These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Equilibrium uptake and sorption dynamics for the removal of a basic dye using bamboo  

Microsoft Academic Search

The bisorption of basic dye from aqueous solution on bamboo based activated carbon was studied in a batch system. The effect of various experimental parameters, such as pH, adsorbent dosage, temperature and initial dye concentration was investigated. The results showed that these parameters influenced the adsorption capacity. Higher solution pH favoured the adsorption of basic dye. Dye removal increased with

J. T. Nwabanne; M. I. Mordi

2

Removal of Basic Dyes (Rhodamine B and Methylene Blue) from Aqueous Solutions Using Bagasse Fly Ash  

Microsoft Academic Search

Bagasse fly ash, a waste generated in sugar industries in India, has been converted into an inexpensive adsorbent material and utilized for the removal of two basic dyes, rhodamine B and methylene blue. Results include the effect of pH, adsorbent dose, dye concentration, and presence of surfactant on the removal of rhodamine B and methylene blue. The adsorption data have

VINOD K. GUPTA; DINESH MOHAN; SAURABH SHARMA; MONICA SHARMA

2000-01-01

3

Removal of basic dye from aqueous solution using tree fern as a biosorbent  

Microsoft Academic Search

A batch sorption system using tree fern as biosorbent was investigated to remove Basic Red 13 from aqueous solutions. The system variables studied include sorbent particle size and temperature and results revealed the potential of tree fern, an agriculture product, as a low-cost sorbent. The Langmuir isotherm was found to represent the measured sorption data well. The dye sorption capacity

Yuh-Shan Hoa; Tzu-Hsuan Chiang; Yu-Mei Hsueh

2005-01-01

4

Equilibrium uptake and sorption dynamics for the removal of a basic dye (basic red) using low-cost adsorbents  

Microsoft Academic Search

Waste carbon slurries (generated in fertilizer plants) and blast furnace slag (generated in steel plants) have been converted into low-cost potential adsorbents. The adsorbents have been characterized and tried for the removal of the dye basic red from wastewater. Studies were performed at different pH to find the pH at which maximum adsorption occurs. Equilibrium isotherms were determined to assess

V. K Gupta; I Ali; Suhas; Dinesh Mohan

2003-01-01

5

Equilibrium uptake and sorption dynamics for the removal of a basic dye (basic red) using low-cost adsorbents.  

PubMed

Waste carbon slurries (generated in fertilizer plants) and blast furnace slag (generated in steel plants) have been converted into low-cost potential adsorbents. The adsorbents have been characterized and tried for the removal of the dye basic red from wastewater. Studies were performed at different pH to find the pH at which maximum adsorption occurs. Equilibrium isotherms were determined to assess the maximum adsorption capacity of the adsorbents. Adsorption capacities are compared for activated carbon developed from fertilizer waste and activated slag developed from blast furnace waste. The adsorption data are correlated with Freundlich and Langmuir isotherms in each system. The kinetics of adsorption depends on the adsorbate concentration and the physical and chemical characteristics of the adsorbent. Studies were conducted to delineate the effect of pH, temperature, initial absorbate concentration, particle size of the adsorbent, and solid-to-liquid ratio. The adsorption of basic red was found to be endothermic and first-order in nature. PMID:12962659

Gupta, V K; Ali, I; Suhas; Mohan, Dinesh

2003-09-15

6

Removal of Basic Blue 41 dye from aqueous solution by linseed cake  

Microsoft Academic Search

The use of linseed oil cake as an adsorbent for selected dyes was examined. The cake did not adsorb Acid Blue 158 or Reactive Red 184. However, it was an effective sorbent for Basic Blue 41. The Langmuir equation described the adsorption well. The enthalpy of adsorption was found to be endothermic and the capacity of the linseed cake for

R. M. Liversidge; G. J. Lloyd; D. A. J. Wase; C. F. Forster

1997-01-01

7

Adsorption removal of reactive dyes from aqueous solution by modified basic oxygen furnace slag: Isotherm and kinetic study  

Microsoft Academic Search

The utilization of treated basic oxygen furnace slag (BOF slag) was successfully carried out to remove three synthetic textile dyes (Reactive Blue 19 (RB19), Reactive Black 5 (RB5) and Reactive Red 120 (RR120)) by adsorption from aqueous solutions. Batch studies were carried out to address various experimental parameters such as pH, contact time, temperature and ionic strength. In the batch

Yongjie Xue; Haobo Hou; Shujing Zhu

2009-01-01

8

Characterisation and environmental application of an Australian natural zeolite for basic dye removal from aqueous solution  

Microsoft Academic Search

An Australian natural zeolite was collected, characterised and employed for basic dye adsorption in aqueous solution. The natural zeolite is mainly composed of clinoptiloite, quartz and mordenite and has cation-exchange capacity of 120meq\\/100g. The natural zeolite presents higher adsorption capacity for methylene blue than rhodamine B with the maximal adsorption capacity of 2.8×10?5 and 7.9×10?5mol\\/g at 50°C for rhodamine B

Shaobin Wang; Z. H. Zhu

2006-01-01

9

A natural sorbent, Luffa cylindrica for the removal of a model basic dye.  

PubMed

In this work, application of Luffa cylindrica in malachite green (MG) removal from aqueous solution was studied in a batch system. The effect of contact time, pH and temperature on removal of malachite green was also investigated. By the time pH was increased from 3 to 5, the amount of sorbed malachite green also increased. Beyond the pH value of 5, the amount of sorbed malachite green remains constant. The fits of equilibrium sorption data to Langmuir, Freundlich and Dubinin-Radushkevich equations were investigated. Langmuir isotherm exhibited best fit with the experimental data. Monolayer sorption capacity increased with the increasing of temperature. Sorption kinetic was evaluated by pseudo-first-order, pseudo-second-order, Elovich rate equations and intraparticle diffusion models. It was inferred that sorption follows pseudo-second-order kinetic model. Thermodynamic parameters for sorption process were also found out. Spontaneous and endothermic nature of sorption was obtained due to negative value of free energy (DeltaG(o)) and positive value of enthalpy (DeltaH(o)) changes. FTIR analyses were also conducted to confirm the sorption of malachite green onto L. cylindrica. PMID:20378245

Altini?ik, Aylin; Gür, Emel; Seki, Yolda?

2010-07-15

10

Use of slag for dye removal  

SciTech Connect

Adsorption techniques employing activated carbon have been found to be reasonably effective in the removal of some of the ionic impurities in water. However, economic considerations may require the use of inexpensive sorbents which are either naturally available or available as waste products from manufacturing processes. Slag is one such waste product obtained during the manufacture of steel, and the present study investigates dye removal characteristics of slag from colored waters. Aqueous solutions prepared from commercial grade acid, basic, and disperse dyes were used in this study, and batch pH, kinetic, and isotherm studies were undertaken on a laboratory scale. The data were evaluated for applicability to the Langmuir, Freundlich, and BET isotherm models, and the removal capacity of slag was compared with that of granular activated carbon. Results indicated approximately 94% removal of the disperse dye by slag, compared with a removal of approximately 49% achieved by activated carbon. Removal of acid dyes (dyes containing anionic groups) was reasonably good (approximately 47 and 74%), though not as good as obtained using activated carbon (approximately 100%). Column studies were conducted with a disperse dye (nonionic, slightly soluble in water), and analysis of data showed a sorption capacity of 1.3 mg of disperse dye per gram of slag. However, effluent dye concentrations were found to be higher than the permissible levels for discharge to receiving waters.

Ramakrishna, K.R.; Viraraghavan, T. [Univ. of Regina, Saskatchewan (Canada). Faculty of Engineering

1998-09-01

11

Colour removal from a simulated dye wastewater using a two-phase Anaerobic packed bed reactor  

Microsoft Academic Search

In recent years, rapid technological advances in the textile and dyeing industry have yielded benefits to society but have also generated new and significant environmental problems. The treatment alternatives applicable for the removal of colour vary, depending upon the type of dye wastewater. A synthetic, simulated mixed dye waste (Basic Yellow 28, Basic Yellow 21, Basic Red 18.1, Basic Violet

A. Mahdavi Talarposhti; T. Donnelly; G. K. Anderson

2001-01-01

12

Dye removal by surfactant encapsulated polyoxometalates.  

PubMed

A novel surfactant encapsulated polyoxometalate (SEP) has been synthesized by using a simple ion-exchange reaction. The prepared SEP complex was found to self-assemble into nanospherical particles whose morphology and component were characterized by TEM and XPS. The SEP was further incorporated into polyvinylidene fluoride (PVDF) to fabricate SEP incorporated composite membrane (SEP-M). Both the SEP and SEP-M exhibited excellent dye removal activities, which is for the first time reported as an intriguing property of the SEP. A regeneration scheme for SEP-M was successfully proposed without any loss of dye removal efficiency. Detailed mechanism studies were carried out to elucidate the nature of dye decolorization. Ion exchange was revealed to play a dominant role in the dye removal process. The current research not only renders a new example for the simple and direct synthesis of SEP but more importantly provides an efficient dye removal methodology. PMID:25194560

Yao, Lei; Lua, Shun Kuang; Zhang, Lizhi; Wang, Rong; Dong, ZhiLi

2014-09-15

13

Kinetics of basic dye (methylene blue) biosorption by giant duckweed ( Spirodela polyrrhiza)  

Microsoft Academic Search

Wastewater containing pigments and\\/or dyes can cause serious water pollution problems in the form of reduced light penetration and photosynthesis, and the toxicity from heavy metals associated with pigments and\\/or dyes. Laboratory investigations, of the potential use of dried Spirodela polyrrhiza biomass as an adsorbent for the removal of the basic dye methylene blue from aqueous solution were conducted. A

P. Waranusantigul; P. Pokethitiyook; M. Kruatrachue; E. S. Upatham

2003-01-01

14

Chitosan derivatives as biosorbents for basic dyes.  

PubMed

The scope of this study was to prepare and evaluate chitosan derivatives as biosorbents for basic dyes. This was achieved by grafting poly (acrylic acid) and poly (acrylamide) through persulfate induced free radical initiated polymerization processes and covalent cross-linking of the prepared materials. Remacryl Red TGL was used as the cationic dye. Equilibrium sorption experiments were carried out at different pH and initial dye concentration values. The experimental equilibrium data for each adsorbent-dye system were successfully fitted to the Langmuir, Freundlich and pH-dependent Langmuir-Freundlich sorption isotherms. Thermodynamic parameters of the adsorption process such as DeltaG degrees, DeltaH degrees, and DeltaS degrees were calculated. The negative values of free energy reflected the spontaneous nature of adsorption. The typical dependence of dye uptake on temperature and the kinetics of adsorption indicated the process to be chemisorption. The grafting modifications greatly enhanced the adsorption performance of the biosorbents, especially in the case of powdered cross-linked chitosan grafted with acrylic acid, which exhibited a maximum adsorption capacity equal to 1.068 mmol/g. Kinetic studies also revealed a significant improvement of sorption rates by the modifications. Diffusion coefficients of the dye molecule were determined to be of the order 10(-13) - 10(-12) m2/s. Furthermore, desorption experiments affirmed the regenerative capability of the loaded material. PMID:17530870

Lazaridis, Nikolaos K; Kyzas, George Z; Vassiliou, Alexandros A; Bikiaris, Dimitrios N

2007-07-01

15

Kinetic modeling of the adsorption of basic dyes by kudzu  

Microsoft Academic Search

The use of kudzu, a rapidly growing, high-climbing perennial leguminous vine, for the adsorption of basic dyes from aqueous solution has been investigated at various initial dye concentrations, masses of kudzu, and agitation rates. The extent and rate of adsorption of the three basic dyes (Basic Red 22, Basic Yellow 21, and Basic Blue 3) were analyzed using a pseudo-first-order

Stephen J. Allen; Quan Gan; Ronan Matthews; Pauline A. Johnson

2005-01-01

16

Adsorption behaviors of acid and basic dyes on crosslinked amphoteric starch  

Microsoft Academic Search

Crosslinked amphoteric starch with carboxymethyl and quaternary ammonium groups is investigated as an adsorbent for removal of both acid and basic dyes in solution. Acid Light Yellow 2G, Acid Red G, Methyl Green and Methyl Violet were used to study the adsorption behaviors under various parameters such as pH, dose of amphoteric starches, initial dye concentration, adsorption time and adsorption

Shimei Xu; Jingli Wang; Ronglan Wu; Jide Wang; Hong Li

2006-01-01

17

Comparison of optimised isotherm models for basic dye adsorption by kudzu  

Microsoft Academic Search

This study assesses the use of dried (5% w\\/w moisture) kudzu (Peuraria lobata ohwi) as an adsorbent medium for the removal of two basic dyes, Basic Yellow 21 and Basic Red 22, from aqueous solutions. The extent of adsorption was measured through equilibrium sorption isotherms for the single component systems. Equilibrium was achieved after 21 days. The experimental isotherm data

Stephen J. Allen; Quan Gan; Ronan Matthews; Pauline A. Johnson

2003-01-01

18

Removal of triphenylmethane dyes by bacterial consortium.  

PubMed

A new consortium of four bacterial isolates (Agrobacterium radiobacter; Bacillus spp.; Sphingomonas paucimobilis, and Aeromonas hydrophila)-(CM-4) was used to degrade and to decolorize triphenylmethane dyes. All bacteria were isolated from activated sludge extracted from a wastewater treatment station of a dyeing industry plant. Individual bacterial isolates exhibited a remarkable color-removal capability against crystal violet (50?mg/L) and malachite green (50?mg/L) dyes within 24?h. Interestingly, the microbial consortium CM-4 shows a high decolorizing percentage for crystal violet and malachite green, respectively, 91% and 99% within 2?h. The rate of chemical oxygen demand (COD) removal increases after 24?h, reaching 61.5% and 84.2% for crystal violet and malachite green, respectively. UV-Visible absorption spectra, FTIR analysis and the inspection of bacterial cells growth indicated that color removal by the CM-4 was due to biodegradation. Evaluation of mutagenicity by using Salmonella typhimurium test strains, TA98 and TA100 studies revealed that the degradation of crystal violet and malachite green by CM-4 did not lead to mutagenic products. Altogether, these results demonstrated the usefulness of the bacterial consortium in the treatment of the textile dyes. PMID:22623907

Cheriaa, Jihane; Khaireddine, Monia; Rouabhia, Mahmoud; Bakhrouf, Amina

2012-01-01

19

Removal of Triphenylmethane Dyes by Bacterial Consortium  

PubMed Central

A new consortium of four bacterial isolates (Agrobacterium radiobacter; Bacillus spp.; Sphingomonas paucimobilis, and Aeromonas hydrophila)-(CM-4) was used to degrade and to decolorize triphenylmethane dyes. All bacteria were isolated from activated sludge extracted from a wastewater treatment station of a dyeing industry plant. Individual bacterial isolates exhibited a remarkable color-removal capability against crystal violet (50?mg/L) and malachite green (50?mg/L) dyes within 24?h. Interestingly, the microbial consortium CM-4 shows a high decolorizing percentage for crystal violet and malachite green, respectively, 91% and 99% within 2?h. The rate of chemical oxygen demand (COD) removal increases after 24?h, reaching 61.5% and 84.2% for crystal violet and malachite green, respectively. UV-Visible absorption spectra, FTIR analysis and the inspection of bacterial cells growth indicated that color removal by the CM-4 was due to biodegradation. Evaluation of mutagenicity by using Salmonella typhimurium test strains, TA98 and TA100 studies revealed that the degradation of crystal violet and malachite green by CM-4 did not lead to mutagenic products. Altogether, these results demonstrated the usefulness of the bacterial consortium in the treatment of the textile dyes. PMID:22623907

Cheriaa, Jihane; Khaireddine, Monia; Rouabhia, Mahmoud; Bakhrouf, Amina

2012-01-01

20

Adsorption of basic dyes from aqueous solution onto pumice powder  

Microsoft Academic Search

The adsorption of methylene blue and crystal violet on pumice powder samples of varying compositions was investigated using a batch adsorption technique. The effects of various experimental parameters, such as adsorbent dosage, initial dye concentration, and contact time, were also investigated. The extent of dye removal increased with decreased initial concentration of the dye and also increased with increased contact

Feryal Akbal

2005-01-01

21

The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth  

Microsoft Academic Search

The feasibility of using diatomite for the removal of the problematic reactive dyes as well as basic dyes from textile wastewater was investigated. Methylene blue, Cibacron reactive black and reactive yellow dyes were considered. Physical characteristics of diatomite such as pHsolution, pHZPC, surface area, Fourier transform infrared, and scanning electron microscopy were investigated. The surface area of diatomite was found

M. A. Al-Ghouti; M. A. M. Khraisheh; S. J. Allen; M. N. Ahmad

2003-01-01

22

Kinetic studies on sorption of basic dye using Eichhornia crassipes.  

PubMed

Sorption capacity of different parts of Eichhornia crassipes, such as rhizome, root, lamina and petiole on basic aurophine-o was studied in a batch system. The equilibrium uptake capacity was observed as 13.65 mg/g (using root), 13.5 mg/g (using lamina), 12.9 mg/g (using rhizome) and 12.75 mg/g (using petiole). It was observed that the equilibrium dye uptake capacity using root was found to be more when compared to all other E. crassipes parts used in the present investigation. The shortcut equations developed are accurate and can be used in the place of experimental data. The shortcut equations form the basis for further research. The intra particle diffusion coefficient (K(i)) and effective diffusion coefficient (D(i)) were evaluated for the removal of dye using root, which were found to be more when compared to all other parts of E. crassipes studied such as, lamina, rhizome and petiole. PMID:19697758

Renganathan, S; Venkatakrishnan, R; Venkataramana, S; Kumar, M Dharmendira; Deepak, S; Miranda, Lima Rose; Velan, M

2008-10-01

23

Studies on castor seed shell as a sorbent in basic dye contaminated wastewater remediation  

Microsoft Academic Search

The potentialities of castor seed shell (CSS), a waste agricultural by-product, in the remediation of water, contaminated with Methylene Blue (MB), a basic dye, were investigated in the present study. The CSS was ground and washed, thoroughly, to remove any water extractable constituents. The dried CSS was reground, sieved and used in series of agitated batch adsorption experiments. The experiments

N. A. Oladoja; C. O. Aboluwoye; Y. B. Oladimeji; A. O. Ashogbon; I. O. Otemuyiwa

2008-01-01

24

Removal of dyes from an artificial textile dye effluent by two agricultural waste residues, corncob and barley husk  

Microsoft Academic Search

The use of a previously untried biosorbent, barley husk, for dye removal is compared to corncob. The effectiveness of adsorption as a means of dye removal has made it an ideal alternative to other more costly treatments. This paper deals with two low-cost, renewable biosorbents, which are agroindustrial by-products, for textile dye removal. Experiments at total dye concentrations of 10,

T. Robinson; B. Chandran; P. Nigam

2002-01-01

25

Method of dye removal for the textile industry  

SciTech Connect

The invention comprises a method of processing a waste stream containing dyes, such as a dye bath used in the textile industry. The invention uses an inorganic-based polymer, such as polyphosphazene, to separate dyes and/or other chemicals from the waste stream. Membranes comprising polyphosphazene have the chemical and thermal stability to survive the harsh, high temperature environment of dye waste streams, and have been shown to completely separate dyes from the waste stream. Several polyphosplhazene membranes having a variety of organic substituent have been shown effective in removing color from waste streams.

Stone, M.L.

2000-07-25

26

Method of dye removal for the textile industry  

DOEpatents

The invention comprises a method of processing a waste stream containing dyes, such as a dye bath used in the textile industry. The invention comprises using an inorganic-based polymer, such as polyphosphazene, to separate dyes and/or other chemicals from the waste stream. Membranes comprising polyphosphazene have the chemical and thermal stability to survive the harsh, high temperature environment of dye waste streams, and have been shown to completely separate dyes from the waste stream. Several polyphosplhazene membranes having a variety of organic substituent have been shown effective in removing color from waste streams.

Stone, Mark L. (Idaho Falls, ID)

2000-01-01

27

Highly Efficient Dye Removal from Aqueous Solutions Using Simple Chemical Modification of Wood Sawdust  

Microsoft Academic Search

This study examined the efficiency of oxidized wood meal for removal of methylene blue (MB) as a typical basic dye from aqueous waste streams. The adsorption process was performed using sawdust treated with KMnO4, K2Cr2O7, and H2O2 oxidants. Among the tested chemical oxidants, KMnO4 was found to be more effective for modification of sawdust for dye uptake. Based on the

Reza Ansari; Mahnaz Saghanejhad Tehrani; Ali Mohammad-Khah

2012-01-01

28

Kinetic modeling for dye removal using polyelectrolyte enhanced ultrafiltration.  

PubMed

A generalized kinetic model is proposed for the first time for dye removal using polyelectrolytes in application of polyelectrolyte enhanced ultrafiltration. Three polyelectrolyte-dye systems, reported in the literature have been taken up for case studies. Different cases, namely, nature of dye and polyelectrolyte system and their concentration, effect of solution pH and electrolyte concentration have been included in the general framework of the modeling. The equilibrium constants are evaluated by minimizing the errors involved in the measured and experimental values of dye retention data. The matching between the calculated and the experimental data is found to be adequate. A general phase space analysis involving the equilibrium constants has also been carried out to determine the region of feasible solution, in order to facilitate dye removal using engineered polyelectrolyte. PMID:22763227

Mondal, Sourav; Ouni, Hedia; Dhahbi, Mahmoud; De, Sirshendu

2012-08-30

29

Removal of synthetic dyes from wastewaters: a review  

Microsoft Academic Search

The more recent methods for the removal of synthetic dyes from waters and wastewater are complied. The various methods of removal such as adsorption on various sorbents, chemical decomposition by oxidation, photodegradation, and microbiological decoloration, employing activated sludge, pure cultures and microbe consortiums are described. The advantages and disadvantages of the various methods are discussed and their efficacies are compared.

Esther Forgacs; Tibor Cserháti; Gyula Oros

2004-01-01

30

Direct dyes removal using modified magnetic ferrite nanoparticle  

PubMed Central

The magnetic adsorbent nanoparticle was modified using cationic surface active agent. Zinc ferrite nanoparticle and cetyl trimethylammonium bromide were used as an adsorbent and a surface active agent, respectively. Dye removal ability of the surface modified nanoparticle as an adsorbent was investigated. Direct Green 6 (DG6), Direct Red 31 (DR31) and Direct Red 23 (DR23) were used. The characteristics of the adsorbent were studied using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effect of adsorbent dosage, initial dye concentration and salt was evaluated. In ternary system, dye removal of the adsorbent at 90, 120, 150 and 200 mg/L dye concentration was 63, 45, 30 and 23% for DR23, 97, 90, 78 and 45% for DR31 and 51, 48, 42 and 37% for DG6, respectively. It was found that dye adsorption onto the adsorbent followed Langmuir isotherm. The adsorption kinetic of dyes was found to conform to pseudo-second order kinetics. PMID:24991427

2014-01-01

31

Removal of anionic reactive dyes from water using anion exchange membranes as adsorbers.  

PubMed

Two commercial anion exchange membranes, strong basic (SB6407) and weak basic (DE81), were evaluated for the removal of anionic reactive dyes, Cibacron blue 3GA (three sulfonic acid groups per dye molecule) and Cibacron red 3BA (four sulfonic acid groups per dye molecule), from water in this study. The adsorption isotherm results show that the Langmuir maximum adsorption capacities of Cibacron blue 3GA (31.5mg/cm(3) for SB6407 and 25.5mg/cm(3) for DE81) were greater than those of Cibacron red 3BA (24.5mg/cm(3) for SB6407 and 18.5mg/cm(3) for DE81). For each reactive dye, the capacity for SB6407 was higher than DE81 based on the same membrane volume. However, consideration of the number of ion exchange sites interacting with a dye molecule indicates that the DE81 results are close to the theoretical values while the SB6407 membrane had some unused binding sites. In addition, Cibacron red 3BA demonstrated faster and stronger binding with both anion exchange membranes than Cibacron blue 3GA. Both dyes could bind with strong basic SB6407 more quickly and stronger. In the batch desorption process, different desorption solutions were tested and the mixtures of salt, acid, or base in methanol solution (e.g. 1N KSCN in 60% methanol or 1N HCl in 60% methanol) achieved better performance. Finally, in the flow process with one piece of anion exchange membrane (initial dye concentration of 0.05g/L), SB6407 was found superior to DE81 in dye recovery and both membranes retained their original uptake capacities over three cycles of adsorption, washing, and desorption. PMID:17328938

Liu, Chia-Hung; Wu, Jeng-Shiou; Chiu, Hsin-Chieh; Suen, Shing-Yi; Chu, Khim Hoong

2007-04-01

32

Optimization of Biosorptive Removal of Dye from Aqueous System by Cone Shell of Calabrian Pine  

PubMed Central

The biosorption performance of raw cone shell of Calabrian pine for C.I. Basic Red 46 as a model azo dye from aqueous system was optimized using Taguchi experimental design methodology. L9 (33) orthogonal array was used to optimize the dye biosorption by the pine cone shell. The selected factors and their levels were biosorbent particle size, dye concentration, and contact time. The predicted dye biosorption capacity for the pine cone shell from Taguchi design was obtained as 71.770?mg?g?1 under optimized biosorption conditions. This experimental design provided reasonable predictive performance of dye biosorption by the biosorbent (R 2: 0.9961). Langmuir model fitted better to the biosorption equilibrium data than Freundlich model. This displayed the monolayer coverage of dye molecules on the biosorbent surface. Dubinin-Radushkevich model and the standard Gibbs free energy change proposed physical biosorption for predominant mechanism. The logistic function presented the best fit to the data of biosorption kinetics. The kinetic parameters reflecting biosorption performance were also evaluated. The optimization study revealed that the pine cone shell can be an effective and economically feasible biosorbent for the removal of dye. PMID:25405213

Deniz, Fatih

2014-01-01

33

Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems  

Microsoft Academic Search

Colored effluents from textile industries are a problem in many rivers and waterways. Prediction of dye adsorption capacities is important in design considerations. The sorption of three basic dyes, namely Basic blue 3, Basic yellow 21, and Basic red 22, onto peat is reported. Equilibrium sorption isotherms have been measured for the three single-component systems. Equilibrium was achieved after 21

S. J. Allen; G. Mckay; J. F. Porter

2004-01-01

34

Use of slag for dye removal  

Microsoft Academic Search

Adsorption techniques employing activated carbon have been found to be reasonably effective in the removal of some of the ionic impurities in water. However, economic considerations may require the use of inexpensive sorbents which are either naturally available or available as waste products from manufacturing processes. Slag is one such waste product obtained during the manufacture of steel, and the

K. R. Ramakrishna; T. Viraraghavan

1998-01-01

35

Use of slag for dye removal  

Microsoft Academic Search

Adsorption techniques employing activated carbon have been found to be reasonably effective in the removal of some of the ionic impurities in water. However, economic considerations may require the use of inexpensive sorbents which are either naturally available or available as waste products from manufacturing processes. Slag is one such waste product obtained during the manufacture of steel, and the

Konduru R. Ramakrishna; T. Viraraghavan

1997-01-01

36

Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw  

Microsoft Academic Search

This paper deals with two low-cost, locally available, renewable biosorbents; apple pomace and wheat straw for textile dye removal. Experiments at total dye concentrations of 10, 20, 30, 40, 50, 100, 150, and 200mg\\/l were carried out with a synthetic effluent consisting of an equal mixture of five textile dyes. The effect of initial dye concentration, biosorbent particle size, quantity

T Robinson; B Chandran; P Nigam

2002-01-01

37

Sonochemical degradation of Basic Blue 41 dye assisted by nanoTiO2 and H2O2.  

PubMed

The sonolysis of Basic Blue 41 dye in aqueous solution was performed at 35 kHz using ultrasonic power of 160 W and aqueous temperature of 25+1 degrees C within 180 min. The TiO2 nanoparticles were used as a catalyst to assist the sonication process. The effect of experimental parameters such as pH, H2O2 concentration and initial dye concentration on the reaction were investigated. It was recognized that in lower pH values the dye removal rate decreased. However, dye removal increased via increase in H2O2 concentration and lowering the initial dye concentration. All intermediate compounds were detected by integrated gas chromatography-mass spectrometry (GC/MS) and also ion chromatograph (IC). During the decolorization, all nitrogen atoms and aromatic groups of Basic Blue 41 were converted to urea, nitrate, formic acid, acetic acid and oxalic acid, etc. Kinetic studies revealed that the degradation process followed pseudo-first order mechanism with the correlation coefficient (R2) of 0.9918 under experimental conditions. The results showed that power ultrasound can be regarded as an appropriate tool for degradation of azo dyes to non-toxic end products. PMID:17950996

Abbasi, Mahmood; Asl, Nima Razzaghi

2008-05-30

38

Effect of viscosity, basicity and organic content of composite flocculant on the decolorization performance and mechanism for reactive dyeing wastewater.  

PubMed

A coagulation/flocculation process using the composite flocculant polyaluminum chloride-epichlorohydrin dimethylamine (PAC-EPI-DMA) was employed for the treatment of an anionic azo dye (Reactive Brilliant Red K-2BP dye). The effect of viscosity (eta), basicity (B = [OH]/[Al]) and organic content (W(P)) on the flocculation performance as well as the mechanism of PAC-EPI-DMA flocculant were investigated. The eta was the key factor affecting the dye removal efficiency of PAC-EPI-DMA. PAC-EPI-DMA with an intermediate eta (2400 mPa x sec) gave higher decolorization efficiency by adsorption bridging and charge neutralization due to the co-effect of PAC and EPI-DMA polymers. The W(P) of the composite flocculant was a minor important factor for the flocculation. The adsorption bridging of PAC-EPI-DMA with eta of 300 or 4300 mPa x sec played an important role with the increase of W(P), whereas the charge neutralization of them was weaker with the increase of W(P). There was interaction between W(P) and B on the removal of reactive dye. The composite flocculant with intermediate viscosity and organic content was effective for the treatment of reactive dyeing wastewater, which could achieve high reactive dye removal efficiency with low organic dosage. PMID:22432257

Wang, Yuanfang; Gao, Baoyu; Yue, Qinyan; Wang, Yan

2011-01-01

39

Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent  

Microsoft Academic Search

The removal efficiency of activated carbon Filtrasorb 400 (F-400) towards three highly used reactive dyes in the textile industry was investigated. In this work, the adsorption capacities for the anionic reactive dyes, namely; Remazol Reactive Yellow, Remazol Reactive Black and Remazol Reactive Red were determined. The adsorption capacity data showed a high removal ability for the three reactive dyes and

Y. Al-Degs; M. A. M. Khraisheh; S. J. Allen; M. N. Ahmad

2000-01-01

40

Biodegradable hollow zein nanoparticles for removal of reactive dyes from wastewater.  

PubMed

In this study, biodegradable hollow zein nanoparticles with diameters less than 100 nm were developed to remove reactive dyes from simulated post-dyeing wastewater with remarkably high efficiency. Reactive dyes are widely used to color cellulosic materials, such as cotton and rayon. Wastewater from reactive dyeing process contains up to 50% dye and electrolytes with concentrations up to 100 g L(-1). Current methods to remove reactive dyes from wastewater are suffering from low adsorption capacities or low biodegradability of the sorbents. In this research, biodegradable zein nanoparticles showed high adsorption capacities for dyes. Hollow zein nanoparticles showed higher adsorption for Reactive Blue 19 than solid structures, and the adsorption amount increased as temperature decreased, pH decreased or initial dye concentration increased. At pH 6.5 and pH 9.0, increasing electrolyte concentration could improve dye adsorption significantly. Under simulated post-dyeing condition with 50.0 g L(-1) salt and pH 9.0, maximum adsorption of 1016.0 mg dye per gram zein nanoparticles could be obtained. The adsorption capacity was much higher than that of various biodegradable adsorbents developed to remove reactive dye. It is suggested that the hollow zein nanoparticles are good candidates to remove reactive dye immediately after dyeing process. PMID:23643969

Xu, Helan; Zhang, Yue; Jiang, Qiuran; Reddy, Narendra; Yang, Yiqi

2013-08-15

41

Biosorption of cationic basic dye and cadmium by the novel biosorbent Bacillus catenulatus JB-022 strain.  

PubMed

Biosorption of heavy metals and dyes is a promising technology that involves the removal of toxic metals from industrial wastes. The present study aims to screen the bacterial strains isolated from soils and polluted pond for their potential biosorption of both cationic dye and cadmium. Bacillus catenulatus JB-022 strain removed 58% and 66% of cationic basic blue 3 (BB3) and cadmium (Cd(II)) at the respective concentrations of 2000 mg/L and 150 mg/L. The biosorption equilibrium data were well fitted by the Langmuir adsorption isotherm, and the kinetic studies indicated that the biosorption followed the pseudo-second-order model. The biosorption kinetics showed that the equilibrium was reached within 10 min and 5 min for BB3 and Cd(II), respectively. According to the Langmuir model, the maximum uptakes of BB3 and Cd(II) by the JB-022 biomass were estimated to be 139.74 and 64.28 mg/g, respectively. To confirm the surface morphology and functional groups, field emission scanning electron microscope, energy-dispersive X-ray spectrometer, X-ray diffraction, and Fourier transform infrared spectroscopy analyses were carried out, and the results revealed that the biomass of JB-022 has carboxyl and phosphonate groups as potential surface functional groups capable of binding to cationic pollutants. In conclusion, B. catenulatus JB-022 is proposed as an excellent biosorbent with potentially important applications in removal of cationic pollutants from wastewaters. PMID:25454694

Kim, Su Young; Jin, Mi Ra; Chung, Chang Ho; Yun, Yeoung-Sang; Jahng, Kwang Yeop; Yu, Kang-Yeol

2015-04-01

42

Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues  

Microsoft Academic Search

Three agricultural residues, wheat straw, wood chips and corn-cob shreds were tested for their ability to adsorb individual dyes and dye mixtures in solutions. Up to 70–75% colour removal was achieved from 500 ppm dye solutions at room temperature using corn-cob shreds and wheat straw. Increasing the temperature had little effect on the adsorption capacity of the residues. The resulting

P Nigam; G Armour; I. M Banat; D Singh; R Marchant

2000-01-01

43

Non-conventional low-cost adsorbents for dye removal: A review  

Microsoft Academic Search

Adsorption techniques are widely used to remove certain classes of pollutants from waters, especially those that are not easily biodegradable. Dyes represent one of the problematic groups. Currently, a combination of biological treatment and adsorption on activated carbon is becoming more common for removal of dyes from wastewater. Although commercial activated carbon is a preferred sorbent for color removal, its

Grégorio Crini

2006-01-01

44

Electrochemical removal of synthetic textile dyes from aqueous solutions using Ti/Pt anode: role of dye structure.  

PubMed

In this work, the efficiency of electrochemical oxidation (EO) was investigated for removing a dye mixture containing Novacron Yellow (NY) and Remazol Red (RR) in aqueous solutions using platinum supported on titanium (Ti/Pt) as anode. Different current densities (20, 40 and 60 mA cm(-2)) and temperatures (25, 40 and 60 °C) were studied during electrochemical treatment. After that, the EO of each of these dyes was separately investigated. The EO of each of these dyes was performed, varying only the current density and keeping the same temperature (25 °C). The elimination of colour was monitored by UV-visible spectroscopy, and the degradation of organic compounds was analysed by means of chemical oxygen demand (COD). Data obtained from the analysis of the dye mixture showed that the EO process was effective in colour removal, in which more than 90% was removed. In the case of COD removal, the application of a current density greater than 40 mA cm(-2) favoured the oxygen evolution reaction, and no complete oxidation was achieved. Regarding the analysis of individual anodic oxidation dyes, it was appreciated that the data for the NY were very close to the results obtained for the oxidation of the dye mixture while the RR dye achieved higher colour removal but lower COD elimination. These results suggest that the oxidation efficiency is dependent on the nature of the organic molecule, and it was confirmed by the intermediates identified. PMID:24801286

Araújo, Cynthia K C; Oliveira, Gustavo R; Fernandes, Nedja S; Zanta, Carmem L P S; Castro, Suely Souza Leal; da Silva, Djalma R; Martínez-Huitle, Carlos A

2014-08-01

45

Utilization of powdered peanut hull as biosorbent for removal of anionic dyes from aqueous solution  

Microsoft Academic Search

An untried, low cost, locally available biosorbent was investigated for its anionic dye removal capacity from aqueous solution. Powder prepared from peanut hull was used for biosorption of three anionic dyes, amaranth (Am), sunset yellow (SY) and fast green FCF (FG). The effects of various experimental parameters (e.g. initial pH and dye concentration, sorbent dosage, particle size, ion strength, contact

Renmin Gong; Yi Ding; Mei Li; Chao Yang; Huijun Liu; Yingzhi Sun

2005-01-01

46

AUTOMATIC EXCHANGE RESIN PILOT PLANT FOR REMOVAL OF TEXTILE DYE WASTES  

EPA Science Inventory

The report gives results of an investigation of the use of adsorption resins to remove colored dyes from textile dyeing wastewaters, using an automated benchscale pilot unit. This could make possible the reuse of the treated wastewaters in subsequent dyeing operations. The scale ...

47

Utilization of ground eggshell waste as an adsorbent for the removal of dyes from aqueous solution.  

PubMed

The adsorption of cationic basic blue 9 and anionic acid orange 51 from aqueous solution onto the calcified eggshell (ES) and its ground eggshell powder (ESP) was carried out by varying the process parameters such as agitation speed, initial dye concentration, adsorbent mass and temperature. The adsorption potential for basic blue 9 onto ESP is far lower than that for acid orange 51, mainly due to the ionic interaction between the acid dye with the sulfonate groups and the positively charged sites on the surface of ESP. The adsorption capacity of acid orange 51 onto ES is significantly smaller than that onto ESP, which is in line with their pore properties (i.e., 1 vs. 21 m(2)/g). The experimental results showed that the adsorption process can be well described with a simple model, the pseudo-second-order model. According to the equilibrium adsorption capacity from the fitting of pseudo-second order reaction model, it was further found that the Freundlich model yields a somewhat better fit than the Langmuir model in the adsorption of acid orange 51 onto ESP. In addition, an increase in adsorption temperature from 15 to 45 degrees C significantly enhances the adsorption capacity of acid orange 51 onto ESP, revealing that the adsorption should be an endothermic or chemisorption process. From the results, it is feasible to utilize the ground eggshell waste as an effective adsorbent for removal of anionic dye from aqueous solution. PMID:17543519

Tsai, Wen-Tien; Hsien, Kuo-Jong; Hsu, Hsin-Chieh; Lin, Chien-Ming; Lin, Keng-Yu; Chiu, Chun-Hsiang

2008-04-01

48

Adsorption of basic dyes on granular acivated carbon and natural zeolite  

Microsoft Academic Search

The adsorption of basic dyes from aqueous solution onto granular activated carbon and natural zeolite has been studied using an agitated batch adsorber. The influence of agitation, initial dye concentration and adsorbent mass has been studied. The parameters of Langmuir and Freundlich adsorption isotherms have been determined using the adsorption data. Homogeneous diffusion model (solid diffusion) combined with external mass

V Meshko; L Markovska; M Mincheva; A. E Rodrigues

2001-01-01

49

Combination of Electrokinetic Separation and Electrochemical Oxidation for Acid Dye Removal from Soil  

Microsoft Academic Search

The remediation of kaolin soil contaminated with Acid Blue 25 was performed by a combination of electrokinetic separation and electrochemical degradation. The anionic dye was removed from the soil mainly by electroosmosis towards the cathode, with up to 89% removal being achieved at 30 mA for 7 days. The dye solution was completely mineralized in a separate electrochemical oxidation process using

You-Jin Lee; Hyoyeol Han; Seong-Hye Kim; Ji-Won Yang

2009-01-01

50

Removal of dyes from colored textile wastewater by orange peel adsorbent: Equilibrium and kinetic studies  

Microsoft Academic Search

The use of low-cost and ecofriendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. Orange peel was collected from the fields of orange trees in the north of Iran and converted into a low-cost adsorbent. This paper deals with the removal of textile dyes from aqueous solutions by orange peel.

Mokhtar Arami; Nargess Yousefi Limaee; Niyaz Mohammad Mahmoodi; Nooshin Salman Tabrizi

2005-01-01

51

Hydrothermal conversion of urban food waste to chars for removal of textile dyes from contaminated waters.  

PubMed

Hydrothermal carbonization of urban food waste was carried out to prepare hydrochars for removal of Acridine Orange and Rhodamine 6G dyes from contaminated water. The chemical composition and microstructure properties of the synthesized hydrochars were investigated in details. Batch adsorption experiments revealed that hydrochars with lower degree of carbonization were more efficient in adsorption of dyes. Operational parameters such as pH and temperature had a strong influence on the dye uptake process. The adsorption equilibrium data showed excellent fit to the Langmuir isotherm. The pseudo-second-order kinetic model provided a better correlation for the experimental kinetic data in comparison to the pseudo-first-order kinetic model. Thermodynamic investigations suggested that dye adsorption onto hydrochars was spontaneous and endothermic. The mechanism of dye removal appears to be associated with physisorption. An artificial neural network (ANN)-based modelling was further carried out to predict the dye adsorption capacity of the hydrochars. PMID:24727353

Parshetti, Ganesh K; Chowdhury, Shamik; Balasubramanian, Rajasekhar

2014-06-01

52

Removal of dyes using agricultural waste as low-cost adsorbents: a review  

NASA Astrophysics Data System (ADS)

Color removal from wastewater has been a matter of concern, both in the aesthetic sense and health point of view. Color removal from textile effluents on a continuous industrial scale has been given much attention in the last few years, not only because of its potential toxicity, but also mainly due to its visibility problem. There have been various promising techniques for the removal of dyes from wastewater. However, the effectiveness of adsorption for dye removal from wastewater has made it an ideal alternative to other expensive treatment methods. In this review, an extensive list of sorbent literature has been compiled. The review evaluates different agricultural waste materials as low-cost adsorbents for the removal of dyes from wastewater. The review also outlines some of the fundamental principles of dye adsorption on to adsorbents.

Bharathi, K. S.; Ramesh, S. T.

2013-12-01

53

Removal of Reactive Black 5 from aqueous solution by ozone for water reuse in textile dyeing processes  

Microsoft Academic Search

The removal of textile dye Reactive Black 5 from aqueous solution by ozone until total decolorization using a semi-batch bubbling reactor was studied. This compound was selected because of its extended industrial application for cotton dyeing. Decomposition of that textile dye was observed by adding some chemical auxiliaries commonly used in textile dyeing processes such as sodium sulfate, sodium carbonate

P. Colindres; H. Yee-Madeira; E. Reguera

2010-01-01

54

The adsorption of basic dyes from aqueous solution on modified peat–resin particle  

Microsoft Academic Search

Modified peat was prepared by mixing thoroughly raw peat with sulfuric acid, and modified peat–resin particle was obtained, by mixing modified peat with solutions of polyvinylalcohol (PVA) and formaldehyde. In this paper, the adsorption of Basic Magenta and Basic Brilliant Green onto modified peat–resin particle is examined. The adsorption isotherm showed that the adsorption of basic dyes on modified peat–resin

Qingye Sun; Linzhang Yang

2003-01-01

55

Color Removal of Reactive Dyes from Water by Clinoptilolite  

Microsoft Academic Search

The adsorption of reactive dyes on Gordes (Turkey) clinoptilolite was investigated by a series of batch and column adsorption experiments. Three reactive dyes (Everzol Black, Everzol Red, Everzol Yellow) were used in laboratory studies. Synthetic wastewaters were used and the ability of natural zeolite (clinoptilolite) and their modified form were examined. The adsorption results, in batch and column reactor, indicate

Bülent Arma?an; Mustafa Turan; Orhan Özdemir; Mehmet S. Çelik

2004-01-01

56

Removal of dissolved textile dyes from wastewater by a compost sorbent  

USGS Publications Warehouse

The objective of this study was to evaluate the potential for treating dye-contaminated waste streams by sorption using compost as a low-cost sorbent. A mature, thermophilic compost sample was used to sorb CI Acid Black 24, CI Acid Orange 74, CI Basic Blue 9, CI Basic Green 4, CI Direct Blue 71, CI Direct Orange 39, CI Reactive Orange 16 and CI Reactive Red 2 from solution using a batch-sorption method. With the exception of the two reactive dyes, the sorption kinetics were favourable for a continuous-flow treatment process with the compost-dye mixtures reaching a steady state within 3-5 h. Based on limited comparisons, the affinity of the compost for each dye appeared to be competitive with other non-activated carbon sorbents. The results suggest that additional research on using compost as a sorbent for dye-contaminated solutions is warranted.

Tsui, L.S.; Roy, W.R.; Cole, M.A.

2003-01-01

57

Towards advanced aqueous dye removal processes: a short review on the versatile role of activated carbon.  

PubMed

During the last decade, several physico-chemical and biological techniques have been developed to remove colour from textile wastewaters. Some of these techniques rely on and many will profit from activated carbon (AC). The role of AC is versatile: (1) it acts as a dye adsorbent, not only in straightforward adsorption processes but also in AC-enhanced coagulation and membrane filtration processes; (2) it generates strong oxidising agents (mostly, hydroxyl (OH) radicals) in electrochemical dye oxidation; (3) it catalyses OH production in advanced oxidation processes; (4) it catalyses anaerobic (azo) dye reduction and supports biofilm growth in microbial dye removal. This paper reviews the role of AC in dye decolourisation, evaluates the feasibility of each AC-amended decolourisation technique and discusses perspectives on future research. PMID:22459012

Mezohegyi, Gergo; van der Zee, Frank P; Font, Josep; Fortuny, Agustí; Fabregat, Azael

2012-07-15

58

Comparison of activated carbon and bottom ash for removal of reactive dye from aqueous solution.  

PubMed

The adsorption of reactive dye from synthetic aqueous solution onto granular activated carbon (GAC) and coal-based bottom ash (CBBA) were studied under the same experimental conditions. As an alternative to GAC, CBBA was used as adsorbent for dye removal from aqueous solution. The amount of Vertigo Navy Marine (VNM) adsorbed onto CBBA was lower compared with GAC at equilibrium and dye adsorption capacity increased from 0.71 to 3.82 mg g(-1), and 0.73 to 6.35 mg g(-1) with the initial concentration of dye from 25 to 300 mg l(-1), respectively. The initial dye uptake of CBBA was not so rapid as in the case of GAC and the dye uptake was slow and gradually attained equilibrium. PMID:16697184

Dinçer, Ali Riza; Güne?, Yalçin; Karakaya, Nusret; Güne?, Elçin

2007-03-01

59

Utilization of carbon nanotubes for the removal of rhodamine B dye from aqueous solutions.  

PubMed

Carbon nanotubes (CNTs) are attracting increasing research interest as promising adsorbents for harmful cations, anions, and other organic and inorganic impurities present in natural sources of water. This study examined the feasibility of removing Rhodamine B dye from aqueous solutions using multi walled carbon nanotubes (MWCNTs) synthesized by chemical vapor deposition (CVD) method. The effects of dye concentration, pH and contact time on adsorption of direct dye by CNTs were also evaluated. The study used the Langmuir and Temkin isotherms to describe equilibrium adsorption. Additionally, pseudo second-order model was adopted to evaluate experimental data and thereby elucidate the kinetic adsorption process. The adsorption percentage of dye increased as contact time increased. Conversely, the adsorption percentage of dye decreased as dye concentration increased. The pseudo second-order model best represented adsorption kinetics. The capacity of CNTs to adsorb Rhodamine B was 65-90% at different pH values. PMID:24738392

Kumar, Sandeep; Bhanjana, Gaurav; Jangra, Kavita; Dilbaghi, Neeraj; Umar, Ahmad

2014-06-01

60

Magnetic Pycnoporus sanguineus-loaded alginate composite beads for removing dye from aqueous solutions.  

PubMed

Dye pollution in wastewater is a severe environmental problem because treating water containing dyes using conventional physical, chemical, and biological treatments is difficult. A conventional process is used to adsorb dyes and filter wastewater. Magnetic filtration is an emerging technology. In this study, magnetic Pycnoporus sanguineus-loaded alginate composite beads were employed to remove a dye solution. A white rot fungus, P. sanguineus, immobilized in alginate beads were used as a biosorbent to remove the dye solution. An alginate polymer could protect P. sanguineus in acidic environments. Superparamagnetic nanomaterials, iron oxide nanoparticles, were combined with alginate gels to form magnetic alginate composites. The magnetic guidability of alginate composites and biocompatibility of iron oxide nanoparticles facilitated the magnetic filtration and separation processes. The fungus cells were immobilized in loaded alginate composites to study the influence of the initial dye concentration and pH on the biosorption capacity. The composite beads could be removed easily post-adsorption by using a magnetic filtration process. When the amount of composite beads was varied, the results of kinetic studies of malachite green adsorption by immobilized cells of P. sanguineus fitted well with the pseudo-second-order model. The results indicated that the magnetic composite beads effectively adsorbed the dye solution from wastewater and were environmentally friendly. PMID:24945580

Yang, Chih-Hui; Shih, Ming-Cheng; Chiu, Han-Chen; Huang, Keng-Shiang

2014-01-01

61

Photocatalytic removal of C.I. Basic Red 46 on immobilized TiO2 nanoparticles: Artificial neural network modelling  

Microsoft Academic Search

C.I. Basic Red 46, commonly used as a textile dye, was photocatalytically removed using supported TiO2 nanoparticles irradiated by a 30 W UV?C lamp in a batch reactor. The investigated photocatalyst was industrial Degussa P25 (crystallite mean size 21 nm) immobilized on glass beads by a heat attachment method. The catalyst was characterized by XRD, SEM, TEM and BET techniques.

A. R. Khataee

2009-01-01

62

Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: Kinetic and equilibrium studies  

Microsoft Academic Search

Batch sorption experiments were carried out for the removal of C.I. Basic Green 4 (Malachite Green), a cationic dye from its aqueous solution using cyclodextrin-based material (CD\\/CMC material) as adsorbent. The operating variables studied were adsorbent mass, particle size, agitation speed, solution pH, contact time and initial dye concentration. Adsorption experiments indicated that the adsorption capacity was dependent of operating

Grégorio Crini; Harmel Ndongo Peindy; Frédéric Gimbert; Capucine Robert

2007-01-01

63

Utilization of industrial waste products as adsorbents for the removal of dyes  

Microsoft Academic Search

A number of low cost adsorbents from steel and fertilizer industries wastes have been prepared and investigated for the removal of anionic dyes such as ethyl orange, metanil yellow and acid blue 113 from aqueous solutions. The results indicate that inorganic wastes, i.e. blast furnace dust, sludge and slag from steel plants are not suitable for the removal of organic

A. K Jain; V. K Gupta; A Bhatnagar; Suhas

2003-01-01

64

Removal of acid and direct dye by epichlorohydrin-dimethylamine: flocculation performance and floc aggregation properties.  

PubMed

A cationic organic flocculant epichlorohydrin-dimethylamine (EPI-DMA) was employed for the treatment of acid and direct dye. The study aims at investigating the flocculation performance of EPI-DMA for the model dye, and corresponding floc aggregation properties, which were determined by jar test and photometric dispersion analysis, respectively. The interactions between cationic flocculant and anionic dye were investigated through spectra analysis. The results showed that EPI-DMA effectively decolorized the tested acid and direct dye. The viscosity and cationicity of EPI-DMA had different influence on the removal of different dye. Chemical interaction was observed between quaternary ammonium of EPI-DMA and sulfonic group of dye. The flocculation dynamic process showed that flocs with better aggregation and sedimentation properties were produced by EPI-DMA with higher viscosity and cationicity for acid dye. Contrarily, flocs with the best aggregation and sedimentation properties were produced by EPI-DMA with the lowest viscosity and cationicity for direct dye. PMID:22209132

Wang, Yuan-Fang; Gao, Bao-Yu; Yue, Qin-Yan; Wang, Yan; Yang, Zhong-Lian

2012-06-01

65

Adsorption of Phenol and Basic Dye on Carbon Nanotubes\\/Carbon Fabric Composites from Aqueous Solution  

Microsoft Academic Search

The liquid-phase adsorption of phenol and dye (basic violet 10) onto carbon nanotube (CNT)-activated carbon fabric (ACF) composites, prepared by a catalytic chemical vapor deposition (CCVD) approach, has been investigated. The CCVD technique enables the decoration of CNTs on microscaled ACFs, creating a hierarchy CNT-ACF composite. The as-grown nanotubes were found to have a tortuous shape and to be several

Jung-Pin Wang; Hsi-Chi Yang; Chien-Te Hsieh

2010-01-01

66

SORPTION KINETICS FOR DYE REMOVAL FROM AQUEOUS SOLUTION USING ACTIVATED CLAY  

Microsoft Academic Search

The kinetics of Basic Red 18 and Acid Blue 9 sorption onto activated clay have been investigated. A batch sorption model, based on the assumption of a pseudo–second order mechanism, has been developed to predict the rate constant of sorption, the equilibrium sorption capacity, and initial sorption rate with the effect of initial dye concentration, activated clay particle size, temperature,

Yuh-Shan Ho; Chun-Chiao Chiang; Yung-Chien Hsu

2001-01-01

67

Adsorptive removal of Erythrosine dye onto activated low cost de-oiled mustard  

Microsoft Academic Search

The present paper is aimed to investigate and develop cheap adsorption methods for colour removal from wastewater using waste material de-oiled mustard as adsorbent. De-oiled mustard, a biosorbent, was successfully utilized for removing a water-soluble xanthene dye, Erythrosine from wastewater. Kinetic studies of adsorption of Erythrosine at de-oiled mustard were carried out at 30°C, using aqueous solutions with 5×10?5M concentration

Rajeev Jain; Shalini Sikarwar

2009-01-01

68

Adsorptive Removal of Congo Red Dye Using Ultrasonically Pretreated Strychnos potatorum Seed Powder  

Microsoft Academic Search

This study highlights the removal of Congo red from its aqueous solution using Strychnos potatorum seed powder (SPSP), an Indian seed, used from ancient times for the treatment of turbid water. Surface activation of the adsorbent was carried out using ultra sonication techniques. Comparative studies on the uptake of the dye by both unsonicated and sonicated adsorbents were carried out.

Athinthra Krishnaswamy Sethurajan; Ashwin Ravichandran; Saravana Rajakumar Thangamani; Karuppan Muthukumar

2011-01-01

69

Adsorption kinetics of removal of a toxic dye, Malachite Green, from wastewater by using hen feathers  

Microsoft Academic Search

The paper includes meticulous utilization of hen feather as potential adsorbent to remove a hazardous triphenylmethane dye, Malachite Green from wastewater. The adsorption studies were carried out at 30, 40 and 50°C and effects of pH, temperature, amount of adsorbent, contact time, concentration of adsorbate, etc. on the adsorption were measured. On the basis of adsorption data Langmuir and Freundlich

Alok Mittal

2006-01-01

70

Removal of Acid Orange 7 and Remazol Black 5 reactive dyes from aqueous solutions using a novel biosorbent.  

PubMed

This study utilizes canola stalks (CS), an agro-residue, as a biosorbent to remove two different dyes, namely Acid Orange 7 (AO7) and Remozol Black 5 (RB5) from aqueous solutions. The effects of operational parameters on the efficiency of dye removal including pH, adsorbent mass, initial dye concentration and contact time have been investigated. For both tested dyes, the maximum absorption capacity was reached at initial pH 2.5 and 120 min contact time. The results showed that the absorption of both dyes depended on the pH of milieu, temperature, dye and CS concentrations. Freundlich and Langmuir models were used to analyze the obtained experimental data. The isotherms are found to be linear over the entire concentration range for both dyes. The highest value of linear correlation coefficients for AO7 (0.9926) and RB5 (0.9882) showed that the Langmuir is the best model to fit the experimental data. Kinetic study of absorption was done applying the pseudo first-order and the pseudo second-order equations. Absorption of both dyes could be well predicted by the pseudo second-order equation. The obtained results are very promising since: (i) high levels of dye removal (>90%) were achieved with low contact times biosorbent/dye (less than 20 min contact); and (ii) the whole CS can be successfully used as biosorbent of AO7 and RB5 dyes in aqueous solution without needing any chemical modifications. PMID:24364937

Hamzeh, Yahya; Ashori, Alireza; Azadeh, Elham; Abdulkhani, Ali

2012-08-01

71

Synthesis, characterization and dye removal capacities of N-doped mesoporous carbons.  

PubMed

Nitrogen-doped ordered mesoporous carbons were synthesized by chemical vapor deposition, using acetonitrile as carbon and nitrogen source and SBA-15 as mesoporous silica template. Their porous texture, structural order and surface chemistry were studied as a function of the experimental conditions (acetonitrile stream concentration and deposition time). A non-doped ordered mesoporous carbon was also prepared by the same procedure using propylene as carbon source. Methylene blue, methyl orange and fuchsin acid were selected as probe molecules to investigate the dye adsorption behavior on the ordered mesoporous carbons. Both N-doped and non-doped ordered mesoporous carbons adsorbed large amounts of these three dyes demonstrating the importance of mesoporosity, especially for the adsorption of larger dyes (e.g. fuchsin acid). The presence of nitrogen functional groups was detrimental for the adsorption of the basic dye (methylene blue). On the other hand, the nitrogen functionalities improved the adsorption kinetics for both acid and basic dyes, and the N-doped samples achieved 100% of their maximum adsorption capacities in less than 15min. PMID:25801137

Sánchez-Sánchez, Á; Suárez-García, F; Martínez-Alonso, A; Tascón, J M D

2015-07-15

72

Effect of silver and palladium on dye-removal characteristics of anatase-titania nanotubes.  

PubMed

Anatase-titania nanotubes have been synthesized via hydrothermal and surface-modified by depositing silver and palladium via ultraviolet-reduction method. The pure and surface-modified anatase-titania nanotubes have been characterized using the transmission electron microscope, selected-area electron diffraction, X-ray diffraction, diffuse reflectance, photoluminescence, and Fourier transform infrared spectroscope to reveal their average size, structure, and surface-chemistry. The nanotubes have been utilized for the dye-removal application involving the surface-adsorption mechanism under the dark-condition and photocatalytic degradation mechanism under the ultraviolet-radiation exposure. The variation in the dye-concentration during the dye-adsorption and photocatalysis processes has been determined using the ultraviolet-visible absorption spectrophotometer with methylene blue as a model catalytic dye-agent. It has been shown that silver-deposited anatase-titania nanotubes are more effective in enhancing the kinetics of the dye-removal via surface-adsorption and photocatalytic degradation mechanisms relative to the palladium-deposited anatase-titania nanotubes, which has been attributed to the differences in the surface-chemistry of anatase-titania nanotubes induced by the respective metal-deposition. PMID:21449405

Harsha, N; Ranya, R; Shukla, S; Biju, S; Reddy, M L P; Warrier, K G K

2011-03-01

73

Modified durian seed as adsorbent for the removal of methyl red dye from aqueous solutions  

NASA Astrophysics Data System (ADS)

Mesoporous-activated carbon from durian seed (DSAC) was prepared; it was used as adsorbent for the removal of methyl red (MR) dye from aqueous solution. Textural and adsorptive characteristics of activated carbon prepared from raw durian seed (DS), char durian seed (char DS) and activated durian seed (DSAC) were studied using scanning electron microscopy, Fourier transform infra red spectroscopy, proximate analysis and adsorption of nitrogen techniques, respectively. Acidic condition favors the adsorption of MR dye molecule by electrostatic attraction. The maximum dye removal was 92.52 % at pH 6. Experimental data were analyzed by eight model equations: Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Radke-Prausnitz, Sips, Vieth-Sladek and Brouers-Sotolongo isotherms and it was found that the Freundlich isotherm model fitted the adsorption data most. Adsorption rate constants were determined using pseudo-first-order, pseudo-second-order, Elovich, intraparticle diffusion and Avrami kinetic model equations. The results clearly showed that the adsorption of MR dye onto DSAC followed pseudo-second-order kinetic model. Both intraparticle and film diffusion were involved in the adsorption process. The mean energy of adsorption calculated from D-R isotherm confirmed the involvement of physical adsorption. Thermodynamic parameters were obtained and it was found that the adsorption of MR dye onto DSAC was an endothermic and spontaneous process at the temperatures under investigation.

Ahmad, Mohd Azmier; Ahmad, Norhidayah; Bello, Olugbenga Solomon

2014-08-01

74

REMOVAL OF DYE BY IMMOBILISED PHOTOCATALYST LOADED ACTIVATED CARBON  

Microsoft Academic Search

The ability of activated carbon to adsorb and titanium dioxide to photodegrade organic impurities from water bodies is well accepted. Combination of the two is expected to enhance the removal efficiency due to the synergistic effect. This has enabled activated carbon to adsorb more and at the same time the lifespan of activated carbon is prolonged as the workload of

Zulkarnain Zainal; Chang Sook Keng; Abdul Halim Abdullah

75

Loofa egyptiaca as a novel adsorbent for removal of direct blue dye from aqueous solution.  

PubMed

In this paper, Loofa egyptiaca (LE), an agricultural plant cultivated in Egypt, was used to prepare low-cost activated carbon (LE(C1) and LE(C2)) adsorbents. The adsorbents (LE, LE(C1) and LE(C2)) were evaluated for their ability to remove direct blue 106 dye from aqueous solutions. Batch mode experiments were conducted using various parameters such as pH, contact time, dye concentration and adsorbent concentration. The surface chemistry of LE, LE(C1) and LE(C2) was analyzed by scanning electron microscopy (SEM). The experimental data were examined using Langmuir, Freundlich, Temkin and Harkins-Jura isotherms. The results showed that the adsorption of direct blue 106 was maximal at the lowest value of pH (pH=2). Removal efficiency was increased with an increase in dye concentration and a decrease in amount of adsorbent. Maximum adsorption capacity was found to be 57.14, 63.3 and 73.53 mg/g for LE, LE(C1) and LE(C2) respectively. Kinetics were also investigated using pseudo-first-order, pseudo-second-order and intra-particle diffusion models. The experimental data fitted very well with the pseudo-first-order and pseudo-second-order kinetic models. The results indicate that LE, LE(C1) and LE(C2) could be employed as adsorbents for the removal of direct blue dye from aqueous solutions. PMID:19346057

El Ashtoukhy, El Sayed Z

2009-06-01

76

Nanotubular Halloysite Clay as Efficient Water Filtration System for Removal of Cationic and Anionic Dyes  

NASA Astrophysics Data System (ADS)

Halloysite nanotubes, chemically similar to kaolinite, are formed by rolling of kaolinite layers in tubes with diameter of 50 nm and length of ca. 1 ?m. Halloysite has negative SiO2 outermost and positive Al2O3 inner lumen surface, which enables it to be used as potential absorbent for both cationic and anionic dyes due to the efficient bivalent adsorbancy. An adsorption study using cationic Rhodamine 6G and anionic Chrome azurol S has shown approximately two times better dye removal for halloysite as compared to kaolinite. Halloysite filters have been effectively regenerated up to 50 times by burning the adsorbed dyes. Overall removal efficiency of anionic Chrome azurol S exceeded 99.9% for 5th regeneration cycle of halloysite. Chrome azurol S adsorption capacity decreases with the increase of ionic strength, temperature and pH. For cationic Rhodamine 6G, higher ionic strength, temperature and initial solution concentration were favorable to enhanced adsorption with optimal pH 8. These results indicate a potential to utilize halloysite for the removal of ionic dyes from environmental waters.

Zhao, Yafei; Abdullayev, Elshad; Lvov, Yuri

2014-08-01

77

Degradation of reactive, acid and basic textile dyes in the presence of ultrasound and rare earths [Lanthanum and Praseodymium].  

PubMed

Degradation of five textile dyes, namely Reactive Red 141 (RR 141), Reactive Blue 21 (RB 21), Acid Red 114 (AR 114), Acid Blue 113 (AB 113) and Basic Violet 16 (BV 16) in aqueous solution has been carried out with ultrasound (US) and in combination with rare earth ions (La(3+) and Pr(3+)). Kinetic analysis of the data showed a pseudo-first order degradation reaction for all the dyes. The rate constant (k), half life (t1/2) and the process efficiency (?) for various processes in degradation of dyes under different experimental conditions have been calculated. The influence of concentrations of dyes (16-40mg/L), pH (5, 7 and 9) and rare earth ion concentration (4, 12 and 20mg/L) on the degradation of dyes have also been studied. The degradation percentage increased with increasing rare earth amount and decreased with increasing concentration of dyes. Both horn and bath type sonicators were used at 20kHz and 250W for degradation. The sonochemical degradation rate of dyes in the presence of rare earths was related to the type of chromophoric groups in the dye molecule. Degradation sequence of dyes was further examined through LCMS and Raman spectroscopic techniques, which confirmed the sonochemical degradation of dyes to non-toxic end products. PMID:24491599

Srivastava, Pankaj; Goyal, Shikha; Patnala, Prem Kishore

2014-11-01

78

Structure, morphologies and dye removal efficiency of ZnO nanorods grown on polycrystalline Zn substrate  

NASA Astrophysics Data System (ADS)

Rod-like ZnO with the different morphologies were grown on polycrystalline Zn substrate by a simple hydrothermal process in a NaOH or NH4OH solution at the hydrothermal temperature range from 80 to 150 °C for different reaction time. Variations preparation in the different alkali solution concentration, hydrothermal temperature, and reaction times were explored to shed light on the morphology of the rod-like nanostructures. The thorough structural characterization including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron diffraction, and X-ray photoelectron spectrum (XPS) were employed to examine the morphology and the microstructure of the final products. It was found that alkali solution concentration, hydrothermal temperature and time have important influence on the morphology of the rod-like nanostructures. The dye removal efficiency of ZnO nanorods was explored by the decoloration of azo dye Congo red (CR). In order to obtain the optimum removal conditions of Congo red, the performance of removing CR with various initial concentrations by ZnO nanorods on Zn substrates with different morphologies was tested under various ambient conditions (visible light illumination and darkness). All prepared samples showed an excellent dye removal efficiency for organic pollutants CR from wastewater, making them promising candidates for the wastewater treatment.

Yin, Tiantian; Chen, Nan; Zhang, Yingying; Cai, Xiaoyan; Wang, Yude

2014-10-01

79

The potential application of activated carbon from sewage sludge to organic dyes removal.  

PubMed

The objective of this research work was to study the potential application of activated carbon from sewage sludge to organic dye removal. Methylene blue and crystal violet were the two dyes investigated in the present study. Three activated carbons were produced from the exclusive sewage sludge (referred to as DS), the sludge with the additive of coconut husk (DC) and sludge with the additive of peanut shell (DP) respectively. They were characterized by their surface area and porosity and their surface chemistry structure. Adsorption studies were performed by the batch technique to obtain kinetic and equilibrium data. The results show that the three sludge-derived activated carbons had a developed porosity and marked content of surface functional groups. They exhibited a rapid three-stage adsorption process for both methylene blue and crystal violet. Their adsorption capacities for the two dyes were high, the carbon DP performed best in the adsorption whereas the carbon DC performed worst. It is therefore concluded that the activated carbons made from sewage sludge and its mixtures are promising for dye removal from aqueous streams. PMID:11380186

Graham, N; Chen, X G; Jayaseelan, S

2001-01-01

80

Hazardous dyes removal from aqueous solution over mesoporous aluminophosphate with textural porosity by adsorption.  

PubMed

Dye pollution in aquatic nature produce serious environmental effects. In this investigation, mesoporous aluminophosphate molecular sieve synthesized and applied for the removal of hazardous dyes Malachite green (MG) and Methylene blue (MB). In the synthesis of mesoporous aluminophosphate (AlPO(4)) molecular sieve, the structure-directing agent, long-chain alkylbenzene has been used as a template. The template used for the synthesis of mesoporous material is environmentally biodegradable. The mesoporous AlPO(4) was synthesized by the absence of an organic base, tetramethyl ammonium hydroxide (TMAOH) which is necessary to maintain the pH for the conventional AlPO(4) synthesis methods. The synthesized mesoporous AlPO(4) has high thermal stability up to 1173K and large porosity nature (40 nm). It was confirmed by the characterization techniques such as low-angle XRD, FT-IR, TGA and BET surface area analysis. The morphology of the material was explained by using SEM and TEM. The hazardous dyes MG and MB removal studied under the various conditions like contact time, dye concentration, temperature, pH and adsorbent dosage to examine the adsorption characteristics of the newly synthesized mesoporous AlPO(4) molecular sieves. PMID:23246936

Kannan, Chellapandian; Muthuraja, Kumarasamy; Devi, Murugan R

2013-01-15

81

TiO2 hollow microspheres with mesoporous surface: Superior adsorption performance for dye removal  

NASA Astrophysics Data System (ADS)

TiO2 hollow microspheres with mesoporous surface were synthesized by a facile template-assisted solvothermal reaction. The adsorption performance of TiO2 hollow microspheres for removing Methylene Blue from aqueous solution has been investigated. The comparative adsorption study indicated that adsorption capacity of TiO2 hollow microspheres with mesoporous surface is markedly higher than that of solid microsphere. The equilibrium data fitted well with the Langmuir model and the maximum adsorption capacity reached 196.83 mg/g. The kinetics of dye adsorption followed the pseudo-second-order model and the adsorbed dye could be degraded completely by the subsequent photocatalytic process. These TiO2 hollow microspheres can be considered as a low-cost alternative adsorbent for removal of organic pollutants from wastewater.

Wang, Ran; Cai, Xia; Shen, Fenglei

2014-06-01

82

Ackee apple (Blighia sapida) seeds: a novel adsorbent for the removal of Congo Red dye from aqueous solutions  

Microsoft Academic Search

The ability of ackee apple (AA) seeds to remove Congo Red (CR) dye from aqueous solution was investigated. AA was characterised using thermo gravimetric analyser, scanning electron microscopy, Braunauer Emmett Teller, pHpzc, elemental analysis and Boehm titration. The effects of operational parameters such as adsorbent dosage, contact time, initial dye concentration and solution pH were studied in a batch system.

Olugbenga S. Bello; Manase Auta; Olumide B. Ayodele

2012-01-01

83

Modification of organo-zeolite surface for the removal of reactive azo dyes in fixed-bed reactors  

Microsoft Academic Search

Modification of zeolite (clinoptilolite) surface with a quaternary amine, hexadecyl trimethyl ammonium bromide (HTAB), to improve the removal efficiency of reactive azo dyes in a zeolite fixed bed was investigated. A series of adsorption tests were conducted to find out the uptake of three types of reactive dyes, i.e. CI Reactive Black 5, Red 239 and Yellow 176. Each run

Y. E. Benkli; M. F. Can; M. Turan; M. S. Çelik

2005-01-01

84

A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water  

Microsoft Academic Search

Four adsorbents have been prepared from industrial wastes obtained from the steel and fertilizer industries and investigated for their utility to remove cationic dyes. Studies have shown that the adsorbents prepared from blast furnace sludge, dust, and slag have poor porosity and low surface area, resulting in very low efficiency for the adsorption of dyes. On the other hand, carbonaceous

Amit Bhatnagar; A. K. Jain

2005-01-01

85

Enhanced azo dye removal through anode biofilm acclimation to toxicity in single-chamber biocatalyzed electrolysis system.  

PubMed

Azo dye is widely used in printing and dyeing process as one of refractory wastewaters for its high chroma, stable chemical property and toxicity for aquatic organism. Biocatalyzed electrolysis system (BES) is a new developed technology to degrade organic waste in bioanode and recover recalcitrant contaminants in cathode with effective decoloration. The ion exchange membrane (IEM) separate anode and cathode for biofilm formation protection. Azo removal efficiency was up to 60.8%, but decreased to 20.5% when IEM was removed. However, expensive ion exchange membrane (IEM) not suitable for further practical application, bioelectrochemical activity of bioanode is sensitive to the toxicity of azo dye. A gradient increase of azo dye concentration was used to acclimate anode biofilm to pollutant toxicity. The azo removal efficiency can be enhanced to 73.3% in 10h reaction period after acclimation. The highest removal efficiency reached 83.7% and removal rates were increased to 8.37 from 3.04 g/h/L of dual-chamber. That indicated the feasibility for azo dye removal by single-chamber BES. The IEM cancellation not only decreased the internal resistance, but increased the current density and azo dye removal. PMID:23746439

Wang, You-Zhao; Wang, Ai-Jie; Liu, Wen-Zong; Sun, Qian

2013-08-01

86

Carboxymethyl cellulose-g-poly(2-(dimethylamino) ethyl methacrylate) hydrogel as adsorbent for dye removal.  

PubMed

A novel adsorbent was prepared via crosslinking graft copolymerization of 2-(dimethylamino) ethyl methacrylate (DMAEMA) onto carboxymethyl cellulose (CMC) backbone. Ethylene glycol dimethacrylate and potassium persulphate were used as crosslinker and initiator, respectively. CMC-g-PDMAEMA hydrogel was used to remove methyl orange (MO) from aqueous solutions. The adsorption kinetics and isotherms were found to follow Pseudo-second-order kinetic model and Langmuir model, respectively. The high maximum adsorption capacity (1825 mg/g) implied that CMC-g-PDMAEMA can be used as promising adsorbent for the synthetic dyes removal from wastewater. PMID:25450049

Salama, Ahmed; Shukry, Nadia; El-Sakhawy, Mohamed

2015-02-01

87

Edge Removal in Random Contact Networks1 and the Basic Reproduction Number2  

E-print Network

Edge Removal in Random Contact Networks1 and the Basic Reproduction Number2 Dean Koch1 Reinhard Abstract6 Understanding the effect of edge removal on the basic reproduction7 number R0 for disease spread on contact networks is important for dis-8 ease management. The formula for the basic reproduction number R09

Illner, Reinhard

88

Response surface optimization for efficient dye removal by isolated strain Pseudomonas sp.  

NASA Astrophysics Data System (ADS)

Response surface methodology (RSM) involving the central composite design (CCD) was employed to optimize three important process variables for the decolourization of synthetic dye solutions containing Remazol Turquoise Blue (RTB) and Reactive Black 5 (RB5) with isolated bacterial strain Pseudomonas sp. The interaction between three variables i.e. Initial concentration of dye, carbon source and nitrogen source were studied and modeled. According to the Analysis of variance (ANOVA) results the predicted results were found to be in good agreement with experimental results (R 2: 0.9726; Adj R 2: 0.9480 for RTB and R 2: 0.9789; Adj R 2: 0.9750 for RB5) which indicated excellent evaluation of experimental data from the second order polynomial regression model. Mathematical models were developed by the proposed system, for each process variable showed the effect of each factor and their interactions on biodecolourization process. The optimum concentrations of Dye, Carbon source, and Nitrogen source were found to be 20 mgL-1, 1.5 g/L and 1.5 g/L, respectively for RTB and RB5 to obtain maximum dye removing capacity. Predicted values were validated with experimental results, which indicated appropriateness of the employed model and the success of RSM.

Senthilkumar, Shanmugam; Perumalsamy, Muthiah; Prabhuy, Harinarayan; AhmedBasha, Chiya; Anantharaman, Narayan

2012-09-01

89

Response surface optimization for efficient dye removal by isolated strain Pseudomonas sp.  

NASA Astrophysics Data System (ADS)

Response surface methodology (RSM) involving the central composite design (CCD) was employed to optimize three important process variables for the decolourization of synthetic dye solutions containing Remazol Turquoise Blue (RTB) and Reactive Black 5 (RB5) with isolated bacterial strain Pseudomonas sp. The interaction between three variables i.e. Initial concentration of dye, carbon source and nitrogen source were studied and modeled. According to the Analysis of variance (ANOVA) results the predicted results were found to be in good agreement with experimental results ( R 2: 0.9726; Adj R 2: 0.9480 for RTB and R 2: 0.9789; Adj R 2: 0.9750 for RB5) which indicated excellent evaluation of experimental data from the second order polynomial regression model. Mathematical models were developed by the proposed system, for each process variable showed the effect of each factor and their interactions on biodecolourization process. The optimum concentrations of Dye, Carbon source, and Nitrogen source were found to be 20 mgL-1, 1.5 g/L and 1.5 g/L, respectively for RTB and RB5 to obtain maximum dye removing capacity. Predicted values were validated with experimental results, which indicated appropriateness of the employed model and the success of RSM.

Senthilkumar, Shanmugam; Perumalsamy, Muthiah; Prabhuy, Harinarayan Janardhana; AhmedBasha, Chiya; Anantharaman, Narayan

2012-09-01

90

A biosorption isotherm model for the removal of reactive azo dyes by inactivated mycelia of Cunninghamella elegans UCP542.  

PubMed

The biosorption of three reactive azo dyes (red, black and orange II) found in textile effluents by inactive mycelium of Cunninghamella elegans has been investigated. It was found that after 120 hours of contact the adsorption led to 70%, 85%, 93% and 88% removal of reactive orange II, reactive black, reactive red and a mixture of them, respectively. The mycelium surface was found to be selective towards the azo dyes in the following order: reactive red > reactive black > orange II. Dye removal from a mixture solution resulted in 48.4 mg/g retention by mycelium and indicated a competition amongst the dyes for the cellular surface. A Freundlich adsorption isotherm model exhibited a better fit, thus suggesting the presence of heterogeneous binding sites. Electrondense deposits observed on the mycelium ultrastructure suggest that the dyes are mainly retained under the cellular surface of the inactive biomass of C. elegans. PMID:22217557

Ambrósio, Sandra T; Vilar, José C; Silva, Carlos A Alves da; Okada, Kaoru; Nascimento, Aline E; Longo, Ricardo L; Campos-Takaki, Galba M

2012-01-01

91

Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review.  

PubMed

Chitosan based adsorbents have received a lot of attention for adsorption of dyes. Various modifications of this polysaccharide have been investigated to improve the adsorption properties as well as mechanical and physical characteristics of chitosan. This review paper discusses major research topics related to chitosan and its derivatives for application in the removal of dyes from water. Modification of chitosan changes the original properties of this material so that it can be more suitable for adsorption of different types of dye. Many chitosan derivatives have been obtained through chemical and physical modifications of raw chitosan that include cross-linking, grafting and impregnation of the chitosan backbone. Better understanding of these varieties and their affinity toward different types of dye can help future research to be properly oriented to address knowledge gaps in this area. This review provides better opportunity for researchers to better explore the potential of chitosan-derived adsorbents for removal of a great variety of dyes. PMID:25256466

Vakili, Mohammadtaghi; Rafatullah, Mohd; Salamatinia, Babak; Abdullah, Ahmad Zuhairi; Ibrahim, Mahamad Hakimi; Tan, Kok Bing; Gholami, Zahra; Amouzgar, Parisa

2014-11-26

92

Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water.  

PubMed

Fully biobased composite membranes for water purification were fabricated with cellulose nanocrystals (CNCs) as functional entities in chitosan matrix via freeze-drying process followed by compacting. The chitosan (10 wt%) bound the CNCs in a stable and nanoporous membrane structure with thickness of 250-270 ?m, which was further stabilized by cross-linking with gluteraldehyde vapors. Scanning electron microscopy (SEM) studies revealed well-individualized CNCs embedded in a matrix of chitosan. Brunauer, Emmett and Teller (BET) measurements showed that the membranes were nanoporous with pores in the range of 13-10nm. In spite of the low water flux (64 Lm(-2) h(-1)), the membranes successfully removed 98%, 84% and 70% respectively of positively charged dyes like Victoria Blue 2B, Methyl Violet 2B and Rhodamine 6G, after a contact time of 24h. The removal of dyes was expected to be driven by the electrostatic attraction between negatively charged CNCs and the positively charged dyes. PMID:25129796

Karim, Zoheb; Mathew, Aji P; Grahn, Mattias; Mouzon, Johanne; Oksman, Kristiina

2014-11-01

93

Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment  

NASA Astrophysics Data System (ADS)

Fly ash resulted from coal burning is a waste that can be used in wastewater treatment for removal of dyes and heavy metals by adsorption. Class “F” fly ash (FA), collected from the Central Heat and Power (CHP) Plant Brasov (Romania), with oxides composition SiO2/Al2O3 over 2.4 was used for obtaining a new substrate with good adsorption capacity for dyes and heavy metals from wastewater. A new material was obtained from modified fly ash with NaOH and hexadecyltrimethylammonium bromide (HTAB) a cationic surfactant. Contact time, optimum amount of substrate and the pH corresponding to 50 mL solution of pollutants were the parameters optimized for obtaining the maximum efficiency in the adsorption process. The optimized adsorption parameters were further used in thermodynamic and kinetic studies of the adsorption processes. The adsorption kinetic mechanisms, and the substrate capacities are further discussed correlated with the surface structure (XRD), composition (EDS, FTIR), and morphology (SEM, AFM). The results indicate that the novel nano-substrate composite with fly ash modified can be used as an efficient and low cost adsorbent for simultaneous removal of dyes and heavy metals, the resulted water respects the discharge regulations.

Visa, Maria; Chelaru, Andreea-Maria

2014-06-01

94

Effects of compound bioflocculant on coagulation performance and floc properties for dye removal.  

PubMed

A series of jar tests was conducted to investigate the coagulation performance of using compound bioflocculant (CBF) as a coagulant aid with aluminum sulfate (AS) and polyaluminum chloride (PAC) in synthetic dyeing wastewater treatment. Floc size, growth, breakage, re-growth and sedimentation natural were investigated by PDA2000. The results showed that the corresponding dual-coagulants of AS and PAC enhanced the color removal efficiency, especially at low aluminum dosage. Results also indicated that the floc generated by aluminum salts and CBF had larger size and higher growth rate. In addition, for both AS and PAC the floc recoverability was improved by addition of CBF. The adsorption and bridging effect of CBF performed a positive role in dye wastewater treatment. PMID:24656485

Huang, Xin; Bo, Xiaowen; Zhao, Yanxia; Gao, Baoyu; Wang, Yan; Sun, Shenglei; Yue, Qinyan; Li, Qian

2014-08-01

95

Adsorption kinetics of removal of a toxic dye, Malachite Green, from wastewater by using hen feathers.  

PubMed

The paper includes meticulous utilization of hen feather as potential adsorbent to remove a hazardous triphenylmethane dye, Malachite Green from wastewater. The adsorption studies were carried out at 30, 40 and 50 degrees C and effects of pH, temperature, amount of adsorbent, contact time, concentration of adsorbate, etc. on the adsorption were measured. On the basis of adsorption data Langmuir and Freundlich adsorption isotherm models were also confirmed. The adsorption isotherm constants thus obtained were employed to calculate thermodynamic parameters like Gibb's free energy, change in enthalpy and entropy. The paper also incorporates systematic kinetic studies of the ongoing adsorption process and a first order adsorption kinetics was found to be operative during the adsorption. The specific rate constants at different temperatures were found to be dependent upon the concentration of the dye. The adsorption was found to operate via film and particle diffusion process in the higher and lower concentration ranges, respectively. PMID:16326001

Mittal, Alok

2006-05-20

96

NiO(111) nanosheets as efficient and recyclable adsorbents for dye pollutant removal from wastewater  

NASA Astrophysics Data System (ADS)

Semiconductor single-crystalline polar NiO(111) nanosheets with well-defined hexagonal holes have been investigated for application in dye adsorption and combustion processes. With regard to adsorption technologies, high surface area metal oxides have an advantage over activated carbon in that the adsorbed species can be combusted and the adsorbent reused in the case of metal oxides while regeneration of activated carbon remains challenging and thus the adsorbent/adsorbate system must be disposed of. Here, three typical textile dyes, reactive brilliant red X-3B, congo red and fuchsin red, were studied for removal from wastewater with two NiO systems and activated carbon. These studies revealed that the NiO(111) nanosheets exhibited much more favorable adsorptive properties than conventionally prepared nickel oxide powder (CP-NiO) obtained from thermal decomposition of nickel nitrate. The maximum adsorption capabilities of the three dyes on NiO(111) nanosheets reached 30.4 mg g-1, 35.15 mg g-1 and 22 mg g-1 for reactive brilliant red X-3B, congo red and fuchsin acid, respectively, while the maximum adsorption capabilities of the three dyes on CP-NiO were only 8.4, 13.2 and 12 mg g-1 for reactive brilliant red X-3B, congo red and fuchsin acid. To simulate the adsorption isotherm, two commonly employed models, the Langmuir and the Freundlich isotherms, were selected to explicate the interaction of the dye and NiO(111). The isotherm evaluations revealed that the Langmuir model demonstrated better fit to experimental equilibrium data than the Freundlich model. The maximum predicted adsorption capacity was 36.1 mg g-1. In addition, adsorption kinetic data of NiO(111) followed a pseudo-second-order rate for congo red. These studies infer that NiO(111) nanosheets possess desirable properties for application in adsorption and combustion applications.

Song, Zhi; Chen, Lifang; Hu, Juncheng; Richards, Ryan

2009-07-01

97

Accelerated removal of Sudan dye by Shewanella oneidensis MR-1 in the presence of quinones and humic acids.  

PubMed

Although there have been many studies on bacterial removal of soluble azo dyes, much less information is available for biological treatment of water-insoluble azo dyes. The few bacterial species capable of removing Sudan dye generally require a long time to remove low concentrations of insoluble dye particles. The present work examined the efficient removal of Sudan I by Shewanella oneidensis MR-1 in the presence of redox mediator. It was found that the microbially reduced anthraquinone-2,6-disulfonate (AQDS) could abiotically reduce Sudan I, indicating the feasibility of microbially-mediated reduction. The addition of 100 ?M AQDS and other different quinone compounds led to 4.3-54.7 % increase in removal efficiencies in 22 h. However, adding 5-hydroxy-1,4-naphthoquinone into the system inhibited Sudan I removal. The presence of 10, 50 and 100 ?M AQDS stimulated the removal efficiency in 10 h from 26.4 to 42.8, 54.9 and 64.0 %, respectively. The presence of 300 ?M AQDS resulted in an eightfold increase in initial removal rate from 0.19 to 1.52 mg h?ą g?ą cell biomass. A linear relationship was observed between the initial removal rates and AQDS concentrations (0-100 ?M). Comparison of Michaelis-Menten kinetic constants revealed the advantage of AQDS-mediated removal over direct reduction. Different species of humic acid could also stimulate the removal of Sudan I. Scanning electronic microscopy analysis confirmed the accelerated removal performance in the presence of AQDS. These results provide a potential method for the efficient removal of insoluble Sudan dye. PMID:23539152

Liu, Guangfei; Zhou, Jiti; Ji, Qiuyan; Wang, Jing; Jin, Ruofei; Lv, Hong

2013-09-01

98

Comparison of color removal from reactive dye contaminated water by systems containing fungal biosorbent, active carbon and their mixture.  

PubMed

The adsorption of Everzol Black (EB) from synthetic aqueous solution onto active carbon (AC) and dried fungal biosorbent (Rhizopus arrhizus) was studied under the same experimental conditions. The effects of initial dye concentration, adsorbent dosage and contact time were examined at a batch-scale level. As an alternative to AC, fungus was investigated as a low-cost adsorbent for dye removal. The amount of EB adsorbed onto AC was lower compared with fungal biosorbent; dye adsorption capacity of AC and fungal biosorbent were 94.48 and 106.61 mg/g, respectively. The adsorbent dosage experiments showed that 4 g/L biosorbent removed 100% of EB (Co: 114.39 mg/L) after 2 hours. The results obtained from this study showed that biosorbent effectively removed reactive dye from dye-containing water in a short time period. Langmuir and Freundlich adsorption isotherm models were used for mathematical description of the biosorption equilibrium data; the Freundlich model was found to exhibit good fits to the experimental data. According to the Freundlich isotherm, the maximum dye adsorption capacities of AC and biosorbent were calculated as 344.82 and 357.14 mg/g, respectively. The Fourier transform infrared spectroscopy spectral analysis showed the involvement of functional groups for dye bindings. PMID:25325540

Gül, Ulküye Dudu; Silah, Hülya

2014-01-01

99

Effectiveness of Dyes Removal by Mixed Fungal Cultures and Toxicity of Their Metabolites.  

PubMed

Decolorization of brilliant green (0.06 g/L), Evans blue (0.15 g/L), and their mixture (total concentration 0.08 g/L, proportion 1:1 w/w) by fungi was studied. Fungal strains [Pleurotus ostreatus (BWPH), Gloeophyllum odoratum (DCa), and Fusarium oxysporum (G1)] were used separately and as a mixture of them. Zootoxicity (Daphnia magna) and phytotoxicity (Lemna minor) changes were estimated after the end of experiment. Mixtures of fungal strains were less effective in decolorization process than the same strains used separately (as a single strains). After 96 h of experiment, living biomass of strain BWPH removed up to 95.5 %; DCa, up to 84.6 %; G1, up to 79.2 % where mixtures BWPH + DCa removed up to 74.3 %; and BWPH + G1, only up to 32.2 % of used dyes. High effectiveness of dyes removal not always corresponded with decrease of toxicity. The highest decrease of zootoxicity and phytotoxicity (from V to III toxicity class or to even nontoxic) was noticed for single strains, while no changes or slight toxicity decrease was noticed in samples with strains mixtures. PMID:23687394

Przysta?, Wioletta; Zab?ocka-Godlewska, Ewa; Grabi?ska-Sota, El?bieta

2013-05-01

100

Utilization of industrial waste products as adsorbents for the removal of dyes.  

PubMed

A number of low cost adsorbents from steel and fertilizer industries wastes have been prepared and investigated for the removal of anionic dyes such as ethyl orange, metanil yellow and acid blue 113 from aqueous solutions. The results indicate that inorganic wastes, i.e. blast furnace dust, sludge and slag from steel plants are not suitable for the removal of organic materials, whereas a carbonaceous adsorbent prepared from carbon slurry of fertilizer industry was found to adsorb 198, 211 and 219mg/g of ethyl orange, metanil yellow and acid blue 113, respectively. The adsorption of dyes on this adsorbent was studied as a function of contact time, concentration, particle size and temperature by batch method. The adsorption isotherm conformed to Langmuir model and the adsorption was found to be exothermic and physical in nature. Kinetic data conforms to Lagergren's equation with good correlation coefficients varying from 0.9998 to 0.9999 indicating that the adsorption is a first-order process. The adsorption data on carbonaceous adsorbent was compared to a standard activated charcoal sample and it was found that the prepared adsorbent is about 80% as efficient as standard activated charcoal and therefore, can be used as low cost alternative ( approximately 100 US dollars per ton) for colour removal from effluents. PMID:12850318

Jain, A K; Gupta, V K; Bhatnagar, A; Suhas

2003-07-01

101

Removal of dark green PLS dye from textile industrial waste through low cost carbons.  

PubMed

Low cost carbons were prepared from Palm nut shells, Cashew nut shells and Broom sticks by Sulphuric acid process and characterised. The activities of these carbons (PNSC, CNSC and BSC) were compared with that of high cost Commercial activated carbon (CAC). The effect of pH, time, carbon dose were examined along with isotherm studies. The application of these carbons were examined on colour removal of Dark green PLS from both effluent samples and synthetic samples. Comparison is made among the carbons for adsorption of the dye. Desorption studies were also carried out along with BDST studies. Mathematical equations have been designed for the wide range of applications. PMID:15315141

Rajavel, G; Anathanarayanan, C; Prabhakar, L D; Palanivel, C

2003-07-01

102

Removal of anionic dyes from aqueous solutions by an ion-exchanger based on pullulan microspheres.  

PubMed

Pullulan-graft-poly(3-acrylamidopropyl trimethylammonium chloride) (P-g-pAPTAC) microspheres were prepared by suspension cross-linking of the pullulan previously grafted with cationic moieties. Adsorption of Azocarmine B by the P-g-pAPTAC microspheres was used as a model to demonstrate the removal of anionic dyes from aqueous solutions. Batch adsorption studies concerning the effect of the contact time, pH, initial dye concentration, temperature, grafting, and the nature of sulfonated anionic dyes on the adsorption kinetics were investigated. Adsorption was shown to be independent of pH. The experimental data best fitted to the pseudo-second order model which provided values of the rate constant k(2) of 1.4×10(-4) g mg(-1) min(-1) for 100 mg L(-1) solution and of 3.7×10(-4) g mg(-1) min(-1) for 500 mg L(-1) solution. From the Langmuir isotherm linear equation, the maximum adsorption capacity determined was 113.63 mg of Azocarmine B per gram of adsorbent; the negative value of the free energy change indicated the spontaneous nature of the adsorption process. PMID:23044107

Constantin, Marieta; Asmarandei, Ionela; Harabagiu, Valeria; Ghimici, Luminita; Ascenzi, Paolo; Fundueanu, Gheorghe

2013-01-01

103

Removal of basic nitrogen compounds from hydrocarbon liquids  

DOEpatents

A method is provided for reducing the concentration of basic nitrogen compounds in hydrocarbonaceous feedstock fluids used in the refining industry by providing a solid particulate carbonaceous adsorbent/fuel material such as coal having active basic nitrogen complexing sites on the surface thereof and the coal with a hydrocarbonaceous feedstock containing basic nitrogen compounds to facilitate attraction of the basic nitrogen compounds to the complexing sites and the formation of complexes thereof on the surface of the coal. The adsorbent coal material and the complexes formed thereon are from the feedstock fluid to provide a hydrocarbonaceous fluid of reduced basic nitrogen compound concentration. The coal can then be used as fuel for boilers and the like.

Givens, Edwin N. (Bethlehem, PA); Hoover, David S. (New Tripoli, PA)

1985-01-01

104

Coagulation\\/flocculation process for dye removal using sludge from water treatment plant: Optimization through response surface methodology  

Microsoft Academic Search

In this study, performance of a waterworks sludge (FCS: ferric chloride sludge) for the removal of acid red 119 (AR119) dye from aqueous solutions were investigated. For this purpose, response surface methodology (RSM) was applied to optimize three operating variables of coagulation\\/flocculation process including initial pH, coagulant dosage and initial dye concentration. The results showed that the decrease of initial

S. Sadri Moghaddam; M. R. Alavi Moghaddam; M. Arami

2010-01-01

105

Graphene oxide caged in cellulose microbeads for removal of malachite green dye from aqueous solution.  

PubMed

A simple sol-gel method using non-toxic and cost-effective precursors has been developed to prepare graphene oxide (GO)/cellulose bead (GOCB) composites for removal of dye pollutants. Taking advantage of the combined benefits of GO and cellulose, the prepared GOCB composites exhibit excellent removal efficiency towards malachite green (>96%) and can be reused for over 5 times through simple filtration method. The high-decontamination performance of the GOCB system is strongly dependent on encapsulation amount of GO, temperature and pH value. In addition, the adsorption behavior of this new adsorbent fits well with the Langmuir isotherm and pseudo-second-order kinetic model. PMID:25441361

Zhang, Xiaomei; Yu, Hongwen; Yang, Hongjun; Wan, Yuchun; Hu, Hong; Zhai, Zhuang; Qin, Jieming

2015-01-01

106

Adsorption Properties of Low-Cost Biomaterial Derived from Prunus amygdalus L. for Dye Removal from Water  

PubMed Central

The capability of Prunus amygdalus L. (almond) shell for dye removal from aqueous solutions was investigated and methyl orange was used as a model compound. The effects of operational parameters including pH, ionic strength, adsorbent concentration and mesh size, dye concentration, contact time, and temperature on the removal of dye were evaluated. The adsorption kinetics conformed to the pseudo-second-order kinetic model. The equilibrium data pointed out excellent fit to the Langmuir isotherm model with maximum monolayer adsorption capacity of 41.34?mg g?1 at 293?K. Thermodynamic analysis proved a spontaneous, favorable, and exothermic process. It can be concluded that almond shell might be a potential low-cost adsorbent for methyl orange removal from aqueous media. PMID:23935442

Deniz, Fatih

2013-01-01

107

Accelerated azo dye removal by biocathode formation in single-chamber biocatalyzed electrolysis systems.  

PubMed

Biocatalyzed electrolysis systems (BES) have been the topic of a great deal of research. However, the biocathodes formed in single-chamber BES without extra inocula have not previously been researched. Along with the formation of biocathodes, the polarization current increased to 1.76 mA from 0.35 mA of abio-cathodes at -1.2 V (vs. SCE). Electrochemical impedance spectroscopy (EIS) results also indicated that the charge transfer resistance (Rct) was decreased to 148.9 ?, less than 1978 ? of the abio-cathodes cleared. The performance of the biocathodes was tested for azo dye decolorization, and the dye removal efficiency was 13.3±3.2% higher than abio-cathodes with a 0.5 V direct current (DC) power supply. These aspects demonstrate that biocathode accelerates the rate of electrode reaction in BES and comparing with noble metal catalysts, biocathodes have low toxicity or non-toxic and reproducible properties, which can be widely applied in bioelectrochemical field in the future. PMID:23948224

Wang, You-Zhao; Wang, Ai-Jie; Liu, Wen-Zong; Kong, De-Yong; Tan, Wen-Bo; Liu, Chong

2013-10-01

108

Removal of water-insoluble Sudan dyes by Shewanella oneidensis MR-1.  

PubMed

Decolorization of water-insoluble Sudan dyes was studied with Shewanella oneidensis MR-1, which removed 66.8%, 43.4%, 56.0% and 33.7% Sudan I-IV in 104 h, respectively and reduced Sudan I to aniline and 1-amino-2-naphthol. Lactate was identified as the most efficient electron donor for Sudan I reduction. Improved reduction performance was obtained in the presence of higher lactate or biomass concentration. The correlation between specific reduction rate and initial Sudan I concentration could be described with Michaelis-Menten kinetics (V(max)=1.8 mg Sudan I mg cell(-1) h(-1) and K(m)=5.3 mg l(-1)). The addition of anthraquinone-2-sulfonate stimulated the reduction significantly whereas the presence of 2-hydroxy-1,4-naphthoquinone had little enhancing effect. The main azoreductase activity was found with membrane-bound proteins of MR-1 and no reduction occurred when Sudan I was incubated with cell extracts. These data indicated for the first time that Shewanella could reduce solid-phase Sudan dye particles. PMID:22456237

Ji, Qiuyan; Liu, Guangfei; Zhou, Jiti; Wang, Jing; Jin, Ruofei; Lv, Hong

2012-06-01

109

Compression of the DNA substrate by a viral packaging motor is supported by removal of intercalating dye during translocation.  

PubMed

Viral genome packaging into capsids is powered by high-force-generating motor proteins. In the presence of all packaging components, ATP-powered translocation in vitro expels all detectable tightly bound YOYO-1 dye from packaged short dsDNA substrates and removes all aminoacridine dye from packaged genomic DNA in vivo. In contrast, in the absence of packaging, the purified T4 packaging ATPase alone can only remove up to ?1/3 of DNA-bound intercalating YOYO-1 dye molecules in the presence of ATP or ATP-?-S. In sufficient concentration, intercalating dyes arrest packaging, but rare terminase mutations confer resistance. These distant mutations are highly interdependent in acquiring function and resistance and likely mark motor contact points with the translocating DNA. In stalled Y-DNAs, FRET has shown a decrease in distance from the phage T4 terminase C terminus to portal consistent with a linear motor, and in the Y-stem DNA compression between closely positioned dye pairs. Taken together with prior FRET studies of conformational changes in stalled Y-DNAs, removal of intercalating compounds by the packaging motor demonstrates conformational change in DNA during normal translocation at low packaging resistance and supports a proposed linear "DNA crunching" or torsional compression motor mechanism involving a transient grip-and-release structural change in B form DNA. PMID:23185020

Dixit, Aparna Banerjee; Ray, Krishanu; Black, Lindsay W

2012-12-11

110

Applicability of waste materials—bottom ash and deoiled soya—as adsorbents for the removal and recovery of a hazardous dye, brilliant green  

Microsoft Academic Search

Deoiled soya, an agricultural waste material, and bottom ash, a waste of power plants, have been successfully used for the removal and recovery of the hazardous water-soluble dye brilliant green from water. To remove the dye from water, batch adsorption studies have been carried out by observing the effects of pH, concentration, amounts of adsorbents, size of adsorbent particles, etc.

Alok Mittal; Dipika Kaur; Jyoti Mittal

2008-01-01

111

Coal ash conversion into effective adsorbents for removal of heavy metals and dyes from wastewater.  

PubMed

Fly ash was modified by hydrothermal treatment using NaOH solutions under various conditions for zeolite synthesis. The XRD patterns are presented. The results indicated that the samples obtained after treatment are much different. The XRD profiles revealed a number of new reflexes, suggesting a phase transformation probably occurred. Both heat treatment and chemical treatment increased the surface area and pore volume. It was found that zeolite P would be formed at the conditions of higher NaOH concentration and temperature. The treated fly ash was tested for adsorption of heavy metal ions and dyes in aqueous solution. It was shown that fly ash and the modified forms could effectively absorb heavy metals and methylene blue but not effectively adsorb rhodamine B. Modifying fly ash with NaOH solution would significantly enhance the adsorption capacity depending on the treatment temperature, time, and base concentration. The adsorption capacity of methylene blue would increases with pH of the dye solution and the sorption capacity of FA-NaOH could reach 5 x 10(-5) mol/g. The adsorption isotherm could be described by the Langmuir and Freundlich isotherm equations. Removal of copper and nickel ions could also be achieved on those treated fly ash. The removal efficiency for copper and nickel ions could be from 30% to 90% depending on the initial concentrations. The increase in adsorption temperature will enhance the adsorption efficiency for both heavy metals. The pseudo second-order kinetics would be better for fitting the dynamic adsorption of Cu and Ni ions. PMID:16310947

Wang, Shaobin; Soudi, Mehdi; Li, Li; Zhu, Z H

2006-05-20

112

Dye biosorption sites in Aspergillus niger  

Microsoft Academic Search

Aspergillus niger is capable of removing dyes from an aqueous solution. In the study, the roles played by three major functional groups: carboxyl, amino and phosphate, and the lipid fraction in the biomass of A. niger in biosorption of four dyes, Basic Blue 9, Acid Blue 29, Congo Red and Disperse Red 1, were investigated. These functional groups in A.

Yuzhu Fu; T Viraraghavan

2002-01-01

113

Removal of arsenite and arsenate ions from aqueous solution by basic yttrium carbonate  

Microsoft Academic Search

A new method has been developed to remove arsenite and arsenate ions from aquatic systems by using basic yttrium carbonate (BYC). Various parameters such as pH, anion concentration and reaction time were studied to establish optimum conditions. The removal by adsorption of arsenite and arsenate ions was found to be > 99% depending on initial concentration in the pH range

Syed A. Wasay; Akira Uchiumi; Shuzo Tokunaga

1996-01-01

114

Acrylic acid grafted cellulosic Luffa cylindrical fiber for the removal of dye and metal ions.  

PubMed

Acrylic acid grafted cellulosic Luffa cylindrical fiber was utilized for the removal of methylene blue and metal ions from the water system using batch process. The grafted sample used was found to demonstrate a maximum grafting efficiency of 90.8% under concentrations of 0.432×10(-3) mol/L, temperature of 35 °C, time of 60 min and pH of 7.0 respectively. The remarkable improvement in thermal properties of the grafted sample was observed. The formation of new bands in FTIR spectra of grafted sample confirmed the grafting of acrylic acid onto the cellulosic fiber. The maximum adsorption capacity of dye onto adsorbent was observed to be 62.15 mg g(-1) at 175 min. A maximum removal of 45.8% was observed for Mg(2+) as compared to other metal ions. High values of correlation coefficient for methylene blue (0.995) and metal ions such as Mg(2+) (0.996), Ni(2+) (0.995), Zn(2+) (0.996) confirmed the applicability of Langmuir isotherm that assumed a monolayer coverage and uniform activity distribution on the adsorbent surface. PMID:23987466

Gupta, Vinod Kumar; Agarwal, Shilpi; Singh, Prerna; Pathania, Deepak

2013-10-15

115

Efficient removal of malachite green dye using biodegradable graft copolymer derived from amylopectin and poly(acrylic acid).  

PubMed

This article reports on the application of a high performance biodegradable adsorbent based on amylopectin and poly(acrylic acid) (AP-g-PAA) for removal of toxic malachite green dye (MG) from aqueous solution. The graft copolymer has been synthesized and characterized using various techniques including FTIR, GPC, SEM and XRD analyses. Biodegradation study suggests that the co-polymer is biodegradable in nature. The adsorbent shows excellent potential (Qmax, 352.11 mg g(-1); 99.05% of MG has been removed within 30 min) for removal of MG from aqueous solution. It has been observed that point to zero charge (pzc) of graft copolymer plays significant role in adsorption efficacy. The adsorption kinetics and isotherm follow pseudo-second order and Langmuir isotherm models, respectively. Thermodynamics parameters suggest that the process of dye uptake is spontaneous. Finally desorption study shows excellent regeneration efficiency of adsorbent. PMID:25037335

Sarkar, Amit Kumar; Pal, Aniruddha; Ghorai, Soumitra; Mandre, N R; Pal, Sagar

2014-10-13

116

Dye Painting!  

ERIC Educational Resources Information Center

This resource provides practical instructions for applying color and design directly to fabric. Basic information about the dye painting process is given. The guide addresses the technical aspects of fabric dye and color use and offers suggestions for fabric manipulation and dye application in order to achieve various design effects. This…

Johnston, Ann

117

Application of Ulva lactuca and Systoceira stricta algae-based activated carbons to hazardous cationic dyes removal from industrial effluents.  

PubMed

Marine algae Ulva lactuca (ULV-AC) and Systoceira stricta (SYS-AC) based activated carbons were investigated as potential adsorbents for the removal of hazardous cationic dyes. Both algae were surface oxidised by phosphoric acid for 2 and subsequently air activated at 600 °C for 3 h. Dyes adsorption parameters such as solution pH, contact time, carbon dosage, temperature and ionic strength were measured in batch experiments. Adsorption capacities of 400 and 526 mg/g for Malachite green and Safranine O by the SYS-AC and ULV-AC respectively were significantly enhanced by the chemical treatments. Model equations such as Langmuir, Freundlich and Temkin isotherms were used to analyse the adsorption equilibrium data and the best fits to the experimental data were provided by the first two isotherm models. BET, FT-IR, iodine number and methylene blue index determination were also performed to characterize the adsorbents. To describe the adsorption mechanism, kinetic models such as pseudo-second-order and the intra particle diffusion were applied. Thermodynamic analysis of the adsorption processes of both dyes confirms their spontaneity and endothermicity. Increasing solution ionic strength increased significantly the adsorption of Safranine O. This study shows that surface modified algae can be an alternative to the commercially available adsorbents for dyes removal from liquid effluents. PMID:23597681

Salima, Attouti; Benaouda, Bestani; Noureddine, Benderdouche; Duclaux, Laurent

2013-06-15

118

Selective TDDFT with automatic removal of ghost transitions: application to a perylene-dye-sensitized solar cell model.  

PubMed

We present an application of a selective time-dependent density-functional theory (TDDFT) scheme to a model for a dye-sensitized solar cell (DSSC) with a perylene sensitizer dye on a TiO(2) nanoparticle model. In an earlier study on this system [De Angelis, Chem. Phys. Lett., 2010, 493, 323], it was reported that a large number of conduction-band excitations severely complicate the identification of the bright ? ? ?* excitations of the perylene dye. Here, we show that this problem can be overcome by applying a selective TDDFT solver based on a guess for the relevant orbital transition in combination with a suitable root-homing scheme. In order to enhance the efficiency of this algorithm we implement an automatic removal scheme for artificially low-lying long-range charge-transfer transitions from the TDDFT eigenvalue problem. A large number of such transitions appear in explicitly solvated systems in the form of inter-solvent or solvent-solute transitions. We study the characteristics of this removal scheme for a small water cluster and then apply it in a TDDFT calculation to a perylene-TiO(2) nanoparticle model system and to perylene explicitly solvated in methanol. It is demonstrated that this scheme leads to a large reduction in the computational cost with essentially no loss in accuracy. Large differences in the effect of adsorption on the excited states of perylene dyes with two different anchor groups found in earlier work are confirmed. PMID:22617938

Kovyrshin, Arseny; Angelis, Filippo De; Neugebauer, Johannes

2012-05-23

119

Performance of dye-affinity beads for aluminium removal in magnetically stabilized fluidized bed  

PubMed Central

Background Aluminum has recently been recognized as a causative agent in dialysis encephalopathy, osteodystrophy, and microcytic anemia occurring in patients with chronic renal failure who undergo long-term hemodialysis. Only a small amount of Al(III) in dialysis solutions may give rise to these disorders. Methods Magnetic poly(2-hydroxyethyl methacrylate) (mPHEMA) beads in the size range of 80–120 ?m were produced by free radical co-polymerization of HEMA and ethylene dimethacrylate (EDMA) in the presence of magnetite particles (Fe3O4). Then, metal complexing ligand alizarin yellow was covalently attached onto mPHEMA beads. Alizarin yellow loading was 208 ?mol/g. These beads were used for the removal of Al(III) ions from tap and dialysis water in a magnetically stabilized fluidized bed. Results Al(III) adsorption capacity of the beads decreased with an increase in the flow-rate. The maximum Al(III) adsorption was observed at pH 5.0. Comparison of batch and magnetically stabilized fluidized bed (MSFB) maximum capacities determined using Langmuir isotherms showed that dynamic capacity (17.5 mg/g) was somewhat higher than the batch capacity (11.8 mg/g). The dissociation constants for Al(III) were determined using the Langmuir isotherm equation to be 27.3 mM (MSFB) and 6.7 mM (batch system), indicating medium affinity, which was typical for pseudospecific affinity ligands. Al(III) ions could be repeatedly adsorbed and desorbed with these beads without noticeable loss in their Al(III) adsorption capacity. Conclusions Adsorption of Al(III) demonstrate the affinity of magnetic dye-affinity beads. The MSFB experiments allowed us to conclude that this inexpensive sorbent system may be an important alternative to the existing adsorbents in the removal of aluminium. PMID:15329149

Yavuz, Handan; Say, Ridvan; Andaç, Müge; Bayraktar, Necmi; Denizli, Adil

2004-01-01

120

Processing fly ash stabilized hydrogen titanate nano-sheets for industrial dye-removal application.  

PubMed

We report a new method for the processing of fly ash (FA) stabilized hydrogen titanate nano-sheets in the form of aggregated microspheres. The industrial silica-based FA has been utilized for this purpose which has been surface-modified by coating with the anatase-titania (TiO(2)) via sol-gel. The anatase-TiO(2) coated FA particles are subjected to the hydrothermal treatment in an autoclave under high temperature and pressure conditions in a highly alkaline solution. The hydrothermal conditions cause dissolution of silica resulting in the disintegration of other constituents of FA which are adsorbed in ionic and/or oxidized form on the surface of intermediate product of the hydrothermal treatment of anatase-TiO(2), specifically the hydrogen titanate. The adsorption of FA constituents has resulted in the stabilization of hydrogen titanate in the nano-sheet morphology instead of nanotubes. The FA stabilized hydrogen titanate nano-sheets exhibit higher specific surface-area than that of the hydrogen titanate nanotubes and have been successfully utilized for the removal of an organic synthetic-dye from an aqueous solution via surface-adsorption, involving the electrostatic-attraction and ion-exchange mechanisms operating, in the dark-condition. PMID:22717069

Hareesh, P; Babitha, K B; Shukla, S

2012-08-30

121

Removal of Synthetic Textile Dyes From Wastewaters: A Critical Review on Present Treatment Technologies  

Microsoft Academic Search

Azo dyes represent the largest class of industrial colorants. These are no longer used only for the coloration of textiles, plastics, paints, inks, and lacquers, but rather serve as key components in high-tech applications such as optical data storage, reprographics, display devices, dye-sensitized solar cells, energy transfer cascades, light-emitting diodes, laser welding processes, or heat management systems. Azo dyes are

Kamaljit Singh; Sucharita Arora

2011-01-01

122

Removal of dyes from aqueous solutions by cellulosic waste orange peel  

Microsoft Academic Search

The adsorption of dyes such as congo red, procion orange and rhodamine-B by waste orange peel was examined at different concentrations of dyes, adsorbent dosage, agitation time and pH. The adsorption obeyed both the Langmuir and Freundlich isotherms and the process of uptake followed first-order rate kinetics. Acidic pH was favourable for adsorption for all three dyes. Desorption studies showed

C. Namasivayam; N. Muniasamy; K. Gayatri; M. Rani; K. Ranganathan

1996-01-01

123

Adsorption of basic dye from wastewater using raw and activated red mud  

Microsoft Academic Search

Red mud, an industrial by?product generated during the processing of bauxite ore, was investigated as an inexpensive and effective adsorbent for the adsorption of methylene blue from aqueous solution. Chemical and heat treatments were applied to the raw red mud. The effects of contact time, adsorbent amount, pH, temperature and initial dye concentration were investigated. The adsorption isotherm and kinetics

Semra Çoruh; Feza Geyikçi; Osman Nuri Ergun

2011-01-01

124

Effectiveness of photochemical and sonochemical processes in degradation of Basic Violet 16 (BV16) dye from aqueous solutions  

PubMed Central

In this study, degradation of Basic Violet 16 (BV16) by ultraviolet radiation (UV), ultrasonic irradiation (US), UV/H2O2 and US/H2O2 processes was investigated in a laboratory-scale batch photoreactor equipped with a 55W immersed-type low-pressure mercury vapor lamp and a sonoreactor with high frequency (130kHz) plate type transducer at 100W of acoustic power. The effects of initial dye concentration, concentration of H2O2 and solution pH and presence of Na2SO4 was studied on the sonochemical and photochemical destruction of BV16 in aqueous phase. The results indicated that in the UV/H2O2 and US/H2O2 systems, a sufficient amount of H2O2 was necessary, but a very high H2O2 concentration would inhibit the reaction rate. The optimum H2O2 concentration was achieved in the range of 17 mmol/L at dye concentration of 30 mg/L. A degradation of 99% was obtained with UV/H2O2 within 8 minutes while decolorization efficiency by using UV (23%), US (<6%) and US/H2O2(<15%) processes were negligible for this kind of dye. Pseudo-first order kinetics with respect to dyestuffs concentrations was found to fit all the experimental data. PMID:23369268

2012-01-01

125

Effectiveness of photochemical and sonochemical processes in degradation of Basic Violet 16 (BV16) dye from aqueous solutions.  

PubMed

In this study, degradation of Basic Violet 16 (BV16) by ultraviolet radiation (UV), ultrasonic irradiation (US), UV/H2O2 and US/H2O2 processes was investigated in a laboratory-scale batch photoreactor equipped with a 55W immersed-type low-pressure mercury vapor lamp and a sonoreactor with high frequency (130kHz) plate type transducer at 100W of acoustic power. The effects of initial dye concentration, concentration of H2O2 and solution pH and presence of Na2SO4 was studied on the sonochemical and photochemical destruction of BV16 in aqueous phase. The results indicated that in the UV/H2O2 and US/H2O2 systems, a sufficient amount of H2O2 was necessary, but a very high H2O2 concentration would inhibit the reaction rate. The optimum H2O2 concentration was achieved in the range of 17 mmol/L at dye concentration of 30 mg/L. A degradation of 99% was obtained with UV/H2O2 within 8 minutes while decolorization efficiency by using UV (23%), US (<6%) and US/H2O2(<15%) processes were negligible for this kind of dye. Pseudo-first order kinetics with respect to dyestuffs concentrations was found to fit all the experimental data. PMID:23369268

Rahmani, Zahra; Kermani, Majid; Gholami, Mitra; Jafari, Ahmad Jonidi; Mahmoodi, Niyaz Mohammad

2012-01-01

126

Removal of malachite green dye from aqueous solution by adsorption using agro-industry waste: a case study of Prosopis cineraria  

Microsoft Academic Search

Adsorbents prepared from Prosopis Cineraria sawdust—an agro-industry waste—were successfully used to remove the malachite green from an aqueous solution in a batch reactor. The adsorbents included formaldehyde-treated sawdust (PCSD) and sulphuric acid-treated sawdust (PCSDC). The effects of adsorbent surface change, initial pH, initial dye concentration, adsorbent mass and contact time on dye removal have been determined. Similar experiments were carried

V. K Garg; Rakesh Kumar; Renuka Gupta

2004-01-01

127

Sunflower seed shells: A novel and effective low-cost adsorbent for the removal of the diazo dye Reactive Black 5 from aqueous solutions  

Microsoft Academic Search

In this paper, the potential of two low-cost adsorbents such as sunflower seed shells (SS) and mandarin peelings (MP) in the removal of the synthetic anionic dye Reactive Black 5 (RB5) from aqueous solutions was investigated. SS led to a percentage of dye removal higher than MP (85% and 71% after 210min, respectively, for an initial RB5 concentration of 50mgL?1

Johann F. Osma; Verónica Saravia; José L. Toca-Herrera; Susana Rodríguez Couto

2007-01-01

128

Adsorptive removal of acid blue 113 and tartrazine by fly ash from single and binary dye solutions  

SciTech Connect

Adsorption of two acid dyestuffs, acid blue 113 (AB) and tartrazine (TA), has been studied from their single and binary solutions by using fly ash (FA) as an adsorbent. The S shaped isotherms observed for dye adsorption from single solutions show that both acid dyes are not preferred at a low concentration region whereas adsorption of the dyes from binary solutions is enhanced via solute-solute interactions. Although the L-shaped isotherm is observed in binary solutions adsorbability of AB decreases in concentrated solutions with respect to single one, time dependency of adsorption is well described with a pseudo-second-order kinetic model as well as the linear relation of Bt vs. t plots (not passing through origin) indicates that film diffusion is effective on dye adsorption. Modeled isotherm curves using isotherm parameters of the Freundlich and Dubinin-Radushkevich (D-R) equations adequately fit to experimental equilibrium data. Equilibrium adsorption of AB in binary solutions has been quite well predicted by the extended Freundlich and the Sheindorf-Rebuhn-Sheintuch (SRS) models. In general, the isotherm curves constructed in the temperature range of 298-328K show that the optimum temperature is 318K for AB removal from both single and binary solutions.

Pura, S.; Atun, G. [Istanbul University, Avcilar (Turkey). Dept. of Chemistry

2009-07-01

129

Free amino and imino-bridged centres attached to organic chains bonded to structurally ordered silica for dye removal from aqueous solution.  

PubMed

Ordered mesoporous SBA-15 type silica was synthesized by sol gel polymerization and reacted with 3-aminopropyltriethoxysilane (AP) or triethylenetetramine (TE), to attach pendant chains or bridging molecules, with basic centres. The materials were characterized by elemental analysis, infrared spectroscopy, and nuclear magnetic resonance in the solid state, X-ray diffractometry, scanning and transmission electron microscopy. The nitrogen sorption/desorption data for SBA-15 and the organofunctionalized SBA-15AP and SBA-15TE silicas resulted in IV type isotherms with hysteresis loops of the H1 type, surface areas of 800; 213 and 457 m(2) g(-1) and average pore diameters of 8.0; 3.2 and 6.8 nm, respectively. The ordered structural features of the mesoporous silica remained preserved after post-functionalization with pendant and bridged organic chains. Sorption data for organofunctionalized silicas gave highly selective sorption capacities for anionic water soluble Reactive Blue dye, with 0.064 and 0.072 mmol g(-1). Negligible sorption was observed with the unmodified mesoporous silica. The results suggest that organofunctionalized silica can be a simple, efficient, inexpensive and suitable method for the effective and selective removal of anionic organic dye pollutants from aqueous solutions. PMID:24374243

Rehman, Fozia; Volpe, Pedro L O; Airoldi, Claudio

2014-01-15

130

Application of acidic treated pumice as an adsorbent for the removal of azo dye from aqueous solutions: kinetic, equilibrium and thermodynamic studies.  

PubMed

Colored effluents are one of the important environment pollution sources since they contain unused dye compounds which are toxic and less-biodegradable. In this work removal of Acid Red 14 and Acid Red 18 azo dyes was investigated by acidic treated pumice stone as an efficient adsorbent at various experimental conditions. Removal of dye increased with increase in contact time and initial dye concentration, while decreased for increment in solution temperature and pH. Results of the equilibrium study showed that the removal of AR14 and AR18 followed Freundlich (r2>0.99) and Langmuir (r2>0.99) isotherm models. Maximum sorption capacities were 3.1 and 29.7 mg/g for AR 14 and AR18, namely significantly higher than those reported in the literature, even for activated carbon. Fitting of experimental data onto kinetic models showed the relevance of the pseudo-second order (r2>0.99) and intra-particle diffusion (r2>0.98) models for AR14 and AR18, respectively. For both dyes, the values of external mass transfer coefficient decreased for increasing initial dye concentrations, showing increasing external mass transfer resistance at solid/liquid layer. Desorption experiments confirmed the relevance of pumice stone for dye removal, since the pH regeneration method showed 86% and 89% regeneration for AR14 and AR18, respectively. PMID:23369579

Samarghandi, Mohammad Reza; Zarrabi, Mansur; Sepehr, Mohammad Noori; Amrane, Abdeltif; Safari, Gholam Hossein; Bashiri, Saied

2012-01-01

131

Application of acidic treated pumice as an adsorbent for the removal of azo dye from aqueous solutions: kinetic, equilibrium and thermodynamic studies  

PubMed Central

Colored effluents are one of the important environment pollution sources since they contain unused dye compounds which are toxic and less-biodegradable. In this work removal of Acid Red 14 and Acid Red 18 azo dyes was investigated by acidic treated pumice stone as an efficient adsorbent at various experimental conditions. Removal of dye increased with increase in contact time and initial dye concentration, while decreased for increment in solution temperature and pH. Results of the equilibrium study showed that the removal of AR14 and AR18 followed Freundlich (r2>0.99) and Langmuir (r2>0.99) isotherm models. Maximum sorption capacities were 3.1 and 29.7 mg/g for AR 14 and AR18, namely significantly higher than those reported in the literature, even for activated carbon. Fitting of experimental data onto kinetic models showed the relevance of the pseudo-second order (r2>0.99) and intra-particle diffusion (r2>0.98) models for AR14 and AR18, respectively. For both dyes, the values of external mass transfer coefficient decreased for increasing initial dye concentrations, showing increasing external mass transfer resistance at solid/liquid layer. Desorption experiments confirmed the relevance of pumice stone for dye removal, since the pH regeneration method showed 86% and 89% regeneration for AR14 and AR18, respectively. PMID:23369579

2012-01-01

132

Removal of heavy metals and dyes by supported nano zero-valent iron on barium ferrite microfibers.  

PubMed

The binary nano zero-valent iron/barium ferrite (NZVI/BFO) microfibers with uniform diameters and high porosity were prepared by the organic gel-thermal selective reduction process. The composite microfibers are fabricated from nano zero-valent iron and nano BaFe12O19 grains. The effects of pH, adsorbent dosage, and contact time on the adsorption of heavy metals and dyes have been investigated. The adsorption isotherms of heavy metals and dyes on the microfibers are well described by the Langmuir model, in which the estimated adsorption capacities are 14.5, 29.9, 68.3 and 110.4 mg/g for Pb(II), As(V), Congo red and methylene blue, respectively. After five cycles, these microfibers still exhibit a high removal efficiency for As(V), Pb(II), Congo red and methylene blue. The enhanced adsorption characteristics can be attributed to the porous structure, strong surface activity and electronic hopping. Therefore, the magnetic NZVI/BFO microfibers can be used as an efficient, fast and high capacity adsorbent for heavy metals and dyes removal. PMID:24758012

Yang, Xinchun; Shen, Xiangqian; Jing, Maoxiang; Liu, Ruijiang; Lu, Yi; Xiang, Jun

2014-07-01

133

Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments  

Microsoft Academic Search

This paper reports on photocatalytic and adsorptive treatment of a hazardous xanthene dye, Rohdamine B, in wastewater. The photocatalytic degradation was carried out in the presence of the catalyst TiO2 and the effects of pH, concentration of the dye, amount of TiO2, temperature and electron acceptor H2O2 on the degradation process were observed. It was found that photocatalytic degradation by

Rajeev Jain; Megha Mathur; Shalini Sikarwar; Alok Mittal

2007-01-01

134

Dissolved organic matter removal using magnetic anion exchange resin treatment on biological effluent of textile dyeing wastewater.  

PubMed

This study investigated the removal of dissolved organic matter (DOM) from real dyeing bio-treatment effluents (DBEs) with the use of a novel magnetic anion exchange resin (NDMP). DOMs in two typical DBEs were fractionized using DAX-8/XAD-4 resin and ultrafiltration membranes. The hydrophilic fractions and the low molecular weight (MW) (<3kDa) DOM fractions constituted a major portion (>50%) of DOMs for the two effluents. The hydrophilic and low MW fractions of both effluents were the greatest contributors of specific UV254 absorbance (SUVA254), and the SUVA254 of DOM fractions decreased with hydrophobicity and MW. Two DBEs exhibited acute and chronic biotoxicities. Both acute and chronic toxicities of DOM fractions increased linearly with the increase of SUVA254 value. Kinetics of dissolved organic carbon (DOC) removal via NDMP treatment was performed by comparing it with that of particle active carbon (PAC). Results indicated that the removal of DOC from DBEs via NDMP was 60%, whereas DOC removals by PAC were lower than 15%. Acidic organics could be significantly removed with the use of NDMP. DOM with large MW in DBE could be removed significantly by using the same means. Removal efficiency of NDMP for DOM decreased with the decrease of MW. Compared with PAC, NDMP could significantly reduce the acute and chronic bio-toxicities of DBEs. NaCl/NaOH mixture regenerants, with selected concentrations of 10% NaCl (m/m)/1% NaOH (m/m), could improve desorption efficiency. PMID:25108712

Fan, Jun; Li, Haibo; Shuang, Chendong; Li, Wentao; Li, Aimin

2014-08-01

135

Basic ultrasound training can replace chest radiography for safe tube thoracostomy removal.  

PubMed

An ultrasound (US) examination can be easily and rapidly performed at the bedside to aide in clinical decisions. Previously we demonstrated that US was safe and as effective as a chest x-ray (CXR) for removal of tube thoracostomy (TT) when performed by experienced sonographers. This study sought to examine if US was as safe and accurate for the evaluation of pneumothorax (PTX) associated with TT removal after basic US training. Patients included had TT managed by the surgical team between October 2012 and May 2013. Bedside US was performed by a variety of members of the trauma team before and after removal. All residents received, at minimum, a 1-hour formal training class in the use of ultrasound. Data were collected from the electronic medical records. We evaluated 61 TTs in 61 patients during the study period. Exclusion of 12 tubes occurred secondary to having incomplete imaging, charting, or death before having TT removed. Of the 49 remaining TT, all were managed with US imaging. Average age of the patients was 40 years and 30 (61%) were male. TT was placed for PTX in 37 (76%), hemothorax in seven (14%), hemopneumothorax in four (8%), or a pleural effusion in one (2%). Two post pull PTXs were correctly identified by residents using US. This was confirmed on CXR with appropriate changes made. US was able to successfully predict the safe TT removal and patient discharge at all residency levels after receiving a basic US training program. PMID:25105398

Lavingia, Kedar S; Soult, Michael C; Collins, Jay N; Novosel, Timothy J; Weireter, Leonard J; Britt, L D

2014-08-01

136

Resonant Rayleigh scattering for the determination of trace amounts of mercury (II) with thiocyanate and basic triphenylmethane dyes  

SciTech Connect

Intense resonance Rayleigh scattering (RRS) appears when mercury (II) reacts with thiocyanate and a basic triphenylmethane dye (BTPMD), such as crystal violet (CV), ethyl violet (EV), brilliant green (BG), malachite green (MG) or indine green (IG), to form an ion-association complex of the type (BTPMD){sub 2}[Hg(SCN){sub 4}]. The characteristics of RRS spectra of the ion-association complexes and suitable conditions for the reactions were investigated. The intensity of RRS is directly proportional to the concentration of mercury (II) in the range of 0--2.0 {micro}g/25 ml. The RRS methods have very high sensitivities for determination of mercury (II); their detection limits are between 1.68 ng/ml and 6.00 ng/ml on different dye systems. The effects of foreign ions and ways to improve the selectivity were studied. The new highly sensitive methods for the determination of trace amounts of mercury based on the RRS of the ion-association complexes have been developed.

Liu, S.; Liu, Z.; Zhou, G. [Southwest Normal Univ., Chongqing (China). Inst. of Environmental Chemistry

1998-05-01

137

Sonocatalytic removal of an organic dye using TiO2/Montmorillonite nanocomposite.  

PubMed

The sonocatalytic performance of the synthesized TiO2/Montmorillonite K10 (TiO2/MMT) nanocomposite was studied in removal of Basic Blue 3 (BB3) from water. The TiO2/MMT nanocomposite was prepared by hydrothermal method. Scanning electron microscope, X-ray diffraction and Fourier transform infrared were used to characterize the synthesized nanocomposite. The average size of TiO2 nanoparticles decreased from 60-80nm to 40-60nm through the immobilization of this semiconductor on the surface of MMT. The obtained results indicated that the sonocatalytic activity of TiO2/MMT nanocomposite was higher than that of pure TiO2 nanoparticles and MMT particles. Furthermore, the main influence factors on the sonocatalytic activity such as the BB3 concentration, pH of solution, TiO2/MMT dose, power of ultrasonic generator, and inorganic salts were studied. The intermediates of BB3 degradation during the sonocatalytic process in the presence of the TiO2/MMT nanocomposite have been monitored by gas chromatography-mass spectrometry. PMID:25060118

Khataee, Alireza; Sheydaei, Mohsen; Hassani, Aydin; Taseidifar, Mojtaba; Karaca, Semra

2015-01-01

138

Ozone for Dye Waste Color Removal: Four Years Operation at Leek STW  

Microsoft Academic Search

The problems caused by discharges of colored dye waste into the sewer are described. Coloration of the River Churnet by the Leek Sewage Treatment Works (STW) effluent necessitated the setting of color discharge consent conditions by the National Rivers Authority (now the Environment Agency). These and other tightened consent conditions led to the planning of a major works extension to

J. H. Churchley

1998-01-01

139

Reactive dyes removal from wastewaters by adsorption on eucalyptus bark: variables that define the process  

Microsoft Academic Search

An attempt to help solving the pollution problem caused by the presence of reactive dyes in textile effluents, was undertaken. Owing to the fact that eucalyptus bark is a very abundant, inexpensive, forest residue in the authors' country, Portugal, it was decided to experiment with it as a potential adsorbent for a certain type of the supracited pollutants used in

L. C Morais; O. M Freitas; E. P Gonçalves; L. T Vasconcelos; C. G González Beça

1999-01-01

140

Utilization of modified silk cotton hull waste as an adsorbent for the removal of textile dye (reactive blue MR) from aqueous solution.  

PubMed

Carbon prepared from silk cotton hull was used to remove a textile dye (reactive blue MR) from aqueous solution by an adsorption technique under varying conditions of agitation time, dye concentration, adsorbent dose and pH. Adsorption depended on solution pH, dye concentration, carbon concentration and contact time. Equilibrium was attained with in 60 min. Adsorption followed both Langmuir and Freundlich isotherm models. The adsorption capacity was found to be 12.9 mg/g at an initial pH of 2+/-0.2 for the particle size of 125-250 microm at room temperature (30+/-2 degrees C). PMID:16831547

Thangamani, K S; Sathishkumar, M; Sameena, Y; Vennilamani, N; Kadirvelu, K; Pattabhi, S; Yun, S E

2007-04-01

141

Superwetting double-layer polyester materials for effective removal of both insoluble oils and soluble dyes in water.  

PubMed

Inspired by the mussel adhesive protein and the lotus leaf, Ag-based double-layer polyester (DL-PET) textiles were fabricated for effective removal of organic pollutants in water. The DL-PET textiles are composed of a top superamphiphilic layer and a bottom superhydrophobic/superoleophilic layer. First, the PET textiles were modified with a layer of polydopamine (PDA) and deposited with Ag nanoparticles to form the PET@PDA@Ag textiles. The top superamphiphilic layer, formed by immobilizing Ag3PO4 nanoparticles on the PET@PDA@Ag textile, shows excellent visible-light photocatalytic activity. The bottom superhydrophobic/superoleophilic layer, formed by modifying the PET@PDA@Ag textile using dodecyl mercaptan, is mechanically, environmentally, and chemically very stable. The water-insoluble oils with low surface tension can penetrate both layers of the DL-PET textiles, while the water with soluble organic dyes can only selectively wet the top layer owing to their unique wettability. Consequently, the water-soluble organic contaminants in the collected water can be decomposed by the Ag3PO4 nanoparticles of the top layer under visible-light irradiation or even sunlight in room conditions. Thus, the DL-PET textiles can remove various kinds of organic pollutants in water including both insoluble oils and soluble dyes. The DL-PET textiles feature unique wettability, high oil/water separation efficiency, and visible-light photocatalytic activity. PMID:24956183

Li, Bucheng; Wu, Lei; Li, Lingxiao; Seeger, Stefan; Zhang, Junping; Wang, Aiqin

2014-07-23

142

A new absorbent by modifying walnut shell for the removal of anionic dye: kinetic and thermodynamic studies.  

PubMed

A novel, low cost and easy regeneration biosorbent, chem-modified walnut shell (MWNS), was studied to investigate its potential for removal of an anionic dye, reactive brilliant red K-2BP. The MWNS was synthesized with epichlorohydrin and diethylenetriamine as etherifying agent and crosslinking agent, respectively, and its characteristics were performed with Fourier transform infrared spectroscopy, scanning electron microscope, electron dispersive spectroscopy and thermogravimetric analysis. The influences of pH (0.5-11) and adsorbent dosage (0.1-6g/L) on adsorption capacity of MWNS were evaluated. The maximum K-2BP adsorption capacities (Qm) calculated by best fitting model (Langmuir) were 568.18 mg/g at 313 K, which was almost 10 times than that of raw material. The adsorption kinetic was well confirmed with pseudo-second-order equation. Thermodynamic studies demonstrated adsorption process by MWNS was spontaneous and endothermic. Furthermore, the regeneration capability of MWNS implied MWNS was a cheap, excellent and promising biosorbent for K-2BP removal in azo dye wastewater treatment. PMID:24813388

Cao, Jia-Shun; Lin, Jun-Xiong; Fang, Fang; Zhang, Ming-Ting; Hu, Zhi-Rong

2014-07-01

143

High adsorption capacity NaOH-activated carbon for dye removal from aqueous solution.  

PubMed

In this study, the surface coverage ratio (Sc/Sp) and monolayer cover adsorption amount per unit surface area (qmon/Sp) were employed to investigate the adsorption isotherm equilibrium of the adsorption of dyes (AB74, BB1 and MB) on NaOH-activated carbons (FWNa2, FWNa3 and FWNa4); the adsorption rate of the Elovich equation (1/b) and the ratio of 1min adsorption amount of adsorbate to the monolayer cover amount of adsorbate (q1/qmon) were employed to investigate adsorption kinetics. The qmon/Sp of NaOH-activated carbons was better than that of KOH-activated carbons prepared from the same raw material (fir wood). The Sc/Sp values of the adsorption of all adsorbates on adsorbent FWNa3 in this study were found to be higher than those in related literature. Parameters 1/b and q1 of the adsorption of dyes on activated carbons in this study were higher than those on KOH-activated carbons; the q1/qmon value of FWNa3 was the highest. The pore structure and the TPD measurement of the surface oxide groups were employed to explain the superior adsorption performance of FWNa3. A high surface activated carbon (FWNa3) with excellent adsorption performance on dyes with relation to adsorption isotherm equilibrium and kinetics was obtained in this study. Several adsorption data processing methods were employed to describe the adsorption performance. PMID:17826897

Wu, Feng-Chin; Tseng, Ru-Ling

2008-04-15

144

Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions.  

PubMed

Activated carbons were prepared from the agricultural solid wastes, silk cotton hull, coconut tree sawdust, sago waste, maize cob and banana pith and used to eliminate heavy metals and dyes from aqueous solution. Adsorption of all dyes and metal ions required a very short time and gave quantitative removal. Experimental results show all carbons were effective for the removal of pollutants from water. Since all agricultural solid wastes used in this investigation are freely, abundantly and locally available, the resulting carbons are expected to be economically viable for wastewater treatment. PMID:12733586

Kadirvelu, K; Kavipriya, M; Karthika, C; Radhika, M; Vennilamani, N; Pattabhi, S

2003-03-01

145

Removal of malachite green dye from wastewater by different organic acid-modified natural adsorbent: kinetics, equilibriums, mechanisms, practical application, and disposal of dye-loaded adsorbent.  

PubMed

Natural adsorbent (Cinnamomum camphora sawdust) modified by organic acid (oxalic acid, citric acid, and tartaric acid) was investigated as a potential adsorbent for the removal of hazardous malachite green (MG) dye in aqueous media in a batch process. The extent of MG adsorption onto modified sawdust increased with increasing organic acid concentrations, pH, contact time, and temperature but decreased with increasing adsorbent dosage and ionic strength. Kinetic study indicated that the pseudo-second-order kinetic model could best describe the adsorption kinetics of MG. Equilibrium data were found to fit well with the Langmuir model, and the maximum adsorption capacity of the three kinds of organic acid-modified sawdust was 280.3, 222.8, and 157.5 mg/g, respectively. Thermodynamic parameters suggested that the sorption of MG was an endothermic process. The adsorption mechanism, the application of adsorbents in practical wastewater, the prediction of single-stage batch adsorption system, and the disposal of depleted adsorbents were also discussed. PMID:25028314

Wang, Hou; Yuan, Xingzhong; Zeng, Guangming; Leng, Lijian; Peng, Xin; Liao, Kailingli; Peng, Lijuan; Xiao, Zhihua

2014-10-01

146

Nano-silica fabricated with silver nanoparticles: antifouling adsorbent for efficient dye removal, effective water disinfection and biofouling control  

NASA Astrophysics Data System (ADS)

A nano-silica-AgNPs composite material is proposed as a novel antifouling adsorbent for cost-effective and ecofriendly water purification. Fabrication of well-dispersed AgNPs on the nano-silica surface, designated as NSAgNP, has been achieved through protein mediated reduction of silver ions at ambient temperature for development of sustainable nanotechnology. The coated proteins on AgNPs led to the formation of stable NSAgNP and protected the AgNPs from oxidation and other ions commonly present in water. The NSAgNP exhibited excellent dye adsorption capacity both in single and multicomponent systems, and demonstrated satisfactory tolerance against variations in pH and dye concentration. The adsorption mainly occurred through electrostatic interaction, though ?-? interaction and pore diffusion also contributed to the process. Moreover, the NSAgNP showed long-term antibacterial activity against both planktonic cells and biofilms of Gram-negative Escherichia coli and Pseudomonas aeruginosa. The antibacterial activity of AgNPs retarded the initial attachment of bacteria on NSAgNP and thus significantly improved the antifouling properties of the nanomaterial, which further inhibited biofilm formation. Scanning electron and fluorescence microscopic studies revealed that cell death occurred due to irreversible damage of the cell membrane upon electrostatic interaction of positively charged NSAgNP with the negatively charged bacterial cell membrane. The high adsorption capacity, reusability, good tolerance, removal of multicomponent dyes and E. coli from the simulated contaminated water and antifouling properties of NSAgNP will provide new opportunities to develop cost-effective and ecofriendly water purification processes.A nano-silica-AgNPs composite material is proposed as a novel antifouling adsorbent for cost-effective and ecofriendly water purification. Fabrication of well-dispersed AgNPs on the nano-silica surface, designated as NSAgNP, has been achieved through protein mediated reduction of silver ions at ambient temperature for development of sustainable nanotechnology. The coated proteins on AgNPs led to the formation of stable NSAgNP and protected the AgNPs from oxidation and other ions commonly present in water. The NSAgNP exhibited excellent dye adsorption capacity both in single and multicomponent systems, and demonstrated satisfactory tolerance against variations in pH and dye concentration. The adsorption mainly occurred through electrostatic interaction, though ?-? interaction and pore diffusion also contributed to the process. Moreover, the NSAgNP showed long-term antibacterial activity against both planktonic cells and biofilms of Gram-negative Escherichia coli and Pseudomonas aeruginosa. The antibacterial activity of AgNPs retarded the initial attachment of bacteria on NSAgNP and thus significantly improved the antifouling properties of the nanomaterial, which further inhibited biofilm formation. Scanning electron and fluorescence microscopic studies revealed that cell death occurred due to irreversible damage of the cell membrane upon electrostatic interaction of positively charged NSAgNP with the negatively charged bacterial cell membrane. The high adsorption capacity, reusability, good tolerance, removal of multicomponent dyes and E. coli from the simulated contaminated water and antifouling properties of NSAgNP will provide new opportunities to develop cost-effective and ecofriendly water purification processes. Electronic supplementary information (ESI) available: Other experimental details and additional results. See DOI: 10.1039/c3nr00856h

Das, Sujoy K.; Khan, Md. Motiar R.; Parandhaman, T.; Laffir, Fathima; Guha, Arun K.; Sekaran, G.; Mandal, Asit Baran

2013-05-01

147

Nano-silica fabricated with silver nanoparticles: antifouling adsorbent for efficient dye removal, effective water disinfection and biofouling control.  

PubMed

A nano-silica-AgNPs composite material is proposed as a novel antifouling adsorbent for cost-effective and ecofriendly water purification. Fabrication of well-dispersed AgNPs on the nano-silica surface, designated as NSAgNP, has been achieved through protein mediated reduction of silver ions at ambient temperature for development of sustainable nanotechnology. The coated proteins on AgNPs led to the formation of stable NSAgNP and protected the AgNPs from oxidation and other ions commonly present in water. The NSAgNP exhibited excellent dye adsorption capacity both in single and multicomponent systems, and demonstrated satisfactory tolerance against variations in pH and dye concentration. The adsorption mainly occurred through electrostatic interaction, though ?-? interaction and pore diffusion also contributed to the process. Moreover, the NSAgNP showed long-term antibacterial activity against both planktonic cells and biofilms of Gram-negative Escherichia coli and Pseudomonas aeruginosa. The antibacterial activity of AgNPs retarded the initial attachment of bacteria on NSAgNP and thus significantly improved the antifouling properties of the nanomaterial, which further inhibited biofilm formation. Scanning electron and fluorescence microscopic studies revealed that cell death occurred due to irreversible damage of the cell membrane upon electrostatic interaction of positively charged NSAgNP with the negatively charged bacterial cell membrane. The high adsorption capacity, reusability, good tolerance, removal of multicomponent dyes and E. coli from the simulated contaminated water and antifouling properties of NSAgNP will provide new opportunities to develop cost-effective and ecofriendly water purification processes. PMID:23680871

Das, Sujoy K; Khan, Md Motiar R; Parandhaman, T; Laffir, Fathima; Guha, Arun K; Sekaran, G; Mandal, Asit Baran

2013-06-21

148

Laser-induced removal of a dye C.I. Acid Red 87 using n-type WO3 semiconductor catalyst.  

PubMed

Water contamination by organic substances such as dyes is of great concern worldwide due to their utilization in many industrial processes and environmental concerns. To cater the needs for waste water treatment polluted with organic dyes, laser-induced photocatalytic process was investigated for removal of a dye derivative namely Acid Red 87 using n-type WO3 semiconductor catalyst. The degradation was investigated in aqueous suspensions of tungsten oxide under different experimental conditions using laser instead of conventional UV lamp as an irradiation source. The degradation process was monitored by measuring the change in dye concentration as a function of laser irradiation time by employing UV spectroscopic analysis. The degradation of dye was studied by varying different parameters such as laser energy, reaction pH, substrate concentration, catalyst concentration, and in the presence of electron acceptors such as hydrogen peroxide (H2O2), and potassium bromate (KBrO3). The degradation rates were found to be strongly dependent on all the above-mentioned parameters. Our experimental results revealed that the dye degradation process was very fast (within few minutes) under laser irradiation as compared to conventional setups using broad spectral lamps (hours or days) and this laser-induced photocatalytic degradation method could be an effective means to eliminate the pollutants present in liquid phase. The experience gained through this study could be beneficial for treatment of waste water contaminated with organic dyes and other organic pollutants. PMID:19540669

Qamar, M; Gondal, M A; Hayat, K; Yamani, Z H; Al-Hooshani, K

2009-10-30

149

Fused perylene-phthalocyanine macrocycles: a new family of NIR-dyes with pronounced basicity.  

PubMed

The synthesis and characterization of a new type of chromophore, namely PePc consisting of a central phthalocyanine core and four fused perylene-bisimide (PBI) units is described for the first time. The entire architecture represents a highly extended conjugated heterocyclic ?-system with C4h symmetry. In order to guarantee pronounced solubility in organic solvents the corresponding PBI units were bay-functionalized with tert-butylphenoxy substituents. Next to the metal-free macrocycle, PePcH2 , also metallated macrocycles PePcM (M=Zn, Ni, Pb, Ru, Fe) were synthesized. The extensive fusion of the corresponding aromatic building blocks to the very large extended ?-system leads to a very narrow HOMO-LUMO gap and as a consequence to transparency in the visible but light absorption in the NIR region. Significantly, the azomethine N-atoms N1?N4 of PePcM and PePcH2 are highly basic. The corresponding tetraprotonated systems can only be deprotonated with very strong non-nucleophilic bases such as phosphazene bases. In the protonated forms PePcMH4 (4+) and PePcMH6 (4+) the absorption maximum is shifted back to the visible region due to the loss of conjugation. The experimental findings were corroborated with quantum mechanical calculations. PMID:25336426

Schönamsgruber, Jörg; Maid, Harald; Bauer, Walter; Hirsch, Andreas

2014-12-15

150

One-step fabricated Fe3O4@C core-shell composites for dye removal: Kinetics, equilibrium and thermodynamics  

NASA Astrophysics Data System (ADS)

B-Fe3O4@C core-shell composites were synthesized via one-pot hydrothermal carbonization (HTC) process and used as an adsorbent for the removal of methylene blue (MB) from aqueous solution. By using sodium borate as the catalyst, the hydrothermal carbonization process of B-Fe3O4@C core-shell composites was optimized and a higher surface area was obtained. The adsorbent was characterized by XRD, Raman spectra, SEM, TEM and N2 adsorption/desorption isotherms. We studied the dye adsorption process at different conditions and analyzed the data by employing the Langmuir and Freundlich models, and the equilibrium data fitted well with both models. Kinetic analyses were conducted by using the Lagergren pseudo-first-order and pseudo-second-order model and the results showed that the adsorption process was more consistent with the pseudo-second-order kinetics. To better understand the dye adsorption process from the thermodynamics perspective, we also calculated ?H?, ?S?, ?G? and Ea, the results suggesting that the MB adsorption process was physisorption endothermic process, and spontaneous at room temperature. The as-synthesized B-Fe3O4@C showing high magnetic sensitivity provides a facile and efficient way to recycle from aqueous solution.

Qu, Lingling; Han, Tingting; Luo, Zhijun; Liu, Cancan; Mei, Yan; Zhu, Ting

2015-03-01

151

Box-Behnken methodology for Cr (VI) and leather dyes removal by an eco-friendly biosorbent: F. vesiculosus.  

PubMed

This study focused on leather industrial effluents treatment by biosorption using Fucus vesiculosus as low-cost adsorbent. These effluents are yellowish-brown color and high concentration of Cr (VI). Therefore, biosorption process was optimized using response surface methodology based on Box-Behnken design operating with a simulated leather effluent obtained by mixture of Cr (VI) solution and four leather dyes. The key variables selected were initial solution pH, biomass dosage and CaCl2 concentration in the pretreatment stage. The statistical analysis shows that pH has a negligible effect, being the biomass dosage and CaCl2 concentration the most significant variables. At optimal conditions, 98% of Cr (VI) and 88% of dyes removal can be achieved. Freundlich fitted better to the obtained equilibrium data for all studied systems than Temkin, Langmuir or D-R models. In addition, the use of the final biosorbent as support-substrate to grown of enzyme producer fungi, Pleurotus ostreatus, was also demonstrated. PMID:24484851

Cobas, M; Sanromán, M A; Pazos, M

2014-05-01

152

Super adsorption capability from amorphousization of metal oxide nanoparticles for dye removal  

PubMed Central

Transitional metal oxide nanoparticles as advanced environment and energy materials require very well absorption performance to apply in practice. Although most metal oxides are based on crystalline, high activities can also be achieved with amorphous phases. Here, we reported the adsorption behavior and mechanism of methyl blue (MB) on the amorphous transitional metal oxide (Fe, Co and Ni oxides) nanoparticles, and we demonstrated that the amorphousization of transitional metal oxide (Fe, Co and Ni oxides) nanoparticles driven by a novel process involving laser irradiation in liquid can create a super adsorption capability for MB, and the maximum adsorption capacity of the fabricated NiO amorphous nanostructure reaches up to 10584.6?mgg?1, the largest value reported to date for all MB adsorbents. The proof-of-principle investigation of NiO amorphous nanophase demonstrated the broad applicability of this methodology for obtaining new super dyes adsorbents. PMID:25761448

Li, L. H.; Xiao, J.; Liu, P.; Yang, G. W.

2015-01-01

153

Super adsorption capability from amorphousization of metal oxide nanoparticles for dye removal  

NASA Astrophysics Data System (ADS)

Transitional metal oxide nanoparticles as advanced environment and energy materials require very well absorption performance to apply in practice. Although most metal oxides are based on crystalline, high activities can also be achieved with amorphous phases. Here, we reported the adsorption behavior and mechanism of methyl blue (MB) on the amorphous transitional metal oxide (Fe, Co and Ni oxides) nanoparticles, and we demonstrated that the amorphousization of transitional metal oxide (Fe, Co and Ni oxides) nanoparticles driven by a novel process involving laser irradiation in liquid can create a super adsorption capability for MB, and the maximum adsorption capacity of the fabricated NiO amorphous nanostructure reaches up to 10584.6 mgg-1, the largest value reported to date for all MB adsorbents. The proof-of-principle investigation of NiO amorphous nanophase demonstrated the broad applicability of this methodology for obtaining new super dyes adsorbents.

Li, L. H.; Xiao, J.; Liu, P.; Yang, G. W.

2015-03-01

154

Super adsorption capability from amorphousization of metal oxide nanoparticles for dye removal.  

PubMed

Transitional metal oxide nanoparticles as advanced environment and energy materials require very well absorption performance to apply in practice. Although most metal oxides are based on crystalline, high activities can also be achieved with amorphous phases. Here, we reported the adsorption behavior and mechanism of methyl blue (MB) on the amorphous transitional metal oxide (Fe, Co and Ni oxides) nanoparticles, and we demonstrated that the amorphousization of transitional metal oxide (Fe, Co and Ni oxides) nanoparticles driven by a novel process involving laser irradiation in liquid can create a super adsorption capability for MB, and the maximum adsorption capacity of the fabricated NiO amorphous nanostructure reaches up to 10584.6?mgg(-1), the largest value reported to date for all MB adsorbents. The proof-of-principle investigation of NiO amorphous nanophase demonstrated the broad applicability of this methodology for obtaining new super dyes adsorbents. PMID:25761448

Li, L H; Xiao, J; Liu, P; Yang, G W

2015-01-01

155

Template-free hydrothermal derived cobalt oxide nanopowders: Synthesis, characterization, and removal of organic dyes  

SciTech Connect

Graphical abstract: XRD patterns of the products obtained by hydrothermal treatment at 160 °C for 24 h, and at different [Co{sup 2+}]/[CO{sub 3}{sup 2?}] ratios: (a) 1:6, (b) 1:3, (c) 1:1.5, (d) 1:1, (e) 1:0.5. Highlights: ? Spinel cobalt oxide nanoparticles with different morphologies were prepared by hydrothermal approach. ? The optical characteristics of the as-prepared cobalt oxide revealed the presence of two band gaps. ? Adsorption of methylene blue dye on Co{sub 3}O{sub 4} was investigated and the percent uptake was found to be >99% in 24 h. -- Abstract: Pure spinel cobalt oxide nanoparticles were prepared through hydrothermal approach using different counter ions. First, the pure and uniform cobalt carbonate (with particle size of 21.8–29.8 nm) were prepared in high yield (94%) in an autoclave in absence unfriendly organic surfactants or solvents by adjusting different experimental parameters such as: pH, reaction time, temperature, counter ions, and (Co{sup 2+}:CO{sub 3}{sup 2?}) molar ratios. Thence, the spinel Co{sub 3}O{sub 4} (with mean particle size of 30.5–47.35 nm) was produced by thermal decomposition of cobalt carbonate in air at 500 °C for 3 h. The products were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission electron microscope (TEM), scanning electron microscope (SEM), and thermal analysis (TA). Also, the optical characteristics of the as-prepared Co{sub 3}O{sub 4} nanoparticles revealed the presence of two band gaps (1.45–1.47, and 1.83–1.93 eV). Additionally, adsorption of methylene blue dye on Co{sub 3}O{sub 4} nanoparticles was investigated and the uptake% was found to be >99% in 24 h.

Nassar, Mostafa Y. [Chemistry Department, Faculty of Science, Benha University, Benha 13518 (Egypt)] [Chemistry Department, Faculty of Science, Benha University, Benha 13518 (Egypt); Ahmed, Ibrahim S., E-mail: isahmed2010@gmail.com [Chemistry Department, Faculty of Science, Benha University, Benha 13518 (Egypt)

2012-09-15

156

Some effects of salts on staining: Use of the Donnan Equilibrium to describe staining of tissue sections with acid and basic dyes  

Microsoft Academic Search

Summary  Using a wide variety of acid and basic dyes, and dyebaths of various pH’s and salt contents, it was shown that various effects\\u000a of neutral inorganic salts on the staining of tissue sections could be explained by the Donnan Membrane Equilibrium. Thus\\u000a the simultaneous increases in staining of some tissue components and decreases in staining of others, which occur on

P. J. Bennion; R. W. Horobin

1974-01-01

157

Single and binary dye and heavy metal bioaccumulation properties of Candida tropicalis: use of response surface methodology (RSM) for the estimation of removal yields.  

PubMed

The single and binary effects of initial Remazol Turquoise Blue-G (RTBG) reactive dye and initial copper(II) concentrations on the dye or/and copper(II) bioaccumulation efficiency of C. tropicalis was investigated in 10 g l(-1) molasses sucrose containing growth medium at an initial pH value of 4.0 and optimized using response surface methodology (RSM). A 2(2) full factorial central composite design was successfully used for experimental design and analyses of the results. Two numerical correlations fitted to a second-order quadratic equation were obtained to estimate the responses of dye and copper(II) removal yields. The statistical analysis indicated that although relatively high accumulation efficiency of C. tropicalis was obtained for the single removal of dye and copper(II), individual uptake of both the components from binary mixture was affected negatively by the addition of other component up to 500 mg l(-1) due to inhibition caused by high concentrations of RTBG dye and copper(II). The optimum combination predicted via RSM confirmed that growing C. tropicalis was capable of bioaccumulating RTBG and copper(II) with the maximum yields of 59.2% and 21.3% in the growth medium containing 50 mg l(-1) RTBG and 50 mg l(-1) copper(II) together, respectively. PMID:19720462

Gönen, Ferda; Aksu, Zümriye

2009-12-30

158

Functional display of triphenylmethane reductase for dye removal on the surface of Escherichia coli using N-terminal domain of ice nucleation protein.  

PubMed

Traditional biological treatment for triphenylmethane dye effluent is stuck with the inaccessibility of dye molecules to intracellular dye-degrading enzyme, thus a high-efficiency and low-cost method for dye decolorization is highly desirable. Here we established a bioremediation approach to display triphenylmethane reductase (TMR) on the surface of Escherichia coli (E. coli) using N-terminal of ice nucleation protein as anchoring motif for triphenylmethane dye decolorization for the first time. Approximately 85% of recombinant protein positioning on the surface of E. coil cells exhibited high activity and stability. The optimal temperature and pH of the surface-displayed TMR are 50 °C and 8.5, respectively. Comparing with other reported microorganisms, the decolorization rate for malachite green of this engineered strain is the highest so far, reaching 640 ?mol min(-1) g(-1) dry weight cells. These results indicate that this engineered E. coli strain is a very promising candidate for synthetic dye removal. PMID:25058292

Gao, Fen; Ding, Haitao; Feng, Zhuo; Liu, Danfeng; Zhao, Yuhua

2014-10-01

159

Genotoxicity studies on the removal of a direct textile dye by a fungal strain, in vivo, using micronucleus and RAPD-PCR techniques on male rats.  

PubMed

The genotoxicity of the azo dye 'Direct Violet' and the removal of this dye by Aspergillus niger strain at different conditions have been investigated in male rats. Two genotoxicity techniques, namely bone marrow micronucleus assay and RAPD fingerprinting pattern, were used in this study for the direct dye and its removal by the fungal strain. Sixty male rats were divided into six treatment groups including a control group and other groups which were exposed for 2 or 8 weeks to Direct Violet dye, Direct Violet dye treated with A. niger at pH 2 or pH 9 or without agitation and acrylamide (30 mg/kg b.w.). A potent dose-dependent response was observed following oral gavage of the dye up to 1000 mg kg(-1), after which significant toxicity to the erythroid compartment was observed. Acrylamide and Direct Violet treatments increased the number of micronucleated polychromatic erythrocytes (MnPCEs) with respect to the controls. This increase was statistically significant in the two time intervals (2 and 8 weeks treatment, P < 0.0001). Fungi treatments at pH 2 and without agitation were able to reduce the number of MnPCEs induced by Direct Violet administration in all duration groups. Fungi treatment at pH 9 was only able to inhibit the genotoxicity of Direct Violet after 8 weeks treatment. The RAPD fingerprinting pattern indicated that most DNA of the samples treated with dye alone or acrylamide revealed polymorphic bands including the appearance and disappearance of the bands, which did not appear in the DNA samples of normal or fungi protected rats. The implications of these findings for the health and safety of occupationally exposed workers are discussed. PMID:17879240

El-Rahim, Wafaa M Abd; Khalil, Wagdy K B; Eshak, Mariam G

2008-05-01

160

Enhancement of azo dye Acid Orange 7 removal in newly developed horizontal subsurface-flow constructed wetland.  

PubMed

Horizontal subsurface-flow (HSF) constructed wetland incorporating baffles was developed to facilitate upflow and downflow conditions so that the treatment of pollutants could be achieved under multiple aerobic, anoxic and anaerobic conditions sequentially in the same wetland bed. The performances of the baffled and conventional HSF constructed wetlands, planted and unplanted, in the removal of azo dye Acid Orange 7 (AO7) were compared at the hydraulic retention times (HRT) of 5, 3 and 2 days when treating domestic wastewater spiked with AO7 concentration of 300 mg/L. The planted baffled unit was found to achieve 100%, 83% and 69% AO7 removal against 73%, 46% and 30% for the conventional unit at HRT of 5, 3 and 2 days, respectively. Longer flow path provided by baffled wetland units allowed more contact of the wastewater with the rhizomes, microbes and micro-aerobic zones resulting in relatively higher oxidation reduction potential (ORP) and enhanced performance as kinetic studies revealed faster AO7 biodegradation rate under aerobic condition. In addition, complete mineralization of AO7 was achieved in planted baffled wetland unit due to the availability of a combination of aerobic, anoxic and anaerobic conditions. PMID:25284799

Tee, Heng-Chong; Lim, Poh-Eng; Seng, Chye-Eng; Mohd Nawi, Mohd Asri; Adnan, Rohana

2015-01-01

161

Removal of aqueous cyanide with strongly basic ion-exchange resin.  

PubMed

The removal of cyanide (CN(-)) from aqueous solutions using a strongly basic ion-exchange resin, Purolite A-250, was investigated. The effects of contact time, initial CN(-) concentration, pH, temperature, resin dosage, agitation speed, and particle size distribution on the removal of CN(-) were examined. The adsorption equilibrium data fitted the Langmuir isotherm very well. The maximum CN(-) adsorption capacity of Purolite A-250 was found to be 44?mg?CN(-)?g(-1) resin. More than 90% CN(-) adsorption was achieved for most CN(-) solutions (50, 100, and 200?mg?CN(-)?L(-1)) with a resin dose of 2?g?L(-1). The equilibrium time was ?20?min, optimum pH was 10.0-10.5, and optimum agitation speed was 150?rpm. An increase in adsorption of CN(-) with increasing resin dosage was observed. Adsorption of CN(-) by the resin was marginally affected (maximum 4% variation) within an environmentally relevant temperature range of 20-50?°C. Fixed-bed column (20.5?mm internal diameters) experiments were performed to investigate the effects of resin bed depth and influent flow rate on breakthrough behaviour. Breakthrough occurred in 5?min for 0.60?cm bed depth while it was 340?min for 5.40?cm bed depth. Adsorption capacity was 25.5?mg?CN(-)?g(-1) for 5?mL?min(-1) flow rate and 3.9?mg?CN(-)?g(-1) for 20?mL?min(-1) flow rate. The research has established that the resin can be effectively used for CN(-) removal from aqueous solutions. PMID:25558868

Simsek, Halis; Kobya, Mehmet; Khan, Eakalak; Bezbaruah, Achintya N

2015-07-01

162

Template-Free Synthesis of Functional 3D BN architecture for removal of dyes from water  

PubMed Central

Three-dimensional (3D) architectures are of interest in applications in electronics, catalysis devices, sensors and adsorption materials. However, it is still a challenge to fabricate 3D BN architectures by a simple method. Here, we report the direct synthesis of 3D BN architectures by a simple thermal treatment process. A 3D BN architecture consists of an interconnected flexible network of nanosheets. The typical nitrogen adsorption/desorption results demonstrate that the specific surface area for the as-prepared samples is up to 1156?m2 g?1, and the total pore volume is about 1.17?cm3 g?1. The 3D BN architecture displays very high adsorption rates and large capacities for organic dyes in water without any other additives due to its low densities, high resistance to oxidation, good chemical inertness and high surface area. Importantly, 88% of the starting adsorption capacity is maintained after 15 cycles. These results indicate that the 3D BN architecture is potential environmental materials for water purification and treatment. PMID:24663292

Liu, Dan; Lei, Weiwei; Qin, Si; Chen, Ying

2014-01-01

163

Template-Free Synthesis of Functional 3D BN architecture for removal of dyes from water  

NASA Astrophysics Data System (ADS)

Three-dimensional (3D) architectures are of interest in applications in electronics, catalysis devices, sensors and adsorption materials. However, it is still a challenge to fabricate 3D BN architectures by a simple method. Here, we report the direct synthesis of 3D BN architectures by a simple thermal treatment process. A 3D BN architecture consists of an interconnected flexible network of nanosheets. The typical nitrogen adsorption/desorption results demonstrate that the specific surface area for the as-prepared samples is up to 1156 m2 g-1, and the total pore volume is about 1.17 cm3 g-1. The 3D BN architecture displays very high adsorption rates and large capacities for organic dyes in water without any other additives due to its low densities, high resistance to oxidation, good chemical inertness and high surface area. Importantly, 88% of the starting adsorption capacity is maintained after 15 cycles. These results indicate that the 3D BN architecture is potential environmental materials for water purification and treatment.

Liu, Dan; Lei, Weiwei; Qin, Si; Chen, Ying

2014-03-01

164

Potential Biosorbent Derived from Calligonum polygonoides for Removal of Methylene Blue Dye from Aqueous Solution.  

PubMed

The ash of C. polygonoides (locally called balanza) was collected from Lakki Marwat, Khyber Pakhtunkhwa, Pakistan, and was utilized as biosorbent for methylene blue (MB) removal from aqueous solution. The ash was used as biosorbent without any physical or chemical treatment. The biosorbent was characterized by using various techniques such as Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The particle size and surface area were measured using particle size analyzer and Brunauer-Emmett-Teller equation (BET), respectively. The SEM and BET results expressed that the adsorbent has porous nature. Effects of various conditions such as initial concentration of methylene blue (MB), initial pH, contact time, dosage of biosorbent, and stirring rate were also investigated for the adsorption process. The rate of the adsorption of MB on biomass sample was fast, and equilibrium has been achieved within 1 hour. The kinetics of MB adsorption on biosorbent was studied by pseudo-first- and pseudo-second-order kinetic models and the pseudo-second-order has better mathematical fit with correlation coefficient value (R (2)) of 0.999. The study revealed that C. polygonoides ash proved to be an effective, alternative, inexpensive, and environmentally benign biosorbent for MB removal from aqueous solution. PMID:25705714

Nasrullah, Asma; Khan, Hizbullah; Khan, Amir Sada; Man, Zakaria; Muhammad, Nawshad; Khan, Muhammad Irfan; Abd El-Salam, Naser M

2015-01-01

165

Potential Biosorbent Derived from Calligonum polygonoides for Removal of Methylene Blue Dye from Aqueous Solution  

PubMed Central

The ash of C. polygonoides (locally called balanza) was collected from Lakki Marwat, Khyber Pakhtunkhwa, Pakistan, and was utilized as biosorbent for methylene blue (MB) removal from aqueous solution. The ash was used as biosorbent without any physical or chemical treatment. The biosorbent was characterized by using various techniques such as Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The particle size and surface area were measured using particle size analyzer and Brunauer-Emmett-Teller equation (BET), respectively. The SEM and BET results expressed that the adsorbent has porous nature. Effects of various conditions such as initial concentration of methylene blue (MB), initial pH, contact time, dosage of biosorbent, and stirring rate were also investigated for the adsorption process. The rate of the adsorption of MB on biomass sample was fast, and equilibrium has been achieved within 1 hour. The kinetics of MB adsorption on biosorbent was studied by pseudo-first- and pseudo-second-order kinetic models and the pseudo-second-order has better mathematical fit with correlation coefficient value (R2) of 0.999. The study revealed that C. polygonoides ash proved to be an effective, alternative, inexpensive, and environmentally benign biosorbent for MB removal from aqueous solution. PMID:25705714

Nasrullah, Asma; Khan, Hizbullah; Khan, Amir Sada; Man, Zakaria; Muhammad, Nawshad; Khan, Muhammad Irfan; Abd El-Salam, Naser M.

2015-01-01

166

A new morphological approach for removing acid dye from leather waste water: Preparation and characterization of metal-chelated spherical particulated membranes (SPMs).  

PubMed

In this study, p(HEMA-GMA) poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) spherical particulated membranes (SPMs) were produced by UV-photopolymerization and the synthesized SPMs were coupled with iminodiacetic acid (IDA). Finally the novel SPMs were chelated with Cr(III) ions as ligand and used for removing acid black 210 dye. Characterizations of the metal-chelated SPMs were made by SEM, FTIR and swelling test. The water absorption capacities and acid dye adsorption properties of the SPMs were investigated and the results were 245.0, 50.0, 55.0 and 51.9% for p(HEMA), p(HEMA-GMA), p(HEMA-GMA)-IDA and p(HEMA-GMA)-IDA-Cr(III) SPMs respectively. Adsorption properties of the p(HEMA-GMA)-IDA-Cr(III) SPMs were investigated under different conditions such as different initial dye concentrations and pH. The optimum pH was observed at 4.3 and the maximum adsorption capacity was determined as 885.14 mg/g at about 8000 ppm initial dye concentration. The concentrations of the dyes were determined using a UV/Vis Spectrophotometer at a wavelength of 435 nm. Reusability of p(HEMA-GMA)-IDA-Cr(III) SPMs was also shown for five adsorption-desorption cycles without considerable decrease in its adsorption capacity. Finally, the results showed that the metal-chelated p(HEMA-GMA)-IDA SPMs were effective sorbent systems removing acid dye from leather waste water. PMID:25585142

?enay, Raziye Hilal; Gökalp, Safiye Meriç; Türker, Evren; Feyzio?lu, Esra; Aslan, Ahmet; Akgöl, Sinan

2015-03-15

167

Efficient removal of bilirubin from human serum by monosize dye affinity beads.  

PubMed

Cibacron Blue F3GA (CB) was covalently attached onto poly(glycidyl methacrylate) (PGMA) monosize beads for removal of bilirubin from hyperbilirubinemia human serum. PGMA beads were produced by dispersion polymerization (1.6 ?m in diameter). CB loading was 1.73 mmol/g. Bilirubin adsorption experiments were performed by stirred-batch adsorption. The non-specific adsorption of bilirubin was low (0.4 mg/g polymer). CB attachment onto the PGMA beads significantly increased the bilirubin adsorption (241.5 mg/g) from aqueous solutions. The maximum bilirubin adsorption was observed at pH 6.0. With an increase of the aqueous phase concentration of sodium chloride, the adsorption amount of bilirubin decreased drastically. The equilibrium adsorption of bilirubin significantly increased with increasing temperature. Much higher adsorption values up to 332 mg bilirubin/g were achieved in the case of the PGMA/CB beads from human plasma. PMID:20566067

Alt?nta?, Evrim Banu; Türkmen, Deniz; Karakoç, Veyis; Denizli, Adil

2011-01-01

168

A novel reusable nanocomposite for complete removal of dyes, heavy metals and microbial load from water based on nanocellulose and silver nano-embedded pebbles.  

PubMed

The present work proposed a nanocellulose (NC)-silver nanoparticles (AgNPs) embedded pebbles-based composite material as a novel reusable cost-effective water purification device for complete removal of dyes, heavy metals and microbes. NC was prepared using acid hydrolysis of cellulose. The AgNPs were generated in situ using glucose and embedded within the porous concrete pebbles by the technique of inter-diffusion of ion, providing a very strong binding of nanoparticles within the porous pebbles and thus preventing any nanomaterials leaching. Fabrication of a continual running water purifier was achieved by making different layering of NC and Ag nano-embedded pebbles in a glass column. The water purifier exhibited not only excellent dye and heavy metal adsorption capacity, but also long-term antibacterial activity against pathogenic and non-pathogenic bacterial strains. The adsorption mainly occurred through electrostatic interaction and pore diffusion also contributed to the process. The bed column purifier has shown 99.48% Pb(II) and 98.30% Cr(III) removal efficiency along with 99% decontamination of microbial load at an optimum working pH of 6.0. The high adsorption capacity and reusability, with complete removal of dyes, heavy metals and Escherichia coli from the simulated contaminated water of composite material, will provide new opportunities to develop a cost-effective and eco-friendly water purifier for commercial application. PMID:25243917

Suman; Kardam, Abhishek; Gera, Meeta; Jain, V K

2015-03-01

169

Comparison of biosorption properties of different kinds of fungi for the removal of Gryfalan Black RL metal-complex dye.  

PubMed

Three kinds of filamentous fungi (Rhizopus arrhizus, Trametes versicolor, Aspergillus niger) were tested for their ability to adsorb Gryfalan Black RL metal-complex dye as a function of pH, temperature and dye concentration. R. arrhizus and T. versicolor exhibited the maximum dye uptake at pH 2.0 and at 25 degrees C while A. niger performed the highest dye biosorption at pH 1.0 and at 35 degrees C. Sorption capacity of each biosorbent increased with increasing initial dye concentration. Among the three fungi, R. arrhizus was the most effective biosorbent showing a maximum dye uptake of 666.7 mg g(-1). The Langmuir model described the equilibrium data of each dye-fungus system accurately in the concentration and temperature ranges studied. Kinetic analysis indicated that both adsorption kinetics and internal diffusion played an important role on controlling the overall adsorption rate for each fungus. Thermodynamic analysis verified that A. niger biosorption was endothermic while the others were exothermic. PMID:18325761

Aksu, Zümriye; Karabayir, Göknur

2008-11-01

170

Magnetic activated carbon-Fe3O4 nanocomposites--synthesis and applications in the removal of acid yellow dye 17 from water.  

PubMed

In this work, synthesis of activated carbon-Fe3O4 composites using activated carbon and iron benzoate/oxalate precursors by simple pyrolytic method and its utility for the removal of acid yellow dye from water are presented. Iron carboxylates held up into the pores of carbon dissociate at their decomposition temperatures form dispersed Fe3O4 nanoparticles in carbon matrix. The composites were characterized by FTIR, PXRD, SEM, TEM, EDX and magnetization measurements. The size of the nano iron oxides are in the range of 21-33 nm formed from iron benzoate precursor and 6-11 nm from iron oxalate precursor. The oxides are magnetic and their saturation magnetization in the range of 0.08-0.16 emu/g and Coercivity (H(c)) 474-600, being lower and higher than that of bare bulk Fe3O4 are due to the nano size of oxides. Composites find application in the removal of acid yellow dye 17 from the synthetic aqueous solution at pH 5. The adsorption data are found to fit well for Langmuir adsorption isotherm. Kinetics data of adsorption of dyes indicate that the adsorption follows pseudo-second order kinetic model. PMID:24757966

Ranjithkumar, V; Hazeen, A Nizarul; Thamilselvan, M; Vairam, S

2014-07-01

171

Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor.  

PubMed

Azo dyes that consist of a large quantity of dye wastewater are toxic and persistent to biodegradation, while they should be removed before being discharged to water body. In this study, Alizarin Yellow R (AYR) as a model azo dye was decolorized in a combined bio-system of membrane-free, continuous up-flow bio-catalyzed electrolysis reactor (UBER) and subsequent aerobic bio-contact oxidation reactor (ABOR). With the supply of external power source 0.5 V in the UBER, AYR decolorization efficiency increased up to 94.8±1.5%. Products formation efficiencies of p-phenylenediamine (PPD) and 5-aminosalicylic acid (5-ASA) were above 90% and 60%, respectively. Electron recovery efficiency based on AYR removal in cathode zone was nearly 100% at HRTs longer than 6 h. Relatively high concentration of AYR accumulated at higher AYR loading rates (>780 gm(-3) d(-1)) likely inhibited acetate oxidation of anode-respiring bacteria on the anode, which decreased current density in the UBER; optimal AYR loading rate for the UBER was 680 gm(-3) d(-1) (HRT 2.5 h). The subsequent ABOR further improved effluent quality. Overall the Chroma decreased from 320 times to 80 times in the combined bio-system to meet the textile wastewater discharge standard II in China. PMID:23009797

Cui, Dan; Guo, Yu-Qi; Cheng, Hao-Yi; Liang, Bin; Kong, Fan-Ying; Lee, Hyung-Sool; Wang, Ai-Jie

2012-11-15

172

Cr(VI) and azo dye removal using a hollow-fibre membrane system functionalized with a biogenic Pd-magnetite catalyst.  

PubMed

This study investigates the application of a hybrid system combining hollow-fibre membrane technology with the reductive abilities of magnetic nanoparticles for the remediation of toxic Cr(VI) and the azo dye, Remazol Black B. Nano-scale biogenic magnetite (Fe3O4), formed by microbial reduction of the mineral ferrihydrite, has a high reductive capacity due to the presence of Fe(II) in the mineral structure. The magnetic nanoparticles (approximately 20 nm) can be arrayed with Pd0 nanoparticles (approximately 5 nm) making a catalytically active nanomaterial. Membrane units, with and without nanoparticles, were challenged with either Cr(VI) or azo dye and some were supplemented with sodium formate, as an electron donor for contaminant reduction promoted by the Pd. The combination of Pd-magnetite with formate resulted in the most effective remediation strategy for both contaminants and the lifetime of the membrane unit was also increased, with 55% (19 days) and 70% (23 days) removal of the azo dye and Cr(VI), respectively. Low flow rates of 0.1 ml/min resulted in improved efficiencies due to increased contact time with the membrane/nanoparticle unit, with 70-75% removal of each contaminant. Chemical analyses of the nanoparticles post-exposure to Cr(VI) in the membrane modules indicated Pd to be more oxidized when Cr removal was maximized, and that the Cr was partially reduced to Cr(III) at the surface of the magnetite. These results have demonstrated that hollow-fibre membrane units can be enhanced for the removal of soluble, redox sensitive contaminants by incorporation of a layer of palladized biogenic nanoparticulate magnetite. PMID:24645489

Coker, V S; Garrity, A; Wennekes, W B; Roesink, H D W; Cutting, R S; Lloyd, J R

2014-01-01

173

The effects of acid and alkali modification on the adsorption performance of fuller's earth for basic dye.  

PubMed

The objective of this work was to prepare modified adsorbents from fuller's earth (FE) by acid and alkali treatment for enhancement cationic dye adsorption. Toluidine blue (TB) was selected as adsorbate for evaluating the adsorption performance of fuller's earth samples, which was affected significantly by acid and alkali modification. The adsorption of TB was studied by visible spectra. The absorption band of the monomer at low loading of TB in FE suspension with respect to its maximum in aqueous solution is red-shifted, which is related to accessibility of dye interlamellar space in the presence of positively charged surface sites. Since all surfaces are negatively charged under experimental conditions, this effect has not been observed in acid- and alkali-treated FE suspensions. It was seen that the adsorption capacity of alkali-treated surface (FEAl) for TB was higher than these of acid-treated adsorbent (FEAc) and FE. Scanning electron micrographs (SEM) and X-ray diffraction (XRD) and fluorescence (XRF) spectra were applied to analyze the structure of the raw and modified FE samples. Absence of any identifiable amount of a crystalline compound in the solid reaction products after acid treatment was confirmed by XRD and SEM, whereas the crystalline form of FEAl was preserved. Experimental data for high-concentration regions were well described by Freundlich and Langmuir adsorption equations. The thermodynamic parameters were estimated for FE, FEAc, and FEAl by using temperature dependence of adsorption equilibrium constants. PMID:15567375

Hisarli, G

2005-01-01

174

Modified subretinal dye extrusion technique (MORE-DETECH): subretinal diluted trypan blue for detecting occult retinal breaks in retinal detachment after endotamponade removal.  

PubMed

To investigate the effectiveness of a new technique for the identification of occult retinal breaks in retinal redetachment after removal of silicone oil endotamponade. The technique involves injection of subretinal dye and extrusion through the unidentified breaks. A prospective interventional case series. Main outcome measures were rate of break detection, rate of retinal attachment at 3 months after removal of endotamponade, and improvement in visual acuity after surgery. A total of 21 patients fulfilled the study criterion. The occult rhegma could be identified successfully in all except two cases (90.4 % success). In most cases the rhegma was identified at the posterior edge of the laser retinopexy scar. Complete retinal attachment could be seen in all cases at 12 weeks after removal of silicone oil. The mean visual acuity improved from logMAR 1.4, preoperatively to logMAR 0.81 (p = 0.001) postoperatively. Subretinal dye injection was useful in detecting occult retinal breaks in patients with retinal redetachment and was helpful in preventing surgical failure. PMID:23408012

Khanduja, Sumeet; Sinha, Subijay; Gogia, Varun; Kakkar, Ashish; Vohra, Rajpal

2013-12-01

175

Equilibrium and kinetic adsorption study of a cationic dye by a natural adsorbent—Silkworm pupa  

Microsoft Academic Search

In this work the use of silkworm pupa, which is the waste of silk spinning industries has been investigated as an adsorbent for the removal of C.I. Basic Blue 41. The amino acid nature of the pupa provided a reasonable capability for dye removal. Equilibrium adsorption isotherms and kinetics were investigated. The adsorption equilibrium data were analyzed by using various

B. Noroozi; G. A. Sorial; H. Bahrami; M. Arami

2007-01-01

176

Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent  

Microsoft Academic Search

In this paper, a comparison of various advanced oxidation processes (O3, O3\\/UV, H2O2\\/UV, O3\\/H2O2\\/UV, Fe2+\\/H2O2) and chemical treatment methods using Al2(SO4)3·18H2O, FeCl3 and FeSO4 for the chemical oxygen demand (COD) and color removal from a polyester and acetate fiber dyeing effluent is undertaken. Advanced oxidation processes (AOPs) showed a superior performance compared to conventional chemical treatment, which maximum achievable color

N. Azbar; T. Yonar; K. Kestioglu

2004-01-01

177

Removal of cationic Rhodamine-B dye using nano-titania with anatase crystalline structure and kinetic analysis of the photocatalytic reaction  

NASA Astrophysics Data System (ADS)

Heterogeneous photocatalytic removal of Rhodamine-B (RhB) dye from liquid phase was done using anatase-phase nanocrystalline TiO2 synthesized via a modified sol-gel process. The anatase-phase nanocrystalline TiO2 was characterized using various analytical techniques including XRD, UV-vis DRS, PL, and FTIR to investigate its phase composition and structure, nanocrystalline size, band gap energy, photoluminescence and surface properties of the prepared systems. The photocatalytic discoloration efficiency of anatase-phase nanocrystalline titania was investigated by monitoring the decomposition of RhB dye as target compounds in an aqueous solution. The results showed that the as-prepared anatase-phase nanocrystalline TiO2 was excellent for degradation of RhB molecule, and the crystallite size, excitonic PL and surface hydroxyl content have intimate relationship with the decomposition efficiency of RhB. The reaction mechanism was proposed and the results demonstrate that the role of direct photolysis on RhB dye degradation can be neglected. Meanwhile, the Langmuir-Hinshelwood kinetic model describes the photodecay date of RhB in consistent with a first order powder law and thus photocatalytic oxidation reaction followed a pseudo-first-order kinetics.

Zhang, Dongfang

2013-01-01

178

In situ generation of hydroxyl radical by cobalt oxide supported porous carbon enhance removal of refractory organics in tannery dyeing wastewater.  

PubMed

In this study, cobalt oxide doped nanoporous activated carbon (Co-NPAC) was synthesized and used as a heterogeneous catalyst for the Fenton oxidation of organic dye chemicals used in tannery process. The nanoporous activated carbon (NPAC) was prepared from rice husk by precarbonization followed by chemical activation at elevated temperature (600°C). The cobalt oxide was impregnated onto NPAC and characterized for UV-visible, Fluorescence spectroscopy, FT-IR, HR-TEM, XRD, BET surface area and XPS analyses. The hydroxyl radical generation potential of Co-NPAC from hydrogen peroxide decomposition was identified (?exi, 320nm; ?emi, 450nm) by Excitation Emission Spectra (EES) analysis. The conditions for the degradation of tannery dyeing wastewater such as, Co-NPAC dose, concentration of H2O2, and temperature were optimized in heterogeneous Fenton oxidation process and the maximum percentage of COD removal was found to be 77%. The treatment of dyes in wastewater was confirmed through UV-Visible spectra, EES and FT-IR spectra analyses. PMID:25733392

Karthikeyan, S; Boopathy, R; Sekaran, G

2015-06-15

179

Thermal activation of basic oxygen furnace slag and evaluation of its fluoride removal efficiency  

Microsoft Academic Search

Adsorption characteristics of fluoride adsorption onto the thermally activated basic oxygen furnace (BOF) slag were identified as a function of pH and ion strengths in solution. In addition, adsorption mechanism was investigated by conducting batch tests on fluoride adsorption process of the thermally activated BOF slag, and making a comparative XRD analysis of fresh and exhausted adsorbent. SEM micrographs were

Mahamudur Islam; Rajkishore Patel

2011-01-01

180

An efficient removal of methyl orange dye from aqueous solution by adsorption onto chitosan/MgO composite: A novel reusable adsorbent  

NASA Astrophysics Data System (ADS)

We report a novel multi-functional magnesium oxide (MgO) immobilized chitosan (CS) composite was prepared by chemical precipitation method. The CS-MgO composite was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy and zeta potential. The composite was applied as a novel adsorbent for removal of methyl orange model dye and the effect of adsorbent dosage, pH and contact time were studied. The adsorption kinetics followed a pseudo second order reaction. The adsorbent efficiency was unaltered even after five cycles of reuse. In addition, the composite exhibited a superior antibacterial efficacy of 93% within 24 h against Escherichia coli as measured by colony forming units. Based on the data of present investigation the composite being a biocompatible, eco-friendly and low-cost adsorbent with antibacterial activity could find potential applications in variety of fields and in particular environmental applications.

Haldorai, Yuvaraj; Shim, Jae-Jin

2014-02-01

181

Significantly enhanced dye removal performance of hollow tin oxide nanoparticles via carbon coating in dark environment and study of its mechanism  

PubMed Central

Understanding the correlation between physicochemical properties and morphology of nanostructures is a prerequisite for widespread applications of nanomaterials in environmental application areas. Herein, we illustrated that the uniform-sized SnO2@C hollow nanoparticles were large-scale synthesized by a facile hydrothermal method. The size of the core-shell hollow nanoparticles was about 56 nm, and the shell was composed of a solid carbon layer with a thickness of 2?~?3 nm. The resulting products were characterized in terms of morphology, composition, and surface property by various analytical techniques. Moreover, the SnO2@C hollow nanoparticles are shown to be effective adsorbents for removing four different dyes from aqueous solutions, which is superior to the pure hollow SnO2 nanoparticles and commercial SnO2. The enhanced mechanism has also been discussed, which can be attributed to the high specific surface areas after carbon coating. PMID:25221462

2014-01-01

182

Silica coated magnetic particles using microwave synthesis for removal of dyes from natural water samples: Synthesis, characterization, equilibrium, isotherm and kinetics studies  

NASA Astrophysics Data System (ADS)

Monitoring pollutants in water samples is a challenge to analysts. So, the removal of Napthol blue black (NBB) and Erichrome blue black R (EBBR) from aqueous solutions was investigated using magnetic chelated silica particles. Magnetic solids are widely used in detection and analytical systems because of the performance advantages they offer compared to similar solids that lack magnetic properties. In this context, a fast, simple and clean method for modification of magnetic particles (Fe3O4) with silica gel was developed using microwave technique to introduce silica gel coated magnetic particles (SG-MPs) sorbent. The magnetic sorbent was characterized by the FT-IR, X-ray diffraction (XRD), and scan electron microscope (SEM) analyses. The effects of pH, time, weight of sorbent and initial concentration of dye were evaluated. It was interesting to find from results that SG-MPs exhibits high percentage extraction of the studied dyes (100% for NBB and 98.75% for EBBR) from aqueous solutions. The Freundlich isotherm with r2 = 0.973 and 0.962 and Langmuir isotherms with r2 = 0.993 and 0.988 for NBB and EBBR, respectively were used to describe adsorption equilibrium. Also, adsorption kinetic experiments have been carried out and the data have been well fitted by a pseudo-second-order equation r2 = 1.0 for NBB and 0.999 for EBBR. The prepared sorbent with rapid adsorption rate and separation convenience was applied for removal of NBB and EBBR pollutants from natural water samples with good precision (RSD% = 0.05-0.3%).

Ahmed, Salwa A.; Soliman, Ezzat M.

2013-11-01

183

High basicity adsorbents from solid residue of cellulose and synthetic polymer co-pyrolysis for phenol removal: Kinetics and mechanism  

NASA Astrophysics Data System (ADS)

The activated carbons (ACs) produced from solid residue of cellulose and synthetic polymer co-pyrolysis (CACs) and commercial activated carbon from coconut shell (GC) were used for phenol removal. The adsorption kinetics and mechanism were investigated. All studied activated carbons are predominantly microporous and are characterized by basic surface characteristics. Surface area SBET varies between 1235 and 1499 m2/g, whereas the pHPZC changes from 7.70 to 10.63. The bath adsorption of phenol (P) was carried out at ambient temperature. The equilibrium time and equilibrium sorption capacity were determined. It was found that the boundary layer effect is bigger in AC with high basic characteristics of the surface. The rate controlling step is the intraparticle diffusion in CACs only, whereas in ACs with higher amount of acidic functionalities the adsorbate-surface interaction influences the rate of kinetic as well. The equilibrium isotherms are L2 type for commercial AC and L4 for CACs. The CACs are characterized by very high adsorption capacity that vary between 312 and 417 mg/g. The main mechanism of phenol adsorption is micropore filling within pores smaller than 1.4 nm. In the absence of solvent effect further adsorption of phenol on CACs takes place. The enhanced adsorption is due to dispersive/repulsive interaction induced by oxygen functionalities.

Lorenc-Grabowska, Ewa; Rutkowski, Piotr

2014-10-01

184

Color Tuning of an Acidic Blue Dye by Intercalation into the Basic Interlayer Galleries of a Poly(allylamine)/Synthetic Fluoromica  

E-print Network

conjugated system and a free sulfonate group. Introduction Many organic dyes are used in the food, cosmetics and hydroxide. For food, medical, and cosmetics applications, however, only certain acidic dyes for cosmetics, the use is strictly restricted by the Pollutant Release and Transfer Register (PRTR

185

Process development for the batch and bulk removal and recovery of a hazardous, water-soluble azo dye (Metanil Yellow) by adsorption over waste materials (Bottom Ash and De-Oiled Soya).  

PubMed

Bottom Ash and De-Oiled Soya have been used as adsorbents for the removal of a hazardous azo dye-Metanil Yellow from its aqueous solutions. Adsorption of Metanil Yellow on these adsorbents has been studied as function of time, temperature, concentration and pH. Batch adsorption studies, kinetic studies and column operations enabled extraction of lethal dye from wastewaters. Adsorption equilibrium data confirms both Langmuir and Freundlich isotherm models and monolayer coverage of dye over adsorbents. Kinetic data have been employed to calculate specific rate constants, indicating thereby involvement of first order kinetics in the on-going adsorption and activation energy was determined as 0.813 and 1.060 kJ mol(-1) for Bottom Ash and De-Oiled Soya, respectively. For both adsorbents, the adsorption process has been found governing by film diffusion, over the entire concentration range. Column operations have also been performed for the bulk removal of the dye and also to examine the practical utilization of fixed bed adsorption technique in elimination of dangerous effluent. Saturation factors for Bottom Ash and De-Oiled Soya columns have been calculated as 99.15 and 99.38%, respectively. Attempts have also been made to regenerate the dye from the exhausted columns using aqueous sodium hydroxide as eluent. PMID:17659833

Mittal, Alok; Gupta, V K; Malviya, Arti; Mittal, Jyoti

2008-03-01

186

Parametric study on the effect of the ratios [H2O2]\\/[Fe] and [H2O2]\\/[substrate] on the photo-Fenton degradation of cationic azo dye Basic Blue 41  

Microsoft Academic Search

An experimental parametric study was carried out to investigate the effects of [H2O2], [Fe] and [H2O2]\\/[Fe] ratio on the photo-Fenton degradation of a azo dye Basic Blue 41 (BB41) in aqueous solution. This method consists of coupling between Fenton's reagent and UV irradiation in order to catalyze the in situ generation of hydroxyl radicals, a powerful oxidizing agent which leads

Souâd Bouafia-Chergui; Nihal Oturan; Hussein Khalaf; Mehmet A. Oturan

2010-01-01

187

Artificial neural network modeling of photocatalytic removal of a disperse dye using synthesized of ZnO nanoparticles on montmorillonite.  

PubMed

In this study, the photocatalytic ability of ZnO/Montmorilonite (ZnO/MMT) nanocomposite under UV-A, UV-B and UV-C radiation was investigated. ZnO nanoparticles were synthesized on the surface of MMT and used as photocatalyst in decolorization of Disperse Red 54 (DR54) solution. Synthesized nanocomposite was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) techniques and nitrogen adsorption/desorption isotherms curves. The average width of synthesized ZnO particles is in the range of 30-45nm. Effect of UV light regions, initial dye concentration, initial dosage of nanocomposite, and reusability of catalyst was studied on decolorization efficiency. The highest decolorization efficiency was achieved under UV-C radiation. A three-layered feed forward back propagation artificial neural network model was developed to predict the photocatalysis of DR54 under UV-C radiation. According to ANN model the ZnO/MMT dosage with a relative importance of 49.21% is the most influential parameter in the photocatalytic decolorization process. PMID:25638428

K?ran?an, Murat; Khataee, Alireza; Karaca, Semra; Sheydaei, Mohsen

2015-04-01

188

Phytoremediation of dye contaminated soil by Leucaena leucocephala (subabul) seed and growth assessment of Vigna radiata in the remediated soil  

PubMed Central

The present study was investigated for soil bioremediation through sababul plant biomass (Leucaena leucocephala). The soil contaminated with textile effluent was collected from Erode (chithode) area. Various physico-chemical characterizations like N, P, and K and electrical conductivity were assessed on both control and dye contaminated soils before and after remediation. Sababul (L. leucocephala) powder used as plant biomass for remediation was a tool for textile dye removal using basic synthetic dyes by column packing and eluting. The concentration of the dye eluted was compared with its original concentration of dye and were analyzed by using UV–vis spectrophotometer. Sababul plant biomass was analyzed for its physico-chemical properties and active compounds were detected by GC–MS, HPTLC and FTIR. Plant growth was assessed with green gram on the textile contaminated soil and sababul had the potential of adsorbing the dye as the contaminated soil and also check the growth of green gram. PMID:25183943

Jayanthy, V.; Geetha, R.; Rajendran, R.; Prabhavathi, P.; Karthik Sundaram, S.; Dinesh Kumar, S.; Santhanam, P.

2013-01-01

189

Surfactant-modified alumina: An efficient adsorbent for malachite green removal from water environment  

Microsoft Academic Search

Surface of alumina was modified with sodium dodecyl sulfate (SDS), an anionic surfactant. The surfactant-modified alumina (SMA) was characterized by FTIR and thermal analysis. The SMA was then used for the removal of malachite green (MG; Basic Green 4), a well-known toxic cationic dye from aqueous environment. The removal of MG takes place in the micellar structure formed on alumina

Asit K. Das; Sandip Saha; Anjali Pal; Sanjoy K. Maji

2009-01-01

190

Microwave induced synthesis of graft copolymer of binary vinyl monomer mixtures onto delignified Grewia optiva fibre: Application in dye removal  

NASA Astrophysics Data System (ADS)

Grafting method, through microwave radiation technique is very effective in terms of time consumption, cost effectiveness and environmental friendliness. Via this method, delignified Grewia optiva identified as a waste biomass, was graft copolymerized with methylmethacrylate (MMA) as an principal monomer in a binary mixture of ethyl methacrylate (EMA) and ethyl acrylate (EA) under microwave irradiation (MWR) using ascorbic acid/H2O2 as an initiator system. The concentration of the comonomer was optimized to maximize the graft yield with respect to the primary monomer. Maximum graft yield (86.32%) was found for dGo-poly(MMA-co-EA) binary mixture as compared to other synthesized copolymer. The experimental results inferred that the optimal concentrations for the comonomers to the optimized primary monomer was observed to be 3.19 mol/L×10-1 for EMA and 2.76 mol/L×10-1 for EA. Delignified and graft copolymerized fibre were subjected to evaluation of physicochemical properties such as swelling behaviour and chemical resistance. The synthesized graft copolymers were characterized with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and X-ray diffraction techniques. Thermal stability of dGo-poly(MMA-co-EA) was found to be more as compared to the delignified Grewia optiva fibre and other graft copolymers. Although the grafting technique was found to decrease percentage crystallinity and crystallinity index among the graft copolymers but there was significant increase in their acid/base and thermal resistance properties. The grafted samples have been explored for the adsorption of hazardous methylene dye from aqueous system.

Gupta, Vinod; Pathania, Deepak; Priya, Bhanu; Singha, A. K.; Sharma, Gaurav

2014-08-01

191

Microwave induced synthesis of graft copolymer of binary vinyl monomer mixtures onto delignified Grewia optiva fiber: application in dye removal  

PubMed Central

Grafting method, through microwave radiation technique is very effective in terms of time consumption, cost effectiveness and environmental friendliness. Via this method, delignified Grewia optiva identified as a waste biomass, was graft copolymerized with methylmethacrylate (MMA) as an principal monomer in a binary mixture of ethyl methacrylate (EMA) and ethyl acrylate (EA) under microwave irradiation (MWR) using ascorbic acid/H2O2 as an initiator system. The concentration of the comonomer was optimized to maximize the graft yield with respect to the primary monomer. Maximum graft yield (86.32%) was found for dGo-poly(MMA-co-EA) binary mixture as compared to other synthesized copolymer. The experimental results inferred that the optimal concentrations for the comonomers to the optimized primary monomer was observed to be 3.19 mol/L × 10?1 for EMA and 2.76 mol/L × 10?1 for EA. Delignified and graft copolymerized fiber were subjected to evaluation of physicochemical properties such as swelling behavior and chemical resistance. The synthesized graft copolymers were characterized with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and X-ray diffraction techniques. Thermal stability of dGo-poly(MMA-co-EA) was found to be more as compared to the delignified Grewia optiva fiber and other graft copolymers. Although the grafting technique was found to decrease percentage crystallinity and crystallinity index among the graft copolymers but there was significant increase in their acid/base and thermal resistance properties. The grafted samples have been explored for the adsorption of hazardous methylene dye from aqueous system. PMID:25157348

Gupta, Vinod Kumar; Pathania, Deepak; Priya, Bhanu; Singha, Amar Singh; Sharma, Gaurav

2014-01-01

192

ASSESSMENT OF POTENTIAL TOXIC RELEASES FROM LEATHER INDUSTRY DYEING OPERATIONS  

EPA Science Inventory

The study focused on the organic dyes released to the environment in the wastewaters from leather dyeing operations. Basically, three types of dyes--acid, basic, and direct--are used, although the number of different dyes are well over 50, and the number of formulations used at a...

193

The use of ultrasound to enhance the degradation of the Basic Green by cast iron.  

PubMed

The effect of pH, amount of cast iron and initial concentration on the removal ratio of Basic Green by cast iron combined with ultrasound was investigated. It was shown that the reduction of Basic Green was enhanced by ultrasound. In all combined systems, the decolorization efficiency is more than 95%, but removal ratio of CODcr decreased with the increasing pH or initial dye concentration and increased with the increase of the amount of cast iron. PMID:16808947

Shen, Zhuang-zhi; Shen, Jian-zhong

2006-12-22

194

Kinetic and equilibrium isotherm studies for the adsorptive removal of Brilliant Green dye from aqueous solution by rice husk ash.  

PubMed

The present study deals with the adsorption of Brilliant Green (BG) on rice husk ash (RHA). RHA is a solid waste obtained from the particulate collection equipment attached to the flue gas lines of rice husk fired boilers. Batch studies were performed to evaluate the influences of various experimental parameters like initial pH (pH0), contact time, adsorbent dose and initial concentration (C0) on the removal of BG. Optimum conditions for BG removal were found to be pH0 approximately 3.0, adsorbent dose approximately 6 g L(-1) of solution and equilibrium time approximately 5 h for the C0 range of 50-300 mg L(-1). Adsorption of BG followed pseudo-second-order kinetics. Intra-particle diffusion does not seem to control the BG removal process. Equilibrium isotherms for the adsorption of BG on RHA were analyzed by Freundlich, Langmuir, Redlich-Peterson (R-P), Dubnin-Radushkevich (D-R), and Temkin isotherm models using a non-linear regression technique. Langmuir and R-P isotherms were found to best represent the data for BG adsorption onto RHA. Adsorption of BG on RHA is favourably influenced by an increase in the temperature of the operation. Values of the change in entropy (DeltaS0) and heat of adsorption (DeltaH0) for BG adsorption on RHA were positive. The high negative value of change in Gibbs free energy (DeltaG0) indicates the feasible and spontaneous adsorption of BG on RHA. PMID:17000044

Mane, Venkat S; Deo Mall, Indra; Chandra Srivastava, Vimal

2007-09-01

195

Dye removal from aqueous solution by cobalt-nano particles decorated aluminum silicate: kinetic, thermodynamic and mechanism studies.  

PubMed

This article describes the preparation of a nanoadsorbent containing Co-nanoparticles decorated functionalized SiO2-Al2O3 mixed-oxides as a scavenger toward removal of methyl orange. SiO2-Al2O3 mixed-oxides were functionalized with pyridine-2-carbaldehyde and thereafter, in the next step, Co-nanoparticle was prepared over the modified mixed-oxides. The as-prepared nanoadsorbent was characterized by Fourier transform infrared (FTIR), UV-visible diffuse reflectance spectra (UV-vis DRS), inductively coupled plasma atomic emission spectroscopy (ICP-AES), Brunauer-Emmett-Teller (BET), transmission electron microscopy (TEM), electron paramagnetic resonance (EPR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Results showed that Co-nanoparticle with average size of about 5-25 nm was immobilized successfully on the surface of modified mixed-oxides and was widely dispersed. EPR and CV of Si/Al-PAEA=PyCA@CoNP confirmed that most of the covalently bond active sites of the nano-adsorbent are in the form of Co(II) ions. The supported cobalt is a suitable and efficient adsorbent for the removal of methyl orange from aqueous solution. The heterogeneous Co-NPs were found to be effective adsorbent for the removal of methyl orange ions from solution. The adsorption process was spontaneous and endothermic in nature and followed pseudo-second-order kinetic model. The CV and EIS of the Co-NPs-MO indicates an easily oxidizable environment, this being in agreement with the FTIR data, where the electron density at Co-NPs is higher due to the presence of a donor-electron ligand (methyl orange), that is, reduction of Co-NPs from +3 to +2 oxidation state is more favored. PMID:25460694

Arshadi, M; Faraji, A R; Mehravar, M

2015-02-15

196

Arsenic removal from contaminated groundwater by membrane-integrated hybrid plant: optimization and control using Visual Basic platform.  

PubMed

A simulation software (ARRPA) has been developed in Microsoft Visual Basic platform for optimization and control of a novel membrane-integrated arsenic separation plant in the backdrop of absence of such software. The user-friendly, menu-driven software is based on a dynamic linearized mathematical model, developed for the hybrid treatment scheme. The model captures the chemical kinetics in the pre-treating chemical reactor and the separation and transport phenomena involved in nanofiltration. The software has been validated through extensive experimental investigations. The agreement between the outputs from computer simulation program and the experimental findings are excellent and consistent under varying operating conditions reflecting high degree of accuracy and reliability of the software. High values of the overall correlation coefficient (R (2)?=?0.989) and Willmott d-index (0.989) are indicators of the capability of the software in analyzing performance of the plant. The software permits pre-analysis, manipulation of input data, helps in optimization and exhibits performance of an integrated plant visually on a graphical platform. Performance analysis of the whole system as well as the individual units is possible using the tool. The software first of its kind in its domain and in the well-known Microsoft Excel environment is likely to be very useful in successful design, optimization and operation of an advanced hybrid treatment plant for removal of arsenic from contaminated groundwater. PMID:24288068

Chakrabortty, S; Sen, M; Pal, P

2014-03-01

197

Efficient removal of dyes by a novel magnetic Fe3O4/ZnCr-layered double hydroxide adsorbent from heavy metal wastewater.  

PubMed

A novel magnetic Fe(3)O(4)/ZnCr-layered double hydroxide adsorbent was produced from electroplating wastewater and pickling waste liquor via a two-step microwave hydrothermal method. Adsorption of methyl orange (MO) from water was studied using this material. The effects of three variables have been investigated by a single-factor method. The response surface methodology (RSM) based on Box-Behnken design was successfully applied to the optimization of the preparation conditions. The maximum adsorption capacity of MO was found to be 240.16 mg/g, indicating that this material may be an effective adsorbent. It was shown that 99% of heavy metal ions (Fe(2+), Fe(3+), Cr(3+), and Zn(2+)) can be effectively removed into precipitates and released far less in the adsorption process. In addition, this material with adsorbed dye can be easily separated by a magnetic field and recycled after catalytic regeneration with advanced oxidation technology. Meanwhile, kinetic models, FTIR spectra and X-ray diffraction pattern were applied to the experimental data to examine uptake mechanism. The boundary layer and intra-particle diffusion played important roles in the adsorption mechanisms. PMID:23122732

Chen, Dan; Li, Yang; Zhang, Jia; Li, Wenhui; Zhou, Jizhi; Shao, Li; Qian, Guangren

2012-12-01

198

Ultrasound-promoted coating of MOF-5 on silk fiber and study of adsorptive removal and recovery of hazardous anionic dye "congo red".  

PubMed

A metal-organic framework MOF-5 has been synthesized on silk fiber through electrostatic layer-by-layer assembly. The silk surface coating was formed via sequential dipping in an alternating bath of metal and ligand solutions at room temperature by direct mixing. SEM was used to investigate the growth of MOF-5 coating as materials for separation membrane due to their desirable properties in adsorptive removal of congo red (CR) from contaminated water. The adsorption capacity of MOF-5 is remarkable high in the liquid phase. The adsorption of CR at various concentration and contact time in spontaneous process were studied. The silk fibers containing MOF-5 open a wide field of possible applications, such as protection layers or membranes in pollution remediation wastewater and any effluent. Desorption of the dye can be carried out by using NaOH solution with more than about 50% recovery of congo red from MOF-5 coated on silk membrane filtration. In order to investigate the role of sonicating on the morphology of products, one of the reactions was performed with ultrasound irradiation and the crystal growth is completed more than other methods. The samples and adsorption of CR were characterized with SEM, powder X-ray diffraction (XRD) and UV-visible spectroscopy. PMID:24412182

Khanjani, Somayeh; Morsali, Ali

2014-07-01

199

Magnetic powder MnO-Fe2O3 composite--a novel material for the removal of azo-dye from water.  

PubMed

Fine powder adsorbents or catalysts often show better adsorptive or catalytic properties, but they encounter the difficulties of separation and recovery in application. In this study, four inexpensive magnetic powder MnO-Fe2O3 composites used as adsorbent-catalyst materials were prepared and characterized. These materials could be recovered efficiently by a magnetic separation method. Their adsorptive properties for the removal of an azo-dye, acid red B (ARB), from water and the regeneration of adsorbents containing ARB by catalytic combustion was studied. These powder adsorbents showed excellent adsorption towards ARB under acidic conditions. A very fast adsorption rate was observed and could be well described by a pseudo-second-order kinetics model. The adsorption capacity increased with increasing Fe content and surface area of the adsorbent, and the highest adsorption capacity of 105.3 mg/g was obtained at pH 3.5. The adsorption was not affected by the presence of Cl-, but was significantly affected by SO4(2-). The adsorbent containing ARB can be regenerated by catalytic combustion of adsorbed ARB at 400 degrees C in air. Laboratory experiments demonstrated that this material is reusable. PMID:15707636

Wu, Rongcheng; Qu, Jiuhui; Chen, Yongsheng

2005-02-01

200

Use of agricultural waste sugar beet pulp for the removal of Gemazol turquoise blue-G reactive dye from aqueous solution  

Microsoft Academic Search

The potential use of dried sugar beet pulp, an agricultural solid waste by-product, as an biosorbent for Gemazol turquoise blue-G, a copper–pthalocyanine reactive dye commonly used in dyeing of cotton, was investigated in the present study. Batch adsorption studies were carried out to examine the influence of various parameters such as initial pH, temperature and initial dye concentration. The results

Zümriye Aksu; I. Alper Isoglu

2006-01-01

201

Effect of iron salt on the color removal of water containing the azo-dye reactive blue 69 using photo-assisted Fe(II)\\/H 2O 2 and Fe(III)\\/H 2O 2 systems  

Microsoft Academic Search

The effect of chloride, sulfate and nitrate anions on the color removal of water containing the azo-dye reactive blue 69 (RB69) in acidic solution, by using photo-assisted Fenton process with Fe(II)\\/H2O2 and Fe(III)\\/H2O2 systems was investigated. Experiments were conducted in a batch reactor irradiated during 5h with a domestic 15W lamp with emission in the visible spectra. Experimental results showed

Sayra L. Orozco; Erick R. Bandala; Camilo A. Arancibia-Bulnes; Benito Serrano; Raúl Suárez-Parra; Isaias Hernández-Pérez

2008-01-01

202

Fast removal of malachite green dye using novel superparamagnetic sodium alginate-coated Fe3O4 nanoparticles.  

PubMed

In this study, superparamagnetic sodium alginate-coated Fe3O4 nanoparticles (Alg-Fe3O4) as a novel magnetic adsorbent were prepared by in situ coprecipitation method, in which Fe3O4 nanoparticles were precipitated from FeCl3 and FeCl2 under alkaline medium in the presence of sodium alginate. The Alg-Fe3O4 nanoparticles were used for removal of malachite green (MG) from aqueous solutions using batch adsorption technique. The characterization of synthesized nanoparticles was performed using XRD, FTIR, TEM, TGA and vibrating sample magnetometer (VSM) techniques. FTIR analysis of synthesized nanoparticles provided the evidence that sodium alginate was successfully coated on the surface of Fe3O4 nanoparticles. The FT-IR and TGA characterization showed that the Alg-Fe3O4 nanoparticles contained about 14% (w/w) of sodium alginate. Moreover, TEM analysis indicated that the average diameter of the Alg-Fe3O4 nanoparticles was about 12nm. The effects of adsorbent dosage, pH and temperature were investigated on the adsorption properties of MG onto Alg-Fe3O4 nanoparticles. The equilibrium adsorption data were modeled using the Langmuir and Freundlich isotherms. The maximum adsorption capacity obtained from Langmuir isotherm equation was 47.84mg/g. The kinetics of adsorption of MG onto Alg-Fe3O4 nanoparticles were investigated using the pseudo-first-order and pseudo-second-order kinetic models. The results showed that the adsorption of MG onto nanoparticles followed pseudo-second-order kinetic model. PMID:24875322

Mohammadi, Abbas; Daemi, Hamed; Barikani, Mehdi

2014-08-01

203

Basic Red 51, a permitted semi-permanent hair dye, is cytotoxic to human skin cells: Studies in monolayer and 3D skin model using human keratinocytes (HaCaT).  

PubMed

The use of hair dyes is closely associated with the increase of cancer, inflammation and other skin disorders. The recognition that human skin is not an impermeable barrier indicates that there is the possibility of human systemic exposure. The carcinogenic potential of hair dye ingredients has attracted the attention of toxicologists for many decades, mainly due to the fact that some ingredients belong to the large chemical family of aromatic amines. Herein, we investigated the cytotoxicity of Basic Red 51 (BR51) in immortalized human keratinocytes (HaCaT). BR51 is a temporary hair dye that belongs to the azo group (NN); the cleavage of this bond may result in the release of toxic aromatic amines. The half maximal effective concentration (EC50) in HaCaT cells is 13?g/mL. BR51 induced a significant decrease on expression of p21 in a dose dependent manner. p53 was not affected, whereas BR51 decreased procaspase 8 and cleaved procaspase 9. These results proved that caspase 3 is fully involved in BR51-induced apoptosis. The dye was also able to stop this cell cycle on G2 in sub-toxic doses. Moreover, we reconstructed a 3D artificial epidermis using HaCaT cells; using this model, we observed that BR51 induced cell injury and cells were undergoing apoptosis, considering the fragmented nuclei. Subsequently, BR51 induced reactive oxygen species (ROS) leading to an increase on the levels of 8-oxo-dG. In conclusion, we provide strong evidence that consumer and/or professional exposure to BR51 poses risk to human health. PMID:24657526

Zanoni, Thalita B; Tiago, Manoela; Faiăo-Flores, Fernanda; de Moraes Barros, Silvia B; Bast, Aalt; Hageman, Geja; de Oliveira, Danielle Palma; Maria-Engler, Silvya S

2014-06-01

204

Adsorption of basic fuchsin using waste materials—bottom ash and deoiled soya—as adsorbents  

Microsoft Academic Search

Basic fuchsin, a triaminotriphenylmethane dye, was removed by adsorption utilizing two waste materials—“bottom ash,” a power plant waste material, and “deoiled soya,” an agriculture waste product. The adsorbents were characterized through IR spectroscopy and differential thermal analysis (DTA). Batch adsorption experiments were carried out by measuring effects of pH, adsorbate concentration, sieve size, amount of adsorbent, contact time, temperature, etc.

V. K. Gupta; Alok Mittal; Vibha Gajbe; Jyoti Mittal

2008-01-01

205

Studies on the removal of dyes from a synthetic textile effluent using barley husk in static-batch mode and in a continuous flow, packed-bed, reactor  

Microsoft Academic Search

The adsorption of five reactive dyes in a synthetic textile dye effluent onto barley husks has been studied in static-batch mode and in a continuous flow, packed-bed, reactor (CFPBR). Effective adsorption, thermodynamics and various initial concentrations (C0) were studied for static batch conditions. The effect of C0 and retention time (?), by varying height and weight of packing, along with

Tim Robinson; Bennett Chandran; G Sathya Naidu; Poonam Nigam

2002-01-01

206

Equilibrium, kinetics and mechanism modeling and simulation of basic and acid dyes sorption onto jute fiber carbon: Eosin yellow, malachite green and crystal violet single component systems  

Microsoft Academic Search

Batch experiments were carried out for the sorption of eosin yellow, malachite green and crystal violet onto jute fiber carbon (JFC). The operating variables studied are the initial dye concentration, initial solution pH, adsorbent dosage and contact time. Experimental equilibrium data were fitted to Freundlich, Langmuir and Redlich–Peterson isotherm by non-linear regression method. Langmuir isotherm was found to be the

K. Porkodi; K. Vasanth Kumar

2007-01-01

207

Removing user fees for basic health services: a pilot study and national roll-out in Afghanistan  

PubMed Central

Background User fees for primary care tend to suppress utilization, and many countries are experimenting with fee removal. Studies show that additional inputs are needed after removing fees, although well-documented experiences are lacking. This study presents data on the effects of fee removal on facility quality and utilization in Afghanistan, based on a pilot experiment and subsequent nationwide ban on fees. Methods Data on utilization and observed structural and perceived overall quality of health care were compared from before-and-after facility assessments, patient exit interviews and catchment area household surveys from eight facilities where fees were removed and 14 facilities where fee levels remained constant, as part of a larger health financing pilot study from 2005 to 2007. After a national user fee ban was instituted in 2008, health facility administrative data were analysed to assess subsequent changes in utilization and quality. Results The pilot study analysis indicated that observed and perceived quality increased across facilities but did not differ by fee removal status. Difference-in-difference analysis showed that utilization at facilities previously charging both service and drug fees increased by 400% more after fee removal, prompting additional inputs from service providers, compared with facilities that previously only charged service fees or had no change in fees (P = 0.001). Following the national fee ban, visits for curative care increased significantly (P < 0.001), but institutional deliveries did not. Services typically free before the ban—immunization and antenatal care—had immediate increases in utilization but these were not sustained. Conclusion Both pilot and nationwide data indicated that curative care utilization increased following fee removal, without differential changes in quality. Concerns raised by non-governmental organizations, health workers and community leaders over the effects of lost revenue and increased utilization require continued effort to raise revenues, monitor health worker and patient perceptions, and carefully manage health facility performance. PMID:22027924

Steinhardt, Laura C; Aman, Iqbal; Pakzad, Iqbalshah; Kumar, Binay; Singh, Lakhwinder P; Peters, David H

2011-01-01

208

Removal of anionic azo dye from aqueous solution via an adsorption-photosensitized regeneration process on a TiO2 surface.  

PubMed

Textile dye effluents are typically characterized by strong color and recalcitrance, even at very low concentration. The process of enrichment of anionic azo dye on the surface of TiO(2) fibers followed by photosensitization degradation under ambient air conditions was extensively investigated. Adsorption isotherms and zeta potentials were used to describe the "dye/TiO(2) surface" interface, taking into account the effects of pH on the nature and population of the surface groups on the TiO(2) fibers. The extent of the photocatalytic degradation of dye on TiO(2) surface was determined by FTIR. N(2) adsorption isotherms and optical spectra were employed to investigate the effect of photosensitization. The adsorption of dyes on the TiO(2) surface occurs via electrostatic attraction through the formation of single- or multidentate-coordinated surface complexes. Almost complete photobleaching of the absorption band at 534 nm is achieved in ~4 h. Dye-sensitized TiO(2) fiber could absorb part of the visible light spectrum (? < 600 nm). Interfacial electron transfer can potentially alter the degradation efficiency. The regenerated TiO(2) fiber could be reused for subsequent decolorization without a decline in adsorption efficiency compared with freshly prepared TiO(2) samples, which may be attributed to preservation of the hierarchical pore structure and restoration of the original surface properties. In summary, we propose an efficient "adsorption-photoregeneration-reuse" process applying TiO(2) fibers for the degradation of dyes in water. PMID:22544602

Bao, Nan; Li, Yuan; Yu, Xiao-Hong; Niu, Jun-Jian; Wu, Guo-Lin; Xu, Xiao-Hong

2013-02-01

209

Decolorization of triphenylmethane dyes and textile and dye-stuff effluent by Kurthia sp  

Microsoft Academic Search

A number of soil and water samples were collected from the vicinity of effluent treatment plant of a textile and dyeing industry. Several organisms were screened for their ability to decolorize triphenylmethane group of dyes. A Kurthia sp. was selected on the basis of rapid dye decolorizing activity. Under aerobic conditions, 98% color was removed intracellularly by this strain. A

Rajesh Kumar Sani; Uttam Chand Banerjee

1999-01-01

210

The wash-off of reactive dyes on cellulosic fibres part 2. Monochlorotriazinyl dyes on cotton  

Microsoft Academic Search

One monochlorotriazinyl and two bis-monochlorotriazinyl dyes were applied to cotton fabric at 1, 2 and 4 % omf and the dyeings then washed-off using tap water, sodium carbonate and five commercial surfactants, the latter in both the presence and absence of sodium carbonate. The concentration of sodium carbonate was varied and its effects on both the extent of dye removal

S. M. Burkinshaw; D. Katsarelias

1997-01-01

211

Dye filled security seal  

DOEpatents

A security seal for providing an indication of unauthorized access to a sealed object includes an elongate member to be entwined in the object such that access is denied unless the member is removed. The elongate member has a hollow, pressurizable chamber extending throughout its length that is filled with a permanent dye under greater than atmospheric pressure. Attempts to cut the member and weld it together are revealed when dye flows through a rupture in the chamber wall and stains the outside surface of the member.

Wilson, Dennis C. W. (Tijeras, NM)

1982-04-27

212

Oil Palm Biomass–Based Adsorbents for the Removal of Water Pollutants—A Review  

Microsoft Academic Search

This article presents a review on the role of oil palm biomass (trunks, fronds, leaves, empty fruit bunches, shells, etc.) as adsorbents in the removal of water pollutants such as acid and basic dyes, heavy metals, phenolic compounds, various gaseous pollutants, and so on. Numerous studies on adsorption properties of various low-cost adsorbents, such as agricultural wastes and its based

TANWEER AHMAD; MOHD RAFATULLAH; ARNIZA GHAZALI; OTHMAN SULAIMAN; ROKIAH HASHIM

2011-01-01

213

Use of agricultural waste sugar beet pulp for the removal of Gemazol turquoise blue-G reactive dye from aqueous solution.  

PubMed

The potential use of dried sugar beet pulp, an agricultural solid waste by-product, as an biosorbent for Gemazol turquoise blue-G, a copper-pthalocyanine reactive dye commonly used in dyeing of cotton, was investigated in the present study. Batch adsorption studies were carried out to examine the influence of various parameters such as initial pH, temperature and initial dye concentration. The results indicated that adsorption was strongly pH-dependent and slightly temperature-dependent. At 800 mg l(-1) initial Gemazol turquoise blue-G concentration, dried sugar beet pulp exhibited the highest Gemazol turquoise blue-G uptake capacity of 234.8 mg g(-1) at 25 degrees C and at an initial pH value of 2.0. The Freundlich, Langmuir, Redlich-Peterson and Langmuir-Freundlich, the two and three parameters adsorption models were used for the mathematical description of the biosorption equilibrium and isotherm constants were evaluated depending on temperature. Both the Langmuir and Redlich-Peterson models were applicable for describing the dye biosorption by dried sugar beet pulp in the concentration (100-800 mg l(-1)) and temperature (25-45 degrees C) ranges studied. Simple mass transfer and kinetic models were applied to the experimental data to examine the mechanisms of biosorption and potential rate controlling steps such as external mass transfer, intraparticle diffusion and biosorption process. The sorption process was found to be controlled by both surface and pore diffusion with surface diffusion at the earlier stages followed by pore diffusion at the later stages. Pseudo first-order, pseudo second-order and saturation type kinetic models described the biosorption kinetics accurately at all concentrations and temperatures studied. The thermodynamic analysis indicated that the sorption process was exothermic and the biosorption of dye on dried sugar beet pulp might be physical in nature. PMID:16603311

Aksu, Zümriye; Isoglu, I Alper

2006-09-01

214

Synthesis of magnetic activated carbon/?-Fe2O3 nanocomposite and its application in the removal of acid yellow 17 dye from water.  

PubMed

The adsorption of acid yellow 17 dye on activated carbon/?-Fe2O3 nanocomposite prepared by simple pyrolytic method using iron(II) gluconate was investigated by batch technique. The composite was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and vibrating sample magnetometry (VSM). The size of iron oxide nanoparticles formed from iron(II) gluconate precursor is in the range 5-17nm. The saturation magnetization (Ms), remanence (Mr) and coercivity (Hc) of the magnetic carbon nanocomposite is 5.6emu/g, 1.14emu/g and 448Oe, respectively. The adsorption data are found to fit well with Langmuir and, fairly well with Freundlich and Tempkin isotherms at higher concentration of dye (40-100mg/L). Kinetics data indicate that the adsorption of dye follows pseudo-second order kinetics model. PMID:24727015

Ranjithkumar, V; Sangeetha, S; Vairam, S

2014-05-30

215

Dye adsorption on mesoporous activated carbon fiber obtained from pitch containing yttrium complex  

Microsoft Academic Search

The adsorption of acid dyes (Acid Blue 9, Acid Blue 74, Acid Orange 10, and Acid Orange 51), direct dyes (Direct Black 19, Direct Yellow 11, and Direct Yellow 50), and basic dyes (Basic Brown 1 and Basic Violet 3) on a highly mesoporous activated carbon fiber (Y-ACF) obtained from pitch containing yttrium acetylacetonate was investigated in terms of size

Hisashi Tamai; Takeshi Yoshida; Masahiko Sasaki

1999-01-01

216

Intraoperative image-directed dye marking of tumor margins.  

PubMed

The incorporation of interactive image guidance during intracranial tumor surgery offers the possibilities of reduced operative trauma, shorter operation time, greater precision, and an increased understanding of complex anatomy and pathology. A basic weakness with these systems though is that they cannot account for movement of target points due to brain shift by draining of CSF or removal of pathology during the operative procedure. We have developed a stereotactic (frameless) guided injector probe for marking the tumor boundary with dye injection in conjunction with a neuronavigation system. The device consisted of a rigid blunt hollow probe (2 mm dia.) with 4 small side holes at the tip. The catheter is mounted in a holder equipped with 3 LEDs supplying guidance information for the neuronavigation system. A small manual aliquoting pump delivers a measured amount of dye in each track. Isotonic methylene blue was injected in 6 to 8 tracks around the periphery of the tumor as determined by the contract ring in MR scans. The dye was injected using image-directed guidance before resection of the tumor was started (often with the dura intact). Tumor tissue could then be resected until the dye became visible at the tumor boundary. Identification of the dye in the tissue was enhanced with the use of the operating microscope. The 3-dimensional position of the dye track could be determined at the end of tumor resection and compared with its initial position giving a good estimate of local brain shift. The method has proved especially helpful for the resection of large gliomas allowing for a more radical operative result. PMID:10535294

Hirschberg, H; Samset, E

1999-09-01

217

Effluent treatment in the textile industry: Dyes. (Latest citations from World Textile Abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning the treatment and reuse of textile industry effluents containing dyes. The citations explore bacteria that absorb dyes, neutralization of dye effluents, color removal by ozonization and by treatment with manganese solid waste, flocculation treatment, and dye absorption methods and materials. Membrane treatment, electrolysis, and ultrafiltration methods of removing dyes from wastewater are considered, as well as reuse of dye-containing effluents. Textile effluents that do not contain dyes are discussed in another bibliography. (Contains a minimum of 244 citations and includes a subject term index and title list.)

Not Available

1992-06-01

218

Unblocking the Sink: Improved CID-Based Analysis of Phosphorylated Peptides by Enzymatic Removal of the Basic C-Terminal Residue  

NASA Astrophysics Data System (ADS)

A one-step enzymatic reaction for improving the collision-induced dissociation (CID)-based tandem mass spectrometry (MS/MS) analysis of phosphorylated peptides in an ion trap is presented. Carboxypeptidase-B (CBP-B) was used to selectively remove C-terminal arginine or lysine residues from phosphorylated tryptic/Lys-C peptides prior to their MS/MS analysis by CID with a Paul-type ion trap. Removal of this basic C-terminal residue served to limit the extent of gas-phase neutral loss of phosphoric acid (H3PO4), favoring the formation of diagnostic b and y ions as determined by an increase in both the number and relative intensities of the sequence-specific product ions. Such differential fragmentation is particularly valuable when the H3PO4 elimination is so predominant that localizing the phosphorylation site on the peptide sequence is hindered. Improvement in the quality of tandem mass spectral data generated by CID upon CBP-B treatment resulted in greater confidence both in assignment of the phosphopeptide primary sequence and for pinpointing the site of phosphorylation. Higher Mascot ion scores were also generated, combined with lower expectation values and higher delta scores for improved confidence in site assignment; Ascore values also improved. These results are rationalized in accordance with the accepted mechanisms for the elimination of H3PO4 upon low energy CID and insights into the factors dictating the observed dissociation pathways are presented. We anticipate this approach will be of utility in the MS analysis of phosphorylated peptides, especially when alternative electron-driven fragmentation techniques are not available.

Lanucara, Francesco; Chi Hoo Lee, Dave; Eyers, Claire E.

2013-12-01

219

Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon-kinetic study and equilibrium isotherm analyses  

Microsoft Academic Search

Adsorption of malachite green (MG) was studied using three adsorbents namely, bagasse fly ash (BFA), a sugar industry waste, and activated carbons commercial grade (ACC) and laboratory grade (ACL). Batch adsorption studies were conducted to evaluate the effect of various parameters such as pH, adsorbent dose, contact time and initial MG concentration on the removal of MG. The initial pH

Indra Deo Mall; Vimal Chandra Srivastava; Nitin Kumar Agarwal; Indra Mani Mishra

2005-01-01

220

Equilibrium data and process design for adsorption of disperse dyes onto Alunite  

Microsoft Academic Search

Adsorption of disperse dyes from aqueous solutions onto calcined alunite has been investigated to assess the possibility of using alunite for removing disperse dyes from aqueous solutions. The effects of particle size, adsorbent mass, initial pH and temperature of the dye solution on the adsorption capacities have been evaluated. Acidic pH was favorable for the adsorption of all dyes: Disperse

Mahmut Özacar; ?. Ayhan ?engil

2004-01-01

221

Development and field testing of an alternative latrine design utilizing basic oxygen furnace slag as a treatment media for pathogen removal  

NASA Astrophysics Data System (ADS)

In densely-populated communities in developing countries, appropriate setback distances for pit latrines often cannot be met. An alternative latrine was designed that incorporates two permeable reactive media to treat pathogens and nitrate from effluent. Basic oxygen furnace (BOF) slag in contact with wastewater effluent elevates pH to levels (> 11) that inactivate pathogens. Saturated woodchip creates reducing conditions that encourage the growth of denitrifying bacteria which remove NO3-. The field application was constructed in Santo Antônio, a peri-urban community located 25 km south of the city of Săo Paulo, Brazil. A 2-m diameter pit was excavated to a depth of 4 m into the sandy-clay unsaturated zone. A geotextile liner was emplaced to create saturated conditions in the 0.5-m thick woodchip barrier. Above the woodchip barrier, a 1-m thick layer of BOF slag mixed with pea gravel and sand was emplaced. A series of filter layers, grading upward from coarse sand to fine gravel, where placed above the BOF layer, and gravel was also infilled around the outer perimeter of the excavation, to ensure O2 diffusion into the design, the formation of biofilm, and degradation of organic material. A control latrine, constructed with similar hydraulic characteristics and nonreactive materials, was constructed at a locality 100 m away, in the same geological materials. Total coliform, thermotolerant coliform, and E. coli are removed by approximately 4-5 log concentration units in less than one meter of vertical transport through the BOF slag media. In the control latrine, comparable reductions in these pathogenic indicators are observed over three meters of vertical transport. Removal of sulphur-reducing Clostridia, Clostridium perfrigens and somatic coliphage are also achieved in the alternative design, but initial concentrations in effluent are low. Some measurable concentrations of pathogen indicators are measured in lysimeters below the BOF layer, but are associated with low-TDS, neutral water that is infiltrating in from the sidewall of the excavation. Oxygen concentration is augmented (5 mg L-1) in the alternative latrine compared to the control design (1-2 mg L-1), suggesting that conditions for biofilm development are improved. The decline in pH between sampling events after 42 and 82 days of wastewater application suggest that the potential for base release is decreased over time. Somatic coliphage concentrations are 1-2 log concentration units lower in stainless steel lysimeters compared to concentrations measured in adjacent pan lysimeters, suggesting that the filtration of coliphage by the porous cup may negatively bias sampling.

Stimson, J.; Suhogusoff, A. V.; Blowes, D. W.; Hirata, R. A.; Ptacek, C. J.; Robertson, W. D.; Emelko, M. B.

2009-05-01

222

Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability  

PubMed Central

Biodegradation and detoxification of dyes, Malachite green, Nigrosin and Basic fuchsin have been carried out using two fungal isolates Aspergillus niger, and Phanerochaete chrysosporium, isolated from dye effluent soil. Three methods were selected for biodegradation, viz. agar overlay and liquid media methods; stationary and shaking conditions at 25 °C. Aspergillus niger recorded maximum decolorization of the dye Basic fuchsin (81.85%) followed by Nigrosin (77.47%), Malachite green (72.77%) and dye mixture (33.08%) under shaking condition. Whereas, P. chrysosporium recorded decolorization to the maximum with the Nigrosin (90.15%) followed by Basic fuchsin (89.8%), Malachite green (83.25%) and mixture (78.4%). The selected fungal strains performed better under shaking conditions compared to stationary method; moreover the inoculation of fungus also brought the pH of the dye solutions to neutral from acidic. Seed germination bioassay study exhibited that when inoculated dye solutions were used, seed showed germination while uninoculated dyes inhibited germination even after four days of observation. Similarly, microbial growth was also inhibited by uninoculated dyes. The excellent performance of A. niger and P. chrysporium in the biodegradation of textile dyes of different chemical structures suggests and reinforces the potential of these fungi for environmental decontamination. PMID:25477943

Rani, Babita; Kumar, Vivek; Singh, Jagvijay; Bisht, Sandeep; Teotia, Priyanku; Sharma, Shivesh; Kela, Ritu

2014-01-01

223

Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability.  

PubMed

Biodegradation and detoxification of dyes, Malachite green, Nigrosin and Basic fuchsin have been carried out using two fungal isolates Aspergillus niger, and Phanerochaete chrysosporium, isolated from dye effluent soil. Three methods were selected for biodegradation, viz. agar overlay and liquid media methods; stationary and shaking conditions at 25 °C. Aspergillus niger recorded maximum decolorization of the dye Basic fuchsin (81.85%) followed by Nigrosin (77.47%), Malachite green (72.77%) and dye mixture (33.08%) under shaking condition. Whereas, P. chrysosporium recorded decolorization to the maximum with the Nigrosin (90.15%) followed by Basic fuchsin (89.8%), Malachite green (83.25%) and mixture (78.4%). The selected fungal strains performed better under shaking conditions compared to stationary method; moreover the inoculation of fungus also brought the pH of the dye solutions to neutral from acidic. Seed germination bioassay study exhibited that when inoculated dye solutions were used, seed showed germination while uninoculated dyes inhibited germination even after four days of observation. Similarly, microbial growth was also inhibited by uninoculated dyes. The excellent performance of A. niger and P. chrysporium in the biodegradation of textile dyes of different chemical structures suggests and reinforces the potential of these fungi for environmental decontamination. PMID:25477943

Rani, Babita; Kumar, Vivek; Singh, Jagvijay; Bisht, Sandeep; Teotia, Priyanku; Sharma, Shivesh; Kela, Ritu

2014-01-01

224

Equilibrium uptake, sorption dynamics, process optimization, and column operations for the removal and recovery of malachite green from wastewater using activated carbon and activated slag  

Microsoft Academic Search

The waste slurry generated in fertilizer plants and slag (blast furnace waste) have been converted into low-cost adsorbents, activated carbon and activated slag, respectively, and these are utilized for the removal of malachite green (a basic dye) from wastewater. In the batch experiments, parameters studied include the effect of pH, sorbent dosage, adsorbate concentration, temperature, and contact time. Kinetic studies

Vinod K. Gupta; Suresh K. Srivastava; Dinesh Mohan

1997-01-01

225

Decolorization of the textile dyes by newly isolated bacterial strains  

Microsoft Academic Search

Six bacterial strains with the capability of degrading textile dyes were isolated from sludge samples and mud lakes. Aeromonas hydrophila was selected and identified because it exhibited the greatest color removal from various dyes. Although A. hydrophila displayed good growth in aerobic or agitation culture (AGI culture), color removal was the best in anoxic or anaerobic culture (ANA culture). For

Kuo-Cheng Chen; Jane-Yii Wu; Dar-Jen Liou; Sz-Chwun John Hwang

2003-01-01

226

Utilization of Fly ash as Low-Cost Adsorbent for the Removal of Methylene Blue, Malachite Green and Rhodamine B Dyes from Textile Wastewater  

Microsoft Academic Search

Fly ash was utilized as a potential low-cost adsorbent for the removal of methylene blue, malachite green and rhodamine B from artificial textile wastewater. The adsorbent was characterized by its physico-chemical analyses, porosity, surface area, ignition loss measurements and scanning electron micrograph. Adsorption studies were carried out in a batch process with different concentrations of dyestuffs, pH, temperature and contact

Tabrez A. KHAN; Imran ALI; Ved VATI SINGH; Sangeeta SHARMA

227

Feasibility analysis of color removal from textile dyeing wastewater in a fixed-bed column system by surfactant-modified zeolite (SMZ)  

Microsoft Academic Search

In this study, the ability of surfactant-modified zeolite (SMZ) to remove color from real textile wastewater was investigated. Tests were performed in a fixed-bed column reactor and the surface of natural zeolite was modified with a quaternary amine surfactant hexadecyltrimethylammonium bromide (HTAB). The zeolite bed that was modified at 1gL?1 HTAB concentration and HTAB flow rate of 0.015Lmin?1 showed good

Ozgur Ozdemir; Mustafa Turan; Abdullah Zahid Turan; Aysegul Faki; Ahmet Baki Engin

2009-01-01

228

Fabrication, characterization and application of a reusable immobilized TiO2-PANI photocatalyst plate for the removal of reactive red 4 dye  

NASA Astrophysics Data System (ADS)

A method for immobilizing TiO2-PANI composite using ENR and PVC as adhesives was successfully developed. The immobilized system known as TiO2/PANI/ENR/PVC plate was characterized by FTIR, Raman, diffuse reflectance UV-vis, photo luminescence spectroscopy and HRTEM. The optimum weight ratio for the TiO2:PANI composite was 1:0.0035. The band gap energy of the optimum immobilized composite TiO2/PANI/ENR/PVC (1:0035) was 2.86 eV where polyaniline (PANI) formed a core-shell coating of about 0.9 nm with a strong TiO2-PANI interaction. Photo-etching of the immobilized TiO2/PANI/ENR/PVC (1:0.0035) composite for 7 h increased its surface area and improved its photocatalytic activity. TiO2/PANI/ENR/PVC (1:0.0035)-7 h was visible light sensitive where 85% of 30 mg L-1 reactive red 4 (RR4) dye was decolorized after 60 min of irradiation. The immobilized TiO2/PANI/ENR/PVC (1:0.0035)-7 h was reusable and its photocatalytic activity was sustainable with an average pseudo first order rate constant value of 0.103 ± 0.002 min-1. Adding PANI to the immobilized P25 TiO2 has enhanced its photocatalytic activity throughout the entire ten recycled applications due to the increased BET surface area and lower ecb and h+ recombination.

Razak, S.; Nawi, M. A.; Haitham, K.

2014-11-01

229

Iron complexed afterchrome dyes  

Microsoft Academic Search

The possibility of elimination of chromium in dye effluents during application of afterchrome dyes has been investigated. Eight commercially available azo mordant dyes were used in dyeing of wood fabric and aftertreated with iron (II) and iron (III) salts. Colour and lightfastness of received dyeings was compared with those obtained with the use of traditional chromium-aftertreated method. The structure of

Wojciech Czajkowski; Ma?gorzata Szymczyk

1998-01-01

230

Dye laser amplifier  

DOEpatents

An improved dye laser amplifier is disclosed. The efficiency of the dye laser amplifier is increased significantly by increasing the power of a dye beam as it passes from an input window to an output window within the dye chamber, while maintaining the intensity of the dye beam constant. 3 figs.

Moses, E.I.

1992-12-01

231

Adsorption characteristics of the dye, Brilliant Green, on Neem leaf powder  

Microsoft Academic Search

A novel adsorbent was developed from mature leaves of natural Neem trees for removing dyes from water. The adsorbent, in the form of fine powder, was found to be very effective in removing the dye, Brilliant Green, from aqueous solution. The adsorption process was carried out in a batch process with different concentrations of the aqueous dye solution as well

Krishna G. Bhattacharyya; Arunima Sarma

2003-01-01

232

SORPTION AND TOXICITY OF AZO AND TRIPHENYLMETHANE DYES TO AQUATIC MICROBIAL POPULATIONS  

EPA Science Inventory

Toxicity and sorption of five azo and triphenylmethane dyes to freshwater microbiota were determined to assessment, in part, the risks that these dyes may pose to the aquatic environment. The toxicities of Basic Violet 1, Basic Violet 2, Basic Violet 3, Basic Green 4 and Tropaeol...

233

Feasibility analysis of color removal from textile dyeing wastewater in a fixed-bed column system by surfactant-modified zeolite (SMZ).  

PubMed

In this study, the ability of surfactant-modified zeolite (SMZ) to remove color from real textile wastewater was investigated. Tests were performed in a fixed-bed column reactor and the surface of natural zeolite was modified with a quaternary amine surfactant hexadecyltrimethylammonium bromide (HTAB). The zeolite bed that was modified at 1 g L(-1) HTAB concentration and HTAB flow rate of 0.015 L min(-1) showed good performance in removing color. Effects of wastewater color intensity, flow rates and bed heights were also studied. Wastewater was diluted several times in the ratios of 25%, 50% and 75% in order to assess the influence of wastewater strength. The breakthrough curves of the original and diluted wastewaters are dispersed due to the fact that breakthrough came late at lower color intensities and saturation of the bed appeared faster at higher color intensities. The column had a 3-cm diameter and four different bed heights of 12.5, 25, 37.5 and 50 cm, which treated 5.25, 19.50, 35.25 and 51 L original textile wastewater, respectively, at the breakthrough time at a flow rate of 0.025 L min(-1). The theoretical service times evaluated from bed depth service time (BDST) approach for different column variables. The calculated and theoretical values of the exchange zone height were found with a difference of 27%. The various design parameters obtained from fixed-bed experimental studies showed good correlation with corresponding theoretical values, under different bed heights. The regeneration of the SMZ was also evaluated using a solution consisting of 30 g L(-1) NaCl and 1.5 g L(-1) NaOH at pH 12 and temperature 30 degrees C. Twice-regenerated SMZ showed the best performance compared with the others while first- and thrice-regenerated perform lower than the original SMZ. PMID:19136207

Ozdemir, Ozgur; Turan, Mustafa; Turan, Abdullah Zahid; Faki, Aysegul; Engin, Ahmet Baki

2009-07-30

234

A hybrid artificial neural network and particle swarm optimization for prediction of removal of hazardous dye brilliant green from aqueous solution using zinc sulfide nanoparticle loaded on activated carbon.  

PubMed

In the present study, zinc sulfide nanoparticle loaded on activated carbon (ZnS-NP-AC) simply was synthesized in the presence of ultrasound and characterized using different techniques such as SEM and BET analysis. Then, this material was used for brilliant green (BG) removal. To dependency of BG removal percentage toward various parameters including pH, adsorbent dosage, initial dye concentration and contact time were examined and optimized. The mechanism and rate of adsorption was ascertained by analyzing experimental data at various time to conventional kinetic models such as pseudo-first-order and second order, Elovich and intra-particle diffusion models. Comparison according to general criterion such as relative error in adsorption capacity and correlation coefficient confirm the usability of pseudo-second-order kinetic model for explanation of data. The Langmuir models is efficiently can explained the behavior of adsorption system to give full information about interaction of BG with ZnS-NP-AC. A multiple linear regression (MLR) and a hybrid of artificial neural network and partial swarm optimization (ANN-PSO) model were used for prediction of brilliant green adsorption onto ZnS-NP-AC. Comparison of the results obtained using offered models confirm higher ability of ANN model compare to the MLR model for prediction of BG adsorption onto ZnS-NP-AC. Using the optimal ANN-PSO model the coefficient of determination (R(2)) were 0.9610 and 0.9506; mean squared error (MSE) values were 0.0020 and 0.0022 for the training and testing data set, respectively. PMID:25286113

Ghaedi, M; Ansari, A; Bahari, F; Ghaedi, A M; Vafaei, A

2015-02-25

235

A hybrid artificial neural network and particle swarm optimization for prediction of removal of hazardous dye brilliant green from aqueous solution using zinc sulfide nanoparticle loaded on activated carbon  

NASA Astrophysics Data System (ADS)

In the present study, zinc sulfide nanoparticle loaded on activated carbon (ZnS-NP-AC) simply was synthesized in the presence of ultrasound and characterized using different techniques such as SEM and BET analysis. Then, this material was used for brilliant green (BG) removal. To dependency of BG removal percentage toward various parameters including pH, adsorbent dosage, initial dye concentration and contact time were examined and optimized. The mechanism and rate of adsorption was ascertained by analyzing experimental data at various time to conventional kinetic models such as pseudo-first-order and second order, Elovich and intra-particle diffusion models. Comparison according to general criterion such as relative error in adsorption capacity and correlation coefficient confirm the usability of pseudo-second-order kinetic model for explanation of data. The Langmuir models is efficiently can explained the behavior of adsorption system to give full information about interaction of BG with ZnS-NP-AC. A multiple linear regression (MLR) and a hybrid of artificial neural network and partial swarm optimization (ANN-PSO) model were used for prediction of brilliant green adsorption onto ZnS-NP-AC. Comparison of the results obtained using offered models confirm higher ability of ANN model compare to the MLR model for prediction of BG adsorption onto ZnS-NP-AC. Using the optimal ANN-PSO model the coefficient of determination (R2) were 0.9610 and 0.9506; mean squared error (MSE) values were 0.0020 and 0.0022 for the training and testing data set, respectively.

Ghaedi, M.; Ansari, A.; Bahari, F.; Ghaedi, A. M.; Vafaei, A.

2015-02-01

236

Preparation, characterization and adsorption properties of chitosan modified magnetic graphitized multi-walled carbon nanotubes for highly effective removal of a carcinogenic dye from aqueous solution  

NASA Astrophysics Data System (ADS)

Novel chitosan-modified magnetic graphitized multi-walled carbon nanotubes (CS-m-GMCNTs) were synthesized via a suspension cross-linking method. Composition, morphology and magnetic properties of as-prepared CS-m-GMCNTs were characterized by XRD, SEM-EDS, BET and VSM. The large saturation magnetization (12.27 emu g-1) allows fast separation of CS-m-GMCNTs from treated aqueous solution. The adsorption of congo red (CR) on CS-m-GMCNTs was strongly dependent on pH, temperature of the aqueous phase and adsorbent dosage. Up to 100 and 94.58% color removal could be achieved in 100 min contact time with 10 and 50 mg L-1 of initial concentrations, respectively. The adsorption capacity of CR onto CS-m-GMCNTs could reach 262.9 mg g-1. The pseudo-second-order kinetic model with high correlation coefficients (R2 > 0.999) was suitable to describe the process of CR adsorption onto CS-m-GMCNTs. The Langmuir model fitted the adsorption isotherm data better than the Freundlich model. Values of thermodynamic parameters (?G°, ?H° and ?S°) indicated that the adsorption process was strongly dependent on temperature of the aqueous phase, and spontaneous and endothermic process in nature. Therefore, CS-m-GMCNTs adsorbent displays main advantages of excellent dispersion, convenience separation and high adsorption capacity, which implies their potential application in the environmental cleanup.

Zhu, HuaYue; Fu, YongQian; Jiang, Ru; Yao, Jun; Liu, Li; Chen, YanWen; Xiao, Ling; Zeng, GuangMing

2013-11-01

237

Effluent treatment in the textile industry: Dyes. (Latest citations from World Textile abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning the treatment and reuse of textile industry effluents containing dyes. The citations explore bacteria that absorb dyes, neutralization of dye effluents, decolorization by ozonization or ultraviolet radiation, flocculation treatment, and dye absorption methods and materials. Membrane treatment, electrolysis, and ultrafiltration methods of removing dyes from wastewater are considered, as well as reuse of dye-containing effluents. Textile effluents that do not contain dyes are discussed in another bibliography.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1995-09-01

238

Effluent treatment in the textile industry: Dyes. (Latest citations from World Textile abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning the treatment and reuse of textile industry effluents containing dyes. The citations explore bacteria that absorb dyes, neutralization of dye effluents, decolorization by ozonization or ultraviolet radiation, flocculation treatment, and dye absorption methods and materials. Membrane treatment, electrolysis, and ultrafiltration methods of removing dyes from wastewater are considered, as well as reuse of dye-containing effluents. Textile effluents that do not contain dyes are discussed in another bibliography. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-06-01

239

Dyes for Optical Recording  

Microsoft Academic Search

Dyes for optical recording systems such as laser optical recording systems, laser printing systems, cycolor and related systems, xerography and so on are reviewed. Infrared absorbing (IR) dyes are newly designed for laser optical recording systems such as DRAW and erasable type recording systems. The chemistry of IR dyes developed the new fields in dye chemistry. Many of functionalities in

Masaru Matsuoka

1993-01-01

240

Monitoring the dye impregnation time of nanostructured photoanodes for dye sensitized solar cells  

NASA Astrophysics Data System (ADS)

Dye-sensitized solar cells (DSSCs) are getting increasing attention as low-cost, easy-to-prepare and colored photovoltaic devices. In the current work, in view of optimizing the fabrication procedures and understanding the mechanisms of dye attachment to the semiconductor photoanode, absorbance measurements have been performed at different dye impregnation times ranging from few minutes to 24 hours using UV-Vis spectroscopy. In addition to the traditional absorbance experiments, based on diffuse and specular reflectance on dye impregnated thin films and on the desorption of dye molecules from the photoanodes by means of a basic solution, an alternative in-situ solution depletion measurement, which enables fast and continuous evaluation of dye uptake, is presented. Photoanodes have been prepared with two different nanostructured semiconducting films: mesoporous TiO2, using a commercially available paste from Solaronix, and sponge-like ZnO obtained in our laboratory from sputtering and thermal annealing. Two different dyes have been analyzed: Ruthenizer 535-bisTBA (N719), which is widely used because it gives optimal photovoltaic performances, and a new metal-free organic dye based on a hemisquaraine molecule (CT1). Dye sensitized cells were fabricated using a customized microfluidic architecture. The results of absorbance measurements are presented and discussed in relation to the obtained solar energy conversion efficiencies and the incident photon-to-electron conversion efficiencies (IPCE).

Shahzad, N.; Pugliese, D.; Lamberti, A.; Sacco, A.; Virga, A.; Gazia, R.; Bianco, S.; Shahzad, M. I.; Tresso, E.; Pirri, C. F.

2013-06-01

241

Dyes and stains: from molecular structure to histological application.  

PubMed

In the present review, the chemistry of dyes as well as the interaction mechanisms between tissue and dye has been detailed, and also some of the key factors affecting the selectivity of dyes by certain cellular structures have been mentioned. Moreover, due to the relevance that histological stains have acquired in biomedical research, some of the most common stains have been described, pointing out previous and current applications in basic and applied research. PMID:24389174

Veuthey, Tania; Herrera, Georgina; Dodero, Veronica I

2014-01-01

242

Thermal treatment of dyes from military munitions  

SciTech Connect

Los Alamos National Laboratory has developed thermal treatment equipment to treat Navy smoke and dye compounds. Navy smokes were burned in the Los Alamos Controlled Air Incinerator (CAI) in the early 1980s. These test results were used in the development of a portable system consisting of a Thermal Treatment Unit (TTU), feed preparation and pumping skid, utility skid, and control trailer. This equipment was started up at Navy facilities at China Lake, CA where several destruction removal efficiency tests were completed in 1993 burning smoke compositions. The equipment was set up at the Nevada Test Site (NTS) in 1996 where tests were completed burning green Navy spotting dyes. Operating and test results from the NTS efforts resulted in clearer understanding of equipment deficiencies, dye characteristics and composition, and secondary wastes generated. Future tests, scheduled for July, 1996 will demonstrate higher bum rates, better pH measurement and control, and stack emission test results for other colored dyes.

NONE

1996-09-01

243

Development of functional polymers in modification of cotton for improving dyeability of reactive dyes  

Microsoft Academic Search

The development of some modification polymers for cotton in improving dyeability of reactive dyes has been emphatically reviewed. 5 typical functional polymers are included in the paper, they are polyepichlorohydrin dimethylamine, poly(4-vinylpyridine) quaternary ammonium compound, dendrimer, chitosan and starch derivatives. Basic pretreatment conditions, dyeing mechanism, dye exhaustion and fixation, K\\/S yielded and some fastness properties of the modified dyed cotton

MA Wei; ZHANG Shu-fen; YANG Jin-zong

244

Decolorization and toxicity of reactive anthraquinone textile dyes under methanogenic conditions  

Microsoft Academic Search

Reductive decolorization of two anthraquinone reactive dyes (Reactive Blue 4, RB4; Reactive Blue 19, RB19) under methanogenic conditions was performed using a mixed, methanogenic culture. Decolorization of the two anthraquinone dyes was investigated to evaluate the rate and extent of color removal as well as to assess possible toxic effects of the dyes and their decolorization product(s) on the methanogenic

Young H. Lee; Spyros G. Pavlostathis

2004-01-01

245

Relationship of Cotton Fiber Calcium and Magnesium Contents on Dye Uptake  

Technology Transfer Automated Retrieval System (TEKTRAN)

Cotton from a single bale was processed into knit fabrics and prepared for dyeing. Following scouring, fabrics were soaked in either a metal sequestering solution or a water solution, bleached and dyed using 5 dye shades from both reatice and direct dye classes. Results indicate that removal of re...

246

Biological decolorization of dye solution containing Malachite Green by microalgae Cosmarium sp  

Microsoft Academic Search

The potential of Cosmarium species, belonging to green algae, was investigated as a viable biomaterial for biological treatment of triphenylmethane dye, Malachite Green (MG). The results obtained from the batch experiments revealed the ability of algal species in removing dye. The effects of operational parameters (temperature, pH, dye concentration and algal concentration) on decolorization were examined. Optimal initial pH was

N. Daneshvar; M. Ayazloo; A. R. Khataee; M. Pourhassan

2007-01-01

247

Cloud point extraction of toxic eosin dye using Triton X-100 as nonionic surfactant  

Microsoft Academic Search

An attempt has been made to remove color from wastewater containing toxic eosin dye (anionic dye) by cloud point extraction (CPE) in batch mode using a nonionic surfactant, Triton X-100 (TX-100). Most of the dye molecules get solubilized in the coacervate phase leaving a color free dilute phase. The effects of the concentration of feed mixture, temperature and salt concentration

M. K. Purkait; S. Banerjee; S. Mewara; S. DasGupta; S. De

2005-01-01

248

Laser dye stability  

Microsoft Academic Search

Lasing characteristics and bleaching of four Eastman Kodak ir dyes have been examined in dimethyl sulfoxide. These ir dyes\\u000a are shown to improve in performance in the absence of oxygen. Their photochemical stability was found to be comparable to\\u000a the quinolone laser dyes when exposed to flashlamp excitation. Photodecomposition of the ir dyes under lasing conditions was\\u000a found to vary

N. Fletcher

1980-01-01

249

Dyeing Behaviour of Unmodified and Modified Polyamide 6.6 Fibers of Different Levels of Fineness  

NASA Astrophysics Data System (ADS)

In present study, the dyeing behaviour of unmodified and modified polyamide 6.6 fibers of different levels of fineness was investigated. The color strength of all the dyeings as well as their color fastness properties were studied. The obtained results revealed that with the use of acid or disperse dyes, color strength of dyeings decreased for microfibers compared to conventional fibers. Thus, the unmodified microfibers appeared to be more accessible to dyes than conventional ones, especially when small dye molecules were used. Both microfibers and conventional polyamide 6.6 fibers were modified with acrylic acid monomer using the free radical polymerization method. The dyeability of both modified fibers with basic dyes was significantly improved due to the incorporation of carboxylic groups. The consequences were an increase of color strength and an improvement of light fastness properties of basic dyeings by increasing the percent of graftings.

Makhlouf, Chahira; Kacem, Chiraz; Roudesli, Sadok; Sakli, Faouzi

250

Assessment of degradation of eight commercial reactive azo dyes individually and in mixture in aqueous solution by ozonation  

Microsoft Academic Search

Degradation of eight commercial reactive azo dyes with different structures containing different substituted groups has been investigated in a semi-batch reactor by ozonation individually and in mixture. The results showed that pH 10 was effective for color and COD removal of these dyes. Different dyes needed different time of ozonation for decolorization. Dyes even if decolorized to 95–99%, COD removal

K. Sarayu; K. Swaminathan; S. Sandhya

2007-01-01

251

Dye Like A Natural  

NSDL National Science Digital Library

In this activity, learners stain fabrics--on purpose! Learners explore the art of natural dyeing by using dyes and substrates that are both derived from plant or animal sources as well as mordant solutions. Learners compare the color and effectiveness of different mordant/dye combinations on the different substrates.

Julie Yu

2010-01-01

252

Continuous fixed bed biosorption of reactive dyes by dried Rhizopus arrhizus: Determination of column capacity  

Microsoft Academic Search

A continuous fixed bed study was carried out by using dried Rhizopus arrhizus as a biosorbent for the removal of three reactive dyes; Gemacion (Procion) Red H-E7B (GR), a monoclorotriazine mono-azo type reactive dye; Gemazol Turquise Blue-G (GTB), a vinyl sulfone mono-azo type reactive dye and Gemactive (Reactive) Black HFGR (GB), a vinyl sulfone di-azo type reactive dye from aqueous

Zümriye Aksu; ?eyda ?en Ça?atay; Ferda Gönen

2007-01-01

253

Chemical stabilization of laser dyes. Final report, 1 April 1987-31 March 1990  

SciTech Connect

Irradiation of ethanol solutions of coumarin laser dye lasers produces products which absorb at the lasing wavelength. This results in attenuation of dye laser output through interference of stimulated emission. A major photoprocess which produces material which absorbs at the lasing wavelength is dye sensitized solvent oxidative oligomerization, producing aldehydic and ketonic products. A dye laser stabilization technique is removal of these carbonyl compounds as they are formed by reduction with a polymer bound borohydride reducing agent.

Koch, T.H.

1990-04-10

254

Continuous fixed bed biosorption of reactive dyes by dried Rhizopus arrhizus: determination of column capacity.  

PubMed

A continuous fixed bed study was carried out by using dried Rhizopus arrhizus as a biosorbent for the removal of three reactive dyes; Gemacion (Procion) Red H-E7B (GR), a monoclorotriazine mono-azo type reactive dye; Gemazol Turquise Blue-G (GTB), a vinyl sulfone mono-azo type reactive dye and Gemactive (Reactive) Black HFGR (GB), a vinyl sulfone di-azo type reactive dye from aqueous solution. The effect of operating parameters such as flow rate and inlet dye concentration on the sorption characteristics of R. arrhizus was investigated at pH 2.0 and at 25 degrees C for each dye. Data confirmed that the total amount of sorbed dye decreased with increasing flow rate and increased with increasing inlet dye concentration for each dye. The column biosorption capacity of dried R. arrhizus was 1007.8 mg g(-1) for GR dye, 823.8 mg g(-1) for GTB dye and 635.7 mg g(-1) for GB dye at the highest inlet dye concentration of approximately 750 mg l(-1) and at the minimum flow rate of 0.8 ml min(-1). Thomas and Yoon-Nelson models were applied to experimental data to predict the breakthrough curves and to determine the biosorption capacity of the column for each dye useful for process design. Both models were found suitable for describing the whole dynamic behavior of the column with respect to flow rate and inlet dye concentration. PMID:17070992

Aksu, Zümriye; Ca?atay, Seyda Sen; Gönen, Ferda

2007-05-01

255

Effect of some operational parameters on textile dye biodegradation in a sequential batch reactor  

Microsoft Academic Search

The combination of anaerobic and aerobic periods in the operation cycle of a Sequencing Batch Reactor (SBR) was chosen to study biological color removal from simulated textile effluents containing reactive, sulfonated, monoazo and diazo dyes, respectively, Remazol Brilliant Violet 5R and Remazol Black B. 90% color removal was obtained for the violet dye in a 24-h cycle with a Sludge

N. D Lourenço; J. M Novais; H. M Pinheiro

2001-01-01

256

Adsorption kinetics and mechanism of maxilon blue 5G dye on sepiolite from aqueous solutions  

Microsoft Academic Search

The use of sepiolite for the removal of maxilon blue 5G from aqueous solutions at different contact times, stirring speeds, initial dye concentrations, pHs, ionic strengths and temperatures was investigated. The adsorption process attained equilibrium within 60min, which was an economically favorable requisite, in addition to the local abundance of the raw material. The extent of dye removal increased with

M. Alkan; M. Do?an; Y. Turhan; Ö. Demirba?; P. Turan

2008-01-01

257

A CYTOCHEMICAL STUDY OF CYTOPLASMIC BASIC PROTEINS IN THE ASCIDIAN OOCYTE  

PubMed Central

The cytoplasm of young oocytes of the ascidians contains high concentrations of proteins which are stainable with alkaline fast green at pH 8.1 and above. These proteins cannot be stained even with acid dyes at low pH unless RNA is removed. Deamination and formalin blockage of amino groups is incapable of destroying the net positive charge on these protein molecules in the presence of RNA, but these treatments destroy the charge if RNA is removed. It is therefore concluded that basic proteins and RNA exist as a nucleoprotein complex in the ribosomes of these young oocytes. The detectable RNA of the mature oocytes and unfertilized eggs shows no evidence of being associated with basic proteins. PMID:14287183

Davenport, Richard; Davenport, Janice C.

1965-01-01

258

Basic Stamp  

NSDL National Science Digital Library

This site from Parallax, Inc. gives some information about basic stamp microcontrollers. A Basic-Stamp microcontroller is a single-board computer. Parallax makes a variety of controllers; the BASIC Stamp II uses a PIC16C57microchip.

259

Luminescent microporous metal-organic framework with functional lewis basic sites on the pore surface: specific sensing and removal of metal ions.  

PubMed

A three-dimensional luminescent metal-organic framework, {Mg(DHT)(DMF)(2)}(n) (1), based on an excited-state intramolecular proton-transfer (ESIPT) responsive linker, 2,5-dihydroxyterephthalic acid (H(2)DHT), has been synthesized, and its desolvated microporous framework with pendent -OH groups on the pore surface was exploited for the binding and specific sensing of metal ions via Lewis acid-base interactions. The luminescence intensity significantly quenches with Cu(II) among various s- and d-block metal ions, and highly selective sensing of Cu(II) ions has been realized in both solid and solution states (up to nanomolar concentration). The immobilized Cu(II) metal ions can be selectively removed by chelating agents like ethylenediaminetetraacetic acid without any structural disintegration of the framework, as revealed by the luminescence and gas-adsorption studies. PMID:22988809

Jayaramulu, Kolleboyina; Narayanan, Raghu Pradeep; George, Subi J; Maji, Tapas Kumar

2012-10-01

260

Retail Florist: Designing Basic Types of Arrangements.  

ERIC Educational Resources Information Center

This retail florist unit guide is provided to help teachers teach a unit on designing basic types of flower arrangements. Topics covered are principles of design, foundation materials used, foundation securing methods, tints and flower dyes, wire and ribbon sizes, color harmony, and basic types of arrangements. Learning activities include choosing…

Southern Illinois Univ., Carbondale.

261

The Basic Properties of the Electronic Structure of the Oxygen-evolving Complex of Photosystem II Are Not Perturbed by Ca2+ Removal*  

PubMed Central

Ca2+ is an integral component of the Mn4O5Ca cluster of the oxygen-evolving complex in photosystem II (PS II). Its removal leads to the loss of the water oxidizing functionality. The S2? state of the Ca2+-depleted cluster from spinach is examined by X- and Q-band EPR and 55Mn electron nuclear double resonance (ENDOR) spectroscopy. Spectral simulations demonstrate that upon Ca2+ removal, its electronic structure remains essentially unaltered, i.e. that of a manganese tetramer. No redistribution of the manganese valence states and only minor perturbation of the exchange interactions between the manganese ions were found. Interestingly, the S2? state in spinach PS II is very similar to the native S2 state of Thermosynechococcus elongatus in terms of spin state energies and insensitivity to methanol addition. These results assign the Ca2+ a functional as opposed to a structural role in water splitting catalysis, such as (i) being essential for efficient proton-coupled electron transfer between YZ and the manganese cluster and/or (ii) providing an initial binding site for substrate water. Additionally, a novel 55Mn2+ signal, detected by Q-band pulse EPR and ENDOR, was observed in Ca2+-depleted PS II. Mn2+ titration, monitored by 55Mn ENDOR, revealed a specific Mn2+ binding site with a submicromolar KD. Ca2+ titration of Mn2+-loaded, Ca2+-depleted PS II demonstrated that the site is reversibly made accessible to Mn2+ by Ca2+ depletion and reconstitution. Mn2+ is proposed to bind at one of the extrinsic subunits. This process is possibly relevant for the formation of the Mn4O5Ca cluster during photoassembly and/or D1 repair. PMID:22549771

Lohmiller, Thomas; Cox, Nicholas; Su, Ji-Hu; Messinger, Johannes; Lubitz, Wolfgang

2012-01-01

262

Dye adsorption behavior of Luffa cylindrica fibers.  

PubMed

Using natural Luffa cylindrica fibers as adsorbent removal of methylene blue dye from aqueous solutions at different temperatures and dye concentrations was investigated in this study. Thermodynamics and kinetics of adsorption were also investigated. The adsorption isotherms could be well defined with Langmuir model instead of Freundlich model. The thermodynamic parameters of methylene blue (MB) adsorption indicated that the adsorption is exothermic and spontaneous. The average MB adsorption capacity was found out as 49 mg/g and average BET surface area of fibers was calculated as 123 m(2)/g. PMID:17919814

Demir, H; Top, A; Balköse, D; Ulkü, S

2008-05-01

263

Dyeing Wool with Fungi  

NSDL National Science Digital Library

In this activity (p.23 of PDF), learners dye wool with fungi. Learners discover that natural chemicals in fungi can dye wool different colors. Note: Natural dyeing normally requires a color fixative such as alum. This is not necessary if you use an aluminum, tin, or copper pot as the metal in the pot will take part in the dyeing reaction. However, if you use a non-stick saucepan you should add a few copper coins to the mix. Safety note: Always wash your hands after touching fungi! Adult supervision recommended.

Sue Assinder

2002-01-01

264

Hair Dye and Hair Relaxers  

MedlinePLUS

... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers En Espańol Hair dye is used to ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

265

Degradation of Anthraquinone Dye Reactive Blue 4 in Pyrite Ash Catalyzed Fenton Reaction  

PubMed Central

Pyrite ash (PA) is created by burning pyrite in the chemical production of sulphuric acid. The high concentration of iron oxide, mostly hematite, present in pyrite ash, gives the basis for its application as a source of catalytic iron in a modified Fenton process for anthraquinone dye reactive blue 4 (RB4) degradation. The effect of various operating variables such as catalyst and oxidant concentration, initial pH and RB4 concentration on the abatement of total organic carbon, and dye has been assessed in this study. Here we show that degradation of RB4 in the modified Fenton reaction was efficient under the following conditions: pH = 2.5; [PA]0 = 0.2?g?L?1; [H2O2]0 = 5?mM and initial RB4 concentration up to 100?mg?L?1. The pyrite ash Fenton reaction can overcome limitations observed from the classic Fenton reaction, such as the early termination of the Fenton reaction. Metal (Pb, Zn, and Cu) content of the solution after the process suggests that an additional treatment step is necessary to remove the remaining metals from the water. These results provide basic knowledge to better understand the modified, heterogeneous Fenton process and apply the PA Fenton reaction for the treatment of wastewaters which contains anthraquinone dyes. PMID:24526885

Becelic-Tomin, Milena; Dalmacija, Bozo; Rajic, Ljiljana; Tomasevic, Dragana; Kerkez, Djurdja; Watson, Malcolm; Prica, Miljana

2014-01-01

266

Degradation characteristic of monoazo, diazo and anthraquinone dye by UV / H2O2 process  

NASA Astrophysics Data System (ADS)

In this study, the degradation characteristic of monoazo, diazo and anthraquinone dye by UV / H2O2 process was evaluated based on the trend of color, chemical oxygen demand (COD) and total organic carbon (TOC) removal. Three types of dyes consist of monoazo, diazo and anthraquinone dyes were used to compare the degradation mechanism of the dyes. The UV / H2O2 experiments were conducted in a laboratory scale cylindrical glass reactor operated in semi-batch mode. The UV/Vis characterization of monoazo, diazo and anthraquinone dye indicated that the rapid degradation of the dyes by UV / H2O2 process is meaningful with respect to decolourization, as a result of the azo bonds and substitute antraquinone chromophore degradation. However, this process is not efficient for aromatic amines removal. The monoazo MO was difficult to be decolorized than diazo RR120 dye, which imply that number of sulphonic groups in the dye molecules determines the reactivity with hydroxyl radical. The increased in COD removal is the evidence for oxidation and decreased in carbon content of dye molecules. TOC removal analysis shows that low TOC removal of monoazo MO and diazo RR120, as compared to anthraquinone RB19 may indicate an accumulation of by-products that are resistant to the H2O2 photolysis.

Abidin, Che Zulzikrami Azner; Fahmi, Muhammad Ridwan; Fazara, Md Ali Umi; Nadhirah, Siti Nurfatin

2014-10-01

267

Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative  

Microsoft Academic Search

The control of water pollution has become of increasing importance in recent years. The release of dyes into the environment constitutes only a small proportion of water pollution, but dyes are visible in small quantities due to their brilliance. Tightening government legislation is forcing textile industries to treat their waste effluent to an increasingly high standard. Currently, removal of dyes

Tim Robinson; Geoff McMullan; Roger Marchant; Poonam Nigam

2001-01-01

268

Biosorption of a reactive dye (Rhodamine-B) from an aqueous solution using dried biomass of activated sludge  

Microsoft Academic Search

Low cost, locally available biomaterial was tested for its ability to remove reactive dyes from aqueous solution. Granules prepared from dried activated sludge (DAS) were utilized as a sorbent for the uptake of Rhodamine-B (Rh-B) dye. The effects of various experimental parameters (dye concentration, sludge concentrations, swelling, pretreatment and other factors) were investigated and optimal experimental conditions were ascertained. Nearly

D. J. Ju; I. G. Byun; J. J. Park; C. H. Lee; G. H. Ahn; T. J. Park

2008-01-01

269

Biosorption of reactive blue 5G dye onto drying orange bagasse in batch system: Kinetic and equilibrium modeling  

Microsoft Academic Search

In this work, orange bagasse has been used as an alternative adsorbent for removal of reactive blue 5G dye from an aqueous solution. The influence of the dye solution pH, the biosorbent drying, the dye solution temperature and biosorbent grain size was studied in batch systems, in order to improve the biosorption kinetics and the experimental equilibrium conditions. Batch kinetic

Leila D. Fiorentin; Daniela E. G. Trigueros; Aparecido N. Módenes; Fernando R. Espinoza-Quińones; Nehemias C. Pereira; Sueli T. D. Barros; Onélia A. A. Santos

2010-01-01

270

Flocculation of both anionic and cationic dyes in aqueous solutions by the amphoteric grafting flocculant carboxymethyl chitosan-graft-polyacrylamide.  

PubMed

In the current work, a series of amphoteric grafting chitosan-based flocculants (carboxymethyl chitosan-graft-polyacrylamide, denoted as CMC-g-PAM) was designed and prepared successfully. The flocculants were applied to eliminate various dyes from aqueous solutions. Among different graft copolymers, CMC-g-PAM11 with a PAM grafting ratio of 74% demonstrated the most efficient performance for removal of both the anionic dye (Methyl Orange, MO) and the cationic dye (Basic Bright Yellow, 7GL) under the corresponding favored conditions (80 mg/L of the flocculant at pH 4.0, and 160 mg/L at pH 11.0). In comparison with its precursors, chitosan and carboxymethyl chitosan, CMC-g-PAM11 showed higher removal efficiencies and wider flocculation windows. More importantly, the graft copolymer produced notably more compacted flocs based on image analysis in combination with fractal theory, which was of great significance in practical water treatment. Furthermore, the flocculation mechanism was discussed in detail. The grafted polyacrylamide chains were found to contribute much to the improved bridging and sweeping flocculation effects, but reduced charge neutralization flocculation for the effect of charge screening. PMID:23583947

Yang, Zhen; Yang, Hu; Jiang, Ziwen; Cai, Tao; Li, Haijiang; Li, Haibo; Li, Aimin; Cheng, Rongshi

2013-06-15

271

Tie-Dye Chemistry  

NSDL National Science Digital Library

In their travels to the indigo dye pits of northern Nigeria, the authors were struck by the beauty, history, and chemistry of indigo dyeing. They returned from Nigeria eager to develop a laboratory exercise that would expose students to the science of ind

Gretchen Cessna

2001-03-01

272

Oxazine laser dyes  

DOEpatents

New oxazine compounds useful as dye laser media in solution, are superiior to prior art materials. The oxazine dyes useful when pumped by the 578.2 nm copper line to operate in the 700-800 nm range are described by formula I ##STR1##

Hammond, Peter R. (Livermore, CA); Field, George F. (Danville, CA)

1992-01-01

273

Monolithic dye laser amplifier  

DOEpatents

A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

Kuklo, T.C.

1993-03-30

274

Monolithic dye laser amplifier  

DOEpatents

A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

Kuklo, Thomas C. (Ripon, CA)

1993-01-01

275

Wastewater treatment: Dye and pigment industry. (Latest citations from the Selected Water Resources Abstracts database). Published Search  

SciTech Connect

The bibliography contains citations concerning treatment of wastewater containing dyes and pigments. The citations discuss the of dyes and pigments in wastewater treatment systems, biodegradation of dyes, absorption and adsorption processes to remove dyes from wastewater, environmental effects from the disposal of dye-containing wastes, and methods of analysis for dyes in waste streams. Treatment methods such as ozonation, reverse osmosis, activated charcoal filtration, activated sludge, electrochemical treatments, thermal treatments, simple filtration, and absorption media are included. (Contains a minimum of 112 citations and includes a subject term index and title list.)

Not Available

1993-03-01

276

Adaptation for improving lifetime of dye laser using coumarin dyes  

SciTech Connect

The effective lasing lifetime of laser dyes including coumarin dyes are significantly extended by the use of an inert cover gas for the laser dye solution such as argon in combination with the employment of a glass filter such as Pyrex disposed between the pumping flash lamp and the dye laser cavity capable of absorbing electromagnetic radiation of about 300 nanometers or shorter wavelength.

Fletcher, A.N.

1984-10-23

277

Adsorption kinetics and isotherm of anionic dyes onto organo-bentonite from single and multisolute systems.  

PubMed

The performances of polydiallydimethylammonium modified bentonite (PDADMA-bentonite) as an adsorbent to remove anionic dyes, namely Acid Scarlet GR (AS-GR), Acid Turquoise Blue 2G (ATB-2G) and Indigo Carmine (IC), were investigated in single, binary and ternary dye systems. In adsorption from single dye solutions with initial concentration of 100 micromol/L, the dosage of PDADMA-bentonite needed to remove 95% dye was 0.42, 0.68 and 0.75 g/L for AS-GR, ATB-2G and IC, respectively. The adsorption isotherms of the three dyes obeyed the Langmuir isotherm model with the equilibrium constants of 0.372, 0.629 and 4.31 L/micromol, the saturation adsorption amount of 176.3, 149.2 and 228.7 micromol/g for ATB-2G, IC and AS-GR, respectively. In adsorption from mixed dye solutions, the isotherm of each individual dye followed an expanded Langmuir isotherm model and the relationship between the total amount of dyes adsorbed and the total equilibrium dye concentration was interpreted well by Langmuir isotherm model. In the region of insufficient dosage of PDADMA-bentonite, the dye with a larger affinity was preferentially removed by adsorption. Desorption was observed in the kinetic curve of the dye with lower affinity on PDADMA-bentonite surface by the competitive adsorption. The kinetics in single dye solution and the total adsorption of dyes in binary and ternary dye systems nicely followed pseudo-second-order kinetic model. PMID:19631461

Shen, Dazhong; Fan, Jianxin; Zhou, Weizhi; Gao, Baoyu; Yue, Qinyan; Kang, Qi

2009-12-15

278

Local delivery of fluorescent dye for fiber-optics confocal microscopy of the living heart.  

PubMed

Fiber-optics confocal microscopy (FCM) is an emerging imaging technology with various applications in basic research and clinical diagnosis. FCM allows for real-time in situ microscopy of tissue at sub-cellular scale. Recently FCM has been investigated for cardiac imaging, in particular, for discrimination of cardiac tissue during pediatric open-heart surgery. FCM relies on fluorescent dyes. The current clinical approach of dye delivery is based on systemic injection, which is associated with high dye consumption, and adverse clinical events. In this study, we investigated approaches for local dye delivery during FCM imaging based on dye carriers attached to the imaging probe. Using three-dimensional confocal microscopy, automated bench tests, and FCM imaging we quantitatively characterized dye release of carriers composed of open-pore foam only and foam loaded with agarose hydrogel. In addition, we compared local dye delivery with a model of systemic dye delivery in the isolated perfused rodent heart. We measured the signal-to-noise ratio (SNR) of images acquired in various regions of the heart. Our evaluations showed that foam-agarose dye carriers exhibited a prolonged dye release vs. foam-only carriers. Foam-agarose dye carriers allowed reliable imaging of 5-9 lines, which is comparable to 4-8 min of continuous dye release. Our study in the living heart revealed that the SNR of FCM images using local and systemic dye delivery is not different. However, we observed differences in the imaged tissue microstructure with the two approaches. Structural features characteristic of microvasculature were solely observed for systemic dye delivery. Our findings suggest that local dye delivery approach for FCM imaging constitutes an important alternative to systemic dye delivery. We suggest that the approach for local dye delivery will facilitate clinical translation of FCM, for instance, for FCM imaging during pediatric heart surgery. PMID:25309455

Huang, Chao; Kaza, Aditya K; Hitchcock, Robert W; Sachse, Frank B

2014-01-01

279

Local delivery of fluorescent dye for fiber-optics confocal microscopy of the living heart  

PubMed Central

Fiber-optics confocal microscopy (FCM) is an emerging imaging technology with various applications in basic research and clinical diagnosis. FCM allows for real-time in situ microscopy of tissue at sub-cellular scale. Recently FCM has been investigated for cardiac imaging, in particular, for discrimination of cardiac tissue during pediatric open-heart surgery. FCM relies on fluorescent dyes. The current clinical approach of dye delivery is based on systemic injection, which is associated with high dye consumption, and adverse clinical events. In this study, we investigated approaches for local dye delivery during FCM imaging based on dye carriers attached to the imaging probe. Using three-dimensional confocal microscopy, automated bench tests, and FCM imaging we quantitatively characterized dye release of carriers composed of open-pore foam only and foam loaded with agarose hydrogel. In addition, we compared local dye delivery with a model of systemic dye delivery in the isolated perfused rodent heart. We measured the signal-to-noise ratio (SNR) of images acquired in various regions of the heart. Our evaluations showed that foam-agarose dye carriers exhibited a prolonged dye release vs. foam-only carriers. Foam-agarose dye carriers allowed reliable imaging of 5–9 lines, which is comparable to 4–8 min of continuous dye release. Our study in the living heart revealed that the SNR of FCM images using local and systemic dye delivery is not different. However, we observed differences in the imaged tissue microstructure with the two approaches. Structural features characteristic of microvasculature were solely observed for systemic dye delivery. Our findings suggest that local dye delivery approach for FCM imaging constitutes an important alternative to systemic dye delivery. We suggest that the approach for local dye delivery will facilitate clinical translation of FCM, for instance, for FCM imaging during pediatric heart surgery. PMID:25309455

Huang, Chao; Kaza, Aditya K.; Hitchcock, Robert W.; Sachse, Frank B.

2014-01-01

280

Dye system for dye laser applications  

DOEpatents

A dye of the DCM family, [2-methyl-6-[2-(1,2,3,4-tetrahydro-1-methyl-6-quinolinyl)ethenyl]-4H-pyran -4-ylidene]-propanedinitrile, dissolved in 2-phenoxyethanol, is non-mutagenic, stable and efficient, particularly in a pumped continuous wave laser system.

Hammond, Peter R. (Livermore, CA)

1991-01-01

281

Resonance energy transfer in DNA duplexes labeled with localized dyes.  

PubMed

The growing maturity of DNA-based architectures has raised considerable interest in applying them to create photoactive light harvesting and sensing devices. Toward optimizing efficiency in such structures, resonant energy transfer was systematically examined in a series of dye-labeled DNA duplexes where donor-acceptor separation was incrementally changed from 0 to 16 base pairs. Cyanine dyes were localized on the DNA using double phosphoramidite attachment chemistry. Steady state spectroscopy, single-pair fluorescence, time-resolved fluorescence, and ultrafast two-color pump-probe methods were utilized to examine the energy transfer processes. Energy transfer rates were found to be more sensitive to the distance between the Cy3 donor and Cy5 acceptor dye molecules than efficiency measurements. Picosecond energy transfer and near-unity efficiencies were observed for the closest separations. Comparison between our measurements and the predictions of Förster theory based on structural modeling of the dye-labeled DNA duplex suggest that the double phosphoramidite linkage leads to a distribution of intercalated and nonintercalated dye orientations. Deviations from the predictions of Förster theory point to a failure of the point dipole approximation for separations of less than 10 base pairs. Interactions between the dyes that alter their optical properties and violate the weak-coupling assumption of Förster theory were observed for separations of less than four base pairs, suggesting the removal of nucleobases causes DNA deformation and leads to enhanced dye-dye interaction. PMID:25397906

Cunningham, Paul D; Khachatrian, Ani; Buckhout-White, Susan; Deschamps, Jeffrey R; Goldman, Ellen R; Medintz, Igor L; Melinger, Joseph S

2014-12-18

282

What's Basic About Basic Emotions?  

Microsoft Academic Search

A widespread assumption in theories of emotion is that there exists a small set of basic emotions. From a biological perspective, this idea is manifested in the belief that there might be neurophysiological and anatomical substrates corresponding to the basic emotions. From a psychological perspective, basic emotions are often held to be the primitive building blocks of other, nonbasic emotions.

Andrew Ortony; Terence J. Turner

1990-01-01

283

Degradation of Organic Substances and Reactive Dye in an Immobilized-Cell Sequencing Batch Reactor Operation on Simulated Textile Wastewater  

Microsoft Academic Search

Textile wastewater generally consists of high organic substances and is strongly colored. Reactive dye has been used extensively in the textile industries. It is water soluble and difficult to remove by chemical coagulation. Removal of organic substances simultaneously with dye can be achieved by a biological process. This study aims to investigate the treatability of the organic substances and reactive

N. Pasukphun; S. Vinitnantharat

2003-01-01

284

Molecular Models of Dyes  

NSDL National Science Digital Library

The paper on the synthesis of several dyes by James V. McCullagh and Kelly A. Daggett (1) provides us with the JCE Featured Molecules for this month. The authors mention various applications of these dyes, ranging from commercial dyeing to techniques for determining the course of complex biochemical processes. One of the reaction products, rhodamine B, is a member of a family of molecules that are widely used as tunable laser dyes. In this application, the rhodamines are most commonly encountered in a cationic form, rather than in the neutral form shown in the paper. In the cations, the carboxyl group is no longer part of a ring system. Several different members of the rhodamine family are included in the molecule collection because substituents have a marked effect on the effective lasing range of a given dye. Additionally, the solvent and the excitation source also influence the lasing range (2). Students can learn more about the relationship between structure, absorption and emission properties, and lasing ranges of various dyes by consulting ref 2 and from PhotochemCAD, Jonathan Lindsey's free application (3).

285

Anaerobic–aerobic biotreatment of simulated textile effluent containing varied ratios of starch and azo dye  

Microsoft Academic Search

Combined anaerobic–aerobic treatment was used to treat a simulated textile industry wastewater (overall HRT 1.8 days). The azo dye (PROCION Red H-E7B) and starch concentrations were varied in a series of 1-week experiments to determine the effect of starch:dye ratio on COD, BOD and colour removal. The treatment efficiency of the system at 1.9 g l?1 starch and 0.15 g l?1 dye

C O’Neill; F. R Hawkes; D. L Hawkes; S Esteves; S. J Wilcox

2000-01-01

286

Decolorization and biodegradability of photocatalytic treated azo dyes and wool textile wastewater  

Microsoft Academic Search

The photodegradation and biodegradability have been investigated for four non-biodegradable commercial azo dyes, Reactive YellowKD-3G, Reactive Red 15, Reactive Red 24, Cationic Blue X-GRL, an indicator. Methyl Orange, and one industrial wool textile wastewater, using TiO2 suspensions irradiated with a medium pressure mercury lamp. The color removal of dyes solution and dyeing wastewater reached to above 90% within 20–30min. of

Hu Chun; Wang Yizhong

1999-01-01

287

Decolorization of an anthraquinone-type dye using a laccase formulation  

Microsoft Academic Search

Decolorization of the dye Remazol Brilliant Blue R (RBBR) was studied, as it is representative of an important class of recalcitrant anthraquinone-type dyes. For this purpose a commercial laccase formulation (CLF) containing laccase, a redox mediator and a non-ionic surfactant was used. Small molecular weight components were removed from the CLF by gel filtration, which made it possible to compare

Graça M. B Soares; Maria Costa-Ferreira; M. T Pessoa de Amorim

2001-01-01

288

Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: a review  

Microsoft Academic Search

Organic dyes are one of the largest groups of pollutants discharged into wastewaters from textile and other industrial processes. Owing to the potential toxicity of the dyes and their visibility in surface waters, removal and degradation of them have attracted considerable attention worldwide. A wide range of approaches have been developed, amongst which the heterogeneous photocatalysis involving zinc oxide (ZnO)

Sze-Mun Lam; Jin-Chung Sin; Ahmad Zuhairi Abdullah; Abdul Rahman Mohamed

2012-01-01

289

SEDIMENT REMOVAL  

EPA Science Inventory

When properly conducted, sediment removal is an effective lake management technique. This chapter describes: (1) purposes of sediment removal, (2) environmental concerns, (3) appropriate depth of sediment removal, (4) sediment removal techniques, (5) suitable lake conditions, (6)...

290

Developing azo and formazan dyes based on environmental considerations: Salmonella mutagenicity.  

PubMed

In previous papers, the synthesis and chemical properties of iron-complexed azo and formazan dyes were reported. It was shown that in certain cases iron could be substituted for the traditionally used metals such as chromium and cobalt, without having an adverse effect on dye stability. While these results suggested that the iron analogs were potential replacements for the commercially used chromium and cobalt prototypes, characterization of potentially adverse environmental effects of the new dyes was deemed an essential step in their further development. The present paper provides results from using the Salmonella/mammalian microsome assay to determine the mutagenicity of some important commercial metal complexed dyes, their unmetallized forms, and the corresponding iron-complexed analogs. The study compared the mutagenic properties of six unmetallized azo dyes, six commercial cobalt- or chromium-complexed azo dyes, six iron-complexed azo dyes, six unmetallized formazan dyes, and six iron-complexed formazan dyes. The results of this study suggest that the mutagenicity of the unmetallized dye precursors plays a role in determining the mutagenicity of the iron-complexes. For the monoazo dye containing a nitro group, metal complex formation using iron or chromium decreased or removed mutagenicity in TA100; however, little reduction in mutagenicity was noted in TA98. For the formazan dye containing a nitro group, metal-complex formation using iron increased mutagenicity. Results varied for metal-complexes of azo and formazan dyes without nitro groups, but in general, the metal-complexed dyes based on mutagenic ligands were also mutagenic, while those dyes based on nonmutagenic ligands were nonmutagenic. PMID:14757189

Edwards, Laura C; Freeman, Harold S; Claxton, Larry D

2004-02-26

291

Degradation characteristic of monoazo, diazo and anthraquinone dye by UV/H{sub 2}O{sub 2} process  

SciTech Connect

In this study, the degradation characteristic of monoazo, diazo and anthraquinone dye by UV/H{sub 2}O{sub 2} process was evaluated based on the trend of color, chemical oxygen demand (COD) and total organic carbon (TOC) removal. Three types of dyes consist of monoazo, diazo and anthraquinone dyes were used to compare the degradation mechanism of the dyes. The UV/H{sub 2}O{sub 2} experiments were conducted in a laboratory scale cylindrical glass reactor operated in semi-batch mode. The UV/Vis characterization of monoazo, diazo and anthraquinone dye indicated that the rapid degradation of the dyes by UV/H{sub 2}O{sub 2} process is meaningful with respect to decolourization, as a result of the azo bonds and substitute antraquinone chromophore degradation. However, this process is not efficient for aromatic amines removal. The monoazo MO was difficult to be decolorized than diazo RR120 dye, which imply that number of sulphonic groups in the dye molecules determines the reactivity with hydroxyl radical. The increased in COD removal is the evidence for oxidation and decreased in carbon content of dye molecules. TOC removal analysis shows that low TOC removal of monoazo MO and diazo RR120, as compared to anthraquinone RB19 may indicate an accumulation of by-products that are resistant to the H{sub 2}O{sub 2} photolysis.

Abidin, Che Zulzikrami Azner, E-mail: zulzikrami@unimap.edu.my, E-mail: drfahmi@unimap.edu.my, E-mail: umifazara@unimap.edu.my, E-mail: fatinnadhirah89@gmail.com; Fahmi, Muhammad Ridwan, E-mail: zulzikrami@unimap.edu.my, E-mail: drfahmi@unimap.edu.my, E-mail: umifazara@unimap.edu.my, E-mail: fatinnadhirah89@gmail.com; Fazara, Md Ali Umi, E-mail: zulzikrami@unimap.edu.my, E-mail: drfahmi@unimap.edu.my, E-mail: umifazara@unimap.edu.my, E-mail: fatinnadhirah89@gmail.com; Nadhirah, Siti Nurfatin, E-mail: zulzikrami@unimap.edu.my, E-mail: drfahmi@unimap.edu.my, E-mail: umifazara@unimap.edu.my, E-mail: fatinnadhirah89@gmail.com [School of Environmental Engineering, University Malaysia Perlis (UniMAP), Kompleks Pusat Pengajian Jejawi 3, 02600 Arau, Perlis (Malaysia)

2014-10-24

292

Decolorization of anthraquinone dye by Shewanella decolorationis S12.  

PubMed

A new species of genus Shewanella, Shewanella decolorationis S12, from activated sludge of a textile-printing wastewater treatment plant, can decolorize Reactive Brilliant Blue K-GR, one kind of anthraquinone dye, with flocculation first. Although S. decolorationis displayed good growth in an aerobic condition, color removal was the best in an anaerobic condition. For color removal, the most suitable pH values and temperatures were pH 6.0-8.0 and 30-37 degrees C under anaerobic culture. More than 99% of Reactive Brilliant Blue K-GR was removed in color within 15 h at a dye concentration of 50 mg/l. Lactate was the suitable carbon source for the dye decolorization. A metal compound, HgCl(2), had the inhibitory effect on decolorization of Reactive Brilliant Blue K-GR, but a nearly complete decolorization also could be observed at a HgCl(2) concentration of 10 mg/l. The enzyme activities, which mediate the tested dye decolorization, were not significantly affected by preadaptation of the bacterium to the dye. PMID:16160829

Xu, Meiying; Guo, Jun; Zeng, Guoqu; Zhong, Xiaoyan; Sun, Guoping

2006-06-01

293

Understanding the degradation of Congo red and bacterial diversity in an air-cathode microbial fuel cell being evaluated for simultaneous azo dye removal from wastewater and bioelectricity generation.  

PubMed

We investigated the mechanism of Congo red degradation and bacterial diversity in a single-chambered microbial fuel cell (MFC) incorporating a microfiltration membrane and air-cathode. The MFC was operated continuously for more than 4 months using a mixture of Congo red and glucose as fuel. We demonstrated that the Congo red azo bonds were reduced at the anode to form aromatic amines. This is consistent with the known mechanism of anaerobic biodegradation of azo dyes. The MFC developed a less dense biofilm at the anode in the presence of Congo red compared to its absence indicating that Congo red degradation negatively affected biofilm formation. Denaturing gradient gel electrophoresis and direct 16S ribosomal DNA gene nucleotide sequencing revealed that the microbial communities differed depending on whether Congo red was present in the MFC. Geobacter-like species known to generate electricity were detected in the presence or absence of Congo red. In contrast, Azospirillum, Methylobacterium, Rhodobacter, Desulfovibrio, Trichococcus, and Bacteroides species were only detected in its presence. These species were most likely responsible for degrading Congo red. PMID:22678023

Sun, Jian; Li, Youming; Hu, Yongyou; Hou, Bin; Zhang, Yaping; Li, Sizhe

2013-04-01

294

Dyes adsorption using a synthetic carboxymethyl cellulose-acrylic acid adsorbent.  

PubMed

Removal of noxious dyes is gaining public and technological attention. Herein grafting polymerization was employed to produce a novel adsorbent using acrylic acid and carboxymethyl cellulose for dye removal. Scanning electron microscopy and Fourier-transform infrared spectroscopy verified the adsorbent formed under optimized reaction conditions. The removal ratio of adsorbent to Methyl Orange, Disperse Blue 2BLN and malachite green chloride reached to 84.2%, 79.6% and 99.9%, respectively. The greater agreement between the calculated and experimental results suggested that pseudo second-order kinetic model better represents the kinetic adsorption data. Equilibrium adsorptions of dyes were better explained by the Temkin isotherm. The results implied that this new cellulose-based absorbent had the universality for removal of dyes through the chemical adsorption mechanism. PMID:25079652

Zhang, Genlin; Yi, Lijuan; Deng, Hui; Sun, Ping

2014-05-01

295

Water soluble laser dyes  

DOEpatents

Novel water soluble dyes of the formula 1 are provided by the formula described in the paper wherein R{sup 1} and R{sup 4} are alkyl of 1 to 4 carbon atoms or hydrogen; or R{sup 1}--R{sup 2} or R{sup 2}--R{sup 4} form part of aliphatic heterocyclic rings; R{sup 2} is hydrogen or joined with R{sup 1} or R{sup 4} as described above; R{sup 3} is --(CH{sub 2}){sub m}--SO{sub 3}{sup {minus}}, where m is 1 to 6; X is N, CH or formula 2 given in paper where Y is 2 --SO{sub 3}{sup {minus}} ; Z is 3, 4, 5 or 6 --SO{sub 3}{sup {minus}}. The novel dyes are particularly useful as the active media in water solution dye lasers.

Hammond, P.R.; Feeman, J.F.; Field, G.F.

1998-08-11

296

Hair cosmetics: dyes.  

PubMed

Hair plays a significant role in body image, and its appearance can be changed relatively easily without resort to surgical procedures. Cosmetics and techniques have therefore been used to change hair appearance since time immemorial. The cosmetics industry has developed efficient products that can be used on healthy hair or act on concomitant diseases of the hair and scalp. Dyes embellish the hair by bleaching or coloring it briefly, for temporary periods of longer duration, or permanently, depending on the composition of a dye (oxidative or nonoxidative) and its degree of penetration of the hair shaft. The dermatologist's knowledge of dyes, their use, and their possible side effects (contact eczema, cancer, increased porosity, brittleness) can extend to an understanding of cosmetic resources that also treat hair and scalp conditions. PMID:24656996

Guerra-Tapia, A; Gonzalez-Guerra, E

2014-11-01

297

Water soluble laser dyes  

DOEpatents

Novel water soluble dyes of the formula I are provided ##STR1## wherein R.sup.1 and R.sup.4 are alkyl of 1 to 4 carbon atoms or hydrogen; or R.sup.1 -R.sup.2 or R.sup.2 -R.sup.4 form part of aliphatic heterocyclic rings; R.sup.2 is hydrogen or joined with R.sup.1 or R.sup.4 as described above; R.sup.3 is --(CH.sub.2).sub.m --SO.sub.3.sup.-, where m is 1 to 6; X is N, CH or ##STR2## where Y is 2 --SO.sub.3.sup.- ; Z is 3, 4, 5 or 6 --SO.sub.3.sup.-. The novel dyes are particularly useful as the active media in water solution dye lasers.

Hammond, Peter R. (Livermore, CA); Feeman, James F. (Wyomissing, PA); Field, George F. (Santa Ana, CA)

1998-01-01

298

Basic Finance  

NASA Technical Reports Server (NTRS)

A discussion of the basic measures of corporate financial strength, and the sources of the information is reported. Considered are: balance sheet, income statement, funds and cash flow, and financial ratios.

Vittek, J. F.

1972-01-01

299

The Basics  

ERIC Educational Resources Information Center

These articles are presented as an aide in teaching basic subjects. This issue examines reading diagnosis, food preservation, prime numbers, electromagnets, acting out in language arts, self-directed spelling activities, and resources for environmental education. (Editor/RK)

Indrisano, Roselmina; And Others

1976-01-01

300

Dentures Basics  

MedlinePLUS

... They also can act as stable supports for bridges, overdentures or removable partial dentures. Your dentist will ... first developed to give people "artificial roots" for bridges or dentures in the lower jaw. The denture ...

301

Energy Basics  

NSDL National Science Digital Library

Demos and activities in this lesson are intended to illustrate the basic concepts of energy science—work, force, energy, power etc., and the relationships among them. The "lecture" portion of the lesson includes many demonstrations to keep students engaged, yet has high expectations for students to perform energy-related calculations and convert units. A homework assignment and quiz are provided to reinforce and assess these basic engineering science concepts.

2014-09-18

302

Dye-multilayer semiconductor nanostructures  

Microsoft Academic Search

Broadening of the spectral response of dye-sensitized semiconductor devices is one of the major issues confronting practical application of dye-sensitization. It is the main factor limiting the energy conversion efficiencies of dye-sensitized solar cells. Synthesis of dyes with broader spectral response has been attempted as a possible strategy. The other method is to adopt more than one pigment. However, the

P. K. D. Duleepa P. Pitigala; M. K. Indika Senevirathna; V. P. Susira Perera; Kirthi Tennakone

2006-01-01

303

Role of brown-rot fungi in the bioremoval of azo dyes under different conditions  

PubMed Central

The present study is vital to the understanding of bioremediation of structurally different azo dyes by some unusual Brown-rot fungi. Bioremoval of each dye (20 mg l-1) was tested in two different culture media under static and shaking conditions by taking inocula from different fungi. Fungal strains showed varying dyes removal abilities, though considerable high in case of Acid Red (AR) 151(di-azo) as compared to Orange (Or) II (mono-azo). With an exception of Aspergillus tereus SA3, all the fungal isolates showed higher removal of dyes in SDB. Under static condition, the maximum decolorizing fungal strains were; Aspergillus flavus SA2 (67%) and Alternaria spp. SA4 (57%) in AR 151, while Penicillium spp. (34 and 33 %) in Orange II, in SDB and STE, respectively. Bioremoval of dyes was considerably increased when experiments were shifted from static to shaking mode. It was specifically increased (%) in; AR 151 (255) with Penicillium spp., Or II with A. flavus SA2 (112) and Alternaria spp. (111). The primary mechanism of dyes removal proved to be fungal biosorption. However, reduction of dyes (onto fungal) with formation of their products (?. naphthol, sulphalinic acid and aniline) furthermore revealed that dyes (specifically azo) were actually biodegraded. PMID:24031570

Ali, Naeem; Hameed, Abdul; Ahmed, Safia

2010-01-01

304

Decolorization of azo dye using PVA-immobilized microorganisms  

Microsoft Academic Search

A microbial consortium having a high capacity for rapid decolorization of azo dye (RED RBN) was immobilized by a phosphorylated polyvinyl alcohol (PVA) gel. The immobilized-cell beads exhibited a color removal capability of 75%, even at a high concentration of RED RBN (500 mg l?1) within 12 h using flask culture. The continuous operation was conducted at a hydraulic retention

Kuo-Cheng Chen; Jane-Yii Wu; Chang-Cheng Huang; Yu-Min Liang; Sz-Chwun John Hwang

2003-01-01

305

Vegetable Dyeing of Wool  

ERIC Educational Resources Information Center

In keeping with the Bicentennial celebration, many art teachers will find themselves "looking back" to crafts of the American past. Dyeing is certainly one that was used extensively and here a professor in a Fine Arts Department details how the process takes place. (Author/RK)

Greenberg, Pearl

1976-01-01

306

Basic Electricity  

NSDL National Science Digital Library

This resource, created by National Aerospace Technical Education Center (SpaceTEC), is centered on basic electricity. The presentation focuses on standards for SpaceTEC certification. Safety when using electricity is the focal point of the slides. Basic diagrams and charts illustrate the do and donâ??ts when using electrical appliances. After the discussion of safety, the presentation shifts to the fundamental aspects of electricity. Such items as current, flow, voltage and other elements are discussed. Examples are used as representations of these basic processes. Overall, this is thorough presentation of this material. It totals nearly one-hundred twenty slides in length. Instructors could use this either as a presentation or simply to enhance existing curriculum.

307

Reduction of acute toxicity and genotoxicity of dye effluent using Fenton-coagulation process.  

PubMed

Dye wastewater exhibits significant ecotoxicity even though its physico-chemical parameters meet the discharge standards. In this work, the acute toxicity and genotoxicity of dye effluent were tested, and the Fenton-coagulation process was carried out to detoxify this dye effluent. The acute toxicity was evaluated according to the mortality rate of zebrafish, and genotoxicity was evaluated by micronucleus (MN) and comet assays. Removal of color and chemical oxygen demand (COD) was also investigated. The results indicated that the dye effluent showed strong acute toxicity and genotoxicity to zebrafish. After 4h of treatment by Fenton-coagulation process, the dye effluent exhibited no significant acute toxicity and genotoxicity to zebrafish. In addition, its COD was less than 50mg/L, which met the discharge standard. It demonstrates that Fenton-coagulation process can comprehensively reduce the acute toxicity and genotoxicity as well as the COD of the dye effluent. PMID:24793295

Zhang, Jing; Chen, Shuo; Zhang, Ying; Quan, Xie; Zhao, Huimin; Zhang, Yaobin

2014-06-15

308

Molecular engineering and photostability of laser dyes within sol-gel hosts  

NASA Astrophysics Data System (ADS)

The use of solid-state dye laser for commercial applications has been limited largely by the poor photostability of the gain medium. Techniques are examined to improve the photostability of Coumarin and Pyrromethene-BF2 567 (PM- 567) laser dyes within xerogel and Polyceram hosts synthesized by sol-gel processing. The photochemical mechanisms by which laser dyes degrade are discussed and determined specifically for PM-567. PM-567 was determined to degrade both by photo-oxidation and acid degradation. Techniques for improving photostability are described from a molecular engineering perspective. These techniques include: covalently attaching the laser dye to the host; controlling the chemical environment of the dye; increasing dye caging by increasing the SiO2 content; removing porosity from the host; and incorporating additives such as hindered amine light stabilizers to minimize photodegradation.

Suratwala, Tayyab I.; Davidson, Kevin; Gardlund, Zack; Uhlmann, Donald R.; Bonilla, Sandra I.; Peyghambarian, Nasser

1997-03-01

309

Removal of Congo Red from an aqueous solution by fungus Aspergillus niger  

Microsoft Academic Search

Biosorption is becoming a promising alternative to replace or supplement the present dye removal processes from dye wastewater. In this study, removal of an anionic disazo direct dye, Congo Red, from an aqueous solution by biosorption on dead fungus, Aspergillus niger, was investigated. Pretreatment with NaHCO3 was found to be the most effective with a biosorption capacity of 14.72 mg\\/g

Yuzhu Fu; T. Viraraghavan

2002-01-01

310

Photochemistry of coumarin laser dyes  

SciTech Connect

Coumarin laser dyes are widely used in dye lasers for the generation of tunable laser light in the blue-green spectral region. As in the case with most laser dyes, coumarin dyes undergo photochemical reactions that interfere with simulated emission and result in loss of laser power output. This thesis describes the photochemistry of coumarin laser dyes under both anaerobic and aerobic conditions and some attempts to extend the useful lifetime of several dyes in dye lasers. Irradiation of Coumarin 311, 7-dimethylamino-4-methyl-coumarin (15), in oxygen-free ethanol solution results in the inefficient dye destruction. Products formed absorb light at the lasing wavelength of the dye, interfere with stimulated emission, and decrease the power output of the dye laser. Addition of the sulfur free radical chain transfer agents ethanethiol and ethyl disulfide retard the rate of formation of photoproducts absorbing at the lasing wavelengths. Deuterium incorporation, from the irradiation of Coumarin 311 in the presence of ethanethiol-S-d and ethyl disulfide, indicates that photoproducts most likely result from the reactions of free radicals which are generated in a bimolecular reaction between excited Coumarin 311 and ground state Coumarin 311. Ethanethiol and ethyl disulfide are shown to decrease the rate of power loss from a Coumarin 1 (3) dye laser. The naturally occurring amino acid cysteine acts similarly.

von Trebra, R.J.

1984-01-01

311

Comparison of nickel doped Zinc Sulfide and/or palladium nanoparticle loaded on activated carbon as efficient adsorbents for kinetic and equilibrium study of removal of Congo Red dye  

NASA Astrophysics Data System (ADS)

In this study, the efficiency of nickel doped Zinc Sulfide nanoparticle loaded on activated carbon (Ni-ZnS-NP-AC) and palladium nanoparticles loaded on activated carbon (Pd-NP-AC) for the removal of Congo Red (CR) from aqueous solution was investigated. These materials were fully identified and characterized in term of structure, surface area and pore volume with different techniques such XRD, FE-SEM and TEM analysis. The dependency of CR removal percentage to variables such as pH, contact time, amount of adsorbents, CR concentration was examined and optimum values were set as: 0.03 g Ni-ZnS-NP-AC and 0.04 g of Pd-NP-AC at pH of 3 and 2 after mixing for 22 and 26 min for Ni-ZnS-NP-AC and Pd-NP-AC, respectively. Subsequently, it was revealed that isotherm data efficiency can be correlated Langmuir with maximum monolayer adsorption capacities of 286 and 126.6 mg g-1 at room temperature for Ni-ZnS-NP-AC and Pd-NP-AC, respectively. Investigation of correlation between time and rate of adsorption reveal that the CR adsorption onto both adsorbents followed pseudo second order and interparticle diffusion simultaneously.

Ahmadi, K.; Ghaedi, M.; Ansari, A.

2015-02-01

312

Basic Horticulture.  

ERIC Educational Resources Information Center

This learning packet contains teaching suggestions and student learning materials for a course in basic horticulture aimed at preparing students for employment in a number of horticulture areas. The packet includes nine sections and twenty instructional units. Following the standard format established for Oklahoma vocational education materials in…

Geer, Barbra Farabough

313

Basic Science.  

ERIC Educational Resources Information Center

Instructional materials are provided for a course that covers basic concepts of physics and chemistry. Designed for use in a workplace literacy project developed by Mercer County Community College (New Jersey) and its partners, the course describes applications of these concepts to real-life situations, with an emphasis on applications of…

Mercer County Community Coll., Trenton, NJ.

314

Dispersion Basics  

NSDL National Science Digital Library

A webcast presentation by Dr. Timothy Spangler (Director of the COMET Program and a former air quality consultant). This 25-minute lecture provides an overview of the basics of dispersion, the effects of different atmospheric conditions on dispersion, and how dispersion is commonly modeled after an accidental release of a hazardous material.

COMET

2002-11-12

315

Basic Skills.  

ERIC Educational Resources Information Center

These four articles focus on developing basic reading, science, and job search skills: "Reading Program for Vocational Classes" by Augustus Luparelli; "Why Teach Employability Skills?" by Larry Siefferman; "Improving Vocabulary and Reading Skills" by Edythe Conway; and "Science in Everyday Life" by Virginia Eleazer and George Carney. (SK)

Luparelli, Augustus N.; And Others

1981-01-01

316

Recent Advances in Heterogeneous Photocatalytic Decolorization of Synthetic Dyes  

PubMed Central

During the process and operation of the dyes, the wastes produced were commonly found to contain organic and inorganic impurities leading to risks in the ecosystem and biodiversity with the resultant impact on the environment. Improper effluent disposal in aqueous ecosystems leads to reduction of sunlight penetration which in turn diminishes photosynthetic activity, resulting in acute toxic effects on the aquatic flora/fauna and dissolved oxygen concentration. Recently, photodegradation of various synthetic dyes has been studied in terms of their absorbance and the reduction of oxygen content by changes in the concentration of the dye. The advantages that make photocatalytic techniques superior to traditional methods are the ability to remove contaminates in the range of ppb, no generation of polycyclic compounds, higher speed, and lower cost. Semiconductor metal oxides, typically TiO2, ZnO, SnO, NiO, Cu2O, Fe3O4, and also CdS have been utilized as photocatalyst for their nontoxic nature, high photosensitivity, wide band gap and high stability. Various process parameters like photocatalyst dose, pH and initial dye concentrations have been varied and highlighted. Research focused on surface modification of semiconductors and mixed oxide semiconductors by doping them with noble metals (Pt, Pd, Au, and Ag) and organic matter (C, N, Cl, and F) showed enhanced dye degradation compared to corresponding native semiconductors. This paper reviews recent advances in heterogeneous photocatalytic decolorization for the removal of synthetic dyes from water and wastewater. Thus, the main core highlighted in this paper is the critical selection of semiconductors for photocatalysis based on the chemical, physical, and selective nature of the poisoning dyes. PMID:25054183

Muhd Julkapli, Nurhidayatullaili; Bagheri, Samira; Bee Abd Hamid, Sharifah

2014-01-01

317

New fluorescent symmetrically substituted perylene-3,4,9,10-dianhydride-azohybrid dyes: Synthesis and spectroscopic studies  

NASA Astrophysics Data System (ADS)

Five phenolic azo-dyes (3a-e) were synthesized by diazo coupling of the suitably substituted anilines (1a-e) with phenol at low temperature in alkaline medium. The resulting dyes have low solubility in aqueous medium due to lack of carboxylic or sulfonic solubilizing functionalities. The hybridization of perylene dianhydride with phenolic azo-dyes was achieved by the nucleophilic aromatic substitution (SNAr) reaction of perylene-3,4,9,10-dianhydride 4 with phenolic azo-dyes 3a-e in basic medium. The hybrid dyes exhibit absorption maxima ?max in the range 440-460 nm in aqueous medium due to presence of azo linkage and highly conjugated system of ? bonds. Fluorescence spectra of these dyes in water show sharp emission peaks with small band widths. The structures of perylene-azo dyes were confirmed by FTIR and NMR spectroscopy.

Saeed, Aamer; Shabir, Ghulam

2014-12-01

318

Basic Immunology  

NSDL National Science Digital Library

Some individuals might blanch at the idea of a "basic" immunology overview, but Professor Vladimir V. Klimov provides just such a resource on this site. As the homepage notes, the site is designed to assist undergraduate students learning about the basics of immunology through essays, images, animations, quizzes, case histories, and external links. Visitors can begin by looking over the "Table of Contents" area, which includes seven complete chapters of information. These chapters include "The Immune Responses", "Effector Activity", and "Functional Organization of the Immune System". While some of the materials on the site require a paid subscription, there's enough free material here to get students on their way to learning more about this field of study.

Klimov, Vladimir V.

319

Contour Basics  

NSDL National Science Digital Library

Contour Basics is an exercise designed to introduce students to contour plots. The Contour Activity is a great on-line resource that starts slowly and increases in difficulty. It teaches students basic techniques for generating contours, introduces students to the subtleties of generating contour plots with sparse data, provides many opportunities for students to assess their own progress and understanding and has complete on-line drawing capabilities. The exercise is geared toward atmospheric and oceanic sciences but is beneficial for all geoscience students. In addition to the exercise, this site includes information on teaching materials, teaching notes and tips, assessment suggestions and additional references. This activity is part of the Starting Point Collection: http://serc.carleton.edu/introgeo/

Ackerman, Steve

320

Painting With Natural Dyes  

NSDL National Science Digital Library

This activity is part of an integrated elementary unit called "Painted Tipis." The unit is best taught in the fall in conjunction with the September celebration "American Indian Heritage Week." It integrates lessons on literature through legends and myths, language (Blackfeet), and mathematics through structural components of the tipi. The activity introduces the students to the art of dyeing as used in ancestral tipi paintings. Historical cultural ties are an integral part of the Native American students learning and this unit provides those connections. The purpose of this lesson is to provide elementary students with the opportunity to explore, identify and locate area plants. The inquiry cooperative learning component of this lesson will be to determine the color (dye) producing possibilities of the plant. Students will also plan and carry out an experiment to produce the dyestuff of the plant as well as create possible mordants, which is a chemical or metallic compound that will "fasten" the color to the fabric.

Barbara Arrowtop (Heart Butte School)

1999-07-01

321

Dyeing of wool with natural anthraquinone dyes from Fusarium oxysporum  

Microsoft Academic Search

Two anthraquinone compounds are described which were produced by liquid cultures of Fusarium oxysporum (isolate no. 4), isolated from the roots of citrus trees affected with root rot disease. These anthraquinone compounds are 2-acetyl-3,8-dihydroxy-6-methoxy anthraquinone or 3-acetyl-2,8-dihydroxy-6-methoxy anthraquinone. Dyeing of wool fabrics with these new anthraquinone compounds as natural dyes has been studied. The values of dyeing rate constant, half-time

F. A. Nagia; R. S. R. EL-Mohamedy

2007-01-01

322

Optimization of dyeing poly(lactic acid) fibers with vat dyes  

Microsoft Academic Search

Optimization of dyeing poly(lactic acid) fibers with vat dyes has been investigated. Conventional method for dyeing cellulose fibers with vat dyes was able to be applied for dyeing poly(lactic acid) fibers. It has become obvious that higher dyeing temperature and concentration of auxiliaries have negative effects on the dyeability of dyes on poly(lactic acid) fibers. Determination of optimal dyeing condition

K. Sawada; M. Ueda

2007-01-01

323

Dye-enhanced selective laser ablation for surgical mucosectomy.  

PubMed

The diode laser operates at a wavelength of 805 nm; indocyanine green (ICG) has a maximum energy absorption of a wavelength of approximately 800 nm. The effect of the diode laser as a laser knife can be significantly enhanced with an injection of ICG. In the present study, this dye-enhanced photothermal effect was investigated in the field of surgical endoscopy. A 9-cm2 region of the canine gastric mucosa was removed by the laser after injection of 5 ml of ICG solution at a concentration of 0.5 mg/mL into the submucosal space. The diode laser was used at a power output of 10 watts. The canine stomach was removed 10 days after the operation to investigate the site histologically. Clinical application using transanal endoscopic microsurgery (TEM) was employed using a dye-enhanced laser in five patients with a rectal adenoma. The pathological changes in the canine gastric wall resected 10 days after the operation showed that the low-power laser enhanced by ICG produced less fibrosis in the submucosal space than electrocautery. Mucosal resection using a dye-enhanced laser was easily performed in these five patients. It was concluded that this easy removal of the mucosa by a dye-enhanced laser was due to its ability to produce hemostasis of the vessels and its excellent tissue-cutting effect. PMID:10872619

Yamashita, Y; Sakai, T; Watanabe, K; Maekawa, T; Shirakusa, T

1999-12-01

324

Tremor (Beyond the Basics)  

MedlinePLUS

... Basics) Patient information: Myoclonus (The Basics) Patient information: Fragile X syndrome (The Basics) Beyond the Basics — Beyond the ... of Parkinson disease Overview of tremor Patient information: Fragile X syndrome (The Basics) Patient information: Myoclonus (The Basics) ...

325

Cold Pad-Batch dyeing method for cotton fabric dyeing with reactive dyes using ultrasonic energy.  

PubMed

Reactive dyes are vastly used in dyeing and printing of cotton fibre. These dyes have a distinctive reactive nature due to active groups which form covalent bonds with -OH groups of cotton through substitution and/or addition mechanism. Among many methods used for dyeing cotton with reactive dyes, the Cold Pad Batch (CPB) method is relatively more environment friendly due to high dye fixation and non requirement of thermal energy. The dyed fabric production rate is low due to requirement of at least twelve hours batching time for dye fixation. The proposed CPB method for dyeing cotton involves ultrasonic energy resulting into a one third decrease in batching time. The dyeing of cotton fibre was carried out with CI reactive red 195 and CI reactive black 5 by conventional and ultrasonic (US) method. The study showed that the use of ultrasonic energy not only shortens the batching time but the alkalis concentrations can considerably be reduced. In this case, the colour strength (K/S) and dye fixation (%F) also enhances without any adverse effect on colour fastness of the dyed fabric. The appearance of dyed fibre surface using scanning electron microscope (SEM) showed relative straightening of fibre convolutions and significant swelling of the fibre upon ultrasonic application. The total colour difference values ?E (CMC) for the proposed method, were found within close proximity to the conventionally dyed sample. PMID:21550289

Khatri, Zeeshan; Memon, Muhammad Hanif; Khatri, Awais; Tanwari, Anwaruddin

2011-11-01

326

Dye-coated europium monosulfide  

SciTech Connect

Nanoparticles of EuS were synthesized using europium dithiocarbamate complexes. The resulting nanoparticles were coated with the dye, 1-pyrene carboxylic acid and the resulting material was characterized using X-ray powder diffraction, TEM, and UV-visible spectroscopy. Fluorescence spectroscopy was used to determine the relative energy of the conduction band edge to the excited state energy of the dye. -- Graphical abstract: Dye sensitized magnetic semiconductor materials were prepared by synthesizing EuS nanoparticles using single source precursors and coating with the dye, 1-pyrene carboxylic acid. Display Omitted highlights: > Synthesized EuS nanoparticles, 11{+-}2.4 nm characterized using XRD, TEM, and UV-vis. spect. > Grafted a dye to the surface and characterized the product using XRD, FTIR, UV-vis., and TEM. > Studied the photophysical properties using fluorescence spectroscopy. > Determined the relative dye excited state to the conduction band of the semiconductor.

Kar, Srotoswini [Department of Chemistry, Georgetown University, Washington D.C. 20057 (United States); Dollahon, Norman R. [Department of Biology, Villanova University, Villanova, PA 19085 (United States); Stoll, Sarah L., E-mail: sls55@georgetown.ed [Department of Chemistry, Georgetown University, Washington D.C. 20057 (United States)

2011-05-15

327

Basically Acids  

NSDL National Science Digital Library

Students learn the basics of acid/base chemistry in a fun, interactive way by studying instances of acid/base chemistry found in popular films such as Harry Potter and the Prisoner of Azkaban and National Treasure. Students learn what acids, bases and indicators are and how they can be used, including invisible ink. They also learn how engineers use acids and bases every day to better our quality of life. Students' interest is piqued by the use of popular culture in the classroom.

2014-09-18

328

GPS Basics  

NSDL National Science Digital Library

The Federal Aviation Administration maintains the graphically impressive Global Positioning System (GPS) Basics Web site. From the history of the global positioning system and how it works to governmental policy that controls its use, this site does a good job of explaining all facets of what GPS is about without being overly technical. Interested visitors can explore some of the other links that cover satellite navigation topics as well, such as GPS programs; a library of documents, fact sheets, press releases, and news; frequently asked questions; links; and more. Anyone interested in mapping, navigation, or similar subjects will enjoy exploring the interesting information provided on this well designed site.

329

The Chemistry of Plant and Animal Dyes.  

ERIC Educational Resources Information Center

Provides a brief history of natural dyes. Chemical formulas are provided for flavonoids, luteolin, genistein, brazilin, tannins, terpenes, naphthoquinone, anthraquinone, and dyes with an alkaloid structure. Also discusses chemical background of different dye processes. (CS)

Sequin-Frey, Margareta

1981-01-01

330

Tubular nanofiltration of highly concentrated C.I. Acid Black 210 dye.  

PubMed

Tubular nanofiltration membrane performance to treat water for reuse was carried out by choosing C.I. Acid Black 210 dye as a model dye. It has been shown that increasing pH causes reduction in irreversible fouling factor (IFF) and the dye removal is also affected by solution pH. The total organic carbon removal for pH 4, pH 7, pH 8 and pH 10 is 97.9, 92.3, 94.5 and 94.6%, respectively. The conductivity removal for pH 4, pH 7, pH 8 and pH 10 is 85.1, 88.3, 87.8 and 90.7% respectively. The increase in the initial dye concentration causes rapid increase in fouling until 100 mg/l. Then the fouling increases gradually as it reaches a maximum IFF around 13%. This study also shows that the colour of permeate changes from colourless to light greenish/yellowish (initial concentration of 2,000 and 4,000 mg/l) as the initial dye concentration increases. The conductivity removal was also reduced as the initial dye concentration increased due to screening of the Donnan effect with the presence of salt. PMID:23306271

Zahrim, A Y; Hilal, N; Tizaoui, C

2013-01-01

331

Comparison of dye adsorption by mesoporous hybrid gels: understanding the interactions between dyes and gel surfaces.  

PubMed

Without using any templating agents, mesoporous hybrid gels were prepared using mixtures of tetraethoxysilane (TEOS) with n-propyltriethoxysilane (PTES), bis(trimethoxysilyl)hexane (TSH), or bis(trimethoxysilylpropyl)amine (TSPA) as precursors. Fourier transform infrared (FTIR), N2 adsorption/desorption, thermogravimetry (TG), point of zero charge (PZC), and water vapor adsorption measurements were used to characterize the gels. The adsorption of methyl orange (MO), methyl red (MR), bromocresol purple (BP), phenol red (PR), neutral red (NR), and brilliant blue FCF (BBF) by the gels in both 0.01 M HCl and 0.01 M NaOH solutions was compared comprehensively. The gel derived from TEOS/TSH (with -(CH2)6- groups, Gel 2) has the largest specific surface area (695 m2 g(-1)), the smallest pore volume (0.564 cm3 g(-1)), and the smallest average pore size (3.7 nm). The gels derived form TEOS/PTES (with -(CH2)2CH3 groups, Gel 1), and TEOS/TSPA (with -(CH2)3NH(CH2)3- groups, Gel 3) have similar textual properties. The PZC of Gels 1, 2, and 3 was estimated to be 6.28, 6.20, and 6.88, respectively. Gel 3 has the highest PZC due to the presence of -NH- groups. In general, Gel 2 shows the highest dye adsorption among all the gels in both acidic and basic solutions. All the dyes except NR have much lower adsorption in basic solutions than in acidic solutions. In acidic solutions Gels 1 and 2 have similar adsorption trends for the dyes, except for BP, with NR having the highest adsorption, and PR the lowest adsorption. Gel 3 presents a different trend from Gels 1 and 2, with BBF having the highest adsorption, and MR the lowest adsorption. In basic solutions the order of dye adsorption by all the gels is shown to follow the sequence NR>MR approximately BBF>MO>BP approximately PR. The adsorption results can be explained by considering the textural properties of the gels and the interactions between the gel surfaces and the dyes, which include hydrogen bonding, electrostatic, and hydrophobic interactions. PMID:16978636

Wu, Zhijian; You, Laijiang; Xiang, Hong; Jiang, Yan

2006-11-15

332

Kinetics of azoreductase and assessment of toxicity of metabolic products from azo dyes by Pseudomonas luteola.  

PubMed

This is a continuous study on a decolorization strain, Pseudomonas luteola, which involves treating seven azo dyes with different structures. This study focuses mainly on determining both the mechanism of decolorization by P. luteola and the activity of azoreductase from P. luteola as well as identifying and assessing the toxicity of metabolic products of azo dyes. The growth of P. luteola reached the stationary phase after shaking incubation for 24 hours. Then, while being kept static, the color of seven tested azo dyes (100 mg/l) could be removed. The proportion of color removal was between 59-99%, which figure is related to the structure of the dye. Monoazo dyes (RP2B, V2RP and Red 22) showed the fastest rate of decolorization, i.e. from 0.23-0.44 mg dye-mg cell-1 hr-1. P. luteola could remove the color of V2RP and a leather dye at a concentration of 200 mg/l, and as to the rest of the azo dyes, it could remove at a concentration of up to 100 mg/l. Decolorization of RP2B and Red 22 required activation energy of 7.00 J/mol and 6.63 J/mole, respectively, indicating that it was easier for azoreductase to decolorize structurally simple dyes. The kinetics of azoreductase towards seven azo dyes suggested a competitive inhibition model be applied. Microtox was used to analyze the toxicity of the metabolic products of azo dyes. EC50 showed differences in toxicity before and after the azo dyes had been metabolized. Analysis revealed significant differences between the results obtained by EC50 with Blue 15 and those obtained with the leather dye, indicating that the toxicities of the metabolic products were increased. The differences obtained by EC50 with Red 22, RP2P and V2RP were small, and Black 22 showed no such difference. Sulfanic acid and orthanilic acid may be the intermediate products of Violet 9 and RP2B, respectively. However, according to FT-IR analysis, aromatic amines were present in the metabolic product. PMID:11380189

Hu, T L

2001-01-01

333

Dye Sensitized Solar Cells  

PubMed Central

Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO2, ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed. PMID:20480003

Wei, Di

2010-01-01

334

Gel Electrophoresis of Dyes  

NSDL National Science Digital Library

In this experiment related to plant biotechnology, learners discover how to prepare and load an electrophoresis gel. They will then run the gels in an electrophoresis system to separate several dyes that are of different molecular sizes and carry different charges. This technique is fundamental to many of the procedures used in biotechnology. This lesson guide includes background information for the educator, safety precautions, and questions with answers for learners. For safety reasons, adult supervision is recommended. Modifications for use with younger learners are described in a related PDF (see related resource).

Janice Stephens

2011-01-01

335

Barometer Basics  

NSDL National Science Digital Library

This experimental activity is designed to develop a basic understanding of the interrelationship between temperature and pressure and the structure of a device made to examine this relationship. Resources needed to conduct this activity include two canning jars, two large rubber balloons, a heat lamp or lamp with 150 watt bulb, and access to freezer or water and ice. The resource includes background information, teaching tips and questions to guide student discussion. This is chapter 5 of Meteorology: An Educator's Resource for Inquiry-Based Learning for Grades 5-9. The guide includes a discussion of learning science, the use of inquiry in the classroom, instructions for making simple weather instruments, and more than 20 weather investigations ranging from teacher-centered to guided and open inquiry investigations.

2012-08-03

336

Sunspace basics  

SciTech Connect

Anyone who lives in a home with a sunspace will tell you that the sunspace is the most enjoyable room in the house. Many times the homeowner`s only regret is that the sunspace is not larger. Although aesthetics often drive the decision to add a sunspace or include one in a new home design, sunspaces can also provide supplemental space heating and a healthy environment for plants and people. In fact, a well-designed sunspace can provide up to 60% of a home`s winter heating requirements. This publication addresses basic elements of sunspace design; design considerations for supplemental space heating, growing plants, and use as a living space; design guidelines including siting, heat distribution, and glazing angles; and major sunspace components including glazing options, thermal mass, insulation, and climate controls. A list of sources for more information is also provided.

Not Available

1994-11-01

337

Removal of acridine orange from water by graphene oxide  

NASA Astrophysics Data System (ADS)

Dyes are usually used in textile manufacturing and are one of the major contaminations in water. Thus, from an environmental point of view, the removal of dyes is of great concern, and recent applications using carbon-based materials showed high adsorption ability. In this work we use graphene oxide (GO) produced by improved Hummer's method, for adsorption of acridine orange dye (AO) in water. GO is a material containing functional groups such as carboxyl, epoxy, ketone, and hydroxyl, that can adsorb cationic dyes. Factors such as initial concentration of dye, the amount of GO, temperature and contact time were evaluated. Results show that the adsorption equilibrium, with the removal of 40% of the dye, is reached in approximately 1 hour, and that the adsorption capacity increases at higher initial concentrations. The highest value of AO adsorbed was 229.8 mg/g equivalent to 92% removal percentage by using AO initial concentration 0.10 mg/mL. FT-IR analysis of GO with adsorbed AO shows changes in the stretching vibrational bands, which corroborate the AO/GO interaction due to the functional groups present in GO. Furthermore, AO adsorbed on GO does not desorb back into water. Our results show that GO is an effective adsorbent and could be used to treat effluents contaminated with dyes.

Fiallos, D. Coello; Gómez, C. Vacacela; Usca, G. Tubón; Pérez, D. Cid; Tavolaro, P.; Martino, G.; Caputi, L. S.; Tavolaro, A.

2015-02-01

338

Decolorization of direct dyes by salt fractionated turnip proteins enhanced in the presence of hydrogen peroxide and redox mediators.  

PubMed

The present paper demonstrates the effect of salt fractionated turnip (Brassica rapa) proteins on the decolorization of direct dyes, used in textile industry, in the presence of various redox mediators. The rate and extent of decolorization of dyes was significantly enhanced by the presence of different types of redox mediators. Six out of 10 investigated compounds have shown their potential in enhancing the decolorization of direct dyes. The performance was evaluated at different concentrations of mediator and enzyme. The efficiency of each natural mediator depends on the type of dye treated. The decolorization of all tested direct dyes was maximum in the presence of 0.6mM redox mediator at pH 5.5 and 30 degrees C. Complex mixtures of dyes were also maximally decolorized in the presence of 0.6mM redox mediator (1-hydroxybenzotriazole/violuric acid). In order to examine the operational stability of the enzyme preparation, the enzyme was exploited for the decolorization of mixtures of dyes for different times in a stirred batch process. There was no further change in decolorization of an individual dye or their mixtures after 60 min; the enzyme caused more than 80% decolorization of all dyes in the presence of 1-hydroxybenzotriazole/violuric acid. However, there was no desirable increase in dye decolorization of the mixtures on overnight stay. Total organic carbon analysis of treated dyes or their mixtures showed that these results were quite comparable to the loss of color from solutions. However, the treatment of such polluted water in the presence of redox mediators caused the formation of insoluble precipitate, which could be removed by the process of centrifugation. The results suggested that catalyzed oxidative coupling reactions might be important for natural transformation pathways for dyes and indicate their potential use as an efficient means for removal of dyes color from waters and wastewaters. PMID:17524451

Matto, Mahreen; Husain, Qayyum

2007-09-01

339

Understanding effects of chemical structure on azo dye decolorization characteristics by Aeromonas hydrophila.  

PubMed

This novel comparative study tended to disclose how the molecular structures present in seven azo dyes including two types of azo dyes (i.e., naphthol type azo dyes--Reactive Black 5 (RB 5), Reactive Blue 171 (RB 171), Reactive Green 19 (RG19), Reactive Red 198 (RR198), Reactive Red 141 (RR141), and non-naphthol type azo dyes--Direct Yellow 86 (DY86), Reactive Yellow 84 (RY84)) affected color removal capability of Aeromonas hydrophila. Generally speaking, the decolorization rate of naphthol type azo dye with hydroxyl group at ortho to azo bond was faster than that of non-naphthol type azo dye without hydroxyl group, except of RG19. The azo dyes with electron-withdrawing groups (e.g., sulfo group in RR198, RB5 and RR141) would be easier to be decolorized than the azo dyes with the electron-releasing groups (e.g., -NH-triazine in RB171 and RG19). In addition, the azo dyes containing more electron-withdrawing groups (e.g., RR198, RB5 and RR141) showed significantly faster rate of decolorization. The azo dyes with electron-withdrawing groups (e.g., sulfo group) at para and ortho to azo bond (e.g., RR198, RB5 and RR141) could be more preferred for color removal than those at meta (e.g., DY86 and RY84). The former azo dyes with para and ortho sulfo group provided more effective resonance effects to withdraw electrons from azo bond, causing azo dyes to be highly electrophilic for faster rates of reductive biodecolorization. However, since the ortho substituent caused steric hindrance near azo linkage(s), azo dyes with para substituent could be more favorable (e.g., SO(2)(CH(2))(2)SO(4)(-) in RR198 and RB5) than those with ortho substituent (e.g., sulfo group at RR141) for decolorization. Thus, the ranking of the position for the electron-withdrawing substituent in azo dyes to escalate decolorization was para>ortho>meta. This study suggested that both the positions of substituents on the aromatic ring and the electronic characteristics of substituents in azo dyes all significantly affected the performance of biodecolorization of A. hydrophila. PMID:19237244

Hsueh, Chung-Chuan; Chen, Bor-Yann; Yen, Chia-Yi

2009-08-15

340

Decolorization Of Textile Dye Solutions  

Microsoft Academic Search

Results are presented on the use of ozone to decolorize textile dye solutions. The results describe the rates of reaction and the stoichiometry for the use of ozone to decolorize a simulated wastewater containing a bisazo acid dye (Acid Red 158). These rates of reaction are not sensitive to pH and are only mildly affected by temperature. The effects of

Julie Carričre; J. Peter Jones; Arthur D. Broadbent

1993-01-01

341

Hair Dyes and Cancer Risk  

MedlinePLUS

... Martinez A. Personal use of hair dyes and risk of cancer: a meta-analysis. JAMA: The Journal of the American Medical Association ... Buffler PA. Personal use of hair dyes and risk of bladder cancer: a meta-analysis of epidemiologic data. Cancer Causes and Control 2008; ...

342

Dye laser traveling wave amplifier  

NASA Technical Reports Server (NTRS)

A flash lamp pumped dye laser suitable for use as an amplifier stage was developed. The desired output laser pulses are of nanosecond duration, tunable in center frequency, and of good optical quality. Its usefulness as a laser oscillator is emphasized, because it constitutes a compact, relatively efficient source of tunable dye laser light.

Davidson, F.

1983-01-01

343

Identification of dyes on single textile fibers by HPLC-DAD-MS.  

PubMed

An HPLC-DAD-MS method is described to analyze textile dyes in different dye classes (reactive, basic, acid, direct, disperse). The described method is sensitive enough to analyze single fibers with a length of a few millimeters or less, which makes it suitable for forensic analyses. The current paper describes the information content of the acquired data as well as the results of a validation study, in which the repeatability, specificity, and limit of detection of the method were assessed by repeated measurements of nine different dyes in the mentioned dye classes. The mass accuracy (deviation generally <2 ppm) and absorbance spectra were found to be highly stable in several measurements over a period of 8 weeks. Deviation in retention times were observed and attributed to small experimental effects and a precolumn blockage. The results show that dye analysis is possible for most fibers with a minimum length of one or a few millimeters. PMID:24168164

Carey, Alex; Rodewijk, Nicole; Xu, Xiaoma; van der Weerd, Jaap

2013-12-01

344

Effect of nitrate on anaerobic azo dye reduction.  

PubMed

The aim of the study was to investigate the effect of nitrate on anaerobic color removal efficiencies. For this aim, anaerobic-aerobic sequencing batch reactor (SBR) fed with a simulated textile effluent including Remazol Brilliant Violet 5R azo dye was operated with a total cycle time of 12 h, including anaerobic (6 h) and aerobic cycles (6 h). Microorganism grown under anaerobic phase of the reactor was exposed to different amounts of competitive electron acceptor (nitrate) and performance of the system was determined by monitoring color removal efficiency, nitrate removal, nitrite formation and removal, oxidation reduction potential, color removal rate, chemical oxygen demand (COD), specific anaerobic enzyme (azo reductase) and aerobic enzyme (catechol 1,2 dioxygenase), and formation and removal of aromatic amines. Variations of population dynamics of microorganisms exposed to various amount of nitrate were identified by denaturing gradient gel electrophoresis (DGGE). It was found that nitrate has adverse effect on anaerobic color removal efficiency and color removal was achieved after denitrification process was completed. It was found that nitrate stimulates the COD removal efficiency and accelerates the COD removal in the first hour of anaerobic phase. About 90 % total COD removal efficiencies were achieved in which microorganism exposed to increasing amount of nitrate. Population dynamics of microorganisms exposed to various amount of nitrate were changed and diversity was increased. PMID:22836282

Cirik, Kevser; Kiti?, Mehmet; Çinar, Özer

2013-01-01

345

Equilibrium uptake, sorption dynamics, process optimization, and column operations for the removal and recovery of malachite green from wastewater using activated carbon and activated slag  

SciTech Connect

The waste slurry generated in fertilizer plants and slag (blast furnace waste) have been converted into low-cost adsorbents, activated carbon and activated slag, respectively, and these are utilized for the removal of malachite green (a basic dye) from wastewater. In the batch experiments, parameters studied include the effect of pH, sorbent dosage, adsorbate concentration, temperature, and contact time. Kinetic studies have been performed to have an idea of the mechanistic aspects and to obtain the thermodynamic parameters of the process. The uptake of the dye is greater on carbonaceous material than on activated slag. Sorption data have been correlated with both Langmuir and Freundlich adsorption models. The presence of anionic surfactants does not affect the uptake of dye significantly. The mass transfer kinetic approach has been applied for the determination of various parameters necessary for the designing of fixed-bed contactors. Chemical regeneration has been achieved with acetone in order to recover the loaded dye and restore the column to its original capacity without dismantling the same.

Gupta, V.K.; Srivastava, S.K.; Mohan, D. [Univ. of Roorkee (India). Chemistry Dept.] [Univ. of Roorkee (India). Chemistry Dept.

1997-06-01

346

Synthesis of dye-impregnated sol-gel glasses for fiber optic chemical sensing  

NASA Astrophysics Data System (ADS)

The polarity of the silica cage has been investigated by entrapping organic dyes in a silica gel. pH dyes of bromocresol purple and bromocresol green were selected for this study. The influence of pH on the polarity of the silica cage was determined by measuring the spectral shift of the dye. The pH dye- impregnated silica films show a red-shift in an acidic environment and a blue shift in basic environment, compared to those dissolved in water. This implies that the polarity of a silica cage varies after being treated by different pH solutions. The cage shows higher polarity in a basic solution than in an acidic solution.

Ding, Jack Y.; Tong, J.; Shahriari, Mahmoud R.; Sigel, George H., Jr.

1993-01-01

347

Abatement of Azo Dye from Wastewater Using Bimetal-Chitosan  

PubMed Central

We introduce a new adsorbent, bimetallic chitosan particle (BCP) that is successfully synthesized and applied to remove the orange II dye from wastewater. The effects of pH, BCP quantity, and contact time are initially verified on the basis of the percentage of orange II removed from the wastewater. Experimental data reveal that the Cu/Mg bimetal and chitosan have a synergistic effect on the adsorption process of the adsorbate, where the dye adsorption by Cu/Mg bimetal, chitosan alone, and bimetal-chitosan is 10, 49, and 99.5%, respectively. The time required for the complete decolorization of orange II by 1?mg/L of BCP is 10?min. The Langmuir model is the best fit for the experimental data, which attains a maximum adsorption capacity of 384.6?mg/g. The consideration of the kinetic behavior indicates that the adsorption of orange II onto the BCP fits best with the pseudo-second-order and Elovich models. Further, the simulated azo dye wastewater can be effectively treated using a relatively low quantity of the adsorbent, 1?mg/L, within a short reaction time of 20?min. Overall, the use of BCP can be considered a promising method for eliminating the azo dye from wastewater effectively. PMID:24348163

Asgari, Ghorban; Farjadfard, Sima

2013-01-01

348

Decolorization of azo dye using PVA-immobilized microorganisms.  

PubMed

A microbial consortium having a high capacity for rapid decolorization of azo dye (RED RBN) was immobilized by a phosphorylated polyvinyl alcohol (PVA) gel. The immobilized-cell beads exhibited a color removal capability of 75%, even at a high concentration of RED RBN (500 mg l(-1)) within 12 h using flask culture. The continuous operation was conducted at a hydraulic retention time (HRT) of 5-20 h in which the dye loading rate ranged from 240 to 60 mg dye h(-1). A removal efficiency exceeding 90% was obtained at the HRT higher than 10 h. No recognizable destruction of bead appearance was observed in the 6-month operation. Examination of the mechanism of the decolorization process by cell beads indicated that it proceeded primarily by biological decolorization associated with partial adsorption of the dye onto the entrapped cells and gel matrix. Microscopic observation revealed that the microbial consortium contained in the gel beads was at least made up of three kinds of bacterial species. From the economical viewpoint, alternative cheaper nitrogen sources such as fish meal, soybean meal, pharmamedia and vita yeast powder were examined. PMID:12615393

Chen, Kuo-Cheng; Wu, Jane-Yii; Huang, Chang-Cheng; Liang, Yu-Min; Hwang, Sz-Chwun John

2003-03-20

349

Degradation of immobilized azo dyes by Klebsiella sp. UAP-b5 isolated from maize bioadsorbent  

Microsoft Academic Search

The degradation of two immobilized dyes by Klebsiella sp. UAP-b5 was studied. In batch experiments, the azo dyestuffs Basic Blue 41 and Reactive Black 5 were immobilized onto corn cobs by adsorption, and the adsorption process was characterized by a pseudo-second-order kinetic equation. Klebsiella sp. UAP-b5 was previously isolated from the corn waste and shown to decolorize these dyes in

M. P. Elizalde-González; L. E. Fuentes-Ramírez; M. R. G. Guevara-Villa

2009-01-01

350

Adsorption of Textile Dye on Zinc Stannate Oxide: Equilibrium, Kinetic and Thermodynamics Studies  

Microsoft Academic Search

Zn2SnO4 powder was prepared by hydrothermal process at 200°C for 12 h. The material was characterized by X-ray-diffraction and surface area. The synthesized sample presented a pure phase and a surface area of 48.8 m.g. It was used as adsorbent to remove the Reactive Red 141 that is a azo textile dye. The adsorption kinetics of the textile dye on Zn2SnO4 followed

Edson Luiz Foletto; Gabriela Carvalho Collazzo; Marcio Antônio Mazutti; Sérgio Luiz Jahn

2011-01-01

351

The Fenton Chemistry and Its Combination with Coagulation for Treatment of Dye Solutions  

Microsoft Academic Search

Aqueous solutions of Acid Blue 74, Acid Orange 10, and Acid Violet 19 were subjected to Fenton\\/Fenton?like oxidation and its combination with lime coagulation. The analysis indicated no dependence of chemical oxidation efficacy on dye concentration in the range of 0.1–1 g L. Complete or nearly complete (higher than 95%) color removal of all treated samples was observed. Dye:H2O2 weight ratio of

Niina Kulik; Yekaterina Panova; Marina Trapido

2007-01-01

352

Adsorption of methylene blue dye from aqueous solutions using Eichhornia crassipes.  

PubMed

Adsorption of methylene blue (MB) from aqueous solution using dried roots, stems, and leaves of Eichhornia crassipes biomass obtained from Lake Victoria was studied. Batch experimental results revealed that the adsorption process was highly dependent on adsorbent dosage, initial MB concentration, E. crassipes particle size and aqueous solution temperature. The isotherm data fitted Freundlich mathematical models with maximum dye adsorption of 35.37 mg g(-1). Roots adsorbed over 99 % of the MB in <5 min. Sorption kinetics followed a pseudo-second-order model. Results provide evidence that E. crassipes is an effective and inexpensive biomaterial for dye removal from aqueous dye solutions and industrial effluents. PMID:23839152

Wanyonyi, Wycliffe Chisutia; Onyari, John Mmari; Shiundu, Paul Mwanza

2013-09-01

353

Bond Alternation, Polarizability and Resonance Detuning in Methine Dyes  

E-print Network

Many organic molecules with a high nonlinear polarizability have a "Brooker dye" structure, featuring electron accepting or donating groups separated by an unsaturated (methine or polyene) hydrocarbon bridge. These systems have been the topic of much discussion with regard to their structure-property relationships - particularly relationships linking nonlinear response to bond-length alternation. Here, we show that these relationships can be subsumed within the conceptual framework of a Brooker dye color proposed by Platt [J.R. Platt, J. Chem. Phys. 25 80 (1956)]. The key quantities of Platt's model are the Brooker basicity difference and the isoexcitation energy. These concepts provide a spectroscopic definition of the resonant (cyanine) limit, which is independent of other descriptors commonly used (e.g. bond length alternation). We establish a relation ship between the bond length and the Brooker basicity difference, with which we establish a natural origin for bond length alternation coordinates in asymme...

Olsen, Seth

2010-01-01

354

Dye-sensitized solar cells  

DOEpatents

A low-cost dye-sensitized Schottky barrier solar cell is comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent. 3 figs.

Skotheim, T.A.

1980-03-04

355

Dye-sensitized solar cells  

DOEpatents

A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.

Skotheim, Terje A. [Berkeley, CA

1980-03-04

356

Bioremediation of direct dyes in simulated textile effluents by a paramorphogenic form of Aspergillus oryzae.  

PubMed

Azo dyes are extensively used for coloring textiles, paper, food, leather, drinks, pharmaceutical products, cosmetics and inks. The textile industry consumes the largest amount of azo dyes, and it is estimated that approximately 10-15% of dyes used for coloring textiles may be lost in waste streams. Almost all azo dyes are synthetic and resist biodegradation, however, they can readily be reduced by a number of chemical and biological reducing systems. Biological treatment has advantages over physical and chemical methods due to lower costs and minimal environmental effect. This research focuses on the utilization of Aspergillus oryzae to remove some types of azo dyes from aqueous solutions. The fungus, physically induced in its paramorphogenic form (called 'pellets'), was used in the dye biosorption studies with both non-autoclaved and autoclaved hyphae, at different pH values. The goals were the removal of dyes by biosorption and the decrease of their toxicity. The dyes used were Direct Red 23 and Direct Violet 51. Their spectral stability (325-700 nm) was analyzed at different pH values (2.50, 4.50 and 6.50). The best biosorptive pH value and the toxicity limit, (which is given by the lethal concentration (LC(100)), were then determined. Each dye showed the same spectrum at different pH values. The best biosorptive pH was 2.50, for both non- autoclaved and autoclaved hyphae of A. oryzae. The toxicity level of the dyes was determined using the Trimmed Spearman-Karber Method, with Daphnia similis in all bioassays. The Direct Violet 51 (LC(100) 400 mg · mL(-1)) was found to be the most toxic dye, followed by the Direct Red 23 (LC(100) 900 mg · mL(-1)). The toxicity bioassays for each dye have shown that it is possible to decrease the toxicity level to zero by adding a small quantity of biomass from A. oryzae in its paramorphogenic form. The autoclaved biomass had a higher biosorptive capacity for the dye than the non-autoclaved biomass. The results show that bioremediation occurs with A. oryzae in its paramorphogenic form, and it can be used as a biosorptive substrate for treatment of industrial waste water containing azo dyes. PMID:22466598

Corso, C R; Almeida, E J R; Santos, G C; Morăo, L G; Fabris, G S L; Mitter, E K

2012-01-01

357

Studies on the utility of plant cellulose waste for the bioadsorption of crystal violet dye.  

PubMed

Several synthetic dyes employed in textile and food industries are discharged into aquatic environment. These visible pollutants in water damage environment, as they are carcinogenic and toxic to humans. The use of cost effective and ecofriendly plant cellulose based adsorbents have been studied in batch experiments as an alternative and effective substitution of activated carbon for the removal of toxic dyes from waste water. Adsorbents prepared from sugarcane baggase, were successfully used to remove certain textile dye such as crystal violet from an aqueous solution. The present investigation potentiate the use of sugarcane baggase, pretreated with formaldehyde (referred as Raw Baggase) and sulphuric acid (referred as Chemically Activated Baggase), for the removal of crystal violet dye from simulated waste water. Experiments were carried out at neutral pH with various parameters like dye concentration, temperature, contact time and adsorbent dosage. Efficiency of raw baggase was found better than chemically activated baggase for adsorption of crystal violet dye. The data obtained perfectly fits in the Freundlich adsorption isotherm. PMID:21046996

Mahesh, S; Kumar, G Vijay; Agrawal, Pushpa

2010-05-01

358

Never say dye  

PubMed Central

Recent years have seen a remarkable increase in the number of publications dealing with the application of epifluorescence microscopy in cell biology. This can be widely attributed to the development of state-of-the-art image processing programs, as well as the development of new reagents/probes, which allow the labeling of most cell structures, organelles and metabolites with high specificity. However, the use of a specific fluorescent dye, 3,3?-dihexyloxacarbocyanine iodide (DiOC6), has been recently revisited and several new application potentials have emerged. The goal of this mini-review is to provide an up-to-date overview of the multiple roles of this multifaceted probe. PMID:22476459

2012-01-01

359

Full-field dye concentration measurement within saturated/unsaturated thin slabs of porous media  

SciTech Connect

This paper presents a full-field dye concentration measurement technique that extends our experimental capabilities to the measurement of transient dye concentration fields within steady state flow fields under unsaturated or saturated conditions. Simple light absorption theory provides a basis for translating images into high resolution dye concentration fields. A series of dye pulse experiments that demonstrate the combined use of the full-field saturation and dye concentration techniques was conducted at four different degrees of saturation. Each of these experimental sequences was evaluated with respect to mass balance, the results being within 5% of the known dye mass input. An image windowing technique allowed us to see increased dispersion due to decreasing moisture content, tailing of concentration at the rear of the dye pulse and slight velocity changes of the dispersive front due to changes in moisture content. The exceptional resolution of dye concentration in space and time provided by this laboratory technique allows systematic experimentation for examining basic processes affecting solute transport within saturated/unsaturated porous media. Future challenges for this work will be to use these techniques to analyze more complex systems involving heterogeneities, scaling laws, and detailed investigations of the relationship between transverse and longitudinal dispersion in unsaturated media.

Norton, D.L. [Arizona Univ., Tucson, AZ (United States). Dept. of Hydrology; Glass, R.J. [Sandia National Labs., Albuquerque, NM (United States)

1992-12-31

360

Removal of Azo Dye C.I. Acid Red 14 from Contaminated Water using Fenton, UV\\/H2O2, UV\\/H2O2\\/Fe(II), UV\\/H2O2\\/Fe(III) and UV\\/H2O2\\/Fe(III)\\/Oxalate Processes: A Comparative Study  

Microsoft Academic Search

The decolorization of the solution containing a common textile and leather dye, C.I. Acid Red 14 (AR14), at pH 3 by hydrogen peroxide photolysis, Fenton, Fenton-like and photo-Fenton processes was studied. The dark and light reactions were carried out in stirred batch photoreactor equipped with an UV-C lamp (30 W) as UV light source. The experiments showed that the dye

N. DANESHVAR; A. R. KHATAEE

2006-01-01

361

Dyeing Properties of Natural Dye Syzygium cuminii on Silk  

NASA Astrophysics Data System (ADS)

Dyeing behavior of natural dye extracted from the bark of Syzygium cuminii L has been studied on silk fabric. Colour values and colour co-ordinates were examined in terms of K/S and L* a* b* C and h. A range of shades were obtained by using various mordants and mordanting techniques. Dye was tested for some of the eco-parameters using atomic absorption spectrophotometry and GC/MS. The test results were compared with the set standards to determine the eco-friendliness of natural dye. Their concentrations were much below the stipulated limits. Dyed samples were tested for antimicrobial activity against Gram-positive and Gram-negative bacteria and were found to possess antibacterial activity.

Narayana Swamy, V.; Ninge Gowda, K. N.; Sudhakar, R.

2014-04-01

362

Bichromophoric dyes for wavelength shifting of dye-protein fluoromodules.  

PubMed

Dye-protein fluoromodules consist of fluorogenic dyes and single chain antibody fragments that form brightly fluorescent noncovalent complexes. This report describes two new bichromophoric dyes that extend the range of wavelengths of excitation or emission of existing fluoromodules. In one case, a fluorogenic thiazole orange (TO) was attached to an energy acceptor dye, Cy5. Upon binding to a protein that recognizes TO, red emission due to efficient energy transfer from TO to Cy5 replaces the green emission observed for monochromophoric TO bound to the same protein. Separately, TO was attached to a coumarin that serves as an energy donor. The same green emission is observed for coumarin-TO and TO bound to a protein, but efficient energy transfer allows violet excitation of coumarin-TO, versus longer wavelength, blue excitation of monochromophoric TO. Both bichromophores exhibit low nanomolar KD values for their respective proteins, >95% energy transfer efficiency and high fluorescence quantum yields. PMID:25679477

Pham, Ha H; Szent-Gyorgyi, Christopher; Brotherton, Wendy L; Schmidt, Brigitte F; Zanotti, Kimberly J; Waggoner, Alan S; Armitage, Bruce A

2015-03-11

363

Kidney removal  

MedlinePLUS

Nephrectomy; Simple nephrectomy; Radical nephrectomy; Open nephrectomy; Laparoscopic nephrectomy; Partial nephrectomy ... cut is then closed with stitches or staples. Laparoscopic kidney removal: Your surgeon will make 3 or ...

364

Removal of Rhodamine-B by biogas waste slurry from aqueous solution  

Microsoft Academic Search

The ability of biogas waste slurry to adsorb a basic dye (Rhodamine-B) has been investigated. The parameters include agitation time, initial dye concentration, pH and adsorbent dosage. The rate controlling step is mainly intraparticle diffusion. The adsorption rate constant was found to be 2.9 × 10-2 min-1 at 20 mg L-1 initial dye concentration. The adsorption conforms with Freundlich isotherm.

C. Namasivayam; R. T. Yamuna

1992-01-01

365

Immobilization of Laccase in Alginate-Gelatin Mixed Gel and Decolorization of Synthetic Dyes  

PubMed Central

Alginate-gelatin mixed gel was applied to immobilized laccase for decolorization of some synthetic dyes including crystal violet. The immobilization procedure was accomplished by adding alginate to a gelatin solution containing the enzyme and the subsequent dropwise addition of the mixture into a stirred CaCl2 solution. The obtained data showed that both immobilized and free enzymes acted optimally at 50°C for removal of crystal violet, but the entrapped enzyme showed higher thermal stability compared to the free enzyme. The immobilized enzyme represented optimum decolorization at pH 8. Reusability of the entrapped laccase was also studied and the results showed that ca. 85% activity was retained after five successive cycles. The best removal condition was applied for decolorization of seven other synthetic dyes. Results showed that the maximum and minimum dye removal was related to amido black 10B and eosin, respectively. PMID:22899898

Mogharabi, Mehdi; Nassiri-Koopaei, Nasser; Bozorgi-Koushalshahi, Maryam; Nafissi-Varcheh, Nastaran; Bagherzadeh, Ghodsieh; Faramarzi, Mohammad Ali

2012-01-01

366

Color removal from aqueous solution by biogas residual slurry  

Microsoft Academic Search

The adsorption of Acid Brilliant Blue on biogas residual slurry has been investigated. The parameters studied include dye concentration, agitation time, adsorbent dosage and pH. The equilibrium data fit well with both the Langmuir and Freundlich models of adsorption isotherm. Maximum removal of 99% was observed at pH 2.56. Desorption studies indicate that the dye is solubilised in 50%(v\\/v) acetic

R. T. Yamuna; C. Namasivayam

1993-01-01

367

Sixteen new IR laser dyes  

Microsoft Academic Search

Sixteen new IR laser dyes are reported. All lased successfully under excitation from a simple linear flashlamp of about 700-ns rise time. Untuned lasing wavelengths ranged from 810 to 972 nm. Laser output pulse energies from the four best of these dyes were 5-15 times greater than from diethylthiatricarbocyanine iodide (DTTC), with peak output of about 50 mJ obtained from

J. P. Webb; F. G. Webster; B. E. Plourde

1975-01-01

368

Dye molecules in electrolytes: new approach for suppression of dye-desorption in dye-sensitized solar cells  

PubMed Central

The widespread commercialization of dye-sensitized solar cells remains limited because of the poor long-term stability. We report on the influence of dye-molecules added in liquid electrolyte on long-term stability of dye-sensitized solar cells. Dye-desorption from the TiO2 surface during long-term cycling is one of the decisive factors that degrade photocurrent densities of devices which in turn determine the efficiencies of the devices. For the first time, desorption of dye from the TiO2 surface could be suppressed by controlling thermodynamic equilibrium; by addition of dye molecules in the electrolyte. The dye molecules in the electrolyte can suppress the driving forces for the adsorbed dye molecules to be desorbed from TiO2 nanoparticles. As a result, highly enhanced device stabilities were achieved due to the reduction of dye-desorption although there was a little decrease in the initial efficiencies.

Heo, Nansra; Jun, Yongseok; Park, Jong Hyeok

2013-01-01

369

Device physics of dye solar cells.  

PubMed

Design of new materials for nanostructured dye solar cells (DSC) requires understanding the link between the material properties and cell efficiency. This paper gives an overview of the fundamental and practical aspects of the modeling and characterization of DSCs, and integrates the knowledge into a user-friendly DSC device model. Starting from basic physical and electrochemical concepts, mathematical expressions for the IV curve and differential resistance of all resistive cell components are derived and their relation to electrochemical impedance spectroscopy (EIS) is explained. The current understanding of the associated physics is discussed in detail and clarified. It is shown how the model parameters can be determined from complete DSCs by current dependent EIS and incident-photon-to-collected-electron (IPCE) measurements, supplemented by optical characterization, and used to quantify performance losses in DSCs. The paper aims to give a necessary theoretical background and practical guidelines for establishing an effective feedback-loop for DSC testing and development. PMID:20717984

Halme, Janne; Vahermaa, Paula; Miettunen, Kati; Lund, Peter

2010-09-15

370

A comparative study on the properties, mechanisms and process designs for the adsorption of non-ionic or anionic dyes onto cationic-polymer\\/bentonite  

Microsoft Academic Search

The adsorption properties and mechanisms of a cationic-polymer\\/bentonite complex (EPI-DMA\\/bentonite), prepared from polyepicholorohydrin-dimethylamine and bentonite, for non-ionic dyes (Disperse Blue SBL and Vat Scarlet R) and anionic dyes (Reactive Violet K-3R and Acid Dark Blue 2G) were investigated in this study. The solution pH, presence of salt and surfactant can significantly affect the dye removal efficiency. The equilibrium data were

Qian Li; Qin-Yan Yue; Hong-Jian Sun; Yuan Su; Bao-Yu Gao

2010-01-01

371

Enhanced abilities of highly swollen chitosan beads for color removal and tyrosinase immobilization  

Microsoft Academic Search

The enhancement of abilities for the removal of reactive dyes and immobilization of tyrosinase onto highly swollen chitosan beads was demonstrated compared to the use of common chitosan flakes. Chitosan was prepared from natural cuttlebone wastes. It was shown that the adsorption capacity of dyes at 30°C using swollen chitosan beads was around five times greater than that using common

Feng-Chin Wu; Ru-Ling Tseng; Ruey-Shin Juang

2001-01-01

372

Dye laser amplifier including a dye cell contained within a support vessel  

DOEpatents

A large (high flow rate) dye laser amplifier in which a continous replenished supply of dye is excited by a first light beam, specifically a copper vapor laser beam, in order to amplify the intensity of a second different light beam, specifically a dye beam, passing through the dye is disclosed herein. This amplifier includes a dye cell defining a dye chamber through which a continuous stream of dye is caused to pass at a flow rate of greater than 30 gallons/minute at a static pressure greater than 150 pounds/square inch and a specifically designed support vessel for containing the dye cell.

Davin, James (Gilroy, CA)

1992-01-01

373

Dye laser amplifier including a dye cell contained within a support vessel  

DOEpatents

A large (high flow rate) dye laser amplifier in which a continuous replenished supply of dye is excited by a first light beam, specifically a copper vapor laser beam, in order to amplify the intensity of a second different light beam, specifically a dye beam, passing through the dye is disclosed herein. This amplifier includes a dye cell defining a dye chamber through which a continuous stream of dye is caused to pass at a flow rate of greater than 30 gallons/minute at a static pressure greater than 150 pounds/square inch and a specifically designed support vessel for containing the dye cell. 6 figs.

Davin, J.

1992-12-01

374

Dye laser solutions  

SciTech Connect

This patent describes a composition of matter, a cyclodextrin inclusion compound of a fluorescent dye and an {alpha}- or {beta}-chclodextrin having a substituent bonded to an oxygen atom in a glucose unit in the cyclodextrin. The substituent is selected from the class consisting of: alkyl radicals having 1 to 6 carbon atoms, radicals having the formula {bond}CH{bond}CHR{sup 1}{bond}O{sub {ital n}}H wherein R{sup 1} is selected from hydrogen and alkyl radicals having up to about six carbon atoms, and n is equal to a small whole number up to six, and radicals having the formula {bond}CHR{sup 1}{bond}CHOH{bond}CHR{sup 1}{bond} wherein R{sup 1} has the same definition as above, such that the radicals bridge two cyclodextrin rings, and the number of the rings so bridged per molecule is from two to about six; the substituted cyclodextrin having not ore than two substituents per glucose unit.

Herkstroeter, W.G.

1990-06-12

375

A low-cost wheat bran medium for biodegradation of the benzidine-based carcinogenic dye trypan blue using a microbial consortium.  

PubMed

Environmental release of benzidine-based dyes is a matter of health concern. Here, a microbial consortium was enriched from textile dye contaminated soils and investigated for biodegradation of the carcinogenic benzidine-based dye Trypan Blue using wheat bran (WB) as growth medium. The PCR-DGGE analysis of enriched microbial consortium revealed the presence of 15 different bacteria. Decolorization studies suggested that the microbial consortium has high metabolic activity towards Trypan Blue as complete removal of 50 mg?L-1 dye was observed within 24 h at 30 ± 0.2 °C and pH 7. Significant reduction in TOC (64%) and COD (88%) of dye decolorized broths confirmed mineralization. Induction in azoreductase (500%), NADH-DCIP reductase (264%) and laccase (275%) proved enzymatic decolorization of dye. HPLC analysis of dye decolorized products showed the formation of six metabolites while the FTIR spectrum indicated removal of diazo bonds at 1612.30 and 1581.34 cm-1. The proposed dye degradation pathway based on GC-MS and enzyme analysis suggested the formation of two low molecular weight intermediates. Phytotoxicity and acute toxicity studies revealed the less toxic nature of the dye degradation products. These results provide experimental evidence for the utilization of agricultural waste as a novel low-cost growth medium for biodegradation of benzidine-based dyes, and suggested the potential of the microbial consortium in detoxification. PMID:25815522

Lade, Harshad; Kadam, Avinash; Paul, Diby; Govindwar, Sanjay

2015-01-01

376

Hair Removal  

MedlinePLUS

... eyebrows. Back Continue Getting Rid of Hair (continued) Electrolysis How It Works: Over a series of several ... Pros: Some people have permanent hair removal. Cons: Electrolysis takes big bucks and lots of time, so ...

377

Spleen removal  

MedlinePLUS

... close your cut. For laparoscopic spleen removal: A laparoscope is an instrument with a tiny camera and ... to four small cuts in your belly. The laparoscope will be inserted through one of the cuts. ...

378

Tattoo removal.  

PubMed

Tattoos have been a part of costume, expression, and identification in various cultures for centuries. Although tattoos have become more popular in western culture, many people regret their tattoos in later years. In this situation, it is important to be aware of the mechanisms of tattoo removal methods available, as well as their potential short- and long-term effects. Among the myriad of options available, laser tattoo removal is the current treatment of choice, given its safety and efficacy. PMID:17697922

Burris, Katy; Kim, Karen

2007-01-01

379

Trityl Dyes Patent Blue V and Brilliant Blue G - Clinical Relevance and in vitro Analysis of the Function of the Outer Blood-Retinal Barrier  

Microsoft Academic Search

The use of vital dyes during vitrectomy allows easier removal of less recognizable structures like epiretinal membranes or the internal limiting membrane (ILM). In recent years, numerous studies have investigated the use of indocyanine green (ICG), trypan blue (Membrane Blue™), triamcinolone, autologous blood and presently trityl dyes such as patent blue V (PBV, Blueron™), crystal violet and brilliant blue G

S. Mennel; C. Meyer; J. Schmidt; S. Kaempf; G. Thumann

2008-01-01

380

Effective removal of methyl blue by fine-structured strontium and barium phosphate nanorods  

NASA Astrophysics Data System (ADS)

In this work, the composite of strontium phosphate and barium phosphate (called SBP) nanorods have been synthesized, characterized and studied for removal of methyl blue (MB). The effects of pH, temperature, contact time, initial dye concentration on removal of MB were studied in detail. Results suggest that pH and temperature were not critical limiting factors for the removal of MB. Reaching equilibrium was very rapid (within 10 min) and the high adsorption capacity of MB by SBP nanorods was 1691.8 mg/g at initial dye concentration of 2000 mg/L. The adsorption process obeyed the pseudo-second-order kinetics model and Langmuir isotherm model. Importantly, the mechanism contributed to the MB removal was proposed to be the ionic interaction and hydrogen bonds for low dye concentration, chemical precipitation for high dye concentration. It is predicted that the SBP nanorods being an effective adsorbent for elimination of MB from colored aqueous solutions.

Zhang, Fan; Song, Weijie; Lan, Jing

2015-01-01

381

Chitosan beads as barriers to the transport of azo dye in soil column.  

PubMed

The development of chitosan-based materials as useful adsorbent polymeric matrices is an expanding field in the area of adsorption science. Although chitosan has been successfully used for the removal of dyes from aqueous solutions, no consideration is given to the removal of dyes from contaminated soils. Therefore this study focuses on the potential use of chitosan as an in situ remediation technology. The chitosan beads were used as barriers to the transport of a reactive dye (Reactive Black 5, RB5) in soil column experiments. Batch sorption experiments, kinetic and equilibrium, were performed to estimate the sorption behavior of both chitosan and soil. The chitosan beads were prepared in accordance with published literature and a synthetic soil was prepared by mixing quantities of sand, silt and clay. The synthetic soil was classified according to British Standards. Calcium chloride was used as tracer to define transport rates and other physical experimental parameters. Dye transport reaction parameters were determined by fitting dye breakthrough curves (BTCs) to the HYDRUS-1D version 4.xx software. Fourier Transform-Infra Red (FT-IR) spectroscopy was used to reveal the sorption mechanism. The study showed that chitosan exhibited a high sorption capacity (S(max)=238 mg/g) and pseudo-first sorption rate (k(1)=1.02 h(-1)) coupled with low swelling and increased retardation for the azo dye tested. Thus it has potential as a Permeable Reactive Barrier (PRB) for containment and remediation of contaminated sites. PMID:19740603

Lazaridis, Nikolaos K; Keenan, Helen

2010-01-15

382

Basic MAPLE Reference Basic syntax and symbols  

E-print Network

1 Basic MAPLE Reference Basic syntax and symbols := Assigns a name to a string of symbols a:=3*x " ;"? `;' unexpected Syntax error, such as unbalanced parenthesis. MAPLE was expecting more input. Help Click on Help

Hart, Gus

383

Sea dye marker provides visibility for 20 hours  

NASA Technical Reports Server (NTRS)

Sea dye marker block releases a visible slick which lasts at least twelve hours. The dye marker uses a fluorescent dye in a heat cured binder which, when immersed in seawater, releases the dye at a controlled rate.

De Laat, F.

1966-01-01

384

Sorption of hydrophilic dyes on anodic aluminium oxide films and application to pH sensing.  

PubMed

The sorption of selected hydrophilic pH-sensitive dyes (bromophenol blue, bromothymol blue, bromocresol purple, alizarin red, methyl orange, congo red, rhodamine 6G) on films of anodized aluminium oxide (AAO) was investigated in this study. Depth and pore structure of the AAO channels were adjusted by changing electrolysis time and current density during treatment of aluminium foil in oxalic acid, sulfosalycilic acid and sulfuric acid at concentration levels between 0.2 and 0.6 M. The dyes were immobilized on the AAO surface by direct saturation of the films in dye solutions. It was shown by scanning electron microscopy and X-ray spectral analysis that the dyes penetrated into the AAO channels by more than 1.5 ?m, even at static saturation conditions. The anionic dyes linked to the porous AAO surface exhibited differential shifts of the UV absorption bands in their acidic/basic forms. By combining several dyes, the films have an application range between pH = 0.5-9 in aqueous media. The dye-modified AAO film was a simple, portable, inexpensive and reusable pH sensor with very fast response time and clear colour transitions. PMID:25436239

Silina, Yuliya E; Kuchmenko, Tatyana A; Volmer, Dietrich A

2015-02-01

385

Mondo Grass Berry Pigment for Visible to Near Infrared Absorption in Dye Sensitized Solar Cell  

NASA Astrophysics Data System (ADS)

The development of dye sensitized solar cells (DSSC) is an exciting field in the low cost renewable energy production. Two major draw backs in the DSSCs are the narrow spectral response and the short term stability. Synthesis of artificial dyes with broad response is important in developing an efficient DSSC. Artificial dyes can add up to the cost of the device; therefore, it is important to identify natural dyes with broad abortion and required energy levels. Work presented here shows a broad spectral response with a natural dye extracted from a Mondo Grass berry (Ophiopogonjaponicus).The dye is extracted by crushing the berries and filtering to remove the pulp. A DSSC sensitized with Mondo Grass dye, and with TiO2 film screen printed on a Florien doped Tin Oxide (FTO) glass and baked for 30 minutes at 450 degree C as the working electrode and Iodine/triiodide red-ox electrolyte as the hole collector was tested for its performance. An open circuit photovoltage of 495 mV and a short circuit photocurrent of 0.6 mA/cm^2 were observed under a simulated lamp equivalent to 1 sun illumination and have a broad spectral response extending from 400 nm to 750 nm.

Desilva, L. A. A.; Pitigala, P. K. D. D. P.; Perera, A. G. U.

2013-03-01

386

Photodegradation of environmental mutagens by visible irradiation in the presence of xanthene dyes as photosensitizers.  

PubMed

The photodegradation of environmental mutagens, such as 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeA?C), and 2-amino-3-methyl-imidazo[4,5-f]quinoline (IQ), was investigated by visible irradiation in the presence of xanthene dyes as photosensitizers. Although the environmental mutagens themselves were very stable during visible irradiation under the conditions in this study, they were effectively photodegraded in the presence of the xanthene dyes (erythrosine, rose bengal, and phloxine). Moreover, photodegradation of the mutagens was further enhanced for xanthene dyes loaded onto a water-soluble diethylaminoethyl (DEAE)-dextran anion-exchanger via ionic interactions (xanthene-dyeDEX). Photodegradation was inhibited by O2 removal from the reaction solution. In ESR spin-trapping experiments using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a trapping reagent, signals characteristic of DMPO-•OH (hydroxyl radical) were observed in the presence of xanthene-dyeDEX. These results suggest that reactive oxygen species derived from O2, such as singlet molecular oxygen (•1O2) and/or •OH, were active participants in photodegradation of the mutagens in the presence of xanthene dyes or xanthene-dyeDEX. PMID:22790816

Odo, Junichi; Torimoto, Sei-ichi; Nakanishi, Suguru; Niitani, Tomoya; Aoki, Hiroyuki; Inoguchi, Masahiko; Yamasaki, Yu

2012-01-01

387

Dyes as tracers for vadose zone hydrology  

NASA Astrophysics Data System (ADS)

Dyes are important tracers to investigate subsurface water movement. For more than a century, dye tracers have provided clues about the hydrological cycle as well as flow and transport processes in the subsurface. Groundwater contamination often originates in the vadose zone. Agrochemicals applied to the soil surface, toxic compounds accidentally spilled by human activities, and contaminants released from waste repositories leach through the vadose zone and can ultimately pollute groundwater resources. Dyes are an important tool to assess flow pathways of such contaminants. This review compiles information on dyes used as hydrological tracers, with particular emphasis on vadose zone hydrology. We summarize briefly different human-applied tracers, including nondye tracers. We then provide a historical sketch of the use of dyes as tracers and describe newer developments in visualization and quantification of tracer experiments. Relevant chemical properties of dyes used as tracers are discussed and illustrated with dye intermediates and selected dye tracers. The types of dyes used as tracers in subsurface hydrology are summarized, and recommendations are made regarding the use of dye tracers. The review concludes with a toxicological assessment of dyes used as hydrological tracers. Many different dyes have been proposed as tracers for water movement in the subsurface. All of these compounds, however, are to some degree retarded by the subsurface medium. Nevertheless, dyes are useful tracers to visualize flow pathways.

Flury, Markus; Wai, Nu Nu

2003-03-01

388

Assessment of the breakdown products of solar/UV induced photolytic degradation of food dye tartrazine.  

PubMed

The food dye tartrazine (CI 19140) was exposed to UV irradiation from an artificial source, a mercury vapor lamp, and a natural one, sunlight. It was observed that conditions such as energy dose, irradiation time, pH and initial dye concentration affected its discoloration. There was 100% of color removal, after 30min of irradiation, when a dye solution 1×10(-5)molL(-1) was submitted to an energy dose of 37.8Jcm(-2). Liquid Chromatography coupled to Diode Array Detection and Mass Spectrometry confirmed the cleavage of the chromophore group and the formation of five by-products at low concentration. Although by-products were formed, the Salmonella/microsome mutagenicity assay performed for both, the dye solution at a dose of 5.34mg/plate and the solutions obtained after exposure to UV irradiation, did not present mutagenic activity for TA98 and TA100 with and without S9. PMID:24704040

dos Santos, Tuane Cristina; Zocolo, Guilherme Juliăo; Morales, Daniel Alexandre; Umbuzeiro, Gisela de Aragăo; Zanoni, Maria Valnice Boldrin

2014-06-01

389

Master dye laser oscillator including a specific grating assembly for use therein  

DOEpatents

A dye laser oscillator for producing a tuned dye beam is disclosed herein and includes, among other components, a beam output coupling assembly, a dye cell assembly, a beam expander assembly, an etalon assembly, and a grating assembly. Each of three assemblies is vertically supported from a horizontal base so as to be readily removable from the base without interference from or interfering with the other assemblies. The particular grating assembly disclosed is specifically designed for proper optical alignment with the intended path of the dye beam to be produced and for accurate pivotal movement relative to the beam path in order to function as a coarse tuning mechanism in the production of the ultimately tuned beam. 5 figs.

Davin, J.M.

1992-09-01

390

Adsorption of disperse blue SBL dye by synthesized poorly crystalline hydroxyapatite.  

PubMed

The present study has been undertaken to evaluate the adsorption in batch mode of a disperse dye (Disperse Blue SBL) by poorly crystalline hydroxyapatite synthesized by coprecipitation between Ca(NO3)2 and (NH4)2HPO4 reagents in aqueous solution at room temperature. The adsorption experiments were carried out to investigate the factors that influence the dye uptake by the adsorbent, such as the contact time under agitation, adsorbent dosage, initial dye concentration, solution temperature, and pH. The experimental results show that the percentage of dye removal increases with increasing the amount of adsorbent, until the total discoloration. The adsorption isotherms follow the model of Langmuir with a high adsorption capacity. The adsorption was pH and temperature dependent. PMID:19143354

Barka, Noureddine; Qourzal, Samir; Assabbane, Ali; Nounah, Abederrahman; Aît-Ichou, Yhya

2008-01-01

391

Electrolysis within anaerobic bioreactors stimulates breakdown of toxic products from azo dye treatment.  

PubMed

Azo dyes are the most widely used coloring agents in the textile industry, but are difficult to treat. When textile effluents are discharged into waterways, azo dyes and their degradation products are known to be environmentally toxic. An electrochemical system consisting of a graphite-plate anode and a stainless-steel mesh cathode was placed into a lab-scale anaerobic bioreactor to evaluate the removal of an azo dye (Direct Black 22) from synthetic textile wastewater. At applied potentials of 2.5 and 3.0 V when water electrolysis occurs, no improvement in azo dye removal efficiency was observed compared to the control reactor (an integrated system with electrodes but without an applied potential). However, applying such electric potentials produces oxygen via electrolysis and promoted the aerobic degradation of aromatic amines, which are toxic, intermediate products of anaerobic azo dye degradation. The removal of these amines indicates a decrease in overall toxicity of the effluent from a single-stage anaerobic bioreactor, which warrants further optimization in anaerobic digestion. PMID:25750156

Gavazza, Sávia; Guzman, Juan J L; Angenent, Largus T

2015-04-01

392

Removal of direct blue-86 from aqueous solution by new activated carbon developed from orange peel.  

PubMed

The use of low-cost, easy obtained, high efficiency and eco-friendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. This study investigates the potential use of activated carbon prepared from orange peel for the removal of direct blue-86 (DB-86) (Direct Fast Turquoise Blue GL) dye from simulated wastewater. The effects of different system variables, adsorbent dosage, initial dye concentration, pH and contact time were studied. The results showed that as the amount of the adsorbent increased, the percentage of dye removal increased accordingly. Optimum pH value for dye adsorption was determined as approximately 2.0. Maximum dye was sequestered within 30min after the beginning for every experiment. The adsorption of direct blue-86 followed a pseudo-second-order rate equation and fit well Langmuir, Tempkin and Dubinin-Radushkevich (D-R) equations better than Freundlich and Redlich-Peterson equations. The maximum removal of direct blue-86 was obtained at pH 2 as 92% for adsorbent dose of 6gL(-1) and 100mgL(-1) initial dye concentration at room temperature. The maximum adsorption capacity obtained from Langmuir equation was 33.78mgg(-1). Furthermore, adsorption kinetics of DB-86 was studied and the rate of adsorption was found to conform to pseudo-second-order kinetics with a good correlation (R2>0.99) with intraparticle diffusion as one of the rate determining steps. Activated carbon developed from orange peel can be attractive options for dye removal from diluted industrial effluents since test reaction made on simulated dyeing wastewater show better removal percentage of DB-86. PMID:18455301

Nemr, Ahmed El; Abdelwahab, Ola; El-Sikaily, Amany; Khaled, Azza

2009-01-15

393

FATE OF COMMERCIAL DISPERSE DYES IN SEDIMENTS  

EPA Science Inventory

Kinetics of disappearance of seven different disperse dyes were determined in compacted sediments at room temperature. he commercial dyes (in dispersed solid form) were representative of nitroazo, anthraquinone, and quinoline structures that are widely used. eaction rates were fo...

394

Single mode pulsed dye laser oscillator  

DOEpatents

A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability. 6 figs.

Hackel, R.P.

1992-11-24

395

Dye Sensitized Tandem Photovoltaic Cells  

SciTech Connect

This work provided a new way to look at photoelectrochemical cells and their performance. Although thought of as low efficiency, a the internal efficiency of a 9% global efficiency dye sensitized solar cell is approximately equal to an 18% efficient silicon cell when each is compared to their useful spectral range. Other work undertaken with this contract also reported the first growth oriented titania and perovskite columns on a transparent conducting oxide. Other work has shown than significant performance enhancement in the performance of dye sensitized solar cells can be obtained through the use of coupling inverse opal photonic crystals to the nanocrystalline dye sensitized solar cell. Lastly, a quick efficient method was developed to bond titanium foils to transparent conducting oxide substrates for anodization.

Barber, Greg D.

2009-12-21

396

Anaerobic\\/aerobic treatment of selected azo dyes in wastewater  

Microsoft Academic Search

Azo dyes represent the largest class of dyes in use today. Current environmental concern with these dyes revolves around the potential carcinogenic health risk presented by these dyes or their intermediate biodegradation products when exposed to microflora in the human digestive tract. These dyes may build up in the environment, since many wastewater treatment plants allow these dyes to pass

S. Seshadri; P. L. Bishop; A. M. Agha

1994-01-01

397

Synthesis and characterization of some perylene dyes for dye-based LCD color filters  

Microsoft Academic Search

Eight red perylene dyes were synthesized to improve the optical performance of LCD color filters. Among them, dyes with bulky functional substituents at the bay and terminal positions were highly soluble in cyclohexanone, the industrial solvent currently used in the pigment dispersion method. The spectral properties and thermal stability of the dye-based color filters with these dyes were examined by

Jun Choi; Chun Sakong; Jae-Hong Choi; Chun Yoon; Jae Pil Kim

2011-01-01

398

Reactive dye biosorption by Rhizopus arrhizus biomass  

Microsoft Academic Search

The biosorption of three commonly used reactive dyes, from aqueous solutions by oven-dried Rhizopus arrhizus biomass was studied in a batch system with respect to pH, initial dye concentration and initial metal ion concentration. The biomass exhibited maximum dye uptake at pH 2 due to its positively charged nature at acidic pH and the anionic nature of the reactive dyes.

T O’Mahony; E Guibal; J. M Tobin

2002-01-01

399

Remove One  

NSDL National Science Digital Library

In this math lesson, learners are given 15 chips and a number line labeled from 2-12. They are instructed to place their 15 chips on the numbers which they think will represent the sums when two dice are rolled. The object of the game is to be the first person to remove all of the chips. A chip is removed if it is on a number that corresponds to the sum rolled. The game is analyzed and the concepts of probability, sample space and game winning strategies are discussed. Learners place chips on their number lines and play the game again to implement winning strategies.

PBS

2012-01-01

400

Dye laser amplifier including a low turbulence, stagnation-free dye flow configuration  

DOEpatents

A large (high flow rate) dye laser amplifier in which a continuous replenished supply of dye is excited by a first light beam, specifically a copper vapor laser beam, in order to amplify the intensity of a second different light beam, specifically a dye beam, passing through the dye is disclosed herein. This amplifier includes a dye cell defining a dye chamber through which a continuous stream of dye is caused to pass at a flow rate of for example 30 gallons/minute, a specifically designed support vessel for containing the dye cell and a screen device for insuring that the dye stream passes into the dye cell in a substantially turbulent free, stagnation-free manner. 9 figs.

Davin, J.

1992-12-01

401

Development of an activated carbon-packed microbial bioelectrochemical system for azo dye degradation.  

PubMed

A microbial bioelectrochemical reactor (BER) was employed for the degradation of azo dyes without the use of an external electron donor, using activated carbon (GAC) as a redox mediator. Contribution of pH values, open circuit potential (OCP), dye concentration and applied current were individually studied. A batch system and an upflow fixed bed bioreactor were built for analyzing the effect of the applied current on biodegradation of the azo dye Reactive Red 272. The presence of GAC (20% w/v) regulated both pH and OCP values in solution and led to a removal efficiency of 98%. Cyclic voltammetry results indicate a dependence of the electron transfer mechanism with the concentration of the azo compound. With these results, a continuous flow reactor operating with J=0.045 mA cm(-2), led to removal rates of 95% (± 3.5%) in a half-residence time of 1 hour. PMID:23128299

Cardenas-Robles, Arely; Martinez, Eduardo; Rendon-Alcantar, Idelfonso; Frontana, Carlos; Gonzalez-Gutierrez, Linda

2013-01-01

402

Dye Doped Ormosil Materials for Solid State Dye Laser  

Microsoft Academic Search

Organically Modified Silicate (ORMOSIL) materials doped with organic dyes (Rhodamine 6G, Rhodamine B) have been prepared from sol-gel derived using Methyltrimethoxysilane (MTMS) as precursor. The synthesis process was investigated step by step using Raman spectroscopy, and the experimental results demonstrated that Methyl group bounds to silica oxide network remain in the final materials. Broadband laser emission of the materials has

Tran Hong Nhung; Nghiem Ha Lien; A. Brun; Vu Thi Bich; Nguyen Xuan Nghia; Do Quang Hoa; Truong Thi Anh Dao; Nguyen Dai Hung

2001-01-01

403

PHOTOLYSIS OF SMOKE DYES ON SOILS  

EPA Science Inventory

Photolysis of an azo, a quinophthalone, and several anthraquinone smoke dyes was studied on soil surfaces. nitially, rapid photodegradation of each dye occurred, followed by a period of much slower rate of loss, indicating that the remaining fraction of the dye was photochemicall...

404

Environmentally Friendly Natural Dyeing of Organic Cotton  

Microsoft Academic Search

In this study, organic cotton fabrics were dyed with different natural dye sources (madder root, walnut shell, henna, horse chestnut, pomegranate peel, berberis vulgaris root, thyme, and sage tea). The dyeing was carried out with different mordants (copper sulphate, potassium aluminum sulphate, potassium tartrate, and citric acid), using pre-mordanting dyeing methods. The color of the fabrics was investigated in terms

Mustafa Tutak; N. Ebru Korkmaz

2012-01-01

405

Microbial decolourisation and degradation of textile dyes  

Microsoft Academic Search

Dyes and dyestuffs find use in a wide range of industries but are of primary importance to textile manufacturing. Wastewater from the textile industry can contain a variety of polluting substances including dyes. Increasingly, environmental legislation is being imposed to control the release of dyes, in particular azo-based compounds, into the environment. The ability of microorganisms to decolourise and metabolise

G. McMullan; C. Meehan; A. Conneely; N. Kirby; T. Robinson; P. Nigam; I. M. Banat; R. Marchant; W. F. Smyth

2001-01-01

406

pH-Sensitive Fluorescent Dyes: Are They Really pH-Sensitive in Cells?  

PubMed Central

Chemically synthesized near-infrared (NIR) aza-BODIPY dyes displayed OFF/ON fluorescence at acidic pH (pKa = 6.2-6.6) through the suppression of photoinduced electron transfer (PET) and/or internal charge transfer (ICT) process. The apparent pKas of the dyes were shifted well above physiological pH in hydrophobic microenvironment, which led to “turned-on” fluorescence in micelles and liposomes at neutral and basic pH. Bovine serum albumin (BSA) also activated the fluorescence, though to a much less extent. When these small molecular dyes entered cells, instead of being fluorescent only in acidic organelles, the whole cytoplasm exhibited fluorescence, with signal/background ratio as high as ?10 in no-wash live cell imaging. The dye 1 labeled cells remained highly fluorescent even after 3 days. Moreover, slight variations of the dye structure resulted in significantly different intracellular fluorescence behaviors, possibly due to their different cellular uptake and intracellular activation capabilities. After separation of cellular components, the fraction of plasma membrane and endoplasmic reticulum (ER) showed the highest fluorescence, further confirming the fluorescence activation by membrane structures. The fluorescence intensity of these dyes at different intracellular pH (6.80 and 8.00) did not differ significantly, indicating that intracellular pH did not play a critical role. Altogether, we showed here for the first time that the fluorescence of pH-sensitive aza-BODIPY dyes were switched intracellularly not by acidic pH, but by intracellular membranes (and proteins as well). The excellent membrane permeability, ultra high fluorescence contrast ratio, persistent fluorescent signal, and minimum biological interference of dye 1 make it an ideal choice for live cell imaging and in vivo cell tracking. These findings also imply that the intracellular fluorescent properties of pH-sensitive dyes should be carefully examined before used as pH indicators. PMID:23464828

Zhang, Xiao-Xiang; Wang, Zhe; Yue, Xuyi; Ma, Ying; Kiesewetter, Dale O.; Chen, Xiaoyuan

2013-01-01

407

REMOVING INORGANICS  

EPA Science Inventory

When EPA sets a regulation ( a maxim contaminant level) for a contaminant, it must also specify the "best available technology" (BAT) that can be used to remove the contaminant. ecause the regulations apply to community water systems, the technologies selected are ones that are c...

408

Cataract removal  

MedlinePLUS

... The doctor guides a machine that uses laser energy to make the incisions and soften the cataract. The cataract is then removed usually by suctioning. Using the laser instead of a knife (scalpel) may speed recovery and be more accurate. After the cataract is ...

409

RADIONUCLIDE REMOVAL  

EPA Science Inventory

The U.S. Environmental Protection Agency proposed new and revised regulations on radionuclide contaminants in drinking water in June 1991. uring the 1980's, the Drinking Water Research Division, USEPA conducted a research program to evaluate various technologies to remove radium,...

410

ARSENIC REMOVAL  

EPA Science Inventory

Presentation covered five topics; arsenic chemistry, best available technology (BAT), surface water technology, ground water technology and case studies of arsenic removal. The discussion on arsenic chemistry focused on the need and method of speciation for AsIII and AsV. BAT me...

411

Genotoxicity of industrial dyes under the inductive effect of ethanol on monooxygenase system in mice.  

PubMed

The genotoxic effects of triarylmethane (Acid Green 16, C.I.44025) and arylmonoazo (Basic Orange 28, developed by Boruta Pigment Plant, Poland, C.I. undisclosed) dyes, were evaluated in Balb/C mice. Animals were fed for 6 days nutritionally adequate Portagen liquid diet (1 kcal/ml) or isocaloric alcoholic diet containing 5% (w/v) ethanol (36% of total calories) in order to induce the cytochrome P-4502E1 monooxygenase. Dye compounds were administered intraperitoneally 30 h before the test at doses: 90 mg/kg of Acid Green 16 and 70 mg/kg of Basic Orange 28. Bone marrow micronucleus test was used for evaluation of genotoxicity of the dyes. Ethanol caused an increase of the level of cytochrome P-450 by 200% and activities of 7-ethoxycoumarin O-deethylase (ECOD) by 650%, 7-ethoxyresorufin O-deethylase (EROD) by 460% and glutathione (GSH)-S-transferase by 60% in the liver. Both dyes exerted genotoxic effect as inferred from a 3-fold increase of frequency of micronucleated polychromatic erythrocytes in bone marrow, and a further increase (2-fold) was caused by ethanol liquid diet combined with Acid Green 16 treatment. Basic Orange 28 genotoxicity remained unaffected by ethanol. It is concluded that: (1) enhancement of genotoxic effect of Acid Green 16 by ethanol is caused by induction of cytochrome P-4502E1 monooxygenases resulting in an increased bioactivation of the dye; (2) lack of enhancement of the genotoxic effect of Basic Orange 28 by ethanol probably results from the dye- and ethanol-mediated stimulation of GSH-S-transferase, bypassing the cytochrome P-4502E1 bioactivation step. PMID:9294022

Wro?ska-Nofer, T; Wi?niewska-Knypl, J; Wyszy?ska, K; Dziuba?towska, E

1997-08-14

412

Hair removal.  

PubMed

Hair removal with optical devices has become a popular mainstream treatment that today is considered the most efficient method for the reduction of unwanted hair. Photothermal destruction of hair follicles constitutes the fundamental concept of hair removal with red and near-infrared wavelengths suitable for targeting follicular and hair shaft melanin: normal mode ruby laser (694 nm), normal mode alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), long-pulse Nd:YAG laser (1,064 nm), and intense pulsed light (IPL) sources (590-1,200 nm). The ideal patient has thick dark terminal hair, white skin, and a normal hormonal status. Currently, no method of lifelong permanent hair eradication is available, and it is important that patients have realistic expectations. Substantial evidence has been found for short-term hair removal efficacy of up to 6 months after treatment with the available systems. Evidence has been found for long-term hair removal efficacy beyond 6 months after repetitive treatments with alexandrite, diode, and long-pulse Nd:YAG lasers, whereas the current long-term evidence is sparse for IPL devices. Treatment parameters must be adjusted to patient skin type and chromophore. Longer wavelengths and cooling are safer for patients with darker skin types. Hair removal with lasers and IPL sources are generally safe treatment procedures when performed by properly educated operators. However, safety issues must be addressed since burns and adverse events do occur. New treatment procedures are evolving. Consumer-based treatments with portable home devices are rapidly evolving, and presently include low-level diode lasers and IPL devices. PMID:21865803

Haedersdal, Merete; Haak, Christina S

2011-01-01

413

Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter  

Microsoft Academic Search

A unique solar cell fabrication procedure has been developed using natural anthocyanin dyes extracted from berries. It can be reproduced with a minimum amount of resources in order to provide an interdisciplinary approach for lower-division undergraduate students learning the basic principles of biological extraction, physical chemistry, and spectroscopy as well as environmental science and electron transfer. Electron transfer is the

Greg P. Smestad; Michael Gratzel

1998-01-01

414

Microwave and acid-treated bentonite as adsorbents of methylene blue from a simulated dye wastewater  

Microsoft Academic Search

Batch adsorption tests for removal of methylene blue dye (MBD) from aqueous solutions onto bentonite was investigated using\\u000a natural chemically treated (sulphuric acid) and physically treated (microwaved) bentonite. In batch sorption tests for MBD\\u000a removal by the developed sorbents, the time needed to reach equilibrium was less than 30 min. The uptake of MBD by the microwave-treated\\u000a bentonite was the highest,

F. Banat; S. Al-Asheh; S. Al-Anbar; S. Al-Refaie

2007-01-01

415

Raman and FT-IR studies on dye-assisted dispersion and flocculation of single walled carbon nanotubes  

Microsoft Academic Search

Aqueous suspensions of single walled carbon nanotubes (SWCNTs) were\\u000a prepared with the aid of dye molecules to form thermodynamically stable\\u000a colloidal systems. By adding sodium chloride electrolyte, SWCNTs\\u000a flocculated and settled out due to the destabilization of colloidal\\u000a systems initiated by the increase in ionic strength. The dye molecules\\u000a were removed by heat treatment at 300 degrees C for 5

Wei Zhang; S. Ravi P. Silva

2010-01-01

416

Investigation of biosorption of Gemazol Turquise Blue-G reactive dye by dried Rhizopus arrhizus in batch and continuous systems  

Microsoft Academic Search

Gemazol Turquise Blue-G, a vinyl sulfone mono-azo type reactive dye, containing copper-phtlalocyanine as cromofor group, was removed from its aqueous solution in batch and continuous packed bed sorption systems by using dried Rhizopus arrhizus as a biosorbent. Operating variables studied were temperature, initial pH, initial dye concentration and sorbent dosage in the batch stirred system and flow rate and inlet

Zümriye Aksu; ?eyda ?en Ça?atay

2006-01-01

417

Equilibrium and kinetics studies for the adsorption of direct and acid dyes from aqueous solution by soy meal hull  

Microsoft Academic Search

This paper deals with the application of Soy Meal Hull (SMH), an agricultural by-product, for the removal of direct and acid dyes from aqueous solutions. Four textile dyes, C.I.Direct red 80 (DR80), C.I.Direct red 81 (DR81), C.I.Acid blue 92 (AB92) and C.I.Acid red 14 (AR14) were used as model compounds. Physical characteristics of SMH such as surface area, Fourier transform

Mokhtar Arami; Nargess Yousefi Limaee; Niyaz Mohammad Mahmoodi; Nooshin Salman Tabrizi

2006-01-01

418

Mechanisms of retention and flux decline for the nanofiltration of dye baths from the textile industry  

Microsoft Academic Search

Removal of dye compounds from colour baths used in the textile industry is a possible application of nanofiltration. However, the mechanisms involved in this process are not clearly understood and the practical application of the process is facing many problems such as fouling and flux decline. The mechanisms of retention and flux decline were examined using two different approaches. Firstly,

B. Van der Bruggen; B. Daems; D. Wilms; C. Vandecasteele

2001-01-01

419

Biosorption of malachite green, a cationic dye onto Pithophora sp., a fresh water algae  

Microsoft Academic Search

Batch sorption experiments were carried out for the removal of malachite green from its aqueous solution using Pithophora sp., a fresh water algae as biosorbent. Dye uptake was found to increase with contact time and initial malachite green concentration. Equilibrium uptake was found to be pH dependent and maximum uptake was observed at a pH of 6. The effect of

K. Vasanth Kumar; V. Ramamurthi; S. Sivanesan

2006-01-01

420

Kinetics of Solvent Blue and Reactive Yellow removal using microwave radiation in combination with nanoscale zero-valent iron.  

PubMed

We investigated the efficiency and kinetics of the degradation of soluble dyes over the pH range 5.0-9.0 using a method employing microwave radiation in combination with nanoscale zero-valent iron (MW-nZVI). The nZVI particles (40-70nm in diameter) were prepared by a liquid-phase chemical reduction method employing starch as a dispersant. Compared to the removal of Solvent Blue 36 and Reactive Yellow K-RN using only nZVI, more rapid and efficient dye removal and total organic carbon removal were achieved using MW-nZVI. The dye removal efficiency increased significantly with decreasing pH, but was negligibly affected by variation in the microwave power. The kinetics of dye removal by MW-nZVI followed both an empirical equation and the pseudo first-order model, while the kinetics of dye removal using nZVI could only be described by an empirical equation. It was also concluded that microwave heating of the dye solutions as well as acceleration of corrosion of nZVI and consumption of Fe(II) were possible reasons behind the enhanced dye degradation. PMID:25872723

Mao, Yanpeng; Xi, Zhenqian; Wang, Wenlong; Ma, Chunyuan; Yue, Qinyan

2015-04-01

421

Electronic and optical properties of dye-sensitized TiO? interfaces.  

PubMed

Dye-sensitized solar cells (DSCs) represent a promising approach to the direct conversion of sunlight to electrical energy at low cost and high efficiency. DSCs are based on a film of anatase TiO? nanoparticles covered by adsorbed molecular dyes and immersed in a liquid redox electrolyte. Upon photoexcitation of the chemisorbed dye, electrons are injected into the TiO? conduction band and can travel across the nanostructured film to reach the counter-electrode, while the oxidized dye is regenerated by the redox electrolyte. In this review we present a summary of recent computational studies of the electronic and optical properties of dye-sensitized TiO2 interfaces, with the aim of providing the basic understanding of the operation principles of DSCs and establishing the conceptual basis for their design and optimization.We start with a discussion of isolated dyes in solution, focusing on the dye's atomic structure, ground and excited state oxidation potentials, and optical absorption spectra. We examine both Ru(II)-polypyridyl complexes and organic "push-pull" dyes with a D-?-A structure, where the donor group (D) is an electron-rich unit, linked through a conjugated linker (?) to the electron-acceptor group (A). We show that a properly calibrated computational approach based on Density Functional Theory (DFT) combined with Time Dependent DFT (TD-DFT) can provide a good description of both the absorption spectra and ground and excited state oxidation potential values of the Ru(II) complexes. On the other hand, organic push-pull dyes are not well described by the standard DFT/TD-DFT approach. For these dyes, an excellent description of the electronic structure in gas phase can be obtained by the many body perturbation theory GW method, which has, however, a much higher computational cost.We next consider interacting dye/semiconductor systems. Key properties are the dye adsorption structure onto the semiconductor, the nature and localization of the dye@semiconductor excited states, and the alignment of ground and excited state energy levels at the dye/semiconductor heterointerface. These properties, along with an estimate of the electronic coupling, constitute the fundamental parameters that determine the electron injection and dye regeneration processes. For metallorganic dyes, standard DFT/TDDFT methods are again found to reproduce accurately most of the relevant electronic and optical properties. For highly conjugated organic dyes, characterized by a high degree of charge transfer excited states, instead, the problems associated to the charge-transfer nature of their excited states extend to their interaction with TiO? and translate into an erroneous description of the relative energetics of dye/semiconductor excited states. A full description of push-pull organic dyes/semiconductor excited states, which is essential for modeling the key process of electron injection in DSCs, still represents a challenge which should be addressed by next generation DFT or post-DFT methods. PMID:24488437

Pastore, Mariachiara; Selloni, Annabella; Fantacci, Simona; De Angelis, Filippo

2014-01-01

422

NMR Spectroscopy of Azo Dyes  

Microsoft Academic Search

The known NMR spectroscopy data on different types of synthetic azo and polyazo dyes, including metal complexes, are correlated. The fundamentally new opportunities in the NMR spectroscopy of 1H, 13C, and 15N nuclei in solving problems of structural chemistry in this field of industrial chemistry are demonstrated. The bibliography includes 124 references.

L A Fedorov

1988-01-01

423

NMR Spectroscopy of Azo Dyes  

NASA Astrophysics Data System (ADS)

The known NMR spectroscopy data on different types of synthetic azo and polyazo dyes, including metal complexes, are correlated. The fundamentally new opportunities in the NMR spectroscopy of 1H, 13C, and 15N nuclei in solving problems of structural chemistry in this field of industrial chemistry are demonstrated. The bibliography includes 124 references.

Fedorov, L. A.

1988-10-01

424

The chromonic phases of dyes  

Microsoft Academic Search

It has been shown that the lyotropic liquid-crystalline phases formed by certain dyes are structurally analogous to the chromonic N and M liquid-crystalline phases previously thought to be unique to certain anti-asthmatic\\/anti-allergic drugs. We suspect that these two groups of compounds will prove to be representatives of a large new class of mesogenic materials.

T. K. Attwood; J. E. Lydon; F. Jones

1986-01-01

425

Products of photodegradation for coumarin laser dyes  

NASA Astrophysics Data System (ADS)

The products of conventional photolysis of the coumarin laser dyes, Cl, C35, Cl53, and Cl52 have been investigated. The previously reported dealkylation of Cl is documented for the fluorinated dyes, C35, and Cl52 in deaerated solvents. In addition, a reduction product is identified for Cl, consistent with a radical mechanism for decomposition. Evidence is provided that the concentration quenching (self quenching) of singlet dye is important to the degradation mechanism. For the rigid dye, Cl53, a photooxidation product involving the amine functionality results from decomposition in aerated media. For several dyes, very low triplet yields have been measured.

Jones, G., II; Jackson, W. R.; Kanoktanaporn, S.; Bergmark, W. R.

1983-10-01

426

Products of photodegradation for coumarin laser dyes  

NASA Astrophysics Data System (ADS)

The products of conventional photolysis of the coumarin laser dyes, C1, C35, C153, and C152 have been investigated. The previously reported dealkylation of C1 is documented for the fluorinated dyes, C35, and C152 in deaerated solvents. In addition, a reduction product is identified for C1, consistent with a radical mechanism for decomposition. Evidence is provided that the concentration quenching (self quenching) of singlet dye is important to the degradation mechanism. For the rigid dye, C153, a photooxidation product involving the amine functionality results from decomposition in aerated media. For several dyes, very low triplet yields have been measured.

Jones, Guilford; Bergmark, W. R.; Jackson, W. R.

1984-07-01

427

Basics of Photometry Photometry: Basic Questions  

E-print Network

Basics of Photometry #12;Photometry: Basic Questions · How do you identify objects in your image type of object you're studying? #12;#12;#12;Topics 1. General Considerations 2. Stellar Photometry 3. Galaxy Photometry #12;I: General Considerations 1. Garbage in, garbage out... 2. Object Detection 3

Masci, Frank

428

Improving optical absorptivity of natural dyes for fabrication of efficient dye-sensitized solar cells  

NASA Astrophysics Data System (ADS)

Efficient and cheap dye-sensitized solar cells (DSSCs) were fabricated using natural dyes from Pastinaca sativa and Beta vulgaris. Natural dyes are environmentally and economically superior to ruthenium-based dyes because they are nontoxic and cheap. However, the conversion efficiency of dye-sensitized solar cells based on natural dyes is low. One way to improve the DSSC performance is to enhance the absorptivity of extracted dyes. We investigated the influence of various factors in the extraction process, such as utilization of different extraction approaches, the acidity of extraction solvent, and different compounds of solvents on the optical absorption spectra. It was found that we could considerably enhance the optical absorptivity of dye and consequently the performance of DSSC by choosing a proper mixture of ethanol and water for extracting solvent and also the acidity of dye solution.

Hemmatzadeh, Reza; Mohammadi, Ahmad

2013-11-01

429

Dyeing of Jute with Reactive Dyes: Optimisation of the Process Variables and Assessment of Colourfastness Characteristics  

NASA Astrophysics Data System (ADS)

This paper deals with the studies on the effect of dye concentration, electrolyte (common salt) concentration, dyeing time, dyeing temperature, soda ash concentration, pH of the dye solution and material to liquor ratio (MLR) on colour strength and other colour parameters after being dyed of jute fabrics with reactive dyes, namely, Turquoise blue, Lemon Yellow, Red CN colours. The dye absorption increases with increase in electrolyte (common salt) concentration, dyeing time, dyeing temperature, soda ash concentration, pH and decreases with increase of MLR. Colour fastness to wash, light and rubbing for the dyed samples has been studied and reported. It is observed that reactive dye gives overall good colour fastness to both washing and rubbing. But the light fastness has been found to be moderate only, due to the UV-light initiated fading of jute fibre itself change of the colour substrate, ie, undyed material. This colour fastness has been significantly resolved by post treatment with 1 % benzotriazole.

Samanta, A. K.; Chakraborty, Sharmistha; Guha Roy, T. K.

2012-08-01

430

Determination of dye intermediates in oxidative hair dyes by fused-silica capillary gas chromatography.  

PubMed

A fused-silica capillary gas chromatographic method is described for the determination of dye intermediates in oxidative hair dyes. An appropriate amount of hair dye sample is dissolved in 10 ml of methanol containing 0.25 g of ammonium thioglycolate and an appropriate amount of 2-amino-4-methylphenol as an internal standard. This solution is directly injected into a gas chromatograph. A fused-silica capillary column with cross-linked methyl silicone OV-1 or SE-54 as a liquid phase yields excellent resolution of dye intermediates. Some factors affecting the quantitation of dye intermediates are discussed. The proposed method gave good recoveries and reproducibilities, and permits simultaneous determination of various types of dye intermediates without any pretreatment. The use of a nitrogen-phosphorus detector allows the selective detection of nitrogen-containing dye intermediates. This simple and versatile method is applicable for the determination of dye intermediates in commercial hair dyes. PMID:3782349

Tokuda, H; Kimura, Y; Takano, S

1986-10-01

431

Characteristics of a Broadband Dye Laser Using Pyrromethene and Rhodamine Dyes  

NASA Technical Reports Server (NTRS)

A broadband dye laser pumped by a frequency-doubled Nd:YAG laser with a full-width half-maximum (FWHM) from 592 to 610 nm was created for the use in a dual-pump broadband CARS system called WIDECARS. The desired broadband dye laser was generated with a mixture of Pyrromethene dyes as an oscillator gain medium and a spectral selective optic in the oscillator cavity. A mixture of Rhodamine dyes were used in the amplifier dye cell. To create this laser a study was performed to characterize the spectral behavior of broadband dye lasers created with Rhodamine dyes 590, 610, and 640, Pyrromethene dyes 597 and 650 as well as mixture of these dyes.

Tedder, Sarah A.; Danehy, Paul M.; Wheeler, Jeffrey L.

2011-01-01

432

Effect of solution temperature, pH and ionic strength on dye adsorption onto Magellanic peat.  

PubMed

The aim of this research was to study the effect of the solution temperature, pH and ionic strength on the adsorption of the Basic Blue 3 (BB3) and Acid Black 1 (AB1) dyes in Magellanic peat. The peat used was physically characterized as fibrous, of low decomposition level, without the presence of crystalline material and with a highly porous morphology. The functional groups with major concentration in the surface adsorbent were the carboxylics and phenolics, with values of 0.91 and 0.47 mmol/g, respectively. The results of the batch assays showed that the adsorption of the AB1 dye was strongly dependent of electrical charge density on the surface, contrary to what occurred to the BB3 dye, because the interactions between the dyes and carboxylic groups of the peat could be either electrostatic or non-electrostatic. The Langmuir, Freundlich and Sips isotherm models were fitted to the experimental data; among them, the Sips model presented the best adjustment quality. The maximum adsorption capacities for BB3 and AB1 dyes were 33.1 and 33.7 mg/g, respectively. The adsorption of BB3 dye onto Magellan peat has an exothermic behaviour, obtaining an adsorption enthalpy of -3.44 kJ/mol. Contrarily the adsorption of AB1 has an adsorption enthalpy of 56.76 kJ/mol. PMID:23837348

Sepulveda, Luisa Antonia; Santana, Cesar Costapinto

2013-01-01

433

Decolourisation of dyes under electro-Fenton process using Fe alginate gel beads.  

PubMed

This study focuses on the application of electro-Fenton technique by use of catalytic activity of Fe alginate gel beads for the remediation of wastewater contaminated with synthetic dyes. The Fe alginate gel beads were evaluated for decolourisation of two typical dyes, Lissamine Green B and Azure B under electro-Fenton process. After characterization of Fe alginate gel beads, the pH effect on the process with Fe alginate beads and a comparative study of the electro-Fenton process with free Fe and Fe alginate bead was done. The results showed that the use of Fe alginate beads increases the efficiency of the process; moreover the developed particles show a physical integrity in a wide range of pH (2-8). Around 98-100% of dye decolourisation was obtained for both dyes by electro-Fenton process in successive batches. Therefore, the process was performed with Fe alginate beads in a bubble continuous reactor. High color removal (87-98%) was attained for both dyes operating at a residence time of 30 min, without operational problems and maintaining particle shapes throughout the oxidation process. Consequently, the stable performance of Fe alginate beads opens promising perspectives for fast and economical treatment of wastewater polluted by dyes or similar organic contaminants. PMID:22381372

Rosales, E; Iglesias, O; Pazos, M; Sanromán, M A

2012-04-30

434

The enzymatic decolorization of textile dyes by the immobilized polyphenol oxidase from quince leaves.  

PubMed

Water pollution due to release of industrial wastewater has already become a serious problem in almost every industry using dyes to color its products. In this work, polyphenol oxidase enzyme from quince (Cydonia Oblonga) leaves immobilized on calcium alginate beads was used for the successful and effective decolorization of textile industrial effluent. Polyphenol oxidase (PPO) enzyme was extracted from quince (Cydonia Oblonga) leaves and immobilized on calcium alginate beads. The kinetic properties of free and immobilized PPO were determined. Quince leaf PPO enzyme stability was increased after immobilization. The immobilized and free enzymes were employed for the decolorization of textile dyes. The dye solutions were prepared in the concentration of 100?mg/L in distilled water and incubated with free and immobilized quince (Cydonia Oblonga) leaf PPO for one hour. The percent decolorization was calculated by taking untreated dye solution. Immobilized PPO was significantly more effective in decolorizing the dyes as compared to free enzyme. Our results showed that the immobilized quince leaf PPO enzyme could be efficiently used for the removal of synthetic dyes from industrial effluents. PMID:24587743

Arabaci, Gulnur; Usluoglu, Ayse

2014-01-01

435

Adsorption of reactive dyes on to carbonate substituted nanohydroxyapatite  

NASA Astrophysics Data System (ADS)

Carbonate substituted nanohydroxyapatite (CHA) was synthesized and utilized for the removal of reactive red and reactive blue dye from aqueous solution, as it mimics the composition of conventional adsorbent animal bone charcoal. Also ionic substitution seems to alter the surface nature of the apatite structure. Physicochemical nature of adsorbent was characterized by XRD, FT-IR and SEM analysis. Adsorption as a function of contact time, adsorbent dosage and pH were studied by batch mode adsorption technique. Kinetic studies were performed to correlate the experimental kinetic data with theoretical models in order to understand the adsorption mechanism and the reaction rate.

Vasugi, G.; Kumar, G. Suresh; Girija, E. K.

2014-04-01

436

Dye-sensitized solar cells based on axially ligated phosphorus-phthalocyanine dyes  

NASA Astrophysics Data System (ADS)

Dye-sensitized solar cells with axially anchored phosphorous-phthalocyanine dyes were fabricated for the first time. Although the phosphorus-phthalocyanine dyes do not have a conventional anchoring group (–COOH), these dyes could be absorbed on a TiO2 semiconductor surface. After the optimization of energy levels, a 24% incident photon-to-current efficiency (IPCE) was observed at 710 nm with an IPCE curve edge of 800 nm. The efficiency was 2.67%, which was higher than those of previously reported dye-sensitized solar cells with axially anchored phthalocyanine dyes (less than 1%).

Hayat, Azwar; Shivashimpi, Gururaj M.; Nishimura, Terumi; Fujikawa, Naotaka; Ogomi, Yuhei; Yamaguchi, Yoshihiro; Pandey, Shyam S.; Ma, Tingli; Hayase, Shuzi

2015-04-01

437

Azo dye biodecolorization enhanced by Echinodontium taxodii cultured with lignin.  

PubMed

Lignocellulose facilitates the fungal oxidization of recalcitrant organic pollutants through the extracellular ligninolytic enzymes induced by lignin in wood or other plant tissues. However, available information on this phenomenon is insufficient. Free radical chain reactions during lignin metabolism are important in xenobiotic removal. Thus, the effect of lignin on azo dye decolorization in vivo by Echinodontium taxodii was evaluated. In the presence of lignin, optimum decolorization percentages for Remazol Brilliant Violet 5R, Direct Red 5B, Direct Black 38, and Direct Black 22 were 91.75% (control, 65.96%), 76.89% (control, 43.78%), 43.44% (control, 17.02%), and 44.75% (control, 12.16%), respectively, in the submerged cultures. Laccase was the most important enzyme during biodecolorization. Aside from the stimulating of laccase activity, lignin might be degraded by E. taxodii, and then these degraded low-molecular-weight metabolites could act as redox mediators promoting decolorization of azo dyes. The relationship between laccase and lignin degradation was investigated through decolorization tests in vitro with purified enzyme and dozens of aromatics, which can be derivatives of lignin and can function as laccase mediators or inducers. Dyes were decolorized at triple or even higher rates in certain laccase-aromatic systems at chemical concentrations as low as 10 µM. PMID:25285777

Han, Yuling; Shi, Lili; Meng, Jing; Yu, Hongbo; Zhang, Xiaoyu

2014-01-01

438

Synthetic dye decolorization by three sources of fungal laccase  

PubMed Central

Decolorization of six synthetic dyes using three sources of fungal laccase with the origin of Aspergillus oryzae, Trametes versicolor, and Paraconiothyrium variabile was investigated. Among them, the enzyme from P. variabile was the most efficient which decolorized bromophenol blue (100%), commassie brilliant blue (91%), panseu-S (56%), Rimazol brilliant blue R (RBBR; 47%), Congo red (18.5%), and methylene blue (21.3%) after 3 h incubation in presence of hydroxybenzotriazole (HBT; 5 mM) as the laccase mediator. It was also observed that decolorization efficiency of all dyes was enhanced by increasing of HBT concentration from 0.1 mM to 5 mM. Laccase from A. oryzae was able to remove 53% of methylene blue and 26% of RBBR after 30 min incubation in absence of HBT, but the enzyme could not efficiently decolorize other dyes even in presence of 5 mM of HBT. In the case of laccase from T. versicolor, only RBBR was decolorized (93%) in absence of HBT after 3 h incubation. PMID:23369690

2012-01-01

439

Azo Dye Biodecolorization Enhanced by Echinodontium taxodii Cultured with Lignin  

PubMed Central

Lignocellulose facilitates the fungal oxidization of recalcitrant organic pollutants through the extracellular ligninolytic enzymes induced by lignin in wood or other plant tissues. However, available information on this phenomenon is insufficient. Free radical chain reactions during lignin metabolism are important in xenobiotic removal. Thus, the effect of lignin on azo dye decolorization in vivo by Echinodontium taxodii was evaluated. In the presence of lignin, optimum decolorization percentages for Remazol Brilliant Violet 5R, Direct Red 5B, Direct Black 38, and Direct Black 22 were 91.75% (control, 65.96%), 76.89% (control, 43.78%), 43.44% (control, 17.02%), and 44.75% (control, 12.16%), respectively, in the submerged cultures. Laccase was the most important enzyme during biodecolorization. Aside from the stimulating of laccase activity, lignin might be degraded by E. taxodii, and then these degraded low-molecular-weight metabolites could act as redox mediators promoting decolorization of azo dyes. The relationship between laccase and lignin degradation was investigated through decolorization tests in vitro with purified enzyme and dozens of aromatics, which can be derivatives of lignin and can function as laccase mediators or inducers. Dyes were decolorized at triple or even higher rates in certain laccase–aromatic systems at chemical concentrations as low as 10 µM. PMID:25285777

Meng, Jing; Yu, Hongbo; Zhang, Xiaoyu

2014-01-01

440

BODIPY Dyes In Photodynamic Therapy  

PubMed Central

BODIPY dyes tends to be highly fluorescent, but their emissions can be attenuated by adding substituents with appropriate oxidation potentials. Substituents like these have electrons to feed into photoexcited BODIPYs, quenching their fluorescence, thereby generating relatively long-lived triplet states. Singlet oxygen is formed when these triplet states interact with 3O2. In tissues, this causes cell damage in regions that are illuminated, and this is the basis of photodynamic therapy (PDT). The PDT agents that are currently approved for clinical use do not feature BODIPYs, but there are many reasons to believe that this situation will change. This review summarizes the attributes of BODIPY dyes for PDT, and in some related areas. PMID:23014776

Kamkaew, Anyanee; Lim, Siang Hui; Lee, Hong Boon; Kiew, Lik Voon; Chung, Lip Yong

2012-01-01

441

BODIPY dyes in photodynamic therapy.  

PubMed

BODIPY dyes tend to be highly fluorescent, but their emissions can be attenuated by adding substituents with appropriate oxidation potentials. Substituents like these have electrons to feed into photoexcited BODIPYs, quenching their fluorescence, thereby generating relatively long-lived triplet states. Singlet oxygen is formed when these triplet states interact with (3)O(2). In tissues, this causes cell damage in regions that are illuminated, and this is the basis of photodynamic therapy (PDT). The PDT agents that are currently approved for clinical use do not feature BODIPYs, but there are many reasons to believe that this situation will change. This review summarizes the attributes of BODIPY dyes for PDT, and in some related areas. PMID:23014776

Kamkaew, Anyanee; Lim, Siang Hui; Lee, Hong Boon; Kiew, Lik Voon; Chung, Lip Yong; Burgess, Kevin

2013-01-01

442

Zeolite-dye micro lasers  

E-print Network

We present a new class of micro lasers based on nanoporous molecular sieve host-guest systems. Organic dye guest molecules of 1-Ethyl-4-(4-(p-Dimethylaminophenyl)-1,3-butadienyl)-pyridinium Perchlorat were inserted into the 0.73-nm-wide channel pores of a zeolite AlPO$_4$-5 host. The zeolitic micro crystal compounds where hydrothermally synthesized according to a particular host-guest chemical process. The dye molecules are found not only to be aligned along the host channel axis, but to be oriented as well. Single mode laser emission at 687 nm was obtained from a whispering gallery mode oscillating in a 8-$\\mu$m-diameter monolithic micro resonator, in which the field is confined by total internal reflection at the natural hexagonal boundaries inside the zeolitic microcrystals.

Vietze, U; Laeri, F; Ihlein, G; Schüth, F; Limburg, B; Abraham, M

1998-01-01

443

Batchwise dyeing of bamboo cellulose fabric with reactive dye using ultrasonic energy.  

PubMed

Bamboo is a regenerated cellulose fiber usually dyed with reactive dyes. This paper presents results of the batchwise dyeing of bamboo fabric with reactive dyes by ultrasonic (US) and conventional (CN) dyeing methods. The study was focused at comparing the two methods for dyeing results, chemicals, temperature and time, and effluent quality. Two widely used dyes, CI Reactive Black 5 (bis-sulphatoethylsulphone) and CI Reactive Red 147 (difluorochloropyrimidine) were used in the study. The US dyeing method produced around 5-6% higher color yield (K/S) in comparison to the CN dyeing method. A significant savings in terms of fixation temperature (10°C) and time (15 min), and amounts of salt (10 g/L) and alkali (0.5-1% on mass of fiber) was realized. Moreover, the dyeing effluent showed considerable reductions in the total dissolved solids content (minimum around 29%) and in the chemical oxygen demand (minimum around 13%) for the US dyebath in comparison to the CN dyebath. The analysis of colorfastness tests demonstrated similar results by US and CN dyeing methods. A microscopic examination on the field emission scanning electron microscope revealed that the US energy did not alter the surface morphology of the bamboo fibers. It was concluded that the US dyeing of bamboo fabric produces better dyeing results and is a more economical and environmentally sustainable method as compared to CN dyeing method. PMID:25575805

Larik, Safdar Ali; Khatri, Awais; Ali, Shamshad; Kim, Seong Hun

2015-05-01

444

Dye bonding to TiO2: in situ attenuated total reflection infrared spectroscopy study, simulations, and correlation with dye-sensitized solar cell characteristics.  

PubMed

Processing dye-sensitized solar cells gains more and more importance as interest in industrial applications grows daily. For large-scale processing and optimizing manufacturing in terms of environmental acceptability as well as time and material saving, a detailed knowledge of certain process steps is crucial. In this paper we concentrate on the sensitizing step of production, i.e., the anchoring of the dye molecules onto the TiO(2) semiconductor. A vacuum-tight attentuated total reflection infrared (ATR-IR) flow-through cell was developed, thus allowing measurements using a vacuum spectrometer to monitor infiltration of dye molecules into the porous TiO(2) film in situ at high sensitivity. In particular, the influence of the anchor and backbone of perylene dye molecules as well as the influence of solvents on the adsorption process was investigated. The experiments clearly show that an anhydride group reacts much slower than an acid group. A significantly lower amount of anhydride dye can be adsorbed on the films. Ex situ transmission experiments furthermore indicate that the availability of OH groups on the TiO(2) surface may limit dye adsorption. Also the backbone and base frame of the dye can influence the adsorption time drastically. Electrical cell characteristics correlate with the amount of adsorbed dye molecules determined by in situ ATR-IR measurements. The latter is also sensitive toward the diffusion of the dye through the porous layer. To gain a deeper understanding of the interplay between diffusion and adsorption, simulations were performed that allowed us to extract diffusion and adsorption constants. Again it was demonstrated that the anchoring group has a strong effect on the adsorption rate. The influence of the solvent was also studied, and it was found that both adsorption and desorption are affected by the solvent. Protic polar solvents are able to remove bound dye molecules, which is a possible pathway of cell degradation. Most importantly, the analysis shows the potential of this approach for the evaluation of molecules or additives concerning their characteristics important for cell processing. PMID:22775480

Völker, Barbara; Wölzl, Florian; Bürgi, Thomas; Lingenfelser, Dominic

2012-08-01

445

Dye laser traveling wave amplifier  

NASA Technical Reports Server (NTRS)

A flashlamp pumped dye laser suitable for use as a single stage amplifier is described. Particular emphasis is placed on the efforts to increase output pulse energy and improve the temporal profile of the injected pulse. By using high power thin film polarizers, output energies reach from 4 to 45 mJ. Various dispersive elements are used to develop an amplified pulse with an extremely clean temporal profile.

Davidson, F.; Hohman, J.

1984-01-01

446

Enzymatic decolorization of sulfonphthalein dyes  

Microsoft Academic Search

The white rot fungus (WRF) Pleurotus ostreatus produced manganese peroxidase (MnP) and manganese-independent peroxidase (MIP) activities during solid state fermentation of wheat straw, a natural lignocellulosic substrate. Most of the sulfonphthalein (SP) dyes were decolorized by MnP at pH 4.0. The higher Km for meta-cresol purple (40?M) and lower Km for ortho-cresol red (26?M) for MnP activities explained the preference

R. Shrivastava; V. Christian; B. R. M. Vyas

2005-01-01

447

Dye-Sensitized Solar Cells  

NSDL National Science Digital Library

This lesson from The Lawrence Hall of Science was taught in spring 2012 and teaches students about nano and environmental technologies. Students will create "dye-sensitized solar cells (DSSC) using nano-crystalline titanium dioxide." This page includes links to the Source Articles for the Hands-on Module and Project Staff Write-ups of the Hands-on Module. Additionally, five documents provide lecture and lab materials for instructor use.

448

Toxicity of Xanthene Food Dyes by Inhibition of Human Drug-Metabolizing Enzymes in a Noncompetitive Manner  

PubMed Central

The synthetic food dyes studied were rose bengal (RB), phroxine (PL), amaranth, erythrosine B (ET), allura red, new coccine, acid red (AR), tartrazine, sunset yellow FCF, brilliant blue FCF, and indigo carmine. First, data confirmed that these dyes were not substrates for CYP2A6, UGT1A6, and UGT2B7. ET inhibited UGT1A6 (glucuronidation of p-nitrophenol) and UGT2B7 (glucuronidation of androsterone). We showed the inhibitory effect of xanthene dye on human UGT1A6 activity. Basic ET, PL, and RB in those food dyes strongly inhibited UGT1A6 activity, with IC50 values = 0.05, 0.04, and 0.015 mM, respectively. Meanwhile, AR of an acidic xanthene food dye showed no inhibition. Next, we studied the inhibition of CYP3A4 of a major phase I drug-metabolizing enzyme and P-glycoprotein of a major transporter by synthetic food dyes. Human CYP3A4 and P-glycoprotein were also inhibited by basic xanthene food dyes. The IC50 values of these dyes to inhibit CYP3A4 and P-glycoprotein were the same as the inhibition level of UGT1A6 by three halogenated xanthene food dyes (ET, PL, and RB) described above, except AR, like the results with UGT1A6 and UGT2B7. We also confirmed the noninhibition of CYP3A4 and P-gp by other synthetic food dyes. Part of this inhibition depended upon the reaction of 1O2 originating on xanthene dyes by light irradiation, because inhibition was prevented by 1O2 quenchers. We studied the influence of superoxide dismutase and catalase on this inhibition by dyes and we found prevention of inhibition by superoxide dismutase but not catalase. This result suggests that superoxide anions, originating on dyes by light irradiation, must attack drug-metabolizing enzymes. It is possible that red cosmetics containing phloxine, erythrosine, or rose bengal react with proteins on skin under lighting and may lead to rough skin. PMID:20041016

Mizutani, Takaharu

2009-01-01

449

BASIC Tools: Structured Programming Techniques in BASIC.  

ERIC Educational Resources Information Center

Structured programing is an attempt to formalize the logic and structure of computer programs. Examples of structured programing techniques in BASIC are provided. Two major disadvantages of this style of programing for the personal user are noted. (JN)

Moyer, Patrick C.

1985-01-01

450

Immune responses in the lung: Basic principles  

Microsoft Academic Search

The basic elements which regulate immunomodulation at the lung level and the constituents of in situ pulmonary host defense\\u000a mechanisms that recognize, destroy, and remove potentially harmful inhaled antigenic materials are discussed. The relevance\\u000a of these processes in term of pathogenesis of some lung disorders is briefly exemplified.

Carlo Agostini; Gianpietro Semenzato

1990-01-01

451

Dye laser traveling wave amplifier  

NASA Technical Reports Server (NTRS)

Injection locking was applied to a cavity-dumped coaxial flashlamp pumped dye laser in an effort to obtain nanosecond duration pulses which have both high energy and narrow-linewidth. In the absence of an injected laser pulse, the cavity-dumped dye laser was capable of generating high energy (approx. 60mJ) nanosecond duration output pulses. These pulses, however, had a fixed center wavelength and were extremely broadband (approx. 6nm FWHM). Experimental investigations were performed to determine if the spectral properties of these outputs could be improved through the use of injection-locking techniques. A parametric study to determine the specific conditions under which the laser could be injection-locked was also carried out. Significant linewidth reduction to 0.0015nm) of the outputs was obtained through injection-locking but only at wavelengths near the peak lasing wavelength of the dye. It was found, however; that by inserting weakly dispersive tuning elements in the laser cavity, these narrow-linewidth outputs could be obtained over a wide (24nm) tuning range. Since the tuning elements had low insertion losses, the tunability of the output was obtained without sacrificing output pulse energy.

Davidson, F.; Hohman, J.

1985-01-01

452

Investigation on efficient adsorption of cationic dyes on porous magnetic polyacrylamide microspheres.  

PubMed

We report here the preparation of porous magnetic polyacrylamide microspheres for efficient removal of cationic dyes by a simple polymerization-induced phase separation method. Characterizations by various techniques indicate that the microspheres show porous structures and magnetic properties. They can adsorb methylene blue with high efficiency, with adsorption capacity increasing from 263 to 1977mg/g as the initial concentration increases from 5 to 300mg/L. Complete removal of methylene blue can be obtained even at very low concentrations. The equilibrium data is well described by the Langmuir isotherm models, exhibiting a maximum adsorption capacity of 1990mg/g. The adsorption capacity increases with increasing initial pH and reaches a maximum at pH 8, revealing an electrostatic interaction between the microspheres and the methylene blue molecules. The microspheres also show high adsorption capacities for neutral red and gentian violet of 1937 and 1850mg/g, respectively, as well as high efficiency in adsorption of mixed-dye solutions. The dye-adsorbed magnetic polyacrylamide microspheres can be easily desorbed, and can be repeatedly used for at least 6 cycles without losing the adsorption capacity. The adsorption capacity and efficiency of the microspheres are much higher than those of reported adsorbents, which exhibits potential practical application in removing cationic dyes. PMID:25797927

Yao, Tong; Guo, Song; Zeng, Changfeng; Wang, Chongqing; Zhang, Lixiong

2015-07-15

453

PASCAL vs BASIC  

ERIC Educational Resources Information Center

A comparison between PASCAL and BASIC as general purpose microprocessor languages rates PASCAL above BASIC in such points as program structure, data types, structuring methods, control structures, procedures and functions, and ease in learning. (CMV)

Mundie, David A.

1978-01-01

454

Asthma: The Basics  

MedlinePLUS Videos and Cool Tools

... Lessons? Visit KidsHealth in the Classroom What Other Parents Are Reading Measles: What to Know Vaccines: FAQs ... What to Expect Asthma: The Basics (Video) KidsHealth > Parents > KH Misc. > Asthma: The Basics (Video) Print A ...

455

HIV/AIDS Basics  

MedlinePLUS

... About CDC.gov . Act Against AIDS Share Compartir HIV/AIDS Basics Before we can stop any epidemic, ... before, AIDS is still a significant health issue. HIV 101 HIV/AIDS Basic Statistics Transmission Testing Prevention ...

456

Stem Cell Basics  

MedlinePLUS

... Info Center Stem Cell Basics Stem Cell Basics Stem Cell Information Frequently Asked Questions What are stem cells? ... U.S. policy? More FAQs Links to related resources Stem Cell Research Center for Regenerative Medicine NIH Stem Cell ...

457

Probing the regeneration process of triphenylamine-based organic dyes in dye-sensitized solar cells  

NASA Astrophysics Data System (ADS)

The regeneration processes of triphenylamine (TPA)-based dyes with cobalt redox mediator in dye-sensitized solar cells (DSSCs) have been investigated using density functional theory combined with the Marcus theory of electron transfer. Our results show that with the extension or rigidification of the oligothiophene conjugation linker the absorption spectra of TPA dyes exhibit observable red-shift in the maximum absorbance that favors light-harvesting, while the electron transfer rates for dye regeneration decrease in some degrees due to the increased activation free energies and the reduced electronic coupling energies which hampers the dye regeneration. Importantly, the undesirable influences on dye regeneration by extending the linker moiety are more significant than that by the way of rigidification. Thus, the rigidification is a better choice than the extension of the conjugated moiety for the design of D-?-A type dyes based on the properties of light-harvesting and the kinetics of dye regeneration.

Sun, Zhu-Zhu; Li, Quan-Song; Sun, Ping-Ping; Li, Ze-Sheng

2015-02-01

458

Efficient degradation of organic dyes by BiAgxOy.  

PubMed

A novel, simple and efficient approach for degrading organic dye, based on BiAg(x)O(y) (bismuth silver oxide, BSO), is reported for the first time. The oxidative powder BSO was prepared by simple coprecipitation of NaBiO(3)·2H(2)O and AgNO(3). The technique was evaluated for the decolorization and oxidative decomposition of Rhodamine B (RhB). The results demonstrated that mixing BSO with an aqueous solution of RhB (20 mg/L) resulted in rapid decolorization (pseudo-first-order kinetic constant k=0.5594 min(-1)) and formation of several small molecular weight products. Significant reduction in TOC (32% TOC removal in 10 min) also occurred via mineralization of RhB to CO(2)/CO(3)(2-). The reaction proceeds at ambient temperature and pressure, and requires no external energy sources or light. An advantage of the technique is that BSO can be used to degrade sequential additions of dye without significant fouling or loss of activity. The characterization of BSO and its corrosion products by XRD, FTIR, TEM, EDX and XPS revealed that Ag species were reduced to metallic silver and NaBiO(3)·2H(2)O was transformed into the Bi(2)O(2)CO(3) during the reaction process. Singlet oxygen ((1)O(2)) was identified as the major reactive species generated by BSO for the degradation of RhB and several other dyes. This novel approach could be used as a highly efficient and green technology for organic dye degradation. PMID:22018868

Yu, Kai; Yang, Shaogui; Boyd, Stephen A; Chen, Hongzhe; Sun, Cheng

2011-12-15

<