces and high loading rates to draw a viscoelastic map of each cell and the results indicated that the region on top of the nucleus provided the most meaningful results. OTM was employed at those locations at piconewton forces and low loading rates, to measure the elastic modulus in a real elastic regime and rule out the contribution of viscous forces typical of AFM. When measured by either AFM or OTM, the cell lines’ elasticity trend was similar for the aggressive MDA-MB-231 cells, which were found to be significantly softer than the other two cell types in both measurements. However, when comparing HBL-100 and MCF-7 cells, we found significant differences only when using OTM.

  14. A Word-Based Compression Technique for Text Files.

    ERIC Educational Resources Information Center

    Vernor, Russel L., III; Weiss, Stephen F.

    1978-01-01

    Presents a word-based technique for storing natural language text in compact form. The compressed text consists of a dictionary and a text that is a combination of actual running text and pointers to the dictionary. This technique has shown itself to be effective for both text storage and retrieval. (VT)

  15. Principals Use Research-Based Techniques for Facilitating School Effectiveness.

    ERIC Educational Resources Information Center

    Hord, Shirley M.; Hall, Gene E.

    Research shows that principals with strong leadership qualities are a critical factor in effective schools. This paper describes three research based techniques that principals can use when making decisions about how to help teachers develop their skills. The Concerns Based Adoption Model (CBAM) is an empirically based conceptual framework that…

  16. The detection of bulk explosives using nuclear-based techniques

    SciTech Connect

    Morgado, R.E.; Gozani, T.; Seher, C.C.

    1988-01-01

    In 1986 we presented a rationale for the detection of bulk explosives based on nuclear techniques that addressed the requirements of civil aviation security in the airport environment. Since then, efforts have intensified to implement a system based on thermal neutron activation (TNA), with new work developing in fast neutron and energetic photon reactions. In this paper we will describe these techniques and present new results from laboratory and airport testing. Based on preliminary results, we contended in our earlier paper that nuclear-based techniques did provide sufficiently penetrating probes and distinguishable detectable reaction products to achieve the FAA operational goals; new data have supported this contention. The status of nuclear-based techniques for the detection of bulk explosives presently under investigation by the US Federal Aviation Administration (FAA) is reviewed. These include thermal neutron activation (TNA), fast neutron activation (FNA), the associated particle technique, nuclear resonance absorption, and photoneutron activation. The results of comprehensive airport testing of the TNA system performed during 1987-88 are summarized. From a technical point of view, nuclear-based techniques now represent the most comprehensive and feasible approach for meeting the operational criteria of detection, false alarms, and throughput. 9 refs., 5 figs., 2 tabs.

  17. Application of glyph-based techniques for multivariate engineering visualization

    NASA Astrophysics Data System (ADS)

    Glazar, Vladimir; Marunic, Gordana; Percic, Marko; Butkovic, Zlatko

    2016-01-01

    This article presents a review of glyph-based techniques for engineering visualization as well as practical application for the multivariate visualization process. Two glyph techniques, Chernoff faces and star glyphs, uncommonly used in engineering practice, are described, applied to the selected data set, run through the chosen optimization methods and user evaluated. As an example of how these techniques function, a set of data for the optimization of a heat exchanger with a microchannel coil is adopted for visualization. The results acquired by the chosen visualization techniques are related to the results of optimization carried out by the response surface method and compared with the results of user evaluation. Based on the data set from engineering research and practice, the advantages and disadvantages of these techniques for engineering visualization are identified and discussed.

  18. Finite-element modeling of soft tissue rolling indentation.

    PubMed

    Sangpradit, Kiattisak; Liu, Hongbin; Dasgupta, Prokar; Althoefer, Kaspar; Seneviratne, Lakmal D

    2011-12-01

    We describe a finite-element (FE) model for simulating wheel-rolling tissue deformations using a rolling FE model (RFEM). A wheeled probe performing rolling tissue indentation has proven to be a promising approach for compensating for the loss of haptic and tactile feedback experienced during robotic-assisted minimally invasive surgery (H. Liu, D. P. Noonan, B. J. Challacombe, P. Dasgupta, L. D. Seneviratne, and K. Althoefer, "Rolling mechanical imaging for tissue abnormality localization during minimally invasive surgery, " IEEE Trans. Biomed. Eng., vol. 57, no. 2, pp. 404-414, Feb. 2010; K. Sangpradit, H. Liu, L. Seneviratne, and K. Althoefer, "Tissue identification using inverse finite element analysis of rolling indentation," in Proc. IEEE Int. Conf. Robot. Autom. , Kobe, Japan, 2009, pp. 1250-1255; H. Liu, D. Noonan, K. Althoefer, and L. Seneviratne, "The rolling approach for soft tissue modeling and mechanical imaging during robot-assisted minimally invasive surgery," in Proc. IEEE Int. Conf. Robot. Autom., May 2008, pp. 845-850; H. Liu, P. Puangmali, D. Zbyszewski, O. Elhage, P. Dasgupta, J. S. Dai, L. Seneviratne, and K. Althoefer, "An indentation depth-force sensing wheeled probe for abnormality identification during minimally invasive surgery," Proc. Inst. Mech. Eng., H, vol. 224, no. 6, pp. 751-63, 2010; D. Noonan, H. Liu, Y. Zweiri, K. Althoefer, and L. Seneviratne, "A dual-function wheeled probe for tissue viscoelastic property identification during minimally invasive surgery," in Proc. IEEE Int. Conf. Robot. Autom. , 2008, pp. 2629-2634; H. Liu, J. Li, Q. I. Poon, L. D. Seneviratne, and K. Althoefer, "Miniaturized force indentation-depth sensor for tissue abnormality identification," IEEE Int. Conf. Robot. Autom., May 2010, pp. 3654-3659). A sound understanding of wheel-tissue rolling interaction dynamics will facilitate the evaluation of signals from rolling indentation. In this paper, we model the dynamic interactions between a wheeled probe and a

  19. The analysis of the stress-strain state of a plate, induced by the ricochet of a rigid indenter, using Moire method

    NASA Astrophysics Data System (ADS)

    Aptukov, V. N.; Kashirin, V. F.; Murzakaev, R. T.

    1994-06-01

    A technique elaborated by the authors is used to study the penetration process on the basis of the experimental data obtained by the Moire method. The stress-strain state of 1911 aluminum alloy plate in the vicinity of the crater is analyzed in terms of plane strain approximation for a rigid cylindrical indenter with spherical head under impact and ricochet conditions.

  20. Indentation-induced formation of low-dimensional Si structures in KOH solution

    NASA Astrophysics Data System (ADS)

    Yang, Fuqian; Li, Ding

    2010-03-01

    Low-dimensional Si structures, including Si nanobelts and Si micropyramids, were formed on the surface of n-type silicon by microindentation and anisotropic etching in 30 wt% KOH solution at a temperature of 50 °C. The indentation was performed to create local plastic deformation and residual stresses. The residual stresses caused the formation of the Si nanobelts around the sites of indents on the surface of Si (1 1 1) and the Si micropyramids at the sites of indents on the surface of Si (1 0 0). The formation of the Si micropyramids was due to the local 'mask' created by the indentation and the residual stress around the indents. The residual hydrostatic stress at the tensile state increased the local etching rate, which resulted in a surface depression around the indents. The combination of indentation and wet etching process provides a maskless process to potentially produce low-dimensional Si structures in KOH solution at low temperatures.

  1. The characterization of Vicker`s microhardness indentations and pile-up profiles as a strain-hardening microprobe

    SciTech Connect

    Santos, C. Jr.; Odette, G.R.; Lucas, G.E.; Schroeter, B.; Klinginsmith, D.; Yamamoto, T.

    1998-04-01

    Microhardness measurements have long been used to examine strength properties and changes in strength properties in metals, for example, as induced by irradiation. Microhardness affords a relatively simple test that can be applied to very small volumes of material. Microhardness is nominally related to the flow stress of the material at a fixed level of plastic strain. Further, the geometry of the pile-up of material around the indentation is related to the strain-hardening behavior of a material; steeper pile-ups correspond to smaller strain-hardening rates. In this study the relationship between pile-up profiles and strain hardening is examined using both experimental and analytical methods. Vickers microhardness tests have been performed on a variety of metal alloys including low alloy, high Cr and austenitic stainless steels. The pile-up topology around the indentations has been quantified using confocal microscopy techniques. In addition, the indentation and pile-up geometry has been simulated using finite element method techniques. These results have been used to develop an improved quantification of the relationship between the pile-up geometry and the strain-hardening constitutive behavior of the test material.

  2. Efficient Plant Supervision Strategy Using NN Based Techniques

    NASA Astrophysics Data System (ADS)

    Garcia, Ramon Ferreiro; Rolle, Jose Luis Calvo; Castelo, Francisco Javier Perez

    Most of non-linear type one and type two control systems suffers from lack of detectability when model based techniques are applied on FDI (fault detection and isolation) tasks. In general, all types of processes suffer from lack of detectability also due to the ambiguity to discriminate the process, sensors and actuators in order to isolate any given fault. This work deals with a strategy to detect and isolate faults which include massive neural networks based functional approximation procedures associated to recursive rule based techniques applied to a parity space approach.

  3. Adriatic indentation of the Eastern Alps - nature vs. analogue models

    NASA Astrophysics Data System (ADS)

    Favaro, S.; Scharf, A.; Schuster, R.; Handy, M. R.

    2013-12-01

    The Eastern Alps underwent late Oligocene-Miocene indentation by the Adriatic microplate, followed by rapid Miocene exhumation in the Tauern Window and orogen-parallel escape. Analogue models of indentation in the Eastern Alps indicate that exhumation of orogenic crust in front of the Adriatic indenter was coeval, with faults and post-nappe folds forming an asymmetrical conjugate pattern in front of the indenting block (Ratschbacher et al 1991, Rosenberg et al 2007). The amount and rate of exhumation is greatest at this location, but decrease laterally towards an unconfined boundary of the models that represents the retreating Carpathian subduction orogen. In nature, however, isotopic age patterns of deeply buried and exhumed basements rocks in the Tauern Window of the Eastern Alps indicate that cooling and possibly also exhumation were diachronous along strike of the orogen. In the westernmost Tauern Window, previous thermal modeling of fission-track ages (Fügenschuh et al 1997) revealed that rapid exhumation (≥ 1mm/a) lasted from 20-13 Ma and appears to have been triggered by sinistral transpression along the Guidicarie Belt beginning in Late Oligocene time. Rapid cooling (≥25°C/Ma) from 550 to 270°C lasted from 18-12 Ma (von Blanckenburg et al 1989; Fügenschuh et al 1997). In the easternmost part, however, rapid cooling from a similar peak temperature lasted from 23-20 Ma and ended no later than 17 Ma. Thus, rapid exhumation cannot have begun later than 23-21 Ma. Cooling patterns in the eastern central part of the Tauern Window are more complex and reflect the combined effects of doming and extensional exhumation. New Rb-Sr mica ages in post-nappe basement domes generally decrease from NW (muscovite: 26 Ma; biotite: 22 Ma) to SE (muscovite: 22 Ma; biotite: 18 Ma). We interpret these trends to show that doming began in the south-central part of the Tauern Window and then migrated to the SE while the entire basement nappe pile underwent orogen

  4. Graphene mechanics: II. Atomic stress distribution during indentation until rupture.

    PubMed

    Costescu, Bogdan I; Gräter, Frauke

    2014-06-28

    Previous Atomic Force Microscopy (AFM) experiments found single layers of defect-free graphene to rupture at unexpectedly high loads in the micronewton range. Using molecular dynamics simulations, we modeled an AFM spherical tip pressing on a circular graphene sheet and studied the stress distribution during the indentation process until rupture. We found the graphene rupture force to have no dependency on the sheet size and a very weak dependency on the indenter velocity, allowing a direct comparison to experiment. The deformation showed a non-linear elastic behavior, with a two-dimensional elastic modulus in good agreement with previous experimental and computational studies. In line with theoretical predictions for linearly elastic sheets, rupture forces of non-linearly elastic graphene are proportional to the tip radius. However, as a deviation from the theory, the atomic stress concentrates under the indenter tip more strongly than predicted and causes a high probability of bond breaking only in this area. In turn, stress levels decrease rapidly towards the edge of the sheet, most of which thus only serves the role of mechanical support for the region under the indenter. As a consequence, the high ratio between graphene sheets and sphere radii, hitherto supposed to be necessary for reliable deformation and rupture studies, could be reduced to a factor of only 5-10 without affecting the outcome. Our study suggests time-resolved analysis of forces at the atomic level as a valuable tool to predict and interpret the nano-scale response of stressed materials beyond graphene. PMID:24834440

  5. An ionospheric occultation inversion technique based on epoch difference

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Xiong, Jing; Zhu, Fuying; Yang, Jian; Qiao, Xuejun

    2013-09-01

    Of the ionospheric radio occultation (IRO) electron density profile (EDP) retrievals, the Abel based calibrated TEC inversion (CTI) is the most widely used technique. In order to eliminate the contribution from the altitude above the RO satellite, it is necessary to utilize the calibrated TEC to retrieve the EDP, which introduces the error due to the coplanar assumption. In this paper, a new technique based on the epoch difference inversion (EDI) is firstly proposed to eliminate this error. The comparisons between CTI and EDI have been done, taking advantage of the simulated and real COSMIC data. The following conclusions can be drawn: the EDI technique can successfully retrieve the EDPs without non-occultation side measurements and shows better performance than the CTI method, especially for lower orbit mission; no matter which technique is used, the inversion results at the higher altitudes are better than those at the lower altitudes, which could be explained theoretically.

  6. Diode laser based water vapor DIAL using modulated pulse technique

    NASA Astrophysics Data System (ADS)

    Pham, Phong Le Hoai; Abo, Makoto

    2014-11-01

    In this paper, we propose a diode laser based differential absorption lidar (DIAL) for measuring lower-tropospheric water vapor profile using the modulated pulse technique. The transmitter is based on single-mode diode laser and tapered semiconductor optical amplifier with a peak power of 10W around 800nm absorption band, and the receiver telescope diameter is 35cm. The selected wavelengths are compared to referenced wavelengths in terms of random error and systematic errors. The key component of modulated pulse technique, a macropulse, is generated with a repetition rate of 10 kHz, and the modulation within the macropulse is coded according to a pseudorandom sequence with 100ns chip width. As a result, we evaluate both single pulse modulation and pseudorandom coded pulse modulation technique. The water vapor profiles conducted from these modulation techniques are compared to the real observation data in summer in Japan.

  7. Atomic force microscopy indentation and inverse analysis for non-linear viscoelastic identification of breast cancer cells.

    PubMed

    Nguyen, Nhung; Shao, Yue; Wineman, Alan; Fu, Jianping; Waas, Anthony

    2016-07-01

    Breast cancer cells (MCF-7 and MCF-10A) are studied through indentation with spherical borosilicate glass particles in atomic force microscopy (AFM) contact mode in fluid. Their mechanical properties are obtained by analyzing the recorded reaction force-time response. The analysis is based on comparing experimental data with predictions from finite element (FE) simulation. Here, FE modeling is employed to simulate the AFM indentation experiment which is neither a displacement nor a force controlled test. This approach is expected to overcome many underlying problems of the widely used models such as Hertz contact model due to its capability to capture the contact behaviors between the spherical indentor and the cell, account for cell geometry, and incorporate with large strain theory. In this work, a non-linear viscoelastic (NLV) model in which the viscoelastic part is described by Prony series terms is used for the constitutive model of the cells. The time-dependent material parameters are extracted through an inverse analysis with the use of a surrogate model based on a Kriging estimator. The purpose is to automatically extract the NLV properties of the cells with a more efficient process compared to the iterative inverse technique that has been mostly applied in the literature. The method also allows the use of FE modeling in the analysis of a large amount of experimental data. The NLV parameters are compared between MCF-7 and MCF-10A and MCF-10A treated and untreated with the drug Cytochalasin D to examine the possibility of using relaxation properties as biomarkers for distinguishing these types of breast cancer cells. The comparisons indicate that malignant cells (MCF-7) are softer and exhibit more relaxation than benign cells (MCF-10A). Disrupting the cytoskeleton using the drug Cytochalasin D also results in a larger amount of relaxation in the cell's response. In addition, relaxation properties indicate larger differences as compared to the elastic moduli

  8. Using Indentation to Characterize Water Transport and Structure in Nafion Thin Films

    NASA Astrophysics Data System (ADS)

    Davis, Eric; Nadermann, Nichole; Page, Kirt; Stafford, Christopher; Chan, Edwin

    Perfluorinated ionomers, specifically Nafion, are the state-of-the-art polymer used in fuel cells. For this application, Nafion is utilized in both a bulk (hundreds of microns) and confined (tens of nanometers) state. For Nafion thin films in a confined state, i.e., Nafion as thin film coatings on catalyst particles, in-plane transport may play a critical role in the movement of water and protons through this catalysis layer. In this study, water transport was measured for a series of Nafion thin film thicknesses using poroelastic relaxation indentation (PRI). Unlike traditional through-thickness diffusion measurement techniques for thin polymer films (e.g., quartz crystal microbalance), PRI can be used to probe the in-plane water transport behavior. Relative to bulk Nafion, reduced in-plane water diffusion was observed in thin film Nafion, and below approximately 1 micron, water diffusivity and Nafion film thickness exhibited a logarithmic relationship. Equilibrium swelling measurements of water saturated Nafion thin films were used in conjunction with pore network theory to develop a picture of how the molecular-scale structure of Nafion changes with confinement to nanoscale film thicknesses. Using Indentation to Characterize Water Transport and Structure in Nafion Thin Films.

  9. Advanced airfoil design empirically based transonic aircraft drag buildup technique

    NASA Technical Reports Server (NTRS)

    Morrison, W. D., Jr.

    1976-01-01

    To systematically investigate the potential of advanced airfoils in advance preliminary design studies, empirical relationships were derived, based on available wind tunnel test data, through which total drag is determined recognizing all major aircraft geometric variables. This technique recognizes a single design lift coefficient and Mach number for each aircraft. Using this technique drag polars are derived for all Mach numbers up to MDesign + 0.05 and lift coefficients -0.40 to +0.20 from CLDesign.

  10. Intramuscular injection technique: an evidence-based approach.

    PubMed

    Ogston-Tuck, Sherri

    2014-09-30

    Intramuscular injections require a thorough and meticulous approach to patient assessment and injection technique. This article, the second in a series of two, reviews the evidence base to inform safer practice and to consider the evidence for nursing practice in this area. A framework for safe practice is included, identifying important points for safe technique, patient care and clinical decision making. It also highlights the ongoing debate in selection of intramuscular injection sites, predominately the ventrogluteal and dorsogluteal muscles. PMID:25249123

  11. Image analysis techniques associated with automatic data base generation.

    NASA Technical Reports Server (NTRS)

    Bond, A. D.; Ramapriyan, H. K.; Atkinson, R. J.; Hodges, B. C.; Thomas, D. T.

    1973-01-01

    This paper considers some basic problems relating to automatic data base generation from imagery, the primary emphasis being on fast and efficient automatic extraction of relevant pictorial information. Among the techniques discussed are recursive implementations of some particular types of filters which are much faster than FFT implementations, a 'sequential similarity detection' technique of implementing matched filters, and sequential linear classification of multispectral imagery. Several applications of the above techniques are presented including enhancement of underwater, aerial and radiographic imagery, detection and reconstruction of particular types of features in images, automatic picture registration and classification of multiband aerial photographs to generate thematic land use maps.

  12. Laser-based direct-write techniques for cell printing

    PubMed Central

    Schiele, Nathan R; Corr, David T; Huang, Yong; Raof, Nurazhani Abdul; Xie, Yubing; Chrisey, Douglas B

    2016-01-01

    Fabrication of cellular constructs with spatial control of cell location (±5 μm) is essential to the advancement of a wide range of applications including tissue engineering, stem cell and cancer research. Precise cell placement, especially of multiple cell types in co- or multi-cultures and in three dimensions, can enable research possibilities otherwise impossible, such as the cell-by-cell assembly of complex cellular constructs. Laser-based direct writing, a printing technique first utilized in electronics applications, has been adapted to transfer living cells and other biological materials (e.g., enzymes, proteins and bioceramics). Many different cell types have been printed using laser-based direct writing, and this technique offers significant improvements when compared to conventional cell patterning techniques. The predominance of work to date has not been in application of the technique, but rather focused on demonstrating the ability of direct writing to pattern living cells, in a spatially precise manner, while maintaining cellular viability. This paper reviews laser-based additive direct-write techniques for cell printing, and the various cell types successfully laser direct-written that have applications in tissue engineering, stem cell and cancer research are highlighted. A particular focus is paid to process dynamics modeling and process-induced cell injury during laser-based cell direct writing. PMID:20814088

  13. Limit case analysis of the "stable indenter velocity" method for obtaining creep stress exponents from constant load indentation creep tests

    NASA Astrophysics Data System (ADS)

    Campbell, J.; Dean, J.; Clyne, T. W.

    2016-06-01

    This study concerns a commonly-used procedure for evaluating the steady state creep stress exponent, n, from indentation data. The procedure involves monitoring the indenter displacement history under constant load and making the assumption that, once its velocity has stabilised, the system is in a quasi-steady state, with stage II creep dominating the behaviour. The stress and strain fields under the indenter are represented by "equivalent stress" and "equivalent strain rate" values. The estimate of n is then obtained as the gradient of a plot of the logarithm of the equivalent strain rate against the logarithm of the equivalent stress. Concerns have, however, been expressed about the reliability of this procedure, and indeed it has already been shown to be fundamentally flawed. In the present paper, it is demonstrated, using a very simple analysis, that, for a genuinely stable velocity, the procedure always leads to the same, constant value for n (either 1.0 or 0.5, depending on whether the tip shape is spherical or self-similar). This occurs irrespective of the value of the measured velocity, or indeed of any creep characteristic of the material. It is now clear that previously-measured values of n, obtained using this procedure, have varied in a more or less random fashion, depending on the functional form chosen to represent the displacement-time history and the experimental variables (tip shape and size, penetration depth, etc.), with little or no sensitivity to the true value of n.

  14. Characterization of strain rate sensitivity in pharmaceutical materials using indentation creep analysis.

    PubMed

    Katz, Jeffrey M; Buckner, Ira S

    2013-02-14

    Understanding how a material's response to stress changes as the stress is applied at different rates is important in predicting performance of pharmaceutical powders during tablet compression. Widely used methods for determining strain rate sensitivity (SRS) are empirically based and can often provide inconsistent or misleading results. Indentation creep data, collected during hardness tests on compacts formed from several common tableting excipients, were used to predict each material's relative sensitivity to changes in strain rate. Linear relationships between Ln(indentation hardness) and Ln(strain rate) were observed for all materials tested. The slope values taken from these relationships were compared to traditional strain rate sensitivity estimates based on in-die Heckel analysis. Overall, the results from the two methods were quite similar, but several advantages were evident in the creep data. The most notable advantage was the ability to characterize strain rate sensitivity derived from plastic behavior with little influence of elastic deformation. For example, two grades of corn starch had very similar creep behavior, but their yield pressures were affected very differently when the compaction rate was increased. This inconsistency was related to the difference in the viscoelastic recovery exhibited by these two materials. This new method promises to allow a better understanding of strain rate effects observed during tablet manufacturing. PMID:22985770

  15. Wavelet transformation based watermarking technique for human electrocardiogram (ECG).

    PubMed

    Engin, Mehmet; Cidam, Oğuz; Engin, Erkan Zeki

    2005-12-01

    Nowadays, watermarking has become a technology of choice for a broad range of multimedia copyright protection applications. Watermarks have also been used to embed prespecified data in biomedical signals. Thus, the watermarked biomedical signals being transmitted through communication are resistant to some attacks. This paper investigates discrete wavelet transform based watermarking technique for signal integrity verification in an Electrocardiogram (ECG) coming from four ECG classes for monitoring application of cardiovascular diseases. The proposed technique is evaluated under different noisy conditions for different wavelet functions. Daubechies (db2) wavelet function based technique performs better than those of Biorthogonal (bior5.5) wavelet function. For the beat-to-beat applications, all performance results belonging to four ECG classes are highly moderate. PMID:16235811

  16. "Ayeli": Centering Technique Based on Cherokee Spiritual Traditions.

    ERIC Educational Resources Information Center

    Garrett, Michael Tlanusta; Garrett, J. T.

    2002-01-01

    Presents a centering technique called "Ayeli," based on Cherokee spiritual traditions as a way of incorporating spirituality into counseling by helping clients identify where they are in their journey, where they want to be, and how they can get there. Relevant Native cultural traditions and meanings are explored. (Contains 25 references.) (GCP)

  17. Fictive temperature-independent density and minimum indentation size effect in calcium aluminosilicate glass

    SciTech Connect

    Gross, T. M.; Tomozawa, M.

    2008-09-15

    Using the calcium aluminosilicate system a glass was developed that exhibits fictive temperature-independent density by creating an intermediate glass between normal and anomalous glasses. Normal glass, such as soda-lime silicate glass, exhibits decreasing density with increasing fictive temperature while anomalous glass, such as silica glass, exhibits increasing density with increasing fictive temperature. This intermediate glass composition was found to exhibit the minimum indentation size effect during indentation hardness testing. It appears that the indentation size effect is correlated with a deformation-induced fictive temperature increase, which is accompanied by a density change and hardness change in the vicinity of the indentation. It is suggested from these observations that indentation size effect originates from the energy required to create interfaces and defects such as shear bands, subsurface cracks, and point defects near the indenter-specimen boundary, which accompany the volume change.

  18. Crystallographic Analysis of Nucleation at Hardness Indentations in High-Purity Aluminum

    NASA Astrophysics Data System (ADS)

    Xu, Chaoling; Zhang, Yubin; Lin, Fengxiang; Wu, Guilin; Liu, Qing; Juul Jensen, Dorte

    2016-08-01

    Nucleation at Vickers hardness indentations has been studied in high-purity aluminum cold-rolled 12 pct. Electron channeling contrast was used to measure the size of the indentations and to detect nuclei, while electron backscattering diffraction was used to determine crystallographic orientations. It is found that indentations are preferential nucleation sites. The crystallographic orientations of the deformed grains affect the hardness and the nucleation potentials at the indentations. Higher hardness gives increased nucleation probabilities. Orientation relationships between nuclei developed at different indentations within one original grain are analyzed and it is found that the orientation distribution of the nuclei is far from random. It is suggested that it relates to the orientations present near the indentation tips which in turn depend on the orientation of the selected grain in which they form. Finally, possible nucleation mechanisms are briefly discussed.

  19. The adhesion behavior of carbon coating studied by re-indentation during in situ TEM nanoindentation

    NASA Astrophysics Data System (ADS)

    Fan, Xue; Diao, Dongfeng

    2016-01-01

    We report a nanoscale adhesion induced nano-response in terms of re-indentation during in situ transmission electron microscope (TEM) nanoindentation on the carbon coating with silicon substrate. The adhesive force generated with nanoindentation was measured, and re-indentation phenomenon during unloading with displacement sudden drop and external loading force change from tension to compression was found. The occurrence of re-indentation during unloading was ascribed to the adhesive force of the contact interface between the indenter and the coating surface. Adhesion energies released for re-indentation processes were quantitatively analyzed from the re-indentation load-displacement curves, and carbon coating reduced the impact of adhesion for silicon substrate. The adhesion induced nano-response of contact surfaces would affect the reliability and performance of nano devices.

  20. Nano-indentation of single-layer optical oxide thin films grown by electron-beam deposition

    SciTech Connect

    Mehrotra, K.; Oliver, J. B.; Lambropoulos, J. C.

    2015-01-01

    Mechanical characterization of optical oxide thin films is performed using nano-indentation, and the results are explained based on the deposition conditions used. These oxide films are generally deposited to have a porous microstructure that optimizes laser induced damage thresholds, but changes in deposition conditions lead to varying degrees of porosity, density, and possibly the microstructure of the thin film. This can directly explain the differences in the mechanical properties of the film studied here and those reported in literature. Of the four single-layer thin films tested, alumina was observed to demonstrate the highest values of nano-indentation hardness and elastic modulus. This is likely a result of the dense microstructure of the thin film arising from the particular deposition conditions used.

  1. Video multiple watermarking technique based on image interlacing using DWT.

    PubMed

    Ibrahim, Mohamed M; Abdel Kader, Neamat S; Zorkany, M

    2014-01-01

    Digital watermarking is one of the important techniques to secure digital media files in the domains of data authentication and copyright protection. In the nonblind watermarking systems, the need of the original host file in the watermark recovery operation makes an overhead over the system resources, doubles memory capacity, and doubles communications bandwidth. In this paper, a robust video multiple watermarking technique is proposed to solve this problem. This technique is based on image interlacing. In this technique, three-level discrete wavelet transform (DWT) is used as a watermark embedding/extracting domain, Arnold transform is used as a watermark encryption/decryption method, and different types of media (gray image, color image, and video) are used as watermarks. The robustness of this technique is tested by applying different types of attacks such as: geometric, noising, format-compression, and image-processing attacks. The simulation results show the effectiveness and good performance of the proposed technique in saving system resources, memory capacity, and communications bandwidth. PMID:25587570

  2. Video Multiple Watermarking Technique Based on Image Interlacing Using DWT

    PubMed Central

    Ibrahim, Mohamed M.; Abdel Kader, Neamat S.; Zorkany, M.

    2014-01-01

    Digital watermarking is one of the important techniques to secure digital media files in the domains of data authentication and copyright protection. In the nonblind watermarking systems, the need of the original host file in the watermark recovery operation makes an overhead over the system resources, doubles memory capacity, and doubles communications bandwidth. In this paper, a robust video multiple watermarking technique is proposed to solve this problem. This technique is based on image interlacing. In this technique, three-level discrete wavelet transform (DWT) is used as a watermark embedding/extracting domain, Arnold transform is used as a watermark encryption/decryption method, and different types of media (gray image, color image, and video) are used as watermarks. The robustness of this technique is tested by applying different types of attacks such as: geometric, noising, format-compression, and image-processing attacks. The simulation results show the effectiveness and good performance of the proposed technique in saving system resources, memory capacity, and communications bandwidth. PMID:25587570

  3. Microstructural Characterization and Properties Evaluation of Ni-Based Hardfaced Coating on AISI 304 Stainless Steel by High Velocity Oxyfuel Coating Technique

    NASA Astrophysics Data System (ADS)

    Sharma, Prashant; Majumdar, Jyotsna Dutta

    2013-01-01

    The present study concerns a detailed investigation of microstructural evolution of nickel based hardfaced coating on AISI 304 stainless steel by high velocity oxy-fuel (HVOF) deposition technique. The work has also been extended to study the effect of coating on microhardness, wear resistance and corrosion resistance of the surface. Deposition has been conducted on sand blasted AISI 304 stainless steel by HVOF spraying technique using nickel (Ni)-based alloy [Ni: 68.4 wt pct, chromium (Cr): 17 wt pct, boron (B): 3.9 wt pct, silicon (Si): 4.9 wt pct and iron (Fe): 5.8 wt pct] of particle size 45 to 60 μm as precursor powder. Under the optimum process parameters, deposition leads to development of nano-borides (of chromium, Cr2B and nickel, Ni3B) dispersion in metastable and partly amorphous gamma nickel (γ-Ni) matrix. The microhardness of the coating was significantly enhanced to 935 VHN as compared to 215 VHN of as-received substrate due to dispersion of nano-borides in grain refined and partly amorphous nickel matrix. Wear resistance property under fretting wear condition against WC indenter was improved in as-deposited layer (wear rate of 4.65 × 10-7 mm3/mm) as compared to as-received substrate (wear rate of 20.81 × 10-7 mm3/mm). The corrosion resistance property in a 3.56 wt pct NaCl solution was also improved.

  4. Experiments on Adaptive Techniques for Host-Based Intrusion Detection

    SciTech Connect

    DRAELOS, TIMOTHY J.; COLLINS, MICHAEL J.; DUGGAN, DAVID P.; THOMAS, EDWARD V.; WUNSCH, DONALD

    2001-09-01

    This research explores four experiments of adaptive host-based intrusion detection (ID) techniques in an attempt to develop systems that can detect novel exploits. The technique considered to have the most potential is adaptive critic designs (ACDs) because of their utilization of reinforcement learning, which allows learning exploits that are difficult to pinpoint in sensor data. Preliminary results of ID using an ACD, an Elman recurrent neural network, and a statistical anomaly detection technique demonstrate an ability to learn to distinguish between clean and exploit data. We used the Solaris Basic Security Module (BSM) as a data source and performed considerable preprocessing on the raw data. A detection approach called generalized signature-based ID is recommended as a middle ground between signature-based ID, which has an inability to detect novel exploits, and anomaly detection, which detects too many events including events that are not exploits. The primary results of the ID experiments demonstrate the use of custom data for generalized signature-based intrusion detection and the ability of neural network-based systems to learn in this application environment.

  5. Deformation mechanisms in advanced structural ceramics due to indentation and scratch processes

    NASA Astrophysics Data System (ADS)

    Ghosh, Dipankar

    Plasma pressure compaction technique was used to develop boron carbide (B4C) and zirconium diboride-silicon carbide (ZrB2-SiC) composite. B4C ceramics are extensively used as body armor in military and civilian applications, and ZrB2-SiC composite has been recognized as a potential candidate for high-temperature aerospace applications. In this dissertation, processing parameters, quasistatic and high-strain rate mechanical response, and fundamental deformation mechanisms of these materials have been investigated. In the case of B4C, the rate sensitivity of indentation hardness was determined using a dynamic indentation hardness tester that can deliver loads in 100 micros. By comparing dynamic hardness with the static hardness, it was found that B4C exhibits a lower hardness at high-strain rate, contrary to known behavior in many structural ceramics. However, these results are consistent with the ballistic testing of B4C armors as reported in recent literature. This behavior was further investigated using a series of spectroscopic techniques such as visible and UV micro-Raman, photoluminescence and infrared. These studies not only confirmed that structural transformation occurred during indentation experiments similar to that in ballistic testing of B4C but also suggested a greater degree of structural changes under dynamic loading compared to static loading. Due to the potential application as external heat shields in supersonic vehicles, scratch studies were conducted on the ZrB2-SiC composite. These studies revealed metal-like slip-line patterns which are indeed an unusual in brittle solids at room-temperature. Utilizing classical stress field solutions under combined normal and tangential loads, a rationale was developed for understanding the formation of scratch-induced deformation features. Also, an analytical framework was developed, combining the concept of 'blister field' and the 'secular equation' relating Raman peaks to strain, to measure scratch

  6. Graphene-based terahertz photodetector by noise thermometry technique

    SciTech Connect

    Wang, Ming-Jye; Wang, Ji-Wun; Wang, Chun-Lun; Chiang, Yen-Yu; Chang, Hsian-Hong

    2014-01-20

    We report the characteristics of graphene-based terahertz (THz) photodetector based on noise thermometry technique by measuring its noise power at frequency from 4 to 6 GHz. Hot electron system in graphene microbridge is generated after THz photon pumping and creates extra noise power. The equivalent noise temperature and electron temperature increase rapidly in low THz pumping regime and saturate gradually in high THz power regime which is attributed to a faster energy relaxation process involved by stronger electron-phonon interaction. Based on this detector, a conversion efficiency around 0.15 from THz power to noise power in 4–6 GHz span has been achieved.

  7. Detection of indentation induced Fe-to-Afe phase transformation in lead zirconate titanate.

    SciTech Connect

    Baddorf, Arthur P.; Shin, Junsoo; Gogotsi, Yury G.; Buchheit, Thomas Edward; Watson, Chad Samuel; Kalinin, Sergei; Juliano, Thomas F.

    2005-08-01

    Instrumented indentation was combined with microscopy and spectroscopy analysis to investigate the local mechanically induced ferroelectric to anti-ferroelectric phase transformation of niobium-modified lead zirconate titanate 95/5. Indentation experiments to a depth of 2 {micro}m were performed using a Berkovich pyramidal three-sided diamond tip. Subsequent Raman spectroscopy and piezoelectric force microscopy revealed that indentation locally induced the ferroelectric to antiferroelectric phase transformation. Piezoelectric force microscopy demonstrated the ability to map the individual phases within and near indented regions on the niobium-modified lead zirconate titanate ceramics.

  8. An evaluation of the advantages and limitations in simulating indentation cracking with cohesive zone finite elements

    NASA Astrophysics Data System (ADS)

    Johanns, K. E.; Lee, J. H.; Gao, Y. F.; Pharr, G. M.

    2014-01-01

    A cohesive zone model is applied to a finite element (FE) scheme to simulate indentation cracking in brittle materials. Limitations of using the cohesive zone model to study indentation cracking are determined from simulations of a standard fracture toughness specimen and a two-dimensional indentation cracking problem wherein the morphology of the crack and the geometry of the indenter are simplified. It is found that the principles of linear-elastic fracture mechanics can be applied when indentation cracks are long in comparison to the size of the cohesive zone. Vickers and Berkovich pyramidal indentation crack morphologies (3D) are also investigated and found to be controlled by the ratio of elastic modulus to yield strength (E/Y), with median type cracking dominating at low ratios (e.g. E/Y = 10) and Palmqvist type cracking at higher ratios (e.g. E/Y = 100). The results show that cohesive FE simulations of indentation cracking can indeed be used to critically examine the complex relationships between crack morphology, material properties, indenter geometry, and indentation test measurements, provided the crack length is long in comparison to the cohesive zone size.

  9. Slab pull and indentation tectonics: insights from 3D laboratory experiments

    NASA Astrophysics Data System (ADS)

    Regard, Vincent; Faccenna, Claudio; Martinod, Joseph; Bellier, Olivier

    2005-03-01

    We investigate, using 3D laboratory experiments, how the dynamics of indentation process are affected by the evolution at depth of the oceanic and continental subductions. Lithospheric plates are modelled by sand-silicone plates floating on glucose syrup, and the density contrast between oceanic and continental lithospheric plates and asthenosphere is reproduced. Analogue experiments model the convergence between two lithospheric plates, a small continent indenting a large continental plate. We show that the surface deformation in front of the indenter and above the oceanic subduction zone depends on the behaviour of the slab below the collision zone. Slab break-off following the subduction of the small continent favours the indentation process, because it results in an increasing compression in front of the indenter, and extension above the neighbouring oceanic subduction, both of them being responsible for the appearance of the indenter-like geometry of the plate boundary. When the slab does not deform significantly at depth, in contrast, the closure of the oceanic domain in front of the indenter is followed by a longer period of continental subduction, during which the tectonic regime within the wide continent remains quite homogeneous. Comparing the presented analogue experiments with the subductions both part of the Arabian indenter within Eurasia, our results suggest that the different tectonic regime on both sides of the Arabia indenter may partly result from the probable occurrence of a detachment at depth under eastern Anatolia.

  10. Indentation fracture toughness of sintered silicon carbide in the Palmqvist crack regime

    NASA Technical Reports Server (NTRS)

    Li, Zhuang; Ghosh, Asish; Kobayashi, Albert S.; Bradt, Richard C.

    1989-01-01

    The fracture toughness of a sintered dense alpha-SiC was estimated by the Vickers indentation microfracture method in the low-load Palmqvist crack regime. It was observed that the use of simultaneously obtained Vickers hardnesses does not yield reliable fracture toughness values, nor does application of the median-crack-derived equations. It is necessary to utilize a load-independent, crack-free hardness value with this toughness estimation method. Although several of the curve-fitting equations yield similar toughnesses, it is concluded for the Palmqvist crack system in this alpha-SiC that the Niihara-Morena-Hasselman (1982) equation is the only one which yields fracture toughness values in agreement with conventional measurement techniques.

  11. An investigation of the physico-mechanical properties of pharmaceutical compounds by compaction simulator and nano-indentation

    NASA Astrophysics Data System (ADS)

    Bordawekar, Mangesh

    In early development, pharmaceutical formulation scientists are often faced with challenges of developing robust and scalable formulations in extremely stringent timelines based on limited API quantities. Hence, tablet formulation development would benefit significantly from tools that enable predictive analysis based on limited quantities of API to enable selection of excipients with appropriate physico-mechanical properties that would result in robust and scalable formulations. With the recent technological advances, especially in sensor technologies, tools such as the compaction simulator, and instrumented nanoindentation offer hitherto unavailable means of assessing material properties with limited quantities. The goal of this work was to evaluate the physico-mechanical properties of selected pharmaceutical excipients and active pharmaceutical ingredients using a macro-scale analysis technique (compaction simulator), and a micro-scale analysis technique (nanoindentation tester) and compare the results obtained from these techniques in order to determine whether a rank order correlation exists between the two. Excipients representing diverse physic-mechanical properties, and a group of APIs were selected for the study. For the compaction simulator studies, tablets were uniaxially compressed using a flat faced 11.28mm round tooling on the STYLCAM® 200R compaction simulator, to a target final porosity at two different cam speeds (5 rpm and 25 rpm). The force displacement profiles, plastic, elastic, and total compression energies, plasticity index, energy density and the Heckel plots were determined for each compact. These compacts were further analyzed with a Berkovich geometry indenter. The plasticity index, hardness, elastic modulus, as well as creep and relaxation were determined from the force-displacement profiles. The nature of force-displacement curves was studied to differentiate compounds based on predominant mechanisms of deformation. Compaction

  12. Statistics and Machine Learning based Outlier Detection Techniques for Exoplanets

    NASA Astrophysics Data System (ADS)

    Goel, Amit; Montgomery, Michele

    2015-08-01

    Architectures of planetary systems are observable snapshots in time that can indicate formation and dynamic evolution of planets. The observable key parameters that we consider are planetary mass and orbital period. If planet masses are significantly less than their host star masses, then Keplerian Motion is defined as P^2 = a^3 where P is the orbital period in units of years and a is the orbital period in units of Astronomical Units (AU). Keplerian motion works on small scales such as the size of the Solar System but not on large scales such as the size of the Milky Way Galaxy. In this work, for confirmed exoplanets of known stellar mass, planetary mass, orbital period, and stellar age, we analyze Keplerian motion of systems based on stellar age to seek if Keplerian motion has an age dependency and to identify outliers. For detecting outliers, we apply several techniques based on statistical and machine learning methods such as probabilistic, linear, and proximity based models. In probabilistic and statistical models of outliers, the parameters of a closed form probability distributions are learned in order to detect the outliers. Linear models use regression analysis based techniques for detecting outliers. Proximity based models use distance based algorithms such as k-nearest neighbour, clustering algorithms such as k-means, or density based algorithms such as kernel density estimation. In this work, we will use unsupervised learning algorithms with only the proximity based models. In addition, we explore the relative strengths and weaknesses of the various techniques by validating the outliers. The validation criteria for the outliers is if the ratio of planetary mass to stellar mass is less than 0.001. In this work, we present our statistical analysis of the outliers thus detected.

  13. Indentation and oxidation studies on silicon nitride joints

    SciTech Connect

    Gopal, M.; De Jonghe, L.C.; Thomas, G. |

    1996-05-01

    Si nitride ceramics have been joined with a Y oxide-SiO{sub 2} interlayer. A 1:2 molar ratio of Y{sub 2}O{sub 3} to SiO{sub 2} was chosen to obtain the desired Y{sub 2}Si{sub 2}O{sub 7} stoichiometry, which should give the interlayer better oxidation resistance compared to other interlayer materials. Mechanical characterization of the joints performed by indentation shows it to have good room temperature strength.

  14. The Effect of Indenter Ball Radius on the Static Load Capacity of the Superelastic 60NiTi for Rolling Element Bearings

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Moore, Lewis E.

    2014-01-01

    Static load capacity is a critical design parameter for rolling element bearings used in space mechanisms because of the potential for Brinell (surface dent) damage due to shock and vibration loading events during rocket launch. Brinell damage to bearing raceways can lead to torque variations (noise) and reduced bearing life. The growing use of ceramic rolling elements with high stiffness in hybrid bearings exacerbates the situation. A new family of hard yet resilient materials based upon nickel-titanium is emerging to address such bearing challenges. 60NiTi is a superelastic material that simultaneously exhibits high hardness and a relatively low elastic modulus (approx. 100 GPa) and has been shown to endure higher indentation loads than conventional and high performance steel. Indentation load capacity has been reported for relatively large (12.7 mm diameter) ceramic (Si3N4) indenter balls pressed against flat plates of 60NiTi. In order to develop damage load threshold criteria applicable to a wide range of bearing designs and sizes, the effects of indenter ball radius and the accuracy of interpolation of the Hertz contact stress relations for 60NiTi must be ascertained. In this paper, results of indentation tests involving ceramic balls ranging from 6.4 to 12.7 mm in diameter and highly polished 60NiTi flat plates are presented. When the resulting dent depth data for all the indenter ball sizes are normalized using the Hertz equations, the data (dent depth versus stress) are comparable. Thus when designing bearings made from 60NiTi, the Hertz stress relations can be applied with relative confidence over a range of rolling element sizes and internal geometries.

  15. The Effect of Indenter Ball Radius on the Static Load Capacity of the Superelastic 60NiTi for Rolling Element Bearings

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Moore, Lewis E.; Clifton, Joshua S.

    2014-01-01

    Static load capacity is a critical design parameter for rolling element bearings used in space mechanisms because of the potential for Brinell (surface dent) damage due to shock and vibration loading events during rocket launch. Brinell damage to bearing raceways can lead to torque variations (noise) and reduced bearing life. The growing use of ceramic rolling elements with high stiffness in hybrid bearings exacerbates the situation. A new family of hard yet resilient materials based upon nickel-titanium is emerging to address such bearing challenges. 60NiTi is a superelastic material that simultaneously exhibits high hardness and a relatively low elastic modulus (100GPa) and has been shown to endure higher indentation loads than conventional and high performance steel. Indentation load capacity has been reported for relatively large (12.7mm diameter) ceramic (Si3N4) indenter balls pressed against flat plates of 60NiTi. In order to develop damage load threshold criteria applicable to a wide range of bearing designs and sizes, the effects of indenter ball radius and the accuracy of interpolation of the Hertz contact stress relations for 60NiTi must be ascertained. In this paper, results of indentation tests involving ceramic balls ranging from 6.4 to 12.7mm in diameter and highly polished 60NiTi flat plates are presented. When the resulting dent depth data for all the indenter ball sizes are normalized using the Hertz equations, the data (dent depth vs. stress) are comparable. Thus when designing bearings made from 60NiTi, the Hertz stress relations can be applied with relative confidence over a range of rolling element sizes and internal geometries.

  16. The Effect of Indenter Ball Radius on the Static Load Capacity of the Superelastic 60NiTi for Rolling Element Bearings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.

    2014-01-01

    Static load capacity is a critical design parameter for rolling element bearings used in space mechanisms because of the potential for Brinell (surface dent) damage due to shock and vibration loading events during rocket launch. Brinell damage to bearing raceways can lead to torque variations (noise) and reduced bearing life. The growing use of ceramic rolling elements with high stiffness in hybrid bearings exacerbates the situation. A new family of hard yet resilient materials based upon nickel-titanium is emerging to address such bearing challenges. 60NiTi is a superelastic material that simultaneously exhibits high hardness and a relatively low elastic modulus (approx. 100 GigaPascals) and has been shown to endure higher indentation loads than conventional and high performance steel. Indentation load capacity has been reported for relatively large (12.7 millimeters diameter) ceramic (Si3N4) indenter balls pressed against flat plates of 60NiTi. In order to develop damage load threshold criteria applicable to a wide range of bearing designs and sizes, the effects of indenter ball radius and the accuracy of interpolation of the Hertz contact stress relations for 60NiTi must be ascertained. In this paper, results of indentation tests involving ceramic balls ranging from 6.4 to 12.7 mm in diameter and highly polished 60NiTi flat plates are presented. When the resulting dent depth data for all the indenter ball sizes are normalized using the Hertz equations, the data (dent depth versus stress) are comparable. Thus when designing bearings made from 60NiTi, the Hertz stress relations can be applied with relative confidence over a range of rolling element sizes and internal geometries.

  17. MEMS-Based Power Generation Techniques for Implantable Biosensing Applications

    PubMed Central

    Lueke, Jonathan; Moussa, Walied A.

    2011-01-01

    Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient. PMID:22319362

  18. Novel techniques and the future of skull base reconstruction.

    PubMed

    Meier, Joshua C; Bleier, Benjamin S

    2013-01-01

    The field of endoscopic skull base surgery has evolved considerably in recent years fueled largely by advances in both imaging and instrumentation. While the indications for these approaches continue to be extended, the ability to reconstruct the resultant defects has emerged as a rate-limiting obstacle. Postoperative failures with current multilayer grafting techniques remain significant and may increase as the indications for endoscopic resections continue to expand. Laser tissue welding represents a novel method of wound repair in which laser energy is applied to a chromophore doped biologic solder at the wound edge to create a laser weld (fig. 1). These repairs are capable of withstanding forces far exceeding those exerted by intracranial pressure with negligible collateral thermal tissue injury. Recent clinical trials have demonstrated the safety and feasibility of endoscopic laser welding while exposing the limitations of first generation hyaluronic acid based solders. Novel supersaturated gel based solders are currently being tested in clinical trials and appear to possess significantly improved viscoelastic properties. While laser tissue welding remains an experimental technique, continued success with these novel solder formulations may catalyze the widespread adoption of this technique for skull base repair in the near future. PMID:23257563

  19. New Flutter Analysis Technique for CFD-based Unsteady Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Jutte, Christine V.

    2009-01-01

    This paper presents a flutter analysis technique for the transonic flight regime. The technique uses an iterative approach to determine the critical dynamic pressure for a given mach number. Unlike other CFD-based flutter analysis methods, each iteration solves for the critical dynamic pressure and uses this value in subsequent iterations until the value converges. This process reduces the iterations required to determine the critical dynamic pressure. To improve the accuracy of the analysis, the technique employs a known structural model, leaving only the aerodynamic model as the unknown. The aerodynamic model is estimated using unsteady aeroelastic CFD analysis combined with a parameter estimation routine. The technique executes as follows. The known structural model is represented as a finite element model. Modal analysis determines the frequencies and mode shapes for the structural model. At a given mach number and dynamic pressure, the unsteady CFD analysis is performed. The output time history of the surface pressure is converted to a nodal aerodynamic force vector. The forces are then normalized by the given dynamic pressure. A multi-input multi-output parameter estimation software, ERA, estimates the aerodynamic model through the use of time histories of nodal aerodynamic forces and structural deformations. The critical dynamic pressure is then calculated using the known structural model and the estimated aerodynamic model. This output is used as the dynamic pressure in subsequent iterations until the critical dynamic pressure is determined. This technique is demonstrated on the Aerostructures Test Wing-2 model at NASA's Dryden Flight Research Center.

  20. A unified neural-network-based speaker localization technique.

    PubMed

    Arslan, G; Sakarya, F A

    2000-01-01

    Locating and tracking a speaker in real time using microphone arrays is important in many applications such as hands-free video conferencing, speech processing in large rooms, and acoustic echo cancellation. A speaker can be moving from the far field to the near field of the array, or vice versa. Many neural-network-based localization techniques exist, but they are applicable to either far-field or near-field sources, and are computationally intensive for real-time speaker localization applications because of the wide-band nature of the speech. We propose a unified neural-network-based source localization technique, which is simultaneously applicable to wide-band and narrow-band signal sources that are in the far field or near field of a microphone array. The technique exploits a multilayer perceptron feedforward neural network structure and forms the feature vectors by computing the normalized instantaneous cross-power spectrum samples between adjacent pairs of sensors. Simulation results indicate that our technique is able to locate a source with an absolute error of less than 3.5 degrees at a signal-to-noise ratio of 20 dB and a sampling rate of 8000 Hz at each sensor. PMID:18249826

  1. Quasi-Static Indentation Analysis of Carbon-Fiber Laminates.

    SciTech Connect

    Briggs, Timothy; English, Shawn Allen; Nelson, Stacy Michelle

    2015-12-01

    A series of quasi - static indentation experiments are conducted on carbon fiber reinforced polymer laminates with a systematic variation of thicknesses and fixture boundary conditions. Different deformation mechanisms and their resulting damage mechanisms are activated b y changing the thickn ess and boundary conditions. The quasi - static indentation experiments have been shown to achieve damage mechanisms similar to impact and penetration, however without strain rate effects. The low rate allows for the detailed analysis on the load response. Moreover, interrupted tests allow for the incremental analysis of various damage mechanisms and pr ogressions. The experimentally tested specimens are non - destructively evaluated (NDE) with optical imaging, ultrasonics and computed tomography. The load displacement responses and the NDE are then utilized in numerical simulations for the purpose of model validation and vetting. The accompanying numerical simulation work serves two purposes. First, the results further reveal the time sequence of events and the meaning behind load dro ps not clear from NDE . Second, the simulations demonstrate insufficiencies in the code and can then direct future efforts for development.

  2. Single cell metastatic phenotyping using pulsed nanomechanical indentations

    NASA Astrophysics Data System (ADS)

    Babahosseini, Hesam; Strobl, Jeannine S.; Agah, Masoud

    2015-09-01

    The existing approach to characterize cell biomechanical properties typically utilizes switch-like models of mechanotransduction in which cell responses are analyzed in response to a single nanomechanical indentation or a transient pulsed stress. Although this approach provides effective descriptors at population-level, at a single-cell-level, there are significant overlaps in the biomechanical descriptors of non-metastatic and metastatic cells which precludes the use of biomechanical markers for single cell metastatic phenotyping. This study presents a new promising marker for biosensing metastatic and non-metastatic cells at a single-cell-level using the effects of a dynamic microenvironment on the biomechanical properties of cells. Two non-metastatic and two metastatic epithelial breast cell lines are subjected to a pulsed stresses regimen exerted by atomic force microscopy. The force-time data obtained for the cells revealed that the non-metastatic cells increase their resistance against deformation and become more stiffened when subjected to a series of nanomechanical indentations. On the other hand, metastatic cells become slightly softened when their mechanical microenvironment is subjected to a similar dynamical changes. This distinct behavior of the non-metastatic and metastatic cells to the pulsed stresses paradigm provided a signature for single-cell-level metastatic phenotyping with a high confidence level of ∼95%.

  3. Windsurf-Board Sandwich Panels Under Static Indentation

    NASA Astrophysics Data System (ADS)

    Borsellino, C.; Calabrese, L.; di Bella, G.

    2008-03-01

    In recent years composite materials have found application in several fields as sport and sea transportation, where the incidence of the cost of materials is not significant compared with the required high mechanical performances. As a matter of fact, in some sports the whole equipment is nowadays realized in composite materials (i.e. windsurf boards, snowboards). The aim of the present work is to evaluate the mechanical performance of some sandwich structures produced by vacuum bagging technology for the windsurf boards production. The behaviour of the structures is tested under static indentation conditions; different fibres materials, for the skins, and different polystyrene foams, for the core, have been taken into account. In particular both the effect of the kind of fibre (glass, carbon and kevlar fibres) and the effect of the polystyrene cells size (and its density) have been investigated. The purpose was to obtain a stiff structure able to bear localized loads. Additionally, the effects induced on the indentation resistance by both the speed and the diameter of pin have been analysed.

  4. A Different Web-Based Geocoding Service Using Fuzzy Techniques

    NASA Astrophysics Data System (ADS)

    Pahlavani, P.; Abbaspour, R. A.; Zare Zadiny, A.

    2015-12-01

    Geocoding - the process of finding position based on descriptive data such as address or postal code - is considered as one of the most commonly used spatial analyses. Many online map providers such as Google Maps, Bing Maps and Yahoo Maps present geocoding as one of their basic capabilities. Despite the diversity of geocoding services, users usually face some limitations when they use available online geocoding services. In existing geocoding services, proximity and nearness concept is not modelled appropriately as well as these services search address only by address matching based on descriptive data. In addition there are also some limitations in display searching results. Resolving these limitations can enhance efficiency of the existing geocoding services. This paper proposes the idea of integrating fuzzy technique with geocoding process to resolve these limitations. In order to implement the proposed method, a web-based system is designed. In proposed method, nearness to places is defined by fuzzy membership functions and multiple fuzzy distance maps are created. Then these fuzzy distance maps are integrated using fuzzy overlay technique for obtain the results. Proposed methods provides different capabilities for users such as ability to search multi-part addresses, searching places based on their location, non-point representation of results as well as displaying search results based on their priority.

  5. Flow management techniques for base and afterbody drag reduction

    NASA Astrophysics Data System (ADS)

    Viswanath, P. R.

    The problem of turbulent base flows and the drag associated with it have been of significant interest in missile as well as fighter aircraft design. Numerous studies in the literature have been devoted to aspects of reducing base drag on two-dimensional as well as on axisymmetric bodies. This paper presents a review of the developments that have taken place on the use of passive techniques or devices for axisymmetric base and net afterbody drag reduction in the absence of jet flow at the base. In particular, the paper discusses the effectiveness of base cavities, ventilated cavities, locked vortex afterbodies, multi-step afterbodies and afterbodies employing a non-axisymmetric boat-tailing concept for base and net drag reduction in different speed regimes. The broad features of the flow and the likely fluid-dynamical mechanisms associated with the device leading to base drag reduction are highlighted. Flight-test results assessing the effectiveness of some of the devices are compared with data from wind tunnels. The present survey indicates that base and net afterbody drag reduction of considerable engineering significance in aerospace applications can be achieved by various passive devices even when the (unmanipulated) base flow is not characterised by vortex shedding.

  6. Development of a precision indentation and scratching system with a tool force and displacement control module

    NASA Astrophysics Data System (ADS)

    Park, Jae-jun; Kwon, Kihwan; Bang, Jinhyeok; Cho, Nahmgyoo; Han, Chang-soo; Choi, Nak-sam

    2007-04-01

    This article presents a tip-based micropatterning system with a precision device for measuring the machine force and the tool path. The machine force is obtained by a tool control module with a leaf spring and a capacitive displacement sensor. It is controlled to provide a force that ranges from 80 μN to 8 N. The force sensing unit, which is part of the module, is mounted on a PZT (PbZrTi) driven in-feed motion stage with a resolution of 1 nm. The work piece is set on an X-Y motion stage, and the position can be controlled with a tool path accuracy of 5 nm. Micropatterning and precision indentation experiments were performed, while the machined surfaces were examined by atomic force microscopy. From these results, the feasibility of the system for precise force-displacement control was verified for application in tip-based precision machining.

  7. Hydrocarbon microseepage mapping using signature based target detection techniques

    NASA Astrophysics Data System (ADS)

    Soydan, Hilal; Koz, Alper; Şebnem Düzgün, H.; Aydin Alatan, A.

    2015-10-01

    In this paper, we compare the conventional methods in hydrocarbon seepage anomalies with the signature based detection algorithms. The Crosta technique [1] is selected as a basement in the experimental comparisons for the conventional approach. The Crosta technique utilizes the characteristic bands of the searched target for principal component transformation in order to determine the components characterizing the target in interest. Desired Target Detection and Classification Algorithm (DTDCA), Spectral Matched Filter (SMF), and Normalized Correlation (NC) are employed for signature based target detection. Signature based target detection algorithms are applied to the whole spectrum benefiting from the information stored in all spectral bands. The selected methods are applied to a multispectral Advanced SpaceBorne Thermal Emission and Radiometer (ASTER) image of the study region, with an atmospheric correction prior to the realization of the algorithms. ASTER provides multispectral bands covering visible, short wave, and thermal infrared region, which serves as a useful tool for the interpretation of the areas with hydrocarbon anomalies. The exploration area is selected as Gemrik Anticline which is located in South East Anatolia, Adıyaman, Bozova Oil Field, where microseeps can be observed with almost no vegetation cover. The spectral signatures collected with Analytical Spectral Devices Inc. (ASD) spectrometer from the reference valley [2] have been utilized as an input to the signature based detection algorithms. The experiments have indicated that DTDCA and MF outperforms the Crosta technique by locating the microseepage patterns along the mitigation pathways with a better contrast. On the other hand, NC has not been able to map the searched target with a visible distinction. It is concluded that the signature based algorithms can be more effective than the conventional methods for the detection of microseepage induced anomalies.

  8. Novel optical password security technique based on optical fractal synthesizer

    NASA Astrophysics Data System (ADS)

    Wu, Kenan; Hu, Jiasheng; Wu, Xu

    2009-06-01

    A novel optical security technique for safeguarding user passwords based on an optical fractal synthesizer is proposed. A validating experiment has been carried out. In the proposed technique, a user password is protected by being converted to a fractal image. When a user sets up a new password, the password is transformed into a fractal pattern, and the fractal pattern is stored in authority. If the user is online-validated, his or her password is converted to a fractal pattern again to compare with the previous stored fractal pattern. The converting process is called the fractal encoding procedure, which consists of two steps. First, the password is nonlinearly transformed to get the parameters for the optical fractal synthesizer. Then the optical fractal synthesizer is operated to generate the output fractal image. The experimental result proves the validity of our method. The proposed technique bridges the gap between digital security systems and optical security systems and has many advantages, such as high security level, convenience, flexibility, hyper extensibility, etc. This provides an interesting optical security technique for the protection of digital passwords.

  9. Noninvasive in vivo glucose sensing using an iris based technique

    NASA Astrophysics Data System (ADS)

    Webb, Anthony J.; Cameron, Brent D.

    2011-03-01

    Physiological glucose monitoring is important aspect in the treatment of individuals afflicted with diabetes mellitus. Although invasive techniques for glucose monitoring are widely available, it would be very beneficial to make such measurements in a noninvasive manner. In this study, a New Zealand White (NZW) rabbit animal model was utilized to evaluate a developed iris-based imaging technique for the in vivo measurement of physiological glucose concentration. The animals were anesthetized with isoflurane and an insulin/dextrose protocol was used to control blood glucose concentration. To further help restrict eye movement, a developed ocular fixation device was used. During the experimental time frame, near infrared illuminated iris images were acquired along with corresponding discrete blood glucose measurements taken with a handheld glucometer. Calibration was performed using an image based Partial Least Squares (PLS) technique. Independent validation was also performed to assess model performance along with Clarke Error Grid Analysis (CEGA). Initial validation results were promising and show that a high percentage of the predicted glucose concentrations are within 20% of the reference values.

  10. Surveying converter lining erosion state based on laser measurement technique

    NASA Astrophysics Data System (ADS)

    Li, Hongsheng; Shi, Tielin; Yang, Shuzi

    1998-08-01

    It is very important to survey the eroding state of the steelmaking converter lining real time so as to optimize technological process, extend converter durability and reduce steelmaking production costs. This paper gives one practical method based on the laser measure technique. It presents the basic principle of the measure technique. It presents the basic principle of the measure method, the composition of the measure system and the researches on key technological problems. The method is based on the technique of the laser range finding to net points on the surface of the surveyed converter lining, and the technology of angle finding to the laser beams. The angle signals would be used to help realizing the automatic scanning function also. The laser signals would be modulated and encoded. In the meantime, we would adopt the wavelet analysis and other filter algorithms, to denoise noisy data and extract useful information. And the main idea of some algorithms such as the net point measuring path planning and the measure device position optimal algorithm would also be given in order to improve the measure precision and real time property of the system.

  11. FDTD technique based crosstalk analysis of bundled SWCNT interconnects

    NASA Astrophysics Data System (ADS)

    Singh Duksh, Yograj; Kaushik, Brajesh Kumar; Agarwal, Rajendra P.

    2015-05-01

    The equivalent electrical circuit model of a bundled single-walled carbon nanotube based distributed RLC interconnects is employed for the crosstalk analysis. The accurate time domain analysis and crosstalk effect in the VLSI interconnect has emerged as an essential design criteria. This paper presents a brief description of the numerical method based finite difference time domain (FDTD) technique that is intended for estimation of voltages and currents on coupled transmission lines. For the FDTD implementation, the stability of the proposed model is strictly restricted by the Courant condition. This method is used for the estimation of crosstalk induced propagation delay and peak voltage in lossy RLC interconnects. Both functional and dynamic crosstalk effects are analyzed in the coupled transmission line. The effect of line resistance on crosstalk induced delay, and peak voltage under dynamic and functional crosstalk is also evaluated. The FDTD analysis and the SPICE simulations are carried out at 32 nm technology node for the global interconnects. It is observed that the analytical results obtained using the FDTD technique are in good agreement with the SPICE simulation results. The crosstalk induced delay, propagation delay, and peak voltage obtained using the FDTD technique shows average errors of 4.9%, 3.4% and 0.46%, respectively, in comparison to SPICE.

  12. Mapping the climate: guidance on appropriate techniques to map climate variables and their uncertainty

    NASA Astrophysics Data System (ADS)

    Kaye, N. R.; Hartley, A.; Hemming, D.

    2012-02-01

    Maps are a crucial asset in communicating climate science to a diverse audience, and there is a wealth of software available to analyse and visualise climate information. However, this availability makes it easy to create poor maps as users often lack an underlying cartographic knowledge. Unlike traditional cartography, where many known standards allow maps to be interpreted easily, there is no standard mapping approach used to represent uncertainty (in climate or other information). Consequently, a wide range of techniques have been applied for this purpose, and users may spend unnecessary time trying to understand the mapping approach rather than interpreting the information presented. Furthermore, communicating and visualising uncertainties in climate data and climate change projections, using for example ensemble based approaches, presents additional challenges for mapping that require careful consideration. The aim of this paper is to provide background information and guidance on suitable techniques for mapping climate variables, including uncertainty. We assess a range of existing and novel techniques for mapping variables and uncertainties, comparing "intrinsic" approaches that use colour in much the same way as conventional thematic maps with "extrinsic" approaches that incorporate additional geometry such as points or features. Using cartographic knowledge and lessons learned from mapping in different disciplines we propose the following 6 general mapping guidelines to develop a suitable mapping technique that represents both magnitude and uncertainty in climate data:

    indent:1em;">- use a sensible sequential or diverging colour scheme;

    indent:1em;">- use appropriate colour symbolism if it is applicable;

    indent:1em;">- ensure the map is usable by colour blind people;

    indent:1em;">- use a data classification scheme that does not misrepresent the data;

    indent:1em;">- use a map

  13. Elastic modulus calculations from load/displacement curves using spherical and pointed indenters

    SciTech Connect

    Riester, L.; Ferber, M.K.; Breder, K.; Bridge, R.J.

    1997-08-01

    Hard materials with known mechanical properties were probed with spherical and Berkovich indenters using a Nanoindenter{trademark}. A simple analysis of the loading portion of the indentation experiment was found to give reasonable estimates of the elastic modulus for a variety of brittle materials.

  14. An osmolyte-based micro-volume ultrafiltration technique.

    PubMed

    Ghosh, Raja

    2014-12-01

    This paper discusses a novel, simple, and inexpensive micro-volume ultrafiltration technique for protein concentration, desalting, buffer exchange, and size-based protein purification. The technique is suitable for processing protein samples in a high-throughput mode. It utilizes a combination of capillary action, and osmosis for drawing water and other permeable species from a micro-volume sample droplet applied on the surface of an ultrafiltration membrane. A macromolecule coated on the permeate side of the membrane functions as the osmolyte. The action of the osmolyte could, if required, be augmented by adding a supersorbent polymer layer over the osmolyte. The mildly hydrophobic surface of the polymeric ultrafiltration membrane used in this study minimized sample droplet spreading, thus making it easy to recover the retained material after separation, without sample interference and cross-contamination. High protein recoveries were observed in the micro-volume ultrafiltration experiments described in the paper. PMID:25284741

  15. New modulation-based watermarking technique for video

    NASA Astrophysics Data System (ADS)

    Lemma, Aweke; van der Veen, Michiel; Celik, Mehmet

    2006-02-01

    Successful watermarking algorithms have already been developed for various applications ranging from meta-data tagging to forensic tracking. Nevertheless, it is commendable to develop alternative watermarking techniques that provide a broader basis for meeting emerging services, usage models and security threats. To this end, we propose a new multiplicative watermarking technique for video, which is based on the principles of our successful MASK audio watermark. Audio-MASK has embedded the watermark by modulating the short-time envelope of the audio signal and performed detection using a simple envelope detector followed by a SPOMF (symmetrical phase-only matched filter). Video-MASK takes a similar approach and modulates the image luminance envelope. In addition, it incorporates a simple model to account for the luminance sensitivity of the HVS (human visual system). Preliminary tests show algorithms transparency and robustness to lossy compression.

  16. Vision based techniques for rotorcraft low altitude flight

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Suorsa, Ray; Smith, Philip

    1991-01-01

    An overview of research in obstacle detection at NASA Ames Research Center is presented. The research applies techniques from computer vision to automation of rotorcraft navigation. The development of a methodology for detecting the range to obstacles based on the maximum utilization of passive sensors is emphasized. The development of a flight and image data base for verification of vision-based algorithms, and a passive ranging methodology tailored to the needs of helicopter flight are discussed. Preliminary results indicate that it is possible to obtain adequate range estimates except at regions close to the FOE. Closer to the FOE, the error in range increases since the magnitude of the disparity gets smaller, resulting in a low SNR.

  17. Indentation of Ultrathin Elastic Films and the Emergence of Asymptotic Isometry

    NASA Astrophysics Data System (ADS)

    Vella, Dominic; Huang, Jiangshui; Menon, Narayanan; Russell, Thomas P.; Davidovitch, Benny

    2015-01-01

    We study the indentation of a thin elastic film floating at the surface of a liquid. We focus on the onset of radial wrinkles at a threshold indentation depth and the evolution of the wrinkle pattern as indentation progresses far beyond this threshold. Comparison between experiments on thin polymer films and theoretical calculations shows that the system very quickly reaches the far from threshold regime, in which wrinkles lead to the relaxation of azimuthal compression. Furthermore, when the indentation depth is sufficiently large that the wrinkles cover most of the film, we recognize a novel mechanical response in which the work of indentation is transmitted almost solely to the liquid, rather than to the floating film. We attribute this unique response to a nontrivial isometry attained by the deformed film, and we discuss the scaling laws and the relevance of similar isometries to other systems in which a confined sheet is subjected to weak tensile loads.

  18. Antimisting kerosene: Base fuel effects, blending and quality control techniques

    NASA Technical Reports Server (NTRS)

    Yavrouian, A. H.; Ernest, J.; Sarohia, V.

    1984-01-01

    The problems associated with blending of the AMK additive with Jet A, and the base fuel effects on AMK properties are addressed. The results from the evaluation of some of the quality control techniques for AMK are presented. The principal conclusions of this investigation are: significant compositional differences for base fuel (Jet A) within the ASTM specification DI655; higher aromatic content of the base fuel was found to be beneficial for the polymer dissolution at ambient (20 C) temperature; using static mixer technology, the antimisting additive (FM-9) is in-line blended with Jet A, producing AMK which has adequate fire-protection properties 15 to 20 minutes after blending; degradability of freshly blended and equilibrated AMK indicated that maximum degradability is reached after adequate fire protection is obtained; the results of AMK degradability as measured by filter ratio, confirmed previous RAE data that power requirements to decade freshly blended AMK are significantly higher than equilibrated AMK; blending of the additive by using FM-9 concentrate in Jet A produces equilibrated AMK almost instantly; nephelometry offers a simple continuous monitoring capability and is used as a real time quality control device for AMK; and trajectory (jet thurst) and pressure drop tests are useful laboratory techniques for evaluating AMK quality.

  19. Effect of grain orientation on mechanical properties and thermomechanical response of Sn-based solder interconnects

    SciTech Connect

    Chen, Hongtao; Yan, Bingbing; Yang, Ming; Ma, Xin; Li, Mingyu

    2013-11-15

    The thermomechanical response of Sn-based solder interconnects with differently oriented grains was investigated by electron backscattered diffraction technique under thermal cycling and thermal shock testing in this study. The results showed that deformation and cracking of solder interconnects have a close relationship with the unique characteristics of grain orientation and boundaries in each solder interconnect, and deformation was frequently confined within the high-angle grain boundaries. The micro Vickers hardness testing results showed that the hardness varied significantly depending on the grain orientation and structure, and deformation twins can be induced around the indents by the indentation testing. - Highlights: • Thermomechanical response shows a close relationship with the grain structure. • Deformation was frequently confined within the high-angle grain boundaries. • Different grain orientations exhibit different hardness. • Deformation twins can be induced around the indents in SAC105 solder interconnects.

  20. Rapid prototyping of extrusion dies using layer-based techniques

    SciTech Connect

    Misiolek, W.Z.; Winther, K.T.; Prats, A.E.; Rock, S.J.

    1999-02-01

    Extrusion die design and development often requires significant craftsman skill and iterative improvement to arrive at a production-ready die geometry. Constructing the dies used during this iterative process from layers, rather than from one solid block of material, offers unique opportunities to improve die development efficiency when coupled with concepts drawn from the rapid prototyping field. This article presents a proof-of-concept illustrating the potential utility of layer-based extrusion dies for the die design and fabrication process. The major benefits include greater flexibility in the design process, a more efficient, automated fabrication technique, and a means for performing localized die modifications and repairs.

  1. Simultaneous algebraic reconstruction technique based on guided image filtering.

    PubMed

    Ji, Dongjiang; Qu, Gangrong; Liu, Baodong

    2016-07-11

    The challenge of computed tomography is to reconstruct high-quality images from few-view projections. Using a prior guidance image, guided image filtering smoothes images while preserving edge features. The prior guidance image can be incorporated into the image reconstruction process to improve image quality. We propose a new simultaneous algebraic reconstruction technique based on guided image filtering. Specifically, the prior guidance image is updated in the image reconstruction process, merging information iteratively. To validate the algorithm practicality and efficiency, experiments were performed with numerical phantom projection data and real projection data. The results demonstrate that the proposed method is effective and efficient for nondestructive testing and rock mechanics. PMID:27410859

  2. Foreign fiber detecting system based on multispectral technique

    NASA Astrophysics Data System (ADS)

    Li, Qi; Han, Shaokun; Wang, Ping; Wang, Liang; Xia, Wenze

    2015-08-01

    This paper presents a foreign fiber detecting system based on multi-spectral technique. The absorption rate and the reflectivity of foreign fibers differently under different wavelengths of light so that the characteristics of the image has difference in the different light irradiation. Contrast pyramid image fusion algorithm and adaptive enhancement is improved to extracted the foreign fiber from the cotton background. The experimental results show that the single light source can detect 6 kinds of foreign fiber in cotton and multi-spectral detection can detect eight kinds.

  3. NIOS II processor-based acceleration of motion compensation techniques

    NASA Astrophysics Data System (ADS)

    González, Diego; Botella, Guillermo; Mookherjee, Soumak; Meyer-Bäse, Uwe; Meyer-Bäse, Anke

    2011-06-01

    This paper focuses on the hardware acceleration of motion compensation techniques suitable for the MPEG video compression. A plethora of representative motion estimation search algorithms and the new perspectives are introduced. The methods and designs described here are qualified for medical imaging area where are involved larger images. The structure of the processing systems considered has a good fit for reconfigurable acceleration. The system is based in a platform like FPGA working with the Nios II Microprocessor platform applying C2H acceleration. The paper shows the results in terms of performance and resources needed.

  4. Laser jamming technique research based on combined fiber laser

    NASA Astrophysics Data System (ADS)

    Jie, Xu; Shanghong, Zhao; Rui, Hou; Shengbao, Zhan; Lei, Shi; Jili, Wu; Shaoqiang, Fang; Yongjun, Li

    2009-06-01

    A compact and light laser jamming source is needed to increase the flexibility of laser jamming technique. A novel laser jamming source based on combined fiber lasers is proposed. Preliminary experimental results show that power levels in excess of 10 kW could be achieved. An example of laser jamming used for an air-to-air missile is given. It shows that the tracking system could complete tracking in only 4 s and came into a steady state with its new tracking target being the laser jamming source.

  5. Evolutionary Based Techniques for Fault Tolerant Field Programmable Gate Arrays

    NASA Technical Reports Server (NTRS)

    Larchev, Gregory V.; Lohn, Jason D.

    2006-01-01

    The use of SRAM-based Field Programmable Gate Arrays (FPGAs) is becoming more and more prevalent in space applications. Commercial-grade FPGAs are potentially susceptible to permanently debilitating Single-Event Latchups (SELs). Repair methods based on Evolutionary Algorithms may be applied to FPGA circuits to enable successful fault recovery. This paper presents the experimental results of applying such methods to repair four commonly used circuits (quadrature decoder, 3-by-3-bit multiplier, 3-by-3-bit adder, 440-7 decoder) into which a number of simulated faults have been introduced. The results suggest that evolutionary repair techniques can improve the process of fault recovery when used instead of or as a supplement to Triple Modular Redundancy (TMR), which is currently the predominant method for mitigating FPGA faults.

  6. On combining Laplacian and optimization-based mesh smoothing techniques

    SciTech Connect

    Freitag, L.A.

    1997-07-01

    Local mesh smoothing algorithms have been shown to be effective in repairing distorted elements in automatically generated meshes. The simplest such algorithm is Laplacian smoothing, which moves grid points to the geometric center of incident vertices. Unfortunately, this method operates heuristically and can create invalid meshes or elements of worse quality than those contained in the original mesh. In contrast, optimization-based methods are designed to maximize some measure of mesh quality and are very effective at eliminating extremal angles in the mesh. These improvements come at a higher computational cost, however. In this article the author proposes three smoothing techniques that combine a smart variant of Laplacian smoothing with an optimization-based approach. Several numerical experiments are performed that compare the mesh quality and computational cost for each of the methods in two and three dimensions. The author finds that the combined approaches are very cost effective and yield high-quality meshes.

  7. Combined strategies for optimal detection of the contact point in AFM force-indentation curves obtained on thin samples and adherent cells.

    PubMed

    Gavara, Núria

    2016-01-01

    Atomic Force Microscopy (AFM) is a widely used tool to study cell mechanics. Current AFM setups perform high-throughput probing of living cells, generating large amounts of force-indentations curves that are subsequently analysed using a contact-mechanics model. Here we present several algorithms to detect the contact point in force-indentation curves, a crucial step to achieve fully-automated analysis of AFM-generated data. We quantify and rank the performance of our algorithms by analysing a thousand force-indentation curves obtained on thin soft homogeneous hydrogels, which mimic the stiffness and topographical profile of adherent cells. We take advantage of the fact that all the proposed algorithms are based on sequential search strategies, and show that a combination of them yields the most accurate and unbiased results. Finally, we also observe improved performance when force-indentation curves obtained on adherent cells are analysed using our combined strategy, as compared to the classical algorithm used in the majority of previous cell mechanics studies. PMID:26891762

  8. Combined strategies for optimal detection of the contact point in AFM force-indentation curves obtained on thin samples and adherent cells

    PubMed Central

    Gavara, Núria

    2016-01-01

    Atomic Force Microscopy (AFM) is a widely used tool to study cell mechanics. Current AFM setups perform high-throughput probing of living cells, generating large amounts of force-indentations curves that are subsequently analysed using a contact-mechanics model. Here we present several algorithms to detect the contact point in force-indentation curves, a crucial step to achieve fully-automated analysis of AFM-generated data. We quantify and rank the performance of our algorithms by analysing a thousand force-indentation curves obtained on thin soft homogeneous hydrogels, which mimic the stiffness and topographical profile of adherent cells. We take advantage of the fact that all the proposed algorithms are based on sequential search strategies, and show that a combination of them yields the most accurate and unbiased results. Finally, we also observe improved performance when force-indentation curves obtained on adherent cells are analysed using our combined strategy, as compared to the classical algorithm used in the majority of previous cell mechanics studies. PMID:26891762

  9. Combined strategies for optimal detection of the contact point in AFM force-indentation curves obtained on thin samples and adherent cells

    NASA Astrophysics Data System (ADS)

    Gavara, Núria

    2016-02-01

    Atomic Force Microscopy (AFM) is a widely used tool to study cell mechanics. Current AFM setups perform high-throughput probing of living cells, generating large amounts of force-indentations curves that are subsequently analysed using a contact-mechanics model. Here we present several algorithms to detect the contact point in force-indentation curves, a crucial step to achieve fully-automated analysis of AFM-generated data. We quantify and rank the performance of our algorithms by analysing a thousand force-indentation curves obtained on thin soft homogeneous hydrogels, which mimic the stiffness and topographical profile of adherent cells. We take advantage of the fact that all the proposed algorithms are based on sequential search strategies, and show that a combination of them yields the most accurate and unbiased results. Finally, we also observe improved performance when force-indentation curves obtained on adherent cells are analysed using our combined strategy, as compared to the classical algorithm used in the majority of previous cell mechanics studies.

  10. On the mechanical properties of tooth enamel under spherical indentation.

    PubMed

    Chai, Herzl

    2014-11-01

    The mechanical properties of tooth enamel generally exhibit large variations, which reflect its structural and material complexity. Some key properties were evaluated under localized contact, simulating actual functioning conditions. Prominent cusps of extracted human molar teeth were polished down ~0.7 mm below the cusp tip and indented by tungsten carbide balls. The internal damage was assessed after unloading from longitudinal or transverse sections. The ultimate tensile stress (UTS) was determined using a novel bilayer specimen. The damage is characterized by penny-like radial cracks driven by hoop stresses and cylindrical cracks driven along protein-rich interrod materials by shear stresses. Shallow cone cracks typical of homogeneous materials which may cause rapid tooth wear under repeat contact are thus avoided. The mean stress vs. indentation strain curve is highly nonlinear, attributable to plastic shearing of protein between and within enamel rods. This curve is also affected by damage, especially radial cracks, the onset of which depends on ball radius. Several material properties were extracted from the tests, including shear strain at the onset of ring cracks γ(F) (=0.14), UTS (=119 MPa), toughness K(C) (=0.94 MPa m(1/2)), a crack propagation law and a constitutive response determined by trial and error with the aid of a finite-element analysis. These quantities, which are only slightly sensitive to anatomical location within the enamel region tested, facilitate a quantitative assessment of crown failure. Causes for variations in published UTS and K(C) values are discussed. PMID:25034644

  11. RBF-based technique for statistical demodulation of pathological tremor.

    PubMed

    Gianfelici, Francesco

    2013-10-01

    This paper presents an innovative technique based on the joint approximation capabilities of radial basis function (RBF) networks and the estimation capability of the multivariate iterated Hilbert transform (IHT) for the statistical demodulation of pathological tremor from electromyography (EMG) signals in patients with Parkinson's disease. We define a stochastic model of the multichannel high-density surface EMG by means of the RBF networks applied to the reconstruction of the stochastic process (characterizing the disease) modeled by the multivariate relationships generated by the Karhunen-Loéve transform in Hilbert spaces. Next, we perform a demodulation of the entire random field by means of the estimation capability of the multivariate IHT in a statistical setting. The proposed method is applied to both simulated signals and data recorded from three Parkinsonian patients and the results show that the amplitude modulation components of the tremor oscillation can be estimated with signal-to-noise ratio close to 30 dB with root-mean-square error for the estimates of the tremor instantaneous frequency. Additionally, the comparisons with a large number of techniques based on all the combinations of the RBF, extreme learning machine, backpropagation, support vector machine used in the first step of the algorithm; and IHT, empirical mode decomposition, multiband energy separation algorithm, periodic algebraic separation and energy demodulation used in the second step of the algorithm, clearly show the effectiveness of our technique. These results show that the proposed approach is a potential useful tool for advanced neurorehabilitation technologies that aim at tremor characterization and suppression. PMID:24808594

  12. Modern Micro and Nanoparticle-Based Imaging Techniques

    PubMed Central

    Ryvolova, Marketa; Chomoucka, Jana; Drbohlavova, Jana; Kopel, Pavel; Babula, Petr; Hynek, David; Adam, Vojtech; Eckschlager, Tomas; Hubalek, Jaromir; Stiborova, Marie; Kaiser, Jozef; Kizek, Rene

    2012-01-01

    The requirements for early diagnostics as well as effective treatment of insidious diseases such as cancer constantly increase the pressure on development of efficient and reliable methods for targeted drug/gene delivery as well as imaging of the treatment success/failure. One of the most recent approaches covering both the drug delivery as well as the imaging aspects is benefitting from the unique properties of nanomaterials. Therefore a new field called nanomedicine is attracting continuously growing attention. Nanoparticles, including fluorescent semiconductor nanocrystals (quantum dots) and magnetic nanoparticles, have proven their excellent properties for in vivo imaging techniques in a number of modalities such as magnetic resonance and fluorescence imaging, respectively. In this article, we review the main properties and applications of nanoparticles in various in vitro imaging techniques, including microscopy and/or laser breakdown spectroscopy and in vivo methods such as magnetic resonance imaging and/or fluorescence-based imaging. Moreover the advantages of the drug delivery performed by nanocarriers such as iron oxides, gold, biodegradable polymers, dendrimers, lipid based carriers such as liposomes or micelles are also highlighted. PMID:23202187

  13. Techniques for region coding in object-based image compression

    NASA Astrophysics Data System (ADS)

    Schmalz, Mark S.

    2004-01-01

    Object-based compression (OBC) is an emerging technology that combines region segmentation and coding to produce a compact representation of a digital image or video sequence. Previous research has focused on a variety of segmentation and representation techniques for regions that comprise an image. The author has previously suggested [1] partitioning of the OBC problem into three steps: (1) region segmentation, (2) region boundary extraction and compression, and (3) region contents compression. A companion paper [2] surveys implementationally feasible techniques for boundary compression. In this paper, we analyze several strategies for region contents compression, including lossless compression, lossy VPIC, EPIC, and EBLAST compression, wavelet-based coding (e.g., JPEG-2000), as well as texture matching approaches. This paper is part of a larger study that seeks to develop highly efficient compression algorithms for still and video imagery, which would eventually support automated object recognition (AOR) and semantic lookup of images in large databases or high-volume OBC-format datastreams. Example applications include querying journalistic archives, scientific or medical imaging, surveillance image processing and target tracking, as well as compression of video for transmission over the Internet. Analysis emphasizes time and space complexity, as well as sources of reconstruction error in decompressed imagery.

  14. Development of a novel nanoindentation technique by utilizing a dual-probe AFM system

    PubMed Central

    Sahin, Ferat; Yablon, Dalia

    2015-01-01

    Summary A novel instrumentation approach to nanoindentation is described that exhibits improved resolution and depth sensing. The approach is based on a multi-probe scanning probe microscopy (SPM) tool that utilizes tuning-fork based probes for both indentation and depth sensing. Unlike nanoindentation experiments performed with conventional AFM systems using beam-bounce technology, this technique incorporates a second probe system with an ultra-high resolution for depth sensing. The additional second probe measures only the vertical movement of the straight indenter attached to a tuning-fork probe with a high spring constant and it can also be used for AFM scanning to obtain an accurate profiling. Nanoindentation results are demonstrated on silicon, fused silica, and Corning Eagle Glass. The results show that this new approach is viable in terms of accurately characterizing mechanical properties of materials through nanoindentation with high accuracy, and it opens doors to many other exciting applications in the field of nanomechanical characterization. PMID:26665072

  15. Manual, In situ, Real-Time Nanofabrication using Cracking through Indentation

    PubMed Central

    Nam, Koo Hyun; Suh, Young D.; Yeo, Junyeob; Woo, Deokha

    2016-01-01

    Nanofabrication has seen an increasing demand for applications in many fields of science and technology, but its production still requires relatively difficult, time-consuming, and expensive processes. Here we report a simple but very effective one dimensional (1D) nano-patterning technology that suggests a new nanofabrication method. This new technique involves the control of naturally propagating cracks initiated through simple, manually generated indentation, obviating the necessity of complicated equipment and elaborate experimental environments such as those that employ clean rooms, high vacuums, and the fastidious maintenance of processing temperatures. The channel fabricated with this technique can be as narrow as 10 nm with unlimited length and very high cross-sectional aspect ratio, an accomplishment difficult even for a state-of-the-art technology such as e-beam lithography. More interestingly, the fabrication speed can be controlled and achieved to as little as several hundred micrometers per second. Along with the simplicity and real-time fabrication capability of the technique, this tunable fabrication speed makes the method introduced here the authentic nanofabrication for in situ experiments. PMID:26725520

  16. Manual, In situ, Real-Time Nanofabrication using Cracking through Indentation

    NASA Astrophysics Data System (ADS)

    Nam, Koo Hyun; Suh, Young D.; Yeo, Junyeob; Woo, Deokha

    2016-01-01

    Nanofabrication has seen an increasing demand for applications in many fields of science and technology, but its production still requires relatively difficult, time-consuming, and expensive processes. Here we report a simple but very effective one dimensional (1D) nano-patterning technology that suggests a new nanofabrication method. This new technique involves the control of naturally propagating cracks initiated through simple, manually generated indentation, obviating the necessity of complicated equipment and elaborate experimental environments such as those that employ clean rooms, high vacuums, and the fastidious maintenance of processing temperatures. The channel fabricated with this technique can be as narrow as 10 nm with unlimited length and very high cross-sectional aspect ratio, an accomplishment difficult even for a state-of-the-art technology such as e-beam lithography. More interestingly, the fabrication speed can be controlled and achieved to as little as several hundred micrometers per second. Along with the simplicity and real-time fabrication capability of the technique, this tunable fabrication speed makes the method introduced here the authentic nanofabrication for in situ experiments.

  17. Enhancing the effectiveness of IST through risk-based techniques

    SciTech Connect

    Floyd, S.D.

    1996-12-01

    Current IST requirements were developed mainly through deterministic-based methods. While this approach has resulted in an adequate level of safety and reliability for pumps and valves, insights from probabilistic safety assessments suggest a better safety focus can be achieved at lower costs. That is, some high safety impact pumps and valves are currently not tested under the IST program and should be added, while low safety impact valves could be tested at significantly greater intervals than allowed by the current IST program. The nuclear utility industry, through the Nuclear Energy Institute (NEI), has developed a draft guideline for applying risk-based techniques to focus testing on those pumps and valves with a high safety impact while reducing test frequencies on low safety impact pumps and valves. The guideline is being validated through an industry pilot application program that is being reviewed by the U.S. Nuclear Regulatory Commission. NEI and the ASME maintain a dialogue on the two groups` activities related to risk-based IST. The presenter will provide an overview of the NEI guideline, discuss the methodological approach for applying risk-based technology to IST and provide the status of the industry pilot plant effort.

  18. Experimental observations of shear band nucleation and propagation in a bulk metallic glass using wedge-like cylindrical indentation

    NASA Astrophysics Data System (ADS)

    Antoniou, Antonia Maki

    2006-12-01

    pressure. These observations give detailed insight on the post-yield behavior of BMGs, which cannot be obtained from macroscopic uniaxial tension or compression tests. Despite the richness of the shear band details, the current framework has provided several notable results. First, the macroscopic trends, force-indentation depth response and the extent of deformation zones are well captured for this constrained deformation mode by continuum models that address only the onset of yielding. Second, the apparent pressure dependence of the shear band angle on the macroscopic measurements is minimal. Third, the initiation point, and not the shear band development is of critical importance. These findings would formulate the basis for simulation of shear band nucleation, propagation and interactions. They would also elucidate the role of secondary particle inclusion for toughening. Another form of inhomogeneous deformation in the form of shear bands is also studied in constrained layer of ductile metal subjected to shearing deformation. The material system utilized was comprised of a ductile layer of tin based solder, encapsulated within relatively hard copper shoulders. The experimental configuration provides pure shear state within the constrained solder layer. Different Pb/Sn compositions are tested with grain size approaching the film thickness. The in-plane strain distribution within the joint thickness is measured by a microscopic digital image correlation system. The toughness evolution within such highly gradient deformation field is monitored qualitatively through a 2D surface scan with a nanoindenter. The measurements showed a highly inhomogeneous deformation field within the film with discreet shear bands of concentrated strain. The localized shear bands showed long-range correlations of the order of 2-3 grain diameter. A size-dependent macroscopic response on the layer thickness is observed. However, the corresponding film thickness is approximately 100-1000 times

  19. Evaluations of mosquito age grading techniques based on morphological changes.

    PubMed

    Hugo, L E; Quick-Miles, S; Kay, B H; Ryan, P A

    2008-05-01

    Evaluations were made of the accuracy and practicality of mosquito age grading methods based on changes to mosquito morphology; including the Detinova ovarian tracheation, midgut meconium, Polovodova ovariole dilatation, ovarian injection, and daily growth line methods. Laboratory maintained Aedes vigilax (Skuse) and Culex annulirostris (Skuse) females of known chronological and physiological ages were used for these assessments. Application of the Detinova technique to laboratory reared Ae. vigilax females in a blinded trial enabled the successful identification of nulliparous and parous females in 83.7-89.8% of specimens. The success rate for identifying nulliparous females increased to 87.8-98.0% when observations of ovarian tracheation were combined with observations of the presence of midgut meconium. However, application of the Polovodova method only enabled 57.5% of nulliparous, 1-parous, 2-parous, and 3-parous Ae. vigilax females to be correctly classified, and ovarian injections were found to be unfeasible. Poor correlation was observed between the number of growth lines per phragma and the calendar age of laboratory reared Ae. vigilax females. In summary, morphological age grading methods that offer simple two-category predictions (ovarian tracheation and midgut meconium methods) were found to provide high-accuracy classifications, whereas methods that offer the separation of multiple age categories (ovariolar dilatation and growth line methods) were found to be extremely difficult and of low accuracy. The usefulness of the morphology-based methods is discussed in view of the availability of new mosquito age grading techniques based on cuticular hydrocarbon and gene transcription changes. PMID:18533427

  20. An evaluation of indentation and finishing properties of bearing grade silicon nitrides

    SciTech Connect

    Dill, J.F.; Gardos, M.N.; Hardisty, R.G.

    1997-01-01

    This paper describes the results of studies of the machining performance and the indentation hardness and fracture toughness of different silicon nitride materials as part of an effort to better define the optimum machining conditions for bearing components. This work builds on prior efforts by two of the authors, Gardos and Hardisty (1993) who formulated a simple relationship between diamond grinding performance of silicon nitride bearing balls and a wear equation first detailed by Evans and Wilshaw (1976). The goal of this present work was to determine the general applicability of such a relationship, i.e., could simple indentation studies be used to define finishing conditions for different silicon nitride materials? The availability of such a simple test would reduce the time required for developing an acceptable process when a supplier changes his formulation, or when a new material becomes available. Quicker development of optimum finishing conditions would eventually result in a lower-cost product for users. The initial study by Gardos and Hardisty (1993) was based on limited data taken at a fixed set of conditions. This study expanded the range of conditions evaluated and the number of ceramic materials studied in an effort to define the universality of the relationship between grinding wear, hardness, and toughness. This study has shown that no simple relationship like that first envisioned by the authors exists. The results showed that the grinding wear of the individual silicon nitride materials increased at different rates as a function of load. Because of the differences found in the load dependence of grinding rates, no simple relationship between hardness, fracture toughness, and grinding rate could be found that fit the data over the range of conditions studied.

  1. Dynamic impact indentation of hydrated biological tissues and tissue surrogate gels

    NASA Astrophysics Data System (ADS)

    Ilke Kalcioglu, Z.; Qu, Meng; Strawhecker, Kenneth E.; Shazly, Tarek; Edelman, Elazer; VanLandingham, Mark R.; Smith, James F.; Van Vliet, Krystyn J.

    2011-03-01

    For both materials engineering research and applied biomedicine, a growing need exists to quantify mechanical behaviour of tissues under defined hydration and loading conditions. In particular, characterisation under dynamic contact-loading conditions can enable quantitative predictions of deformation due to high rate 'impact' events typical of industrial accidents and ballistic insults. The impact indentation responses were examined of both hydrated tissues and candidate tissue surrogate materials. The goals of this work were to determine the mechanical response of fully hydrated soft tissues under defined dynamic loading conditions, and to identify design principles by which synthetic, air-stable polymers could mimic those responses. Soft tissues from two organs (liver and heart), a commercially available tissue surrogate gel (Perma-Gel™) and three styrenic block copolymer gels were investigated. Impact indentation enabled quantification of resistance to penetration and energy dissipative constants under the rates and energy densities of interest for tissue surrogate applications. These analyses indicated that the energy dissipation capacity under dynamic impact increased with increasing diblock concentration in the styrenic gels. Under the impact rates employed (2 mm/s to 20 mm/s, corresponding to approximate strain energy densities from 0.4 kJ/m3 to 20 kJ/m3), the energy dissipation capacities of fully hydrated soft tissues were ultimately well matched by a 50/50 triblock/diblock composition that is stable in ambient environments. More generally, the methodologies detailed here facilitate further optimisation of impact energy dissipation capacity of polymer-based tissue surrogate materials, either in air or in fluids.

  2. An indentation depth-force sensing wheeled probe for abnormality identification during minimally invasive surgery.

    PubMed

    Liu, H; Puangmali, P; Zbyszewski, D; Elhage, O; Dasgupta, P; Dai, J S; Seneviratne, L; Althoefer, K

    2010-01-01

    This paper presents a novel wheeled probe for the purpose of aiding a surgeon in soft tissue abnormality identification during minimally invasive surgery (MIS), compensating the loss of haptic feedback commonly associated with MIS. Initially, a prototype for validating the concept was developed. The wheeled probe consists of an indentation depth sensor employing an optic fibre sensing scheme and a force/torque sensor. The two sensors work in unison, allowing the wheeled probe to measure the tool-tissue interaction force and the rolling indentation depth concurrently. The indentation depth sensor was developed and initially tested on a homogenous silicone phantom representing a good model for a soft tissue organ; the results show that the sensor can accurately measure the indentation depths occurring while performing rolling indentation, and has good repeatability. To validate the ability of the wheeled probe to identify abnormalities located in the tissue, the device was tested on a silicone phantom containing embedded hard nodules. The experimental data demonstrate that recording the tissue reaction force as well as rolling indentation depth signals during rolling indentation, the wheeled probe can rapidly identify the distribution of tissue stiffness and cause the embedded hard nodules to be accurately located. PMID:20608492

  3. Characterization of viscoelastic materials by quasi-static and dynamic indentation

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Liu, Xianping

    2014-06-01

    This paper describes the experimental measurements of the elastic modulus and hardness of viscoelastic materials under quasi-static and dynamic depth-sensing indentation using a homemade tribology probe microscope (TPM). The indentation measurements were performed using a sapphire sphere tip under various conditions. Materials such as polytetrafluoroethylene, styrene rubber and nitrile rubber were tested in both quasi-static and dynamic experiments. In quasi-static mode, the loading and unloading force curves were obtained from these specimens, and the results show a significant load effect on the measured hardness and elastic modulus. The dynamic indentation tests were conducted under a range of loading forces with various frequencies. The values of storage modulus, loss modulus and damping factor were determined by dynamic indentation. To get an accurate measurement, the stiffness and damping of the instrument were rigorously analyzed. Using dynamic indentation, it was confirmed that the variation in the frequency of the oscillation force has a significant effect on the measured results of the materials. Comparing the results obtained from the quasi-static and dynamic indentations, for the viscoelastic properties, dynamic indentation offers an advantage over the quasi-static method. Collectively, these results clearly demonstrate the capability of our homemade TPM facility to determine the constitutive behavior of viscoelastic solids in the frequency domain.

  4. Effects of Crystalline Anisotropy and Indenter Size on Nanoindentation by Multiscale Simulation

    PubMed Central

    2010-01-01

    Nanoindentation processes in single crystal Ag thin film under different crystallographic orientations and various indenter widths are simulated by the quasicontinuum method. The nanoindentation deformation processes under influences of crystalline anisotropy and indenter size are investigated about hardness, load distribution, critical load for first dislocation emission and strain energy under the indenter. The simulation results are compared with previous experimental results and Rice-Thomson (R-T) dislocation model solution. It is shown that entirely different dislocation activities are presented under the effect of crystalline anisotropy during nanoindentation. The sharp load drops in the load–displacement curves are caused by the different dislocation activities. Both crystalline anisotropy and indenter size are found to have distinct effect on hardness, contact stress distribution, critical load for first dislocation emission and strain energy under the indenter. The above quantities are decreased at the indenter into Ag thin film along the crystal orientation with more favorable slip directions that easy trigger slip systems; whereas those will increase at the indenter into Ag thin film along the crystal orientation with less or without favorable slip directions that hard trigger slip systems. The results are shown to be in good agreement with experimental results and R-T dislocation model solution. PMID:20672077

  5. Further damage induced by water in micro-indentations in phosphate laser glass

    NASA Astrophysics Data System (ADS)

    Yu, Jiaxin; Jian, Qingyun; Yuan, Weifeng; Gu, Bin; Ji, Fang; Huang, Wen

    2014-02-01

    Using a microhardness tester, artificial flaws were made by micro-indentation in N31 Nd-doped phosphate laser glass. Indentation fracture toughness, KIC, was estimated as 0.45-0.53 MPa m1/2 from these indentations. The glasses with indentations were then immersed in ultrapure water to investigate further water-induced damage of these indentations. Stress-enhanced hydrolysis leads to the propagations of radial crack, lateral cracks and microcracks in the subsurface. These crack propagations therefore cause deformation in subsurface to form annular reflections regions around the indentations and further material collapse within imprints. After the residual stresses are exhausted, the leaching plays a more dominated role in glass corrosion in the further immersion. After immersion, the material structure slackens around micro-indentation, which decreases the contact stiffness and results in a lower nano-hardness. For the surface far away from flaws, water immersion presents a weak effect on the near-surface mechanical since the matrix leaching in phosphate glass restricts the formation of hydration layer. During first 20 min immersion, due to higher chemical activity and lower fracture toughness, the radial cracks show a faster propagation in phosphate glass compared with that in K9 silicate glass. For further immersion, crack healing occurs in silicate glass but not in phosphate glass. Analysis shows that the formation of hydration layer on crack walls plays an important role in crack healing in glasses.

  6. Effect of Indenter Elastic Modulus on Hertzian Ring Crack Initiation in Silicon Carbide

    SciTech Connect

    Wereszczak, Andrew A; Daloz, William L; Strong, Kevin T; Jadaan, Osama M.

    2011-01-01

    The effect of spherical indenter stiffness on Hertzian-contact-induced fracture initiation was examined in hot-pressed silicon carbides (SiCs). Hertzian ring crack initiation forces were measured using zirconia, steel, silicon nitride, alumina, or tungsten carbide spherical indenters (elastic moduli ranging between 213 and 630 GPa). The two (flat target) SiCs were fully dense, and had equivalent elastic moduli (~450 GPa) and fracture toughnesses; however, about 20% of the grains in one SiC were larger than the largest grains in the other. Decreasing the indenter elastic modulus consistently resulted in lower ring crack initiation forces and those differences were statistically significant. Such a decrease in Hertzian ring crack initiation force with decreased indenter elastic modulus indicates the presence of a non-zero friction coefficient. Additionally, independent of the indenter material, ring crack initiation occurred at lower Hertzian indentation forces in the SiC containing larger grains suggesting that the grains in that tail of the grain-size-distribution acted as Griffith-type flaws. Lastly, selecting a spherical indenter material that has the same or similar elastic modulus as the target material provides simpler interpretation, and estimates of ring crack initiation stresses with greater usefulness and fidelity. Such a "matched" condition serves to circumvent the complexities that a ubiquitously unknown coefficient of friction introduces in the estimation of Hertzian ring crack initiation stress.

  7. Detecting Molecular Properties by Various Laser-Based Techniques

    SciTech Connect

    Hsin, Tse-Ming

    2007-01-01

    Four different laser-based techniques were applied to study physical and chemical characteristics of biomolecules and dye molecules. These techniques are liole burning spectroscopy, single molecule spectroscopy, time-resolved coherent anti-Stokes Raman spectroscopy and laser-induced fluorescence microscopy. Results from hole burning and single molecule spectroscopy suggested that two antenna states (C708 & C714) of photosystem I from cyanobacterium Synechocystis PCC 6803 are connected by effective energy transfer and the corresponding energy transfer time is ~6 ps. In addition, results from hole burning spectroscopy indicated that the chlorophyll dimer of the C714 state has a large distribution of the dimer geometry. Direct observation of vibrational peaks and evolution of coumarin 153 in the electronic excited state was demonstrated by using the fs/ps CARS, a variation of time-resolved coherent anti-Stokes Raman spectroscopy. In three different solvents, methanol, acetonitrile, and butanol, a vibration peak related to the stretch of the carbonyl group exhibits different relaxation dynamics. Laser-induced fluorescence microscopy, along with the biomimetic containers-liposomes, allows the measurement of the enzymatic activity of individual alkaline phosphatase from bovine intestinal mucosa without potential interferences from glass surfaces. The result showed a wide distribution of the enzyme reactivity. Protein structural variation is one of the major reasons that are responsible for this highly heterogeneous behavior.

  8. A study of trends and techniques for space base electronics

    NASA Technical Reports Server (NTRS)

    Trotter, J. D.; Wade, T. E.; Gassaway, J. D.; Mahmood, Q.

    1978-01-01

    A sputtering system was developed to deposit aluminum and aluminum alloys by the dc sputtering technique. This system is designed for a high level of cleanliness and for monitoring the deposition parameters during film preparation. This system is now ready for studying the deposition and annealing parameters upon double-level metal preparation. A technique recently applied for semiconductor analysis, the finite element method, was studied for use in the computer modeling of two dimensional MOS transistor structures. It was concluded that the method has not been sufficiently well developed for confident use at this time. An algorithm was developed for confident use at this time. An algorithm was developed for implementing a computer study which is based upon the finite difference method. The program which was developed was modified and used to calculate redistribution data for boron and phosphorous which had been predeposited by ion implantation with range and straggle conditions. Data were generated for 111 oriented SOS films with redistribution in N2, dry O2 and steam ambients.

  9. Model-checking techniques based on cumulative residuals.

    PubMed

    Lin, D Y; Wei, L J; Ying, Z

    2002-03-01

    Residuals have long been used for graphical and numerical examinations of the adequacy of regression models. Conventional residual analysis based on the plots of raw residuals or their smoothed curves is highly subjective, whereas most numerical goodness-of-fit tests provide little information about the nature of model misspecification. In this paper, we develop objective and informative model-checking techniques by taking the cumulative sums of residuals over certain coordinates (e.g., covariates or fitted values) or by considering some related aggregates of residuals, such as moving sums and moving averages. For a variety of statistical models and data structures, including generalized linear models with independent or dependent observations, the distributions of these stochastic processes tinder the assumed model can be approximated by the distributions of certain zero-mean Gaussian processes whose realizations can be easily generated by computer simulation. Each observed process can then be compared, both graphically and numerically, with a number of realizations from the Gaussian process. Such comparisons enable one to assess objectively whether a trend seen in a residual plot reflects model misspecification or natural variation. The proposed techniques are particularly useful in checking the functional form of a covariate and the link function. Illustrations with several medical studies are provided. PMID:11890304

  10. Astronomical Image Compression Techniques Based on ACC and KLT Coder

    NASA Astrophysics Data System (ADS)

    Schindler, J.; Páta, P.; Klíma, M.; Fliegel, K.

    This paper deals with a compression of image data in applications in astronomy. Astronomical images have typical specific properties -- high grayscale bit depth, size, noise occurrence and special processing algorithms. They belong to the class of scientific images. Their processing and compression is quite different from the classical approach of multimedia image processing. The database of images from BOOTES (Burst Observer and Optical Transient Exploring System) has been chosen as a source of the testing signal. BOOTES is a Czech-Spanish robotic telescope for observing AGN (active galactic nuclei) and the optical transient of GRB (gamma ray bursts) searching. This paper discusses an approach based on an analysis of statistical properties of image data. A comparison of two irrelevancy reduction methods is presented from a scientific (astrometric and photometric) point of view. The first method is based on a statistical approach, using the Karhunen-Loève transform (KLT) with uniform quantization in the spectral domain. The second technique is derived from wavelet decomposition with adaptive selection of used prediction coefficients. Finally, the comparison of three redundancy reduction methods is discussed. Multimedia format JPEG2000 and HCOMPRESS, designed especially for astronomical images, are compared with the new Astronomical Context Coder (ACC) coder based on adaptive median regression.

  11. Vegetation change detection based on image fusion technique

    NASA Astrophysics Data System (ADS)

    Jia, Yonghong; Liu, Yueyan; Yu, Hui; Li, Deren

    2005-10-01

    The change detection of land use and land cover has always been the focus of remotely sensed study and application. Based on techniques of image fusion, a new approach of detecting vegetation change according to vector of brightness index (BI) and perpendicular vegetation index (PVI) extracted from multi-temporal remotely sensed imagery is proposed. The procedure is introduced. Firstly, the Landsat eTM+ imagery is geometrically corrected and registered. Secondly, band 2,3,4 and panchromatic images of Landsat eTM+ are fused by a trous wavelet fusion, and bands 1,2,3 of SPOT are registered to the fused images. Thirdly, brightness index and perpendicular vegetation index are respectively extracted from SPOT images and fused images. Finally, change vectors are obtained and used to detect vegetation change. The testing results show that the approach of detecting vegetation change is very efficient.

  12. Protein elasticity probed with two synchrotron-based techniques.

    SciTech Connect

    Leu, B. M.; Alatas, A.; Sinn, H.; Alp, E. E.; Said, A.; Yavas, H.; Zhao, J.; Sage, J. T.; Sturhahn, W.; X-Ray Science Division; Hasylab; Northeastern Univ.

    2010-02-25

    Compressibility characterizes three interconnecting properties of a protein: dynamics, structure, and function. The compressibility values for the electron-carrying protein cytochrome c and for other proteins, as well, available in the literature vary considerably. Here, we apply two synchrotron-based techniques - nuclear resonance vibrational spectroscopy and inelastic x-ray scattering - to measure the adiabatic compressibility of this protein. This is the first report of the compressibility of any material measured with this method. Unlike the methods previously used, this novel approach probes the protein globally, at ambient pressure, does not require the separation of protein and solvent contributions to the total compressibility, and uses samples that contain the heme iron, as in the native state. We show, by comparing our results with molecular dynamics predictions, that the compressibility is almost independent of temperature. We discuss potential applications of this method to other materials beyond proteins.

  13. Validation techniques for fault emulation of SRAM-based FPGAs

    SciTech Connect

    Quinn, Heather; Wirthlin, Michael

    2015-08-07

    A variety of fault emulation systems have been created to study the effect of single-event effects (SEEs) in static random access memory (SRAM) based field-programmable gate arrays (FPGAs). These systems are useful for augmenting radiation-hardness assurance (RHA) methodologies for verifying the effectiveness for mitigation techniques; understanding error signatures and failure modes in FPGAs; and failure rate estimation. For radiation effects researchers, it is important that these systems properly emulate how SEEs manifest in FPGAs. If the fault emulation systems does not mimic the radiation environment, the system will generate erroneous data and incorrect predictions of behavior of the FPGA in a radiation environment. Validation determines whether the emulated faults are reasonable analogs to the radiation-induced faults. In this study we present methods for validating fault emulation systems and provide several examples of validated FPGA fault emulation systems.

  14. Active-contour-based image segmentation using machine learning techniques.

    PubMed

    Etyngier, Patrick; Ségonne, Florent; Keriven, Renaud

    2007-01-01

    We introduce a non-linear shape prior for the deformable model framework that we learn from a set of shape samples using recent manifold learning techniques. We model a category of shapes as a finite dimensional manifold which we approximate using Diffusion maps. Our method computes a Delaunay triangulation of the reduced space, considered as Euclidean, and uses the resulting space partition to identify the closest neighbors of any given shape based on its Nyström extension. We derive a non-linear shape prior term designed to attract a shape towards the shape prior manifold at given constant embedding. Results on shapes of ventricle nuclei demonstrate the potential of our method for segmentation tasks. PMID:18051143

  15. Mars laser altimeter based on a single photon ranging technique

    NASA Technical Reports Server (NTRS)

    Prochazka, Ivan; Hamal, Karel; Sopko, B.; Pershin, S.

    1993-01-01

    The Mars 94/96 Mission will carry, among others things, the balloon probe experiment. The balloon with the scientific cargo in the gondola underneath will drift in the Mars atmosphere, its altitude will range from zero, in the night, up to 5 km at noon. The accurate gondola altitude will be determined by an altimeter. As the Balloon gondola mass is strictly limited, the altimeter total mass and power consumption are critical; maximum allowed is a few hundred grams a few tens of mWatts of average power consumption. We did propose, design, and construct the laser altimeter based on the single photon ranging technique. Topics covered include the following: principle of operation, altimeter construction, and ground tests.

  16. Validation techniques for fault emulation of SRAM-based FPGAs

    DOE PAGESBeta

    Quinn, Heather; Wirthlin, Michael

    2015-08-07

    A variety of fault emulation systems have been created to study the effect of single-event effects (SEEs) in static random access memory (SRAM) based field-programmable gate arrays (FPGAs). These systems are useful for augmenting radiation-hardness assurance (RHA) methodologies for verifying the effectiveness for mitigation techniques; understanding error signatures and failure modes in FPGAs; and failure rate estimation. For radiation effects researchers, it is important that these systems properly emulate how SEEs manifest in FPGAs. If the fault emulation systems does not mimic the radiation environment, the system will generate erroneous data and incorrect predictions of behavior of the FPGA inmore » a radiation environment. Validation determines whether the emulated faults are reasonable analogs to the radiation-induced faults. In this study we present methods for validating fault emulation systems and provide several examples of validated FPGA fault emulation systems.« less

  17. Diagnosis of Dengue Infection Using Conventional and Biosensor Based Techniques.

    PubMed

    Parkash, Om; Shueb, Rafidah Hanim

    2015-10-01

    Dengue is an arthropod-borne viral disease caused by four antigenically different serotypes of dengue virus. This disease is considered as a major public health concern around the world. Currently, there is no licensed vaccine or antiviral drug available for the prevention and treatment of dengue disease. Moreover, clinical features of dengue are indistinguishable from other infectious diseases such as malaria, chikungunya, rickettsia and leptospira. Therefore, prompt and accurate laboratory diagnostic test is urgently required for disease confirmation and patient triage. The traditional diagnostic techniques for the dengue virus are viral detection in cell culture, serological testing, and RNA amplification using reverse transcriptase PCR. This paper discusses the conventional laboratory methods used for the diagnosis of dengue during the acute and convalescent phase and highlights the advantages and limitations of these routine laboratory tests. Subsequently, the biosensor based assays developed using various transducers for the detection of dengue are also reviewed. PMID:26492265

  18. Diagnosis of Dengue Infection Using Conventional and Biosensor Based Techniques

    PubMed Central

    Parkash, Om; Hanim Shueb, Rafidah

    2015-01-01

    Dengue is an arthropod-borne viral disease caused by four antigenically different serotypes of dengue virus. This disease is considered as a major public health concern around the world. Currently, there is no licensed vaccine or antiviral drug available for the prevention and treatment of dengue disease. Moreover, clinical features of dengue are indistinguishable from other infectious diseases such as malaria, chikungunya, rickettsia and leptospira. Therefore, prompt and accurate laboratory diagnostic test is urgently required for disease confirmation and patient triage. The traditional diagnostic techniques for the dengue virus are viral detection in cell culture, serological testing, and RNA amplification using reverse transcriptase PCR. This paper discusses the conventional laboratory methods used for the diagnosis of dengue during the acute and convalescent phase and highlights the advantages and limitations of these routine laboratory tests. Subsequently, the biosensor based assays developed using various transducers for the detection of dengue are also reviewed. PMID:26492265

  19. Ionospheric Plasma Drift Analysis Technique Based On Ray Tracing

    NASA Astrophysics Data System (ADS)

    Ari, Gizem; Toker, Cenk

    2016-07-01

    Ionospheric drift measurements provide important information about the variability in the ionosphere, which can be used to quantify ionospheric disturbances caused by natural phenomena such as solar, geomagnetic, gravitational and seismic activities. One of the prominent ways for drift measurement depends on instrumentation based measurements, e.g. using an ionosonde. The drift estimation of an ionosonde depends on measuring the Doppler shift on the received signal, where the main cause of Doppler shift is the change in the length of the propagation path of the signal between the transmitter and the receiver. Unfortunately, ionosondes are expensive devices and their installation and maintenance require special care. Furthermore, the ionosonde network over the world or even Europe is not dense enough to obtain a global or continental drift map. In order to overcome the difficulties related to an ionosonde, we propose a technique to perform ionospheric drift estimation based on ray tracing. First, a two dimensional TEC map is constructed by using the IONOLAB-MAP tool which spatially interpolates the VTEC estimates obtained from the EUREF CORS network. Next, a three dimensional electron density profile is generated by inputting the TEC estimates to the IRI-2015 model. Eventually, a close-to-real situation electron density profile is obtained in which ray tracing can be performed. These profiles can be constructed periodically with a period of as low as 30 seconds. By processing two consequent snapshots together and calculating the propagation paths, we estimate the drift measurements over any coordinate of concern. We test our technique by comparing the results to the drift measurements taken at the DPS ionosonde at Pruhonice, Czech Republic. This study is supported by TUBITAK 115E915 and Joint TUBITAK 114E092 and AS CR14/001 projects.

  20. CANDU in-reactor quantitative visual-based inspection techniques

    NASA Astrophysics Data System (ADS)

    Rochefort, P. A.

    2009-02-01

    This paper describes two separate visual-based inspection procedures used at CANDU nuclear power generating stations. The techniques are quantitative in nature and are delivered and operated in highly radioactive environments with access that is restrictive, and in one case is submerged. Visual-based inspections at stations are typically qualitative in nature. For example a video system will be used to search for a missing component, inspect for a broken fixture, or locate areas of excessive corrosion in a pipe. In contrast, the methods described here are used to measure characteristic component dimensions that in one case ensure ongoing safe operation of the reactor and in the other support reactor refurbishment. CANDU reactors are Pressurized Heavy Water Reactors (PHWR). The reactor vessel is a horizontal cylindrical low-pressure calandria tank approximately 6 m in diameter and length, containing heavy water as a neutron moderator. Inside the calandria, 380 horizontal fuel channels (FC) are supported at each end by integral end-shields. Each FC holds 12 fuel bundles. The heavy water primary heat transport water flows through the FC pressure tube, removing the heat from the fuel bundles and delivering it to the steam generator. The general design of the reactor governs both the type of measurements that are required and the methods to perform the measurements. The first inspection procedure is a method to remotely measure the gap between FC and other in-core horizontal components. The technique involves delivering vertically a module with a high-radiation-resistant camera and lighting into the core of a shutdown but fuelled reactor. The measurement is done using a line-of-sight technique between the components. Compensation for image perspective and viewing elevation to the measurement is required. The second inspection procedure measures flaws within the reactor's end shield FC calandria tube rolled joint area. The FC calandria tube (the outer shell of the FC) is

  1. Dislocation nucleation and defect formation in copper by stepped spherical indenter

    SciTech Connect

    Shin, Chansun; Osetskiy, Yury N; Stoller, Roger E

    2012-01-01

    We investigated dislocation nucleation and defect formation underneath a spherical indenter which possesses atomic steps on its surface. Atomic-scale simulations of Cu (111) nanoindentation were performed. Our simulation results reveal that dislocations nucleate from surface ledges formed by atomic steps on indenter surfaces. We found that stepped indenters promote concurrent activation of three inclined {111} planes, which lead to an increased probability of forming threefold symmetric defects and punching prismatic loops along threefold symmetric directions. A new junction structure was observed and found to unzip during the formation of prismatic loops. The formation and destruction of defect structures can be explained using a conventional theory of dislocation reactions.

  2. Influence of Indentation on the Critical Current of Nb3Sn Strands

    NASA Astrophysics Data System (ADS)

    Tomone, Suwa; Yoshihiro, Nabara; Yoshikazu, Takahashi; Masayuki, Oshikiri; Fumiaki, Tsutsumi; Kazuyuki, Shibutani; Yoshihiko, Nunoya; Yukinobu, Murakami; Katsumi, Miyashita; Sim, Ki-Hong; Kwon, Soun Pil

    The Japan Atomic Energy Agency (JAEA) is procuring Central Solenoid (CS) conductorsfor all modules forITER. The superconducting properties of the Nb3Sn CS conductors will have to sustain 60,000 electromagnetic (EM) cycles. The current sharing temperatures (Tcs) were stable with EM cycles in short twist pitch conductors.However, the short twist pitch and tight cabling increases indented strands at the contact point between strands before heat treatment. The results of Ic measurement on artificially indented Nb3Sn strands indicate that Ic was almost constant within a critical depth of the indentations.

  3. A new index for the prediction of the indentation of composites under low velocity impact loads

    NASA Astrophysics Data System (ADS)

    Lopresto, V.; Caprino, G.; Leone, C.

    2012-07-01

    The effectiveness of a new empirical model for the prediction of the indentation depth resulting in a glass fibre laminates subjected to a low velocity impact, was verified. CFRP indentation data, drawn from a database, were considered to validate the new model. The advantage of the new model is that the effect of the tup diameter is explicitly accounted for. Furthermore, a single material constant has to be experimentally determined and it can be assumed as an index for the indentation sensitivity. The constant was found similar for GFRP and CFRP laminates denoting independence of constraint conditions, laminate type or laminae orientation and stacking sequence.

  4. The Use of Acoustic Emission to Characterize Fracture Behavior During Vickers Indentation of HVOF Thermally Sprayed WC-Co Coatings

    NASA Astrophysics Data System (ADS)

    Faisal, N. H.; Steel, J. A.; Ahmed, R.; Reuben, R. L.

    2009-12-01

    This paper describes how acoustic emission (AE) measurements can be used to supplement the mechanical information available from an indentation test. It examines the extent to which AE data can be used to replace time-consuming surface crack measurement data for the assessment of fracture toughness of brittle materials. AE is known to be sensitive to fracture events and so it was expected that features derived from the AE data may provide information on the processes (microscale and macroscale fracture events and densification) occurring during indentation. AE data were acquired during indentation tests on samples of a WC-12%Co coating of nominal thickness 300 μm at a variety of indentation loads. The raw AE signals were reduced to three stages and three features per stage, giving nine possible indicators per indentation. Each indicator was compared with the crack profile, measured both conventionally and using a profiling method which gives the total surface crack length around the indent. A selection of the indents was also sectioned in order to make some observations on the subsurface damage. It has been found that reproducible AE signals are generated during indentation involving three distinct stages, associated, respectively, with nonradial cracking, commencement of radial cracking, and continued descent of the indenter. It has been shown that AE can give at least as good a measure of cracking processes during indentation as is possible using crack measurement after indentation.

  5. Ball Indentation Studies on the Effect of Nitrogen on the Tensile Properties of 316LN SS

    NASA Astrophysics Data System (ADS)

    Mathew, M. D.; Ganesh Kumar, J.; Ganesan, V.; Laha, K.

    2015-12-01

    Type 316L(N) stainless steel (SS) containing 0.02-0.03 wt% carbon and 0.06-0.08 wt% nitrogen is used as the major structural material for the components of fast reactors. Research is underway to improve the high-temperature mechanical properties of 316LN SS by increasing the nitrogen content in the steel above the level of 0.08 wt%. In this investigation, ball indentation (BI) technique was used to evaluate the effect of nitrogen content on the tensile properties of 316LN SS. BI tests were conducted on four different heats of 316LN SS containing 0.07, 0.11, 0.14 and 0.22 wt% nitrogen in the temperature range 300-923 K. The tensile properties such as yield strength and ultimate tensile strength increased with increase in nitrogen content at all the investigated temperatures. These results were consistent with the corresponding uniaxial tensile test results. These studies showed that BI technique can be used to optimize the chemical composition during alloy development by evaluating tensile properties with minimum volume of material.

  6. Damage detection technique by measuring laser-based mechanical impedance

    SciTech Connect

    Lee, Hyeonseok; Sohn, Hoon

    2014-02-18

    This study proposes a method for measurement of mechanical impedance using noncontact laser ultrasound. The measurement of mechanical impedance has been of great interest in nondestructive testing (NDT) or structural health monitoring (SHM) since mechanical impedance is sensitive even to small-sized structural defects. Conventional impedance measurements, however, have been based on electromechanical impedance (EMI) using contact-type piezoelectric transducers, which show deteriorated performances induced by the effects of a) Curie temperature limitations, b) electromagnetic interference (EMI), c) bonding layers and etc. This study aims to tackle the limitations of conventional EMI measurement by utilizing laser-based mechanical impedance (LMI) measurement. The LMI response, which is equivalent to a steady-state ultrasound response, is generated by shooting the pulse laser beam to the target structure, and is acquired by measuring the out-of-plane velocity using a laser vibrometer. The formation of the LMI response is observed through the thermo-mechanical finite element analysis. The feasibility of applying the LMI technique for damage detection is experimentally verified using a pipe specimen under high temperature environment.

  7. Perceptually based techniques for semantic image classification and retrieval

    NASA Astrophysics Data System (ADS)

    Depalov, Dejan; Pappas, Thrasyvoulos; Li, Dongge; Gandhi, Bhavan

    2006-02-01

    The accumulation of large collections of digital images has created the need for efficient and intelligent schemes for content-based image retrieval. Our goal is to organize the contents semantically, according to meaningful categories. We present a new approach for semantic classification that utilizes a recently proposed color-texture segmentation algorithm (by Chen et al.), which combines knowledge of human perception and signal characteristics to segment natural scenes into perceptually uniform regions. The color and texture features of these regions are used as medium level descriptors, based on which we extract semantic labels, first at the segment and then at the scene level. The segment features consist of spatial texture orientation information and color composition in terms of a limited number of locally adapted dominant colors. The focus of this paper is on region classification. We use a hierarchical vocabulary of segment labels that is consistent with those used in the NIST TRECVID 2003 development set. We test the approach on a database of 9000 segments obtained from 2500 photographs of natural scenes. For training and classification we use the Linear Discriminant Analysis (LDA) technique. We examine the performance of the algorithm (precision and recall rates) when different sets of features (e.g., one or two most dominant colors versus four quantized dominant colors) are used. Our results indicate that the proposed approach offers significant performance improvements over existing approaches.

  8. Hyperspectral-imaging-based techniques applied to wheat kernels characterization

    NASA Astrophysics Data System (ADS)

    Serranti, Silvia; Cesare, Daniela; Bonifazi, Giuseppe

    2012-05-01

    Single kernels of durum wheat have been analyzed by hyperspectral imaging (HSI). Such an approach is based on the utilization of an integrated hardware and software architecture able to digitally capture and handle spectra as an image sequence, as they results along a pre-defined alignment on a surface sample properly energized. The study was addressed to investigate the possibility to apply HSI techniques for classification of different types of wheat kernels: vitreous, yellow berry and fusarium-damaged. Reflectance spectra of selected wheat kernels of the three typologies have been acquired by a laboratory device equipped with an HSI system working in near infrared field (1000-1700 nm). The hypercubes were analyzed applying principal component analysis (PCA) to reduce the high dimensionality of data and for selecting some effective wavelengths. Partial least squares discriminant analysis (PLS-DA) was applied for classification of the three wheat typologies. The study demonstrated that good classification results were obtained not only considering the entire investigated wavelength range, but also selecting only four optimal wavelengths (1104, 1384, 1454 and 1650 nm) out of 121. The developed procedures based on HSI can be utilized for quality control purposes or for the definition of innovative sorting logics of wheat.

  9. Damage detection technique by measuring laser-based mechanical impedance

    NASA Astrophysics Data System (ADS)

    Lee, Hyeonseok; Sohn, Hoon

    2014-02-01

    This study proposes a method for measurement of mechanical impedance using noncontact laser ultrasound. The measurement of mechanical impedance has been of great interest in nondestructive testing (NDT) or structural health monitoring (SHM) since mechanical impedance is sensitive even to small-sized structural defects. Conventional impedance measurements, however, have been based on electromechanical impedance (EMI) using contact-type piezoelectric transducers, which show deteriorated performances induced by the effects of a) Curie temperature limitations, b) electromagnetic interference (EMI), c) bonding layers and etc. This study aims to tackle the limitations of conventional EMI measurement by utilizing laser-based mechanical impedance (LMI) measurement. The LMI response, which is equivalent to a steady-state ultrasound response, is generated by shooting the pulse laser beam to the target structure, and is acquired by measuring the out-of-plane velocity using a laser vibrometer. The formation of the LMI response is observed through the thermo-mechanical finite element analysis. The feasibility of applying the LMI technique for damage detection is experimentally verified using a pipe specimen under high temperature environment.

  10. Automatic tumor segmentation using knowledge-based techniques.

    PubMed

    Clark, M C; Hall, L O; Goldgof, D B; Velthuizen, R; Murtagh, F R; Silbiger, M S

    1998-04-01

    A system that automatically segments and labels glioblastoma-multiforme tumors in magnetic resonance images (MRI's) of the human brain is presented. The MRI's consist of T1-weighted, proton density, and T2-weighted feature images and are processed by a system which integrates knowledge-based (KB) techniques with multispectral analysis. Initial segmentation is performed by an unsupervised clustering algorithm. The segmented image, along with cluster centers for each class are provided to a rule-based expert system which extracts the intracranial region. Multispectral histogram analysis separates suspected tumor from the rest of the intracranial region, with region analysis used in performing the final tumor labeling. This system has been trained on three volume data sets and tested on thirteen unseen volume data sets acquired from a single MRI system. The KB tumor segmentation was compared with supervised, radiologist-labeled "ground truth" tumor volumes and supervised k-nearest neighbors tumor segmentations. The results of this system generally correspond well to ground truth, both on a per slice basis and more importantly in tracking total tumor volume during treatment over time. PMID:9688151

  11. Parameter tuning of PVD process based on artificial intelligence technique

    NASA Astrophysics Data System (ADS)

    Norlina, M. S.; Diyana, M. S. Nor; Mazidah, P.; Rusop, M.

    2016-07-01

    In this study, an artificial intelligence technique is proposed to be implemented in the parameter tuning of a PVD process. Due to its previous adaptation in similar optimization problems, genetic algorithm (GA) is selected to optimize the parameter tuning of the RF magnetron sputtering process. The most optimized parameter combination obtained from GA's optimization result is expected to produce the desirable zinc oxide (ZnO) thin film from the sputtering process. The parameters involved in this study were RF power, deposition time and substrate temperature. The algorithm was tested to optimize the 25 datasets of parameter combinations. The results from the computational experiment were then compared with the actual result from the laboratory experiment. Based on the comparison, GA had shown that the algorithm was reliable to optimize the parameter combination before the parameter tuning could be done to the RF magnetron sputtering machine. In order to verify the result of GA, the algorithm was also been compared to other well known optimization algorithms, which were, particle swarm optimization (PSO) and gravitational search algorithm (GSA). The results had shown that GA was reliable in solving this RF magnetron sputtering process parameter tuning problem. GA had shown better accuracy in the optimization based on the fitness evaluation.

  12. Validation techniques of agent based modelling for geospatial simulations

    NASA Astrophysics Data System (ADS)

    Darvishi, M.; Ahmadi, G.

    2014-10-01

    One of the most interesting aspects of modelling and simulation study is to describe the real world phenomena that have specific properties; especially those that are in large scales and have dynamic and complex behaviours. Studying these phenomena in the laboratory is costly and in most cases it is impossible. Therefore, Miniaturization of world phenomena in the framework of a model in order to simulate the real phenomena is a reasonable and scientific approach to understand the world. Agent-based modelling and simulation (ABMS) is a new modelling method comprising of multiple interacting agent. They have been used in the different areas; for instance, geographic information system (GIS), biology, economics, social science and computer science. The emergence of ABM toolkits in GIS software libraries (e.g. ESRI's ArcGIS, OpenMap, GeoTools, etc) for geospatial modelling is an indication of the growing interest of users to use of special capabilities of ABMS. Since ABMS is inherently similar to human cognition, therefore it could be built easily and applicable to wide range applications than a traditional simulation. But a key challenge about ABMS is difficulty in their validation and verification. Because of frequent emergence patterns, strong dynamics in the system and the complex nature of ABMS, it is hard to validate and verify ABMS by conventional validation methods. Therefore, attempt to find appropriate validation techniques for ABM seems to be necessary. In this paper, after reviewing on Principles and Concepts of ABM for and its applications, the validation techniques and challenges of ABM validation are discussed.

  13. Dynamic digital watermark technique based on neural network

    NASA Astrophysics Data System (ADS)

    Gu, Tao; Li, Xu

    2008-04-01

    An algorithm of dynamic watermark based on neural network is presented which is more robust against attack of false authentication and watermark-tampered operations contrasting with one watermark embedded method. (1) Five binary images used as watermarks are coded into a binary array. The total number of 0s and 1s is 5*N, every 0 or 1 is enlarged fivefold by information-enlarged technique. N is the original total number of the watermarks' binary bits. (2) Choose the seed image pixel p x,y and its 3×3 vicinities pixel p x-1,y-1,p x-1,y,p x-1,y+1,p x,y-1,p x,y+1,p x+1,y-1,p x+1,y,p x+1,y+1 as one sample space. The p x,y is used as the neural network target and the other eight pixel values are used as neural network inputs. (3) To make the neural network learn the sample space, 5*N pixel values and their closely relevant pixel values are randomly chosen with a password from a color BMP format image and used to train the neural network.(4) A four-layer neural network is constructed to describe the nonlinear mapped relationship between inputs and outputs. (5) One bit from the array is embedded by adjusting the polarity between a chosen pixel value and the output value of the model. (6) One randomizer generates a number to ascertain the counts of watermarks for retrieving. The randomly ascertained watermarks can be retrieved by using the restored neural network outputs value, the corresponding image pixels value, and the restore function without knowing the original image and watermarks (The restored coded-watermark bit=1, if ox,y(restored)>p x,y(reconstructed, else coded-watermark bit =0). The retrieved watermarks are different when extracting each time. The proposed technique can offer more watermarking proofs than one watermark embedded algorithm. Experimental results show that the proposed technique is very robust against some image processing operations and JPEG lossy compression. Therefore, the algorithm can be used to protect the copyright of one important image.

  14. Towards Optical Coherence Tomography-based elastographic evaluation of human cartilage.

    PubMed

    Nebelung, Sven; Brill, Nicolai; Müller, Felix; Tingart, Markus; Pufe, Thomas; Merhof, Dorit; Schmitt, Robert; Jahr, Holger; Truhn, Daniel

    2016-03-01

    Optical Coherence Tomography (OCT) is an imaging technique that allows the surface and subsurface evaluation of semitransparent tissues by generating microscopic cross-sectional images in real time, to millimetre depths and at micrometre resolutions. As the differentiation of cartilage degeneration remains diagnostically challenging to standard imaging modalities, an OCT- and MRI-compatible indentation device for the assessment of cartilage functional properties was developed and validated in the present study. After describing the system design and performing its comprehensive validation, macroscopically intact human cartilage samples (n=5) were indented under control of displacement (δ1=202µm; δ2=405µm; δ3=607µm; δ4=810µm) and simultaneous OCT imaging through a transparent indenter piston in direct contact with the sample; thus, 3-D OCT datasets from surface and subsurface areas were obtained. OCT-based evaluation of loading-induced changes included qualitative assessment of image morphology and signal characteristics. For inter-method cross referencing, the device׳s compatibility with MRI as well as qualitative morphology changes under analogous indentation loading conditions were evaluated by a series of T2 weighted gradient echo sequences. Cartilage thickness measurements were performed using the needle-probe technique prior to OCT and MRI imaging, and subsequently referenced to sample thickness as determined by MRI and histology. Dynamic indentation testing was performed to determine Young׳s modulus for biomechanical reference purposes. Distinct differences in sample thickness as well as corresponding strains were found; however, no significant differences in cartilage thickness were found between the used techniques. Qualitative assessment of OCT and MRI images revealed either distinct or absent sample-specific patterns of morphological changes in relation to indentation loading. For OCT, the tissue area underneath the indenter piston could be

  15. Scanning electron acoustic microscopy of indentation-induced cracks and residual stresses in ceramics

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Qian, Menglu; Ravichandran, M. V.; Knowles, K. M.

    1990-01-01

    The ability of scanning electron acoustic microscopy (SEAM) to characterize ceramic materials is assessed. SEAM images of Vickers indentations in SiC whisker-reinforced alumina clearly reveal not only the radial cracks, the length of which can be used to estimate the fracture toughness of the material, but also reveal strong contrast, interpreted as arising from the combined effects of lateral cracks and the residual stress field left in the SiC whisker-reinforced alumina by the indenter. The strong contrast is removed after the material is heat treated at 1000 C to relieve the residual stresses around the indentations. A comparison of these observations with SEAM and reflected polarized light observations of Vickers indentations in soda-lime glass both before and after heat treatment confirms the interpretation of the strong contrast.

  16. Finite circular plate on elastic foundation centrally loaded by rigid spherical indenter

    NASA Technical Reports Server (NTRS)

    Wadhwa, S. K.; Yang, P. P.

    1980-01-01

    The analytical solution of a finite circular plate on an elastic foundation centrally loaded by the rigid indenter is discussed. The procedure to use NASTRAN as a subroutine to iteratively converge to this solution numerically is described.

  17. Modeling the Nano-indentation of Self-healing Materials

    NASA Astrophysics Data System (ADS)

    Duki, Solomon F.; Kolmakov, German V.; Yashin, Victor V.; Kowalewski, Tomasz; Matyjaszewski, Krzysztof; Balazs, Anna C.

    2011-03-01

    We use computational modeling to determine the mechanical response of crosslinked nanogels to an atomic force microscope (AFM) tip that is moved through the sample. We focus on two-dimensional systems where the nanogels are interconnected by both strong and labile bonds. We model each nanogel as a deformable particle using the modified lattice spring model that is applicable to a broad range of elastic materials.We utilize the Bell model to describe the bonds between these nanogel particles, and subsequently, simulate the rupturing of bonds due the force exerted by the moving indenter. The ruptured labile bonds can readily reform and thus, can effectively mend the cavities formed by the moving AFM tip. We determine how the fraction of labile bonds, the nanogel stiffness, and the size and velocity of the moving tip affect the self-healing behavior of the material. We find that samples containing just 10 % of labile bonds can heal to approximately 90 % of their original, undeformed morphology.

  18. Bone indentation recovery time correlates with bond reforming time

    NASA Astrophysics Data System (ADS)

    Thompson, James B.; Kindt, Johannes H.; Drake, Barney; Hansma, Helen G.; Morse, Daniel E.; Hansma, Paul K.

    2001-12-01

    Despite centuries of work, dating back to Galileo, the molecular basis of bone's toughness and strength remains largely a mystery. A great deal is known about bone microsctructure and the microcracks that are precursors to its fracture, but little is known about the basic mechanism for dissipating the energy of an impact to keep the bone from fracturing. Bone is a nanocomposite of hydroxyapatite crystals and an organic matrix. Because rigid crystals such as the hydroxyapatite crystals cannot dissipate much energy, the organic matrix, which is mainly collagen, must be involved. A reduction in the number of collagen cross links has been associated with reduced bone strength and collagen is molecularly elongated (`pulled') when bovine tendon is strained. Using an atomic force microscope, a molecular mechanistic origin for the remarkable toughness of another biocomposite material, abalone nacre, has been found. Here we report that bone, like abalone nacre, contains polymers with `sacrificial bonds' that both protect the polymer backbone and dissipate energy. The time needed for these sacrificial bonds to reform after pulling correlates with the time needed for bone to recover its toughness as measured by atomic force microscope indentation testing. We suggest that the sacrificial bonds found within or between collagen molecules may be partially responsible for the toughness of bone.

  19. Indentation Damage and Crack Repair in Human Enamel*

    PubMed Central

    Rivera, C.; Arola, D.; Ossa, A.

    2013-01-01

    Tooth enamel is the hardest and most highly mineralized tissue in the human body. While there have been a number of studies aimed at understanding the hardness and crack growth resistance behavior of this tissue, no study has evaluated if cracks in this tissue undergo repair. In this investigation the crack repair characteristics of young human enamel were evaluated as a function of patient gender and as a function of the distance from the Dentin Enamel Junction (DEJ). Cracks were introduced via microindentation along the prism direction and evaluated as a function of time after the indentation. Microscopic observations indicated that the repair of cracks began immediately after crack initiation and reaches saturation after approximately 48 hours. During this process he crack length decreased up to 10% of the initial length, and the largest degree of reduction occurred in the deep enamel, nearest the DEJ. In addition, it was found that the degree of repair was significantly greater in the enamel of female patients. PMID:23541701

  20. Cyclic Fatigue of Brittle Materials with an Indentation-Induced Flaw System

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Salem, Jonathan A.

    1996-01-01

    The ratio of static to cyclic fatigue life, or 'h ratio', was obtained numerically for an indentation flaw system subjected to sinusoidal loading conditions. Emphasis was placed on developing a simple, quick lifetime prediction tool. The solution for the h ratio was compared with experimental static and cyclic fatigue data obtained from as-indented 96 wt.% alumina specimens tested in room-temperature distilled water.

  1. Corneal perforation during scleral indentation in a patient with pellucid marginal degeneration

    PubMed Central

    Mercieca, Karl; Dharmasena, Aruna; Hopley, Charles

    2016-01-01

    An observational case report of corneal perforation following scleral indentation in a patient with previously undiagnosed pellucid marginal degeneration is presented. Clinical examination, investigations, and subsequent management of this unwarranted and rare complication are described and discussed. The case highlights the need for thorough anterior segment examination before indirect ophthalmoscopy particularly in the presence of ectatic corneal pathology in which case scleral indentation should be avoided. PMID:27146937

  2. Determination of the elastic modulus of native collagen fibrils via radial indentation

    NASA Astrophysics Data System (ADS)

    Heim, August J.; Matthews, William G.; Koob, Thomas J.

    2006-10-01

    The authors studied the elastic response of single, native collagen fibrils extracted from tissues of the inner dermis of the sea cucumber, Cucumaria frondosa, via local nanoscale indentation with an atomic force microscope (AFM). AFM imaging of fibrils under ambient conditions are presented, demonstrating a peak-to-peak periodicity, the d band, of dehydrated, unfixed fibrils to be ˜64.5nm. Radial indentation experiments were performed, and the measured value for the reduced modulus is 1-2GPa.

  3. Biogeosystem technique as a base of Sustainable Irrigated Agriculture

    NASA Astrophysics Data System (ADS)

    Batukaev, Abdulmalik

    2016-04-01

    The world water strategy is to be changed because the current imitational gravitational frontal isotropic-continual paradigm of irrigation is not sustainable. This paradigm causes excessive consumption of fresh water - global deficit - up to 4-15 times, adverse effects on soils and landscapes. Current methods of irrigation does not control the water spread throughout the soil continuum. The preferable downward fluxes of irrigation water are forming, up to 70% and more of water supply loses into vadose zone. The moisture of irrigated soil is high, soil loses structure in the process of granulometric fractions flotation decomposition, the stomatal apparatus of plant leaf is fully open, transpiration rate is maximal. We propose the Biogeosystem technique - the transcendental, uncommon and non-imitating methods for Sustainable Natural Resources Management. New paradigm of irrigation is based on the intra-soil pulse discrete method of water supply into the soil continuum by injection in small discrete portions. Individual volume of water is supplied as a vertical cylinder of soil preliminary watering. The cylinder position in soil is at depth form 10 to 30 cm. Diameter of cylinder is 1-2 cm. Within 5-10 min after injection the water spreads from the cylinder of preliminary watering into surrounding soil by capillary, film and vapor transfer. Small amount of water is transferred gravitationally to the depth of 35-40 cm. The soil watering cylinder position in soil profile is at depth of 5-50 cm, diameter of the cylinder is 2-4 cm. Lateral distance between next cylinders along the plant raw is 10-15 cm. The soil carcass which is surrounding the cylinder of non-watered soil remains relatively dry and mechanically stable. After water injection the structure of soil in cylinder restores quickly because of no compression from the stable adjoining volume of soil and soil structure memory. The mean soil thermodynamic water potential of watered zone is -0.2 MPa. At this potential

  4. Novel technique: a pupillometer-based objective chromatic perimetry

    NASA Astrophysics Data System (ADS)

    Rotenstreich, Ygal; Skaat, Alon; Sher, Ifat; Kolker, Andru; Rosenfeld, Elkana; Melamed, Shlomo; Belkin, Michael

    2014-02-01

    Evaluation of visual field (VF) is important for clinical diagnosis and patient monitoring. The current VF methods are subjective and require patient cooperation. Here we developed a novel objective perimetry technique based on the pupil response (PR) to multifocal chromatic stimuli in normal subjects and in patients with glaucoma and retinitis pigmentosa (RP). A computerized infrared video pupillometer was used to record PR to short- and long-wavelength stimuli (peak 485 nm and 620 nm, respectively) at light intensities of 15-100 cd-s/m2 at thirteen different points of the VF. The RP study included 30 eyes of 16 patients and 20 eyes of 12 healthy participants. The glaucoma study included 22 eyes of 11 patients and 38 eyes of 19 healthy participants. Significantly reduced PR was observed in RP patients in response to short-wavelength stimuli at 40 cd-s/m2 in nearly all perimetric locations (P <0.05). By contrast, RP patients demonstrated nearly normal PR to long-wavelength in majority of perimetric locations. The glaucoma group showed significantly reduced PR to long- and short-wavelength stimuli at high intensity in all perimetric locations (P <0.05). The PR of glaucoma patients was significantly lower than normal in response to short-wavelength stimuli at low intensity mostly in central and 20° locations (p<0.05). This study demonstrates the feasibility of using pupillometer-based chromatic perimetry for objectively assessing VF defects and retinal function and optic nerve damage in patients with retinal dystrophies and glaucoma. Furthermore, this method may be used to distinguish between the damaged cells underlying the VF defect.

  5. Age estimation based on Kvaal's technique using digital panoramic radiographs

    PubMed Central

    Mittal, Samta; Nagendrareddy, Suma Gundareddy; Sharma, Manisha Lakhanpal; Agnihotri, Poornapragna; Chaudhary, Sunil; Dhillon, Manu

    2016-01-01

    Introduction: Age estimation is important for administrative and ethical reasons and also because of legal consequences. Dental pulp undergoes regression in size with increasing age due to secondary dentin deposition and can be used as a parameter of age estimation even beyond 25 years of age. Kvaal et al. developed a method for chronological age estimation based on the pulp size using periapical dental radiographs. There is a need for testing this method of age estimation in the Indian population using simple tools like digital imaging on living individuals not requiring extraction of teeth. Aims and Objectives: Estimation of the chronological age of subjects by Kvaal's method using digital panoramic radiographs and also testing the validity of regression equations as given by Kvaal et al. Materials and Methods: The study sample included a total of 152 subjects in the age group of 14-60 years. Measurements were performed on the standardized digital panoramic radiographs based on Kvaal's method. Different regression formulae were derived and the age was assessed. The assessed age was then correlated to the actual age of the patient using Student's t-test. Results: No significant difference between the mean of the chronological age and the estimated age was observed. However, the values of the mean age estimated by using regression equations as given previously in the study of Kvaal et al. significantly underestimated the chronological age in the present study sample. Conclusion: The results of the study give an inference for the feasibility of this technique by calculation of regression equations on digital panoramic radiographs. However, it negates the applicability of same regression equations as given by Kvaal et al. on the study population.

  6. A new membrane-based crystallization technique: tests on lysozyme

    NASA Astrophysics Data System (ADS)

    Curcio, Efrem; Profio, Gianluca Di; Drioli, Enrico

    2003-01-01

    The great importance of protein science both in industrial and scientific fields, in conjunction with the intrinsic difficulty to grow macromolecular crystals, stimulates the development of new observations and ideas that can be useful in initiating more systematic studies using novel approaches. In this regard, an innovative technique, based on the employment of microporous hydrophobic membranes in order to promote the formation of lysozyme crystals from supersaturated solutions, is introduced in this work. Operational principles and possible advantages, both in terms of controlled extraction of solvent by acting on the concentration of the stripping solution and reduced induction times, are outlined. Theoretical developments and experimental results concerning the mass transfer, in vapour phase, through the membrane are presented, as well as the results from X-ray diffraction to 1.7 Å resolution of obtained lysozyme crystals using NaCl as the crystallizing agent and sodium acetate as the buffer. Crystals were found to be tetragonal with unit cell dimensions of a= b=79.1 Å and c=37.9 Å; the overall Rmerge on intensities in the resolution range from 25 to 1.7 Å was, in the best case, 4.4%.

  7. Research on technique of wavefront retrieval based on Foucault test

    NASA Astrophysics Data System (ADS)

    Yuan, Lvjun; Wu, Zhonghua

    2010-05-01

    During finely grinding the best fit sphere and initial stage of polishing, surface error of large aperture aspheric mirrors is too big to test using common interferometer. Foucault test is widely used in fabricating large aperture mirrors. However, the optical path is disturbed seriously by air turbulence, and changes of light and dark zones can not be identified, which often lowers people's judging ability and results in making mistake to diagnose surface error of the whole mirror. To solve the problem, the research presents wavefront retrieval based on Foucault test through digital image processing and quantitative calculation. Firstly, real Foucault image can be gained through collecting a variety of images by CCD, and then average these image to eliminate air turbulence. Secondly, gray values are converted into surface error values through principle derivation, mathematical modeling, and software programming. Thirdly, linear deviation brought by defocus should be removed by least-square method to get real surface error. At last, according to real surface error, plot wavefront map, gray contour map and corresponding pseudo color contour map. The experimental results indicates that the three-dimensional wavefront map and two-dimensional contour map are able to accurately and intuitively show surface error on the whole mirrors under test, and they are beneficial to grasp surface error as a whole. The technique can be used to guide the fabrication of large aperture and long focal mirrors during grinding and initial stage of polishing the aspheric surface, which improves fabricating efficiency and precision greatly.

  8. Initial planetary base construction techniques and machine implementation

    NASA Technical Reports Server (NTRS)

    Crockford, William W.

    1987-01-01

    Conceptual designs of (1) initial planetary base structures, and (2) an unmanned machine to perform the construction of these structures using materials local to the planet are presented. Rock melting is suggested as a possible technique to be used by the machine in fabricating roads, platforms, and interlocking bricks. Identification of problem areas in machine design and materials processing is accomplished. The feasibility of the designs is contingent upon favorable results of an analysis of the engineering behavior of the product materials. The analysis requires knowledge of several parameters for solution of the constitutive equations of the theory of elasticity. An initial collection of these parameters is presented which helps to define research needed to perform a realistic feasibility study. A qualitative approach to estimating power and mass lift requirements for the proposed machine is used which employs specifications of currently available equipment. An initial, unmanned mission scenario is discussed with emphasis on identifying uncompleted tasks and suggesting design considerations for vehicles and primitive structures which use the products of the machine processing.

  9. Weighted graph based ordering techniques for preconditioned conjugate gradient methods

    NASA Technical Reports Server (NTRS)

    Clift, Simon S.; Tang, Wei-Pai

    1994-01-01

    We describe the basis of a matrix ordering heuristic for improving the incomplete factorization used in preconditioned conjugate gradient techniques applied to anisotropic PDE's. Several new matrix ordering techniques, derived from well-known algorithms in combinatorial graph theory, which attempt to implement this heuristic, are described. These ordering techniques are tested against a number of matrices arising from linear anisotropic PDE's, and compared with other matrix ordering techniques. A variation of RCM is shown to generally improve the quality of incomplete factorization preconditioners.

  10. Tribology behavior during indentation and scratch of thin films on substrates: effects of plastic friction

    NASA Astrophysics Data System (ADS)

    Feng, Biao; Chen, Zhitong

    2015-05-01

    When friction stress on a contact surface reaches material yield strength in shear, contact slippage can occur even if the slipping condition for Coulomb friction is not satisfied. In this paper, a three-dimensional (3-D) scratch model is proposed, which considers combined Coulomb and plastic friction. Influences of plastic friction are discussed for two continuous displacement loading steps: indentation and scratch. For indentation, initially the sliding on the contact surface can not take place and the complete cohesion condition should be employed; then as the indenter is further compressed down to the coating surface, plastic friction instead of Coulomb friction prevails in most of the contact region. For scratch, the previous complete cohesion at the initial indentation is substituted by plastic or Coulomb slipping, and the slippage becomes plastic-sliding governed for a slightly large indentation depth. The effects of the indentation depth and the Coulomb friction coefficient on the scratch friction coefficient are discussed in detail. Several experimental phenomena are interpreted, which include that with an increase of the normal loading, the scratch friction coefficient reduces for the soft coating but grows for the hard coating; and with the growth of hardness after heat treatment, the scratch friction coefficient increases due to weak plastic slippage. Obtained results help to elucidate tribological behaviors during scratch and are helpful for the interpretation of experimental phenomena and the improvement of numerical simulations for the scratch process.

  11. Comparison Of Four FFT-Based Frequency-Acquisition Techniques

    NASA Technical Reports Server (NTRS)

    Shah, Biren N.; Hinedi, Sami M.; Holmes, Jack K.

    1993-01-01

    Report presents comparative theoretical analysis of four conceptual techniques for initial estimation of carrier frequency of suppressed-carrier, binary-phase-shift-keyed radio signal. Each technique effected by open-loop analog/digital signal-processing subsystem part of Costas-loop phase-error detector functioning in closed-loop manner overall.

  12. Creative Conceptual Design Based on Evolutionary DNA Computing Technique

    NASA Astrophysics Data System (ADS)

    Liu, Xiyu; Liu, Hong; Zheng, Yangyang

    Creative conceptual design is an important area in computer aided innovation. Typical design methodology includes exploration and optimization by evolutionary techniques such as EC and swarm intelligence. Although there are many proposed algorithms and applications for creative design by these techniques, the computing models are implemented mostly by traditional von Neumann’s architecture. On the other hand, the possibility of using DNA as a computing technique arouses wide interests in recent years with huge built-in parallel computing nature and ability to solve NP complete problems. This new computing technique is performed by biological operations on DNA molecules rather than chips. The purpose of this paper is to propose a simulated evolutionary DNA computing model and integrate DNA computing with creative conceptual design. The proposed technique will apply for large scale, high parallel design problems potentially.

  13. Improved mesh based photon sampling techniques for neutron activation analysis

    SciTech Connect

    Relson, E.; Wilson, P. P. H.; Biondo, E. D.

    2013-07-01

    The design of fusion power systems requires analysis of neutron activation of large, complex volumes, and the resulting particles emitted from these volumes. Structured mesh-based discretization of these problems allows for improved modeling in these activation analysis problems. Finer discretization of these problems results in large computational costs, which drives the investigation of more efficient methods. Within an ad hoc subroutine of the Monte Carlo transport code MCNP, we implement sampling of voxels and photon energies for volumetric sources using the alias method. The alias method enables efficient sampling of a discrete probability distribution, and operates in 0(1) time, whereas the simpler direct discrete method requires 0(log(n)) time. By using the alias method, voxel sampling becomes a viable alternative to sampling space with the 0(1) approach of uniformly sampling the problem volume. Additionally, with voxel sampling it is straightforward to introduce biasing of volumetric sources, and we implement this biasing of voxels as an additional variance reduction technique that can be applied. We verify our implementation and compare the alias method, with and without biasing, to direct discrete sampling of voxels, and to uniform sampling. We study the behavior of source biasing in a second set of tests and find trends between improvements and source shape, material, and material density. Overall, however, the magnitude of improvements from source biasing appears to be limited. Future work will benefit from the implementation of efficient voxel sampling - particularly with conformal unstructured meshes where the uniform sampling approach cannot be applied. (authors)

  14. Biogeosystem technique as a base of Sustainable Irrigated Agriculture

    NASA Astrophysics Data System (ADS)

    Batukaev, Abdulmalik

    2016-04-01

    The world water strategy is to be changed because the current imitational gravitational frontal isotropic-continual paradigm of irrigation is not sustainable. This paradigm causes excessive consumption of fresh water - global deficit - up to 4-15 times, adverse effects on soils and landscapes. Current methods of irrigation does not control the water spread throughout the soil continuum. The preferable downward fluxes of irrigation water are forming, up to 70% and more of water supply loses into vadose zone. The moisture of irrigated soil is high, soil loses structure in the process of granulometric fractions flotation decomposition, the stomatal apparatus of plant leaf is fully open, transpiration rate is maximal. We propose the Biogeosystem technique - the transcendental, uncommon and non-imitating methods for Sustainable Natural Resources Management. New paradigm of irrigation is based on the intra-soil pulse discrete method of water supply into the soil continuum by injection in small discrete portions. Individual volume of water is supplied as a vertical cylinder of soil preliminary watering. The cylinder position in soil is at depth form 10 to 30 cm. Diameter of cylinder is 1-2 cm. Within 5-10 min after injection the water spreads from the cylinder of preliminary watering into surrounding soil by capillary, film and vapor transfer. Small amount of water is transferred gravitationally to the depth of 35-40 cm. The soil watering cylinder position in soil profile is at depth of 5-50 cm, diameter of the cylinder is 2-4 cm. Lateral distance between next cylinders along the plant raw is 10-15 cm. The soil carcass which is surrounding the cylinder of non-watered soil remains relatively dry and mechanically stable. After water injection the structure of soil in cylinder restores quickly because of no compression from the stable adjoining volume of soil and soil structure memory. The mean soil thermodynamic water potential of watered zone is -0.2 MPa. At this potential

  15. Characterization of soil behavior using electromagnetic wave-based technique

    NASA Astrophysics Data System (ADS)

    Dong, Xiaobo

    samples so that the beta value, i.e., the ratio between the conductivities of the sediment and the fluid, is smaller than 1. The beta value is greater than 1 in the Group B samples owing to an overcompensation of surface conduction. Sedimentation behavior of two kaolinite samples with distinct fabric associations is characterized using mechanical and electromagnetic wave-based techniques. The two different fabric formations, the edge-to-face (EF) flocculated structure (i.e., sample A) and the dispersed and deflocculated structure (i.e., sample B), were regulated by changing the pH of the pore fluid and are produced. The anisotropy of shear wave velocity and DC conductivity was not observed in the sediment of sample A because of EF isotropic fabric associations but it was detected in sample B as a result of face-to-face (FF) aggregation. An open card-house structure of the sample A sediment results in a higher relaxation strength of the bulk water, Deltakappaw owing to a higher water content; the smaller Deltakappaw measured in the sample B sediment indicates denser packing. In both samples, sediment consolidation gives rise to a decrease in the bulk-water relaxation strength but an increase in the bound-water relaxation strength owing to increasing particle content. In response to sediment consolidation, the sediment conductivity of sample A continuously decreases because of the reduced contribution from the fluid conductivity. In sample B, the surface conduction via the overlapped double layer overcompensates such a decreased contribution so that the sediment conductivity increases with increasing particle content. The slim-form open-ended coaxial probe is also used to conduct a local dielectric measurement. The measured results, i.e. dielectric relaxation strength of bulk water, Deltakappaw, and the DC conductivity of the saturated sample, sigmamix, are jointly used to characterize the spatial variability of different specimens including glass beads, sand and mica

  16. A study of trends and techniques for space base electronics

    NASA Technical Reports Server (NTRS)

    Trotter, J. D.; Wade, T. E.; Gassaway, J. D.

    1978-01-01

    Furnaces and photolithography related equipment were applied to experiments on double layer metal. The double layer metal activity emphasized wet chemistry techniques. By incorporating the following techniques: (1) ultrasonic etching of the vias; (2) premetal clean using a modified buffered hydrogen fluoride; (3) phosphorus doped vapor; and (4) extended sintering, yields of 98 percent were obtained using the standard test pattern. The two dimensional modeling problems have stemmed from, alternately, instability and too much computation time to achieve convergence.

  17. Carpal tunnel and transverse carpal ligament stiffness with changes in wrist posture and indenter size.

    PubMed

    Holmes, Michael W R; Howarth, Samuel J; Callaghan, Jack P; Keir, Peter J

    2011-11-01

    This study investigated the effects of loading and posture on mechanical properties of the transverse carpal ligament (TCL). Ten fresh-frozen cadaver arms were dissected to expose the TCL and positioned in the load frame of a servo-hydraulic testing machine, equipped with a load cell and custom made indenters. Four cylindrical indenters (5, 10, 20, and 35 mm) loaded the TCL in three wrist postures (30° extension, neutral and 30° flexion). Three loading cycles with a peak force of 50 N were applied at 5 N/s for each condition. The flexed wrist posture had significantly greater TCL stiffness (40.0 ± 3.3 N/mm) than the neutral (35.9 ± 3.5 N/mm, p = 0.045) and extended postures (34.9 ± 2.8 N/mm, p = 0.025). TCL stiffness using the 10 and 20 mm indenters was larger than the 5 mm indenter. Stiffness was greatest with the 20 mm indenter, which had the greatest indenter contact area on the TCL. The 35 mm indenter covered the carpal bones, compressed the carpal tunnel and produced the lowest stiffness. The complexity of the TCL makes it an important part of the carpal tunnel and the mechanical properties found are essential to understanding mechanisms of carpal tunnel syndrome.  PMID:21520261

  18. Characterization of Indentation Response and Stiffness Reduction of Bone using a Continuum Damage Model

    PubMed Central

    Zhang, Jingzhou; Michalenko, Michelle M.; Kuhl, Ellen; Ovaert, Timothy C.

    2009-01-01

    Indentation tests can be used to characterize the mechanical properties of bone at small load/length scales offering the possibility of utilizing very small test specimens, which can be excised using minimally-invasive procedures. In addition, the need for mechanical property data from bone may be a requirement for fundamental multi-scale experiments, changes in nano- and micro-mechanical properties (e.g., as affected by changes in bone mineral density) due to drug therapies, and/or the development of computational models. Load vs. indentation depth data, however, is more complex than those obtained from typical macro-scale experiments, primarily due to the mixed state of stress, and thus interpretation of the data and extraction of mechanical properties is more challenging. Previous studies have shown that cortical bone exhibits a visco-elastic response combined with permanent deformation during indentation tests, and that the load vs. indentation depth response can be simulated using a visco-elastic/plastic material model. The model successfully captures the loading and creep displacement behavior, however, it does not adequately reproduce the unloading response near the end of the unloading cycle, where a pronounced decrease in contact stiffness is observed. It is proposed that the stiffness reduction observed in bone results from an increase in damage; therefore, a plastic-damage model was investigated and shown capable of simulating a typical bone indentation response through an axisymmetric finite element simulation. The plastic-damage model was able to reproduce the full indentation response, especially the reduced stiffness behavior exhibited during the latter stages of unloading. The results suggest that the plastic-damage model is suitable for describing the complex indentation response of bone and may provide further insight into the relationship between model parameters and mechanical/physical properties. PMID:20129418

  19. Retention of denture bases fabricated by three different processing techniques – An in vivo study

    PubMed Central

    Chalapathi Kumar, V. H.; Surapaneni, Hemchand; Ravikiran, V.; Chandra, B. Sarat; Balusu, Srilatha; Reddy, V. Naveen

    2016-01-01

    Aim: Distortion due to Polymerization shrinkage compromises the retention. To evaluate the amount of retention of denture bases fabricated by conventional, anchorized, and injection molding polymerization techniques. Materials and Methods: Ten completely edentulous patients were selected, impressions were made, and master cast obtained was duplicated to fabricate denture bases by three polymerization techniques. Loop was attached to the finished denture bases to estimate the force required to dislodge them by retention apparatus. Readings were subjected to nonparametric Friedman two-way analysis of variance followed by Bonferroni correction methods and Wilcoxon matched-pairs signed-ranks test. Results: Denture bases fabricated by injection molding (3740 g), anchorized techniques (2913 g) recorded greater retention values than conventional technique (2468 g). Significant difference was seen between these techniques. Conclusions: Denture bases obtained by injection molding polymerization technique exhibited maximum retention, followed by anchorized technique, and least retention was seen in conventional molding technique. PMID:27382542

  20. Deformation Behavior Immediately After Indentation Load Change in Ultrafine-Grained Al-Mg Solid Solution Alloys

    NASA Astrophysics Data System (ADS)

    Takagi, Hidenari; Fujiwara, Masami

    2016-04-01

    Instrumented indentation tests were performed to study how grain boundaries and solute atoms affect creep and instantaneous plastic deformation in ultrafine-grained (UFG) Al-Mg solid solution alloys with average grain size d = 0.3 - 1.0 μm at T = 373 K. In the results for Al-1.0 mol% Mg, the degree of instantaneous plastic displacement generated with a rapid increase in the load was smaller when the grain diameter was smaller. On the other hand, creep occurs more readily in materials with a smaller grain diameter. When the load was rapidly decreased during creep, the indenter displacement gradually decreased over time. The degree of reverse creep that occurs is greater when the grain diameter is smaller. In light of these test results and reports in the related literature, reverse creep is thought to occur because of inverted movement of piled-up dislocations near the grain boundaries. For the case of Al-xMg (x = 0.5, 1.0, 2.0 mol%), the results show that as the solute concentration increases, the occurrence of instantaneous plastic deformation, creep, and reverse creep becomes less likely. Overall, the results indicate that the plastic deformation behavior obtained by the testing conditions of present study for UFG Al-Mg alloys could be explained based on understanding of the behavior of course-grained materials.

  1. Deformation Behavior Immediately After Indentation Load Change in Ultrafine-Grained Al-Mg Solid Solution Alloys

    NASA Astrophysics Data System (ADS)

    Takagi, Hidenari; Fujiwara, Masami

    2016-06-01

    Instrumented indentation tests were performed to study how grain boundaries and solute atoms affect creep and instantaneous plastic deformation in ultrafine-grained (UFG) Al-Mg solid solution alloys with average grain size d = 0.3 - 1.0 μm at T = 373 K. In the results for Al-1.0 mol% Mg, the degree of instantaneous plastic displacement generated with a rapid increase in the load was smaller when the grain diameter was smaller. On the other hand, creep occurs more readily in materials with a smaller grain diameter. When the load was rapidly decreased during creep, the indenter displacement gradually decreased over time. The degree of reverse creep that occurs is greater when the grain diameter is smaller. In light of these test results and reports in the related literature, reverse creep is thought to occur because of inverted movement of piled-up dislocations near the grain boundaries. For the case of Al- xMg ( x = 0.5, 1.0, 2.0 mol%), the results show that as the solute concentration increases, the occurrence of instantaneous plastic deformation, creep, and reverse creep becomes less likely. Overall, the results indicate that the plastic deformation behavior obtained by the testing conditions of present study for UFG Al-Mg alloys could be explained based on understanding of the behavior of course-grained materials.

  2. Non-Destructive Techniques Based on Eddy Current Testing

    PubMed Central

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future. PMID:22163754

  3. Fiber probes based optical techniques for biomedical diagnosis

    NASA Astrophysics Data System (ADS)

    Arce-Diego, José L.; Fanjul-Vélez, Félix

    2007-06-01

    Although fiber optics have been applied in optical communication and sensor systems for several years in a very successful way, their first application was developed in medicine in the early 20's. Manufacturing and developing of optical fibers for biomedical purposes have required a lot of research efforts in order to achieve a non-invasive, in-vivo, and real-time diagnosis of different diseases in human or animal tissues. In general, optical fiber probes are designed as a function of the optical measurement technique. In this work, a brief description of the main optical techniques for optical characterization of biological tissues is presented. The recent advances in optical fiber probes for biomedical diagnosis in clinical analysis and optical biopsy in relation with the different spectroscopic or tomographic optical techniques are described.

  4. Non-destructive techniques based on eddy current testing.

    PubMed

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future. PMID:22163754

  5. Thermomechanics of calendering, indenting and laminating porous webs: Computer-aided theory and experiments

    NASA Astrophysics Data System (ADS)

    Aggelidis, Costas Nickolaos

    2007-12-01

    Calendering is the name of a forming process in the polymer industry, of a finishing operation in papermaking, and of a post-coating smoothing step. Common to all three is flow of a solid-like material between two counter-rotating rolls. Experiments of paper calendering reveal the effects of nip loading and roll surface temperature on the surface roughness, gloss, and elastic properties of paper, as well as on the porosity reduction of the surface layers of paper handsheets from images of a two-photon confocal microscope. Lamination refers to pressing together two substrates with adhesive between. It also is commonly done between two counter-rotating rolls. A simple theoretical model and experiments of lamination of three-layer composites show the effects of web tensions, nip loading and roll speed on the curl and hang of the laminate, air entrapment and delamination. The deformation in calendering commonly spans viscous, elastic, plastic, and various combinations of these. A constitutive theory of poro-elasto-viscoplastic materials for finite deformations is developed based on thermodynamics of internal variables and the principle of maximum dissipation. Internal variables represent changes of deviatoric and total elastic stress-free states, i.e. deviatoric and isotropic yielding. Two scalar potentials, the free energy and the yield or dissipation function, describe the evolution of the elastic stress-free states. Indentation is commonly used to estimate material properties, like modulus and hardness, and visualize the deformation of the surface zones. A spherical cavity model for finite elasto-poro-plastic materials predicts the effect of isotropic yielding or change of total elastic stress-free state on indentation load and the size of plastic region. A calendering model of slab analysis for plastic and poro-plastic materials reveals the effects of the friction coefficient and of isotropic yielding on the stress distribution and densification in the calendering

  6. Room-Temperature Indentation Creep and the Mechanical Properties of Rapidly Solidified Sn-Sb-Pb-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Kamal, Mustafa; El-Bediwi, A.; Lashin, A. R.; El-Zarka, A. H.

    2016-05-01

    In this paper, we study the room-temperature indentation creep and the mechanical properties of Sn-Sb-Pb-Cu alloys. Rapid solidification from melt using the melt-spinning technique is applied to prepare all the alloys. The experimental results show that the magnitude of the creep displacement increases with the increase in both time and applied load, and the stress exponent increases with the increase in the copper content in the alloys which happens primarily due to the existence of the intermetallic compounds SbSn and Cu6Sn5. The calculated values of the stress exponent are in the range of 2.82 to 5.16, which are in good agreement with the values reported for the Sn-Sb-Pb-Cu alloys. We have also studied and analyzed the structure, elastic modulus, and internal friction of the Sn-Sb-Pb-Cu alloys.

  7. Kernel-Based Discriminant Techniques for Educational Placement

    ERIC Educational Resources Information Center

    Lin, Miao-hsiang; Huang, Su-yun; Chang, Yuan-chin

    2004-01-01

    This article considers the problem of educational placement. Several discriminant techniques are applied to a data set from a survey project of science ability. A profile vector for each student consists of five science-educational indicators. The students are intended to be placed into three reference groups: advanced, regular, and remedial.…

  8. Local dynamic mechanical analysis for heterogeneous soft matter using ferrule-top indentation.

    PubMed

    van Hoorn, Hedde; Kurniawan, Nicholas A; Koenderink, Gijsje H; Iannuzzi, Davide

    2016-03-16

    There is a strong demand for nanoindentation methods to probe the heterogeneous viscoelastic properties of soft tissues. Important applications include diagnosis of early onset diseases such as arthritis and investigations into cellular mechanoresponse in tissue. Quantification of tissue mechanics at length and time scales relevant to biological processes, however, remains a technical challenge. Here, we present a new nanoindentation approach that is ideally suited to probe the viscoelastic properties of soft, hydrated tissues. We built a ferrule-top probe that uses wavelength modulation in a Fabry-Pérot cavity configuration to detect cantilever deflection and to drive a feedback-controlled piezoelectric actuator. This technique allows us to control the static load applied onto the sample using an all-optical mm-sized probe. We extract the local elastic and viscous moduli of the samples by superposing a small oscillatory load and recording the indentation depth at the frequency of oscillation. By using a set of silicone elastomers with a range of stiffnesses representative of biological tissues, we demonstrate that the technique can accurately determine moduli over a wide range (0.1-100 kPa) and over a frequency range of 0.01-10 Hz. Direct comparison with macroscopic rheology measurements yields excellent quantitative agreement, without any fitting parameters. Finally, we show how this method can provide a spatially-resolved map of large variations in mechanical properties (orders of magnitude) across the surface of soft samples thanks to high sensitivity over large (>μm) cantilever deflections. This approach paves the way to investigations into the local dynamic mechanical properties of biological soft matter. PMID:26908197

  9. Response Time Comparisons among Four Base Running Starting Techniques in Slow Pitch Softball.

    ERIC Educational Resources Information Center

    Israel, Richard G.; Brown, Rodney L.

    1981-01-01

    Response times among four starting techniques (cross-over step, jab step, standing sprinter's start, and momentum start) were compared. The results suggest that the momentum start was the fastest starting technique for optimum speed in running bases. (FG)

  10. Twinning and martensitic transformations in nickel-enriched 304 austenitic steel during tensile and indentation deformations

    SciTech Connect

    Gussev, Maxim N; Busby, Jeremy T; Byun, Thak Sang; Parish, Chad M

    2013-01-01

    Twinning and martensitic transformation have been investigated in nickel-enriched AISI 304 stainless steel subjected to tensile and indentation deformation. Using electron backscatter diffraction (EBSD), the morphology of alpha- and epsilon-martensite and the effect of grain orientation to load axis on phase and structure transformations were analyzed in detail. It was found that the twinning occurred less frequently under indentation than under tension; also, twinning was not observed in [001] and [101] grains. In tensile tests, the martensite particles preferably formed at the deformation twins, intersections between twins, or at twin-grain boundary intersections. Conversely, martensite formation in the indentation tests was not closely associated with twinning; instead, the majority of martensite was concentrated in the dense colonies near grain boundaries. Martensitic transformation seemed to be obstructed in the [001] grains in both tensile and indentation test cases. Under a tensile stress of 800 MPa, both alpha- and epsilon-martensite were found in the microstructure, but at 1100 MPa only -martensite presented in the specimen. Under indentation, alpha- and epsilon-martensite were observed in the material regardless of stress level.

  11. A linearized formulation of triphasic mixture theory for articular cartilage, and its application to indentation analysis.

    PubMed

    Lu, Xin L; Wan, Leo Q; Guo, X Edward; Mow, Van C

    2010-03-01

    The negative charges on proteoglycans significantly affect the mechanical behaviors of articular cartilage. Mixture theories, such as the triphasic theory, can describe quantitatively how this charged nature contributes to the mechano-electrochemical behaviors of such tissue. However, the mathematical complexity of the theory has hindered its application to complicated loading profiles, e.g., indentation or other multi-dimensional configurations. In this study, the governing equations of triphasic mixture theory for soft tissue were linearized and dramatically simplified by using a regular perturbation method and the use of two potential functions. We showed that this new formulation can be used for any axisymmetric problem, such as confined or unconfined compressions, hydraulic perfusion, and indentation. A finite difference numerical program was further developed to calculate the deformational, electrical, and flow behaviors inside the articular cartilage under indentation. The calculated tissue response was highly consistent with the data from indentation experiments (our own and those reported in the literature). It was found that the charged nature of proteoglycans can increase the apparent stiffness of the solid matrix and lessen the viscous effect introduced by fluid flow. The effects of geometric and physical properties of indenter tip, cartilage thickness, and that of the electro-chemical properties of cartilage on the resulting deformation and fluid pressure fields across the tissue were also investigated and presented. These results have implications for studying chondrocyte mechanotransduction in different cartilage zones and for tissue engineering designs or in vivo cartilage repair. PMID:19896670

  12. Mechanical property determination of bone through nano- and micro-indentation testing and finite element simulation

    PubMed Central

    Zhang, Jingzhou; Niebur, Glen L.; Ovaert, Timothy C.

    2009-01-01

    Measurement of the mechanical properties of bone is important for estimating the stresses and strains exerted at the cellular level due to loading experienced on a macro-scale. Nano- and micro-mechanical properties of bone are also of interest to the pharmaceutical industry when drug therapies have intentional or non-intentional effects on bone mineral content and strength. The interactions that can occur between nano- and micro-indentation creep test condition parameters were considered in this study, and average hardness and elastic modulus were obtained as a function of indentation testing conditions (maximum load, load/unload rate, load-holding time, and indenter shape). The results suggest that bone reveals different mechanical properties when loading increases from the nano- to the micro-scale range (μN to N), which were measured using low- and high-load indentation testing systems. A four-parameter visco-elastic/plastic constitutive model was then applied to simulate the indentation load vs. depth response over both load ranges. Good agreement between the experimental data and finite element model was obtained when simulating the visco-elastic/plastic response of bone. The results highlight the complexity of bone as a biological tissue and the need to understand the impact of testing conditions on the measured results. PMID:17961578

  13. Deformation Microstructures Near Vickers Indentations in SNO2/SI Coated Systems

    NASA Astrophysics Data System (ADS)

    Daria, G.; Evghenii, H.; Olga, S.; Zinaida, D.; Iana, M.; Victor, Z.

    The micromechanical properties (hardness and brittleness) of the hard-on-hard SnO2 / Si-coated system (CS) and their modification depending the on load value has been studied. A nonmonotonic changing of microhardness with load growth was detected. The brittle/plastic behavior of the rigid/hard-on-hard SnO2 / Si CS and its response to concentrated load action explains it.A specific evolution of the indentation-deformed zone vs. load value attributed to the change in the internal stress redistribution between film and substrate was detected. It results in a brittleness indentation size effect (BISE) of the SnO2 / Si CS revealed in this experiment.It was shown that the greater portion of internal stresses under indentation is concentrated in the coating layer at small loads. This fact causes a strong elastic-plastic relaxation in the film and its delamination from substrate. The increase of brittle failure in the indentation-deformed zone with a decrease of indentation load was revealed.

  14. Pore-spanning lipid membrane under indentation by a probe tip: a molecular dynamics simulation study.

    PubMed

    Huang, Chen-Hsi; Hsiao, Pai-Yi; Tseng, Fan-Gang; Fan, Shih-Kang; Fu, Chien-Chung; Pan, Rong-Long

    2011-10-01

    We study the indentation of a free-standing lipid membrane suspended over a nanopore on a hydrophobic substrate by means of molecular dynamics simulations. We find that in the course of indentation the membrane bends at the point of contact and the fringes of the membrane glide downward intermittently along the pore edges and stop gliding when the fringes reach the edge bottoms. The bending continues afterward, and the large strain eventually induces a phase transition in the membrane, transformed from a bilayered structure to an interdigitated structure. The membrane is finally ruptured when the indentation goes deep enough. Several local physical quantities in the pore regions are calculated, which include the tilt angle of lipid molecules, the nematic order, the included angle, and the distance between neighboring lipids. The variations of these quantities reveal many detailed, not-yet-specified local structural transitions of lipid molecules under indentation. The force-indentation curve is also studied and discussed. The results make a connection between the microscopic structure and the macroscopic properties and provide deep insight into the understanding of the stability of a lipid membrane spanning over nanopore. PMID:21859109

  15. Manufacturing techniques for Gravity Probe B gyroscopes

    NASA Technical Reports Server (NTRS)

    Rasquin, J. R.

    1978-01-01

    Additional and improved techniques for the manufacture of Gravity Probe B gyroscopes are reported. Improvements discussed include the redesign of the housings, new techniques for indentation of the electrode surfaces, and a new rotor ball lapping machine. These three items represent a significant improvement in operation of the gyroscope and also make possible the fabrication of a gyroscope which will meet flight requirements.

  16. Knowledge-based GIS techniques applied to geological engineering

    USGS Publications Warehouse

    Usery, E. Lynn; Altheide, Phyllis; Deister, Robin R.P.; Barr, David J.

    1988-01-01

    A knowledge-based geographic information system (KBGIS) approach which requires development of a rule base for both GIS processing and for the geological engineering application has been implemented. The rule bases are implemented in the Goldworks expert system development shell interfaced to the Earth Resources Data Analysis System (ERDAS) raster-based GIS for input and output. GIS analysis procedures including recoding, intersection, and union are controlled by the rule base, and the geological engineering map product is generted by the expert system. The KBGIS has been used to generate a geological engineering map of Creve Coeur, Missouri.

  17. Wavelet-based techniques for the gamma-ray sky

    NASA Astrophysics Data System (ADS)

    McDermott, Samuel D.; Fox, Patrick J.; Cholis, Ilias; Lee, Samuel K.

    2016-07-01

    We demonstrate how the image analysis technique of wavelet decomposition can be applied to the gamma-ray sky to separate emission on different angular scales. New structures on scales that differ from the scales of the conventional astrophysical foreground and background uncertainties can be robustly extracted, allowing a model-independent characterization with no presumption of exact signal morphology. As a test case, we generate mock gamma-ray data to demonstrate our ability to extract extended signals without assuming a fixed spatial template. For some point source luminosity functions, our technique also allows us to differentiate a diffuse signal in gamma-rays from dark matter annihilation and extended gamma-ray point source populations in a data-driven way.

  18. The future of magnetic resonance-based techniques in neurology.

    PubMed

    2001-01-01

    Magnetic resonance techniques have become increasingly important in neurology for defining: 1. brain, spinal cord and peripheral nerve or muscle structure; 2. pathological changes in tissue structures and properties; and 3. dynamic patterns of functional activation of the brain. New applications have been driven in part by advances in hardware, particularly improvements in magnet and gradient coil design. New imaging strategies allow novel approaches to contrast with, for example, diffusion imaging, magnetization transfer imaging, perfusion imaging and functional magnetic resonance imaging. In parallel with developments in hardware and image acquisition have been new approaches to image analysis. These have allowed quantitative descriptions of the image changes to be used for a precise, non-invasive definition of pathology. With the increasing capabilities and specificity of magnetic resonance techniques it is becoming more important that the neurologist is intimately involved in both the selection of magnetic resonance studies for patients and their interpretation. There is a need for considerably improved access to magnetic resonance technology, particularly in the acute or intensive care ward and in the neurosurgical theatre. This report illustrates several key developments. The task force concludes that magnetic resonance imaging is a major clinical tool of growing significance and offers recommendations for maximizing the potential future for magnetic resonance techniques in neurology. PMID:11509077

  19. Research and development of LANDSAT-based crop inventory techniques

    NASA Technical Reports Server (NTRS)

    Horvath, R.; Cicone, R. C.; Malila, W. A. (Principal Investigator)

    1982-01-01

    A wide spectrum of technology pertaining to the inventory of crops using LANDSAT without in situ training data is addressed. Methods considered include Bayesian based through-the-season methods, estimation technology based on analytical profile fitting methods, and expert-based computer aided methods. Although the research was conducted using U.S. data, the adaptation of the technology to the Southern Hemisphere, especially Argentina was considered.

  20. A plastic indentation model for sandwich beams with metallic foam cores

    NASA Astrophysics Data System (ADS)

    Xie, Zhong-You; Yu, Ji-Lin; Zheng, Zhi-Jun

    2011-12-01

    Light weight high performance sandwich composite structures have been used extensively in various load bearing applications. Experiments have shown that the indentation significantly reduces the load bearing capacity of sandwiched beams. In this paper, the indentation behavior of foam core sandwich beams without considering the globally axial and flexural deformation was analyzed using the principle of virtual velocities. A concisely theoretical solution of loading capacity and denting profile was presented. The denting load was found to be proportional to the square root of the denting depth. A finite element model was established to verify the prediction of the model. The load-indentation curves and the profiles of the dented zone predicted by theoretical model and numerical simulation are in good agreement.

  1. Sliding of two smooth indenters on a viscoelastic foundation in the presence of friction

    NASA Astrophysics Data System (ADS)

    Stepanov, F. I.

    2015-11-01

    The axisymmetric contact problem of sliding of two solid parabolic indenters on a viscoelastic half-space with constant velocity is considered. Shear stresses modeling the adhesive component of the friction force act in the contact area. The model of the foundation material is described by an integral operator with an exponential kernel characterized by one relaxation time. The problem is solved by the boundary element method. The dependences of the contact characteristics on the sliding velocity, the normal load, and the distance between the centers of the indenters is analyzed. The results can be used to study the effect of the roughness elements modeled by two indenters on the contact characteristics and the deformation component of the friction force.

  2. Mesoscopic Nonlinear Elastic Modulus of Thermal Barrier Coatings Determined by Cylindrical Punch Indentation

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Zhu, Dong-Ming; Miller, Robert A.

    2000-01-01

    Cylindrical punch indentations are performed to determine the effective modulus of a plasma-sprayed ZrO2-8Wt%Y2O3 thermal barrier coating (TBC) as a function of coating depth. Cylindrical punch indentations offer significant advantages over pointed (Vickers, Berkovich, or Knoop) indentations for materials that do not exhibit linear elastic behavior. Cyclic loading with a cylindrical punch clearly shows the TBCs to exhibit nonlinear elastic behavior with significant hysteresis that is related to the compaction and internal sliding within the plasma-spray splat microstructure. In addition, the effect of a high heat flux laser treatment was shown to produce a gradient both in the effective TBC modulus and degree of loading/unloading hysteresis with depth.

  3. Ulnar focal cortical indentation: a previously unrecognised form of ulnar dysplasia.

    PubMed

    Kazuki, K; Hiroshima, K; Kawahara, K

    2005-04-01

    Deformity of the forearm due to growth disturbance of the ulna occurs in a number of conditions such as ulnar deficiency, multiple exostoses, and neurofibromatosis. We report a previously unrecognised form, caused by focal cortical indentation. We have treated five children with this condition, three girls and two boys; the mean age at presentation was 5 years (2 to 8). The deformity was first recognised about the age of two years, and progressed gradually. The radiological findings were the same in all cases. The focal cortical indentation was seen at the distal end of the ulna with anteromedial bowing and dysplasia. The radial head was dislocated posterolaterally. In one patient the histological findings at the site of indentation were of a fold of tissue resembling periosteum, which interfered with enchondral ossification. Treatment by ulnar lengthening using an external fixator and osteotomy which corrected both the ulnar deformity and reduced the dislocated radial head in two cases gave the best results. PMID:15795207

  4. Applying Knowledge-Based Techniques to Software Development.

    ERIC Educational Resources Information Center

    Harandi, Mehdi T.

    1986-01-01

    Reviews overall structure and design principles of a knowledge-based programming support tool, the Knowledge-Based Programming Assistant, which is being developed at University of Illinois Urbana-Champaign. The system's major units (program design program coding, and intelligent debugging) and additional functions are described. (MBR)

  5. Fast Multigrid Techniques in Total Variation-Based Image Reconstruction

    NASA Technical Reports Server (NTRS)

    Oman, Mary Ellen

    1996-01-01

    Existing multigrid techniques are used to effect an efficient method for reconstructing an image from noisy, blurred data. Total Variation minimization yields a nonlinear integro-differential equation which, when discretized using cell-centered finite differences, yields a full matrix equation. A fixed point iteration is applied with the intermediate matrix equations solved via a preconditioned conjugate gradient method which utilizes multi-level quadrature (due to Brandt and Lubrecht) to apply the integral operator and a multigrid scheme (due to Ewing and Shen) to invert the differential operator. With effective preconditioning, the method presented seems to require Omicron(n) operations. Numerical results are given for a two-dimensional example.

  6. Indentation strength of ultraincompressible rhenium boride, carbide, and nitride from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Zang, Chenpeng; Sun, Hong; Tse, John S.; Chen, Changfeng

    2012-07-01

    Using a recently developed first-principles approach for determining indentation strength [Z. Pan, H. Sun, and C. Chen, Phys. Rev. Lett.0031-9007 PRLTAO10.1103/PhysRevLett.98.135505 98, 135505 (2007); Z. Pan, H. Sun, and C. Chen, Phys. Rev. Lett.0031-9007 PRLTAO10.1103/PhysRevLett.102.055503 102, 055503 (2009)], we performed calculations of the ideal strength of hexagonal Re, Re3N, Re2N, Re2C, Re2B, and ReB2 in various shear deformation directions beneath the Vickers indentor. Our results show that the normal compressive pressure beneath the indentor weakens the strength of these electron-rich rhenium boride, carbide, and nitride compounds that belong to a distinct class of ultraincompressible and ultrahard materials. The reduction of indentation strength in these materials stems from lateral bond and volume expansions driven by the normal compressive pressure mediated by the high-density valence electrons in these structures. We compare the calculated indentation strength to the Poisson's ratio, which measures the lateral structural expansion, for the rhenium boride, carbide, and nitride compounds as well as diamond and cubic boron nitride. Our analysis indicates that although the normal pressure beneath the indentor generally leads to more significant reduction of indentation strength in materials with larger Poisson's ratios, crystal and electronic structures also play important roles in determining the structural response under indentation. The present study reveals structural deformation modes and the underlying atomistic mechanisms in transition-metal boride, carbide, and nitride compounds under the Vickers indentation. The results are distinctive from those of the traditional covalent superhard materials. The insights obtained from this work have important implications for further exploration and design of ultrahard materials.

  7. Postcollisional cooling history of the Eastern and Southern Alps and its linkage to Adria indentation

    NASA Astrophysics Data System (ADS)

    Heberer, Bianca; Reverman, Rebecca Lee; Fellin, Maria Giuditta; Neubauer, Franz; Dunkl, István; Zattin, Massimiliano; Seward, Diane; Genser, Johann; Brack, Peter

    2016-07-01

    Indentation of rigid blocks into rheologically weak orogens is generally associated with spatiotemporally variable vertical and lateral block extrusion. The European Eastern and Southern Alps are a prime example of microplate indentation, where most of the deformation was accommodated north of the crustal indenter within the Tauern Window. However, outside of this window only the broad late-stage exhumation pattern of the indented units as well as of the indenter itself is known. In this study we refine the exhumational pattern with new (U-Th-Sm)/He and fission-track thermochronology data on apatite from the Karawanken Mountains adjacent to the eastern Periadriatic fault and from the central-eastern Southern Alps. Apatite (U-Th-Sm)/He ages from the Karawanken Mountains range between 12 and 5 Ma and indicate an episode of fault-related exhumation leading to the formation of a positive flower structure and an associated peripheral foreland basin. In the Southern Alps, apatite (U-Th-Sm)/He and fission-track data combined with previous data also indicate a pulse of mainly Late Miocene exhumation, which was maximized along thrust systems, with highly differential amounts of displacement along individual structures. Our data contribute to mounting evidence for widespread Late Miocene tectonic activity, which followed a phase of major exhumation during strain localization in the Tauern Window. We attribute this exhumational phase and more distributed deformation during Adriatic indentation to a major change in boundary conditions operating on the orogen, likely due to a shift from a decoupled to a coupled system, possibly enhanced by a shift in convergence direction.

  8. Radiation synthesized protein-based nanoparticles: A technique overview

    NASA Astrophysics Data System (ADS)

    Varca, Gustavo H. C.; Perossi, Gabriela G.; Grasselli, Mariano; Lugão, Ademar B.

    2014-12-01

    Seeking for alternative routes for protein engineering a novel technique - radiation induced synthesis of protein nanoparticles - to achieve size controlled particles with preserved bioactivity has been recently reported. This work aimed to evaluate different process conditions to optimize and provide an overview of the technique using γ-irradiation. Papain was used as model protease and the samples were irradiated in a gamma cell irradiator in phosphate buffer (pH=7.0) containing ethanol (0-35%). The dose effect was evaluated by exposure to distinct γ-irradiation doses (2.5, 5, 7.5 and 10 kGy) and scale up experiments involving distinct protein concentrations (12.5-50 mg mL-1) were also performed. Characterization involved size monitoring using dynamic light scattering. Bityrosine detection was performed using fluorescence measurements in order to provide experimental evidence of the mechanism involved. Best dose effects were achieved at 10 kGy with regard to size and no relevant changes were observed as a function of papain concentration, highlighting very broad operational concentration range. Bityrosine changes were identified for the samples as a function of the process confirming that such linkages play an important role in the nanoparticle formation.

  9. Planning/scheduling techniques for VQ-based image compression

    NASA Technical Reports Server (NTRS)

    Short, Nicholas M., Jr.; Manohar, Mareboyana; Tilton, James C.

    1994-01-01

    The enormous size of the data holding and the complexity of the information system resulting from the EOS system pose several challenges to computer scientists, one of which is data archival and dissemination. More than ninety percent of the data holdings of NASA is in the form of images which will be accessed by users across the computer networks. Accessing the image data in its full resolution creates data traffic problems. Image browsing using a lossy compression reduces this data traffic, as well as storage by factor of 30-40. Of the several image compression techniques, VQ is most appropriate for this application since the decompression of the VQ compressed images is a table lookup process which makes minimal additional demands on the user's computational resources. Lossy compression of image data needs expert level knowledge in general and is not straightforward to use. This is especially true in the case of VQ. It involves the selection of appropriate codebooks for a given data set and vector dimensions for each compression ratio, etc. A planning and scheduling system is described for using the VQ compression technique in the data access and ingest of raw satellite data.

  10. Bioluminescence-based imaging technique for pressure measurement in water

    NASA Astrophysics Data System (ADS)

    Watanabe, Yasunori; Tanaka, Yasufumi

    2011-07-01

    The dinoflagellate Pyrocystis lunula emits light in response to water motion. We developed a new imaging technique for measuring pressure using plankton that emits light in response to mechanical stimulation. The bioluminescence emitted by P. lunula was used to measure impact water pressure produced using weight-drop tests. The maximum mean luminescence intensity correlated with the maximum impact pressure that the cells receive when the circadian and diurnal biological rhythms are appropriately controlled. Thus, with appropriate calibration of experimentally determined parameters, the dynamic impact pressure can be estimated by measuring the cell-flash distribution. Statistical features of the evolution of flash intensity and the probability distribution during the impacting event, which are described by both biological and mechanical response parameters, are also discussed in this paper. The practical applicability of this bioluminescence imaging technique is examined through a water drop test. The maximum dynamic pressure, occurring at the impact of a water jet against a wall, was estimated from the flash intensity of the dinoflagellate.

  11. Computer-vision-based registration techniques for augmented reality

    NASA Astrophysics Data System (ADS)

    Hoff, William A.; Nguyen, Khoi; Lyon, Torsten

    1996-10-01

    Augmented reality is a term used to describe systems in which computer-generated information is superimposed on top of the real world; for example, through the use of a see- through head-mounted display. A human user of such a system could still see and interact with the real world, but have valuable additional information, such as descriptions of important features or instructions for performing physical tasks, superimposed on the world. For example, the computer could identify and overlay them with graphic outlines, labels, and schematics. The graphics are registered to the real-world objects and appear to be 'painted' onto those objects. Augmented reality systems can be used to make productivity aids for tasks such as inspection, manufacturing, and navigation. One of the most critical requirements for augmented reality is to recognize and locate real-world objects with respect to the person's head. Accurate registration is necessary in order to overlay graphics accurately on top of the real-world objects. At the Colorado School of Mines, we have developed a prototype augmented reality system that uses head-mounted cameras and computer vision techniques to accurately register the head to the scene. The current system locates and tracks a set of pre-placed passive fiducial targets placed on the real-world objects. The system computes the pose of the objects and displays graphics overlays using a see-through head-mounted display. This paper describes the architecture of the system and outlines the computer vision techniques used.

  12. Study of systems and techniques for data base management

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Data management areas were studied to identify pertinent problems and issues that will affect future NASA data users in terms of performance and cost. Specific topics discussed include the identifications of potential NASA data users other than those normally discussed, consideration affecting the clustering of minicomputers, low cost computer system for information retrieval and analysis, the testing of minicomputer based data base management systems, ongoing work related to the use of dedicated systems for data base management, and the problems of data interchange among a community of NASA data users.

  13. Photoplastic analysis of polycarbonate loaded by spherical indentator using strain-freezing method

    SciTech Connect

    Shimamoto, Akira; Umezaki, Eisaku; Nogata, Fumio; Takahashi, Susumu

    1996-12-31

    Hardness test is one of the basic material testings. This investigates strain behavior in polycarbonate loaded by a spherical indentator using the strain-freezing method to establish a method of evaluating the material properties of polymers which have been widely used as machine parts and structural members because of a high elastic modulus and strength. As a result, the strain-freezing method was found to be effective for analyzing strains in polycarbonate loaded by a spherical indentator. Furthermore, the relation between the photoelastic fringe order and principal strain difference is found to be proportional as well as the relation between the total strain.

  14. Tornado wind-loading requirements based on risk assessment techniques

    SciTech Connect

    Deobald, T.L.; Coles, G.A.; Smith, G.L.

    1991-06-01

    Regulations require that nuclear power plants be protected from tornado winds. If struck by a tornado, a plant must be capable of safely shutting down and removing decay heat. Probabilistic techniques are used to show that risk to the public from the US Department of Energy (DOE) SP-100 reactor is acceptable without tornado hardening parts of the secondary system. Relaxed requirements for design wind loadings will result in significant cost savings. To demonstrate an acceptable level of risk, this document examines tornado-initiated accidents. The two tornado-initiated accidents examined in detail are loss of cooling resulting in core damage and loss of secondary system boundary integrity leading to sodium release. Loss of core cooling is analyzed using fault/event tree models. Loss of secondary system boundary integrity is analyzed by comparing the consequences to acceptance criteria for the release of radioactive material or alkali metal aerosol. 4 refs., 4 figs.

  15. Feature based sliding window technique for face recognition

    NASA Astrophysics Data System (ADS)

    Javed, Muhammad Younus; Mohsin, Syed Maajid; Anjum, Muhammad Almas

    2010-02-01

    Human beings are commonly identified by biometric schemes which are concerned with identifying individuals by their unique physical characteristics. The use of passwords and personal identification numbers for detecting humans are being used for years now. Disadvantages of these schemes are that someone else may use them or can easily be forgotten. Keeping in view of these problems, biometrics approaches such as face recognition, fingerprint, iris/retina and voice recognition have been developed which provide a far better solution when identifying individuals. A number of methods have been developed for face recognition. This paper illustrates employment of Gabor filters for extracting facial features by constructing a sliding window frame. Classification is done by assigning class label to the unknown image that has maximum features similar to the image stored in the database of that class. The proposed system gives a recognition rate of 96% which is better than many of the similar techniques being used for face recognition.

  16. A fast Stokes inversion technique based on quadratic regression

    NASA Astrophysics Data System (ADS)

    Teng, Fei; Deng, Yuan-Yong

    2016-05-01

    Stokes inversion calculation is a key process in resolving polarization information on radiation from the Sun and obtaining the associated vector magnetic fields. Even in the cases of simple local thermodynamic equilibrium (LTE) and where the Milne-Eddington approximation is valid, the inversion problem may not be easy to solve. The initial values for the iterations are important in handling the case with multiple minima. In this paper, we develop a fast inversion technique without iterations. The time taken for computation is only 1/100 the time that the iterative algorithm takes. In addition, it can provide available initial values even in cases with lower spectral resolutions. This strategy is useful for a filter-type Stokes spectrograph, such as SDO/HMI and the developed two-dimensional real-time spectrograph (2DS).

  17. Conductivity-Based Detection Techniques in Nanofluidic Devices

    PubMed Central

    Harms, Zachary D.; Haywood, Daniel G.; Kneller, Andrew R.

    2016-01-01

    This review covers conductivity detection in fabricated nanochannels and nanopores. Improvements in nanoscale sensing are a direct result of advances in fabrication techniques, which produce devices with channels and pores with reproducible dimensions and in a variety of materials. Analytes of interest are detected by measuring changes in conductance as the analyte accumulates in the channel or passes transiently through the pore. These detection methods take advantage of phenomena enhanced at the nanoscale, such as ion current rectification, surface conductance, and dimensions comparable to the analytes of interest. The end result is the development of sensing technologies for a broad range of analytes, e.g., ions, small molecules, proteins, nucleic acids, and particles. PMID:25988434

  18. Large area photodetector based on microwave cavity perturbation techniques

    SciTech Connect

    Braggio, C. Carugno, G.; Sirugudu, R. K.; Lombardi, A.; Ruoso, G.

    2014-07-28

    We present a preliminary study to develop a large area photodetector, based on a semiconductor crystal placed inside a superconducting resonant cavity. Laser pulses are detected through a variation of the cavity impedance, as a consequence of the conductivity change in the semiconductor. A novel method, whereby the designed photodetector is simulated by finite element analysis, makes it possible to perform pulse-height spectroscopy on the reflected microwave signals. We measure an energy sensitivity of 100 fJ in the average mode without the employment of low noise electronics and suggest possible ways to further reduce the single-shot detection threshold, based on the results of the described method.

  19. BCC skin cancer diagnosis based on texture analysis techniques

    NASA Astrophysics Data System (ADS)

    Chuang, Shao-Hui; Sun, Xiaoyan; Chang, Wen-Yu; Chen, Gwo-Shing; Huang, Adam; Li, Jiang; McKenzie, Frederic D.

    2011-03-01

    In this paper, we present a texture analysis based method for diagnosing the Basal Cell Carcinoma (BCC) skin cancer using optical images taken from the suspicious skin regions. We first extracted the Run Length Matrix and Haralick texture features from the images and used a feature selection algorithm to identify the most effective feature set for the diagnosis. We then utilized a Multi-Layer Perceptron (MLP) classifier to classify the images to BCC or normal cases. Experiments showed that detecting BCC cancer based on optical images is feasible. The best sensitivity and specificity we achieved on our data set were 94% and 95%, respectively.

  20. Estimating monthly temperature using point based interpolation techniques

    NASA Astrophysics Data System (ADS)

    Saaban, Azizan; Mah Hashim, Noridayu; Murat, Rusdi Indra Zuhdi

    2013-04-01

    This paper discusses the use of point based interpolation to estimate the value of temperature at an unallocated meteorology stations in Peninsular Malaysia using data of year 2010 collected from the Malaysian Meteorology Department. Two point based interpolation methods which are Inverse Distance Weighted (IDW) and Radial Basis Function (RBF) are considered. The accuracy of the methods is evaluated using Root Mean Square Error (RMSE). The results show that RBF with thin plate spline model is suitable to be used as temperature estimator for the months of January and December, while RBF with multiquadric model is suitable to estimate the temperature for the rest of the months.

  1. Visual cryptography based on optical interference encryption technique

    NASA Astrophysics Data System (ADS)

    Seo, Dong-Hoan; Kim, Jong-Yun; Lee, Sang-Su; Park, Se-Joon; Cho, Woong H.; Kim, Soo-Joong

    2001-07-01

    In this paper, we proposed a new visual cryptography scheme based on optical interference that can improve the contrast and signal to noise ratio of reconstructed images when compared to conventional visual cryptography methods. The binary image being encrypted is divided into any number of n slides. For encryption, randomly independent keys are generated along with another random key based on a XOR process of random keys. The XOR process between each divided image and each random key produces the encryption of n encrypted images. These encrypted images are then used to make encrypted binary phase masks. For decryption, the phase masks are placed on the paths of a Mach-Zehnder interferometer.

  2. Comparison of the Surface Wave Method and the Indentation Method for Measuring the elasticity of Gelatin Phantoms of Different Concentrations

    PubMed Central

    Zhang, Xiaoming; Qiang, Bo; Greenleaf, James

    2010-01-01

    The speed of the surface Rayleigh wave, which is related to the viscoelastic properties of the medium, can be measured by noninvasive and noncontact methods. This technique has been applied in biomedical applications such as detecting skin diseases. Static spherical indentation, which quantifies material elasticity through the relationship between loading force and displacement, has been applied in various areas including a number of biomedical applications. This paper compares the results obtained from these two methods on five gelatin phantoms of different concentrations (5%, 7.5%, 10%, 12.5% and 15%). The concentrations are chosen because the elasticity of such gelatin phantoms is close to that of tissue types such as skin. The results show that both the surface wave method and the static spherical indentation method produce the same values for shear elasticity. For example, the shear elasticities measured by the surface wave method are 1.51, 2.75, 5.34, 6.90 and 8.40 kPa on the five phantoms, respectively. In addition, by studying the dispersion curve of the surface wave speed, shear viscosity can be extracted. The measured shear viscosities are 0.00, 0.00, 0.13, 0.39 and 1.22 Pa·s on the five phantoms, respectively. The results also show that the shear elasticity of the gelatin phantoms increases linearly with their prepared concentrations. The linear regressions between concentration and shear elasticity have R2 values larger than 0.98 for both methods. PMID:20800256

  3. Evaluation of SGML-based Information through Fuzzy Techniques.

    ERIC Educational Resources Information Center

    Fontana, Francesca Arcelli

    2001-01-01

    Discussion of knowledge management, information retrieval, information filtering, and information evaluation focuses on knowledge evaluation and proposes some evaluation methods based on L-grammars which are fuzzy grammars. Applies these methods to the evaluation of documents in SGML and to the evaluation of pages in HTML in the World Wide Web.…

  4. EXPERIMENTAL AND THEORETICAL EVALUATIONS OF OBSERVATIONAL-BASED TECHNIQUES

    EPA Science Inventory

    Observational Based Methods (OBMs) can be used by EPA and the States to develop reliable ozone controls approaches. OBMs use actual measured concentrations of ozone, its precursors, and other indicators to determine the most appropriate strategy for ozone control. The usual app...

  5. Problem-Based Learning Supported by Semantic Techniques

    ERIC Educational Resources Information Center

    Lozano, Esther; Gracia, Jorge; Corcho, Oscar; Noble, Richard A.; Gómez-Pérez, Asunción

    2015-01-01

    Problem-based learning has been applied over the last three decades to a diverse range of learning environments. In this educational approach, different problems are posed to the learners so that they can develop different solutions while learning about the problem domain. When applied to conceptual modelling, and particularly to Qualitative…

  6. Key techniques for space-based solar pumped semiconductor lasers

    NASA Astrophysics Data System (ADS)

    He, Yang; Xiong, Sheng-jun; Liu, Xiao-long; Han, Wei-hua

    2014-12-01

    In space, the absence of atmospheric turbulence, absorption, dispersion and aerosol factors on laser transmission. Therefore, space-based laser has important values in satellite communication, satellite attitude controlling, space debris clearing, and long distance energy transmission, etc. On the other hand, solar energy is a kind of clean and renewable resources, the average intensity of solar irradiation on the earth is 1353W/m2, and it is even higher in space. Therefore, the space-based solar pumped lasers has attracted much research in recent years, most research focuses on solar pumped solid state lasers and solar pumped fiber lasers. The two lasing principle is based on stimulated emission of the rare earth ions such as Nd, Yb, Cr. The rare earth ions absorb light only in narrow bands. This leads to inefficient absorption of the broad-band solar spectrum, and increases the system heating load, which make the system solar to laser power conversion efficiency very low. As a solar pumped semiconductor lasers could absorb all photons with energy greater than the bandgap. Thus, solar pumped semiconductor lasers could have considerably higher efficiencies than other solar pumped lasers. Besides, solar pumped semiconductor lasers has smaller volume chip, simpler structure and better heat dissipation, it can be mounted on a small satellite platform, can compose satellite array, which can greatly improve the output power of the system, and have flexible character. This paper summarizes the research progress of space-based solar pumped semiconductor lasers, analyses of the key technologies based on several application areas, including the processing of semiconductor chip, the design of small and efficient solar condenser, and the cooling system of lasers, etc. We conclude that the solar pumped vertical cavity surface-emitting semiconductor lasers will have a wide application prospects in the space.

  7. Kernel-based machine learning techniques for infrasound signal classification

    NASA Astrophysics Data System (ADS)

    Tuma, Matthias; Igel, Christian; Mialle, Pierrick

    2014-05-01

    Infrasound monitoring is one of four remote sensing technologies continuously employed by the CTBTO Preparatory Commission. The CTBTO's infrasound network is designed to monitor the Earth for potential evidence of atmospheric or shallow underground nuclear explosions. Upon completion, it will comprise 60 infrasound array stations distributed around the globe, of which 47 were certified in January 2014. Three stages can be identified in CTBTO infrasound data processing: automated processing at the level of single array stations, automated processing at the level of the overall global network, and interactive review by human analysts. At station level, the cross correlation-based PMCC algorithm is used for initial detection of coherent wavefronts. It produces estimates for trace velocity and azimuth of incoming wavefronts, as well as other descriptive features characterizing a signal. Detected arrivals are then categorized into potentially treaty-relevant versus noise-type signals by a rule-based expert system. This corresponds to a binary classification task at the level of station processing. In addition, incoming signals may be grouped according to their travel path in the atmosphere. The present work investigates automatic classification of infrasound arrivals by kernel-based pattern recognition methods. It aims to explore the potential of state-of-the-art machine learning methods vis-a-vis the current rule-based and task-tailored expert system. To this purpose, we first address the compilation of a representative, labeled reference benchmark dataset as a prerequisite for both classifier training and evaluation. Data representation is based on features extracted by the CTBTO's PMCC algorithm. As classifiers, we employ support vector machines (SVMs) in a supervised learning setting. Different SVM kernel functions are used and adapted through different hyperparameter optimization routines. The resulting performance is compared to several baseline classifiers. All

  8. Prediction Method of Speech Recognition Performance Based on HMM-based Speech Synthesis Technique

    NASA Astrophysics Data System (ADS)

    Terashima, Ryuta; Yoshimura, Takayoshi; Wakita, Toshihiro; Tokuda, Keiichi; Kitamura, Tadashi

    We describe an efficient method that uses a HMM-based speech synthesis technique as a test pattern generator for evaluating the word recognition rate. The recognition rates of each word and speaker can be evaluated by the synthesized speech by using this method. The parameter generation technique can be formulated as an algorithm that can determine the speech parameter vector sequence O by maximizing P(O¦Q,λ) given the model parameter λ and the state sequence Q, under a dynamic acoustic feature constraint. We conducted recognition experiments to illustrate the validity of the method. Approximately 100 speakers were used to train the speaker dependent models for the speech synthesis used in these experiments, and the synthetic speech was generated as the test patterns for the target speech recognizer. As a result, the recognition rate of the HMM-based synthesized speech shows a good correlation with the recognition rate of the actual speech. Furthermore, we find that our method can predict the speaker recognition rate with approximately 2% error on average. Therefore the evaluation of the speaker recognition rate will be performed automatically by using the proposed method.

  9. Calculation of free fall trajectories based on numerical optimization techniques

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of a means of computing free-fall (nonthrusting) trajectories from one specified point in the solar system to another specified point in the solar system in a given amount of time was studied. The problem is that of solving a two-point boundary value problem for which the initial slope is unknown. Two standard methods of attack exist for solving two-point boundary value problems. The first method is known as the initial value or shooting method. The second method of attack for two-point boundary value problems is to approximate the nonlinear differential equations by an appropriate linearized set. Parts of both boundary value problem solution techniques described above are used. A complete velocity history is guessed such that the corresponding position history satisfies the given boundary conditions at the appropriate times. An iterative procedure is then followed until the last guessed velocity history and the velocity history obtained from integrating the acceleration history agree to some specified tolerance everywhere along the trajectory.

  10. A tension stress loading unit designed for characterizing indentation response of single crystal silicon under tension stress

    NASA Astrophysics Data System (ADS)

    Huang, Hu; Zhao, Hongwei; Shi, Chengli; Hu, Xiaoli; Cui, Tao; Tian, Ye

    2013-09-01

    In this paper, a tension stress loading unit is designed to provide tension stress for brittle materials by combining the piezo actuator and the flexible hinge. The structure of the tension stress loading unit is analyzed and discussed via the theoretical method and finite element simulations. Effects of holding time, the installed specimen and hysteresis of the piezo actuator on output performances of the tension stress loading unit are studied in detail. An experiment system is established by combing the indentation testing unit and the developed tension stress loading unit to characterize indentation response of single crystal silicon under tension stress. Experiment results indicate that tension stress leads to increasing of indentation displacement for the same inden-tation load of single crystal silicon. This paper provides a new tool for studying indentation response of brittle materials under tension stress.

  11. Indentation stress dependence of the temperature range of microscopic superelastic behavior of nickel-titanium thin films

    SciTech Connect

    Zhang Yijun; Cheng, Y.-T.; Grummon, David S.

    2005-08-01

    The microscopic superelastic behavior of thin-film NiTi is investigated by instrumented indentation experiments conducted at different temperatures. The indentation-induced superelastic effect is found to be persistent to about 100 K above the austenite transformation finish temperature (A{sub f}). In contrast, the upper temperature where superelastic effect exists is only around A{sub f} plus 40 K in uniaxial tension and compression tests, beyond which the plasticity of the austenite phase overwhelms the transformation-induced superelasticity. By combining the Clausius-Clapeyron equation and spherical cavity model for indentation, we show that the high hydrostatic pressure under the indenter is capable of elevating the transformation temperatures and increase the upper temperature limit of indentation-induced superelastic behavior.

  12. Fatigue loading history reconstruction based on the rainflow technique

    NASA Technical Reports Server (NTRS)

    Khosrovaneh, A. K.; Dowling, N. E.

    1990-01-01

    Methods are considered of reducing a non-random fatigue loading history to a concise description and then of reconstructing a time history similar to the original. In particular, three methods of reconstruction based on a rainflow cycle counting matrix are presented. A rainflow matrix consists of the numbers of cycles at various peak and valley combinations. Two methods are based on a two-dimensional rainflow matrix, and the third on a three-dimensional rainflow matrix. Histories reconstructed by any of these methods produce a rainflow matrix identical to that of the original history, and the resulting time history is expected to produce a fatigue life similar to that for the original. The procedures described allow lengthy loading histories to be stored in compact form.

  13. Interactive classification: A technique for acquiring and maintaining knowledge bases

    SciTech Connect

    Finin, T.W.

    1986-10-01

    The practical application of knowledge-based systems, such as in expert systems, often requires the maintenance of large amounts of declarative knowledge. As a knowledge base (KB) grows in size and complexity, it becomes more difficult to maintain and extend. Even someone who is familiar with the knowledge domain, how it is represented in the KB, and the actual contents of the current KB may have severe difficulties in updating it. Even if the difficulties can be tolerated, there is a very real danger that inconsistencies and errors may be introduced into the KB through the modification. This paper describes an approach to this problem based on a tool called an interactive classifier. An interactive classifier uses the contents of the existing KB and knowledge about its representation to help the maintainer describe new KB objects. The interactive classifier will identify the appropriate taxonomic location for the newly described object and add it to the KB. The new object is allowed to be a generalization of existing KB objects, enabling the system to learn more about existing objects.

  14. [A Terahertz Spectral Database Based on Browser/Server Technique].

    PubMed

    Zhang, Zhuo-yong; Song, Yue

    2015-09-01

    With the solution of key scientific and technical problems and development of instrumentation, the application of terahertz technology in various fields has been paid more and more attention. Owing to the unique characteristic advantages, terahertz technology has been showing a broad future in the fields of fast, non-damaging detections, as well as many other fields. Terahertz technology combined with other complementary methods can be used to cope with many difficult practical problems which could not be solved before. One of the critical points for further development of practical terahertz detection methods depends on a good and reliable terahertz spectral database. We developed a BS (browser/server) -based terahertz spectral database recently. We designed the main structure and main functions to fulfill practical requirements. The terahertz spectral database now includes more than 240 items, and the spectral information was collected based on three sources: (1) collection and citation from some other abroad terahertz spectral databases; (2) collected from published literatures; and (3) spectral data measured in our laboratory. The present paper introduced the basic structure and fundament functions of the terahertz spectral database developed in our laboratory. One of the key functions of this THz database is calculation of optical parameters. Some optical parameters including absorption coefficient, refractive index, etc. can be calculated based on the input THz time domain spectra. The other main functions and searching methods of the browser/server-based terahertz spectral database have been discussed. The database search system can provide users convenient functions including user registration, inquiry, displaying spectral figures and molecular structures, spectral matching, etc. The THz database system provides an on-line searching function for registered users. Registered users can compare the input THz spectrum with the spectra of database, according to

  15. Hybrid OPC technique using model based and rule-based flows

    NASA Astrophysics Data System (ADS)

    Harb, Mohammed; Abdelghany, Hesham

    2013-04-01

    To transfer an electronic circuit from design to silicon, a lot of stages are involved in between. As technology evolves, the design shapes are getting closer to each other. Since the wavelength of the lithography process didn't get any better than 193nm, optical interference is a problem that needs to be accounted for by using Optical Proximity Correction (OPC) algorithms. In earlier technologies, simple OPC was applied to the design based on spatial rules. This is not the situation in the recent technologies anymore, since more optical interference took place with the intensive scaling down of the designs. Model-based OPC is a better solution now to produce accurate results, but this comes at the cost of the increased run time. Electronic Design Automation (EDA) companies compete to offer tools that provide both accuracy and run time efficiency. In this paper, we show that optimum usage of some of these tools can ensure OPC accuracy with better run time. The hybrid technique of OPC uses the classic rule-based OPC in a modern fashion to consider the optical parameters, instead of the spatial metrics only. Combined with conventional model-based OPC, the whole flow shows better results in terms of accuracy and run time.

  16. Multi-material 3-D viscoelastic model of a transtibial residuum from in-vivo indentation and MRI data.

    PubMed

    Sengeh, David M; Moerman, Kevin M; Petron, Arthur; Herr, Hugh

    2016-06-01

    Although the socket is critical in a prosthetic system for a person with limb amputation, the methods of its design are largely artisanal. A roadblock for a repeatable and quantitative socket design process is the lack of predictive and patient specific biomechanical models of the residuum. This study presents the evaluation of such a model using a combined experimental-numerical approach. The model geometry and tissue boundaries are derived from magnetic resonance imaging (MRI). The soft tissue non-linear elastic and viscoelastic mechanical behavior was evaluated using inverse finite element analysis (FEA) of in-vivo indentation experiments. A custom designed robotic in-vivo indentation system was used to provide a rich experimental data set of force versus time at 18 sites across a limb. During FEA, the tissues were represented by two layers, namely the skin-adipose layer and an underlying muscle-soft tissue complex. The non-linear elastic behavior was modeled using 2nd order Ogden hyperelastic formulations, and viscoelasticity was modeled using the quasi-linear theory of viscoelasticity. To determine the material parameters for each tissue, an inverse FEA based optimization routine was used that minimizes the combined mean of the squared force differences between the numerical and experimental force-time curves for indentations at 4 distinct anatomical regions on the residuum. The optimization provided the following material parameters for the skin-adipose layer: [c=5.22kPam=4.79γ=3.57MPaτ=0.32s] and for the muscle-soft tissue complex [c=5.20kPam=4.78γ=3.47MPaτ=0.34s]. These parameters were evaluated to predict the force-time curves for the remaining 14 anatomical locations. The mean percentage error (mean absolute error/ maximum experimental force) for these predictions was 7±3%. The mean percentage error at the 4 sites used for the optimization was 4%. PMID:26946095

  17. Antenna pointing compensation based on precision optical measurement techniques

    NASA Technical Reports Server (NTRS)

    Schumacher, L. L.; Vivian, H. C.

    1988-01-01

    The pointing control loops of the Deep Space Network 70 meter antennas extend only to the Intermediate Reference Structure (IRS). Thus, distortion of the structure forward of the IRS due to unpredictable environmental loads can result in uncompensated boresight shifts which degrade blind pointing accuracy. A system is described which can provide real time bias commands to the pointing control system to compensate for environmental effects on blind pointing performance. The bias commands are computed in real time based on optical ranging measurements of the structure from the IRS to a number of selected points on the primary and secondary reflectors.

  18. Wideband electromagnetic scattering program. Fourier-based radar imaging techniques

    NASA Astrophysics Data System (ADS)

    Chan, B. L.; Young, J. D.; Rudduck, R. C.

    1993-09-01

    This report describes the implementation of Fourier based radar imaging algorithms in a computer program. In particular, the algorithms are derived for wide bandwidth and for specific geometries. These geometries are often measured by radar cross section measurement systems such as compact ranges and near field linear synthetic aperture radar systems. The limitations of different implementations of the algorithms are presented. Imaging results from radar measurements are also presented for an F-4 fighter aircraft, an M35 truck (1/16 scale model), and a forest.

  19. Immobilization, stabilization and patterning techniques for enzyme based sensor systems.

    SciTech Connect

    Flounders, A.W.; Carichner, S.C.; Singh, A.K.; Volponi, J.V.; Schoeniger, J.S.; Wally, K.

    1997-01-01

    Sandia National Laboratories has recently opened the Chemical and Radiation Detection Laboratory (CRDL) in Livermore CA to address the detection needs of a variety of government agencies (e.g., Department of Energy, Environmental Protection Agency, Department of Agriculture) as well as provide a fertile environment for the cooperative development of new industrial technologies. This laboratory consolidates a variety of existing chemical and radiation detection efforts and enables Sandia to expand into the novel area of biochemically based sensors. One aspect of this biosensor effort is further development and optimization of enzyme modified field effect transistors (EnFETs). Recent work has focused upon covalent attachment of enzymes to silicon dioxide and silicon nitride surfaces for EnFET fabrication. They are also investigating methods to pattern immobilized proteins; a critical component for development of array-based sensor systems. Novel enzyme stabilization procedures are key to patterning immobilized enzyme layers while maintaining enzyme activity. Results related to maximized enzyme loading, optimized enzyme activity and fluorescent imaging of patterned surfaces will be presented.

  20. A survey of GPU-based medical image computing techniques.

    PubMed

    Shi, Lin; Liu, Wen; Zhang, Heye; Xie, Yongming; Wang, Defeng

    2012-09-01

    Medical imaging currently plays a crucial role throughout the entire clinical applications from medical scientific research to diagnostics and treatment planning. However, medical imaging procedures are often computationally demanding due to the large three-dimensional (3D) medical datasets to process in practical clinical applications. With the rapidly enhancing performances of graphics processors, improved programming support, and excellent price-to-performance ratio, the graphics processing unit (GPU) has emerged as a competitive parallel computing platform for computationally expensive and demanding tasks in a wide range of medical image applications. The major purpose of this survey is to provide a comprehensive reference source for the starters or researchers involved in GPU-based medical image processing. Within this survey, the continuous advancement of GPU computing is reviewed and the existing traditional applications in three areas of medical image processing, namely, segmentation, registration and visualization, are surveyed. The potential advantages and associated challenges of current GPU-based medical imaging are also discussed to inspire future applications in medicine. PMID:23256080

  1. A survey of GPU-based medical image computing techniques

    PubMed Central

    Shi, Lin; Liu, Wen; Zhang, Heye; Xie, Yongming

    2012-01-01

    Medical imaging currently plays a crucial role throughout the entire clinical applications from medical scientific research to diagnostics and treatment planning. However, medical imaging procedures are often computationally demanding due to the large three-dimensional (3D) medical datasets to process in practical clinical applications. With the rapidly enhancing performances of graphics processors, improved programming support, and excellent price-to-performance ratio, the graphics processing unit (GPU) has emerged as a competitive parallel computing platform for computationally expensive and demanding tasks in a wide range of medical image applications. The major purpose of this survey is to provide a comprehensive reference source for the starters or researchers involved in GPU-based medical image processing. Within this survey, the continuous advancement of GPU computing is reviewed and the existing traditional applications in three areas of medical image processing, namely, segmentation, registration and visualization, are surveyed. The potential advantages and associated challenges of current GPU-based medical imaging are also discussed to inspire future applications in medicine. PMID:23256080

  2. Image processing technique based on image understanding architecture

    NASA Astrophysics Data System (ADS)

    Kuvychko, Igor

    2000-12-01

    Effectiveness of image applications is directly based on its abilities to resolve ambiguity and uncertainty in the real images. That requires tight integration of low-level image processing with high-level knowledge-based reasoning, which is the solution of the image understanding problem. This article presents a generic computational framework necessary for the solution of image understanding problem -- Spatial Turing Machine. Instead of tape of symbols, it works with hierarchical networks dually represented as discrete and continuous structures. Dual representation provides natural transformation of the continuous image information into the discrete structures, making it available for analysis. Such structures are data and algorithms at the same time and able to perform graph and diagrammatic operations being the basis of intelligence. They can create derivative structures that play role of context, or 'measurement device,' giving the ability to analyze, and run top-bottom algorithms. Symbols naturally emerge there, and symbolic operations work in combination with new simplified methods of computational intelligence. That makes images and scenes self-describing, and provides flexible ways of resolving uncertainty. Classification of images truly invariant to any transformation could be done via matching their derivative structures. New proposed architecture does not require supercomputers, opening ways to the new image technologies.

  3. Effect of system compliance and indenter geometry on puncture mechanics of soft materials

    NASA Astrophysics Data System (ADS)

    Rattan, Shruti; Fakhouri, Sami; Crosby, Alfred

    2015-03-01

    Puncture mechanics in soft materials is critical for the development of new surgical instruments as well as new materials used in personal protective equipment. However, fundamental knowledge of how geometry and material properties control the nucleation of a crack, i.e. puncture, at large deformations in a soft material is currently limited. We describe a simple experimental method to study the resistive forces and failure of a soft gel being indented and punctured with a small needle. We show that puncture stresses can reach two orders of magnitude greater than the material modulus and that the force-deformation response is insensitive to the geometry of indenter at large indentation depths. We determine a transition between stress-limited and energy-limited failure modes, which is governed by the indenter size and the balance between fracture energy and cohesive stress. In addition, we examine the influence of system compliance on puncture of soft gels. It is well-known that system compliance influences the peak force in adhesion and traditional fracture experiments; however, its effect on crack nucleation is unresolved. We find that as the system becomes more compliant lower peak puncture forces were measured, which is associated with increased energy available for fracture.

  4. Application of micro-indentation to irradiated alumina and vanadium/alumina joints

    NASA Astrophysics Data System (ADS)

    Hasegawa, A.; Kawamura, Y.; Satou, M.; Abe, K.

    1996-10-01

    The micro-indentation test as a method to introduce interface crack and to investigate the bonding strength of metal/ceramics joints is examined. Micro-indentation test was carried out using Vickers hardness tester at room temperature on joints of poly- or single-crystal alumina and vanadium or vanadium alloys. The vanadium/alumina (V/Al 2O 3) joints, unirradiated and irradiated in FFTF/MOTA in a helium-filled capsule at 693 K, were tested. The irradiation damage of the joint was about 40 dpa. Micro-indentation on the unirradiated joint interface showed several types of deformation and crack propagation behavior depending on the bonding strength of the joints. Irradiation hardening and brittle behavior were observed on the alumina side of the irradiated V/Al 2O 3 joints. Results of micro-indentation test at the V/Al 2O 3 interface showed the possibility of irradiation-induced strengthening of the interface caused by irradiation-induced mixing at the interface.

  5. Model for suturing of Superior and Churchill plates: An example of double indentation tectonics

    NASA Astrophysics Data System (ADS)

    Gibb, R. A.

    1983-07-01

    Recent gravity surveys in eastern and southern Hudson Bay, Canada, have revealed, for the first time, the gravity anomaly pattern over the complete length of the proposed circum-Superior suture. A symmetrical distribution of linear, positive anomalies near the southern and eastern perimeters of Hudson Bay suggests a model in which suturing of Superior and Churchill protoplates was accomplished by subduction of oceanic lithosphere and by progressive double indentation of the rigid-plastic Churchill craton by the Thompson and Ungava salients of the rigid Superior protocontinent. Suturing was initiated at the Thompson salient with extrusion of Churchill material laterally along strike-slip faults into the Hudson Bay embayment. With continued subduction, indentation of the Churchill craton by the Ungava salient commenced, so that Churchill material was now extruded from two directions to fill the embayment of Hudson Bay. Following complete suturing of the Hudson Bay embayment, the motion of the Superior plate relative to the Churchill may have changed by about 90° E to facilitate complete closure of the predecessor of the Labrador Sea. The pattern of faulting and other major structural elements of northern Saskatchewan-Manitoba can be interpreted in terms of the proposed analogue model of plane indentation. The regional faults and their senses of motion correspond generally to that predicted by the theoretical pattern of slip lines associated with a wedge-shaped indenter.

  6. Super-resolution microscopy reveals LINC complex recruitment at nuclear indentation sites.

    PubMed

    Versaevel, Marie; Braquenier, Jean-Baptiste; Riaz, Maryam; Grevesse, Thomas; Lantoine, Joséphine; Gabriele, Sylvain

    2014-01-01

    Increasing evidences show that the actin cytoskeleton is a key parameter of the nuclear remodeling process in response to the modifications of cellular morphology. However, detailed information on the interaction between the actin cytoskeleton and the nuclear lamina was still lacking. We addressed this question by constraining endothelial cells on rectangular fibronectin-coated micropatterns and then using Structured Illumination Microscopy (SIM) to observe the interactions between actin stress fibers, nuclear lamina and LINC complexes at a super-resolution scale. Our results show that tension in apical actin stress fibers leads to deep nuclear indentations that significantly deform the nuclear lamina. Interestingly, indented nuclear zones are characterized by a local enrichment of LINC complexes, which anchor apical actin fibers to the nuclear lamina. Moreover, our findings indicate that nuclear indentations induce the formation of segregated domains of condensed chromatin. However, nuclear indentations and condensed chromatin domains are not irreversible processes and both can relax in absence of tension in apical actin stress fibers. PMID:25482017

  7. Simulated impact damage in a thick graphite/epoxy laminate using spherical indenters

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1988-01-01

    A study was made to determine the extent of fiber damage caused by low-velocity impact of spherical impactors to a very thick graphite/epoxy laminate. The laminate was cut from a filament wound case being developed for the Space Shuttle solid rocket motors. The case was wound using a wet process with AS4W graphite fiber and HBRF-55A epoxy. Impacts were simulated under quasi-static conditions by pressing hemispherically shaped indenters against the laminate at different locations. The contact force and indenter diameter were varied from location to location. The forces were chosen for each indenter diameter to produce contact pressures below and above that required to initiate damage. After the forces were applied, the laminate was cut into smaller pieces so that each piece contained a test site. The pieces were then deplied and the individual plies examined to determine the extent of fiber damage. Broken fibers were found in the outer layers directly beneath the contact site. The locus of broken fibers in each layer resembled a crack normal to the direction of the fibers. The maximum length and depth of the cracks increased with increasing contact pressure and indenter diameter. The internal stresses in the laminate were calculated using Hertz's law and Love's solution for pressure applied on part of the boundary of a semi-infinite body. The maximum length and depth of the cracks were predicted using a maximum shear stress criterion. Predictions and measurements were in good agreement.

  8. Reference point indentation is insufficient for detecting alterations in traditional mechanical properties of bone under common experimental conditions.

    PubMed

    Krege, John B; Aref, Mohammad W; McNerny, Erin; Wallace, Joseph M; Organ, Jason M; Allen, Matthew R

    2016-06-01

    Reference point indentation (RPI) was developed as a novel method to assess mechanical properties of bone in vivo, yet it remains unclear what aspects of bone dictate changes/differences in RPI-based parameters. The main RPI parameter, indentation distance increase (IDI), has been proposed to be inversely related to the ability of bone to form/tolerate damage. The goal of this work was to explore the relationshipre-intervention RPI measurebetween RPI parameters and traditional mechanical properties under varying experimental conditions (drying and ashing bones to increase brittleness, demineralizing bones and soaking in raloxifene to decrease brittleness). Beams were machined from cadaveric bone, pre-tested with RPI, subjected to experimental manipulation, post-tested with RPI, and then subjected to four-point bending to failure. Drying and ashing significantly reduced RPI's IDI, as well as ultimate load (UL), and energy absorption measured from bending tests. Demineralization increased IDI with minimal change to bending properties. Ex vivo soaking in raloxifene had no effect on IDI but tended to enhance post-yield behavior at the structural level. These data challenge the paradigm of an inverse relationship between IDI and bone toughness, both through correlation analyses and in the individual experiments where divergent patterns of altered IDI and mechanical properties were noted. Based on these results, we conclude that RPI measurements alone, as compared to bending tests, are insufficient to reach conclusions regarding mechanical properties of bone. This proves problematic for the potential clinical use of RPI measurements in determining fracture risk for a single patient, as it is not currently clear that there is an IDI, or even a trend of IDI, that can determine clinically relevant changes in tissue properties that may contribute to whole bone fracture resistance. PMID:27072518

  9. Region Duplication Forgery Detection Technique Based on SURF and HAC

    PubMed Central

    Mishra, Parul; Sharma, Sanjeev; Patel, Ravindra

    2013-01-01

    Region duplication forgery detection is a special type of forgery detection approach and widely used research topic under digital image forensics. In copy move forgery, a specific area is copied and then pasted into any other region of the image. Due to the availability of sophisticated image processing tools, it becomes very hard to detect forgery with naked eyes. From the forged region of an image no visual clues are often detected. For making the tampering more robust, various transformations like scaling, rotation, illumination changes, JPEG compression, noise addition, gamma correction, and blurring are applied. So there is a need for a method which performs efficiently in the presence of all such attacks. This paper presents a detection method based on speeded up robust features (SURF) and hierarchical agglomerative clustering (HAC). SURF detects the keypoints and their corresponding features. From these sets of keypoints, grouping is performed on the matched keypoints by HAC that shows copied and pasted regions. PMID:24311972

  10. Symbolic document image compression based on pattern matching techniques

    NASA Astrophysics Data System (ADS)

    Shiah, Chwan-Yi; Yen, Yun-Sheng

    2011-10-01

    In this paper, a novel compression algorithm for Chinese document images is proposed. Initially, documents are segmented into readable components such as characters and punctuation marks. Similar patterns within the text are found by shape context matching and grouped to form a set of prototype symbols. Text redundancies can be removed by replacing repeated symbols by their corresponding prototype symbols. To keep the compression visually lossless, we use a multi-stage symbol clustering procedure to group similar symbols and to ensure that there is no visible error in the decompressed image. In the encoding phase, the resulting data streams are encoded by adaptive arithmetic coding. Our results show that the average compression ratio is better than the international standard JBIG2 and the compressed form of a document image is suitable for a content-based keyword searching operation.

  11. Developing Visualization Techniques for Semantics-based Information Networks

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Hall, David R.

    2003-01-01

    Information systems incorporating complex network structured information spaces with a semantic underpinning - such as hypermedia networks, semantic networks, topic maps, and concept maps - are being deployed to solve some of NASA s critical information management problems. This paper describes some of the human interaction and navigation problems associated with complex semantic information spaces and describes a set of new visual interface approaches to address these problems. A key strategy is to leverage semantic knowledge represented within these information spaces to construct abstractions and views that will be meaningful to the human user. Human-computer interaction methodologies will guide the development and evaluation of these approaches, which will benefit deployed NASA systems and also apply to information systems based on the emerging Semantic Web.

  12. Techniques and Issues in Agent-Based Modeling Validation

    SciTech Connect

    Pullum, Laura L; Cui, Xiaohui

    2012-01-01

    Validation of simulation models is extremely important. It ensures that the right model has been built and lends confidence to the use of that model to inform critical decisions. Agent-based models (ABM) have been widely deployed in different fields for studying the collective behavior of large numbers of interacting agents. However, researchers have only recently started to consider the issues of validation. Compared to other simulation models, ABM has many differences in model development, usage and validation. An ABM is inherently easier to build than a classical simulation, but more difficult to describe formally since they are closer to human cognition. Using multi-agent models to study complex systems has attracted criticisms because of the challenges involved in their validation [1]. In this report, we describe the challenge of ABM validation and present a novel approach we recently developed for an ABM system.

  13. Constellation choosing based on multi-dimensional sphere packing technique

    NASA Astrophysics Data System (ADS)

    Jinghe, Li; Guijun, Hu; Kashero, Enock; Zhaoxi, Li

    2016-09-01

    In this paper we address the sphere packing lattice points selection problem being used as constellation points in high-dimensional modulation. We propose a new type of points selection method based on threshold theory. Theoretically, this method improves the transmission performance of high-dimensional signal modulation systems. We find that the BER of a 4D modulation signal using the threshold value points selection method reduces. We also compared random and distant points selection methods in a BER of 10-3 and obtained a reduced SNR of about 2 db. At a 10-3 BER, a 8D modulation signal with points selected using the threshold selection methods obtained a reduced SNR of about 3 db. At a 10-3 BER, a 16D modulation signal with points selected using the threshold selection methods obtained a reduced SNR of about 3.5 db.

  14. Techniques to derive geometries for image-based Eulerian computations

    PubMed Central

    Dillard, Seth; Buchholz, James; Vigmostad, Sarah; Kim, Hyunggun; Udaykumar, H.S.

    2014-01-01

    Purpose The performance of three frequently used level set-based segmentation methods is examined for the purpose of defining features and boundary conditions for image-based Eulerian fluid and solid mechanics models. The focus of the evaluation is to identify an approach that produces the best geometric representation from a computational fluid/solid modeling point of view. In particular, extraction of geometries from a wide variety of imaging modalities and noise intensities, to supply to an immersed boundary approach, is targeted. Design/methodology/approach Two- and three-dimensional images, acquired from optical, X-ray CT, and ultrasound imaging modalities, are segmented with active contours, k-means, and adaptive clustering methods. Segmentation contours are converted to level sets and smoothed as necessary for use in fluid/solid simulations. Results produced by the three approaches are compared visually and with contrast ratio, signal-to-noise ratio, and contrast-to-noise ratio measures. Findings While the active contours method possesses built-in smoothing and regularization and produces continuous contours, the clustering methods (k-means and adaptive clustering) produce discrete (pixelated) contours that require smoothing using speckle-reducing anisotropic diffusion (SRAD). Thus, for images with high contrast and low to moderate noise, active contours are generally preferable. However, adaptive clustering is found to be far superior to the other two methods for images possessing high levels of noise and global intensity variations, due to its more sophisticated use of local pixel/voxel intensity statistics. Originality/value It is often difficult to know a priori which segmentation will perform best for a given image type, particularly when geometric modeling is the ultimate goal. This work offers insight to the algorithm selection process, as well as outlining a practical framework for generating useful geometric surfaces in an Eulerian setting. PMID

  15. Ultrasound-based technique for intrathoracic surgical guidance

    NASA Astrophysics Data System (ADS)

    Huang, Xishi; Hill, Nicholas A.; Peters, Terry M.

    2005-04-01

    Image-guided procedures within the thoracic cavity require accurate registration of a pre-operative virtual model to the patient. Currently, surface landmarks are used for thoracic cavity registration; however, this approach is unreliable due to skin movement relative to the ribs. An alternative method for providing surgeons with image feedback in the operating room is to integrate images acquired during surgery with images acquired pre-operatively. This integration process is required to be automatic, fast, accurate and robust; however inter-modal image registration is difficult due to the lack of a direct relationship between the intensities of the two image sets. To address this problem, Computed Tomography (CT) was used to acquire pre-operative images and Ultrasound (US) was used to acquire peri-operative images. Since bone has a high electron density and is highly echogenic, the rib cage is visualized as a bright white boundary in both datasets. The proposed approach utilizes the ribs as the basis for an intensity-based registration method -- mutual information. We validated this approach using a thorax phantom. Validation results demonstrate that this approach is accurate and shows little variation between operators. The fiducial registration error, the registration error between the US and CT images, was < 1.5mm. We propose this registration method as a basis for precise tracking of minimally invasive thoracic procedures. This method will permit the planning and guidance of image-guided minimally invasive procedures for the lungs, as well as for both catheter-based and direct trans-mural interventions within the beating heart.

  16. Measurement of ultra thin film fracture toughness by nano-indentation: A numerical study

    NASA Astrophysics Data System (ADS)

    Burke, Benjamin

    As the individual layers of interconnect structures decrease in size, it becomes increasingly difficult to determine the fracture toughness, and hence the reliability, of these layers. After a layer is thinner than ˜500nm, it becomes difficult to determine the fracture toughness directly with traditional methods. Using nano-indentation, it is possible to extract the cohesive and adhesive fracture energies of these films without elaborate experimental setups. There are, however, several issues with this approach. Nano-indentation creates cracks both within the film (the cohesive cracks) and between the film and the substrate (the adhesive cracks) as well as significant plastic deformation of the film and substrate. Using SIMULA Abaqus Standard, a commercial finite element analysis tool, 2D and 3D models were created to examine the deformation characteristics associated with the nano-indentation process. The models either have pre-existing stationary cracks, or simulated by cohesive zone surfaces to account for crack nucleation and growth. The 2D model is axi-symmetric and only accounts for the adhesive crack. It is used primarily as a test the cohesive zone model and to begin to determine experimental testing limits. The 3D model is a one sixth slice of the area indented. Both cohesive and adhesive cracks are modeled and the interaction between the two cracks is investigated. While there are many parameters controlling the crack initiation and propagation process, several trends were identified. The domain of practical testing should be between one and three film thickness, so as to avoid the confluence of the indenter plastic process zone on the propagating crack front. When excursion on the load-indentation depth happens, the fracture energy is about 20% of the associated work done by the indenter (or the area under the excursion segment). The FEM simulation showed the general role of film thickness, toughness and modulus on the initiation and propagation of both

  17. Optical performance monitoring technique using software-based synchronous amplitude histograms.

    PubMed

    Choi, H G; Chang, J H; Kim, Hoon; Chung, Y C

    2014-10-01

    We propose and demonstrate a simple technique to monitor both the optical signal-to-noise ratio (OSNR) and chromatic dispersion (CD) by using the software-based synchronous amplitude histogram (SAH) analysis. We exploit the software-based synchronization technique to construct SAHs from the asynchronously sampled intensities of the signal. The use of SAHs facilitates the accurate extraction of the monitoring parameters at the center of the symbol. Thus, unlike in the case of using the technique based on the asynchronous amplitude histogram (AAH), this technique is not affected by the transient characteristics of the modulated signals. The performance of the proposed monitoring technique is evaluated experimentally by using 10-Gbaud quadrature phase-shift keying (QPSK) and quadrature amplitude modulation (QAM) signals over wide ranges of OSNR and CD. We also evaluate the robustness of the proposed technique to the signal's transient characteristics. PMID:25321978

  18. A content-based image retrieval method for optical colonoscopy images based on image recognition techniques

    NASA Astrophysics Data System (ADS)

    Nosato, Hirokazu; Sakanashi, Hidenori; Takahashi, Eiichi; Murakawa, Masahiro

    2015-03-01

    This paper proposes a content-based image retrieval method for optical colonoscopy images that can find images similar to ones being diagnosed. Optical colonoscopy is a method of direct observation for colons and rectums to diagnose bowel diseases. It is the most common procedure for screening, surveillance and treatment. However, diagnostic accuracy for intractable inflammatory bowel diseases, such as ulcerative colitis (UC), is highly dependent on the experience and knowledge of the medical doctor, because there is considerable variety in the appearances of colonic mucosa within inflammations with UC. In order to solve this issue, this paper proposes a content-based image retrieval method based on image recognition techniques. The proposed retrieval method can find similar images from a database of images diagnosed as UC, and can potentially furnish the medical records associated with the retrieved images to assist the UC diagnosis. Within the proposed method, color histogram features and higher order local auto-correlation (HLAC) features are adopted to represent the color information and geometrical information of optical colonoscopy images, respectively. Moreover, considering various characteristics of UC colonoscopy images, such as vascular patterns and the roughness of the colonic mucosa, we also propose an image enhancement method to highlight the appearances of colonic mucosa in UC. In an experiment using 161 UC images from 32 patients, we demonstrate that our method improves the accuracy of retrieving similar UC images.

  19. BEaST: brain extraction based on nonlocal segmentation technique.

    PubMed

    Eskildsen, Simon F; Coupé, Pierrick; Fonov, Vladimir; Manjón, José V; Leung, Kelvin K; Guizard, Nicolas; Wassef, Shafik N; Østergaard, Lasse Riis; Collins, D Louis

    2012-02-01

    Brain extraction is an important step in the analysis of brain images. The variability in brain morphology and the difference in intensity characteristics due to imaging sequences make the development of a general purpose brain extraction algorithm challenging. To address this issue, we propose a new robust method (BEaST) dedicated to produce consistent and accurate brain extraction. This method is based on nonlocal segmentation embedded in a multi-resolution framework. A library of 80 priors is semi-automatically constructed from the NIH-sponsored MRI study of normal brain development, the International Consortium for Brain Mapping, and the Alzheimer's Disease Neuroimaging Initiative databases. In testing, a mean Dice similarity coefficient of 0.9834±0.0053 was obtained when performing leave-one-out cross validation selecting only 20 priors from the library. Validation using the online Segmentation Validation Engine resulted in a top ranking position with a mean Dice coefficient of 0.9781±0.0047. Robustness of BEaST is demonstrated on all baseline ADNI data, resulting in a very low failure rate. The segmentation accuracy of the method is better than two widely used publicly available methods and recent state-of-the-art hybrid approaches. BEaST provides results comparable to a recent label fusion approach, while being 40 times faster and requiring a much smaller library of priors. PMID:21945694

  20. Doubly robust multiple imputation using kernel-based techniques.

    PubMed

    Hsu, Chiu-Hsieh; He, Yulei; Li, Yisheng; Long, Qi; Friese, Randall

    2016-05-01

    We consider the problem of estimating the marginal mean of an incompletely observed variable and develop a multiple imputation approach. Using fully observed predictors, we first establish two working models: one predicts the missing outcome variable, and the other predicts the probability of missingness. The predictive scores from the two models are used to measure the similarity between the incomplete and observed cases. Based on the predictive scores, we construct a set of kernel weights for the observed cases, with higher weights indicating more similarity. Missing data are imputed by sampling from the observed cases with probability proportional to their kernel weights. The proposed approach can produce reasonable estimates for the marginal mean and has a double robustness property, provided that one of the two working models is correctly specified. It also shows some robustness against misspecification of both models. We demonstrate these patterns in a simulation study. In a real-data example, we analyze the total helicopter response time from injury in the Arizona emergency medical service data. PMID:26647734

  1. Communication methods and production techniques in fixed prosthesis fabrication: a UK based survey. Part 2: Production techniques

    PubMed Central

    Berry, J.; Nesbit, M.; Saberi, S.; Petridis, H.

    2014-01-01

    Aim The aim of this study was to identify the communication methods and production techniques used by dentists and dental technicians for the fabrication of fixed prostheses within the UK from the dental technicians' perspective. This second paper reports on the production techniques utilised. Materials and methods Seven hundred and eighty-two online questionnaires were distributed to the Dental Laboratories Association membership and included a broad range of topics, such as demographics, impression disinfection and suitability, and various production techniques. Settings were managed in order to ensure anonymity of respondents. Statistical analysis was undertaken to test the influence of various demographic variables such as the source of information, the location, and the size of the dental laboratory. Results The number of completed responses totalled 248 (32% response rate). Ninety percent of the respondents were based in England and the majority of dental laboratories were categorised as small sized (working with up to 25 dentists). Concerns were raised regarding inadequate disinfection protocols between dentists and dental laboratories and the poor quality of master impressions. Full arch plastic trays were the most popular impression tray used by dentists in the fabrication of crowns (61%) and bridgework (68%). The majority (89%) of jaw registration records were considered inaccurate. Forty-four percent of dental laboratories preferred using semi-adjustable articulators. Axial and occlusal under-preparation of abutment teeth was reported as an issue in about 25% of cases. Base metal alloy was the most (52%) commonly used alloy material. Metal-ceramic crowns were the most popular choice for anterior (69%) and posterior (70%) cases. The various factors considered did not have any statistically significant effect on the answers provided. The only notable exception was the fact that more methods of communicating the size and shape of crowns were utilised for

  2. A new variance-based global sensitivity analysis technique

    NASA Astrophysics Data System (ADS)

    Wei, Pengfei; Lu, Zhenzhou; Song, Jingwen

    2013-11-01

    A new set of variance-based sensitivity indices, called W-indices, is proposed. Similar to the Sobol's indices, both main and total effect indices are defined. The W-main effect indices measure the average reduction of model output variance when the ranges of a set of inputs are reduced, and the total effect indices quantify the average residual variance when the ranges of the remaining inputs are reduced. Geometrical interpretations show that the W-indices gather the full information of the variance ratio function, whereas, Sobol's indices only reflect the marginal information. Then the double-loop-repeated-set Monte Carlo (MC) (denoted as DLRS MC) procedure, the double-loop-single-set MC (denoted as DLSS MC) procedure and the model emulation procedure are introduced for estimating the W-indices. It is shown that the DLRS MC procedure is suitable for computing all the W-indices despite its highly computational cost. The DLSS MC procedure is computationally efficient, however, it is only applicable for computing low order indices. The model emulation is able to estimate all the W-indices with low computational cost as long as the model behavior is correctly captured by the emulator. The Ishigami function, a modified Sobol's function and two engineering models are utilized for comparing the W- and Sobol's indices and verifying the efficiency and convergence of the three numerical methods. Results show that, for even an additive model, the W-total effect index of one input may be significantly larger than its W-main effect index. This indicates that there may exist interaction effects among the inputs of an additive model when their distribution ranges are reduced.

  3. Construction of dynamic stochastic simulation models using knowledge-based techniques

    NASA Technical Reports Server (NTRS)

    Williams, M. Douglas; Shiva, Sajjan G.

    1990-01-01

    Over the past three decades, computer-based simulation models have proven themselves to be cost-effective alternatives to the more structured deterministic methods of systems analysis. During this time, many techniques, tools and languages for constructing computer-based simulation models have been developed. More recently, advances in knowledge-based system technology have led many researchers to note the similarities between knowledge-based programming and simulation technologies and to investigate the potential application of knowledge-based programming techniques to simulation modeling. The integration of conventional simulation techniques with knowledge-based programming techniques is discussed to provide a development environment for constructing knowledge-based simulation models. A comparison of the techniques used in the construction of dynamic stochastic simulation models and those used in the construction of knowledge-based systems provides the requirements for the environment. This leads to the design and implementation of a knowledge-based simulation development environment. These techniques were used in the construction of several knowledge-based simulation models including the Advanced Launch System Model (ALSYM).

  4. GC-Based Techniques for Breath Analysis: Current Status, Challenges, and Prospects.

    PubMed

    Xu, Mingjun; Tang, Zhentao; Duan, Yixiang; Liu, Yong

    2016-07-01

    Breath analysis is a noninvasive diagnostic method that profiles a person's physical state by volatile organic compounds in the breath. It has huge potential in the field of disease diagnosis. In order to offer opportunities for practical applications, various GC-based techniques have been investigated for on-line breath analysis since GC is the most preferred technique for mixed gas separation. This article reviews the development of breath analysis and GC-based techniques in basic breath research, involving sampling methods, preconcentration methods, conventional GC-based techniques, and newly developed GC techniques for breath analysis. The combination of GC and newly developed detection techniques takes advantages of the virtues of each. In addition, portable GC or micro GC are poised to become field GC-based techniques in breath analysis. Challenges faced in GC-based techniques for breath analysis are discussed candidly. Effective cooperation of experts from different fields is urgent to promote the development of breath analysis. PMID:26529095

  5. Block based image compression technique using rank reduction and wavelet difference reduction

    NASA Astrophysics Data System (ADS)

    Bolotnikova, Anastasia; Rasti, Pejman; Traumann, Andres; Lusi, Iiris; Daneshmand, Morteza; Noroozi, Fatemeh; Samuel, Kadri; Sarkar, Suman; Anbarjafari, Gholamreza

    2015-12-01

    In this paper a new block based lossy image compression technique which is using rank reduction of the image and wavelet difference reduction (WDR) technique, is proposed. Rank reduction is obtained by applying singular value decomposition (SVD). The input image is divided into blocks of equal sizes after which quantization by SVD is carried out on each block followed by WDR technique. Reconstruction is carried out by decompressing each blocks bit streams and then merging all of them to obtain the decompressed image. The visual and quantitative experimental results of the proposed image compression technique are shown and also compared with those of the WDR technique and JPEG2000. From the results of the comparison, the proposed image compression technique outperforms the WDR and JPEG2000 techniques.

  6. Wood lens design philosophy based on a binary additive manufacturing technique

    NASA Astrophysics Data System (ADS)

    Marasco, Peter L.; Bailey, Christopher

    2016-04-01

    Using additive manufacturing techniques in optical engineering to construct a gradient index (GRIN) optic may overcome a number of limitations of GRIN technology. Such techniques are maturing quickly, yielding additional design degrees of freedom for the engineer. How best to employ these degrees of freedom is not completely clear at this time. This paper describes a preliminary design philosophy, including assumptions, pertaining to a particular printing technique for GRIN optics. It includes an analysis based on simulation and initial component measurement.

  7. Estimation of Missing Precipitation Data using Soft Computing based Spatial Interpolation Techniques

    NASA Astrophysics Data System (ADS)

    Teegavarapu, R. S.

    2007-12-01

    Deterministic and stochastic weighting methods are the most frequently used methods for estimating missing rainfall values at a gage based on values recorded at all other available recording gages. Traditional spatial interpolation techniques can be integrated with soft computing techniques to improve the estimation of missing precipitation data. Association rule mining based spatial interpolation approach, universal function approximation based kriging, optimal function approximation and clustering methods are developed and investigated in the current study to estimate missing precipitation values at a gaging station. Historical daily precipitation data obtained from 15 rain gauging stations from a temperate climatic region, Kentucky, USA, are used to test this approach and derive conclusions about efficacy of these methods in estimating missing precipitation data. Results suggest that the use of soft computing techniques in conjunction with a spatial interpolation technique can improve the precipitation estimates and help to address few limitations of traditional spatial interpolation techniques.

  8. A system identification technique based on the random decrement signatures. Part 1: Theory and simulation

    NASA Technical Reports Server (NTRS)

    Bedewi, Nabih E.; Yang, Jackson C. S.

    1987-01-01

    Identification of the system parameters of a randomly excited structure may be treated using a variety of statistical techniques. Of all these techniques, the Random Decrement is unique in that it provides the homogeneous component of the system response. Using this quality, a system identification technique was developed based on a least-squares fit of the signatures to estimate the mass, damping, and stiffness matrices of a linear randomly excited system. The mathematics of the technique is presented in addition to the results of computer simulations conducted to demonstrate the prediction of the response of the system and the random forcing function initially introduced to excite the system.

  9. Performance analysis of compressive ghost imaging based on different signal reconstruction techniques.

    PubMed

    Kang, Yan; Yao, Yin-Ping; Kang, Zhi-Hua; Ma, Lin; Zhang, Tong-Yi

    2015-06-01

    We present different signal reconstruction techniques for implementation of compressive ghost imaging (CGI). The different techniques are validated on the data collected from ghost imaging with the pseudothermal light experimental system. Experiment results show that the technique based on total variance minimization gives high-quality reconstruction of the imaging object with less time consumption. The different performances among these reconstruction techniques and their parameter settings are also analyzed. The conclusion thus offers valuable information to promote the implementation of CGI in real applications. PMID:26367039

  10. Using Fuzzy Logic Techniques for Assertion-Based Software Testing Metrics

    PubMed Central

    Alakeel, Ali M.

    2015-01-01

    Software testing is a very labor intensive and costly task. Therefore, many software testing techniques to automate the process of software testing have been reported in the literature. Assertion-Based automated software testing has been shown to be effective in detecting program faults as compared to traditional black-box and white-box software testing methods. However, the applicability of this approach in the presence of large numbers of assertions may be very costly. Therefore, software developers need assistance while making decision to apply Assertion-Based testing in order for them to get the benefits of this approach at an acceptable level of costs. In this paper, we present an Assertion-Based testing metrics technique that is based on fuzzy logic. The main goal of the proposed technique is to enhance the performance of Assertion-Based software testing in the presence of large numbers of assertions. To evaluate the proposed technique, an experimental study was performed in which the proposed technique is applied on programs with assertions. The result of this experiment shows that the effectiveness and performance of Assertion-Based software testing have improved when applying the proposed testing metrics technique. PMID:26060839

  11. Multi technique amalgamation for enhanced information identification with content based image data.

    PubMed

    Das, Rik; Thepade, Sudeep; Ghosh, Saurav

    2015-01-01

    Image data has emerged as a resourceful foundation for information with proliferation of image capturing devices and social media. Diverse applications of images in areas including biomedicine, military, commerce, education have resulted in huge image repositories. Semantically analogous images can be fruitfully recognized by means of content based image identification. However, the success of the technique has been largely dependent on extraction of robust feature vectors from the image content. The paper has introduced three different techniques of content based feature extraction based on image binarization, image transform and morphological operator respectively. The techniques were tested with four public datasets namely, Wang Dataset, Oliva Torralba (OT Scene) Dataset, Corel Dataset and Caltech Dataset. The multi technique feature extraction process was further integrated for decision fusion of image identification to boost up the recognition rate. Classification result with the proposed technique has shown an average increase of 14.5 % in Precision compared to the existing techniques and the retrieval result with the introduced technique has shown an average increase of 6.54 % in Precision over state-of-the art techniques. PMID:26798574

  12. Effect of filling technique on the bond strength of methacrylate and silorane-based composite restorations.

    PubMed

    Machado, Fernanda Weingartner; Borges, Fernanda Blos; Cenci, Maximiliano Sérgio; Moraes, Rafael Ratto de; Boscato, Noéli

    2016-01-01

    The bond strength of methacrylate (Z350, 3M ESPE) and silorane (P90, 3M ESPE) restorations, using different cavity filling techniques, was investigated. Cavities (6 × 3 × 3) in bovine teeth were filled using bulk, oblique, or horizontal increments. A push-out test was carried out after 24 h. Data were statistically analyzed (α = 5%). Methacrylate-based composites and the horizontal filling technique showed the highest bond strength values (10.2 ± 3.9, p < 0.05). Silorane-based composites showed no statistically significant differences regarding the filling techniques (p > 0.05). PMID:27050940

  13. Traditional versus rule-based programming techniques: Application to the control of optional flight information

    NASA Technical Reports Server (NTRS)

    Ricks, Wendell R.; Abbott, Kathy H.

    1987-01-01

    To the software design community, the concern over the costs associated with a program's execution time and implementation is great. It is always desirable, and sometimes imperative, that the proper programming technique is chosen which minimizes all costs for a given application or type of application. A study is described that compared cost-related factors associated with traditional programming techniques to rule-based programming techniques for a specific application. The results of this study favored the traditional approach regarding execution efficiency, but favored the rule-based approach regarding programmer productivity (implementation ease). Although this study examined a specific application, the results should be widely applicable.

  14. A novel background subtraction technique based on grayscale morphology for weld defect detection

    NASA Astrophysics Data System (ADS)

    Aminzadeh, Masoumeh; Kurfess, Thomas

    2016-04-01

    Optical inspection is a non-destructive quality monitoring technique to detect defects in manufactured parts. Automating the defect detection, by application of image processing, prevents the presence of human operators making the inspection more reliable, reproducible and faster. In this paper, a background subtraction technique, based on morphological operations, is proposed. The low-computational load associated with the used morphological operations makes this technique more computationally effective than background subtraction techniques such as spline approximation and surface-fitting. The performance of the technique is tested by applying to detect defects in a weld seam with non-uniform intensity distribution where the defects are precisely segmented. The proposed background subtraction technique is generalizable to sheet, surface, or part defect detection in various applications of manufacturing.

  15. Practical Framework for an Electron Beam Induced Current Technique Based on a Numerical Optimization Approach

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hideshi; Soeda, Takeshi

    2015-03-01

    A practical framework for an electron beam induced current (EBIC) technique has been established for conductive materials based on a numerical optimization approach. Although the conventional EBIC technique is useful for evaluating the distributions of dopants or crystal defects in semiconductor transistors, issues related to the reproducibility and quantitative capability of measurements using this technique persist. For instance, it is difficult to acquire high-quality EBIC images throughout continuous tests due to variation in operator skill or test environment. Recently, due to the evaluation of EBIC equipment performance and the numerical optimization of equipment items, the constant acquisition of high contrast images has become possible, improving the reproducibility as well as yield regardless of operator skill or test environment. The technique proposed herein is even more sensitive and quantitative than scanning probe microscopy, an imaging technique that can possibly damage the sample. The new technique is expected to benefit the electrical evaluation of fragile or soft materials along with LSI materials.

  16. Damage by indentation and single impact of hard particles on a high chromium white cast iron

    SciTech Connect

    Adler, T.A.; Dogan, O.N.

    1997-03-01

    High chromium white cast irons are used extensively in environments where small particle impact causes considerable damage. In this study, a white cast iron containing 26 wt% Cr, and with a carbide volume fraction of 0.28, is impacted with projectiles at normal incidence using a gas gun. Both crater diameter and the size of the damage zone are measured as a function of projectile velocity, and an analytical model is developed which relates the size of the impact crater to the energy absorbed by plastic and elastic deformation of the white cast iron. Peak impact loads and strain hardening rates during impact are calculated by comparing the impact craters with craters made by quasi-static indentation. It is found that considerable strain hardening occurs in austenitic white cast irons during impact and indentation. Strain localization and dynamic softening are also observed in these materials at higher impact velocities.

  17. Poroviscoelastic characterization of particle-reinforced gelatin gels using indentation and homogenization.

    PubMed

    Galli, Matteo; Fornasiere, Elvis; Cugnoni, Joël; Oyen, Michelle L

    2011-05-01

    Hydrogels are promising materials for bioengineering applications, and are good model materials for the study of hydrated biological tissues. As these materials often have a structural function, the measurement of their mechanical properties is of fundamental importance. In the present study gelatin gels reinforced with ceramic microspheres are produced and their poroviscoelastic response in spherical indentation is studied. The constitutive responses of unreinforced gels are determined using inverse finite element modeling in combination with analytical estimates of material parameters. The behavior of composite gels is assessed by both analytical and numerical homogenization. The results of the identification of the constitutive parameters of unreinforced gels show that it is possible to obtain representative poroviscoelastic parameters by spherical indentation without the need for additional mechanical tests. The agreement between experimental results on composite gelatin and the predictions from homogenization modeling show that the adopted modeling tools are capable of providing estimates of the poroviscoelastic response of particle-reinforced hydrogels. PMID:21396610

  18. Structural and phase transformation of apatite and quartz in the indentation process single crystals

    SciTech Connect

    Chaikina, Marina

    2014-11-14

    Using the method of scanning and high-resolution electron microscopy, the zones of indentation by scratching for apatite and quartz single crystals were investigated. The textural, structural and phase transformations revealed have been conventionally ascribed to “deformation” and “diffusion” processes of plastic deformation. In zones of indentation by scratching of single crystals there have been two levels of structural transformations revealed, with a sharp boundary between them, at a stress equal to the theoretical ultimate stress limit (σ{sub TSL}). In the top zone of scratches, within the range of stress from the microhardness value H{sub s} up to the σ{sub TSL} value the substance undergoes profound structural and phase transformations. In the bed of scratches at the stress value lower than σ{sub TSL} values, single crystal fragmentation occurs with the formation of blocks and steps.

  19. Constitutive Modeling of Porcine Liver in Indentation Using 3D Ultrasound Imaging

    PubMed Central

    Jordan, P.; Socrate, S.; Zickler, T.E.; Howe, R.D.

    2009-01-01

    In this work we present an inverse finite-element modeling framework for constitutive modeling and parameter estimation of soft tissues using full-field volumetric deformation data obtained from 3D ultrasound. The finite-element model is coupled to full-field visual measurements by regularization springs attached at nodal locations. The free ends of the springs are displaced according to the locally estimated tissue motion and the normalized potential energy stored in all springs serves as a measure of model-experiment agreement for material parameter optimization. We demonstrate good accuracy of estimated parameters and consistent convergence properties on synthetically generated data. We present constitutive model selection and parameter estimation for perfused porcine liver in indentation and demonstrate that a quasilinear viscoelastic model with shear modulus relaxation offers good model-experiment agreement in terms of indenter displacement (0.19 mm RMS error) and tissue displacement field (0.97 mm RMS error). PMID:19627823

  20. Application of Acoustic Techniques for Characterization of Biological Samples

    NASA Astrophysics Data System (ADS)

    Tittmann, Bernhard R.; Ebert, Anne

    The atomic force microscope (AFM) is emerging as a powerful tool in cell biology. Originally developed for high-resolution imaging purposes, the AFM also has unique capabilities as a nano-indenter to probe the dynamic viscoelastic material properties of living cells in culture. In particular, AFM elastography combines imaging and indentation modalities to map the spatial distribution of cell mechanical properties, which in turn reflect the structure and function of the underlying cytoskeleton. Such measurements have contributed to our understanding of cell mechanics and cell biology and appear to be sensitive to the presence of disease in individual cells. Examples of applications and considerations on the effective capability of ultrasonic AFM techniques on biological samples (both mammalian and plant) are reported in this chapter. Included in the discussion is scanning near-field ultrasound holography an acoustic technique which has been used to image structure and in particular nanoparticles inside cells. For illustration an example that is discussed in some detail is a technique for rapid in vitro single-cell elastography. The technique is based on atomic force acoustic microscopy (AFAM) but (1) requires only a few minutes of scan time, (2) can be used on live cells briefly removed from most of the nutrient fluid, (3) does negligible harm or damage to the cell, (4) provides semi-quantitative information on the distribution of modulus across the cell, and (5) yields data with 1-10 nm resolution. The technique is shown to enable rapid assessment of physical/biochemical signals on the cell modulus and contributes to current understanding of cell mechanics.

  1. Evaluation of bone-tendon junction healing using water jet ultrasound indentation method.

    PubMed

    Lu, Min-Hua; Zheng, Yong-Ping; Lu, Hong-Bin; Huang, Qing-Hua; Qin, Ling

    2009-11-01

    The re-establishment of bone-tendon junction (BTJ) tissues with the junction, characterized as a unique transitional fibrocartilage zone, is involved in many trauma and reconstructive surgeries. Experimental and clinical findings have shown that a direct BTJ repair requires a long period of immobilization, which may be associated with a postoperative weak knee. Therefore, it is necessary to evaluate the morphologic and mechanical properties of BTJ tissues in situ to better understand the healing process for the purpose of reducing the adverse effects of immobilization. We previously reported a noncontact ultrasound water jet indentation system for measuring and mapping tissue mechanical properties. The key idea was to utilize a water jet as an indenter as well as the coupling medium for high-frequency ultrasound. In this article, we used ultrasound water jet indentation to evaluate the BTJ healing process. The system's capability of measuring the material elastic modulus was first validated using tissue-mimicking phantoms. Then it was employed to assess the healing of the BTJ tissues after partial patellectomy over time on twelve 18-week-old female New Zealand White rabbits. It was found that in comparison with the normal control samples, the elastic modulus of the fibrocartilage of the postoperative samples was significantly smaller, while its thickness increased significantly. Among the postoperative sample groups, the elastic modulus of the fibrocartilage of the samples harvested at week 18 was significantly higher than those harvested at week 6 and week 12, which was even comparable with the value of the control samples at the same sacrifice time. The results suggested that the noncontact ultrasound water jet indentation system provided a nondestructive way to evaluate the material properties of small animal tissues in situ and thus had the ability to evaluate the healing process of BTJ. PMID:19766382

  2. Thermal Shock Behavior of Silicon Nitride Flexure Beam Specimens with Indentation Cracks

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Salem, Jonathan A.

    1994-01-01

    The experimental results of thermal shock testing of silicon nitride flexure beam specimens containing indentation cracks are presented. The thermal stress induced by water quenching is much greater in the transverse direction than in the longitudinal direction, resulting in an insensitivity of residual bend strength to temperature differences up to 580 C. This result indicates that a flexure beam configuration is not an appropriate geometry for thermal shock testing when thermal shock behavior is to be evaluated from residual bend strength data.

  3. Mechanical properties of gray and white matter brain tissue by indentation

    PubMed Central

    Budday, Silvia; Nay, Richard; de Rooij, Rijk; Steinmann, Paul; Wyrobek, Thomas; Ovaert, Timothy C.; Kuhl, Ellen

    2015-01-01

    The mammalian brain is composed of an outer layer of gray matter, consisting of cell bodies, dendrites, and unmyelinated axons, and an inner core of white matter, consisting primarily of myelinated axons. Recent evidence suggests that microstructural differences between gray and white matter play an important role during neurodevelopment. While brain tissue as a whole is rheologically well characterized, the individual features of gray and white matter remain poorly understood. Here we quantify the mechanical properties of gray and white matter using a robust, reliable, and repeatable method, flat-punch indentation. To systematically characterize gray and white matter moduli for varying indenter diameters, loading rates, holding times, post-mortem times, and locations we performed a series of n=192 indentation tests. We found that indenting thick, intact coronal slices eliminates the common challenges associated with small specimens: it naturally minimizes boundary effects, dehydration, swelling, and structural degradation. When kept intact and hydrated, brain slices maintained their mechanical characteristics with standard deviations as low as 5% throughout the entire testing period of five days post mortem. White matter, with an average modulus of 1.895kPa±0.592kPa, was on average 39% stiffer than gray matter, p<0.01, with an average modulus of 1.389kPa±0.289kPa, and displayed larger regional variations. It was also more viscous than gray matter and responded less rapidly to mechanical loading. Understanding the rheological differences between gray and white matter may have direct implications on diagnosing and understanding the mechanical environment in neurodevelopment and neurological disorders. PMID:25819199

  4. Size effect study of thin film hardness using AFM nano-indentation

    NASA Astrophysics Data System (ADS)

    Xu, Linyan; Qian, Shuangbei; Li, Juan; Liu, Congcong; Guo, Shijia; Huang, Di; Wu, Sen; Hu, Xiaodong

    2015-10-01

    With nano-level spatial and force resolution, atomic force microscope (AFM) becomes an indispensable nanoindentation measurement instrument for thin films and soft films. To do the research of size effect of the hardness property of thin films, indentation experiments have been done on a gold film with 200 nm thickness and a silicon nitride film with 110 nm thickness. It is possible to change the maximum load forces to get discrete residual depths on the film samples. The contact depths of the gold film are 15.91 nm and 26.67 nm respectively, while the contact depths of the silicon nitride film are 7.82 nm and 10.25 nm respectively. A group of nanoindentation force curves are recorded for the transformation into force-depth curves. Subsequently, a 3D image of the residual indentation can be obtained by in-situ scanning immediately after nanoindentation. The topography data is imported into a Matlab program to estimate the contact area of the indentation. For the gold film, the hardness parameters of 3.31 GPa and 2.57 GPa are calculated under the above two contact depths. And for silicon nitride film, the corresponding results are 6.51GPa and 3.58 GPa. The experimental results illustrate a strong size effect for thin film hardness. The correction of the residual indentation image of the gold film is also done as an initial study. Blind tip reconstruction (BTR) algorithm is introduced to calibrate the tip shape, and more reliable hardness values of 1.15 GPa and 0.94 GPa are estimated.

  5. Method of determining elastic and plastic mechanical properties of ceramic materials using spherical indenters

    DOEpatents

    Adler, Thomas A.

    1996-01-01

    The invention pertains a method of determining elastic and plastic mechanical properties of ceramics, intermetallics, metals, plastics and other hard, brittle materials which fracture prior to plastically deforming when loads are applied. Elastic and plastic mechanical properties of ceramic materials are determined using spherical indenters. The method is most useful for measuring and calculating the plastic and elastic deformation of hard, brittle materials with low values of elastic modulus to hardness.

  6. Experimental and numerical validation for the novel configuration of an arthroscopic indentation instrument

    NASA Astrophysics Data System (ADS)

    Korhonen, Rami K.; Saarakkala, Simo; Töyräs, Juha; Laasanen, Mikko S.; Kiviranta, Ilkka; Jurvelin, Jukka S.

    2003-06-01

    Softening of articular cartilage, mainly attributable to deterioration of superficial collagen network and depletion of proteoglycans, is a sign of incipient osteoarthrosis. Early diagnosis of osteoarthrosis is essential to prevent the further destruction of the tissue. During the past decade, a few arthroscopic instruments have been introduced for the measurement of cartilage stiffness; these can be used to provide a sensitive measure of cartilage status. Ease of use, accuracy and reproducibility of the measurements as well as a low risk of damaging cartilage are the main qualities needed in any clinically applicable instrument. In this study, we have modified a commercially available arthroscopic indentation instrument to better fulfil these requirements when measuring cartilage stiffness in joints with thin cartilage. Our novel configuration was validated by experimental testing as well as by finite element (FE) modelling. Experimental and numerical tests indicated that it would be better to use a smaller reference plate and a lower pressing force (3 N) than those used in the original instrument (7-10 N). The reproducibility (CV = 5.0%) of the in situ indentation measurements was improved over that of the original instrument (CV = 7.6%), and the effect of material thickness on the indentation response was smaller than that obtained with the original instrument. The novel configuration showed a significant linear correlation between the indenter force and the reference dynamic modulus of cartilage in unconfined compression, especially in soft tissue (r = 0.893, p < 0.001, n = 16). FE analyses with a transversely isotropic poroelastic model indicated that the instrument was suitable for detecting the degeneration of superficial cartilage. In summary, the instrument presented in this study allows easy and reproducible measurement of cartilage stiffness, also in thin cartilage, and therefore represents a technical improvement for the early diagnosis of

  7. Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms

    PubMed Central

    Amador, Carolina; Urban, Matthew W.; Chen, Shigao; Chen, Qingshan; An, Kai-Nan; Greenleaf, James F.

    2011-01-01

    Tissue mechanical properties such as elasticity are linked to tissue pathology state. Several groups have proposed shear wave propagation speed to quantify tissue mechanical properties. It is well known that biological tissues are viscoelastic materials; therefore velocity dispersion resulting from material viscoelasticity is expected. A method called Shearwave Dispersion Ultrasound Vibrometry (SDUV) can be used to quantify tissue viscoelasticity by measuring dispersion of shear wave propagation speed. However, there is not a gold standard method for validation. In this study we present an independent validation method of shear elastic modulus estimation by SDUV in 3 gelatin phantoms of differing stiffness. In addition, the indentation measurements are compared to estimates of elasticity derived from shear wave group velocities. The shear elastic moduli from indentation were 1.16, 3.40 and 5.6 kPa for a 7, 10 and 15% gelatin phantom respectively. SDUV measurements were 1.61, 3.57 and 5.37 kPa for the gelatin phantoms respectively. Shear elastic moduli derived from shear wave group velocities were 1.78, 5.2 and 7.18 kPa for the gelatin phantoms respectively. The shear elastic modulus estimated from the SDUV, matched the elastic modulus measured by indentation. On the other hand, shear elastic modulus estimated by group velocity did not agree with indentation test estimations. These results suggest that shear elastic modulus estimation by group velocity will be bias when the medium being investigated is dispersive. Therefore a rheological model should be used in order to estimate mechanical properties of viscoelastic materials. PMID:21317078

  8. A Novel Graph Based Fuzzy Clustering Technique For Unsupervised Classification Of Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Banerjee, B.; Krishna Moohan, B.

    2014-11-01

    This paper addresses the problem of unsupervised land-cover classification of multi-spectral remotely sensed images in the context of self-learning by exploring different graph based clustering techniques hierarchically. The only assumption used here is that the number of land-cover classes is known a priori. Object based image analysis paradigm which processes a given image at different levels, has emerged as a popular alternative to the pixel based approaches for remote sensing image segmentation considering the high spatial resolution of the images. A graph based fuzzy clustering technique is proposed here to obtain a better merging of an initially oversegmented image in the spectral domain compared to conventional clustering techniques. Instead of using Euclidean distance measure, the cumulative graph edge weight is used to find the distance between a pair of points to better cope with the topology of the feature space. In order to handle uncertainty in assigning class labels to pixels, which is not always a crisp allocation for remote sensing data, fuzzy set theoretic technique is incorporated to the graph based clustering. Minimum Spanning Tree (MST) based clustering technique is used to over-segment the image at the first level. Furthermore, considering that the spectral signature of different land-cover classes may overlap significantly, a self-learning based Maximum Likelihood (ML) classifier coupled with the Expectation Maximization (EM) based iterative unsupervised parameter retraining scheme is used to generate the final land-cover classification map. Results on two medium resolution images establish the superior performance of the proposed technique in comparison to the traditional fuzzy c-means clustering technique.

  9. Adhesion in the contact of a spherical indenter with a layered elastic half-space

    NASA Astrophysics Data System (ADS)

    Onur Sergici, A.; Adams, George G.; Müftü, Sinan

    2006-09-01

    With the emergence of micro- and nano-technology, the contact mechanics of MEMS and NEMS devices and components is becoming more important. Thus it is important to gain a better understanding of the role of coatings and thin films on micro- and nano-scale contact phenomena, and to understand the interactions of measurement devices, such as an atomic force microscope (AFM), with layered media. More specifically, in this work the frictionless contact, with adhesion, between a spherical indenter and an elastic-layered medium is investigated. This configuration can be viewed as either a single contact model or as a building block of a multi-asperity rough surface contact model. As the scale decreases to the nano level, adhesion becomes an important issue. The presence of adhesion affects the relationships among the applied force, the penetration of the indenter, and the size of the contact area. This axisymmetric problem includes the effect of adhesion using a Maugis type of adhesion model. This model spans the range of the Tabor parameter between the JKR and DMT regions. The key parameters in this analysis are the elastic moduli ratio of the layer and the substrate, the dimensionless layer thickness, and the Maugis adhesion parameter. The results can be applied to a rigid or to an elastic indenter.

  10. Noncontact evaluation of articular cartilage degeneration using a novel ultrasound water jet indentation system.

    PubMed

    Lu, M-H; Zheng, Y P; Huang, Q-H; Ling, C; Wang, Q; Bridal, L; Qin, L; Mak, A

    2009-01-01

    We previously reported a noncontact ultrasound water jet indentation system for measuring and mapping tissue mechanical properties. The key idea was to utilize a water jet as an indenter as well as the coupling medium for high-frequency ultrasound. In this paper, the system was employed to assess articular cartilage degeneration, using stiffness ratio as an indicator of the mechanical properties of samples. Both the mechanical and acoustical properties of intact and degenerated bovine patellar articular cartilage (n = 8) were obtained in situ. It was found that the stiffness ratio was reduced by 44 +/- 17% after the articular cartilage was treated by 0.25% trypsin at 37 degrees C for 4 h while no significant difference in thickness was observed between the intact and degenerated samples. A significant decrease of 36 +/- 20% in the peak-to-peak amplitude of ultrasound echoes reflected from the cartilage surface was also found for the cartilage samples treated by trypsin. The results also showed that the stiffness obtained with the new method highly correlated with that measured using a standard mechanical testing protocol. A good reproducibility of the measurements was demonstrated. The present results showed that the ultrasound water jet indentation system may provide a potential tool for the non-destructive evaluation of articular cartilage degeneration by simultaneously obtaining mechanical properties, acoustical properties, and thickness data. PMID:19011965

  11. Giant panda׳s tooth enamel: Structure, mechanical behavior and toughening mechanisms under indentation.

    PubMed

    Weng, Z Y; Liu, Z Q; Ritchie, R O; Jiao, D; Li, D S; Wu, H L; Deng, L H; Zhang, Z F

    2016-12-01

    The giant panda׳s teeth possess remarkable load-bearing capacity and damage resistance for masticating bamboos. In this study, the hierarchical structure and mechanical behavior of the giant panda׳s tooth enamel were investigated under indentation. The effects of loading orientation and location on mechanical properties of the enamel were clarified and the evolution of damage in the enamel under increasing load evaluated. The nature of the damage, both at and beneath the indentation surfaces, and the underlying toughening mechanisms were explored. Indentation cracks invariably were seen to propagate along the internal interfaces, specifically the sheaths between enamel rods, and multiple extrinsic toughening mechanisms, e.g., crack deflection/twisting and uncracked-ligament bridging, were active to shield the tips of cracks from the applied stress. The giant panda׳s tooth enamel is analogous to human enamel in its mechanical properties, yet it has superior hardness and Young׳s modulus but inferior toughness as compared to the bamboo that pandas primarily feed on, highlighting the critical roles of the integration of underlying tissues in the entire tooth and the highly hydrated state of bamboo foods. Our objective is that this study can aid the understanding of the structure-mechanical property relations in the tooth enamel of mammals and further provide some insight on the food habits of the giant pandas. PMID:27498423

  12. A Viscoelastic Constitutive Model Can Accurately Represent Entire Creep Indentation Tests of Human Patella Cartilage

    PubMed Central

    Pal, Saikat; Lindsey, Derek P.; Besier, Thor F.; Beaupre, Gary S.

    2013-01-01

    Cartilage material properties provide important insights into joint health, and cartilage material models are used in whole-joint finite element models. Although the biphasic model representing experimental creep indentation tests is commonly used to characterize cartilage, cartilage short-term response to loading is generally not characterized using the biphasic model. The purpose of this study was to determine the short-term and equilibrium material properties of human patella cartilage using a viscoelastic model representation of creep indentation tests. We performed 24 experimental creep indentation tests from 14 human patellar specimens ranging in age from 20 to 90 years (median age 61 years). We used a finite element model to reproduce the experimental tests and determined cartilage material properties from viscoelastic and biphasic representations of cartilage. The viscoelastic model consistently provided excellent representation of the short-term and equilibrium creep displacements. We determined initial elastic modulus, equilibrium elastic modulus, and equilibrium Poisson’s ratio using the viscoelastic model. The viscoelastic model can represent the short-term and equilibrium response of cartilage and may easily be implemented in whole-joint finite element models. PMID:23027200

  13. Biphasic indentation of articular cartilage--II. A numerical algorithm and an experimental study.

    PubMed

    Mow, V C; Gibbs, M C; Lai, W M; Zhu, W B; Athanasiou, K A

    1989-01-01

    Part I (Mak et al., 1987, J. Biomechanics 20, 703-714) presented the theoretical solutions for the biphasic indentation of articular cartilage under creep and stress-relaxation conditions. In this study, using the creep solution, we developed an efficient numerical algorithm to compute all three material coefficients of cartilage in situ on the joint surface from the indentation creep experiment. With this method we determined the average values of the aggregate modulus. Poisson's ratio and permeability for young bovine femoral condylar cartilage in situ to be HA = 0.90 MPa, vs = 0.39 and k = 0.44 x 10(-15) m4/Ns respectively, and those for patellar groove cartilage to be HA = 0.47 MPa, vs = 0.24, k = 1.42 x 10(-15) m4/Ns. One surprising finding from this study is that the in situ Poisson's ratio of cartilage (0.13-0.45) may be much less than those determined from measurements performed on excised osteochondral plugs (0.40-0.49) reported in the literature. We also found the permeability of patellar groove cartilage to be several times higher than femoral condyle cartilage. These findings may have important implications on understanding the functional behavior of cartilage in situ and on methods used to determine the elastic moduli of cartilage using the indentation experiments. PMID:2613721

  14. Loading-unloading response of circular GLARE fiber-metal laminates under lateral indentation

    NASA Astrophysics Data System (ADS)

    Tsamasphyros, George J.; Bikakis, George S.

    2015-01-01

    GLARE is a Fiber-Metal laminated material used in aerospace structures which are frequently subjected to various impact damages. Hence, the response of GLARE plates subjected to lateral indentation is very important. In this paper, analytical expressions are derived and a non-linear finite element modeling procedure is proposed in order to predict the static load-indentation curves of circular GLARE plates during loading and unloading by a hemispherical indentor. We have recently published analytical formulas and a finite element procedure for the static indentation of circular GLARE plates which are now used during the loading stage. Here, considering that aluminum layers are in a state of membrane yield and employing energy balance during unloading, the unloading path is determined. Using this unloading path, an algebraic equation is derived for calculating the permanent dent depth of the GLARE plate after the indentor's withdrawal. Furthermore, our finite element procedure is modified in order to simulate the unloading stage as well. The derived formulas and the proposed finite element modeling procedure are applied successfully to GLARE 2-2/1-0.3 and to GLARE 3-3/2-0.4 circular plates. The analytical results are compared with corresponding FEM results and a good agreement is found. The analytically calculated permanent dent depth is within 6 % for the GLARE 2 plate, and within 7 % for the GLARE 3 plate, of the corresponding numerically calculated result. No other solution of this problem is known to the authors.

  15. Assessing strain mapping by electron backscatter diffraction and confocal Raman microscopy using wedge-indented Si.

    PubMed

    Friedman, Lawrence H; Vaudin, Mark D; Stranick, Stephan J; Stan, Gheorghe; Gerbig, Yvonne B; Osborn, William; Cook, Robert F

    2016-04-01

    The accuracy of electron backscatter diffraction (EBSD) and confocal Raman microscopy (CRM) for small-scale strain mapping are assessed using the multi-axial strain field surrounding a wedge indentation in Si as a test vehicle. The strain field is modeled using finite element analysis (FEA) that is adapted to the near-indentation surface profile measured by atomic force microscopy (AFM). The assessment consists of (1) direct experimental comparisons of strain and deformation and (2) comparisons in which the modeled strain field is used as an intermediate step. Direct experimental methods (1) consist of comparisons of surface elevation and gradient measured by AFM and EBSD and of Raman shifts measured and predicted by CRM and EBSD, respectively. Comparisons that utilize the combined FEA-AFM model (2) consist of predictions of distortion, strain, and rotation for comparison with EBSD measurements and predictions of Raman shift for comparison with CRM measurements. For both EBSD and CRM, convolution of measurements in depth-varying strain fields is considered. The interconnected comparisons suggest that EBSD was able to provide an accurate assessment of the wedge indentation deformation field to within the precision of the measurements, approximately 2×10(-4) in strain. CRM was similarly precise, but was limited in accuracy to several times this value. PMID:26939030

  16. Indentation-induced localized deformation and elastic strain partitioning in composites at submicron length scale

    SciTech Connect

    Barabash, R.I.; Bei, H.; Gao, Y.F.; Ice, G.E.

    2010-10-26

    Three-dimensional spatially resolved strains were mapped in a model NiAl/Mo composite after nanoindentation. The depth-dependent strain distributed in the two phases and partitioned across the composite interfaces is directly measured at submicron length scale using X-ray microdiffraction and compared with a detailed micromechanical stress analysis. It is shown that indentation-induced deformation in the composite material is distinct from deformation expected in a single-phase material. This difference arises in part from residual thermal strains in both phases of the composite in the as-grown state. Interplay between residual thermal strains and external mechanical strain results in a complex distribution of dilatational strain in the Mo fibers and NiAl matrix and is distinct in different locations within the indented area. Reversal of the strain sign (e.g., alternating tensile/compressive/tensile strain distribution) is observed in the NiAl matrix. Bending of the Mo fibers during indentation creates relatively large 1.5{sup o} misorientations between the different fibers and NiAl matrix. Compressive strain along the <0 0 1> direction reached -0.017 in the Mo fibers and -0.007 in the NiAl matrix.

  17. AFM nanoscale indentation in air of polymeric and hybrid materials with highly different stiffness

    NASA Astrophysics Data System (ADS)

    Suriano, Raffaella; Credi, Caterina; Levi, Marinella; Turri, Stefano

    2014-08-01

    In this study, nanomechanical properties of a variety of polymeric materials was investigated by means of AFM. In particular, selecting different AFM probes, poly(methyl methacrylate) (PMMA), polydimethylsiloxane (PDMS) bulk samples, sol-gel hybrid thin films and hydrated hyaluronic acid hydrogels were indented in air to determine the elastic modulus. The force-distance curves and the indentation data were found to be greatly affected by the cantilever stiffness and by tip geometry. AFM indentation tests show that the choice of the cantilever spring constant and of tip shape is crucially influenced by elastic properties of samples. When adhesion-dominated interactions occur between the tip and the surface of samples, force-displacement curves reveal that a suitable functionalization of AFM probes allows the control of such interactions and the extraction of Young' modulus from AFM curves that would be otherwise unfeasible. By applying different mathematical models depending on AFM probes and materials under investigation, the values of Young's modulus were obtained and compared to those measured by rheological and dynamic mechanical analysis or to literature data. Our results show that a wide range of elastic moduli (10 kPa-10 GPa) can be determined by AFM in good agreement with those measured by conventional macroscopic measurements.

  18. Fabrication of micro-structure on glass surface using micro-indentation and wet etching process

    NASA Astrophysics Data System (ADS)

    Saito, Yasuhiro; Okamoto, Shinya; Miki, Atsushi; Inomata, Hiroyuki; Hidaka, Takeshi; Kasai, Hiroaki

    2008-09-01

    In order to improve the new micro-fabrication technology using micro-indentation and wet etching, in which the etching rate drastically decrease at the indented area and consequently micro-structure can be formed on the glass surface, the effect of the applying load on the etching rate change was investigated. The extent of the etching rate change was found to be almost constant irrespective of the amount of the applying load. Therefore, the height of the structure could be controlled simply by the etching depth as far as the densified portion remains beneath the glass surface. And some example micro-patterns were fabricated in this process. Various kinds of indentation methods were employed, including scanning a pointed tool under a load and wet abrasive blast. The patterns can be freely drawn by the use of numerical control (NC) machine. Mold pattern can be also applied, which enables drawing many lines simultaneously. In every method, the heights of the patterns were confirmed to be very uniform. This new type of the micro-fabrication method was referred to as "SMIL (Stress Masked Image Lithography)".

  19. Highly nonlinear stress-relaxation response of articular cartilage in indentation: Importance of collagen nonlinearity.

    PubMed

    Mäkelä, J T A; Korhonen, R K

    2016-06-14

    Modern fibril-reinforced computational models of articular cartilage can include inhomogeneous tissue composition and structure, and nonlinear mechanical behavior of collagen, proteoglycans and fluid. These models can capture well experimental single step creep and stress-relaxation tests or measurements under small strains in unconfined and confined compression. Yet, it is known that in indentation, especially at high strain velocities, cartilage can express highly nonlinear response. Different fibril reinforced poroelastic and poroviscoelastic models were used to assess measured highly nonlinear stress-relaxation response of rabbit articular cartilage in indentation. Experimentally measured depth-dependent volume fractions of different tissue constituents and their mechanical nonlinearities were taken into account in the models. In particular, the collagen fibril network was modeled using eight separate models that implemented five different constitutive equations to describe the nonlinearity. These consisted of linear elastic, nonlinear viscoelastic and multiple nonlinear elastic representations. The model incorporating the most nonlinearly increasing Young׳s modulus of collagen fibrils as a function of strain captured best the experimental data. Relative difference between the model and experiment was ~3%. Surprisingly, the difference in the peak forces between the experiment and the model with viscoelastic collagen fibrils was almost 20%. Implementation of the measured volume fractions did not improve the ability of the model to capture the measured mechanical data. These results suggest that a highly nonlinear formulation for collagen fibrils is needed to replicate multi-step stress-relaxation response of rabbit articular cartilage in indentation with high strain rates. PMID:27130474

  20. Electrostimulation of the magnetoplastic effect in LiF crystals by an "internal" electric field induced during indentation

    NASA Astrophysics Data System (ADS)

    Galustashvili, M. V.; Driaev, D. G.; Akopov, F. Kh.; Tsakadze, S. D.

    2013-08-01

    Indented LiF crystals demonstrate a change in the length of the dislocation rosette rays during their exposure to jointly acting dc magnetic and electric fields. It is shown that magnetic field with induction B = 1 T causes the electrostimulation or electrosuppression depending on the magnitude and direction of the external electric field with respect to the "internal" electric field induced by the charge transfer due to dislocations moving during the indentation.

  1. Investigation of laser Doppler anemometry in developing a velocity-based measurement technique

    NASA Astrophysics Data System (ADS)

    Jung, Ki Won

    2009-12-01

    Acoustic properties, such as the characteristic impedance and the complex propagation constant, of porous materials have been traditionally characterized based on pressure-based measurement techniques using microphones. Although the microphone techniques have evolved since their introduction, the most general form of the microphone technique employs two microphones in characterizing the acoustic field for one continuous medium. The shortcomings of determining the acoustic field based on only two microphones can be overcome by using numerous microphones. However, the use of a number of microphones requires a careful and intricate calibration procedure. This dissertation uses laser Doppler anemometry (LDA) to establish a new measurement technique which can resolve issues that microphone techniques have: First, it is based on a single sensor, thus the calibration is unnecessary when only overall ratio of the acoustic field is required for the characterization of a system. This includes the measurements of the characteristic impedance and the complex propagation constant of a system. Second, it can handle multiple positional measurements without calibrating the signal at each position. Third, it can measure three dimensional components of velocity even in a system with a complex geometry. Fourth, it has a flexible adaptability which is not restricted to a certain type of apparatus only if the apparatus is transparent. LDA is known to possess several disadvantages, such as the requirement of a transparent apparatus, high cost, and necessity of seeding particles. The technique based on LDA combined with a curvefitting algorithm is validated through measurements on three systems. First, the complex propagation constant of the air is measured in a rigidly terminated cylindrical pipe which has very low dissipation. Second, the radiation impedance of an open-ended pipe is measured. These two parameters can be characterized by the ratio of acoustic field measured at multiple

  2. Elastic modulus measurements at variable temperature: Validation of atomic force microscopy techniques

    NASA Astrophysics Data System (ADS)

    Natali, Marco; Reggente, Melania; Passeri, Daniele; Rossi, Marco

    2016-06-01

    The development of polymer-based nanocomposites to be used in critical thermal environments requires the characterization of their mechanical properties, which are related to their chemical composition, size, morphology and operating temperature. Atomic force microscopy (AFM) has been proven to be a useful tool to develop techniques for the mechanical characterization of these materials, thanks to its nanometer lateral resolution and to the capability of exerting ultra-low loads, down to the piconewton range. In this work, we demonstrate two techniques, one quasi-static, i.e., AFM-based indentation (I-AFM), and one dynamic, i.e., contact resonance AFM (CR-AFM), for the mechanical characterization of compliant materials at variable temperature. A cross-validation of I-AFM and CR-AFM has been performed by comparing the results obtained on two reference materials, i.e., low-density polyethylene (LDPE) and polycarbonate (PC), which demonstrated the accuracy of the techniques.

  3. New Ways in Content-Based Instruction. New Ways in TESOL Series II. Innovative Classroom Techniques.

    ERIC Educational Resources Information Center

    Brinton, Donna M., Ed.; Master, Peter, Ed.

    A wide variety of techniques and classroom activities, contributed by teachers, for content-based instruction (CBI) in English as a second language (ESL) are presented. CBI is defined to include theme-based second language courses, sheltered content-area courses, and paired or adjunct arrangements in which language and content courses are taught…

  4. Simultaneous and integrated neutron-based techniques for material analysis of a metallic ancient flute

    NASA Astrophysics Data System (ADS)

    Festa, G.; Pietropaolo, A.; Grazzi, F.; Sutton, L. F.; Scherillo, A.; Bognetti, L.; Bini, A.; Barzagli, E.; Schooneveld, E.; Andreani, C.

    2013-09-01

    A metallic 19th century flute was studied by means of integrated and simultaneous neutron-based techniques: neutron diffraction, neutron radiative capture analysis and neutron radiography. This experiment follows benchmark measurements devoted to assessing the effectiveness of a multitask beamline concept for neutron-based investigation on materials. The aim of this study is to show the potential application of the approach using multiple and integrated neutron-based techniques for musical instruments. Such samples, in the broad scenario of cultural heritage, represent an exciting research field. They may represent an interesting link between different disciplines such as nuclear physics, metallurgy and acoustics.

  5. An optoelectrokinetic technique for programmable particle manipulation and bead-based biosignal enhancement.

    PubMed

    Wang, Kuan-Chih; Kumar, Aloke; Williams, Stuart J; Green, Nicolas G; Kim, Kyung Chun; Chuang, Han-Sheng

    2014-10-21

    Technologies that can enable concentration of low-abundance biomarkers are essential for early diagnosis of diseases. In this study, an optoelectrokinetic technique, termed Rapid Electrokinetic Patterning (REP), was used to enable dynamic particle manipulation in bead-based bioassays. Various manipulation capabilities, such as micro/nanoparticle aggregation, translation, sorting and patterning, were developed. The technique allows for versatile multi-parameter (voltage, light intensity and frequency) based modulation and dynamically addressable manipulation with simple device fabrication. Signal enhancement of a bead-based bioassay was demonstrated using dilute biotin-fluorescein isothiocyanate (FITC) solutions mixed with streptavidin-conjugated particles and rapidly concentrated with the technique. As compared with a conventional ELISA reader, the REP-enabled detection achieved a minimal readout of 3.87 nM, which was a 100-fold improvement in sensitivity. The multi-functional platform provides an effective measure to enhance detection levels in more bead-based bioassays. PMID:25109364

  6. Review of Fluorescence-Based Velocimetry Techniques to Study High-Speed Compressible Flows

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Johansen, Criag; Inman, Jennifer A.; Jones, Stephen B.; Danehy, Paul M.

    2013-01-01

    This paper reviews five laser-induced fluorescence-based velocimetry techniques that have been used to study high-speed compressible flows at NASA Langley Research Center. The techniques discussed in this paper include nitric oxide (NO) molecular tagging velocimetry (MTV), nitrogen dioxide photodissociation (NO2-to-NO) MTV, and NO and atomic oxygen (O-atom) Doppler-shift-based velocimetry. Measurements of both single-component and two-component velocity have been performed using these techniques. This paper details the specific application and experiment for which each technique has been used, the facility in which the experiment was performed, the experimental setup, sample results, and a discussion of the lessons learned from each experiment.

  7. Acceleration techniques for reduced-order models based on proper orthogonal decomposition

    SciTech Connect

    Cizmas, P.; Richardson, B.; Brenner, T.; O'Brien, T.; Breault, R.

    2008-01-01

    This paper presents several acceleration techniques for reduced-order models based on the proper orthogonal decomposition (POD) method. The techniques proposed herein are: (i) an algorithm for splitting the database of snapshots generated by the full-order model; (ii) a method for solving quasi-symmetrical matrices; (iii) a strategy for reducing the frequency of the projection. The acceleration techniques were applied to a POD-based reduced-order model of the twophase flows in fluidized beds. This reduced-order model was developed using numerical results from a full-order computational fluid dynamics model of a two-dimensional fluidized bed. Using these acceleration techniques the computational time of the POD model was two orders of magnitude shorter than the full-order model.

  8. Interferometric Dynamic Measurement: Techniques Based on High-Speed Imaging or a Single Photodetector

    PubMed Central

    Fu, Yu; Pedrini, Giancarlo

    2014-01-01

    In recent years, optical interferometry-based techniques have been widely used to perform noncontact measurement of dynamic deformation in different industrial areas. In these applications, various physical quantities need to be measured in any instant and the Nyquist sampling theorem has to be satisfied along the time axis on each measurement point. Two types of techniques were developed for such measurements: one is based on high-speed cameras and the other uses a single photodetector. The limitation of the measurement range along the time axis in camera-based technology is mainly due to the low capturing rate, while the photodetector-based technology can only do the measurement on a single point. In this paper, several aspects of these two technologies are discussed. For the camera-based interferometry, the discussion includes the introduction of the carrier, the processing of the recorded images, the phase extraction algorithms in various domains, and how to increase the temporal measurement range by using multiwavelength techniques. For the detector-based interferometry, the discussion mainly focuses on the single-point and multipoint laser Doppler vibrometers and their applications for measurement under extreme conditions. The results show the effort done by researchers for the improvement of the measurement capabilities using interferometry-based techniques to cover the requirements needed for the industrial applications. PMID:24963503

  9. Interferometric dynamic measurement: techniques based on high-speed imaging or a single photodetector.

    PubMed

    Fu, Yu; Pedrini, Giancarlo; Li, Xide

    2014-01-01

    In recent years, optical interferometry-based techniques have been widely used to perform noncontact measurement of dynamic deformation in different industrial areas. In these applications, various physical quantities need to be measured in any instant and the Nyquist sampling theorem has to be satisfied along the time axis on each measurement point. Two types of techniques were developed for such measurements: one is based on high-speed cameras and the other uses a single photodetector. The limitation of the measurement range along the time axis in camera-based technology is mainly due to the low capturing rate, while the photodetector-based technology can only do the measurement on a single point. In this paper, several aspects of these two technologies are discussed. For the camera-based interferometry, the discussion includes the introduction of the carrier, the processing of the recorded images, the phase extraction algorithms in various domains, and how to increase the temporal measurement range by using multiwavelength techniques. For the detector-based interferometry, the discussion mainly focuses on the single-point and multipoint laser Doppler vibrometers and their applications for measurement under extreme conditions. The results show the effort done by researchers for the improvement of the measurement capabilities using interferometry-based techniques to cover the requirements needed for the industrial applications. PMID:24963503

  10. Material removal mechanism of 6H-SiC studied by nano-scratching with Berkovich indenter

    NASA Astrophysics Data System (ADS)

    Meng, Binbin; Zhang, Yong; Zhang, Feihu

    2016-03-01

    The aim of this paper was to analyze the deformation characteristics and material removal mechanism of mono-crystal silicon carbide. The nano-scratching tests were conducted on the surface of 6H-SiC (0001) by using Berkovich nano-indenter. In the presence of various characterization techniques, a variety of new achievements have been reached. Phase transformation behavior in the nano-scratching process of mono-crystal silicon carbide (6H-SiC) is revealed by using the transmission electron microscope in this work. Amorphous phase and dislocation activities are found near the surface area under the bottom of the scratch which stands as the major cause triggering the plastic removal of this material, with no other forms of crystalline structure found, by which the plastic removal mechanism of mono-crystal silicon carbide was well identified. With a crack-free surface that had been processed, the chip broke away from the bulk in the form of plastic mode, but the subsurface was covered by cracks with their lengths many times longer than the machined depth. The results of laser Raman indicated that residual amorphous phase exits in the chips under the condition of the plastic removal of this material.

  11. Characterization of damage mechanisms associated with reference point indentation in human bone.

    PubMed

    Beutel, Bryan G; Kennedy, Oran D

    2015-06-01

    Measurement of bone mineral density (BMD) is the clinical gold standard in cases of compromised skeletal integrity, such as with osteoporosis. While BMD is a useful measurement to index skeletal health, it is also limited since it cannot directly assess any mechanical properties. The ability to directly assess mechanical properties of bone tissue would be clinically important. Reference point indentation (RPI) is a technology that has been designed to try and achieve this goal. While RPI has been shown to detect altered bone tissue properties, the underlying physical mechanism of these measurements has not been characterized. Thus, we designed a study whereby the contribution of (1) test cycle number and (2) test load level to RPI test-induced sub-surface damage was characterized and quantified. Standardized specimens were prepared from cadaveric human tibiae (n=6), such that 12 replicates of each testing condition could be carried out. A custom rig was fabricated to accurately position and map indentation sites. One set of tests was carried out with 1, 5, 10, 15 and 20 cycles (Max Load: 8 N, Freq: 2 Hz), and a second set of tests was carried out with Load levels of 2, 4, 6, 8 or 10 N (Cycle number: 20, Freq: 2 Hz). The RPI parameter Loading Slope (LS) was cycle dependent at 5, 10, 15 and 20 cycles (p<0.05). First Cycle Indentation Distance (ID 1st), Total Indentation Distance (TID), Mean Energy Dissipation (ED), First Cycle Unloading Slope (US 1st), Mean Unloading Slope (US) and LS were significantly different at 6, 8 and 10 N compared to 2 N (p<0.05). From the histomorphometric measurements, damage zone span was significantly different after 5, 10, 15 and 20 cycles compared with 1 cycle while indent profile width and indent profile depth were significantly different at 10, 15 and 20 cycles (p<0.05). With the load varying protocol, each of these parameters differed significantly at each increased load level (4, 6, 8, 10 N) compared with the basal level of 2 N (p<0

  12. Computer-aided diagnosis in breast MRI based on unsupervised clustering techniques

    NASA Astrophysics Data System (ADS)

    Meyer-Baese, Anke; Wismueller, Axel; Lange, Oliver; Leinsinger, Gerda

    2004-04-01

    Exploratory data analysis techniques are applied to the segmentation of lesions in MRI mammography as a first step of a computer-aided diagnosis system. Three new unsupervised clustering techniques are tested on biomedical time-series representing breast MRI scans: fuzzy clustering based on deterministic annealing, "neural gas" network, and topographic independent component analysis. While the first two methods enable a correct segmentation of the lesion, the latter, although incorporating a topographic mapping, fails to detect and subclassify lesions.

  13. Novel anti-jamming technique for OCDMA network through FWM in SOA based wavelength converter

    NASA Astrophysics Data System (ADS)

    Jyoti, Vishav; Kaler, R. S.

    2013-06-01

    In this paper, we propose a novel anti-jamming technique for optical code division multiple access (OCDMA) network through four wave mixing (FWM) in semiconductor optical amplifier (SOA) based wavelength converter. OCDMA signal can be easily jammed with high power jamming signal. It is shown that wavelength conversion through four wave mixing in SOA has improved capability of jamming resistance. It is observed that jammer has no effect on OCDMA network even at high jamming powers by using the proposed technique.

  14. Comparison of ITS, RAPD and ISSR from DNA-based genetic diversity techniques.

    PubMed

    Poyraz, Ismail

    2016-01-01

    ITS, RAPD-PCR and ISSR-PCR are most popular DNA-based techniques that are extensively applied in the determination of the genetic diversity of species among populations. However, especially for organisms having high genetic polymorphism, phylogenetic trees drawn from the results of these techniques may be different. For finding a meaningful phylogenetic tree, it should be compared phylogenetic trees obtained from these different techniques with geographic locations of populations. Lichens have a high genetic polymorphism and tolerance against different environmental conditions. In this study, these three DNA-based genetic diversity techniques were compared, using different populations of a lichen species (Xanthoria parietina). X. parietina was especially chosen because of its high genetic diversity in narrow zones. Lichen samples were collected from ten different locations in a narrow transition climate zone Bilecik (Turkey). Statistical analyses of all results were calculated using UPGMA analysis. Phylogenic trees for each technique were drawn and transferred to the Bilecik map for comparative analysis. The results of three techniques allowed us to verify that populations of X. parietina have high genetic variety in a narrow zone. But phylogenetic trees obtained from these results were found to be very different. Our comparative analysis demonstrated that the results of these techniques are not similar and have critical differences. We observed that the ITS method provides more clear data and is more successful in genetic diversity analyses of more asunder populations, in contrast to ISSR-PCR and RAPD-PCR methods. PMID:27156497

  15. A NURBS-based technique for subject-specific construction of knee bone geometry.

    PubMed

    Au, Anthony G; Palathinkal, Darren; Liggins, Adrian B; Raso, V James; Carey, Jason; Lambert, Robert G; Amirfazli, A

    2008-10-01

    Subject-specific finite element (FE) models of bones that form the knee joint require rapid and accurate geometry construction. The present study introduces a semi-automatic non-uniform rational B-spline (NURBS) technique to construct knee bone geometries from computed tomography (CT) images using a combination of edge extraction and CAD surface generation. In particular, this technique accurately constructs endosteal surfaces and can accommodate thin cortical bone by estimating the cortical thickness from well-defined surrounding bone. A procedure is also introduced to overcome the bifurcation at the femoral condyles during surface generation by combining transverse and sagittal plane CT data. Available voxel- and NURBS-based subject-specific construction techniques accurately capture periosteal surfaces but are limited in their ability to capture endosteal geometry. In this study, the proposed NURBS-based technique and a typical voxel mesh technique captured periosteal surfaces within an order of magnitude of image resolution. The endosteum of diaphyseal bone was also captured with similar accuracy by both techniques. However, the voxel mesh model failed to accurately capture the metaphyseal and epiphyseal endosteum due to the poor CT contrast of thin cortical bone, resulting in gross overestimation of cortical thickness. The proposed technique considered both the local and global nature of CT images to arrive at a description of cortical bone thickness accurate to within 2 pixel lengths. PMID:18644314

  16. Fourier transform image processing techniques for grid-based phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Tahir, Sajjad; Bashir, Sajid; Petruccelli, Jonathan C.; MacDonald, C. A.

    2014-09-01

    A recently developed technique for phase imaging using table top sources is to use multiple fine-pitch gratings. However, the strict manufacturing tolerences and precise alignment required have limited the widespread adoption of grating-based techniques. In this work, we employ a technique recently demonstrated by Bennett et al.1 that ultilizes a single grid of much coarser pitch. Phase is extracted using Fourier processing on a single raw image taken using a focused mammography grid. The effects on the final image of varying grid, object, and detector distances, window widths, and of a variety of windowing functions, used to separate the harmonics, were investigated.

  17. Bandwidth-Tunable Fiber Bragg Gratings Based on UV Glue Technique

    NASA Astrophysics Data System (ADS)

    Fu, Ming-Yue; Liu, Wen-Feng; Chen, Hsin-Tsang; Chuang, Chia-Wei; Bor, Sheau-Shong; Tien, Chuen-Lin

    2007-07-01

    In this study, we have demonstrated that a uniform fiber Bragg grating (FBG) can be transformed into a chirped fiber grating by a simple UV glue adhesive technique without shifting the reflection band with respect to the center wavelength of the FBG. The technique is based on the induced strain of an FBG due to the UV glue adhesive force on the fiber surface that causes a grating period variation and an effective index change. This technique can provide a fast and simple method of obtaining the required chirp value of a grating for applications in the dispersion compensators, gain flattening in erbium-doped fiber amplifiers (EDFAs) or optical filters.

  18. Late-stage cooling history of the Eastern and Southern Alps and its linkage to Adria indentation

    NASA Astrophysics Data System (ADS)

    Heberer, Bianca; Reverman, Rebecca; Fellin, Maria; Neubauer, Franz; Dunkl, István; Zattin, Massimiliano; Seward, Diane; Brack, Peter; Genser, Johann

    2016-04-01

    Late-orogenic indentation by rigid lithospheric plates and microplates into softer orogenic wedges leads to post-collisional shortening, lithospheric thickening and vertical and lateral extrusion. The European Eastern and Southern Alps represent a prime example of indenter tectonics. Their Late Neogene geodynamic framework is influenced primarily by the ca. NW-ward motion and counterclockwise rotation of the Adriatic microplate with respect to Europe, which resulted in an oblique, dextral transpressional setting. In this study we refine the late-stage exhumation pattern related to indentation of the eastern Adriatic indenter, i.e. the still northward pushing triangular northeastern part of the Southalpine block that indented the Eastern Alps. New apatite (U-Th)/He and apatite fission track thermochronometry data come from (1) the Karawanken Mountains adjacent to the eastern Periadriatic fault along the northeastern edge of the indenter and from (2) the central-eastern Southern Alps from within the indenter and from its western edge. We find apatite (U-Th)/He ages from the Karawanken Mountains ranging between 11 and 6 Ma, which indicate an episode of fault-related exhumation leading to the formation of a positive flower structure and an associated peripheral foreland basin as well as lateral activity along the Periadriatic fault system. Apatite (U/Th)/He and fission-track data combined with previous data from the Southern Alps indicate that exhumation largely occurred during the Late Miocene, too, and was maximized along thrust systems, with highly differential amounts of vertical displacement along individual structures. Our new data contribute to mounting evidence for widespread Late Miocene tectonic activity in the Eastern and Southern Alps. They demonstrate a shift from deformation and exhumation concentrated within the Tauern Window at the beginning of the indentation process, to less pronounced, but more widespread exhumation along the edges as well as the

  19. Efficient techniques for wave-based sound propagation in interactive applications

    NASA Astrophysics Data System (ADS)

    Mehra, Ravish

    Sound propagation techniques model the effect of the environment on sound waves and predict their behavior from point of emission at the source to the final point of arrival at the listener. Sound is a pressure wave produced by mechanical vibration of a surface that propagates through a medium such as air or water, and the problem of sound propagation can be formulated mathematically as a second-order partial differential equation called the wave equation. Accurate techniques based on solving the wave equation, also called the wave-based techniques, are too expensive computationally and memory-wise. Therefore, these techniques face many challenges in terms of their applicability in interactive applications including sound propagation in large environments, time-varying source and listener directivity, and high simulation cost for mid-frequencies. In this dissertation, we propose a set of efficient wave-based sound propagation techniques that solve these three challenges and enable the use of wave-based sound propagation in interactive applications. Firstly, we propose a novel equivalent source technique for interactive wave-based sound propagation in large scenes spanning hundreds of meters. It is based on the equivalent source theory used for solving radiation and scattering problems in acoustics and electromagnetics. Instead of using a volumetric or surface-based approach, this technique takes an object-centric approach to sound propagation. The proposed equivalent source technique generates realistic acoustic effects and takes orders of magnitude less runtime memory compared to prior wave-based techniques. Secondly, we present an efficient framework for handling time-varying source and listener directivity for interactive wave-based sound propagation. The source directivity is represented as a linear combination of elementary spherical harmonic sources. This spherical harmonic-based representation of source directivity can support analytical, data

  20. Distributed Synchronization Technique for OFDMA-Based Wireless Mesh Networks Using a Bio-Inspired Algorithm

    PubMed Central

    Kim, Mi Jeong; Maeng, Sung Joon; Cho, Yong Soo

    2015-01-01

    In this paper, a distributed synchronization technique based on a bio-inspired algorithm is proposed for an orthogonal frequency division multiple access (OFDMA)-based wireless mesh network (WMN) with a time difference of arrival. The proposed time- and frequency-synchronization technique uses only the signals received from the neighbor nodes, by considering the effect of the propagation delay between the nodes. It achieves a fast synchronization with a relatively low computational complexity because it is operated in a distributed manner, not requiring any feedback channel for the compensation of the propagation delays. In addition, a self-organization scheme that can be effectively used to construct 1-hop neighbor nodes is proposed for an OFDMA-based WMN with a large number of nodes. The performance of the proposed technique is evaluated with regard to the convergence property and synchronization success probability using a computer simulation. PMID:26225974