Science.gov

Sample records for baseline characterization measurements

  1. 324 Building Baseline Radiological Characterization

    SciTech Connect

    R.J. Reeder, J.C. Cooper

    2010-06-24

    This report documents the analysis of radiological data collected as part of the characterization study performed in 1998. The study was performed to create a baseline of the radiological conditions in the 324 Building.

  2. Baseline Graphite Characterization: First Billet

    SciTech Connect

    Mark C. Carroll; Joe Lords; David Rohrbaugh

    2010-09-01

    The Next Generation Nuclear Plant Project Graphite Research and Development program is currently establishing the safe operating envelope of graphite core components for a very high temperature reactor design. To meet this goal, the program is generating the extensive amount of quantitative data necessary for predicting the behavior and operating performance of the available nuclear graphite grades. In order determine the in-service behavior of the graphite for the latest proposed designs, two main programs are underway. The first, the Advanced Graphite Creep (AGC) program, is a set of experiments that are designed to evaluate the irradiated properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences, and compressive loads. Despite the aggressive experimental matrix that comprises the set of AGC test runs, a limited amount of data can be generated based upon the availability of space within the Advanced Test Reactor and the geometric constraints placed on the AGC specimens that will be inserted. In order to supplement the AGC data set, the Baseline Graphite Characterization program will endeavor to provide supplemental data that will characterize the inherent property variability in nuclear-grade graphite without the testing constraints of the AGC program. This variability in properties is a natural artifact of graphite due to the geologic raw materials that are utilized in its production. This variability will be quantified not only within a single billet of as-produced graphite, but also from billets within a single lot, billets from different lots of the same grade, and across different billets of the numerous grades of nuclear graphite that are presently available. The thorough understanding of this variability will provide added detail to the irradiated property data, and provide a more thorough understanding of the behavior of graphite that will be used in reactor design and licensing. This report covers the

  3. Baseline Microstructural Characterization of Outer 3013 Containers

    SciTech Connect

    Zapp, Phillip E.; Dunn, Kerry A

    2005-07-31

    Three DOE Standard 3013 outer storage containers were examined to characterize the microstructure of the type 316L stainless steel material of construction. Two of the containers were closure-welded yielding production-quality outer 3013 containers; the third examined container was not closed. Optical metallography and Knoop microhardness measurements were performed to establish a baseline characterization that will support future destructive examinations of 3013 outer containers in the storage inventory. Metallography revealed the microstructural features typical of this austenitic stainless steel as it is formed and welded. The grains were equiaxed with evident annealing twins. Flow lines were prominent in the forming directions of the cylindrical body and flat lids and bottom caps. No adverse indications were seen. Microhardness values, although widely varying, were consistent with annealed austenitic stainless steel. The data gathered as part of this characterization will be used as a baseline for the destructive examination of 3013 containers removed from the storage inventory.

  4. SEAGRASS BASELINE CHARACTERIZATION MX974334

    EPA Science Inventory

    This project will continue to develop baseline data to document the current status of seagrass habitat and its relationship to water quality in the region. Implement monitoring programs and map seagrassess throughout the entire Big Bend region. Within this study area, three ap...

  5. The Advanced Noise Control Fan Baseline Measurements

    NASA Technical Reports Server (NTRS)

    McAllister, Joseph; Loew, Raymond A.; Lauer, Joel T.; Stuliff, Daniel L.

    2009-01-01

    The NASA Glenn Research Center s (NASA Glenn) Advanced Noise Control Fan (ANCF) was developed in the early 1990s to provide a convenient test bed to measure and understand fan-generated acoustics, duct propagation, and radiation to the farfield. As part of a complete upgrade, current baseline and acoustic measurements were documented. Extensive in-duct, farfield acoustic, and flow field measurements are reported. This is a follow-on paper to documenting the operating description of the ANCF.

  6. Second biannaul recalibration of two spectral gamma-ray logging systems used for baseline characterization measurements in the Hanford Tank Farms

    SciTech Connect

    Koizumi, C.J.

    1996-08-01

    The U.S. Department of Energy`s (DOE) Grand Junction Projects Office (GJPO) is establishing an initial, or baseline, characterization of gamma-ray-emitting contaminants in the subsurface of the Tank Farms at the DOE Hanford Site in the State of Washington. These baseline data are gathered by logging existing monitoring boreholes with two high-resolution passive spectral gamma-ray logging systems (SGLSs) informally known as Gamma 1 and Gamma 2. Calibration of the logging systems is crucial to the assurance of data quality. The project document Vadose Zone Monitoring Project at the Hanford Tank Farms, Spectral Gamma-Ray Borehole Geophysical Logging Characterization and Baseline Monitoring Plan for the Hanford Single-Shell Tanks specifies that both systems must be recalibrated, using the calibration standards at the Hanford borehole logging calibration center, every 6 months. DOE presents a description of the first recalibrations.

  7. SRP baseline hydrogeologic investigation: Aquifer characterization

    SciTech Connect

    Strom, R.N.; Kaback, D.S.

    1992-03-31

    An investigation of the mineralogy and chemistry of the principal hydrogeologic units and the geochemistry of the water in the principal aquifers at Savannah River Site (SRS) was undertaken as part of the Baseline Hydrogeologic Investigation. This investigation was conducted to provide background data for future site studies and reports and to provide a site-wide interpretation of the geology and geochemistry of the Coastal Plain Hydrostratigraphic province. Ground water samples were analyzed for major cations and anions, minor and trace elements, gross alpha and beta, tritium, stable isotopes of hydrogen, oxygen, and carbon, and carbon-14. Sediments from the well borings were analyzed for mineralogy and major and minor elements.

  8. Cognitive performance baseline measurement and eye movement performance measures

    NASA Astrophysics Data System (ADS)

    Viirre, Erik S.; Chase, Bradley; Tsai, Yi-Fang

    2005-05-01

    Personnel are often required to perform multiple simultaneous tasks at the limits of their cognitive capacity. In research surrounding cognitive performance resources for tasks during stress and high cognitive workload, one area of deficiency is measurement of individual differences. To determine the amount of attentional demand a stressor places on a subject, one must first know that all subjects are performing at the same level with the same amount of available capacity in the control condition. By equating the baselines of performance across all subjects ("baselining") we can control for differing amounts of performance capacity or attentional resources in each individual. For example, a given level of task performance without a time restriction may be equated across subjects to account for attentional resources. Training to a fixed level of proficiency with time limits might obliterate individual differences in mental resources. Eye movement parameters may serve as a real-time measure of attentional demand. In implementing a baselining technique to control for individual differences, eye movement behaviors will be associated with the true cognitive demands of task loading or other stressors. Using eye movement data as a proxy for attentional state, it may be possible to "close the loop" on the human-machine system, providing a means by which the system can adapt to the attentional state of the human operator. In our presentation, eye movement data will be shown with and without the benefit of the baselining technique. Experimental results will be discussed within the context of this theoretical framework.

  9. BASELINE UT MEASUREMENTS FOR ARMOR INSPECTION

    SciTech Connect

    Margetan, Frank J.; Richter, Nate; Barnard, Dan; Hsu, David; Gray, Tim; Brasche, Lisa; Bruce Thompson, R.

    2010-02-22

    Some prototype armor panels are fabricated from several layers of dissimilar material bonded together. These may include ceramics, graphite composites, fiberglass composites and rubber. The ultrasonic properties of these layers influence inspections for armor defects. In this paper we describe measurements of ultrasonic velocity, attenuation, sound beam distortion and signal fluctuations for the individual layers comprising one armor prototype. We then discuss how knowledge of these properties can be used when choosing an optimum frequency for an ultrasonic pitch/catch immersion inspection. In our case an effective inspection frequency near 1.5 MHz affords: (1) adequate strength of through-transmitted signals in unflawed armor; (2) adequate lateral resolution for detecting small disbonds at interfaces; and (3) low levels of UT signal fluctuations due to the natural inhomogeneity of certain armor layers. The utility of this approach is demonstrated using armor panels containing artificial disbonds at selected interfaces.

  10. Baseline Bone Mineral Density Measurements Key to Future Testing Intervals

    MedlinePlus

    ... on Research 2012 May 2012 (historical) Baseline Bone Mineral Density Measurements Key to Future Testing Intervals How often a woman should have bone mineral density (BMD) tests to track bone mass is ...

  11. GPS Measurements of the Baseline Between Quincy and Platform Harvest

    NASA Technical Reports Server (NTRS)

    Purcell, G., Jr.; Dinardo, S.; Vigue, Y.; Jefferson, D.; Lichten, S.

    1994-01-01

    As part of TOPEX altimeter verification, the Global Positioning System has been used to measure the baseline between the verification site at oil platform Harvest and a GPS antenna collocated with the satellite laser ranging site at Quincy, California.

  12. TWRS phase I privatization site environmental baseline and characterization plan

    SciTech Connect

    Shade, J.W.

    1997-09-01

    This document provides a plan to characterize and develop an environmental baseline for the TWRS Phase I Privatization Site before construction begins. A site evaluation study selected the former Grout Disposal Area of the Grout Treatment Facility in the 200 East Area as the TWRS Phase I Demonstration Site. The site is generally clean and has not been used for previous activities other than the GTF. A DQO process was used to develop a Sampling and Analysis Plan that would allow comparison of site conditions during operations and after Phase I ends to the presently existing conditions and provide data for the development of a preoperational monitoring plan.

  13. Measuring ocean coherence time with dual-baseline interferometry

    NASA Technical Reports Server (NTRS)

    Carande, Richard E.

    1992-01-01

    Using the Jet Propulsion Laboratory (JPL) Airborne Synthetic Aperture Radar (AIRSAR) interferometer, measurements of the ocean coherence time at L and C band can be made at high spatial resolution. Fundamental to this measurement is the ability to image the ocean interferometrically at two different time-lags, or baselines. By modifying the operating procedure of the existing two antenna interferometer, a technique was developed make these measurements. L band coherence times are measured and presented.

  14. Precision Measurements of Long-Baseline Neutrino Oscillation at LBNF

    DOE PAGESBeta

    Worcester, Elizabeth

    2015-08-06

    In a long-baseline neutrino oscillation experiment, the primary physics objectives are to determine the neutrino mass hierarchy, to determine the octant of the neutrino mixing angle θ23, to search for CP violation in neutrino oscillation, and to precisely measure the size of any CP-violating effect that is discovered. This presentation provides a brief introduction to these measurements and reports on efforts to optimize the design of a long-baseline neutrino oscillation experiment, the status of LBNE, and the transition to an international collaboration at LBNF.

  15. Precision Measurements of Long-Baseline Neutrino Oscillation at LBNF

    SciTech Connect

    Worcester, Elizabeth

    2015-08-06

    In a long-baseline neutrino oscillation experiment, the primary physics objectives are to determine the neutrino mass hierarchy, to determine the octant of the neutrino mixing angle θ23, to search for CP violation in neutrino oscillation, and to precisely measure the size of any CP-violating effect that is discovered. This presentation provides a brief introduction to these measurements and reports on efforts to optimize the design of a long-baseline neutrino oscillation experiment, the status of LBNE, and the transition to an international collaboration at LBNF.

  16. Baseline measurements of terrestrial gamma radioactivity at the CEBAF site

    SciTech Connect

    Wollenberg, H.A.; Smith, A.R.

    1991-10-01

    A survey of the gamma radiation background from terrestrial sources was conducted at the CEBAF site, Newport News, Virginia, on November 12--16, 1990, to provide a gamma radiation baseline for the site prior to the startup of the accelerator. The concentrations and distributions of the natural radioelements in exposed soil were measured, and the results of the measurements were converted into gamma-ray exposure rates. Concurrently, samples were collected for laboratory gamma spectral analyses.

  17. Measurement of Baseline and Orientation between Distributed Aerospace Platforms

    PubMed Central

    2013-01-01

    Distributed platforms play an important role in aerospace remote sensing, radar navigation, and wireless communication applications. However, besides the requirement of high accurate time and frequency synchronization for coherent signal processing, the baseline between the transmitting platform and receiving platform and the orientation of platform towards each other during data recording must be measured in real time. In this paper, we propose an improved pulsed duplex microwave ranging approach, which allows determining the spatial baseline and orientation between distributed aerospace platforms by the proposed high-precision time-interval estimation method. This approach is novel in the sense that it cancels the effect of oscillator frequency synchronization errors due to separate oscillators that are used in the platforms. Several performance specifications are also discussed. The effectiveness of the approach is verified by simulation results. PMID:23844416

  18. First epoch measurements by Mark III VLBI of the San Andreas Fault experiment baseline

    SciTech Connect

    Ryan, J.W.

    1985-08-01

    The 883-km-long San Andreas Fault Experiment (SAFE) baseline between Quincy in northern California and Monument Peak in southern California spans the San Andreas Fault in a way designed to measure motion between the North American and the Pacific Plates. This baseline and a closely related baseline have been measured with the satellite laser ranging techniques (SLR) for over 10 years. The baseline was measured with the very-long-baseline interferometry (VLBI) technique to confirm or reject the results already obtained from SLR.

  19. Toward an Appropriate Baseline for Measures of Eye Movement Behavior During Reading

    ERIC Educational Resources Information Center

    McDonald, Scott A.; Shillcock, Richard C.

    2005-01-01

    In empirical studies of human eye movement behavior during reading, it is common to compute various summary measures from the data, but these measures are typically not evaluated with respect to corresponding measures of baseline performance. The authors present a method for deriving an appropriate baseline by mapping the actual behavior to a…

  20. Baseline Measurement of Running Away among Youth in Foster Care

    ERIC Educational Resources Information Center

    Witherup, Luanne R.; Vollmer, Timothy R.; Van Camp, Carole M.; Goh, Han-Leong; Borrero, John C.; Mayfield, Kristin

    2008-01-01

    The current study evaluated the use of various behavioral measures of running away with regard to (a) the differential utility of interval- versus event-based measures, (b) the differential utility of rate versus duration measures, (c) the utility of correcting for occurrence opportunity, and (d) the influence of unit of analysis (i.e.,…

  1. Baseline measures for net-proton distributions in high energy heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Netrakanti, P. K.; Luo, X. F.; Mishra, D. K.; Mohanty, B.; Mohanty, A.; Xu, N.

    2016-03-01

    We report a systematic comparison of the recently measured cumulants of the net-proton distributions for 0-5% central Au + Au collisions in the first phase of the Beam Energy Scan (BES) Program at the Relativistic Heavy Collider facility to various kinds of possible baseline measures. These baseline measures correspond to an assumption that the proton and anti-proton distributions follow Poisson statistics, Binomial statistics, obtained from a transport model calculation and from a hadron resonance gas model. The higher order cumulant net-proton data for the center of mass energies (√{sNN}) of 19.6 and 27 GeV are observed to deviate from most of the baseline measures studied. The deviations are predominantly due to the difference in shape of the proton distributions between data and those obtained in the baseline measures. We also present a detailed study on the relevance of the independent production approach as a baseline for comparison with the measurements at various beam energies. Our studies point to the need of either more detailed baseline models for the experimental measurements or a description via QCD calculations in order to extract the exact physics process that leads to deviation of the data from the baselines presented.

  2. Baseline measurements of smoke exposure among wildland firefighters.

    PubMed

    Reinhardt, Timothy E; Ottmar, Roger D

    2004-09-01

    Extensive measurements of smoke exposure among wildland firefighters are summarized, showing that firefighters can be exposed to significant levels of carbon monoxide and respiratory irritants, including formaldehyde, acrolein, and respirable particulate matter. Benzene was also measured and found to be well below permissible exposure limits, with the highest concentrations occurring among firefighters working with engines and torches burning petroleum-based fuel. Exposures to all pollutants were higher among firefighters at prescribed burns than at wildfires, while shift-average smoke exposures were lowest among firefighters who performed initial attack of wildfires in the early stages of the fires. Smoke exposure reaches its highest levels among firefighters maintaining fire within designated firelines and performing direct attack of spot fires that cross firelines. These events and the associated smoke exposures were positively correlated with increasing ambient wind speeds, which hamper fire management and carry the convective plume of the fire into firefighters' breathing zone. The pollutants measured in smoke were reasonably well-correlated with each other, enabling estimation of exposure to multiple pollutants in smoke from measurements of a single pollutant such as carbon monoxide. PMID:15559331

  3. Aerial Measuring System (AMS) Baseline Surveys for Emergency Planning

    SciTech Connect

    Lyons, C

    2012-06-04

    Originally established in the 1960s to support the Nuclear Test Program, the AMS mission is to provide a rapid and comprehensive worldwide aerial measurement, analysis, and interpretation capability in response to a nuclear/radiological emergency. AMS provides a responsive team of individuals whose processes allow for a mission to be conducted and completed with results available within hours. This presentation slide-show reviews some of the history of the AMS, summarizes present capabilities and methods, and addresses the value of the surveys.

  4. Seeing measurements with autonomous, short-baseline shadow band rangers

    NASA Astrophysics Data System (ADS)

    Sliepen, Guus; Jägers, Aswin P. L.; Bettonvil, Felix C. M.; Hammerschlag, Robert H.

    2010-07-01

    There is growing interest in measuring seeing at existing and prospective telescope sites. Several methods exist to quantify seeing, one among them is by measuring the scintillation of solar or lunar light using a photodiode. A shadow band ranger (SHABAR) analyses the covariance of the signals from an array of such photodiodes, which allows for the spatial resolution of the index of refraction above the SHABAR device. This allows one to estimate the index of refraction structure parameter as a function of height, C2n(h). Although a SHABAR has a limited range compared to a differential image motion monitor (DIMM) or the latest wavefront sensors, the advantage is that it does not need telescope optics to work. A SHABAR device can be made very compact and can operate independent of other instruments. We describe the design of such a SHABAR device with six photodiodes that can operate virtually indefinitely without requiring human intervention. An inversion algorithm is used to convert the raw scintillation signals of the photodiodes to the desired C2n(h) profile and a value for the Fried parameter r0 at height zero. We show that it is possible to perform inversions of 10 s periods in real time on relatively low-end hardware, such as an Intel Atom based computer, which allows the results to be presented live to astronomers, who can use this information to help make decisions about their observation schedule.

  5. NREL Solar Radiation Research Laboratory (SRRL): Baseline Measurement System (BMS); Golden, Colorado (Data)

    DOE Data Explorer

    Stoffel, T.; Andreas, A.

    1981-07-15

    The SRRL was established at the Solar Energy Research Institute (now NREL) in 1981 to provide continuous measurements of the solar resources, outdoor calibrations of pyranometers and pyrheliometers, and to characterize commercially available instrumentation. The SRRL is an outdoor laboratory located on South Table Mountain, a mesa providing excellent solar access throughout the year, overlooking Denver. Beginning with the basic measurements of global horizontal irradiance, direct normal irradiance and diffuse horizontal irradiance at 5-minute intervals, the SRRL Baseline Measurement System now produces more than 130 data elements at 1-min intervals that are available from the Measurement & Instrumentation Data Center Web site. Data sources include global horizontal, direct normal, diffuse horizontal (from shadowband and tracking disk), global on tilted surfaces, reflected solar irradiance, ultraviolet, infrared (upwelling and downwelling), photometric and spectral radiometers, sky imagery, and surface meteorological conditions (temperature, relative humidity, barometric pressure, precipitation, snow cover, wind speed and direction at multiple levels). Data quality control and assessment include daily instrument maintenance (M-F) with automated data quality control based on real-time examinations of redundant instrumentation and internal consistency checks using NREL's SERI-QC methodology. Operators are notified of equipment problems by automatic e-mail messages generated by the data acquisition and processing system. Radiometers are recalibrated at least annually with reference instruments traceable to the World Radiometric Reference (WRR).

  6. Accounting for baseline differences and measurement error in the analysis of change over time.

    PubMed

    Braun, Julia; Held, Leonhard; Ledergerber, Bruno

    2014-01-15

    If change over time is compared in several groups, it is important to take into account baseline values so that the comparison is carried out under the same preconditions. As the observed baseline measurements are distorted by measurement error, it may not be sufficient to include them as covariate. By fitting a longitudinal mixed-effects model to all data including the baseline observations and subsequently calculating the expected change conditional on the underlying baseline value, a solution to this problem has been provided recently so that groups with the same baseline characteristics can be compared. In this article, we present an extended approach where a broader set of models can be used. Specifically, it is possible to include any desired set of interactions between the time variable and the other covariates, and also, time-dependent covariates can be included. Additionally, we extend the method to adjust for baseline measurement error of other time-varying covariates. We apply the methodology to data from the Swiss HIV Cohort Study to address the question if a joint infection with HIV-1 and hepatitis C virus leads to a slower increase of CD4 lymphocyte counts over time after the start of antiretroviral therapy. PMID:23900718

  7. Baseline optimization for the measurement of C P violation, mass hierarchy, and θ23 octant in a long-baseline neutrino oscillation experiment

    NASA Astrophysics Data System (ADS)

    Bass, M.; Bishai, M.; Cherdack, D.; Diwan, M.; Djurcic, Z.; Hernandez, J.; Lundberg, B.; Paolone, V.; Qian, X.; Rameika, R.; Whitehead, L.; Wilson, R. J.; Worcester, E.; Zeller, G.

    2015-03-01

    Next-generation long-baseline electron neutrino appearance experiments will seek to discover C P violation, determine the mass hierarchy and resolve the θ23 octant. In light of the recent precision measurements of θ13, we consider the sensitivity of these measurements in a study to determine the optimal baseline, including practical considerations regarding beam and detector performance. We conclude that a detector at a baseline of at least 1000 km in a wide-band muon neutrino beam is the optimal configuration.

  8. Detection of atmospheric pressure loading using very long baseline interferometry measurements

    NASA Technical Reports Server (NTRS)

    Vandam, T. M.; Herring, T. A.

    1994-01-01

    Loading of the Earth by the temporal redistribution of global atmospheric mass is likely to displace the positions of geodetic monuments by tens of millimeters both vertically and horizontally. Estimates of these displacements are determined by convolving National Meteorological Center (NMC) global values of atmospheric surface pressure with Farrell's elastic Green's functions. An analysis of the distances between radio telescopes determined by very long baseline interferometry (VLBI) between 1984 and 1992 reveals that in many of the cases studied there is a significant contribution to baseline length change due to atmospheric pressure loading. Our analysis covers intersite distances of between 1000 and 10,000 km and is restricted to those baselines measured more than 100 times. Accounting for the load effects (after first removing a best fit slope) reduces the weighted root-mean-square (WRMS) scatter of the baseline length residuals on 11 of the 22 baselines investigated. The slight degradation observed in the WRMS scatter on the remaining baselines is largely consistent with the expected statistical fluctuations when a small correction is applied to a data set having a much larger random noise. The results from all baselines are consistent with approximately 60% of the computed pressure contribution being present in the VLBI length determinations. Site dependent coefficients determined by fitting local pressure to the theoretical radial displacement are found to reproduce the deformation caused by the regional pressure to within 25% for most inland sites. The coefficients are less reliable at near coastal and island stations.

  9. The need for preoperative baseline arm measurement to accurately quantify breast cancer-related lymphedema.

    PubMed

    Sun, Fangdi; Skolny, Melissa N; Swaroop, Meyha N; Rawal, Bhupendra; Catalano, Paul J; Brunelle, Cheryl L; Miller, Cynthia L; Taghian, Alphonse G

    2016-06-01

    Breast cancer-related lymphedema (BCRL) is a feared outcome of breast cancer treatment, yet the push for early screening is hampered by a lack of standardized quantification. We sought to determine the necessity of preoperative baseline in accounting for temporal changes of upper extremity volume. 1028 women with unilateral breast cancer were prospectively screened for lymphedema by perometry. Thresholds were defined: relative volume change (RVC) ≥10 % for clinically significant lymphedema and ≥5 % including subclinical lymphedema. The first postoperative measurement (pseudo-baseline) simulated the case of no baseline. McNemar's test and binomial logistic regression models were used to analyze BCRL misdiagnoses. Preoperatively, 28.3 and 2.9 % of patients had arm asymmetry of ≥5 and 10 %, respectively. Without baseline, 41.6 % of patients were underdiagnosed and 40.1 % overdiagnosed at RVC ≥ 5 %, increasing to 50.0 and 54.8 % at RVC ≥ 10 %. Increased pseudo-baseline asymmetry, increased weight change between baselines, hormonal therapy, dominant use of contralateral arm, and not receiving axillary lymph node dissection (ALND) were associated with increased risk of underdiagnosis at RVC ≥ 5 %; not receiving regional lymph node radiation was significant at RVC ≥ 10 %. Increased pseudo-baseline asymmetry, not receiving ALND, and dominant use of ipsilateral arm were associated with overdiagnosis at RVC ≥ 5 %; increased pseudo-baseline asymmetry and not receiving ALND were significant at RVC ≥ 10 %. The use of a postoperative proxy even early after treatment results in poor sensitivity for identifying BCRL. Providers with access to patients before surgery should consider the consequent need for proper baseline, with specific strategy tailored by institution. PMID:27154787

  10. Mobile very long baseline interferometry and Global Positioning System measurement of vertical crustal motion

    NASA Technical Reports Server (NTRS)

    Kroger, Peter M.; Davidson, John M.; Gardner, Elaine C.

    1986-01-01

    Mobile Very Long Base Interferometry (VLBI) and Global Positioning System (GPS) geodetic measurements have many error sources in common. Calibration of the effects of water vapor on signal transmission through the atmosphere, however, remains the primary limitation to the accuracy of vertical crustal motion measurements made by either technique. The two primary methods of water vapor calibration currently in use for mobile VLBI baseline measurements were evaluated: radiometric measurements of the sky brightness near the 22 GHz emission line of free water molecules and surface meteorological measurements used as input to an atmospheric model. Based upon a limited set of 9 baselines, it is shown that calibrating VLBI data with water vapor radiometer measurements provides a significantly better fit to the theoretical decay model than calibrating the same data with surface meteorological measurements. The effect of estimating a systematic error in the surface meteorological calibration is shown to improve the consistency of the vertical baseline components obtained by the two calibration methods. A detailed error model for the vertical baseline components obtained indicates current mobile VLBI technology should allow accuracies of order 3 cm with WVR calibration and 10 cm when surface meteorological calibration is used.

  11. Forest Structure Characterization Using Jpl's UAVSAR Multi-Baseline Polarimetric SAR Interferometry and Tomography

    NASA Technical Reports Server (NTRS)

    Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi

    2013-01-01

    This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.

  12. Forest Structure Characterization Using JPL's UAVSAR Multi-Baseline Polarimetric SAR Interferometry and Tomography

    NASA Technical Reports Server (NTRS)

    Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi

    2013-01-01

    This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.

  13. Characterization Plan for Establishing a PCB Baseline Inventory in Hanford Waste Tanks

    SciTech Connect

    NGUYEN, D.M.

    2000-08-09

    In May 2000, the U.S. Department of Energy, Office of River Protection (DOE-ORP) and the U.S. Environmental Protection Agency (EPA) conducted meetings to discuss management of polychlorinated biphenyls (PCBs) in the Hanford tank waste. It was decided that the radioactive waste currently stored in the doubleshell tanks (DSTs) will be managed to comply with the Toxic Substance Control Act (TSCA) (40 CFR 761). As a result, DOE-ORP directed the River Protection Project tank farm contractor to prepare plans for managing the PCB inventory in the DSTs. One component of the PCB management plans is this characterization plan. At this time, available PCB data for Hanford tank waste is limited to thirteen DSTs and one single-shell tank (SST). Only concentration data for some individual Aroclors (i.e., commercial PCB mixtures) are available for these tanks. Total PCB data is needed to establish a baseline inventory of PCBs in the DSTs. Appropriate transfer controls for the tanks will be developed based on the baseline inventory. The controls will be used to ensure PCB levels in the DSTs will not exceed anticipated waste feed acceptance criteria of the Waste Treatment Facility (WTF). Approximately ninety percent of the waste to be received at the DSTs in the future will come from the SSTs (Strode and Boyles 1999). Single-shell tank waste will be retrieved into the DSTs prior to treatment for disposal. Liquids from the SSTs currently are being transferred to the DSTs as part of the interim stabilization effort. In addition, waste sample materials taken from the SSTs have been and will continue to be sent to the DSTs after analysis by the site laboratories. Thus, to properly manage the PCB inventory in the DSTs, baseline characterization data of SST waste is also needed.

  14. A baseline study characterizing the municipal solid waste in the State of Kuwait.

    PubMed

    Al-Jarallah, Rawa; Aleisa, Esra

    2014-05-01

    This paper provides a new reference line for municipal solid waste characterization in Kuwait. The baseline data were collected in accordance with the Standard Test Method for the Determination of the Composition of Unprocessed Municipal Solid Waste (ASTM). The results indicated that the average daily municipal waste generation level is 1.01 kg/person. Detailed waste stream surveys were conducted for more than 600 samples of municipal solid waste (MSW). The waste categories included paper, corrugated fibers, PET bottles, film, organic matter, wood, metal, glass, and others. The results indicated that organic waste dominated the characterization (44.4%), followed by film (11.2%) and then corrugated fibers (8.6%). Analysis of variance (ANOVA) was used to investigate the influence of season and governorate on waste composition. A significant seasonal variation was observed in almost all waste categories. In addition, significant differences in proportions between the current level and 1995 baseline were observed in most waste categories at the 95% confidence level. PMID:24656421

  15. Updated neutron spectrum characterization of SNL baseline reactor environments. Volume 1, Characterization

    SciTech Connect

    Griffin, P.J.; Kelly, J.G.; Vehar, D.W.

    1994-04-01

    The neutron spectrum characteristics of the primary reactor environments are defined for use by facility customers and to provide an audit trail in support of current quality assurance initiatives. The neutron and gamma environments in the four primary customer environments at SPR-III and ACRR facilities are characterized in detail. Enough detail is provided on other frequently-used environments to support the definition of the 3-MeV and 1-MeV(Si) fluence provided on the Radiation Metrology Laboratory dosimetry reports.

  16. Measurements and characterization - Electro-optical characterization

    SciTech Connect

    Cook, G.

    2000-03-16

    This brochure presents the capabilities that the Measurements and Characterization Division has in Electro-Optical Characterization, in which a variety of spectroscopy, ellipsometry, and capacitance techniques are used to probe the fundamental electrical and optical properties of solid-state materials.

  17. Exploring deep sea habitats for baseline characterization using NOAA Ship Okeanos Explorer

    NASA Astrophysics Data System (ADS)

    McKenna, L.; Cantwell, K. L.; Kennedy, B. R.; Lobecker, E.; Sowers, D.; Elliott, K.

    2015-12-01

    In 2015, NOAA Ship Okeanos Explorer, the only US federal ship dedicated to ocean exploration, systematically explored previously unknown deep sea ecosystems in the Caribbean and remote regions in the vicinity of the Hawaiian Islands. Initial characterization of these areas is essential in order to establish a baseline against which to assess potential future changes due to climate and anthropogenic change. In the Caribbean, over 37,500 sq km of previously unmapped seafloor were mapped with a high resolution multibeam revealing rugged canyons along shelf breaks, intricate incised channels, and complex tectonic features. 12 ROV dives, in the 300-6,000 m depth range, visually explored seamounts, escarpments, submarine canyons, and the water column revealing diverse ecosystems and habitats. Discoveries include large assemblages of deep sea corals, range extensions, and observations of several rare and potentially new organisms - including a seastar that had not been documented since its holotype specimen. In the Pacific, over 50,000 sq km of seafloor were mapped in high-resolution, revealing long linear ridge and tectonic fracture zone features, both peaked and flat-topped seamounts, and numerous features that appear to be volcanic in origin. To better understand ecosystem dynamics in depths greater than 2,000 m, the deepest ever ROV surveys and sampling were conducted in remote Pacific island marine sanctuaries and monuments. Novel observations include range extensions and exploration of dense deep sea coral and sponge habitat. Baseline habitat characterization was also conducted on seamounts within the Prime Crust Zone (PCZ), an area with the highest expected concentration of deep-sea minerals in the Pacific. The Hawaiian operations marked the first ever ROV sampling effort conducted onboard Okeanos, and several geological and biological samples are now available at museums and sample repositories in addition to all digital data available through the National

  18. Measurements and Characterization (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Measurements and Characterization that includes scope, core competencies and capabilities, and contact/web information for Analytical Microscopy, Electro-Optical Characterization, Surface Analysis, and Cell and Module Performance.

  19. Classifying Vulnerability to Sleep Deprivation Using Baseline Measures of Psychomotor Vigilance

    PubMed Central

    Patanaik, Amiya; Kwoh, Chee Keong; Chua, Eric C.P.; Gooley, Joshua J.; Chee, Michael W.L.

    2015-01-01

    Objective: To identify measures derived from baseline psychomotor vigilance task (PVT) performance that can reliably predict vulnerability to sleep deprivation. Design: Subjects underwent total sleep deprivation and completed a 10-min PVT every 1–2 h in a controlled laboratory setting. Participants were categorized as vulnerable or resistant to sleep deprivation, based on a median split of lapses that occurred following sleep deprivation. Standard reaction time, drift diffusion model (DDM), and wavelet metrics were derived from PVT response times collected at baseline. A support vector machine model that incorporated maximum relevance and minimum redundancy feature selection and wrapper-based heuristics was used to classify subjects as vulnerable or resistant using rested data. Setting: Two academic sleep laboratories. Participants: Independent samples of 135 (69 women, age 18 to 25 y), and 45 (3 women, age 22 to 32 y) healthy adults. Measurements and Results: In both datasets, DDM measures, number of consecutive reaction times that differ by more than 250 ms, and two wavelet features were selected by the model as features predictive of vulnerability to sleep deprivation. Using the best set of features selected in each dataset, classification accuracy was 77% and 82% using fivefold stratified cross-validation, respectively. Conclusions: Despite differences in experimental conditions across studies, drift diffusion model parameters associated reliably with individual differences in performance during total sleep deprivation. These results demonstrate the utility of drift diffusion modeling of baseline performance in estimating vulnerability to psychomotor vigilance decline following sleep deprivation. Citation: Patanaik A, Kwoh CK, Chua EC, Gooley JJ, Chee MW. Classifying vulnerability to sleep deprivation using baseline measures of psychomotor vigilance. SLEEP 2015;38(5):723–734. PMID:25325482

  20. The impact of sterile neutrinos on CP measurements at long baselines

    DOE PAGESBeta

    Gandhi, Raj; Kayser, Boris; Masud, Mehedi; Prakash, Suprabh

    2015-09-01

    With the Deep Underground Neutrino Experiment (DUNE) as an example, we show that the presence of even one sterile neutrino of mass ~1 eV can significantly impact the measurements of CP violation in long baseline experiments. Using a probability level analysis and neutrino-antineutrino asymmetry calculations, we discuss the large magnitude of these effects, and show how they translate into significant event rate deviations at DUNE. These results demonstrate that measurements which, when interpreted in the context of the standard three family paradigm, indicate CP conservation at long baselines, may, in fact hide large CP violation if there is a sterilemore » state. Similarly, any data indicating the violation of CP cannot be properly interpreted within the standard paradigm unless the presence of sterile states of mass O(1 eV) can be conclusively ruled out. Our work underscores the need for a parallel and linked short baseline oscillation program and a highly capable near detector for DUNE, but in order that its highly anticipated results on CP violation in the lepton sector may be correctly interpreted.« less

  1. The impact of sterile neutrinos on CP measurements at long baselines

    SciTech Connect

    Gandhi, Raj; Kayser, Boris; Masud, Mehedi; Prakash, Suprabh

    2015-09-01

    With the Deep Underground Neutrino Experiment (DUNE) as an example, we show that the presence of even one sterile neutrino of mass ~1 eV can significantly impact the measurements of CP violation in long baseline experiments. Using a probability level analysis and neutrino-antineutrino asymmetry calculations, we discuss the large magnitude of these effects, and show how they translate into significant event rate deviations at DUNE. These results demonstrate that measurements which, when interpreted in the context of the standard three family paradigm, indicate CP conservation at long baselines, may, in fact hide large CP violation if there is a sterile state. Similarly, any data indicating the violation of CP cannot be properly interpreted within the standard paradigm unless the presence of sterile states of mass O(1 eV) can be conclusively ruled out. Our work underscores the need for a parallel and linked short baseline oscillation program and a highly capable near detector for DUNE, but in order that its highly anticipated results on CP violation in the lepton sector may be correctly interpreted.

  2. Very-long-baseline-interferometry measurements of planetary orbiters at Mars and Venus

    NASA Technical Reports Server (NTRS)

    Kroger, Peter M.; Folkner, William M.; Iijima, Byron A.; Hildebrand, Claude E.

    1993-01-01

    The first attempts to use radio interferometric techniques to measure the positions of planetary orbiters were made in 1980 with the Viking Mars orbiter and again in 1993 using the Pioneer Venus orbiter. The angular accuracy of these early measurements was on the order of 200 nrad. This work describes more recent very-long baseline interferometry (VLBI) measurements made in 1989 of the Soviet Martian orbiter, Phobos 2, and several measurements made since September of 1990 of the Magellan spacecraft orbiting Venus. Both the Phobos and Magellan measurements recorded data with the Mark 3 VLBI systems located at antennas of NASA's Deep Space Network (DSN). The much wider bandwidth of this recording system and the availability of ionospheric calibrations should allow angular accuracy approaching 5 nrad to be achieved with these measurements.

  3. Microvascular oxygen tension and flow measurements in rodent cerebral cortex during baseline conditions and functional activation

    PubMed Central

    Yaseen, Mohammad A; Srinivasan, Vivek J; Sakadžić, Sava; Radhakrishnan, Harsha; Gorczynska, Iwona; Wu, Weicheng; Fujimoto, James G; Boas, David A

    2011-01-01

    Measuring cerebral oxygen delivery and metabolism microscopically is important for interpreting macroscopic functional magnetic resonance imaging (fMRI) data and identifying pathological changes associated with stroke, Alzheimer's disease, and brain injury. Here, we present simultaneous, microscopic measurements of cerebral blood flow (CBF) and oxygen partial pressure (pO2) in cortical microvessels of anesthetized rats under baseline conditions and during somatosensory stimulation. Using a custom-built imaging system, we measured CBF with Fourier-domain optical coherence tomography (OCT), and vascular pO2 with confocal phosphorescence lifetime microscopy. Cerebral blood flow and pO2 measurements displayed heterogeneity over distances irresolvable with fMRI and positron emission tomography. Baseline measurements indicate O2 extraction from pial arterioles and homogeneity of ascending venule pO2 despite large variation in microvessel flows. Oxygen extraction is linearly related to flow in ascending venules, suggesting that flow in ascending venules closely matches oxygen demand of the drained territory. Oxygen partial pressure and relative CBF transients during somatosensory stimulation further indicate arteriolar O2 extraction and suggest that arterioles contribute to the fMRI blood oxygen level dependent response. Understanding O2 supply on a microscopic level will yield better insight into brain function and the underlying mechanisms of various neuropathologies. PMID:21179069

  4. Background Characterization for PROSPECT: a US Short-baseline Neutrino Oscillation Experiment

    NASA Astrophysics Data System (ADS)

    Langford, Thomas

    2014-03-01

    Segmented antineutrino detectors placed near compact research reactors provide an excellent opportunity to probe short-baseline neutrino oscillations and precisely measure the reactor antineutrino spectrum. The PROSPECT collaboration has developed a conceptual design for an experiment covering the favored reactor anomaly parameter space using two detectors located within 4-20 m of an existing reactor. Research reactors offer the benefits of compact cores, distinct reactor-off periods, and single-isotope fuel. However, they are typically located at ground level, providing little to no overburden to shield detectors. This talk will present the background requirements of the PROSPECT experiment and discuss feasibility studies that have been performed for three potential locations: NIST, INL, and ORNL. Two fast neutron detectors, a muon telescope, and HPGE and NaI gamma detectors have been deployed at the sites to measure reactor-related and cosmogenic backgrounds. The results of background measurements at each site during reactor operation and shutdown will be shown. Additionally, the planned techniques to reduce the impact of each background on the physics reach of the full experiment will also be discussed.

  5. Measuring the mass of a sterile neutrino with a very short baseline reactor experiment

    NASA Astrophysics Data System (ADS)

    Latimer, D. C.; Escamilla, J.; Ernst, D. J.

    2007-04-01

    An analysis of the world's neutrino oscillation data, including sterile neutrinos, [M. Sorel, C. M. Conrad, and M. H. Shaevitz, Phys. Rev. D 70, 073004 (2004)] found a peak in the allowed region at a mass-squared difference Δm2≅0.9eV2. We trace its origin to harmonic oscillations in the electron survival probability Pee as a function of L/E, the ratio of baseline to neutrino energy, as measured in the near detector of the Bugey experiment. We find a second occurrence for Δm2≅1.9eV2. We point out that the phenomenon of harmonic oscillations of Pee as a function of L/E, as seen in the Bugey experiment, can be used to measure the mass-squared difference associated with a sterile neutrino in the range from a fraction of an eV2 to several eV2 (compatible with that indicated by the LSND experiment), as well as measure the amount of electron-sterile neutrino mixing. We observe that the experiment is independent, to lowest order, of the size of the reactor and suggest the possibility of a small reactor with a detector sitting at a very short baseline.

  6. Measuring the mass of a sterile neutrino with a very short baseline reactor experiment

    SciTech Connect

    Latimer, D. C.; Escamilla, J.; Ernst, D. J.

    2007-04-15

    An analysis of the world's neutrino oscillation data, including sterile neutrinos, [M. Sorel, C. M. Conrad, and M. H. Shaevitz, Phys. Rev. D 70, 073004 (2004)] found a peak in the allowed region at a mass-squared difference {delta}m{sup 2} congruent with 0.9 eV{sup 2}. We trace its origin to harmonic oscillations in the electron survival probability P{sub ee} as a function of L/E, the ratio of baseline to neutrino energy, as measured in the near detector of the Bugey experiment. We find a second occurrence for {delta}m{sup 2} congruent with 1.9 eV{sup 2}. We point out that the phenomenon of harmonic oscillations of P{sub ee} as a function of L/E, as seen in the Bugey experiment, can be used to measure the mass-squared difference associated with a sterile neutrino in the range from a fraction of an eV{sup 2} to several eV{sup 2} (compatible with that indicated by the LSND experiment), as well as measure the amount of electron-sterile neutrino mixing. We observe that the experiment is independent, to lowest order, of the size of the reactor and suggest the possibility of a small reactor with a detector sitting at a very short baseline.

  7. Baseline and reactivity measures of blood pressure and negative affect in borderline hypertension.

    PubMed

    Waked, E G; Jutai, J W

    1990-02-01

    Measures of blood pressure (BP) and negative affect were taken prior to, immediately following, and ten minutes after a cognitive stressor in groups of normotensive (group N; n = 15) and borderline hypertensive (group B; n = 15) young adults. Two testing sessions, one week apart, involved performance of a simple, congruent color-word ("easy") and a cognitive stress-inducing, incongruent color-word ("difficult") version of the Stroop test. In both sessions, group B showed significantly higher baseline systolic and diastolic BP, higher systolic responses to the difficult Stroop task, and higher recovery measures of systolic and diastolic BP than group N. In general, group B had significantly elevated baseline and reactivity scores on state measures of negative affect in both sessions. Correlations revealed strong positive associations between blood pressure and mood reactivity only for borderline subjects. Depressed mood was more strongly and consistently related to blood pressure reactivity than was hostility. Borderline hypertension appears to be associated with stable, perhaps clinically significant elevations in negative affect, and with dysphoric response to mild cognitive stress. PMID:2333341

  8. Calibration and Validation of Third Stokes Parameter Measurements of SMOS Zero-Baseline Radiometers

    NASA Astrophysics Data System (ADS)

    Chae, C.; Kainulainen, J.; Colliander, A.

    2012-12-01

    SMOS (Soil Moisture Ocean Salinity) zero-baseline radiometers provide absolute brightness temperature reference for SMOS images. Thus, accurate calibration of the zero-baseline radiometers is of great importance for the quality of SMOS data. The primary utility of the third Stokes parameter at L-band is to estimate the Faraday rotation caused by the Earth's ionosphere which affects the balance of vertical and horizontal brightness temperatures. In this presentation a calibration and validation approach to improve the accuracy of the of the third Stokes parameter measurement of the SMOS zero-baselines is described. The approach relies on modeling of the third Stokes parameter over non-uniform scenes (e.g. sea-land boundaries) over antenna Field of View (FOV) to establish reference scenes for calibration. The basis of the method is the fact that the non-uniform scenes which are asymmetrical about the along-track direction within the FOV invoke the third Stokes parameter as a result of the integration over the antenna pattern. The FOV of the zero-baselines is very large and therefore this effect is significant (on the order of 10 K). The surface brightness temperature for vertical and horizontal polarization is acquired from the SMOS images instead of surface emission models to initiate the model with as realistic brightness temperature distribution as possible. These measurements can be used since the critical information for the calibration approach is the geometric distribution of the brightness temperature within the FOV instead of the very accurate knowledge of the brightness temperature magnitude (i.e. features in the measurement of vertical and horizontal polarization will not propagate back to reference). Three additional sources which contribute to the modeling of the third Stokes parameter are studied. First, the knowledge of the antenna pattern shape over the non-uniform scenes; second, the unpolarized atmospheric attenuation and upwelling brightness

  9. Comparison of Tone Mode Measurements for a Forward Swept and Baseline Rotor Fan

    NASA Technical Reports Server (NTRS)

    Heidelberg, Laurence J.

    2003-01-01

    A forward swept fan, designated the Quite High Speed Fan (QHSF), was tested in the NASA Glenn 9- by 15-foot Low Speed Wind Tunnel to investigate its noise reduction relative to a baseline fan of the same aerodynamic performance. The design objective of the QHSF was a 6 dB reduction in Effective Perceived Noise Level relative to the baseline fan at the takeoff condition. The design noise reduction was to be a result of lower levels of multiple pure tone noise due to the forward swept rotor, and lower rotor/stator interaction tone noise from a leaned stator. Although the design 6 dB reduction was observed in far-field measurements, the induct mode measurements revealed the reasons for goals. All of the noise reduction was from the blade passing tone and its harmonics and most of this was unexpectedly from rotor/strut interaction modes. The reason for large differences in rotor/strut noise sources could not be determined with certainty. The reductions in the multiple pure tone noise for the forward swept rotor were not observed. this reduction were not the ones related to the design

  10. Physical exposure of sign language interpreters: baseline measures and reliability analysis.

    PubMed

    Delisle, Alain; Larivière, Christian; Imbeau, Daniel; Durand, Marie-José

    2005-07-01

    Measurement of physical exposure to musculoskeletal disorder risk factors must generally be performed directly in the field to assess the effectiveness of ergonomic interventions. To perform such an evaluation, the reliability of physical exposure measures under similar field conditions must be known. The objectives of this study were to estimate the reliability of physical exposure measures performed in the field and to establish the baseline values of physical exposure in sign language interpreters (SLI) before the implementation of an intervention. The electromyography (EMG) of the trapezius muscles as well as the wrist motions of the dominant arm were measured using goniometry on nine SLI on four different days. Several exposure parameters, proposed in the literature, were computed and the generalizability theory was used as a framework to assess reliability. Overall, SLI showed a relatively low level of trapezius muscle activity, but with little time at rest, and highly dynamic wrist motions. Electromyography exposure parameters showed poor to moderate reliability, while goniometry parameter reliability was moderate to excellent. For EMG parameters, performing repeated measurements on different days was more effective in increasing reliability than extending the duration of the measurement over one day. For goniometry, repeating measurements on different days was also effective in improving reliability, although good reliability could be obtained with a single sufficiently long measurement period. PMID:15830245

  11. Very long baseline interferometer measurements of plasma turbulence in the solar wind

    SciTech Connect

    Takayuki Sakurai; Spangler, S.R.; Armstrong, J.W.

    1992-11-01

    Turbulence in the solar wind plasma was studied using angular broadening measurements of 10 extragalactic compact radio sources (quasars) with a very long baseline interferometer (VLBI) at 4.99 GHz. Unlike other angular broadening studies, the measured broadening size was corrected for intrinsic source structures which were obtained from a separate VLBI observation. The solar elongations of the sources ranged from 18 R{sub S} to 243 R{sub S}, and five sources with elongations {<=} 60 R{sub S} showed varying degrees of broadening. The measured angular sizes are considerably less than predicted by the well-known empirical relationship of Erickson, as well as two other models for strength of scattering as a function of solar elongation. However, the data are in good agreement with a model for the spatial power spectrum of the turbulence proposed by Coles and Harmon. This model consists of a Kolmogorov spectrum at large scales, but with an enhancement of power near the wavenumber corresponding o the ion inertial length. Two of these sources, 1148-001 and 1253-053 (3C279), show substantial differences in the amount of scattering, even though they are at similar solar elongations (29 versus 35 R{sub S}). Data to which the authors have access indicate that the state of the corona along the lines of sight to these sources may have been quite different. Angular broadening measurements with VLBI interferometers currently under development (primarily the very long baseline array) will allow a global view of plasma turbulence out of the ecliptic plane and thus be complementary to the point in situ measurements with Ulysses. 37 refs., 4 figs., 1 tab.

  12. Lost ecosystem services as a measure of oil spill damages: a conceptual analysis of the importance of baselines.

    PubMed

    Kennedy, Chris J; Cheong, So-Min

    2013-10-15

    The assessment and quantification of damages resulting from marine oil spills is typically coordinated by NOAA, and has historically utilized Habitat Equivalency Analysis (HEA) to estimate damages. Resource economists and others have called for the damage assessment process to instead estimate injuries through the valuation of lost ecosystem services. Our conceptual analysis explores ecosystem service valuation from the perspective of "baselines," which are a fundamental component of both primary and compensatory restoration activities. In practice, baselines have been defined in ecological terms, with minimal consideration of the socioeconomic side of ecosystem service provision. We argue that, for the purposes of scaling compensatory restoration, it is more appropriate to characterize baselines in value terms, thereby integrating non-market valuation approaches from the onset of the damage assessment process. Benefits and challenges of this approach are discussed, along with guidelines for practitioners to identify circumstances in which socioeconomic variables are likely to be important for baseline characterization. PMID:23712057

  13. Baseline Measurements of Trace Gases at High Mountain and Sea-level Stations in Taiwan

    NASA Astrophysics Data System (ADS)

    Ou-Yang, C.; Wang, J.; Lin, N.; Lee, C.; Sheu, G.; Hsieh, H.; Liu, W.

    2012-12-01

    High mountains in Taiwan may serve as ideal locations to monitor seasonal alternation of air masses from Asian continental outflow from mainland China, biomass burning from Southeast Asia, and oceanic influences from the Pacific. The operation of Lulin Atmospheric Background Station (LABS, 23.51°N, 120.92°E, 2862 m a.s.l.) started in April 2006, aiming at studying the regional baseline conditions and its coupling with local air quality. Based on six-year's measurements, the springtime maximum of CO and O3 is likely caused by the long-range transport of air masses from Southeast Asia with biomass burning signature. In contrast, the Pacific oceanic air masses cause the summertime minimum. Diurnal variations of CO and O3 at LABS were found to be different from those at the surface. CO show maximum levels in late afternoon, and minima at night. O3 however shows a nearly opposite cycle to CO with minima at noon. Intriguingly, this O3 diurnal pattern repeated for five years, but changed since May 2011 for reasons that remain to be unraveled. Ozone depleting substance such as CFCs and Halons, and GHGs such as CO2 and CH4 were observed continuously at LABS since December 2007 and March 2011, respectively. Years after the implementation of the Montreal Protocols for the A5 countries, the ODS are expected to decline over time. Based on the measurements of seven halocarbons at LABS, most of the species are found to be either leveling off or decreasing during this period. For CO2 and CH4 measurements, a cavity ring-down spectroscopy was used and their seasonal variations were found to be similar to those at other sites in the East Asia. The results of flask samples analyzed by NOAA/ESRL/GMD were also discussed in this study. In addition to LABS, baseline observation was also conducted on a small island - Dongsha (20.70°N, 116.73°E), which is situated between Taiwan and the Philippines, serving as an ideal representative of the northern South China Sea. Both GHGs and O3

  14. Variability in baseline laboratory measurements of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil).

    PubMed

    Ladwig, R; Vigo, A; Fedeli, L M G; Chambless, L E; Bensenor, I; Schmidt, M I; Vidigal, P G; Castilhos, C D; Duncan, B B

    2016-01-01

    Multi-center epidemiological studies must ascertain that their measurements are accurate and reliable. For laboratory measurements, reliability can be assessed through investigation of reproducibility of measurements in the same individual. In this paper, we present results from the quality control analysis of the baseline laboratory measurements from the ELSA-Brasil study. The study enrolled 15,105 civil servants at 6 research centers in 3 regions of Brazil between 2008-2010, with multiple biochemical analytes being measured at a central laboratory. Quality control was ascertained through standard laboratory evaluation of intra- and inter-assay variability and test-retest analysis in a subset of randomly chosen participants. An additional sample of urine or blood was collected from these participants, and these samples were handled in the same manner as the original ones, locally and at the central laboratory. Reliability was assessed with the intraclass correlation coefficient (ICC), estimated through a random effects model. Coefficients of variation (CV) and Bland-Altman plots were additionally used to assess measurement variability. Laboratory intra and inter-assay CVs varied from 0.86% to 7.77%. From test-retest analyses, the ICCs were high for the majority of the analytes. Notably lower ICCs were observed for serum sodium (ICC=0.50; 95%CI=0.31-0.65) and serum potassium (ICC=0.73; 95%CI=0.60-0.83), due to the small biological range of these analytes. The CVs ranged from 1 to 14%. The Bland-Altman plots confirmed these results. The quality control analyses showed that the collection, processing and measurement protocols utilized in the ELSA-Brasil produced reliable biochemical measurements. PMID:27533768

  15. Variability in baseline laboratory measurements of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil)

    PubMed Central

    Ladwig, R.; Vigo, A.; Fedeli, L.M.G.; Chambless, L.E.; Bensenor, I.; Schmidt, M.I.; Vidigal, P.G.; Castilhos, C.D.; Duncan, B.B.

    2016-01-01

    Multi-center epidemiological studies must ascertain that their measurements are accurate and reliable. For laboratory measurements, reliability can be assessed through investigation of reproducibility of measurements in the same individual. In this paper, we present results from the quality control analysis of the baseline laboratory measurements from the ELSA-Brasil study. The study enrolled 15,105 civil servants at 6 research centers in 3 regions of Brazil between 2008–2010, with multiple biochemical analytes being measured at a central laboratory. Quality control was ascertained through standard laboratory evaluation of intra- and inter-assay variability and test-retest analysis in a subset of randomly chosen participants. An additional sample of urine or blood was collected from these participants, and these samples were handled in the same manner as the original ones, locally and at the central laboratory. Reliability was assessed with the intraclass correlation coefficient (ICC), estimated through a random effects model. Coefficients of variation (CV) and Bland-Altman plots were additionally used to assess measurement variability. Laboratory intra and inter-assay CVs varied from 0.86% to 7.77%. From test-retest analyses, the ICCs were high for the majority of the analytes. Notably lower ICCs were observed for serum sodium (ICC=0.50; 95%CI=0.31–0.65) and serum potassium (ICC=0.73; 95%CI=0.60–0.83), due to the small biological range of these analytes. The CVs ranged from 1 to 14%. The Bland-Altman plots confirmed these results. The quality control analyses showed that the collection, processing and measurement protocols utilized in the ELSA-Brasil produced reliable biochemical measurements. PMID:27533768

  16. Deep microbial life in the Altmark natural gas reservoir: baseline characterization prior CO2 injection

    NASA Astrophysics Data System (ADS)

    Morozova, Daria; Shaheed, Mina; Vieth, Andrea; Krüger, Martin; Kock, Dagmar; Würdemann, Hilke

    2010-05-01

    Within the framework of the CLEAN project (CO2 Largescale Enhanced gas recovery in the Altmark Natural gas field) technical basics with special emphasis on process monitoring are explored by injecting CO2 into a gas reservoir. Our study focuses on the investigation of the in-situ microbial community of the Rotliegend natural gas reservoir in the Altmark, located south of the city Salzwedel, Germany. In order to characterize the microbial life in the extreme habitat we aim to localize and identify microbes including their metabolism influencing the creation and dissolution of minerals. The ability of microorganisms to speed up dissolution and formation of minerals might result in changes of the local permeability and the long-term safety of CO2 storage. However, geology, structure and chemistry of the reservoir rock and the cap rock as well as interaction with saline formation water and natural gases and the injected CO2 affect the microbial community composition and activity. The reservoir located at the depth of about 3500m, is characterised by high salinity fluid and temperatures up to 127° C. It represents an extreme environment for microbial life and therefore the main focus is on hyperthermophilic, halophilic anaerobic microorganisms. In consequence of the injection of large amounts of CO2 in the course of a commercial EGR (Enhanced Gas Recovery) the environmental conditions (e.g. pH, temperature, pressure and solubility of minerals) for the autochthonous microorganisms will change. Genetic profiling of amplified 16S rRNA genes are applied for detecting structural changes in the community by using PCR- SSCP (PCR-Single-Strand-Conformation Polymorphism) and DGGE (Denaturing Gradient Gel Electrophoresis). First results of the baseline survey indicate the presence of microorganisms similar to representatives from other saline, hot, anoxic, deep environments. However, due to the hypersaline and hyperthermophilic reservoir conditions, cell numbers are low, so that

  17. Direct measurement of sub-surface mass change using the variable-baseline gravity gradient method

    USGS Publications Warehouse

    Kennedy, Jeffrey; Ferré, Ty P. A.; Güntner, Andreas; Abe, Maiko; Creutzfeldt, Benjamin

    2014-01-01

    Time-lapse gravity data provide a direct, non-destructive method to monitor mass changes at scales from cm to km. But, the effectively infinite spatial sensitivity of gravity measurements can make it difficult to isolate the signal of interest. The variable-baseline gravity gradient method, based on the difference of measurements between two gravimeters, is an alternative to the conventional approach of individually modeling all sources of mass and elevation change. This approach can improve the signal-to-noise ratio for many applications by removing the contributions of Earth tides, loading, and other signals that have the same effect on both gravimeters. At the same time, this approach can focus the support volume within a relatively small user-defined region of the subsurface. The method is demonstrated using paired superconducting gravimeters to make for the first time a large-scale, non-invasive measurement of infiltration wetting front velocity and change in water content above the wetting front.

  18. Characterization of secondary ignition sources in unattended compartments and full-scale baseline test. [aircraft safety

    NASA Technical Reports Server (NTRS)

    Klink, D. M.

    1977-01-01

    The characteristics of five fuel loads burned within a metal lavatory were identified. In 15 of the tests the lavatory door remained closed for the 30-minute test period while in 15 additional tests the door was opened after the fire had developed. Upon completion of these tests the most severe source was selected for use in the baseline test. In the baseline test, the lavatory and adjacent panels, all of which were constructed of contemporary materials, were tested for a period of 1 hour. Thermal, environmental, and biological data were obtained for all fuel loads, door conditions, and the baseline test. All tests were conducted in a cabin fire simulator with separate ventilation of the cabin and lavatory representative of an inflight condition. The baseline test established that by using the most severe fuel source: (1) the exposed animal subject survived without complications; (2) no toxic levels of gas within the cabin were detected; (3) a propagating fire did not develop in adjacent structures; (4) the lavatory containing the fire remained structurally intact; (5) decomposition of portions of the lavatory did occur; and (6) cabin visibility would have presented a problem after 5 minutes.

  19. Updated neutron spectrum characterization of SNL baseline reactor environments. Volume 2, Analysis computer listings

    SciTech Connect

    Griffin, P.J.; Kelly, J.G.; Vehar, D.W.

    1994-04-01

    This document provides SAND-II and MANIPULATE output listings from calculations used to derive the new spectrum-averaged integral parameters that were reported in volume 1. When used in conjunction with volume 1, this document provides an audit trail for the neutron radiation field characterization and supports current quality assurance initiatives. This document provides detailed information on the neutron spectrum characteristics of the primary Sandia National Laboratories` (SNL) reactor environments. The information in this volume is not intended for the casual user of the SNL reactor facilities. This detailed characterization of the neutron and gamma environments at the Sandia Pulsed Reactor (SPR) and the Annular Core Research Reactor (ACRR) is provided to aid the users who wish to convert the information given in the Radiation Metrology Laboratory (RML) dosimetry reports into other (non-silicon) measures of neutron damage. The spectra provided in these appendices can be used as a source term for Monte Carlo radiation transport calculations to study the impact of experimenter`s test package on the neutron environment.

  20. Hair as a Meaningful Measure of Baseline Cortisol Levels over Time in Dogs

    PubMed Central

    Bryan, Heather M; Adams, Amanda G; Invik, Rosemary M; Wynne-Edwards, Katherine E; Smits, Judit EG

    2013-01-01

    Cortisol measurements of hair are becoming a valuable tool in monitoring chronic stress. To further validate this approach in domestic dogs, we compared the variability of cortisol immunoreactivity in hair with that in saliva and feces of dogs housed under constant social and physical conditions. Fecal (n = 268), and hair (n = 21) samples were collected over 3 mo from 7 dogs housed in a kennel and kept for training veterinary students in minimally invasive procedures. Salivary samples (n = 181) were collected 3 times daily twice weekly during the last month of the study. Hair and salivary samples were analyzed by enzyme immunoassay and feces by radioimmunoassay. HPLC coupled with tandem mass spectrometry was used to confirm the presence of cortisol in 3 hair samples. Variability of cortisol was compared across sample types by using repeated-measures ANOVA followed by paired t tests. Within dogs, cortisol immunoreactivity was less variable in hair than in saliva or feces. Averaged over time, the variability of fecal samples approached that of hair when feces were collected at least 4 times monthly. As predicted, the stable social and environmental condition of the dogs maintained repeatability over time and supported the hypothesis that data from hair samples reflect baseline cortisol levels. These findings indicate that determining cortisol immunoreactivity in hair is a more practical approach than is using samples of saliva or feces in monitoring the effects of long-term stressors such as social or physical environments and disease progression. PMID:23562104

  1. Hair as a meaningful measure of baseline cortisol levels over time in dogs.

    PubMed

    Bryan, Heather M; Adams, Amanda G; Invik, Rosemary M; Wynne-Edwards, Katherine E; Smits, Judit E G

    2013-03-01

    Cortisol measurements of hair are becoming a valuable tool in monitoring chronic stress. To further validate this approach in domestic dogs, we compared the variability of cortisol immunoreactivity in hair with that in saliva and feces of dogs housed under constant social and physical conditions. Fecal (n = 268), and hair (n = 21) samples were collected over 3 mo from 7 dogs housed in a kennel and kept for training veterinary students in minimally invasive procedures. Salivary samples (n = 181) were collected 3 times daily twice weekly during the last month of the study. Hair and salivary samples were analyzed by enzyme immunoassay and feces by radioimmunoassay. HPLC coupled with tandem mass spectrometry was used to confirm the presence of cortisol in 3 hair samples. Variability of cortisol was compared across sample types by using repeated-measures ANOVA followed by paired t tests. Within dogs, cortisol immunoreactivity was less variable in hair than in saliva or feces. Averaged over time, the variability of fecal samples approached that of hair when feces were collected at least 4 times monthly. As predicted, the stable social and environmental condition of the dogs maintained repeatability over time and supported the hypothesis that data from hair samples reflect baseline cortisol levels. These findings indicate that determining cortisol immunoreactivity in hair is a more practical approach than is using samples of saliva or feces in monitoring the effects of long-term stressors such as social or physical environments and disease progression. PMID:23562104

  2. Analysis of associations with change in a multivariate outcome variable when baseline is subject to measurement error.

    PubMed

    Chambless, Lloyd E; Davis, Vicki

    2003-04-15

    A simple general algorithm is described for correcting for bias caused by measurement error in independent variables in multivariate linear regression. This algorithm, using standard software, is then applied to several approaches to the analysis of change from baseline as a function of baseline value of the outcome measure plus other covariates, any of which might have measurement error. The algorithm may also be used when the independent variables differ by component of the multivariate independent variable. Simulations indicate that under various conditions bias is much reduced, as is mean squared error, and coverage of 95 per cent confidence intervals is good. PMID:12652553

  3. Geodetic measurement of deformation in the Loma Prieta, California earthquake with Very Long Baseline Interferometry (VLBI)

    SciTech Connect

    Clark, T.A.; Ma, C.; Sauber, J.M.; Ryan, J.W. ); Gordon, D.; Caprette, D.S. ); Shaffer, D.B.; Vandenberg, N.R. )

    1990-07-01

    Following the Loma Prieta earthquake, two mobile Very Long Baseline Interferometry (VLBI) systems operated by the NASA Crustal Dynamics Project and the NOAA National Geodetic Survey were deployed at three previously established VLBI sites in the earthquake area: Fort Ord (near Monterey), the Presidio (in San Francisco) and Point Reyes. From repeated VLBI occupations of these sites since 1983, the pre-earthquake rates of deformation have been determined with respect to a North American reference frame with 1{sigma} formal standard errors of {approximately}1 mm/yr. The VLBI measurements immediately following the earthquake showed that the Fort Ord site was displaced 49 {plus minus} 4 mm at an azimuth of 11 {plus minus} 4{degree} and that the Presidio site was displaced 12 {plus minus} 5 mm at an azimuth of 148 {plus minus} 13{degree}. No anomalous change was detected at Point Reyes with 1{sigma} uncertainty of 4 mm. The estimated displacements at Fort Ord and the Presidio are consistent with the static displacements predicted on the basis of a coseismic slip model in which slip on the southern segment is shallower than slip on the more northern segment is shallower than slip on the more northern segment of the fault rupture. The authors also give the Cartesian positions at epoch 1990.0 of a set of VLBI fiducial stations and the three mobile sites in the vicinity of the earthquake.

  4. Displacements of the earth's surface due to atmospheric loading - Effects of gravity and baseline measurements

    NASA Technical Reports Server (NTRS)

    Van Dam, T. M.; Wahr, J. M.

    1987-01-01

    Atmospheric mass loads and deforms the earth's crust. By performing a convolution sum between daily, global barometric pressure data and mass loading Green's functions, the time dependent effects of atmospheric loading, including those associated with short-term synoptic storms, on surface point positioning measurements and surface gravity observations are estimated. The response for both an oceanless earth and an earth with an inverted barometer ocean is calculated. Load responses for near-coastal stations are significantly affected by the inclusion of an inverted barometer ocean. Peak-to-peak vertical displacements are frequently 15-20 mm with accompanying gravity perturbations of 3-6 micro Gal. Baseline changes can be as large as 20 mm or more. The perturbations are largest at higher latitudes and during winter months. These amplitudes are consistent with the results of Rabbel and Zschau (1985), who modeled synoptic pressure disturbances as Gaussian functions of radius around a central point. Deformation can be adequately computed using real pressure data from points within about 1000 km of the station. Knowledge of local pressure, alone, is not sufficient. Rabbel and Zschau's hypothesized corrections for these displacements, which use local pressure and the regionally averaged pressure, prove accurate at points well inland but are, in general, inadequate within a few hundred kilometers of the coast.

  5. SRP baseline hydrogeologic investigation: Aquifer characterization. Groundwater geochemistry of the Savannah River Site and vicinity

    SciTech Connect

    Strom, R.N.; Kaback, D.S.

    1992-03-31

    An investigation of the mineralogy and chemistry of the principal hydrogeologic units and the geochemistry of the water in the principal aquifers at Savannah River Site (SRS) was undertaken as part of the Baseline Hydrogeologic Investigation. This investigation was conducted to provide background data for future site studies and reports and to provide a site-wide interpretation of the geology and geochemistry of the Coastal Plain Hydrostratigraphic province. Ground water samples were analyzed for major cations and anions, minor and trace elements, gross alpha and beta, tritium, stable isotopes of hydrogen, oxygen, and carbon, and carbon-14. Sediments from the well borings were analyzed for mineralogy and major and minor elements.

  6. Measuring health workers’ motivation in rural health facilities: baseline results from three study districts in Zambia

    PubMed Central

    2013-01-01

    Introduction Health worker motivation can potentially affect the provision of health services. Low morale among the workforce can undermine the quality of service provision and drive workers away from the profession. While the presence of high-quality, motivated staff is a key aspect of health system performance, it is also one of the most difficult factors to measure. Methods We assessed health worker motivation as part of the baseline assessment for a health system strengthening intervention in three rural districts in Zambia. The intervention (Better Health Outcomes Through Mentoring and Assessment (BHOMA)) aims to increase health worker motivation through training, mentoring and support. We assessed motivation by examining underlying issues grouped around relevant outcome constructs such as job satisfaction, general motivation, burnout, organization commitment, conscientiousness and timeliness that collectively measure overall levels of motivation. The tools and the concepts have been used in high-income countries and they were recently applied in African settings to measure health worker motivation. Results Female participants had the highest motivation scores (female: mean 78.5 (SD 7.8) vs male: mean (SD 7.0)). By type of worker, nurses had the highest scores while environmental health technicians had the lowest score (77.4 (SD 7.8 vs 73.2 (SD 9.3)). Health workers who had been in post longer also had higher scores (>7 months). Health workers who had received some form of training in the preceding 12 months were more likely to have a higher score; this was also true for those older than 40 years when compared to those less than 40 years of age. The highest score values were noted in conscientiousness and timeliness, with all districts scoring above 80. Conclusions This study evaluated motivation among rural health workers using a simple adapted tool to measure the concept of motivation. Results showed variation in motivation score by sex, type of health

  7. Spectrum Resolving Power of Hearing: Measurements, Baselines, and Influence of Maskers

    PubMed Central

    Supin, Alexander Ya.

    2011-01-01

    Contemporary methods of measurement of frequency resolving power in the auditory system are reviewed. Majority of classical methods are based on the frequency-selective masking paradigm and require multi-point measurements (a number of masked thresholds should be measured to obtain a single frequency-tuning estimate). Therefore, they are rarely used for practical needs. As an alternative approach, frequency-selective properties of the auditory system may be investigated using probes with complex frequency spectrum patterns, in particular, rippled noise that is characterized by a spectrum with periodically alternating maxima and minima. The maximal ripple density discriminated by the auditory system is a convenient measure of the spectrum resolving power (SRP). To find the highest resolvable ripple density, a phase-reversal test has been suggested. Using this technique, normal SRP, its dependence on probe center frequency, spectrum contrast, and probe level were measured. The results were not entirely predictable by frequency-tuning data obtained by masking methods. SRP is influenced by maskers, with on- and off-frequency maskers influencing SRP very differently. Dichotic separation of the probe and masker results in almost complete release of SRP from influence of maskers. PMID:26557320

  8. Spectrum Resolving Power of Hearing: Measurements, Baselines, and Influence of Maskers.

    PubMed

    Supin, Alexander Ya

    2011-07-01

    Contemporary methods of measurement of frequency resolving power in the auditory system are reviewed. Majority of classical methods are based on the frequency-selective masking paradigm and require multi-point measurements (a number of masked thresholds should be measured to obtain a single frequency-tuning estimate). Therefore, they are rarely used for practical needs. As an alternative approach, frequency-selective properties of the auditory system may be investigated using probes with complex frequency spectrum patterns, in particular, rippled noise that is characterized by a spectrum with periodically alternating maxima and minima. The maximal ripple density discriminated by the auditory system is a convenient measure of the spectrum resolving power (SRP). To find the highest resolvable ripple density, a phase-reversal test has been suggested. Using this technique, normal SRP, its dependence on probe center frequency, spectrum contrast, and probe level were measured. The results were not entirely predictable by frequency-tuning data obtained by masking methods. SRP is influenced by maskers, with on- and off-frequency maskers influencing SRP very differently. Dichotic separation of the probe and masker results in almost complete release of SRP from influence of maskers. PMID:26557320

  9. Aircraft Engine On-Line Diagnostics Through Dual-Channel Sensor Measurements: Development of a Baseline System

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2008-01-01

    In this paper, a baseline system which utilizes dual-channel sensor measurements for aircraft engine on-line diagnostics is developed. This system is composed of a linear on-board engine model (LOBEM) and fault detection and isolation (FDI) logic. The LOBEM provides the analytical third channel against which the dual-channel measurements are compared. When the discrepancy among the triplex channels exceeds a tolerance level, the FDI logic determines the cause of the discrepancy. Through this approach, the baseline system achieves the following objectives: (1) anomaly detection, (2) component fault detection, and (3) sensor fault detection and isolation. The performance of the baseline system is evaluated in a simulation environment using faults in sensors and components.

  10. Reference manual for toxicity and exposure assessment and risk characterization. CERCLA Baseline Risk Assessment

    SciTech Connect

    1995-03-01

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, 1980) (CERCLA or Superfund) was enacted to provide a program for identifying and responding to releases of hazardous substances into the environment. The Superfund Amendments and Reauthorization Act (SARA, 1986) was enacted to strengthen CERCLA by requiring that site clean-ups be permanent, and that they use treatments that significantly reduce the volume, toxicity, or mobility of hazardous pollutants. The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) (USEPA, 1985; USEPA, 1990) implements the CERCLA statute, presenting a process for (1) identifying and prioritizing sites requiring remediation and (2) assessing the extent of remedial action required at each site. The process includes performing two studies: a Remedial Investigation (RI) to evaluate the nature, extent, and expected consequences of site contamination, and a Feasibility Study (FS) to select an appropriate remedial alternative adequate to reduce such risks to acceptable levels. An integral part of the RI is the evaluation of human health risks posed by hazardous substance releases. This risk evaluation serves a number of purposes within the overall context of the RI/FS process, the most essential of which is to provide an understanding of ``baseline`` risks posed by a given site. Baseline risks are those risks that would exist if no remediation or institutional controls are applied at a site. This document was written to (1) guide risk assessors through the process of interpreting EPA BRA policy and (2) help risk assessors to discuss EPA policy with regulators, decision makers, and stakeholders as it relates to conditions at a particular DOE site.

  11. Broadband continuous-wave technique to measure baseline values and changes in the tissue chromophore concentrations

    PubMed Central

    Yeganeh, Hadi Zabihi; Toronov, Vladislav; Elliott, Jonathan T.; Diop, Mamadou; Lee, Ting-Yim; St. Lawrence, Keith

    2012-01-01

    We present a broad-band, continuous-wave spectral approach to quantify the baseline optical properties of tissue and changes in the concentration of a chromophore, which can assist to quantify the regional blood flow from dynamic contrast-enhanced near-infrared spectroscopy data. Experiments were conducted on phantoms and piglets. The baseline optical properties of tissue were determined by a multi-parameter wavelength-dependent data fit of a photon diffusion equation solution for a homogeneous medium. These baseline optical properties were used to find the changes in Indocyanine green concentration time course in the tissue. The changes were obtained by fitting the dynamic data at the peak wavelength of the chromophore absorption, which were used later to estimate the cerebral blood flow using a bolus tracking method. PMID:23162714

  12. Geodetic and Astrometric Measurements with Very-Long-Baseline Interferometry. Ph.D. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Robertson, D. S.

    1975-01-01

    The use of very-long-baseline interferometry (VLBI) observations for the estimation of geodetic and astrometric parameters is discussed. Analytic models for the dependence of delay and delay rate on these parameters are developed and used for parameter estimation by the method of weighted least squares. Results are presented from approximately 15,000 delay and delay-rate observations, obtained in a series of nineteen VLBI experiments involving a total of five stations on two continents. The closure of baseline triangles is investigated and found to be consistent with the scatter of the various baseline-component results. Estimates are made of the wobble of the earth's pole and of the irregularities in the earth's rotation rate. Estimates are also made of the precession constant and of the vertical Love number, for which a value of 0.55 + or - 0.05 was obtained.

  13. Implications of very long baseline interferometry measurements on North American intra-plate crustal deformation

    NASA Technical Reports Server (NTRS)

    Allenby, R. J.

    1979-01-01

    Very Long Baseline Interferometry experiments over the last 1-3/4 years between Owens Valley, CA and Haystack, MA Radio Observatories suggest an upper limit of east-west crustal deformation between the two sites of about 1 cm/yr. In view of the fact that the baseline between the two sites traverses most of the major geological provinces of the United States, this low rate of crustal deformation has direct relevance to intra-plate crustal tectonics. The most active region traversed by this baseline is the Basin and Range province, which was estimated by various researchers to be expanding in an east-west direction at rates of .3 to 1.5 cm/yr. The Colorado Plateau and Rocky Mountain system also appear to be expanding, but at a somewhat lower rate, while east of the Rocky Mountains, the predominant stress appears to be compressional, nearly horizontal, and east to northeast trending.

  14. Radioactivity in the Kuwait marine environment--Baseline measurements and review.

    PubMed

    Uddin, S; Aba, A; Fowler, S W; Behbehani, M; Ismaeel, A; Al-Shammari, H; Alboloushi, A; Mietelski, J W; Al-Ghadban, A; Al-Ghunaim, A; Khabbaz, A; Alboloushi, O

    2015-11-30

    The Arabian Gulf region is moving towards a nuclear energy option with the first nuclear power plant now operational in Bushehr, Iran, and others soon to be constructed in Abu Dhabi and Saudi Arabia. Radiological safety is becoming a prime concern in the region. This study compiles available data and presents recent radionuclide data for the northern Gulf waters, considered as pre-nuclear which will be a valuable dataset for future monitoring work in this region. Radionuclide monitoring in the marine environment is a matter of prime concern for Kuwait, and an assessment of the potential impact of radionuclides requires the establishment and regular updating of baseline levels of artificial and natural radionuclides in various environmental compartments. Here we present baseline measurements for (210)Po, (210)Pb, (137)Cs, (90)Sr, and (3)H in Kuwait waters. The seawater concentration of (3)H, (210)Po, (210)Pb, (137)Cs, and (90)Sr vary between 130-146, 0.48-0.68, 0.75-0.89, 1.25-1.38 and 0.57-0.78 mBq L(-1), respectively. The (40)K concentration in seawater varies between 8.9-9.3 Bq L(-1). The concentration of (40)K, total (210)Pb, (137)Cs, (90)Sr, (226)Ra, (228)Ra, (238)U, (235)U, (234)U, (239+240)Pu and (238)Pu were determined in sediments and range, respectively, between 353-445, 23.6-44.3, 1.0-3.1, 4.8-5.29, 17.3-20.5, 15-16.4, 28.7-31.4, 1.26-1.30, 29.7-30.0, 0.045-0.21 and 0.028-0.03 Bq kg(-1) dry weight. Since, radionuclides are concentrated in marine biota, a large number of marine biota samples covering several trophic levels, from microalgae to sharks, were analyzed. The whole fish concentration of (40)K, (226)Ra, (224)Ra, (228)Ra, (137)Cs, (210)Po and (90)Sr range between 230-447, 0.7-7.3, <0.5-6.6, <0.5-15.80, <0.17, 0.88-4.26 and 1.86-5.34 Bq kg(-1) dry weight, respectively. (210)Po was found to be highly concentrated in several marine organisms with the highest (210)Po concentration found in Marica marmorata (193.5-215.6 Bq kg(-1) dry weight). (210)Po in

  15. Estimation of CO2 baseline level using a statistical approach for near-road vehicle emission measurements

    NASA Astrophysics Data System (ADS)

    Wong, Ka Chun; Ning, Zhi; Chan, Ka Lok

    2016-04-01

    Vehicle emission is widely accepted as one of the major air pollution problems in metropolitan. Many different experimental setups have been designed to measure the direct emission from vehicles in order to study their impact to local air quality. Near-road/roadside in-situ measurement is one of the most common methods for vehicle emission measurement, providing emission data of vehicle under real driving conditions. In addition, the measurement system can be fully automatized and provides a better way to collect vehicular emission data. Previous studies show that 5% of the total vehicles contribute 50% of the total vehicle emission. In this study, we use the roadside measurement data for the fuel-based emission factor calculation in order to identify heavy emitters. The emission factor calculation uses CO2 as an indicator for the fuel consumption rate. However, this measurement technique suffers from high detection limit and large uncertainty of the CO2 measurement. As a result, heavy emitters with low fuel consumption rate cannot be easily detected. A new data analysis algorithm is developed to estimate the CO2 baseline for near-road/roadside vehicle emission measurements. We investigated the error distribution of the CO2 measurement and use a statistical approach to identify the baseline levels. Our study provides an alternative solution for the CO2 concentration baseline calculation.

  16. Examining the Perceived Value of Integration of Earned Value Management with Risk Management-Based Performance Measurement Baseline

    ERIC Educational Resources Information Center

    Shah, Akhtar H.

    2014-01-01

    Many projects fail despite the use of evidence-based project management practices such as Performance Measurement Baseline (PMB), Earned Value Management (EVM) and Risk Management (RM). Although previous researchers have found that integrated project management techniques could be more valuable than the same techniques used by themselves, these…

  17. [Establishing IAQ Metrics and Baseline Measures.] "Indoor Air Quality Tools for Schools" Update #20

    ERIC Educational Resources Information Center

    US Environmental Protection Agency, 2009

    2009-01-01

    This issue of "Indoor Air Quality Tools for Schools" Update ("IAQ TfS" Update) contains the following items: (1) News and Events; (2) IAQ Profile: Establishing Your Baseline for Long-Term Success (Feature Article); (3) Insight into Excellence: Belleville Township High School District #201, 2009 Leadership Award Winner; and (4) Have Your Questions…

  18. Baseline characterization of combustion products at the GRI (Gas Research Institute) conventional research house. Final report, October 1987-May 1988

    SciTech Connect

    Leslie, N.P.; Ghassan, P.G.; Krug, E.K.

    1989-08-01

    The Gas Research Institute has arranged to conduct a series of experiments in an unoccupied research house to evaluate indoor air quality in relation to various space-conditioning systems and control strategies. Baseline trace combustion-product characterization experiments were completed, and a detailed analysis of experiment results was performed. Results of the baseline characterization and unvented space-heater experiments were compared with previously acquired data at other houses. Results show a low NO{sub 2} decay constant and a moderate infiltration rate. A blower door test and perfluorocarbon tracer gas experiments were also performed. Results of these experiments confirm an average to low infiltration rate for this house and are consistent with results obtained by the SF{sub 6} tracer decay method. Range hood experiments show effective capture of range emissions but poor capture of oven emissions, due to the location of the oven away from the range and hood. The emission rates of combustion products from the range, oven, and fan-forced unvented space heater were determined using a probe test and a hood test. Emission rates for appliances were within the expected range based on published results.

  19. Solar gravitational deflection of radio waves measured by very-long-baseline interferometry

    NASA Technical Reports Server (NTRS)

    Counselman, C. C., III; Kent, S. M.; Knight, C. A.; Shapiro, I. I.; Clark, T. A.; Hinteregger, H. F.; Rogers, A. E. E.; Whitney, A. R.

    1974-01-01

    Utilizing a four-antenna technique, simultaneous observations were made, at each end of an 845-km baseline, of the radio sources 3C279 and 3C273B, which are 10 deg apart in the sky. Differences in interferometric phases at 3.7-cm wavelength monitored near the time of the 1972 occultation of 3C279 by the sun, yielded a gravitational deflection of 0.99 plus or minus 0.03 times the value predicted by general relativity, corresponding to gamma = 0.98 plus or minus 0.06 (standard error).

  20. O3, SO2, NO2, and UVB measurements in Beijing and Baseline Station of northwestern part of China

    NASA Technical Reports Server (NTRS)

    Guo, Song; Zhou, Xiuji; Zhang, Xiachun

    1994-01-01

    A MKII Brewer ozone spectrometer was used in Beijing from Oct. 1990 to June 1991 to measure O3, SO2 and UVB radiation. And since Nov. 1991 a new MKIV Brewer spectrometer, which can take the measurements of O3, SO2, NO2 and UVB radiation, has been set up in Beijing. The MKII Brewer spectrometer was moved to Qinghai baseline station which is on the Qinghai-tibetean plateau in the northwestern part of China. Both the data in Beijing and Qinghai baseline station has been analyzed and some results will be shown here along with the ozone profiles botained through the Umkehr program given by AES of Canada for the Brewer ozone spectrometer.

  1. Baseline groundwater chemistry characterization in an area of future Marcellus shale gas development

    NASA Astrophysics Data System (ADS)

    Eisenhauer, P.; Zegre, N.; Edwards, P. J.; Strager, M.

    2012-12-01

    The recent increase in development of the Marcellus shale formation for natural gas in the mid-Atlantic can be attributed to advances in unconventional extraction methods, namely hydraulic fracturing, a process that uses water to pressurize and fracture relatively impermeable shale layers to release natural gas. In West Virginia, the Department of Energy estimates 95 to 105 trillion cubic feet (TCF) of expected ultimately recovery (EUR) of natural gas for this formation. With increased development of the Marcellus shale formation comes concerns for the potential of contamination to groundwater resources that serve as primary potable water sources for many rural communities. However, the impacts of this practice on water resources are poorly understood because of the lack of controlled pre versus post-drilling experiments attributed to the rapid development of this resource. To address the knowledge gaps of the potential impacts of Marcellus shale development on groundwater resources, a pre versus post-drilling study has been initiated by the USFS Fernow Experimental Forest in the Monongahela National Forest. Drilling is expected to start at three locations within the next year. Pre-drilling water samples were collected and analyzed from two groundwater wells, a shallow spring, a nearby lake, and river to characterize background water chemistry and identify potential end-members. Geochemical analysis includes major ions, methane, δ13C-CH4, δ2H-CH4, 226Radium, and δ13C-DIC. In addition, a GIS-based conceptual ground water flow model was developed to identify possible interactions between shallow groundwater and natural gas wells given gas well construction failure. This model is used to guide management decisions regarding groundwater resources in an area of increasing shale gas development.

  2. The relationship, structure and profiles of schizophrenia measurements: a post-hoc analysis of the baseline measures from a randomized clinical trial

    PubMed Central

    2011-01-01

    Background To fully assess the various dimensions affected by schizophrenia, clinical trials often include multiple scales measuring various symptom profiles, cognition, quality of life, subjective well-being, and functional impairment. In this exploratory study, we characterized the relationships among six clinical, functional, cognitive, and quality-of-life measures, identifying a parsimonious set of measurements. Methods We used baseline data from a randomized, multicenter study of patients diagnosed with schizophrenia, schizoaffective disorder, or schizophreniform disorder who were experiencing an acute symptom exacerbation (n = 628) to examine the relationship among several outcome measures. These measures included the Positive and Negative Syndrome Scale (PANSS), Montgomery-Asberg Depression Rating Scale (MADRS), Brief Assessment of Cognition in Schizophrenia Symbol Coding Test, Subjective Well-being Under Neuroleptics Scale Short Form (SWN-K), Schizophrenia Objective Functioning Instrument (SOFI), and Quality of Life Scale (QLS). Three analytic approaches were used: 1) path analysis; 2) factor analysis; and 3) categorical latent variable analysis. In the optimal path model, the SWN-K was selected as the final outcome, while the SOFI mediated the effect of the exogenous variables (PANSS, MADRS) on the QLS. Results The overall model explained 47% of variance in QLS and 17% of the variance in SOFI, but only 15% in SWN-K. Factor analysis suggested four factors: "Functioning," "Daily Living," "Depression," and "Psychopathology." A strong positive correlation was observed between the SOFI and QLS (r = 0.669), and both the QLS and SOFI loaded on the "Functioning" factor, suggesting redundancy between these scales. The measurement profiles from the categorical latent variable analysis showed significant variation in functioning and quality of life despite similar levels of psychopathology. Conclusions Researchers should consider collecting PANSS, SOFI, and SWN-K in

  3. Measuring rapid ocean tidal earth orientation variations with very long baseline interferometry

    NASA Astrophysics Data System (ADS)

    Sovers, O. J.; Jacobs, C. S.; Gross, R. S.

    1993-11-01

    Ocean tidal effects on universal time and polar motion (UTPM) are investigated at four nearly diurnal (K1, P1, O1, and Q1) and four nearly semidiurnal (K2, S2, M2, and N2) frequencies by analyzing very long baseline interferometry (VLBI) data extending from 1978 to 1992. We discuss limitations of comparisons between experiment and theory for the retrograde nearly diurnal polar motion components due to their degeneracy with prograde components of the nutation model. Estimating amplitudes of contributions to the modeled VLBI observables at these eight frequencies produces a statistically highly significant improvement of 7 mm to the residuals of a fit to the observed delays. Use of such an improved UTPM model also reduces the 14-30 mm scatter of baseline lengths about a time-linear model of tectonic motion by 3-14 mm, also with high significance levels. A total of 28 UTPM ocean tidal amplitudes can be unambiguously estimated from the data, with resulting UT1 and PM magnitudes as large as 21 μs and 270 microarc seconds (μas) and formal uncertainties of the order of 0.3 μs and 5 μas for UTI and PM, respectively. Empirically determined UTPM amplitudes and phases are compared to values calculated theoretically by Gross from Seiler's global ocean tide model. The discrepancy between theory and experiment is larger by a factor of 3 for UT1 amplitudes (9 μs) than for prograde PM amplitudes (42 μas). The 14-year VLBI data span strongly attenuates the influence of mismodeled effects on estimated UTPM amplitudes and phases that are not coherent with the eight frequencies of interest. Magnitudes of coherent and quasi-coherent systematic errors are quantified by means of internal consistency tests. We conclude that coherent systematic effects are many times larger than the formal uncertainties and can be as large as 4 μs for UT1 and 60 μas for polar motion. On the basis of such realistic error estimates, 22 of the 31 fitted UTPM ocean tidal amplitudes differ from zero by

  4. Measuring rapid ocean tidal earth orientation variations with very long baseline interferometry

    NASA Technical Reports Server (NTRS)

    Sovers, O. J.; Jacobs, C. S.; Gross, R. S.

    1993-01-01

    Ocean tidal effects on universal time and polar motion (UTPM) are investigated at four nearly diurnal (K(sub 1), P(sub 1), O(sub 1), and Q(sub 1)) and four nearly semidiurnal (K(sub 2), S(sub 2), M(sub 2), and N(sub 2)) frequencies by analyzing very long baseline interferometry (VLBI) data extending from 1978 to 1992. We discuss limitations of comparisons between experiment and theory for the retograde nearly diurnal polar motion components due to their degeneracy with prograde components of the nutation model. Estimating amplitudes of contributions to the modeled VLBI observables at these eight frequencies produces a statistically highly significant improvement of 7 mm to the residuals of a fit to the observed delays. Use of such an improved UTPM model also reduces the 14-30 mm scatter of baseline lengths about a time-linear model of tectonic motion by 3-14 mm, also withhigh significance levels. A total of 28 UTPM ocean tidal amplitudes can be unambiguously estimated from the data, with resulting UTI and PM magnitudes as large as 21 micro secs and 270 microarc seconds and formal uncertainties of the order of 0.3 micro secs and 5 microarc secs for UTI and PM, respectively. Empirically determined UTPM amplitudes and phases are com1pared to values calculated theoretically by Gross from Seiler's global ocean tide model. The discrepancy between theory and experiment is larger by a factor of 3 for UTI amplitudes (9 micro secs) than for prograde PM amplitudes (42 microarc secs). The 14-year VLBI data span strongly attenuates the influence of mismodeled effects on estimated UTPM amplitudes and phases that are not coherent with the eight frequencies of interest. Magnitudes of coherent and quasi-coherent systematic errors are quantified by means of internal consistency tests. We conclude that coherent systematic effects are many times larger than the formal uncertainties and can be as large as 4 micro secs for UTI and 60 microarc secs for polar motion. On the basis of such

  5. Hot Exozodiacal Dust Disks, their Detection and Variability, as Measured with Long-Baseline Optical Interferometry.

    NASA Astrophysics Data System (ADS)

    Scott, Nicholas Jon

    2016-01-01

    Near-infrared long-baseline optical interferometry has provided the first unambiguous resolved detections of hot dust around main sequence stars (Absil et al. 2006). This showed that an unexpectedly dense population of (sub)micrometer dust grains close exists to their sublimation temperature of approximately 1400K. A later survey (Absil et al. 2013) revealed that these "hot exozodiacal disks" are relatively common around spectral type A-K stars. Current models of circumstellar debris disks suggest that in the inner region, within 1 AU, of the disk the timescale for complete removal of submicron dust is on the order of a few years (Wyatt 2008). The presence of dust close to the star is surprising because most cold debris belts detected are collisionally dominated. Mutual collisions grind the dust down to the size where radiation pressure pushes the dust out before Poynting-Robertson drag has a chance to pull the dust inward. Competing models exist to explain the persistence of this dust; some of which suggest that dust production is a punctuated and chaotic process fueled by asteroid collisions and comet infall that would show variability on timescales of a few years.High precision long-baseline interferometry observations in the K-band with the FLUOR (Fiber Linked Unit for Optical Recombination) beam combiner at the CHARA (Center for High Angular Resolution Astronomy) Array provided the data for these exozodiacal dust detections. This original instrument has undergone upgrades as part of JouFLU (Jouvence of FLUOR) project. The new instrument has been used to expand the original survey and to re-observe stars from the previous exozodiacal disk survey to search for predicted variations in the detected disks. We have found evidence that for some systems the amount of circumstellar flux from these previously detected exozodiacal disks, or exozodis, has varied greatly. The flux from some exozodis has increased, others decreased, and for a few the amount has remained

  6. Assessment of Aging Individuals with Down Syndrome in Clinical Trials: Results of Baseline Measures

    ERIC Educational Resources Information Center

    Sano, Mary; Aisen, Paul S.; Dalton, Arthur J.; Andrews, Howard F.; Tsai, Wei-Yann

    2005-01-01

    A major challenge to developing therapeutic interventions for cognitive loss and dementia in aging individuals with Down syndrome (DS) is the selection of appropriate outcome measures. This report describes the adaptation of the Brief Praxis Test (a nonverbal cognitive test) as a primary outcome measure, as well as the selection of secondary…

  7. FINE-SCALE STRUCTURE OF THE QUASAR 3C 279 MEASURED WITH 1.3 mm VERY LONG BASELINE INTERFEROMETRY

    SciTech Connect

    Lu Rusen; Fish, Vincent L.; Doeleman, Sheperd S.; Crew, Geoffrey; Cappallo, Roger J.; Akiyama, Kazunori; Honma, Mareki; Algaba, Juan C.; Ho, Paul T. P.; Inoue, Makoto; Bower, Geoffrey C.; Dexter, Matt; Brinkerink, Christiaan; Chamberlin, Richard; Freund, Robert; Friberg, Per; Gurwell, Mark A.; Jorstad, Svetlana G.; Krichbaum, Thomas P.; Loinard, Laurent; and others

    2013-07-20

    We report results from five day very long baseline interferometry observations of the well-known quasar 3C 279 at 1.3 mm (230 GHz) in 2011. The measured nonzero closure phases on triangles including stations in Arizona, California, and Hawaii indicate that the source structure is spatially resolved. We find an unusual inner jet direction at scales of {approx}1 pc extending along the northwest-southeast direction (P.A. = 127 Degree-Sign {+-} 3 Degree-Sign ), as opposed to other (previously) reported measurements on scales of a few parsecs showing inner jet direction extending to the southwest. The 1.3 mm structure corresponds closely with that observed in the central region of quasi-simultaneous super-resolution Very Long Baseline Array images at 7 mm. The closure phase changed significantly on the last day when compared with the rest of observations, indicating that the inner jet structure may be variable on daily timescales. The observed new direction of the inner jet shows inconsistency with the prediction of a class of jet precession models. Our observations indicate a brightness temperature of {approx}8 Multiplication-Sign 10{sup 10} K in the 1.3 mm core, much lower than that at centimeter wavelengths. Observations with better uv coverage and sensitivity in the coming years will allow the discrimination between different structure models and will provide direct images of the inner regions of the jet with 20-30 {mu}as (5-7 light months) resolution.

  8. Fine-scale Structure of the Quasar 3C 279 Measured with 1.3 mm Very Long Baseline Interferometry

    NASA Astrophysics Data System (ADS)

    Lu, Ru-Sen; Fish, Vincent L.; Akiyama, Kazunori; Doeleman, Sheperd S.; Algaba, Juan C.; Bower, Geoffrey C.; Brinkerink, Christiaan; Chamberlin, Richard; Crew, Geoffrey; Cappallo, Roger J.; Dexter, Matt; Freund, Robert; Friberg, Per; Gurwell, Mark A.; Ho, Paul T. P.; Honma, Mareki; Inoue, Makoto; Jorstad, Svetlana G.; Krichbaum, Thomas P.; Loinard, Laurent; MacMahon, David; Marrone, Daniel P.; Marscher, Alan P.; Moran, James M.; Plambeck, Richard; Pradel, Nicolas; Primiani, Rurik; Tilanus, Remo P. J.; Titus, Michael; Weintroub, Jonathan; Wright, Melvyn; Young, Ken H.; Ziurys, Lucy M.

    2013-07-01

    We report results from five day very long baseline interferometry observations of the well-known quasar 3C 279 at 1.3 mm (230 GHz) in 2011. The measured nonzero closure phases on triangles including stations in Arizona, California, and Hawaii indicate that the source structure is spatially resolved. We find an unusual inner jet direction at scales of ~1 pc extending along the northwest-southeast direction (P.A. = 127° ± 3°), as opposed to other (previously) reported measurements on scales of a few parsecs showing inner jet direction extending to the southwest. The 1.3 mm structure corresponds closely with that observed in the central region of quasi-simultaneous super-resolution Very Long Baseline Array images at 7 mm. The closure phase changed significantly on the last day when compared with the rest of observations, indicating that the inner jet structure may be variable on daily timescales. The observed new direction of the inner jet shows inconsistency with the prediction of a class of jet precession models. Our observations indicate a brightness temperature of ~8 × 1010 K in the 1.3 mm core, much lower than that at centimeter wavelengths. Observations with better uv coverage and sensitivity in the coming years will allow the discrimination between different structure models and will provide direct images of the inner regions of the jet with 20-30 μas (5-7 light months) resolution.

  9. Measurement Characteristics of the Stages of Concerns Questionnaire (SoCQ) during Baseline Phases.

    ERIC Educational Resources Information Center

    Jibaja-Rusth, Maria; And Others

    The purpose of this study was to investigate the internal consistency reliability of the Stages of Concern Questionnaire (SoCQ) when the measure is administered to naive subjects as a pretest. The SoCQ was developed by G. E. Hall, A. A. George, and W. L. Rutherford (1979/1986). In the present study, the SoCQ was administered to secondary school…

  10. Personality traits measured at baseline can predict academic performance in upper secondary school three years late.

    PubMed

    Rosander, Pia; Bäckström, Martin

    2014-12-01

    The aim of the present study was to explore the ability of personality to predict academic performance in a longitudinal study of a Swedish upper secondary school sample. Academic performance was assessed throughout a three-year period via final grades from the compulsory school and upper secondary school. The Big Five personality factors (Costa & McCrae, ) - particularly Conscientiousness and Neuroticism - were found to predict overall academic performance, after controlling for general intelligence. Results suggest that Conscientiousness, as measured at the age of 16, can explain change in academic performance at the age of 19. The effect of Neuroticism on Conscientiousness indicates that, as regarding getting good grades, it is better to be a bit neurotic than to be stable. The study extends previous work by assessing the relationship between the Big Five and academic performance over a three-year period. The results offer educators avenues for improving educational achievement. PMID:25257093

  11. Genotypic Characterization of Methicillin-Resistant Staphylococcus aureus Recovered at Baseline from Phase 3 Pneumonia Clinical Trials for Ceftobiprole

    PubMed Central

    Deshpande, Lalitagauri M.; Costello, Andrew J.; Farrell, David J.; Jones, Ronald N.; Flamm, Robert K.

    2016-01-01

    Baseline methicillin-resistant Staphylococcus aureus (MRSA) isolates from patients with nosocomial and community-acquired pneumonia collected during Phase 3 trials for ceftobiprole were characterized. Eighty-four unique isolates from patients enrolled in Europe (50.0%), Asia-Western Pacific region (APAC; 20.2%), North America (19.0%), Latin America (8.3%), and South Africa (2.4%) were included. Antimicrobial susceptibility testing was performed by broth microdilution and isolates screened for Panton-Valentine leukocidin. SCCmec and agr types were determined. Strains were subjected to pulsed-field gel electrophoresis and spa typing. Clonal complexes (CCs) were assigned based on spa and/or multilocus sequence typing. Most isolates were CC5-MRSA-I/II/IV (44.0%; 37/84), followed by CC8-MRSA-IV (22.6%; 19/84) and CC239-MRSA-III (21.4%; 18/84). Other MRSA formed seven clonal clusters. Isolates from North America were associated with USA100, while those from South America belonged to the Cordobes/Chilean CC. A greater clonal diversity was observed in Europe; however, each country had CC5, CC8, or CC239 as prevalent lineages. Isolates from APAC were CC5-MRSA-II (47.1%; 8/17) or CC239-MRSA-III (47.1%; 8/17). Isolates carrying SCCmec I and III had ceftobiprole MIC50 values of 2 μg/ml, while those isolates with SCCmec II and IV had MIC50 values of 1 μg/ml. Ceftobiprole inhibited 96% and 100.0% of the isolates at ≤2 and ≤4 μg/ml, respectively. These isolates represented common circulating MRSA clones. Ceftobiprole demonstrated in vitro activity with a slight variation of minimum inhibitory concentrations (MICs) according to SCCmec or clonal type. PMID:26230870

  12. BASELINE ASSESSMENT

    EPA Science Inventory

    Resource Purpose:The Baseline Assessment is a project to collect data on environmental conditions in Indian country from existing data sources using a geographic enabling system called the Oracle Spatial Data Cartridge.
    Legislation/Enabling Authority:None
    S...

  13. Characterization of site-specific GPS errors using a short-baseline network of braced monuments at Yucca Mountain, southern Nevada

    NASA Astrophysics Data System (ADS)

    Hill, Emma M.; Davis, James L.; Elósegui, Pedro; Wernicke, Brian P.; Malikowski, Eric; Niemi, Nathan A.

    2009-11-01

    We use a short-baseline network of braced monuments to investigate site-specific GPS effects. The network has baseline lengths of ˜10, 100, and 1000 m. Baseline time series have root mean square (RMS) residuals, about a model for the seasonal cycle, of 0.05-0.24 mm for the horizontal components and 0.20-0.72 mm for the radial. Seasonal cycles occur, with amplitudes of 0.04-0.60 mm, even for the horizontal components and even for the shortest baselines. For many time series these lag seasonal cycles in local temperature measurements by 23-43 days. This could suggest that they are related to bedrock thermal expansion. Both shorter-period signals and seasonal cycles for shorter baselines to REP2, the one short-braced monument in our network, are correlated with temperature, with no lag time. Differences between REP2 and the other stations, which are deep-braced, should reflect processes occurring in the upper few meters of the ground. These correlations may be related to thermal expansion of these upper ground layers, and/or thermal expansion of the monuments themselves. Even over these short distances we see a systematic increase in RMS values with increasing baseline length. This, and the low RMS levels, suggests that site-specific effects are unlikely to be the limiting factor in the use of similar GPS sites for geophysical investigations.

  14. Baseline measurements of ethene in 2002: Implications for increased ethanol use and biomass burning on air quality and ecosystems

    NASA Astrophysics Data System (ADS)

    Gaffney, Jeffrey S.; Marley, Nancy A.; Blake, Donald R.

    2012-09-01

    While it is well known that combustion of ethanol as a biofuel will lead to enhanced emissions of methane, ethene (ethylene), acetaldehyde, formaldehyde, and oxides of nitrogen (primarily NO) when compared to gasoline alone, especially during cold starts or if catalytic converters are not operating properly, the impacts of increases in atmospheric ethene levels from combustion of fuels with higher ethanol content has not received much attention. Ethene is a well known and potent plant growth hormone and exposure to agricultural crops and natural vegetation results in yield reductions especially when combined with higher levels of PAN and ozone also expected from the increased use of ethanol/gasoline blends. We report here some baseline measurements of ethene obtained in 2002 in the southwestern and south central United States. These data indicate that current ethene background levels are less than 1 ppb. Anticipated increases in fuel ethanol content of E30 or greater is expected to lead to higher atmospheric levels of ethene on regional scales due to its atmospheric lifetime of 1.5-3 days. These background measurements are discussed in light of the potential enhancement of ethene levels expected from the anticipated increases in ethanol use as a renewable biofuel.

  15. Baseline OCT Measurements in the Idiopathic Intracranial Hypertension Treatment Trial, Part II: Correlations and Relationship to Clinical Features

    PubMed Central

    2014-01-01

    Purpose. The accepted method to evaluate and monitor papilledema, Frisén grading, uses an ordinal approach based on descriptive features. Part I showed that spectral-domain optical coherence tomography (SD-OCT) in a clinical trial setting provides reliable measurement of the effects of papilledema on the optic nerve head (ONH) and peripapillary retina, particularly if a 3-D segmentation method is used for analysis.1 We evaluated how OCT parameters are interrelated and how they correlate with vision and other clinical features in idiopathic intracranial hypertension (IIH) patients. Methods. A total of 126 subjects in the IIH Treatment Trial (IIHTT) OCT substudy had Cirrus SD-OCT optic disc and macula scans analyzed by using a 3-D segmentation algorithm to derive retinal nerve fiber layer (RNFL) thickness, total retinal thickness (TRT), retinal ganglion cell layer plus inner plexiform layer (GCL+IPL) thickness, and ONH volume. The SD-OCT parameter values were correlated with high- and low-contrast acuity, perimetric mean deviation, Frisén grading, and IIH features. Results. At study entry, the average RNFL thickness, TRT, and ONH volume showed significant strong correlations (r ≥ 0.90) with each other. The same OCT parameters showed a strong (r > 0.76) correlation with Frisén grade and a mild (r > 0.24), but significant, correlation with lumbar puncture opening pressure. For all eyes at baseline, neither visual acuity (high or low contrast) nor mean deviation correlated with any OCT measure of swelling or GCL+IPL thickness. Conclusions. In newly diagnosed IIH, OCT demonstrated alterations of the peripapillary retina and ONH correlate with Frisén grading of papilledema. At presentation, OCT measures of papilledema, in patients with newly diagnosed IIH and mild vision loss, do not correlate with clinical features or visual dysfunction. (ClinicalTrials.gov number, NCT01003639.) PMID:25370513

  16. Dielectric Constant Measurements for Characterizing Lunar Soils

    NASA Technical Reports Server (NTRS)

    Anderson, Robert C.; Buehler, M.; Seshadri, S.; Kuhlman, G.; Schaap, M.

    2005-01-01

    The return to the Moon has ignited the need to characterize the lunar regolith using fast, reliable in-situ methods. Characterizing the physical properties of the rocks and soils can be very difficult because of the many complex parameters that influence the measurements. In particular, soil electrical property measurements are influenced by temperature, mineral type, grain size, porosity, and soil conductivity. Determining the dielectric constant of lunar materials may be very important in providing quick characterization of surface deposits, especially for the Moon. A close examination of the lunar regolith samples collected by the Apollo astronauts indicates that the rocks and soils on the Moon are dominated by silicates and oxides. In this presentation, we will show that determining the dielectric constant measurements can provide a simple, quick detection method for minerals that contain titanium, iron, and water. Their presence is manifest by an unusually large imaginary permittivity.

  17. Precision measurement of solar neutrino oscillation parameters by a long-baseline reactor neutrino experiment in Europe

    NASA Astrophysics Data System (ADS)

    Petcov, S. T.; Schwetz, T.

    2006-11-01

    We consider the determination of the solar neutrino oscillation parameters Δm212 and θ12 by studying oscillations of reactor anti-neutrinos emitted by nuclear power plants (located mainly in France) with a detector installed in the Frejus underground laboratory. The performances of a water Čerenkov detector of 147 kt fiducial mass doped with 0.1% of gadolinium (MEMPHYS-Gd) and of a 50 kt scale liquid scintillator detector (LENA) are compared. In both cases 3σ uncertainties below 3% on Δm212 and of about 20% on sin2θ12 can be obtained after one year of data taking. The gadolinium doped Super-Kamiokande detector (SK-Gd) in Japan can reach a similar precision if the SK/MEMPHYS fiducial mass ratio of 1 to 7 is compensated by a longer SK-Gd data taking time. Several years of reactor neutrino data collected by MEMPHYS-Gd or LENA would allow a determination of Δm212 and sin2θ12 with uncertainties of approximately 1% and 10% at 3σ, respectively. These accuracies are comparable to those that can be reached in the measurement of the atmospheric neutrino oscillation parameters Δm312 and sin2θ23 in long-baseline superbeam experiments.

  18. Toward Robust Climate Baselining: Objective Assessment of Climate Change Using Widely Distributed Miniaturized Sensors for Accurate World-Wide Geophysical Measurements

    DOE R&D Accomplishments Database

    Teller, E.; Leith, C.; Canavan, G.; Marion, J.; Wood, L.

    2001-11-13

    A gap-free, world-wide, ocean-, atmosphere-, and land surface-spanning geophysical data-set of three decades time-duration containing the full set of geophysical parameters characterizing global weather is the scientific perquisite for defining the climate; the generally-accepted definition in the meteorological community is that climate is the 30-year running-average of weather. Until such a tridecadal climate baseline exists, climate change discussions inevitably will have a semi-speculative, vs. a purely scientific, character, as the baseline against which changes are referenced will at least somewhat uncertain.

  19. Baseline program

    NASA Technical Reports Server (NTRS)

    Roberts, Barney B.; Vonputtkamer, Jesco

    1992-01-01

    This assumed program was developed from several sources of information and is extrapolated over future decades using a set of reasonable assumptions based on incremental growth. The assumptions for the NASA baseline program are as follows: balanced emphasis in four domains; a constant level of activity; low to moderate real budget growth; maximum use of commonality; and realistic and practical technology development. The first domain is low Earth Orbit (LEO). Activities there are concentrated on the space station but extend on one side to Earth-pointing sensors for unmanned platforms and on the other to the launch and staging of unmanned solar system exploration missions. The second domain is geosynchronous Earth orbit (GEO) and cislunar space. Activities here include all GEO missions and operations, both unmanned and manned, and all transport of materials and crews between LEO and the vicinity of the Moon. The third domain is the Moon itself. Lunar activities are to include both orbiting and landing missions; the landings may be either unmanned or manned. The last domain is Mars. Missions to Mars will initially be unmanned but they will eventually be manned. Program elements and descriptions are discussed as are critiques of the NASA baseline.

  20. Toward Robust Climate Baselining: Objective Assessment of Climate Change Using Widely Distributed Miniaturized Sensors for Accurate World-Wide Geophysical Measurements

    SciTech Connect

    Teller, E; Leith, C; Canavan, G; Marion, J; Wood, L

    2001-11-13

    A gap-free, world-wide, ocean-, atmosphere-, and land surface-spanning geophysical data-set of three decades time-duration containing the full set of geophysical parameters characterizing global weather is the scientific perquisite for defining the climate; the generally-accepted definition in the meteorological community is that climate is the 30-year running-average of weather. Until such a tridecadal climate base line exists, climate change discussions inevitably will have a semi-speculative, vs. a purely scientific, character, as the baseline against which changes are referenced will be at least somewhat uncertain. The contemporary technology base provides ways-and-means for commencing the development of such a meteorological measurement-intensive climate baseline, moreover with a program budget far less than the {approx}$2.5 B/year which the US. currently spends on ''global change'' studies. In particular, the recent advent of satellite-based global telephony enables real-time control of, and data-return from, instrument packages of very modest scale, and Silicon Revolution-based sensor, data-processing and -storage advances permit 'intelligent' data-gathering payloads to be created with 10 gram-scale mass budgets. A geophysical measurement system implemented in such modern technology is a populous constellation 03 long-lived, highly-miniaturized robotic weather stations deployed throughout the weather-generating portions of the Earths atmosphere, throughout its oceans and across its land surfaces. Leveraging the technological advances of the OS, the filly-developed atmospheric weather station of this system has a projected weight of the order of 1 ounce, and contains a satellite telephone, a GPS receiver, a full set of atmospheric sensing instruments and a control computer - and has an operational life of the order of 1 year and a mass-production cost of the order of $20. Such stations are effectively ''intra-atmospheric satellites'' but likely have serial

  1. Measurement and characterization techniques for thermoelectric materials

    SciTech Connect

    Tritt, T.M.

    1997-07-01

    Characterization of thermoelectric materials can pose many problems. A temperature difference can be established across these materials as an electrical current is passed due to the Peltier effect. The thermopower of these materials is quite large and thus large thermal voltages can contribute to many of the measurements necessary to investigate these materials. This paper will discuss the chracterization techniques necessary to investigate these materials and provide an overview of some of the potential systematic errors which can arise. It will also discuss some of the corrections one needs to consider. This should provide an introduction to the characterization and measurement of thermoelectric materials and provide references for a more in depth discussion of the concepts. It should also serve as an indication of the care that must be taken while working with thermoelectric materials.

  2. Error estimation for delta VLBI angle and angle rate measurements over baselines between a ground station and a geosynchronous orbiter

    NASA Technical Reports Server (NTRS)

    Wu, S. C.

    1982-01-01

    Baselines between a ground station and a geosynchronous orbiter provide high resolution Delta VLBI data which is beyond the capability of ground-based interferometry. The effects of possible error sources on such Delta VLBI data for the determination of spacecraft angle and angle rate are investigated. For comparison, the effects on spacecraft-only VLBI are also studied.

  3. Optical Measurement Technique for Space Column Characterization

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.; Watson, Judith J.; Burner, Alpheus W.; Phelps, James E.

    2004-01-01

    A simple optical technique for the structural characterization of lightweight space columns is presented. The technique is useful for determining the coefficient of thermal expansion during cool down as well as the induced strain during tension and compression testing. The technique is based upon object-to-image plane scaling and does not require any photogrammetric calibrations or computations. Examples of the measurement of the coefficient of thermal expansion are presented for several lightweight space columns. Examples of strain measured during tension and compression testing are presented along with comparisons to results obtained with Linear Variable Differential Transformer (LVDT) position transducers.

  4. MARBLE (Multiple Antenna Radio-interferometry for Baseline Length Evaluation): Development of a Compact VLBI System for Calibrating GNSS and Electronic Distance Measurement Devices

    NASA Astrophysics Data System (ADS)

    Ichikawa, R.; Ishii, A.; Takiguchi, H.; Kimura, M.; Sekido, M.; Takefuji, K.; Ujihara, H.; Hanado, Y.; Koyama, Y.; Kondo, T.; Kurihara, S.; Kokado, K.; Kawabata, R.; Nozawa, K.; Mukai, Y.; Kuroda, J.; Ishihara, M.; Matsuzaka, S.

    2012-12-01

    We are developing a compact VLBI system with a 1.6-m diameter aperture dish in order to provide reference baseline lengths for calibration. The reference baselines are used to validate surveying instruments such as GPS and EDM and is maintained by the Geospatial Information Authority of Japan (GSI). The compact VLBI system will be installed at both ends of the reference baseline. Since the system is not sensitive enough to detect fringes between the two small dishes, we have designed a new observation concept including one large dish station. We can detect two group delays between each compact VLBI system and the large dish station based on conventional VLBI measurement. A group delay between the two compact dishes can be indirectly calculated using a simple equation. We named the idea "Multiple Antenna Radio-interferometry for Baseline Length Evaluation", or MARBLE system. The compact VLBI system is easy transportable and consists of the compact dish, a new wide-band front-end system, azimuth and elevation drive units, an IF down-converter unit, an antenna control unit (ACU), a counterweight, and a monument pillar. Each drive unit is equipped with a zero-backlash harmonic drive gearing component. A monument pillar is designed to mount typical geodetic GNSS antennas easily and an offset between the GNSS antenna reference point. The location of the azimuth-elevation crossing point of the VLBI system is precisely determined with an uncertainty of less than 0.2 mm. We have carried out seven geodetic VLBI experiments on the Kashima-Tsukuba baseline (about 54 km) using the two prototypes of the compact VLBI system between December 2009 and December 2010. The average baseline length and repeatability of the experiments is 54184874.0 ± 2.4 mm. The results are well consistent with those obtained by GPS measurements. In addition, we are now planning to use the compact VLBI system for precise time and frequency comparison between separated locations.

  5. Fuzzy similarity measures for ultrasound tissue characterization

    NASA Astrophysics Data System (ADS)

    Emara, Salem M.; Badawi, Ahmed M.; Youssef, Abou-Bakr M.

    1995-03-01

    Computerized ultrasound tissue characterization has become an objective means for diagnosis of diseases. It is difficult to differentiate diffuse liver diseases, namely cirrhotic and fatty liver from a normal one, by visual inspection from the ultrasound images. The visual criteria for differentiating diffused diseases is rather confusing and highly dependent upon the sonographer's experience. The need for computerized tissue characterization is thus justified to quantitatively assist the sonographer for accurate differentiation and to minimize the degree of risk from erroneous interpretation. In this paper we used the fuzzy similarity measure as an approximate reasoning technique to find the maximum degree of matching between an unknown case defined by a feature vector and a family of prototypes (knowledge base). The feature vector used for the matching process contains 8 quantitative parameters (textural, acoustical, and speckle parameters) extracted from the ultrasound image. The steps done to match an unknown case with the family of prototypes (cirr, fatty, normal) are: Choosing the membership functions for each parameter, then obtaining the fuzzification matrix for the unknown case and the family of prototypes, then by the linguistic evaluation of two fuzzy quantities we obtain the similarity matrix, then by a simple aggregation method and the fuzzy integrals we obtain the degree of similarity. Finally, we find that the similarity measure results are comparable to the neural network classification techniques and it can be used in medical diagnosis to determine the pathology of the liver and to monitor the extent of the disease.

  6. Radiant Energy Measurements from a Scaled Jet Engine Axisymmetric Exhaust Nozzle for a Baseline Code Validation Case

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.

    1994-01-01

    A non-flowing, electrically heated test rig was developed to verify computer codes that calculate radiant energy propagation from nozzle geometries that represent aircraft propulsion nozzle systems. Since there are a variety of analysis tools used to evaluate thermal radiation propagation from partially enclosed nozzle surfaces, an experimental benchmark test case was developed for code comparison. This paper briefly describes the nozzle test rig and the developed analytical nozzle geometry used to compare the experimental and predicted thermal radiation results. A major objective of this effort was to make available the experimental results and the analytical model in a format to facilitate conversion to existing computer code formats. For code validation purposes this nozzle geometry represents one validation case for one set of analysis conditions. Since each computer code has advantages and disadvantages based on scope, requirements, and desired accuracy, the usefulness of this single nozzle baseline validation case can be limited for some code comparisons.

  7. Characterization of SWIR cameras by MRC measurements

    NASA Astrophysics Data System (ADS)

    Gerken, M.; Schlemmer, H.; Haan, Hubertus A.; Siemens, Christofer; Münzberg, M.

    2014-05-01

    Cameras for the SWIR wavelength range are becoming more and more important because of the better observation range for day-light operation under adverse weather conditions (haze, fog, rain). In order to choose the best suitable SWIR camera or to qualify a camera for a given application, characterization of the camera by means of the Minimum Resolvable Contrast MRC concept is favorable as the MRC comprises all relevant properties of the instrument. With the MRC known for a given camera device the achievable observation range can be calculated for every combination of target size, illumination level or weather conditions. MRC measurements in the SWIR wavelength band can be performed widely along the guidelines of the MRC measurements of a visual camera. Typically measurements are performed with a set of resolution targets (e.g. USAF 1951 target) manufactured with different contrast values from 50% down to less than 1%. For a given illumination level the achievable spatial resolution is then measured for each target. The resulting curve is showing the minimum contrast that is necessary to resolve the structure of a target as a function of spatial frequency. To perform MRC measurements for SWIR cameras at first the irradiation parameters have to be given in radiometric instead of photometric units which are limited in their use to the visible range. In order to do so, SWIR illumination levels for typical daylight and twilight conditions have to be defined. At second, a radiation source is necessary with appropriate emission in the SWIR range (e.g. incandescent lamp) and the irradiance has to be measured in W/m2 instead of Lux = Lumen/m2. At third, the contrast values of the targets have to be calibrated newly for the SWIR range because they typically differ from the values determined for the visual range. Measured MRC values of three cameras are compared to the specified performance data of the devices and the results of a multi-band in-house designed Vis-SWIR camera

  8. Fluorescent nanosensors for intracellular measurements: synthesis, characterization, calibration, and measurement

    PubMed Central

    Desai, Arpan S.; Chauhan, Veeren M.; Johnston, Angus P. R.; Esler, Tim; Aylott, Jonathan W.

    2013-01-01

    Measurement of intracellular acidification is important for understanding fundamental biological pathways as well as developing effective therapeutic strategies. Fluorescent pH nanosensors are an enabling technology for real-time monitoring of intracellular acidification. The physicochemical characteristics of nanosensors can be engineered to target specific cellular compartments and respond to external stimuli. Therefore, nanosensors represent a versatile approach for probing biological pathways inside cells. The fundamental components of nanosensors comprise a pH-sensitive fluorophore (signal transducer) and a pH-insensitive reference fluorophore (internal standard) immobilized in an inert non-toxic matrix. The inert matrix prevents interference of cellular components with the sensing elements as well as minimizing potentially harmful effects of some fluorophores on cell function. Fluorescent nanosensors are synthesized using standard laboratory equipment and are detectable by non-invasive widely accessible imaging techniques. The outcomes of studies employing this technology are dependent on reliable methodology for performing measurements. In particular, special consideration must be given to conditions for sensor calibration, uptake conditions and parameters for image analysis. We describe procedures for: (1) synthesis and characterization of polyacrylamide and silica based nanosensors, (2) nanosensor calibration and (3) performing measurements using fluorescence microscopy. PMID:24474936

  9. Increasing the Accuracy in the Measurement of the Minor Isotopes of Uranium: Care in Selection of Reference Materials, Baselines and Detector Calibration

    NASA Astrophysics Data System (ADS)

    Poths, J.; Koepf, A.; Boulyga, S. F.

    2008-12-01

    The minor isotopes of uranium (U-233, U-234, U-236) are increasingly useful for tracing a variety of processes: movement of anthropogenic nuclides in the environment (ref 1), sources of uranium ores (ref 2), and nuclear material attribution (ref 3). We report on improved accuracy for U-234/238 and U-236/238 by supplementing total evaporation protocol TIMS measurement on Faraday detectors (ref 4)with multiplier measurement for the minor isotopes. Measurement of small signals on Faraday detectors alone is limited by noise floors of the amplifiers and accurate measurement of the baseline offsets. The combined detector approach improves the reproducibility to better than ±1% (relative) for the U-234/238 at natural abundance, and yields a detection limit for U-236/U-238 of <0.2 ppm. We have quantified contribution of different factors to the uncertainties associated with these peak jumping measurement on a single detector, with an aim of further improvement. The uncertainties in the certified values for U-234 and U-236 in the uranium standard NBS U005, if used for mass bias correction, dominates the uncertainty in their isotopic ratio measurements. Software limitations in baseline measurement drives the detection limit for the U-236/U-238 ratio. This is a topic for discussion with the instrument manufacturers. Finally, deviation from linearity of the response of the electron multiplier with count rate limits the accuracy and reproducibility of these minor isotope measurements. References: (1) P. Steier et al(2008) Nuc Inst Meth(B), 266, 2246-2250. (2) E. Keegan et al (2008) Appl Geochem 23, 765-777. (3) K. Mayer et al (1998) IAEA-CN-98/11, in Advances in Destructive and Non-destructive Analysis for Environmental Monitoring and Nuclear Forensics. (4) S. Richter and S. Goldberg(2003) Int J Mass Spectrom, 229, 181-197.

  10. Correlation of the CME Productivity of Solar Active Regions with Measures of their Global Nonpotentiality from Vector Magnetograms: Baseline Results

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ron L.; Gary, G. Allen; Six, N. Frank (Technical Monitor)

    2001-01-01

    From conventional magnetograms and chromospheric and coronal images, it is known qualitatively that the fastest coronal mass ejections (CMEs) are magnetic explosions from sunspot active regions in which the magnetic field is globally strongly sheared and twisted from its minimum-energy potential configuration. In this paper, we present measurements from active-region vector magnetograms that begin to quantify the dependence of the CME productivity of an active region on the global nonpotentiality of its magnetic field. From each of 17 magnetograms of 12 bipolar active regions, we obtain a measure of the size of the active region (the magnetic flux content, phi) and three different measures of the global nonpotentiality (L(sub SS), the length of strong-shear, strong-field main neutral line; I(sub N), the net electric current arching from one polarity to the other; and alpha = muI(subN/phi), a flux-normalized measure of the field twist).

  11. Measuring sin2θw in PV-DIS with the Baseline Spectrometers at JLab 12 GeV

    SciTech Connect

    Reimer, Paul

    2007-07-18

    The couplings of leptons to quarks are fundamental parameters of the electroweak interaction. Within the framework of the Standard Model, these couplings can be related to sin2θw. Parity violation (PV) in deep inelastic scattering (DIS) is proportional to these couplings and hence sensitive sin2θw. PV-DIS, first measured at SLAC in the mid-1970's, was used to establish the Standard Model. The high quality and intensity of the upgraded 11 GeV CEBAF beam at Jefferson Laboratory will make it an ideal tool for PV studies. In DIS the asymmetry from parity violation is large (APV ≈10-4 Q2), allowing precise measurements with modest beam-time. This talk will explore a PV-DIS measurement which can be made using the baseline spectrometers that will exist as part of the 12 GeV JLab upgrade.

  12. Assessment of What/For What? Teachers' and Head Teachers' Views on Using Well-Being and Involvement as a Screening Measure for Conducting Baseline Assessment on School Entry in English Primary Schools

    ERIC Educational Resources Information Center

    Guimaraes, Sofia; Howe, Sally; Clausen, Sigrid Brogaard; Cottle, Michelle

    2016-01-01

    Baseline assessment has recently been trialled as part of an accountability measure in English primary schools. The research presented in this colloquium examines the views of teachers related to using well-being and involvement indicators as a starting point for baseline assessment. The findings suggest that the focus on well-being was welcomed…

  13. Establishing baseline data for an experimental appratus that measures heat transfer under conditions of oscillating pressure and flow. M. S. Thesis

    SciTech Connect

    Dean, C.E.

    1993-05-01

    Mathematical correlations for predicting heat transfer under conditions of oscillating pressure and flow are in their developmental infancy. Such heat transfer is commonly found in reciprocating machinery such as internal combustion engines, gas springs, and Stirling cycle engines. In order to understand and improve the thermodynamic performance of reciprocal engines, it is necessary that mathematical correlations be developed that accurately predict heat loss through the walls of the components within these systems. A heat transfer apparatus has been built that models the oscillating flow of a gas in a pipe as found in the regenerator of a Stirling engine. The apparatus is capable of measuring stream temperature and velocity at any point across the diameter of the pipe, the wall temperature, gas pressure, and gas to wall heat flux. This work addresses the collection of baseline heat transfer data for this apparatus under conditions of oscillating flow and pressure by (1) explaining the addition of a laser Doppler velocimeter to measure stream velocities, (2) investigating velocity profiles within the test section as the flow oscillates, and (3) recording and analyzing baseline heat transfer data. Results show a close correlation between the phase angle between the two compressors mounted at each end of the test section and the complex-valued Nusselt number that has been derived.

  14. Static and wind tunnel near-field/far field jet noise measurements from model scale single-flow baseline and suppressor nozzles. Volume 2: Forward speed effects

    NASA Technical Reports Server (NTRS)

    Jaeck, C. L.

    1976-01-01

    A model scale flight effects test was conducted in the 40 by 80 foot wind tunnel to investigate the effect of aircraft forward speed on single flow jet noise characteristics. The models tested included a 15.24 cm baseline round convergent nozzle, a 20-lobe and annular nozzle with and without lined ejector shroud, and a 57-tube nozzle with a lined ejector shroud. Nozzle operating conditions covered jet velocities from 412 to 640 m/s at a total temperature of 844 K. Wind tunnel speeds were varied from near zero to 91.5 m/s. Measurements were analyzed to (1) determine apparent jet noise source location including effects of ambient velocity; (2) verify a technique for extrapolating near field jet noise measurements into the far field; (3) determine flight effects in the near and far field for baseline and suppressor nozzles; and (4) establish the wind tunnel as a means of accurately defining flight effects for model nozzles and full scale engines.

  15. Evaluation of multi-modal, multi-site neuroimaging measures in Huntington's disease: Baseline results from the PADDINGTON study☆

    PubMed Central

    Hobbs, Nicola Z.; Cole, James H.; Farmer, Ruth E.; Rees, Elin M.; Crawford, Helen E.; Malone, Ian B.; Roos, Raymund A.C.; Sprengelmeyer, Reiner; Durr, Alexandra; Landwehrmeyer, Bernhard; Scahill, Rachael I.; Tabrizi, Sarah J.; Frost, Chris

    2012-01-01

    Background Macro- and micro-structural neuroimaging measures provide valuable information on the pathophysiology of Huntington's disease (HD) and are proposed as biomarkers. Despite theoretical advantages of microstructural measures in terms of sensitivity to pathology, there is little evidence directly comparing the two. Methods 40 controls and 61 early HD subjects underwent 3 T MRI (T1- and diffusion-weighted), as part of the PADDINGTON study. Macrostructural volumetrics were obtained for the whole brain, caudate, putamen, corpus callosum (CC) and ventricles. Microstructural diffusion metrics of fractional anisotropy (FA), mean-, radial- and axial-diffusivity (MD, RD, AD) were computed for white matter (WM), CC, caudate and putamen. Group differences were examined adjusting for age, gender and site. A formal comparison of effect sizes determined which modality and metrics provided a statistically significant advantage over others. Results Macrostructural measures showed decreased regional and global volume in HD (p < 0.001); except the ventricles which were enlarged (p < 0.01). In HD, FA was increased in the deep grey-matter structures (p < 0.001), and decreased in the WM (CC, p = 0.035; WM, p = 0.053); diffusivity metrics (MD, RD, AD) were increased for all brain regions (p < 0.001). The largest effect sizes were for putamen volume, caudate volume and putamen diffusivity (AD, RD and MD); each was significantly larger than those for all other metrics (p < 0.05). Conclusion The highest performing macro- and micro-structural metrics had similar sensitivity to HD pathology quantified via effect sizes. Region-of-interest may be more important than imaging modality, with deep grey-matter regions outperforming the CC and global measures, for both volume and diffusivity. FA appears to be relatively insensitive to disease effects. PMID:24179770

  16. In vivo baseline measurements of hip joint range of motion in suspensory and non-suspensory anthropoids

    PubMed Central

    Hammond, Ashley S.

    2014-01-01

    Hominoids and atelines are known to use suspensory behaviors and are assumed to possess greater hip joint mobility than non-suspensory monkeys, particularly for range of abduction. This assumption has greatly influenced how extant and fossil primate hip joint morphology has been interpreted, despite the fact that there are no data available on hip mobility in hominoids or Ateles. This study uses in vivo measurements to test the hypothesis that suspensory anthropoids have significantly greater ranges of hip joint mobility than non-suspensory anthropoids. Passive hip joint mobility was measured on a large sample of anesthetized captive anthropoids (non-human hominids=43, hylobatids=6, cercopithecids=43, Ateles=6, Cebus=6). Angular and linear data were collected using goniometers and tape measures. Range of motion data were analyzed for significant differences by locomotor group using ANOVA and phylogenetic regression. The data demonstrate that suspensory anthropoids are capable of significantly greater hip abduction and external rotation. Degree of flexion and internal rotation were not larger in the suspensory primates, indicating that suspension is not associated with a global increase in hip mobility. Future work should consider the role of external rotation in abduction ability, how the physical position of the distal limb segments are influenced by differences in range of motion proximally, as well as focus on bony and soft tissue differences that enable or restrict abduction and external rotation at the anthropoid hip joint. PMID:24288178

  17. Baseline OCT Measurements in the Idiopathic Intracranial Hypertension Treatment Trial, Part I: Quality Control, Comparisons, and Variability

    PubMed Central

    2014-01-01

    Purpose. Optical coherence tomography (OCT) has been used to investigate papilledema in single-site, mostly retrospective studies. We investigated whether spectral-domain OCT (SD-OCT), which provides thickness and volume measurements of the optic nerve head and retina, could reliably demonstrate structural changes due to papilledema in a prospective multisite clinical trial setting. Methods. At entry, 126 subjects in the Idiopathic Intracranial Hypertension Treatment Trial (IIHTT) with mild visual field loss had optic disc and macular scans, using the Cirrus SD-OCT. Images were analyzed by using the proprietary commercial and custom 3D-segmentation algorithms to calculate retinal nerve fiber layer (RNFL), total retinal thickness (TRT), optic nerve head volume (ONHV), and retinal ganglion cell layer (GCL) thickness. We evaluated variability, with interocular comparison and correlation between results for both methods. Results. The average RNFL thickness > 95% of normal controls in 90% of eyes and the RNFL, TRT, ONH height, and ONHV showed strong (r > 0.8) correlations for interocular comparisons. Variability for repeated testing of OCT parameters was low for both methods and intraclass correlations > 0.9 except for the proprietary GCL thickness. The proprietary algorithm–derived RNFL, TRT, and GCL thickness measurements had failure rates of 10%, 16%, and 20% for all eyes respectively, which were uncommon with 3D-segmentation–derived measurements. Only 7% of eyes had GCL thinning that was less than fifth percentile of normal age-matched control eyes by both methods. Conclusions. Spectral-domain OCT provides reliable continuous variables and quantified assessment of structural alterations due to papilledema. (ClinicalTrials.gov number, NCT01003639.) PMID:25370510

  18. The orbit of Phi Cygni measured with long-baseline optical interferometry - Component masses and absolute magnitudes

    NASA Technical Reports Server (NTRS)

    Armstrong, J. T.; Hummel, C. A.; Quirrenbach, A.; Buscher, D. F.; Mozurkewich, D.; Vivekanand, M.; Simon, R. S.; Denison, C. S.; Johnston, K. J.; Pan, X.-P.

    1992-01-01

    The orbit of the double-lined spectroscopic binary Phi Cygni, the distance to the system, and the masses and absolute magnitudes of its components are presented via measurements with the Mar III Optical Interferometer. On the basis of a reexamination of the spectroscopic data of Rach & Herbig (1961), the values and uncertainties are adopted for the period and the projected semimajor axes from the present fit to the spectroscopic data and the values of the remaining elements from the present fit to the Mark III data. The elements of the true orbit are derived, and the masses and absolute magnitudes of the components, and the distance to the system are calculated.

  19. Geodynamical Processes between Antarctica and India as revealed by very long baselines between the continents estimated from continuous and long-term GPS measurements

    NASA Astrophysics Data System (ADS)

    N, R.; Ec, M.; Akilan, A.

    2006-12-01

    To holistically understand the geodynamical and crustal deformation processes in the south of Indian peninsula between India and Antarctica, two global networks have been chosen that geodetically connect the two continents, the IGS Station at Diego Garcia (DGAR) being the common station between the two networks. 8 years of data from 1997 to 2005 were used. Very long baselines have been estimated from HYDE to other chosen IGS stations in and around India including DGAR. Similarly in the other network, very long baselines have been estimated from Kerguelen to other stations in and around Antarctica again including DGAR. Since the baseline length between HYDE, India and MAITRI, Antarctica is more than 10,000 km, it is mandatory to form these two different networks to improve the accuracy of the baseline measurements by GPS. This is to circumvent the limitation in the estimation of maximum base line length by GPS is of 6,900 km only due to the availability of less number of double difference observables in the GPS data analysis. Our analysis and results show increase of baseline lengths between Kerguelen in Antarctic plate and other stations and shortening of baseline lengths between HYDE in Indian plate and other common stations. By this global network analyses, the stations HYDE and MAITRI are geodetically tied through DGAR. With this geodetic tie up, having got the first geodetic signatures of the geodynamical processes between India and Antarctica, continuous monitoring and estimation would help enhancing the understanding the crustal deformation processes between these two continents despite many plates, micro plates and ridges in this study region.These estimations reveal clearly that the stations in the Australian plate are moving away from the Indian plate conforming to the recent Plate tectonic theory that India and Australia lie in two different plates with a diffuse boundary separating them. GPS derived velocity vectors for the Australian Plate also

  20. Randomization, matching, and propensity scores in the design and analysis of experimental studies with measured baseline covariates.

    PubMed

    Loux, Travis M

    2015-02-20

    In many experimental situations, researchers have information on a number of covariates prior to randomization. This information can be used to balance treatment assignment with respect to these covariates as well as in the analysis of the outcome data. In this paper, we investigate the use of propensity scores in both of these roles. We also introduce a randomization procedure in which the balance of all measured covariates is approximately indexed by the variance of the empirical propensity scores and randomization is restricted to those permutations with the least variable propensity scores. This procedure is compared with recently proposed methods in terms of resulting covariate balance and estimation efficiency. Properties of the estimators resulting from each procedure are compared with estimates which incorporate the propensity score in the analysis stage. Simulation results show that analytical adjustment for the propensity score yields results on par with those obtained through restricted randomization procedures and can be used in conjunction with such procedures to further improve inferential efficiency. PMID:25384851

  1. Characterization of measurements in quantum communication. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chan, V. W. S.

    1975-01-01

    A characterization of quantum measurements by operator valued measures is presented. The generalized measurements include simultaneous approximate measurement of noncommuting observables. This characterization is suitable for solving problems in quantum communication. Two realizations of such measurements are discussed. The first is by adjoining an apparatus to the system under observation and performing a measurement corresponding to a self-adjoint operator in the tensor-product Hilbert space of the system and apparatus spaces. The second realization is by performing, on the system alone, sequential measurements that correspond to self-adjoint operators, basing the choice of each measurement on the outcomes of previous measurements. Simultaneous generalized measurements are found to be equivalent to a single finer grain generalized measurement, and hence it is sufficient to consider the set of single measurements. An alternative characterization of generalized measurement is proposed. It is shown to be equivalent to the characterization by operator-values measures, but it is potentially more suitable for the treatment of estimation problems. Finally, a study of the interaction between the information-carrying system and a measurement apparatus provides clues for the physical realizations of abstractly characterized quantum measurements.

  2. Characterization and measurement of polymer wear

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Aron, P. R.

    1985-01-01

    Analytical tools which characterize the polymer wear process are discussed. The devices discussed include: visual observation of polymer wear with SEM, the quantification with surface profilometry and ellipsometry, to study the chemistry with AES, XPS and SIMS, to establish interfacial polymer orientation and accordingly bonding with QUARTIR, polymer state with Raman spectroscopy and stresses that develop in polymer films using a X-ray double crystal camera technique.

  3. Characterization and measurement of polymer wear

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Aron, P. R.

    1984-01-01

    Analytical tools which characterize the polymer wear process are discussed. The devices discussed include: visual observation of polymer wear with SEM, the quantification with surface profilometry and ellipsometry, to study the chemistry with AES, XPS and SIMS, to establish interfacial polymer orientation and accordingly bonding with QUARTIR, polymer state with Raman spectroscopy and stresses that develop in polymer films using a X-ray double crystal camera technique.

  4. The use of baseline measurements and geophysical models for the estimation of crustal deformations and the terrestrial reference system. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bock, Y.

    1982-01-01

    Four possible estimators are investigated for the monitoring of crustal deformations from a combination of repeated baseline length measurements and adopted geophysical models, particularly an absolute motion plate model. The first estimator is an extension of the familiar free adjustment. The next two are Bayesian type estimators, one weak and one strong. Finally, a weighted constraint estimator is presented. The properties of these four estimators are outlined and their physical interpretations discussed. A series of simulations are performed to test the four estimators and to determine whether or not to incorporate a plate model for the monitoring of deformations. The application of these estimations to the maintenance of a new conventional terrestrial reference system is discussed.

  5. Precision surveying using very long baseline interferometry

    NASA Technical Reports Server (NTRS)

    Ryan, J. W.; Clark, T. A.; Coates, R.; Ma, C.; Robertson, D. S.; Corey, B. E.; Counselman, C. C.; Shapiro, I. I.; Wittels, J. J.; Hinteregger, H. F.

    1977-01-01

    Radio interferometry measurements were used to measure the vector baselines between large microwave radio antennas. A 1.24 km baseline in Massachusetts between the 36 meter Haystack Observatory antenna and the 18 meter Westford antenna of Lincoln Laboratory was measured with 5 mm repeatability in 12 separate experiments. Preliminary results from measurements of the 3,928 km baseline between the Haystack antenna and the 40 meter antenna at the Owens Valley Radio Observatory in California are presented.

  6. Measurement System Characterization in the Presence of Measurement Errors

    NASA Technical Reports Server (NTRS)

    Commo, Sean A.

    2012-01-01

    In the calibration of a measurement system, data are collected in order to estimate a mathematical model between one or more factors of interest and a response. Ordinary least squares is a method employed to estimate the regression coefficients in the model. The method assumes that the factors are known without error; yet, it is implicitly known that the factors contain some uncertainty. In the literature, this uncertainty is known as measurement error. The measurement error affects both the estimates of the model coefficients and the prediction, or residual, errors. There are some methods, such as orthogonal least squares, that are employed in situations where measurement errors exist, but these methods do not directly incorporate the magnitude of the measurement errors. This research proposes a new method, known as modified least squares, that combines the principles of least squares with knowledge about the measurement errors. This knowledge is expressed in terms of the variance ratio - the ratio of response error variance to measurement error variance.

  7. Measurement of Persistent Organic Pollutants (POPs) in plastic resin pellets from remote islands : Toward establishment of baseline level for International Pellet Watch

    NASA Astrophysics Data System (ADS)

    Takada, H.; Heskett, M.; Yamashita, R.; Yuyama, M.; Itoh, M.; Geok, Y. B.; Ogata, Y.

    2011-12-01

    Plastic resin pellets collected from remote islands in open oceans (Canary, St. Helena, Cocos, Hawaii, Maui Islands and Barbados) were sorted and yellowing polyethylene (PE) pellets were measured for polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane and the degradation products (DDTs), and hexachlorocyclohexanes (HCHs) by gas chromatograph equipped with mass spectrometer (GC-MS) and with electron capture detector (GC-ECD). PCBs were detected from all the pellet samples, confirming the global dispersion of PCBs. Median concentrations of PCBs (sum of 13 congeners : CB-66, CB-101, CB-110, CB-118, CB-105, CB-149, CB-153, CB-138, CB-128, CB-187, CB-180, CB-170, CB-206) in the remote island pellets ranged from 0.1 to 10 ng/g-pellet. These were one to three orders of magnitude lower than those observed for pellets from industrialized coastal zones (hundreds ng/g in Los Angeles, Boston, Tokyo; Ogata et al., 2009). Because these remote islands are far (>100 km) from industrialized zones, these concentrations (i.e., 0.1 to 10 ng/g-pellet) can be regarded as global "baseline" level of PCB pollution. Concentrations of DDTs in the remote island pellets ranged from 0.2 to 5.5 ng/g-pellet. At some locations, DDT was dominant over the degradation products (DDE and DDD), suggesting current usage of the pesticides in the islands. HCHs concentrations were 0.4 - 1.8 ng/g-pellet and lower than PCBs and DDTs, except for St. Helena Island at 18.8 ng/g-pellet where the current usage of the pesticides are of concern. The analyses of pellets from the remote islands provided "baseline" level of POPs (PCBs < 10 ng/g-pellet, DDTs < 6 ng/g-pellet, HCHs < 2 ng/g-pellet). However, the present samples were from tropical and subtropical areas. To establish global baseline, especially to understand the effects of global distillation, pellet samples from remote islands in higher latitude regions are necessary. From the eco-toxicological point of view, the fact that sporadic high

  8. Orbital Debris Characterization via Laboratory Optical Measurements

    NASA Technical Reports Server (NTRS)

    Cowardin, Healther

    2011-01-01

    Optical observations of orbital debris offer insights that differ from radar measurements (specifically the size parameter,wavelength regime,and altitude range). For example, time-dependent photometric data yield lightcurves in multiple bandpasses that aid in material identification and possible periodic orientations. These data can also be used to help identify shapes and optical properties at multiple phase angles. Capitalizing on optical data products and applying them to generate a more complete understanding of orbital objects is a key objective of NASA's Optical Measurement Program, and the primary reason for the creation of the Optical Measurements Center(OMC). The OMC attempts to emulate space-based illumination conditions using equipment and techniques that parallel telescopic observations and source-target-sensor orientations.

  9. Radiation: Physical Characterization and Environmental Measurements

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session WP4, the discussion focuses on the following topics: Production of Neutrons from Interactions of GCR-Like Particles; Solar Particle Event Dose Distributions, Parameterization of Dose-Time Profiles; Assessment of Nuclear Events in the Body Produced by Neutrons and High-Energy Charged Particles; Ground-Based Simulations of Cosmic Ray Heavy Ion Interactions in Spacecraft and Planetary Habitat Shielding Materials; Radiation Measurements in Space Missions; Radiation Measurements in Civil Aircraft; Analysis of the Pre-Flight and Post-Flight Calibration Procedures Performed on the Liulin Space Radiation Dosimeter; and Radiation Environment Monitoring for Astronauts.

  10. Measurement of dielectron continuum in p + p at sqrt(s) = 200 GeV as a baseline study for chiral symmetry restoration

    NASA Astrophysics Data System (ADS)

    Rolnick, Sky Deva

    Dielectrons are a very important probe used for studying the properties of hot dense nuclear matter created in heavy ion collisions. Since dielectrons are color neutral and produced during all stages of the collision, they provide access to an abundance of information not readily available from other sources. These include thermal sources, vector meson resonances, heavy charm and bottom decay, and Drell-Yan processes. Previous measurements of the dielectron continuum in PHENIX have indicated an unexpectedly large enhancement in Au+Au collisions in the low mass region (0.3 - 0.8GeV/c2), a possible signal of chiral symmetry restoration, but these measurements were limited by large systematic uncertainties primarily from a poor signal to background ratio. In 2009 the PHENIX experiment was upgraded with the addition of the Hadron Blind Detector which improves the background rejection by detecting partially reconstructed Dalitz decays and gamma conversion pairs. In this thesis, I will review the status of electromagnetic probes measured from the collision of heavy nuclei and present and compare the results obtained from 2009 data in p + p at 200 GeV using the HBD which will serve as a baseline for Au+Au results obtained in 2010.

  11. Magnetorheological fluid characterization using ultrasound measurements

    NASA Astrophysics Data System (ADS)

    Rodríguez-López, J.; Elvira, L.; Montero de Espinosa, F.

    2012-12-01

    In this work the variations of velocity of sound and attenuation in magnetorheological (MR) suspensions have been studied when the temperature and the intensity of magnetic field have been varied and, also, when the suspension is observed for a long period of time. It has been shown that the behaviour of the MR fluids depends strongly on the fluid used as solvent when temperature is varied. Regarding the sedimentation process, it has been proved that the application of an external magnetic field enhances the stabilization process. Analyzing the hysteretic behaviour it is seen that the system does not recover its initial state when the magnetic field is removed, because the ordered microstructure does not disappear completely. As ultrasound parameters are sensitive to changes in the temperature, in the structure and also in the volume fraction, they are a promising tool to characterize MR fluids in order to improve its performances.

  12. Mesoscale meteorological measurements characterizing complex flows

    SciTech Connect

    Hubbe, J.M.; Allwine, K.J.

    1993-09-01

    Meteorological measurements are an integral and essential component of any emergency response system for addressing accidental releases from nuclear facilities. An important element of the US Department of Energy`s (DOE`s) Atmospheric Studies in Complex Terrain (ASCOT) program is the refinement and use of state-of-the-art meteorological instrumentation. ASCOT is currently making use of ground-based remote wind sensing instruments such as doppler acoustic sounders (sodars). These instruments are capable of continuously and reliably measuring winds up to several hundred meters above the ground, unattended. Two sodars are currently measuring the winds, as part of ASCOT`s Front Range Study, in the vicinity of DOE`s Rocky Flats Plant (RFP) near Boulder, Colorado. A brief description of ASCOT`s ongoing Front Range Study is given followed by a case study analysis that demonstrates the utility of the meteorological measurement equipment and the complexity of flow phenomena that are experienced near RFP. These complex flow phenomena can significantly influence the transport of the released material and consequently need to be identified for accurate assessments of the consequences of a release.

  13. Detailed Aerosol Characterization using Polarimetric Measurements

    NASA Astrophysics Data System (ADS)

    Hasekamp, Otto; di Noia, Antonio; Stap, Arjen; Rietjens, Jeroen; Smit, Martijn; van Harten, Gerard; Snik, Frans

    2016-04-01

    Anthropogenic aerosols are believed to cause the second most important anthropogenic forcing of climate change after greenhouse gases. In contrast to the climate effect of greenhouse gases, which is understood relatively well, the negative forcing (cooling effect) caused by aerosols represents the largest reported uncertainty in the most recent assessment of the International Panel on Climate Change (IPCC). To reduce the large uncertainty on the aerosol effects on cloud formation and climate, accurate satellite measurements of aerosol optical properties (optical thickness, single scattering albedo, phase function) and microphysical properties (size distribution, refractive index, shape) are essential. There is growing consensus in the aerosol remote sensing community that multi-angle measurements of intensity and polarization are essential to unambiguously determine all relevant aerosol properties. This presentations adresses the different aspects of polarimetric remote sensing of atmospheric aerosols, including retrieval algorithm development, validation, and data needs for climate and air quality applications. During past years, at SRON-Netherlands Instite for Space Research retrieval algorithms have been developed that make full use of the capabilities of polarimetric measurements. We will show results of detailed aerosol properties from ground-based- (groundSPEX), airborne- (NASA Research Scanning Polarimeter), and satellite (POLDER) measurements. Also we will discuss observational needs for future instrumentation in order to improve our understanding of the role of aerosols in climate change and air quality.

  14. UV RADIATION MEASUREMENTS/ATMOSPHERIC CHARACTERIZATION

    EPA Science Inventory

    Because exposure to ultraviolet (UV) radiation is an ecosystem stressor and poses a human health risk, the National Exposure Research Laboratory (NERL) has undertaken a research program to measure the intensity of UV-B radiation at various locations throughout the U.S. In Septem...

  15. Characterizing Quasar Outflows I: Sample, Spectral Measurements

    NASA Astrophysics Data System (ADS)

    Ganguly, Rajib; Christenson, D. H.; Richmond, J. M.; Derseweh, J. A.; Robbins, J. M.; Townsend, S. L.; Stark, M. A.

    2012-05-01

    Galaxy evolution models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). For this purpose, we are examining a sample of 11000 z=1.7-2.0 quasars from the Sloan Digital Sky Survey. This redshift range permits the following from the SDSS spectra: (1) separation of objects that do and do not exhibit outflows; (2) classification/measurement of outflow properties (ionization, velocity, velocity width); and (3) measurements of UV emission line and continuum parameters. In this poster, we subjectively divide these quasars into four categories: broad absorption-line quasars (2700 objects), associated absorption-line quasars (1700 objects), reddened quasars (160 objects), and unabsorbed/unreddened quasars (6300 objects). We present measurements of the absorption (velocities, velocity widths, equivalent widths), composite spectral profiles of outflows as a function of velocity, as well as measurements of the continuum and CIV, MgII, and FeII emission-line properties. In accompanying posters, we add photometry from the rest-frame X-ray (ROSAT and Chandra), EUV (GALEX), optical (2MASS), and infrared (WISE) bands to complete the SED. The continuum and emission-line measurements from the SDSS spectra and accompanying photometry provides estimates on the black hole masses, bolometric luminsosities, and SED. We consider empirically how these affect the outflow properties. This material is based upon work supported by the National Aeronautics and Space Administration under

  16. Comparison of torque measurements and near-infrared spectroscopy in characterization of a wet granulation process.

    PubMed

    Jørgensen, Anna Cecilia; Luukkonen, Pirjo; Rantanen, Jukka; Schaefer, Torben; Juppo, Anne Mari; Yliruusi, Jouko

    2004-09-01

    The purpose of this study was to compare impeller torque measurements and near-infrared (NIR) spectroscopy in the characterization of the water addition phase of a wet granulation process. Additionally, the effect of hydrate formation during granulation on the impeller torque was investigated. Anhydrous theophylline, alpha-lactose monohydrate, and microcrystalline cellulose (MCC) were used as materials for the study. The materials and mixtures of them were granulated using purified water in a small-scale high-shear mixer. The impeller torque was registered and NIR spectra of wet samples were recorded at-line. The torque and the NIR baseline-corrected water absorbances increased with increasing water content. A plateau in the NIR baseline-corrected water absorbances was observed for wet masses containing MCC. This was at the region of optimal water amount for granulation according to the torque results. In the case of anhydrous theophylline, the slope of baseline-corrected water absorbance values increased at the same water amount as the impeller torque started to increase. The hydrate formation of theophylline during granulation was observed as a slight decrease in the impeller torque. In addition, the hydrate formation during granulation affected the granulation liquid requirement. The liquid requirement was different for monohydrate formed during granulation compared to one formed in high relative humidity before the granulation. The results suggest that NIR spectroscopy may be applicable to process monitoring of wet granulation, also in cases where monitoring of impeller torque is difficult to apply. PMID:15295784

  17. Cyclic Concentration Measurements for Characterizing Pulsating Flow

    SciTech Connect

    Bamberger, Judith A.

    2013-07-07

    Slurry mixed in vessels via pulse jet mixers has a periodic, rather than steady, concentration profile. Measurements of local concentration taken at the center of the tank at a range of elevations within the mixed region were analyzed to obtain a greater understanding of how the periodic pulse jet mixing cycle affects the local concentration. Data were obtained at the critical suspension velocity, when all solids are suspended at the end of the pulse. The data at a range of solids loadings are analyzed to observe the effect of solids concentration during the suspension and settling portions of the mixing cycle.

  18. Optical measurement system for characterizing plastic surfaces

    NASA Astrophysics Data System (ADS)

    Gahleitner, R.; Niel, Kurt S.; Frank, S.

    2008-02-01

    Injection molded plastic parts are often influenced with the surface defect tiger stripes, which dramatically reduce the visual quality. Tiger stripes are known as alternating bands of bright and dull regions normally to the molded flow direction. This defect highly depends on the injection time and on the formation of the plastic compound. In the last years, the intensity of the tiger stripes defect was controlled visually. For quantifying the tiger strip defect a new, efficient, repeatable, reliable and nondestructive optical measurement system is proposed. To evaluate the dependency of the injection time, a number of five DIN-A5 plastic specimens are molded. Each of the five plates consists of the same material but they have different injection times. For the measurement, one specimen is put into the specimen holder, which is placed on the drawer of a closed cabinet. In this inside black painted cabinet a LED light source and a CCD Camera are mounted. The beams of the LED light are diffuse reflected on the surface of the specimen. To catch only parallel beams by the lens of the camera a large distance between specimen and camera is realized by two justified mirrors in the cabinet. The bright and dull regions of the tiger stripe defect have different diffuse reflection parameters. Thus in a picture of defined brightness the visibility of this defect is very good. To enhance the repeatability the failure of the camera noise and of the light oscillation is reduced by mends of averaging multiple images. Next, the surface structure is filtered out of the image and a representing number of horizontal grey-value lines are extracted. The so called tiger line signal is the difference between the grey line and a calculated polynomial function (degree of 6) and shows the surface defect of each line oscillating on the zero x-axis. For each tiger line signal the mean squared error is evaluated. To calculate a quantitative value of the whole surface, all line errors are

  19. Measurements and Characterization: Cell and Module Performance (Fact Sheet)

    SciTech Connect

    Not Available

    2011-02-01

    Capabilities fact sheet for the National Center for Photovoltaics: Measurements and Characterization -- Cell and Module Performance. One-sided sheet that includes Scope, Core Competencies and Capabilities, and Contact/Web information.

  20. Chemical characterization of biogenic secondary organic aerosol generated from plant emissions under baseline and stressed conditions: inter- and intra-species variability for six coniferous species

    NASA Astrophysics Data System (ADS)

    Faiola, C. L.; Wen, M.; VanReken, T. M.

    2015-04-01

    The largest global source of secondary organic aerosol (SOA) in the atmosphere is derived from the oxidation of biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. Alterations to the biogenic volatile organic compound (BVOC) profile could impact the characteristics of the SOA formed from those emissions. This study investigated the impacts of one global change stressor, increased herbivory, on the composition of SOA derived from real plant emissions. Herbivory was simulated via application of methyl jasmonate (MeJA), a proxy compound. Experiments were repeated under pre- and post-treatment conditions for six different coniferous plant types. Volatile organic compounds (VOCs) emitted from the plants were oxidized to form SOA via dark ozone-initiated chemistry. The SOA chemical composition was measured using a Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS). The aerosol mass spectra of pre-treatment biogenic SOA from all plant types tended to be similar with correlations usually greater than or equal to 0.90. The presence of a stressor produced characteristic differences in the SOA mass spectra. Specifically, the following m/z were identified as a possible biogenic stress AMS marker with the corresponding HR ion(s) shown in parentheses: m/z 31 (CH3O+), m/z 58 (C2H2O2+, C3H6O+), m/z 29 (C2H5+), m/z 57 (C3H5O+), m/z 59 (C2H3O2+, C3H7O+), m/z 71 (C3H3O2+, C4H7O+), and m/z 83 (C5H7O+). The first aerosol mass spectrum of SOA generated from the oxidation of the plant stress hormone, MeJA, is also presented. Elemental analysis results demonstrated an O : C range of baseline biogenic SOA between 0.3 and 0.47. The O : C of standard MeJA SOA was 0.52. Results presented here could be used to help identify a biogenic plant stress marker in ambient data sets collected in forest environments.

  1. Chemical characterization of biogenic SOA generated from plant emissions under baseline and stressed conditions: inter- and intra-species variability for six coniferous species

    NASA Astrophysics Data System (ADS)

    Faiola, C. L.; Wen, M.; VanReken, T. M.

    2014-10-01

    The largest global source of secondary organic aerosol in the atmosphere is derived from the oxidation of biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. Alterations to the biogenic VOC profile could impact the characteristics of the SOA formed from those emissions. This study investigated the impacts of one global change stressor, increased herbivory, on the composition of SOA derived from real plant emissions. Herbivory was simulated via application of methyl jasmonate, a proxy compound. Experiments were repeated under pre- and post-treatment conditions for six different coniferous plant types. VOCs emitted from the plants were oxidized to form SOA via dark ozone-initiated chemistry. The SOA particle size distribution and chemical composition were measured using a scanning mobility particle sizer (SMPS) and Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS), respectively. The aerosol mass spectra of pre-treatment biogenic SOA from all plant types tended to be similar with correlations usually greater than or equal to 0.90. The presence of a stressor produced characteristic differences in the SOA mass spectra. Specifically, the following m/z were identified as a possible biogenic stress AMS marker with the corresponding HR ion(s) shown in parentheses: m/z 31 (CH3O+), m/z 58 (C2H2O2+, C3H6O+) m/z 29 (C2H5+), m/z 57 (C3H5O+), m/z 59 (C2H3O2+, C3H7O+), m/z 71 (C3H3O2+, C4H7O+), and m/z 83 (C5H7O+). The first aerosol mass spectrum of SOA generated from the oxidation of the plant stress hormone, methyl jasmonate, is also presented. Elemental analysis results demonstrated an O:C range of baseline biogenic SOA between 0.3-0.47. The O:C of standard methyl jasmonate SOA was 0.52. Results presented here could be used to help identify a biogenic plant stress marker in ambient datasets collected in forest environments.

  2. Chemical characterization of biogenic SOA generated from plant emissions under baseline and stressed conditions: inter- and intra-species variability for six coniferous species

    DOE PAGESBeta

    Faiola, C. L.; Wen, M.; VanReken, T. M.

    2014-10-01

    The largest global source of secondary organic aerosol in the atmosphere is derived from the oxidation of biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. Alterations to the biogenic VOC profile could impact the characteristics of the SOA formed from those emissions. This study investigated the impacts of one global change stressor, increased herbivory, on the composition of SOA derived from real plant emissions. Herbivory was simulated via application of methyl jasmonate, a proxy compound. Experiments were repeated under pre- and post-treatment conditions for six differentmore » coniferous plant types. VOCs emitted from the plants were oxidized to form SOA via dark ozone-initiated chemistry. The SOA particle size distribution and chemical composition were measured using a scanning mobility particle sizer (SMPS) and Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS), respectively. The aerosol mass spectra of pre-treatment biogenic SOA from all plant types tended to be similar with correlations usually greater than or equal to 0.90. The presence of a stressor produced characteristic differences in the SOA mass spectra. Specifically, the following m/z were identified as a possible biogenic stress AMS marker with the corresponding HR ion(s) shown in parentheses: m/z 31 (CH3O+), m/z 58 (C2H2O2+, C3H6O+) m/z 29 (C2H5+), m/z 57 (C3H5O+), m/z 59 (C2H3O2+, C3H7O+), m/z 71 (C3H3O2+, C4H7O+), and m/z 83 (C5H7O+). The first aerosol mass spectrum of SOA generated from the oxidation of the plant stress hormone, methyl jasmonate, is also presented. Elemental analysis results demonstrated an O:C range of baseline biogenic SOA between 0.3–0.47. The O:C of standard methyl jasmonate SOA was 0.52. Results presented here could be used to help identify a biogenic plant stress marker in ambient datasets collected in forest environments.« less

  3. Chemical characterization of biogenic secondary organic aerosol generated from plant emissions under baseline and stressed conditions: inter- and intra-species variability for six coniferous species

    DOE PAGESBeta

    Faiola, C. L.; Wen, M.; VanReken, T. M.

    2015-04-01

    The largest global source of secondary organic aerosol (SOA) in the atmosphere is derived from the oxidation of biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. Alterations to the biogenic volatile organic compound (BVOC) profile could impact the characteristics of the SOA formed from those emissions. This study investigated the impacts of one global change stressor, increased herbivory, on the composition of SOA derived from real plant emissions. Herbivory was simulated via application of methyl jasmonate (MeJA), a proxy compound. Experiments were repeated under pre- andmore » post-treatment conditions for six different coniferous plant types. Volatile organic compounds (VOCs) emitted from the plants were oxidized to form SOA via dark ozone-initiated chemistry. The SOA chemical composition was measured using a Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS). The aerosol mass spectra of pre-treatment biogenic SOA from all plant types tended to be similar with correlations usually greater than or equal to 0.90. The presence of a stressor produced characteristic differences in the SOA mass spectra. Specifically, the following m/z were identified as a possible biogenic stress AMS marker with the corresponding HR ion(s) shown in parentheses: m/z 31 (CH3O+), m/z 58 (C2H2O2+, C3H6O+), m/z 29 (C2H5+), m/z 57 (C3H5O+), m/z 59 (C2H3O2+, C3H7O+), m/z 71 (C3H3O2+, C4H7O+), and m/z 83 (C5H7O+). The first aerosol mass spectrum of SOA generated from the oxidation of the plant stress hormone, MeJA, is also presented. Elemental analysis results demonstrated an O : C range of baseline biogenic SOA between 0.3 and 0.47. The O : C of standard MeJA SOA was 0.52. Results presented here could be used to help identify a biogenic plant stress marker in ambient data sets collected in forest environments.« less

  4. A Mechanics Baseline Test.

    ERIC Educational Resources Information Center

    Hestenes, David; Wells, Malcolm

    1992-01-01

    Reports the design of the "Mechanics Baseline Test," an instrument to assess students' understandings about concepts in mechanics. Discusses how comparisons of test results with extensive baseline data can be used to evaluate instruction at all levels. Includes a copy of the instrument. (MDH)

  5. Integrated Baseline Review (IBR) Handbook

    NASA Technical Reports Server (NTRS)

    2013-01-01

    An Integrated Baseline Review (IBR) is a review of a supplier?s Performance Measurement Baseline (PMB). It is conducted by Program/Project Managers and their technical staffs on contracts and in-house work requiring compliance with NASA Earned Value Management System (EVMS) policy as defined in program/project policy, NPR 7120.5, or in NASA Federal Acquisition Regulations. The IBR Handbook may also be of use to those responsible for preparing the Terms of Reference for internal project reviews. While risks may be identified and actions tracked as a result of the IBR, it is important to note that an IBR cannot be failed.

  6. VERY LONG BASELINE INTERFEROMETRY MEASURED PROPER MOTION AND PARALLAX OF THE γ-RAY MILLISECOND PULSAR PSR J0218+4232

    SciTech Connect

    Du, Yuanjie; Chen, Ding; Yang, Jun; Campbell, Robert M.; Janssen, Gemma; Stappers, Ben

    2014-02-20

    PSR J0218+4232 is a millisecond pulsar (MSP) with a flux density ∼0.9 mJy at 1.4 GHz. It is very bright in the high-energy X-ray and γ-ray domains. We conducted an astrometric program using the European VLBI Network (EVN) at 1.6 GHz to measure its proper motion and parallax. A model-independent distance would also help constrain its γ-ray luminosity. We achieved a detection of signal-to-noise ratio S/N >37 for the weak pulsar in all five epochs. Using an extragalactic radio source lying 20 arcmin away from the pulsar, we estimate the pulsar's proper motion to be μ{sub α}cos δ = 5.35 ± 0.05 mas yr{sup –1} and μ{sub δ} = –3.74 ± 0.12 mas yr{sup –1}, and a parallax of π = 0.16 ± 0.09 mas. The very long baseline interferometry (VLBI) proper motion has significantly improved upon the estimates from long-term pulsar timing observations. The VLBI parallax provides the first model-independent distance constraints: d=6.3{sub −2.3}{sup +8.0} kpc, with a corresponding 3σ lower-limit of d = 2.3 kpc. This is the first pulsar trigonometric parallax measurement based solely on EVN observations. Using the derived distance, we believe that PSR J0218+4232 is the most energetic γ-ray MSP known to date. The luminosity based on even our 3σ lower-limit distance is high enough to pose challenges to the conventional outer gap and slot gap models.

  7. Short electron beam bunch characterization through measurement of terahertz radiation

    SciTech Connect

    Shukui Zhang; Stephen Benson; David Douglas; Michelle D. Shinn; Gwyn Williams

    2004-08-01

    This paper presents the measurement of sub-picosecond relativistic electron beam bunch length by analyzing the spectra of the coherent terahertz pulses through Kramers-Kronig transformation. The results are compared with autocorrelation from a scanning polarization autocorrelator that measures the coherent optical transition radiation. The limitations of the different methods to such a characterization are discussed.

  8. Three-dimensional measurement and characterization of grinding tool topography

    NASA Astrophysics Data System (ADS)

    Cui, Changcai; Blunt, Liam; Jiang, Xiangqian; Xu, Xipeng; Huang, Hui; Ye, Ruifang

    2013-01-01

    A comprehensive 3-dimensional measurement and characterization method for grinding tool topography was developed. A stylus instrument (SOMICRONIC, France) was used to measure the surface of a metal-bonded diamond grinding tool. The sampled data was input the software SurfStand developed by Centre for Precision Technology (CPT) for reconstruction and further characterization of the surface. Roughness parameters pertaining to the general surface and specific feature parameters relating to the grinding grits, such as height and angle peak curvature have been calculated. The methodology of measurement has been compared with that using an optical microscope. The comparison shows that the three-dimensional characterization has distinct advantages for grinding tool topography assessment. It is precise, convenient and comprehensive so it is suitable for precision measurement and analysis where an understanding of the grinding tool and its cutting ability are required.

  9. FY 1992 Measurements and Characterization Branch annual report

    SciTech Connect

    Dippo, P.C

    1993-03-01

    The Measurements and Characterization Branch actively supports the advancement of DOE/NREL goals for the development and implementation of the solar photovoltaic (PV) technology. The primary focus of the laboratories is to provide state-of-the-art analytical capabilities for materials and device characterization and fabrication. The branch houses a comprehensive facility that Is capable of providing information on the full range of PV components. A major objective of the branch is to aggressively pursue collaborative research with other government laboratories, universities, and industrial firms for the advancement of Pv technologies. Members of the branch disseminate research findings to the technical community in publications and presentations. The Measurements and Characterization Branch encompasses seven coordinated research groups, providing integrated research and development that covers all aspects of photovoltaic materials/devices characterization.

  10. Novel scanner characterization method for color measurement and diagnostics applications

    NASA Astrophysics Data System (ADS)

    Lee, Bong-Sun; Bala, Raja; Sharma, Gaurav

    2006-02-01

    We propose a novel scanner characterization approach for applications requiring color measurement of hardcopy output in printer calibration, characterization, and diagnostic applications. It is assumed that a typical printed medium comprises the three basic colorants C, M, Y. The proposed method is particularly advantageous when additional colorants are used in the print (e.g. black (K)). A family of scanner characterization targets is constructed, each varying in C, M, Y and at a fixed level of K. A corresponding family of 3-D scanner characterizations is derived, one for each level of K. Each characterization maps scanner RGB to a colorimetric representation such as CIELAB, using standard characterization techniques. These are then combined into a single 4-D characterization mapping RGBK to CIELAB. A refinement of the technique improves performance significantly by using a function of the scanned values for K (e.g. the scanner's green channel response to printed K) instead of the digital K value directly. This makes this new approach more robust with respect to variations in printed K over time. Secondly it enables, with a single scanner characterization, accurate color measurement of prints from different printers within the same family. Results show that the 4-D characterization technique can significantly outperform standard 3-D approaches especially in cases where the image being scanned is a patch target made up of unconstrained CMYK combinations. Thus the algorithm finds particular use in printer characterization and diagnostic applications. The method readily generalizes to printed media containing other (e.g "hi-fi") colorants, and also to other image capture devices such as digital cameras.

  11. A baseline measure of tree and gastropod biodiversity in replanted and natural mangrove stands in malaysia: langkawi island and sungai merbok.

    PubMed

    Hookham, Brenda; Shau-Hwai, Aileen Tan; Dayrat, Benoit; Hintz, William

    2014-08-01

    THE DIVERSITIES OF MANGROVE TREES AND OF THEIR ASSOCIATED GASTROPODS WERE ASSESSED FOR TWO MANGROVE REGIONS ON THE WEST COAST OF PENINSULAR MALAYSIA: Langkawi Island and Sungai Merbok. The mangrove area sampled on Langkawi Island was recently logged and replanted, whereas the area sampled in Sungai Merbok was part of a protected nature reserve. Mangrove and gastropod diversity were assessed in four 50 m(2) (10 × 5 m) sites per region. The species richness (S), Shannon Index (H') and Evenness Index (J') were calculated for each site, and the mean S, H' and J' values were calculated for each region. We report low tree and gastropod S, H' and J' values in all sites from both regions. For Langkawi Island, the mean S, H' and J' values for mangrove trees were S = 2.00±0, H' = 0.44±0.17 and J' = 0.44±0.17; the mean S, H' and J' values for gastropods were S = 4.00±1.63, H' = 0.96±0.41 and J' = 0.49±0.06. In Sungai Merbok, the mean S, H' and J' values for mangrove trees were S = 1.33±0.58, H' = 0.22±0.39 and J' = 0.22 ±0.39; the mean S, H' and J' values for gastropods were S = 4.75±2.22, H' = 1.23±0.63 and J' = 0.55±0.12. This study emphasises the need for baseline biodiversity measures to be established in mangrove ecosystems to track the impacts of anthropogenic disturbances and to inform management and restoration efforts. PMID:25210584

  12. A Baseline Measure of Tree and Gastropod Biodiversity in Replanted and Natural Mangrove Stands in Malaysia: Langkawi Island and Sungai Merbok

    PubMed Central

    Hookham, Brenda; Shau-Hwai, Aileen Tan; Dayrat, Benoit; Hintz, William

    2014-01-01

    The diversities of mangrove trees and of their associated gastropods were assessed for two mangrove regions on the west coast of Peninsular Malaysia: Langkawi Island and Sungai Merbok. The mangrove area sampled on Langkawi Island was recently logged and replanted, whereas the area sampled in Sungai Merbok was part of a protected nature reserve. Mangrove and gastropod diversity were assessed in four 50 m2 (10 × 5 m) sites per region. The species richness (S), Shannon Index (H’) and Evenness Index (J’) were calculated for each site, and the mean S, H’ and J’ values were calculated for each region. We report low tree and gastropod S, H’ and J’ values in all sites from both regions. For Langkawi Island, the mean S, H’ and J’ values for mangrove trees were S = 2.00±0, H’ = 0.44±0.17 and J’ = 0.44±0.17; the mean S, H’ and J’ values for gastropods were S = 4.00±1.63, H’ = 0.96±0.41 and J’ = 0.49±0.06. In Sungai Merbok, the mean S, H’ and J’ values for mangrove trees were S = 1.33±0.58, H’ = 0.22±0.39 and J’ = 0.22 ±0.39; the mean S, H’ and J’ values for gastropods were S = 4.75±2.22, H’ = 1.23±0.63 and J’ = 0.55±0.12. This study emphasises the need for baseline biodiversity measures to be established in mangrove ecosystems to track the impacts of anthropogenic disturbances and to inform management and restoration efforts. PMID:25210584

  13. Long Baseline Neutrino Experiments

    NASA Astrophysics Data System (ADS)

    Mezzetto, Mauro

    2016-05-01

    Following the discovery of neutrino oscillations by the Super-Kamiokande collaboration, recently awarded with the Nobel Prize, two generations of long baseline experiments had been setup to further study neutrino oscillations. The first generation experiments, K2K in Japan, Minos in the States and Opera in Europe, focused in confirming the Super-Kamiokande result, improving the precision with which oscillation parameters had been measured and demonstrating the ντ appearance process. Second generation experiments, T2K in Japan and very recently NOνA in the States, went further, being optimized to look for genuine three neutrino phenomena like non-zero values of θ13 and first glimpses to leptonic CP violation (LCPV) and neutrino mass ordering (NMO). The discovery of leptonic CP violation will require third generation setups, at the moment two strong proposals are ongoing, Dune in the States and Hyper-Kamiokande in Japan. This review will focus a little more in these future initiatives.

  14. Characterizing baseline concentrations, proportions, and processes controlling deposition of river-transported bitumen-associated polycyclic aromatic compounds at a floodplain lake (Slave River Delta, Northwest Territories, Canada).

    PubMed

    Elmes, Matthew C; Wiklund, Johan A; Van Opstal, Stacey R; Wolfe, Brent B; Hall, Roland I

    2016-05-01

    Inadequate knowledge of baseline conditions challenges ability for monitoring programs to detect pollution in rivers, especially where there are natural sources of contaminants. Here, we use paleolimnological data from a flood-prone lake ("SD2", informal name) in the Slave River Delta (SRD, Canada), ∼ 500 km downstream of the Alberta oil sands development and the bitumen-rich McMurray Formation to identify baseline concentrations and proportions of "river-transported bitumen-associated indicator polycyclic aromatic compounds" (indicator PACs; Hall et al. 2012) and processes responsible for their deposition. Results show that indicator PACs are deposited in SD2 by Slave River floodwaters in concentrations that are 45 % lower than those in sediments of "PAD31compounds", a lake upstream in the Athabasca Delta that receives Athabasca River floodwaters. Lower concentrations at SD2 are likely a consequence of sediment retention upstream as well as dilution by sediment influx from the Peace River. In addition, relations with organic matter content reveal that flood events dilute concentrations of indicator PACs in SD2 because the lake receives high-energy floods and the lake sediments are predominantly inorganic. This contrasts with PAD31 where floodwaters increase indicator PAC concentrations in the lake sediments, and concentrations are diluted during low flood influence intervals due to increased deposition of lacustrine organic matter. Results also show no significant differences in concentrations and proportions of indicator PACs between pre- (1967) and post- (1980s and 1990 s) oil sands development high flood influence intervals (t = 1.188, P = 0.279, d.f. = 6.136), signifying that they are delivered to the SRD by natural processes. Although we cannot assess potential changes in indicator PACs during the past decade, baseline concentrations and proportions can be used to enhance ongoing monitoring efforts. PMID:27071660

  15. Particulate Measurements and Emissions Characterization of Alternative Fuel Vehicle Exhaust

    SciTech Connect

    Durbin, T. D.; Truex, T. J.; Norbeck, J. M.

    1998-11-19

    The objective of this project was to measure and characterize particulate emissions from light-duty alternative fuel vehicles (AFVs) and equivalent gasoline-fueled vehicles. The project included emission testing of a fleet of 129 gasoline-fueled vehicles and 19 diesel vehicles. Particulate measurements were obtained over Federal Test Procedure and US06 cycles. Chemical characterization of the exhaust particulate was also performed. Overall, the particulate emissions from modern technology compressed natural gas and methanol vehicles were low, but were still comparable to those of similar technology gasoline vehicles.

  16. Baseline tests of the battronic Minivan electric delivery van

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.; Soltis, R. F.; Bozek, J. M.; Maslowski, E. A.

    1977-01-01

    An electric passenger vehicle was tested to develop data characterizing the state of the art of electric and hybrid vehicles. The test measured vehicle maximum speed, range at constant speed, range over stop-and-go driving schedules, maximum acceleration, gradeability and limit, road energy consumption, road power, indicated energy consumption, braking capability and battery charge efficiency. The data obtained are to serve as a baseline to compare improvements in electric and hybrid vehicle technologies and to assist in establishing performance standards.

  17. Origin of the Right Coronary Artery from the Opposite Sinus of Valsalva in Adults: Characterization by Intravascular Ultrasonography at Baseline and After Stent Angioplasty

    PubMed Central

    Angelini, Paolo; Uribe, Carlo; Monge, Jorge; Tobis, Jonathan M; Elayda, MacArthur A; Willerson, James T

    2015-01-01

    Objectives We attempted to characterize the anatomy, function, clinical consequences, and treatment of right-sided anomalous coronary artery origin from the opposite side (R-ACAOS). Background Anomalous aortic origin of a coronary artery is a source of great uncertainty in cardiology. A recent study by our group found that ACAOS had a high prevalence (0.48%) in a general population of adolescents. Methods Sixty-seven consecutive patients were diagnosed with R-ACAOS according to a new definition: ectopic right coronary artery (RCA) with an intramural proximal course. We used intravascular ultrasonograms of the RCA to quantify congenital stenosis (in patients with potentially serious clinical presentations), and we correlated these measurements with clinical manifestations. Results All patients had some proximal intramural stenosis (mean 50%, range 16–83% of the cross-sectional area). Forty-two patients (62%) underwent stent-percutaneous coronary intervention (PCI) of R-ACAOS because of significant symptoms, positive stress tests, and/or significant stenosis. Stent-PCI was successful in all cases and correlated with improved symptoms at >1-year follow-up in 30 patients (71%) who were available for clinical follow-up. No ACAOS-related deaths occurred. The instent restenosis rate was 4/30 (13%) at a mean follow-up time of 5.0 years. Conclusions This preliminary, but large and unprecedented observational study shows that cases angiographically identified as R-ACAOS universally feature an intramural aortic course but only occasionally severe stenosis on resting IVUS imaging. Our data suggest that stent-PCI with IVUS monitoring ameliorates patients’ presenting symptoms. © 2015 Wiley Periodicals, Inc. PMID:26178792

  18. FY 1991 Measurements and Characterization Branch annual report

    SciTech Connect

    Osterwald, C.R.; Dippo, P.C.

    1992-11-01

    The Measurements and Characterization Branch of the National Renewable Laboratory (NREL) provides comprehensive photovoltaic (PV) materials, devices, characterization, measurement, fabrication, modeling research, and support for the international PV research community, in the context of the US Department of Energy's Photovoltaic Research Program goals. This report summarizes the progress of the Branch from 31 January 1991 through 31 January 1992. The eight technical sections present a succinct overview of the capabilities and accomplishments of each group in the Branch. The Branch is comprised of the following groups: Surface and interface Analysis; Materials Characterization; Device Development; Electro-optical Characterization; Advanced PV module Performance and Reliability Research; Cell Performance Characterization; Surface Interactions, Modification, and Stability; and FTIR Spectroscopic Research. The including measurements and tests of PV materials, cells, submodules, and modules. The report contains a comprehensive bibliography of 77 branch originated journal and conference publications, which were authored in collaboration with, or in support of, approximately 135 university, industrial, government, and in-house research groups.

  19. FY 1991 Measurements and Characterization Branch annual report

    SciTech Connect

    Osterwald, C.R.; Dippo, P.C.

    1992-11-01

    The Measurements and Characterization Branch of the National Renewable Laboratory (NREL) provides comprehensive photovoltaic (PV) materials, devices, characterization, measurement, fabrication, modeling research, and support for the international PV research community, in the context of the US Department of Energy`s Photovoltaic Research Program goals. This report summarizes the progress of the Branch from 31 January 1991 through 31 January 1992. The eight technical sections present a succinct overview of the capabilities and accomplishments of each group in the Branch. The Branch is comprised of the following groups: Surface and interface Analysis; Materials Characterization; Device Development; Electro-optical Characterization; Advanced PV module Performance and Reliability Research; Cell Performance Characterization; Surface Interactions, Modification, and Stability; and FTIR Spectroscopic Research. The including measurements and tests of PV materials, cells, submodules, and modules. The report contains a comprehensive bibliography of 77 branch originated journal and conference publications, which were authored in collaboration with, or in support of, approximately 135 university, industrial, government, and in-house research groups.

  20. Mapping and characterization of land subsidence in Beijing Plain caused by groundwater pumping using the Small Baseline Subset (SBAS) InSAR technique

    NASA Astrophysics Data System (ADS)

    Gao, M. L.; Gong, H. L.; Chen, B. B.; Zhou, C. F.; Liu, K. S.; Shi, M.

    2015-11-01

    InSAR time series analysis is widely used for detection and monitoring of slow surface deformation. In this paper, 15 TerraSAR-X radar images acquired in stripmap mode between 2012 and 2013 are processed for land subsidence monitoring with the Small Baseline Subset (SBAS) approach in Beijing Plain in China. Mapping results produced by SBAS show that the subsidence rates in the area of Beijing Plain range from -97.5 (subsidence) and to +23.8 mm yr-1 (uplift), relative to a presumably stable benchmark. The mapping result also reveals that there are the five subsidence centers formed by surface deformation spreading north to south east of the downtown. An uneven subsidence patten was detected near the Beijing Capital International Airpor, which may be related to loading of buildings and the aircraft.

  1. Rectangular waveguide material characterization: anisotropic property extraction and measurement validation

    NASA Astrophysics Data System (ADS)

    Crowgey, Benjamin Reid

    Rectangular waveguide methods are appealing for measuring isotropic and anisotropic materials because of high signal strength due to field confinement, and the ability to control the polarization of the applied electric field. As a stepping stone to developing methods for characterizing materials with fully-populated anisotropic tensor characteristics, techniques are presented in this dissertation to characterize isotropic, biaxially anisotropic, and gyromagnetic materials. Two characterization techniques are investigated for each material, and thus six different techniques are described. Additionally, a waveguide standard is introduced which may be used to validate the measurement of the permittivity and permeability of materials at microwave frequencies. The first characterization method examined is the Nicolson-Ross-Weir (NRW) technique for the extraction of isotropic parameters of a sample completely filling the cross-section of a rectangular waveguide. A second technique is proposed for the characterization of an isotropic conductor-backed sample filling the cross-section of a waveguide. If the sample is conductor-backed, and occupies the entire cross-section, a transmission measurement is not available, and thus a method must be found for providing two sufficiently different reflection measurements.The technique proposed here is to place a waveguide iris in front of the sample, exposing the sample to a spectrum of evanescent modes. By measuring the reflection coefficient with and without an iris, the necessary two data may be obtained to determine the material parameters. A mode-matching approach is used to determine the theoretical response of a sample placed behind the waveguide iris. This response is used in a root-searching algorithm to determine permittivity and permeability by comparing to measurements of the reflection coefficient. For the characterization of biaxially anisotropic materials, the first method considers an extension of the NRW technique

  2. DISTANCE AND PROPER MOTION MEASUREMENT OF THE RED SUPERGIANT, PZ CAS, IN VERY LONG BASELINE INTERFEROMETRY H{sub 2}O MASER ASTROMETRY

    SciTech Connect

    Kusuno, K.; Asaki, Y.; Imai, H.; Oyama, T. E-mail: asaki@vsop.isas.jaxa.jp E-mail: t.oyama@nao.ac.jp

    2013-09-10

    We present the very long baseline interferometry H{sub 2}O maser monitoring observations of the red supergiant, PZ Cas, at 12 epochs from 2006 April to 2008 May. We fitted maser motions to a simple model composed of a common annual parallax and linear motions of the individual masers. The maser motions with the parallax subtracted were well modeled by a combination of a common stellar proper motion and a radial expansion motion of the circumstellar envelope. We obtained an annual parallax of 0.356 {+-} 0.026 mas and a stellar proper motion of {mu}{sub {alpha}}{sup *} cos {delta} = -3.7 {+-} 0.2 and {mu}{sup *}{sub {delta}}=-2.0{+-}0.3 mas yr{sup -1} eastward and northward, respectively. The annual parallax corresponds to a trigonometric parallax of 2.81{sup +0.22}{sub -0.19} kpc. By rescaling the luminosity of PZ Cas in any previous studies using our trigonometric parallax, we estimated the location of PZ Cas on a Hertzsprung-Russell diagram and found that it approaches a theoretically evolutionary track around an initial mass of {approx}25 M{sub Sun }. The sky position and the distance to PZ Cas are consistent with the OB association, Cas OB5, which is located in a molecular gas super shell. The proper motion of PZ Cas is close to that of the OB stars and other red supergiants in Cas OB5 measured by the Hipparcos satellite. We derived the peculiar motion of PZ Cas of U{sub s} = 22.8 {+-} 1.5, V{sub s} = 7.1 {+-} 4.4, and W{sub s} = -5.7 {+-} 4.4 km s{sup -1}. This peculiar motion has rather a large U{sub s} component, unlike those of near high-mass star-forming regions with negatively large V{sub s} motions. The uniform proper motions of the Cas OB5 member stars suggest random motions of giant molecular clouds moving into local potential minima in a time-dependent spiral arm, rather than a velocity field caused by the spiral arm density wave.

  3. The Influence of Casting Conditions on the Microstructure of As-Cast U-10Mo Alloys: Characterization of the Casting Process Baseline

    SciTech Connect

    Nyberg, Eric A.; Joshi, Vineet V.; Lavender, Curt A.; Paxton, Dean M.; Burkes, Douglas

    2013-12-13

    Sections of eight plate castings of uranium alloyed with 10 wt% molybdenum (U-10Mo) were sent from Y-12 to the Pacific Northwest National Laboratory (PNNL) for microstructural characterization. This report summarizes the results from this study.

  4. Baseline LAW Glass Formulation Testing

    SciTech Connect

    Kruger, Albert A.; Mooers, Cavin; Bazemore, Gina; Pegg, Ian L.; Hight, Kenneth; Lai, Shan Tao; Buechele, Andrew; Rielley, Elizabeth; Gan, Hao; Muller, Isabelle S.; Cecil, Richard

    2013-06-13

    The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  5. Detecting CP violation in a single neutrino oscillation channel at very long baselines

    SciTech Connect

    Latimer, D. C.; Escamilla, J.; Ernst, D. J.

    2007-11-15

    We propose a way of detecting CP violation in a single neutrino oscillation channel at very long baselines (on the order of several thousands of kilometers), given precise knowledge of the smallest mass-squared difference. It is shown that CP violation can be characterized by a shift in L/E of the peak oscillation in the {nu}{sub e}-{nu}{sub {mu}} appearance channel, both in vacuum and in matter. In fact, matter effects enhance the shift at a fixed energy. We consider the case in which sub-GeV neutrinos are measured with varying baseline and also the case of a fixed baseline. For the varied baseline, accurate knowledge of the absolute neutrino flux would not be necessary; however, neutrinos must be distinguishable from antineutrinos. For the fixed baseline, it is shown that CP violation can be distinguished if the mixing angle {theta}{sub 13} were known.

  6. PFNA-based measurements for non-intrusive waste characterization

    SciTech Connect

    Pentaleri, E.

    1994-12-31

    Pulsed Fast Neutron Analysis (PFNA) is a non-intrusive technique for inspecting bulk samples whose size may range from that of a suitcase to that of a commercial-cargo truck trailer. In an earlier paper, the authors discussed techniques for performing PFNA-based TRU assays on waste drums, and described why such measurements would yield improved accuracy, sensitivity, and throughput over existing instruments. Here they describe a set of non-intrusive measurements useful for further improving the accuracy of TRU assay results, certifying compliance with waste acceptance criteria, or enhancing the control of waste-treatment processes. In principle, these measurements, based mainly upon the analysis of inelastic-neutron-scattering and neutron-capture gamma rays, can be performed concurrently with TRU-assay measurements. Based on the measurements described, a single PFNA-based waste inspection system would allow substantially complete non-intrusive characterization of waste containers to be performed.

  7. Transportation Baseline Schedule

    SciTech Connect

    Fawcett, Ricky Lee; John, Mark Earl

    2000-01-01

    The “1999 National Transportation Program - Transportation Baseline Report” presents data that form a baseline to enable analysis and planning for future Department of Energy (DOE) Environmental Management (EM) waste/material transportation. The companion “1999 Transportation ‘Barriers’ Analysis” analyzes the data and identifies existing and potential problems that may prevent or delay transportation activities based on the data presented. The “1999 Transportation Baseline Schedule” (this report) uses the same data to provide an overview of the transportation activities of DOE EM waste/materials. This report can be used to identify areas where stakeholder interface is needed, and to communicate to stakeholders the quantity/schedule of shipments going through their area. Potential bottlenecks in the transportation system can be identified; the number of packages needed, and the capacity needed at receiving facilities can be planned. This report offers a visualization of baseline DOE EM transportation activities for the 11 major sites and the “Geologic Repository Disposal” site (GRD).

  8. First Grade Baseline Evaluation

    ERIC Educational Resources Information Center

    Center for Innovation in Assessment (NJ1), 2013

    2013-01-01

    The First Grade Baseline Evaluation is an optional tool that can be used at the beginning of the school year to help teachers get to know the reading and language skills of each student. The evaluation is composed of seven screenings. Teachers may use the entire evaluation or choose to use those individual screenings that they find most beneficial…

  9. Baseline Morbidity in 2,990 Adult African Volunteers Recruited to Characterize Laboratory Reference Intervals for Future HIV Vaccine Clinical Trials

    PubMed Central

    Stevens, Wendy; Kamali, Anatoli; Karita, Etienne; Anzala, Omu; Sanders, Eduard J.; Jaoko, Walter; Kaleebu, Pontiano; Mulenga, Joseph; Dally, Len; Fast, Pat; Gilmour, Jill; Farah, Bashir; Birungi, Josephine; Hughes, Peter; Manigart, Olivier; Stevens, Gwynn; Yates, Sarah; Thomson, Helen; von Lieven, Andrea; Krebs, Marietta; Price, Matt A.; Stoll-Johnson, Lisa; Ketter, Nzeera

    2008-01-01

    Background An understanding of the health of potential volunteers in Africa is essential for the safe and efficient conduct of clinical trials, particularly for trials of preventive technologies such as vaccines that enroll healthy individuals. Clinical safety laboratory values used for screening, enrolment and follow-up of African clinical trial volunteers have largely been based on values derived from industrialized countries in Europe and North America. This report describes baseline morbidity during recruitment for a multi-center, African laboratory reference intervals study. Methods Asymptomatic persons, aged 18–60 years, were invited to participate in a cross-sectional study at seven sites (Kigali, Rwanda; Masaka and Entebbe, Uganda; Kangemi, Kenyatta National Hospital and Kilifi, Kenya; and Lusaka, Zambia). Gender equivalency was by design. Individuals who were acutely ill, pregnant, menstruating, or had significant clinical findings were not enrolled. Each volunteer provided blood for hematology, immunology, and biochemistry parameters and urine for urinalysis. Enrolled volunteers were excluded if found to be positive for HIV, syphilis or Hepatitis B and C. Laboratory assays were conducted under Good Clinical Laboratory Practices (GCLP). Results and Conclusions Of the 2990 volunteers who were screened, 2387 (80%) were enrolled, and 2107 (71%) were included in the analysis (52% men, 48% women). Major reasons for screening out volunteers included abnormal findings on physical examination (228/603, 38%), significant medical history (76, 13%) and inability to complete the informed consent process (73, 13%). Once enrolled, principle reasons for exclusion from analysis included detection of Hepatitis B surface antigen (106/280, 38%) and antibodies against Hepatitis C (95, 34%). This is the first large scale, multi-site study conducted to the standards of GCLP to describe African laboratory reference intervals applicable to potential volunteers in clinical

  10. Measurements and characterization in photovoltaics: Lessons learned for TPV

    NASA Astrophysics Data System (ADS)

    Kazmerski, Lawrence L.

    1997-03-01

    The NREL measurements and characterization activities, with origins in the late 1970s, have evolved with and within the DOE Photovoltaics Program—specifically to support that effort. These centralized facilities, established for reasons of technical and economical advantages for the program, have included four major functions or approaches: (1) analytical measurement service; (2) standardized evaluations (performance through materials); (3) collaborative research; and, (4) measurement technique development. Each of these are described in terms of their importance and contributions to program and project support. The current facilities and activities are highlighted, and the growth and change of these support efforts are historically delineated. The evolution and contributions of these laboratories to photovoltaics provide some lessons and models for the emerging TPV program. The utility of centralized measurement and characterization functions for technology development is assessed in terms of methods of operation, prioritization and customer satisfaction, program unity and focus, response time, and proprietary data and materials. Specifics relating to materials and measurement standards, centralized data bases, client interactions, program directions, and expectations are cited in terms of both successes and deficiencies for these program-support efforts. The return on investment for estimated in terms of benefits to the program compared to alternative approaches.

  11. Characterization of a traceable profiler instrument for areal roughness measurement

    NASA Astrophysics Data System (ADS)

    Thomsen-Schmidt, P.

    2011-09-01

    A two-dimensional profiler instrument was designed and realized at the PTB (Physikalisch-Technische Bundesanstalt). The main function of the instrument is to provide traceable results in the field of roughness measurement. It is equipped with a linear moving stylus which is guided by precision air bearings. The moving part of the stylus has weight around 1 g and is carried by a magnetic field. The contacting force of the tip onto the surface under test is controlled by a small voice coil actuator in a closed control loop. Vertical movements of the stylus are captured by two different, completely independent measurement systems, covering a range of 100 µm. The first one is an interferometer, which provides a traceable signal, and the second one is an inductive measurement system. The signal from the inductive measurement system is calibrated by the interferometer. The sample under test is carried within the x-y-plane by a linear guided table with low noise air bearings. These air bearings are preloaded by vacuum and a constant gap is achieved by gas pressure controllers. Both axes of the table are driven by linear voice coil actuators and their movement in the plane is measured by linear encoders. The sample carrier is equipped with two axes tilt compensation, by which the sample under test can be levelled automatically using the measurement system of the stylus. Real-time data acquisition, manual handling and automated procedures are managed by a programmable controller and proprietary software written in LabVIEW. After measurement, data from the system can be directly transferred into the smd- or sdf-format. Results of measurements on different samples to characterize the metrological behaviour of the instrument will be reported. To characterize the uncertainty of the instrument, a model is applied, which is in accordance with approved rules for contact stylus instruments.

  12. Measuring Health System Strengthening: Application of the Balanced Scorecard Approach to Rank the Baseline Performance of Three Rural Districts in Zambia

    PubMed Central

    Mutale, Wilbroad; Godfrey-Fausset, Peter; Mwanamwenge, Margaret Tembo; Kasese, Nkatya; Chintu, Namwinga; Balabanova, Dina; Spicer, Neil; Ayles, Helen

    2013-01-01

    Introduction There is growing interest in health system performance and recently WHO launched a report on health systems strengthening emphasising the need for close monitoring using system-wide approaches. One recent method is the balanced scorecard system. There is limited application of this method in middle- and low-income countries. This paper applies the concept of balanced scorecard to describe the baseline status of three intervention districts in Zambia. Methodology The Better Health Outcome through Mentoring and Assessment (BHOMA) project is a randomised step-wedged community intervention that aims to strengthen the health system in three districts in the Republic of Zambia. To assess the baseline status of the participating districts we used a modified balanced scorecard approach following the domains highlighted in the MOH 2011 Strategic Plan. Results Differences in performance were noted by district and residence. Finance and service delivery domains performed poorly in all study districts. The proportion of the health workers receiving training in the past 12 months was lowest in Kafue (58%) and highest in Luangwa district (77%). Under service capacity, basic equipment and laboratory capacity scores showed major variation, with Kafue and Luangwa having lower scores when compared to Chongwe. The finance domain showed that Kafue and Chongwe had lower scores (44% and 47% respectively). Regression model showed that children's clinical observation scores were negatively correlated with drug availability (coeff −0.40, p = 0.02). Adult clinical observation scores were positively association with adult service satisfaction score (coeff 0.82, p = 0.04) and service readiness (coeff 0.54, p = 0.03). Conclusion The study applied the balanced scorecard to describe the baseline status of 42 health facilities in three districts of Zambia. Differences in performance were noted by district and residence in most domains with finance and service delivery

  13. Altered baseline brain activity in experts measured by amplitude of low frequency fluctuations (ALFF): a resting state fMRI study using expertise model of acupuncturists

    PubMed Central

    Dong, Minghao; Li, Jun; Shi, Xinfa; Gao, Shudan; Fu, Shijun; Liu, Zongquan; Liang, Fanrong; Gong, Qiyong; Shi, Guangming; Tian, Jie

    2015-01-01

    It is well established that expertise modulates evoked brain activity in response to specific stimuli. Recently, researchers have begun to investigate how expertise influences the resting brain. Among these studies, most focused on the connectivity features within/across regions, i.e., connectivity patterns/strength. However, little concern has been given to a more fundamental issue whether or not expertise modulates baseline brain activity. We investigated this question using amplitude of low-frequency (<0.08 Hz) fluctuation (ALFF) as the metric of brain activity and a novel expertise model, i.e., acupuncturists, due to their robust proficiency in tactile perception and emotion regulation. After the psychophysical and behavioral expertise screening procedure, 23 acupuncturists and 23 matched non-acupuncturists (NA) were enrolled. Our results explicated higher ALFF for acupuncturists in the left ventral medial prefrontal cortex (VMPFC) and the contralateral hand representation of the primary somatosensory area (SI) (corrected for multiple comparisons). Additionally, ALFF of VMPFC was negatively correlated with the outcomes of the emotion regulation task (corrected for multiple comparisons). We suggest that our study may reveal a novel connection between the neuroplasticity mechanism and resting state activity, which would upgrade our understanding of the central mechanism of learning. Furthermore, by showing that expertise can affect the baseline brain activity as indicated by ALFF, our findings may have profound implication for functional neuroimaging studies especially those involving expert models, in that difference in baseline brain activity may either smear the spatial pattern of activations for task data or introduce biased results into connectivity-based analysis for resting data. PMID:25852511

  14. Baseline measurement of the noise generated by a short-to-medium range jet transport flying standard ILS approaches and level flyovers

    NASA Technical Reports Server (NTRS)

    Hastings, E. C., Jr.; Shanks, R. E.; Mueller, A. W.

    1975-01-01

    The results of baseline noise flight tests are presented. Data are given for a point 1.85 kilometers (1.0 nautical mile) from the runway threshold, and experimental results of level flyover noise at altitudes of 122 meters (400 feet) and 610 meters (2,000 feet) are also shown for several different power levels. The experimental data are compared with data from other sources and reasonable agreement is noted. A description of the test technique, instrumentation, and data analysis methods is included.

  15. Transportation Baseline Report

    SciTech Connect

    Fawcett, Ricky Lee; Kramer, George Leroy Jr.

    1999-12-01

    The National Transportation Program 1999 Transportation Baseline Report presents data that form a baseline to enable analysis and planning for future Department of Energy (DOE) Environmental Management (EM) waste and materials transportation. In addition, this Report provides a summary overview of DOE’s projected quantities of waste and materials for transportation. Data presented in this report were gathered as a part of the IPABS Spring 1999 update of the EM Corporate Database and are current as of July 30, 1999. These data were input and compiled using the Analysis and Visualization System (AVS) which is used to update all stream-level components of the EM Corporate Database, as well as TSD System and programmatic risk (disposition barrier) information. Project (PBS) and site-level IPABS data are being collected through the Interim Data Management System (IDMS). The data are presented in appendices to this report.

  16. UAS-Borne Photogrammetry for Surface Topographic Characterization: A Ground-Truth Baseline for Future Change Detection and Refinement of Scaled Remotely-Sensed Datasets

    NASA Astrophysics Data System (ADS)

    Coppersmith, R.; Schultz-Fellenz, E. S.; Sussman, A. J.; Vigil, S.; Dzur, R.; Norskog, K.; Kelley, R.; Miller, L.

    2015-12-01

    While long-term objectives of monitoring and verification regimes include remote characterization and discrimination of surficial geologic and topographic features at sites of interest, ground truth data is required to advance development of remote sensing techniques. Increasingly, it is desirable for these ground-based or ground-proximal characterization methodologies to be as nimble, efficient, non-invasive, and non-destructive as their higher-altitude airborne counterparts while ideally providing superior resolution. For this study, the area of interest is an alluvial site at the Nevada National Security Site intended for use in the Source Physics Experiment's (Snelson et al., 2013) second phase. Ground-truth surface topographic characterization was performed using a DJI Inspire 1 unmanned aerial system (UAS), at very low altitude (< 5-30m AGL). 2D photographs captured by the standard UAS camera payload were imported into Agisoft Photoscan to create three-dimensional point clouds. Within the area of interest, careful installation of surveyed ground control fiducial markers supplied necessary targets for field collection, and information for model georectification. The resulting model includes a Digital Elevation Model derived from 2D imagery. It is anticipated that this flexible and versatile characterization process will provide point cloud data resolution equivalent to a purely ground-based LiDAR scanning deployment (e.g., 1-2cm horizontal and vertical resolution; e.g., Sussman et al., 2012; Schultz-Fellenz et al., 2013). In addition to drastically increasing time efficiency in the field, the UAS method also allows for more complete coverage of the study area when compared to ground-based LiDAR. Comparison and integration of these data with conventionally-acquired airborne LiDAR data from a higher-altitude (~ 450m) platform will aid significantly in the refinement of technologies and detection capabilities of remote optical systems to identify and detect

  17. Liver iron concentration measurements by MRI in chronically transfused children with sickle cell anemia: baseline results from the TWiTCH trial.

    PubMed

    Wood, John C; Pressel, Sara; Rogers, Zora R; Odame, Isaac; Kwiatkowski, Janet L; Lee, Margaret T; Owen, William C; Cohen, Alan R; St Pierre, Timothy; Heeney, Matthew M; Schultz, William H; Davis, Barry R; Ware, Russell E

    2015-09-01

    Noninvasive, quantitative, and accurate assessment of liver iron concentration (LIC) by MRI is useful for patients receiving transfusions, but R2 and R2* MRI techniques have not been systematically compared in sickle cell anemia (SCA). We report baseline LIC results from the TWiTCH trial, which compares hydroxyurea with blood transfusion treatment for primary stroke prophylaxis assessed by transcranial Doppler sonography in pediatric SCA patients. Liver R2 was collected and processed using a FDA-approved commercial process (FerriScan®), while liver R2* quality control and processing were performed by a Core Laboratory blinded to clinical site and patient data. Baseline LIC studies using both MRI techniques were available for 120 participants. LICR2* and LICR2 results were highly correlated (r(2)  = 0.93). A proportional bias of LIC(R2*)/LIC(R2), decreasing with average LIC, was observed. Systematic differences between LICR2* and LICR2 were also observed by MRI manufacturer. Importantly, LICR2* and LICR2 estimates had broad 95% limits of agreement with respect to each other. We recommend LICR2 and LICR2* not be used interchangeably in SCA patients to follow individual patient trends in iron burden. PMID:26087998

  18. Characterization of Unstable Rock Slopes Through Passive Seismic Measurements

    NASA Astrophysics Data System (ADS)

    Kleinbrod, U.; Burjanek, J.; Fäh, D.

    2014-12-01

    Catastrophic rock slope failures have high social impact, causing significant damage to infrastructure and many casualties throughout the world each year. Both detection and characterization of rock instabilities are therefore of key importance. An analysis of ambient vibrations of unstable rock slopes might be a new alternative to the already existing methods, e.g. geotechnical displacement measurements. Systematic measurements have been performed recently in Switzerland to study the seismic response of potential rockslides concerning a broad class of slope failure mechanisms and material conditions. Small aperture seismic arrays were deployed at sites of interest for a short period of time (several hours) in order to record ambient vibrations. Each measurement setup included a reference station, which was installed on a stable part close to the instability. Recorded ground motion is highly directional in the unstable parts of the rock slope, and significantly amplified with respect to stable areas. These effects are strongest at certain frequencies, which were identified as eigenfrequencies of the unstable rock mass. In most cases the directions of maximum amplification are perpendicular to open cracks and in good agreement with the deformation directions obtained by geodetic measurements. Such unique signatures might improve our understanding of slope structure and stability. Thus we link observed vibration characteristics with available results of detailed geological characterization. This is supported by numerical modeling of seismic wave propagation in fractured media with complex topography.For example, a potential relation between eigenfrequencies and unstable rock mass volume is investigated.

  19. Lidar Measurements for Desert Dust Characterization: An Overview

    NASA Technical Reports Server (NTRS)

    Mona, L.; Liu, Z.; Mueller, D.; Omar, A.; Papayannis, A.; Pappalardo, G.; Sugimoto, N.; Vaughan, M.

    2012-01-01

    We provide an overview of light detection and ranging (lidar) capability for describing and characterizing desert dust. This paper summarizes lidar techniques, observations, and fallouts of desert dust lidar measurements. The main objective is to provide the scientific community, including non-practitioners of lidar observations with a reference paper on dust lidar measurements. In particular, it will fill the current gap of communication between research-oriented lidar community and potential desert dust data users, such as air quality monitoring agencies and aviation advisory centers. The current capability of the different lidar techniques for the characterization of aerosol in general and desert dust in particular is presented. Technical aspects and required assumptions of these techniques are discussed, providing readers with the pros and cons of each technique. Information about desert dust collected up to date using lidar techniques is reviewed. Lidar techniques for aerosol characterization have a maturity level appropriate for addressing air quality and transportation issues, as demonstrated by some first results reported in this paper

  20. High temperature Hall measurement setup for thin film characterization.

    PubMed

    Adnane, L; Gokirmak, A; Silva, H

    2016-07-01

    Hall measurement using the van der Pauw technique is a common characterization approach that does not require patterning of contacts. Measurements of the Hall voltage and electrical resistivity lead to the product of carrier mobility and carrier concentration (Hall coefficient) which can be decoupled through transport models. Based on the van der Paw method, we have developed an automated setup for Hall measurements from room temperature to ∼500 °C of semiconducting thin films of a wide resistivity range. The resistivity of the film and Hall coefficient is obtained from multiple current-voltage (I-V) measurements performed using a semiconductor parameter analyzer under applied constant "up," zero, and "down" magnetic field generated with two neodymium permanent magnets. The use of slopes obtained from multiple I-Vs for the three magnetic field conditions offer improved accuracy. Samples are preferred in square shape geometry and can range from 2 mm to 25 mm side length. Example measurements of single-crystal silicon with known doping concentration show the accuracy and reliability of the measurement. PMID:27475605

  1. High temperature Hall measurement setup for thin film characterization

    NASA Astrophysics Data System (ADS)

    Adnane, L.; Gokirmak, A.; Silva, H.

    2016-07-01

    Hall measurement using the van der Pauw technique is a common characterization approach that does not require patterning of contacts. Measurements of the Hall voltage and electrical resistivity lead to the product of carrier mobility and carrier concentration (Hall coefficient) which can be decoupled through transport models. Based on the van der Paw method, we have developed an automated setup for Hall measurements from room temperature to ˜500 °C of semiconducting thin films of a wide resistivity range. The resistivity of the film and Hall coefficient is obtained from multiple current-voltage (I-V) measurements performed using a semiconductor parameter analyzer under applied constant "up," zero, and "down" magnetic field generated with two neodymium permanent magnets. The use of slopes obtained from multiple I-Vs for the three magnetic field conditions offer improved accuracy. Samples are preferred in square shape geometry and can range from 2 mm to 25 mm side length. Example measurements of single-crystal silicon with known doping concentration show the accuracy and reliability of the measurement.

  2. Optical characterization and measurements of autostereoscopic 3D displays

    NASA Astrophysics Data System (ADS)

    Salmimaa, Marja; Järvenpää, Toni

    2008-04-01

    3D or autostereoscopic display technologies offer attractive solutions for enriching the multimedia experience. However, both characterization and comparison of 3D displays have been challenging when the definitions for the consistent measurement methods have been lacking and displays with similar specifications may appear quite different. Earlier we have investigated how the optical properties of autostereoscopic (3D) displays can be objectively measured and what are the main characteristics defining the perceived image quality. In this paper the discussion is extended to cover the viewing freedom (VF) and the definition for the optimum viewing distance (OVD) is elaborated. VF is the volume inside which the eyes have to be to see an acceptable 3D image. Characteristics limiting the VF space are proposed to be 3D crosstalk, luminance difference and color difference. Since the 3D crosstalk can be presumed to be dominating the quality of the end user experience and in our approach is forming the basis for the calculations of the other optical parameters, the reliability of the 3D crosstalk measurements is investigated. Furthermore the effect on the derived VF definition is evaluated. We have performed comparison 3D crosstalk measurements with different measurement device apertures and the effect of different measurement geometry on the results on actual 3D displays is reported.

  3. A measure for characterizing sliding on lung boundaries.

    PubMed

    Amelon, Ryan E; Cao, Kunlin; Reinhardt, Joseph M; Christensen, Gary E; Raghavan, Madhavan L

    2014-03-01

    The lobes of the lung slide relative to each other during breathing. Quantifying lobar sliding can aid in better understanding lung function, better modeling of lung dynamics, and for studying phenomenon such as pleural adhesion. We propose a novel measure to characterize lobe sliding in the lung based on the displacement field obtained from image registration of CT scans. When two sliding lobes are modeled as a continuum, the discontinuity in the displacement field at the fissure will manifest as elevated maximum shear--the proposed measure--which is capable of capturing both the level and orientation of sliding. Six human lungs were analyzed using scans spanning functional residual capacity to total lung capacity. The lung lobes were segmented and registered on a lobe-by-lobe basis to obtain the displacement field from which the proposed sliding measure was calculated. The sliding measure was found to be insignificant in the parenchyma, as relatively little tissue shear occurs here. On the other hand, it was elevated along the fissures. Thus, a map of the proposed sliding measure of the entire lung clearly delineates and quantifies sliding between lung lobes. Sliding is a key aspect of lung deformation during breathing. The proposed measure may help resolve artifacts introduced by sliding in deformation analysis techniques used for radiotherapy. PMID:24114112

  4. Measuring In Vitro ATPase Activity for Enzymatic Characterization.

    PubMed

    Rule, Chelsea S; Patrick, Marcella; Sandkvist, Maria

    2016-01-01

    Adenosine triphosphate-hydrolyzing enzymes, or ATPases, play a critical role in a diverse array of cellular functions. These dynamic proteins can generate energy for mechanical work, such as protein trafficking and degradation, solute transport, and cellular movements. The protocol described here is a basic assay for measuring the in vitro activity of purified ATPases for functional characterization. Proteins hydrolyze ATP in a reaction that results in inorganic phosphate release, and the amount of phosphate liberated is then quantitated using a colorimetric assay. This highly adaptable protocol can be adjusted to measure ATPase activity in kinetic or endpoint assays. A representative protocol is provided here based on the activity and requirements of EpsE, the AAA+ ATPase involved in Type II Secretion in the bacterium Vibrio cholerae. The amount of purified protein needed to measure activity, length of the assay and the timing and number of sampling intervals, buffer and salt composition, temperature, co-factors, stimulants (if any), etc. may vary from those described here, and thus some optimization may be necessary. This protocol provides a basic framework for characterizing ATPases and can be performed quickly and easily adjusted as necessary. PMID:27584824

  5. Geotaxis baseline data for Drosophila

    NASA Technical Reports Server (NTRS)

    Schnebel, E. M.; Bhargava, R.; Grossfield, J.

    1987-01-01

    Geotaxis profiles for 20 Drosophila species and semispecies at different ages have been examined using a calibrated, adjustable slant board device. Measurements were taken at 5 deg intervals ranging from 0 deg to 85 deg. Clear strain and species differences are observed, with some groups tending to move upward (- geotaxis) with increasing angles, while others move downward (+ geotaxis). Geotactic responses change with age in some, but not all experimental groups. Sample geotaxis profiles are presented and their application to ecological and aging studies are discussed. Data provide a baseline for future evaluations of the biological effects of microgravity.

  6. Comprehensive baseline hazard assessments

    SciTech Connect

    Warren, S.B.; Amundson, T.M.

    1994-10-01

    Westinghouse Hanford Company (WHC) has developed and implemented a cost effective/value-added program/process that assists in fulfilling key elements of the Occupational Safety and Health Administration`s (OSHA) voluntary Protection Program (VPP) requirements. WHC is the prime contractor for the US Department of Energy (US DOE) at the Hanford site, located in Richland, Washington. The site consists of over 560 square miles, contains over 1100 facilities and has an employment of approximately 18,000. WHC is currently in the application review phase for the US DOE equivalent of OSHA-VPP ``merit`` program status. The program involves setting up a team consisting of industrial safety and health (industrial hygienists) professionals, members of the maintenance and operations work force, and facility management. This team performs a workplace hazard characterization/analysis and then applies a risk assessment approach to prioritize observed and potential hazards in need of abatement. The process involves using checklists that serve as a guide for evaluation/inspection criteria. Forms are used to document meetings, field observations, instrument calibration and performance testing. Survey maps are generated to document quality records of measurement results. A risk assessment code matrix with a keyword index was developed to facilitate consistency. The end product is useful in communicating hazards to facility management, health and safety professionals, audit/appraisal groups, and most importantly, facility workers.

  7. Chemical, mineralogical and molecular biological characterization of the rocks and fluids from a natural gas storage deep reservoir as a baseline for the effects of geological hydrogen storage

    NASA Astrophysics Data System (ADS)

    Morozova, Daria; Kasina, Monika; Weigt, Jennifer; Merten, Dirk; Pudlo, Dieter; Würdemann, Hilke

    2014-05-01

    Planned transition to renewable energy production from nuclear and CO2-emitting power generation brings the necessity for large scale energy storage capacities. One possibility to store excessive energy produced is to transfer it to chemical forms like hydrogen which can be subsequently injected and stored in subsurface porous rock formations like depleted gas reservoirs and presently used gas storage sites. In order to investigate the feasibility of the hydrogen storage in the subsurface, the collaborative project H2STORE ("hydrogen to store") was initiated. In the scope of this project, potential reactions between microorganism, fluids and rocks induced by hydrogen injection are studied. For the long-term experiments, fluids of natural gas storage are incubated together with rock cores in the high pressure vessels under 40 bar pressure and 40° C temperature with an atmosphere containing 5.8% He as a tracer gas, 3.9% H2 and 90.3% N2. The reservoir is located at a depth of about 2 000 m, and is characterized by a salinity of 88.9 g l-1 NaCl and a temperature of 80° C and therefore represents an extreme environment for microbial life. First geochemical analyses showed a relatively high TOC content of the fluids (about 120 mg l-1) that were also rich in sodium, potassium, calcium, magnesium and iron. Remarkable amounts of heavy metals like zinc and strontium were also detected. XRD analyses of the reservoir sandstones revealed the major components: quartz, plagioclase, K-feldspar, anhydrite and analcime. The sandstones were intercalated by mudstones, consisting of quartz, plagioclase, K-feldspar, analcime, chlorite, mica and carbonates. Genetic profiling of amplified 16S rRNA genes was applied to characterize the microbial community composition by PCR-SSCP (PCR-Single-Strand-Conformation Polymorphism) and DGGE (Denaturing Gradient Gel Electrophoresis). First results indicate the presence of microorganisms belonging to the phylotypes alfa-, beta- and gamma

  8. Guided wave measurements for characterization of sol-gel layers

    NASA Astrophysics Data System (ADS)

    Piombini, Hervé; Dieudonne, Xavier; Wood, Thomas; Flory, François

    2013-09-01

    Sol-gel applications require very thick layers with a good understanding of the interfaces. To address this problem, we have installed at CEA Le Ripault a characterization bench using guided waves with assistance from the IM2NP lab in Marseille. This bench allows us to measure the thickness and the refractive index and determine the extinction coefficient of a thin layer. We can distinguish losses at interfaces from those in the bulk according to the chosen propagation mode. This allows us to know if we can stack elementary layers to make thick layers without incurring problems.

  9. Residual stress measurement and microstructural characterization of thick beryllium films

    SciTech Connect

    Detor, A; Wang, M; Hodge, A M; Chason, E; Walton, C; Hamza, A V; Xu, H; Nikroo, A

    2008-02-11

    Beryllium films are synthesized by a magnetron sputtering technique incorporating in-situ residual stress measurement. Monitoring the stress evolution in real time provides quantitative through-thickness information on the effects of various processing parameters, including sputtering gas pressure and substrate biasing. Specimens produced over a wide range of stress states are characterized via transmission and scanning electron microscopy, and atomic force microscopy, in order to correlate the stress data with microstructure. A columnar grain structure is observed for all specimens, and surface morphology is found to be strongly dependent on processing conditions. Analytical models of stress generation are reviewed and discussed in terms of the observed microstructure.

  10. Antenna Characterization for the Wideband Instrument for Snow Measurements (WISM)

    NASA Technical Reports Server (NTRS)

    Lambert, Kevin M.; Miranda, Felix A.; Romanofsky, Robert R.; Durham, Timothy E.; Vanhille, Kenneth J.

    2015-01-01

    Experimental characterization of the antenna for the Wideband Instrument for Snow Measurement (WISM) under development for the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP), is discussed. A current sheet antenna, consisting of a small, 6x6 element, dual-linear polarized array with integrated beamformer, feeds an offset parabolic reflector, enabling WISM operation over an 8 to 40 GHz frequency band. An overview of the test program implemented for both the feed and the reflector antenna is given along with select results for specific frequencies utilized by the radar and radiometric sensors of the WISM.

  11. Antenna Characterization for the Wideband Instrument for Snow Measurements

    NASA Technical Reports Server (NTRS)

    Lambert, Kevin M.; Miranda, Felix A.; Romanofsky, Robert R.; Durham, Timothy E.; Vanhille, Kenneth J.

    2015-01-01

    Experimental characterization of the antenna for the Wideband Instrument for Snow Measurements (WISM) under development for the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP), is discussed. A current sheet antenna, consisting of a small, 6x6 element, dual-linear polarized array with integrated beamformer, feeds an offset parabolic reflector, enabling WISM operation over an 8 to 40 GHz frequency band. An overview of the test program implemented for both the feed and the reflector antenna is given along with select results for specific frequencies utilized by the radar and radiometric sensors of the WISM.

  12. Mode S baseline radar tracking

    NASA Astrophysics Data System (ADS)

    Mancus, E. F.; Baker, L. H.

    1982-11-01

    The baseline performance characteristics of the moving target detector (MTD) and radar data acquisition system (RDAS) as an integral part of the Mode S sensor, were determined. The MTD and RDAS were separately evaluated to determine their capability to provide radar data suitable for utilization by the Mode S sensor and automated radar terminal system (ARTS). The design modifications made to the Mode S sensor to provide the capability of interfacing to either an MTD or RDAS were evaluated to determine if they were in compliance with the Federal Aviation Administration engineering requirement, FAA-ER-240-26. Radar baseline technical performance data was provided to characterize the MTD, RDAS, Mode S, and ARTS. The minimum radar tracking requirements are studied to determine if they are adequate to provide reliable radar track data to an air traffic control facility. It was concluded that the Mode S sensor, when integrated with an MTD-2 radar digitizer, can provide reliable primary radar track data to the ARTS III system for automated radar track acquisition.

  13. Particle Imaging, Characterization and Extinction Measurement with Digital Holography

    NASA Astrophysics Data System (ADS)

    Subedi, Nava; Berg, Matthew

    2015-03-01

    Digital holographic microcopy (DHM) can be a ground breaking technique in the field of particle diagnostic because of its capability for imaging, characterization and extinction measurement in situ. The beauty of this technique is that a single experimental set up is able to do all these works at the same time. In this sense DHM can be used to establish a new kind of instrumentation having the properties of cost-effective, light-weight and portable. Besides this, this technique also has lots of useful applications in the field of aerosol research, climate modeling, life science, polymer crystallization, and defense. We are using DHM for sub-micron sized particle imaging, characterization and extinction. In this work, a particle is illuminated by a pulsed laser and the interference pattern produced by superposition of particle's forward-scattered wave with the incident wave is recorded by a digital camera. The recorded pattern constitutes a digital hologram which can be numerically processed to get image, composition information and extinction cross-section of the particle. These information of the particle are the basic requirements for the characterization of respirable-sized (1-10 μm) aerosols particles.

  14. Secondary electron measurement and XPS characterization of NEG coatings

    SciTech Connect

    Sharma, R. K. Sinha, Atul K. Gupta, Nidhi Nuwad, J. Jagannath, Gadkari, S. C. Singh, M. R. Gupta, S. K.

    2014-04-24

    Ternary alloy coatings of IVB and VB materials provide many of benefits over traditional material surfaces such as creation of extreme high vacuum(XHV), lower secondary electron yield(SEY), low photon desorption coefficient. XHV (pressure < 10{sup −10} mbar) is very useful to the study of surfaces of the material in as it is form, high energy particle accelerators(LHC, Photon Factories), synchrotrons (ESRF, Ellectra) etc.. Low secondary electron yield leads to very low multi-pacting utilizes to increase beam life time. In this paper preparation of the coatings and a study of secondary electron yield measurement after heating at different temperatures has been shown also results of their surface characterization based on shift in binding energy has been produced using the surface techniques XPS. Stoichiometry of the film was measured by Energy dispersive x-ray analysis (EDX)

  15. Characterization measurements of ASC FLASH 3D ladar

    NASA Astrophysics Data System (ADS)

    Larsson, Håkan; Gustafsson, Frank; Johnson, Bruce; Richmond, Richard; Armstrong, Ernest

    2009-09-01

    As a part of the project agreement between the Swedish Defence Research Agency (FOI) and the United States of American's Air Force Research Laboratory (AFRL), a joint field trial was performed in Sweden during two weeks in January 2009. The main purpose for this trial was to characterize AFRL's latest version of the ASC (Advanced Scientific Concepts [1]) FLASH 3D LADAR sensor. The measurements were performed essentially in FOI´s optical hall whose 100 m indoor range offers measurements under controlled conditions minimizing effects such as atmospheric turbulence. Data were also acquired outdoor in both forest and urban scenarios, using vehicles and humans as targets, with the purpose of acquiring data from more dynamic platforms to assist in further algorithm development. This paper shows examples of the acquired data and presents initial results.

  16. Spectral characterization of dielectric materials using terahertz measurement systems

    NASA Astrophysics Data System (ADS)

    Seligman, Jeffrey M.

    The performance of modern high frequency components and electronic systems are often limited by the properties of the materials from which they are made. Over the past decade, there has been an increased emphasis on the development of new, high performance dielectrics for use in high frequency systems. The development of these materials requires novel broadband characterization, instrumentation, and extraction techniques, from which models can be formulated. For this project several types of dielectric sheets were characterized at terahertz (THz) frequencies using quasi-optical (free-space) techniques. These measurement systems included a Fourier Transform Spectrometer (FTS, scalar), a Time Domain Spectrometer (TDS, vector), a Scalar Network Analyzer (SNA), and a THz Vector Network Analyzer (VNA). Using these instruments the THz spectral characteristics of dielectric samples were obtained. Polarization based anisotropy was observed in many of the materials measured using vector systems. The TDS was the most informative and flexible instrument for dielectric characterization at THz frequencies. To our knowledge, this is the first such comprehensive study to be performed. Anisotropy effects within materials that do not come into play at microwave frequencies (e.g. ~10 GHz) were found, in many cases, to increase measured losses at THz frequencies by up to an order of magnitude. The frequency dependent properties obtained during the course of this study included loss tangent, permittivity (index of refraction), and dielectric constant. The results were largely consistent between all the different systems and correlated closely to manufacturer specifications over a wide frequency range (325 GHz-1.5 THz). Anisotropic behavior was observed for some of the materials. Non-destructive evaluation and testing (NDE/NDT) techniques were used throughout. A precision test fixture was developed to accomplish these measurements. Time delay, insertion loss, and S-parameters were

  17. Pinellas Plant Environmental Baseline Report

    SciTech Connect

    Not Available

    1997-06-01

    The Pinellas Plant has been part of the Department of Energy`s (DOE) nuclear weapons complex since the plant opened in 1957. In March 1995, the DOE sold the Pinellas Plant to the Pinellas County Industry Council (PCIC). DOE has leased back a large portion of the plant site to facilitate transition to alternate use and safe shutdown. The current mission is to achieve a safe transition of the facility from defense production and prepare the site for alternative uses as a community resource for economic development. Toward that effort, the Pinellas Plant Environmental Baseline Report (EBR) discusses the current and past environmental conditions of the plant site. Information for the EBR is obtained from plant records. Historical process and chemical usage information for each area is reviewed during area characterizations.

  18. Characterization Of Multilayer X-Ray Analyzers: Models And Measurements

    NASA Astrophysics Data System (ADS)

    Henke, B. L.; Uejio, J. Y.; Yamada, H. T.; Tackaberry, R. E.

    1986-08-01

    A procedure is described for a detailed characterization of multilayer analyzers that can be effectively applied to their design, optimization, and application for absolute x-ray spectrometry in the 100 to 10,000 eV photon energy region. An accurate analytical model has been developed that is based upon a simple modification of the dynamical Darwin-Prins theory to extend its application to finite multilayer systems and to the low energy x-ray region. Its equivalence to the optical E&M solution of the Fresnel equations at each interface is demonstrated by detailed comparisons for the reflectivity of a multilayer throughout the angular range of incidence of 0° to 90°. A special spectrograph and an experimental method are described for the measurement of the absolute reflectivity characteristics of the multilayer. The experimental measurements at three photon energies in the 100 to 2000 eV region are fit by the analytical modified Darwin-Prins equation (MDP) for 1(0), generating a detailed characterization of two state-of-the-art multilayers: sputtered tungsten-carbon with 2d 70 A and a molecular lead stearate with 2d 100 A. The fitting parameters that are determined by this procedure are applied to help establish the structural characteristics of these multilayers.

  19. Characterizing GEO Titan Transtage Fragmentations using Ground-based Measurements

    NASA Technical Reports Server (NTRS)

    Cowardin, H.; Anz-Meador, P.

    2016-01-01

    In a continued effort to better characterize the Geosynchronous Orbit (GEO) environment, NASA's Orbital Debris Program Office (ODPO) utilizes various ground-based optical assets to acquire photometric and spectral data of known debris associated with fragmentations in or near GEO. The Titan IIIC Transtage upper stage is known to have fragmented four times. Two of the four fragmentations were in GEO while a third Transtage fragmented in GEO transfer orbit. The forth fragmentation occurred in Low Earth Orbit. In order to better assess what may be causing these fragmentations, the NASA ODPO recently acquired a Titan Transtage test and display article that was previously in the custody of the 309th Aerospace Maintenance and Regeneration Group (AMARG) in Tucson, Arizona. After initial inspections at AMARG demonstrated that the test article was of sufficient fidelity to be of interest, the test article was brought to JSC to continue material analysis and historical documentation of the Titan Transtage. The Transtage will be a subject of forensic analysis using spectral measurements to compare with telescopic data; as well, a scale model will be created to use in the Optical Measurement Center for photometric analysis of an intact Transtage, including a BRDF. The following presentation will provide a review of the Titan Transtage, the current analysis that has been done to date, and the future work to be completed in support of characterizing the GEO and near GEO orbital debris environment.

  20. Baseline Test Specimen Machining Report

    SciTech Connect

    mark Carroll

    2009-08-01

    The Next Generation Nuclear Plant (NGNP) Project is tasked with selecting a high temperature gas reactor technology that will be capable of generating electricity and supplying large amounts of process heat. The NGNP is presently being designed as a helium-cooled high temperature gas reactor (HTGR) with a large graphite core. The graphite baseline characterization project is conducting the research and development (R&D) activities deemed necessary to fully qualify nuclear-grade graphite for use in the NGNP reactor. Establishing nonirradiated thermomechanical and thermophysical properties by characterizing lot-to-lot and billet-to-billet variations (for probabilistic baseline data needs) through extensive data collection and statistical analysis is one of the major fundamental objectives of the project. The reactor core will be made up of stacks of graphite moderator blocks. In order to gain a more comprehensive understanding of the varying characteristics in a wide range of suitable graphites, any of which can be classified as “nuclear grade,” an experimental program has been initiated to develop an extensive database of the baseline characteristics of numerous candidate graphites. Various factors known to affect the properties of graphite will be investigated, including specimen size, spatial location within a graphite billet, specimen orientation within a billet (either parallel to [P] or transverse to [T] the long axis of the as-produced billet), and billet-to-billet variations within a lot or across different production lots. Because each data point is based on a certain position within a given billet of graphite, particular attention must be paid to the traceability of each specimen and its spatial location and orientation within each billet. The evaluation of these properties is discussed in the Graphite Technology Development Plan (Windes et. al, 2007). One of the key components in the evaluation of these graphite types will be mechanical testing on

  1. Spectroscopic measurements and characterization of soft tissue phantoms

    NASA Astrophysics Data System (ADS)

    Solarte, Efrain; Ipus, Erick

    2013-02-01

    Tissue phantoms are important tools to calibrate and validate light propagation effects, measurements and diagnostic test in real biological soft tissue. We produce low cost phantoms using standard commercial jelly, distillated water, glycerol and a 20% lipid emulsion (Oliclinomel N7-1000 ®) was used in place of the usual Intralipid®. In a previous work we designed a protocol to elaborate high purity phantoms which can be used over months. We produced three different types of phantoms regarding the lipid emulsion - glycerol - gelatin - water composition: Pure gelatin phantoms, lipid in glycerol, and lipid in gelatin phantoms were produced and different concentrations of the lipid emulsion were used to study optical propagation properties of diffusive mixtures. Besides, 1.09 μm poly latex spheres in distilled water were used to produce reference phantoms. In order to use all the phantom sides, the phantoms were produced in disposable spectrometer cuvettes, designed for fluorescence studies. Measurements were performed using an OceanOptics 4000 channels spectrophotometer and integrating spheres. For the scattering measurements a homemade goniometer with a high resolution angular scale was used and the scattering detector was a linear array of optical fibers, with an angular collimator, connected to the spectrophotometer. White LED was used as light source, and the 6328.8 nm HeNe Laser was used for calibration. In this work we present characterization measurements for gelatin and microspheres phantoms using spectral reflectance, diffuse and direct spectral transmittance, and angle scattering measurements. The results of these measurements and their comparison are presented.

  2. High heat flux measurements and experimental calibrations/characterizations

    NASA Technical Reports Server (NTRS)

    Kidd, Carl T.

    1992-01-01

    Recent progress in techniques employed in the measurement of very high heat-transfer rates in reentry-type facilities at the Arnold Engineering Development Center (AEDC) is described. These advances include thermal analyses applied to transducer concepts used to make these measurements; improved heat-flux sensor fabrication methods, equipment, and procedures for determining the experimental time response of individual sensors; performance of absolute heat-flux calibrations at levels above 2,000 Btu/cu ft-sec (2.27 kW/cu cm); and innovative methods of performing in-situ run-to-run characterizations of heat-flux probes installed in the test facility. Graphical illustrations of the results of extensive thermal analyses of the null-point calorimeter and coaxial surface thermocouple concepts with application to measurements in aerothermal test environments are presented. Results of time response experiments and absolute calibrations of null-point calorimeters and coaxial thermocouples performed in the laboratory at intermediate to high heat-flux levels are shown. Typical AEDC high-enthalpy arc heater heat-flux data recently obtained with a Calspan-fabricated null-point probe model are included.

  3. Characterizing the kinetics of suspended cylindrical particles by polarization measurements

    NASA Astrophysics Data System (ADS)

    Liao, Ran; Ou, Xueheng; Ma, Hui

    2015-09-01

    Polarization has promising potential to retrieve the information of the steady samples, such as tissues. However, for the fast changing sample such as the suspended algae in the water, the kinetics of the particles also influence the scattered polarization. The present paper will show our recent results to extract the information about the kinetics of the suspended cylindrical particles by polarization measurements. The sample is the aqueous suspension of the glass fibers stirred by a magnetic stirrer. We measure the scattered polarization of the fibers by use of a simultaneous polarization measurement system and obtain the time series of two orthogonal polarization components. By use of correlation analysis, we obtain the time parameters from the auto-correlation functions of the polarization components, and observe the changes with the stirring speeds. Results show that these time parameters indicate the immigration of the fibers. After discussion, we find that they may further characterize the kinetics, including the translation and rotation, of the glass fibers in the fluid field.

  4. Damping capacity measurements for characterization of degradation in advanced materials

    SciTech Connect

    Mantena, R.; Gibson, R.F.; Place, T.A.

    1986-01-01

    This paper describes the application of damping capacity measurements for characterization of degradation in advanced materials. A recently developed impulse-frequency response technique was used to obtain damping capacity measurements on crossplied E-glass/epoxy laminates which had been subjected to four-point bending and cantilever bending to produce matrix cracking in the transverse plies. The size and location of the damage zone were correlated with changes in damping. With the expected introduction of Rapidly Solidified Alloys (RSA) as effective alternatives to conventional materials, the applicability of damping capacity measurements as a nondestructive means of evaluating degradation in these materials was also studied. A conventional A710 structural steel having three different microstructures was used for developing the methodology to be used later on RSA specimens. It is shown that damping is more sensitive to matrix cracking than stiffness is in E-glass/epoxy composite specimens. In the case of A710 steel, the damping changes at low strain, though significant, do not correlate with the mechanical property data. Damping data at high strains does correlate with the mechanical property data, however.

  5. Measurement, characterization, and prediction of strong ground motion

    USGS Publications Warehouse

    Joyner, William; Boore, David M.

    1988-01-01

    A number of predictive relationships derived from regression analysis of strong-motion data are available for horizontal peak acceleration, velocity, and response spectral values. Theoretical prediction of ground motion calls for stochastic source models because source heterogeneities control the amplitude of ground motion at most, if not all, frequencies of engineering interest. Theoretical methods have been developed for estimation of ground-motion parameters and simulation of ground-motion time series. These methods are particularly helpful for regions such, as eastern North America where strong-motion data are sparse. The authors survey the field, first reviewing developments in ground-motion measurement and data processing. The authors then consider the choice of parameters for characterizing strong ground motion and describe the wave-types involved in strong ground motion and the factors affecting ground-motion amplitudes. They conclude by describing methods for predicting ground motion.

  6. Low baseline startle in anorexia nervosa patients.

    PubMed

    Bellodi, Laura; Martoni, Riccardo Maria; Galimberti, Elisa; Cavallini, Maria Cristina

    2013-01-10

    This study examined baseline startle magnitude, using eye blink response and skin conductance response in anorexia nervosa patients. Twenty female in-patients with anorexia nervosa and an equal number of female healthy controls were tested. Baseline startle response was assessed during blank screens while four startling loud sounds (a 116 dB, 1s, 250 Hz tone) were delivered with a time interval ranging from 35 to 55 s. It was investigated if BMI and state anxiety correlated with physiological responses. The clinical sample showed a lower baseline startle reflex measured with both indices, than healthy controls. Across the whole sample, a single regression model partially explained the relationship between BMI and baseline skin conductance response. PMID:22954471

  7. Compound-Specific δ15N Amino Acid Measurements in Littoral Mussels in the California Upwelling Ecosystem: A New Approach to Generating Baseline δ15N Isoscapes for Coastal Ecosystems

    PubMed Central

    Vokhshoori, Natasha L.; McCarthy, Matthew D.

    2014-01-01

    We explored δ15N compound-specific amino acid isotope data (CSI-AA) in filter-feeding intertidal mussels (Mytilus californianus) as a new approach to construct integrated isoscapes of coastal primary production. We examined spatial δ15N gradients in the California Upwelling Ecosystem (CUE), determining bulk δ15N values of mussel tissue from 28 sites between Port Orford, Oregon and La Jolla, California, and applying CSI-AA at selected sites to decouple trophic effects from isotopic values at the base of the food web. Bulk δ15N values showed a strong linear trend with latitude, increasing from North to South (from ∼7‰ to ∼12‰, R2 = 0.759). In contrast, CSI-AA trophic position estimates showed no correlation with latitude. The δ15N trend is therefore most consistent with a baseline δ15N gradient, likely due to the mixing of two source waters: low δ15N nitrate from the southward flowing surface California Current, and the northward transport of the California Undercurrent (CUC), with15N-enriched nitrate. This interpretation is strongly supported by a similar linear gradient in δ15N values of phenylalanine (δ15NPhe), the best AA proxy for baseline δ15N values. We hypothesize δ15NPhe values in intertidal mussels can approximate annual integrated δ15N values of coastal phytoplankton primary production. We therefore used δ15NPhe values to generate the first compound-specific nitrogen isoscape for the coastal Northeast Pacific, which indicates a remarkably linear gradient in coastal primary production δ15N values. We propose that δ15NPhe isoscapes derived from filter feeders can directly characterize baseline δ15N values across major biochemical provinces, with potential applications for understanding migratory and feeding patterns of top predators, monitoring effects of climate change, and study of paleo- archives. PMID:24887109

  8. Characterization of Unstable Rock Slopes Through Passive Seismic Measurements

    NASA Astrophysics Data System (ADS)

    Kleinbrod, Ulrike; Burjánek, Jan; Fäh, Donat

    2014-05-01

    Catastrophic rock slope failures have high social impact, causing significant damage to infrastructure and many casualties throughout the world each year. Both detection and characterization of rock instabilities are therefore of key importance. Analysing unstable rock slopes by means of ambient vibrations might be a new alternative to the already existing methods as for example geotechnical displacement measurements. A systematic measurement campaign has been initiated recently in Switzerland in order to study the seismic response of potential rockslides concerning a broad class of slope failure mechanisms and material conditions. First results are presented in this contribution. Small aperture seismic arrays were deployed at sites of interest for a short period of time (several hours) in order to record ambient vibrations. During each measurement a reference station was installed on a stable part close to the instability. The total number of stations used varies from 16 down to 2, depending on the site scope and resource availability. Instable rock slopes show a highly directional ground motion which is significantly amplified with respect to stable areas. These effects are strongest at certain frequencies which are identified as eigenfrequencies of the unstable rock mass. The eigenfrequencies and predominant directions have been estimated by frequency dependent polarization analysis. Site-to-reference spectral ratios have been calculated as well in order to estimate the relative amplification of ground motion at unstable parts. The retrieved results were compared with independent in-situ observations and other available data. The directions of maximum amplification are in most cases perpendicular to open cracks mapped on the surface and in good agreement with the deformation directions obtained by geodetic measurements. The interpretation of the observed wave field is done through numerical modelling of seismic wave propagation in fractured media with complex

  9. A comparison between Lageos laser ranging and VLBI determined baselines

    NASA Technical Reports Server (NTRS)

    Kolenkiewicz, R.; Ryan, J. W.

    1984-01-01

    Two independent measurement techniques, Lageos satellite laser ranging (SLR), and very long baseline interferometry (VLBI) are compared in the measurement of distances (or baselines) between several locations in the continental U.S. The results of this analysis is summarized where both the SLR and VLBI baseline lengths and their differences (SLR minus VLBI) are presented. A comparison of the 22 baselines shows a mean difference of 1.0 + or - 1.1 cm with a scatter about zero of 5.2 cm. No apparent systematic scale difference between the networks is evident. A map of the baselines is included and indicates their differences, SLR minus VLBI, in centimeters.

  10. A baseline lunar mine

    NASA Technical Reports Server (NTRS)

    Gertsch, Richard E.

    1992-01-01

    A models lunar mining method is proposed that illustrates the problems to be expected in lunar mining and how they might be solved. While the method is quite feasible, it is, more importantly, a useful baseline system against which to test other, possible better, methods. Our study group proposed the slusher to stimulate discussion of how a lunar mining operation might be successfully accomplished. Critics of the slusher system were invited to propose better methods. The group noted that while nonterrestrial mining has been a vital part of past space manufacturing proposals, no one has proposed a lunar mining system in any real detail. The group considered it essential that the design of actual, workable, and specific lunar mining methods begin immediately. Based on an earlier proposal, the method is a three-drum slusher, also known as a cable-operated drag scraper. Its terrestrial application is quite limited, as it is relatively inefficient and inflexible. The method usually finds use in underwater mining from the shore and in moving small amounts of ore underground. When lunar mining scales up, the lunarized slusher will be replaced by more efficient, high-volume methods. Other aspects of lunar mining are discussed.

  11. Measurement and Characterization of Apoptosis by Flow Cytometry.

    PubMed

    Telford, William; Tamul, Karen; Bradford, Jolene

    2016-01-01

    Apoptosis is an important mechanism in cell biology, playing a critical regulatory role in virtually every organ system. It has been particularly well characterized in the immune system, with roles ranging from immature immune cell development and selection to down-regulation of the mature immune response. Apoptosis is also the primary mechanism of action of anti-cancer drugs. Flow cytometry has been the method of choice for analyzing apoptosis in suspension cells for more than 25 years. Numerous assays have been devised to measure both the earliest and latest steps in the apoptotic process, from the earliest signal-transduction events to the late morphological changes in cell shape and granularity, proteolysis, and chromatin condensation. These assays are particularly powerful when combined into multicolor assays determining several apoptotic characteristics simultaneously. The multiparametric nature of flow cytometry makes this technology particularly suited to measuring apoptosis. In this unit, we will describe the four main techniques for analyzing caspase activity in apoptotic cells, combined with annexin V and cell permeability analysis. These relatively simple multiparametric assays are powerful techniques for assessing cell death. © 2016 by John Wiley & Sons, Inc. PMID:27367289

  12. Combining Remote Sensing with in situ Measurements for Riverine Characterization

    NASA Astrophysics Data System (ADS)

    Calantoni, J.; Palmsten, M. L.; Simeonov, J.; Dobson, D. W.; Zarske, K.; Puleo, J. A.; Holland, K. T.

    2014-12-01

    At the U.S. Naval Research Laboratory we are employing a wide variety of novel remote sensing techniques combined with traditional in situ sampling to characterize riverine hydrodynamics and morphodynamics. Surface currents were estimated from particle image velocimetry (PIV) using imagery from visible to infrared bands, from both fixed and airborne platforms. Terrestrial LIDAR has been used for subaerial mapping from a fixed platform. Additionally, LIDAR has been combined with hydrographic surveying (multibeam) in mobile scanning mode using a small boat. Hydrographic surveying (side scan) has also been performed using underwater autonomous vehicles. Surface drifters have been deployed in combination with a remotely operated, floating acoustic Doppler current profiler. Other fixed platform, in situ sensors, such as pencil beam and sector scanning sonars, acoustic Doppler velocimeters, and water level sensors have been deployed. We will present an overview of a variety of measurements from different rivers around the world focusing on validation examples of remotely sensed quantities with more traditional in situ measurements. Finally, we will discuss long-term goals to use remotely sensed data within an integrated environmental modeling framework.

  13. Correlation of the Coronal Mass Ejection Productivity of Solar Active Regions with Measures of their Global Nonpotentiality from Vector Magnetograms: Baseline Results

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Gary, G. A.

    2002-01-01

    Conventional magnetograms and chromospheric and coronal images show qualitatively that the fastest coronal mass ejections (CMEs) are magnetic explosions from sunspot active regions where the magnetic field is globally strongly sheared and twisted from its minimum-energy potential configuration. We present measurements from active region vector magnetograms that start to quantify the dependence of an active region's CME productivity on the global nonpotentiality of its magnetic field. From each of 17 magnetograms of 12 bipolar active regions, we measured the size of the active region (the magnetic flux content, phi) and three separate measures of the global nonpotentiality (L(sub SS), the length of strong-shear, strong-field main neutral line: I(sub N), the net electric current connecting one polarity to the other; and alpha = (mu)I(sub N)/phi), a flux normalized measure of the field twist). From these measurements and the observed CME productivity of the active regions, we find that: (1) All three measures of global nonpotentiality are statistically correlated with the active region flux content and with each other; (2) All three measures of global nonpotentiality are significantly correlated with CME productivity. The flux content correlates with CME productivity, but at a lower statistically significant confidence level (less than 95%); (3) The net current is less closely correlated with CME productivity than alpha and the correlation of CME productivity with flux content is even weaker. If these differences in correlation strength, and a significant correlation of alpha with flux content, persist to larger active regions, this would imply that the size of active regions does not affect CME productivity except through global nonpotentiality; and (4) For each of the four global magnetic quantities, the correlation with CME productivity is stronger for a two-day time window for the CME production than for windows half as wide or twice as wide. This plausibly is a

  14. Therapeutic magnetic microcarriers characterization by measuring magnetophoretic attributes

    NASA Astrophysics Data System (ADS)

    Vidal Ibacache, Guillermo

    Micro/nano robots are considered a promising approach to conduct minimally invasive interventions. We have proposed to embed magnetic nanoparticles in therapeutic or diagnostic agents in order to magnetically control them. A modified clinical Magnetic Resonance Imaging (MRI) scanner is used to provide the driving force that allows these magnetically embedded microcarriers to navigate the vascular human network. By using specific Magnetic Resonance (MR) gradient sequences this method has been validated in previous research works. Magnetophoresis is the term used to describe the fact that a magnetic particle changes its trajectory under the influence of a magnetic force while being carried by a fluid flow. This movement depends on the particle's magnetic characteristics, the particle's geometric shape, the fluid flow's attributes and other factors. In our proposed method, magnetic microcarriers can be produced in several different ways, and so their response will differ to the same magnetic force and fluid flow conditions. The outcome of the therapeutic treatment using our method depends on the adequate selection of the therapeutic and/or diagnosis agents to be used. The selected therapeutic and/or diagnosis magnetic microcarrier also influences the selection of the MR gradient sequence that best fit for a given treatment. This master's thesis presents the design of a device intended to assess the magnetophoretic properties of magnetic therapeutic microcarriers and/or diagnostic agents. Such characterization is essential for determining the optimal sequences of magnetic gradients to deflect their trajectory through relatively complex vascular networks in order to reach a pre-defined target. A microfluidic device was fabricated to validate the design. Magnetophoretic velocities are measured and a simple tracking method is proposed. The preliminary experimental results indicate that, despite some limitations, the proposed technique has the potential to be appropriate

  15. Characterization, monitoring and imaging of biochar by geoelectrical measurements

    NASA Astrophysics Data System (ADS)

    Haegel, Franz-Hubert; Esser, Odilia; Jablonowski, Nicolai D.; Zimmermann, Egon; Mukherjee, Santanu; Linden, Andreas; Huisman, Johan A.; Vereecken, Harry

    2013-04-01

    Biochar is a pyrolysis product or a by-product of fuel production from biological materials, mostly from energy plants, plant remains, or manure. Its addition to soil is discussed as a means of carbon sequestration and enhanced soil fertility, among several other beneficial effects. However, detrimental effects of biochar in soil are also discussed. The content of harmful substances, the influence of the material on microorganisms, and the modification of various soil properties may be critical. Although biochar has been intensively investigated in recent years, there is still a lack of knowledge due to the variability of soil and biochar properties, and the wide variety of experimental conditions used in these investigations. The properties of biochar strongly vary depending on the feed material and the production process. Therefore, it is of great interest to have methods which allow the characterization and long-term in-situ monitoring of biochar properties at different scales ranging from small laboratory columns to field sites. In this study, measurements on the complex electrical conductivity have been performed by spectral induced polarization (SIP). The method has been found to be a valuable tool for distinguishing different types of biochar and for monitoring the release of ions from biochar. SIP uses sinusoidal alternative current in the frequency range between 1 mHz and 45 kHz and provides information on the ohmic conductivity and on the electrical polarization of soil materials with added biochars. Whereas the release of ions leads to an increase of the ohmic conductivity, information on the chemical structure of biochars can be obtained from the polarization. Five types of biochar have been investigated in this study. The magnitude and the frequency dependence of the polarization can be used to distinguish the different types of biochar. Biochars with a larger degree of carbonization showed higher electronic conductivity and yielded higher polarization

  16. Objectively measured descriptors for perceptual characterization of speakers

    NASA Astrophysics Data System (ADS)

    Necioglu, Burhan Fazil

    Speaker recognizability has long been identified as one component in the evaluation process of communications systems. Although the intelligibility and voice quality aspects of evaluation have taken relative precedence, with more widespread use of lower bit rate speech coders, speaker recognizability emerges as an additional major issue. Still, subjective testing of speaker recognizability is intricate, time consuming and very expensive; so potentially, using objectively measurable descriptors to augment the subjective speaker recognizability tests could result in increased efficiency and reliability. This thesis presents a variety of descriptors objectively extracted from the speech waveform that might be useful in characterizing and interpreting perceptual speaker differences. These descriptors belong to the three broad classes of prosodic, vocal tract and glottal properties of speech production, and include various measurements on pitch and energy contours, formant related statistics, average vocal tract length estimates, and glottal pulse parameters. To assess the potential for this large set of speech waveform descriptors, reliability, RMS measurement noise and strength of speaker clustering were estimated using sets of 86 male and 78 female TIMIT speakers. The actual speaker discrimination abilities of the descriptors were determined by maximum-likelihood same/different classification of speaker pairs using their utterance pair measurement distances, without the need to model individual speakers. Using pairs of utterances approximately 12 seconds in length, and combining the likelihood scores of ten descriptors from all three broad classes, it was possible to make zero same-speaker classification errors, while achieving a different-speaker classification error rate of less than 1%, on separate testing/training speaker sets. When utterance lengths were reduced by half, the average error rate stayed below 4%. The perceptual relevance of this set of descriptors

  17. Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements

    SciTech Connect

    Dr. Timothy Onasch

    2009-09-09

    This SBIR Phase I project addressed the critical need for improved characterization of carbonaceous aerosol species in the atmosphere. The proposed work focused on the development of a thermodenuder (TD) system capable of systematically measuring volatility profiles of primary and secondary organic aerosol species and providing insight into the effects of absorbing and nonabsorbing organic coatings on particle absorption properties. This work provided the fundamental framework for the generation of essential information needed for improved predictions of ambient aerosol loadings and radiative properties by atmospheric chemistry models. As part of this work, Aerodyne Research, Inc. (ARI) continued to develop and test, with the final objective of commercialization, an improved thermodenuder system that can be used in series with any aerosol instrument or suite of instruments (e.g., aerosol mass spectrometers-AMS, scanning mobility particle sizers-SMPS, photoacoustic absorption spectrometers-PAS, etc.) to obtain aerosol chemical, physical, and optical properties as a function of particle volatility. In particular, we provided the proof of concept for the direct coupling of our improved TD design with a full microphysical model to obtain volatility profiles for different organic aerosol components and to allow for meaningful comparisons between different TD-derived aerosol measurements. In a TD, particles are passed through a heated zone and a denuding (activated charcoal) zone to remove semi-volatile material. Changes in particle size, number concentration, optical absorption, and chemical composition are subsequently detected with aerosol instrumentation. The aerosol volatility profiles provided by the TD will strengthen organic aerosol emission inventories, provide further insight into secondary aerosol formation mechanisms, and provide an important measure of particle absorption (including brown carbon contributions and identification, and absorption enhancements

  18. Characterization of scatter in digital mammography from physical measurements

    SciTech Connect

    Leon, Stephanie M. Wagner, Louis K.; Brateman, Libby F.

    2014-06-15

    Purpose: That scattered radiation negatively impacts the quality of medical radiographic imaging is well known. In mammography, even slight amounts of scatter reduce the high contrast required for subtle soft-tissue imaging. In current clinical mammography, image contrast is partially improved by use of an antiscatter grid. This form of scatter rejection comes with a sizeable dose penalty related to the concomitant elimination of valuable primary radiation. Digital mammography allows the use of image processing as a method of scatter correction that might avoid effects that negatively impact primary radiation, while potentially providing more contrast improvement than is currently possible with a grid. For this approach to be feasible, a detailed characterization of the scatter is needed. Previous research has modeled scatter as a constant background that serves as a DC bias across the imaging surface. The goal of this study was to provide a more substantive data set for characterizing the spatially-variant features of scatter radiation at the image detector of modern mammography units. Methods: This data set was acquired from a model of the radiation beam as a matrix of very narrow rays or pencil beams. As each pencil beam penetrates tissue, the pencil widens in a predictable manner due to the production of scatter. The resultant spreading of the pencil beam at the detector surface can be characterized by two parameters: mean radial extent (MRE) and scatter fraction (SF). The SF and MRE were calculated from measurements obtained using the beam stop method. Two digital mammography units were utilized, and the SF and MRE were found as functions of target, filter, tube potential, phantom thickness, and presence or absence of a grid. These values were then used to generate general equations allowing the SF and MRE to be calculated for any combination of the above parameters. Results: With a grid, the SF ranged from a minimum of about 0.05 to a maximum of about 0

  19. Measurement and characterization of x-ray spot size

    SciTech Connect

    Mueller, K.H.

    1989-01-01

    In planning an x-ray imaging experiment one must have an accurate model of the imaging system to obtain optimum results. The blurring caused by the finite size of the x-ray source is often the least understood element in the system. We have developed experimental and analytical methods permitting accurate measurement and modeling of the x-ray source. The model offers a simple and accurate way to optimize the radiographic geometry for any given experimental requirement (i.e., resolution and dose at detector). Any text on radiography will mention the effects of the finite size of the x-ray source on image quality and how one can minimize this influence by the choice of a small radiographic magnification. The film blur (independent of the source blur) is often treated as a single number and combined with an effective blur dimension for the x-ray source to give a total blur on the film. In this paper, we will develop a treatment of x-ray sources based on the modulation transfer function (MTF). This approach allows us to infer the spatial distribution function of the electron beam that produces the bremsstrahlung x-rays and to predict the performance of an x-ray imaging system if we know the MTF of the detector. This treatment is much more accurate than a single number characterization. 4 refs., 7 figs.

  20. Characterization of gaseous effluents from modeling of LWIR hyperspectral measurements

    NASA Astrophysics Data System (ADS)

    Griffin, Michael K.; Kerekes, John P.; Farrar, Kristine E.; Burke, Hsiao-hua K.

    2001-08-01

    Longwave Infrared (LWIR) radiation comprising atmospheric and surface emissions provides information for a number of applications including atmospheric profiling, surface temperature and emissivity estimation, and cloud depiction and characterization. The LWIR spectrum also contains absorption lines for numerous molecular species which can be utilized in quantifying species amounts. Modeling the absorption and emission from gaseous species using various radiative transfer codes such as MODTRAN-4 and FASE (a follow-on to the line-by-line radiative transfer code FASCODE) provides insight into the radiative signature of these elements as viewed from an airborne or space-borne platform and provides a basis for analysis of LWIR hyperspectral measurements. In this study, a model platform was developed for the investigation of the passive outgoing radiance from a scene containing an effluent plume layer. The effects of various scene and model parameters including ambient and plume temperatures, plume concentration, as well as the surface temperature and emissivity on the outgoing radiance were estimated. A simple equation relating the various components of the outgoing radiance was used to study the scale of the component contributions. A number of examples were given depicting the spectral radiance from plumes composed of single or multiple effluent gases as would be observed by typical airborne sensors. The issue of detectability and spectral identification was also discussed.

  1. Auxiliary measures to assess factors related to food insecurity: Preliminary testing and baseline characteristics of newly designed hunger-coping scales.

    PubMed

    Pinard, Courtney; Smith, Teresa M; Calloway, Eric E; Fricke, Hollyanne E; Bertmann, Farryl M; Yaroch, Amy L

    2016-12-01

    The objective of this paper is to describe the development and preliminary testing of new scales to assess hunger-coping behaviors in a very low-income population. Very low-income adults (≥ 19 years), caregivers to at least one child (n = 306) completed a survey in a community setting (e.g., libraries). The survey included novel items assessing hunger-coping behaviors (e.g., trade-offs to purchase food, strategies to stretch and obtain food), food insecurity status, and physiological hunger. Internal consistency of hunger-coping scales, one-way ANOVAs, post-hoc analyses, Spearman's correlations among variables. Respondents were 75% female, 51% African American, 34% White, and 15% Hispanic, and 73% earned <$20,000/year. Four scales emerged: hunger-coping trade-offs, financial coping strategies, rationing coping strategies, and physiological adult hunger symptoms. All scales demonstrated acceptable internal consistency (α/KR-20 = 0.70-0.90). Predictive, construct, and content validity were demonstrated by correlations between hunger-coping scales and food insecurity (FI), measured with the USDA 6-item HFSSM (rs = 0.42-0.68, ps < 0.001). Higher levels of hunger-coping trade-offs (F(2,297) = 42.54, p < 0.001), financial coping strategies (F(2,287) = 70.77, p < 0.001), and rationing coping strategies (F(2,284) = 69.19, p < 0.001), corresponded with increasing levels of FI. These preliminary results support use of newly developed hunger-coping scales in a very low-income population and can compliment traditional food security measures to inform hunger prevention policy and programming. PMID:27462530

  2. Lunar science measurements and instruments for resource characterization

    SciTech Connect

    Vaniman, D.

    1992-12-31

    Resource characterization is a requirement for effective production of any product from planetary materials, whether that product is to be used locally or exported. The characterization required is not necessarily costly or extensive; for example, our current knowledge of lunar regolith is probably sufficient for it to be used immediately for shielding purposes. However, other products from regolith (e.g., oxygen and solar-wind gases) will require more thorough and particularly site-specific resource characterization before actual production commences. If global maps of the Moon are obtained by some combination of gamma ray, reflectance, X-ray fluorescence, and/or imaging methods, the task of targeting resource sites will be considerably improved. Once these sites are selected, however, they must be characterized on the ground. The product of this characterization should be useable maps that will maximize the product output and minimize wasted energy and effort.

  3. Lunar science measurements and instruments for resource characterization

    SciTech Connect

    Vaniman, D.

    1992-01-01

    Resource characterization is a requirement for effective production of any product from planetary materials, whether that product is to be used locally or exported. The characterization required is not necessarily costly or extensive; for example, our current knowledge of lunar regolith is probably sufficient for it to be used immediately for shielding purposes. However, other products from regolith (e.g., oxygen and solar-wind gases) will require more thorough and particularly site-specific resource characterization before actual production commences. If global maps of the Moon are obtained by some combination of gamma ray, reflectance, X-ray fluorescence, and/or imaging methods, the task of targeting resource sites will be considerably improved. Once these sites are selected, however, they must be characterized on the ground. The product of this characterization should be useable maps that will maximize the product output and minimize wasted energy and effort.

  4. Baseline Familiarity in Lie Detection.

    ERIC Educational Resources Information Center

    Feeley, Thomas H.; And Others

    1995-01-01

    Reports on a study in which subjects judged the veracity of truthful and deceptive communicators after viewing no, one, two, or four case-relevant baseline exposures (familiarity) of truthful communication. Finds a positive linear relationship between detection accuracy and amount of baseline familiarity. (SR)

  5. The Fermilab short-baseline neutrino program

    SciTech Connect

    Camilleri, Leslie

    2015-10-15

    The Fermilab short-baseline program is a multi-facetted one. Primarily it searches for evidence of sterile neutrinos as hinted at by the MiniBooNE and LSND results. It will also measure a whole suite of ν-Argon cross sections which will be very useful in future liquid argon long-baseline projects. The program is based on MicroBooNE, already installed in the beam line, the recently approved LAr1-ND and the future addition of the refurbished ICARUS.

  6. Plutonium Immobilization Project Baseline Formulation

    SciTech Connect

    Ebbinghaus, B.

    1999-02-01

    A key milestone for the Immobilization Project (AOP Milestone 3.2a) in Fiscal Year 1998 (FY98) is the definition of the baseline composition or formulation for the plutonium ceramic form. The baseline formulation for the plutonium ceramic product must be finalized before the repository- and plant-related process specifications can be determined. The baseline formulation that is currently specified is given in Table 1.1. In addition to the baseline formulation specification, this report provides specifications for two alternative formulations, related compositional specifications (e.g., precursor compositions and mixing recipes), and other preliminary form and process specifications that are linked to the baseline formulation. The preliminary specifications, when finalized, are not expected to vary tremendously from the preliminary values given.

  7. Salton Sea sampling program: baseline studies

    SciTech Connect

    Tullis, R.E.; Carter, J.L.; Langlois, G.W.

    1981-04-13

    Baseline data are provided on three species of fish from the Salton Sea, California. The fishes considered were the orange mouth corvina (Cynoscion xanthulus), gulf croaker (Bairdiella icistius) and sargo (Anisotremus davidsonii). Morphometric and meristic data are presented as a baseline to aid in the evaluation of any physiological stress the fish may experience as a result of geothermal development. Analyses were made on muscle, liver, and bone of the fishes sampled to provide baseline data on elemental tissue burdens. The elements measured were: As, Br, Ca, Cu, Fe, Ga, K, Mn, Mi, Pb, Rb, Se, Sr, Zn, and Zr. These data are important if an environmentally sound progression of geothermal power production is to occur at the Salton Sea.

  8. 100-D Area technical baseline report

    SciTech Connect

    Carpenter, R.W.

    1993-08-20

    This document is prepared in support of the 100 Area Environmental Restoration activity at the US Department of Energy`s Hanford Site near Richland, Washington. It provides a technical baseline of waste sites located at the 100-D Area. The report is based on an environmental investigation undertaken by the Westinghouse Hanford Company (WHC) History Office in support of the Environmental Restoration Engineering Function and on review and evaluation of numerous Hanford Site current and historical reports, drawings, and photographs, supplemented by site inspections and employee interviews. No intrusive field investigation or sampling was conducted. All Hanford coordinate locations are approximate locations taken from several different maps and drawings of the 100-D Area. Every effort was made to derive coordinate locations for the center of each facility or waste site, except where noted, using standard measuring devices. Units of measure are shown as they appear in reference documents. The 100-D Area is made up of three operable units: 100-DR-1, 100-DR-2, and 100-DR-3. All three are addressed in this report. These operable units include liquid and solid waste disposal sites in the vicinity of, and related to, the 100-D and 100-DR Reactors. A fourth operable unit, 100-HR-3, is concerned with groundwater and is not addressed here. This report describes waste sites which include cribs, trenches, pits, french drains, retention basins, solid waste burial grounds, septic tanks, and drain fields. Each waste site is described separately and photographs are provided where available. A complete list of photographs can be found in Appendix A. A comprehensive environmental summary is not provided here but may be found in Hanford Site National Environmental Policy Act Characterization (Cushing 1988), which describes the geology and soils, meteorology, hydrology, land use, population, and air quality of the area.

  9. Characterization of Si nanostructures using internal quantum efficiency measurements

    SciTech Connect

    ZAIDI,SALEEM H.

    2000-04-01

    Hemispherical reflectance and internal quantum efficiency measurements have been employed to evaluate the response of Si nanostructured surfaces formed by using random and periodic reactive ion etching techniques. Random RIE-textured surfaces have demonstrated solar weighted reflectance of {approx} 3% over 300--1,200-nm spectral range even without the benefit of anti-reflection films. Random RIE-texturing has been found to be applicable over large areas ({approximately} 180 cm{sup 2}) of both single and multicrystalline Si surfaces. Due to the surface contamination and plasma-induced damage, RIE-textured surfaces did not initially provide increased short circuit current as expected from the enhanced absorption. Improved processing combined with wet-chemical damage removal etches resulted in significant improvement in the short circuit current with IQEs comparable to the random, wet-chemically textured surfaces. An interesting feature of the RIE-textured surfaces was their superior performance in the near IR spectral range. The response of RIE-textured periodic surfaces can be broadly classified into three distinct regimes. One-dimensional grating structures with triangular profiles are characterized by exceptionally low, polarization-independent reflective behavior. The reflectance response of such surfaces is similar to a graded-index anti-reflection film. The IQE response from these surfaces is severely degraded in the UV-Visible spectral region due to plasma-induced surface damage. One-dimensional grating structures with rectangular profiles exhibit spectrally selective absorptive behavior with somewhat similar IQE response. The third type of grating structure combines broadband anti-reflection behavior with significant IQE enhancement in 800--1,200-nm spectral region. The hemispherical reflectance of these 2D grating structures is comparable to random RIE-textured surfaces. The IQE enhancement in the long wavelength spectral region can be attributed to

  10. Characterization and measurement of hybrid gas journal bearings

    NASA Astrophysics Data System (ADS)

    Lawrence, Tom Marquis

    This thesis concentrates on the study of hybrid gas journal bearings (bearings with externally pressurized mass addition). It differs from most work in that it goes back to "basics" to explore the hydrodynamic phenomena in the bearing gap. The thesis compares geometrically identical bearings with 2 configurations of external pressurization, porous liners where mass-addition compensation is varied by varying the liner's permeability, and bushings with 2 rows of 6 feedholes where the mass-addition compensation is varied by the feedhole diameter. Experimentally, prototype bearings with mass-addition compensation that spans 2 orders of magnitude with differing clearances are built and their aerostatic properties and mass addition characteristics are thoroughly tested. The fundamental equations for compressible, laminar, Poiseuille flow are used to suggest how the mass flow "compensation" should be mathematically modeled. This is back-checked against the experimental mass flow measurements and is used to determine a mass-addition compensation parameter (called Kmeas) for each prototype bushing. In so doing, the methodology of modeling and measuring the mass addition in a hybrid gas bearing is re-examined and an innovative, practical, and simple method is found that makes it possible to make an "apples-to-apples" comparison between different configurations of external pressurization. This mass addition model is used in conjunction with the Reynolds equation to perform theory-based numerical analysis of virtual hybrid gas journal bearings (CFD experiments). The first CFD experiments performed use virtual bearings modeled to be identical to the experimental prototypes and replicate the experimental work. The results are compared and the CFD model is validated. The ontological significance of appropriate dimensionless similitude parameters is re-examined and a, previously lacking, complete set of similitude factors is found for hybrid bearings. A new practical method is

  11. Microgravity acceleration measurement and environment characterization science (17-IML-1)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Acceleration Measurement System (SAMS) is a general purpose instrumentation system designed to measure the accelerations onboard the Shuttle Orbiter and Shuttle/Spacelab vehicles. These measurements are used to support microgravity experiments and investigation into the microgravity environment of the vehicle. Acceleration measurements can be made at locations remote from the SAMS main instrumentation unit by the use of up to three remote triaxial sensor heads. The prime objective for SAMS on the International Microgravity Lab (IML-1) mission will be to measure the accelerations experienced by the Fluid Experiment System (FES). The SAMS acceleration measurements for FES will be complemented by low level, low frequency acceleration measurements made by the Orbital Acceleration Research Experiment (OARE) installed on the shuttle. Secondary objectives for SAMS will be to measure accelerations at several specific locations to enable the acceleration transfer function of the Spacelab module to be analyzed. This analysis effort will be in conjunction with similar measurements analyses on other Spacelab missions.

  12. Evaluation of current tropospheric mapping functions by Deep Space Network very long baseline interferometry

    NASA Technical Reports Server (NTRS)

    Sovers, O. J.; Lanyi, G. E.

    1994-01-01

    To compare the validity of current algorithms that map zenith tropospheric delay to arbitrary elevation angles, 10 different tropospheric mapping functions are used to analyze the current data base of Deep Space Network Mark 3 intercontinental very long baseline interferometric (VLBI) data. This analysis serves as a stringent test because of the high proportion of low-elevation observations necessitated by the extremely long baselines. Postfit delay and delay-rate residuals are examined, as well as the scatter of baseline lengths about the time-linear model that characterizes tectonic motion. Among the functions that utilize surface meteorological data as input parameters, the Lanyi 1984 mapping shows the best performance both for residuals and baselines, through the 1985 Davis function is statistically nearly identical. The next best performance is shown by the recent function of Niell, which is based on an examination of global atmospheric characteristics as a function of season and uses no weather data at the time of the measurements. The Niell function shows a slight improvement in residuals relative to Lanyi, but also an increase in baseline scatter that is significant for the California-Spain baseline. Two variants of the Chao mapping function, as well as the Chao tables used with the interpolation algorithm employed in the Orbit Determination Program software, show substandard behavior for both VLBI residuals and baseline scatter. The length of the California-Australia baseline (10,600 km) in the VLBI solution can vary by as much as 5 to 10 cm for the 10 mapping functions.

  13. Evaluation of current tropospheric mapping functions by Deep Space Network very long baseline interferometry

    NASA Astrophysics Data System (ADS)

    Sovers, O. J.; Lanyi, G. E.

    1994-11-01

    To compare the validity of current algorithms that map zenith tropospheric delay to arbitrary elevation angles, 10 different tropospheric mapping functions are used to analyze the current data base of Deep Space Network Mark 3 intercontinental very long baseline interferometric (VLBI) data. This analysis serves as a stringent test because of the high proportion of low-elevation observations necessitated by the extremely long baselines. Postfit delay and delay-rate residuals are examined, as well as the scatter of baseline lengths about the time-linear model that characterizes tectonic motion. Among the functions that utilize surface meteorological data as input parameters, the Lanyi 1984 mapping shows the best performance both for residuals and baselines, through the 1985 Davis function is statistically nearly identical. The next best performance is shown by the recent function of Niell, which is based on an examination of global atmospheric characteristics as a function of season and uses no weather data at the time of the measurements. The Niell function shows a slight improvement in residuals relative to Lanyi, but also an increase in baseline scatter that is significant for the California-Spain baseline. Two variants of the Chao mapping function, as well as the Chao tables used with the interpolation algorithm employed in the Orbit Determination Program software, show substandard behavior for both VLBI residuals and baseline scatter. The length of the California-Australia baseline (10,600 km) in the VLBI solution can vary by as much as 5 to 10 cm for the 10 mapping functions.

  14. Vibrational mid-infrared photothermal spectroscopy using a fiber laser probe: asymptotic limit in signal-to-baseline contrast.

    PubMed

    Totachawattana, Atcha; Liu, Hui; Mertiri, Alket; Hong, Mi K; Erramilli, Shyamsunder; Sander, Michelle Y

    2016-01-01

    We report on a mid-infrared photothermal spectroscopy system with a near-infrared fiber probe laser and a tunable quantum cascade pump laser. Photothermal spectra of a 6 μm-thick 4-octyl-4'-cyanobiphenyl liquid crystal sample are measured with a signal-to-baseline contrast above 103. As both the peak photothermal signal and the corresponding baseline increase linearly with probe power, the signal-to-baseline contrast converges to an asymptotic limit for a given pump power. This limit is independent of the probe power and characterizes the best contrast achievable for the system. This enables sensitive quantitative spectral characterization of linear infrared absorption features directly from photothermal spectroscopy measurements. PMID:26696188

  15. Reservoir characterization combining elastic velocities and electrical resistivity measurements

    NASA Astrophysics Data System (ADS)

    Gomez, Carmen Teresa

    2009-12-01

    The elastic and electric parameters of rocks that can be obtained from seismic and electromagnetic data depend on porosity, texture, mineralogy, and fluid. However, seismic data seldom allow us to accurately quantify hydrocarbon saturation. On the other hand, in the case of common reservoir rocks (i.e., sandstones and carbonates), resistivity strongly depends on porosity and saturation. Therefore, the recent progress of controlled-source-electromagnetic (CSEM) methods opens new possibilities in identifying and quantifying potential hydrocarbon reservoirs, although its resolution is much lower than that of seismic data. Hence, a combination of seismic and CSEM data arguably offers a powerful means of finally resolving the problem of remote sensing of saturation. The question is how to combine the two data sources (elastic data and electrical resistivity data) to better characterize a reservoir. To address this question, we introduce the concept of P-wave impedance and resistivity templates as a tool to estimate porosity and saturation from well log data. Adequate elastic and resistivity models, according to the lithology, cementation, fluid properties must be chosen to construct these templates. These templates can be upscaled to seismic and CSEM scale using Backus average for seismic data, and total resistance for CSEM data. We also measured velocity and resistivity in Fontainebleau samples in the laboratory. Fontainebleau formation corresponds to clean sandstones (i.e., low clay content). We derived an empirical relation between these P-wave velocity and resistivity at 40MPa effective pressure, which is around 3 km depth at normal pressure gradients. We were not able to test if this relation could be used at well or field data scales (once appropriate upscaling was applied), since we did not have a field dataset over a stiff sandstone reservoir. A relationship between velocity and resistivity laboratory data was also found for a set of carbonates. This expression

  16. Process Development and Integration Lab (PDIL) + Measurements and Characterization (Presentation)

    SciTech Connect

    Nelson, B.

    2008-04-01

    The Process Development and Integration Lab (PDIL) Vision is to integrate deposition, characterization, and processing by being flexible and robust; having a standardized transfer interface; and controlled sample ambient between tools. The benefits are: (1) answers to previously inaccessible research questions; (2) control and characterization of critical surfaces (interfaces) and how their impact on subsequent layers; (3) assess process-related source chemistry, surface chemistry and kinetics, and bulk reconstruction; (4) grow layers and alter interfaces using controlled processes and transfer ambients (without exposure to air); (5) develop new techniques, methodologies, device structures, materials, and tools (growth, processing, and analytical); and (6) improved collaborations with university and industry researchers.

  17. Evidence of functional declining and global comorbidity measured at baseline proved to be the strongest predictors for long-term death in elderly community residents aged 85 years: a 5-year follow-up evaluation, the OCTABAIX study

    PubMed Central

    Formiga, Francesc; Ferrer, Assumpta; Padros, Gloria; Montero, Abelardo; Gimenez-Argente, Carme; Corbella, Xavier

    2016-01-01

    Objective To investigate the predictive value of functional impairment, chronic conditions, and laboratory biomarkers of aging for predicting 5-year mortality in the elderly aged 85 years. Methods Predictive value for mortality of different geriatric assessments carried out during the OCTABAIX study was evaluated after 5 years of follow-up in 328 subjects aged 85 years. Measurements included assessment of functional status comorbidity, along with laboratory tests on vitamin D, cholesterol, CD4/CD8 ratio, hemoglobin, and serum thyrotropin. Results Overall, the mortality rate after 5 years of follow-up was 42.07%. Bivariate analysis showed that patients who survived were predominantly female (P=0.02), and they showed a significantly better baseline functional status for both basic (P<0.001) and instrumental (P<0.001) activities of daily living (Barthel and Lawton index), better cognitive performance (Spanish version of the Mini-Mental State Examination) (P<0.001), lower comorbidity conditions (Charlson) (P<0.001), lower nutritional risk (Mini Nutritional Assessment) (P<0.001), lower risk of falls (Tinetti gait scale) (P<0.001), less percentage of heart failure (P=0.03) and chronic obstructive pulmonary disease (P=0.03), and took less chronic prescription drugs (P=0.002) than nonsurvivors. Multivariate Cox regression analysis identified a decreased score in the Lawton index (hazard ratio 0.86, 95% confidence interval: 0.78–0.91) and higher comorbidity conditions (hazard ratio 1.20, 95% confidence interval: 1.08–1.33) as independent predictors of mortality at 5 years in the studied population. Conclusion The ability to perform instrumental activities of daily living and the global comorbidity assessed at baseline were the predictors of death, identified in our 85-year-old community-dwelling subjects after 5 years of follow-up. PMID:27143867

  18. Optical characterization of display screens by speckle-contrast measurements

    NASA Astrophysics Data System (ADS)

    Pozo, Antonio M.; Castro, José J.; Rubiño, Manuel

    2012-10-01

    In recent years, the flat-panel display (FPD) technology has undergone great development. Currently, FPDs are present in many devices. A significant element in FPD manufacturing is the display front surface. Manufacturers sell FPDs with different types of front surface which can be matte (also called anti-glare) or glossy screens. Users who prefer glossy screens consider images shown in these types of displays to have more vivid colours compared with matte-screen displays. However, external light sources may cause unpleasant reflections on the glossy screens. These reflections can be reduced by a matte treatment in the front surface of FPDs. In this work, we present a method to characterize the front surface of FPDs using laser speckle patterns. We characterized three FPDs: a Samsung XL2370 LCD monitor of 23" with matte screen, a Toshiba Satellite A100 laptop of 15.4" with glossy screen, and a Papyre electronic book reader. The results show great differences in speckle contrast values for the three screens characterized and, therefore, this work shows the feasibility of this method for characterizing and comparing FPDs which have different types of front surfaces.

  19. Generation and characterization of biological aerosols for laser measurements

    SciTech Connect

    Cheng, Yung-Sung; Barr, E.B.

    1995-12-01

    Concerns for proliferation of biological weapons including bacteria, fungi, and viruses have prompted research and development on methods for the rapid detection of biological aerosols in the field. Real-time instruments that can distinguish biological aerosols from background dust would be especially useful. Sandia National Laboratories (SNL) is developing a laser-based, real-time instrument for rapid detection of biological aerosols, and ITRI is working with SNL scientists and engineers to evaluate this technology for a wide range of biological aerosols. This paper describes methods being used to generate the characterize the biological aerosols for these tests. In summary, a biosafe system has been developed for generating and characterizing biological aerosols and using those aerosols to test the SNL laser-based real-time instrument. Such tests are essential in studying methods for rapid detection of airborne biological materials.

  20. Characterizing the uncertainty in holddown post load measurements

    NASA Technical Reports Server (NTRS)

    Richardson, J. A.; Townsend, J. S.

    1993-01-01

    In order to understand unexpectedly erratic load measurements in the launch-pad supports for the space shuttle, the sensitivities of the load cells in the supports were analyzed using simple probabilistic techniques. NASA engineers use the loads in the shuttle's supports to calculate critical stresses in the shuttle vehicle just before lift-off. The support loads are measured with 'load cells' which are actually structural components of the mobile launch platform which have been instrumented with strain gauges. Although these load cells adequately measure vertical loads, the horizontal load measurements have been erratic. The load measurements were simulated in this study using Monte Carlo simulation procedures. The simulation studies showed that the support loads are sensitive to small deviations in strain and calibration. In their current configuration, the load cells will not measure loads with sufficient accuracy to reliably calculate stresses in the shuttle vehicle. A simplified model of the holddown post (HDP) load measurement system was used to study the effect on load measurement accuracy for several factors, including load point deviations, gauge heights, and HDP geometry.

  1. Measurement and Characterization of Nuclear Material at Idaho National Laboratory

    SciTech Connect

    J. L. Dolan; M. Flaska; S. A. Pozzi; D. L. Chichester

    2009-07-01

    A measurement plan and preliminary Monte Carlo simulations are presented for the investigation of well-defined mixed-oxide fuel pins. Measurement analysis including pulse-height distributions and time-dependent cross-correlation functions will be performed separately for neutrons and gamma rays. The utilization of Monte Carlo particle transport codes, specifically MCNP-PoliMi, is discussed in conjunction with the anticipated measurements. Four EJ-309 liquid scintillation detectors with an accurate pulse timing and digital, offline, optimized pulse-shape discrimination method will be used to prove the dependency of pulse-height distributions, cross-correlation functions, and material multiplicities upon fuel pin composition, fuel pin quantity, and detector geometry. The objective of the measurements and simulations is to identify novel methods for describing mixed-oxide fuel samples by relating measured quantities to fuel characteristics such as criticality, mass quantity, and material composition. This research has applications in nuclear safeguards and nonproliferation.

  2. Characterizing Decades of Cloud Measurements from Combined ARM Profiling Radar and Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Johnson, K. L.; Jensen, M. P.; Baxter, S.; Toto, T.; Wang, M.; Kollias, P.; Clothiaux, E. E.

    2014-12-01

    The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program has continuously operated profiling cloud radars and micropulse lidars at five fixed sites, for periods ranging from eight to nineteen years. The sites include the U.S. southern Great Plains, the Alaska North Slope and three Tropical Western Pacific locations. The radar and lidar observations, along with ceilometer and precipitation measurements, have been synthesized using ARM's Active Remote Sensing of Clouds (ARSCL) value-added product, which provides cloud boundaries and best-estimate radar reflectivities, mean Doppler velocities and spectral widths. The product's time resolution ranges from 10 seconds down to 4 seconds, with height resolution of 45 meters or better. Through its use in retrievals of cloud microphysics and dynamics, this high-resolution, long-term data set has the potential to make major contributions toward improved cloud representations in climate models and the understanding of cloud processes. However, it is essential that data set quality and accuracy be assessed and made available to data users in order to maximize utility and reliability. In this study, we apply a variety of approaches to characterize observation quality throughout the ARSCL data record at each site. We describe instrument availability and radar operating status and possible issues. We track radar sensitivity as a function of time through cirrus detection statistics as well as changes in radar signal saturation level over time. We also examine noise and insect clutter reflectivity levels as possible surrogates for radar calibration changes. Through these and other techniques, we assess the most and least reliable time periods for each instrumented site and provide valuable guidance to potential data users, for both case-study research and long-term climatological applications.

  3. PSF and MTF measurement methods for thick CCD sensor characterization

    NASA Astrophysics Data System (ADS)

    Takacs, P. Z.; Kotov, I.; Frank, J.; O'Connor, P.; Radeka, V.; Lawrence, D. M.

    2010-07-01

    Knowledge of the point spread function (PSF) of the sensors to be used in the Large Synoptic Survey Telescope (LSST) camera is essential for optimal extraction of subtle galaxy shape distortions caused by gravitational weak lensing. We have developed a number of techniques for measuring the PSF of candidate CCD sensors to be used in the LSST camera, each with its own strengths and weaknesses. The two main optical PSF measurement techniques that we use are the direct Virtual Knife Edge (VKE) scan as developed by Karcher, et al.1 and the indirect interference fringe method after Andersen and Sorensen2 that measures the modulation transfer function (MTF) directly. The PSF is derived from the MTF by Fourier transform. Other non-optical PSF measurement techniques that we employ include 55Fe x-ray cluster image size measurements and statistical distribution analysis, and cosmic ray muon track size measurements, but are not addressed here. The VKE technique utilizes a diffraction-limited spot produced by a Point-Projection Microscope (PPM) that is scanned across the sensor with sub-pixel resolution. This technique closely simulates the actual operating condition of the sensor in the telescope with the source spot size having an f/# close to the actual telescope design value. The interference fringe method uses a simple equal-optical-path Michelson-type interferometer with a single-mode fiber source that produces interference fringes with 100% contrast over a wide spatial frequency range sufficient to measure the MTF of the sensor directly. The merits of each measurement technique and results from the various measurement techniques on prototype LSST sensors are presented and compared.

  4. PSF and MTF Measurement Methods for Thick CCD Sensor Characterization

    SciTech Connect

    Takacs, P.Z.; Kotov, I.; Frank, J.; O'Connor, P.; Radeka, V.; Lawrence, D.M.

    2010-06-30

    Knowledge of the point spread function (PSF) of the sensors to be used in the Large Synoptic Survey Telescope (LSST) camera is essential for optimal extraction of subtle galaxy shape distortions caused by gravitational weak lensing. We have developed a number of techniques for measuring the PSF of candidate CCD sensors to be used in the LSST camera, each with its own strengths and weaknesses. The two main optical PSF measurement techniques that we use are the direct Virtual Knife Edge (VKE) scan as developed by Karcher, et al. and the indirect interference fringe method after Andersen and Sorensen that measures the modulation transfer function (MTF) directly. The PSF is derived from the MTF by Fourier transform. Other non-optical PSF measurement techniques that we employ include {sup 55}Fe x-ray cluster image size measurements and statistical distribution analysis, and cosmic ray muon track size measurements, but are not addressed here. The VKE technique utilizes a diffraction-limited spot produced by a Point-Projection Microscope (PPM) that is scanned across the sensor with sub-pixel resolution. This technique closely simulates the actual operating condition of the sensor in the telescope with the source spot size having an f/number close to the actual telescope design value. The interference fringe method uses a simple equal-optical-path Michelson-type interferometer with a single-mode fiber source that produces interference fringes with 100% contrast over a wide spatial frequency range sufficient to measure the MTF of the sensor directly. The merits of each measurement technique and results from the various measurement techniques on prototype LSST sensors are presented and compared.

  5. Space shuttle navigation analysis. Volume 2: Baseline system navigation

    NASA Technical Reports Server (NTRS)

    Jones, H. L.; Luders, G.; Matchett, G. A.; Rains, R. G.

    1980-01-01

    Studies related to the baseline navigation system for the orbiter are presented. The baseline navigation system studies include a covariance analysis of the Inertial Measurement Unit calibration and alignment procedures, postflight IMU error recovery for the approach and landing phases, on-orbit calibration of IMU instrument biases, and a covariance analysis of entry and prelaunch navigation system performance.

  6. Four-point potential drop measurements for materials characterization

    NASA Astrophysics Data System (ADS)

    Bowler, Nicola

    2011-01-01

    The technique of measuring the voltage difference (potential drop) between two of the four electrodes of a four-point probe, in order to determine conductivity or surface resistivity of a test piece, is well established in the direct-current (dc) or quasi-dc regime. The technique finds wide usage in the semiconductor industry for the purpose of measuring surface resistivity of semiconductors, and also in the measurement of conductivity of metals, particularly of ferromagnetic metals for which conductivity cannot be easily measured using eddy-current nondestructive evaluation (NDE). In these applications, the conductivity of the test piece is deduced from an analytic formula that depends on the geometry of the probe and test piece. Such a formula requires, as an input, the measured value of the potential drop. Several analytical expressions exist for a variety of test-piece geometries and probe arrangements. Recently, it has been shown that broadband measurements of the potential drop, known as 'alternating current potential drop' (ac PD) measurements, can be used not only to obtain the conductivity of a test piece, but also its linear permeability μ. The beauty of this measurement is that the two parameters are completely decoupled in the quasi-static regime. In fact, μ does not appear in the quasi-static expression for σ. Hence, σ may be obtained from low-frequency ac PD measurements and then μ may be deduced as the frequency increases beyond the quasi-static regime, once σ is known. In this review, both dc and ac solutions that are useful in determining the conductivity of metals and semiconductors, and the permeability of ferromagnetic conductors, are summarized. In particular, flat test pieces with arbitrary thickness are considered. At the next level of complexity, a solution for a half-space coated with a surface layer is given, along with a discussion of the use of the four-point potential drop method for determining thickness of a surface layer, such

  7. Characterization of measurement error sources in Doppler global velocimetry

    NASA Astrophysics Data System (ADS)

    Meyers, James F.; Lee, Joseph W.; Schwartz, Richard J.

    2001-04-01

    Doppler global velocimetry uses the absorption characteristics of iodine vapour to provide instantaneous three-component measurements of flow velocity within a plane defined by a laser light sheet. Although the technology is straightforward, its utilization as a flow diagnostics tool requires hardening of the optical system and careful attention to detail during data acquisition and processing if routine use in wind tunnel applications is to be achieved. A development programme that reaches these goals is presented. Theoretical and experimental investigations were conducted on each technology element to determine methods that increase measurement accuracy and repeatability. Enhancements resulting from these investigations included methods to ensure iodine vapour calibration stability, single frequency operation of the laser and image alignment to sub-pixel accuracies. Methods were also developed to improve system calibration, and eliminate spatial variations of optical frequency in the laser output, spatial variations in optical transmissivity and perspective and optical distortions in the data images. Each of these enhancements is described and experimental examples given to illustrate the improved measurement performance obtained by the enhancement. The culmination of this investigation was the measured velocity profile of a rotating wheel resulting in a 1.75% error in the mean with a standard deviation of 0.5 m s-1. Comparing measurements of a jet flow with corresponding Pitot measurements validated the use of these methods for flow field applications.

  8. Characterization of Measurement Error Sources in Doppler Global Velocimetry

    NASA Technical Reports Server (NTRS)

    Meyers, James F.; Lee, Joseph W.; Schwartz, Richard J.

    2001-01-01

    Doppler global velocimetry uses the absorption characteristics of iodine vapor to provide instantaneous three-component measurements of flow velocity within a plane defined by a laser light sheet. Although the technology is straightforward, its utilization as a flow diagnostics tool requires hardening of the optical system and careful attention to detail during data acquisition and processing if routine use in wind tunnel applications is to be achieved. A development program that reaches these goals is presented. Theoretical and experimental investigations were conducted on each technology element to determine methods that increase measurement accuracy and repeatability. Enhancements resulting from these investigations included methods to ensure iodine vapor calibration stability, single frequency operation of the laser and image alignment to sub-pixel accuracies. Methods were also developed to improve system calibration, and eliminate spatial variations of optical frequency in the laser output, spatial variations in optical transmissivity and perspective and optical distortions in the data images. Each of these enhancements is described and experimental examples given to illustrate the improved measurement performance obtained by the enhancement. The culmination of this investigation was the measured velocity profile of a rotating wheel resulting in a 1.75% error in the mean with a standard deviation of 0.5 m/s. Comparing measurements of a jet flow with corresponding Pitot measurements validated the use of these methods for flow field applications.

  9. In vivo characterization of ischemic small intestine using bioimpedance measurements.

    PubMed

    Strand-Amundsen, R J; Tronstad, C; Kalvøy, H; Gundersen, Y; Krohn, C D; Aasen, A O; Holhjem, L; Reims, H M; Martinsen, Ø G; Høgetveit, J O; Ruud, T E; Tønnessen, T I

    2016-02-01

    The standard clinical method for the assessment of viability in ischemic small intestine is still visual inspection and palpation. This method is non-specific and unreliable, and requires a high level of clinical experience. Consequently, viable tissue might be removed, or irreversibly damaged tissue might be left in the body, which may both slow down patient recovery. Impedance spectroscopy has been used to measure changes in electrical parameters during ischemia in various tissues. The physical changes in the tissue at the cellular and structural levels after the onset of ischemia lead to time-variant changes in the electrical properties. We aimed to investigate the use of bioimpedance measurement to assess if the tissue is ischemic, and to assess the ischemic time duration. Measurements were performed on pigs (n = 7) using a novel two-electrode setup, with a Solartron 1260/1294 impedance gain-phase analyser. After induction of anaesthesia, an ischemic model with warm, full mesenteric arterial and venous occlusion on 30 cm of the jejunum was implemented. Electrodes were placed on the serosal surface of the ischemic jejunum, applying a constant voltage, and measuring the resulting electrical admittance. As a control, measurements were done on a fully perfused part of the jejunum in the same porcine model. The changes in tan δ (dielectric parameter), measured within a 6 h period of warm, full mesenteric occlusion ischemia in seven pigs, correlates with the onset and duration of ischemia. Tan δ measured in the ischemic part of the jejunum differed significantly from the control tissue, allowing us to determine if the tissue was ischemic or not (P < 0.0001, F = (1,75.13) 188.19). We also found that we could use tan δ to predict ischemic duration. This opens up the possibility of real-time monitoring and assessment of the presence and duration of small intestinal ischemia. PMID:26805916

  10. Characterizing dielectric tensors of anisotropic materials from a single measurement

    NASA Astrophysics Data System (ADS)

    Smith, Paula Kay

    Ellipsometry techniques look at changes in polarization states to measure optical properties of thin film materials. A beam reflected from a substrate measures the real and imaginary parts of the index of the material represented as n and k, respectively. Measuring the substrate at several angles gives additional information that can be used to measure multilayer thin film stacks. However, the outstanding problem in standard ellipsometry is that it uses a limited number of incident polarization states (s and p). This limits the technique to isotropic materials. The technique discussed in this paper extends the standard process to measure anisotropic materials by using a larger set of incident polarization states. By using a polarimeter to generate several incident polarization states and measure the polarization properties of the sample, ellipsometry can be performed on biaxial materials. Use of an optimization algorithm in conjunction with biaxial ellipsometry can more accurately determine the dielectric tensor of individual layers in multilayer structures. Biaxial ellipsometry is a technique that measures the dielectric tensors of a biaxial substrate, single-layer thin film, or multi-layer structure. The dielectric tensor of a biaxial material consists of the real and imaginary parts of the three orthogonal principal indices (n x + ikx, ny +iky and nz + i kz) as well as three Euler angles (alpha, beta and gamma) to describe its orientation. The method utilized in this work measures an angle-of-incidence Mueller matrix from a Mueller matrix imaging polarimeter equipped with a pair of microscope objectives that have low polarization properties. To accurately determine the dielectric tensors for multilayer samples, the angle-of-incidence Mueller matrix images are collected for multiple wavelengths. This is done in either a transmission mode or a reflection mode, each incorporates an appropriate dispersion model. Given approximate a priori knowledge of the dielectric