Science.gov

Sample records for basic dye removal

  1. Adsorption of basic dyes onto activated carbon using microcolumns

    SciTech Connect

    El Qada, E.N.; Allen, S.J.; Walker, G.M.

    2006-08-16

    Column studies for the adsorption of basic dyes (methylene blue, basic red, and basic yellow) onto PAC2 (activated carbon produced from bituminous coal using steam activation) and F400 were undertaken in fixed-bed microcolumns. Experimental data were correlated using the bed depth service time (BDST) model. The effect of bisolute interactions on the performance of microcolumn fixed beds was studied. The BDST model was successful in describing the breakthrough curves for the adsorption of MB onto PAC2 and predicts the experimental data with a good degree of accuracy. The results emphasized that the interactions and competition for the available binding sites have considerable influence on the efficiency of adsorbents to remove dyes from the solution.

  2. Kinetics of basic dye (methylene blue) biosorption by giant duckweed (Spirodela polyrrhiza).

    PubMed

    Waranusantigul, P; Pokethitiyook, P; Kruatrachue, M; Upatham, E S

    2003-01-01

    Wastewater containing pigments and/or dyes can cause serious water pollution problems in the form of reduced light penetration and photosynthesis, and the toxicity from heavy metals associated with pigments and/or dyes. Laboratory investigations, of the potential use of dried Spirodela polyrrhiza biomass as an adsorbent for the removal of the basic dye methylene blue from aqueous solution were conducted. A series of experiments were undertaken in an agitated batch adsorber to assess the effect of the system variables, i.e. sorbent dosage, pH, and contact time. The results showed that as the amount of the dried S. polyrrhiza increased, the percentage of dye sorption increased accordingly. At pH 2.0 the sorption of dye was not favorable, while the sorption at other pHs (3.0-11.0) was remarkable. There was no significant difference in the dye concentration remaining when the pH was increased from 3.0 to 11.0. The dye removal time was influenced by the initial dye concentration, and the process followed the first-order rate kinetics. The rate constants for intraparticle diffusion were 1.00 and 3.27 mg/g/min1/2 for 300 and 500 mg/l of dye, respectively. PMID:12826416

  3. Method of dye removal for the textile industry

    SciTech Connect

    Stone, M.L.

    2000-07-25

    The invention comprises a method of processing a waste stream containing dyes, such as a dye bath used in the textile industry. The invention uses an inorganic-based polymer, such as polyphosphazene, to separate dyes and/or other chemicals from the waste stream. Membranes comprising polyphosphazene have the chemical and thermal stability to survive the harsh, high temperature environment of dye waste streams, and have been shown to completely separate dyes from the waste stream. Several polyphosplhazene membranes having a variety of organic substituent have been shown effective in removing color from waste streams.

  4. Method of dye removal for the textile industry

    DOEpatents

    Stone, Mark L. (Idaho Falls, ID)

    2000-01-01

    The invention comprises a method of processing a waste stream containing dyes, such as a dye bath used in the textile industry. The invention comprises using an inorganic-based polymer, such as polyphosphazene, to separate dyes and/or other chemicals from the waste stream. Membranes comprising polyphosphazene have the chemical and thermal stability to survive the harsh, high temperature environment of dye waste streams, and have been shown to completely separate dyes from the waste stream. Several polyphosplhazene membranes having a variety of organic substituent have been shown effective in removing color from waste streams.

  5. Role of the surface chemistry of activated carbons in dye removal from aqueous solution

    NASA Astrophysics Data System (ADS)

    Zhou, Hua-lei; Zhen, Wen-juan; Zhu, Qian; Wu, Xiao-bin; Chang, Zhi-dong; Li, Wen-jun

    2015-07-01

    Commercial activated carbons were modified by a series of chemical or physical treatments using H2O2, NH3, and heating under N2 flow without notably changing their pore structures. The resultant carbons were characterized by N2 adsorption and Bohem titration and then used to remove Ponceau 4R, methyl orange and brilliant blue from aqueous solutions. Surface chemistry was found to play a significantly different role in removing these three compounds. The removal of anionic Ponceau 4R increases with increasing carbon surface basicity due to the predominant dispersive interaction mechanism. In contrast, surface chemistry has little effect on the removal of anionic methyl orange, which can be explained by two parallel mechanisms involving electrostatic and dispersive interactions due to the basic amine group in a dye molecule. The influence of surface chemistry on the removal of amphoteric brilliant blue dye can also be ignored due to a weak interaction between the carbons and dye molecules, which is resulted from strong cohesive energy from electrostatic forces inside amphoteric dye molecules.

  6. Simultaneous removal of cationic and anionic dyes by the mixed sorbent of magnetic and non-magnetic modified sugarcane bagasse.

    PubMed

    Yu, Jun-xia; Zhu, Jing; Feng, Li-yuan; Chi, Ru-an

    2015-08-01

    Magnetic carboxyl groups modified (MMS) and non-magnetic amine groups modified (AMS) sugarcane bagasse were prepared and mixed to remove cationic and anionic dye simultaneously from aqueous solution. For comparison, the adsorption performances of MMS, AMS and the mixed sorbent for basic magenta (cationic dye) and congo red (anionic dye) were investigated in the binary system. Zeta potential analysis showed that MMS was negatively charged and AMS was positively charged in the investigated pH range. The adsorption capacities of MMS for basic magenta and congo red were 1.24 and 0.04mmolg(-1), while those of AMS were 0.04 and 1.55mmolg(-1), respectively. Both of MMS and AMS had high adsorption capacity and affinity toward opposite-charged dye but low adsorption capacity and affinity toward similar-charged dye. Adsorption experiments in the binary system showed that only the mixed sorbent could remove the two dyes simultaneously from aqueous solution (removal efficiencies >90%). The amounts of basic magenta and congo red absorbed on the mixed sorbent both increased linearly with the increase of their initial concentrations in the investigated range. The dye loaded mixed magnetic and non-magnetic sorbents could be separated by a magnet. MMS and AMS could be regenerated by using acid and alkaline eluents, respectively. After regeneration, the MMS and AMS could be mixed again and used repeatedly. The mixed sorbent had great potential in practical dye waste water treatment. PMID:25897851

  7. Treatment of Basic Red 29 dye solution using iron-aluminum electrode pairs by electrocoagulation and electro-Fenton methods.

    PubMed

    Yavuz, Yusuf; Shahbazi, Reza; Koparal, A Sava?; Ö?ütveren, Ulker Bak?r

    2014-01-01

    The aim of this study is the treatment of Basic Red 29 (BR29) dye solution using hybrid iron-aluminum electrodes by electrocoagulation and electro-Fenton methods. The effect of current density, initial pH, supporting electrolyte, H?O?, and initial dye concentration on dye removal efficiency was investigated, and the best experimental conditions were obtained. Time-coarse variation of UV-Vis spectra and toxicity and chemical oxygen demand (COD) removal were also examined at the best experimental conditions. Both systems were found very successful for the removal of BR29 dye. The removal efficiency of >95% for BR29 dye solution was reached easily in a short time. At the best experimental conditions, for the initial BR29 concentration of 100 mg/L, >95% BR29 dye and 71.43% COD removal were obtained after 20 and 40 min of electrolysis, respectively. Additionally, toxicity results for electro-Fenton treatment of 100 mg/L BR29 were also very promising. According to the results obtained, although electro-Fenton is more effective, both systems can be used successfully to treat textile wastewater including dyes. PMID:24687790

  8. Direct dyes removal using modified magnetic ferrite nanoparticle

    PubMed Central

    2014-01-01

    The magnetic adsorbent nanoparticle was modified using cationic surface active agent. Zinc ferrite nanoparticle and cetyl trimethylammonium bromide were used as an adsorbent and a surface active agent, respectively. Dye removal ability of the surface modified nanoparticle as an adsorbent was investigated. Direct Green 6 (DG6), Direct Red 31 (DR31) and Direct Red 23 (DR23) were used. The characteristics of the adsorbent were studied using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effect of adsorbent dosage, initial dye concentration and salt was evaluated. In ternary system, dye removal of the adsorbent at 90, 120, 150 and 200 mg/L dye concentration was 63, 45, 30 and 23% for DR23, 97, 90, 78 and 45% for DR31 and 51, 48, 42 and 37% for DG6, respectively. It was found that dye adsorption onto the adsorbent followed Langmuir isotherm. The adsorption kinetic of dyes was found to conform to pseudo-second order kinetics. PMID:24991427

  9. Optimization of Biosorptive Removal of Dye from Aqueous System by Cone Shell of Calabrian Pine

    PubMed Central

    Deniz, Fatih

    2014-01-01

    The biosorption performance of raw cone shell of Calabrian pine for C.I. Basic Red 46 as a model azo dye from aqueous system was optimized using Taguchi experimental design methodology. L9 (33) orthogonal array was used to optimize the dye biosorption by the pine cone shell. The selected factors and their levels were biosorbent particle size, dye concentration, and contact time. The predicted dye biosorption capacity for the pine cone shell from Taguchi design was obtained as 71.770?mg?g?1 under optimized biosorption conditions. This experimental design provided reasonable predictive performance of dye biosorption by the biosorbent (R 2: 0.9961). Langmuir model fitted better to the biosorption equilibrium data than Freundlich model. This displayed the monolayer coverage of dye molecules on the biosorbent surface. Dubinin-Radushkevich model and the standard Gibbs free energy change proposed physical biosorption for predominant mechanism. The logistic function presented the best fit to the data of biosorption kinetics. The kinetic parameters reflecting biosorption performance were also evaluated. The optimization study revealed that the pine cone shell can be an effective and economically feasible biosorbent for the removal of dye. PMID:25405213

  10. PES mixed matrix nanofiltration membrane embedded with polymer wrapped MWCNT: Fabrication and performance optimization in dye removal by RSM.

    PubMed

    Ghaemi, Negin; Madaeni, Sayed S; Daraei, Parisa; Rajabi, Hamid; Shojaeimehr, Tahereh; Rahimpour, Farshad; Shirvani, Bita

    2015-11-15

    MWCNTs were wrapped by poly(sodium 4-styrenesulfonate) (PSS), and different amounts of raw and polymer wrapped MWCNTs were implemented to fabricate PES mixed matrix membranes by phase inversion method. Success of wrapping was probed by FTIR spectroscopy, and prepared membranes were characterized by SEM, AFM, porosity, and water contact angle measurements. Response surface methodology (RSM) was employed to optimize the permeate flux and dye removal efficiency of membranes with three variables of concentration, pH of dye solution, and membrane composition. A response surface (RS) with a D-optimal design was defined to build the mathematical model, minimize the number of experiments, and investigate the effect of parameters on the response. Adequacy of the obtained model was confirmed by means of variance analysis and additional experiments. Based on observed and predicted results, wrapping CNTs by PSS improved permeation flux and dye removal efficiency of MMMs. Validity of model was verified according to the good agreement between predicted and experimental results. Membrane mixed with 0.1 wt.% polymer wrapped MWCNTs offered the highest permeation flux as well as dye removal efficiency. According to the model response, in order to achieve a higher dye removal, an acidic pH and a moderate dye solution concentration are recommended. Additionally, basic solution pH (9.0) and a dilute dye solution are suggested to reach a higher permeation flux. PMID:26022851

  11. Comparative performance evaluation of Aspergillus lentulus for dye removal through bioaccumulation and biosorption.

    PubMed

    Kaushik, Prachi; Malik, Anushree

    2013-05-01

    Dyes used in various industries are discharged into the environment and pose major environmental concern. In the present study, fungal isolate Aspergillus lentulus was utilized for the treatment of various dyes, dye mixtures and dye containing effluent in dual modes, bioaccumulation (employing growing biomass) and biosorption (employing pre-cultivated biomass). The effect of dye toxicity on the growth of the fungal isolate was studied through phase contrast and scanning electron microscopy. Dye biosorption was studied using first and second-order kinetic models. Effects of factors influencing adsorption and isotherm studies were also conducted. During bioaccumulation, good removal was obtained for anionic dyes (100 mg/l), viz. Acid Navy Blue, Fast Red A and Orange-HF dye (99.4 %, 98.8 % and 98.7 %, respectively) in 48 h. Cationic dyes (10 mg/l), viz. Rhodamine B and Methylene Blue, had low removal efficiency (80.3 % [48 h] and 92.7 % [144 h], respectively) as compared to anionic dyes. In addition to this, fungal isolate showed toxicity response towards Methylene Blue by producing larger aggregates of fungal pellets. To overcome the limitations of bioaccumulation, dye removal in biosorption mode was studied. In this mode, significant removal was observed for anionic (96.7-94.3 %) and cationic (35.4-90.9 %) dyes in 24 h. The removal of three anionic dyes and Rhodamine B followed first-order kinetic model whereas removal of Methylene Blue followed second-order kinetic model. Overall, fungal isolate could remove more than 90 % dye from different dye mixtures in bioaccumulation mode and more than 70 % dye in biosorption mode. Moreover, significant color removal from handmade paper unit effluent in bioaccumulation mode (86.4 %) as well as in biosorption mode (77.1 %) was obtained within 24 h. This study validates the potential of fungal isolate, A. lentulus, to be used as the primary organism for treating dye containing wastewater. PMID:22996821

  12. Low-cost adsorbents from bio-waste for the removal of dyes from aqueous solution.

    PubMed

    Manoj Kumar Reddy, P; Mahammadunnisa, Sk; Ramaraju, B; Sreedhar, B; Subrahmanyam, Ch

    2013-06-01

    Activated carbons (ACs) were developed from bio-waste materials like rice husk and peanut shell (PS) by various physicochemical activation methods. PS char digested in nitric acid followed by treatment at 673 K resulted in high surface area up to ?585 m(2)/g. The novelty of the present study is the identification of oxygen functional groups formed on the surface of activated carbons by infrared and X-ray photoelectron spectroscopy and quantification by using temperature programmed decomposition (TPD). Typical TPD data indicated that each activation method may lead to varying amounts of acidic and basic functional groups on the surface of the adsorbent, which may be a crucial factor in determining the adsorption capacity. It was shown that ACs developed during the present study are good adsorbents, especially for the removal of a model textile dye methylene blue (MB) from aqueous solution. As MB is a basic dye, H(2)O(2)-treated rice husk showed the best adsorption capacity, which is in agreement with the acidic groups present on the surface. Removal of the dye followed Langmuir isotherm model, whereas MB adsorption on ACs followed pseudo-second-order kinetics. PMID:23233187

  13. Biodegradable hollow zein nanoparticles for removal of reactive dyes from wastewater.

    PubMed

    Xu, Helan; Zhang, Yue; Jiang, Qiuran; Reddy, Narendra; Yang, Yiqi

    2013-08-15

    In this study, biodegradable hollow zein nanoparticles with diameters less than 100 nm were developed to remove reactive dyes from simulated post-dyeing wastewater with remarkably high efficiency. Reactive dyes are widely used to color cellulosic materials, such as cotton and rayon. Wastewater from reactive dyeing process contains up to 50% dye and electrolytes with concentrations up to 100 g L(-1). Current methods to remove reactive dyes from wastewater are suffering from low adsorption capacities or low biodegradability of the sorbents. In this research, biodegradable zein nanoparticles showed high adsorption capacities for dyes. Hollow zein nanoparticles showed higher adsorption for Reactive Blue 19 than solid structures, and the adsorption amount increased as temperature decreased, pH decreased or initial dye concentration increased. At pH 6.5 and pH 9.0, increasing electrolyte concentration could improve dye adsorption significantly. Under simulated post-dyeing condition with 50.0 g L(-1) salt and pH 9.0, maximum adsorption of 1016.0 mg dye per gram zein nanoparticles could be obtained. The adsorption capacity was much higher than that of various biodegradable adsorbents developed to remove reactive dye. It is suggested that the hollow zein nanoparticles are good candidates to remove reactive dye immediately after dyeing process. PMID:23643969

  14. Effective removal of cationic dyes using carboxylate-functionalized cellulose nanocrystals.

    PubMed

    Qiao, Han; Zhou, Yanmei; Yu, Fang; Wang, Enze; Min, Yinghao; Huang, Qi; Pang, Lanfang; Ma, Tongsen

    2015-12-01

    A novel carboxylate-functionalized adsorbent (CNM) based on cellulose nanocrystals (CNCs) was prepared and adsorptive removal of multiple cationic dyes (crystal violet, methylene blue, malachite green and basic fuchsin) were investigated. The maximum cationic dyes uptakes ranged from 30.0 to 348.9mgg(-1) following the order of: CNM>CNCs>raw cellulose. Furthermore, the removal of crystal violet by CNM was investigated representatively where kinetics, thermodynamics and isotherm analysis were employed to explain in-depth information associated with the adsorption process. The adsorption kinetics fitted well to the pseudo-second-order model and thermodynamic analysis revealed that the adsorption process was spontaneous and exothermic. Meanwhile, isothermal study demonstrated a monolayer adsorption behavior following the Langmuir model with a calculated maximum absorption capacity of 243.9mgg(-1), which is higher than those of many other reported adsorbents. These findings prefigure the promising potentials of CNM as a versatile adsorbent for the efficient removal of cationic dyes from wastewater. PMID:26298027

  15. Biosorption of cationic basic dye and cadmium by the novel biosorbent Bacillus catenulatus JB-022 strain.

    PubMed

    Kim, Su Young; Jin, Mi Ra; Chung, Chang Ho; Yun, Yeoung-Sang; Jahng, Kwang Yeop; Yu, Kang-Yeol

    2015-04-01

    Biosorption of heavy metals and dyes is a promising technology that involves the removal of toxic metals from industrial wastes. The present study aims to screen the bacterial strains isolated from soils and polluted pond for their potential biosorption of both cationic dye and cadmium. Bacillus catenulatus JB-022 strain removed 58% and 66% of cationic basic blue 3 (BB3) and cadmium (Cd(II)) at the respective concentrations of 2000 mg/L and 150 mg/L. The biosorption equilibrium data were well fitted by the Langmuir adsorption isotherm, and the kinetic studies indicated that the biosorption followed the pseudo-second-order model. The biosorption kinetics showed that the equilibrium was reached within 10 min and 5 min for BB3 and Cd(II), respectively. According to the Langmuir model, the maximum uptakes of BB3 and Cd(II) by the JB-022 biomass were estimated to be 139.74 and 64.28 mg/g, respectively. To confirm the surface morphology and functional groups, field emission scanning electron microscope, energy-dispersive X-ray spectrometer, X-ray diffraction, and Fourier transform infrared spectroscopy analyses were carried out, and the results revealed that the biomass of JB-022 has carboxyl and phosphonate groups as potential surface functional groups capable of binding to cationic pollutants. In conclusion, B. catenulatus JB-022 is proposed as an excellent biosorbent with potentially important applications in removal of cationic pollutants from wastewaters. PMID:25454694

  16. Kinetic modeling of the adsorption of basic dyes onto steam-activated bituminous coal

    SciTech Connect

    El Qada, E.N.; Allen, S.J.; Walker, G.M.

    2007-07-15

    The principal aim of this work is to investigate the mechanism of basic dye (methylene blue (MB) and basic red (BR)) adsorption onto activated carbons produced from steam-activated bituminous coal. The rate of adsorption onto various activated carbons, produced in small laboratory-scale and pilot-industrial-scale processes, was investigated under a variety of conditions. The kinetic data from these investigations were correlated to a number of adsorption models in an attempt to elucidate the mechanism of the adsorption processes. The adsorption mechanism was found to follow pseudo-second-order and intraparticle-diffusion models, with external mass transfer predominating in the first 5 min of the experiment. Filtrasorb 400 (Chemviron Carbon) exhibited the highest adsorption rate for the removal of basic dyes followed by activated carbons produced by our research group: PAC1 (activated carbon produced from Venezuelan bituminous coal in small laboratory scale using physical activation technique) and PAC2 (activated carbon produced by the steam activation of New Zealand bituminous coal on a pilot-industrial scale).

  17. Electrochemical removal of synthetic textile dyes from aqueous solutions using Ti/Pt anode: role of dye structure.

    PubMed

    Araújo, Cynthia K C; Oliveira, Gustavo R; Fernandes, Nedja S; Zanta, Carmem L P S; Castro, Suely Souza Leal; da Silva, Djalma R; Martínez-Huitle, Carlos A

    2014-01-01

    In this work, the efficiency of electrochemical oxidation (EO) was investigated for removing a dye mixture containing Novacron Yellow (NY) and Remazol Red (RR) in aqueous solutions using platinum supported on titanium (Ti/Pt) as anode. Different current densities (20, 40 and 60 mA cm(-2)) and temperatures (25, 40 and 60 °C) were studied during electrochemical treatment. After that, the EO of each of these dyes was separately investigated. The EO of each of these dyes was performed, varying only the current density and keeping the same temperature (25 °C). The elimination of colour was monitored by UV-visible spectroscopy, and the degradation of organic compounds was analysed by means of chemical oxygen demand (COD). Data obtained from the analysis of the dye mixture showed that the EO process was effective in colour removal, in which more than 90% was removed. In the case of COD removal, the application of a current density greater than 40 mA cm(-2) favoured the oxygen evolution reaction, and no complete oxidation was achieved. Regarding the analysis of individual anodic oxidation dyes, it was appreciated that the data for the NY were very close to the results obtained for the oxidation of the dye mixture while the RR dye achieved higher colour removal but lower COD elimination. These results suggest that the oxidation efficiency is dependent on the nature of the organic molecule, and it was confirmed by the intermediates identified. PMID:24801286

  18. AUTOMATIC EXCHANGE RESIN PILOT PLANT FOR REMOVAL OF TEXTILE DYE WASTES

    EPA Science Inventory

    The report gives results of an investigation of the use of adsorption resins to remove colored dyes from textile dyeing wastewaters, using an automated benchscale pilot unit. This could make possible the reuse of the treated wastewaters in subsequent dyeing operations. The scale ...

  19. Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration

    PubMed Central

    2012-01-01

    Currently, biological method has been utilized in the treatment of wastewater -containing synthetic dyes used by textile industries in Iraq. The present work was devoted to study the operating feasibility using reverse osmosis (RO) and nanofiltration (NF) membrane systems as an alternative treatment method of wastewater discharged from Iraqi textile mills. Acid red, reactive black and reactive blue dyes were selected, based on the usage rate in Iraq. Effects of dye concentration, pH of solution, feed temperature, dissolved salts and operating pressure on permeate flux and dye rejection were studied. Results at operating conditions of dye concentration?=?65 mg/L, feed temperature?=?39°C and pressure?=?8 bar showed the final dye removal with RO membrane as 97.2%, 99.58% and 99.9% for acid red, reactive black and reactive blue dyes, respectively. With NF membrane, the final dye removal were as 93.77%, 95.67%, and 97% for red, black and blue dyes, respectively. The presence of salt (particularly NaCl) in the dye solution resulted in a higher color removal with a permeate flux decline. It was confirmed that pH of solution had a positive impact on dye removal while feed temperature showed a different image. A comparison was made between the results of dye removal in biological and membrane methods. The results showed that membrane method had higher removal potential with lower effective cost. The present study indicates that the use of NF membrane in dye removal from the effluent of Iraqi textile mills is promising. PMID:23369335

  20. Removal of organic dyes by magnetic alginate beads.

    PubMed

    Rocher, Vincent; Siaugue, Jean-Michel; Cabuil, Valérie; Bee, Agnès

    2008-02-01

    This study deals with the development of a clean and safe process for water pollution remediation. We have synthesized a magnetic adsorbent in order to develop a solid-phase extraction process assisted by a magnetic field. To follow an 'ecoconception' approach, magnetic beads containing magnetic nanoparticles and activated carbon are prepared with a biopolymer extracted from algae, sodium alginate. The use of renewable bioresources of low cost and those disposable in large amount allows the development of a product with a low impact on the environment. The adsorption properties of activated carbon and magnetic properties of iron oxide nanoparticles are combined to produce an interesting magnetic composite. Synthesis and characterization of the magnetic beads have been reported. Their adsorption capacity was investigated by measuring the removal of two dyes (methylene blue and methyl orange) of different charges from aqueous solutions. The efficiency of the beads has been compared with that of non-encapsulated activated carbon. The effects of initial dye concentration, pH and calcium content of the beads have been studied. Adsorption kinetics experiments have been carried out and the data have been well fitted by a pseudo-second-order equation. PMID:17980401

  1. Using protein nanofibrils to remove azo dyes from aqueous solution by the coagulation process.

    PubMed

    Morshedi, Dina; Mohammadi, Zeinab; Akbar Boojar, Masoud Mashhadi; Aliakbari, Farhang

    2013-12-01

    The ever-increasing applications of hazardous azo dyes as industrialized coloring agents have led to serious remediation challenges. In this study, proteinaceous nanofibrils were examined as coagulants for decolorization of azo dyes in aqueous solutions. The results provided some insight regarding the mechanism of dye removal. The strength of nanofibrils to remove dyes from solution was evaluated by remediation of acid red 88, Bismarck brown R, direct violet 51, reactive black 5, and Congo red. However, the efficiency of nanofibrils to coagulate with different dyes was variable (60-98%) and dependent on the structures of dyes and the physicochemical conditions of the solutions. Increasing the temperature or ionic strength declined the coagulation time and induced the rate of dye removal. Changing pH had contradictory effects on the dye removal efficiency which was more affected by the chemical structure of the dye rather than the change in stability of the coagulant. The efficiency of nanofibrils to remove dyes was more than that of charcoal, which is considered as one of the most common substances used for azo dye remediation which may be due to its well dispersion in the aqueous solutions, and slower rates of the coagulation than that of the adsorption process. Furthermore, cytotoxicity was not detected after treating cell cultures with the decolorized solutions. Accordingly, by integrating biological and biophysicochemical processes, proteinaceous nanofibrils can be promising candidates for treatment of colored wastewaters. Ease of production, proper and quick dispersion in water, without the production of dangerous dye by-products and derivatives, are some of the main advantages of nanofibrils. PMID:23999142

  2. Removal of dyes using agricultural waste as low-cost adsorbents: a review

    NASA Astrophysics Data System (ADS)

    Bharathi, K. S.; Ramesh, S. T.

    2013-12-01

    Color removal from wastewater has been a matter of concern, both in the aesthetic sense and health point of view. Color removal from textile effluents on a continuous industrial scale has been given much attention in the last few years, not only because of its potential toxicity, but also mainly due to its visibility problem. There have been various promising techniques for the removal of dyes from wastewater. However, the effectiveness of adsorption for dye removal from wastewater has made it an ideal alternative to other expensive treatment methods. In this review, an extensive list of sorbent literature has been compiled. The review evaluates different agricultural waste materials as low-cost adsorbents for the removal of dyes from wastewater. The review also outlines some of the fundamental principles of dye adsorption on to adsorbents.

  3. Quaternized magnetic microspheres for the efficient removal of reactive dyes.

    PubMed

    Shuang, Chendong; Li, Penghui; Li, Aimin; Zhou, Qing; Zhang, Mancheng; Zhou, Yang

    2012-09-15

    In this paper, a novel quaternized magnetic resin, NDMP, was prepared and characterized. Two reactive dyes (RDs), Orange G (OG) and red RWO, were used as a small-molecular RD and large-molecular RD, respectively, to investigate their adsorption on NDMP. A common quaternized magnetic resin, MIEX, was selected for comparison. The adsorption kinetics of OG onto both resins and the adsorption kinetics of RWO onto NDMP followed pseudo-second-order kinetics, whereas the adsorption of RWO onto MIEX was better fitted by pseudo-first-order kinetics. The experimental data illustrated that the equilibrium adsorption amount of both RDs onto NDMP (1.9 mmol OG/g, 0.70 mmol RWO/g) was twice as large as that on MIEX (1.0 mmol OG/g, 0.35 mmol RWO/g). The Langmuir equation and the Freundlich model fit the isotherm data for OG and RWO adsorption, respectively. The adsorption of OG on the NDMP and MIEX resins declined in the presence of NaCl or Na?SO?. The effects of the salts on the adsorption of RWO were different. The recyclability of NDMP and MIEX were also evaluated. This work provides a reusable efficient adsorbent for the removal of RDs. PMID:22726352

  4. Decolorization of acid and basic dyes: understanding the metabolic degradation and cell-induced adsorption/precipitation by Escherichia coli.

    PubMed

    Cerboneschi, Matteo; Corsi, Massimo; Bianchini, Roberto; Bonanni, Marco; Tegli, Stefania

    2015-10-01

    Escherichia coli strain DH5? was successfully employed in the decolorization of commercial anthraquinone and azo dyes, belonging to the general classes of acid or basic dyes. The bacteria showed an aptitude to survive at different pH values on any dye solution tested, and a rapid decolorization was obtained under aerobic conditions for the whole collection of dyes. A deep investigation about the mode of action of E. coli was carried out to demonstrate that dye decolorization mainly occurred via three different pathways, specifically bacterial induced precipitation, cell wall adsorption, and metabolism, whose weight was correlated with the chemical nature of the dye. In the case of basic azo dyes, an unexpected fast decolorization was observed after just 2-h postinoculation under aerobic conditions, suggesting that metabolism was the main mechanism involved in basic azo dye degradation, as unequivocally demonstrated by mass spectrometric analysis. The reductive cleavage of the azo group by E. coli on basic azo dyes was also further demonstrated by the inhibition of decolorization occurring when glucose was added to the dye solution. Moreover, no residual toxicity was found in the E. coli-treated basic azo dye solutions by performing Daphnia magna acute toxicity assays. The results of the present study demonstrated that E. coli can be simply exploited for its natural metabolic pathways, without applying any recombinant technology. The high versatility and adaptability of this bacterium could encourage its involvement in industrial bioremediation of textile and leather dyeing wastewaters. PMID:26062529

  5. Removal of dissolved textile dyes from wastewater by a compost sorbent

    USGS Publications Warehouse

    Tsui, L.S.; Roy, W.R.; Cole, M.A.

    2003-01-01

    The objective of this study was to evaluate the potential for treating dye-contaminated waste streams by sorption using compost as a low-cost sorbent. A mature, thermophilic compost sample was used to sorb CI Acid Black 24, CI Acid Orange 74, CI Basic Blue 9, CI Basic Green 4, CI Direct Blue 71, CI Direct Orange 39, CI Reactive Orange 16 and CI Reactive Red 2 from solution using a batch-sorption method. With the exception of the two reactive dyes, the sorption kinetics were favourable for a continuous-flow treatment process with the compost-dye mixtures reaching a steady state within 3-5 h. Based on limited comparisons, the affinity of the compost for each dye appeared to be competitive with other non-activated carbon sorbents. The results suggest that additional research on using compost as a sorbent for dye-contaminated solutions is warranted.

  6. REMOVAL OF AZO DYES BY THE ACTIVATED SLUDGE PROCESS

    EPA Science Inventory

    The Water Engineering Research Laboratory, Office of Research & Development, U.S. Environmental Protection Agency (EPA) is conducting research designed to develop techniques for predicting the fate of azo dyes in typical wastewater treatment systems which are treating wastewater ...

  7. A new integrated approach for dye removal from wastewater by polyoxometalates functionalized membranes.

    PubMed

    Yao, Lei; Zhang, Lizhi; Wang, Rong; Chou, Shuren; Dong, ZhiLi

    2016-01-15

    Membrane technique is a promising way for the removal of dyes from wastewater. A unique approach combining both the adsorptive and the catalytic membrane processes was proposed on the basis of a new functionalized membrane. The membrane integrating both the adsorptive and catalytic activities was developed by introducing polyoxometalates (POMs) as an ideal candidate for the membrane functionalization via a novel sol-gel method. A two-step protocol, adsorptive separation and catalytic degradation, was designed for dye removal, realizing an excellent dye rejection with easy and economic membrane regeneration through simply soaking the membrane in a limited volume of dilute oxidant solution. This approach is feasible and versatile owing to the flexible selection of distinct POMs and design of catalytic degradation routes as required. As a result, the current research provides insight into a new methodology of the membrane technique in dye removal applications. PMID:26410275

  8. Magnetic Pycnoporus sanguineus-loaded alginate composite beads for removing dye from aqueous solutions.

    PubMed

    Yang, Chih-Hui; Shih, Ming-Cheng; Chiu, Han-Chen; Huang, Keng-Shiang

    2014-01-01

    Dye pollution in wastewater is a severe environmental problem because treating water containing dyes using conventional physical, chemical, and biological treatments is difficult. A conventional process is used to adsorb dyes and filter wastewater. Magnetic filtration is an emerging technology. In this study, magnetic Pycnoporus sanguineus-loaded alginate composite beads were employed to remove a dye solution. A white rot fungus, P. sanguineus, immobilized in alginate beads were used as a biosorbent to remove the dye solution. An alginate polymer could protect P. sanguineus in acidic environments. Superparamagnetic nanomaterials, iron oxide nanoparticles, were combined with alginate gels to form magnetic alginate composites. The magnetic guidability of alginate composites and biocompatibility of iron oxide nanoparticles facilitated the magnetic filtration and separation processes. The fungus cells were immobilized in loaded alginate composites to study the influence of the initial dye concentration and pH on the biosorption capacity. The composite beads could be removed easily post-adsorption by using a magnetic filtration process. When the amount of composite beads was varied, the results of kinetic studies of malachite green adsorption by immobilized cells of P. sanguineus fitted well with the pseudo-second-order model. The results indicated that the magnetic composite beads effectively adsorbed the dye solution from wastewater and were environmentally friendly. PMID:24945580

  9. Organic dyes removal using magnetically modified rye straw

    NASA Astrophysics Data System (ADS)

    Baldikova, Eva; Safarikova, Mirka; Safarik, Ivo

    2015-04-01

    Rye straw, a very low-cost material, was employed as a biosorbent for two organic water-soluble dyes belonging to different dye classes, namely acridine orange (acridine group) and methyl green (triarylmethane group). The adsorption properties were tested for native and citric acid-NaOH modified rye straw, both in nonmagnetic and magnetic versions. The adsorption equilibrium was reached in 2 h and the adsorption isotherms data were analyzed using the Langmuir model. The highest values of maximum adsorption capacities were 208.3 mg/g for acridine orange and 384.6 mg/g for methyl green.

  10. Carbonaceous material production from vegetable residue and their use in the removal of textile dyes present in wastewater

    NASA Astrophysics Data System (ADS)

    Peláez-Cid, A. A.; Tlalpa-Galán, M. A.; Herrera-González, A. M.

    2013-06-01

    This paper presents the adsorption results of acid, basic, direct, vat, and reactive-type dyes on carbonaceous adsorbent materials prepared starting off vegetable residue such as Opuntia ficus indica and Casimiroa edulis fruit wastes. The adsorbents prepared from Opuntia ficus indica waste were designated: TunaAsh, CarTunaT, and CarTunaQ. The materials obtained from Casimiroa edulis waste were named: CenZAP, CarZAPT, and CarZAPQ. TunaAsh and CenZAP consist of ashes obtained at 550 °C CarTunaT and CarZAPT consist of the materials carbonized at 400 °C lastly, CarTunaQ and CarZAPQ consist of chemically activated carbons using H3PO4 at 400 °C. Only the chemically activated materials were washed with distilled water until a neutral pH was obtained after their carbonization. All materials were ground and sieved to obtain a particle size ranging from 0.25 to 0.84 mm. The static adsorption results showed that both ashes and chemically activated carbon are more efficient at dye removal for both vegetable residues. For TunaAsh and CarTunaQ, removal rates of up to 100% in the cases of basic, acid, and direct dyes were achieved. Regarding wastewater containing reactive dyes, the efficiency ranged from 60 to 100%. For vat effluents, it ranged from 42 to 52%. In the case of CenZAP and CarZAPQ, it was possible to treat reactive effluents with rates ranging between 63 and 91%. Regarding vat effluents, it ranged from 57 to 68%. The process of characterization for all materials was done using scanning electron microscopy and infrared spectroscopy.

  11. Thermoresponsive cellulose ether and its flocculation behavior for organic dye removal.

    PubMed

    Tian, Ye; Ju, Benzhi; Zhang, Shufen; Hou, Linan

    2016-01-20

    A thermoresponsive polymer, 2-hydroxy-3-butoxypropyl hydroxyethyl cellulose (HBPEC), was prepared by grafting butyl glycidyl ether (BGE) onto hydroxyethyl cellulose (HEC). The lower critical solution temperature (LCST) and critical flocculation temperature (CFT) of HBPEC were varied by changing the molar substitution (MS) and salt concentrations. Transmission electron microscopy (TEM) images and fluorescence spectroscopy showed that HBPEC can assemble into micelles. Additionally, using Nile Red as a model dye, the performance of HBPEC for the removing Nile Red from aqueous solutions via cloud point extraction procedures was investigated in detail. The encapsulation behavior of dye in the aqueous solution of HBPEC was studied by fluorescence spectroscopy and fluorescence microscope. The experimental results indicated that 99.4% of dye was removed from the aqueous solutions, and the HBPEC was recycled and reused easily, Furthermore, the recycle efficiency (RE) and maximum loading capacity portrayed little loss with the number of cycles. PMID:26572464

  12. Geopolymeric adsorbents from fly ash for dye removal from aqueous solution.

    PubMed

    Li, Lin; Wang, Shaobin; Zhu, Zhonghua

    2006-08-01

    Adsorbents from coal fly ash treated by a solid-state fusion method using NaOH were prepared. It was found that amorphous aluminosilicate geopolymers would be formed. These fly ash-derived inorganic polymers were assessed as potential adsorbents for removal of some basic dyes, methylene blue and crystal violet, from aqueous solution. It was found that the adsorption capacity of the synthesised adsorbents depends on the preparation conditions such as NaOH:fly-ash ratio and fusion temperature with the optimal conditions being at 1.2:1 weight ratio of Na:fly-ash at 250-350 degrees C. The synthesised materials exhibit much higher adsorption capacity than fly ash itself and natural zeolite. The adsorption isotherm can be fitted by Langmuir and Freundlich models while the two-site Langmuir model producing the best results. It was also found that the fly ash derived geopolymeric adsorbents show higher adsorption capacity for crystal violet than methylene blue and the adsorption temperature influences the adsorption capacity. Kinetic studies show that the adsorption process follows the pseudo second-order kinetics. PMID:16626729

  13. Geopolymeric adsorbents from fly ash for dye removal from aqueous solution

    SciTech Connect

    Li, L.; Wang, S.B.; Zhu, Z.H.

    2006-08-01

    Adsorbents from coal fly ash treated by a solid-state fusion method using NaOH were prepared. It was found that amorphous aluminosilicate, geopolymers would be formed. These fly ash-derived inorganic polymers were assessed as potential adsorbents for removal of some basic dyes, methylene blue and crystal violet, from aqueous solution. It was found that the adsorption capacity of the synthesised adsorbents depends on the preparation conditions such as NaOH:fly-ash ratio and fusion temperature with the optimal conditions being at 1.2:1 weight ratio of Na:fly-ash at 250-350{sup o}C. The synthesised materials exhibit much higher adsorption capacity than fly ash itself and natural zeolite. The adsorption isotherm can be fitted by Langmuir and Freundlich models while the two-site Langmuir model produced the best results. It was also found that the fly ash derived geopolymeric adsorbents show higher adsorption capacity for crystal violet than methylene blue and the adsorption temperature influences the adsorption capacity. Kinetic studies show that the adsorption process follows the pseudo second-order kinetics.

  14. Modified durian seed as adsorbent for the removal of methyl red dye from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Ahmad, Mohd Azmier; Ahmad, Norhidayah; Bello, Olugbenga Solomon

    2015-12-01

    Mesoporous-activated carbon from durian seed (DSAC) was prepared; it was used as adsorbent for the removal of methyl red (MR) dye from aqueous solution. Textural and adsorptive characteristics of activated carbon prepared from raw durian seed (DS), char durian seed (char DS) and activated durian seed (DSAC) were studied using scanning electron microscopy, Fourier transform infra red spectroscopy, proximate analysis and adsorption of nitrogen techniques, respectively. Acidic condition favors the adsorption of MR dye molecule by electrostatic attraction. The maximum dye removal was 92.52 % at pH 6. Experimental data were analyzed by eight model equations: Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Radke-Prausnitz, Sips, Vieth-Sladek and Brouers-Sotolongo isotherms and it was found that the Freundlich isotherm model fitted the adsorption data most. Adsorption rate constants were determined using pseudo-first-order, pseudo-second-order, Elovich, intraparticle diffusion and Avrami kinetic model equations. The results clearly showed that the adsorption of MR dye onto DSAC followed pseudo-second-order kinetic model. Both intraparticle and film diffusion were involved in the adsorption process. The mean energy of adsorption calculated from D-R isotherm confirmed the involvement of physical adsorption. Thermodynamic parameters were obtained and it was found that the adsorption of MR dye onto DSAC was an endothermic and spontaneous process at the temperatures under investigation.

  15. Nanotubular Halloysite Clay as Efficient Water Filtration System for Removal of Cationic and Anionic Dyes

    NASA Astrophysics Data System (ADS)

    Zhao, Yafei; Abdullayev, Elshad; Lvov, Yuri

    2014-08-01

    Halloysite nanotubes, chemically similar to kaolinite, are formed by rolling of kaolinite layers in tubes with diameter of 50 nm and length of ca. 1 ?m. Halloysite has negative SiO2 outermost and positive Al2O3 inner lumen surface, which enables it to be used as potential absorbent for both cationic and anionic dyes due to the efficient bivalent adsorbancy. An adsorption study using cationic Rhodamine 6G and anionic Chrome azurol S has shown approximately two times better dye removal for halloysite as compared to kaolinite. Halloysite filters have been effectively regenerated up to 50 times by burning the adsorbed dyes. Overall removal efficiency of anionic Chrome azurol S exceeded 99.9% for 5th regeneration cycle of halloysite. Chrome azurol S adsorption capacity decreases with the increase of ionic strength, temperature and pH. For cationic Rhodamine 6G, higher ionic strength, temperature and initial solution concentration were favorable to enhanced adsorption with optimal pH 8. These results indicate a potential to utilize halloysite for the removal of ionic dyes from environmental waters.

  16. Biological removal of triphenylmethane dyes from aqueous solution by Lemna minor.

    PubMed

    Török, Anamaria; Buta, Erzsébet; Indolean, Cerasella; Tonk, Szende; Silaghi-Dumitrescu, Luminita; Majdik, Cornelia

    2015-01-01

    The aim of this study is to investigate and develop a phytoremediation method for the removal of two triphenylmethane dyes (crystal violet and malachite green) using an aquatic plant, Lemna minor. The effects of operational parameters such as aquatic plant quantity, initial dye concentration, initial pH of the solutions and temperature of the medium were studied in order to determine the optimum phytoremediation conditions. The plant's photosynthetic pigments were determined quantitatively in order to detect the plant's response to abiotic stress. During the phytoremediation experiments the parallel sub-processes (phytosorption, phytoextraction, phytodegradation) were observed and analysed. The mechanisms of phytoremediation were studied using Fourier transformation infrared spectroscopy, ultraviolet-visible spectroscopy, thin layer chromatography and Energy-dispersive X-ray spectroscopy. Results show that the plant tolerated high concentrations (300 mg/L) of dyes, and was able to remove from the environment and accumulate in its cells the dyes up to a significant percentage (crystal violet was removed by about 80% and malachite green by 90%). PMID:26085430

  17. COD and color removal of reactive orange 16 dye solution by electrochemical oxidation and adsorption method

    NASA Astrophysics Data System (ADS)

    Zakaria, Zuhailie; Ahmad, Wan Yaacob Wan; Yusop, Muhammad Rahimi; Othman, Mohamed Rozali

    2015-09-01

    Degradation of Reactive Orange 16 (RO16) dye was investigated using electrochemical oxidation and adsorption (batch method) using mixture of coconut trunk charcoal-graphite-tin-polyvinyl chloride(PVC). In batch studies for adsorbents pellet and powder form of the charcoal mixture were used. RO16 was chosen as the model dye because of its high resistance towards conventional treatment methods. NaCl and RO16 concentration, treatment duration, weight of electrode and adsorbent and volume of solution were kept constant for both methods. The effectiveness of the treatments were compared and evaluated by percentage of RO16 decolorization and chemical oxygen demand (COD) removal and results indicated that electrochemical oxidation method ables to decolorized RO16 dye up to 98.5% after 20 minutes electrolysis time while pellet and powder in batch method only removed 17.1 and 33.6% of RO16 color respectively. However, only 45.6% of COD can be removed using electrochemical oxidation method while pellet and powder in batch method removed 47.8 and 49.6% of COD respectively. The decolorization and COD removal of RO16 was determined using UV-Vis spectrophotometer (by the changes of absorption spectrum intensity of azo chromophore (-N=N-) at ?=388 and 492.50 nm and Hach spectrophotometer respectively. FTIR was used to determine functional groups present in the coconut trunk charcoal.

  18. Removal of methylene blue from dye effluent using ageratum conyzoide leaf powder (ACLP)

    NASA Astrophysics Data System (ADS)

    Ezechi, Ezerie Henry; Kutty, Shamsul Rahman bin Mohamed; Malakahmad, Amirhossein; Isa, Mohamed Hasnain; Aminu, Nasiru; Salihi, Ibrahim Umar

    2015-07-01

    Methylene blue (MB), a common environmental pollutant discharged from dye effluents were removed from synthetic effluents in this study using ageratum conyzoide leaf powder. Effects of operating parameters such as pH, initial Methylene blue concentration, adsorbent weight and contact time were examined on methylene blue removal whereas stirring speed was constant at 100 rpm. Results show that low pH (3-4) had more Methylene blue removal than high pH. Methylene blue removal decreased when initial concentration was increased but increased when adsorbent weight was increased. Removal of Methylene blue by Ageratum conyzoide leaf powder was rapid and significantly above 80% in all initial concentrations examined. At optimum conditions of pH 3, 20 minutes contact time and adsorbent weight of 60 mg for Methylene blue initial concentration of 20 mg/L, 40 mg/L and 60 mg/L, Methylene blue removal of 84.7%, 83.9% and 81.2% were obtained respectively. Results suggest that Ageratum conyzoide leaf powder could be potential adsorbents for Methylene blue removal from dye effluents.

  19. Assessment of the banana pseudostem as a low-cost biosorbent for the removal of reactive blue 5G dye.

    PubMed

    Módenes, Aparecido N; Espinoza-Quiñones, Fernando R; Geraldi, Claudinéia A Q; Manenti, Diego R; Trigueros, Daniela E G; Oliveira, Ana Paula de; Borba, Carlos E; Kroumov, Alexander D

    2015-11-01

    In this work, the removal of reactive blue 5G (RB5G) dye using the drying biomass of banana pseudostem (BPS) was investigated. The characterization of BPS particles was performed. Improvement in the RB5G dye removal performance at the following sorption conditions was evidenced: pH 1, 30°C sorption temperature and 40 rpm shaking, regardless of the particle size range. Kinetic RB5G dye sorption data obtained at better conditions fit well in an Elovich model. A combined Langmuir-BET isotherm model provides a good representation of the RB5G dye equilibrium sorption data, which shows the evidence of a physical sorption process on the BPS surface. Based on the results, the removal of RB5G dye molecules by BPS is based on a physical sorption process. PMID:26013058

  20. Facile and Scalable Preparation of Graphene Oxide-Based Magnetic Hybrids for Fast and Highly Efficient Removal of Organic Dyes

    E-print Network

    Jiao, Tifeng

    This study reports the facile preparation and the dye removal efficiency of nanohybrids composed of graphene oxide (GO) and Fe[subscript 3]O[subscript 4] nanoparticles with various geometrical structures. In comparison to ...

  1. Kinetics of adsorption of sulphonated azo dyes on strong basic anion exchangers.

    PubMed

    Wawrzkiewicz, Monika; Hubicki, Zbigniew

    2009-09-01

    The macroporous polystyrene anion exchangers Amberlite IRA-900 and Amberlite IRA-910 were used in order to remove sulphonated azo dyes (Allura Red and Sunset Yellow) from aqueous solutions of 100-500 mg/L concentrations. The experimental data obtained at 100, 200, 300 and 500 mg/L initial concentrations at 20 degrees C were applied to the pseudo-first-order, pseudo-second-order and Weber-Morris kinetic models. The calculated sorption capacities (qe,cal) and the rate constant of the first-order adsorption (k1) were determined. The pseudo-second-order kinetic constants (k2) and capacities were calculated from the plots of t/qt vs t, 1/qt vs 1/t, 1/t vs 1/qt, qt/t vs qt and 1/qe-qt vs t for type 1, type 2, type 3, type 4 and type 5 of the pseudo-second-order expression, respectively. The influence of phase contact time, initial dye concentration, solution pH and temperature on Allura Red and Sunset Yellow removal was also discussed. PMID:19886431

  2. Modeling and optimization of the flocculation processes for removal of cationic and anionic dyes from water by an amphoteric grafting chitosan-based flocculant using response surface methodology.

    PubMed

    Wu, Hu; Yang, Ran; Li, Ruihua; Long, Chao; Yang, Hu; Li, Aimin

    2015-09-01

    In this study, an amphoteric grafting chitosan-based flocculant (carboxymethyl chitosan-graft-poly(2-methacryloyloxyethyl) trimethyl ammonium chloride, denoted as CMC-g-PDMC) was applied to removal of the anionic and cationic dyes, acid Green 25 (AG25) and Basic Bright Yellow (7GL), from water. Flocculation conditions have been optimized by response surface methodology (RSM) on the basis of central composite design (CCD) using flocculant dosage, initial solution pH and temperature as input variables. The second-order and cubic regression models, which have been both tested by the analysis of variance (ANOVA), were constructed to link the output response (the dye removal factor) with the aforementioned input variables, respectively. The second-order regression model well described the process of AG25 removal, whereas the cubic one is more suitable for that of 7GL. The effects of those variables on the flocculation performance of CMC-g-PDMC for removal of the two dyes containing opposite charges from aqueous solutions have been studied, and the flocculation mechanisms including the interactive effects between various influencing factors have been discussed in detail also. PMID:25921759

  3. Optimization of process variables by response surface methodology for malachite green dye removal using lime peel activated carbon

    NASA Astrophysics Data System (ADS)

    Ahmad, Mohd Azmier; Afandi, Nur Syahidah; Bello, Olugbenga Solomon

    2015-04-01

    This study investigates the adsorptive removal of malachite green (MG) dye from aqueous solutions using chemically modified lime-peel-based activated carbon (LPAC). The adsorbent prepared was characterized using FTIR, SEM, Proximate analysis and BET techniques, respectively. Central composite design (CCD) in response surface methodology (RSM) was used to optimize the adsorption process. The effects of three variables: activation temperature, activation time and chemical impregnation ratio (IR) using KOH and their effects on percentage of dye removal and LPAC yield were investigated. Based on CCD design, quadratic models and two factor interactions (2FI) were developed correlating the adsorption variables to the two responses. Analysis of variance (ANOVA) was used to judge the adequacy of the model. The optimum conditions of MG dye removal using LPAC are: activation temperature (796 °C), activation time (1.0 h) and impregnation ratio (2.6), respectively. The percentage of MG dye removal obtained was 94.68 % resulting in 17.88 % LPAC yield. The percentage of error between predicted and experimental results for the removal of MG dye is 0.4 %. Model prediction was in good agreement with experimental results and LPAC was found to be effective in removing MG dye from aqueous solution.

  4. Response surface optimization for efficient dye removal by isolated strain Pseudomonas sp.

    NASA Astrophysics Data System (ADS)

    Senthilkumar, Shanmugam; Perumalsamy, Muthiah; Prabhuy, Harinarayan; AhmedBasha, Chiya; Anantharaman, Narayan

    2012-09-01

    Response surface methodology (RSM) involving the central composite design (CCD) was employed to optimize three important process variables for the decolourization of synthetic dye solutions containing Remazol Turquoise Blue (RTB) and Reactive Black 5 (RB5) with isolated bacterial strain Pseudomonas sp. The interaction between three variables i.e. Initial concentration of dye, carbon source and nitrogen source were studied and modeled. According to the Analysis of variance (ANOVA) results the predicted results were found to be in good agreement with experimental results (R 2: 0.9726; Adj R 2: 0.9480 for RTB and R 2: 0.9789; Adj R 2: 0.9750 for RB5) which indicated excellent evaluation of experimental data from the second order polynomial regression model. Mathematical models were developed by the proposed system, for each process variable showed the effect of each factor and their interactions on biodecolourization process. The optimum concentrations of Dye, Carbon source, and Nitrogen source were found to be 20 mgL-1, 1.5 g/L and 1.5 g/L, respectively for RTB and RB5 to obtain maximum dye removing capacity. Predicted values were validated with experimental results, which indicated appropriateness of the employed model and the success of RSM.

  5. Response surface optimization for efficient dye removal by isolated strain Pseudomonas sp.

    NASA Astrophysics Data System (ADS)

    Senthilkumar, Shanmugam; Perumalsamy, Muthiah; Prabhuy, Harinarayan Janardhana; AhmedBasha, Chiya; Anantharaman, Narayan

    2012-09-01

    Response surface methodology (RSM) involving the central composite design (CCD) was employed to optimize three important process variables for the decolourization of synthetic dye solutions containing Remazol Turquoise Blue (RTB) and Reactive Black 5 (RB5) with isolated bacterial strain Pseudomonas sp. The interaction between three variables i.e. Initial concentration of dye, carbon source and nitrogen source were studied and modeled. According to the Analysis of variance (ANOVA) results the predicted results were found to be in good agreement with experimental results ( R 2: 0.9726; Adj R 2: 0.9480 for RTB and R 2: 0.9789; Adj R 2: 0.9750 for RB5) which indicated excellent evaluation of experimental data from the second order polynomial regression model. Mathematical models were developed by the proposed system, for each process variable showed the effect of each factor and their interactions on biodecolourization process. The optimum concentrations of Dye, Carbon source, and Nitrogen source were found to be 20 mgL-1, 1.5 g/L and 1.5 g/L, respectively for RTB and RB5 to obtain maximum dye removing capacity. Predicted values were validated with experimental results, which indicated appropriateness of the employed model and the success of RSM.

  6. Potential of plant polyphenol oxidases in the decolorization and removal of textile and non-textile dyes.

    PubMed

    Khan, Amjad Ali; Husain, Qayyum

    2007-01-01

    In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation. PMID:17915700

  7. Textile dye removal from aqueous solutions by malt bagasse: Isotherm, kinetic and thermodynamic studies.

    PubMed

    Fontana, Klaiani B; Chaves, Eduardo S; Sanchez, Jefferson D S; Watanabe, Erica R L R; Pietrobelli, Juliana M T A; Lenzi, Giane G

    2016-02-01

    The biosorption of orange solimax TGL 182% (OS-TGL) textile dye onto new and low cost biossorbent (malt bagasse) in aqueous solutions was investigated. The malt bagasse was characterized by Fourier transform infrared spectroscopy and specific surface area (BET method).Batch biosorption experiments were conducted in order to determine the following parameters: particles size, pH, agitation speed, temperature, contact time, biomass dosage, influence of the ionic strength and, finally, the influence of other textile dye on the OS-TGL biosorption. The optimum conditions for OS-TGL removal were obtained at pH 1.5, agitation speed of 150rpm, contact time of 180min and biomass dosage 2, 8gL(-1). The results show that the kinetics of biosorption followed a pseudo-second-order model and by increasing the temperature from 293 up to 313K, the biosorption capacity was improved. The Langmuir model showed better fit and the estimated biosorption capacity was 23.2mgg(-1). The negative values of Gibbs free energy, ?G°, and positive value of enthalpy, ?H°, confirm the spontaneous nature and endothermic character of the biosorption process. The results of the ionic strength effect indicated that the biosorption process under study had a strong tolerance in high salt concentrations. The removal capacity (>95%) was not affected with the presence of other textile dyes. PMID:26590694

  8. Experimental and kinetic studies for phycoremediation and dye removal by Chlorella pyrenoidosa from textile wastewater.

    PubMed

    Pathak, Vinayak V; Kothari, Richa; Chopra, A K; Singh, D P

    2015-11-01

    Potential of Chlorella pyrenoidosa was experimentally investigated for phycoremediation and dye removal from textile wastewater (TWW) in batch cultures. Growth of alga was observed at various concentration of textile wastewater (25%, 50%, 75% and 100%) and was found in a range of 8.1-14 ?g ml(-1) day(-1). Growth study revealed that alga potentially grows up to 75% concentrated textile wastewater and reduces phosphate, nitrate and BOD by 87%, 82% and 63% respectively. Methylene blue dye (MB) removal was also observed by using dry and wet algal biomass harvested after phycoremediation. Adsorption isotherms (Langmuir and Freundlich) and kinetic models (pseudo first and second order) were applied on adsorption process. Dry algal biomass (DAB) was found more efficient biosorbent with large surface area and showed high binding affinity for MB dye in compare to wet algal biomass (WAB). The RL value for both biosorbent showed feasible adsorption process as the obtained value was between 0 and 1. Pseudo second order kinetic model with high degree of correlation coefficient and low sum of error squares (SSE %) value was found more suitable for representation of adsorption process in case of both biosorbents, however pseudo first order also showed high degree of correlation for both biosorbents. PMID:26349408

  9. Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment

    NASA Astrophysics Data System (ADS)

    Visa, Maria; Chelaru, Andreea-Maria

    2014-06-01

    Fly ash resulted from coal burning is a waste that can be used in wastewater treatment for removal of dyes and heavy metals by adsorption. Class “F” fly ash (FA), collected from the Central Heat and Power (CHP) Plant Brasov (Romania), with oxides composition SiO2/Al2O3 over 2.4 was used for obtaining a new substrate with good adsorption capacity for dyes and heavy metals from wastewater. A new material was obtained from modified fly ash with NaOH and hexadecyltrimethylammonium bromide (HTAB) a cationic surfactant. Contact time, optimum amount of substrate and the pH corresponding to 50 mL solution of pollutants were the parameters optimized for obtaining the maximum efficiency in the adsorption process. The optimized adsorption parameters were further used in thermodynamic and kinetic studies of the adsorption processes. The adsorption kinetic mechanisms, and the substrate capacities are further discussed correlated with the surface structure (XRD), composition (EDS, FTIR), and morphology (SEM, AFM). The results indicate that the novel nano-substrate composite with fly ash modified can be used as an efficient and low cost adsorbent for simultaneous removal of dyes and heavy metals, the resulted water respects the discharge regulations.

  10. Removal of reactive blue 19 dye by sono, photo and sonophotocatalytic oxidation using visible light.

    PubMed

    Khan, Muhammad Abdul Nasir; Siddique, Maria; Wahid, Fazli; Khan, Romana

    2015-09-01

    An efficient sonophotocatalytic degradation of reactive blue 19 (RB 19) dye was successfully carried out using sulfur-doped TiO2 (S-TiO2) nanoparticles. The effect of various treatment processes that is sonolysis, photolysis, catalysis, sonocatalysis, photocatalysis, and sonophotocatalysis were investigated for RB 19 removal. S-TiO2 were synthesized in 1, 3 and 5 wt.% of sulfur by sol-gel process and characterized by X-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive X-ray (SEM-EDX), UV-Visible diffuse reflectance spectra (DRS). The results confirm anatase phase of TiO2, porous agglomerate structure, and a red shift in the absorbance spectra of S-TiO2. The dye degradation was studied by using UV-Vis spectrophotometer at ? max=594 nm. The reaction parameters such as pH, catalyst dosage, initial dye concentration, ultrasonic power and effect of sulfur doping in different weight percent were studied to find out the optimum degradation conditions. Optimum conditions were found as: S-TiO2=5 wt.%, catalyst (S-TiO2 5 wt.%)=50mg, RB 19 solution concentration=20 mg L(-1), pH=3, ultrasound power=100 and operating temperature=25°C. The response of 5 wt.% S-TiO2 was found better than 1 and 3 wt.% S-TiO2 and other forms TiO2. The sonophotocatalysis process was superior to other methods. During this process the ultrasound cavitation and photocatalysis water splitting takes place which leads to the generation of OH. As reveled by the GCMS results the reactive blue 19 (20 mg L(-1)) was degraded to 90% within 120 min. The S-TiO2 sonophotocatalysis system was studied for the first time for dye degradation and was found practicable, efficient and cost effective for the degradation of complex and resistant dyes such as RB19. PMID:25899438

  11. Edge Removal in Random Contact Networks1 and the Basic Reproduction Number2

    E-print Network

    Illner, Reinhard

    Edge Removal in Random Contact Networks1 and the Basic Reproduction Number2 Dean Koch1 Reinhard Abstract6 Understanding the effect of edge removal on the basic reproduction7 number R0 for disease spread on contact networks is important for dis-8 ease management. The formula for the basic reproduction number R09

  12. Investigation of citric acid-glycerol based pH-sensitive biopolymeric hydrogels for dye removal applications: A green approach.

    PubMed

    Franklin, D S; Guhanathan, S

    2015-11-01

    Hydrogels are three dimensional polymeric structure with segments of hydrophilic groups. The special structure of hydrogels facilitates the diffusion of solutes into the interior network and possess numerous ionic and non-ionic functional groups, which can absorb or trap ionic dyes from waste water. The present investigation was devoted to the synthesis of a series of citric acid and glycerol based pH sensitive biopolymeric hydrogels using a solventless green approach via condensation polymerization in the presence of acidic medium. The formations of hydrogels were confirmed using various spectral investigations viz., FT-IR, (1)H and (13)C NMR. The thermal properties of various hydrogels have been studied using TGA, DTA and DSC analysis. The rationalized relationship was noticed with increasing of pH from 4.0 to 10.0. The surface morphologies of hydrogels were analyzed using SEM technique which was well supported from the results of swelling studies. Methylene blue has been selected as a cationic dye for its removal from various environmental sources using pH-sensitive biopolymeric hydrogels. The results of dye removal revealed that glycerol based biopolymeric hydrogels have shown an excellent dye removal capacity. Hence, the synthesized pH sensitive biopolymeric hydrogels have an adaptability with pH tuned properties might have greater potential opening in various environmental applications viz., metal ion removal, agrochemical release, purification of water, dye removal etc. PMID:25982408

  13. Green synthesis of copper nanoparticles for the efficient removal (degradation) of dye from aqueous phase.

    PubMed

    Sinha, Tanur; Ahmaruzzaman, M

    2015-12-01

    The present work reports the utilization of a common household waste material (fish scales of Labeo rohita) for the synthesis of copper nanoparticles. The method so developed was found to be green, environment-friendly, and economic. The fish scale extracts were acting as a stabilizing and reducing agents. This method avoids the use of external reducing and stabilizing agents, templates, and solvents. The compositional abundance of gelatin may be envisaged for the effective reductive as well as stabilizing potency. The mechanisms for the formation of nanoparticles have also been presented. The synthesized copper nanoparticles formed were predominantly spherical in nature with an average size of nanoparticles in the range of 25-37 nm. The copper nanoparticles showed characteristic Bragg's reflection planes of fcc which was supported by both selected area electron diffraction and X-ray diffraction pattern and showed surface plasmon resonance at 580 nm. Moreover, the energy dispersive spectroscopy pattern also revealed the presence of only elemental copper in the copper nanoparticles. The prepared nanoparticles were used for the remediation of a carcinogenic and noxious textile dye, Methylene blue, from aqueous solution. Approximately, 96 % degradation of Methylene blue dye was observed within 135 min using copper nanoparticles. The probable mechanism for the degradation of the dye has been presented, and the degraded intermediates have been identified using the liquid chromatography-mass spectroscopy technique. The high efficiency of nanoparticles as photocatalysts has opened a promising application for the removal of hazardous dye from industrial effluents contributing indirectly to environmental cleanup process. PMID:26300362

  14. Graphene oxide caged in cellulose microbeads for removal of malachite green dye from aqueous solution.

    PubMed

    Zhang, Xiaomei; Yu, Hongwen; Yang, Hongjun; Wan, Yuchun; Hu, Hong; Zhai, Zhuang; Qin, Jieming

    2015-01-01

    A simple sol-gel method using non-toxic and cost-effective precursors has been developed to prepare graphene oxide (GO)/cellulose bead (GOCB) composites for removal of dye pollutants. Taking advantage of the combined benefits of GO and cellulose, the prepared GOCB composites exhibit excellent removal efficiency towards malachite green (>96%) and can be reused for over 5 times through simple filtration method. The high-decontamination performance of the GOCB system is strongly dependent on encapsulation amount of GO, temperature and pH value. In addition, the adsorption behavior of this new adsorbent fits well with the Langmuir isotherm and pseudo-second-order kinetic model. PMID:25441361

  15. Removal of basic nitrogen compounds from hydrocarbon liquids

    DOEpatents

    Givens, Edwin N. (Bethlehem, PA); Hoover, David S. (New Tripoli, PA)

    1985-01-01

    A method is provided for reducing the concentration of basic nitrogen compounds in hydrocarbonaceous feedstock fluids used in the refining industry by providing a solid particulate carbonaceous adsorbent/fuel material such as coal having active basic nitrogen complexing sites on the surface thereof and the coal with a hydrocarbonaceous feedstock containing basic nitrogen compounds to facilitate attraction of the basic nitrogen compounds to the complexing sites and the formation of complexes thereof on the surface of the coal. The adsorbent coal material and the complexes formed thereon are from the feedstock fluid to provide a hydrocarbonaceous fluid of reduced basic nitrogen compound concentration. The coal can then be used as fuel for boilers and the like.

  16. Analysis of the Spectroscopic Aspects of Cationic Dye Basic Orange 21.

    PubMed

    Eizig, Zehavit; Major, Dan T; Kasdan, Harvey L; Afrimzon, Elena; Zurgil, Naomi; Sobolev, Maria; Deutsch, Mordechai

    2015-09-24

    Spectroscopic properties of cationic dye basic orange 21 (BO21) in solutions, in solids, and within leukocytes were examined. Results obtained with solutions indicate that influence of variables such as pH, viscosity, salt composition, and various proteins on the absorption spectrum of BO21 is negligible. However, in the presence of heparin, a blue shift (484-465 nm) is observed, which is attributed to the aggregation of BO21 on the polyanion. Applying density functional theory demonstrates that in aqueous solutions (a) the formation of BO21 oligomers is thermodynamically favorable, they are oriented in an antiparallel dipolar arrangement, and their binding energies are lower than those of parallel dipolar arrangements, (b) association between BO21 aggregates and heparin is highly favorable, and (c) the blue shift is due to the mixing of ? ? ?* transitions caused by BO21 molecule stacking. However, when embedded in basophils, the absorption spectra of intracellular BO21 is extremely red-shifted, with two peaks (at 505 and 550 nm) found to be attributed to BO21 and the BO21-heparin complex, respectively, which are intracellularly hosted in nonaqueous environments. Initial evidence of the ability to differentiate between leukocyte types by BO21 is presented. PMID:26295368

  17. Quince seed mucilage magnetic nanocomposites as novel bioadsorbents for efficient removal of cationic dyes from aqueous solutions.

    PubMed

    Hosseinzadeh, Hossein; Mohammadi, Sina

    2015-12-10

    This study investigated the potential use of quince seed mucilage (QSM) as alternative bioadsorbents for methylene blue (MB) dye from aqueous solutions. This novel magnetic nanocomposite adsorbent (MNCA) based on QSM was synthesized by in situ formation of magnetic iron oxide nanoparticles into QSM solution. The MNCAs were characterized using FTIR, SEM, TEM, XRD, and VSM. Removal of MB was investigated by batch adsorption technique. The thermodynamic parameters suggest that the dye adsorption process is spontaneous and exothermic in nature. Moreover, the adsorbents showed high selectivity for the adsorption of cationic dyes with regenerated properties. The pseudo-second-order kinetics and Langmuir adsorption isotherm models also provide the best correlation of the experimental data for MB adsorption. The results indicate that the MNCAs can be employed as efficient low cost adsorbents with excellent dye adsorption performance in wastewater treatment process. PMID:26428118

  18. Adsorptive removal of anionic dyes from aqueous solutions using microgel based on nanocellulose and polyvinylamine.

    PubMed

    Jin, Liqiang; Sun, Qiucun; Xu, Qinghua; Xu, Yongjian

    2015-12-01

    A novel nanocomposite microgel based on nanocellulose and amphoteric polyvinylamine (PVAm) was fabricated via a two-step method. Firstly, cellulose nanocrystal was oxidized by sodium periodate to yield dialdehyde nanocellulose (DANC). DANC was then used as a crosslinker to react with PVAm to obtain a pH responsive microgel with high density of free amine groups. The microgel was characterized using FTIR, XRD, AFM and elemental analysis. AFM images revealed that the nanocomposite was microspherical particles with a diameter ranging from 200 to 300nm. The microgel was found to be effective in anionic dye removal at acidic conditions. The adsorption isotherms for congo red 4BS, acid red GR and reactive light yellow K-4G fit well with the Sips model, and the maximum adsorption capacities were 869.1mgg(-1), 1469.7mgg(-1) and 1250.9mgg(-1), respectively. The adsorption for these three anionic dyes all followed pseudo second order kinetics, indicating a chemisorption nature. PMID:26344242

  19. Fish erythrocytes as biomarkers for the toxicity of sublethal doses of an azo dye, Basic Violet-1 (CI: 42535).

    TOXLINE Toxicology Bibliographic Information

    Kaur K; Kaur A

    2015-02-01

    The aim of the present study was to investigate poikilocytosis in Labeo rohita (an important food fish) as an early indicator of stress due to an azo dye, Basic Violet-1 (CI: 42535). This dye was observed to be very toxic to test fish (96 h LC50 as0.45 mg/L dye). Fish were given short-term (96 h) and subchronic (150 days) exposures to the dye, and poikilocytosis was recorded under light and scanning electron microscopy (SEM). Light microscopy helped in identification of micronuclei along with irregularities, notches, blebs, lobes, crenation, clumps, chains, spherocytes, vacuolation, and necrosis in erythrocytes. However, SEM indicated shrinkage, oozing of cytoplasm, and several new abnormal shapes including marginal foldings, discocytes, keratocytes, dacrocytes, degmacytes, acanthocytes, echinocytes, protuberances, stomatocytes, drepanocytes, holes in the membrane, stippling/spicules, crescent-shaped cells, triangular cells, and pentagonal cells. Earlier studies speculated changes in the membrane to be responsible for clumping and chaining of erythrocytes, whereas the present SEM study clearly indicates that oozing out of cytoplasm is also responsible for the formation of chains and clumps. This study also shows that erythrocytes exhibit pathological symptoms before the appearance of other external symptoms such as abnormal behavior or mortality of fish. There was a dose- and duration-dependent increase; therefore, poikilocytosis, especially echinocytes, spherocytes, and clumps, can act as a biomarker for the stress caused by azo dyes.

  20. Magnetic chitosan-graphene oxide composite for anti-microbial and dye removal applications.

    PubMed

    Jiang, Yan; Gong, Ji-Lai; Zeng, Guang-Ming; Ou, Xiao-Ming; Chang, Ying-Na; Deng, Can-Hui; Zhang, Jing; Liu, Hong-Yu; Huang, Shuang-Yan

    2016-01-01

    Magnetic chitosan-graphene oxide (MCGO) nanocomposite was prepared as a multi-functional nanomaterial for the applications of antibacterial and dye removal. The nanocomposite was characterized by scanning electronic microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FTIR). The antibacterial performance for MCGO against Escherichia coli was varied depending on the concentration of MCGO. SEM images of E. coli cells demonstrated that the antimicrobial performance of MCGO nanocomposite was possibly due to the damage of cell membrane. This work also explored MCGO's adsorption performance for methyl orange (MO). The experimental parameters including adsorbent mass, pH value, contact time and concentration of MO on the adsorption capacity were investigated. The maximum adsorption capacity of MCGO for MO was 398.08mg/g. This study showed that the MCGO offered enormous potential applications for water treatment. PMID:26582339

  1. A simple method for simultaneous determination of basic dyes encountered in food preparations by reversed-phase HPLC.

    PubMed

    Dixit, Sumita; Khanna, Subhash K; Das, Mukul

    2011-01-01

    The present method utilizes a simple pretreatment step, cleanup on polyamide SPE cartridges, and HPLC resolution on reversed-phase C18 for the detection of the three basic nonpermitted dyes encountered in food matrixes. Polyamide cartridges were chosen because both acidic and basic dyes can be cleaned up due to their amphoteric nature. Analysis was performed on a reversed-phase C18 micro-Bondapak column using the isocratic mixture of acetonitrile-sodium acetate with a flow rate of 1.5 mL/min and a programmable lambda(max) specific visible detection to monitor colors, achieving higher sensitivity and expanded scope to test multicolor blends. All the colors showed linearity with the regression coefficient, from 0.9983 to 0.9995. The LOD and LOQ ranged between 0.107 and 0.754 mg/L and 0.371 and 2.27 mg/L or mg/kg, respectively. The intraday and interday precision gave good RSDs, and percentage recoveries in different food matrixes ranged from 75 to 96.5%. The study demonstrates that the use of a combination of a simple SPE cleanup and HPLC resolution with UV-Vis end point detection was successful in screening the presence of these three basic nonpermitted dyes individually or in blend, in a variety of food matrixes. PMID:22320095

  2. Acrylic acid grafted cellulosic Luffa cylindrical fiber for the removal of dye and metal ions.

    PubMed

    Gupta, Vinod Kumar; Agarwal, Shilpi; Singh, Prerna; Pathania, Deepak

    2013-10-15

    Acrylic acid grafted cellulosic Luffa cylindrical fiber was utilized for the removal of methylene blue and metal ions from the water system using batch process. The grafted sample used was found to demonstrate a maximum grafting efficiency of 90.8% under concentrations of 0.432×10(-3) mol/L, temperature of 35 °C, time of 60 min and pH of 7.0 respectively. The remarkable improvement in thermal properties of the grafted sample was observed. The formation of new bands in FTIR spectra of grafted sample confirmed the grafting of acrylic acid onto the cellulosic fiber. The maximum adsorption capacity of dye onto adsorbent was observed to be 62.15 mg g(-1) at 175 min. A maximum removal of 45.8% was observed for Mg(2+) as compared to other metal ions. High values of correlation coefficient for methylene blue (0.995) and metal ions such as Mg(2+) (0.996), Ni(2+) (0.995), Zn(2+) (0.996) confirmed the applicability of Langmuir isotherm that assumed a monolayer coverage and uniform activity distribution on the adsorbent surface. PMID:23987466

  3. Surface modified magnetic nanoparticles as efficient and green sorbents: Synthesis, characterization, and application for the removal of anionic dye

    NASA Astrophysics Data System (ADS)

    Rajabi, Hamid Reza; Arjmand, Hooman; Hoseini, S. Jafar; Nasrabadi, Hasan

    2015-11-01

    The object of this study was to evaluate the removal efficiency of sunset yellow (SY) anionic dye from aqueous solutions by using new surface modified iron oxide magnetic nanoparticles (MNPs). Pure Fe3O4 MNPs were synthesized and then functionalized by aminopropyltriethoxysilane (APTES), through a chemical precipitation method. Characterization of the prepared MNP adsorbents was performed by furrier transform infrared (FT-IR), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and transmission electron microscopy (TEM). According to XRD and TEM results, average size of the magnetic Fe3O4/APTES NPs was estimated to be around 12 nm. The prepared magnetic adsorbent can be well dispersed in the water and easily separated magnetically from the medium after loaded with adsorbate. In the adsorption process, the effect of main experimental parameters such as pH of dye solution, initial concentration of SY dye, reaction time, and amount of MNP adsorbent on the removal of SY were studied and optimized. The small amount of this adsorbent (10 mg) is applicable for the removal of high concentrations of SY dye in reasonable time (17 min), at pH 3.1. Additionally, the adsorption studies show that the Langmuir model is a suitable model to explain the experimental data with high correlation coefficient.

  4. Efficient removal of malachite green dye using biodegradable graft copolymer derived from amylopectin and poly(acrylic acid).

    PubMed

    Sarkar, Amit Kumar; Pal, Aniruddha; Ghorai, Soumitra; Mandre, N R; Pal, Sagar

    2014-10-13

    This article reports on the application of a high performance biodegradable adsorbent based on amylopectin and poly(acrylic acid) (AP-g-PAA) for removal of toxic malachite green dye (MG) from aqueous solution. The graft copolymer has been synthesized and characterized using various techniques including FTIR, GPC, SEM and XRD analyses. Biodegradation study suggests that the co-polymer is biodegradable in nature. The adsorbent shows excellent potential (Qmax, 352.11 mg g(-1); 99.05% of MG has been removed within 30 min) for removal of MG from aqueous solution. It has been observed that point to zero charge (pzc) of graft copolymer plays significant role in adsorption efficacy. The adsorption kinetics and isotherm follow pseudo-second order and Langmuir isotherm models, respectively. Thermodynamics parameters suggest that the process of dye uptake is spontaneous. Finally desorption study shows excellent regeneration efficiency of adsorbent. PMID:25037335

  5. Effectiveness of Rice Agricultural Waste, Microbes and Wetland Plants in the Removal of Reactive Black-5 Azo Dye in Microcosm Constructed Wetlands.

    PubMed

    Saba, Beenish; Jabeen, Madeeha; Khalid, Azeem; Aziz, Irfan; Christy, Ann D

    2015-01-01

    Azo dyes are commonly generated as effluent pollutants by dye using industries, causing contamination of surface and ground water. Various strategies are employed to treat such wastewater; however, a multi-faceted treatment strategy could be more effective for complete removal of azo dyes from industrial effluent than any single treatment. In the present study, rice husk material was used as a substratum in two constructed wetlands (CWs) and augmented with microorganisms in the presence of wetland plants to effectively treat dye-polluted water. To evaluate the efficiency of each process the study was divided into three levels, i.e., adsorption of dye onto the substratum, phytoremediation within the CW and then bioremediation along with the previous two processes in the augmented CW. The adsorption process was helpful in removing 50% dye in presence of rice husk while 80% in presence of rice husk biocahr. Augmentation of microorganisms in CW systems has improved dye removal efficiency to 90%. Similarly presence of microorganisms enhanced removal of total nitrogen (68% 0 and Total phosphorus (75%). A significant improvement in plant growth was also observed by measuring plant height, number of leaves and leave area. These findings suggest the use of agricultural waste as part of a CW substratum can provide enhanced removal of textile dyes. PMID:25849115

  6. Biochar Supported Nanoscale Iron Particles for the Efficient Removal of Methyl Orange Dye in Aqueous Solutions

    PubMed Central

    Zhao, Shichen; Yan, Jingchun; Qian, Linbo; Chen, Mengfang

    2015-01-01

    The presence of organic contaminants in industrial effluents is an environmental concern of increasing global importance. One innovative technology for treating contaminated industrial effluents is nanoscale zero-valent iron supported on biochar (nZVI/BC). Based on Transmission Electron Microscopy, X-Ray Diffraction, and Brunauer-Emmett-Teller characterizations, the nZVI was well dispersed on the biochar and aggregation was dramatically reduced. Methyl orange (MO) served as the representative organic contaminant for verifying the effectiveness of the composite. Using decolorization efficiency as an indicator of treatment effectiveness, increasing doses of nZVI/BC yielded progressively better results with 98.51% of MO decolorized by 0.6 g/L of composite at an nZVI/BC mass ratio of 1:5. The superior decolorization efficiency of the nZVI/BC was attributed to the increase in the dispersion and reactivity of nZVI while biochar increasing the contact area with contaminant and the adsorption of composites. Additionally, the buffering function of acid-washed biochar could be in favor of maintaining the reactivity of nZVI. Furthermore, the aging nZVI/BC for 30 day was able to maintain the removal efficiency indicating that the oxidation of nZVI may be delayed in the presence of biochar. Therefore, the composite of nZVI/BC could represent an effective functional material for treating wastewater containing organic dyes in the future. PMID:26204523

  7. Microwave assisted synthesis of ZnO nanoparticles for lighting and dye removal application

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay; Gohain, M.; Som, S.; Kumar, Vinod; Bezuindenhoudt, B. C. B.; Swart, Hendrik C.

    2016-01-01

    In this study, we report on the synthesis of ZnO nanoparticles (NPs) via the microwave-assisted technique. The as-synthesized ZnO nanoparticles were annealed at 500 °C for three hours. The ZnO NPs were characterized by X-ray diffraction (XRD) and scanning electron microscopic techniques. XRD results confirmed the formation of as-synthesized ZnO powder oriented along the (101) direction. The Kubelka-Munk function has been employed to determine the band gap of the ZnO powder. ZnO powder has been studied by photoluminescence (PL) before and after annealing to identify the emission of defects in the visible range. The intensity of the PL emission has decreased after annealing. The synthesized ZnO samples were also studied for methyl orange dye removal from waste water. It has been found that the as-synthesized ZnO shows better adsorption behaviour as compared to the annealed sample.

  8. Pyronin Y (basic xanthene dye)-bentonite composite: A spectroscopic study

    NASA Astrophysics Data System (ADS)

    Tabak, A.; Kaya, M.; Yilmaz, N.; Meral, K.; Onganer, Y.; Caglar, B.; Sungur, O.

    2014-02-01

    The expansion by 1.43 Angstrom of basal spacing and the shift to higher frequencies of in-plane ring vibrations of the Pyronin Y molecule at 1603 and 1527 cm-1 on the formation of Pyronin Y-bentonite composite exhibited that the dye cations might be oriented as a monolayer form in the interlamellar spacing with aromatic rings parallel to clay layers. Thermal analysis results of this composite compared to those of raw bentonite signified the different outer sphere water entities associated with the replacement of inorganic cations with organic dye cations and the gradual decomposition of the organic molecule in the interlamellar spacing. Thermo-Infrared spectra of Pyronin Y-bentonite sample up to high temperatures showed the thermal stability of the dye-clay composite as a result of the presence of ? interactions. The pore structure characteristics of Pyronin Y-bentonite composite exhibited the increase in the number of mesopores during formation of the composite.

  9. Kinetic and morphology study of alginate-vineyard pruning waste biocomposite vs. non modified vineyard pruning waste for dye removal.

    PubMed

    Vecino, Xanel; Devesa-Rey, Rosa; Villagrasa, Salvador; Cruz, Jose M; Moldes, Ana B

    2015-12-01

    In this work a comparative bioadsorption study between a biocomposite consisting of hydrolysed vineyard pruning waste entrapped in calcium alginate spheres and non entrapped vineyard residue was carried out. Results have demonstrated that the biocomposite based on lignocellulose-calcium alginate spheres removed 77.3% of dyes, while non entrapped lignocellulose eliminated only removed 27.8% of colour compounds. The experimental data were fitted to several kinetic models (pseudo-first order, pseudo-second order, Chien-Clayton model, intraparticle diffusion model and Bangham model); being pseudo-second order the kinetic model that better described the adsorption of dyes onto both bioadsorbents. In addition, a morphological study (roughness and shape) of alginate-vineyard biocomposite was established under extreme conditions, observing significant differences between hydrated and dehydrated alginate-vineyard biocomposite. The techniques used to carry out this morphological study consisted of scanning electron microscopy (SEM), perfilometry and 3D surface analysis. PMID:26702980

  10. Low-cost and effective phenol and basic dyes trapper derived from the porous silica coated with hydrotalcite gel.

    PubMed

    Tao, Yu Fei; Lin, Wei Gang; Gao, Ling; Yang, Jin; Zhou, Yu; Yang, Jia Yuan; Wei, Feng; Wang, Ying; Zhu, Jian Hua

    2011-06-15

    Novel low-cost and effective adsorbents of phenol and basic dyes were made by coating amorphous silica with hydrotalcite (HT) gel followed by soaking in alkaline solution, and the surface basic-acidic properties of resulting composites were evaluated by CO(2)-TPD, Hammett indicator method and NH(3)-TPD, respectively. Both BET surface area and microporous surface area of the composites were increased after they were soaked with alkaline solution; meanwhile the center of pore size distribution was changed from 9 to 3-4 nm. These composites efficiently captured phenol in gaseous and liquid phases, superior to mesoporous silica such as MCM-48 or SBA-15 and zeolite NaY, and the equilibrium data of gaseous adsorption could be well fitted to Freundlich model. These modified silicas also exhibited high adsorption capacity forward basic dyes such as crystal violet (CV) and leuco-crystal violet (LCV), reaching the adsorption equilibrium within 1 h and offering a new material for environment protection. PMID:21458822

  11. Effectiveness of photochemical and sonochemical processes in degradation of Basic Violet 16 (BV16) dye from aqueous solutions

    PubMed Central

    2012-01-01

    In this study, degradation of Basic Violet 16 (BV16) by ultraviolet radiation (UV), ultrasonic irradiation (US), UV/H2O2 and US/H2O2 processes was investigated in a laboratory-scale batch photoreactor equipped with a 55W immersed-type low-pressure mercury vapor lamp and a sonoreactor with high frequency (130kHz) plate type transducer at 100W of acoustic power. The effects of initial dye concentration, concentration of H2O2 and solution pH and presence of Na2SO4 was studied on the sonochemical and photochemical destruction of BV16 in aqueous phase. The results indicated that in the UV/H2O2 and US/H2O2 systems, a sufficient amount of H2O2 was necessary, but a very high H2O2 concentration would inhibit the reaction rate. The optimum H2O2 concentration was achieved in the range of 17 mmol/L at dye concentration of 30 mg/L. A degradation of 99% was obtained with UV/H2O2 within 8 minutes while decolorization efficiency by using UV (23%), US (<6%) and US/H2O2(<15%) processes were negligible for this kind of dye. Pseudo-first order kinetics with respect to dyestuffs concentrations was found to fit all the experimental data. PMID:23369268

  12. Removal of Acid Black 1 and Basic Red 2 from aqueous solutions by electrocoagulation/Moringa oleifera seed adsorption coupling in a batch system.

    PubMed

    de Carvalho, Helder Pereira; Huang, Jiguo; Ni, Jiaheng; Zhao, Meixia; Yang, Xinyu; Wang, Xiansheng

    2015-01-01

    The removal of Acid Black 1 (AB1) and Basic Red 2 (BR2) from aqueous solutions via an electrocoagulation (EC)/Moringa oleifera seeds (MOS) adsorption coupling process by using aluminum and stainless steel electrode in a batch reactor is described in this study. The influences of the operational parameters, i.e. current density, MOS dosage, and dye initial concentration, on degree of color removal were studied, and the unit energy demand, the unit electrode material demand, and the charge loading were calculated and discussed. The amounts of adsorbent and energy consumption were considered as main criteria of process evaluation, and ideal conditions were chosen. The addition of an appropriate MOS dosage (0.6 g/L for AB1 and 5 g/L for BR2) resulted in faster decolorization of dyes especially at lower current densities and was simultaneously accompanied by a significant reduction in contact time compared to the conventional simple EC process. The coupling process achieved degree of removals above 99.3% and 94% for AB1 and BR2, respectively. The EC/MOS coupling technique could be recommended to replace the conventional simple EC because of its high degree of removal, short contact time, and low energy consumption. PMID:26177402

  13. Microvasculature can be selectively damaged using dye lasers: a basic theory and experimental evidence in human skin.

    PubMed

    Anderson, R R; Parrish, J A

    1981-01-01

    Basic theoretical considerations of the optical and thermal transfer processes that govern the thermal damage induced in tissue by lasers are discussed. An approximate, predictive model and data are proposed for the purpose of selecting a laser that maximizes damage to cutaneous blood vessels and minimizes damage to the surrounding connective tissue and the overlying epidermis. The variables of wavelength, exposure duration, and incident energy density are modeled, and a flashlamp-pumped dye laser operating at or near the 577 nm absorption band of HbO2, with a pulse width (0.3 microsecond) less than the estimated, approximately 1 millisecond, thermal relaxation times for microvessels is chosen for experimental exposures of normal Caucasian skin. Highly specific laser-induced damage to blood vessels is demonstrated both clinically and histologically. This is in striking contrast to the previously reported widespread, diffuse necrosis caused by other lasers. The incident energy and preliminary observations of wavelength and temperature dependence for vascular damage thresholds are consistent with theoretical predictions. Whereas typically 20 joules/cm2 of argon laser irradiation (514 and 488 nm, approximately 100 msec) is required to induce widespread thermal damage, the pulsed dye laser requires only about 2 joules/cm2 to induce highly specific vascular damage. The potential usefulness of dye laser-induced selective vascular damage as a treatment modality for portwine stain hemangiomas and other vascular lesions is discussed. In addition to possible treatment applications, the dye laser or other sources meeting the requirements for producing such damage may also offer a useful experimental tool for inducing predictable damage to microvasculature. Histopathologic and clinical studies related to these possibilities are in progress. PMID:7341895

  14. Sunflower stalks as adsorbents for color removal from textile wastewater

    SciTech Connect

    Sun, G.; Xu, X.

    1997-03-01

    Sunflower stalks as adsorbents for two basic dyes (Methylene Blue and Basic Red 9) and two direct dyes (Congo Red and Direct Blue 71) in aqueous solutions were studied with equilibrium isotherms and kinetic adsorptions. The maximum adsorptions of two basic dyes on sunflower stalks are very high, i.e., 205 and 317 mg/g for Methylene Blue and Basic Red 9, respectively. The two direct dyes have relatively lower adsorption on sunflower stalks. The adsorptive behaviors of sunflower stalk components are different. The pith, which is the soft and porous material in the center of stalks, has twice the adsorptive capacity of the skin. Particle sizes of sunflower stalks also affect the adsorption of dyes. The adsorption rates of two basic dyestuffs are much higher than that of the direct dyes. Within 30 min about 80% basic dyes were removed from the solutions.

  15. Application of acidic treated pumice as an adsorbent for the removal of azo dye from aqueous solutions: kinetic, equilibrium and thermodynamic studies

    PubMed Central

    2012-01-01

    Colored effluents are one of the important environment pollution sources since they contain unused dye compounds which are toxic and less-biodegradable. In this work removal of Acid Red 14 and Acid Red 18 azo dyes was investigated by acidic treated pumice stone as an efficient adsorbent at various experimental conditions. Removal of dye increased with increase in contact time and initial dye concentration, while decreased for increment in solution temperature and pH. Results of the equilibrium study showed that the removal of AR14 and AR18 followed Freundlich (r2>0.99) and Langmuir (r2>0.99) isotherm models. Maximum sorption capacities were 3.1 and 29.7 mg/g for AR 14 and AR18, namely significantly higher than those reported in the literature, even for activated carbon. Fitting of experimental data onto kinetic models showed the relevance of the pseudo-second order (r2>0.99) and intra-particle diffusion (r2>0.98) models for AR14 and AR18, respectively. For both dyes, the values of external mass transfer coefficient decreased for increasing initial dye concentrations, showing increasing external mass transfer resistance at solid/liquid layer. Desorption experiments confirmed the relevance of pumice stone for dye removal, since the pH regeneration method showed 86% and 89% regeneration for AR14 and AR18, respectively. PMID:23369579

  16. Application of acidic treated pumice as an adsorbent for the removal of azo dye from aqueous solutions: kinetic, equilibrium and thermodynamic studies.

    PubMed

    Samarghandi, Mohammad Reza; Zarrabi, Mansur; Sepehr, Mohammad Noori; Amrane, Abdeltif; Safari, Gholam Hossein; Bashiri, Saied

    2012-01-01

    Colored effluents are one of the important environment pollution sources since they contain unused dye compounds which are toxic and less-biodegradable. In this work removal of Acid Red 14 and Acid Red 18 azo dyes was investigated by acidic treated pumice stone as an efficient adsorbent at various experimental conditions. Removal of dye increased with increase in contact time and initial dye concentration, while decreased for increment in solution temperature and pH. Results of the equilibrium study showed that the removal of AR14 and AR18 followed Freundlich (r2>0.99) and Langmuir (r2>0.99) isotherm models. Maximum sorption capacities were 3.1 and 29.7 mg/g for AR 14 and AR18, namely significantly higher than those reported in the literature, even for activated carbon. Fitting of experimental data onto kinetic models showed the relevance of the pseudo-second order (r2>0.99) and intra-particle diffusion (r2>0.98) models for AR14 and AR18, respectively. For both dyes, the values of external mass transfer coefficient decreased for increasing initial dye concentrations, showing increasing external mass transfer resistance at solid/liquid layer. Desorption experiments confirmed the relevance of pumice stone for dye removal, since the pH regeneration method showed 86% and 89% regeneration for AR14 and AR18, respectively. PMID:23369579

  17. The use of an agricultural waste material, Jujuba seeds for the removal of anionic dye (Congo red) from aqueous medium.

    PubMed

    Reddy, M C Somasekhara; Sivaramakrishna, L; Reddy, A Varada

    2012-02-15

    The feasibility of using Indian Jujuba Seeds (IJS) (Zizyphus maruritiana), abundantly available in and around the Nallamalla forest in Andhra Pradesh, for the anionic dye (Congo red, CR) adsorption from aqueous solution, has been investigated as low cost and eco-friendly adsorbent. Adsorption studies were conducted on a batch process, to study the effects of contact time, initial concentration of CR, pH and temperature. Maximum colour removal was observed at pH 2. The equilibrium data was analyzed by the Langmuir, the Freundlich and the General isotherms. The data fitted well with the Langmuir model, with a maximum adsorption capacity of 55.56 mg g(-1). The pseudo-second-order kinetics was the best for the adsorption of CR, by IJS (Z. maruritiana) with good correlation. Thermodynamic parameters, such as standard free energy change (?G°), standard enthalpy change (?H°) and standard entropy change (?S°), were analyzed. The results suggest that IJS (Z. maruritiana) is a potential low-cost adsorbent for the CR dye removal from synthetic dye wastewater. PMID:22209325

  18. A Novel Biosorbent Lagenaria vulgaris Shell - ZrO?for the Removal of Textile Dye From Water.

    PubMed

    Petrovi?, Milica M; Radovi?, Miljana D; Kosti?, Miloš M; Mitrovi?, Jelena Z; Boji?, Danijela V; Zarubica, Aleksandra R; Boji?, Aleksandar Lj

    2015-07-01

    A new biosorbent, abbreviated as LVB-ZrO?, was synthesized by chemically modifying Lagenaria vulgaris shell with ZrO?. The removal of textile dye RB19 from aqueous solution by LVB-ZrO?was studied. Characterization by SEM, FTIR and XRD confirmed the chemical modification of the biomaterial, which showed significant improvement of removal efficiency compared with unmodified Lagenaria vulgaris shell. LVB-ZrO?point of zero charge is 5.49. The biosorption process is highly pH dependent and the optimal pH is 2.0, at which complete dye removal was attained. The results are the best by a pseudo-second order kinetic model. The optimal adsorbent dosage is 4 mg/dm³.The RB19 biosorption follows the Langmuir isotherm model (R² = 0.9978), with the maximum sorption capacity of 75.12 mg/g. LVB-ZrO?is a mechanically stable, easy to synthesize, cost-effective, biocompatible and environmentally-friendly biosorbent with the high potential for the removal of RB19 from aqueous solution. PMID:26163499

  19. Design of high-strength recyclable graphene oxide-based porous composite for the removal of dyes

    NASA Astrophysics Data System (ADS)

    Jiao, Chenlu; Xiong, Jiaqing; Tao, Jin; Zhang, Desuo; Chen, Yuyue; Lin, Hong

    2015-06-01

    Graphene oxide-based composite (SSGO) with orderly pores was prepared by freeze-drying method. Its chemical structure, morphology and mechanical property were investigated. The results show that it has a unidirectional microporous structure which facilitates the diffusion of dyes. The incorporation of GO significantly improves the porous structure, and increases the compressive strength of SSGO. A 26.6 kPa increase and a 3 kPa improvement of strength in dry and wet states were achieved when 4 wt % GO was added. Moreover, the equilibrated adsorption capacity for methylene blue (MB) increased about 78.9%, up to 161 mg/g. With superior compressive strength and excellent adsorption capacity, the SSGO has promising recyclable application in dyes removal from wastewater.

  20. Optimum BET surface areas for activated carbon produced from textile sewage sludges and its application as dye removal.

    PubMed

    Kacan, Erdal

    2016-01-15

    The purpose of this experimental study is to determine optimum preparation conditions for activated carbons obtained from textile sewage sludge (TSS) for removal of dyes from aqueous solutions. The textile sewage sludge activated carbon (TSSAC) was prepared by chemical activation with potassium hydroxide using Response Surface Methodology (RSM). The most influential factor on each experimental design responses was identified via ANNOVA analysis. Based on the central composite design (CCD), quadratic model was developed to correlate the preparation variables for one response which is the Brunauer-Emmelt-Teller (BET) surface area. RSM based on a three-variable CCD was used to determine the effect of pyrolyzed temperature (400-700 °C), carbonization time (45-180 min) and KOH: weight of TSS (wt%) impregnation ratio (0.5:1-1.5:1) on BET surface area. According to the results, pyrolyzed temperature and impregnation ratio were found as the significant factors for maximizing the BET surface area. The major effect which influences the BET surface area was found as pyrolyzed temperature. Both carbonization time and impregnation ratio of KOH had no significant effect. The optimum conditions for preparing TSSAC, based on response surface and contour plots, were found as follows: pyrolyzed temperature 700 °C, carbonization time of 45 min and chemical impregnation ratio of 0.5. The maximum and optimum BET surface area of TSSAC were found as 336 m(2)/g and 310.62 m(2)/g, respectively. Synozol Blue reactive (RSB) and Setapers Yellow-Brown (P2RFL) industrial textile dyes adsorption capacities were investigated. As expected the TSSAC which has the biggest BET surface area (336 m(2)/g) adsorbed dye best. The maximum (RSB) and (P2RFL) uptake capacities were found as 8.5383 mg/g and 5.4 mg/g, respectively. The results of this study indicated the applicability of TSSAC for removing industrial dyes from aqueous solution. PMID:26496841

  1. Facile and Scalable Preparation of Graphene Oxide-Based Magnetic Hybrids for Fast and Highly Efficient Removal of Organic Dyes

    NASA Astrophysics Data System (ADS)

    Jiao, Tifeng; Liu, Yazhou; Wu, Yitian; Zhang, Qingrui; Yan, Xuehai; Gao, Faming; Bauer, Adam J. P.; Liu, Jianzhao; Zeng, Tingying; Li, Bingbing

    2015-07-01

    This study reports the facile preparation and the dye removal efficiency of nanohybrids composed of graphene oxide (GO) and Fe3O4 nanoparticles with various geometrical structures. In comparison to previously reported GO/Fe3O4 composites prepared through the one-pot, in situ deposition of Fe3O4 nanoparticles, the GO/Fe3O4 nanohybrids reported here were obtained by taking advantage of the physical affinities between sulfonated GO and Fe3O4 nanoparticles, which allows tuning the dimensions and geometries of Fe3O4 nanoparticles in order to decrease their contact area with GO, while still maintaining the magnetic properties of the nanohybrids for easy separation and adsorbent recycling. Both the as-prepared and regenerated nanohybrids demonstrate a nearly 100% removal rate for methylene blue and an impressively high removal rate for Rhodamine B. This study provides new insights into the facile and controllable industrial scale fabrication of safe and highly efficient GO-based adsorbents for dye or other organic pollutants in a wide range of environmental-related applications.

  2. Facile and Scalable Preparation of Graphene Oxide-Based Magnetic Hybrids for Fast and Highly Efficient Removal of Organic Dyes

    PubMed Central

    Jiao, Tifeng; Liu, Yazhou; Wu, Yitian; Zhang, Qingrui; Yan, Xuehai; Gao, Faming; Bauer, Adam J. P.; Liu, Jianzhao; Zeng, Tingying; Li, Bingbing

    2015-01-01

    This study reports the facile preparation and the dye removal efficiency of nanohybrids composed of graphene oxide (GO) and Fe3O4 nanoparticles with various geometrical structures. In comparison to previously reported GO/Fe3O4 composites prepared through the one-pot, in situ deposition of Fe3O4 nanoparticles, the GO/Fe3O4 nanohybrids reported here were obtained by taking advantage of the physical affinities between sulfonated GO and Fe3O4 nanoparticles, which allows tuning the dimensions and geometries of Fe3O4 nanoparticles in order to decrease their contact area with GO, while still maintaining the magnetic properties of the nanohybrids for easy separation and adsorbent recycling. Both the as-prepared and regenerated nanohybrids demonstrate a nearly 100% removal rate for methylene blue and an impressively high removal rate for Rhodamine B. This study provides new insights into the facile and controllable industrial scale fabrication of safe and highly efficient GO-based adsorbents for dye or other organic pollutants in a wide range of environmental-related applications. PMID:26220847

  3. Resonant Rayleigh scattering for the determination of trace amounts of mercury (II) with thiocyanate and basic triphenylmethane dyes

    SciTech Connect

    Liu, S.; Liu, Z.; Zhou, G.

    1998-05-01

    Intense resonance Rayleigh scattering (RRS) appears when mercury (II) reacts with thiocyanate and a basic triphenylmethane dye (BTPMD), such as crystal violet (CV), ethyl violet (EV), brilliant green (BG), malachite green (MG) or indine green (IG), to form an ion-association complex of the type (BTPMD){sub 2}[Hg(SCN){sub 4}]. The characteristics of RRS spectra of the ion-association complexes and suitable conditions for the reactions were investigated. The intensity of RRS is directly proportional to the concentration of mercury (II) in the range of 0--2.0 {micro}g/25 ml. The RRS methods have very high sensitivities for determination of mercury (II); their detection limits are between 1.68 ng/ml and 6.00 ng/ml on different dye systems. The effects of foreign ions and ways to improve the selectivity were studied. The new highly sensitive methods for the determination of trace amounts of mercury based on the RRS of the ion-association complexes have been developed.

  4. Modulation of dual fluorescence in a 3-hydroxyquinolone dye by perturbation of its intramolecular proton transfer with solvent polarity and basicity.

    PubMed

    Yushchenko, Dmytro A; Shvadchak, Volodymyr V; Bilokin', Mykhailo D; Klymchenko, Andrey S; Duportail, Guy; Mély, Yves; Pivovarenko, Vasyl G

    2006-11-01

    A representative of a new class of dyes with dual fluorescence due to an excited state intramolecular proton transfer (ESIPT) reaction, namely 1-methyl-2-(4-methoxy)phenyl-3-hydroxy-4(1H)-quinolone (QMOM), has been studied in a series of solvents covering a large range of polarity and basicity. A linear dependence of the logarithm of its two bands intensity ratio, log(I(N*)/I(T*)), upon the solvent polarity expressed as a function of the dielectric constant, (epsilon- 1)/(2epsilon + 1), is observed for a series of protic solvents. A linear dependence for log(I(N*)/I(T*)) is also found in aprotic solvents after taking into account the solvent basicity. In contrast, the positions of the absorption and the two emission bands of QMOM do not noticeably depend on the solvent polarity and basicity, indicating relatively small changes in the transition moment of QMOM upon excitation and emission. Time-resolved experiments in acetonitrile, ethyl acetate and dimethylformamide suggest an irreversible ESIPT reaction for this dye. According to the time-resolved data, an increase of solvent basicity results in a dramatic decrease of the ESIPT rate constant, probably due to the disruption of the intramolecular H-bond of the dye by the basic solvent. Due to this new sensor property, 3-hydroxyquinolones are promising candidates for the development of a new generation of environment-sensitive fluorescence dyes for probing interactions of biomolecules. PMID:17077900

  5. A basic study on removal of nutrient salts in wastewater using plants (removal by mung beans; Phaseolus radiatus L).

    PubMed

    Azuma, T; Niiro, M; Motobu, H

    1992-01-01

    Many studies have reported on the removal of pollutants from wastewater using aquatic plants. The water hyacinth has been the most widely used and its system is the most well established. This system however, has a few problems in practical use. The purpose of this study is to obtain basic information on a new system that can substitute for a conventional system or be used as a secondary system to assist the conventional one. We first envisioned a model of this new system and then conducted a preliminary experiment using a small experimental unit to simulate the new system. The experiment showed that mung beans were a suitable plant for our study. Their removal rate of pollutants was the highest before they developed leaves and started photosynthesis. We found that nutrients were expelled outside the plant root when nutrient concentration inside the plant tissue became too high. PMID:1472912

  6. Imaging with the fluorogenic dye Basic Fuchsin reveals subcellular patterning and ecotype variation of lignification in Brachypodium distachyon

    PubMed Central

    Kapp, Nikki; Barnes, William J.; Richard, Tom L.; Anderson, Charles T.

    2015-01-01

    Lignin is a complex polyphenolic heteropolymer that is abundant in the secondary cell walls of plants and functions in growth and defence. It is also a major barrier to the deconstruction of plant biomass for bioenergy production, but the spatiotemporal details of how lignin is deposited in actively lignifying tissues and the precise relationships between wall lignification in different cell types and developmental events, such as flowering, are incompletely understood. Here, the lignin-detecting fluorogenic dye, Basic Fuchsin, was adapted to enable comparative fluorescence-based imaging of lignin in the basal internodes of three Brachypodium distachyon ecotypes that display divergent flowering times. It was found that the extent and intensity of Basic Fuchsin fluorescence increase over time in the Bd21-3 ecotype, that Basic Fuchsin staining is more widespread and intense in 4-week-old Bd21-3 and Adi-10 basal internodes than in Bd1-1 internodes, and that Basic Fuchsin staining reveals subcellular patterns of lignin in vascular and interfascicular fibre cell walls. Basic Fuchsin fluorescence did not correlate with lignin quantification by acetyl bromide analysis, indicating that whole-plant and subcellular lignin analyses provide distinct information about the extent and patterns of lignification in B. distachyon. Finally, it was found that flowering time correlated with a transient increase in total lignin, but did not correlate strongly with the patterning of stem lignification, suggesting that additional developmental pathways might regulate secondary wall formation in grasses. This study provides a new comparative tool for imaging lignin in plants and helps inform our views of how lignification proceeds in grasses. PMID:25922482

  7. Decolorization and removal of textile and non-textile dyes from polluted wastewater and dyeing effluent by using potato (Solanum tuberosum) soluble and immobilized polyphenol oxidase.

    PubMed

    Khan, Amjad Ali; Husain, Qayyum

    2007-03-01

    Celite bound potato polyphenol oxidase preparation was employed for the treatment of wastewater/dye effluent contaminated with reactive textile and non-textile dyes, Reactive Blue 4 and Reactive Orange 86. The maximum decolorization was found at pH 3.0 and 4.0 in case of Reactive Blue 4 and Reactive Orange 86, respectively. Immobilized potato polyphenol oxidase was significantly more effective in decolorizing the individual dye and complex mixtures of dyes as compared to soluble enzyme. The absorption spectra of the treated and untreated dye mixture and dyeing effluent exhibited a marked difference in the absorption value at various wavelengths. The polluted water contaminated with an individual dye or mixtures of dyes treated with soluble and immobilized potato polyphenol oxidase resulted in the remarkable loss in total organic carbon. PMID:16765044

  8. Removal of direct dyes from aqueous solution by oxidized starch cross-linked chitosan/silica hybrid membrane.

    PubMed

    He, Xuemei; Du, Mei; Li, Hui; Zhou, Tianchi

    2016-01-01

    In this research, chitosan/oxidized starch/silica (CS/OSR/Silica) hybrid membrane was prepared by using oxidized starch and 3-aminopropyltriethoxysilane (APTES) as cross-linking agents. The characterizations of the hybrid membrane were investigated by using attenuated total reflection (ATR) spectroscopy, scanning electron microscopy (SEM), thermogravimetry (TG) analysis and swelling measurement. The CS/OSR/Silica hybrid membrane exhibited the improved thermal stability and low degree of swelling in water. The adsorption properties of the CS/OSR/Silica hybrid membrane were studied by using two direct dyes (Blue 71 and Red 31). The results indicated the adsorption capacity of the CS/OSR/Silica hybrid membrane was found optimal at pH 9.82 and temperature 60°C for Blue 71 and Red 31. The adsorption kinetic data followed pseudo-second order kinetic model and the adsorption behavior of the two dyes on the hybrid membrane fitted well with the Freundlich model. The CS/OSR/Silica hybrid membrane can be used as an appropriate biosorbent for removal of direct dyes from colored wastewater. PMID:26546868

  9. Removal of Acid Orange 7 in simulated wastewater using a three-dimensional electrode reactor: removal mechanisms and dye degradation pathway.

    PubMed

    Zhao, Hua-Zhang; Sun, Yan; Xu, Li-Na; Ni, Jin-Ren

    2010-01-01

    The removal of Acid Orange 7 (AO7) in simulated wastewater was experimentally investigated using a three-dimensional electrode reactor with granular activated carbon as the particle electrode, ACF (activated carbon fiber)/Fe as the anode, and ACF/Ti as the cathode. Particular attention was paid to the reaction mechanisms and the dye degradation pathway in the system. The removal of AO7 in the system was mainly dependent on the oxidation by the produced active substances (()OH, etc.) and the coagulation by Fe(II) or Fe(III) dissolved from the anode. The former mechanism was predominant. A possible pathway for AO7 degradation was proposed by monitoring the temporal evolution of intermediates in the solution, with the use of some techniques including GC/MS, FTIR and HPLC. The AO7 molecule was observed to be firstly decomposed to aromatic intermediates, further degraded to ring opening products and finally mineralized to CO(2), H(2)O and inorganic salts. The intermediates increased the biodegradability of the wastewater, which was proved by the increase of the BOD/COD value after electrolysis treatment. The three-dimensional electrode method can be considered an effective alternative to dye wastewater pretreatment prior to the biological process. PMID:19897229

  10. Adsorptive potential of cationic Basic Yellow 2 (BY2) dye onto natural untreated clay (NUC) from aqueous phase: Mass transfer analysis, kinetic and equilibrium profile

    NASA Astrophysics Data System (ADS)

    Öztürk, A.; Malkoc, E.

    2014-04-01

    In this work, natural untreated clay (NUC) was studied for the removal of Basic Yellow 2 (BY2) from aqueous solution in batch system. The effects of initial BY2 concentration, contact time, solution temperature and solution pH on BY2 adsorption were investigated. Nitrogen sorption measurements were employed to investigate the variation in surface and pore properties after dye adsorption. The adsorbent was characterized by means of FTIR, PSD, TEM, XRD and BET analysis. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin and Scatchard isotherm models. The maximum monolayer adsorption capacity was found to be 833.33 mg/g at 25 °C (at room temperature). The pseudo-second-order kinetic model provided the best fit to the experimental datas compared with pseudo-first-order kinetic adsorption models. To explain mass transfer mechanism of BY2 adsorption, obtained experimental datas were applied Weber and Morris model, Body and Frusawa and Smith models. The results show that the adsorption process is controlled by film diffusion. The thermodynamic parameters such as, Gibbs free energy changes (?G°), standard enthalpy change (?H°) and standard entropy change (?S°) were determined. Adsorption of BY2 on NUC is exothermic and spontaneous in nature. The calculated activation energy of adsorption was found to be 5.24 kJ/mol for BY2. This value indicates that the adsorption process is a physisorption.

  11. Utilization of modified silk cotton hull waste as an adsorbent for the removal of textile dye (reactive blue MR) from aqueous solution.

    PubMed

    Thangamani, K S; Sathishkumar, M; Sameena, Y; Vennilamani, N; Kadirvelu, K; Pattabhi, S; Yun, S E

    2007-04-01

    Carbon prepared from silk cotton hull was used to remove a textile dye (reactive blue MR) from aqueous solution by an adsorption technique under varying conditions of agitation time, dye concentration, adsorbent dose and pH. Adsorption depended on solution pH, dye concentration, carbon concentration and contact time. Equilibrium was attained with in 60 min. Adsorption followed both Langmuir and Freundlich isotherm models. The adsorption capacity was found to be 12.9 mg/g at an initial pH of 2+/-0.2 for the particle size of 125-250 microm at room temperature (30+/-2 degrees C). PMID:16831547

  12. Pyridine derivative covalently bonded on chitosan pendant chains for textile dye removal.

    PubMed

    Oliveira, Cintia S; Airoldi, Claudio

    2014-02-15

    Chitosan was chemically modified through a sequence of four reactions with immobilized 2-aminomethylpyridine at the final stage, after prior protection of amino group with benzaldehyde. The characterized biopolymers containing free amino and hydroxyl active centers on the biopolymeric structure and pyridinic nitrogen on pendant chains showed combined hydrophobic properties that can potentially favor interactions. Reactive Yellow GR and Blue RN dyes gave the maximum sorption capacities of 2.13 and 1.61 mmol g(-1), which were performed as functions of contact time, concentration and dye structure. However, biopolymer/dye interactions are governed by effective hydrogen bond and van der Waals forces for such structural adjustments. The data obtained from the concentration isotherm were applied to non-linear regressions of the Langmuir, the Freundlich and the Sips models, with the best fit to the latter model. The kinetic data was fitted to non-linear regression of pseudo-second-order, indicating that the sorption phenomena are most likely to be controlled by chemisorption process. PMID:24507253

  13. Improvements in laser flare removal for particle image velocimetry using fluorescent dye-doped particles

    NASA Astrophysics Data System (ADS)

    Petrosky, B. J.; Lowe, K. T.; Danehy, P. M.; Wohl, C. J.; Tiemsin, P. I.

    2015-11-01

    Laser flare, or scattering of laser light from a surface, can often be a major issue in particle image velocimetry (PIV) involving solid boundaries in the flow or a gas-liquid interface. The use of fluorescent light from dye-doped particles has been demonstrated in water applications, but reproducing the technique in an airflow is more difficult due to particle size constraints and safety concerns. The following work presents fluorescent Kiton Red 620 (KR620)-doped polystyrene latex microspheres as a solution to this issue. The particles are small and narrowly distributed, with a mean diameter of 0.87 ? \\text{m} and diameter distribution standard deviation of 0.30 ? \\text{m} . Furthermore, the KR620 dye exhibits much lower toxicity than other common fluorescent dyes, and would be safe to use in large flow facilities. The fluorescent signal from the particles is measured on average to be 320??±??10 times weaker than the Mie scattering signal from the particles. This reduction in signal is counterbalanced by greatly enhanced contrast via optical rejection of the incident laser wavelength. Fluorescent PIV with these particles is shown to eliminate laser flare near surfaces, allowing for velocity measurements as close as 100 ? \\text{m} to the surface. In one case, fluorescent PIV led to velocity vector validation rates more than 20 times that of the Mie scattering results in the boundary layer region of an angled surface.

  14. Removal of malachite green dye from wastewater by different organic acid-modified natural adsorbent: kinetics, equilibriums, mechanisms, practical application, and disposal of dye-loaded adsorbent.

    PubMed

    Wang, Hou; Yuan, Xingzhong; Zeng, Guangming; Leng, Lijian; Peng, Xin; Liao, Kailingli; Peng, Lijuan; Xiao, Zhihua

    2014-10-01

    Natural adsorbent (Cinnamomum camphora sawdust) modified by organic acid (oxalic acid, citric acid, and tartaric acid) was investigated as a potential adsorbent for the removal of hazardous malachite green (MG) dye in aqueous media in a batch process. The extent of MG adsorption onto modified sawdust increased with increasing organic acid concentrations, pH, contact time, and temperature but decreased with increasing adsorbent dosage and ionic strength. Kinetic study indicated that the pseudo-second-order kinetic model could best describe the adsorption kinetics of MG. Equilibrium data were found to fit well with the Langmuir model, and the maximum adsorption capacity of the three kinds of organic acid-modified sawdust was 280.3, 222.8, and 157.5 mg/g, respectively. Thermodynamic parameters suggested that the sorption of MG was an endothermic process. The adsorption mechanism, the application of adsorbents in practical wastewater, the prediction of single-stage batch adsorption system, and the disposal of depleted adsorbents were also discussed. PMID:25028314

  15. Chemical and structural evaluation of activated carbon prepared from jute sticks for Brilliant Green dye removal from aqueous solution.

    PubMed

    Asadullah, Mohammad; Asaduzzaman, Mohammad; Kabir, Mohammad Shajahan; Mostofa, Mohammad Golam; Miyazawa, Tomohisa

    2010-02-15

    Activated carbons have been prepared from jute sticks by chemical activation using ZnCl(2) and physical activation using steam for the removal of Brilliant Green dye from aqueous solution. The activated carbons and charcoal prepared from jute sticks were characterized by evaluating the surface chemistry, structural features and surface morphology. The maximum BET surface area was obtained to be 2304 m(2)/g for chemical activated carbon (ACC) while it is 730 and 80 m(2)/g for steam activated carbon (ACS) and charcoal, respectively. The FT-IR spectra exhibited that the pyrolysis and steam activation of jute sticks resulted in the release of aliphatic and O-containing functional groups by thermal effect. However, the release of functional groups is the effect of chemical reaction in the ZnCl(2) activation process. A honeycomb-type carbon structure in ACC was formed as observed on SEM images. Although charcoal and ACC were prepared at 500 degrees C the ACC exhibited much lower Raman sensitivity due to the formation of condensed aromatic ring systems. Due to high surface area and high porous structure with abundance of functional groups, the ACC adsorbed dye molecules with much higher efficiency than those of ACS and charcoal. PMID:19815339

  16. Study of the physical properties of calcium alginate hydrogel beads containing vineyard pruning waste for dye removal.

    PubMed

    Vecino, X; Devesa-Rey, R; Cruz, J M; Moldes, A B

    2015-01-22

    In this work the morphological and surface properties of a biocomposite formulated with vineyard pruning waste entrapped in calcium alginate hydrogel beads were studied. The formulation of the calcium alginate hydrogel beads, containing vineyard pruning waste, was based on the capacity of this green adsorbent to remove dye compounds from wastewater, observing that in the optimum condition (1.25% of cellulosic residue, 2.2% of sodium alginate and 0.475 mol L(-1) CaCl2) the percentage of dyes was reduced up to 74.6%. At lower concentration of CaCl2, high-resolution optical images show that the elongation of the vineyard-alginate biocomposite decreased, whereas the compactness increased. Moreover, higher concentrations of cellulosic residue increased the biocomposite roundness in comparison with biocomposite without the cellulosic residue. Interferometric perfilometry analysis (Ra, Rq, Rz and Rt) revealed that high concentrations of CaCl2 increased the roughness of the of the calcium alginate hydrogel beads observing vesicles in the external surface. PMID:25439877

  17. Efficient removal of triphenylmethane dyes from aqueous medium by in situ electrogenerated Fenton's reagent at carbon-felt cathode.

    PubMed

    Sirés, Ignasi; Guivarch, Elodie; Oturan, Nihal; Oturan, Mehmet A

    2008-06-01

    Fenton's reagent (Fe2+ +H2O2) has been electrogenerated in situ in an undivided electrolytic cell from the effective reduction of Fe3+ and O2 at carbon-felt cathode for the treatment of aqueous solutions of four triphenylmethane dyes (TPMs), namely malachite green (MG), crystal violet (CV), methyl green (MeG) and fast green FCF (FCF), at pH 3.0 and room temperature. MG has been used as a model among them to study the influence of some experimental parameters on the decay kinetics, COD removal and current efficiency. The results in such electro-Fenton system are explained in terms of the many parasitic reactions involving .OH. Higher efficiency values are obtained with rising organic content and decreasing applied current. The first stage of the mineralization process, involving aromatic by-products, leads to fast decoloration as well as quick initial COD removal that fit well to a pseudo-first-order kinetics. At prolonged electrolysis time, the mineralization rate and efficiency decrease due to the formation of hardly oxidizable compounds and the enhancement of wasting reactions. Solutions of all four TPMs are quickly degraded following a pseudo-first-order decay kinetics. The absolute rate constant (kTPM) for their reaction with .OH increases in the order MeGdyes with initial COD ca. 1000 mg l(-1) is totally depolluted with efficiency near 100% at the beginning of the treatment. A general scheme for the mineralization of TPMs is proposed. PMID:18486964

  18. Super adsorption capability from amorphousization of metal oxide nanoparticles for dye removal

    NASA Astrophysics Data System (ADS)

    Li, L. H.; Xiao, J.; Liu, P.; Yang, G. W.

    2015-03-01

    Transitional metal oxide nanoparticles as advanced environment and energy materials require very well absorption performance to apply in practice. Although most metal oxides are based on crystalline, high activities can also be achieved with amorphous phases. Here, we reported the adsorption behavior and mechanism of methyl blue (MB) on the amorphous transitional metal oxide (Fe, Co and Ni oxides) nanoparticles, and we demonstrated that the amorphousization of transitional metal oxide (Fe, Co and Ni oxides) nanoparticles driven by a novel process involving laser irradiation in liquid can create a super adsorption capability for MB, and the maximum adsorption capacity of the fabricated NiO amorphous nanostructure reaches up to 10584.6 mgg-1, the largest value reported to date for all MB adsorbents. The proof-of-principle investigation of NiO amorphous nanophase demonstrated the broad applicability of this methodology for obtaining new super dyes adsorbents.

  19. Super adsorption capability from amorphousization of metal oxide nanoparticles for dye removal

    PubMed Central

    Li, L. H.; Xiao, J.; Liu, P.; Yang, G. W.

    2015-01-01

    Transitional metal oxide nanoparticles as advanced environment and energy materials require very well absorption performance to apply in practice. Although most metal oxides are based on crystalline, high activities can also be achieved with amorphous phases. Here, we reported the adsorption behavior and mechanism of methyl blue (MB) on the amorphous transitional metal oxide (Fe, Co and Ni oxides) nanoparticles, and we demonstrated that the amorphousization of transitional metal oxide (Fe, Co and Ni oxides) nanoparticles driven by a novel process involving laser irradiation in liquid can create a super adsorption capability for MB, and the maximum adsorption capacity of the fabricated NiO amorphous nanostructure reaches up to 10584.6?mgg?1, the largest value reported to date for all MB adsorbents. The proof-of-principle investigation of NiO amorphous nanophase demonstrated the broad applicability of this methodology for obtaining new super dyes adsorbents. PMID:25761448

  20. Template-free hydrothermal derived cobalt oxide nanopowders: Synthesis, characterization, and removal of organic dyes

    SciTech Connect

    Nassar, Mostafa Y.; Ahmed, Ibrahim S.

    2012-09-15

    Graphical abstract: XRD patterns of the products obtained by hydrothermal treatment at 160 °C for 24 h, and at different [Co{sup 2+}]/[CO{sub 3}{sup 2?}] ratios: (a) 1:6, (b) 1:3, (c) 1:1.5, (d) 1:1, (e) 1:0.5. Highlights: ? Spinel cobalt oxide nanoparticles with different morphologies were prepared by hydrothermal approach. ? The optical characteristics of the as-prepared cobalt oxide revealed the presence of two band gaps. ? Adsorption of methylene blue dye on Co{sub 3}O{sub 4} was investigated and the percent uptake was found to be >99% in 24 h. -- Abstract: Pure spinel cobalt oxide nanoparticles were prepared through hydrothermal approach using different counter ions. First, the pure and uniform cobalt carbonate (with particle size of 21.8–29.8 nm) were prepared in high yield (94%) in an autoclave in absence unfriendly organic surfactants or solvents by adjusting different experimental parameters such as: pH, reaction time, temperature, counter ions, and (Co{sup 2+}:CO{sub 3}{sup 2?}) molar ratios. Thence, the spinel Co{sub 3}O{sub 4} (with mean particle size of 30.5–47.35 nm) was produced by thermal decomposition of cobalt carbonate in air at 500 °C for 3 h. The products were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission electron microscope (TEM), scanning electron microscope (SEM), and thermal analysis (TA). Also, the optical characteristics of the as-prepared Co{sub 3}O{sub 4} nanoparticles revealed the presence of two band gaps (1.45–1.47, and 1.83–1.93 eV). Additionally, adsorption of methylene blue dye on Co{sub 3}O{sub 4} nanoparticles was investigated and the uptake% was found to be >99% in 24 h.

  1. Single and binary dye and heavy metal bioaccumulation properties of Candida tropicalis: use of response surface methodology (RSM) for the estimation of removal yields.

    PubMed

    Gönen, Ferda; Aksu, Zümriye

    2009-12-30

    The single and binary effects of initial Remazol Turquoise Blue-G (RTBG) reactive dye and initial copper(II) concentrations on the dye or/and copper(II) bioaccumulation efficiency of C. tropicalis was investigated in 10 g l(-1) molasses sucrose containing growth medium at an initial pH value of 4.0 and optimized using response surface methodology (RSM). A 2(2) full factorial central composite design was successfully used for experimental design and analyses of the results. Two numerical correlations fitted to a second-order quadratic equation were obtained to estimate the responses of dye and copper(II) removal yields. The statistical analysis indicated that although relatively high accumulation efficiency of C. tropicalis was obtained for the single removal of dye and copper(II), individual uptake of both the components from binary mixture was affected negatively by the addition of other component up to 500 mg l(-1) due to inhibition caused by high concentrations of RTBG dye and copper(II). The optimum combination predicted via RSM confirmed that growing C. tropicalis was capable of bioaccumulating RTBG and copper(II) with the maximum yields of 59.2% and 21.3% in the growth medium containing 50 mg l(-1) RTBG and 50 mg l(-1) copper(II) together, respectively. PMID:19720462

  2. Functional display of triphenylmethane reductase for dye removal on the surface of Escherichia coli using N-terminal domain of ice nucleation protein.

    PubMed

    Gao, Fen; Ding, Haitao; Feng, Zhuo; Liu, Danfeng; Zhao, Yuhua

    2014-10-01

    Traditional biological treatment for triphenylmethane dye effluent is stuck with the inaccessibility of dye molecules to intracellular dye-degrading enzyme, thus a high-efficiency and low-cost method for dye decolorization is highly desirable. Here we established a bioremediation approach to display triphenylmethane reductase (TMR) on the surface of Escherichia coli (E. coli) using N-terminal of ice nucleation protein as anchoring motif for triphenylmethane dye decolorization for the first time. Approximately 85% of recombinant protein positioning on the surface of E. coil cells exhibited high activity and stability. The optimal temperature and pH of the surface-displayed TMR are 50 °C and 8.5, respectively. Comparing with other reported microorganisms, the decolorization rate for malachite green of this engineered strain is the highest so far, reaching 640 ?mol min(-1) g(-1) dry weight cells. These results indicate that this engineered E. coli strain is a very promising candidate for synthetic dye removal. PMID:25058292

  3. Template-Free Synthesis of Functional 3D BN architecture for removal of dyes from water

    PubMed Central

    Liu, Dan; Lei, Weiwei; Qin, Si; Chen, Ying

    2014-01-01

    Three-dimensional (3D) architectures are of interest in applications in electronics, catalysis devices, sensors and adsorption materials. However, it is still a challenge to fabricate 3D BN architectures by a simple method. Here, we report the direct synthesis of 3D BN architectures by a simple thermal treatment process. A 3D BN architecture consists of an interconnected flexible network of nanosheets. The typical nitrogen adsorption/desorption results demonstrate that the specific surface area for the as-prepared samples is up to 1156?m2 g?1, and the total pore volume is about 1.17?cm3 g?1. The 3D BN architecture displays very high adsorption rates and large capacities for organic dyes in water without any other additives due to its low densities, high resistance to oxidation, good chemical inertness and high surface area. Importantly, 88% of the starting adsorption capacity is maintained after 15 cycles. These results indicate that the 3D BN architecture is potential environmental materials for water purification and treatment. PMID:24663292

  4. Synthesis of magnetic metal-organic framework (MOF) for efficient removal of organic dyes from water

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoli; Liu, Shuangliu; Tang, Zhi; Niu, Hongyun; Cai, Yaqi; Meng, Wei; Wu, Fengchang; Giesy, John P.

    2015-07-01

    A novel, simple and efficient strategy for fabricating a magnetic metal-organic framework (MOF) as sorbent to remove organic compounds from simulated water samples is presented and tested for removal of methylene blue (MB) as an example. The novel adsorbents combine advantages of MOFs and magnetic nanoparticles and possess large capacity, low cost, rapid removal and easy separation of the solid phase, which makes it an excellent sorbent for treatment of wastewaters. The resulting magnetic MOFs composites (also known as MFCs) have large surface areas (79.52?m2 g-1), excellent magnetic response (14.89?emu g-1), and large mesopore volume (0.09?cm3 g-1), as well as good chemical inertness and mechanical stability. Adsorption was not drastically affected by pH, suggesting ?-? stacking interaction and/or hydrophobic interactions between MB and MFCs. Kinetic parameters followed pseudo-second-order kinetics and adsorption was described by the Freundlich isotherm. Adsorption capacity was 84?mg MB g-1 at an initial MB concentration of 30?mg L-1, which increased to 245?mg g-1 when the initial MB concentration was 300?mg L-1. This capacity was much greater than most other adsorbents reported in the literature. In addition, MFC adsorbents possess excellent reusability, being effective after at least five consecutive cycles.

  5. Synthesis of magnetic metal-organic framework (MOF) for efficient removal of organic dyes from water

    PubMed Central

    Zhao, Xiaoli; Liu, Shuangliu; Tang, Zhi; Niu, Hongyun; Cai, Yaqi; Meng, Wei; Wu, Fengchang; Giesy, John P.

    2015-01-01

    A novel, simple and efficient strategy for fabricating a magnetic metal-organic framework (MOF) as sorbent to remove organic compounds from simulated water samples is presented and tested for removal of methylene blue (MB) as an example. The novel adsorbents combine advantages of MOFs and magnetic nanoparticles and possess large capacity, low cost, rapid removal and easy separation of the solid phase, which makes it an excellent sorbent for treatment of wastewaters. The resulting magnetic MOFs composites (also known as MFCs) have large surface areas (79.52?m2 g?1), excellent magnetic response (14.89?emu g?1), and large mesopore volume (0.09?cm3 g?1), as well as good chemical inertness and mechanical stability. Adsorption was not drastically affected by pH, suggesting ?–? stacking interaction and/or hydrophobic interactions between MB and MFCs. Kinetic parameters followed pseudo-second-order kinetics and adsorption was described by the Freundlich isotherm. Adsorption capacity was 84?mg MB g?1 at an initial MB concentration of 30?mg L?1, which increased to 245?mg g?1 when the initial MB concentration was 300?mg L?1. This capacity was much greater than most other adsorbents reported in the literature. In addition, MFC adsorbents possess excellent reusability, being effective after at least five consecutive cycles. PMID:26149818

  6. Sequential study on reactive blue 29 dye removal from aqueous solution by peroxy acid and single wall carbon nanotubes: experiment and theory

    PubMed Central

    2013-01-01

    The majority of anthraquinone dye released to the environment come from antrapogenic sources. Several techniques are available for dyes' removal. In this study removal of reactive blue 29 (RB29) by an advanced oxidation process sequenced with single wall carbon nanotubes was investigated. Advanced oxidation process was optimized over a period of 60 minutes by changing the ratio of acetic acid to hydrogen peroxide, the compounds which form peroxy acid. Reduction of 20.2% -56.4% of reactive blue 29 was observed when the ratio of hydrogen peroxide/acetic acid/dye changed from 344/344/1 to 344/344/0.08 at different times (60, 120 and 180 min). The optimum ratio of acetic acid/hydrogen peroxide/dye was found to be 344/344/0.16 over 60 min. The resultant then was introduced for further removal by single wall carbon nanotubes(SWCNTs) as adsorbent. The adsorption of reactive blue 29 onto SWCNTs was also investigated. Langmuir, Freundlich and BET isotherms were determined and the results revealed that the adsorption of RB29 onto SWCNTs was well explained by BET model and changed to Freundlich isotherm when SWCNTs was used after the application of peroxy acid. Kinetic study showed that the equilibrium time for adsorption of RB 29 on to SWCNT is 4 h. Experiments were carried out to investigate adsorption kinetics, adsorbent capacity and the effect of solution pH on the removal of reactive blue29. The pseudo-second order kinetic equation could best describe the sorption kinetics. The most efficient pH for color removal (amongst pH=3, 5 and 8) was pH= 5. Further studies are needed to identify the peroxy acid degradation intermediates and to investigate their effects on SWCNTs. PMID:23369540

  7. Potential Biosorbent Derived from Calligonum polygonoides for Removal of Methylene Blue Dye from Aqueous Solution

    PubMed Central

    Nasrullah, Asma; Khan, Hizbullah; Khan, Amir Sada; Man, Zakaria; Muhammad, Nawshad; Khan, Muhammad Irfan; Abd El-Salam, Naser M.

    2015-01-01

    The ash of C. polygonoides (locally called balanza) was collected from Lakki Marwat, Khyber Pakhtunkhwa, Pakistan, and was utilized as biosorbent for methylene blue (MB) removal from aqueous solution. The ash was used as biosorbent without any physical or chemical treatment. The biosorbent was characterized by using various techniques such as Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The particle size and surface area were measured using particle size analyzer and Brunauer-Emmett-Teller equation (BET), respectively. The SEM and BET results expressed that the adsorbent has porous nature. Effects of various conditions such as initial concentration of methylene blue (MB), initial pH, contact time, dosage of biosorbent, and stirring rate were also investigated for the adsorption process. The rate of the adsorption of MB on biomass sample was fast, and equilibrium has been achieved within 1 hour. The kinetics of MB adsorption on biosorbent was studied by pseudo-first- and pseudo-second-order kinetic models and the pseudo-second-order has better mathematical fit with correlation coefficient value (R2) of 0.999. The study revealed that C. polygonoides ash proved to be an effective, alternative, inexpensive, and environmentally benign biosorbent for MB removal from aqueous solution. PMID:25705714

  8. BiFeO?/?-Fe?O? core/shell composite particles for fast and selective removal of methyl orange dye in water.

    PubMed

    Tseng, Wenjea J; Lin, Ruei-De

    2014-08-15

    BiFeO3/?-Fe2O3 core/shell composite particles featuring fast removal, selective adsorption, and magnetic recycle capability on anionic methyl orange (MO) dye in water was synthesized by a two-step chemical route. A discontinuous and rough shell consisting of the ?-Fe2O3 nanoparticles was deposited on the BiFeO3 core surface preferentially, forming raspberry-like core/shell particle morphology. The core/shell particles demonstrated a pronounced adsorption to the MO molecules when compared with particulate mixtures of the same molar ratio. At an initial MO concentration of 2.5×10(-5) M, nearly 80% of the dye molecules were captured by the core/shell particles within 5 min at an acidic pH of 5.2. Desorption of the MO dye could be made easily when the solution pH was adjusted to 9.5. This together with a minute adsorption capacity (<2%) from solutions consisting of cationic methylene blue (MB) dye suggests that the adsorption selectivity was in part due to electrostatic interactions between the dye molecules and the core/shell particles. PMID:24910040

  9. Removal of aqueous cyanide with strongly basic ion-exchange resin.

    PubMed

    Simsek, Halis; Kobya, Mehmet; Khan, Eakalak; Bezbaruah, Achintya N

    2015-01-01

    The removal of cyanide (CN-) from aqueous solutions using a strongly basic ion-exchange resin, Purolite A-250, was investigated. The effects of contact time, initial CN- concentration, pH, temperature, resin dosage, agitation speed, and particle size distribution on the removal of CN- were examined. The adsorption equilibrium data fitted the Langmuir isotherm very well. The maximum CN- adsorption capacity of Purolite A-250 was found to be 44?mg?CN-?g(-1) resin. More than 90% CN- adsorption was achieved for most CN- solutions (50, 100, and 200?mg?CN-?L(-1)) with a resin dose of 2?g?L(-1). The equilibrium time was ?20?min, optimum pH was 10.0-10.5, and optimum agitation speed was 150?rpm. An increase in adsorption of CN- with increasing resin dosage was observed. Adsorption of CN- by the resin was marginally affected (maximum 4% variation) within an environmentally relevant temperature range of 20-50?°C. Fixed-bed column (20.5?mm internal diameters) experiments were performed to investigate the effects of resin bed depth and influent flow rate on breakthrough behaviour. Breakthrough occurred in 5?min for 0.60?cm bed depth while it was 340?min for 5.40?cm bed depth. Adsorption capacity was 25.5?mg?CN-?g(-1) for 5?mL?min(-1) flow rate and 3.9?mg?CN-?g(-1) for 20?mL?min(-1) flow rate. The research has established that the resin can be effectively used for CN- removal from aqueous solutions. PMID:25558868

  10. Glutaraldehyde cross-linked magnetic chitosan nanocomposites: Reduction precipitation synthesis, characterization, and application for removal of hazardous textile dyes.

    PubMed

    Kadam, Avinash A; Lee, Dae Sung

    2015-10-01

    Magnetic chitosan nanocomposites (MCNCs) were synthesized by an inexpensive reduction precipitation technique using a glutaraldehyde cross-linking agent at room temperature. Successful chitosan coating of iron oxide nanoparticles was confirmed by X-ray photoemission spectroscopy. X-ray diffraction data revealed crystalline particle sizes for the iron oxide and MCNCs to be around 6-7 and 8-9 nm, respectively. In addition, the MCNCs exhibited supermagnetic properties having magnetic saturation of 17.5 emu/g. The synthesized MCNCs showed 91.60% absorption of Acid Red 2, while iron oxide 16.40% absorption; enhanced performance in MCNCs was resulted from presence of free amino and hydroxyl groups. Furthermore, the optimum pH and adsorbent concentration were 3 and 1.0 g/L, respectively. The Redlich-Peterson isotherm fit experimental data better than Langmuir and Freundlich models, based on non-linear regression. Finally, MCNCs showed 96% American Dye Manufacturing Institute (ADMI) value removal and gave recovery efficiency of 100%, making them attractive for further practical applications. PMID:26166462

  11. A novel reusable nanocomposite for complete removal of dyes, heavy metals and microbial load from water based on nanocellulose and silver nano-embedded pebbles.

    PubMed

    Suman; Kardam, Abhishek; Gera, Meeta; Jain, V K

    2015-01-01

    The present work proposed a nanocellulose (NC)-silver nanoparticles (AgNPs) embedded pebbles-based composite material as a novel reusable cost-effective water purification device for complete removal of dyes, heavy metals and microbes. NC was prepared using acid hydrolysis of cellulose. The AgNPs were generated in situ using glucose and embedded within the porous concrete pebbles by the technique of inter-diffusion of ion, providing a very strong binding of nanoparticles within the porous pebbles and thus preventing any nanomaterials leaching. Fabrication of a continual running water purifier was achieved by making different layering of NC and Ag nano-embedded pebbles in a glass column. The water purifier exhibited not only excellent dye and heavy metal adsorption capacity, but also long-term antibacterial activity against pathogenic and non-pathogenic bacterial strains. The adsorption mainly occurred through electrostatic interaction and pore diffusion also contributed to the process. The bed column purifier has shown 99.48% Pb(II) and 98.30% Cr(III) removal efficiency along with 99% decontamination of microbial load at an optimum working pH of 6.0. The high adsorption capacity and reusability, with complete removal of dyes, heavy metals and Escherichia coli from the simulated contaminated water of composite material, will provide new opportunities to develop a cost-effective and eco-friendly water purifier for commercial application. PMID:25243917

  12. Fabrication and dye removal performance of magnetic CuFe2O4@CeO2 nanofibers

    NASA Astrophysics Data System (ADS)

    Zou, Lianli; Wang, Qiuju; Shen, Xiangqian; Wang, Zhou; Jing, Maoxiang; Luo, Zhou

    2015-03-01

    Novel magnetic adsorbents with CeO2 nanoparticles (about 20 nm) coated on CuFe2O4 nanofibers were fabricated by combining electrospinning technique and chemical precipitation methods. The prepared CuFe2O4@CeO2 composite nanofibers show a diameter of 200 nm with a high specific surface area of 64.12 m2/g. These composite nanofibers exhibit a typical soft-magnetic materials behavior with a specific saturation magnetization (Ms) of 20.51 Am2/kg. The adsorption performances of these composite nanofibers were evaluated by column bed studies for methyl orange (MO) removal from aqueous solution. The effect of pH, flow rate and dye concentration on adsorption performances were investigated. The results show that the adsorption capacity decreases with increase of pH. The largest adsorption capacity of the column beds shows about 100 g/mL under the condition of C0 = 0.05 mg/mL, F = 2.0 mL/min and pH 4.0. The kinetic process is described by Thomas model. The rate constant decreases with the extension of reaction time and decreasing pH. The desorption behaviors are also studied in 0.5 M NaCl solution, ethyl alcohol and deionized water, respectively, which show that the adsorbed MO molecules can be easily desorbed from CuFe2O4@CeO2 composite nanofibers in NaCl solution. The adsorption mechanism of ionic interaction, formation of hydrogen bonds and pore diffusion is rationally proposed.

  13. Response surface-optimized removal of Reactive Red 120 dye from its aqueous solutions using polyethyleneimine enhanced ultrafiltration.

    PubMed

    Dasgupta, J; Singh, M; Sikder, J; Padarthi, V; Chakraborty, S; Curcio, S

    2015-11-01

    Retention of toxic dyes with molecular weights lower than the molecular weight cut-off (MWCO) of the ultrafiltration membranes can be improved through selective binding of the target dyes to a water-soluble polymer, followed by ultrafiltration of the macromolecular complexes formed. This method, often referred to as polymer enhanced ultrafiltration (PEUF), was investigated in the present study, using polyethyleneimine (PEI) as the chelating agent. Model azo dye Reactive Red 120 was selected as the poorly biodegradable, target contaminant, because of its frequent recalcitrant presence in colored effluents, and its eventual ecotoxicological impacts on the environment. The effects of the governing process factors, namely, cross flow rate, transmembrane pressure polymer to dye ratio and pH, on target dye rejection efficiency were meticulously examined. Additionally, each parameter level was statistically optimized using central composite design (CCD) from the response surface methodology (RSM) toolkit, with an objective to maximize performance efficiency. The results revealed high dye retention efficiency over 99%, accompanied with reasonable permeate flux over 100L/m(2)h under optimal process conditions. The estimated results were elucidated graphically through response surface (RS) plots and validated experimentally. The analyses clearly established PEUF as a novel, reasonably efficient and economical route for recalcitrant dye treatment. PMID:25575914

  14. Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor.

    PubMed

    Cui, Dan; Guo, Yu-Qi; Cheng, Hao-Yi; Liang, Bin; Kong, Fan-Ying; Lee, Hyung-Sool; Wang, Ai-Jie

    2012-11-15

    Azo dyes that consist of a large quantity of dye wastewater are toxic and persistent to biodegradation, while they should be removed before being discharged to water body. In this study, Alizarin Yellow R (AYR) as a model azo dye was decolorized in a combined bio-system of membrane-free, continuous up-flow bio-catalyzed electrolysis reactor (UBER) and subsequent aerobic bio-contact oxidation reactor (ABOR). With the supply of external power source 0.5 V in the UBER, AYR decolorization efficiency increased up to 94.8±1.5%. Products formation efficiencies of p-phenylenediamine (PPD) and 5-aminosalicylic acid (5-ASA) were above 90% and 60%, respectively. Electron recovery efficiency based on AYR removal in cathode zone was nearly 100% at HRTs longer than 6 h. Relatively high concentration of AYR accumulated at higher AYR loading rates (>780 gm(-3) d(-1)) likely inhibited acetate oxidation of anode-respiring bacteria on the anode, which decreased current density in the UBER; optimal AYR loading rate for the UBER was 680 gm(-3) d(-1) (HRT 2.5 h). The subsequent ABOR further improved effluent quality. Overall the Chroma decreased from 320 times to 80 times in the combined bio-system to meet the textile wastewater discharge standard II in China. PMID:23009797

  15. Removal of hazardous azopyrazole dye from an aqueous solution using rice straw as a waste adsorbent: Kinetic, equilibrium and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    El-Bindary, Ashraf A.; El-Sonbati, Adel Z.; Al-Sarawy, Ahmad A.; Mohamed, Khaled S.; Farid, Mansour A.

    2015-02-01

    In this research, activated carbonmade from rice straw (ACRS) was synthesized simply by a low cost and nontoxic procedure and used for the adsorption of hazardous azopyrazole dye. The effect of different variables in the batch method as a function of solution pH, contact time, concentration of adsorbate, adsorbent dosage and temperature were investigated and optimal experimental conditions were ascertaine. Surface modification of ACRS using scanning electron microscopy (SEM) was obtained. More than 75% removal efficiency was obtained within 75 min at adsorbent dose of 0.5 g for initial dye concentration of 30-100 mg L-1 at pH 3. The experimental equilibrium data were tested by the isotherm models namely, Langmuir and Freundlich adsorption and the isotherm constants were determined. The kinetic data obtained with different initial concentration and temperature were analyzed using a pseudo-first-order and pseudo-second-order equations. The activation energy of adsorption was also evaluated and found to be +13.25 kJ mol-1 indicating that the adsorption is physisorption. The thermodynamics of the adsorption indicated spontaneous and exothermic nature of the process. The results indicate that ACRS could be employed as low-cost material for the removal of acid dyes from aqueous solution.

  16. Magnetic activated carbon-Fe3O4 nanocomposites--synthesis and applications in the removal of acid yellow dye 17 from water.

    PubMed

    Ranjithkumar, V; Hazeen, A Nizarul; Thamilselvan, M; Vairam, S

    2014-07-01

    In this work, synthesis of activated carbon-Fe3O4 composites using activated carbon and iron benzoate/oxalate precursors by simple pyrolytic method and its utility for the removal of acid yellow dye from water are presented. Iron carboxylates held up into the pores of carbon dissociate at their decomposition temperatures form dispersed Fe3O4 nanoparticles in carbon matrix. The composites were characterized by FTIR, PXRD, SEM, TEM, EDX and magnetization measurements. The size of the nano iron oxides are in the range of 21-33 nm formed from iron benzoate precursor and 6-11 nm from iron oxalate precursor. The oxides are magnetic and their saturation magnetization in the range of 0.08-0.16 emu/g and Coercivity (H(c)) 474-600, being lower and higher than that of bare bulk Fe3O4 are due to the nano size of oxides. Composites find application in the removal of acid yellow dye 17 from the synthetic aqueous solution at pH 5. The adsorption data are found to fit well for Langmuir adsorption isotherm. Kinetics data of adsorption of dyes indicate that the adsorption follows pseudo-second order kinetic model. PMID:24757966

  17. Selective removal of toxic anionic dyes using a novel nanocomposite derived from cationically modified guar gum and silica nanoparticles.

    PubMed

    Patra, Abhay Shankar; Ghorai, Soumitra; Ghosh, Shankhamala; Mandal, Barun; Pal, Sagar

    2016-01-15

    A novel nanocomposite derived from cationically modified guar gum and in-situ incorporated SiO2 NP (cat-GG/SiO2) has been developed. The cat-GG has been synthesised by grafting poly(2-(diethylamino)ethyl methacrylate) on GG backbone. Various analyses endorse the suitability of cat-GG as well-organized template for the development of homogeneous SiO2 NPs. Dye adsorption studies predict that cat-GG/SiO2 efficiently and selectively adsorb anionic dyes (reactive blue-RB and Congo red-CR) from mixture of dye solutions. This is because of high surface area, multifunctional chelating H-bonding interactions and electrostatic interactions of cationic adsorbent with anionic dyes. Dyes adsorbed on the composite surface are desorbed reversibly using pH 10 stripping solution. Besides, cat-GG/SiO2 has been recycled efficiently with no prominent loss of dye uptake capacity, even after 4 adsorption-desorption cycles. PMID:26348145

  18. Synthesis of porous chitosan-polyaniline/ZnO hybrid composite and application for removal of reactive orange 16 dye.

    PubMed

    Kannusamy, Pandiselvi; Sivalingam, Thambidurai

    2013-08-01

    For the first time, chitosan-polyaniline/ZnO hybrids were prepared through a polymerization of aniline hydrochloride in the presence of ZnCl2 and chitosan. The hybrid materials were characterized by FT-IR, BET, SEM, UV-vis spectra and XRD analysis. From the BET and SEM micrographs, the introduction of ZnO nanoparticles into chitosan-polyaniline hybrid could obviously increase the porosity due to good possibility for dye adsorption. Adsorption experiments were carried out as a function of contact time, concentration of dye, adsorbent dosage and pH using reactive orange 16 as a model pollutant. The adsorption equilibrium data were fitted well to the Langmuir isotherm equation, with maximum adsorption capacity value was found to be 476.2mgg(-1). Adsorption kinetics was best described by the pseudo-second-order model agreed well with the experimental data and good correlation (R(2)>0.999). Photocatalytic degradation of dye under UV irradiation at pH 5.8 has also been examined. FT-IR spectrum clearly indicates that before adsorption of hybrid showed the functional groups of chitosan and polyaniline, whereas the dye adsorbed hybrid only present the dye molecules and ZnO. Based on the results of present investigation, the introduction of ZnCl2 into chitosan-polyaniline hybrid will enhance the adsorption of reactive dyes and photocatalytic degradation. PMID:23563288

  19. Dye remover poisoning

    MedlinePLUS

    ... Blood: Severe change in acid level of blood (pH balance), which leads to damage in all of ... was swallowed, immediately give the person water or milk, unless instructed otherwise by a health care provider. ...

  20. A green-chemical synthetic route to fabricate a lamellar-structured Co/Co(OH)2 nanocomposite exhibiting a high removal ability for organic dye.

    PubMed

    Wu, Longyun; Liu, Yuhua; Zhang, Lishu; Zhao, Lijun

    2014-04-14

    A novel lamellar-structured Co/Co(OH)2 nanocomposite was synthesized with a room-temperature solution-phase reduction method. A possible reaction mechanism and shape evolutionary process for the Co/Co(OH)2 nanocomposite were supposed. The Co/Co(OH)2 nanocomposite shows a ferromagnetic behavior. Congo red (CR) was used to evaluate the Co/Co(OH)2 nanocomposite wastewater treatment capability. It was found that 150 ppm of CR could be removed from an aqueous solution within 10 min using the Co/Co(OH)2 nanocomposite, and the adsorption maximum is 2058 mg g(-1) which is higher than all previously reported values. The significantly reduced treatment time required to remove the CR and the simple, low-cost and pollution-free preparation method make the Co/Co(OH)2 nanocomposite promising for use in the highly efficient removal of dyes from wastewater. PMID:24519445

  1. Evaluation of the treatment performance of lab-scaled vertical flow constructed wetlands in removal of organic compounds, color and nutrients in azo dye-containing wastewater.

    PubMed

    Dogdu, Gamze; Yalcuk, Arda

    2016-02-01

    The objective of this study is to examine the treatment performance of vertical flow intermittent feeding constructed wetland (VFCW) in removal of organic pollution, nutrients and color in azo-dye containing wastewater. The systems consisted of PVC reactors, some filling materials such as gravel, sand and zeolite and wetland plants including Typha angustifolia and Canna indica. The average treatment efficiency of the systems for COD, color, sulphate, NH4-N, and PO4-P were in the range of 57-63%, 94-99%, 44-48%, 39-44%, and 84-88%, respectively among the VFCW reactors. It is concluded that VFCW reactor system can effectively be used in the treatment of dye-rich wastewater, especially for the removal of color and in the reduction of COD. Biofilm formation and cleavage of azo bonds could be observed by SEM and FTIR results, respectively. Almost similar NH4-N and PO4-P removal were obtained in all reactors by using same amount of zeolite media. PMID:26248021

  2. Removal of reactive dyes from textile wastewater by immobilized chitosan upon grafted Jute fibers with acrylic acid by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Hassan, Mahmoud S.

    2015-10-01

    Jute fibers were grafted with acrylic acid by gamma irradiation technique. Chitosan was immobilized upon the grafted Jute fibers to be used as an adsorbent for waste reactive dye. The treated Jute fibers were characterized by using of Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effect of Jute treatment on its thermal stability by using thermogravimetric analysis (TGA) and its mechanical properties were investigated. The adsorption isotherm and the different factors affecting the dye adsorption such as pH and contact time were also studied. It was found that the dye adsorption was enhanced in the low pH range and increased with increasing of the contact time, regardless of temperature change.

  3. One-step synthesized calcium phosphate-based material for the removal of alizarin S dye from aqueous solutions: isothermal, kinetics, and thermodynamics studies

    NASA Astrophysics Data System (ADS)

    Adeogun, Abideen Idowu; Babu, Ramesh Balakrishnan

    2015-07-01

    Calcium phosphate hydroxyapatite (Ca-Hap) synthesized from CaCO3 and H3PO5, it was characterized by scanning electron microscopy, Fourier transform infrared, and X-ray diffraction. The Ca-Hap was used for the removal of Alizarin Red S dye from its aqueous solution. The kinetics, equilibrium, and thermodynamic of the adsorption of the dye onto the Ca-Hap were investigated. The effects of contact time, initial dye concentration, pH as well as temperature on adsorption capacity of Ca-Hap were studied. Experimental data were analyzed using six model equations: Langmuir, Freudlinch, Redlich-Peterson, Temkin, Dubinin-Radushkevich, and Sips isotherms and it was found that the data fitted well with Sips and Dubinin-Radushkevich isotherm models. Pseudo-first-order, pseudo-second-order, Elovic, and Avrami kinetic models were used to test the experimental data in order to elucidate the kinetic adsorption process and it was found that pseudo-second-order model best fit the data. The calculated thermodynamics parameters (?G°, ?H° and ?S°) indicated that the process is spontaneous and endothermic in nature.

  4. In situ generation of hydroxyl radical by cobalt oxide supported porous carbon enhance removal of refractory organics in tannery dyeing wastewater.

    PubMed

    Karthikeyan, S; Boopathy, R; Sekaran, G

    2015-06-15

    In this study, cobalt oxide doped nanoporous activated carbon (Co-NPAC) was synthesized and used as a heterogeneous catalyst for the Fenton oxidation of organic dye chemicals used in tannery process. The nanoporous activated carbon (NPAC) was prepared from rice husk by precarbonization followed by chemical activation at elevated temperature (600 °C). The cobalt oxide was impregnated onto NPAC and characterized for UV-visible, Fluorescence spectroscopy, FT-IR, HR-TEM, XRD, BET surface area and XPS analyses. The hydroxyl radical generation potential of Co-NPAC from hydrogen peroxide decomposition was identified (?(exi), 320 nm; ?(emi), 450 nm) by Excitation Emission Spectra (EES) analysis. The conditions for the degradation of tannery dyeing wastewater such as, Co-NPAC dose, concentration of H2O2, and temperature were optimized in heterogeneous Fenton oxidation process and the maximum percentage of COD removal was found to be 77%. The treatment of dyes in wastewater was confirmed through UV-Visible spectra, EES and FT-IR spectra analyses. PMID:25733392

  5. Removing Structural Disorder from Oriented TiO2 Nanotube Arrays: Reducing the Dimensionality of Transport and Recombination in Dye-Sensitized Solar Cells

    SciTech Connect

    Zhu, K.; Vinzant, T. B.; Neale, N. R.; Frank, A. J.

    2007-01-01

    We report on the influence of morphological disorder, arising from bundling of nanotubes (NTs) and microcracks in films of oriented TiO{sub 2} NT arrays, on charge transport and recombination in dye-sensitized solar cells (DSSCs). Capillary stress created during evaporation of liquids from the mesopores of dense TiO{sub 2} NT arrays was of sufficient magnitude to induce bundling and microcrack formation. The average lateral deflection of the NTs in the bundles increased with the surface tension of the liquids and with the film thicknesses. The supercritical CO{sub 2} drying technique was used to produce bundle-free and crack-free NT films. Charge transport and recombination properties of sensitized films were studied by frequency-resolved modulated photocurrent/photovoltage spectroscopies. Transport became significantly faster with decreased clustering of the NTs, indicating that bundling creates additional pathways via intertube contacts. Removing such contacts alters the transport mechanism from a combination of one and three dimensions to the expected one dimension and shortens the electron-transport pathway. Reducing intertube contacts also resulted in a lower density of surface recombination centers by minimizing distortion-induced surface defects in bundled NTs. A causal connection between transport and recombination is observed. The dye coverage was greater in the more aligned NT arrays, suggesting that reducing intertube contacts increases the internal surface area of the films accessible to dye molecules. The solar conversion efficiency and photocurrent density were highest for DSSCs incorporating films with more aligned NT arrays owing to an enhanced light-harvesting efficiency. Removing structural disorder from other materials and devices consisting of nominally one-dimensional architectures (e.g., nanowire arrays) should produce similar effects.

  6. Green synthesis of AgI-reduced graphene oxide nanocomposites: Toward enhanced visible-light photocatalytic activity for organic dye removal

    NASA Astrophysics Data System (ADS)

    Reddy, D. Amaranatha; Lee, Seunghee; Choi, Jiha; Park, Seonhwa; Ma, Rory; Yang, Haesik; Kim, Tae Kyu

    2015-06-01

    Novel reduced graphene oxide (RGO) enwrapped AgI nanocomposites were successfully fabricated by a facile template-free ultrasound-assisted method at room temperature. The structural, morphological, and optical studies demonstrate that the obtained nanostructures have good crystallinity and that the graphene nanosheets are decorated densely with AgI nanostructures. The photocatalytic activity of the composite was evaluated by the degradation of an organic dye, Rhodamine B (RhB), under visible-light irradiation. The results indicate that AgI with incorporated graphene exhibited much higher photocatalytic activity than the pure AgI due to the improved separation efficiency of the photogenerated carriers and that it prolonged the lifetime of the electron-hole pairs due to the chemical bonding between AgI and graphene. AgI (0.4 mg mL-1 of graphene oxide) nanocomposites displayed the highest photocatalytic degradation efficiency and the corresponding catalytic efficiencies within 70 min were ?96%. Moreover, with the assistance of H2O2 the photocatalytic ability of the as-obtained AgI-RGO nanocomposites was enhanced. The corresponding catalytic efficiencies within 30 min were ?96.8% (for 1 mL H2O2) under the same irradiation conditions. The excellent visible-light photocatalytic efficiency and luminescence properties make the AgI-RGO nanocomposites promising candidates for the removal of organic dyes for water purification and enable their application in near-UV white LEDs.

  7. Microwave-enhanced UV/H2O2 degradation of an azo dye (tartrazine): optimization, colour removal, mineralization and ecotoxicity.

    PubMed

    Parolin, Fernanda; Nascimento, Ulisses Magalhães; Azevedo, Eduardo Bessa

    2013-01-01

    This study optimizes two factors, pH and initial [H2O2], in the ultraviolet (UV)/H2O2/microwave (MW) process through experimental design and assesses the effect of MWs on the colour removal of an azo-dye (tartrazine) solution that was favoured by an acidic pH. The estimated optimal conditions were: initial [H2O2] = 2.0 mmol L(-1) and pH = 2.6, at 30 +/- 2 degrees C. We obtained colour removals of approximately 92% in 24 min of irradiation (EDL, 244.2 W), following zero order kinetics: k = (3.9 +/- 0.52) x 10(-2) a.u. min(-1) and R2 = 0.989. Chemical and biological oxygen demand were significantly removed. On the other hand, the carbon content, biodegradability and ecotoxicity (Lactuca sativa) remained approximately the same. The UV/H2O2/MW process was shown to be eight times faster than other tested processes (MW, H2O2, H2O2/MW, and UV/MW). PMID:24191458

  8. Significantly enhanced dye removal performance of hollow tin oxide nanoparticles via carbon coating in dark environment and study of its mechanism

    PubMed Central

    2014-01-01

    Understanding the correlation between physicochemical properties and morphology of nanostructures is a prerequisite for widespread applications of nanomaterials in environmental application areas. Herein, we illustrated that the uniform-sized SnO2@C hollow nanoparticles were large-scale synthesized by a facile hydrothermal method. The size of the core-shell hollow nanoparticles was about 56 nm, and the shell was composed of a solid carbon layer with a thickness of 2?~?3 nm. The resulting products were characterized in terms of morphology, composition, and surface property by various analytical techniques. Moreover, the SnO2@C hollow nanoparticles are shown to be effective adsorbents for removing four different dyes from aqueous solutions, which is superior to the pure hollow SnO2 nanoparticles and commercial SnO2. The enhanced mechanism has also been discussed, which can be attributed to the high specific surface areas after carbon coating. PMID:25221462

  9. Color Tuning of an Acidic Blue Dye by Intercalation into the Basic Interlayer Galleries of a Poly(allylamine)/Synthetic Fluoromica

    E-print Network

    conjugated system and a free sulfonate group. Introduction Many organic dyes are used in the food, cosmetics and hydroxide. For food, medical, and cosmetics applications, however, only certain acidic dyes for cosmetics, the use is strictly restricted by the Pollutant Release and Transfer Register (PRTR

  10. Phytoremediation of dye contaminated soil by Leucaena leucocephala (subabul) seed and growth assessment of Vigna radiata in the remediated soil

    PubMed Central

    Jayanthy, V.; Geetha, R.; Rajendran, R.; Prabhavathi, P.; Karthik Sundaram, S.; Dinesh Kumar, S.; Santhanam, P.

    2013-01-01

    The present study was investigated for soil bioremediation through sababul plant biomass (Leucaena leucocephala). The soil contaminated with textile effluent was collected from Erode (chithode) area. Various physico-chemical characterizations like N, P, and K and electrical conductivity were assessed on both control and dye contaminated soils before and after remediation. Sababul (L. leucocephala) powder used as plant biomass for remediation was a tool for textile dye removal using basic synthetic dyes by column packing and eluting. The concentration of the dye eluted was compared with its original concentration of dye and were analyzed by using UV–vis spectrophotometer. Sababul plant biomass was analyzed for its physico-chemical properties and active compounds were detected by GC–MS, HPTLC and FTIR. Plant growth was assessed with green gram on the textile contaminated soil and sababul had the potential of adsorbing the dye as the contaminated soil and also check the growth of green gram. PMID:25183943

  11. Artificial neural network modeling of photocatalytic removal of a disperse dye using synthesized of ZnO nanoparticles on montmorillonite.

    PubMed

    K?ran?an, Murat; Khataee, Alireza; Karaca, Semra; Sheydaei, Mohsen

    2015-04-01

    In this study, the photocatalytic ability of ZnO/Montmorilonite (ZnO/MMT) nanocomposite under UV-A, UV-B and UV-C radiation was investigated. ZnO nanoparticles were synthesized on the surface of MMT and used as photocatalyst in decolorization of Disperse Red 54 (DR54) solution. Synthesized nanocomposite was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) techniques and nitrogen adsorption/desorption isotherms curves. The average width of synthesized ZnO particles is in the range of 30-45 nm. Effect of UV light regions, initial dye concentration, initial dosage of nanocomposite, and reusability of catalyst was studied on decolorization efficiency. The highest decolorization efficiency was achieved under UV-C radiation. A three-layered feed forward back propagation artificial neural network model was developed to predict the photocatalysis of DR54 under UV-C radiation. According to ANN model the ZnO/MMT dosage with a relative importance of 49.21% is the most influential parameter in the photocatalytic decolorization process. PMID:25638428

  12. Humic acid adsorption onto cationic cellulose nanofibers for bioinspired removal of copper(II) and a positively charged dye.

    PubMed

    Sehaqui, H; Perez de Larraya, Uxua; Tingaut, P; Zimmermann, T

    2015-07-14

    Waste pulp residues are herein exploited for the synthesis of a sorbent for humic acid (HA), which is a major water pollutant. Cellulose pulp was etherified with a quaternary ammonium salt in water thereby introducing positive charges onto the surface of the pulp fibers, and subsequently mechanically disintegrated into high surface area cellulose nanofibers (CNF). CNF with three different charge contents were produced and their adsorption capacity towards HA was investigated with UV-spectrophotometry, quartz crystal microbalance with dissipation, and ?-potential measurements. Substantial coverage of the CNF surface with HA in a wide pH range led to a reversal of the positive ?-potentials of CNF suspensions. The HA adsorption capacity and the kinetics of HA uptake were found to be promoted by both acidic pH conditions and the surface charge content of CNF. It is suggested that HA adsorption onto CNF depends on electrostatic interactions between the two components, as well as on the conformation of HA. At pH ? 6, up to 310 mg g(-1) of HA were adsorbed by the functionalized CNF, a substantially higher capacity than that of previously reported HA sorbents in the literature. It is further shown that CNF-HA complexes could be freeze-dried into "soil-mimicking" porous foams having good capacity to capture Cu(II) ions and positive dyes from contaminated water. Thus, the most abundant natural polymer, i.e., cellulose could effectively bind the most abundant natural organic matter for environmental remediation purpose. PMID:26052685

  13. Post-crosslinking towards stimuli-responsive sodium alginate beads for the removal of dye and heavy metals.

    PubMed

    Lu, Ting; Xiang, Tao; Huang, Xue-Lian; Li, Cheng; Zhao, Wei-Feng; Zhang, Qian; Zhao, Chang-Sheng

    2015-11-20

    Post-crosslinking as a new strategy to prepare sodium alginate (SA) beads with controllable swelling behavior, pH sensitivity and adsorption capacity was developed by using the solution of glutaraldehyde (GA), acetic acid and hydrochloric acid as the coagulating agent, for which could be used to fabricate polysaccharide beads in a large scale. Fourier transform infrared spectroscopy and thermogravimetric analysis convinced the successful cross-linking of SA by GA. The macro-porous structures of the beads were observed by scanning electron microscopy. Both acetic acid and hydrochloric acid had great effects on the swelling behavior and pH sensitivity of the SA beads. The SA beads could adsorb cationic dye (methylene blue) as high as 572mg/g and other metal ions (Cu(2+), Ag(+) and Fe(3+)). The adsorption processes fitted well with the pseudo-second-order kinetic model and the Freundlich isotherm. The large-scale production of SA beads with tunable properties opens a new route to industrially utilize polysaccharide beads in wastewater treatments, intelligent separation and so on. PMID:26344317

  14. ASSESSMENT OF POTENTIAL TOXIC RELEASES FROM LEATHER INDUSTRY DYEING OPERATIONS

    EPA Science Inventory

    The study focused on the organic dyes released to the environment in the wastewaters from leather dyeing operations. Basically, three types of dyes--acid, basic, and direct--are used, although the number of different dyes are well over 50, and the number of formulations used at a...

  15. High basicity adsorbents from solid residue of cellulose and synthetic polymer co-pyrolysis for phenol removal: Kinetics and mechanism

    NASA Astrophysics Data System (ADS)

    Lorenc-Grabowska, Ewa; Rutkowski, Piotr

    2014-10-01

    The activated carbons (ACs) produced from solid residue of cellulose and synthetic polymer co-pyrolysis (CACs) and commercial activated carbon from coconut shell (GC) were used for phenol removal. The adsorption kinetics and mechanism were investigated. All studied activated carbons are predominantly microporous and are characterized by basic surface characteristics. Surface area SBET varies between 1235 and 1499 m2/g, whereas the pHPZC changes from 7.70 to 10.63. The bath adsorption of phenol (P) was carried out at ambient temperature. The equilibrium time and equilibrium sorption capacity were determined. It was found that the boundary layer effect is bigger in AC with high basic characteristics of the surface. The rate controlling step is the intraparticle diffusion in CACs only, whereas in ACs with higher amount of acidic functionalities the adsorbate-surface interaction influences the rate of kinetic as well. The equilibrium isotherms are L2 type for commercial AC and L4 for CACs. The CACs are characterized by very high adsorption capacity that vary between 312 and 417 mg/g. The main mechanism of phenol adsorption is micropore filling within pores smaller than 1.4 nm. In the absence of solvent effect further adsorption of phenol on CACs takes place. The enhanced adsorption is due to dispersive/repulsive interaction induced by oxygen functionalities.

  16. Microwave induced synthesis of graft copolymer of binary vinyl monomer mixtures onto delignified Grewia optiva fiber: application in dye removal

    PubMed Central

    Gupta, Vinod Kumar; Pathania, Deepak; Priya, Bhanu; Singha, Amar Singh; Sharma, Gaurav

    2014-01-01

    Grafting method, through microwave radiation technique is very effective in terms of time consumption, cost effectiveness and environmental friendliness. Via this method, delignified Grewia optiva identified as a waste biomass, was graft copolymerized with methylmethacrylate (MMA) as an principal monomer in a binary mixture of ethyl methacrylate (EMA) and ethyl acrylate (EA) under microwave irradiation (MWR) using ascorbic acid/H2O2 as an initiator system. The concentration of the comonomer was optimized to maximize the graft yield with respect to the primary monomer. Maximum graft yield (86.32%) was found for dGo-poly(MMA-co-EA) binary mixture as compared to other synthesized copolymer. The experimental results inferred that the optimal concentrations for the comonomers to the optimized primary monomer was observed to be 3.19 mol/L × 10?1 for EMA and 2.76 mol/L × 10?1 for EA. Delignified and graft copolymerized fiber were subjected to evaluation of physicochemical properties such as swelling behavior and chemical resistance. The synthesized graft copolymers were characterized with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and X-ray diffraction techniques. Thermal stability of dGo-poly(MMA-co-EA) was found to be more as compared to the delignified Grewia optiva fiber and other graft copolymers. Although the grafting technique was found to decrease percentage crystallinity and crystallinity index among the graft copolymers but there was significant increase in their acid/base and thermal resistance properties. The grafted samples have been explored for the adsorption of hazardous methylene dye from aqueous system. PMID:25157348

  17. Dye removal from aqueous solution by cobalt-nano particles decorated aluminum silicate: kinetic, thermodynamic and mechanism studies.

    PubMed

    Arshadi, M; Faraji, A R; Mehravar, M

    2015-02-15

    This article describes the preparation of a nanoadsorbent containing Co-nanoparticles decorated functionalized SiO2-Al2O3 mixed-oxides as a scavenger toward removal of methyl orange. SiO2-Al2O3 mixed-oxides were functionalized with pyridine-2-carbaldehyde and thereafter, in the next step, Co-nanoparticle was prepared over the modified mixed-oxides. The as-prepared nanoadsorbent was characterized by Fourier transform infrared (FTIR), UV-visible diffuse reflectance spectra (UV-vis DRS), inductively coupled plasma atomic emission spectroscopy (ICP-AES), Brunauer-Emmett-Teller (BET), transmission electron microscopy (TEM), electron paramagnetic resonance (EPR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Results showed that Co-nanoparticle with average size of about 5-25 nm was immobilized successfully on the surface of modified mixed-oxides and was widely dispersed. EPR and CV of Si/Al-PAEA=PyCA@CoNP confirmed that most of the covalently bond active sites of the nano-adsorbent are in the form of Co(II) ions. The supported cobalt is a suitable and efficient adsorbent for the removal of methyl orange from aqueous solution. The heterogeneous Co-NPs were found to be effective adsorbent for the removal of methyl orange ions from solution. The adsorption process was spontaneous and endothermic in nature and followed pseudo-second-order kinetic model. The CV and EIS of the Co-NPs-MO indicates an easily oxidizable environment, this being in agreement with the FTIR data, where the electron density at Co-NPs is higher due to the presence of a donor-electron ligand (methyl orange), that is, reduction of Co-NPs from +3 to +2 oxidation state is more favored. PMID:25460694

  18. Efficient removal of dyes by a novel magnetic Fe3O4/ZnCr-layered double hydroxide adsorbent from heavy metal wastewater.

    PubMed

    Chen, Dan; Li, Yang; Zhang, Jia; Li, Wenhui; Zhou, Jizhi; Shao, Li; Qian, Guangren

    2012-12-01

    A novel magnetic Fe(3)O(4)/ZnCr-layered double hydroxide adsorbent was produced from electroplating wastewater and pickling waste liquor via a two-step microwave hydrothermal method. Adsorption of methyl orange (MO) from water was studied using this material. The effects of three variables have been investigated by a single-factor method. The response surface methodology (RSM) based on Box-Behnken design was successfully applied to the optimization of the preparation conditions. The maximum adsorption capacity of MO was found to be 240.16 mg/g, indicating that this material may be an effective adsorbent. It was shown that 99% of heavy metal ions (Fe(2+), Fe(3+), Cr(3+), and Zn(2+)) can be effectively removed into precipitates and released far less in the adsorption process. In addition, this material with adsorbed dye can be easily separated by a magnetic field and recycled after catalytic regeneration with advanced oxidation technology. Meanwhile, kinetic models, FTIR spectra and X-ray diffraction pattern were applied to the experimental data to examine uptake mechanism. The boundary layer and intra-particle diffusion played important roles in the adsorption mechanisms. PMID:23122732

  19. Application of novel consortium TSR for treatment of industrial dye manufacturing effluent with concurrent removal of ADMI, COD, heavy metals and toxicity.

    PubMed

    Patel, Tallika L; Patel, Bhargav C; Kadam, Avinash A; Tipre, Devayani R; Dave, Shailesh R

    2015-01-01

    The present study was aimed towards the effective bio-treatment of actual industrial effluent containing as high as 42,000 mg/L COD (chemical oxygen demand), >28,000 ADMI (American Dye Manufacturers Institute) color value and four heavy metals using indigenous developed bacterial consortium TSR. Mineral salt medium supplemented with as low as 0.02% (w/v) yeast extract and glucose was found to remove 70% ADMI, 69% COD and >99% sorption of heavy metals in 24 h from the effluent by consortium TSR. The biodegradation of effluent was monitored by UV-vis light, HPLC (high performance liquid chromatography), HPTLC (high performance thin layer chromotography) and FTIR (Fourier transform infrared spectroscopy) and showed significant differences in spectra of untreated and treated effluent, confirming degradation of the effluent. Induction of intracellular azoreductase (107%) and NADH-DCIP reductase (128%) in addition to extracellular laccase (489%) indicates the vital role of the consortium TSR in the degradation process. Toxicity study of the effluent using Allium cepa by single cell gel electrophoresis showed detoxification of the effluent. Ninety per cent germination of plant seeds, Triticum aestivum and Phaseolus mungo, was achieved after treatment by consortium TSR in contrast to only 20% and 30% germination of the respective plants in case of untreated effluent. PMID:25945844

  20. Supramolecular Phase-Selective Gelation by Peptides Bearing Side-Chain Azobenzenes: Effect of Ultrasound and Potential for Dye Removal and Oil Spill Remediation

    PubMed Central

    Bachl, Jürgen; Oehm, Stefan; Mayr, Judith; Cativiela, Carlos; Marrero-Tellado, José Juan; Díaz Díaz, David

    2015-01-01

    Phase selective gelation (PSG) of organic phases from their non-miscible mixtures with water was achieved using tetrapeptides bearing a side-chain azobenzene moiety. The presence of the chromophore allowed PSG at the same concentration as the minimum gelation concentration (MGC) necessary to obtain the gels in pure organic phases. Remarkably, the presence of the water phase during PSG did not impact the thermal, mechanical, and morphological properties of the corresponding organogels. In the case of miscible oil/water mixtures, the entire mixture was gelled, resulting in the formation of quasi-hydrogels. Importantly, PSG could be triggered at room temperature by ultrasound treatment of the mixture or by adding ultrasound-aided concentrated solution of the peptide in an oil-phase to a mixture of the same oil and water. Moreover, the PSG was not affected by the presence of salts or impurities existing in water from natural sources. The process could be scaled-up, and the oil phases (e.g., aromatic solvents, gasoline, diesel fuel) recovered almost quantitatively after a simple distillation process, which also allowed the recovery and reuse of the gelator. Finally, these peptidic gelators could be used to quantitatively remove toxic dyes from aqueous solutions. PMID:26006247

  1. Pilot-scale study on nitrogen and aromatic compounds removal in printing and dyeing wastewater by reinforced hydrolysis-denitrification coupling process and its microbial community analysis.

    PubMed

    Li, Chao; Ren, Hongqiang; Yin, Erqin; Tang, Siyuan; Li, Yi; Cao, Jiashun

    2015-06-01

    Aiming to efficiently dispose printing and dyeing wastewater with "high organic nitrogen and aromatic compounds, but low carbon source quality", the reinforced anaerobic hydrolysis-denitrification coupling process, based on improved UASB reactors and segregated collection-disposition strategy, was designed and applied at the pilot scale. Results showed that the coupling process displayed efficient removal for these two kinds of pollutants (nitrogen and aromatics), since the concentration of NH3-N (shortened as ? (NH3-N))?

  2. Removal of methyl orange and mythelene blue dyes from aqueous solution using low cost adsorbent zeolite synthesized from fly ash.

    PubMed

    Das, Shakti; Barman, Sanghamitra; Thakur, Ruchika

    2012-10-01

    The zeolite ZX1 synthesized from fly ash was employed as effective adsorbent for removal of methylene blue and methyl orange, from its aqueous solution. In the present study, X-type and A-type zeolite were synthesized by alkali fusion, followed by hydrothermal treatment. The synthesized zeolite was then characterized using various techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM). Solution pH has an important role in the the adsorption behavior of ZX1. Higher solution pH results in higher adsorption capacity. The equilibrium results were well described by Freundlich isotherm model. Physical regeneration at high temperature showed that the adsorbent exhibits somehow lower adsorption capacity as compared to the fresh sample. The values of changes in enthalpy (deltaH(o)) and entropy (deltaS(o)) during the adsorption process were found to be -20.85 kJ/mol and -90.61 J/mol K(-1). Adsorption of methyl orange over Zeolite ZX1 is much higher than ZA1. Correlation coefficient was found to be 0.998. PMID:25151710

  3. Novel Application of Alkali Oxides in Basic Tundish Fluxes for Enhancing Inclusion Removal in 321 Stainless Steels

    NASA Astrophysics Data System (ADS)

    Yu, Jong Yeong; Kang, Youngjo; Sohn, Il

    2014-01-01

    Fundamental work on the effect of alkali oxides including Li2O, Na2O, and K2O on the absorption ability of inclusions in a typical basic tundish flux for 321 stainless steels has been studied. The effects on the absorption ability are dependent on the type of alkali oxides and the amount composed within the tundish flux. Results from kinetics studies using an induction furnace at 1823 K (1550 °C) on the reaction of tundish fluxes containing alkali oxides with 321 stainless steels suggest minimal improvement with Li2O and Na2O additions and in some cases hindered inclusion removal, but K2O additions seems to significantly improve the cleanliness in the as-quenched 321 stainless steel melts compared to preexisting tundish flux compositions. Both Li2O and Na2O significantly lower the viscosity of the melt, while K2O increases the viscosity. Although alkali oxides have a propensity to enhance the cohesion of aluminate melts due to the ionic compensation effect in [AlO4]5--tetrahedral structural units, this effect was not pronounced for Li2O and Na2O compared to K2O additions, which may be due to the large ionic radius size of potassium. An automated SEM-EDS analysis was utilized to identify the inclusion morphology and abundance within the steel. Fourier transform infrared spectroscopy was used to identify the effects of alkali oxides on the tundish flux structure for improved absorption capability and described the characteristic effect of K2O on increasing the asymmetric stretching vibrations of [AlO4]5--tetrahedral structural units and Si-O-Al bonding within the flux, thus polymerizing the flux and selectively absorbing inclusions.

  4. Synthesis of magnetic activated carbon/?-Fe2O3 nanocomposite and its application in the removal of acid yellow 17 dye from water.

    PubMed

    Ranjithkumar, V; Sangeetha, S; Vairam, S

    2014-05-30

    The adsorption of acid yellow 17 dye on activated carbon/?-Fe2O3 nanocomposite prepared by simple pyrolytic method using iron(II) gluconate was investigated by batch technique. The composite was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and vibrating sample magnetometry (VSM). The size of iron oxide nanoparticles formed from iron(II) gluconate precursor is in the range 5-17nm. The saturation magnetization (Ms), remanence (Mr) and coercivity (Hc) of the magnetic carbon nanocomposite is 5.6emu/g, 1.14emu/g and 448Oe, respectively. The adsorption data are found to fit well with Langmuir and, fairly well with Freundlich and Tempkin isotherms at higher concentration of dye (40-100mg/L). Kinetics data indicate that the adsorption of dye follows pseudo-second order kinetics model. PMID:24727015

  5. Dye Painting with Fiber Reactive Dyes

    ERIC Educational Resources Information Center

    Benjamin-Murray, Betsy

    1977-01-01

    In her description of how to use dyes directly onto fabrics the author lists materials to be used, directions for mixing dyes, techniques for applying dyes, references for additional reading and sources for dye materials. Preceding the activity with several lessons in design and other textile techniques with the dye process will ensure a…

  6. Adsorption of dyes using different types of clay: a review

    NASA Astrophysics Data System (ADS)

    Adeyemo, Aderonke Ajibola; Adeoye, Idowu Olatunbosun; Bello, Olugbenga Solomon

    2015-09-01

    Increasing amount of dyes in the ecosystem particularly in wastewater has propelled the search for more efficient low-cost adsorbents. The effective use of the sorption properties (high surface area and surface chemistry, lack of toxicity and potential for ion exchange) of different clays as adsorbents for the removal of different type of dyes (basic, acidic, reactive) from water and wastewater as potential alternatives to activated carbons has recently received widespread attention because of the environmental-friendly nature of clay materials. Insights into the efficiencies of raw and modified/activated clay adsorbents and ways of improving their efficiencies to obtain better results are discussed. Acid-modified clay resulted in higher rate of dye adsorption and an increased surface area and porosity (49.05 mm2 and 53.4 %). Base-modified clay has lower adsorption capacities, while ZnCl2-modified clay had the least rate of adsorption with a surface area of 44.3 mm2 and porosity of 43.4 %. This review also explores the grey areas of the adsorption properties of the raw clays and the improved performance of activated/modified clay materials with particular reference to the effects of pH, temperature, initial dye concentration and adsorbent dosage on the adsorption capacities of the clays. Various challenges encountered in using clay materials are highlighted and a number of future prospects for the adsorbents are proposed.

  7. Complete removal of AHPS synthetic dye from water using new electro-fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst.

    PubMed

    Labiadh, Lazhar; Oturan, Mehmet A; Panizza, Marco; Hamadi, Nawfel Ben; Ammar, Salah

    2015-10-30

    The mineralization of a new azo dye - the (4-amino-3-hydroxy-2-p-tolylazo-naphthalene-1-sulfonic acid) (AHPS) - has been studied by a novel electrochemical advanced oxidation process (EAOP), consisting in electro-Fenton (EF) oxidation, catalyzed by pyrite as the heterogeneous catalyst - the so-called 'pyrite-EF'. This solid pyrite used as heterogeneous catalyst instead of a soluble iron salt, is the catalyst the system needs for production of hydroxyl radicals. Experiments were performed in an undivided cell equipped with a BDD anode and a commercial carbon felt cathode to electrogenerate in situ H2O2 and regenerate ferrous ions as catalyst. The effects on operating parameters, such as applied current, pyrite concentration and initial dye content, were investigated. AHPS decay and mineralization efficiencies were monitored by HPLC analyses and TOC measurements, respectively. Experimental results showed that AHPS was quickly oxidized by hydroxyl radicals (OH) produced simultaneously both on BDD surface by water discharge and in solution bulk from electrochemically assisted Fenton's reaction with a pseudo-first-order reaction. AHPS solutions with 175 mg L(-1) (100 mg L(-1) initial TOC) content were then almost completely mineralized in 8h. Moreover, the results demonstrated that, under the same conditions, AHPS degradation by pyrite electro-Fenton process was more powerful than the conventional electro-Fenton process. PMID:25935408

  8. Effluent treatment in the textile industry: Dyes. (Latest citations from World Textile Abstracts). Published Search

    SciTech Connect

    Not Available

    1992-06-01

    The bibliography contains citations concerning the treatment and reuse of textile industry effluents containing dyes. The citations explore bacteria that absorb dyes, neutralization of dye effluents, color removal by ozonization and by treatment with manganese solid waste, flocculation treatment, and dye absorption methods and materials. Membrane treatment, electrolysis, and ultrafiltration methods of removing dyes from wastewater are considered, as well as reuse of dye-containing effluents. Textile effluents that do not contain dyes are discussed in another bibliography. (Contains a minimum of 244 citations and includes a subject term index and title list.)

  9. High affinity receptor labeling based on basic leucine zipper domain peptides conjugated with pH-sensitive fluorescent dye: Visualization of AMPA-type glutamate receptor endocytosis in living neurons.

    PubMed

    Hayashi, Ayako; Asanuma, Daisuke; Kamiya, Mako; Urano, Yasuteru; Okabe, Shigeo

    2016-01-01

    Techniques to visualize receptor trafficking in living neurons are important, but currently available methods are limited in their labeling efficiency, specificity and reliability. Here we report a method for receptor labeling with a basic leucine zipper domain peptide (ZIP) and a binding cassette specific to ZIP. Receptors are tagged with a ZIP-binding cassette at their extracellular domain. Tagged receptors expressed in cultured cells were labeled with exogenously applied fluorescently labeled ZIP with low background and high affinity. To test if ZIP labeling is useful in monitoring endocytosis and intracellular trafficking, we next conjugated ZIP with a pH-sensitive dye RhP-M (ZIP-RhP-M). ZIP binding to its binding cassette was pH-resistant and RhP-M fluorescence dramatically increased in acidic environment. Thus AMPA-type glutamate receptors (AMPARs) labeled by ZIP-RhP-M can report receptor endocytosis and subsequent intracellular trafficking. Application of ZIP-RhP-M to cultured hippocampal neurons expressing AMPARs tagged with a ZIP-binding cassette resulted in appearance of fluorescent puncta in PSD-95-positive large spines, suggesting local endocytosis and acidification of AMPARs in individual mature spines. This spine pool of AMPARs in acidic environment was distinct from the early endosomes labeled by transferrin uptake. These results suggest that receptor labeling by ZIP-RhP-M is a useful technique for monitoring endocytosis and intracellular trafficking. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'. PMID:26220312

  10. Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability

    PubMed Central

    Rani, Babita; Kumar, Vivek; Singh, Jagvijay; Bisht, Sandeep; Teotia, Priyanku; Sharma, Shivesh; Kela, Ritu

    2014-01-01

    Biodegradation and detoxification of dyes, Malachite green, Nigrosin and Basic fuchsin have been carried out using two fungal isolates Aspergillus niger, and Phanerochaete chrysosporium, isolated from dye effluent soil. Three methods were selected for biodegradation, viz. agar overlay and liquid media methods; stationary and shaking conditions at 25 °C. Aspergillus niger recorded maximum decolorization of the dye Basic fuchsin (81.85%) followed by Nigrosin (77.47%), Malachite green (72.77%) and dye mixture (33.08%) under shaking condition. Whereas, P. chrysosporium recorded decolorization to the maximum with the Nigrosin (90.15%) followed by Basic fuchsin (89.8%), Malachite green (83.25%) and mixture (78.4%). The selected fungal strains performed better under shaking conditions compared to stationary method; moreover the inoculation of fungus also brought the pH of the dye solutions to neutral from acidic. Seed germination bioassay study exhibited that when inoculated dye solutions were used, seed showed germination while uninoculated dyes inhibited germination even after four days of observation. Similarly, microbial growth was also inhibited by uninoculated dyes. The excellent performance of A. niger and P. chrysporium in the biodegradation of textile dyes of different chemical structures suggests and reinforces the potential of these fungi for environmental decontamination. PMID:25477943

  11. Dye laser amplifier

    DOEpatents

    Moses, E.I.

    1992-12-01

    An improved dye laser amplifier is disclosed. The efficiency of the dye laser amplifier is increased significantly by increasing the power of a dye beam as it passes from an input window to an output window within the dye chamber, while maintaining the intensity of the dye beam constant. 3 figs.

  12. Hierarchical Heteroaggregation of Binary Metal-Organic Gels with Tunable Porosity and Mixed Valence Metal Sites for Removal of Dyes in Water

    PubMed Central

    Mahmood, Asif; Xia, Wei; Mahmood, Nasir; Wang, Qingfei; Zou, Ruqiang

    2015-01-01

    Hierarchical heteronuclear metal-organic gels (MOGs) based on iron (Fe) and aluminium (Al) metal-organic framework (MOF) backbones bridged by tri-carboxylate ligands have firstly been synthesized by simple solvothermal method. Monometallic MOGs based on Fe or Al give homogenous monoliths, which have been tuned by introduction of heterogeneity in the system (mismatched growth). The developed gels demonstrate that surface areas, pore volumes and pore sizes can be readily tuned by optimizing heterogeneity. The work also elaborates effect of heterogeneity on size of MOG particles which increase substantially with increasing heterogeneity as well as obtaining mixed valence sites in the gels. High surface areas (1861?m2/g) and pore volumes (9.737?cc/g) were obtained for heterogeneous gels (0.5Fe-0.5Al). The large uptakes of dye molecules (290?mg/g rhodamine B and 265?mg/g methyl orange) with fast sorption kinetics in both neutral and acidic mediums show good stability and accessibility of MOG channels (micro and meso-/macropores), further demonstrating their potential applications in catalysis and sorption of large molecules. PMID:26014755

  13. Fabrication, characterization and application of a reusable immobilized TiO2-PANI photocatalyst plate for the removal of reactive red 4 dye

    NASA Astrophysics Data System (ADS)

    Razak, S.; Nawi, M. A.; Haitham, K.

    2014-11-01

    A method for immobilizing TiO2-PANI composite using ENR and PVC as adhesives was successfully developed. The immobilized system known as TiO2/PANI/ENR/PVC plate was characterized by FTIR, Raman, diffuse reflectance UV-vis, photo luminescence spectroscopy and HRTEM. The optimum weight ratio for the TiO2:PANI composite was 1:0.0035. The band gap energy of the optimum immobilized composite TiO2/PANI/ENR/PVC (1:0035) was 2.86 eV where polyaniline (PANI) formed a core-shell coating of about 0.9 nm with a strong TiO2-PANI interaction. Photo-etching of the immobilized TiO2/PANI/ENR/PVC (1:0.0035) composite for 7 h increased its surface area and improved its photocatalytic activity. TiO2/PANI/ENR/PVC (1:0.0035)-7 h was visible light sensitive where 85% of 30 mg L-1 reactive red 4 (RR4) dye was decolorized after 60 min of irradiation. The immobilized TiO2/PANI/ENR/PVC (1:0.0035)-7 h was reusable and its photocatalytic activity was sustainable with an average pseudo first order rate constant value of 0.103 ± 0.002 min-1. Adding PANI to the immobilized P25 TiO2 has enhanced its photocatalytic activity throughout the entire ten recycled applications due to the increased BET surface area and lower ecb and h+ recombination.

  14. Unblocking the Sink: Improved CID-Based Analysis of Phosphorylated Peptides by Enzymatic Removal of the Basic C-Terminal Residue

    NASA Astrophysics Data System (ADS)

    Lanucara, Francesco; Chi Hoo Lee, Dave; Eyers, Claire E.

    2013-12-01

    A one-step enzymatic reaction for improving the collision-induced dissociation (CID)-based tandem mass spectrometry (MS/MS) analysis of phosphorylated peptides in an ion trap is presented. Carboxypeptidase-B (CBP-B) was used to selectively remove C-terminal arginine or lysine residues from phosphorylated tryptic/Lys-C peptides prior to their MS/MS analysis by CID with a Paul-type ion trap. Removal of this basic C-terminal residue served to limit the extent of gas-phase neutral loss of phosphoric acid (H3PO4), favoring the formation of diagnostic b and y ions as determined by an increase in both the number and relative intensities of the sequence-specific product ions. Such differential fragmentation is particularly valuable when the H3PO4 elimination is so predominant that localizing the phosphorylation site on the peptide sequence is hindered. Improvement in the quality of tandem mass spectral data generated by CID upon CBP-B treatment resulted in greater confidence both in assignment of the phosphopeptide primary sequence and for pinpointing the site of phosphorylation. Higher Mascot ion scores were also generated, combined with lower expectation values and higher delta scores for improved confidence in site assignment; Ascore values also improved. These results are rationalized in accordance with the accepted mechanisms for the elimination of H3PO4 upon low energy CID and insights into the factors dictating the observed dissociation pathways are presented. We anticipate this approach will be of utility in the MS analysis of phosphorylated peptides, especially when alternative electron-driven fragmentation techniques are not available.

  15. Determination of minimum enzymatic decolorization time of reactive dye solution by spectroscopic & mathematical approach.

    PubMed

    Celebi, Mithat; Ozdemir, Zafer Omer; Eroglu, Emre; Altikatoglu, Melda; Guney, Ibrahim

    2015-02-01

    Synthetic dyes are very important for textile dyeing, paper printing, color photography and petroleum products. Traditional methods of dye removal include biodegradation, precipitation, adsorption, chemical degradation, photo degradation, and chemical coagulation. Dye decolorization with enzymatic reaction is an important issue for several research field (chemistry, environment) In this study, minimum decolorization time of Remazol Brilliant Blue R dye with Horseradish peroxidase enzyme was calculated using with mathematical equation depending on experimental data. Dye decolorization was determined by monitoring the absorbance decrease at the specific maximum wavelength for dye. All experiments were carried out with different initial dye concentrations of Remazol Brilliant Blue R at 25 degrees C constant temperature for 30 minutes. The development of the least squares estimators for a nonlinear model brings about complications not encountered in the case of the linear model. Decolorization times for completely removal of dye were calculated according to equation. It was shown that mathematical equation was conformed exponential curve for dye degradation. PMID:25970889

  16. Development and field testing of an alternative latrine design utilizing basic oxygen furnace slag as a treatment media for pathogen removal

    NASA Astrophysics Data System (ADS)

    Stimson, J.; Suhogusoff, A. V.; Blowes, D. W.; Hirata, R. A.; Ptacek, C. J.; Robertson, W. D.; Emelko, M. B.

    2009-05-01

    In densely-populated communities in developing countries, appropriate setback distances for pit latrines often cannot be met. An alternative latrine was designed that incorporates two permeable reactive media to treat pathogens and nitrate from effluent. Basic oxygen furnace (BOF) slag in contact with wastewater effluent elevates pH to levels (> 11) that inactivate pathogens. Saturated woodchip creates reducing conditions that encourage the growth of denitrifying bacteria which remove NO3-. The field application was constructed in Santo Antônio, a peri-urban community located 25 km south of the city of São Paulo, Brazil. A 2-m diameter pit was excavated to a depth of 4 m into the sandy-clay unsaturated zone. A geotextile liner was emplaced to create saturated conditions in the 0.5-m thick woodchip barrier. Above the woodchip barrier, a 1-m thick layer of BOF slag mixed with pea gravel and sand was emplaced. A series of filter layers, grading upward from coarse sand to fine gravel, where placed above the BOF layer, and gravel was also infilled around the outer perimeter of the excavation, to ensure O2 diffusion into the design, the formation of biofilm, and degradation of organic material. A control latrine, constructed with similar hydraulic characteristics and nonreactive materials, was constructed at a locality 100 m away, in the same geological materials. Total coliform, thermotolerant coliform, and E. coli are removed by approximately 4-5 log concentration units in less than one meter of vertical transport through the BOF slag media. In the control latrine, comparable reductions in these pathogenic indicators are observed over three meters of vertical transport. Removal of sulphur-reducing Clostridia, Clostridium perfrigens and somatic coliphage are also achieved in the alternative design, but initial concentrations in effluent are low. Some measurable concentrations of pathogen indicators are measured in lysimeters below the BOF layer, but are associated with low-TDS, neutral water that is infiltrating in from the sidewall of the excavation. Oxygen concentration is augmented (5 mg L-1) in the alternative latrine compared to the control design (1-2 mg L-1), suggesting that conditions for biofilm development are improved. The decline in pH between sampling events after 42 and 82 days of wastewater application suggest that the potential for base release is decreased over time. Somatic coliphage concentrations are 1-2 log concentration units lower in stainless steel lysimeters compared to concentrations measured in adjacent pan lysimeters, suggesting that the filtration of coliphage by the porous cup may negatively bias sampling.

  17. Effluent treatment in the textile industry: Dyes. (Latest citations from World Textile abstracts). Published Search

    SciTech Connect

    Not Available

    1993-06-01

    The bibliography contains citations concerning the treatment and reuse of textile industry effluents containing dyes. The citations explore bacteria that absorb dyes, neutralization of dye effluents, decolorization by ozonization or ultraviolet radiation, flocculation treatment, and dye absorption methods and materials. Membrane treatment, electrolysis, and ultrafiltration methods of removing dyes from wastewater are considered, as well as reuse of dye-containing effluents. Textile effluents that do not contain dyes are discussed in another bibliography. (Contains 250 citations and includes a subject term index and title list.)

  18. Effluent treatment in the textile industry: Dyes. (Latest citations from World Textile abstracts). Published Search

    SciTech Connect

    1995-09-01

    The bibliography contains citations concerning the treatment and reuse of textile industry effluents containing dyes. The citations explore bacteria that absorb dyes, neutralization of dye effluents, decolorization by ozonization or ultraviolet radiation, flocculation treatment, and dye absorption methods and materials. Membrane treatment, electrolysis, and ultrafiltration methods of removing dyes from wastewater are considered, as well as reuse of dye-containing effluents. Textile effluents that do not contain dyes are discussed in another bibliography.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  19. Dye adsorption by calcium chloride treated beech sawdust in batch and fixed-bed systems.

    PubMed

    Batzias, F A; Sidiras, D K

    2004-10-18

    Batch and column kinetics of methylene blue and red basic 22 adsorption on CaCl(2) treated beech sawdust was investigated, using untreated beech sawdust as control, in order to explore its potential use as a low-cost adsorbent for wastewater dye removal. The adsorption capacity, estimated according to Freundlich's model, and the adsorption capacity coefficient values, determined using the Bohart and Adams' bed depth service model indicate that CaCl(2) treatment enhanced the adsorption properties of the original material. PMID:15511588

  20. Thermal treatment of dyes from military munitions

    SciTech Connect

    1996-09-01

    Los Alamos National Laboratory has developed thermal treatment equipment to treat Navy smoke and dye compounds. Navy smokes were burned in the Los Alamos Controlled Air Incinerator (CAI) in the early 1980s. These test results were used in the development of a portable system consisting of a Thermal Treatment Unit (TTU), feed preparation and pumping skid, utility skid, and control trailer. This equipment was started up at Navy facilities at China Lake, CA where several destruction removal efficiency tests were completed in 1993 burning smoke compositions. The equipment was set up at the Nevada Test Site (NTS) in 1996 where tests were completed burning green Navy spotting dyes. Operating and test results from the NTS efforts resulted in clearer understanding of equipment deficiencies, dye characteristics and composition, and secondary wastes generated. Future tests, scheduled for July, 1996 will demonstrate higher bum rates, better pH measurement and control, and stack emission test results for other colored dyes.

  1. Relationship of Cotton Fiber Calcium and Magnesium Contents on Dye Uptake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton from a single bale was processed into knit fabrics and prepared for dyeing. Following scouring, fabrics were soaked in either a metal sequestering solution or a water solution, bleached and dyed using 5 dye shades from both reatice and direct dye classes. Results indicate that removal of re...

  2. Design and Construction of Simple, Nitrogen-Laser-Pumped, Tunable Dye Lasers

    ERIC Educational Resources Information Center

    Hilborn, Robert C.

    1978-01-01

    The basic physical principles of dye lasers are discussed and used to analyze the design and operation of tunable dye lasers pumped by pulsed nitrogen lasers. Details of the design and construction of these dye lasers are presented. Some simple demonstration experiments are described. (BB)

  3. Degradation of Anthraquinone Dye Reactive Blue 4 in Pyrite Ash Catalyzed Fenton Reaction

    PubMed Central

    Becelic-Tomin, Milena; Dalmacija, Bozo; Rajic, Ljiljana; Tomasevic, Dragana; Kerkez, Djurdja; Watson, Malcolm; Prica, Miljana

    2014-01-01

    Pyrite ash (PA) is created by burning pyrite in the chemical production of sulphuric acid. The high concentration of iron oxide, mostly hematite, present in pyrite ash, gives the basis for its application as a source of catalytic iron in a modified Fenton process for anthraquinone dye reactive blue 4 (RB4) degradation. The effect of various operating variables such as catalyst and oxidant concentration, initial pH and RB4 concentration on the abatement of total organic carbon, and dye has been assessed in this study. Here we show that degradation of RB4 in the modified Fenton reaction was efficient under the following conditions: pH = 2.5; [PA]0 = 0.2?g?L?1; [H2O2]0 = 5?mM and initial RB4 concentration up to 100?mg?L?1. The pyrite ash Fenton reaction can overcome limitations observed from the classic Fenton reaction, such as the early termination of the Fenton reaction. Metal (Pb, Zn, and Cu) content of the solution after the process suggests that an additional treatment step is necessary to remove the remaining metals from the water. These results provide basic knowledge to better understand the modified, heterogeneous Fenton process and apply the PA Fenton reaction for the treatment of wastewaters which contains anthraquinone dyes. PMID:24526885

  4. Oxazine laser dyes

    DOEpatents

    Hammond, Peter R. (Livermore, CA); Field, George F. (Danville, CA)

    1992-01-01

    New oxazine compounds useful as dye laser media in solution, are superiior to prior art materials. The oxazine dyes useful when pumped by the 578.2 nm copper line to operate in the 700-800 nm range are described by formula I ##STR1##

  5. Monolithic dye laser amplifier

    DOEpatents

    Kuklo, Thomas C. (Ripon, CA)

    1993-01-01

    A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

  6. Monolithic dye laser amplifier

    DOEpatents

    Kuklo, T.C.

    1993-03-30

    A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

  7. Fluorescent dyes with directly connected xanthone and xanthene units.

    PubMed

    Katori, Akane; Azuma, Eriko; Ishimura, Hina; Kuramochi, Kouji; Tsubaki, Kazunori

    2015-05-01

    Unexpected dimerization of a methoxymethyl-protected xanthone occurred upon treatment with an aryl lithium reagent generated from 2-bromo-1,3-dimethylbenzene and n-butyllithium. The hydrogen between two directing ethereal oxygen atoms was not abstracted, but that adjacent to the carbonyl group was removed to afford a dimeric compound containing two directly connected fluorescent xanthone and xanthene units. Starting from this discovery, three dimeric dyes were constructed, and their optical properties were examined. Although the two fluorescent units were orthogonal in each dye, efficient energy transfer was observed in dimeric dye 16 in three solvent systems. In contrast, solvent-dependent energy transfer was detected for another dimeric dye, 5. After close investigation, we found that the orientation factor (?) is the main factor influencing Förster resonance energy transfer in these dyes. PMID:25867283

  8. Degradation of environment pollutant dyes using phytosynthesized metal nanocatalysts

    NASA Astrophysics Data System (ADS)

    MeenaKumari, M.; Philip, Daizy

    2015-01-01

    We present for the first time biogenic reduction and stabilization of gold and silver ions at room temperature using fruit juice of Punica granatum. The formation, morphology and crystalline structure of the synthesized nanoparticles are determined using UV-Visible, XRD and TEM. An attempt to reveal the partial role of phenolic hydroxyls in the reduction of Au3+ and Ag+ is done through FTIR analysis. The synthesized nanoparticles are used as potential catalysts in the degradation of a cationic phenothiazine dye, an anionic mono azo dye and a cationic fluorescent dye. The calculated values of percentage removal of dyes and the rate constants from pseudo first order kinetic data fit give a comparative study on degradation of organic dyes in presence of prepared gold and silver nanoparticles.

  9. Wastewater treatment: Dye and pigment industry. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-03-01

    The bibliography contains citations concerning treatment of wastewater containing dyes and pigments. The citations discuss the of dyes and pigments in wastewater treatment systems, biodegradation of dyes, absorption and adsorption processes to remove dyes from wastewater, environmental effects from the disposal of dye-containing wastes, and methods of analysis for dyes in waste streams. Treatment methods such as ozonation, reverse osmosis, activated charcoal filtration, activated sludge, electrochemical treatments, thermal treatments, simple filtration, and absorption media are included. (Contains a minimum of 112 citations and includes a subject term index and title list.)

  10. TEXTILE DYES AND DYEING EQUIPMENT: CLASSIFICATION, PROPERTIES, AND ENVIRONMENTAL ASPECTS

    EPA Science Inventory

    The report gives results of a study of available information on textile dyeing equipment, dyeing procedures, and dye chemistry, to serve as background data for estimating the properties and evaluating the associated risks of new commercial dyestuffs. It reports properties of dyes...

  11. Dye system for dye laser applications

    DOEpatents

    Hammond, Peter R. (Livermore, CA)

    1991-01-01

    A dye of the DCM family, [2-methyl-6-[2-(1,2,3,4-tetrahydro-1-methyl-6-quinolinyl)ethenyl]-4H-pyran -4-ylidene]-propanedinitrile, dissolved in 2-phenoxyethanol, is non-mutagenic, stable and efficient, particularly in a pumped continuous wave laser system.

  12. Adsorption kinetics and isotherm of anionic dyes onto organo-bentonite from single and multisolute systems.

    PubMed

    Shen, Dazhong; Fan, Jianxin; Zhou, Weizhi; Gao, Baoyu; Yue, Qinyan; Kang, Qi

    2009-12-15

    The performances of polydiallydimethylammonium modified bentonite (PDADMA-bentonite) as an adsorbent to remove anionic dyes, namely Acid Scarlet GR (AS-GR), Acid Turquoise Blue 2G (ATB-2G) and Indigo Carmine (IC), were investigated in single, binary and ternary dye systems. In adsorption from single dye solutions with initial concentration of 100 micromol/L, the dosage of PDADMA-bentonite needed to remove 95% dye was 0.42, 0.68 and 0.75 g/L for AS-GR, ATB-2G and IC, respectively. The adsorption isotherms of the three dyes obeyed the Langmuir isotherm model with the equilibrium constants of 0.372, 0.629 and 4.31 L/micromol, the saturation adsorption amount of 176.3, 149.2 and 228.7 micromol/g for ATB-2G, IC and AS-GR, respectively. In adsorption from mixed dye solutions, the isotherm of each individual dye followed an expanded Langmuir isotherm model and the relationship between the total amount of dyes adsorbed and the total equilibrium dye concentration was interpreted well by Langmuir isotherm model. In the region of insufficient dosage of PDADMA-bentonite, the dye with a larger affinity was preferentially removed by adsorption. Desorption was observed in the kinetic curve of the dye with lower affinity on PDADMA-bentonite surface by the competitive adsorption. The kinetics in single dye solution and the total adsorption of dyes in binary and ternary dye systems nicely followed pseudo-second-order kinetic model. PMID:19631461

  13. Application of Brazilian kaolinite clay as adsorbent to removal of U(VI) from aqueous solution: Kinetic and thermodynamic of cation-basic interactions

    SciTech Connect

    Guerra, Denis L.; Leidens, Victor L.; Viana, Rubia R.; Airoldi, Claudio

    2010-05-15

    The compound N{sup 1}-[3-(trimethoxysilyl)propyl]diethylenetriamine was anchored onto Amazon kaolinite surface by heterogeneous route. The modified and natural kaolinite samples were characterized by transmission electron microscopy, scanning electron microscopic, X-ray diffraction, and nuclear magnetic nuclei of {sup 29}Si and {sup 13}C. The well-defined peaks obtained in the {sup 13}C NMR spectrum in the 5.0-62.1 ppm region confirmed the attachment of organic functional groups as pendant chains bonded into the porous clay. The ability of these materials to remove U(VI) from aqueous solution was followed by a series of adsorption isotherms adjusted to a Sips equation at room temperature and pH 4.0. The kinetic parameters analyzed by the Lagergren and Elovich models gave a good fit for a pseudo-second order reaction with k{sub 2} values 16.0 and 25.1 mmol g{sup -1} min{sup -1} ranges for natural and modified kaolinite clays, respectively. The energetic effects caused by metal ion adsorption were determined through calorimetric titrations. - Graphical abstract: This investigation reports the use of original and modified kaolinites as alternative absorbents. The compound N-[3-trimethoxysilyl)propyl]diethylenetriamine was anchored onto Amazon kaolinite surface by heterogeneous route.

  14. Resonance energy transfer in DNA duplexes labeled with localized dyes.

    PubMed

    Cunningham, Paul D; Khachatrian, Ani; Buckhout-White, Susan; Deschamps, Jeffrey R; Goldman, Ellen R; Medintz, Igor L; Melinger, Joseph S

    2014-12-18

    The growing maturity of DNA-based architectures has raised considerable interest in applying them to create photoactive light harvesting and sensing devices. Toward optimizing efficiency in such structures, resonant energy transfer was systematically examined in a series of dye-labeled DNA duplexes where donor-acceptor separation was incrementally changed from 0 to 16 base pairs. Cyanine dyes were localized on the DNA using double phosphoramidite attachment chemistry. Steady state spectroscopy, single-pair fluorescence, time-resolved fluorescence, and ultrafast two-color pump-probe methods were utilized to examine the energy transfer processes. Energy transfer rates were found to be more sensitive to the distance between the Cy3 donor and Cy5 acceptor dye molecules than efficiency measurements. Picosecond energy transfer and near-unity efficiencies were observed for the closest separations. Comparison between our measurements and the predictions of Förster theory based on structural modeling of the dye-labeled DNA duplex suggest that the double phosphoramidite linkage leads to a distribution of intercalated and nonintercalated dye orientations. Deviations from the predictions of Förster theory point to a failure of the point dipole approximation for separations of less than 10 base pairs. Interactions between the dyes that alter their optical properties and violate the weak-coupling assumption of Förster theory were observed for separations of less than four base pairs, suggesting the removal of nucleobases causes DNA deformation and leads to enhanced dye-dye interaction. PMID:25397906

  15. Preparation of Graphene Oxide-Based Hydrogels as Efficient Dye Adsorbents for Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Guo, Haiying; Jiao, Tifeng; Zhang, Qingrui; Guo, Wenfeng; Peng, Qiuming; Yan, Xuehai

    2015-06-01

    Graphene oxide (GO) sheets exhibit superior adsorption capacity for removing organic dye pollutants from an aqueous environment. In this paper, the facile preparation of GO/polyethylenimine (PEI) hydrogels as efficient dye adsorbents has been reported. The GO/PEI hydrogels were achieved through both hydrogen bonding and electrostatic interactions between amine-rich PEI and GO sheets. For both methylene blue (MB) and rhodamine B (RhB), the as-prepared hydrogels exhibit removal rates within about 4 h in accordance with the pseudo-second-order model. The dye adsorption capacity of the hydrogel is mainly attributed to the GO sheets, whereas the PEI was incorporated to facilitate the gelation process of GO sheets. More importantly, the dye-adsorbed hydrogels can be conveniently separated from an aqueous environment, suggesting potential large-scale applications of the GO-based hydrogels for organic dye removal and wastewater treatment.

  16. Preparation of Graphene Oxide-Based Hydrogels as Efficient Dye Adsorbents for Wastewater Treatment.

    PubMed

    Guo, Haiying; Jiao, Tifeng; Zhang, Qingrui; Guo, Wenfeng; Peng, Qiuming; Yan, Xuehai

    2015-12-01

    Graphene oxide (GO) sheets exhibit superior adsorption capacity for removing organic dye pollutants from an aqueous environment. In this paper, the facile preparation of GO/polyethylenimine (PEI) hydrogels as efficient dye adsorbents has been reported. The GO/PEI hydrogels were achieved through both hydrogen bonding and electrostatic interactions between amine-rich PEI and GO sheets. For both methylene blue (MB) and rhodamine B (RhB), the as-prepared hydrogels exhibit removal rates within about 4 h in accordance with the pseudo-second-order model. The dye adsorption capacity of the hydrogel is mainly attributed to the GO sheets, whereas the PEI was incorporated to facilitate the gelation process of GO sheets. More importantly, the dye-adsorbed hydrogels can be conveniently separated from an aqueous environment, suggesting potential large-scale applications of the GO-based hydrogels for organic dye removal and wastewater treatment. PMID:26123269

  17. Photoactive dye enhanced tissue ablation for endoscopic laser prostatectomy

    NASA Astrophysics Data System (ADS)

    Ahn, Minwoo; Nguyen, Trung Hau; Nguyen, Van Phuc; Oh, Junghwan; Kang, Hyun Wook

    2015-02-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia with high laser power. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue ablation with low laser power. The experiment was implemented on chicken breast due to minimal optical absorption Amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532-nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm2. Light absorbance and ablation threshold were measured with UV-VIS spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with input parameter. Among the dyes, AR created the highest ablation rate of 44.2+/-0.2 ?m/pulse due to higher absorbance and lower ablation threshold. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33 % reduced laser power with almost equivalent performance. In-depth comprehension on photoactive dye-enhanced tissue ablation can help accomplish efficient and safe laser treatment for BPH with low power application.

  18. Radiation Basics

    MedlinePLUS

    EPA United States Environmental Protection Agency Search Search Radiation Protection Share Facebook Twitter Google+ Pinterest Contact Us ... are here: EPA Home » Radiation Protection » Radiation Basics Radiation Basics Radiation is energy. It can come from ...

  19. Oil palm biomass-based adsorbents for the removal of water pollutants--a review.

    PubMed

    Ahmad, Tanweer; Rafatullah, Mohd; Ghazali, Arniza; Sulaiman, Othman; Hashim, Rokiah

    2011-07-01

    This article presents a review on the role of oil palm biomass (trunks, fronds, leaves, empty fruit bunches, shells, etc.) as adsorbents in the removal of water pollutants such as acid and basic dyes, heavy metals, phenolic compounds, various gaseous pollutants, and so on. Numerous studies on adsorption properties of various low-cost adsorbents, such as agricultural wastes and its based activated carbons, have been reported in recent years. Studies have shown that oil palm-based adsorbent, among the low-cost adsorbents mentioned, is the most promising adsorbent for removing water pollutants. Further, these bioadsorbents can be chemically modified for better efficiency and can undergo multiple reuses to enhance their applicability at an industrial scale. It is evident from a literature survey of more than 100 recent papers that low-cost adsorbents have demonstrated outstanding removal capabilities for various pollutants. The conclusion is been drawn from the reviewed literature, and suggestions for future research are proposed. PMID:21929380

  20. Dye adsorption of cotton fabric grafted with PPI dendrimers: Isotherm and kinetic studies.

    PubMed

    Salimpour Abkenar, Samera; Malek, Reza Mohammad Ali; Mazaheri, Firouzmehr

    2015-11-01

    In this research, the cotton fabrics grafted with two generations of the poly(propylene imine) dendrimers were applied to adsorb textile dyes from aqueous solutions. Direct Red 80 (anionic dye), Disperse Yellow 42 (nonionic dye) and Basic Blue 9 (cationic dye) were selected as model dyes. The effect of various experimental parameters such as initial concentration of dyes, charge of dyes molecule, salt and pH was investigated on the adsorption process. Furthermore, kinetics and equilibrium of the adsorption process on the grafted samples were studied. It was found that maximum adsorption of anionic and disperse dyes took place at around pH 3, while cationic dye could be adsorbed at around pH 11. The Langmuir equation was able to describe the mechanism of dyes adsorption. In addition, the second-order equation was found to be fit with the kinetics data. Interestingly, it seems that the dye adsorption of the grafted fabrics is strongly pH dependent. PMID:26292774

  1. Degradation characteristic of monoazo, diazo and anthraquinone dye by UV/H{sub 2}O{sub 2} process

    SciTech Connect

    Abidin, Che Zulzikrami Azner E-mail: drfahmi@unimap.edu.my E-mail: fatinnadhirah89@gmail.com; Fahmi, Muhammad Ridwan E-mail: drfahmi@unimap.edu.my E-mail: fatinnadhirah89@gmail.com; Fazara, Md Ali Umi E-mail: drfahmi@unimap.edu.my E-mail: fatinnadhirah89@gmail.com; Nadhirah, Siti Nurfatin E-mail: drfahmi@unimap.edu.my E-mail: fatinnadhirah89@gmail.com

    2014-10-24

    In this study, the degradation characteristic of monoazo, diazo and anthraquinone dye by UV/H{sub 2}O{sub 2} process was evaluated based on the trend of color, chemical oxygen demand (COD) and total organic carbon (TOC) removal. Three types of dyes consist of monoazo, diazo and anthraquinone dyes were used to compare the degradation mechanism of the dyes. The UV/H{sub 2}O{sub 2} experiments were conducted in a laboratory scale cylindrical glass reactor operated in semi-batch mode. The UV/Vis characterization of monoazo, diazo and anthraquinone dye indicated that the rapid degradation of the dyes by UV/H{sub 2}O{sub 2} process is meaningful with respect to decolourization, as a result of the azo bonds and substitute antraquinone chromophore degradation. However, this process is not efficient for aromatic amines removal. The monoazo MO was difficult to be decolorized than diazo RR120 dye, which imply that number of sulphonic groups in the dye molecules determines the reactivity with hydroxyl radical. The increased in COD removal is the evidence for oxidation and decreased in carbon content of dye molecules. TOC removal analysis shows that low TOC removal of monoazo MO and diazo RR120, as compared to anthraquinone RB19 may indicate an accumulation of by-products that are resistant to the H{sub 2}O{sub 2} photolysis.

  2. Water soluble laser dyes

    DOEpatents

    Hammond, Peter R. (Livermore, CA); Feeman, James F. (Wyomissing, PA); Field, George F. (Santa Ana, CA)

    1998-01-01

    Novel water soluble dyes of the formula I are provided ##STR1## wherein R.sup.1 and R.sup.4 are alkyl of 1 to 4 carbon atoms or hydrogen; or R.sup.1 -R.sup.2 or R.sup.2 -R.sup.4 form part of aliphatic heterocyclic rings; R.sup.2 is hydrogen or joined with R.sup.1 or R.sup.4 as described above; R.sup.3 is --(CH.sub.2).sub.m --SO.sub.3.sup.-, where m is 1 to 6; X is N, CH or ##STR2## where Y is 2 --SO.sub.3.sup.- ; Z is 3, 4, 5 or 6 --SO.sub.3.sup.-. The novel dyes are particularly useful as the active media in water solution dye lasers.

  3. Water soluble laser dyes

    DOEpatents

    Hammond, P.R.; Feeman, J.F.; Field, G.F.

    1998-08-11

    Novel water soluble dyes of the formula 1 are provided by the formula described in the paper wherein R{sup 1} and R{sup 4} are alkyl of 1 to 4 carbon atoms or hydrogen; or R{sup 1}--R{sup 2} or R{sup 2}--R{sup 4} form part of aliphatic heterocyclic rings; R{sup 2} is hydrogen or joined with R{sup 1} or R{sup 4} as described above; R{sup 3} is --(CH{sub 2}){sub m}--SO{sub 3}{sup {minus}}, where m is 1 to 6; X is N, CH or formula 2 given in paper where Y is 2 --SO{sub 3}{sup {minus}} ; Z is 3, 4, 5 or 6 --SO{sub 3}{sup {minus}}. The novel dyes are particularly useful as the active media in water solution dye lasers.

  4. Hair Dyes and Cancer Risk

    MedlinePLUS

    ... 1331. [PubMed Abstract] Rauscher GH, Shore D, Sandler DP. Hair dye use and risk of adult acute ... 10):1448–1454. [PubMed Abstract] Lin J, Dinney CP, Grossman HB, Wu X. Personal permanent hair dye ...

  5. Visible to near infra red absorption in natural dye (Mondo Grass Berry) for Dye Sensitized Solar Cell

    NASA Astrophysics Data System (ADS)

    Pitigala, Duleepa; Desilva, L. A. A.; Perera, A. G. U.

    2012-03-01

    The development of dye sensitized solar cells (DSSC) is an exciting field in the low cost renewable energy production. Two major draw backs in the DSSCs are the narrow spectral response and the short term stability. Research on development of artificial dyes for broadening the response is important in finding a solution. Work presented here shows a broad spectral response with a natural dye extracted from a Mondo Grass berry (Ophiopogonjaponicus).The dye is extracted by crushing the berries and filtering to remove the pulp. A DSSC sensitized with Mondo Grass dye, and with TiO2 film screen printed on a Florien doped Tin Oxide (FTO) glass and baked for 30 minutes at 450 C as the working electrode and Iodine/triiodide red-ox electrolyte as the hole collector was tested for its performance. An open circuit photovoltage of 495 mV and a short circuit photocurrent of 0.6 mA/cm2were observed under a simulated lamp equivalent to 1 sun illumination. The broad spectral response from 400 nm to 750 nm was also observed for the Mondo Grass dye compared to other natural dyes consists of anthocyanins or tannins.

  6. Efficacy of fungal decolorization of a mixture of dyes belonging to different classes

    PubMed Central

    Przystas, Wioletta; Zablocka-Godlewska, Ewa; Grabinska-Sota, Elzbieta

    2015-01-01

    Dyes are the most difficult constituents to remove by conventional biological wastewater treatment. Colored wastewater is mainly eliminated by physical and chemical procedures, which are very expensive and have drawbacks. Therefore, the advantage of using biological processes, such as the biotransformation of dyes, is that they may lead to complete mineralization or formation of less toxic products. To prove the possibility of using fungal processes for decolorization and other applications, the analysis of the toxicity of the processes' products is required. The decolorization of the mixture of two dyes from different classes - triphenylmethane brilliant green and azo Evans blue (GB - total concentration 0.08 g/L, proportion 1:1 w/w) - by Pleurotus ostreatus (BWPH and MB), Gloeophyllum odoratum (DCa), RWP17 (Polyporus picipes) and Fusarium oxysporum (G1) was studied. Zootoxicity (Daphnia magna) and phytotoxicity (Lemna minor) changes were estimated at the end of the experiment. The mixture of dyes was significantly removed by all the strains that were tested with 96 h of experimental time. However, differences among strains from the same species (P. ostreatus) were noted. Shaking improved the efficacy and rate of the dye removal. In static samples, the removal of the mixture reached more than 51.9% and in shaken samples, more than 79.2%. Tests using the dead biomass of the fungi only adsorbed up to 37% of the dye mixture (strain BWPH), which suggests that the process with the living biomass involves the biotransformation of the dyes. The best results were reached for the MB strain, which removed 90% of the tested mixture under shaking conditions. Regardless of the efficacy of the dye removal, toxicity decreased from class V to class III in tests with D. magna. Tests with L. minor control samples were classified as class IV, and samples with certain strains were non-toxic. The highest phytotoxicity decrease was noted in shaken samples where the elimination of dye mixture was the best. PMID:26273256

  7. Alzheimer's Dye Test?

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Massachusetts Institute of Technology (MIT) scientists have developed a new dye that could offer noninvasive early diagnosis of Alzheimer's disease, a discovery that could aid in monitoring the progression of the disease and in studying the efficacy of new treatments to stop it. The work is published in Angewandte Chemie. Today, doctors can only…

  8. SEDIMENT REMOVAL

    EPA Science Inventory

    When properly conducted, sediment removal is an effective lake management technique. This chapter describes: (1) purposes of sediment removal, (2) environmental concerns, (3) appropriate depth of sediment removal, (4) sediment removal techniques, (5) suitable lake conditions, (6)...

  9. BASIC Programming.

    ERIC Educational Resources Information Center

    Jennings, Carol Ann

    Designed for use by both secondary- and postsecondary-level business teachers, this curriculum guide consists of 10 units of instructional materials dealing with Beginners All-Purpose Symbol Instruction Code (BASIC) programing. Topics of the individual lessons are numbering BASIC programs and using the PRINT, END, and REM statements; system…

  10. Basic Warehousing.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on basic warehousing is designed to provide Marines with Military Occupation Speciality 3051 in the rank of private through corporal with instruction in those basic principles, methods, and procedures that can be applied to any warehousing or storage…

  11. Adsorption of dyes onto carbonaceous materials produced from coffee grounds by microwave treatment.

    PubMed

    Hirata, Mizuho; Kawasaki, Naohito; Nakamura, Takeo; Matsumoto, Kazuoki; Kabayama, Mineaki; Tamura, Takamichi; Tanada, Seiki

    2002-10-01

    Organic wastes have been burned for reclamation. However, they have to be recycled and reused for industrial sustainable development. Carbonaceous materials were produced from coffee grounds by microwave treatment. There are many phenolic hydroxyl and carboxyl groups on the surface of carbonaceous materials. The base consumption of the carbonaceous materials was larger than that of the commercially activated carbon. The carbonaceous materials produced from coffee grounds were applied to the adsorbates for the removal of basic dyes (methylene blue and gentian violet) in wastewater. This result indicated that the adsorption of dyes depended upon the surface polar groups on the carbonaceous materials. Moreover, the Freundlich constants of isotherms for the adsorption of methylene blue and gentian violet onto the carbonaceous materials produced from coffee grounds were greater than those for adsorption onto activated carbon or ceramic activated carbon. The interaction was greatest between the surface or porosity of the carbonaceous materials and methylene blue and gentian violet. The microwave treatment would be useful for the carbonization of organic wastes to save energy. PMID:12702420

  12. Removable camouflage paints

    NASA Astrophysics Data System (ADS)

    Salonen, Pasi S.; Niinimaki-Heikkila, Tiina; Hallenberg, Ilkka

    2001-09-01

    All military objects must have basic camouflage that is usually achieved by painting. Patterned camouflage painting hides the object and blends its shape and characteristic features in with its surroundings. Basic camouflage can be complemented by using temporary camouflage such as removable camouflage paints. These paints can be used in seasons and environments where the basic pattern is not appropriate. A research project was begun at the Defence Forces Technical Research Centre (DFTRC) in 1994 in order to formulate an environmentally friendly, removable camouflage paint for military use. The paint should be easily removable when they are applied to previously painted military equipment. However, it should also be resistant to drizzle. The paint should have optical properties similar to those of its surroundings. The surface of the coatings should also be matt to avoid any conspicuous reflection. Finally, it should be possible to apply removable camouflage paints in the field using any painting method. During the project environmentally friendly and non-toxic removable paints were successfully formulated. The colors of removable paints are compromises of average operating environments. The project included numerous laboratory tests in addition to natural and accelerated weathering tests. Several field tests have been carried out. According to the tests, the removable paints are well resistant to drizzle, sufficiently resistant to abrasion, and they can be washed off with water.

  13. Final report on the safety assessment of Basic Blue 99.

    PubMed

    2007-01-01

    Basic Blue 99 is a direct, nonoxidative hair colorant used in temporary and semipermanent hair dyes. According to current reported usage data, Basic Blue 99 is used at concentrations from 0.004% to 2% and the most often reported use is in hair tints. Hair dyes containing Basic Blue 99, as "coal tar" hair dye products, are exempt from the principal adulteration provision and from the color additive provision of the Federal Food, Drug, and Cosmetic Act of 1938 when the label bears a caution statement and "patch test" instructions for determining whether the product causes skin irritation. Preliminary testing on or by individuals should be done using an open patch test that is evaluated at 48 h after application of the test material. Users, therefore, would be able to determine their individual reactions to hair dye products containing Basic Blue 99. Basic Blue 99 dye is approximately 60% to 63% dye, whereas the remainder of the mixture is composed of sugar ( approximately 25.7%), volatile matter/water crystallization ( approximately 1.8%), and inorganic salts (bringing the mixture to 100%). The dermal absorption of Basic Blue 99 is low in both rats and humans. The LD(50) values of Basic Blue 99 in mice and rats were 2.7 g/kg and between 1.0 g/kg and greater than 2.0 g/kg, respectively. Mice and rats orally administered Basic Blue 99 for 90 days did not show any indications of cumulative toxicity. Discoloration of organs involved in the elimination of Basic Blue 99 from the animals was noted in both test species. In rabbits, Basic Blue 99 did not cause ocular irritation, but some discoloration was noted. Basic Blue 99 caused minimal dermal irritation in rabbits. Sensitization occurred in animals exposed to Basic Blue 99 in a DMSO vehicle, but not in a water vehicle in guinea pigs and mice. Basic Blue 99 administered by gavage did not cause developmental toxicity in rats. Basic Blue 99 was a weak mutagen with and without metabolic activation in the Ames test, producing both reverse and frameshift mutations, but did not induce mutations in Escherichia coli or in any mammalian cells tested. In a modified repeated-insult patch test (RIPT), no volunteers had any reaction to Basic Blue 99 after a 1-h occlusive challenge. Case reports have documented positive patch test results to 1% Basic Blue 99 in three patients. A current review of the hair dye epidemiology literature identified that use of direct hair dyes, although not the focus in all investigations, appears to have little evidence of an association with cancer or other adverse events. The Panel recognizes that hair dye epidemiology studies do not address the safety of individual hair dyes. Based on the available safety test data on Basic Blue 99, however, the Panel determined that this ingredient would not likely have carcinogenic potential as used in hair dyes. The Cosmetic Ingredient Review Expert Panel concluded that Basic Blue 99 is safe as a hair dye ingredient in the practice of use and concentration as described in this safety assessment. PMID:17613131

  14. Recent Advances in Heterogeneous Photocatalytic Decolorization of Synthetic Dyes

    PubMed Central

    Muhd Julkapli, Nurhidayatullaili; Bagheri, Samira; Bee Abd Hamid, Sharifah

    2014-01-01

    During the process and operation of the dyes, the wastes produced were commonly found to contain organic and inorganic impurities leading to risks in the ecosystem and biodiversity with the resultant impact on the environment. Improper effluent disposal in aqueous ecosystems leads to reduction of sunlight penetration which in turn diminishes photosynthetic activity, resulting in acute toxic effects on the aquatic flora/fauna and dissolved oxygen concentration. Recently, photodegradation of various synthetic dyes has been studied in terms of their absorbance and the reduction of oxygen content by changes in the concentration of the dye. The advantages that make photocatalytic techniques superior to traditional methods are the ability to remove contaminates in the range of ppb, no generation of polycyclic compounds, higher speed, and lower cost. Semiconductor metal oxides, typically TiO2, ZnO, SnO, NiO, Cu2O, Fe3O4, and also CdS have been utilized as photocatalyst for their nontoxic nature, high photosensitivity, wide band gap and high stability. Various process parameters like photocatalyst dose, pH and initial dye concentrations have been varied and highlighted. Research focused on surface modification of semiconductors and mixed oxide semiconductors by doping them with noble metals (Pt, Pd, Au, and Ag) and organic matter (C, N, Cl, and F) showed enhanced dye degradation compared to corresponding native semiconductors. This paper reviews recent advances in heterogeneous photocatalytic decolorization for the removal of synthetic dyes from water and wastewater. Thus, the main core highlighted in this paper is the critical selection of semiconductors for photocatalysis based on the chemical, physical, and selective nature of the poisoning dyes. PMID:25054183

  15. Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes.

    PubMed

    Muhd Julkapli, Nurhidayatullaili; Bagheri, Samira; Bee Abd Hamid, Sharifah

    2014-01-01

    During the process and operation of the dyes, the wastes produced were commonly found to contain organic and inorganic impurities leading to risks in the ecosystem and biodiversity with the resultant impact on the environment. Improper effluent disposal in aqueous ecosystems leads to reduction of sunlight penetration which in turn diminishes photosynthetic activity, resulting in acute toxic effects on the aquatic flora/fauna and dissolved oxygen concentration. Recently, photodegradation of various synthetic dyes has been studied in terms of their absorbance and the reduction of oxygen content by changes in the concentration of the dye. The advantages that make photocatalytic techniques superior to traditional methods are the ability to remove contaminates in the range of ppb, no generation of polycyclic compounds, higher speed, and lower cost. Semiconductor metal oxides, typically TiO2, ZnO, SnO, NiO, Cu2O, Fe3O4, and also CdS have been utilized as photocatalyst for their nontoxic nature, high photosensitivity, wide band gap and high stability. Various process parameters like photocatalyst dose, pH and initial dye concentrations have been varied and highlighted. Research focused on surface modification of semiconductors and mixed oxide semiconductors by doping them with noble metals (Pt, Pd, Au, and Ag) and organic matter (C, N, Cl, and F) showed enhanced dye degradation compared to corresponding native semiconductors. This paper reviews recent advances in heterogeneous photocatalytic decolorization for the removal of synthetic dyes from water and wastewater. Thus, the main core highlighted in this paper is the critical selection of semiconductors for photocatalysis based on the chemical, physical, and selective nature of the poisoning dyes. PMID:25054183

  16. Comparison of nickel doped Zinc Sulfide and/or palladium nanoparticle loaded on activated carbon as efficient adsorbents for kinetic and equilibrium study of removal of Congo Red dye

    NASA Astrophysics Data System (ADS)

    Ahmadi, K.; Ghaedi, M.; Ansari, A.

    2015-02-01

    In this study, the efficiency of nickel doped Zinc Sulfide nanoparticle loaded on activated carbon (Ni-ZnS-NP-AC) and palladium nanoparticles loaded on activated carbon (Pd-NP-AC) for the removal of Congo Red (CR) from aqueous solution was investigated. These materials were fully identified and characterized in term of structure, surface area and pore volume with different techniques such XRD, FE-SEM and TEM analysis. The dependency of CR removal percentage to variables such as pH, contact time, amount of adsorbents, CR concentration was examined and optimum values were set as: 0.03 g Ni-ZnS-NP-AC and 0.04 g of Pd-NP-AC at pH of 3 and 2 after mixing for 22 and 26 min for Ni-ZnS-NP-AC and Pd-NP-AC, respectively. Subsequently, it was revealed that isotherm data efficiency can be correlated Langmuir with maximum monolayer adsorption capacities of 286 and 126.6 mg g-1 at room temperature for Ni-ZnS-NP-AC and Pd-NP-AC, respectively. Investigation of correlation between time and rate of adsorption reveal that the CR adsorption onto both adsorbents followed pseudo second order and interparticle diffusion simultaneously.

  17. SARS Basics

    MedlinePLUS

    ... Isolation and Quarantine Fact Sheet References and Resources SARS Basics Fact Sheet Language: English Español (Spanish) Format: ... 3 pages] SARS [3 pages] SARS [3 pages] SARS? Severe acute respiratory syndrome (SARS) is a viral ...

  18. Basic Finance

    NASA Technical Reports Server (NTRS)

    Vittek, J. F.

    1972-01-01

    A discussion of the basic measures of corporate financial strength, and the sources of the information is reported. Considered are: balance sheet, income statement, funds and cash flow, and financial ratios.

  19. The Basics

    ERIC Educational Resources Information Center

    Indrisano, Roselmina; And Others

    1976-01-01

    These articles are presented as an aide in teaching basic subjects. This issue examines reading diagnosis, food preservation, prime numbers, electromagnets, acting out in language arts, self-directed spelling activities, and resources for environmental education. (Editor/RK)

  20. Asthma Basics

    MedlinePLUS

    ... Concussions: What to Know Pregnant? What to Expect Asthma Basics KidsHealth > Parents > Diseases & Conditions > Lungs & Respiratory System > ... Induced Asthma Allergy-Triggered Asthma Asthma Categories About Asthma Asthma is a common lung condition in kids ...

  1. Dyeing fabrics with metals

    NASA Astrophysics Data System (ADS)

    Kalivas, Georgia

    2002-06-01

    Traditionally, in textile dyeing, metals have been used as mordants or to improve the color produced by a natural or synthetic dye. In biomedical research and clinical diagnostics gold colloids are used as sensitive signals to detect the presence of pathogens. It has been observed that when metals are finely divided, a distinct color may result that is different from the color of the metal in bulk. For example, when gold is finely divided it may appear black, ruby or purple. This can be seen in biomedical research when gold colloids are reduced to micro-particles. Bright color signals are produced by few nanometer-sized particles. Dr. William Todd, a researcher in the Department of Veterinary Science at the Louisiana State University, developed a method of dyeing fabrics with metals. By using a reagent to bond the metal particles deep into the textile fibers and actually making the metal a part of the chemistry of the fiber. The chemicals of the fabric influence the resulting color. The combination of the element itself, the size of the particle, the chemical nature of the particle and the interaction of the metal with the chemistry of the fabric determine the actual hue. By using different elements, reagents, textiles and solvents a broad range of reproducible colors and tones can be created. Metals can also be combined into alloys, which will produce a variety of colors. The students of the ISCC chapter at the Fashion Institute of Technology dyed fabric using Dr. Todd's method and created a presentation of the results. They also did a demonstration of dyeing fabrics with metals.

  2. Dye-coated europium monosulfide

    SciTech Connect

    Kar, Srotoswini; Dollahon, Norman R.; Stoll, Sarah L.

    2011-05-15

    Nanoparticles of EuS were synthesized using europium dithiocarbamate complexes. The resulting nanoparticles were coated with the dye, 1-pyrene carboxylic acid and the resulting material was characterized using X-ray powder diffraction, TEM, and UV-visible spectroscopy. Fluorescence spectroscopy was used to determine the relative energy of the conduction band edge to the excited state energy of the dye. -- Graphical abstract: Dye sensitized magnetic semiconductor materials were prepared by synthesizing EuS nanoparticles using single source precursors and coating with the dye, 1-pyrene carboxylic acid. Display Omitted highlights: > Synthesized EuS nanoparticles, 11{+-}2.4 nm characterized using XRD, TEM, and UV-vis. spect. > Grafted a dye to the surface and characterized the product using XRD, FTIR, UV-vis., and TEM. > Studied the photophysical properties using fluorescence spectroscopy. > Determined the relative dye excited state to the conduction band of the semiconductor.

  3. Biodecolorization and biodegradation potential of recalcitrant triphenylmethane dyes by Coriolopsis sp. isolated from compost.

    PubMed

    Chen, Si Hui; Yien Ting, Adeline Su

    2015-03-01

    Triphenylmethane dyes (TPM) are recalcitrant colorants brought into the environment. In this study, a lesser-known white rot fungus Coriolopsis sp. (1c3), isolated from compost of Empty Fruit Bunch (EFB) of oil palm, was explored for its decolorization potential of TPM dyes. The isolate 1c3 demonstrated good decolorization efficiencies in the treatment of Crystal Violet (CV; 100 mg l(-1)), Methyl Violet (MV; 100 mg l(-1)) and Cotton Blue (CB; 50 mg(-1)), with 94%, 97% and 91%, within 7, 7 and 1 day(s), respectively. Malachite Green (MG; 100 mg l(-1)) was the most recalcitrant dye, with 52% decolorization after 9 days. Dye removal by 1c3 was presumably via biosorption, whereby the process was determined to be influenced by fungal biomass, initial dye concentrations and oxygen requirements. Biodegradation was also a likely mechanism responsible for dye removal by 1c3, occurred as indicated by the reduction of dye spectra peaks. Detection of laccase, lignin peroxidase and NADH-DCIP reductase activities further substantiate the possible occurrence of biodegradation of TPM dyes by 1c3. PMID:25527986

  4. Isolation and characterization of Bacillus thuringiensis for acid red 119 dye decolourisation.

    PubMed

    Dave, Shailesh R; Dave, Riddhi H

    2009-01-01

    Studies were carried out to isolate Acid red 119 (AR-119) resistant and decolourising bacteria from dye contaminated soil and water samples. Six morphologically distinct bacterial isolates resistant to 100 ppm AR-119 dye were isolated directly from the soil and waste contaminated with azo dyes. The most efficient isolate, which showed decolourisation zone of 44 mm on 100 ppm AR-119 containing plate was identified as Bacillus thuringiensis SRDD. Gradual adaptation increased the efficiency of the isolate and within 7h of incubation it showed decolourisation up to 1000 ppm of AR-119 dye in liquid medium. Addition of 300 ppm of AR-119 in each step in ongoing dye decolourisation flask gave more than 90% decolourisation of 300 ppm AR-119 in time as short as 1.25 h. The developed B. thuringiensis showed 50-60% decolourisation of 5000 ppm AR-119 in 7d of incubation. This organism was also able to remove more than 98%, 92%, 95% and 95% colour of C.I. Acid brown 14, C.I. Acid black 210, C.I. Acid violet 90 and C.I. Acid yellow 42 azo dyes at 100 ppm concentration in 24h, respectively. When the developed isolate was studied for bioremediation of actual azo dye contaminated waste it removed 70% colour from the waste in 24h. The developed B. thuringiensis exhibited excellent resistance and decolourisation ability to AR-119 and other acid azo dyes. PMID:18590958

  5. Natural polysaccharides and their interactions with dye molecules: applications in effluent treatment.

    PubMed

    Blackburn, Richard S

    2004-09-15

    Dyeing effluent is one of the largest contributors to textile effluent and such colored wastewater has a seriously destructive impact on the environment. Adsorption can be a very effective treatment for decolorization of textile dyeing effluent, but current techniques employ adsorption chemistry that is not particularly environmentally friendly, such as the use of alum. In this study, natural polysaccharides were used as adsorbents for removal of dye molecules from effluent. The results showed that naturally cationic polysaccharides such as chitin and chitosan gave excellent levels of color removal, and this was attributed to a combination of electrostatic attraction, van der Waals forces, and hydrogen bonding. Nonionic galactomannans (locust bean gum, guar gum, cassia gum) were also highly effective in removing dye from effluent, whereas other nonionic polysaccharides, such as starch, were not effective. This was attributed to the structure of the polysaccharides and the relative degree of inter- and intramolecular interactions between separate polymer chains. The pendant galactose residues of galactomannans prevented strong interaction, allowing greater hydrogen bonding with dye; comparatively, starch has extensive chain interactions, and as such had limited potential for hydrogen bonding with the dye molecules at the temperature of application. In addition, hydrophobic interactions between the hydrophobic parts of the dye and the alpha-face of the pendant galactose residues may have contributed to the superior performance. Repulsion between anionic polysaccharides and the dye anions prevented any hydrogen bonding and as such pectin, carrageenans, and alginic acid were not effective in dye removal from effluent. The use of galactomannans derived from plants in this system presents a sustainable method of effluent treatment. The raw materials are derived from renewable plant sources and are available in tonnage quantities, the adsorption system itself is highly effective and does not involve any additional chemical input or treatment other than the use of the adsorbent, and the adsorption agents themselves are nontoxic and biodegradable. PMID:15487803

  6. The Chemistry of Plant and Animal Dyes.

    ERIC Educational Resources Information Center

    Sequin-Frey, Margareta

    1981-01-01

    Provides a brief history of natural dyes. Chemical formulas are provided for flavonoids, luteolin, genistein, brazilin, tannins, terpenes, naphthoquinone, anthraquinone, and dyes with an alkaloid structure. Also discusses chemical background of different dye processes. (CS)

  7. DOS basics

    SciTech Connect

    O`Connor, P.

    1994-09-01

    DOS is an acronym for Disk Operating System. It is actually a set of programs that allows you to control your personal computer. DOS offers the capabilities to create and manage files; organize and maintain information placed on disks; use application programs such as WordPerfect, Lotus 123, Excel, Windows, etc. In addition, DOS provides the basic utilities needed to copy files from one area to another, delete files and list files. The latest version of DOS also offers more advanced features that include hard disk compression and memory management. Basic DOS commands are discussed.

  8. Autofluorescence removal using a customized filter set.

    PubMed

    Pang, Zhengyu; Barash, Eugene; Santamaria-Pang, Alberto; Sevinsky, Christopher; Li, Qing; Ginty, Fiona

    2013-10-01

    Quantitative fluorescence microscopy is severely hindered by intrinsic autofluorescence (AF). Endogenous fluorescent molecules in tissue and cell samples emit fluorescence that often dominates signals from specific dyes. This makes AF removal critical to the development and practice of quantitative fluorescence microscopy. In this study, we showed that AF signal could be separated from specific signal using a customized filter set. The filter set used the same excitation and beam splitter as the standard filter set, but the emission filter was red-shifted 40-60 nm from the peak of the specific dye. This filter set configuration collected mostly AF with minimum contribution from the specific dye. A linear transformation of AF images was required to correct for the difference in exposure and filter configuration. The constants (slope and intercept) in linear transformation were obtained through a pixel to pixel comparison between AF images (no staining) obtained by the standard filter set and the customized AF filter set. After staining of specific dye, the standard filter collecting target dye spectra was used to capture both target signal and AF, whereas customized filter was used to capture only AF. AF removal was accomplished by subtracting the linear transformed AF image from the image obtained from the standard filter. To validate our approach, we examined weak staining of androgen receptor in an AF abundant prostate tissue sample. Our method revealed a similar but cleaner nuclear staining of androgen receptor in a specimen, when compared to a traditional autofluorescence removal method. PMID:23857594

  9. Ethanol Basics

    SciTech Connect

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  10. Basic cosmology

    E-print Network

    Ll. Bel

    2014-03-22

    Basic cosmology describes the universe as a Robertson-Walker model filled with black-body radiation and no barionic matter, and as observational data it uses only the value of the speed of light, the Hubble and deceleration parameters and the black-body temperature at the present epoch. It predicts the value of the next new parameter in the Hubble law.

  11. Basic Horticulture.

    ERIC Educational Resources Information Center

    Geer, Barbra Farabough

    This learning packet contains teaching suggestions and student learning materials for a course in basic horticulture aimed at preparing students for employment in a number of horticulture areas. The packet includes nine sections and twenty instructional units. Following the standard format established for Oklahoma vocational education materials in…

  12. Body Basics

    MedlinePLUS

    ... more about how the body works, what basic human anatomy is, and what happens when parts of the body don't function properly. Blood Bones, Muscles, and Joints Brain and Nervous System Digestive System Endocrine System Eyes Female Reproductive System Heart and Circulatory System Immune ...

  13. Basic Science.

    ERIC Educational Resources Information Center

    Mercer County Community Coll., Trenton, NJ.

    Instructional materials are provided for a course that covers basic concepts of physics and chemistry. Designed for use in a workplace literacy project developed by Mercer County Community College (New Jersey) and its partners, the course describes applications of these concepts to real-life situations, with an emphasis on applications of…

  14. Basic Backwardness.

    ERIC Educational Resources Information Center

    Weingartner, Charles

    This paper argues that the "back to basics" movement is regressive and that regression is the characteristic mode of fear-ridden personalities. It is argued that many people in American society today have lost their ability to laugh and do not have the sense of humor which is crucial to a healthy mental state. Such topics as necrophilia, mental…

  15. Dye Sensitized Solar Cells

    PubMed Central

    Wei, Di

    2010-01-01

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO2, ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed. PMID:20480003

  16. Fluorometric procedures for dye tracing

    USGS Publications Warehouse

    Wilson, James F.; Cobb, Ernest D.; Kilpatrick, F.A.

    1986-01-01

    This manual describes the current fluorometric procedures used by the U.S. Geological Survey in dye tracer studies such as time of travel, dispersion, reaeration, and dilution-type discharge measurements. The advantages of dye tracing are (1) low detection and measurement limits and (2) simplicity and accuracy in measuring dye tracer concentrations using fluorometric techniques. The manual contains necessary background information about fluorescence, dyes, and fluorometers and a description of fluorometric operation and calibration procedures as a guide for laboratory and field use. The background information should be useful to anyone wishing to experiment with dyes, fluorometer components, or procedures different from those described. In addition, a brief section on aerial photography is included because of its possible use to supplement ground-level fluorometry.

  17. Fluorometric procedures for dye tracing

    USGS Publications Warehouse

    Wilson, James F.

    1968-01-01

    This manual describes the current fluorometric procedures used by the U.S. Geological Survey in dye tracer studies such as time of travel, dispersion, reaeration, and dilution-type discharge measurements. The advantages of dye tracing are (1) low detection and measurement limits and (2) simplicity and accuracy in measuring dye tracer concentrations using fluorometric techniques. The manual contains necessary background information about fluorescence, dyes, and fluorometers and a description of fluorometric operation and calibration procedures as a guide for laboratory and field use. The background information should be useful to anyone wishing to experiment with dyes, fluorometer components, or procedures different from those described. In addition, a brief section on aerial photography is included because of its possible use to supplement ground-level fluorometry.

  18. Basic Skills--Basic Business.

    ERIC Educational Resources Information Center

    Conference Board of Canada, Ottawa (Ontario).

    The experience of eight prominent Canadian business organizations was examined in terms of how basic skills deficits are identified in their work force, the impact of those deficiencies on organizational competitiveness, and why corporate programs are developed in response to the issue. Some of the key findings were as follows: (1) employee…

  19. Abatement of Azo Dye from Wastewater Using Bimetal-Chitosan

    PubMed Central

    Asgari, Ghorban; Farjadfard, Sima

    2013-01-01

    We introduce a new adsorbent, bimetallic chitosan particle (BCP) that is successfully synthesized and applied to remove the orange II dye from wastewater. The effects of pH, BCP quantity, and contact time are initially verified on the basis of the percentage of orange II removed from the wastewater. Experimental data reveal that the Cu/Mg bimetal and chitosan have a synergistic effect on the adsorption process of the adsorbate, where the dye adsorption by Cu/Mg bimetal, chitosan alone, and bimetal-chitosan is 10, 49, and 99.5%, respectively. The time required for the complete decolorization of orange II by 1?mg/L of BCP is 10?min. The Langmuir model is the best fit for the experimental data, which attains a maximum adsorption capacity of 384.6?mg/g. The consideration of the kinetic behavior indicates that the adsorption of orange II onto the BCP fits best with the pseudo-second-order and Elovich models. Further, the simulated azo dye wastewater can be effectively treated using a relatively low quantity of the adsorbent, 1?mg/L, within a short reaction time of 20?min. Overall, the use of BCP can be considered a promising method for eliminating the azo dye from wastewater effectively. PMID:24348163

  20. Different molecular complexity of linear-isomaltomegalosaccharides and ?-cyclodextrin on enhancing solubility of azo dye ethyl red: towards dye biodegradation.

    PubMed

    Lang, Weeranuch; Kumagai, Yuya; Sadahiro, Juri; Maneesan, Janjira; Okuyama, Masayuki; Mori, Haruhide; Sakairi, Nobuo; Kimura, Atsuo

    2014-10-01

    Intermolecular interaction of linear-type ?-(1 ? 6)-glucosyl megalosaccharide rich (L-IMS) and water-insoluble anionic ethyl red was firstly characterized in a comparison with inclusion complexation by cyclodextrins (CDs) to overcome the problem of poor solubility and bioavailability. Phase solubility studies indicated an enhancement of 3- and 9-fold over the solubility in water upon the presence of L-IMS and ?-CD, respectively. (1)H NMR and circular dichrosim spectra revealed the dye forms consisted of 1:1 stoichiometric inclusion complex within the ?-CD cavity, whereas they exhibited non-specific hydrophobic interaction, identified by solvent polarity changes, with L-IMS. The inclusion complex delivered by ?-CD showed an uncompetitive inhibitory-type effect to azoreductase, particularly with high water content that did not promote dye liberation. Addition of the solid dye dispersed into coupled-enzyme reaction system supplied by L-IMS as the dye solubilizer provided usual degradation rate. The dye intermission in series exhibited successful removal with at least 5 cycles was economically feasible. PMID:25087215

  1. Biological treatment of textile dyes by agar-agar immobilized consortium in a packed bed reactor.

    PubMed

    Patel, Yogesh; Gupte, Akshaya

    2015-03-01

    The decolorization of Acid Maroon V was investigated using bacterial consortium EDPA containing Enterobacter dissolvens AGYP1 and Pseudomonas aeruginosa AGYP2 immobilized in different entrapment matrices. The consortium displayed 96% removal of dye (100 mg/l) within 6 h when immobilized in agar-agar. Under optimum concentrations of agar-agar (3.0% w/v) and cell biomass (0.9 g% w/v), the consortium displayed decolorization for 18 successive batches of Acid Maroon V and also decolorized 14 other different textile dyes. A packed bed reactor under batch mode showed 89% decolorization of dye after 56 repetitive cycles. Under continuous flow mode, maximum color removal was achieved with bed length of 36 cm, hydraulic retention time of 2.66 h, and dye concentration of 100 mg/l. Additionally, the reactor decolorized relatively higher concentrations (100-2000 mg/l) of dye. The synthetic dye wastewater containing five textile dyes was decolorized 92% with 62% COD reduction using an immobilized consortium. PMID:25842535

  2. Dye-sensitized solar cells

    DOEpatents

    Skotheim, T.A.

    1980-03-04

    A low-cost dye-sensitized Schottky barrier solar cell is comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent. 3 figs.

  3. Dye-sensitized solar cells

    DOEpatents

    Skotheim, Terje A. [Berkeley, CA

    1980-03-04

    A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.

  4. Equilibrium uptake, sorption dynamics, process optimization, and column operations for the removal and recovery of malachite green from wastewater using activated carbon and activated slag

    SciTech Connect

    Gupta, V.K.; Srivastava, S.K.; Mohan, D.

    1997-06-01

    The waste slurry generated in fertilizer plants and slag (blast furnace waste) have been converted into low-cost adsorbents, activated carbon and activated slag, respectively, and these are utilized for the removal of malachite green (a basic dye) from wastewater. In the batch experiments, parameters studied include the effect of pH, sorbent dosage, adsorbate concentration, temperature, and contact time. Kinetic studies have been performed to have an idea of the mechanistic aspects and to obtain the thermodynamic parameters of the process. The uptake of the dye is greater on carbonaceous material than on activated slag. Sorption data have been correlated with both Langmuir and Freundlich adsorption models. The presence of anionic surfactants does not affect the uptake of dye significantly. The mass transfer kinetic approach has been applied for the determination of various parameters necessary for the designing of fixed-bed contactors. Chemical regeneration has been achieved with acetone in order to recover the loaded dye and restore the column to its original capacity without dismantling the same.

  5. Kinetic study of electro-Fenton oxidation of azo dyes on boron-doped diamond electrode.

    PubMed

    Almomani, Fares; Baranova, Elena A

    2013-01-01

    The present work compares electrochemical degradation of red and blue azo textile dyes in single- and two-compartment electrochemical cells in the presence of Fenton reagent (Fe2+) and using a boron-doped diamond anode. Degradation of both dyes was related to the concentration of dye, applied current density and the concentration of FeSO4 catalyst. Complete colour removal and approximately 91% of organic matter oxidation was achieved in a two-compartment electrochemical cell at an applied current density of 20 mA x cm(-2), pH of 3 and Fe(2+) ion concentration of 0.02 mM. Higher current density and reaction time were required to achieve the same removals in a one-compartment electrochemical cell. Dye degradation kinetics as well as chemical oxygen demand removal rate were successfully modelled to pseudo first-order kinetics. The apparent first-order rate constants (k(o)) for degradation of red dye with an initial concentration of 20, 40 and 60 ppm were found to be 2.67 +/- 0.16, 2.19 +/- 0.09 and 1.5 +/- 0.03 min(-1), and for blue dye at the same initial concentrations were 1.99 +/- 0.2, 0.95 +/- 0.02 and 0.71 +/- 0.030 min(-1), respectively. PMID:24191481

  6. Tick Removal

    MedlinePLUS

    ... transmitted by ticks Tickborne diseases abroad Borrelia miyamotoi Tick Removal Recommend on Facebook Tweet Share Compartir If ... a tick quite effectively. How to remove a tick Use fine-tipped tweezers to grasp the tick ...

  7. Microfluidic dye laser intracavity absorption

    NASA Astrophysics Data System (ADS)

    Galas, J. C.; Peroz, C.; Kou, Q.; Chen, Y.

    2006-11-01

    The authors report absorption measurements on low concentration analytes using a microfluidic dye laser. The laser cavity is made of two gold mirrors coated on the end faces of two optical fibers inserted in a chip. Rhodamine 6G dye molecules dissolved in ethanol are used for laser amplification and absorption measurements are done with methylene blue dye solutions. When optically pumped with a frequency doubled Nd:YAG laser at 532nm wavelength, the device shows a laser output emission at 565nm and a high sensitivity of the lasing output to the losses in the cavity, in good agreement with the results of numerical calculations.

  8. Bichromophoric Dyes for Wavelength Shifting of Dye-Protein Fluoromodules

    PubMed Central

    Pham, Ha H.; Szent-Gyorgyi, Christopher; Brotherton, Wendy L.; Schmidt, Brigitte F.; Zanotti, Kimberly J.; Waggoner, Alan S.

    2015-01-01

    Dye-protein fluoromodules consist of fluorogenic dyes and single chain antibody fragments that form brightly fluorescent noncovalent complexes. This report describes two new bichromophoric dyes that extend the range of wavelengths of excitation or emission of existing fluoromodules. In one case, a fluorogenic thiazole orange (TO) was attached to an energy acceptor dye, Cy5. Upon binding to a protein that recognizes TO, red emission due to efficient energy transfer from TO to Cy5 replaces the green emission observed for monochromophoric TO bound to the same protein. Separately, TO was attached to a coumarin that serves as an energy donor. The same green emission is observed for coumarin-TO and TO bound to a protein, but efficient energy transfer allows violet excitation of coumarin-TO, versus longer wavelength, blue excitation of monochromophoric TO. Both bichromophores exhibit low nanomolar KD values for their respective proteins, >95% energy transfer efficiency and high fluorescence quantum yields. PMID:25679477

  9. Hair Dye and Hair Relaxers

    MedlinePLUS

    ... Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco ... Print and Share (615 KB) En Español Hair dye is used to color your hair. Hair relaxers are used to make ...

  10. Adsorption of allura red dye by cross-linked chitosan from shrimp waste.

    PubMed

    Sánchez-Duarte, Reyna G; Sánchez-Machado, Dalia I; López-Cervantes, Jaime; Correa-Murrieta, Ma A

    2012-01-01

    The present study was designed to evaluate the chitosan, which has been obtained by deacetylation of chitin, as a biosorbent. The chitin was isolated from fermented shrimp waste by an important local industrial food biopolymer. The aim of this work was the characterization of chitosan and preparation of cross-linked chitosan- tripolyphosphate (chitosan-TPP) beads for the removal of allura red food dye from aqueous solutions. Conditions of batch adsorption such as pH, time and adsorbent dose were examined. The effectiveness of cross-linked chitosan beads for dye removal was found to be higher for pH 2 (98%, percentage of dye removal) and tends to decrease at pHs of 3 to 11 (up to 49%). The values of percentage removal show that the adsorption capacity increases with time of contact and dosage of chitosan-TPP, but red dye adsorption is mainly influenced by pH level. The cross-linked chitosan-TPP beads can significantly adsorb allura red monoazo dye from aqueous solutions even at acidic pHs unlike raw chitosan beads that tend to dissolve in acidic solutions. Consequently, this modified chitosan has characteristics that allow minimization of environmental pollution and widening the valorization of shrimp waste. PMID:22277220

  11. Dye molecules in electrolytes: new approach for suppression of dye-desorption in dye-sensitized solar cells

    PubMed Central

    Heo, Nansra; Jun, Yongseok; Park, Jong Hyeok

    2013-01-01

    The widespread commercialization of dye-sensitized solar cells remains limited because of the poor long-term stability. We report on the influence of dye-molecules added in liquid electrolyte on long-term stability of dye-sensitized solar cells. Dye-desorption from the TiO2 surface during long-term cycling is one of the decisive factors that degrade photocurrent densities of devices which in turn determine the efficiencies of the devices. For the first time, desorption of dye from the TiO2 surface could be suppressed by controlling thermodynamic equilibrium; by addition of dye molecules in the electrolyte. The dye molecules in the electrolyte can suppress the driving forces for the adsorbed dye molecules to be desorbed from TiO2 nanoparticles. As a result, highly enhanced device stabilities were achieved due to the reduction of dye-desorption although there was a little decrease in the initial efficiencies.

  12. Removal of Direct Red 12B by garlic peel as a cheap adsorbent: Kinetics, thermodynamic and equilibrium isotherms study of removal

    NASA Astrophysics Data System (ADS)

    Asfaram, A.; Fathi, M. R.; Khodadoust, S.; Naraki, M.

    2014-06-01

    The removal of dyes from industrial waste is very important from health and hygiene point of view and for environmental protection. In this work, efficiency and performance of garlic peel (GP) adsorbent for the removal of Direct Red 12B (DR12B) from wastewater was investigated. The influence of variables including pH, concentration of the dye and amount of adsorbent, particle size, contact time and temperature on the dye removal has been investigated. It was observed that the pseudo-second-order kinetic model fits better with good correlation coefficient and the equilibrium data fitted well with the Langmuir model. More than 99% removal efficiency was obtained within 25 min at adsorbent dose of 0.2 g per 50 ml for initial dye concentration of 50 mg L-1. Calculation of various thermodynamic parameters such as, Gibb's free energy, entropy and enthalpy of the on-going adsorption process indicate feasibility and endothermic nature of DR12B adsorption.

  13. A Low-Cost Wheat Bran Medium for Biodegradation of the Benzidine-Based Carcinogenic Dye Trypan Blue Using a Microbial Consortium

    PubMed Central

    Lade, Harshad; Kadam, Avinash; Paul, Diby; Govindwar, Sanjay

    2015-01-01

    Environmental release of benzidine-based dyes is a matter of health concern. Here, a microbial consortium was enriched from textile dye contaminated soils and investigated for biodegradation of the carcinogenic benzidine-based dye Trypan Blue using wheat bran (WB) as growth medium. The PCR-DGGE analysis of enriched microbial consortium revealed the presence of 15 different bacteria. Decolorization studies suggested that the microbial consortium has high metabolic activity towards Trypan Blue as complete removal of 50 mg?L?1 dye was observed within 24 h at 30 ± 0.2 °C and pH 7. Significant reduction in TOC (64%) and COD (88%) of dye decolorized broths confirmed mineralization. Induction in azoreductase (500%), NADH-DCIP reductase (264%) and laccase (275%) proved enzymatic decolorization of dye. HPLC analysis of dye decolorized products showed the formation of six metabolites while the FTIR spectrum indicated removal of diazo bonds at 1612.30 and 1581.34 cm?1. The proposed dye degradation pathway based on GC-MS and enzyme analysis suggested the formation of two low molecular weight intermediates. Phytotoxicity and acute toxicity studies revealed the less toxic nature of the dye degradation products. These results provide experimental evidence for the utilization of agricultural waste as a novel low-cost growth medium for biodegradation of benzidine-based dyes, and suggested the potential of the microbial consortium in detoxification. PMID:25815522

  14. Discovery of Black Dye Crystal Structure Polymorphs: Implications for Dye Conformational Variation in Dye-Sensitized Solar Cells.

    PubMed

    Cole, Jacqueline M; Low, Kian Sing; Gong, Yun

    2015-12-23

    We present the discovery of a new crystal structure polymorph (1) and pseudopolymorph (2) of the Black Dye, one of the world's leading dyes for dye-sensitized solar cells, DSSCs (10.4% device performance efficiency). This reveals that Black Dye molecules can adopt multiple low-energy conformers. This is significant since it challenges existing models of the Black Dye···TiO2 adsorption process that renders a DSSC working electrode; these have assumed a single molecular conformation that refers to the previously reported Black Dye crystal structure (3). The marked structural differences observed between 1, 2, and 3 make the need for modeling multiple conformations more acute. Additionally, the ordered form of the Black Dye (1) provides a more appropriate depiction of its anionic structure, especially regarding its anchoring group and NCS bonding descriptions. The tendency toward NCS ligand isomerism, evidenced via the disordered form 2, has consequences for electron injection and electron recombination in Black Dye embedded DSSC devices. Dyes 2 and 3 differ primarily by the absence or presence of a solvent of crystallization, respectively; solvent environment effects on the dye are thereby elucidated. This discovery of multiple Black Dye conformers from diffraction, with atomic-level definition, complements recently reported nanoscopic evidence for multiple dye conformations existing at a dye···TiO2 interface, for a chemically similar DSSC dye; those results emanated from imaging and spectroscopy, but were unresolved at the submolecular level. Taken together, these findings lead to the general notion that multiple dye conformations should be explicitly considered when modeling dye···TiO2 interfaces in DSSCs, at least for ruthenium-based dye complexes. PMID:26599130

  15. Mapping of cavitational activity in a pilot plant dyeing equipment.

    PubMed

    Actis Grande, G; Giansetti, M; Pezzin, A; Rovero, G; Sicardi, S

    2015-11-01

    A large number of papers of the literature quote dyeing intensification based on the application of ultrasound (US) in the dyeing liquor. Mass transfer mechanisms are described and quantified, nevertheless these experimental results in general refer to small laboratory apparatuses with a capacity of a few hundred millilitres and extremely high volumetric energy intensity. With the strategy of overcoming the scale-up inaccuracy consequent to the technological application of ultrasounds, a dyeing pilot-plant prototype of suitable liquor capacity (about 40 L) and properly simulating several liquor to textile hydraulic relationships was designed by including US transducers with different geometries. Optimal dyeing may be obtained by optimising the distance between transducer and textile material, the liquid height being a non-negligible operating parameter. Hence, mapping the cavitation energy in the machinery is expected to provide basic data on the intensity and distribution of the ultrasonic field in the aqueous liquor. A flat ultrasonic transducer (absorbed electrical power of 600 W), equipped with eight devices emitting at 25 kHz, was mounted horizontally at the equipment bottom. Considering industrial scale dyeing, liquor and textile substrate are reciprocally displaced to achieve a uniform colouration. In this technology a non uniform US field could affect the dyeing evenness to a large extent; hence, mapping the cavitation energy distribution in the machinery is expected to provide fundamental data and define optimal operating conditions. Local values of the cavitation intensity were recorded by using a carefully calibrated Ultrasonic Energy Meter, which is able to measure the power per unit surface generated by the cavitation implosion of bubbles. More than 200 measurements were recorded to define the map at each horizontal plane positioned at a different distance from the US transducer; tap water was heated at the same temperature used for dyeing tests (60°C). Different liquid flow rates were tested to investigate the effect of the hydrodynamics characterising the equipment. The mapping of the cavitation intensity in the pilot-plant machinery was performed to achieve with the following goals: (a) to evaluate the influence of turbulence on the cavitation intensity, and (b) to determine the optimal distance from the ultrasound device at which a fabric should be positioned, this parameter being a compromise between the cavitation intensity (higher next to the transducer) and the US field uniformity (achieved at some distance from this device). By carrying out dyeing tests of wool fabrics in the prototype unit, consistent results were confirmed by comparison with the mapping of cavitation intensity. PMID:26186865

  16. Sea dye marker provides visibility for 20 hours

    NASA Technical Reports Server (NTRS)

    De Laat, F.

    1966-01-01

    Sea dye marker block releases a visible slick which lasts at least twelve hours. The dye marker uses a fluorescent dye in a heat cured binder which, when immersed in seawater, releases the dye at a controlled rate.

  17. Dyes as tracers for vadose zone hydrology

    NASA Astrophysics Data System (ADS)

    Flury, Markus; Wai, Nu Nu

    2003-03-01

    Dyes are important tracers to investigate subsurface water movement. For more than a century, dye tracers have provided clues about the hydrological cycle as well as flow and transport processes in the subsurface. Groundwater contamination often originates in the vadose zone. Agrochemicals applied to the soil surface, toxic compounds accidentally spilled by human activities, and contaminants released from waste repositories leach through the vadose zone and can ultimately pollute groundwater resources. Dyes are an important tool to assess flow pathways of such contaminants. This review compiles information on dyes used as hydrological tracers, with particular emphasis on vadose zone hydrology. We summarize briefly different human-applied tracers, including nondye tracers. We then provide a historical sketch of the use of dyes as tracers and describe newer developments in visualization and quantification of tracer experiments. Relevant chemical properties of dyes used as tracers are discussed and illustrated with dye intermediates and selected dye tracers. The types of dyes used as tracers in subsurface hydrology are summarized, and recommendations are made regarding the use of dye tracers. The review concludes with a toxicological assessment of dyes used as hydrological tracers. Many different dyes have been proposed as tracers for water movement in the subsurface. All of these compounds, however, are to some degree retarded by the subsurface medium. Nevertheless, dyes are useful tracers to visualize flow pathways.

  18. Mondo Grass Berry Pigment for Visible to Near Infrared Absorption in Dye Sensitized Solar Cell

    NASA Astrophysics Data System (ADS)

    Desilva, L. A. A.; Pitigala, P. K. D. D. P.; Perera, A. G. U.

    2013-03-01

    The development of dye sensitized solar cells (DSSC) is an exciting field in the low cost renewable energy production. Two major draw backs in the DSSCs are the narrow spectral response and the short term stability. Synthesis of artificial dyes with broad response is important in developing an efficient DSSC. Artificial dyes can add up to the cost of the device; therefore, it is important to identify natural dyes with broad abortion and required energy levels. Work presented here shows a broad spectral response with a natural dye extracted from a Mondo Grass berry (Ophiopogonjaponicus).The dye is extracted by crushing the berries and filtering to remove the pulp. A DSSC sensitized with Mondo Grass dye, and with TiO2 film screen printed on a Florien doped Tin Oxide (FTO) glass and baked for 30 minutes at 450 degree C as the working electrode and Iodine/triiodide red-ox electrolyte as the hole collector was tested for its performance. An open circuit photovoltage of 495 mV and a short circuit photocurrent of 0.6 mA/cm2 were observed under a simulated lamp equivalent to 1 sun illumination and have a broad spectral response extending from 400 nm to 750 nm. This work is supported by COSM at UWG.

  19. Sorption of hydrophilic dyes on anodic aluminium oxide films and application to pH sensing.

    PubMed

    Silina, Yuliya E; Kuchmenko, Tatyana A; Volmer, Dietrich A

    2015-02-01

    The sorption of selected hydrophilic pH-sensitive dyes (bromophenol blue, bromothymol blue, bromocresol purple, alizarin red, methyl orange, congo red, rhodamine 6G) on films of anodized aluminium oxide (AAO) was investigated in this study. Depth and pore structure of the AAO channels were adjusted by changing electrolysis time and current density during treatment of aluminium foil in oxalic acid, sulfosalycilic acid and sulfuric acid at concentration levels between 0.2 and 0.6 M. The dyes were immobilized on the AAO surface by direct saturation of the films in dye solutions. It was shown by scanning electron microscopy and X-ray spectral analysis that the dyes penetrated into the AAO channels by more than 1.5 ?m, even at static saturation conditions. The anionic dyes linked to the porous AAO surface exhibited differential shifts of the UV absorption bands in their acidic/basic forms. By combining several dyes, the films have an application range between pH = 0.5-9 in aqueous media. The dye-modified AAO film was a simple, portable, inexpensive and reusable pH sensor with very fast response time and clear colour transitions. PMID:25436239

  20. Master dye laser oscillator including a specific grating assembly for use therein

    DOEpatents

    Davin, J.M.

    1992-09-01

    A dye laser oscillator for producing a tuned dye beam is disclosed herein and includes, among other components, a beam output coupling assembly, a dye cell assembly, a beam expander assembly, an etalon assembly, and a grating assembly. Each of three assemblies is vertically supported from a horizontal base so as to be readily removable from the base without interference from or interfering with the other assemblies. The particular grating assembly disclosed is specifically designed for proper optical alignment with the intended path of the dye beam to be produced and for accurate pivotal movement relative to the beam path in order to function as a coarse tuning mechanism in the production of the ultimately tuned beam. 5 figs.

  1. Influence of textile dye and decolorized metabolites on microbial fuel cell-assisted bioremediation.

    PubMed

    Chen, Bor-Yann; Ma, Chih-Ming; Han, Ke; Yueh, Pei-Lin; Qin, Lian-Jie; Hsueh, Chuan-Chung

    2016-01-01

    As known, decolorized metabolites (DMs) were capable to act as electron shuttles (ESs) to enhance color removal of textile dye(s); however, optimal manipulation of such advantages to microbial fuel cell (MFC)-assisted dye decolorization for industrial practicability were still remained open to be disclosed. The novelty of this work was to disclose such DMs-supplementing strategies for the most promising reductive decolorization in MFC-assisted bioremediation. Quantitative assessment clearly indicated that MFCs coupled to DMs accumulation was economically-feasible strategy of bioaugmentation and biostimulation. That is, MFC technology can be applied to select appropriate on-site dye decontamination in the presence of naturally-generating DMs. PMID:26482945

  2. Influence of some aldehyde blocking agents on staining of depurinized DNA with cationic dyes.

    PubMed

    Erenpreisa, J; Freivalds, T

    1979-01-01

    Rat liver, spleen and Walker carcinosarcoma imprints were subjected to depurinizing Feulgen hydrolysis and then treated with blocking agents of aldehyde groups. Such blockators as sodium bisulfite and hydroxylamine which multiplay additionally anionic groups in DNA and intensify the reactions with cationic dyes, ensuring anisotropic staining. Hydrazine lowers the binding of carionic dyes to DNA, instead phenylhydrazine, completely blocks both aldehyde and phosphate groups. When the imprints were treated with 2.4-dinitrophenylhydrazine, aldehyde and phosphate groups of apurinic acid were blocked, and DNA staining by cationic dyes occurred only on account of nitrogroups of the blocking agents which have been used. The staining reaction of cationic dyes after the use of anionogenic blocking agents of aldehyde groups is prospective not only for revealing DNA but also for several other compounds with natural or potential aldo- and ketogroups. However the reaction with phenylhydrazine can serve as a staining without removal of DNA prior to staining as an optional procedure. PMID:86483

  3. Phytoremediation of textile dyes and effluents: Current scenario and future prospects.

    PubMed

    Khandare, Rahul V; Govindwar, Sanjay P

    2015-12-01

    Phytoremediation has emerged as a green, passive, solar energy driven and cost effective approach for environmental cleanup when compared to physico-chemical and even other biological methods. Textile dyes and effluents are condemned as one of the worst polluters of our precious water bodies and soils. They are well known mutagenic, carcinogenic, allergic and cytotoxic agents posing threats to all life forms. Plant based treatment of textile dyes is relatively new and hitherto has remained an unexplored area of research. Use of macrophytes like Phragmites australis and Rheum rhabarbarum have shown efficient removal of Acid Orange 7 and sulfonated anthraquinones, respectively. Common garden and ornamental plants namely Aster amellus, Portulaca grandiflora, Zinnia angustifolia, Petunia grandiflora, Glandularia pulchella, many ferns and aquatic plants have also been advocated for their dye degradation potential. Plant tissue cultures like suspension cells of Blumea malcolmii and Nopalea cochenillifera, hairy roots of Brassica juncea and Tagetes patula and whole plants of several other species have confirmed their role in dye degradation. Plants' oxidoreductases such as lignin peroxidase, laccase, tyrosinase, azo reductase, veratryl alcohol oxidase, riboflavin reductase and dichlorophenolindophenol reductase are known as key biodegrading enzymes which break the complex structures of dyes. Schematic metabolic pathways of degradation of different dyes and their environmental fates have also been proposed. Degradation products of dyes and their fates of metabolism have been reported to be validated by UV-vis spectrophotometry, high performance liquid chromatography, high performance thin layer chromatography, Fourier Transform Infrared Spectroscopy, gas chromatograph-mass spectroscopy and several other analytical tools. Constructed wetlands and various pilots scale reactors were developed independently using the plants of P. australis, Portulaca grandiflora, G. pulchella, Typha domingensis, Pogonatherum crinitum and Alternanthera philoxeroides. The developed phytoreactors gave noteworthy treatments, and significant reductions in biological oxygen demand, chemical oxygen demand, American Dye Manufacturers Institute color removal value, total organic carbon, total dissolved solids, total suspended solids, turbidity and conductivity of the dye effluents after phytoremediation. Metabolites of dyes and effluents have been assayed for phytotoxicity, cytotoxicity, genotoxicity and animal toxicity and were proved to be non/less toxic than untreated compounds. Effective strategies to handle fluctuating dye load and hydraulics for in situ treatment needs scientific attention. Future studies on development of transgenic plants for efficacious phytodegradation of textile dyes should be focused. PMID:26386310

  4. Degradation of dyes by active species injected from a gas phase surface discharge

    NASA Astrophysics Data System (ADS)

    Li, Jie; Wang, Tiecheng; Lu, Na; Zhang, Dandan; Wu, Yan; Wang, Tianwei; Sato, Masayuki

    2011-06-01

    A reactor, based on the traditional gas phase surface discharge (GPSD), is designed for degradation of dye wastewater in this study. The reactor is characterized by using the dye wastewater as a ground electrode. A spiral discharge electrode of stainless steel wire attached on the inside wall of a cylindrical insulating medium and the wastewater surrounding the insulating medium for simultaneous cooling of the discharge electrode constitute the reactor. The active chemical radicals generated by the discharge of the spiral electrode are injected into the water with the carrier gas. The removal of three organic dyes (including methyl red (MR), reactive brilliant blue (RBB) and cationic red (CR)) in aqueous solution is investigated. The effects of electrode configuration, discharge voltage and solution pH value on the decoloration efficiency of MR are discussed. The experimental results show that over 95% of decoloration efficiencies for all the dyes are obtained after several minutes of plasma treatment. 40% of chemical oxygen demand removal of MR is obtained after 8 min of discharge treatment. Furthermore, it is found that ozone mainly affects the removal of dyes and several aliphatic compounds are identified as the oxidation products of MR. The possible degradation pathways of MR by GPSD are proposed.

  5. Dye Sensitized Tandem Photovoltaic Cells

    SciTech Connect

    Barber, Greg D.

    2009-12-21

    This work provided a new way to look at photoelectrochemical cells and their performance. Although thought of as low efficiency, a the internal efficiency of a 9% global efficiency dye sensitized solar cell is approximately equal to an 18% efficient silicon cell when each is compared to their useful spectral range. Other work undertaken with this contract also reported the first growth oriented titania and perovskite columns on a transparent conducting oxide. Other work has shown than significant performance enhancement in the performance of dye sensitized solar cells can be obtained through the use of coupling inverse opal photonic crystals to the nanocrystalline dye sensitized solar cell. Lastly, a quick efficient method was developed to bond titanium foils to transparent conducting oxide substrates for anodization.

  6. Single mode pulsed dye laser oscillator

    DOEpatents

    Hackel, R.P.

    1992-11-24

    A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability. 6 figs.

  7. TEXTILE DYEING WASTEWATERS: CHARACTERIZATION AND TREATMENT

    EPA Science Inventory

    The report gives results of an examination of the biological, chemical, and physical treatability of wastewaters from selected typical dye baths. Twenty systems providing a broad cross section of dye classes, fibers, and application techniques, were examined. Wastes, produced usi...

  8. Dye sensitization of photoconductivity of polycrystalline silicon

    NASA Astrophysics Data System (ADS)

    Goryaev, M. A.

    2015-12-01

    The DC photoconductivity of powder silicon samples with organic dyes applied to the surface of microcrystals was studied. Effective sensitization of photoconductivity in the absorption band of the dyes in the visible part of the spectrum was found.

  9. High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells

    E-print Network

    McGehee, Michael

    High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells Brian E-sensitized solar cells, the excited ERDs must be able to efficiently transfer energy to the sensitizing dyes, TT1, to increase the overall power conversion efficiency of a dye-sensitized solar cell (DSC) from 3

  10. Modeling the efficiency of Frster resonant energy transfer from energy relay dyes in dye-

    E-print Network

    McGehee, Michael

    Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye resonant energy transfer can improve the spectral breadth, absorption and energy conversion efficiency of dye sensitized solar cells. In this design, unattached relay dyes absorb the high energy photons

  11. Optofluidic ring resonator dye lasers

    NASA Astrophysics Data System (ADS)

    Sun, Yuze; Suter, Jonathan D.; Fan, Xudong

    2010-02-01

    We overview the recent progress on optofluidic ring resonator (OFRR) dye lasers developed in our research group. The fluidics and laser cavity design can be divided into three categories: capillary optofluidic ring resonator (COFRR), integrated cylindrical optofluidic ring resonator (ICOFRR), and coupled optofluidic ring resonator (CpOFRR). The COFRR dye laser is based on a micro-sized glass capillary with a wall thickness of a few micrometers. The capillary circular cross-section forms the ring resonator and supports the whispering gallery modes (WGMs) that interact evanescently with the gain medium in the core. The laser cavity structure is versatile to adapt to the gain medium of any refractive index. Owing to the high Q-factor (>109), the lasing threshold of 25 nJ/mm2 is achieved. Besides directly pump the dye molecules, lasing through fluorescence resonance energy transfer (FRET) between the donor and acceptor dye molecules is also studied in COFRR laser. The energy transfer process can be further controlled by designed DNA scaffold labeled with donor/acceptor molecules. The ICOFRR dye laser is based on a cylindrical ring resonator fused onto the inner surface of a thick walled glass capillary. The structure has robust mechanical strength to sustain rapid gain medium circulation. The CpOFRR utilizes a cylindrical ring resonator fused on the inner surface of the COFRR capillary. Since the capillary wall is thin, the individual WGMs of the cylindrical ring resonator and the COFRR couples strongly and forms Vernier effect, which provides a way to generate a single mode dye laser.

  12. Tick removal.

    PubMed

    Roupakias, S; Mitsakou, P; Nimer, A Al

    2011-03-01

    Ticks are blood feeding external parasites which can cause local and systemic complications to human body. A lot of tick-borne human diseases include Lyme disease and virus encephalitis, can be transmitted by a tick bite. Also secondary bacterial skin infection, reactive manifestations against tick allergens, and granuloma's formation can be occurred. Tick paralysis is a relatively rare complication but it can be fatal. Except the general rules for tick bite prevention, any tick found should be immediately and completely removed alive. Furthermore, the tick removal technique should not allow or provoke the escape of infective body fluids through the tick into the wound site, and disclose any local complication. Many methods of tick removal (a lot of them are unsatisfactory and/or dangerous) have been reported in the literature, but there is very limited experimental evidence to support these methods. No technique will remove completely every tick. So, there is not an appropriate and absolutely effective and/or safe tick removal technique. Regardless of the used tick removal technique, clinicians should be aware of the clinical signs of tick-transmitted diseases, the public should be informed about the risks and the prevention of tick borne diseases, and persons who have undergone tick removal should be monitored up to 30 days for signs and symptoms. PMID:21710824

  13. Dye laser amplifier including a low turbulence, stagnation-free dye flow configuration

    DOEpatents

    Davin, James (Gilroy, CA)

    1992-01-01

    A large (high flow rate) dye laser amplifier in which a continuous replenished supply of dye is excited by a first light beam, specifically a copper vapor laser beam, in order to amplify the intensity of a second different light beam, specifically a dye beam, passing through the dye is disclosed herein. This amplifier includes a dye cell defining a dye chamber through which a continuous stream of dye is caused to pass at a flow rate of for example 30 gallons/minute, a specifically designed support vessel for containing the dye cell and a screen device for insuring that the dye stream passes into the dye cell in a substantially turbulent free, stagnation-free manner.

  14. Dye laser amplifier including a low turbulence, stagnation-free dye flow configuration

    DOEpatents

    Davin, J.

    1992-12-01

    A large (high flow rate) dye laser amplifier in which a continuous replenished supply of dye is excited by a first light beam, specifically a copper vapor laser beam, in order to amplify the intensity of a second different light beam, specifically a dye beam, passing through the dye is disclosed herein. This amplifier includes a dye cell defining a dye chamber through which a continuous stream of dye is caused to pass at a flow rate of for example 30 gallons/minute, a specifically designed support vessel for containing the dye cell and a screen device for insuring that the dye stream passes into the dye cell in a substantially turbulent free, stagnation-free manner. 9 figs.

  15. Reactive Fluorescent Dyes For Urethane Coatings

    NASA Technical Reports Server (NTRS)

    Willis, Paul B.; Cuddihy, Edward F.

    1991-01-01

    Molecules of fluorescent dyes chemically bound in urethane conformal-coating materials to enable nondestructive detection of flaws in coats through inspection under ultraviolet light, according to proposal. Dye-bonding technique prevents outgassing of dyes, making coating materials suitable for use where flaw-free coats must be assured in instrumentation or other applications in which contamination by outgassing must be minimized.

  16. PHOTOLYSIS OF SMOKE DYES ON SOILS

    EPA Science Inventory

    Photolysis of an azo, a quinophthalone, and several anthraquinone smoke dyes was studied on soil surfaces. nitially, rapid photodegradation of each dye occurred, followed by a period of much slower rate of loss, indicating that the remaining fraction of the dye was photochemicall...

  17. [Study on decolorization of triphenylmethane dyes by DTT].

    PubMed

    Pan, Tao; Liu, Da-Wei; Ren, Sui-Zhou; Guo, Jun; Sun, Guo-Ping

    2012-03-01

    Decolorization of triphenylmethane dyes by DTT was researched. For malachite green, content of DTT in reaction system was optimized to investigate the quantitative relation between DTT and malachite green and the decolorization capacity of DTT was confirmed. Effect of pH of reaction system on reducibility of DTT was explored. The results indicated 4 mol malachite green could be decolorized by 1 mol DTT averagely within 1 min, when pH of the reaction system was above 5. The decolorization rate was up to 97%. Decolorization product of malachite mreen was corroborated to be its leuco form by HPLC analysis. Some insoluble compounds, which could be the complex products of leuco malachite green with DTT, were formed during the decolorization reaction. Decolorization of crystal violet, brilliant green and basic fuchsin by DTT was tested further, and the decolorization rates were all above 85%, which suggested DTT was a broad-spectrum decolorization agent for triphenylmethane dyes. PMID:22624380

  18. Development of an activated carbon-packed microbial bioelectrochemical system for azo dye degradation.

    PubMed

    Cardenas-Robles, Arely; Martinez, Eduardo; Rendon-Alcantar, Idelfonso; Frontana, Carlos; Gonzalez-Gutierrez, Linda

    2013-01-01

    A microbial bioelectrochemical reactor (BER) was employed for the degradation of azo dyes without the use of an external electron donor, using activated carbon (GAC) as a redox mediator. Contribution of pH values, open circuit potential (OCP), dye concentration and applied current were individually studied. A batch system and an upflow fixed bed bioreactor were built for analyzing the effect of the applied current on biodegradation of the azo dye Reactive Red 272. The presence of GAC (20% w/v) regulated both pH and OCP values in solution and led to a removal efficiency of 98%. Cyclic voltammetry results indicate a dependence of the electron transfer mechanism with the concentration of the azo compound. With these results, a continuous flow reactor operating with J=0.045 mA cm(-2), led to removal rates of 95% (± 3.5%) in a half-residence time of 1 hour. PMID:23128299

  19. Reactive dyes decolouration by TiO2 photo-assisted catalysis.

    PubMed

    Lizama, C; Yeber, M C; Freer, J; Baeza, J; Mansilla, H D

    2001-01-01

    The photocatalytic degradation of three reactive azo dyes (yellow-2, orange-16 and red-2) and one anthraquinone reactive dye (blue-19) was studied. The reactions were carried out in a reactor with recirculation using TiO2 immobilised on glass Raschig rings (system A) and compared with a batch system using the catalyst in aqueous suspension (system B). Both reaction systems were irradiated with a 125 W, lambda > 254 nm lamp. The suspended TiO2 system was also studied using a 125 W 360 nm lamp (system C). Kinetic studies indicated a rapid colour removal, following the order B > A > C. The same trend was observed in COD and TOC removal profiles. The energy consumption per order of magnitude of catalytic degradation of the dyes was lower in the batch reactor (system B) than in the reactor with recirculation and immobilised TiO2 (system A). PMID:11695459

  20. Tick removal

    MedlinePLUS

    ... are small, insect-like creatures that live in woods and fields. They attach to you as you ... your clothes and skin often while in the woods. After returning home: Remove your clothes. Look closely ...

  1. Kidney removal

    MedlinePLUS

    ... kidney is then removed. Your surgeon will also take out the surrounding fat, and sometimes the adrenal gland ... of the cuts larger (around 4 inches) to take out the kidney. The surgeon will cut the ureter, ...

  2. Removal of direct blue-86 from aqueous solution by new activated carbon developed from orange peel.

    PubMed

    Nemr, Ahmed El; Abdelwahab, Ola; El-Sikaily, Amany; Khaled, Azza

    2009-01-15

    The use of low-cost, easy obtained, high efficiency and eco-friendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. This study investigates the potential use of activated carbon prepared from orange peel for the removal of direct blue-86 (DB-86) (Direct Fast Turquoise Blue GL) dye from simulated wastewater. The effects of different system variables, adsorbent dosage, initial dye concentration, pH and contact time were studied. The results showed that as the amount of the adsorbent increased, the percentage of dye removal increased accordingly. Optimum pH value for dye adsorption was determined as approximately 2.0. Maximum dye was sequestered within 30min after the beginning for every experiment. The adsorption of direct blue-86 followed a pseudo-second-order rate equation and fit well Langmuir, Tempkin and Dubinin-Radushkevich (D-R) equations better than Freundlich and Redlich-Peterson equations. The maximum removal of direct blue-86 was obtained at pH 2 as 92% for adsorbent dose of 6gL(-1) and 100mgL(-1) initial dye concentration at room temperature. The maximum adsorption capacity obtained from Langmuir equation was 33.78mgg(-1). Furthermore, adsorption kinetics of DB-86 was studied and the rate of adsorption was found to conform to pseudo-second-order kinetics with a good correlation (R2>0.99) with intraparticle diffusion as one of the rate determining steps. Activated carbon developed from orange peel can be attractive options for dye removal from diluted industrial effluents since test reaction made on simulated dyeing wastewater show better removal percentage of DB-86. PMID:18455301

  3. Anthraquinone dyes for superhydrophobic cotton.

    PubMed

    Salabert, J; Sebastián, R M; Vallribera, A

    2015-09-28

    Water-repellent, self-cleaning and stain resistant textiles are of interest for industrial applications. Anthraquinone reactive dyes were covalently grafted onto cotton fabric surfaces obtaining bright colors with good wash-fastness properties and giving rise to breathable superhydrophobic textiles with self-cleaning properties. PMID:26265296

  4. Enhanced anaerobic fermentation with azo dye as electron acceptor: simultaneous acceleration of organics decomposition and azo decolorization.

    PubMed

    Li, Yang; Zhang, Yaobin; Quan, Xie; Zhang, Jingxin; Chen, Shuo; Afzal, Shahzad

    2014-10-01

    Accumulation of hydrogen during anaerobic processes usually results in low decomposition of volatile organic acids (VFAs). On the other hand, hydrogen is a good electron donor for dye reduction, which would help the acetogenic conversion in keeping low hydrogen concentration. The main objective of the study was to accelerate VFA composition through using azo dye as electron acceptor. The results indicated that the azo dye serving as an electron acceptor could avoid H2 accumulation and accelerate anaerobic digestion of VFAs. After adding the azo dye, propionate decreased from 2400.0 to 689.5mg/L and acetate production increased from 180.0 to 519.5mg/L. It meant that the conversion of propionate into acetate was enhanced. Fluorescence in situ hybridization analysis showed that the abundance of propionate-utilizing acetogens with the presence of azo dye was greater than that in a reference without azo dye. The experiments via using glucose as the substrate further demonstrated that the VFA decomposition and the chemical oxygen demand (COD) removal increased by 319.7mg/L and 23.3% respectively after adding the azo dye. Therefore, adding moderate azo dye might be a way to recover anaerobic system from deterioration due to the accumulation of H2 or VFAs. PMID:25288539

  5. Improving optical absorptivity of natural dyes for fabrication of efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Hemmatzadeh, Reza; Mohammadi, Ahmad

    2013-11-01

    Efficient and cheap dye-sensitized solar cells (DSSCs) were fabricated using natural dyes from Pastinaca sativa and Beta vulgaris. Natural dyes are environmentally and economically superior to ruthenium-based dyes because they are nontoxic and cheap. However, the conversion efficiency of dye-sensitized solar cells based on natural dyes is low. One way to improve the DSSC performance is to enhance the absorptivity of extracted dyes. We investigated the influence of various factors in the extraction process, such as utilization of different extraction approaches, the acidity of extraction solvent, and different compounds of solvents on the optical absorption spectra. It was found that we could considerably enhance the optical absorptivity of dye and consequently the performance of DSSC by choosing a proper mixture of ethanol and water for extracting solvent and also the acidity of dye solution.

  6. Characteristics of a Broadband Dye Laser Using Pyrromethene and Rhodamine Dyes

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah A.; Danehy, Paul M.; Wheeler, Jeffrey L.

    2011-01-01

    A broadband dye laser pumped by a frequency-doubled Nd:YAG laser with a full-width half-maximum (FWHM) from 592 to 610 nm was created for the use in a dual-pump broadband CARS system called WIDECARS. The desired broadband dye laser was generated with a mixture of Pyrromethene dyes as an oscillator gain medium and a spectral selective optic in the oscillator cavity. A mixture of Rhodamine dyes were used in the amplifier dye cell. To create this laser a study was performed to characterize the spectral behavior of broadband dye lasers created with Rhodamine dyes 590, 610, and 640, Pyrromethene dyes 597 and 650 as well as mixture of these dyes.

  7. Dyeing of Jute with Reactive Dyes: Optimisation of the Process Variables and Assessment of Colourfastness Characteristics

    NASA Astrophysics Data System (ADS)

    Samanta, A. K.; Chakraborty, Sharmistha; Guha Roy, T. K.

    2012-08-01

    This paper deals with the studies on the effect of dye concentration, electrolyte (common salt) concentration, dyeing time, dyeing temperature, soda ash concentration, pH of the dye solution and material to liquor ratio (MLR) on colour strength and other colour parameters after being dyed of jute fabrics with reactive dyes, namely, Turquoise blue, Lemon Yellow, Red CN colours. The dye absorption increases with increase in electrolyte (common salt) concentration, dyeing time, dyeing temperature, soda ash concentration, pH and decreases with increase of MLR. Colour fastness to wash, light and rubbing for the dyed samples has been studied and reported. It is observed that reactive dye gives overall good colour fastness to both washing and rubbing. But the light fastness has been found to be moderate only, due to the UV-light initiated fading of jute fibre itself change of the colour substrate, ie, undyed material. This colour fastness has been significantly resolved by post treatment with 1 % benzotriazole.

  8. Recovery of small dye molecules from aqueous solutions using charged ultrafiltration membranes.

    PubMed

    Chen, Xiuwen; Zhao, Yiru; Moutinho, Jennifer; Shao, Jiahui; Zydney, Andrew L; He, Yiliang

    2015-03-01

    Recovery of reactive dyes from effluent streams is a growing environmental challenge. In this study, various charged regenerated cellulose (RC) ultrafiltration (UF) membranes were prepared and tested for removal of three model reactive dyes (reactive red ED-2B, reactive brilliant yellow K-6G, and reactive brilliant blue KN-R). Data were obtained with charged UF membranes having different spacer arm lengths between the base cellulose and the charge functionality. The effects of charge density of the dye molecules, ionic strength of the feed solution, spacer arm length of charged membranes and filtrate flux were studied. Results indicated that dye retention was greatest with the most negatively charged dye molecule. Higher rejection was also observed in low ionic strength solutions. Results were consistent with model calculations based on the partitioning of a charged sphere into a charged cylindrical pore. The membranes with longer spacer arm length had higher rejection coefficients, consistent with the greater negative charge on these membranes. This study confirms that charged UF membranes can effectively recover small reactive dye molecules at low pressures (below 100 kPa) under appropriate solution conditions due to the strong electrostatic repulsion from the membrane pores. PMID:25463218

  9. The Enzymatic Decolorization of Textile Dyes by the Immobilized Polyphenol Oxidase from Quince Leaves

    PubMed Central

    Arabaci, Gulnur; Usluoglu, Ayse

    2014-01-01

    Water pollution due to release of industrial wastewater has already become a serious problem in almost every industry using dyes to color its products. In this work, polyphenol oxidase enzyme from quince (Cydonia Oblonga) leaves immobilized on calcium alginate beads was used for the successful and effective decolorization of textile industrial effluent. Polyphenol oxidase (PPO) enzyme was extracted from quince (Cydonia Oblonga) leaves and immobilized on calcium alginate beads. The kinetic properties of free and immobilized PPO were determined. Quince leaf PPO enzyme stability was increased after immobilization. The immobilized and free enzymes were employed for the decolorization of textile dyes. The dye solutions were prepared in the concentration of 100?mg/L in distilled water and incubated with free and immobilized quince (Cydonia Oblonga) leaf PPO for one hour. The percent decolorization was calculated by taking untreated dye solution. Immobilized PPO was significantly more effective in decolorizing the dyes as compared to free enzyme. Our results showed that the immobilized quince leaf PPO enzyme could be efficiently used for the removal of synthetic dyes from industrial effluents. PMID:24587743

  10. Decolourisation of dyes under electro-Fenton process using Fe alginate gel beads.

    PubMed

    Rosales, E; Iglesias, O; Pazos, M; Sanromán, M A

    2012-04-30

    This study focuses on the application of electro-Fenton technique by use of catalytic activity of Fe alginate gel beads for the remediation of wastewater contaminated with synthetic dyes. The Fe alginate gel beads were evaluated for decolourisation of two typical dyes, Lissamine Green B and Azure B under electro-Fenton process. After characterization of Fe alginate gel beads, the pH effect on the process with Fe alginate beads and a comparative study of the electro-Fenton process with free Fe and Fe alginate bead was done. The results showed that the use of Fe alginate beads increases the efficiency of the process; moreover the developed particles show a physical integrity in a wide range of pH (2-8). Around 98-100% of dye decolourisation was obtained for both dyes by electro-Fenton process in successive batches. Therefore, the process was performed with Fe alginate beads in a bubble continuous reactor. High color removal (87-98%) was attained for both dyes operating at a residence time of 30 min, without operational problems and maintaining particle shapes throughout the oxidation process. Consequently, the stable performance of Fe alginate beads opens promising perspectives for fast and economical treatment of wastewater polluted by dyes or similar organic contaminants. PMID:22381372

  11. Artificial evolution of coumarin dyes for dye sensitized solar cells.

    PubMed

    Venkatraman, Vishwesh; Abburu, Sailesh; Alsberg, Bjørn Kåre

    2015-10-14

    The design and discovery of novel molecular structures with optimal properties has been an ongoing effort for materials scientists. This field has in general been dominated by experiment driven trial-and-error approaches that are often expensive and time-consuming. Here, we investigate if a de novo computational design methodology can be applied to the design of coumarin-based dye sensitizers with improved properties for use in Grätzel solar cells. To address the issue of synthetic accessibility of the designed compounds, a fragment-based assembly is employed, wherein the combination of chemical motifs (derived from the existing databases of structures) is carried out with respect to user-adaptable set of rules. Rather than using computationally intensive density functional theory (DFT)/ab initio methods to screen candidate dyes, we employ quantitative structure-property relationship (QSPR) models (calibrated from empirical data) for rapid estimation of the property of interest, which in this case is the product of short circuit current (Jsc) and open circuit voltage (Voc). Since QSPR models have limited validity, pre-determined applicability domain criteria are used to prevent unacceptable extrapolation. DFT analysis of the top-ranked structures provides supporting evidence of their potential for dye sensitized solar cell applications. PMID:26428071

  12. Treatment of dye wastewater containing acid orange II using a cell with three-phase three-dimensional electrode.

    PubMed

    Xiong, Y; Strunk, P J; Xia, H; Zhu, X; Karlsson, H T

    2001-12-01

    The removal of color and chemical oxygen demand (COD) from simulated dye wastewater containing Acid Orange II was experimentally investigated using coagulation-electrooxidation. Two kinds of coagulation methods, ferrous-mediated coagulation and electrocoagulation were tested as pretreatment. The electrooxidation was carried out in a cell with a three-phase three-dimensional electrode using granular activated carbon as particle electrodes. Particular attention was paid to probe the effect of cell voltage, airflow rate, solution conductivity and treatment time on the electrochemical treatment efficiency. The experimental results showed that the coagulation-electrooxidation process could efficiently remove the color and the COD from the simulated dye wastewater. The overall COD and color removal efficiencies reached as high as 99% and 87%, respectively, by ferrous coagulation (molar rate of Fe(II)/ dye: 0.5) and 30-min electrolysis (cell voltage: 20.0 V and airflow: 0.1 m3 h(-1)). PMID:11791853

  13. Stem Cell Basics

    MedlinePLUS

    ... General Information Stem Cell Basics Stem Cell Basics Stem Cell Information General Information Clinical Trials Funding Information Current Research Policy Glossary Site Map Stem Cell Basics This primer on stem cells is ...

  14. RADIONUCLIDE REMOVAL

    EPA Science Inventory

    The U.S. Environmental Protection Agency proposed new and revised regulations on radionuclide contaminants in drinking water in June 1991. uring the 1980's, the Drinking Water Research Division, USEPA conducted a research program to evaluate various technologies to remove radium,...

  15. REMOVING INORGANICS

    EPA Science Inventory

    When EPA sets a regulation ( a maxim contaminant level) for a contaminant, it must also specify the "best available technology" (BAT) that can be used to remove the contaminant. ecause the regulations apply to community water systems, the technologies selected are ones that are c...

  16. ARSENIC REMOVAL

    EPA Science Inventory

    Presentation covered five topics; arsenic chemistry, best available technology (BAT), surface water technology, ground water technology and case studies of arsenic removal. The discussion on arsenic chemistry focused on the need and method of speciation for AsIII and AsV. BAT me...

  17. Synthetic dye decolorization by three sources of fungal laccase.

    PubMed

    Forootanfar, Hamid; Moezzi, Atefeh; Aghaie-Khozani, Marzieh; Mahmoudjanlou, Yasaman; Ameri, Alieh; Niknejad, Farhad; Faramarzi, Mohammad Ali

    2012-01-01

    Decolorization of six synthetic dyes using three sources of fungal laccase with the origin of Aspergillus oryzae, Trametes versicolor, and Paraconiothyrium variabile was investigated. Among them, the enzyme from P. variabile was the most efficient which decolorized bromophenol blue (100%), commassie brilliant blue (91%), panseu-S (56%), Rimazol brilliant blue R (RBBR; 47%), Congo red (18.5%), and methylene blue (21.3%) after 3 h incubation in presence of hydroxybenzotriazole (HBT; 5 mM) as the laccase mediator. It was also observed that decolorization efficiency of all dyes was enhanced by increasing of HBT concentration from 0.1 mM to 5 mM. Laccase from A. oryzae was able to remove 53% of methylene blue and 26% of RBBR after 30 min incubation in absence of HBT, but the enzyme could not efficiently decolorize other dyes even in presence of 5 mM of HBT. In the case of laccase from T. versicolor, only RBBR was decolorized (93%) in absence of HBT after 3 h incubation. PMID:23369690

  18. Dye laser traveling wave amplifier

    NASA Technical Reports Server (NTRS)

    Davidson, F.; Hohman, J.

    1985-01-01

    Injection locking was applied to a cavity-dumped coaxial flashlamp pumped dye laser in an effort to obtain nanosecond duration pulses which have both high energy and narrow-linewidth. In the absence of an injected laser pulse, the cavity-dumped dye laser was capable of generating high energy (approx. 60mJ) nanosecond duration output pulses. These pulses, however, had a fixed center wavelength and were extremely broadband (approx. 6nm FWHM). Experimental investigations were performed to determine if the spectral properties of these outputs could be improved through the use of injection-locking techniques. A parametric study to determine the specific conditions under which the laser could be injection-locked was also carried out. Significant linewidth reduction to 0.0015nm) of the outputs was obtained through injection-locking but only at wavelengths near the peak lasing wavelength of the dye. It was found, however; that by inserting weakly dispersive tuning elements in the laser cavity, these narrow-linewidth outputs could be obtained over a wide (24nm) tuning range. Since the tuning elements had low insertion losses, the tunability of the output was obtained without sacrificing output pulse energy.

  19. Decolorization of the AO24 azo dye and reduction of toxicity and genotoxicity in trickling biofilters.

    PubMed

    Garzóón-Zúñga, Marco A; Sandoval-Villasana, Ana M; Moeller-Chávez, Gabriela E

    2011-02-01

    Acid Orange 24 (AO24) dye was degraded in a trickling biofilter packed with peat and wood chips and inoculated with biomass from a petrochemical industry wastewater system. Different operating strategies were tested; in the first stage, two biofilters were operated independently--one non-aerated biofilter (passive) and the other with aeration-subsequently, the systems were operated serially, and effluent from the non-aerated biofilter was fed to the biofilter with aeration. This treatment train was used to test three different filtration velocities--0.141, 0.282, and 0.423 m/d. The results show that, when operating the systems with a dye charge of 0.035 kg AO24 m2/d and treating the effluent in a single step, good removal efficiencies of AO24 (95 and 89%), COD (63 and 53%), and acute toxicity (63 and 78%) were obtained in both biofilters (with and without air), although mutagenic and potentially carcinogenic intermediary compounds were not removed, because genotoxicity exhibits values higher than 2.0 units for the mutation rate. When using the non-aerated biofilter/aerated biofilter treatment train, it is possible to treat a dye charge 3 times greater (0.106 kg AO24 m2/d) and efficiently remove 98% AO24, 76% COD, 100% acute toxicity, and 100% genotoxicity, which indicates that, with this biological system, an advanced degree of biotransformation and mineralization of the azo dye AO24 is achieved. PMID:21449472

  20. Investigation on efficient adsorption of cationic dyes on porous magnetic polyacrylamide microspheres.

    PubMed

    Yao, Tong; Guo, Song; Zeng, Changfeng; Wang, Chongqing; Zhang, Lixiong

    2015-07-15

    We report here the preparation of porous magnetic polyacrylamide microspheres for efficient removal of cationic dyes by a simple polymerization-induced phase separation method. Characterizations by various techniques indicate that the microspheres show porous structures and magnetic properties. They can adsorb methylene blue with high efficiency, with adsorption capacity increasing from 263 to 1977 mg/g as the initial concentration increases from 5 to 300 mg/L. Complete removal of methylene blue can be obtained even at very low concentrations. The equilibrium data is well described by the Langmuir isotherm models, exhibiting a maximum adsorption capacity of 1990 mg/g. The adsorption capacity increases with increasing initial pH and reaches a maximum at pH 8, revealing an electrostatic interaction between the microspheres and the methylene blue molecules. The microspheres also show high adsorption capacities for neutral red and gentian violet of 1937 and 1850 mg/g, respectively, as well as high efficiency in adsorption of mixed-dye solutions. The dye-adsorbed magnetic polyacrylamide microspheres can be easily desorbed, and can be repeatedly used for at least 6 cycles without losing the adsorption capacity. The adsorption capacity and efficiency of the microspheres are much higher than those of reported adsorbents, which exhibits potential practical application in removing cationic dyes. PMID:25797927

  1. Toxicity of xanthene food dyes by inhibition of human drug-metabolizing enzymes in a noncompetitive manner.

    PubMed

    Mizutani, Takaharu

    2009-01-01

    The synthetic food dyes studied were rose bengal (RB), phroxine (PL), amaranth, erythrosine B (ET), allura red, new coccine, acid red (AR), tartrazine, sunset yellow FCF, brilliant blue FCF, and indigo carmine. First, data confirmed that these dyes were not substrates for CYP2A6, UGT1A6, and UGT2B7. ET inhibited UGT1A6 (glucuronidation of p-nitrophenol) and UGT2B7 (glucuronidation of androsterone). We showed the inhibitory effect of xanthene dye on human UGT1A6 activity. Basic ET, PL, and RB in those food dyes strongly inhibited UGT1A6 activity, with IC(50) values = 0.05, 0.04, and 0.015 mM, respectively. Meanwhile, AR of an acidic xanthene food dye showed no inhibition. Next, we studied the inhibition of CYP3A4 of a major phase I drug-metabolizing enzyme and P-glycoprotein of a major transporter by synthetic food dyes. Human CYP3A4 and P-glycoprotein were also inhibited by basic xanthene food dyes. The IC(50) values of these dyes to inhibit CYP3A4 and P-glycoprotein were the same as the inhibition level of UGT1A6 by three halogenated xanthene food dyes (ET, PL, and RB) described above, except AR, like the results with UGT1A6 and UGT2B7. We also confirmed the noninhibition of CYP3A4 and P-gp by other synthetic food dyes. Part of this inhibition depended upon the reaction of (1)O(2) originating on xanthene dyes by light irradiation, because inhibition was prevented by (1)O(2) quenchers. We studied the influence of superoxide dismutase and catalase on this inhibition by dyes and we found prevention of inhibition by superoxide dismutase but not catalase. This result suggests that superoxide anions, originating on dyes by light irradiation, must attack drug-metabolizing enzymes. It is possible that red cosmetics containing phloxine, erythrosine, or rose bengal react with proteins on skin under lighting and may lead to rough skin. PMID:20041016

  2. Toxicity of Xanthene Food Dyes by Inhibition of Human Drug-Metabolizing Enzymes in a Noncompetitive Manner

    PubMed Central

    Mizutani, Takaharu

    2009-01-01

    The synthetic food dyes studied were rose bengal (RB), phroxine (PL), amaranth, erythrosine B (ET), allura red, new coccine, acid red (AR), tartrazine, sunset yellow FCF, brilliant blue FCF, and indigo carmine. First, data confirmed that these dyes were not substrates for CYP2A6, UGT1A6, and UGT2B7. ET inhibited UGT1A6 (glucuronidation of p-nitrophenol) and UGT2B7 (glucuronidation of androsterone). We showed the inhibitory effect of xanthene dye on human UGT1A6 activity. Basic ET, PL, and RB in those food dyes strongly inhibited UGT1A6 activity, with IC50 values = 0.05, 0.04, and 0.015 mM, respectively. Meanwhile, AR of an acidic xanthene food dye showed no inhibition. Next, we studied the inhibition of CYP3A4 of a major phase I drug-metabolizing enzyme and P-glycoprotein of a major transporter by synthetic food dyes. Human CYP3A4 and P-glycoprotein were also inhibited by basic xanthene food dyes. The IC50 values of these dyes to inhibit CYP3A4 and P-glycoprotein were the same as the inhibition level of UGT1A6 by three halogenated xanthene food dyes (ET, PL, and RB) described above, except AR, like the results with UGT1A6 and UGT2B7. We also confirmed the noninhibition of CYP3A4 and P-gp by other synthetic food dyes. Part of this inhibition depended upon the reaction of 1O2 originating on xanthene dyes by light irradiation, because inhibition was prevented by 1O2 quenchers. We studied the influence of superoxide dismutase and catalase on this inhibition by dyes and we found prevention of inhibition by superoxide dismutase but not catalase. This result suggests that superoxide anions, originating on dyes by light irradiation, must attack drug-metabolizing enzymes. It is possible that red cosmetics containing phloxine, erythrosine, or rose bengal react with proteins on skin under lighting and may lead to rough skin. PMID:20041016

  3. Thermodynamics of the adsorption of different dyes onto bentonite modified with hexadecyltrimethylammonium cation

    NASA Astrophysics Data System (ADS)

    Žuni?, M.; Jovi?-Jovi?i?, N.; Milutinovi?-Nikoli?, A.; Bankovi?, P.; Mojovi?, Z.; Ivanovi?-Šaši?, A.; Jovanovi?, D.

    2013-12-01

    Removal of two different dyes: Acid Orange 10 (AO10) and Reactive Black 5 (RB5) from their aqueous solutions using organobentonite as adsorbent was investigated. The experiments were carried out at different temperatures (298, 313, 323, and 333 K) in order to obtain thermodynamic parameters for adsorbate/adsorbent system i.e., activation energy, Gibbs free energy, enthalpy and entropy. The results of thermodynamic studies indicated that the adsorption of both dyes onto organobentonite is an endothermic process, while the values for activation energies (76 kJ mol-1 for AO10 and 51 kJ mol-1 for RB5) indicated that chemisorption occurred.

  4. Ultrasonically induced ZnO-biosilica nanocomposite for degradation of a textile dye in aqueous phase.

    PubMed

    Soltani, Reza Darvishi Cheshmeh; Jorfi, Sahand; Ramezani, Hojjatallah; Purfadakari, Sudabeh

    2016-01-01

    In the present study, a porous clay-like support with unique characteristics was used for the synthesis and immobilization of ZnO nanostructures to be used as sonocatalyst for the sonocatalytic decolorization of methylene blue (MB) dye in the aqueous phase. As a result, the sonocatalytic activity of ZnO-biosilica nanocomposite (77.8%) was higher than that of pure ZnO nanostructures (53.6%). Increasing the initial pH from 3 to 10 led to increasing the color removal from 41.8% to 88.2%, respectively. Increasing the sonocatalyst dosage from 0.5 to 2.5 g/L resulted in increasing the color removal, while further increase up to 3g/L caused an obvious drop in the color removal. The sonocatalysis of MB dye over ZnO-biosilica nanocomposite was temperature-dependent. The presence of methanol produced the most adverse effect on the sonocatalysis of MB dye. The addition of chloride and carbonate ions had a negligible effect on the sonocatalysis, while the addition of persulfate ion led to increasing the color removal from 77.8% to 99.4% during 90 min. The reusability test exhibited a 15% drop in the color removal (%) within three consecutive experimental runs. A mineralization efficiency of 63.2% was obtained within 4h. PMID:26384885

  5. Secondary dye testing of the lacrimal system.

    PubMed

    Becker, B B

    1993-02-01

    Using the Olympus PF-22 angioscope to examine the inferior meatus during secondary dye testing of the lacrimal system, I evaluated the efficacy of the secondary dye test to localize partial or functional obstruction of the upper or lower lacrimal excretory system. Secondary dye testing was positive (dye present in the nose) in 12 of 13 lacrimal systems (92%) with functional nasolacrimal duct obstruction, in 7 of 8 (89%) with involutional ectropion, and in 4 of 5 (80%) with facial nerve palsy. Secondary dye testing was negative in the 1 lacrimal system with canalicular stenosis and in 5 of the 6 (83%) with punctal stenosis. Secondary dye testing is helpful in differentiating punctal or canalicular stenosis from functional nasolacrimal duct obstruction; however, it cannot help differentiate ectropion or facial nerve palsy from functional nasolacrimal duct obstruction. PMID:8446360

  6. Grating cavity dual wavelength dye laser.

    PubMed

    Zapata-Nava, Oscar Javier; Rodríguez-Montero, Ponciano; Iturbe-Castillo, M David; Treviño-Palacios, Carlos Gerardo

    2011-02-14

    We report simultaneous dual wavelength dye laser emission using Littman-Metcalf and Littrow cavity configurations with minimum cavity elements. Dual wavelength operation is obtained by laser operation in two optical paths inside the cavity, one of which uses reflection in the circulating dye cell. Styryl 14 laser dye operating in the 910 nm to 960 nm was used in a 15%:85% PC/EG solvent green pumped with a Q-switched doubled Nd3+:YAG laser. PMID:21369171

  7. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye

    NASA Astrophysics Data System (ADS)

    Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal

    2015-09-01

    The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it.

  8. Mineralization and Detoxification of the Carcinogenic Azo Dye Congo Red and Real Textile Effluent by a Polyurethane Foam Immobilized Microbial Consortium in an Upflow Column Bioreactor

    PubMed Central

    Lade, Harshad; Govindwar, Sanjay; Paul, Diby

    2015-01-01

    A microbial consortium that is able to grow in wheat bran (WB) medium and decolorize the carcinogenic azo dye Congo red (CR) was developed. The microbial consortium was immobilized on polyurethane foam (PUF). Batch studies with the PUF-immobilized microbial consortium showed complete removal of CR dye (100 mg·L?1) within 12 h at pH 7.5 and temperature 30 ± 0.2 °C under microaerophilic conditions. Additionally, 92% American Dye Manufactureing Institute (ADMI) removal for real textile effluent (RTE, 50%) was also observed within 20 h under the same conditions. An upflow column reactor containing PUF-immobilized microbial consortium achieved 99% CR dye (100 mg·L?1) and 92% ADMI removal of RTE (50%) at 35 and 20 mL·h?l flow rates, respectively. Consequent reduction in TOC (83 and 79%), COD (85 and 83%) and BOD (79 and 78%) of CR dye and RTE were also observed, which suggested mineralization. The decolorization process was traced to be enzymatic as treated samples showed significant induction of oxidoreductive enzymes. The proposed biodegradation pathway of the dye revealed the formation of lower molecular weight compounds. Toxicity studies with a plant bioassay and acute tests indicated that the PUF-immobilized microbial consortium favors detoxification of the dye and textile effluents. PMID:26086710

  9. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes

    NASA Astrophysics Data System (ADS)

    Abdou, E. M.; Hafez, H. S.; Bakir, E.; Abdel-Mottaleb, M. S. A.

    2013-11-01

    This paper deals with the use of some natural pigments as well as synthetic dyes to act as sensitizers in dye-sensitized solar cells (DSSCs). Anthocyanin dye extracted from rosella (Hibiscus sabdariffa L.) flowers, the commercially available textile dye Remazole Red RB-133 (RR) and merocyanin-like dye based on 7-methyl coumarin are tested. The photostability of the three dyes is investigated under UV-Vis light exposure. The results show a relatively high stability of the three dyes. Moreover, the photostability of the solid dyes is studied over the TiO2 film electrodes. A very low decolorization rates are recorded as; rate constants k = 1.6, 2.1 and 1.9 × 10-3 min-1 for anthocyanin, RR and coumarin dyes, respectively. The stability results favor selecting anthocyanin as a promising sensitizer candidate in DSSCs based on natural products. Dyes-sensitized solar cells are fabricated and their conversion efficiency (?) is 0.27%, 0.14% and 0.001% for the anthocyanin, RR and coumarin dyes, respectively. Moreover, stability tests of the sealed cells based on anthocyanin and RR dyes are done under continuous light exposure of 100 mW cm-2, reveals highly stable DSSCs.

  10. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes.

    PubMed

    Abdou, E M; Hafez, H S; Bakir, E; Abdel-Mottaleb, M S A

    2013-11-01

    This paper deals with the use of some natural pigments as well as synthetic dyes to act as sensitizers in dye-sensitized solar cells (DSSCs). Anthocyanin dye extracted from rosella (Hibiscus sabdariffa L.) flowers, the commercially available textile dye Remazole Red RB-133 (RR) and merocyanin-like dye based on 7-methyl coumarin are tested. The photostability of the three dyes is investigated under UV-Vis light exposure. The results show a relatively high stability of the three dyes. Moreover, the photostability of the solid dyes is studied over the TiO2 film electrodes. A very low decolorization rates are recorded as; rate constants k=1.6, 2.1 and 1.9×10(-3)min(-1) for anthocyanin, RR and coumarin dyes, respectively. The stability results favor selecting anthocyanin as a promising sensitizer candidate in DSSCs based on natural products. Dyes-sensitized solar cells are fabricated and their conversion efficiency (?) is 0.27%, 0.14% and 0.001% for the anthocyanin, RR and coumarin dyes, respectively. Moreover, stability tests of the sealed cells based on anthocyanin and RR dyes are done under continuous light exposure of 100mWcm(-2), reveals highly stable DSSCs. PMID:23832227

  11. Estimation of Fluorescent Dye Amount in Tracer Dye Test

    NASA Astrophysics Data System (ADS)

    Pekkan, Emrah; Balkan, Erman; Balkan, Emir

    2015-04-01

    Karstic groundwater is more influenced by human than the groundwater that disperse in pores. On the other hand karstic groundwater resources, in addition to providing agricultural needs, livestock breeding, drinking and domestic water in most of the months of the year, they also supply drinking water to the wild life at high altitudes. Therefore sustainability and hydrogeological investigation of karstic resources is critical. Tracing techniques are widely used in hydrologic and hydrogeologic studies to determine water storage, flow rate, direction and protection area of groundwater resources. Karanfil Mountain (2800 m), located in Adana, Turkey, is one of the karstic recharge areas of the natural springs spread around its periphery. During explorations of the caves of Karanfil mountain, a 600 m deep cave was found by the Turkish and Polish cavers. At the bottom of the cave there is an underground river with a flow rate of approximately 0.5 m3/s during August 2014. The main spring is located 8 km far from the cave's entrance and its mean flow rate changes between 3.4 m3/s and 0.21 m3/s in March and September respectively according to a flowrate observation station of Directorate of Water Works of Turkey. As such frequent storms, snowmelt and normal seasonal variations in rainfall have a significant and rapid effect on the volume of this main spring resource. The objective of our research is to determine and estimate dye amount before its application on the field inspired from the previously literature on the subject. This estimation is intended to provide a preliminary application of a tracer test of a karstic system. In this study dye injection, inlet point will be an underground river located inside the cave and the observation station will be the spring that is approximately 8 km far from the cave entrance. On the other hand there is 600 meter elevation difference between cave entrance and outlet spring. In this test Rodamin-WT will be used as tracer and the appropriate amount of tracers was found according to the flowrate of the spring. The amount of dye is very important for the consistency of the results and the applicability of the tests. For example if the amount of tracer that is estimated is found to be inadequate, any field readings and data could be lost. Most importantly tracer dye is costly and hard to prepare, transport and will follow a torturous path through the cave to the underground river.

  12. Basicity, Catalytic and Adsorptive Properties of Hydrotalcites

    NASA Astrophysics Data System (ADS)

    Figueras, Francois

    Solid bases have numerous potential applications, not only as catalyst for the manufacture of fine chemicals, in refining and petrochemistry, but also for adsorption and anion exchange. The present processes use liquid bases, typically alcoholic potash, and require neutralisation of the reaction medium at the end of the reaction, with production of salts. The substitution of these liquid bases by solids would provide cleaner and safer processes, due to the reduction of salts, and facilitate separation of the products and recycling of the catalyst. This chapter reviews the recent ideas on the modification of the basic properties of hydrotalcites by anion exchange and on the catalytic properties of solid bases as catalysts. Many examples of successful applications are given, with emphasis to industrial processes recently presented such as isomerisation of olefins. The basic properties of hydrotalcites can also be used to carry the exchange of toxic anions, humic acids or dyes, and have driven recent developments proposing HDT as drug carriers.

  13. 21 CFR 864.1850 - Dye and chemical solution stains.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 false Dye and chemical solution stains. 864...DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Biological Stains § 864.1850 Dye and chemical solution stains. (a) Identification. Dye and chemical solution stains...

  14. 21 CFR 864.1850 - Dye and chemical solution stains.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 false Dye and chemical solution stains. 864...DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Biological Stains § 864.1850 Dye and chemical solution stains. (a) Identification. Dye and chemical solution stains...

  15. Dye lasers. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Cavagnaro, D. M.

    1980-08-01

    Studies on dye laser theory, design, components, optical systems, and frequency range are presented in approximately 96 citations. Abstracts on lasing dyes, pumping, tuning, excitation, molecular structure, and modulation are included. Studies on dye laser use in spectroscopy are covered.

  16. Basics of Photometry Photometry: Basic Questions

    E-print Network

    Masci, Frank

    Basics of Photometry #12;Photometry: Basic Questions · How do you identify objects in your image type of object you're studying? #12;#12;#12;Topics 1. General Considerations 2. Stellar Photometry 3. Galaxy Photometry #12;I: General Considerations 1. Garbage in, garbage out... 2. Object Detection 3

  17. Liquid-Crystal Photoalignment by Super Thin Azo Dye Layer Xihua LI, Vladimir M. KOZENKOV, Fion Sze-Yan YEUNG, Peizhi XU, Vladimir G. CHIGRINOV and Hoi-Sing KWOK

    E-print Network

    of Electrical and Electronic Engineering, Hong Kong University of Science and Technology, Clear Water Bay azo dye molecular layer is proposed. The basic idea of this method is to form a very neat textile azo dye SD-1 layer. This new method includes the formation of a very neat ``textile knitwear'' and can

  18. Tailoring of organic dyes with oxidoreductive compounds to obtain photocyclic radical generator systems exhibiting photocatalytic behavior

    PubMed Central

    Christmann, Julien; Ibrahim, Ahmad; Stefano, Luciano H Di; Allonas, Xavier

    2014-01-01

    Summary The combination of a dye which absorbs the photon, an electron acceptor and an electron donor leading to energy conversion through electron transfer, was the basis of the so called three-component systems. In this paper, an experimental work combining Rose bengal dye with a triazine derivative as electron acceptor and ethyl 4-(dimethylamino)benzoate as electron donor, will underline the benefit of the photocyclic behavior of three-component systems leading to the dye regeneration. A thermodynamic approach of the photocycle is presented, followed by a mechanistic and computational study of ideal photocycles, in order to outline the specific kinetics occuring in so called photocatalytic systems. The simple kinetic model used is enough to outline the benefit of the cyclic system and to give the basic requirements in term of chemical combination needed to be fulfilled in order to obtain a photocatalytic behavior. PMID:24991243

  19. Effects of pH of Dyes on Characteristics of Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Furukawa, Shoji; Iino, Hiroshi; Kukita, Koudai; Kaminosono, Kaoru

    Dye-sensitized solar cells were fabricated using natural dyes and synthesized dyes in which rear metal was not contained. Effects of pH of dyes on the characteristics of the dye-sensitized solar cells were also examined. As a result, it was found that the conversion efficiency of the dye-sensitized solar cell fabricated using red-cabbage dye with a pH of 2.5 was 0.10 point larger than that of the solar cell fabricated using red-cabbage dye with a pH of 4.0. It was also found that the conversion efficiency of the solar cell fabricated using red-perilla dye with a pH of 3.1 was 0.10 point larger than that of the solar cell fabricated using red-perilla dye with a pH of 5.8. The results are discussed on the bases of the molecular structure of mainly contained dye and the optical absorption spectra.

  20. Dyeing behaviour of gamma irradiated cotton fabric using Lawson dye extracted from henna leaves (Lawsonia inermis)

    NASA Astrophysics Data System (ADS)

    Rehman, Fazal-ur; Adeel, Shahid; Qaiser, Summia; Ahmad Bhatti, Ijaz; Shahid, Muhammad; Zuber, Mohammad

    2012-11-01

    Dyeing behavior of gamma irradiated cotton fabric using Lawson dye extracted from henna leaves has been investigated. Cotton and dye powder are irradiated to different absorbed doses of 2, 4, 6, 8 and 10 kGy using Cs-137 gamma irradiator. The dyeing parameters such as dyeing time, electrolyte (salt) concentration and mordant concentrations using copper and iron as mordants are optimized. Dyeing is performed using un-irradiated and irradiated cotton with dye solutions and their color strength values are evaluated in CIE Lab system using Spectraflash -SF650. Methods suggested by International Standard Organization (ISO) have been employed to investigate the colourfastness properties such as colourfastness to light, washing and rubbing of irradiated dyed fabric. It is found that gamma ray treatment of cotton dyed with extracts of henna leaves has significantly improved the color strength as well as enhanced the rating of fastness properties.

  1. Eco-Friendly Dyeing of Cotton with Indigo Dye By Electrochemical Method

    NASA Astrophysics Data System (ADS)

    Prabu, H. Gurumallesh; Sarala, K.; Babu, S. Ananda; Savitha, K. U.

    2011-07-01

    Eco-friendly dyeing of cotton was performed in two step process; (i) enzymatic pre-treatment of grey cotton fabric and (ii) Electrochemical dyeing of the pre-treated cotton fabric with indigo. The enzymatic pre-treatment was done in three methods; (i) amylase treatment only, (ii) amylase and hydrogen peroxide treatment and (iii) single bath method. The dyeing was carried out with the pre-treated cotton fabric. The reduction of indigo dye by electrochemical method was initiated by applying potential. Then the dyeing was carried out different concentrations of dye, glucose and NaOH. Conventional method of dyeing was also carried out and compared with the electrochemical method. Dyeability was measured by computer colour matching (CCM) GretagMacbeth colour eye 2180UV instrument.

  2. ORGANIC DYES AND PIGMENTS DATA BASE

    EPA Science Inventory

    The objective of this research program was to compile a data base covering all the commercially significant dyes and pigments produced or imported in the United States. The Organic Dyes and Pigments Data Base (ODPDB) contains the following data elements: chemical-related data (co...

  3. Adsorption of dyes on Sahara desert sand.

    PubMed

    Varlikli, Canan; Bekiari, Vlasoula; Kus, Mahmut; Boduroglu, Numan; Oner, Ilker; Lianos, Panagiotis; Lyberatos, Gerasimos; Icli, Siddik

    2009-10-15

    Sahara desert sand (SaDeS) was employed as a mineral sorbent for retaining organic dyes from aqueous solutions. Natural sand has demonstrated a strong affinity for organic dyes but significantly lost its adsorption capacity when it was washed with water. Therefore, characterization of both natural and water washed sand was performed by XRD, BET, SEM and FTIR techniques. It was found that water-soluble kyanite, which is detected in natural sand, is the dominant factor affecting adsorbance of cationic dyes. The sand adsorbs over 75% of cationic dyes but less than 21% for anionic ones. Among the dyes studied, Methylene Blue (MB) demonstrated the strongest affinity for Sahara desert sand (Q(e)=11.98 mg/g, for initial dye solution concentration 3.5 x 10(-5)mol/L). The effects of initial dye concentration, the amount of the adsorbent, the temperature and the pH of the solution on adsorption capacity were tested by using Methylene Blue as model dye. Pseudo-first-order, pseudo-second-order and intraparticle diffusion models were applied. It was concluded that adsorption of Methylene Blue on Sahara desert sand followed pseudo-second order kinetics. Gibbs free energy, enthalpy change and entropy change were calculated and found -6411 J/mol, -30360 J/mol and -76.58 J/mol K, respectively. These values indicate that the adsorption is an exothermic process and has a spontaneous nature at low temperatures. PMID:19515485

  4. Photolysis of smoke dyes on soils

    SciTech Connect

    Adams, R.L. . Environmental Research Lab.); Weber, E.J.; Baughman, G.L. . Environmental Research Lab.)

    1994-06-01

    Photolysis of an azo, a quinophthalone, and several anthraquinone smoke dyes was studied on soil surfaces. Initially, rapid photodegradation of each dye occurred, followed by a period of much slower rate of loss, indicating that the remaining fraction of the dye was photochemically protected. The average mean depths of photolysis ranged from 0.33 to 0.68 mm for outdoor studies and from 0.42 to 0.73 mm for lab studies. The magnitude of the mean depths of photolysis suggests that photo-degradation of the dyes occurs through indirect photochemical processes. Photolysis products for only two of the dyes could be identified. Photolysis of Disperse Red 9 resulted in the formation of 1-aminoanthraquinone, whereas Solvent Yellow 33 photo-degraded to give 2-carboxyquinoline and phthalic anhydride. Reaction mechanisms involving sensitized photo-oxidation by singlet oxygen are consistent with the formation of these reaction products.

  5. Reversible switch between bulk MgCO3·3H2O and Mg(OH)2 micro/nanorods induces continuous selective preconcentration of anionic dyes.

    PubMed

    Wang, Yongjing; Chen, Jingping; Lu, Lili; Lin, Zhang

    2013-08-28

    It is still a big challenge to treat large amount of water with low concentration of pollutant. In this study, a hierarchical (micro/nano) structured Mg(OH)2 adsorbent was introduced by the in situ hydration of porous MgO in the dye solution. The adsorbent showed high selective adsorption capacity (Q0 ? 155 mg/g for acid alizarine blue) and fast adsorption rate for the removal of anionic dyes down to the mg/L levels. Moreover, the adsorbed dye was successfully desorbed by carbonation, resulting in a ~4000 fold enrichment of the dye solution. It was demonstrated that by establishing a reversible switch between the Mg(OH)2 micro/nanorod and the bulk MgCO3·3H2O, a continuous preconcentration of low-concentration dye wastewater could be achieved. PMID:23899500

  6. Chitinolytic Bacteria-Assisted Conversion of Squid Pen and Its Effect on Dyes and Pigments Adsorption

    PubMed Central

    Liang, Tzu-Wen; Lo, Bo-Chang; Wang, San-Lang

    2015-01-01

    The aim of this work was to produce chitosanase by fermenting from squid pen, and recover the fermented squid pen for dye removal by adsorption. One chitosanase induced from squid pen powder (SPP)-containing medium by Bacillus cereus TKU034 was purified in high purification fold (441) and high yield of activity recovery (51%) by ammonium sulfate precipitation and combined column chromatography. The SDS-PAGE results showed its molecular mass to be around 43 kDa. The TKU034 chitosanase used for the chitooligomers preparation was studied. The enzyme products revealed that the chitosanase could degrade chitosan with various degrees of polymerization, ranging from 3 to 9, as well as the chitosanase in an endolytic manner. Besides, the fermented SPP was recovered and displayed a better adsorption rate (up to 99.5%) for the disperse dyes (red, yellow, blue, and black) than the water-soluble food colorants, Allura Red AC (R40) and Tartrazine (Y4). The adsorbed R40 on the unfermented SPP and the fermented SPP was eluted by distilled water and 1 M NaOH to confirm the dye adsorption mechanism. The fermented SPP had a slightly higher adsorption capacity than the unfermented, and elution of the dye from the fermented SPP was easier than from the unfermented. The main dye adsorption mechanism of fermented SPP was physical adsorption, while the adsorption mechanism of unfermented SPP was chemical adsorption. PMID:26213948

  7. Chitinolytic Bacteria-Assisted Conversion of Squid Pen and Its Effect on Dyes and Pigments Adsorption.

    PubMed

    Liang, Tzu-Wen; Lo, Bo-Chang; Wang, San-Lang

    2015-08-01

    The aim of this work was to produce chitosanase by fermenting from squid pen, and recover the fermented squid pen for dye removal by adsorption. One chitosanase induced from squid pen powder (SPP)-containing medium by Bacillus cereus TKU034 was purified in high purification fold (441) and high yield of activity recovery (51%) by ammonium sulfate precipitation and combined column chromatography. The SDS-PAGE results showed its molecular mass to be around 43 kDa. The TKU034 chitosanase used for the chitooligomers preparation was studied. The enzyme products revealed that the chitosanase could degrade chitosan with various degrees of polymerization, ranging from 3 to 9, as well as the chitosanase in an endolytic manner. Besides, the fermented SPP was recovered and displayed a better adsorption rate (up to 99.5%) for the disperse dyes (red, yellow, blue, and black) than the water-soluble food colorants, Allura Red AC (R40) and Tartrazine (Y4). The adsorbed R40 on the unfermented SPP and the fermented SPP was eluted by distilled water and 1 M NaOH to confirm the dye adsorption mechanism. The fermented SPP had a slightly higher adsorption capacity than the unfermented, and elution of the dye from the fermented SPP was easier than from the unfermented. The main dye adsorption mechanism of fermented SPP was physical adsorption, while the adsorption mechanism of unfermented SPP was chemical adsorption. PMID:26213948

  8. Radionuclide removal

    SciTech Connect

    Sorg, T.J.

    1991-01-01

    The U.S. Environmental Protection Agency proposed new and revised regulations on radionuclide contaminants in drinking water in June 1991. During the 1980's, the Drinking Water Research Division, USEPA conducted a research program to evaluate various technologies to remove radium, uranium and radon from drinking water. The research consisted of laboratory and field studies conducted by USEPA, universities and consultants. The paper summarizes the results of the most significant projects completed. General information is also presented on the general chemistry of the three radionuclides. The information presented indicates that the most practical treatment methods for radium are ion exchange and lime-soda softening and reverse osmosis. The methods tested for radon are aeration and granular activated carbon and the methods for uranium are anion exchange and reverse osmosis.

  9. Reactive dye house wastewater treatment. Use of hybrid technology: Membrane, sonication followed by wet oxidation

    SciTech Connect

    Dhale, A.D.; Mahajani, V.V.

    1999-05-01

    To address problems associated with treatment of an aqueous waste stream from a reactive dye house, a model dye, turquoise blue CI25, was studied. A hybrid technology, membrane separation followed by sonication and wet oxidation, has been demonstrated to treat the wastewater for reuse and discharge. Experiments were first performed with the reactive dye solution in water. A nanofiltration membrane (MPT 30) was found to be suitable to concentrate the dye. The concentrate was then treated with a wet oxidation process. Kinetics studies were performed with and without catalyst, in the temperature range of 170--215 C. The color destruction achieved was > 99%. After process parameters were fixed, studies were conducted with the actual dye waste stream. The actual waste stream was found to be refractory for wet oxidation under the above conditions. Sonication of the concentrate obtained after membrane filtration, in the presence of CuSO{sub 4}, made the waste stream amenable to wet oxidation. Sonication followed by wet oxidation was found to be more effective at near neutral conditions as compared to basic conditions.

  10. Beneficial role of ZnO photocatalyst supported with porous activated carbon for the mineralization of alizarin cyanin green dye in aqueous solution

    PubMed Central

    Muthirulan, P.; Meenakshisundararam, M.; Kannan, N.

    2012-01-01

    The present investigation depicts the development of a simple and low cost method for the removal of color from textile dyeing and printing wastewater using ZnO as photocatalyst supported with porous activated carbon (AC). Photocatalytic degradation studies were carried out for water soluble toxic alizarin cyanin green (ACG) dye in aqueous suspension along with activated carbon (AC) as co-adsorbent. Different parameters like concentration of ACG dye, irradiation time, catalyst concentration and pH have also been studied. The pseudo first order kinetic equation was found to be applicable in the present dye-catalyst systems. It was observed that photocatalytic degradation by ZnO along with AC was a more effective and faster mode of removing ACG from aqueous solutions than the ZnO alone. PMID:25685455

  11. Iron nanoparticles decoration onto three-dimensional graphene for rapid and efficient degradation of azo dye.

    PubMed

    Wang, Wei; Cheng, Yilin; Kong, Tao; Cheng, Guosheng

    2015-12-15

    Porous three-dimensional graphene (3DG) prepared by chemical vapor deposition, was utilized as a matrix to support nanoscale zero-valent iron (nZVI) particles. The strategies to manipulate the morphology, distribution and size of nZVI particles on the 3DG support were demonstrated. The immobilized nZVI particles with a size of 100nm and dense deposition were achieved. A 94.5% of orange IV azo dye was removed in 60min using nZVI particles immobilized 3DG (3DG-Fe), whereas only 70.9% was removed by free Fe nanoparticles in aqueous solution. Meanwhile, a reaction rate with orange IV of 3DG-Fe was approximately 5-fold faster than that of free Fe nanoparticles. The effects of 3DG-Fe dosage, dye concentration, reaction pH and temperature on dye degradation were also addressed. Those results imply that both lowering pH and increasing temperature led to higher reaction efficiency and rate. The kinetic data reveal that the degradation process of orange IV dye, modeled by the pseudo-first-order kinetics, might involve adsorption and redox reaction with an activation energy of 39.2kJ/mol. PMID:26091894

  12. Plant-mediated synthesis of silver-nanocomposite as novel effective azo dye adsorbent

    NASA Astrophysics Data System (ADS)

    Satapathy, Mantosh Kumar; Banerjee, Priya; Das, Papita

    2015-01-01

    Toxicity of textile effluent is a globally alarming issue nowadays. In order to address this problem, a cost-effective and environment-friendly technique for adsorption of toxic dyes has been introduced in this research. Firstly in this study, green synthesis of silver nanoparticles (AgNPs) having antibacterial efficacy, had been carried out using leaf extracts of Azadirachta indica as reducing as well as capping agent. This research idea was further extended for the development and application of a novel method of preparation of silver-nanocomposite using synthesized microwave-assisted AgNPs with soil as a novel nanocomposite to adsorb hazardous dyes. However, this nanocomposite was found to possess higher efficiency and adsorption capacity in comparison to soil as adsorbent for the removal of crystal violet dye under same experimental conditions. Additionally, it was also observed that use of this Ag-nanocomposite as adsorbent helped in achieving about 97.2 % removal of crystal violet dye from the effluent solution.

  13. CSF myelin basic protein

    MedlinePLUS

    CSF myelin basic protein is a test to measure the level of myelin basic protein (MBP) in the cerebrospinal fluid (CSF). The CSF ... less than 4 ng/mL of myelin basic protein in the CSF. Note: ng/mL = nanogram per ...

  14. Relocating Basic Writing

    ERIC Educational Resources Information Center

    Horner, Bruce

    2011-01-01

    I frame the continuing value of basic writing as part of a long tradition in composition studies challenging dominant beliefs about literacy and language abilities, and I link basic writing to emerging--e.g."translingual"--approaches to language. I identify basic writing as vital to the field of composition in its rejection of simplistic notions…

  15. Photophysical and electrochemical properties, and molecular structures of organic dyes for dye-sensitized solar cells.

    PubMed

    Ooyama, Yousuke; Harima, Yutaka

    2012-12-21

    Dye-sensitized solar cells (DSSCs) based on organic dyes adsorbed on oxide semiconductor electrodes, such as TiO(2), ZnO, or NiO, which have emerged as a new generation of sustainable photovoltaic devices, have attracted much attention from chemists, physicists, and engineers because of enormous scientific interest in not only their construction and operational principles, but also in their high incident-solar-light-to-electricity conversion efficiency and low cost of production. To develop high-performance DSSCs, it is important to create efficient organic dye sensitizers, which should be optimized for the photophysical and electrochemical properties of the dyes themselves, with molecular structures that provide good light-harvesting features, good electron communication between the dye and semiconductor electrode and between the dye and electrolyte, and to control the molecular orientation and arrangement of the dyes on a semiconductor surface. The aim of this Review is not to make a list of a number of organic dye sensitizers developed so far, but to provide a new direction in the epoch-making molecular design of organic dyes for high photovoltaic performance and long-term stability of DSSCs, based on the accumulated knowledge of their photophysical and electrochemical properties, and molecular structures of the organic dye sensitizers developed so far. PMID:22807392

  16. Novel fungal consortium for bioremediation of metals and dyes from mixed waste stream.

    PubMed

    Mishra, Abhishek; Malik, Anushree

    2014-11-01

    The present study is targeted towards development of a three member fungal consortium for effective removal of metals [Cr(6+) and Cu(2+)] and dyes [AB and PO] from mixed waste streams. Initial studies using individual fungal strain showed that Aspergillus lentulus was best for Cu(2+) and AB removal, Aspergillus terreus for Cr(6+) removal whereas, Rhizopus oryzae was best for PO removal. Based on the complementary pollutant affinities and positive interactions, a consortium comprising all three strains was developed. Consortium removed 100% Cr(6+) and 81.60% Cu(2+) from metal mixture which was significantly higher than that achieved individually by A. lentulus (Cr(6+): 83.11%; Cu(2+): 67.32%), A. terreus (Cr(6+): 95.57%; Cu(2+): 65.77%) or R. oryzae (Cr(6+): 25.34%; Cu(2+): 30.20%). Further, 98.0% AB and 100.0% PO was removed after 48 h by the consortia. Unlike individual strains, consortium's performance was unaltered irrespective of the complexity of metal-dye mixtures, thereby establishing its superiority. PMID:25203229

  17. Nanocrystalline CeO2-? as effective adsorbent of azo dyes.

    PubMed

    Tomi?, Nataša M; Doh?evi?-Mitrovi?, Zorana D; Paunovi?, Novica M; Mijin, Dušan Ž; Radi?, Nenad D; Grbi?, Boško V; Aškrabi?, Sonja M; Babi?, Biljana M; Bajuk-Bogdanovi?, Danica V

    2014-10-01

    Ultrafine CeO2-? nanopowder, prepared by a simple and cost-effective self-propagating room temperature synthesis method (SPRT), showed high adsorption capability for removal of different azo dyes. Batch type of adsorption experiments with fixed initial pH value were conducted for the removal of Reactive Orange 16 (RO16), Methyl Orange (MO), and Mordant Blue 9 (MB9). The equilibrium adsorption data were evaluated using Freundlich and Langmuir isotherm models. The Langmuir model slightly better describes isotherm data for RO16 and MO, whereas the Freundlich model was found to best fit the isotherm data for MB9 over the whole concentration range. The maximum adsorption capacities, determined from isotherm data for MO, MB9, and RO16 were 113, 101, and 91 mg g(-1) respectively. The adsorption process follows the pseudo-second-order kinetic model indicating the coexistence of chemisorption and physisorption. The mechanism of azo dye adsorption is also discussed. PMID:25220220

  18. Shock wave diagnostics using fluorescent dye probes

    NASA Astrophysics Data System (ADS)

    Banishev, Alexandr; Christensen, James; Dlott, Dana

    2015-06-01

    Fluorescent probes are highly developed, and have found increasing use in a wide variety of applications. We have studied shock compression of various materials with embedded dye probes used as high speed probes of pressure and temperature. Under the right conditions, dye emission can be used to make a map of the pressure distribution in shocked microstructured materials with high time (1 ns) and space (1 micrometer) resolution. In order to accomplish this goal, we started by studying shock compression of PMMA polymer with rhodamine 6G dye (R6G), as a function of shock pressure and shock duration. We observed the shock-induced spectral redshift and the shock-induced intensity loss. We investigated the fundamental mechanisms of R6G response to pressure. We showed that the time response of a dye probe is limited by its photophysical behavior under shock. We developed superemissive ultrafast dye probes by embedding R6G in a silica nanoparticle. More recently, we have searched for dye probes that have better responses. For instance, we have found that the dye Nile Red embedded in the right polymer matrix has 1.7 times larger pressure-induced redshift than R6G.

  19. Ultrasound energy to accelerate dye uptake and dye-fiber interaction of reactive dye on knitted cotton fabric at low temperatures.

    PubMed

    Tissera, Nadeeka D; Wijesena, Ruchira N; de Silva, K M Nalin

    2016-03-01

    Acoustic cavitation formed due to propagation of ultrasound wave inside a dye bath was successfully used to dye cotton fabric with a reactive dye at lower temperatures. The energy input to the system during sonication was 0.7W/cm(2). This was within the energy range that contributes towards forming cavitation during ultra-sonication. The influence of ultrasound treatment on dye particle size and fiber morphology is discussed. Particle size analysis of the dye bath revealed ultra-sonication energy was capable of de-agglomeration of hydrolyzed dye molecules during dyeing. SEM micrograph and AFM topographical image of the fiber surface revealed fiber morphology remains unchanged after the sonication. The study was extended in understanding the contribution of ultrasound method of dyeing towards achieving good color strength on the fabric, compared to the normal heating method of dyeing. Study showed color strength obtained using ultra sound method of dyeing is higher compared to normal heating dyeing. Ultrasound energy was able to achieve the good color strength on cotton fabric at very low temperature such as 30°C, which was approximately 230% more than the color strength achieved in normal heating method of dyeing. This indicates that energy input to the system using ultrasound was capable of acting as an effective alternative method of dyeing knitted cotton fabrics with reactive dye. PMID:26585007

  20. Organic Dye Behavior in PEG Block Copolymer Nanoparticles

    E-print Network

    Petta, Jason

    of light Measure the emission spectrum of the sample to determine dye behavior in the particles Nile red of block copolymers To find the optimal concentrations of fluorescent dyes in the nanoparticles To study(ethylene glycol)-b-poly(- caprolactone) #12;Fluorescent dyes Objective: Encapsulate fluorescent dyes

  1. Biology of the Blues: The Snails behind the Ancient Dyes

    NASA Astrophysics Data System (ADS)

    Steinhart, Carol

    2001-11-01

    Three species of marine snails were used in the ancient Mediterranean dye industry. Colorless dye precursors, sulfur-containing indole derivatives, are secreted by the hypobranchial gland of these animals. The several functions of this gland and other aspects of the lives of the snails that are interesting and relevant to the dye industry are described and the chemistry of dye production is summarized.

  2. Removal of unwanted facial hair.

    PubMed

    Shenenberger, Donald W; Utecht, Lynn M

    2002-11-15

    Unwanted facial hair is a common problem that is seldom discussed in the primary care setting. Although men occasionally request removal of unwanted facial hair, women most often seek help with this condition. Physicians generally neglect to address the problem if the patient does not first request help. The condition may be caused by androgen overproduction, increased sensitivity to circulating androgens, or other metabolic and endocrine disorders, and should be properly evaluated. Options for hair removal vary in efficacy, degree of discomfort, and cost. Clinical studies on the efficacy of many therapies are lacking. Short of surgical removal of the hair follicle, the only permanent treatment is electrolysis. However, the practice of electrolysis lacks standardization, and regulation of the procedure varies from state to state. Shaving, epilation, and depilation are the most commonly attempted initial options for facial hair removal. Although these methods are less expensive, they are only temporary. Laser hair removal, although better studied than most methods and more strictly regulated, has yet to be proved permanent in all patients. Eflornithine, a topical treatment, is simple to apply and has minimal side effects. By the time most patients consult a physician, they have tried several methods of hair removal. Family physicians can properly educate patients and recommend treatment for this common condition if they are armed with basic knowledge about the treatment options. PMID:12469966

  3. Color removal from textile wastewater by using treated flute reed in a fixed bed column.

    PubMed

    Inthorn, Duangrat; Tipprasertsin, Kannika; Thiravetyan, Paitip; Khan, Eakalak

    2010-01-01

    This study investigated the ability of acid treated flute reed to adsorb color (dye) from synthetic reactive dye solutions, and actual dyeing and printing textile wastewaters in a laboratory scale fixed bed column. The effects of particle size, initial reactive dye concentration, bed depth and flow rate on adsorption performances were examined. The results from experiments with synthetic reactive dye solutions showed that the volume treated (until the breakthrough occurred) increased with decreasing particle size, influent reactive dye concentration and flow rate, and increasing bed depth. The bed depth service time model was suitable for describing the experimental data. The treated flute reed was able to reduce color efficiently, 99% for dyeing textile wastewater with ten adsorption columns in series and 78% for printing textile wastewater with a single adsorption column. The difference in the numbers of columns used for the two types of actual textile wastewater led to a substantial discrepancy in suspended solids removal, 99% for dyeing wastewater and 12% for printing wastewater. Similar pH and chemical oxygen demand (COD) results were obtained for the two types of textile wastewater. The acid pretreatment of flute reed resulted in dramatic decreases in pH after the adsorption and very acidic effluents (pH 3). Increases of COD after the adsorption due to organic leaching from the treated flute reed were observed. A different pretreatment method to solve these pH and COD problems is needed before flute reed can be used in practice. PMID:20390911

  4. Improved Charge-Transfer Fluorescent Dyes

    NASA Technical Reports Server (NTRS)

    Meador, Michael

    2005-01-01

    Improved charge-transfer fluorescent dyes have been developed for use as molecular probes. These dyes are based on benzofuran nuclei with attached phenyl groups substituted with, variously, electron donors, electron acceptors, or combinations of donors and acceptors. Optionally, these dyes could be incorporated as parts of polymer backbones or as pendant groups or attached to certain surfaces via self-assembly-based methods. These dyes exhibit high fluorescence quantum yields -- ranging from 0.2 to 0.98, depending upon solvents and chemical structures. The wavelengths, quantum yields, intensities, and lifetimes of the fluorescence emitted by these dyes vary with (and, hence, can be used as indicators of) the polarities of solvents in which they are dissolved: In solvents of increasing polarity, fluorescence spectra shift to longer wavelengths, fluorescence quantum yields decrease, and fluorescence lifetimes increase. The wavelengths, quantum yields, intensities, and lifetimes are also expected to be sensitive to viscosities and/or glass-transition temperatures. Some chemical species -- especially amines, amino acids, and metal ions -- quench the fluorescence of these dyes, with consequent reductions in intensities, quantum yields, and lifetimes. As a result, the dyes can be used to detect these species. Another useful characteristic of these dyes is a capability for both two-photon and one-photon absorption. Typically, these dyes absorb single photons in the ultraviolet region of the spectrum (wavelengths < 400 nm) and emit photons in the long-wavelength ultraviolet, visible, and, when dissolved in some solvents, near-infrared regions. In addition, these dyes can be excited by two-photon absorption at near-infrared wavelengths (600 to 800 nm) to produce fluorescence spectra identical to those obtained in response to excitation by single photons at half the corresponding wavelengths (300 to 400 nm). While many prior fluorescent dyes exhibit high quantum yields, solvent-polarity- dependent fluorescence behavior, susceptibility to quenching by certain chemical species, and/or two-photon fluorescence, none of them has the combination of all of these attributes. Because the present dyes do have all of these attributes, they have potential utility as molecular probes in a variety of applications. Examples include (1) monitoring curing and deterioration of polymers; (2) monitoring protein expression; (3) high-throughput screening of drugs; (4) monitoring such chemical species as glucose, amines, amino acids, and metal ions; and (5) photodynamic therapy of cancers and other diseases.

  5. Quirks of dye nomenclature. 5. Rhodamines.

    PubMed

    Cooksey, C J

    2016-01-01

    Rhodamines were first produced in the late 19(th) century, when they constituted a new class of synthetic dyes. These compounds since have been used to color many things including cosmetics, inks, textiles, and in some countries, food products. Certain rhodamine dyes also have been used to stain biological specimens and currently are widely used as fluorescent probes for mitochondria in living cells. The early history and current biological applications are sketched briefly and an account of the ambiguities, complications and confusions concerning dye identification and nomenclature are discussed. PMID:26529223

  6. Interaction of protonated merocyanine dyes with amines in organic solvents

    NASA Astrophysics Data System (ADS)

    Ribeiro, Eduardo Alberton; Sidooski, Thiago; Nandi, Leandro Guarezi; Machado, Vanderlei Gageiro

    2011-10-01

    2,6-Diphenyl-4-(2,4,6-triphenylpyridinium-1-yl)phenolate ( 1a) and 4-[(1-methyl-4(1 H)-pyridinylidene)-ethylidene]-2,5-cyclohexadien-1-one ( 2a) were protonated in organic solvents (dichloromethane, acetonitrile, and DMSO) to form 1b and 2b, respectively. The appearance of the solvatochromic bands of 1a and 2a was studied UV-vis spectrophotometrically by deprotonation of 1b and 2b in solution in the presence of the following amines: aniline (AN), N-methylaniline (NMAN), N, N-dimethylaniline (NDAN), n-butylamine (BA), diethylamine (DEA), and triethylamine (TEA). Titrations of 1b and 2b with the amines were carried out and the binding constants were determined from the titration curves in each solvent, using a mathematical model adapted from the literature which considers the simultaneous participation of two dye: amine stoichiometries, 1:1 and 1:2. The data obtained showed the following base order for the two compounds in DMSO: BA > DEA > TEA, while aromatic amines did not cause any effect. In dichloromethane, the following base order for 1b was verified: TEA > DEA > BA ?NDAN, while for 2b the order was: TEA > DEA > BA, suggesting that 1b is more acidic than 2b. The data in acetonitrile indicated for 1b and 2b the following order for the amines: DEA > TEA > BA. The diversity of the experimental data were explained based on a model that considers the level of interaction of the protonated dyes with the amines to be dependent on three aspects: (a) the basicity of the amine, which varies according to their molecular structure and the solvent in which it is dissolved, (b) the molecular structure of the dye, and (c) the solvent used to study the system.

  7. Particle Image Velocimetry Applications Using Fluorescent Dye-Doped Particles

    NASA Technical Reports Server (NTRS)

    Petrosky, Brian J.; Maisto, Pietro; Lowe, K. Todd; Andre, Matthieu A.; Bardet, Philippe M.; Tiemsin, Patsy I.; Wohl, Christopher J.; Danehy, Paul M.

    2015-01-01

    Polystyrene latex sphere particles are widely used to seed flows for velocimetry techniques such as Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV). These particles may be doped with fluorescent dyes such that signals spectrally shifted from the incident laser wavelength may be detected via Laser Induced Fluorescence (LIF). An attractive application of the LIF signal is achieving velocimetry in the presence of strong interference from laser scatter, opening up new research possibilities very near solid surfaces or at liquid/gas interfaces. Additionally, LIF signals can be used to tag different fluid streams to study mixing. While fluorescence-based PIV has been performed by many researchers for particles dispersed in water flows, the current work is among the first in applying the technique to micron-scale particles dispersed in a gas. A key requirement for such an application is addressing potential health hazards from fluorescent dyes; successful doping of Kiton Red 620 (KR620) has enabled the use of this relatively safe dye for fluorescence PIV for the first time. In this paper, basic applications proving the concept of PIV using the LIF signal from KR620-doped particles are exhibited for a free jet and a twophase flow apparatus. Results indicate that while the fluorescence PIV techniques are roughly 2 orders of magnitude weaker than Mie scattering, they provide a viable method for obtaining data in flow regions previously inaccessible via standard PIV. These techniques have the potential to also complement Mie scattering signals, for example in multi-stream and/or multi-phase experiments.

  8. Natural Dye Extracted from Vitex negundo as a Potential Alternative to Synthetic Dyes for Dyeing of Silk

    NASA Astrophysics Data System (ADS)

    Narayana Swamy, Venkataramanappa; Gowda, Kurikempanadoddi Ninge; Sudhakar, Rajagopal

    2015-06-01

    Since the last decade, the application of natural dyes on textile material has been gaining popularity all over the world, possibly because of the increasing awareness of issues concerning the environment, ecology and pollution control. The present paper investigates extraction of natural dye from leaves of the plant Vitex negundo, which is an abundant, cheap, and readily available agricultural by-product. Water extracts from V. negundo was used to dye silk fabrics. Optimum extraction conditions included pH 9, duration 120 min, and temperature 90 °C. Optimum dyeing conditions included dyeing pH 5 and duration of 60 min. Potash alum, tannic and tartaric acid were used as mordants, all of which are benign to human health and the environment. Color strength and color coordinates in terms of L*, a*, b*, C, and h were examined. A range of shades were obtained when fabrics were dyed with different mordants and mordanting techniques. The extracted dye was tested for some of the eco-parameters using atomic absorption spectrophotometry and GC/MS. The test results were compared with set standards to determine the eco-friendliness of natural dye. Their concentrations were found to be lower than the stipulated limits. Dyed samples were tested for antimicrobial activity against gram-positive and gram-negative bacteria. The dyed silk fabrics showed acceptable fastness properties and were also found to possess antibacterial activity. It can be concluded that the abundantly available agricultural by-product V. negundo has great potential to be effectively utilized as a natural dye for silk.

  9. Optodynamic monitoring of laser tattoo removal

    NASA Astrophysics Data System (ADS)

    Jezersek, Matija; Grad, Ladislav; Požar, Tomaž; Cencic, Boris; Bacak, Irena; Mozina, Janez

    2011-07-01

    The goal of this research is to use the information contained in the mechanisms occurring during laser tattoo removal process. We employed a fast laser beam deflection probe (BDP) to measure the cracking sound that originates from the dye explosions in the process known as selective photothermolysis. The experiments were performed in vitro (skin phantoms), ex vivo (marking tattoos on pig skin) and in vivo (professional and amateur decorative tattoos on several patients). The signal includes the information about the energy released during the interaction, specific for different skin and tattoo conditions.

  10. Dye-sensitized solar cells using natural dyes as sensitizers from Malaysia local fruit `Buah Mertajam'

    NASA Astrophysics Data System (ADS)

    Hambali, N. A. M. Ahmad; Roshidah, N.; Hashim, M. Norhafiz; Mohamad, I. S.; Saad, N. Hidayah; Norizan, M. N.

    2015-05-01

    We experimentally demonstrate the high conversion efficiency, low cost, green technology and easy to fabricate dye-sensitized solar cells (DSSCs) using natural anthocyanin dyes as sensitizers. The DSSCs was fabricated by using natural anthocyanin dyes which were extracted from different parts of the plants inclusive `Buah Mertajam', `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. The natural anthocyanin dyes that found in flower, leaves and fruits were extracted by the simple procedures. This anthocyanin dye is used to replace the expensive chemical synthetic dyes due to its ability to effectively attach into the surface of Titanium dioxide (TiO2). A natural anthocyanin dyes molecule adsorbs to each particle of the TiO2 and acts as the absorber of the visible light. A natural anthocyanin dye from Buah Mertajam shows the best performance with the conversion efficiency of 5.948% and fill factor of 0.708 followed by natural anthocyanin dyes from `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. Buah Mertajam or scientifically known as eriglossum rubiginosum is a local Malaysia fruit.

  11. Analysis and Characterization of Dye-Based Black Matrix Film of Low Dielectric Constant Containing Phthalocyanine and Perylene Dyes.

    PubMed

    Lee, Woosung; Choi, Jun; Kim, Se Hun; Park, Jongseung; Kim, Jae Pil

    2015-01-01

    For liquid crystal display black matrices of low dielectric constant, greenish zinc phthalocyanine dye and reddish perylene dye exhibiting high solubility and thermal stability were employed to fabricate dye-based black matrices. The spectral, optical, thermal and dielectric properties of the dye-based black matrices were tested, and the surfaces of them were investigated using field emission scanning electron microscopy and atomic force microscopy. The dye-based black matrices had sufficiently low dielectric constants and showed satisfactory thermal stability and weaker light absorption property compared with black matrices containing carbon black, due to the low solubility of the dyes and dye aggregations after a post-baking process. PMID:26328348

  12. Pre dye treated titanium dioxide nanoparticles synthesized by modified sol-gel method for efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ananth, S.; Vivek, P.; Arumanayagam, T.; Murugakoothan, P.

    2015-06-01

    Pure and pre dye treated titanium dioxide nanoparticles were prepared by sol-gel and modified sol-gel methods, respectively. The pre dye treatment has improved the properties of TiO2, such as uniform dye adsorption, reduced agglomeration, improved morphology and less dye aggregation. The brazilein pigment-rich Caesalpinia sappan heartwood extract was used as natural dye sensitizer for pure and pre dye treated TiO2 nanoparticles. Low cost and environment friendly dye-sensitized solar cells (DSSC) fabricated using pure and pre dye treated TiO2 nanoparticles sensitized by natural dye showed solar light to electron conversion efficiencies of 1.09 and 1.65 %, respectively. The pre dye treated TiO2-based DSSC showed 51 % improvement in efficiency when compared to that of conventionally prepared DSSC.

  13. Degradation of Dye Wastewater by ns-Pulse DBD Plasma

    NASA Astrophysics Data System (ADS)

    Gao, Jin; Gu, Pingdao; Yuan, Li; Zhong, Fangchuan

    2013-09-01

    Two plasma reactors have been developed and used to degrade dye wastewater agents. The configuration of one plasma reactor is a comb-like extendable unit module consisting of 5 electrodes covered with a quartz tube and the other one is an array reactor which is extended from the unit module. The decomposition of wastewater by ns pulse dielectric barrier discharge (DBD) plasma have been carried out by atomizing the dyeing solutions into the reactors. During experiments, the indigo carmine has been treated as the waste agent. The measurements of UV-VIS absorption spectroscopy and the chemical oxygen demand (COD) are carried out to demonstrate the decomposition effect on the wastewater. It shows that the decoloration rate of 99% and the COD degradation rate of 65% are achieved with 15 min treatment in the unit reactor. The effect of electrical parameters on degradation has been studied in detail. Results from the array reactor indicate that it has a better degradation effect than the unit one. It can not only totally remove the chromogenic bond of the indigo carmine solution, but also effectively degrade unsaturated bonds. The decoloration rate reaches 99% after 10 min treatment, the decomposition rate of the unsaturated bond reaches 83% after 60 min treatment, and the COD degradation rate is nearly 74%.

  14. Chromosome characterization using single fluorescent dye

    DOEpatents

    Crissman, Harry A. (Los Alamos, NM); Hirons, Gregory T. (Irvine, CA)

    1995-01-01

    Chromosomes are characterized by fluorescent emissions from a single fluorescent dye that is excited over two different wavelengths. A mixture containing chromosomes is stained with a single dye selected from the group consisting of TOTO and YOYO and the stained chromosomes are placed in a flow cytometer. The fluorescent dye is excited sequentially by a first light having a wavelength in the ultraviolet range to excite the TOTO or YOYO to fluoresce at a first intensity and by a second light having a wavelength effective to excite the TOTO or YOYO dye to fluoresce at a second intensity. Specific chromosomes may be identified and sorted by intensity relationships between the first and second fluorescence emissions.

  15. Polymerization of novel methacrylated anthraquinone dyes

    PubMed Central

    Dollendorf, Christian; Kreth, Susanne Katharina; Choi, Soo Whan

    2013-01-01

    Summary A new series of polymerizable methacrylated anthraquinone dyes has been synthesized by nucleophilic aromatic substitution reactions and subsequent methacrylation. Thereby, green 5,8-bis(4-(2-methacryloxyethyl)phenylamino)-1,4-dihydroxyanthraquinone (2), blue 1,4-bis(4-((2-methacryloxyethyl)oxy)phenylamino)anthraquinone (6) and red 1-((2-methacryloxy-1,1-dimethylethyl)amino)anthraquinone (12), as well as 1-((1,3-dimethacryloxy-2-methylpropan-2-yl)amino)anthraquinone (15) were obtained. By mixing of these brilliant dyes in different ratios and concentrations, a broad color spectrum can be generated. After methacrylation, the monomeric dyes can be covalently emplaced into several copolymers. Due to two polymerizable functionalities, they can act as cross-linking agents. Thus, diffusion out of the polymer can be avoided, which increases the physiological compatibility and makes the dyes promising compounds for medical applications, such as iris implants. PMID:23503994

  16. Tested Demonstrations: Dyeing of Anodized Aluminum.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1983-01-01

    Provides a list of needed materials, required preparations, and instructions for demonstrating the dyeing of anodized aluminum. Discusses the chemistry involved and gives equations for reactions occurring at the anode and cathode. (JM)

  17. Kinetics and thermodynamic studies for removal of acid blue 129 from aqueous solution by almond shell

    PubMed Central

    2014-01-01

    Efficiency and performance of Almond shell (AS) adsorbent for the removal and recovery of Acid Blue 129 (AB129) from wastewater is presented in this report. The influence of variables including pH, initial dye concentration, adsorbent dosage, particle size, contact time and temperature on the dye removal have been investigated in batch method by one at a time optimization method. The experimental equilibrium data were tested by four widely used isotherm models namely, Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich (D–R). It was found that adsorption of AB129 on AS well with the Langmuir isotherm model, implying monolayer coverage of dye molecules onto the surface of the adsorbent. More than 98% removal efficiency was obtained within 14 min at adsorbent dose of 0.4 g for initial dye concentration of 40 mg/L at pH 2. Kinetics of the adsorption process was tested by pseudo-first-order and pseudo-second-order kinetics, and intraparticle diffusion mechanism. Pseudo-second-order kinetic model provided a better correlation for the experimental data studied in comparison to the pseudo-first-order model. Calculation of various thermodynamic parameters such as, Gibb’s free energy, entropy and enthalpy of the on-going adsorption process indicate feasibility and endothermic nature of AB129 adsorption on all adsorbents. This work can be used in design of adsorption columns for dyes removal. PMID:24620822

  18. Phytoremediation in education: textile dye teaching experiments.

    PubMed

    Ibbini, Jwan H; Davis, Lawrence C; Erickson, Larry E

    2009-07-01

    Phytoremediation, the use of plants to clean up contaminated soil and water, has a wide range of applications and advantages, and can be extended to scientific education. Phytoremediation of textile dyes can be used as a scientific experiment or demonstration in teaching laboratories of middle school, high school and college students. In the experiments that we developed, students were involved in a hands-on activity where they were able to learn about phytoremediation concepts. Experiments were set up with 20-40 mg L(-1) dye solutions of different colors. Students can be involved in the set up process and may be involved in the experimental design. In its simplest forms, they use two-week-old sunflower seedlings and place them into a test tube of known volume of dye solution. Color change and/or dye disappearance can be monitored by visual comparison or with a spectrophotometer. Intensity and extent of the lab work depends on student's educational level, and time constraints. Among the many dyes tested, Evan's Blue proved to be the most readily decolorized azo dye. Results could be observed within 1-2 hours. From our experience, dye phytoremediation experiments are suitable and easy to understand by both college and middle school students. These experiments help visual learners, as students compare the color of the dye solution before and after the plant application. In general, simple phytoremediation experiments of this kind can be introduced in many classes including biology, biochemistry and ecological engineering. This paper presents success stories of teaching phytoremediation to middle school and college students. PMID:19810348

  19. Corrosion Inhibitors as Penetrant Dyes for Radiography

    NASA Technical Reports Server (NTRS)

    Novak, Howard L.; Hall, Phillip B.

    2003-01-01

    Liquid/vapor-phase corrosion inhibitors (LVCIs) have been found to be additionally useful as penetrant dyes for neutron radiography (and perhaps also x-radiography). Enhancement of radiographic contrasts by use of LVCIs can reveal cracks, corrosion, and other defects that may be undetectable by ultrasonic inspection, that are hidden from direct optical inspection, and/or that are difficult or impossible to detect in radiographs made without dyes.

  20. Basic ablation phenomena during laser thrombolysis

    NASA Astrophysics Data System (ADS)

    Sathyam, Ujwal S.; Shearin, Alan; Prahl, Scott A.

    1997-05-01

    This paper presents studies of microsecond ablation phenomena that take place during laser thrombolysis. The main goals were to optimize laser parameters for efficient ablation, and to investigate the ablation mechanism. Gelatin containing an absorbing dye was used as the clot model. A parametric study was performed to identify the optimal wavelength, spot size, pulse energies, and repetition rate for maximum material removal. The minimum radiant exposures to achieve ablation at any wavelength were measured. The results suggest that most visible wavelengths were equally efficient at removing material at radiant exposures above threshold. Ablation was initiated at surface temperatures just above 100 degrees Celsius. A vapor bubble was formed during ablation. Less than 5% of the total pulse energy is coupled into the bubble energy. A large part of the delivered energy is unaccounted for and is likely released partly as acoustic transients from the vapor expansion and partly wasted as heat. The current laser and delivery systems may not be able to completely remove large clot burden that is sometimes encountered in heart attacks. However, laser thrombolysis may emerge as a favored treatment for strokes where the occlusion is generally smaller and rapid recanalization is of paramount importance. A final hypothesis is that laser thrombolysis should be done at radiant exposures close to threshold to minimize any damaging effects of the bubble dynamics on the vessel wall.

  1. Oxidative degradation of azo dyes using tourmaline.

    PubMed

    Wang, Cuiping; Zhang, Yanwei; Yu, Li; Zhang, Zhiyuan; Sun, Hongwen

    2013-09-15

    This study aimed to investigate the catalyzed degradation ability of tourmaline on the dyes methylene blue (MB), rhodamine B (RhB), and congo red (CR) at different pH values. Interestingly, tourmaline strongly adsorbed anionic dyes, but it did not adsorb cationic dyes. When H?O? was introduced into the tourmaline-dye systems, the degradation percentage for CR catalysis by tourmaline was lower than the percentage of adsorption, whereas the opposite was true for MB and RhB systems. Notably, the catalyzed degradation decreased from 100% to 45% for MB, 100% to 15% for RhB and 100% to 25% for CR as the pH increased from 3.0 to 10.0, respectively, which was much greater than the degradation obtained for previously reported materials at pH values ranging from 4.0 to 10.0. Tourmaline catalytically degraded the dyes over a broad range of pH values, which was attributed to tourmaline automatically adjusting the pH of the dye solutions to approximately 5.5 from an initial range of 4.2-10.0. An electron paramagnetic resonance spin trapping technique observed peroxyl (ROO·) and alkoxy (RO·) or alkyl (R·) radicals originated from the attack of ·OH radicals and O?(·-) radicals, indicating that these radicals were involved in the catalyzed degradation of MB. Importantly, four intermediate products of MB at m/z 383, 316, 203 and 181 were observed by LC/MS. PMID:23876254

  2. Microbial dynamics during azo dye degradation in a UASB reactor supplied with yeast extract

    PubMed Central

    Silva, S.Q.; Silva, D.C.; Lanna, M.C.S.; Baeta, B.E.L.; Aquino, S.F.

    2014-01-01

    The present work aimed to investigate the microbial dynamics during the anaerobic treatment of the azo dye blue HRFL in bench scale upflow anaerobic sludge bed (UASB) reactor operated at ambient temperature. Sludge samples were collected under distinct operational phases, when the reactor were stable (low variation of color removal), to assess the effect of glucose and yeast extract as source of carbon and redox mediators, respectively. Reactors performance was evaluated based on COD (chemical oxygen demand) and color removal. The microbial dynamics were investigated by PCR-DGGE (Polimerase Chain Reaction - Denaturing Gradient of Gel Electrophoresis) technique by comparing the 16S rDNA profiles among samples. The results suggest that the composition of microorganisms changed from the beginning to the end of the reactor operation, probably in response to the presence of azo dye and/or its degradation byproducts. Despite the highest efficiency of color removal was observed in the presence of 500 mg/L of yeast extract (up to 93%), there were no differences regarding the microbial profiles that could indicate a microbial selection by the yeast extract addition. On the other hand Methosarcina barkeri was detected only in the end of operation when the best efficiencies on color removal occurred. Nevertheless the biomass selection observed in the last stages of UASB operation is probably a result of the washout of the sludge in response of accumulation of aromatic amines which led to tolerant and very active biomass that contributed to high efficiencies on color removal. PMID:25763018

  3. Exploring ruthenium dye synthesis and TiO2-dye-I-/I3- electron transfer reactions in a dye-sensitised solar cell. 

    E-print Network

    Chadwick, Nina

    2013-11-28

    Octahedral, six co-ordinate ruthenium complexes containing acid substituted polypyridyl ligands have proved particularly successful as dyes for Dye-Sensitised Solar Cells (DSSCs); thus there have been hundreds, if not ...

  4. Adsorption of dyes by ACs prepared from waste tyre reinforcing fibre. Effect of texture, surface chemistry and pH.

    PubMed

    Acevedo, Beatriz; Rocha, Raquel P; Pereira, Manuel F R; Figueiredo, José L; Barriocanal, Carmen

    2015-12-01

    This paper compares the importance of the texture and surface chemistry of waste tyre activated carbons in the adsorption of commercial dyes. The adsorption of two commercial dyes, Basic Astrazon Yellow 7GLL and Reactive Rifafix Red 3BN on activated carbons made up of reinforcing fibres from tyre waste and low-rank bituminous coal was studied. The surface chemistry of activated carbons was modified by means of HCl-HNO3 treatment in order to increase the number of functional groups. Moreover, the influence of the pH on the process was also studied, this factor being of great importance due to the amphoteric characteristics of activated carbons. The activated carbons made with reinforcing fibre and coal had the highest SBET, but the reinforcing fibre activated carbon samples had the highest mesopore volume. The texture of the activated carbons was not modified upon acid oxidation treatment, unlike their surface chemistry which underwent considerable modification. The activated carbons made with a mixture of reinforcing fibre and coal experienced the largest degree of oxidation, and so had more acid surface groups. The adsorption of reactive dye was governed by the mesoporous volume, whilst surface chemistry played only a secondary role. However, the surface chemistry of the activated carbons and dispersive interactions played a key role in the adsorption of the basic dye. The adsorption of the reactive dye was more favored in a solution of pH 2, whereas the basic dye was adsorbed more easily in a solution of pH 12. PMID:26295195

  5. Exponentiation: A New Basic?

    ERIC Educational Resources Information Center

    Davis, Brent

    2015-01-01

    For centuries, the basic operations of school mathematics have been identified as addition, subtraction, multiplication, and division. Notably, these operations are "basic," not because they are foundational to mathematics knowledge, but because they were vital to a newly industrialized and market-driven economy several hundred years…

  6. INTRODUCTION TO BASIC SERVLET

    E-print Network

    Ricci, Francesco

    Chapter CHAPTER 2: A FAST INTRODUCTION TO BASIC SERVLET PROGRAMMING Topics in This Chapter · The advantages of servlets over competing technologies · The basic servlet structure and life cycle · Servlet · The servlet equivalent of the standard CGI variables · Cookies in servlets · Session tracking Taken from More

  7. Basic Science Training Program.

    ERIC Educational Resources Information Center

    Brummel, Clete

    These six learning modules were developed for Lake Michigan College's Basic Science Training Program, a workshop to develop good study skills while reviewing basic science. The first module, which was designed to provide students with the necessary skills to study efficiently, covers the following topics: time management; an overview of a study…

  8. Basic Electronics I.

    ERIC Educational Resources Information Center

    Robertson, L. Paul

    Designed for use in basic electronics programs, this curriculum guide is comprised of twenty-nine units of instruction in five major content areas: Orientation, Basic Principles of Electricity/Electronics, Fundamentals of Direct Current, Fundamentals of Alternating Current, and Applying for a Job. Each instructional unit includes some or all of…

  9. Fluency with Basic Addition

    ERIC Educational Resources Information Center

    Garza-Kling, Gina

    2011-01-01

    Traditionally, learning basic facts has focused on rote memorization of isolated facts, typically through the use of flash cards, repeated drilling, and timed testing. However, as many experienced teachers have seen, "drill alone does not develop mastery of single-digit combinations." In contrast, a fluency approach to learning basic addition…

  10. Romanian Basic Course.

    ERIC Educational Resources Information Center

    Defense Language Inst., Washington, DC.

    The "Romanian Basic Course," consisting of 89 lesson units in eight volumes, is designed to train native English language speakers to Level 3 proficiency in comprehension, speaking, reading, and writing Romanian (based on a 1-5 scale in which Level 5 is native speaker proficiency). Volume 1, which introduces basic sentences in dialog form with…

  11. Application of the central composite design to study the flocculation of an anionic azo dye using quaternized cellulose nanofibrils.

    PubMed

    Quinlan, Patrick James; Tanvir, Aafia; Tam, Kam Chiu

    2015-11-20

    Cellulose nanofibrils (CNF) grafted with glycidyltrimethylammonium chloride (GTMAC), containing quaternary ammonium contents of 0.44 (QCNF-1), 1.47 (QCNF-2), and 2.28 (QCNF-3) meqg(-1), were evaluated as flocculants for the removal of Reactive Orange 16, an anionic azo dye, from aqueous solution. A rotatable and orthogonal central composite design was used to examine the performance of QCNFs under a range of experimental conditions. Removal efficiencies at the centre point of the design space were found to be 236.9±7.8, 254.2±3.8, and 264.6±2.8mgg(-1) for QCNF-1, QCNF-2 and QCNF-3, respectively. The highest removal efficiency, 295.1mgg(-1), was observed when using QCNF-3 at a low monovalent salt concentration. The QCNF reported herein provides a sustainable and biodegradable alternative to traditional synthetic flocculants for the decolorization of dye-containing effluents. PMID:26344258

  12. Nucleophilic Addition of Reactive Dyes on Amidoximated Acrylic Fabrics

    PubMed Central

    El-Shishtawy, Reda M.; El-Zawahry, Manal M.; Abdelghaffar, Fatma; Ahmed, Nahed S. E.

    2014-01-01

    Seven reactive dyes judiciously selected based on chemical structures and fixation mechanisms were applied at 2% owf of shade on amidoximated acrylic fabrics. Amidoximated acrylic fabric has been obtained by a viable amidoximation process. The dyeability of these fabrics was evaluated with respect to the dye exhaustion, fixation, and colour strength under different conditions of temperature and dyeing time. Nucleophilic addition type reactive dyes show higher colour data compared to nucleophilic substitution ones. FTIR studies further implicate the binding of reactive dyes on these fabrics. A tentative mechanism is proposed to rationalize the high fixation yield obtained using nucleophilic addition type reactive dyes. Also, the levelling and fastness properties were evaluated for all dyes used. Excellent to good fastness and levelling properties were obtained for all samples irrespective of the dye used. The result of investigation offers a new method for a viable reactive dyeing of amidoximated acrylic fabrics. PMID:25258720

  13. BASIC: Updating a Familiar Language.

    ERIC Educational Resources Information Center

    Eyman, David H.

    1988-01-01

    Discusses reasons for learning to program in BASIC, various versions of BASIC, BASIC compilers, and adherence to proposed standards. Brief reviews of six BASIC software packages are included. (12 references) (MES)

  14. The resorptive apparatus of osteoclasts supports lysosomotropism and increases potency of basic versus non-basic inhibitors of cathepsin K.

    PubMed

    Fuller, Karen; Lindstrom, Erik; Edlund, Michael; Henderson, Ian; Grabowska, Urszula; Szewczyk, Kinga A; Moss, Raymond; Samuelsson, Bertil; Chambers, Timothy J

    2010-05-01

    In mice and humans, the effect of genetic deficiency of cathepsin K (catK) is impaired bone resorption, or osteopetrosis. Inhibition of catK is therefore a promising strategy for the treatment of osteoporosis. The enzyme acts in an acid environment. This provides a further potential opportunity: if the inhibitor is basic it is more likely to accumulate in membrane-bound acidic compartments (lysosomotropism), so minimizing off-target effects. However, the resorptive hemivacuole is not membrane-bound, and so might not retain lysosomotropic compounds. We therefore elected to determine whether the osteoclastic resorptive apparatus supports such accumulation. First, we attempted to compare the persistence of a lysosomotropic dye in the hemivacuole versus intracellular vesicles. To our surprise the dye could not be detected in the ruffled border region by confocal microscopy. We found that this could be explained by the tight packing of the folds of the ruffled border, and their close apposition to the bone surface. We also found that the dye persisted similarly in resorbing osteoclasts and macrophages, consistent with the notion that resorbing osteoclasts support lysosomotropism. Next, we compared the ability of basic and non-basic inhibitors of catK to suppress bone resorption by human osteoclasts. We found that basic compounds were considerably more potent than non-basic compounds at suppression of osteoclastic resorption than would be anticipated from their potency as enzyme inhibitors. Also consistent with osteoclastic lysosomotropism, basic inhibitors suppressed resorption for substantially longer than a non-basic inhibitor after washout from cell cultures. Furthermore, selectivity of basic inhibitors for inhibition of catK versus other cathepsins persisted: concentrations that inhibited catK in osteoclasts had no detectable effect on cathepsin S (catS) in a cell-based assay. This data is consistent with accumulation and enrichment of such basic inhibitors in the resorptive apparatus of the osteoclast, allowing for prolonged efficacy at the intended site of action. Our results suggest a major advantage for lysosomotropic compounds as inhibitors of bone resorption by osteoclasts in osteoporosis and other diseases caused by excessive osteoclastic activity. PMID:20097319

  15. INVESTIGATION OF SELECTED DYE CARRIERS USED IN COMMERCIAL DYEING OF HYDROPHOBIC FIBERS

    EPA Science Inventory

    The report gives results of an evaluation of toxicities of dyebath discharges from atmospheric dyeing of polyester fiber/fabric with three commercial dye carriers: trichlorobenzine (TCB), biphenyl (BP), and 0-phenyl phenol (OPP). First, criteria were established to rank the prior...

  16. WASTES FROM MANUFACTURE OF DYES AND PIGMENTS. VOLUME 8. PHTHALOCYANINE DYES AND PIGMENTS

    EPA Science Inventory

    A preliminary study of the manufacture of phthalocyanine dyes and pigments was conducted to determine if process waste streams might contain hazardous material. The study first identifies the dyes and pigments that belong to this segment of the industry, the amounts produced, and...

  17. Chlorine disinfection of dye wastewater: implications for a commercial azo dye mixture.

    PubMed

    Vacchi, Francine Inforçato; Albuquerque, Anjaina Fernandes; Vendemiatti, Josiane Aparecida; Morales, Daniel Alexandre; Ormond, Alexandra B; Freeman, Harold S; Zocolo, Guilherme Julião; Zanoni, Maria Valnice Boldrin; Umbuzeiro, Gisela

    2013-01-01

    Azo dyes, the most widely used family of synthetic dyes, are often employed as colorants in areas such as textiles, plastics, foods/drugs/cosmetics, and electronics. Following their use in industrial applications, azo dyes have been found in effluents and various receiving waters. Chemical treatment of effluents containing azo dyes includes disinfection using chlorine, which can generate compounds of varying eco/genotoxicity. Among the widely known commercial azo dyes for synthetic fibers is C.I. Disperse Red 1. While this dye is known to exist as a complex mixture, reports of eco/genotoxicity involve the purified form. Bearing in mind the potential for adverse synergistic effects arising from exposures to chemical mixtures, the aim of the present study was to characterize the components of commercial Disperse Red 1 and its chlorine-mediated decoloration products and to evaluate their ecotoxicity and mutagenicity. In conducting the present study, Disperse Red 1 was treated with chlorine gas, and the solution obtained was analyzed with the aid of LC-ESI-MS/MS to identify the components present, and then evaluated for ecotoxicity and mutagenicity, using Daphnia similis and Salmonella/microsome assays, respectively. The results of this study indicated that chlorination of Disperse Red 1 produced four chlorinated aromatic compounds as the main products and that the degradation products were more ecotoxic than the parent dye. These results suggest that a disinfection process using chlorine should be avoided for effluents containing hydrophobic azo dyes such commercial Disperse Red 1. PMID:23178834

  18. Magneto-fluorescent hybrid of dye and SPION with ordered and radially distributed porous structures

    NASA Astrophysics Data System (ADS)

    Gogoi, Madhulekha; Deb, Pritam

    2014-04-01

    We have reported the development of a silica based magneto-fluorescent hybrid of a newly synthesized dye and superparamagnetic iron oxide nanoparticles with ordered and radially distributed porous structure. The dye is synthesized by a novel yet simple synthetic approach based on Michael addition between dimer of glutaraldehyde and oleylamine molecule. The surfactant used for phase transformation of the dye from organic to aqueous phase, also acts as a structure directing agent for the porous structure evolution of the hybrid with radial distribution. The evolution of the radially distributed pores in the hybrids can be attributed to the formation of rod-like micelles containing nanoparticles, for concentration of micelles greater than critical micelle concentration. A novel water extraction method is applied to remove the surfactants resulting in the characteristic porous structure of the hybrid. Adsorption isotherm analysis confirms the porous nature of the hybrids with pore diameter ?2.4 nm. A distinct modification in optical and magnetic property is observed due to interaction of the dye and SPION within the silica matrix. The integration of multiple structural components in the so developed hybrid nanosystem results into a potential agent for multifunctional biomedical application.

  19. Cellulose based cationic adsorbent fabricated via radiation grafting process for treatment of dyes waste water.

    PubMed

    Goel, Narender Kumar; Kumar, Virendra; Misra, Nilanjal; Varshney, Lalit

    2015-11-01

    A cationized adsorbent was prepared from cellulosic cotton fabric waste via a single step-green-radiation grafting process using gamma radiation source, wherein poly[2-(methacryloyloxy) ethyl]trimethylammonium chloride (PMAETC) was covalently attached to cotton cellulose substrate. Radiation grafted (PMAETC-g-cellulose) adsorbent was investigated for removal of acid dyes from aqueous solutions using two model dyes: Acid Blue 25 (AB25) and Acid Blue 74 (AB74). The equilibrium adsorption data was analyzed by Langmuir and Freundlich isotherms, whereas kinetic data was analyzed by pseudo first order, pseudo second order, intra particle diffusion and Boyd's models. The PMAETC-g-cellulose adsorbent with 25% grafting yield exhibited equilibrium adsorption capacities of ? 540.0mg/g and ? 340.0mg/g for AB25 and AB74, respectively. Linear and nonlinear fitting of adsorption data suggested that the equilibrium adsorption process followed Langmuir adsorption isotherm model, whereas, the kinetic adsorption process followed pseudo-second order model. The multi-linearities observed in the intra-particle kinetic plots suggested that the intraparticle diffusion was not the only rate-controlling process in the adsorption of acid dyes on the adsorbent, which was further supported by Boyd's model. The adsorbent could be regenerated by eluting the adsorbed dye from the adsorbent and could be repeatedly used. PMID:26256369

  20. High-value zeolitic material from bagasse fly ash: utilization for dye elimination.

    PubMed

    Shah, Bhavna A; Shah, Ajay V; Patel, Harendra D; Mistry, Chirag B

    2013-06-01

    Bagasse fly ash (BFA), a sugar industry waste, was used to prepare zeolitic material (ZFA) by means of alkaline hydrothermal treatment. ZFA showed improved morphology as a result of this treatment. The adsorption of the reactive dyes turquoise blue (TB) and brilliant magenta (BM), on both BFA and ZFA, was investigated in a batch contact system. A series of batch experiments revealed that optimal dye removal occurs at a 200 mg/L to 300 mg/L solute concentration, 60 minutes of agitation time, 5 g/L to 10 g/L adsorbent dose, a pH level of 2 to 4, and a temperature of 298 K. ZFA showed enhanced adsorption capacity as compared to BFA. According to the Langmuir equation, the maximum adsorption capacity was 12.66 mg/g and 45.45 mg/g for turquoise blue and brilliant magenta dyes, respectively, on BFA; and 21.74 mg/g and 100.00 mg/g for turquoise blue and brilliant magenta dyes, respectively, on ZFA. Kinetic studies showed that the correlation coefficients best fit with the pseudo-second-order kinetic model, confirming that the adsorption rate was controlled by a hemisorptions process. PMID:23833819

  1. Synthesis of Pt3Ni Microspheres with High Performance for Rapid Degradation of Organic Dyes

    NASA Astrophysics Data System (ADS)

    Wang, Min; Yang, Yushi; Long, Jia; Mao, Zhou; Qiu, Tong; Wu, Qingzhi; Chen, Xiaohui

    2015-05-01

    In this study, Pt3Ni microspheres consisted of nanoparticles were synthesized without addition of surfactants via the solvothermal route. The obtained sample was characterized by X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectrometer (ICP-AES), X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscopy (FESEM). Furthermore, the catalytic performance of as-synthesized Pt3Ni microspheres was evaluated on the degradation of different organic dyes (methylene blue, methyl orange, Congo red, and rhodamine B). The results show that different dyes were rapidly decomposed by Pt3Ni microspheres in different pathways. Among different dyes, the formation and further degradation of the intermediates was observed during the degradation of methylene blue and methyl orange, suggesting the indirect degradation process of these dyes. This study provides not only a promising catalyst for the removal of organic contaminants for environment remediation, but also new insights for Pt3Ni alloy as a high-performance catalyst in organic synthesis.

  2. Synthesis of Pt3Ni microspheres with high performance for rapid degradation of organic dyes.

    PubMed

    Wang, Min; Yang, Yushi; Long, Jia; Mao, Zhou; Qiu, Tong; Wu, Qingzhi; Chen, Xiaohui

    2015-12-01

    In this study, Pt3Ni microspheres consisted of nanoparticles were synthesized without addition of surfactants via the solvothermal route. The obtained sample was characterized by X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectrometer (ICP-AES), X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscopy (FESEM). Furthermore, the catalytic performance of as-synthesized Pt3Ni microspheres was evaluated on the degradation of different organic dyes (methylene blue, methyl orange, Congo red, and rhodamine B). The results show that different dyes were rapidly decomposed by Pt3Ni microspheres in different pathways. Among different dyes, the formation and further degradation of the intermediates was observed during the degradation of methylene blue and methyl orange, suggesting the indirect degradation process of these dyes. This study provides not only a promising catalyst for the removal of organic contaminants for environment remediation, but also new insights for Pt3Ni alloy as a high-performance catalyst in organic synthesis. PMID:26058511

  3. Geometrical and energetical structural changes in organic dyes for dye-sensitized solar cells probed using photoelectron spectroscopy and DFT.

    PubMed

    Eriksson, Susanna K; Josefsson, Ida; Ellis, Hanna; Amat, Anna; Pastore, Mariachiara; Oscarsson, Johan; Lindblad, Rebecka; Eriksson, Anna I K; Johansson, Erik M J; Boschloo, Gerrit; Hagfeldt, Anders; Fantacci, Simona; Odelius, Michael; Rensmo, Håkan

    2016-01-01

    The effects of alkoxy chain length in triarylamine based donor-acceptor organic dyes are investigated with respect to the electronic and molecular surface structures on the performance of solar cells and the electron lifetime. The dyes were investigated when adsorbed on TiO2 in a configuration that can be used for dye-sensitized solar cells (DSCs). Specifically, the two dyes D35 and D45 were compared using photoelectron spectroscopy (PES) and density functional theory (DFT) calculations. The differences in solar cell characteristics when longer alkoxy chains are introduced in the dye donor unit are attributed to geometrical changes in dye packing while only minor differences were observed in the electronic structure. A higher dye load was observed for D45 on TiO2. However, D35 based solar cells result in higher photocurrent although the dye load is lower. This is explained by different geometrical structures of the dyes on the surface. PMID:26608268

  4. Fiber optics interface for a dye laser oscillator and method

    NASA Astrophysics Data System (ADS)

    Johnson, S. A.; Seppala, L. G.

    1984-06-01

    A dye laser oscillator in which one light beam is used to pump a continuous stream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed along with a specific arrnagement including an optical fiber and a fibre optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.

  5. Fiber optics interface for a dye laser oscillator and method

    DOEpatents

    Johnson, Steve A. (Tracy, CA); Seppala, Lynn G. (Pleasanton, CA)

    1986-01-01

    A dye laser oscillator in which one light beam is used to pump a continuous tream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.

  6. Molecular dynamics simulations on the aggregation behavior of indole type organic dye molecules in dye-sensitized solar cells.

    PubMed

    Selvaraj, Ananda Rama Krishnan; Hayase, Shuji

    2012-05-01

    In Ti0(2) nanostructured dye-sensitized solar cells indole based organic dyes D149, D205 exhibits greater power conversion efficiency. Such organic dye molecules are easily undergone for aggregation. Aggregation in dye molecules leads to reduce electron transfer process in dye-sensitized solar cells. Therefore, anti-aggregating agents such as chenodeoxycholic acid are commonly added to organic dye solution in DSSCs. Studying aggregation of such dye molecules in the absence of semiconductors gives a detailed influence of anti-aggregating agents on dye molecules. Atomistic level of molecular dynamics (MD) simulations were performed on aggregation of indole type dye molecules D149, D205 and D205-F with anti-aggregating agent chenodeoxy cholic acid using AMBER program. The trajectories of the MD simulations were analyzed with order parameters such as radial atom pair distribution functions g(r), diffusion coefficients and root mean square deviations values. MD results suggest that addition of chenodeoxy cholic acid to dyes significantly reduces structural arrangement and increases conformational flexibility and mobility of dye molecules. The influence of semi-perfluorinated alkyl chains in indole dye molecules was analyzed. The parameters such as open-circuit voltage (V(oc)) and power conversion efficiency (?) of dye-sensitized solar cells are corroborated with flexibility and diffusion values of dye molecules. PMID:21904812

  7. Physical and chemical investigations on natural dyes

    NASA Astrophysics Data System (ADS)

    Acquaviva, S.; D'Anna, E.; de Giorgi, M. L.; Della Patria, A.; Baraldi, P.

    2010-09-01

    Natural dyes have been used extensively in the past for many purposes, such us to colour fibers and to produce inks, watercolours and paints, but their use declined rapidly after the discovery of synthetic colours. Nowadays we witness a renewed interest, as natural dyes are neither toxic nor polluting. In this work, physical and chemical properties of four selected dyes, namely red (Madder), yellow (Weld and Turmeric) and blue (Woad) colours, produced by means of traditional techniques at the Museo dei Colori Naturali (Lamoli, Italy), have been investigated. The chromatic properties have been studied through the reflectance spectroscopy, a non-invasive technique for the characterisation of chromaticity. Reflection spectra both from powders and egg-yolk tempera models have been acquired to provide the typical features of the dyes in the UV-vis spectral range. Moreover, to assess the feasibility of laser cleaning procedures, tempera layers were investigated after irradiation with an excimer laser. Micro Raman spectroscopy, Scanning Electron Microscopy and Energy Dispersive X-Ray analyses have complemented the survey, returning compositional and morphological information as well. Efforts have been made to give scientific feedback to the production processes and to support the research activity in the restoration of the artworks where these dyes were employed.

  8. Kinetics and mechanism of removal of methylene blue by adsorption onto perlite.

    PubMed

    Do?an, Mehmet; Alkan, Mahir; Türkyilmaz, Aydin; Ozdemir, Yasemin

    2004-06-18

    The kinetics and mechanism of methylene blue adsorption on perlite have been studied. The effects of various experimental parameters, such as initial dye concentration, temperature and pH on the adsorption rate were investigated. Adsorption measurements show that the process is very fast and physical in nature. The extent of the dye removal increased with increase in the initial concentration of the dye and the initial pH and temperature of solution. Adsorption data were modelled using the first and second-order kinetic equations, mass transfer and intra-particle diffusion models. It was shown that the second-order kinetic equation could best describe the sorption kinetics. The diffusion coefficient, D, was found to increase when the initial dye concentration, pH and temperature were raised. Thermodynamic activation parameters, such as DeltaG*, DeltaS* and DeltaH*, were calculated. PMID:15177753

  9. Basics of Insurance

    MedlinePLUS

    ... PARC) Contact Us About Us News Blog Events Facebook Twitter YouTube Instagram Donate Now Take Action Ways ... Navigating Insurance Choosing Coverage Basics of Insurance Share Facebook Twitter Email More options Print Share Facebook Twitter ...

  10. Wth Basic Art Materials

    ERIC Educational Resources Information Center

    Herberholz, Barbara

    2010-01-01

    In this article, the author presents a checklist of basic materials for two-dimensional activities that are necessary for an elementary-school art program. She also provides a few tips on how to use them.

  11. Video Screen Capture Basics

    ERIC Educational Resources Information Center

    Dunbar, Laura

    2014-01-01

    This article is an introduction to video screen capture. Basic information of two software programs, QuickTime for Mac and BlueBerry Flashback Express for PC, are also discussed. Practical applications for video screen capture are given.

  12. Brain Basics: Understanding Sleep

    MedlinePLUS

    ... Find People About NINDS Request free mailed brochure Brain Basics: Understanding Sleep Request free mailed brochure Do ... our daily lives. We now know that our brains are very active during sleep. Moreover, sleep affects ...

  13. Basic Cancer Research Program

    Cancer.gov

    Investigators in the Basic Cancer Research Program focus their research on biological variations across racially and ethnically diverse populations that either naturally, or in conjunction with environmental exposures, may lead to differences in cancer

  14. Health Insurance Basics

    MedlinePLUS

    ... Your Best Self Smart Snacking Losing Weight Safely Health Insurance Basics KidsHealth > Teens > Body > Getting Medical Care > Health ... thought advanced calculus was confusing. What Exactly Is Health Insurance? Health insurance is a plan that people buy ...

  15. Basic-deformed thermostatistics

    E-print Network

    A. Lavagno; A. M. Scarfone; P. Narayana Swamy

    2007-06-04

    Starting from the basic-exponential, a q-deformed version of the exponential function established in the framework of the basic-hypergeometric series, we present a possible formulation of a generalized statistical mechanics. In a q-nonuniform lattice we introduce the basic-entropy related to the basic-exponential by means of a q-variational principle. Remarkably, this distribution exhibits a natural cut-off in the energy spectrum. This fact, already encountered in other formulations of generalized statistical mechanics, is expected to be relevant to the applications of the theory to those systems governed by long-range interactions. By employing the q-calculus, it is shown that the standard thermodynamic functional relationships are preserved, mimicking, in this way, the mathematical structure of the ordinary thermostatistics which is recovered in the q=1 limit.

  16. Biodegradation of bisphenol A and decolorization of synthetic dyes by laccase from white-rot fungus, Trametes polyzona.

    PubMed

    Chairin, Thanunchanok; Nitheranont, Thitinard; Watanabe, Akira; Asada, Yasuhiko; Khanongnuch, Chartchai; Lumyong, Saisamorn

    2013-01-01

    Purified laccase from Trametes polyzona WR710-1 was used as biocatalyst for bisphenol A biodegradation and decolorization of synthetic dyes. Degradation of bisphenol A by laccase with or without redox mediator, 1-hydroxybenzotriazole (HBT) was studied. The quantitative analysis by HPLC showed that bisphenol A rapidly oxidized by laccase with HBT. Bisphenol A was completely removed within 3 h and 4-isopropenylphenol was found as the oxidative degradation product from bisphenol A when identified by GC-MS. All synthetic dyes used in this experiment, Bromophenol Blue, Remazol Brilliant Blue R, Methyl Orange, Relative Black 5, Congo Red, and Acridine Orange were decolorized by Trametes laccase and the percentage of decolorization increased when 2 mM HBT was added in the reaction mixture. This is the first report showing that laccase from T. polyzona is an affective enzyme having high potential for environmental detoxification, bisphenol A degradation and synthetic dye decolorization. PMID:23239411

  17. Spectroscopic and electrochemical behavior of newly synthesized high fluorescent symmetric 4'-nitrophenyl-3,4,9,10-perylenebisdiimide-azo hybrid dyes.

    PubMed

    Saeed, Aamer; Shabir, Ghulam; Mahar, Jamaluddin; Irfan, Madiha

    2015-12-01

    The investigation has been made in the synthesis of azo hybrid rylene dyes. The hybridization of perylene bis-diimide with phenolic azo-dyes was carried out by the nucleophilic substitution (SNAr) reaction of tetrachloroperylene-3,4,9,10-bisdiimide 3 with phenolic azo-dyes 4a-g in basic medium. The hybrid dyes exhibited two absorption maxima ?max in the range 300-350, 426-438 nm in ethanol due to presence of azo linkage and highly conjugated framework of ? bonds. Fluorescence spectra of these dyes in water showed sharp emission peaks with small bandwidths in the range 490-495 nm, and fluorescence quantum yield was 0.71-0.83 in comparison with standard reference fluorescein. The structures of perylene-azo dyes were elucidated by FTIR and NMR spectroscopy. Luminescence was determined by LS-100 meter which was found to be excellent in limits 0.208-0.239 cd/m(2). Cyclic voltammetric studies were made by Electrochemical Analyzer CH1830C which showed the oxidation chemical potential of these hybrid dyes. PMID:26125985

  18. Fate of volatile aromatic hydrocarbons in the wastewater from six textile dyeing wastewater treatment plants.

    PubMed

    Ning, Xun-An; Wang, Jing-Yu; Li, Rui-Jing; Wen, Wei-Bin; Chen, Chang-Min; Wang, Yu-Jie; Yang, Zuo-Yi; Liu, Jing-Yong

    2015-10-01

    The occurrence and removal of benzene, toluene, ethylbenzene, xylenes, styrene and isopropylbenzene (BTEXSI) from 6 textile dyeing wastewater treatment plants (TDWTPs) were investigated in this study. The practical capacities of the 6 representative plants, which used the activated sludge process, ranged from 1200 to 26000 m(3) d(-1). The results indicated that BTEXSI were ubiquitous in the raw textile dyeing wastewater, except for isopropylbenzene, and that toluene and xylenes were predominant in raw wastewaters (RWs). TDWTP-E was selected to study the residual BTEXSI at different stages. The total BTEXSI reduction on the aerobic process of TDWTP-E accounted for 82.2% of the entire process. The total BTEXSI concentrations from the final effluents (FEs) were observed to be below 1 ?g L(-1), except for TDWTP-F (2.12 ?g L(-1)). Volatilization and biodegradation rather than sludge sorption contributed significantly to BTEXSI removal in the treatment system. BTEXSI were not found to be the main contaminants in textile dyeing wastewater. PMID:25930124

  19. Development of a low-cost, phyto-tunnel system using Portulaca grandiflora and its application for the treatment of dye-containing wastewaters.

    PubMed

    Khandare, Rahul V; Watharkar, Anuprita D; Kabra, Akhil N; Kachole, Manvendra S; Govindwar, Sanjay P

    2013-09-28

    A phyto-tunnel was developed using a drilled PVC pipe. It was planted with Portulaca grandiflora and used for the treatment of a textile effluent and a dye mixture. COD, BOD, TOC, conductivity, turbidity, total suspended solids and total dissolved solids of the textile effluent, and dye mixture were decreased by 57, 45, 43, 52, 76, 77 and 24 % within 96 h, and 49, 62, 41, 63, 58, 71 and 33 %, within 60 h, respectively, after treatment. The effluent and dye mixture were decolorized up to 87 and 90 % within 96 and 60 h, respectively. Significant induction in activities of lignin peroxidase, tyrosinase and DCIP reductase was observed in root tissues of the plants. FTIR, HPLC and HPTLC of untreated and treated samples showed the formation of new metabolites and preferential dye removal. Phytotoxicity studies revealed the non-toxic nature of the metabolites. PMID:24078123

  20. Invasive leg vein treatment with 1064/1319 Nd:YAG laser: combination with dye laser treatment

    NASA Astrophysics Data System (ADS)

    Smucler, Roman; Horak, Ladislav; Mazanek, Jiri

    1999-06-01

    More than 2 500 leg veins patients were treated with dye laser / ScleroPlus, Candela, USA / successfully in our clinic and we use this therapy as the basic cosmetics treatment. But especially diameter of leg vein is limiting factor. Very often we have to treat some cases that are not ideal for classical surgical or for dye laser method. We decided to make invasive perivenous laser coagulation. We adapted original Czech 1064/1319 nm Nd:YAG laser / US patent pending /, which is new combine tool, for invasive application. Principe: After we have penetrated the cutis with laser fiber we coagulate leg veins during slowly perivenous motion. Perfect preoperative examination is a condition of success. After 15 months we have very interesting results. Some patients / 15%/ were perfect treated only with this possibility but excellent results are acquired from combination with dye laser.

  1. Dentine microhardness after different methods for detection and removal of carious dentine tissue

    PubMed Central

    MOLLICA, Fernanda Brandão; TORRES, Carlos Rocha Gomes; GONÇALVES, Sergio Eduardo de Paiva; MANCINI, †Maria Nadir Gasparoto

    2012-01-01

    There are several methods for identifying carious dentinal tissue aiming to avoid removal of healthy dentinal tissue. Objectives The purpose of this study was to test different methods for the detection of carious dentinal tissue regarding the amount of carious tissue removed and the remaining dentin microhardness after caries removal. Material and methods The dentin surfaces of 20 bovine teeth were exposed and half of the surface was protected with nail polish. Cariogenic challenge was performed by immersion in a demineralizing solution for 14 days. After transverse cross-section of the crown, the specimens were divided into four groups (n=10), according to the method used to identify and remove the carious tissue: "Papacárie", Caries-detector dye, DIAGNOdent and Tactile method. After caries removal, the cross-sectional surface was included in acrylic resin and polished. In a microhardness tester, the removed dentin thickness and the Vickers microhardness of the following regions were evaluated: remaining dentin after caries removal and superficial and deep healthy dentin. Results ANOVA and Tukey's test (?=0.05) were performed, except for DIAGNOdent, which did not detect the presence of caries. Results for removed dentin thickness were: "Papacárie" (424.7±105.0; a), Caries-detector dye (370.5±78.3; ab), Tactile method (322.8±51.5; bc). Results for the remaining dentin microhardness were: "Papacárie" (42.2±10.5; bc), Caries-detector dye (44.6±11.8; abc), Tactile method (24.3±9.0; d). Conclusions DIAGNOdent did not detect the presence of carious tissue; Tactile method and "Papacárie" resulted in the least and the most dentinal thickness removal, respectively; Tactile method differed significantly from "Papacárie" and Caries-detector dye in terms of the remaining dentin microhardness, and Tactile method was the one which presented the lowest microhardness values. PMID:23032207

  2. Natural dye extract of lawsonia inermis seed as photo sensitizer for titanium dioxide based dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ananth, S.; Vivek, P.; Arumanayagam, T.; Murugakoothan, P.

    2014-07-01

    Natural dye extract of lawsonia inermis seed were used as photo sensitizer to fabricate titanium dioxide nanoparticles based dye sensitized solar cells. Pure titanium dioxide (TiO2) nanoparticles in anatase phase were synthesized by sol-gel technique and pre dye treated TiO2 nanoparticles were synthesized using modified sol-gel technique by mixing lawsone pigment rich natural dye during the synthesis itself. This pre dye treatment with natural dye has yielded colored TiO2 nanoparticles with uniform adsorption of natural dye, reduced agglomeration, less dye aggregation and improved morphology. The pure and pre dye treated TiO2 nanoparticles were subjected to structural, optical, spectral and morphological studies. Dye sensitized solar cells (DSSC) fabricated using the pre dye treated and pure TiO2 nanoparticles sensitized by natural dye extract of lawsonia inermis seed showed a promising solar light to electron conversion efficiency of 1.47% and 1% respectively. The pre dye treated TiO2 based DSSC showed an improved efficiency of 47% when compared to that of conventional DSSC.

  3. Natural dye extract of lawsonia inermis seed as photo sensitizer for titanium dioxide based dye sensitized solar cells.

    PubMed

    Ananth, S; Vivek, P; Arumanayagam, T; Murugakoothan, P

    2014-07-15

    Natural dye extract of lawsonia inermis seed were used as photo sensitizer to fabricate titanium dioxide nanoparticles based dye sensitized solar cells. Pure titanium dioxide (TiO2) nanoparticles in anatase phase were synthesized by sol-gel technique and pre dye treated TiO2 nanoparticles were synthesized using modified sol-gel technique by mixing lawsone pigment rich natural dye during the synthesis itself. This pre dye treatment with natural dye has yielded colored TiO2 nanoparticles with uniform adsorption of natural dye, reduced agglomeration, less dye aggregation and improved morphology. The pure and pre dye treated TiO2 nanoparticles were subjected to structural, optical, spectral and morphological studies. Dye sensitized solar cells (DSSC) fabricated using the pre dye treated and pure TiO2 nanoparticles sensitized by natural dye extract of lawsonia inermis seed showed a promising solar light to electron conversion efficiency of 1.47% and 1% respectively. The pre dye treated TiO2 based DSSC showed an improved efficiency of 47% when compared to that of conventional DSSC. PMID:24682058

  4. Optical properties of dyes affected by accelerating UV light exposure

    NASA Astrophysics Data System (ADS)

    Huang, Der-Ray; Chen, Yi-An; Liou, Run-Lin; Lin, Jing-Xuan; Tsai, Chih-Hung

    2015-09-01

    The optical characteristics of dyes are very important factors either for optical recording media or for dye sensitized solar cells (DSSC). The purpose of this paper is to study the stability of the dye in room temperature under the UV light exposure. Different dyes for different applications have different effect on the optical properties of dyes under the UV light exposures. Generally the dyes for recording media are very sensitive to the UV light exposure, while the dyes for DSSC applications are not so sensitive to the UV light exposure. After UV light exposure for 20-50 h, the intensities of main absorption peaks for recordable media are degraded obviously, while the intensities of main absorption peaks for dye sensitized solar cells are not degraded obviously.

  5. THERMOSPRAY IONIZATION AND TANDEM MASS SPECTROMETRY OF DYES

    EPA Science Inventory

    Sixteen commercial dye samples and three liquid wastes from organic pigment and dye manufacture have been characterized without prior chromatography by thermospray ionization and low energy collision-activated dissociation of protonated molecules using a triple quadrupole mass sp...

  6. The Ideal Solvent for Paper Chromatography of Food Dyes.

    ERIC Educational Resources Information Center

    Markow, Peter G.

    1988-01-01

    Uses paper chromatography with food dyes to provide a simple and inexpensive basis for teaching chromatography. Provides experimental methodology and tabled results. Includes a solvent system comparison (Rf) for seven dyes and twenty-two solvents. (MVL)

  7. Spectral characteristics and nonlinear studies of crystal violet dye

    NASA Astrophysics Data System (ADS)

    Sukumaran, V. Sindhu; Ramalingam, A.

    2006-03-01

    Solid-state dye-doped polymer is an attractive alternative to the conventional liquid dye solution. In this paper, the spectral characteristics and the nonlinear optical properties of the dye crystal violet are studied. The spectral characteristics of crystal violet dye doped poly(methylmethacrylate) modified with additive n-butyl acetate (nBA) are studied by recording its absorption and fluorescence spectra and the results are compared with the corresponding liquid mixture. The nonlinear refractive index of the dye in nBA and dye doped polymer film were measured using z-scan technique, by exciting with He-Ne laser. The results obtained are intercompared. Both the samples of dye crystal violet show a negative nonlinear refractive index. The origin of optical nonlinearity in the dye may be attributed due to laser-heating induced nonlinear effect.

  8. Continuous-wave organic dye lasers and methods

    DOEpatents

    Shapira, Ofer; Chua, Song-Liang; Zhen, Bo; Lee, Jeongwon; Soljacic, Marin

    2014-09-16

    An organic dye laser produces a continuous-wave (cw) output without any moving parts (e.g., without using flowing dye streams or spinning discs of solid-state dye media to prevent photobleaching) and with a pump beam that is stationary with respect to the organic dye medium. The laser's resonant cavity, organic dye medium, and pump beam are configured to excite a lasing transition over a time scale longer than the associated decay lifetimes in the organic dye medium without photobleaching the organic dye medium. Because the organic dye medium does not photobleach when operating in this manner, it may be pumped continuously so as to emit a cw output beam. In some examples, operation in this manner lowers the lasing threshold (e.g., to only a few Watts per square centimeter), thereby facilitating electrical pumping for cw operation.

  9. Effectiveness of dye sensitised solar cell under low light condition using wide band dye

    NASA Astrophysics Data System (ADS)

    Sahmer, Ahmad Zahrin; Mohamed, Norani Muti; Zaine, Siti Nur Azella

    2015-07-01

    Dye sensistised solar cell (DSC) based on nanocrystalline TiO2 has the potential to be used in indoor consumer power application. In realizing this, the DSC must be optimized to generate power under low lighting condition and under wider visible light range. The use of wide band dye N749 which has a wider spectrum sensitivity increases the photon conversion to electron between the visible light spectrums of 390nm to 700nm. This paper reports the study on the effectiveness of the dye solar cell with N749 dye under low light condition in generating usable power which can be used for indoor consumer application. The DSC was fabricated using fluorine doped tin oxide (FTO) glass with screen printing method and the deposited TiO2 film was sintered at 500°C. The TiO2 coated FTO glass was then soaked in the N749 dye, assembled into test cell, and tested under the standard test condition at irradiance of 1000 W/m2 with AM1.5 solar soaker. The use of the 43T mesh for the dual pass screen printing TiO2 paste gives a uniform TiO2 film layer of 16 µm. The low light condition was simulated using 1/3 filtered irradiance with the solar soaker. The fabricated DSC test cell with the N749 dye was found to have a higher efficiency of 6.491% under low light condition compared to the N719 dye. Under the standard test condition at 1 sun the N749 test cell efficiency is 4.55%. The increases in efficiency is attributed to the wider spectral capture of photon of the DSC with N749 dye. Furthermore, the use of N749 dye is more effective under low light condition as the VOC decrement is less significant compared to the latter.

  10. Third row metal complexes as an alternative dye in dye sensitized solar cell system

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ramelan, A. H.; Badriyah, I.; Kristy, I. O.; Dewi, N. S.; Rahardjo, S. B.

    2013-10-01

    Copper(II), Cobalt (II) and Iron (II) complexes as photosensitizer on Dye Sensitized Solar Cell (DSSC) had been investigated. The aim of this research is to find out the respond addition of those dyes on FTO/TiO2 (FTO = fluorine Tin Oxide) thin film to visible light and the effect of various third row complexes to DSSC performance. Slip casting method was used to fabricate FTO/TiO2 and FTO/carbon thin film. The result from FTO/TiO2 UV-Vis spectra show no absorption on visible light. Dye solution was synthesized from free metal ions of Cu(II), Co(II), and Fe(II) in methanol with diphenylamine (dpa), 2,2,bypiridine (bpy), 1,10, phenathroline (phen), 4,4'-dicarboxylic acid-2,2'-bipyridine (dcbq), and anthocyanin (ant) ligands, respectively. UV-Vis spectrophotometry was used to identify FTO/TiO2/dye with various sensitizer dyes. The performance of DSSC was determined by I (current) - V (voltage) curve using Keithley 2602 A System Source. In this research, DSSCs are able to convert photon energy become electrical energy. Dye used in DSSC is greatly effect in photon to current efficiency (IPCE). The greater absorption in visible region of alternative dye used gains higher IPCE spectra. TiO2 character can help spread the absorption in whole visible region. The nanosize mesoporous TiO2 of TiO2/SiPA/CoII-PAR (SiPA = silylpropilamine) have greater value than P25 TiO2/SiPA-CoII-PAR. The SiPA/FeII-PAR and SiPA/CoII-PAR dyes are better dye than tpa.

  11. A facile one-step approach to functionalized graphene oxide-based hydrogels used as effective adsorbents toward anionic dyes

    NASA Astrophysics Data System (ADS)

    Wang, Xinpeng; Liu, Zhiming; Ye, Xiangping; Hu, Kun; Zhong, Huiqing; Yu, Jianfeng; Jin, Mei; Guo, Zhouyi

    2014-07-01

    Herein, we used a facile method mainly through self-assemble, hydrogen bonding and electrostatic interaction to synthesize poly(diallyldimethylammonium chloride)/graphene oxide (PDDA/GO) hydrogels, which can be easily used as adsorbents to eliminate anionic dyes. The as-prepared PDDA/GO hydrogels were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy. In order to research the adsorption kinetics for the removal of anion dyes from water pollution, we further investigated that the effect of concentration, temperature, pH, ionic strength or cycle number on the removal process. The results indicated that due to the strong ?-? stacking and anion-cation interaction, there were high removal efficiencies for both ponceau S (PS) and trypan blue (TB). The equilibrium time of adsorption is 30 min and 120 min for PS and TB, respectively, at which the solution could be decolorized to nearly colorless. Meanwhile, the adsorption process was more according with the pseudo-second-order model than the pseudo-first-order model. The hydrogels exhibited high removal efficiency for those two anionic dyes after four repeated adsorption and desorption treatments. It was demonstrated that PDDA/GO hydrogels would have great potential as a freestanding and reusable adsorbent for the practical application in water purification.

  12. Utilization of Naturally Occurring Dyes as Sensitizers in Dye Sensitized Solar Cells

    E-print Network

    Sawhney, Nipun

    2015-01-01

    Dye sensitized Solar cells (DSSCs) were fabricated with four naturally occurring anthocyanin dyes extracted from naturally found fruits/ juices (viz. Indian Jamun, Plum, Black Currant and Berries) as sensitizers. Extraction of anthocyanin was done using acidified ethanol. The highest power conversion efficiencies ({\\eta}) of 0.55% and 0.53% were achieved for the DSSCs fabricated using anthocyanin extracts of blackcurrant and mixed berry juice. Widespread availability of these fruits/juices, high concentration of anthocyanins in them and ease of extraction of anthocyanin dyes from these commonly available fruits render them novel and inexpensive candidates for solar cell fabrication.

  13. Unraveling the decolourizing ability of yeast isolates from dye-polluted and virgin environments: an ecological and taxonomical overview.

    PubMed

    Pajot, Hipólito F; Delgado, Osvaldo D; de Figueroa, Lucía I C; Fariña, Julia I

    2011-03-01

    Microcosm assays with dye-amended culture media under a shot-feeding strategy allowed us to obtain 100 yeast isolates from the wastewater outfall channel of a dyeing textile factory in Tucumán (Argentina). Meanwhile, 63 yeast isolates were obtained from Phoebe porphyria (Laurel del monte) samples collected from Las Yungas rainforest (Tucumán), via a classical isolation scheme. Isolated yeasts, both from dye-polluted and virgin environments, were compared for their textile dye decolourization ability when cultured on solid and liquid media. Nine isolates from wastewater and 17 from Las Yungas showed the highest decolourization potential on agar plates containing six different reactive dyes, either alone or as a mixture. Five yeasts from each environment were further selected on the basis of their high dye removal rate in Vilmafix(®) Red 7B-HE- or Vilmafix(®) Blue RR-BB-amended liquid cultures. Yeasts from wastewater showed slightly higher decolourization percentages after 36 h of culture than yeasts from Las Yungas (98-100% vs. 91-95%, respectively). However, isolates from Las Yungas exhibited higher specific decolourization rates than isolates from effluents (1.8-3.0 vs. 0.9-1.3 mg g(-1)h(-1), respectively). All selected isolates were first grouped according to microsatellite-PCR analysis and representative isolates from each group were subsequently identified based on the 26S rRNA gene sequence analysis. Yeasts from wastewater were identified as the ascomycetous Pichia kudriavzevii (100%) and closely related to Candida sorbophila (99.8%), whilst yeasts from Las Yungas were identified as the basidiomycetous Trichosporon akiyoshidainum and Trichosporon multisporum. It is suggested that findings concerning yeast selection during screening programs for dye-decolourizing yeasts may be explained in the light of the copiotroph-oligotroph microorganisms rationale. PMID:20730563

  14. Approach to a two-step process of dye wastewater containing acid red B.

    PubMed

    Xiong, Y; Karlsson, H T

    2001-01-01

    The treatment of simulated wastewater containing Acid Scarlet BS was tested with a two-step process that the pretreatment of Fe(II)-mediated decolorization was followed by the electrochemical oxidation with a three-phase three-dimensional electrodes. The experimental results showed that the decolorization mechanism was reductive destruction for the azo group of the dye molecular rather than flocculation or absorption and that the three-phase three-dimensional electrode can effectively reduce COD in the decolorized wastewater simultaneously by several mechanisms such as absorption, air-oxidation, anodic oxidation, cathodic electrogenerated H2O2 and so on. It was also observed that COD for the decolorized wastewater was easier removed as compared with the original dye wastewater, implying that the first and second stage act synergistically to destroy the organic pollutants. PMID:11360443

  15. A Mechanochromic Luminescent Dye Exhibiting On/Off Switching by Crystalline-Amorphous Transitions.

    PubMed

    Imoto, Hiroaki; Kizaki, Kohei; Naka, Kensuke

    2015-08-01

    A mechanochromic luminescent dye based on a simple aminomaleimide skeleton was readily synthesized in a one-pot process. It exhibited an on/off mechanochromic luminescent switching property dependent on external stimuli, unlike a traditional mechanochromic color change. The green emission was turned on by grinding in a mortar and turned off by heating or treatment with dichloromethane. In the crystalline state, two molecules were stacked by cofacial ?-? interactions, which caused concentration self-quenching. The crystalline-to-amorphous transition induced by grinding removed cofacial ?-? stacking, which led to intensive emission. Crystallizing processes recovered the cofacial ?-? stacking, resulting in elimination of the emission. Theoretical calculations and X-ray diffraction analyses revealed that the dye molecule was distorted in the crystalline state; thus even a mechanical stimulus caused the crystalline-to-amorphous transition. PMID:26097088

  16. [Are removable appliances obsolete?].

    PubMed

    de Pauw, G; Derweduwen, K; Dermaut, L

    2000-04-01

    Removable orthodontic appliances have some limitations compared to fixed appliances. However, a removable appliance can be used during each period of craniofacial growth and dental development. A number of clinical applications for the removable appliance during the mixed and permanent dentition is explained. The use of functional orthopedic appliances and removable retention appliances are also described. It is concluded that the removable appliance can still play a favorable part in the treatment of malocclusions in each developmental stage. PMID:11382971

  17. Magnetic nanopowder as effective adsorbent for the removal of Congo Red from aqueous solution.

    PubMed

    Pa?ka, O; Iano?, R; P?curariu, C; Br?deanu, A

    2014-01-01

    A magnetic iron oxide nanopowder (MnP), prepared by a simple and efficient combustion synthesis technique, was tested for the removal of the anionic dye Congo Red (CR) from aqueous solution. The influence of solution pH, adsorbent dose, temperature, contact time and initial dye concentration on the adsorption of CR onto MnP were investigated. It was shown that the CR adsorption was pH dependent and the adsorption mechanism was governed by electrostatic forces. The adsorption kinetic was best described by the pseudo-second-order model and the equilibrium data were well fitted to the Langmuir isotherm, yielding maximum adsorption capacity of 54.46 mg g(-1). The undeniable advantages of the MnP adsorbent such as inexpensive preparation method, good adsorption capacity and easy separation using an external magnetic field, recommend it as a promising candidate for the removal of anionic dyes from polluted water. PMID:24647189

  18. Determination of the mass transfer limiting step of dye adsorption onto commercial adsorbent by using mathematical models.

    PubMed

    Marin, Pricila; Borba, Carlos Eduardo; Módenes, Aparecido Nivaldo; Espinoza-Quiñones, Fernando R; de Oliveira, Silvia Priscila Dias; Kroumov, Alexander Dimitrov

    2014-01-01

    Reactive blue 5G dye removal in a fixed-bed column packed with Dowex Optipore SD-2 adsorbent was modelled. Three mathematical models were tested in order to determine the limiting step of the mass transfer of the dye adsorption process onto the adsorbent. The mass transfer resistance was considered to be a criterion for the determination of the difference between models. The models contained information about the external, internal, or surface adsorption limiting step. In the model development procedure, two hypotheses were applied to describe the internal mass transfer resistance. First, the mass transfer coefficient constant was considered. Second, the mass transfer coefficient was considered as a function of the dye concentration in the adsorbent. The experimental breakthrough curves were obtained for different particle diameters of the adsorbent, flow rates, and feed dye concentrations in order to evaluate the predictive power of the models. The values of the mass transfer parameters of the mathematical models were estimated by using the downhill simplex optimization method. The results showed that the model that considered internal resistance with a variable mass transfer coefficient was more flexible than the other ones and this model described the dynamics of the adsorption process of the dye in the fixed-bed column better. Hence, this model can be used for optimization and column design purposes for the investigated systems and similar ones. PMID:25145189

  19. Decolorization and detoxification of Synozol red HF-6BN azo dye, by Aspergillus niger and Nigrospora sp

    PubMed Central

    2013-01-01

    In the present investigation the fungi, Aspergillus niger and Nigrospora sp. were employed for decolorization of Synozol red HF-6BN. Decolorization study showed that Aspergillus niger and Nigrospora sp. were able to decolorize 88% and 96% Synozol red 6BN, respectively, in 24 days. It was also studied that 86% and 90% Synozol red containing of dye effluent was decolorized by Aspergillus niger and Nigrospora sp. after 28 days of incubation at room temperature. A fungal-based protein with relative molecular mass of 70 kDa was partially purified and examined for enzymatic characteristics. The enzyme exhibited highest activity at temperature ranging from 40-50°C and at pH=6.0. The enzyme activity was enhanced in the presence of metal cations. High performance liquid chromatography analysis confirmed that these fungal strains are capable to degrade Synozol red dye into metabolites. No zones of inhibition on agar plates and growth of Vigna radiata in the presence of dye extracted sample, indicated that the fungal degraded dye metabolites are nontoxic to beneficial micro-flora and plant growth. Aspergillus niger and Nigrospora sp. have promising potential in color removal from textile wastewater-containing azo dyes. PMID:23369298

  20. Sentinel lymph node localization using 1 % isosulfan blue dye in cases of early oral cavity and oropharyngeal squamous cell carcinoma.

    PubMed

    Sangwan, Purnima; Nilakantan, Ajith; Patnaik, Uma; Mishra, Awadhesh; Sethi, Ashwani

    2015-03-01

    To study the use of 1 % isosulfan blue dye in identifying sentinel node, sensitivity and specificity of frozen section and predictive value of sentinel node in predicting other nodal status in the cases of oral cavity and oropharyngeal squamous cell carcinoma. 15 patients of oral cavity and oropharyngeal SCC with clinically N0 neck, who required WLE of the primary lesion as well as neck dissection as per recommended treatment protocol, were selected from OPD. 1 % Isosulfan dye was injected peritumorally intraoperatively after the induction of general anaesthesia. Neck dissection was performed and first node taking up the blue dye was identified, dissected, removed and was sent for frozen section. In two of the 15 cases a sentinel node was identified (sensitivity of the technique-13 %). Both the sentinel nodes were positive for presence of metastasis on final histopathology (specificity-100 %). However, five cases had nodal metastasis on final histopathological examination of the neck dissection specimen (sensitivity of sentinel lymph node biopsy-40 %). Frozen section examination had a sensitivity and specificity of 100 %. All data was analyzed using SPSS 16 software. Use of 1 % Isosulfan Dye for identification of sentinel node is a simple and cheap technique, however, it has low sensitivity as compared to the use of triple diagnostic procedure consisting of lymphoscintigraphy, per op gamma probe localization and using isosulfan dye for sentinel node identification. Sentinel lymph node is representative of nodal status and correlates well with the final histopathological examination of the dissected neck nodes. PMID:25621255

  1. Decoloration of textile dyes by alginate-immobilized Trametes versicolor

    E-print Network

    Ramsay, Juliana

    Decoloration of textile dyes by alginate-immobilized Trametes versicolor J.A. Ramsay *, W.H.W. Mok rights reserved. Keywords: Alginate; Decoloration; Textile dye; T. versicolor 1. Introduction White rot cinna- barinus (Schliephake and Lonergan, 1993) have been shown to decolorize textile dyes or colored

  2. Surface plasmon enhanced emission from dye doped polymer layers

    E-print Network

    Okamoto, Koichi

    Surface plasmon enhanced emission from dye doped polymer layers Terrell D. Neal,a) Koichi Okamoto the plasmon frequency of a thin unpatterned silver film to the emission of a dye doped polymer deposited onto layer, we estimate that the plasmon frequency can be tuned to match dye doped polymer emission

  3. 40 CFR 721.4594 - Substituted azo metal complex dye.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 false Substituted azo metal complex dye. 721.4594 Section 721...Substances § 721.4594 Substituted azo metal complex dye. (a) Chemical substance...identified generically as a substituted azo metal complex dye (PMN P-94-499) is...

  4. 40 CFR 721.4594 - Substituted azo metal complex dye.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 false Substituted azo metal complex dye. 721.4594 Section 721...Substances § 721.4594 Substituted azo metal complex dye. (a) Chemical substance...identified generically as a substituted azo metal complex dye (PMN P-94-499) is...

  5. 21 CFR 864.1850 - Dye and chemical solution stains.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Dye and chemical solution stains. 864.1850 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Biological Stains § 864.1850 Dye and chemical solution stains. (a) Identification. Dye and chemical solution stains for medical purposes are mixtures...

  6. 21 CFR 864.1850 - Dye and chemical solution stains.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dye and chemical solution stains. 864.1850 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Biological Stains § 864.1850 Dye and chemical solution stains. (a) Identification. Dye and chemical solution stains for medical purposes are mixtures...

  7. 21 CFR 864.1850 - Dye and chemical solution stains.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Dye and chemical solution stains. 864.1850 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Biological Stains § 864.1850 Dye and chemical solution stains. (a) Identification. Dye and chemical solution stains for medical purposes are mixtures...

  8. 21 CFR 864.1850 - Dye and chemical solution stains.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Dye and chemical solution stains. 864.1850 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Biological Stains § 864.1850 Dye and chemical solution stains. (a) Identification. Dye and chemical solution stains for medical purposes are mixtures...

  9. 21 CFR 864.1850 - Dye and chemical solution stains.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Dye and chemical solution stains. 864.1850 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Biological Stains § 864.1850 Dye and chemical solution stains. (a) Identification. Dye and chemical solution stains for medical purposes are mixtures...

  10. Dye lasers. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Cavagnaro, D. M.

    1980-08-01

    This bibliography covers studies on dye laser theory, design, components, optical systems, and frequency range. Abstracts on lasing dyes, pumping, tuning, excitation, molecular structure, and modulation are included. Studies on dye laser use in spectroscopy are covered. This updated bibliography contains 217 citations, none of which are new entries to the previous edition.

  11. Dye-doped cholesteric lasers: Distributed feedback and photonic bandgap lasing models

    NASA Astrophysics Data System (ADS)

    Ilchishin, Igor P.; Tikhonov, Eugene A.

    2015-05-01

    A review of authors' contributions to dye-doped cholesteric liquid crystal (CLC) lasers started from the pioneer authors' paper of 1980 in which the experimental realization of the first CLC laser is presented. Both distributed feedback (DFB) and photonics band edge lasing models are discussed for different experimental conditions. A detailed study and analysis of basic characteristics of steroidal CLC lasers with low liquid crystal optical birefringence is considered with respect to the DFB model. The manifestation of a planar texture quality and mutual orientations of directors on the substrates influencing on the lasing characteristics in steroidal CLCs have been shown and described. The reversible phototuning of the CLC laser wavelength by trans-cis transitions of photoactive components is realized. Reasons for two theoretical models' coexistence for the description of dye-doped CLC lasing is considered.

  12. Hierarchically porous silicon-carbon-nitrogen hybrid materials towards highly efficient and selective adsorption of organic dyes

    NASA Astrophysics Data System (ADS)

    Meng, Lala; Zhang, Xiaofei; Tang, Yusheng; Su, Kehe; Kong, Jie

    2015-01-01

    The hierarchically macro/micro-porous silicon-carbon-nitrogen (Si-C-N) hybrid material was presented with novel functionalities of totally selective and highly efficient adsorption for organic dyes. The hybrid material was conveniently generated by the pyrolysis of commercial polysilazane precursors using polydivinylbenzene microspheres as sacrificial templates. Owing to the Van der Waals force between sp-hybridized carbon domains and triphenyl structure of dyes, and electrostatic interaction between dyes and Si-C-N matrix, it exhibites high adsorption capacity and good regeneration and recycling ability for the dyes with triphenyl structure, such as methyl blue (MB), acid fuchsin (AF), basic fuchsin and malachite green. The adsorption process is determined by both surface adsorption and intraparticle diffusion. According to the Langmuir model, the adsorption capacity is 1327.7 mg.g-1 and 1084.5 mg.g-1 for MB and AF, respectively, which is much higher than that of many other adsorbents. On the contrary, the hybrid materials do not adsorb the dyes with azo benzene structures, such as methyl orange, methyl red and congro red. Thus, the hierarchically porous Si-C-N hybrid material from a facile and low cost polymer-derived strategy provides a new perspective and possesses a significant potential in the treatment of wastewater with complex organic pollutants.

  13. Hierarchically porous silicon-carbon-nitrogen hybrid materials towards highly efficient and selective adsorption of organic dyes.

    PubMed

    Meng, Lala; Zhang, Xiaofei; Tang, Yusheng; Su, Kehe; Kong, Jie

    2015-01-01

    The hierarchically macro/micro-porous silicon-carbon-nitrogen (Si-C-N) hybrid material was presented with novel functionalities of totally selective and highly efficient adsorption for organic dyes. The hybrid material was conveniently generated by the pyrolysis of commercial polysilazane precursors using polydivinylbenzene microspheres as sacrificial templates. Owing to the Van der Waals force between sp-hybridized carbon domains and triphenyl structure of dyes, and electrostatic interaction between dyes and Si-C-N matrix, it exhibites high adsorption capacity and good regeneration and recycling ability for the dyes with triphenyl structure, such as methyl blue (MB), acid fuchsin (AF), basic fuchsin and malachite green. The adsorption process is determined by both surface adsorption and intraparticle diffusion. According to the Langmuir model, the adsorption capacity is 1327.7?mg·g(-1) and 1084.5?mg·g(-1) for MB and AF, respectively, which is much higher than that of many other adsorbents. On the contrary, the hybrid materials do not adsorb the dyes with azo benzene structures, such as methyl orange, methyl red and congro red. Thus, the hierarchically porous Si-C-N hybrid material from a facile and low cost polymer-derived strategy provides a new perspective and possesses a significant potential in the treatment of wastewater with complex organic pollutants. PMID:25604334

  14. Hierarchically porous silicon–carbon–nitrogen hybrid materials towards highly efficient and selective adsorption of organic dyes

    PubMed Central

    Meng, Lala; Zhang, Xiaofei; Tang, Yusheng; Su, Kehe; Kong, Jie

    2015-01-01

    The hierarchically macro/micro-porous silicon–carbon–nitrogen (Si–C–N) hybrid material was presented with novel functionalities of totally selective and highly efficient adsorption for organic dyes. The hybrid material was conveniently generated by the pyrolysis of commercial polysilazane precursors using polydivinylbenzene microspheres as sacrificial templates. Owing to the Van der Waals force between sp2-hybridized carbon domains and triphenyl structure of dyes, and electrostatic interaction between dyes and Si-C-N matrix, it exhibites high adsorption capacity and good regeneration and recycling ability for the dyes with triphenyl structure, such as methyl blue (MB), acid fuchsin (AF), basic fuchsin and malachite green. The adsorption process is determined by both surface adsorption and intraparticle diffusion. According to the Langmuir model, the adsorption capacity is 1327.7?mg·g?1 and 1084.5?mg·g?1 for MB and AF, respectively, which is much higher than that of many other adsorbents. On the contrary, the hybrid materials do not adsorb the dyes with azo benzene structures, such as methyl orange, methyl red and congro red. Thus, the hierarchically porous Si–C–N hybrid material from a facile and low cost polymer-derived strategy provides a new perspective and possesses a significant potential in the treatment of wastewater with complex organic pollutants. PMID:25604334

  15. Construction and Characterization of Vitreoscilla Hemoglobin (VHb) with Enhanced Peroxidase Activity for Efficient Degradation of Textile Dye.

    PubMed

    Zhang, Zidong; Li, Wei; Li, Haichao; Zhang, Jing; Zhang, Yuebin; Cao, Yufeng; Ma, Jianzhang; Li, Zhengqiang

    2015-09-01

    Pollution resulting from the discharge of textile dyes into water systems has become a major global concern. Because peroxidases are known for their ability to decolorize and detoxify textile dyes, the peroxidase activity of Vitreoscilla hemoglobin (VHb) has recently been studied. It is found that VHb and variants of this enzyme show great promise for enzymatic decolorization of dyes and may play a role in achieving their successful removal from industrial wastewater. The level of VHb peroxidase activity correlates with two amino acid residues present within the conserved distal pocket, at positions 53 and 54. In this work, sitedirected mutagenesis of these residues was performed and resulted in improved VHb peroxidase activity. The double mutant, Q53H/P54C, shows the highest dye decolorization and removal efficiency, with 70% removal efficiency within 5 min. UV spectral studies of Q53H/P54C reveals a more compact structure and an altered porphyrin environment (?Soret = 413 nm) relative to that of wild-type VHb (?Soret = 406), and differential scanning calorimetry data indicate that the VHb variant protein structure is more stable. In addition, circular dichroism spectroscopic studies indicate that this variant's increased protein structural stability is due to an increase in helical structure, as deduced from the melting temperature, which is higher than 90°C. Therefore, the VHb variant Q53H/P54C shows promise as an excellent peroxidase, with excellent dye decolorization activity and a more stable structure than wild-type VHb under high-temperature conditions. PMID:25907068

  16. A highly efficient single chambered up-flow membrane-less microbial fuel cell for treatment of azo dye Acid Orange 7-containing wastewater.

    PubMed

    Thung, Wei-Eng; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Ridwan, Fahmi; Oon, Yoong-Ling; Oon, Yoong-Sin; Lehl, Harvinder Kaur

    2015-12-01

    Single chambered up-flow membrane-less microbial fuel cell (UFML MFC) was developed to study the feasibility of the bioreactor for decolorization of Acid Orange 7 (AO7) and electricity generation simultaneously. The performance of UFML MFC was evaluated in terms of voltage output, chemical oxygen demand (COD) and color removal efficiency by varying the concentration of AO7 in synthetic wastewater. The results shown the voltage generation and COD removal efficiency decreased as the initial AO7 concentration increased; this indicates there is electron competition between anode and azo dye. Furthermore, there was a phenomenon of further decolorization at cathode region which indicates the oxygen and azo dye are both compete as electron acceptor. Based on the UV-visible spectra analysis, the breakdown of the azo bond and naphthalene compound in AO7 were confirmed. These findings show the capability of integrated UFML MFC in azo dye wastewater treatment and simultaneous electricity generation. PMID:26342340

  17. Can silicon substituted metal-free organic dyes achieve better efficiency compared to silicon free organic dyes? A computational study.

    PubMed

    Biswas, Abul Kalam; Das, Amitava; Ganguly, Bishwajit

    2015-11-18

    The power conversion efficiency of metal-free organic dyes in dye-sensitized solar cells (DSSCs) is now comparable to ruthenium-based polypyridyl and zinc-based porphyrin dyes. We have computationally investigated the structural, electronic and optical properties of a series of metal free organic dyes and their corresponding silicon substituted dyes. The DFT and TD-DFT calculations revealed that silicon substituted organic dyes have higher efficiency than the corresponding silicon free organic dyes. The computational results showed that the presence of silole units as a spacer group can significantly affect the performance of DSSCs compared to typically using thiophene as a spacer unit. These results corroborate the experimental observations reported in the literature. The time-dependent density functional theory (TDDFT) calculations performed at the CPCM-CAM-B3LYP/6-31+G* level of theory showed better agreement with the experimental absorption spectra of some reported metal free organic dyes having silole in the spacer group compared to other functionals and are employed in this study. Indoline donor based dye showed a much shorter absorption spectrum (absorption peak at 425 nm) and smaller electron injection driving force (?Ginjection = -1.77 eV) than the corresponding dye containing silicon substituted indoline as a donor and a silole group as a spacer unit. ?max = 502 nm and ?Ginjection = -1.82 eV calculated for dye are much larger than the corresponding silicon free dye . The silicon based dye helps in achieving a much lower ?Gregeneration value than , which can facilitate the faster electron injection rate from the dye to the semiconductor TiO2. Dye should also have a higher Voc value compared to other dyes () due to favourable interaction with the electrolyte (I(-)/I3(-)). The higher planarity and better conjugation in dye facilitate the transfer of electrons from the dye molecules to the semiconductor TiO2. The calculations performed with phenyl protecting groups near the silicon center of the dye molecule to diminish the dimerization process showed very similar optical properties as obtained with the corresponding unprotected dye system. The designed julolidine and pyrrolo-indolizine donor based dyes also showed a similar trend as observed for indoline donor based dyes. PMID:26535472

  18. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes.

    PubMed

    Kakiage, Kenji; Aoyama, Yohei; Yano, Toru; Oya, Keiji; Fujisawa, Jun-Ichi; Hanaya, Minoru

    2015-11-14

    In dye-sensitized solar cells co-photosensitized with an alkoxysilyl-anchor dye ADEKA-1 and a carboxy-anchor organic dye LEG4, LEG4 was revealed to work collaboratively by enhancing the electron injection from the light-excited dyes to the TiO2 electrodes, and the cells exhibited a high conversion efficiency of over 14% under one sun illumination. PMID:26393334

  19. Adsorption of an azo dye in an aqueous solution using hydroxyl-terminated polybutadiene (HTPB).

    PubMed

    Olya, Mohammad Ebrahim; Pirkarami, Azam; Mirzaie, Mohammad

    2013-05-01

    This paper reports an investigation into the effect of a number of operating factors on the removal of Acid Blue 92 (AB92) from an aqueous solution using hydroxyl-terminated polybutadiene (HTPB) as an adsorbent. The optimum values of adsorbent dose and pH were found to be 35mgL(-1) and 6, respectively. Temperature showed a significant effect, with maximum dye removal being observed at 45°C. Stirring the solution during the treatment process resulted in significant removal improvement. The Langmuir adsorption model was used to quantify the amount of AB92 adsorbed on the surface of HTPB. FT-IR spectrometry results for HTPB, AB92, and HTPB-AB92 verified the efficiency of the treatment. Further, the adsorbent was characterized using SEM and H NMR techniques. PMID:23484459

  20. Orientational Dynamics and Dye-DNA Interactions in a Dye-Labeled DNA Aptamer

    E-print Network

    Wilson, George S.; Unruh, Jay R.; Gokulrangan, Giridharan; Lushington, Gerald H.; Johnson, Carey K.

    2005-05-01

    We report the picosecond and nanosecond timescale rotational dynamics of a dye-labeled DNA oligonucleotide or ‘‘aptamer’’ designed to bind specifically to immunoglobulin E. Rotational dynamics in combination with fluorescence ...

  1. Dye-sensitized solar cells with natural dyes extracted from plant seeds

    NASA Astrophysics Data System (ADS)

    El-Ghamri, Hatem S.; El-Agez, Taher M.; Taya, Sofyan A.; Abdel-Latif, Monzir S.; Batniji, Amal Y.

    2014-12-01

    The application of natural dyes extracted from plant seeds in the fabrication of dye-sensitized solar cells (DSSCs) has been explored. Ten dyes were extracted from different plant seeds and used as sensitizers for DSSCs. The dyes were characterized using UV-Vis spectrophotometry. DSSCs were prepared using TiO2 and ZnO nanostructured mesoporous films. The highest conversion efficiency of 0.875 % was obtained with an allium cepa (onion) extract-sensitized TiO2 solar cell. The process of TiO2-film sintering was studied and it was found that the sintering procedure significantly affects the response of the cell. The short circuit current of the DSSC was found to be considerably enhanced when the TiO2 semiconducting layer was sintered gradually.

  2. Using dye markers to reduce pesticide use

    E-print Network

    wavelengths or colours in white light. The colour seen by a human eye is determined by the wavelengths Commission initiated a series of small-scale experiments with the aim of identifying potentially safe, cheap, alternative marker dyes. The experiments investigated a wide range of commercially available products, textile

  3. Mutagenicity testing of some commonly used dyes.

    PubMed

    Chung, K T; Fulk, G E; Andrews, A W

    1981-10-01

    Seventeen commonly used dyes and 16 of their metabolites or derivatives were tested in the Salmonella-mammalian microsome mutagenicity test. Mutagens active with and without added Aroclor-induced rat liver microsome preparations (S9) were 3-aminopyrene, lithol red, methylene blue (USP), methyl yellow, neutral red, and phenol red. Those mutagenic only with S9 activation were 4-aminopyrazolone, 2,4-dimethylaniline, N,N-dimethyl-p-phenylenediamine, methyl red, and 4-phenyl-azo-1-naphthylamine. Orange II was mutagenic only without added S9. Nonmutagenic azo dyes were allura red, amaranth, ponceau R, ponceau SX, sunset yellow, and tartrazine. Miscellaneous dyes not mutagenic were methyl green, methyl violet 2B, and nigrosin. Metabolites of the azo dyes that were not mutagenic were 1-amino-2-naphthol hydrochloride, aniline, anthranilic acid, cresidine salt, pyrazolone T,R-amino salt (1-amino-2-naphthol-3,6-disulfonic disodium salt), R-salt, Schaeffer's salt (2-naphthol-6-sulfonic acid, sodium salt), sodium naphthionate, sulfanilamide, and sulfanilic acid. 4-Amino-1-naphthalenesulfonic acid sodium salt was also not mutagenic. Fusobacterium sp. 2 could reductively cleave methyl yellow to N,N-dimethyl-p-phenylenediamine which was then activated to a mutagen. PMID:7039509

  4. Fiber Chemistry Effects on Dye Uptake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dyeing efficiency of cotton knits was investigated as a function both of metal contents native to the cotton fiber as well as the presence of sugar-protein reaction products which contribute to +b. Results indicate that aged cotton fiber exhibits both a higher +b value and a tendency to incorpor...

  5. Fluorescent indicator dyes for calcium ions

    NASA Technical Reports Server (NTRS)

    Tsien, Roger Y. (Inventor); Grynkiewicz, Grzegorz (Inventor)

    1986-01-01

    The present invention discloses a new class of highly fluorescent indicator dyes that are specific for calcium ions. The new fluorescent indicator dyes combine a stilbene-type fluorophore with a tetracarboxylate parent Ca.sup.2+ chelating compound having the octacoordinate pattern of liganding groups characteristic of EGTA and BAPTA. Preferred forms contain extra heterocyclic bridges to reinforce the ethylenic bond of the stilbene and to reduce hydrophobicity. Compared to their widely used predecessor, quin2, the new dyes offer up to thirty-fold brighter fluorescence, major changes in wavelength (not just intensity) upon Ca.sup.2+ binding, slightly lower affinities for Ca.sup.2+, slightly longer wavelengths of excitation, and considerably improved selectivity for Ca.sup.2+ over other divalent cations. These properties, particularly the wavelength sensitivity to Ca.sup.2+, make the dyes useful indicators for many intracellular applications, especially in single cells, adherent cell layers, or bulk tissues. The present invention also discloses an improved method for synthesizing alpha-acyloxyalkyl bromides wherein the bromides so synthesized are free of contaminating bis(1-bromoalkyl)ether. The improved method is exemplified herein in the synthesis of acetoxymethyl bromide, a compound useful in preparing the acetoxymethyl esters disclosed herein as novel Ca.sup.2+ specific fluorescent indicators.

  6. Effect of an azo dye on the performance of an aerobic granular sludge sequencing batch reactor treating a simulated textile wastewater.

    PubMed

    Franca, Rita D G; Vieira, Anabela; Mata, Ana M T; Carvalho, Gilda S; Pinheiro, Helena M; Lourenço, Nídia D

    2015-11-15

    This study analyzed the effect of an azo dye (Acid Red 14) on the performance of an aerobic granular sludge (AGS) sequencing batch reactor (SBR) system operated with 6-h anaerobic-aerobic cycles for the treatment of a synthetic textile wastewater. In this sense, two SBRs inoculated with AGS from a domestic wastewater treatment plant were run in parallel, being one supplied with the dye and the other used as a dye-free control. The AGS successfully adapted to the new hydrodynamic conditions forming smaller, denser granules in both reactors, with optimal sludge volume index values of 19 and 17 mL g(-1) after 5-min and 30-min settling, respectively. As a result, high biomass concentration levels and sludge age values were registered, up to 13 gTSS L(-1) and 40 days, respectively, when deliberate biomass wastage was limited to the sampling needs. Stable dye removal yields above 90% were attained during the anaerobic reaction phase, confirmed by the formation of one of the aromatic amines arising from azo bond reduction. The control of the sludge retention time (SRT) to 15 days triggered a 30% reduction in the biodecolorization yield. However, the increase of the SRT values back to levels above 25 days reverted this effect and also promoted the complete bioconversion of the identified aromatic amine during the aerobic reaction phase. The dye and its breakdown products did not negatively affect the treatment performance, as organic load removal yields higher than 80% were attained in both reactors, up to 77% occurring in the anaerobic phase. These high anaerobic organic removal levels were correlated to an increase of Defluviicoccus-related glycogen accumulating organisms in the biomass. Also, the capacity of the system to deal with shocks of high dye concentration and organic load was successfully demonstrated. Granule breakup after long-term operation only occurred in the dye-free control SBR, suggesting that the azo dye plays an important role in improving granule stability. Fluorescence in situ hybridization (FISH) analysis confirmed the compact structure of the dye-fed granules, microbial activity being apparently maintained in the granule core, as opposed to the dye-free control. These findings support the potential application of the AGS technology for textile wastewater treatment. PMID:26343991

  7. Dye-sensitized solar cells with improved performance using cone-calix[4]arene based dyes.

    PubMed

    Tan, Li-Lin; Liu, Jun-Min; Li, Shao-Yong; Xiao, Li-Min; Kuang, Dai-Bin; Su, Cheng-Yong

    2015-01-01

    Three cone-calix[4]arene-based sensitizers (Calix-1-Calix-3) with multiple donor-?-acceptor (D-?-A) moieties are designed, synthesized, and applied in dye-sensitized solar cells (DSSCs). Their photophysical and electrochemical properties are characterized by measuring UV/Vis absorption and emission spectra, cyclic voltammetry, and density functional theory (DFT) calculations. Calix-3 has excellent thermo- and photostability, as illustrated by thermogravimetric analysis (TGA) and dye-aging tests, respectively. Importantly, a DSSC using the Calix-3 dye displays a conversion efficiency of 5.48?% in under standard AM?1.5 Global solar illumination conditions, much better than corresponding DSSCs that use the rod-shaped dye M-3 with a single D-?-A chain (3.56?%). The dyes offer advantages in terms of higher molar extinction coefficients, longer electron lifetimes, better stability, and stronger binding ability to TiO2 film. This is the first example of calixarene-based sensitizers for efficient dye-sensitized solar cells. PMID:25183482

  8. Basic Electricity. Part 4.

    ERIC Educational Resources Information Center

    Kilmer, Donald C.

    Designed for the student interested in a vocation in electrical work, this guide, fourth in a set of four, includes three units: Unit X--Splicing Wires, covering thirteen lessons (removing insulation, pigtail splice, Western Union splice, tap splice, extension cord splice, connecting wires to a terminal screw, underwriter's knot, three-wire ground…

  9. Adsorption of Two Dyes by Mg(OH)2: Procion Blue HB and Remazol Brilliant Blue R

    NASA Astrophysics Data System (ADS)

    Bouberka, Zohra; Bentaleb, Kahina; Benabbou, Khalil A.; Maschke, Ulrich

    The use of low-cost and ecofriendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. Mg(OH)2 sludge was produced from precipitation of magnesium ions (Mg2+) with NaOH in pH = 10 and investigated as a low-cost adsorbent. This paper deals with the removal of textile dyes from aqueous solutions by Mg(OH)2. Reactive Procion blue HB (PR) and Acid Remazol brilliant blue R (RB) were used as model compounds. The adsorption capacity was found as 43.47 and 26.89 mg/g at initial pH 6.5.

  10. Basic Drafting: Book One.

    ERIC Educational Resources Information Center

    Davis, Ronald; And Others

    The first of a two-book course in drafting, this manual consists of 13 topics in the following units: introduction to drafting, general safety, basic tools and lines, major equipment, applying for a job, media, lettering, reproduction, drawing sheet layout, architect's scale usage, civil engineer's scale usage, mechanical engineer's scale usage,…

  11. Basic Electricity. Part 1.

    ERIC Educational Resources Information Center

    Kilmer, Donald C.

    A primarily illustrated introduction to the basics of electricity is presented in this guide, the first of a set of four designed for the student interested in a vocation in electrical work. This guide is intended for the first-year student and provides mostly diagrams with accompanying defintions/information in three units, each covering one of…

  12. A BASIC HINDI READER.

    ERIC Educational Resources Information Center

    HARRIS, RICHARD M.; SHARMA, RAMA NATH

    THIS TEXT WAS DESIGNED TO MEET THE SPECIFIC NEEDS OF FIRST-YEAR STUDENTS OF HINDI WITH A KNOWLEDGE OF HINDI VOCABULARY AND STRUCTURE EQUIVALENT TO THAT PRESENTED IN THE FIRST SEVEN LESSONS OF TWO WIDELY USED ELEMENTARY HINDI TEXTS, "SPOKEN AND WRITTEN HINDI" BY FAIRBANKS AND MISRA, AND "CONVERSATIONAL HINDI-URDU" BY GUMPERZ AND RUMERY. A BASIC

  13. Basic Engineer Equipment Mechanic.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by basic engineer equipment mechanics. Addressed in the four individual units of the course are the following topics: mechanics and their tools (mechanics, hand tools, and power…

  14. Basic Internet Software Toolkit.

    ERIC Educational Resources Information Center

    Buchanan, Larry

    1998-01-01

    Once schools are connected to the Internet, the next step is getting network workstations configured for Internet access. This article describes a basic toolkit comprising software currently available on the Internet for free or modest cost. Lists URLs for Web browser, Telnet, FTP, file decompression, portable document format (PDF) reader,…

  15. Ethanol Basics (Fact Sheet)

    SciTech Connect

    Not Available

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  16. Teaching Basic Caregiver Skills.

    ERIC Educational Resources Information Center

    Schenk, Susan, Ed.; Harrah, Doris, Ed.

    This instructor's guide provides materials for a nursing skills course designed to teach basic home nursing skills to families who plan to care for a chronically ill or elderly family member at home. It may be taught by a registered nurse with knowledge of all areas or by a team, with each instructor concentrating on his/her area of expertise.…

  17. FULA BASIC COURSE.

    ERIC Educational Resources Information Center

    SWIFT, LLOYD B.; AND OTHERS

    THIS BEGINNING COURSE IS AN INTRODUCTION TO FULA (KNOWN VARIOUSLY AS FULANI, FUL, PEUL, OR PHEUL), A NIGER-CONGO LANGUAGE SPOKEN THROUGHOUT THE GRASSLAND AREAS OF WEST AFRICA FROM THE ATLANTIC TO CAMEROUN. THE TEXT IS ONE OF A SERIES OF SHORT BASIC COURSES IN SELECTED AFRICAN LANGUAGES BEING PREPARED BY THE FOREIGN SERVICE INSTITUTE. IT IS…

  18. Projectable Basic Electronics Kit.

    ERIC Educational Resources Information Center

    H'ng, John; And Others

    1982-01-01

    Outlines advantages derived from constructing and using a Projectable Basic Electronics Kit and provides: (1) list of components; (2) diagrams of 10 finished components (resistor; capacitor; diode; switch; bulb; transistor; meter; variable capacitor; coil; connecting terminal); and (3) diode and transistor activities. (JN)

  19. CALCULUS II BASIC INFORMATION

    E-print Network

    Bloch, Ethan

    (Math 141), that is, basic differentiation and integration, through u-substitution. This course continues the study of integration begun in Calculus I, and introduces derivatives and integrals for functions of several variables. Topics covered include techniques of integration, l'Hopital's rule, improper

  20. Basic Media in Education.

    ERIC Educational Resources Information Center

    Harrell, John

    Intended as a guide to the use of different media for use in the classroom, this document demonstrates alternative approaches that may be taken to depicting and communicating images and concepts to others. Some basic tools and materials--including a ruler, matte knife, rubber cement, stapler, felt-tip pens, paint brushes, and lettering pens--are…

  1. Body Basics Library

    MedlinePLUS

    ... this medical library to find out about basic human anatomy, how it all functions, and what happens when things go wrong. Blood Bones, Muscles, and Joints Brain and Nervous System Digestive System Endocrine System Eyes Female Reproductive System Heart and Circulatory System Immune ...

  2. CALCULUS II BASIC INFORMATION

    E-print Network

    Bloch, Ethan

    . 11:00-12:00, 4:40-5:40 ·Thur. 2:30-4:00 Text ·Stewart, James, "Calculus: Concepts and Contexts," 4ndMATH 142A CALCULUS II FALL 2013 BASIC INFORMATION Class ·Mon. 10:10-11:30 ·Wed. 10., Dec. 18 #12;WHAT IS MATH 142 ·This course is the second semester of Bard's calculus sequence

  3. Basic Nuclear Physics.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    Basic concepts of nuclear structures, radiation, nuclear reactions, and health physics are presented in this text, prepared for naval officers. Applications to the area of nuclear power are described in connection with pressurized water reactors, experimental boiling water reactors, homogeneous reactor experiments, and experimental breeder…

  4. Internet Training: The Basics.

    ERIC Educational Resources Information Center

    Gallo, Gail; Wichowski, Chester P.

    This paper outlines the basic information teachers need to know to use the World Wide Web for research and communication, using Netscape 3.04. Topics covered include the following: what is the World Wide Web?; what is a browser?; accessing the Web; moving around a web document; the Uniform Resource Locator (URL); Bookmarks; saving and printing a…

  5. Assessing Basic Fact Fluency

    ERIC Educational Resources Information Center

    Kling, Gina; Bay-Williams, Jennifer M.

    2014-01-01

    In this article, the authors share a variety of ways to formatively assess basic fact fluency. The define fluency, raise some issues related to timed testing, and then share a collection of classroom-tested ideas for authentic fact fluency assessment. This article encourages teachers to try a variety of alternative assessments from this sampling,…

  6. HINDI BASIC COURSE.

    ERIC Educational Resources Information Center

    HARTER, J. MARTIN; AND OTHERS

    THIS TEXT PROVIDES AN INTRODUCTORY COURSE IN HINDI, A DIALECT OF WEST PAKISTAN AND NORTHERN INDIA. PRIMARY EMPHASIS IN THE COURSE LIES IN THE USE OF BASIC SENTENCES (BRIEF CONVERSATIONS) WHICH INTRODUCE VOCABULARY AND GRAMMAR STRUCTURES. A NUMBER OF APPROPRIATE EXERCISES OR DRILLS ARE PROVIDED FOR EACH GROUP OF SENTENCES. A PRONUNCIATION WORDLIST…

  7. Basic Electronics II.

    ERIC Educational Resources Information Center

    Willison, Neal A.; Shelton, James K.

    Designed for use in basic electronics programs, this curriculum guide is comprised of 15 units of instruction. Unit titles are Review of the Nature of Matter and the P-N Junction, Rectifiers, Filters, Special Semiconductor Diodes, Bipolar-Junction Diodes, Bipolar Transistor Circuits, Transistor Amplifiers, Operational Amplifiers, Logic Devices,…

  8. Focus on Basics, 1998.

    ERIC Educational Resources Information Center

    Focus on Basics, 1998

    1998-01-01

    This volume contains the four 1998 quarterly issues of this newsletter that present best practices, current research on adult learning and literacy, and information on how research is used by adult basic education teachers, counselors, program administrators, and policy makers. The following are among the major articles included: "Power, Literacy,…

  9. MONITORING DROUGHT Basic Climatology

    E-print Network

    MONITORING DROUGHT Basic Climatology Colorado Climate Center Funding provided by NOAA Sectoral Applications Research Project #12;DEFINING DROUGHT #12;First off, just what is drought? Define a tornado the same for drought #12;First off, just what is drought? Precipitation deficits? Soil moisture

  10. Basic Pneumatics. Instructor's Guide.

    ERIC Educational Resources Information Center

    Fessehaye, Michael

    This instructor's guide is designed for use by industrial vocational teachers in teaching a course on basic pneumatics. Covered in the individual units are the following topics: an introduction to pneumatics (including the operation of a service station hoist); fundamentals and physical laws; air compressors (positive displacement compressors;…

  11. Turkish Basic Course.

    ERIC Educational Resources Information Center

    Defense Language Inst., Washington, DC.

    These 14 volumes of the Defense Language Institute's basic course in Turkish consist of 112 lesson units designed to train native English language speakers to Level 3 proficiency in comprehending, speaking, reading, and writing Turkish. (Native-speaker fluency is Level 5.) An introduction to the sound system, vowel harmony, and syllable division…

  12. Swahili Basic Course.

    ERIC Educational Resources Information Center

    Defense Language Inst., Washington, DC.

    This basic audiolingual course in standard Swahili appears in six volumes, Lesson Units 1-56. Units consist of a "blueprint" prefatory page outlining the phonological, morphological, and syntactic structures and new vocabulary to be presented; perception drills; Swahili dialog with cartoon guides and English translation; pattern and recombination…

  13. Korean Basic Course.

    ERIC Educational Resources Information Center

    Defense Language Inst., Washington, DC.

    These 11 volumes of the Korean Basic Course comprise 112 lesson units designed to train native English language speakers to Level 3 proficiency in comprehension and speaking and Level 2 proficiency in reading and writing Korean. (Level 5 on this scale is native-speaker level.) Intended for classroom use in the Defense Language Institute intensive…

  14. Basics of Online Searching.

    ERIC Educational Resources Information Center

    Meadow, Charles T.; Cochrane, Pauline (Atherton)

    Intended to teach the principles of interactive bibliographic searching to those with little or no prior experience, this textbook explains the basic elements of online information retrieval and compares the major database search systems. Its chapters address (1) relevant definitions and vocabulary; (2) the conceptual facets of database searching,…

  15. Uniform silica nanoparticles encapsulating two-photon absorbing fluorescent dye

    SciTech Connect

    Wu Weibing; Liu Chang; Wang Mingliang; Huang Wei; Zhou Shengrui; Jiang Wei; Sun Yueming; Cui Yiping; Xu Chunxinag

    2009-04-15

    We have prepared uniform silica nanoparticles (NPs) doped with a two-photon absorbing zwitterionic hemicyanine dye by reverse microemulsion method. Obvious solvatochromism on the absorption spectra of dye-doped NPs indicates that solvents can partly penetrate into the silica matrix and then affect the ground and excited state of dye molecules. For dye-doped NP suspensions, both one-photon and two-photon excited fluorescence are much stronger and recorded at shorter wavelength compared to those of free dye solutions with comparative overall dye concentration. This behavior is possibly attributed to the restricted twisted intramolecular charge transfer (TICT), which reduces fluorescence quenching when dye molecules are trapped in the silica matrix. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells with low cytotoxicity. - Graphical abstract: Water-soluble silica NPs doped with a two-photon absorbing zwitterionic hemicyanine dye were prepared. They were found of enhanced one-photon and two-photon excited fluorescence compared to free dye solutions. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells.

  16. The Use of Vital Dyes during Vitreoretinal Surgery - Chromovitrectomy.

    PubMed

    Farah, Michel Eid; Maia, Maurício; Penha, Fernando M; Rodrigues, Eduardo Büchele

    2016-01-01

    The aim of this article is to present the current data with regard to the application of vital dyes during vitreoretinal surgery, 'chromovitrectomy', as well as to overview the current literature regarding the properties of dyes, techniques of application, indications and complications in chromovitrectomy. It is well known that indocyanine green is toxic to the retina and consequently not the ideal dye for chromovitrectomy. Different vital dyes has been tested for chromovitrectomy including trypan blue, patent blue, triamcinolone acetonide, infracyanine green, sodium fluorescein and brilliant blue. Brilliant blue seems to be the ideal dye for internal limiting membrane due to its afinity, lower toxic profile and to reduce the appearance of apoptosis. Besides the dye itself, the injection technique is crucial to avoid additional toxicity, slow injection, far from the retina and protection of the macular hole are some tips. More recently the use of dyes has been applied to stain perfluorcarbon liquids that may enhance its visualization during vitrectomy. PMID:26502062

  17. Novel method for evaluation of natural dyes in DSSC

    SciTech Connect

    Lakshmi, M.; Kavitha, S.; Paul, Mercyleena

    2014-10-15

    Dye sensitized Solar Cell (DSSC) is presently centered on Ruthenium based dyes. Recent research is diverted to explore the potential of natural dyes in replacing the conventional dyes. In this work we have chosen few natural dyes, which when coated on TiO{sub 2} leads to increase in absorption capacity of TiO{sub 2}. Co-relation of absorption and electrochemical properties of natural dyes gives a scientific insight of the probable performance of a dye, even without fabricating a cell. We have tried to compare this predictions based on HOMO-LUMO energy levels with the real cell performance. Measurements of cell parameters suggest that there is scope for further research in this area.

  18. Toxicity induced by Basic Violet 14, Direct Red 28 and Acid Red 26 in zebrafish larvae.

    PubMed

    Shen, Bing; Liu, Hong-Cui; Ou, Wen-Bin; Eilers, Grant; Zhou, Sheng-Mei; Meng, Fan-Guo; Li, Chun-Qi; Li, Yong-Quan

    2015-12-01

    Basic Violet 14, Direct Red 28 and Acid Red 26 are classified as carcinogenic dyes in the European textile ecology standard, despite insufficient toxicity data. In this study, the toxicity of these dyes was assessed in a zebrafish model, and the underlying toxic mechanisms were investigated. Basic Violet 14 and Direct Red 28 showed acute toxicity with a LC50 value at 60.63 and 476.84 µg ml(-1) , respectively, whereas the LC50 of Acid Red 26 was between 2500 and 2800 µg ml(-1) . Treatment with Basic Violet 14, Direct Red 28 and Acid Red 26 resulted in common developmental abnormalities including delayed yolk sac absorption and swimming bladder deflation. Hepatotoxicity was observed in zebrafish treated with Basic Violet 14, and cardiovascular toxicity was found in zebrafish treated with Acid Red 26 at concentrations higher than 2500 µg ml(-1) . Basic Violet 14 also caused significant up-regulation of GCLC gene expression in a dose-dependent manner whereas Acid Red 26 induced significant up-regulation of NKX2.5 and down-regulation of GATA4 at a high concentration in a dose-dependent manner. These results suggest that Basic Violet 14, Direct Red 28 and Acid Red 26 induce developmental and organ-specific toxicity, and oxidative stress may play a role in the hepatotoxicity of Basic Violet 14, the suppressed GATA4 expression may have a relation to the cardiovascular toxicity of Acid Red 26. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25727789

  19. Effect of dye concentration on the optical properties of red-BS dye-doped PVA film

    NASA Astrophysics Data System (ADS)

    Hossein Esfahani, Zahra; Ghanipour, Mahshad; Dorranian, Davoud

    2014-07-01

    In this experimental study, the effect of dye concentration on the optical properties of red-BS dye-doped polyvinyl alcohol (PVA) thin films is investigated. Three thin film samples with different concentration of red-BS dye were prepared by spin-coating method on the glass substrate. Using transmission and reflection spectrum of films, their optical parameter such as refractive index, absorption coefficient, and dielectric function are extracted and the effect of dye impurity on theses parameters has been studied. The band gap energy of samples is calculated using Tauc method. Band gap energy of samples is decreased by increasing the concentration of dye impurity in PVA films.

  20. Performance of ceramic ultrafiltration membranes and fouling behavior of a dye-polysaccharide binary system.

    PubMed

    Zuriaga-Agustí, E; Alventosa-deLara, E; Barredo-Damas, S; Alcaina-Miranda, M I; Iborra-Clar, M I; Mendoza-Roca, J A

    2014-05-01

    Ultrafiltration membrane processes have become an established technology in the treatment and reuse of secondary effluents. Nevertheless, membrane fouling arises as a major obstacle in the efficient operation of these systems. In the current study, the performance of tubular ultrafiltration ceramic membranes was evaluated according to the roles exerted by membrane pore size, transmembrane pressure and feed concentration on a binary foulant system simulating textile wastewater. For that purpose, carboxymethyl cellulose sodium salt (CMC) and an azo dye were used as colloidal and organic foulants, respectively. Results showed that a larger pore size enabled more solutes to get adsorbed into the pores, producing a sharp permeate flux decline attributed to the rapid pore blockage. Besides, an increase in CMC concentration enhanced severe fouling in the case of the tighter membrane. Concerning separation efficiency, organic matter was almost completely removed with removal efficiency above 98.5%. Regarding the dye, 93% of rejection was achieved. Comparable removal efficiencies were attributed to the dynamic membrane formed by the cake layer, which governed process performance in terms of rejection and selectivity. As a result, none of the evaluated parameters showed significant influence on separation efficiency, supporting the significant role of cake layer on filtration process. PMID:24568789

  1. ORGANIC COATING REMOVAL

    EPA Science Inventory

    Cleaner coating removal technologies are developing rapidly to meet a variety of industrial needs to replace solvent strippers having toxic properties. his guide describes cleaner technologies that can be used to reduce waste in coating removal operations. nformation is presented...

  2. Laser Tattoo Removal

    MedlinePLUS

    newsletter | contact Share | Tattoo Removal, Laser A A A AFTER: An eyebrow post laser tattoo removal. Procedure Overview Many people no longer care to have a permanent tattoo for a variety of personal or fashion-related ...

  3. Turbomachinery debris remover

    DOEpatents

    Krawiec, Donald F. (Pittsburgh, PA); Kraf, Robert J. (North Huntingdon, PA); Houser, Robert J. (Monroeville, PA)

    1988-01-01

    An apparatus for removing debris from a turbomachine. The apparatus includes housing and remotely operable viewing and grappling mechanisms for the purpose of locating and removing debris lodged between adjacent blades in a turbomachine.

  4. Gallbladder Removal: Laparoscopic Method

    MedlinePLUS

    ... surgery to remove the gallbladder is called a cholecystectomy (say "co-lee-sist-eck-toe-mee"). During ... below your waist. This is called an open cholecystectomy. A newer way to remove the gallbladder is ...

  5. Multiple equilibria of phenothiazine dyes in aqueous cyclodextrin solutions

    SciTech Connect

    Lee, C.; Sung, Y.W.; Park, J.W.

    1999-02-04

    A wide variety of applications of the phenothiazine (PN) dyes have been reported, for example, as sensitizers in solar energy conversion. The dimerization and inclusion complexation equilibria of six phenothiazine dyes with cyclodextrins ({alpha}-, {beta}-, and {gamma}-CDs) in aqueous media have been studied using absorption and fluorescence spectroscopy. The PN dyes used in this study are thionine (TH), azure A (AZA), methylene blue (MB), toluidine blue (TB), new methylene blue (NMB), and 1,9-dimethylmethylene blue (DMMB). The dimerization constants (K{sub D}) of the dyes having two methyl substituents at the phenothiazine ring (NMB and DMMB) are much greater than those of other dyes having unsubstituted rings, and the presence of methyl groups on the amine groups affects little the K{sub D} values. The positions of the monomer/dimer equilibria do not change with the presence of {alpha}-CD, while the addition of {beta}-CD suppresses and {gamma}-CD enhances the dimerization of the dyes except DMMB. The equilibrium constants for the inclusion complexation of the dye monomers and dimers with CDs are determined from the analysis of the dependence of the absorption spectra of the dye solutions on the concentrations of the CDs using a multiple-equilibrium scheme. The results indicated that, except DMMB, which has methyl groups at the 1-position of the fused phenothiazine ring, the dye monomers fit better to {beta}-CD and the dimers fit snugly to {gamma}-CD. Fluorescence spectroscopic studies indicate that the dye dimers are not fluorescent and inclusion of the monomer in {beta}-CD results in a 3--5 times enhancement of fluorescence intensity. The determined equilibrium constants of the multiple-equilibrium scheme of the dyes in CD media and fluorescent properties of the dyes can be used to control the dye aggregation and the photophysical and photochemical properties of the phenothiazine dyes for various applications.

  6. Weakly supervised glasses removal

    NASA Astrophysics Data System (ADS)

    Wang, Zhicheng; Zhou, Yisu; Wen, Lijie

    2015-03-01

    Glasses removal is an important task on face recognition, in this paper, we provide a weakly supervised method to remove eyeglasses from an input face image automatically. We choose sparse coding as face reconstruction method, and optical flow to find exact shape of glasses. We combine the two processes iteratively to remove glasses more accurately. The experimental results reveal that our method works much better than these algorithms alone, and it can remove various glasses to obtain natural looking glassless facial images.

  7. Data mining with molecular design rules identifies new class of dyes for dye-sensitised solar cells.

    PubMed

    Cole, Jacqueline M; Low, Kian Sing; Ozoe, Hiroaki; Stathi, Panagiota; Kitamura, Chitoshi; Kurata, Hiroyuki; Rudolf, Petra; Kawase, Takeshi

    2014-12-28

    A major deficit in suitable dyes is stifling progress in the dye-sensitised solar cell (DSC) industry. Materials discovery strategies have afforded numerous new dyes; yet, corresponding solution-based DSC device performance has little improved upon 11% efficiency, achieved using the N719 dye over two decades ago. Research on these dyes has nevertheless revealed relationships between the molecular structure of dyes and their associated DSC efficiency. Here, such structure-property relationships have been codified in the form of molecular dye design rules, which have been judiciously sequenced in an algorithm to enable large-scale data mining of dye structures with optimal DSC performance. This affords, for the first time, a DSC-specific dye-discovery strategy that predicts new classes of dyes from surveying a representative set of chemical space. A lead material from these predictions is experimentally validated, showing DSC efficiency that is comparable to many well-known organic dyes. This demonstrates the power of this approach. PMID:25011389

  8. Effect of electron withdrawing unit for dye-sensitized solar cell based on D-A-?-A organic dyes

    SciTech Connect

    Kwon, Dong Yuel; Chang, Dong Min; Kim, Young Sik

    2014-10-15

    Highlights: • To gain the red-shifted absorption spectra, withdrawing unit was substituted in dye. • By the introduction of additional withdrawing unit, LUMOs level of dye are decreased. • Decreasing LUMOs level of dye caused the red-shifted absorption spectra of dye. • Novel acceptor, DCRD, showed better photovoltaic properties than cyanoacetic acid. - Abstract: In this work, two novel D-A-?-A dye sensitizers with triarylamine as an electron donor, isoindigo and cyano group as electron withdrawing units and cyanoacetic acid and 2-(1,1-dicyanomethylene) rhodanine as an electron acceptor for an anchoring group (TICC, TICR) were designed and investigated with the ID6 dye as the reference. The difference in HOMO and LUMO levels were compared according to the presence or absence of isoindigo in ID6 (TC and ID6). To gain insight into the factors responsible for photovoltaic performance, we used density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations. Owing to different LUMO levels for each acceptor, the absorption band and molar extinction coefficient of each dye was different. Among the dyes, TICR showed more red-shifted and broader absorption spectra than other dyes and had a higher molar extinction coefficient than the reference. It is expected that TICR would show better photovoltaic properties than the other dyes, including the reference dye.

  9. Data Mining with Molecular Design Rules Identifies New Class of Dyes for Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Cole, Jacqueline

    2014-03-01

    A major deficit in suitable dyes is stiffling progress in the dye-sensitized solar cell (DSC) industry. Materials discovery strategies have afforded numerous new dyes; yet, corresponding solution-based DSC device performance has little improved upon 11% efficiency, achieved using the N719 dye over two decades ago. Research on these dyes has nevertheless revealed relationships between the molecular structure of dyes and their associated DSC efficiency. Here, we have codified such structure-property relationships in the form of molecular dye design rules, which have been judiciously sequenced in an algorithm to enable large-scale data mining of dye structures with optimal DSC performance. For the first time, we have a DSC-specific dye-discovery strategy that predicts new classes of dyes from surveying a representative set of chemical space. A lead material from these predictions is experimentally validated herein, showing DSC efficiency that is comparable to many well-known organic dyes. This demonstrates the power of this approach.

  10. Charge and Energy Transfer in the Metal-free Indoline Dyes for Dye-sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Diao, Li-ying; Gu, Wen-xiang; Chen, Yue-hui; Ma, Feng-cai

    2006-06-01

    Metal-free indoline dyes for dye-sensitized solar cells were studied by employing quantum chemistry methods. Comparative study of the properties of both ground and excited states of metal-free indoline dyes for dye- sensitized solar cells revealed: (i) as the number of rhodanine rings increases, the energy difference between HOMO and LUMO decreases and there is a red shift in the absorption spectrum with the binding energy increased, and the transition dipole moment decreased; (ii) Based on an analysis of charge differential density, we observed that the charge and energy are transfered from the phenylethenyl to the indoline and rhodanine rings; (iii) The electron-hole coherences are mainly on the indoline and rhodanine rings, and the exciton sizes are 30 and 40 atoms for indoline dyes with one and two rhodanline rings, respectively. These results serve as a good example of computer-aided design in metal-free indoline dyes for dye-sensitized solar cells.

  11. ARSENIC REMOVAL TECHNOLOGY

    EPA Science Inventory

    Presentation will discuss the state-of-art technology for removal of arsenic from drinking water. Presentation includes results of several EPA field studies on removal of arsenic from existing arsenic removal plants and key results from several EPA sponsored research studies. T...

  12. Comparison of three combined sequencing batch reactor followed by enhanced Fenton process for an azo dye degradation: Bio-decolorization kinetics study.

    PubMed

    Azizi, A; Alavi Moghaddam, M R; Maknoon, R; Kowsari, E

    2015-12-15

    The purpose of this research was to compare three combined sequencing batch reactor (SBR) - Fenton processes as post-treatment for the treatment of azo dye Acid Red 18 (AR18). Three combined treatment systems (CTS1, CTS2 and CTS3) were operated to investigate the biomass concentration, COD removal, AR18 dye decolorization and kinetics study. The MLSS concentration of CTS2 reached 7200mg/L due to the use of external feeding in the SBR reactor of CTS2. The COD concentration remained 273mg/L and 95mg/L (initial COD=3270mg/L) at the end of alternating anaerobic-aerobic SBR with external feeding (An-A MSBR) and CTS2, respectively, resulting in almost 65% of Fenton process efficiency. The dye concentration of 500mg/L was finally reduced to less than 10mg/L in all systems indicating almost complete AR18 decolorization, which was also confirmed by UV-vis analysis. The dye was removed following two successive parts as parts 1 and 2 with pseudo zero-order and pseudo first-order kinetics, respectively, in all CTSs. Higher intermediate metabolites degradation was obtained using HPLC analysis in CTS2. Accordingly, a combined treatment system can be proposed as an appropriate and environmentally-friendly system for the treatment of the azo dye AR18 in wastewater. PMID:26143197

  13. Basic lubrication equations

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1981-01-01

    Lubricants, usually Newtonian fluids, are assumed to experience laminar flow. The basic equations used to describe the flow are the Navier-Stokes equation of motion. The study of hydrodynamic lubrication is, from a mathematical standpoint, the application of a reduced form of these Navier-Stokes equations in association with the continuity equation. The Reynolds equation can also be derived from first principles, provided of course that the same basic assumptions are adopted in each case. Both methods are used in deriving the Reynolds equation, and the assumptions inherent in reducing the Navier-Stokes equations are specified. Because the Reynolds equation contains viscosity and density terms and these properties depend on temperature and pressure, it is often necessary to couple the Reynolds with energy equation. The lubricant properties and the energy equation are presented. Film thickness, a parameter of the Reynolds equation, is a function of the elastic behavior of the bearing surface. The governing elasticity equation is therefore presented.

  14. Basics of Biosafety

    NASA Technical Reports Server (NTRS)

    Wong, Willy

    2009-01-01

    This slide presentation reviews the basics of biosafety and the importance of assuring proper biosafety practices. The objectives of the presentation are to review regulations about biosafety, and the different biosafety levels; the biosafety facilities at Johnson Space Center; the usage and maintenance of the biosafety cabinet, the proper methods to handle biologically hazardous materials upon exposure, and the methods of cleanup in the event of a spill, and the training requirements that are mandated for personnel handling biologically hazardous materials.

  15. The Basic Anaesthesia Machine

    PubMed Central

    Gurudatt, CL

    2013-01-01

    After WTG Morton's first public demonstration in 1846 of use of ether as an anaesthetic agent, for many years anaesthesiologists did not require a machine to deliver anaesthesia to the patients. After the introduction of oxygen and nitrous oxide in the form of compressed gases in cylinders, there was a necessity for mounting these cylinders on a metal frame. This stimulated many people to attempt to construct the anaesthesia machine. HEG Boyle in the year 1917 modified the Gwathmey's machine and this became popular as Boyle anaesthesia machine. Though a lot of changes have been made for the original Boyle machine still the basic structure remains the same. All the subsequent changes which have been brought are mainly to improve the safety of the patients. Knowing the details of the basic machine will make the trainee to understand the additional improvements. It is also important for every practicing anaesthesiologist to have a thorough knowledge of the basic anaesthesia machine for safe conduct of anaesthesia. PMID:24249876

  16. Graphitic packing removal tool

    DOEpatents

    Meyers, K.E.; Kolsun, G.J.

    1997-11-11

    Graphitic packing removal tools for removal of the seal rings in one piece are disclosed. The packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal. 5 figs.

  17. Graphitic packing removal tool

    DOEpatents

    Meyers, Kurt Edward (Avella, PA); Kolsun, George J. (Pittsburgh, PA)

    1997-01-01

    Graphitic packing removal tools for removal of the seal rings in one piece. he packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal.

  18. Graphitic packing removal tool

    SciTech Connect

    Meyers, K.E.; Kolsun, G.J.

    1996-12-31

    Graphitic packing removal tools are described for removal of the seal rings in one piece from valves and pumps. The packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal.

  19. Efficient dye regeneration at low driving force achieved in triphenylamine dye LEG4 and TEMPO redox mediator based dye-sensitized solar cells.

    PubMed

    Yang, Wenxing; Vlachopoulos, Nick; Hao, Yan; Hagfeldt, Anders; Boschloo, Gerrit

    2015-06-28

    Minimizing the driving force required for the regeneration of oxidized dyes using redox mediators in an electrolyte is essential to further improve the open-circuit voltage and efficiency of dye-sensitized solar cells (DSSCs). Appropriate combinations of redox mediators and dye molecules should be explored to achieve this goal. Herein, we present a triphenylamine dye, LEG4, in combination with a TEMPO-based electrolyte in acetonitrile (E(0) = 0.89 V vs. NHE), reaching an efficiency of up to 5.4% under one sun illumination and 40% performance improvement compared to the previously and widely used indoline dye D149. The origin of this improvement was found to be the increased dye regeneration efficiency of LEG4 using the TEMPO redox mediator, which regenerated more than 80% of the oxidized dye with a driving force of only ?0.2 eV. Detailed mechanistic studies further revealed that in addition to electron recombination to oxidized dyes, recombination of electrons from the conducting substrate and the mesoporous TiO2 film to the TEMPO(+) redox species in the electrolyte accounts for the reduced short circuit current, compared to the state-of-the-art cobalt tris(bipyridine) electrolyte system. The diffusion length of the TEMPO-electrolyte based DSSCs was determined to be ?0.5 ?m, which is smaller than the ?2.8 ?m found for cobalt-electrolyte based DSSCs. These results show the advantages of using LEG4 as a sensitizer, compared to previously record indoline dyes, in combination with a TEMPO-based electrolyte. The low driving force for efficient dye regeneration presented by these results shows the potential to further improve the power conversion efficiency (PCE) of DSSCs by utilizing redox couples and dyes with a minimal need of driving force for high regeneration yields. PMID:26016854

  20. Dye-promoted precipitation of serum proteins. Mechanism and application.

    PubMed

    Birkenmeier, G; Kopperschläger, G

    1991-11-01

    Immobilized dyes have been used primarily for purification of nucleotide dependent enzymes and proteins from plasma and other sources. Due to their low costs, high protein binding capacity and resistance to degradation dyes bear the potential as ligand for affinity separation of proteins on a large scale. In this paper dyes have been used for precipitation of proteins. Using albumin, prealbumin, alpha 1-acid glycoprotein and immunoglobulin G as model proteins we could demonstrate that dye-promoted precipitation depends on several factors which include the structure of the dye, the pH of the solution, the dye/protein molar ratio and the intrinsic properties of the proteins. It revealed that most of the dyes tested were endowed with the precipitating potential. The efficacy of precipitation was found to increase with the complexity of the dye structure. However, the amount of a dye required for total precipitation was found to be different for a given protein. Electrostatic as well as hydrophobic forces are involved in the mechanism of precipitation. It was demonstrated that by optimizing the conditions, mixtures of proteins can be resolved by dye-promoted precipitation. The high sensitivity of the reaction offers the possibility of using this method for rapid concentration of very diluted protein solutions. PMID:1367693

  1. Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers

    PubMed Central

    Chandrahalim, Hengky; Fan, Xudong

    2015-01-01

    This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3?-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3?-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220?nJ/mm2 per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360?nJ/mm2 per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip. PMID:26674508

  2. Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers.

    PubMed

    Chandrahalim, Hengky; Fan, Xudong

    2015-01-01

    This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3'-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3'-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220?nJ/mm(2) per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360?nJ/mm(2) per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip. PMID:26674508

  3. Dye lasing in optically manipulated liquid aerosols

    NASA Astrophysics Data System (ADS)

    Karadag, Yasin; Aas, Mehdi; Jonáš, Alexandr; Anand, Suman; McGloin, David; Kiraz, Alper

    2013-09-01

    We present dye lasing from optically manipulated glycerol-water aerosols with diameters ranging between 7.7 and 11.0 ?m confined in optical tweezers. While being optically trapped near the focal point of an infrared laser, the droplets stained with Rhodamine B were pumped with a Q-switched green laser and their fluorescence emission spectra featuring whispering gallery modes (WGMs) were recorded with a spectrograph. Nonlinear dependence of the intensity of the droplet WGMs on the pump laser fluence indicates dye lasing. The average wavelength of the lasing WGMs could be tuned between 600 and 630 nm by adjusting the droplet size. These results may lead to new ways of probing airborne particles, exploiting the high sensitivity of stimulated emission to small perturbations in the droplet laser cavity and the gain medium.

  4. Dye-Sensitized Approaches to Photovoltaics

    NASA Astrophysics Data System (ADS)

    Grätzel, Michael

    2008-03-01

    Sensitization of wide band-gap semiconductors to photons of energy less than the band-gap is a key step in two technically important processes - panchromatic photography and photoelectrochemical solar cells. In both cases the photosensitive species is not the semiconductor - silver halide or metal oxide - but rather an electrochemically active dye. The gap between the highest occupied molecular level (HOMO) and the lowest unoccupied molecular level (LUMO) is less than the band-gap of the semiconductor with which it is associated. It can therefore absorb light of a wavelength longer than that to which the semiconductor itself is sensitive. The electrochemical process is initiated when the dye molecule relaxes from its photoexcited level by electron injection into the semiconductor, which therefore acts as a photoanode. If the dye is in contact with a redox electrolyte, the negative charge represented by the lost electron can be recovered from the reduced state of the redox system, which in return is regenerated by charge transfer from a cathode. An external load completes the electrical circuit. The system therefore represents a conversion of the energy of absorbed photons into an electrical current by a regenerative device in every functional respect analogous to a solid-state photovoltaic cell. As in any engineering system, choice of materials, their optimization and their synergy are essential to efficient operation. While a semiconductor-electrolyte contact is analogous to a Schottky contact, in that a barrier is established between two materials of different conduction mechanism, with the possibility of optical absorption, charge carrier pair generation and separation, it should be remembered that the photogenerated valence band hole in the semiconductor represents a powerful oxidizing agent. Given that the band-gap is related to the strength and therefore the stability of chemical bonding within the semiconductor, for narrow-gap materials the most likely reaction of such a hole is the photocorrosion of the semiconductor itself. However, only relatively narrow band-gap materials have an effective optical absorption through the visible spectrum, towards and into the infra-red. Materials with an optimal band-gap match to the solar spectrum, of the order of 1.5eV, are therefore electrochemically unstable. A stable photoelectrochemical cell, without some process of optical sensitization, and necessarily using a wide-gap semiconductor is sensitive only to the ultra-violet limit of the visible spectrum. Over recent years a suitable combination of semiconductor and sensitizer has been identified and optimized, so that now a solar spectrum conversion efficiency of over 11% has been verified in a sensitized photoelectrochemical device. One key to such an efficient system is the suppression of recombination losses. When the excited dye relaxes by electron loss, the separated charge carriers find themselves on opposite sides of a phase barrier -- the electron within the solid-state semiconductor, the positive charge externally, in association with the dye molecule. There is no valence---band involvement in the process, so the system represents a majority-carrier device, avoiding one of the major loss mechanisms in conventional photovoltaics. In consequence also a highly-disordered, even porous, semiconductor structure is acceptable, enabling surface adsorption of a sufficient concentration of the dye to permit total optical absorption of incident light of photon energy greater than the HOMO-LUMO gap of the dye molecule. The accepted wide-band semiconductor for photoelectrochemical applications is titanium dioxide in the anatase crystal structure. The size of the nanocrystals making up the semiconductor photoanode can be determined by hydrothermal processing of a precursor sol, and the film can be deposited on a transparent conducting oxide (TCO) substrate by any convenient thin-film process such as screen printing or tape casting. The preferred dye system is inspired by the natural processes involving chlorophyll, the coloring

  5. A photoelectric amplifier as a dye detector

    USGS Publications Warehouse

    Ebel, Wesley J.

    1962-01-01

    A dye detector, based on a modified photoelectric amplifier, has been planned, built, and tested. It was designed to record automatically the time of arrival of fluorescein dye at predetermined points in a stream system. Laboratory tests and stream trials proved the instrument to be efficient. Small changes in color can be detected in turbid or clear water. The unit has been used successfully for timing intervals of more than 17 hours; significant savings of time and manpower have resulted. Replacement of the clock, included in the original device, with a recording milliammeter increases the efficiency of the unit by contin,!ously recording changes in turbidity. The addition of this component would increase the cost from $75 to approximately $105.

  6. Aza-BODIPY dyes with enhanced hydrophilicity.

    PubMed

    Kamkaew, Anyanee; Burgess, Kevin

    2015-07-01

    Attempts to make a diamino disulfonic acid derivative of an aza-BODIPY showed it was difficult to add BF2 to a disulfonated azadipyrromethene, and sulfonation of an aza-BODIPY resulted in loss of the BF2 fragment. We conclude the electron-deficient character of aza-BODIPY dyes destabilizes them relative to BODIPY dyes. Consequently, sulfonation of the aza-BODIPY core is not a viable strategy to increase water solubility. This assertion was indirectly supported via stability studies of a BODIPY and an aza-BODIPY in aqueous media. To afford the desired compound type, an aza-BODIPY with two amino and two sulfonic acid groups was prepared via modification of the aryl substituents with cysteic acid. PMID:26051677

  7. Material removal in magnetorheological finishing of optics.

    PubMed

    Kordonski, William; Gorodkin, Sergei

    2011-05-10

    A concept of material removal based on the principle of conservation of particles momentum in a binary suspension is applied to analyze material removal in magnetorheological finishing and magnetorheological jet processes widely used in precision optics fabrication. According to this concept, a load for surface indentation by abrasive particles is provided at their interaction near the wall with heavier basic (magnetic) particles, which fluctuate (due to collision) in the shear flow of concentrated suspension. The model is in good qualitative and quantitative agreement with experimental results. PMID:21556098

  8. Isotruxene-derived cone-shaped organic dyes for dye-sensitized solar cells.

    PubMed

    Lin, Shih-Hsun; Hsu, Ying-Chan; Lin, Jiann T; Lin, Cheng-Kai; Yang, Jye-Shane

    2010-11-19

    The synthesis, electronic properties, and performance in dye-sensitized solar cells (DSSCs) of four cone-shaped organic dyes (ITD, ITD-Th, ITD-Hx, and ITD-OM) containing the isotruxene ?-scaffold are reported. Selective substitution of the unsymmetrical isotruxene core with two diarylamino donors and one cyanocarboxylic acid acceptor was achieved by using a prefunctionalized dibromoisotruxene building block. The ortho-para-branched isotruxene core allows strong electronic couplings among the donors and the acceptor, leading to red-shifted absorption profiles with significant charge-transfer character. All four isotruxene dyes display reversible anodic waves in cyclic voltammagrams with both HOMO and LUMO potentials suitable for application in DSSCs. The DSSCs fabricated with these cone-shaped organic dyes exhibited high open-circuit voltages (0.67-0.76 V) and fill factors (0.67-0.72) with a power conversion efficiency (?) up to 5.45%, which is 80% of the ruthenium dye N719-based standard cell fabricated and measured under the same conditions. PMID:20973531

  9. Valorization of agricultural wastes as dye adsorbents: characterization and adsorption isotherms.

    PubMed

    Sepúlveda, Luisa A; Cuevas, Fernando A; Contreras, Elsa G

    2015-01-01

    The purpose of this work is to evaluate the valorization of agricultural waste, wheat straw (WS) and corn cob leaves (CCLs) as textile dye adsorbents. Physico-chemical and superficial characteristics of the agricultural wastes, together with the interactions with the CI Basic Violet 4 (BV4) dye, were investigated by means of the determination of the isotherm adsorption at different temperatures. The morphological characterization showed that the solid surface is coarse with a low pore level. However, through Fourier transformed infrared analysis, the presence of carboxylic and hydroxylic acid groups and hydrophobic methyl groups was detected. The concentration of acid groups is determined by the Boehm method and was found to be 1.00 and 0.89?meq/g for WS and CCLs, respectively. The point zero charge for each adsorbent was 5.76 and 4.08. Adsorption experimental data presented a better-fit Langmuir model, indicating that adsorption occurred in a monolayer with preferential interaction. The maximum adsorption capacity was determined to be 70.0-89.0 and 47.0-68.0?mg/g for CCLs and WS, respectively. The thermodynamic analysis of the Langmuir parameter b showed that the adsorption of the BV4 dye is spontaneous and exothermic with adsorption energies of 14.43 and 5.58?KJ/mol for CCLs and WS, respectively. PMID:25655393

  10. Novel composite films based on amidated pectin for cationic dye adsorption.

    PubMed

    Nesic, Aleksandra R; Velickovic, Sava J; Antonovic, Dusan G

    2014-04-01

    Pectin, with its tendency to gel in the presence of metal ions has become a widely used material for capturing the metal ions from wastewaters. Its dye-capturing properties have been much less investigated, and this paper is the first to show how films based on amidated pectin can be used for cationic dye adsorption. In the present study amidated pectin/montmorillonite composite films were synthesized by membrane casting, and they are stable in aqueous solution both below and above pectin pKa. FTIR, thermogravimetry and SEM-EDAX have confirmed the presence of montmorillonite in the cast films and the interactions between the two constituents. In order to evaluate the cationic dye adsorption of these films Basic Yellow 28 was used, showing that the films have higher adsorption capacity compared to the others reported in the literature. The results were fitted into Langmuir, Freundlich and Temkin isotherms indicating an exothermic process and setting the optimum amount of montmorillonite in the films to 30% of pectin mass. According to the Langmuir isotherm the maximum adsorption capacity is 571.4 mg/g. PMID:24268651

  11. Indanthrone dye revisited after sixty years.

    PubMed

    Kotwica, Kamil; Bujak, Piotr; Wamil, Damian; Materna, Mariusz; Skorka, Lukasz; Gunka, Piotr A; Nowakowski, Robert; Golec, Barbara; Luszczynska, Beata; Zagorska, Malgorzata; Pron, Adam

    2014-10-01

    Indanthrone, an old, insoluble dye can be converted into a solution processable, self-assembling and electroluminescent organic semiconductor, namely tetraoctyloxydinaptho[2,3-a:2',3'-h]phenazine (P-C8), in a simple one-pot process consisting of the reduction of the carbonyl group by sodium dithionite followed by the substitution with solubility inducing groups under phase transfer catalysis conditions. PMID:25133516

  12. Trinity Bay Study: Dye tracing experiments

    NASA Technical Reports Server (NTRS)

    Ward, G. H., Jr.

    1972-01-01

    An analysis of the heat balance and temperature distribution within Trinity Bay near Galveston, Texas is presented. The effects of tidal currents, wind driven circulations, and large volume inflows are examined. Emphasis is placed on the effects of turbulent diffusion and local shears in currents. The technique of dye tracing to determine the parameters characterizing dispersion is described. Aerial photographs and maps are provided to show the flow conditions existing at different times and seasons.

  13. Stretchable, wearable dye-sensitized solar cells.

    PubMed

    Yang, Zhibin; Deng, Jue; Sun, Xuemei; Li, Houpu; Peng, Huisheng

    2014-05-01

    A stretchable, wearable dye-sensitized solar-cell textile is developed from elastic, electrically conducting fiber as a counter electrode and spring-like titanium wire as the working electrode. Dyesensitized solar cells are demonstrated with energy-conversion efficiencies up to 7.13%. The high energy-conversion efficiencies can be well maintained under stretch by 30% and after stretch for 20 cycles. PMID:24648169

  14. Decolorization of azo dyes by Geobacter metallireducens.

    PubMed

    Liu, Guangfei; Zhou, Jiti; Chen, Congcong; Wang, Jing; Jin, Ruofei; Lv, Hong

    2013-09-01

    Geobacter metallireducens was found to be capable of decolorizing several azo dyes with different structures to various extents. Pyruvate, ethanol, acetate, propionate, and benzoate could support 66.3?±?2.6-93.7?±?2.1 % decolorization of 0.1 mM acid red 27 (AR27) in 40 h. The dependence of the specific decolorization rate on AR27 concentration (25 to 800 ?M) followed Michaelis-Menten kinetics (K m?=?186.9?±?1.4 ??, V max?=?0.65?±?0.02 ?mol?mg protein(-1) h(-1)). Enhanced AR27 decolorization was observed with the increase of cell concentrations ranging from 7.5 to 45 mgL(-1). AR27 decolorization by G. metallireducens was retarded by the presence of goethite, which competed electrons with AR27 and was reduced to Fe(II). The addition of low concentrations of humic acid (1-100 mgL(-1)) or 2-hydroxy-1,4-naphthoquinone (0.5-50 ?M) could improve the decolorization performance of G. metallireducens. High-performance liquid chromatography analysis suggested reductive pathway to be responsible for decolorization. This was the first study on azo dye decolorization by Geobacter strain and might improve our understanding of natural attenuation and bioremediation of environments polluted by azo dyes. PMID:23132348

  15. Removal of Direct Red 23 from aqueous solution using corn stalks: Isotherms, kinetics and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    Fathi, M. R.; Asfaram, A.; Farhangi, A.

    2015-01-01

    The objective of this study was to assess the suitability and efficiency of corn stalk (CS) for the removal of diazo dye Direct Red 23 (DR23) from aqueous solutions. The effect of different variables in the batch method as a function of solution pH, contact time, initial dye concentration, CS amount, temperature, and so forth by the optimization method has been investigated. The color reduction was monitored by spectrophotometry at 503 nm before and after DR23 adsorption on the CS, and the removal percentage was calculated using the difference in absorbance. The sorption processes followed the pseudo second order in addition to intraparticle diffusion kinetics models with a good correlation coefficient with the overall entire adsorption of DR23 on adsorbent. The experimental equilibrium data were tested by four widely used isotherm models namely, Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich (D-R). It was found that adsorption of DR23 on CS well with the Freindlich isotherm model, implying monolayer coverage of dye molecules onto the surface of the adsorbent. More than 99% removal efficiency was obtained within 10 min at adsorbent dose of 0.2 g for initial dye concentration of 10-90 mg L-1 at pH 3. Various thermodynamic parameters, such as Gibbs free energy, entropy, and enthalpy, of the ongoing adsorption process have been calculated. Judgment based on the obtained results of thermodynamic values shows the spontaneous and endothermic nature adsorption processes on adsorbent.

  16. Preparation of 6-hydroxyindolines and their use for preparation of novel laser dyes

    DOEpatents

    Field, G.F.; Hammond, P.R.

    1993-10-26

    A novel method is described for the synthesis of 6-hydroxyindolines and new fluorescent dyes produced therefrom, which dyes are ring-constrained indoline-based rhodamine class dyes. These dyes have absorption and emission spectra which make them particularly useful in certain dye laser applications.

  17. FATE OF WATER SOLUBLE AZO DYES IN THE ACTIVATED SLUDGE PROCESS

    EPA Science Inventory

    The objective of this study was to determine the partitioning of water soluble azo dyes in the activated sludge process (ASP). Azo dyes are of concern because some of the dyes, dye precursors , and/or their degradation products such as aromatic amines (which are also dye precurso...

  18. Studies on Dyeing Process Variables for Salt Free Reactive Dyeing of Glycine Modified Cationized Cotton Muslin Fabric

    NASA Astrophysics Data System (ADS)

    Samanta, Ashis Kumar; Kar, Tapas Ranjan; Mukhopadhyay, Asis; Shome, Debashis; Konar, Adwaita

    2015-04-01

    Bleached cotton muslin fabric with or without pre-oxidized with NaIO4 (oxy-cotton) was chemically modified with glycine (amino acid) by pad dry calendar process to investigate the changes in textile properties and its dyeability with reactive dye. This glycine modified cotton incorporates new functional groups producing -NH3 + or -C=NH+ -ion (cationic groups) in acid bath to obtain cationized cotton making it amenable to a newer route of salt free reactive dyeing in acid bath. In the present work the process variables of reactive dyeing in the salt free acid bath for dyeing of amine (glycine) modified cationized cotton were studied and optimized. The present study also includes thorough investigation of changes in important textile related properties and dyeability with reactive dye after such chemical modifications. Between oxidized and unoxidized cotton muslin fabric, unoxidized cotton fabric shows better reactive dye uptake in both conventional alkaline bath dyeing and nonconventional salt free acid bath dyeing particularly for high exhaustion class of reactive dye with acceptable level of colour fastness and overall balance of other textile related properties. Moreover, application of dye fixing agent further improves surface colour depth (K/S) of the glycine treated cotton fabric for HE brand of reactive dyes. Corresponding reaction mechanisms for such modifications were supported by FTIR spectroscopy. Finally unoxidized cotton and pre-oxidized cotton further treated with glycine (amino acid) provide a new route of acid bath salt free reactive dyeing showing much higher dye uptake and higher degree of surface cover with amino acid residue anchored to modified cotton.

  19. Degradation of a textile reactive azo dye by a combined biological-photocatalytic process: Candida tropicalis Jks2 -Tio2/Uv

    PubMed Central

    2012-01-01

    In the present study, the decolorization and degradation of Reactive Black 5 (RB5) azo dye was investigated by biological, photocatalytic (UV/TiO2) and combined processes. Application of Candida tropicalis JKS2 in treatment of the synthetic medium containing RB5 indicated complete decolorization of the dye with 200 mg/L in less than 24 h. Degradation of the aromatic rings, resulting from the destruction of the dye, did not occur during the biological treatment. Mineralization of 50 mg/L RB5 solution was obtained after 80 min by photocatalytic process (in presence of 0.2 g/L TiO2). COD (chemical oxygen demand) was not detectable after complete decolorization of 50 mg/L RB5 solution. However, photocatalytic process was not effective in the removal of the dye at high concentrations (?200 mg/L). With 200 mg/L concentration, 74.9% of decolorization was achieved after 4 h illumination under photocatalytic process and the absorbance peak in UV region (attributed to aromatic rings) was not completely removed. A two-step treatment process, namely, biological treatment by yeast followed by photocatalytic degradation, was also assessed. In the combined process (with 200 mg/L RB5), absorbance peak in UV region significantly disappeared after 2 h illumination and about 60% COD removal was achieved in the biological step. It is suggested that the combined process is more effective than the biological and photocatalytic treatments in the remediation of aromatic rings. PMID:23369285

  20. Basic facts about Venus

    NASA Technical Reports Server (NTRS)

    Colin, L.

    1983-01-01

    Because of the disturbing influence of the earth's atmosphere on terrestrial and airborne telescopy, radiometry, thermal mapping, spectroscopy, polarimetry and radar astronomy of Venus, major improvements in the body of theory concerning that planet, began with the Mariner 2 planetary exploration program in 1962. The effect of spacecraft exploration culminated with the influx of data yielded by the Pioneer Venus and Venera 11 and 12 missions of 1978. Attention is presently given to the quantitative enhancement of widely accepted, basic facts about Venus that has resulted from the analysis of space probe data, together with an overview of the major features of past and planned planetary missions.