Sample records for basic dye removal

  1. Hydrogel nanocomposite sorbents for removal of basic dyes

    Microsoft Academic Search

    Mahir KaplanHasine Kasgoz; Hasine Kasgoz

    Hydrogel nanocomposites having high amount of functional group, enhanced swelling ability, and improved mechanical properties\\u000a were prepared for removal of basic dyes from aqueous solutions. Acrylamide (AAM) and itaconic acid sodium salt (IANa) were\\u000a polymerized using polyethyleneglycol (400) diacrylate as crosslinker in the presence of montmorillonite (MMT). The products\\u000a were characterized by swelling degree, total basic group content, XRD analysis,

  2. Adsorptive removal of basic dye by chemically activated Parthenium biomass: equilibrium and kinetic modeling

    Microsoft Academic Search

    Hem Lata; V. K. Garg; R. K. Gupta

    2008-01-01

    This paper reports the removal of a basic dye (rhodamine-B) by the activated carbon prepared from Parthenium biomass by sulphuric acid treatment method (SWC). The effectiveness of the prepared adsorbent has been studied as a function of agitation time, adsorbent dosage, initial dye concentration and pH. The removal of rhodamine-B by SWC followed second order kinetic model. The second order

  3. Removal of basic dye from aqueous solution using tree fern as a biosorbent

    Microsoft Academic Search

    Yuh-Shan Hoa; Tzu-Hsuan Chiang; Yu-Mei Hsueh

    2005-01-01

    A batch sorption system using tree fern as biosorbent was investigated to remove Basic Red 13 from aqueous solutions. The system variables studied include sorbent particle size and temperature and results revealed the potential of tree fern, an agriculture product, as a low-cost sorbent. The Langmuir isotherm was found to represent the measured sorption data well. The dye sorption capacity

  4. Preparation of Dicarboxylic Acid Containing Sulfonamide Based Resin and Removal of Basic Dyes

    Microsoft Academic Search

    Erdem Yavuz; Emir Tugrul Tekin; Mehmet Kandaz; Bahire Filiz Senkal

    2010-01-01

    Polymer and dye interaction leading to polymer-dye complex formation exhibits many interesting and important practical features. For this purpose, dicarboxylic acid containing resin was prepared in two steps starting from poly (styrene-divinyl benzene) (PS-DVB) (10% crosslinking) based beads with a particle size of 400-590 µm, according to the synthetic protocol; chlorosulfonation, sulfamidation with iminodiacetic acid. Dye extraction experiments were carried out

  5. Removal of a basic dye from aqueous solution by adsorption using Parthenium hysterophorus: An agricultural waste

    Microsoft Academic Search

    Hem Lata; V. K. Garg; R. K. Gupta

    2007-01-01

    Adsorbents prepared from Parthenium hysterophorus – unwanted weed – were successfully used to remove methylene blue from an aqueous solution in a batch reactor. The adsorbents included sulphuric acid treated Parthenium (SWC) and phosphoric acid treated Parthenium (PWC). Aqueous solutions of various concentrations (50–250mg\\/L) were shaken with certain amount of adsorbent to determine the adsorption capacity on SWC and PWC

  6. Removal of basic dye from aqueous medium using a novel agricultural waste material: Pumpkin seed hull

    Microsoft Academic Search

    B. H. Hameed; M. I. El-Khaiary

    2008-01-01

    In this work, pumpkin seed hull (PSH), an agricultural solid waste, is proposed as a novel material for the removal of methylene blue (MB) from aqueous solutions. The effects of the initial concentration, agitation time and solution pH were studied in batch experiments at 30°C. The equilibrium process was described well by the multilayer adsorption isotherm. The adsorption kinetics can

  7. Use of slag for dye removal

    SciTech Connect

    Ramakrishna, K.R.; Viraraghavan, T. [Univ. of Regina, Saskatchewan (Canada). Faculty of Engineering

    1998-09-01

    Adsorption techniques employing activated carbon have been found to be reasonably effective in the removal of some of the ionic impurities in water. However, economic considerations may require the use of inexpensive sorbents which are either naturally available or available as waste products from manufacturing processes. Slag is one such waste product obtained during the manufacture of steel, and the present study investigates dye removal characteristics of slag from colored waters. Aqueous solutions prepared from commercial grade acid, basic, and disperse dyes were used in this study, and batch pH, kinetic, and isotherm studies were undertaken on a laboratory scale. The data were evaluated for applicability to the Langmuir, Freundlich, and BET isotherm models, and the removal capacity of slag was compared with that of granular activated carbon. Results indicated approximately 94% removal of the disperse dye by slag, compared with a removal of approximately 49% achieved by activated carbon. Removal of acid dyes (dyes containing anionic groups) was reasonably good (approximately 47 and 74%), though not as good as obtained using activated carbon (approximately 100%). Column studies were conducted with a disperse dye (nonionic, slightly soluble in water), and analysis of data showed a sorption capacity of 1.3 mg of disperse dye per gram of slag. However, effluent dye concentrations were found to be higher than the permissible levels for discharge to receiving waters.

  8. Removal of basic dye (methylene blue) from aqueous solution by adsorption using Musa paradisica: a agricultural waste.

    PubMed

    Sonawane, G H; Shrivastava, V S

    2009-01-01

    Adsorbent prepared from Musa paradisica leaves--a low cost bioadsorbent was successfuly used to remove methylene blue from an aqueous solution in batch study. The effect of contact time, adsorbent dosage, pH of solution, initial dye concentration, particle size of adsorbent and kinetics of adsorption was studied. It has been observed that the optimum pH is 8 and adsorbent dosage required is 4 g/L for 97% removal of methylene blue (100 mg/L). The removal of methylene blue increases with increasing contact time and becomes constant after 30 minutes. The adsorbent dosage was increased from 1 g/L to 24 g/L and percentage removal increases continuously. The adsorption follows Langmuir and Freundlich isotherm models. The comparison was also done with pseudo first order, pseudo second order, and Elovich kinetic models, respectively. PMID:21114153

  9. Dye Removal from Textile Dye Wastewater Using Recycled Alum Sludge

    Microsoft Academic Search

    W Chu

    2001-01-01

    The removal of dyes from textile dying wastewater by recycled alum sludge (RAS) generated by the coagulation process itself was studied and optimized. One hydrophobic and one hydrophilic dye were used as probes to examine the performance of this process. It was found that RAS is a good way of removing hydrophobic dye in wastewater, while simultaneously reducing the fresh

  10. Biosorption of basic dyes by water hyacinth roots

    Microsoft Academic Search

    K. S. Low; C. K. Lee; K. K. Tan

    1995-01-01

    Laboratory investigations of the potential of the biomass of non-living, dried, roots of water hyacinth (Eichhornia crassipes) to remove two basic dyes, methylene blue and Victoria blue, from aqueous solutions were conducted. Parameters studied included pH, sorbent dosage, contact time and initial concentrations. The Langmuir isotherm was found to represent the measured sorption data well. Maximum sorption capacities of water

  11. Removal of cationic dyes by kaolinite

    Microsoft Academic Search

    M. Hamdi Karao?lu; Mehmet Do?an; Mahir Alkan

    2009-01-01

    The removal of cationic dyes such as maxilon yellow 4GL (MY 4GL) and maxilon red GRL (MR GRL) on kaolinite from aqueous solutions has been studied according to the adsorption method. The adsorbed amount of dyes on kaolinite surface was investigated as a function of pH, ionic strength, temperature, acid activation, and calcination temperature. It was found that: (i) the

  12. Adsorption behaviors of acid and basic dyes on crosslinked amphoteric starch

    Microsoft Academic Search

    Shimei Xu; Jingli Wang; Ronglan Wu; Jide Wang; Hong Li

    2006-01-01

    Crosslinked amphoteric starch with carboxymethyl and quaternary ammonium groups is investigated as an adsorbent for removal of both acid and basic dyes in solution. Acid Light Yellow 2G, Acid Red G, Methyl Green and Methyl Violet were used to study the adsorption behaviors under various parameters such as pH, dose of amphoteric starches, initial dye concentration, adsorption time and adsorption

  13. Decolorization of basic, direct and reactive dyes by pre-treated narrow-leaved cattail (Typha angustifolia Linn.).

    PubMed

    Inthorn, Duangrat; Singhtho, Siritham; Thiravetyan, Paitip; Khan, Eakalak

    2004-09-01

    The efficiency of basic, direct and reactive dye removal from water by narrow-leaved cattail (NLC) powder treated with distilled water (DW-NLC), 37% formaldehyde+0.2 N sulfuric acid (FH-NLC), or 0.1 N sodium hydroxide (NaOH-NLC) at various pH levels (3, 5, 7, and 9) was tested. Desorption of the adsorbed dyes was also investigated. The type of NLC treatment and pH of the dye solution had little effect on removal of basic dyes, and efficiencies ranged from 97% to 99% over the range of pH used. Over a wide range of pH levels, all types of treated cattail powder had negative charges and probably attracted the basic dyes possessing positive charges. Efficiency of removal by the three NLC treatments ranged from 37% to 42% for direct dyes and from 22% to 54% for direct dyes at pH 7. The pH of the dye solution had substantial effects on the efficiency of removal in direct and reactive dyes. Dye removal was highest at pH 3, with 99% for a direct dye (Sirius Red Violet RL) and 96% for a reactive dye (Basilen Red M-5B). There was mutual attraction between negatively charged direct dye molecules and positively charged molecules on the surface of the FH-treated cattail. In tests of desorption of dyes from cattail in distilled water, the desorption percentage for FH-NLC after adsorbing basic, direct and reactive dyes was 6%, 10% and 35%, respectively, which indicated a chemisorption mechanism for basic and direct dyes and some physiosorption for reactive dyes. PMID:15182837

  14. Removal of Congo Red dye by adsorption onto phyrophyllite

    Microsoft Academic Search

    Muhammad Bachri Amran; Muhammad Ali Zulfikar

    2010-01-01

    Synthetic dye?containing wastewaters from textile, paper, plastic and leather?tanning industries are a most common organic pollutant. Such dyes may be toxic not only to aquatic life, but also to human beings. Consequently, dye removal from wastewater significantly benefits the environment. The aim of this study was to investigate the effectiveness of phyrophyllite as an adsorbent for Congo Red dye from

  15. Adsorption of basic dyes from aqueous solution onto pumice powder

    Microsoft Academic Search

    Feryal Akbal

    2005-01-01

    The adsorption of methylene blue and crystal violet on pumice powder samples of varying compositions was investigated using a batch adsorption technique. The effects of various experimental parameters, such as adsorbent dosage, initial dye concentration, and contact time, were also investigated. The extent of dye removal increased with decreased initial concentration of the dye and also increased with increased contact

  16. Isotherm, Kinetic, and Thermodynamic of Cationic Dye Removal from Binary System by Feldspar

    Microsoft Academic Search

    Maryam Yazdani; Niyaz Mohammad Mahmoodi; Mokhtar Arami; Hajir Bahrami

    2012-01-01

    In this paper, the isotherm, kinetic, and thermodynamic of cationic dye removal onto inorganic adsorbent (Feldspar) were investigated in single and binary systems. Basic Red 18 (BR18) and Basic Blue 41 (BB41) were used as cationic dyes. The characterization of the Feldspar was carried out using X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron

  17. Sorption of basic dyes from aqueous solution by activated sludge

    Microsoft Academic Search

    Osman Gulnaz; Aysenur Kaya; Fatih Matyar; Burhan Arikan

    2004-01-01

    The adsorption of dyes in the solutions using activated sludge might be a promising approach in wastewater treatment units. The adsorption of Basic Red 18 and Basic Blue 9 from aqueous solution by dried activated sludge was investigated with in a batch system. The activated sludge had the highest dye uptake capacity, having the monolayer adsorption capacity 285.71 and 256.41mgg?1

  18. Sorption of basic dye from aqueous solution by pomelo ( Citrus grandis) peel in a batch system

    Microsoft Academic Search

    B. H. Hameed; D. K. Mahmoud; A. L. Ahmad

    2008-01-01

    A new, low-cost, locally available sorbent, pomelo (Citrus grandis) peel (PP), was tested for its ability to remove basic dye (methylene blue) from aqueous solutions. Adsorption equilibrium and kinetics of methylene blue (MB) from aqueous on PP were studied in a batch process. The equilibrium data were analyzed using the Langmuir, Freundlich, and Temkin isotherm models. Sorption equilibrium studies demonstrated

  19. Organic dye removal from aqueous solution by glidarc discharges

    Microsoft Academic Search

    Radu Burlica; Michael J. Kirkpatrick; Wright C. Finney; Ronald J. Clark; Bruce R. Locke

    2004-01-01

    The performance of several electrical discharge gliding arc (glidarc) reactors for the removal of an organic dye from aqueous solution has been studied. The glidarc reactors utilized AC electrical discharges with two different electrode configurations. In one case, two electrodes were placed in the gas phase over the liquid surface (P=250–300W, U=12kV). In order to increase the dye removal from

  20. Kinetic and equilibrium studies on biosorption of basic blue dye by green macro algae Caulerpa scalpelliformis.

    PubMed

    Aravindhan, Rathinam; Rao, Jonnalagadda Raghava; Nair, Balachandran Unni

    2007-04-01

    Dynamic batch experiments were carried out for the biosorption of basic blue dye on to the green macro algae Caulerpa scalpelliformis. The factors affecting the sorption process such as the initial concentration of the dye, pH of the solution, the adsorbent dosage and the time of contact were studied. It has been observed that the sorption process was significantly affected by the pH of the initial dye solution. The sorption kinetics was found to follow the second-order kinetic model. The Boyd's plot confirmed the external mass transfer as the rate-limiting step. The average effective diffusion coefficient was found to be 1.652 x 10(- 5) cm(2)/s. Sorption equilibrium studies demonstrated that the biosorption followed Freundlich isotherm model, which implies a heterogeneous sorption phenomenon. Optimized parameters were used to treat the commercial effluent containing the dye. Complete color removal was observed in two stages of treatment with the seaweed. PMID:17454369

  1. Adsorption of Cationic (Basic) Dyes by Fixed Yeast Cells1

    PubMed Central

    Giles, Charles H.; McKay, Robert B.

    1965-01-01

    Giles, Charles H. (The University of Strathclyde, Glasgow, Scotland), and Robert B. McKay. Adsorption of cationic (basic) dyes by fixed yeast cells. J. Bacteriol. 89:390–397. 1965.—The adsorption of 10 typical cationic dyes on formalin-fixed yeast cells has been studied by determining isotherms, and the results are consistent with an ion-exchange mechanism. The adsorption on this complex substrate is similar to that on the simpler substrate, alumina. The dyes are probably aggregated when adsorbed, and the size of the aggregates increases with increase in the molecular weight of the dye ion. After considering the possible adsorption sites, and comparing the data with adsorption on simpler substrates, we suggest that the most important adsorption sites may be phosphate or other strongly acidic groups. PMID:14255705

  2. Removal of synthetic dyes from wastewaters: a review

    Microsoft Academic Search

    Esther Forgacs; Tibor Cserháti; Gyula Oros

    2004-01-01

    The more recent methods for the removal of synthetic dyes from waters and wastewater are complied. The various methods of removal such as adsorption on various sorbents, chemical decomposition by oxidation, photodegradation, and microbiological decoloration, employing activated sludge, pure cultures and microbe consortiums are described. The advantages and disadvantages of the various methods are discussed and their efficacies are compared.

  3. Simultaneous removal of cationic and anionic dyes by the mixed sorbent of magnetic and non-magnetic modified sugarcane bagasse.

    PubMed

    Yu, Jun-Xia; Zhu, Jing; Feng, Li-Yuan; Chi, Ru-An

    2015-08-01

    Magnetic carboxyl groups modified (MMS) and non-magnetic amine groups modified (AMS) sugarcane bagasse were prepared and mixed to remove cationic and anionic dye simultaneously from aqueous solution. For comparison, the adsorption performances of MMS, AMS and the mixed sorbent for basic magenta (cationic dye) and congo red (anionic dye) were investigated in the binary system. Zeta potential analysis showed that MMS was negatively charged and AMS was positively charged in the investigated pH range. The adsorption capacities of MMS for basic magenta and congo red were 1.24 and 0.04mmolg(-1), while those of AMS were 0.04 and 1.55mmolg(-1), respectively. Both of MMS and AMS had high adsorption capacity and affinity toward opposite-charged dye but low adsorption capacity and affinity toward similar-charged dye. Adsorption experiments in the binary system showed that only the mixed sorbent could remove the two dyes simultaneously from aqueous solution (removal efficiencies >90%). The amounts of basic magenta and congo red absorbed on the mixed sorbent both increased linearly with the increase of their initial concentrations in the investigated range. The dye loaded mixed magnetic and non-magnetic sorbents could be separated by a magnet. MMS and AMS could be regenerated by using acid and alkaline eluents, respectively. After regeneration, the MMS and AMS could be mixed again and used repeatedly. The mixed sorbent had great potential in practical dye waste water treatment. PMID:25897851

  4. Decolorization of basic, direct and reactive dyes by pre-treated narrow-leaved cattail ( Typha angustifolia Linn.)

    Microsoft Academic Search

    Duangrat Inthorn; Siritham Singhtho; Paitip Thiravetyan; Eakalak Khan

    2004-01-01

    The efficiency of basic, direct and reactive dye removal from water by narrow-leaved cattail (NLC) powder treated with distilled water (DW-NLC), 37% formaldehyde+0.2 N sulfuric acid (FH-NLC), or 0.1 N sodium hydroxide (NaOH-NLC) at various pH levels (3, 5, 7, and 9) was tested. Desorption of the adsorbed dyes was also investigated. The type of NLC treatment and pH of

  5. Optimization of Biosorptive Removal of Dye from Aqueous System by Cone Shell of Calabrian Pine

    PubMed Central

    Deniz, Fatih

    2014-01-01

    The biosorption performance of raw cone shell of Calabrian pine for C.I. Basic Red 46 as a model azo dye from aqueous system was optimized using Taguchi experimental design methodology. L9 (33) orthogonal array was used to optimize the dye biosorption by the pine cone shell. The selected factors and their levels were biosorbent particle size, dye concentration, and contact time. The predicted dye biosorption capacity for the pine cone shell from Taguchi design was obtained as 71.770?mg?g?1 under optimized biosorption conditions. This experimental design provided reasonable predictive performance of dye biosorption by the biosorbent (R 2: 0.9961). Langmuir model fitted better to the biosorption equilibrium data than Freundlich model. This displayed the monolayer coverage of dye molecules on the biosorbent surface. Dubinin-Radushkevich model and the standard Gibbs free energy change proposed physical biosorption for predominant mechanism. The logistic function presented the best fit to the data of biosorption kinetics. The kinetic parameters reflecting biosorption performance were also evaluated. The optimization study revealed that the pine cone shell can be an effective and economically feasible biosorbent for the removal of dye. PMID:25405213

  6. REMOVAL OF ACID DYES FROM AQUEOUS SOLUTIONS USING ORANGE PEEL AS A SORBENT MATERIAL

    Microsoft Academic Search

    H. Benaïssa

    2005-01-01

    An agricultural by-product waste: orange peel was tested for the removal of four acid dyes from aqueous solutions in batch conditions. As results obtained, kinetics of dyes sorption was time of contact, initial dyes concentration and dyes type dependent. The pseudo second-order reaction rate model adequately described the kinetics of dyes sorption with high correlation coefficients. Langmuir model gave a

  7. Experimental study and modeling of basic dye sorption by diatomaceous clay

    E-print Network

    Shawabkeh, Reyad A.

    materials. Meshko et al. (2001) compared the uptake of basic dyes using natural zeolite with that of 0169Experimental study and modeling of basic dye sorption by diatomaceous clay Reyad A. Shawabkeha dye, methylene blue, from an aqueous solution onto diatomaceous earth (diatomite). The effect

  8. Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems

    Microsoft Academic Search

    S. J. Allen; G. Mckay; J. F. Porter

    2004-01-01

    Colored effluents from textile industries are a problem in many rivers and waterways. Prediction of dye adsorption capacities is important in design considerations. The sorption of three basic dyes, namely Basic blue 3, Basic yellow 21, and Basic red 22, onto peat is reported. Equilibrium sorption isotherms have been measured for the three single-component systems. Equilibrium was achieved after 21

  9. Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw

    Microsoft Academic Search

    T Robinson; B Chandran; P Nigam

    2002-01-01

    This paper deals with two low-cost, locally available, renewable biosorbents; apple pomace and wheat straw for textile dye removal. Experiments at total dye concentrations of 10, 20, 30, 40, 50, 100, 150, and 200mg\\/l were carried out with a synthetic effluent consisting of an equal mixture of five textile dyes. The effect of initial dye concentration, biosorbent particle size, quantity

  10. Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues

    Microsoft Academic Search

    P Nigam; G Armour; I. M Banat; D Singh; R Marchant

    2000-01-01

    Three agricultural residues, wheat straw, wood chips and corn-cob shreds were tested for their ability to adsorb individual dyes and dye mixtures in solutions. Up to 70–75% colour removal was achieved from 500 ppm dye solutions at room temperature using corn-cob shreds and wheat straw. Increasing the temperature had little effect on the adsorption capacity of the residues. The resulting

  11. Sorption equilibrium and kinetics of basic dye from aqueous solution using banana stalk waste.

    PubMed

    Hameed, B H; Mahmoud, D K; Ahmad, A L

    2008-10-30

    The sorption of basic dye from aqueous solutions by banana stalk waste (BSW), an abundant agricultural waste in Malaysia, was studied in a batch system with respect to pH and initial dye concentration. Sorption isotherm of methylene blue (MB) onto the BSW was determined at 30 degrees C with the initial concentrations of MB in the range of 50-500 mg/L. At pH 2.0, the sorption of dye was not favorable, while the sorption at other pHs (4.0-12.0) was remarkable. Equilibrium data were fitted to the Langmuir, Freundlich and Temkin isotherm models. The equilibrium data were best represented by the Langmuir isotherm model, with maximum monolayer adsorption capacity of 243.90 mg/g. The sorption kinetic data were analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion models. It was found that the pseudo-second-order kinetic model was the best applicable model to describe the sorption kinetics. The results showed that BSW sorbent was a promising for the removal of MB from aqueous solutions. PMID:18353547

  12. Removal of dye stuffs from waste water: Electrocoagulation of Acilan Blau using soluble anode

    Microsoft Academic Search

    Ülker Bakir Ögütveren; Nuray Gönen; Sava? Koparal

    1992-01-01

    An attempt was made to remove a dye such as Acilan Blau using an electrochemical method. In the process a bipolar packed bed electrochemical reactor consisting of soluble electrodes was used and operated in the batch mode. Effects of several factors on the removal rate have been examined such as pH, presence of supporting electrolyte, duration of electrolysis, initial dye

  13. Kinetic and equilibrium studies on biosorption of basic blue dye by green macro algae Caulerpa scalpelliformis

    Microsoft Academic Search

    Rathinam Aravindhan; Jonnalagadda Raghava Rao; Balachandran Unni Nair

    2007-01-01

    Dynamic batch experiments were carried out for the biosorption of basic blue dye on to the green macro algae Caulerpa scalpelliformis. The factors affecting the sorption process such as the initial concentration of the dye, pH of the solution, the adsorbent dosage and the time of contact were studied. It has been observed that the sorption process was significantly affected

  14. Removal of Diazo dye from aqueous phase by algae Spirogyra species

    Microsoft Academic Search

    S. Venkata Mohan; J. Karthikeyan

    2000-01-01

    This communication presents a preliminary study conducted to investigate dye (Direct Brown 2?Diazo) colour removal using viable algae Spirogyra species. The results indicate the ability of algae Spirogyra species to remove dye colour and found to be dependent on the contact time and biomass. Colour removal mechanism by algae Spirogyra species may be attributed to biosorption and\\/or bioconversion and\\/or biocoagulation.

  15. Effects of dissolved oxygen on dye removal by zero-valent iron.

    PubMed

    Wang, Kai-Sung; Lin, Chiou-Liang; Wei, Ming-Chi; Liang, Hsiu-Hao; Li, Heng-Ching; Chang, Chih-Hua; Fang, Yung-Tai; Chang, Shih-Hsien

    2010-10-15

    Effects of dissolved oxygen concentrations on dye removal by zero-valent iron (Fe(0)) were investigated. The Vibrio fischeri light inhibition test was employed to evaluate toxicity of decolorized solution. Three dyes, Acid Orange 7 (AO7, monoazo), Reactive Red 120 (RR120, diazo), and Acid Blue 9 (AB9, triphenylmethane), were selected as model dyes. The dye concentration and Fe(0) dose used were 100 mg L(-1) and 30 g L(-1), respectively. Under anoxic condition, the order for dye decolorization was AO7>RR120>AB9. An increase in the dissolved oxygen concentrations enhanced decolorization and chemical oxygen demand (COD) removal of the three dyes. An increase in gas flow rates also improved dye and COD removals by Fe(0). At dissolved oxygen of 6 mg L(-1), more than 99% of each dye was decolorized within 12 min and high COD removals were obtained (97% for AO7, 87% for RR120, and 93% for AB9). The toxicity of decolorized dye solutions was low (I(5)<40%). An increase in DO concentrations obviously reduced the toxicity. When DO above 2 mg L(-1) was applied, low iron ion concentration (13.6 mg L(-1)) was obtained in the decolorized AO7 solution. PMID:20667424

  16. The flocculation performance of Tamarindus mucilage in relation to removal of vat and direct dyes.

    PubMed

    Mishra, Anuradha; Bajpai, Malvika

    2006-05-01

    A food grade natural mucilage, extracted from the seeds of Tamarindus indica pods, is used as a flocculant for removal of solubilised vat (golden yellow) and direct dye (direct fast scarlet) in aqueous solutions. The maximum removal obtained was 60% for golden yellow after 2 h and was 25% for direct fast scarlet after 1 h. The optimum mucilage dose was 10 mg/l and 15 mg/l for golden yellow and direct fast scarlet, respectively. The pH values also seem to affect the percent removal of both the dyes significantly. In case of vat dye, the pH value of the test samples affected the percent removal significantly. The change was highly significant between neutral and alkaline pH. In case of direct dye, there was no significant change in percent removal at pH 7 and pH 4 whereas a significant change in percent removal was observed between pH 7 and pH 9.2. The plausible mucilage-dye interaction and flocculation mechanism has been discussed. This new flocculant works better in the case of vat dye removal compared with the direct dye. PMID:16219461

  17. Hydrothermal conversion of urban food waste to chars for removal of textile dyes from contaminated waters.

    PubMed

    Parshetti, Ganesh K; Chowdhury, Shamik; Balasubramanian, Rajasekhar

    2014-06-01

    Hydrothermal carbonization of urban food waste was carried out to prepare hydrochars for removal of Acridine Orange and Rhodamine 6G dyes from contaminated water. The chemical composition and microstructure properties of the synthesized hydrochars were investigated in details. Batch adsorption experiments revealed that hydrochars with lower degree of carbonization were more efficient in adsorption of dyes. Operational parameters such as pH and temperature had a strong influence on the dye uptake process. The adsorption equilibrium data showed excellent fit to the Langmuir isotherm. The pseudo-second-order kinetic model provided a better correlation for the experimental kinetic data in comparison to the pseudo-first-order kinetic model. Thermodynamic investigations suggested that dye adsorption onto hydrochars was spontaneous and endothermic. The mechanism of dye removal appears to be associated with physisorption. An artificial neural network (ANN)-based modelling was further carried out to predict the dye adsorption capacity of the hydrochars. PMID:24727353

  18. Regression analysis for the sorption isotherms of basic dyes on sugarcane dust

    Microsoft Academic Search

    Yuh-Shan Ho; Wen-Ta Chiu; Chung-Chi Wang

    2005-01-01

    The sorption of three basic dyes, named basic violet 10, basic violet 1, and basic green 4, from aqueous solutions onto sugarcane dust was studied. The results revealed the potential of sugarcane dust, a waste material, to be a low-cost sorbent. Equilibrium isotherms were analyzed using the Langmuir, the Freundlich, and the three-parameter Redlich–Peterson isotherms. In order to determine the

  19. Removal of dyes using agricultural waste as low-cost adsorbents: a review

    NASA Astrophysics Data System (ADS)

    Bharathi, K. S.; Ramesh, S. T.

    2013-12-01

    Color removal from wastewater has been a matter of concern, both in the aesthetic sense and health point of view. Color removal from textile effluents on a continuous industrial scale has been given much attention in the last few years, not only because of its potential toxicity, but also mainly due to its visibility problem. There have been various promising techniques for the removal of dyes from wastewater. However, the effectiveness of adsorption for dye removal from wastewater has made it an ideal alternative to other expensive treatment methods. In this review, an extensive list of sorbent literature has been compiled. The review evaluates different agricultural waste materials as low-cost adsorbents for the removal of dyes from wastewater. The review also outlines some of the fundamental principles of dye adsorption on to adsorbents.

  20. Reactive dye removal in dye\\/salt mixtures by nanofiltration membranes containing vinylsulphone dyes: effects of feed concentration and cross flow velocity

    Microsoft Academic Search

    Ismail Koyuncu

    2002-01-01

    In this study, DS5 DK type nanofiltration membranes were tested to recycle the reactive dye bath effluents. Reactive black 5 (RB5), reactive orange 16 (RO16), reactive blue 19 (RB19) and NaCl were used in the experiments to prepare the synthetic dye and salt mixtures. Effects of feed concentration, pressure and cross flow velocity on the permeate flux and color removal

  1. Quaternized magnetic microspheres for the efficient removal of reactive dyes.

    PubMed

    Shuang, Chendong; Li, Penghui; Li, Aimin; Zhou, Qing; Zhang, Mancheng; Zhou, Yang

    2012-09-15

    In this paper, a novel quaternized magnetic resin, NDMP, was prepared and characterized. Two reactive dyes (RDs), Orange G (OG) and red RWO, were used as a small-molecular RD and large-molecular RD, respectively, to investigate their adsorption on NDMP. A common quaternized magnetic resin, MIEX, was selected for comparison. The adsorption kinetics of OG onto both resins and the adsorption kinetics of RWO onto NDMP followed pseudo-second-order kinetics, whereas the adsorption of RWO onto MIEX was better fitted by pseudo-first-order kinetics. The experimental data illustrated that the equilibrium adsorption amount of both RDs onto NDMP (1.9 mmol OG/g, 0.70 mmol RWO/g) was twice as large as that on MIEX (1.0 mmol OG/g, 0.35 mmol RWO/g). The Langmuir equation and the Freundlich model fit the isotherm data for OG and RWO adsorption, respectively. The adsorption of OG on the NDMP and MIEX resins declined in the presence of NaCl or Na?SO?. The effects of the salts on the adsorption of RWO were different. The recyclability of NDMP and MIEX were also evaluated. This work provides a reusable efficient adsorbent for the removal of RDs. PMID:22726352

  2. The removal of textile dyes by diatomite earth

    Microsoft Academic Search

    Emin Erdem; Gülay Çölgeçen; Ramazan Donat

    2005-01-01

    The adsorption of some textile dyes by diatomite was investigated using S?f Blau BRF (SB), Everzol Brill Red 3BS (EBR), and Int Yellow 5GF (IY). Adsorption of these textile dyes onto diatomite earth samples was studied by batch adsorption techniques at 30?°C. The adsorption behavior of textile dyes on diatomite samples was investigated using a UV–vis spectrophotometric technique. The effect

  3. Highly effective removal of basic fuchsin from aqueous solutions by anionic polyacrylamide/graphene oxide aerogels.

    PubMed

    Yang, Xiaoxia; Li, Yanhui; Du, Qiuju; Sun, Jiankun; Chen, Long; Hu, Song; Wang, Zonghua; Xia, Yanzhi; Xia, Linhua

    2015-09-01

    Novel anionic polyacrylamide/graphene oxide aerogels were prepared by a freeze drying method and used to remove basic fuchsin from aqueous solutions. These aerogels were sponge-like solid with lightweight, fluffy and porous structure. The batch adsorption experiments were carried out to study the effect of various parameters, such as the solution pH, adsorbent dose, contact time and temperature on adsorption properties of basic fuchsin onto anionic polyacrylamide/graphene oxide aerogels. The kinetics of adsorption corresponded to the pseudo-second-order kinetic model. The Langmuir adsorption isotherm was suitable to describe the equilibrium adsorption process. The maximum adsorption capacity was up to 1034.3mg/g, which indicated that anionic polyacrylamide/graphene oxide aerogels were promising adsorbents for removing dyes pollutants from aqueous solution. PMID:25978557

  4. Dye removal from wastewater using activated carbon developed from sawdust: adsorption equilibrium and kinetics

    Microsoft Academic Search

    P. K. Malik

    2004-01-01

    Mahogany sawdust was used to develop an effective carbon adsorbent. This adsorbent was employed for the removal of direct dyes from spent textile dyeing wastewater. The experimental data were analysed by the Langmuir and Freundlich models of adsorption. Equilibrium data fitted well with the Langmuir model. The rates of adsorption were found to conform to the pseudo-second-order kinetics with good

  5. Sorption equilibrium and kinetics of basic dye from aqueous solution using banana stalk waste

    Microsoft Academic Search

    B. H. Hameed; D. K. Mahmoud; A. L. Ahmad

    2008-01-01

    The sorption of basic dye from aqueous solutions by banana stalk waste (BSW), an abundant agricultural waste in Malaysia, was studied in a batch system with respect to pH and initial dye concentration. Sorption isotherm of methylene blue (MB) onto the BSW was determined at 30°C with the initial concentrations of MB in the range of 50–500mg\\/L. At pH 2.0,

  6. Color Removal of Reactive Dyes from Water by Clinoptilolite

    Microsoft Academic Search

    Bülent Arma?an; Mustafa Turan; Orhan Özdemir; Mehmet S. Çelik

    2004-01-01

    The adsorption of reactive dyes on Gordes (Turkey) clinoptilolite was investigated by a series of batch and column adsorption experiments. Three reactive dyes (Everzol Black, Everzol Red, Everzol Yellow) were used in laboratory studies. Synthetic wastewaters were used and the ability of natural zeolite (clinoptilolite) and their modified form were examined. The adsorption results, in batch and column reactor, indicate

  7. The adsorption of basic dyes from aqueous solution on modified peat–resin particle

    Microsoft Academic Search

    Qingye Sun; Linzhang Yang

    2003-01-01

    Modified peat was prepared by mixing thoroughly raw peat with sulfuric acid, and modified peat–resin particle was obtained, by mixing modified peat with solutions of polyvinylalcohol (PVA) and formaldehyde. In this paper, the adsorption of Basic Magenta and Basic Brilliant Green onto modified peat–resin particle is examined. The adsorption isotherm showed that the adsorption of basic dyes on modified peat–resin

  8. Removal of dissolved textile dyes from wastewater by a compost sorbent

    USGS Publications Warehouse

    Tsui, L.S.; Roy, W.R.; Cole, M.A.

    2003-01-01

    The objective of this study was to evaluate the potential for treating dye-contaminated waste streams by sorption using compost as a low-cost sorbent. A mature, thermophilic compost sample was used to sorb CI Acid Black 24, CI Acid Orange 74, CI Basic Blue 9, CI Basic Green 4, CI Direct Blue 71, CI Direct Orange 39, CI Reactive Orange 16 and CI Reactive Red 2 from solution using a batch-sorption method. With the exception of the two reactive dyes, the sorption kinetics were favourable for a continuous-flow treatment process with the compost-dye mixtures reaching a steady state within 3-5 h. Based on limited comparisons, the affinity of the compost for each dye appeared to be competitive with other non-activated carbon sorbents. The results suggest that additional research on using compost as a sorbent for dye-contaminated solutions is warranted.

  9. Textile dyes removal from aqueous solution using Opuntia ficus-indica fruit waste as adsorbent and its characterization.

    PubMed

    Peláez-Cid, A A; Velázquez-Ugalde, I; Herrera-González, A M; García-Serrano, J

    2013-11-30

    For this research, three different adsorbents, one untreated and two chemically activated, were prepared from Opuntia ficus-indica fruit waste. By the construction of adsorption isotherms, its adsorption capabilities and the viability of its use in the removal of textile basic and direct type dyes were determined. It was found that the adsorbent with the most adsorption capacity for basic dyes was the one activated with NaClO, and, for direct dyes, it was the one activated with NaOH. Langmuir and Freundlich equations isotherms were applied for the analysis of the experimental data. It was found that the Freundlich model best described the adsorption behavior. The adsorption capacity was improved when the pH of the dye solution had an acid value. The specific surface area of the adsorbents was calculated by means of methylene blue adsorption at 298 K to stay within a range between 348 and 643 m(2) g(-1). The FTIR spectroscopic characterization technique, the SEM, the point of zero charge, and the elemental analysis show the chemical and physical characteristics of the studied adsorbents, which confirm the adsorption results obtained. PMID:24071717

  10. Removal of dyes using immobilized titanium dioxide illuminated by fluorescent lamps.

    PubMed

    Zainal, Zulkarnain; Hui, Lee Kong; Hussein, Mohd Zobir; Taufiq-Yap, Yun Hin; Abdullah, Abdul Halim; Ramli, Irmawati

    2005-10-17

    The photodegradation of various dyes in aqueous solution was studied. Experiments were carried out using glass coated titanium dioxide thin film as photocatalyst. Photodegradation processes of methylene blue (MB), methyl orange (MO), indigo carmine (IC), chicago sky blue 6B (CSB), and mixed dye (MD, mixture of the four mentioned single dye) were reported. As each photodegradation system is pH dependent, the photodegradation experiment was carried out in each dye photodegradation reactive pH range at approximately 28 degrees C. The dyes removal efficiency was studied and compared using UV-vis spectrophotometer analysis. The total removal of each dye was: methylene blue (90.3%), methyl orange (98.5%), indigo carmine (92.4%), chicago sky blue 6B (60.3%), and mixed dyes (70.1%), respectively. The characteristic of the photocatalyst was investigated using X-ray diffractometer (XRD). The amount of each dye intermediate produced in the photodegradation process was also determined with the help of total organic carbon (TOC) analysis. PMID:15996813

  11. Magnetic Pycnoporus sanguineus-loaded alginate composite beads for removing dye from aqueous solutions.

    PubMed

    Yang, Chih-Hui; Shih, Ming-Cheng; Chiu, Han-Chen; Huang, Keng-Shiang

    2014-01-01

    Dye pollution in wastewater is a severe environmental problem because treating water containing dyes using conventional physical, chemical, and biological treatments is difficult. A conventional process is used to adsorb dyes and filter wastewater. Magnetic filtration is an emerging technology. In this study, magnetic Pycnoporus sanguineus-loaded alginate composite beads were employed to remove a dye solution. A white rot fungus, P. sanguineus, immobilized in alginate beads were used as a biosorbent to remove the dye solution. An alginate polymer could protect P. sanguineus in acidic environments. Superparamagnetic nanomaterials, iron oxide nanoparticles, were combined with alginate gels to form magnetic alginate composites. The magnetic guidability of alginate composites and biocompatibility of iron oxide nanoparticles facilitated the magnetic filtration and separation processes. The fungus cells were immobilized in loaded alginate composites to study the influence of the initial dye concentration and pH on the biosorption capacity. The composite beads could be removed easily post-adsorption by using a magnetic filtration process. When the amount of composite beads was varied, the results of kinetic studies of malachite green adsorption by immobilized cells of P. sanguineus fitted well with the pseudo-second-order model. The results indicated that the magnetic composite beads effectively adsorbed the dye solution from wastewater and were environmentally friendly. PMID:24945580

  12. Photocatalytic removal of C.I. Basic Red 46 on immobilized TiO2 nanoparticles: Artificial neural network modelling

    Microsoft Academic Search

    A. R. Khataee

    2009-01-01

    C.I. Basic Red 46, commonly used as a textile dye, was photocatalytically removed using supported TiO2 nanoparticles irradiated by a 30 W UV?C lamp in a batch reactor. The investigated photocatalyst was industrial Degussa P25 (crystallite mean size 21 nm) immobilized on glass beads by a heat attachment method. The catalyst was characterized by XRD, SEM, TEM and BET techniques.

  13. Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: Kinetic and equilibrium studies

    Microsoft Academic Search

    Grégorio Crini; Harmel Ndongo Peindy; Frédéric Gimbert; Capucine Robert

    2007-01-01

    Batch sorption experiments were carried out for the removal of C.I. Basic Green 4 (Malachite Green), a cationic dye from its aqueous solution using cyclodextrin-based material (CD\\/CMC material) as adsorbent. The operating variables studied were adsorbent mass, particle size, agitation speed, solution pH, contact time and initial dye concentration. Adsorption experiments indicated that the adsorption capacity was dependent of operating

  14. Removal of Acid Dyes from Aqueous Solutions using Chemically Activated Carbon

    Microsoft Academic Search

    Özgül Gerçel; H. Ferdi Gerçel

    2009-01-01

    Textile dyes (Acid Yellow 17 and Acid Orange 7) were removed from its aqueous solution in batch and continuous packed bed adsorption systems by using thermally activated Euphorbia macroclada carbon with respect to contact time, initial dye concentration, and temperature. The activated carbon was prepared using a cheap plant-based material called Euphorbia macroclada, which was chemically modified with K2CO3. Lagergren-first-order

  15. REMOVAL AND RECOVERY OF DYESTUFFS FROM DYEING WASTEWATERS

    Microsoft Academic Search

    Mona M. Naim; Yehia M. El Abd

    2002-01-01

    The toxic nature of some dyestuffs (DSs) has long been recognized. Accordingly, dyeing wastewaters represent a source of water contamination, and should be treated in some way so as to reduce the concentration of the polluting DSs to permissible limits, prior to dumping its wastewater. In addition, some DSs can be recovered for reuse, a point which should represent saving

  16. Recycling of agricultural solid waste, coir pith: removal of anions, heavy metals, organics and dyes from water by adsorption onto ZnCl2 activated coir pith carbon.

    PubMed

    Namasivayam, C; Sangeetha, D

    2006-07-31

    The abundant lignocellulosic agricultural waste, coir pith is used to develop ZnCl(2) activated carbon and applied to the removal of toxic anions, heavy metals, organic compounds and dyes from water. Sorption of inorganic anions such as nitrate, thiocyanate, selenite, chromium(VI), vanadium(V), sulfate, molybdate, phosphate and heavy metals such as nickel(II) and mercury(II) has been studied. Removal of organics such as resorcinol, 4-nitrophenol, catechol, bisphenol A, 2-aminophenol, quinol, O-cresol, phenol and 2-chlorophenol has also been investigated. Uptake of acidic dyes such as acid brilliant blue, acid violet, basic dyes such as methylene blue, rhodamine B, direct dyes such as direct red 12B, congo red and reactive dyes such as procion red, procion orange were also examined to assess the possible use of the adsorbent for the treatment of contaminated ground water. Favorable conditions for maximum removal of all adsorbates at the adsorbate concentration of 20 mg/L were used. Results show that ZnCl(2) activated coir pith carbon is effective for the removal of toxic pollutants from water. PMID:16406295

  17. Removal of reactive dyes from wastewater by adsorption on coir pith activated carbon.

    PubMed

    Santhy, K; Selvapathy, P

    2006-07-01

    The removal efficiency of activated carbon prepared from coir pith towards three highly used reactive dyes in textile industry was investigated. Batch experiments showed that the adsorption of dyes increased with an increase in contact time and carbon dose. Maximum de-colorisation of all the dyes was observed at acidic pH. Adsorption of dyes was found to follow the Freundlich model. Kinetic studies indicated that the adsorption followed first order and the values of the Lagergren rate constants of the dyes were in the range of 1.77 x 10(-2)-2.69 x 10(-2)min(-1). The column experiments using granular form of the carbon (obtained by agglomeration with polyvinyl acetate) showed that adsorption efficiency increased with an increase in bed depth and decrease of flow rate. The bed depth service time (BDST) analysis carried out for the dyes indicated a linear relationship between bed depth and service time. The exhausted carbon could be completely regenerated and put to repeated use by elution with 1.0M NaOH. The coir pith activated carbon was not only effective in removal of colour but also significantly reduced COD levels of the textile wastewater. PMID:16040240

  18. Preparation of surface modified zinc oxide nanoparticle with high capacity dye removal ability

    SciTech Connect

    Mahmoodi, Niyaz Mohammad, E-mail: nm_mahmoodi@yahoo.com [Department of Environmental Research, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of); Najafi, Farhood [Department of Resin and Additives, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of)] [Department of Resin and Additives, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of)

    2012-07-15

    Highlights: ? Amine-functionalized zinc oxide nanoparticle (AFZON) was synthesized. ? Isotherm and kinetics data followed Langmuir isotherm and pseudo-second order kinetic model, respectively. ? Q{sub 0} of ZON for AB25, DR23 and DR31 was 20, 12 and 15 mg/g, respectively. ? Q{sub 0} of AFZON for AB25, DR23 and DR31 was 1250, 1000 and 1429 mg/g, respectively. ? AFZON was regenerated at pH 12. -- Abstract: In this paper, the surface modification of zinc oxide nanoparticle (ZON) by amine functionalization was studied to prepare high capacity adsorbent. Dye removal ability of amine-functionalized zinc oxide nanoparticle (AFZON) and zinc oxide nanoparticle (ZON) was also investigated. The physical characteristics of AFZON were studied using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Acid Blue 25 (AB25), Direct Red 23 (DR23) and Direct Red 31 (DR31) were used as model compounds. The effect of operational parameters such as dye concentration, adsorbent dosage, pH and salt on dye removal was evaluated. The isotherm and kinetic of dye adsorption were studied. The maximum dye adsorption capacity (Q{sub 0}) was 20 mg/g AB25, 12 mg/g DR23 and 15 mg/g DR31 for ZON and 1250 mg/g AB25, 1000 mg/g DR23 and 1429 mg/g DR31 for AFZON. It was found that dye adsorption followed Langmuir isotherm. Adsorption kinetic of dyes was found to conform to pseudo-second order kinetics. Dye desorption tests (adsorbent regeneration) showed that the maximum dye release of 90% AB25, 86% for DR23 and 90% for DR31 were achieved in aqueous solution at pH 12. Based on the data of the present investigation, it can be concluded that the AFZON being an adsorbent with high dye adsorption capacity might be a suitable alternative to remove dyes from colored aqueous solutions.

  19. Phosphorus removal from waste waters using basic oxygen steel slag.

    PubMed

    Bowden, Lawrence I; Jarvis, Adam P; Younger, Paul L; Johnson, Karen L

    2009-04-01

    Few studies have characterized reactive media for phosphorus (P) removal in passive treatment systems in terms of both batch and continuous flow experiments. This study uses basic oxygen steel slag (BOS) from a U.K. feedstock. Batch experiments demonstrated the effective removal of phosphorus with varying initial pH, initial P concentration, clast size, and ionic strength to represent environmental conditions. Continuous flow column experiments, operated for 406 days, with an influent P concentration of 1-50 mg/L (typical of domestic and dairy parlour waste) achieved removal of up to 62%; a second set of column experiments running for 306 days with an influent P concentration of 100-300 mg/L achieved a maximum effective removal of 8.39 mg/g. This figure is higher than that for other slags reviewed in this study (e.g., EAF Slag 3.93 mg/g and NZ melter slag 1.23 mg/g). XRD, E-SEM, and EDX data provide evidence for a sequential series of increasingly less soluble P mineral phases forming on the BOS surface (octa-calcium phosphate, brushite, and hydroxylapatite),which suggests that BOS may be a suitable substrate in passive treatment systems, providing a long-term P removal mechanism. PMID:19452904

  20. Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust

    Microsoft Academic Search

    B. H. Hameed; A. L. Ahmad; K. N. A. Latiff

    2007-01-01

    Activated carbon prepared from non-wood forest product waste (rattan sawdust) has been utilized as the adsorbent for the removal of methylene blue dye from an aqueous solution. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. Equilibrium data fitted well with the Langmuir model with maximum monolayer adsorption capacity of 294.14mg\\/g. The dimensionless factor, RL revealed

  1. Geopolymeric adsorbents from fly ash for dye removal from aqueous solution

    SciTech Connect

    Li, L.; Wang, S.B.; Zhu, Z.H. [Curtin University of Technology, Perth, WA (Australia). Dept. of Chemical Engineering

    2006-08-01

    Adsorbents from coal fly ash treated by a solid-state fusion method using NaOH were prepared. It was found that amorphous aluminosilicate, geopolymers would be formed. These fly ash-derived inorganic polymers were assessed as potential adsorbents for removal of some basic dyes, methylene blue and crystal violet, from aqueous solution. It was found that the adsorption capacity of the synthesised adsorbents depends on the preparation conditions such as NaOH:fly-ash ratio and fusion temperature with the optimal conditions being at 1.2:1 weight ratio of Na:fly-ash at 250-350{sup o}C. The synthesised materials exhibit much higher adsorption capacity than fly ash itself and natural zeolite. The adsorption isotherm can be fitted by Langmuir and Freundlich models while the two-site Langmuir model produced the best results. It was also found that the fly ash derived geopolymeric adsorbents show higher adsorption capacity for crystal violet than methylene blue and the adsorption temperature influences the adsorption capacity. Kinetic studies show that the adsorption process follows the pseudo second-order kinetics.

  2. Some properties of a sequencing batch reactor system for removal of vat dyes.

    PubMed

    Sirianuntapiboon, Suntud; Chairattanawan, Kanidta; Jungphungsukpanich, Sawanya

    2006-07-01

    Bio-sludge from a wastewater treatment plant could be used as an adsorbent of vat dye from textile wastewater. Resting bio-sludge gave a higher adsorption capacity than dead bio-sludge. The resting bio-sludge from a textile wastewater treatment plant gave relatively high COD, BOD5 and dye adsorption capacity of 364.4 +/- 4.3, 178.0 +/- 9.0 and 50.5 +/- 1.3 mg/g of bio-sludge, respectively, in synthetic textile wastewater containing 40 mg/l Vat Yellow 1. Another advantage of the bio-sludge was that, after washing with 0.1 N NaOH solution, it was reusable without any activity loss. Through treatment with a sequencing batch reactor (SBR) system, both organic and dye in STIWW could be removed. The maximum dye (Vat Yellow 1), COD, BOD5 and TKN removal efficiencies of the SBR system under an MLSS of 2000 mg/l and an HRT of three days were 98.5 +/- 1.0%, 96.9 +/- 0.7%, 98.6 +/- 0.1% and 93.4 +/- 1.3%, respectively. Although, the dye and organic removal efficiencies of the SBR system with real textile wastewater were quite low, they could be increased by adding organic matters, especially glucose. The dye, COD, BOD5 and TKN removal efficiencies of the SBR system with glucose (0.89 g/l) supplemented textile industrial wastewater were 75.12 +/- 1.2%, 70.61 +/- 3.4%, 96.7 +/- 0.0%, and 63.2 +/- 1.1%, respectively. PMID:16023339

  3. Magnetic fluid modified peanut husks as an adsorbent for organic dyes removal

    NASA Astrophysics Data System (ADS)

    Safarik, Ivo; Safarikova, Mirka

    Magnetically responsive nanocomposite materials, prepared by modification of diamagnetic materials by magnetic fluids (ferrofluids), have already found many important applications in various areas of biosciences, medicine, biotechnology, environmental technology etc. Ferrofluid modified biological waste (peanut husks) has been successfully used for the separation and removal of water soluble organic dyes and thus this low cost adsorbent could be potentially used for waste water treatment.

  4. Adsorption kinetics of removal of a toxic dye, Malachite Green, from wastewater by using hen feathers

    Microsoft Academic Search

    Alok Mittal

    2006-01-01

    The paper includes meticulous utilization of hen feather as potential adsorbent to remove a hazardous triphenylmethane dye, Malachite Green from wastewater. The adsorption studies were carried out at 30, 40 and 50°C and effects of pH, temperature, amount of adsorbent, contact time, concentration of adsorbate, etc. on the adsorption were measured. On the basis of adsorption data Langmuir and Freundlich

  5. Utilization of walnut shells (Juglans regia) as an adsorbent for the removal of acid dyes

    Microsoft Academic Search

    Haluk Aydin; Gülay Baysal; Yasemin Buluta

    2009-01-01

    The removal of acid red 183 and acid green 25 onto walnut shells (Juglans regia) (WS) from aqueous solutions was investigated by using parameters such as contact time, temperature, pH, adsorbent doses and initial dye concentration. Adsorption equilibrium was reached within 30 min. The adsorption isotherms were described by means of the Langmuir and Freundlich isotherms. It was found that

  6. Current chemical concepts of acids and bases and their application to anionic (“acid”) and cationic (“basic”) dyes

    Microsoft Academic Search

    H. Puchtler; S. N. Meloan; M. Spencer

    1985-01-01

    Summary In biomedical studies, dyes are divided into “acid” and “basicdyes. This classification cannot be reconciled with current chemical definitions of acids and bases. Brönsted-Lowry acids are compounds that can donate protons; bases are proton acceptors. The definition of acids and bases is independent of the electric charge, i.e. acids and bases can be neutral, anionic or cationic. Reactions

  7. Coagulation/flocculation process for dye removal using sludge from water treatment plant: optimization through response surface methodology.

    PubMed

    Moghaddam, S Sadri; Moghaddam, M R Alavi; Arami, M

    2010-03-15

    In this study, performance of a waterworks sludge (FCS: ferric chloride sludge) for the removal of acid red 119 (AR119) dye from aqueous solutions were investigated. For this purpose, response surface methodology (RSM) was applied to optimize three operating variables of coagulation/flocculation process including initial pH, coagulant dosage and initial dye concentration. The results showed that the decrease of initial pH was always beneficial for enhancing dye removal and no re-stabilization phenomenon was occurred even at the used maximum FCS dosage. It seems that iron hydroxides of the FCS could neutralize the negative charges on dye molecules or cause to the trapping of the dye ones. Therefore, the sweep flocculation and/or the charge neutralization might play key roles in the enhancement of dye removal. The optimum initial pH, FCS dosage and initial dye concentration were found to be 3.5, 236.68 mg dried FCS/L and 65.91 mg/L, respectively. Dye removal of 96.53% is observed which confirms close to RSM results. Therefore, it can be concluded that reusing the FCS as a low-cost material into the coagulation/flocculation process in wastewater treatment plants can offer some advantages such as high efficiency for AR119 dye removal and economic savings on overall treatment plant operation costs. PMID:19944532

  8. Pulsed 532 nm laser wirestripping: Removal of dye-doped polyurethane insulation

    NASA Astrophysics Data System (ADS)

    Brannon, J.; Snyder, C.

    1994-07-01

    Removal of rhodamine 6G doped polyurethane insulation coated onto 50 ?m diameter wire is shown to proceed efficiently and cleanly by irradiation with 532 nm Q-switched pulses from a Nd:YAG laser. The stripping action produced by this method is similar in quality to excimer laser wirestripping. Several experimental parameters were explored including fluence, pulse duration, dye concentration, and the number of incident pulses. Acceptable stripping conditions were obtained for a 3 5 s exposure at 10 Hz, using a dye concentration of 10% by weight, and 12 n pulses at 650 mJ/cm2. Nearly 0.5 ?m/pulse is removed at this fluence, which exceeds the threshold fluence of ?600 mJ/cm2 by only 50 mJ/cm2. The measured 532 nm absorption coefficient of the 10% dye-doped polyurethane was ?4×104 cm-1. Lower fluences and/or dye concentrations produced inadequate stripping, while shorter duration pulses caused unacceptable melting of the thin gold layer which covered the copper core of the wire. Pulse-by-pulse photographs of the stripping action clearly show melting of the dye/polymer insulation, and thermal “rollback” of the insulation near the stripped end. Regardless, excellent edge definition is obtained by this method.

  9. Synthesis, characterization and dye removal capacities of N-doped mesoporous carbons.

    PubMed

    Sánchez-Sánchez, Á; Suárez-García, F; Martínez-Alonso, A; Tascón, J M D

    2015-07-15

    Nitrogen-doped ordered mesoporous carbons were synthesized by chemical vapor deposition, using acetonitrile as carbon and nitrogen source and SBA-15 as mesoporous silica template. Their porous texture, structural order and surface chemistry were studied as a function of the experimental conditions (acetonitrile stream concentration and deposition time). A non-doped ordered mesoporous carbon was also prepared by the same procedure using propylene as carbon source. Methylene blue, methyl orange and fuchsin acid were selected as probe molecules to investigate the dye adsorption behavior on the ordered mesoporous carbons. Both N-doped and non-doped ordered mesoporous carbons adsorbed large amounts of these three dyes demonstrating the importance of mesoporosity, especially for the adsorption of larger dyes (e.g. fuchsin acid). The presence of nitrogen functional groups was detrimental for the adsorption of the basic dye (methylene blue). On the other hand, the nitrogen functionalities improved the adsorption kinetics for both acid and basic dyes, and the N-doped samples achieved 100% of their maximum adsorption capacities in less than 15min. PMID:25801137

  10. REMOVAL OF DYE BY IMMOBILISED PHOTOCATALYST LOADED ACTIVATED CARBON

    Microsoft Academic Search

    Zulkarnain Zainal; Chang Sook Keng; Abdul Halim Abdullah

    The ability of activated carbon to adsorb and titanium dioxide to photodegrade organic impurities from water bodies is well accepted. Combination of the two is expected to enhance the removal efficiency due to the synergistic effect. This has enabled activated carbon to adsorb more and at the same time the lifespan of activated carbon is prolonged as the workload of

  11. Adsorptive removal of congo red dye from aqueous solution using bael shell carbon

    NASA Astrophysics Data System (ADS)

    Ahmad, Rais; Kumar, Rajeev

    2010-12-01

    This study investigates the potential use of bael shell carbon (BSC) as an adsorbent for the removal of congo red (CR) dye from aqueous solution. The effect of various operational parameters such as contact time, temperature, pH, and dye concentration were studied. The adsorption kinetics was modeled by first-order reversible kinetics, pseudo-first-order kinetics, and pseudo-second-order kinetics. The dye uptake process obeyed the pseudo-second-order kinetic expression at pH 5.7, 7 and 8 whereas the pseudo-first-order kinetic model was fitted well at pH 9. Langmuir, Freundlich and Temkin adsorption models were applied to fit adsorption equilibrium data. The best-fitted data was obtained with the Freundlich model. Thermodynamic study showed that adsorption of CR onto BSC was endothermic in nature and favorable with the positive ? H° value of 13.613 kJ/mol.

  12. Structure, morphologies and dye removal efficiency of ZnO nanorods grown on polycrystalline Zn substrate

    NASA Astrophysics Data System (ADS)

    Yin, Tiantian; Chen, Nan; Zhang, Yingying; Cai, Xiaoyan; Wang, Yude

    2014-10-01

    Rod-like ZnO with the different morphologies were grown on polycrystalline Zn substrate by a simple hydrothermal process in a NaOH or NH4OH solution at the hydrothermal temperature range from 80 to 150 °C for different reaction time. Variations preparation in the different alkali solution concentration, hydrothermal temperature, and reaction times were explored to shed light on the morphology of the rod-like nanostructures. The thorough structural characterization including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron diffraction, and X-ray photoelectron spectrum (XPS) were employed to examine the morphology and the microstructure of the final products. It was found that alkali solution concentration, hydrothermal temperature and time have important influence on the morphology of the rod-like nanostructures. The dye removal efficiency of ZnO nanorods was explored by the decoloration of azo dye Congo red (CR). In order to obtain the optimum removal conditions of Congo red, the performance of removing CR with various initial concentrations by ZnO nanorods on Zn substrates with different morphologies was tested under various ambient conditions (visible light illumination and darkness). All prepared samples showed an excellent dye removal efficiency for organic pollutants CR from wastewater, making them promising candidates for the wastewater treatment.

  13. Fast dye removal from water by starch-based nanocomposites.

    PubMed

    Gomes, Raelle F; de Azevedo, Antonio C Neto; Pereira, Antonio G B; Muniz, Edvani C; Fajardo, André R; Rodrigues, Francisco H A

    2015-09-15

    Robust and efficient methylene blue (MB) adsorbent was prepared based on starch/cellulose nanowhiskers hydrogel composite. Maximum MB adsorption capacity of ?2050mgperg of dried hydrogel was obtained with the composite at 5wt.% of cellulose nanowhiskers and at pH 5. Adsorption capacity varied from 1450mg/g to 2050mg/g with increasing the initial MB concentration from 1500mg/L to 2500mg/L, respectively. For all the concentrations studied ca. 90% of MB was removed by the adsorbent. Optimal conditions were obtained at pH?5 due to the generation of negatively charged groups (COO(-)) in the adsorbent, which can strongly interact with the positive charges from MB. The main advantage of this system over other reported adsorbents, besides the fact of being synthesized from biodegradable polymers (starch and cellulose), is its fast adsorption kinetics that follows the pseudo-second order model, which is based on chimisorption phenomenon. Saturation condition was reached as fast as 1h of experiments owing to the formation of an adsorbed MB monolayer as suggested by the Langmuir isotherm model. Desorption experiments showed 60wt.% of MB loaded can be removed from the adsorbent by immersing it in a pH 1 solution, showing its feasibility to be reused. Therefore, starch/cellulose nanowhiskers hydrogel composite presents outstanding capacity to be employed in the remediation of MB contaminated wastewaters. PMID:26037269

  14. A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste

    Microsoft Academic Search

    Pankaj Sharma; Harleen Kaur; Monika Sharma; Vishal Sahore

    The effluent water of many industries, such as textiles, leather, paper, printing, cosmetics, etc., contains large amount\\u000a of hazardous dyes. There is huge number of treatment processes as well as adsorbent which are available for the processing\\u000a of this effluent water-containing dye content. The applicability of naturally available low cast and eco-friendly adsorbents,\\u000a for the removal of hazardous dyes from

  15. Photocatalytic removal of C.I. Basic Red 46 on immobilized TiO2 nanoparticles: artificial neural network modelling.

    PubMed

    Khataee, A R

    2009-10-01

    C.I. Basic Red 46, commonly used as a textile dye, was photocatalytically removed using supported TiO2 nanoparticles irradiated by a 30 W UV-C lamp in a batch reactor. The investigated photocatalyst was industrial Degussa P25 (crystallite mean size 21 nm) immobilized on glass beads by a heat attachment method. The catalyst was characterized by XRD, SEM, TEM and BET techniques. The process of the dye decolorization in the presence of TiO2 nanoparticles was experimentally studied through changing the initial dye concentration, UV light intensity and initial pH. The influence of inorganic anions such as chloride, sulphate, bicarbonate, carbonate and phosphate on the photocatalytic decolorization of BR46 was investigated. The decolorization of BR46 follows the pseudo-first-order kinetic according to the Langmuir-Hinshelwood model (k1 = 0.273 mg L(-1) min(-1), 2 = 0.313 (mg L(-1))(-1)). The efficiency parameters such as apparent quantum yield and electrical energy per order (EEO) were estimated. An artificial neural network model (ANN) was developed to predict the photocatalytic decolorization of BR46 solution. The findings indicated that the ANN provided reasonable predictive performance (R2 = 0.96). The influence of each parameter on the variable studied was assessed: initial concentration of the dye being the most significant factor, followed by the initial pH and reaction time. PMID:19947146

  16. A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water

    Microsoft Academic Search

    Amit Bhatnagar; A. K. Jain

    2005-01-01

    Four adsorbents have been prepared from industrial wastes obtained from the steel and fertilizer industries and investigated for their utility to remove cationic dyes. Studies have shown that the adsorbents prepared from blast furnace sludge, dust, and slag have poor porosity and low surface area, resulting in very low efficiency for the adsorption of dyes. On the other hand, carbonaceous

  17. Effect of OH and silanol groups in the removal of dyes from aqueous solution using diatomite

    Microsoft Academic Search

    M. A. M. Khraisheh; M. A. Al-Ghouti; S. J. Allen; M. N. Ahmad

    2005-01-01

    The removal of methylene blue, reactive black (C-NN), and reactive yellow (MI-2RN) from aqueous solution by calcined and raw diatomite at 980°C was studied. These studies demonstrated the importance of the various functional groups on the mechanism of adsorption. The role of pore size distribution in the dye adsorption studies was also investigated. The adsorption isotherms were pH dependent. Henry

  18. Use of Phanerochaete chrysosporium biomass for the removal of textile dyes from a synthetic effluent

    Microsoft Academic Search

    D. K. Bakshi; S. Saha; I. Sindhu; P. Sharma

    2006-01-01

    Summary  The use of Phanerochaete chrysosporium biomass for the removal of Reactofix Golden Yellow from aqueous solution and eight textile dyes (four azo and four anthraquinone) from a synthetic effluent (0.6 g\\/l) at different pH, temperature and biomass concentrations was studied. Adsorption was maximum at pH 2.0 and 40 C using 2.45 g mycelial biomass. The rate constant of adsorption was 1.9510?1\\/min for Reactofix Golden

  19. Removal of textile dyes from aqueous solution by babassu coconut epicarp ( Orbignya speciosa)

    Microsoft Academic Search

    Adriana P. Vieira; Sirlane A. A. Santana; Cícero W. B. Bezerra; Hildo A. S. Silva; José A. P. Chaves; Júlio C. P. Melo; Edson C. Silva Filho; Claudio Airoldi

    2011-01-01

    Babassu coconut (Orbignya speciosa) epicarp (BCE) was used as biomass to remove textile dyes from aqueous solution. Physical characteristics of the BCE were investigated using infrared spectroscopy (IR), point of zero charge (pHpzc), surface area, pore volume and diameter. A batch system was applied to study the sorption of Blue Remazol R160 (BR 160), Rubi S2G (R S2G), Red Remazol

  20. Carboxymethyl cellulose-g-poly(2-(dimethylamino) ethyl methacrylate) hydrogel as adsorbent for dye removal.

    PubMed

    Salama, Ahmed; Shukry, Nadia; El-Sakhawy, Mohamed

    2015-02-01

    A novel adsorbent was prepared via crosslinking graft copolymerization of 2-(dimethylamino) ethyl methacrylate (DMAEMA) onto carboxymethyl cellulose (CMC) backbone. Ethylene glycol dimethacrylate and potassium persulphate were used as crosslinker and initiator, respectively. CMC-g-PDMAEMA hydrogel was used to remove methyl orange (MO) from aqueous solutions. The adsorption kinetics and isotherms were found to follow Pseudo-second-order kinetic model and Langmuir model, respectively. The high maximum adsorption capacity (1825 mg/g) implied that CMC-g-PDMAEMA can be used as promising adsorbent for the synthetic dyes removal from wastewater. PMID:25450049

  1. Optimization of process variables by response surface methodology for malachite green dye removal using lime peel activated carbon

    NASA Astrophysics Data System (ADS)

    Ahmad, Mohd Azmier; Afandi, Nur Syahidah; Bello, Olugbenga Solomon

    2015-04-01

    This study investigates the adsorptive removal of malachite green (MG) dye from aqueous solutions using chemically modified lime-peel-based activated carbon (LPAC). The adsorbent prepared was characterized using FTIR, SEM, Proximate analysis and BET techniques, respectively. Central composite design (CCD) in response surface methodology (RSM) was used to optimize the adsorption process. The effects of three variables: activation temperature, activation time and chemical impregnation ratio (IR) using KOH and their effects on percentage of dye removal and LPAC yield were investigated. Based on CCD design, quadratic models and two factor interactions (2FI) were developed correlating the adsorption variables to the two responses. Analysis of variance (ANOVA) was used to judge the adequacy of the model. The optimum conditions of MG dye removal using LPAC are: activation temperature (796 °C), activation time (1.0 h) and impregnation ratio (2.6), respectively. The percentage of MG dye removal obtained was 94.68 % resulting in 17.88 % LPAC yield. The percentage of error between predicted and experimental results for the removal of MG dye is 0.4 %. Model prediction was in good agreement with experimental results and LPAC was found to be effective in removing MG dye from aqueous solution.

  2. Effective removal of Congo red dye from aqueous solution using modified xanthan gum/silica hybrid nanocomposite as adsorbent.

    PubMed

    Ghorai, Soumitra; Sarkar, Amit Kumar; Panda, A B; Pal, Sagar

    2013-09-01

    The aim of this work is to study the feasibility of XG-g-PAM/SiO2 nanocomposite towards its potential application as high performance adsorbent for removal of Congo red (CR) dye from aqueous solution. The surface area, average pore size and total pore volume of the developed nanocomposite has been determined. The efficiency of CR dye adsorption depends on various factors like pH, temperature of the solution, equilibrium time of adsorption, agitation speed, initial concentration of dye and adsorbent dosage. It has been observed that the nanocomposite is having excellent CR dye adsorption capacity (Q0=209.205 mg g(-1)), which is considerably high. The dye adsorption process is controlled by pseudo-second order and intraparticle diffusion kinetic models. The adsorption equilibrium data correlates well with Langmuir isotherm. Desorption study indicates the efficient regeneration ability of the dye loaded nanocomposite. PMID:23896441

  3. Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment

    NASA Astrophysics Data System (ADS)

    Visa, Maria; Chelaru, Andreea-Maria

    2014-06-01

    Fly ash resulted from coal burning is a waste that can be used in wastewater treatment for removal of dyes and heavy metals by adsorption. Class “F” fly ash (FA), collected from the Central Heat and Power (CHP) Plant Brasov (Romania), with oxides composition SiO2/Al2O3 over 2.4 was used for obtaining a new substrate with good adsorption capacity for dyes and heavy metals from wastewater. A new material was obtained from modified fly ash with NaOH and hexadecyltrimethylammonium bromide (HTAB) a cationic surfactant. Contact time, optimum amount of substrate and the pH corresponding to 50 mL solution of pollutants were the parameters optimized for obtaining the maximum efficiency in the adsorption process. The optimized adsorption parameters were further used in thermodynamic and kinetic studies of the adsorption processes. The adsorption kinetic mechanisms, and the substrate capacities are further discussed correlated with the surface structure (XRD), composition (EDS, FTIR), and morphology (SEM, AFM). The results indicate that the novel nano-substrate composite with fly ash modified can be used as an efficient and low cost adsorbent for simultaneous removal of dyes and heavy metals, the resulted water respects the discharge regulations.

  4. Accelerated removal of Sudan dye by Shewanella oneidensis MR-1 in the presence of quinones and humic acids.

    PubMed

    Liu, Guangfei; Zhou, Jiti; Ji, Qiuyan; Wang, Jing; Jin, Ruofei; Lv, Hong

    2013-09-01

    Although there have been many studies on bacterial removal of soluble azo dyes, much less information is available for biological treatment of water-insoluble azo dyes. The few bacterial species capable of removing Sudan dye generally require a long time to remove low concentrations of insoluble dye particles. The present work examined the efficient removal of Sudan I by Shewanella oneidensis MR-1 in the presence of redox mediator. It was found that the microbially reduced anthraquinone-2,6-disulfonate (AQDS) could abiotically reduce Sudan I, indicating the feasibility of microbially-mediated reduction. The addition of 100 ?M AQDS and other different quinone compounds led to 4.3-54.7 % increase in removal efficiencies in 22 h. However, adding 5-hydroxy-1,4-naphthoquinone into the system inhibited Sudan I removal. The presence of 10, 50 and 100 ?M AQDS stimulated the removal efficiency in 10 h from 26.4 to 42.8, 54.9 and 64.0 %, respectively. The presence of 300 ?M AQDS resulted in an eightfold increase in initial removal rate from 0.19 to 1.52 mg h?¹ g?¹ cell biomass. A linear relationship was observed between the initial removal rates and AQDS concentrations (0-100 ?M). Comparison of Michaelis-Menten kinetic constants revealed the advantage of AQDS-mediated removal over direct reduction. Different species of humic acid could also stimulate the removal of Sudan I. Scanning electronic microscopy analysis confirmed the accelerated removal performance in the presence of AQDS. These results provide a potential method for the efficient removal of insoluble Sudan dye. PMID:23539152

  5. Effects of compound bioflocculant on coagulation performance and floc properties for dye removal.

    PubMed

    Huang, Xin; Bo, Xiaowen; Zhao, Yanxia; Gao, Baoyu; Wang, Yan; Sun, Shenglei; Yue, Qinyan; Li, Qian

    2014-08-01

    A series of jar tests was conducted to investigate the coagulation performance of using compound bioflocculant (CBF) as a coagulant aid with aluminum sulfate (AS) and polyaluminum chloride (PAC) in synthetic dyeing wastewater treatment. Floc size, growth, breakage, re-growth and sedimentation natural were investigated by PDA2000. The results showed that the corresponding dual-coagulants of AS and PAC enhanced the color removal efficiency, especially at low aluminum dosage. Results also indicated that the floc generated by aluminum salts and CBF had larger size and higher growth rate. In addition, for both AS and PAC the floc recoverability was improved by addition of CBF. The adsorption and bridging effect of CBF performed a positive role in dye wastewater treatment. PMID:24656485

  6. NiO(111) nanosheets as efficient and recyclable adsorbents for dye pollutant removal from wastewater

    NASA Astrophysics Data System (ADS)

    Song, Zhi; Chen, Lifang; Hu, Juncheng; Richards, Ryan

    2009-07-01

    Semiconductor single-crystalline polar NiO(111) nanosheets with well-defined hexagonal holes have been investigated for application in dye adsorption and combustion processes. With regard to adsorption technologies, high surface area metal oxides have an advantage over activated carbon in that the adsorbed species can be combusted and the adsorbent reused in the case of metal oxides while regeneration of activated carbon remains challenging and thus the adsorbent/adsorbate system must be disposed of. Here, three typical textile dyes, reactive brilliant red X-3B, congo red and fuchsin red, were studied for removal from wastewater with two NiO systems and activated carbon. These studies revealed that the NiO(111) nanosheets exhibited much more favorable adsorptive properties than conventionally prepared nickel oxide powder (CP-NiO) obtained from thermal decomposition of nickel nitrate. The maximum adsorption capabilities of the three dyes on NiO(111) nanosheets reached 30.4 mg g-1, 35.15 mg g-1 and 22 mg g-1 for reactive brilliant red X-3B, congo red and fuchsin acid, respectively, while the maximum adsorption capabilities of the three dyes on CP-NiO were only 8.4, 13.2 and 12 mg g-1 for reactive brilliant red X-3B, congo red and fuchsin acid. To simulate the adsorption isotherm, two commonly employed models, the Langmuir and the Freundlich isotherms, were selected to explicate the interaction of the dye and NiO(111). The isotherm evaluations revealed that the Langmuir model demonstrated better fit to experimental equilibrium data than the Freundlich model. The maximum predicted adsorption capacity was 36.1 mg g-1. In addition, adsorption kinetic data of NiO(111) followed a pseudo-second-order rate for congo red. These studies infer that NiO(111) nanosheets possess desirable properties for application in adsorption and combustion applications.

  7. Poly (N-isopropylacrylamide) microgels for organic dye removal from water.

    PubMed

    Parasuraman, Deepika; Serpe, Michael J

    2011-07-01

    The ability of poly (N-isopropylacrylamide) (pNIPAm), and pNIPAm-co-acrylic acid (pNIPAm-co-AAc) microgels to remove an organic azo dye molecule, 4-(2-Hydroxy-1-naphthylazo) benzenesulfonic acid sodium salt (Orange II) from aqueous solutions at both room and elevated temperature was assessed. At room temperature, we found that the amount of Orange II removed from water (removal efficiency) increased with increasing AAc and microgel concentration. The removal of Orange II from water was also fit by a Langmuir sorption isotherm model. Furthermore, we found the extent of Orange II removal depended on solution temperature; more Orange II was removed from water at elevated temperature and as the microgels were held at that temperature for longer durations of time. Additionally, by increasing the cycles between high and ambient temperature, the removal of Orange II was enhanced, although this was only true for two temperature cycles. We hypothesize that this is a result of the thermoresponsive nature of pNIPAm-based microgels which deswell at elevated temperature expelling their solvating water and when the microgels are cooled back down they reswell with the Orange II containing water. We also hypothesize that the microgels become saturated after the second heating cycle and so the efficiency of removal did not increase further. Finally, we assessed the ability of the microgels to retain the Orange II after it is removed from the aqueous solution. We determined that the microgels "leak" 25.6% of the Orange II that was originally removed from the water. PMID:21682294

  8. Activated parthenium carbon as an adsorbent for the removal of dyes and heavy metal ions from aqueous solution

    Microsoft Academic Search

    V Rajeshwarisivaraj; V Subburam

    2002-01-01

    Parthenium hysterophorous (L) is a perennial weed distributed all over the country. Carbonized parthenium activated with conc. H2SO4 and ammonium persulphate was effective in the removal of dyes, heavy metals and phenols. Variation in the percentage removal of adsorbates was observed with increase in the contact time. Among the adsorbates tested, the affinity of the activated parthenium carbon was highest

  9. Removal of cationic dye from aqueous solution using jackfruit peel as non-conventional low-cost adsorbent

    Microsoft Academic Search

    B. H. Hameed

    2009-01-01

    This study aimed at investigating the feasibility of using jackfruit peel (JFP), a solid waste, abundantly available in Malaysia, for the adsorption of methylene blue, a cationic dye. Batch adsorption studies were conducted to evaluate the effects of contact time, initial concentration (35–400mg\\/L), pH (2–11), and adsorbent dose (0.05–1.20g) on the removal of dye at temperature of 30°C. The experimental

  10. Removal of basic nitrogen compounds from hydrocarbon liquids

    DOEpatents

    Givens, Edwin N. (Bethlehem, PA); Hoover, David S. (New Tripoli, PA)

    1985-01-01

    A method is provided for reducing the concentration of basic nitrogen compounds in hydrocarbonaceous feedstock fluids used in the refining industry by providing a solid particulate carbonaceous adsorbent/fuel material such as coal having active basic nitrogen complexing sites on the surface thereof and the coal with a hydrocarbonaceous feedstock containing basic nitrogen compounds to facilitate attraction of the basic nitrogen compounds to the complexing sites and the formation of complexes thereof on the surface of the coal. The adsorbent coal material and the complexes formed thereon are from the feedstock fluid to provide a hydrocarbonaceous fluid of reduced basic nitrogen compound concentration. The coal can then be used as fuel for boilers and the like.

  11. Basic Study of Dyeing on Oshima-Tsumugi-Mushiro by Electrostatically Extracted Ink Jet System

    NASA Astrophysics Data System (ADS)

    Matsuo, Kazuhisa; Akiyama, Kouhei; Shirakawa, Hiroaki; Yamazaki, Hideki

    Application of electro-statically extracted ink-jet technology was studied in dyeing processing of Oshima-tsumugi-mushiro. It is needed to dye about 1mm width on that mushiro. Our results showed that, electrostatically extracted ink-jet technology was effective for application to dyeing processing automatically.

  12. Removal of reactive blue 19 dye by sono, photo and sonophotocatalytic oxidation using visible light.

    PubMed

    Khan, Muhammad Abdul Nasir; Siddique, Maria; Wahid, Fazli; Khan, Romana

    2015-09-01

    An efficient sonophotocatalytic degradation of reactive blue 19 (RB 19) dye was successfully carried out using sulfur-doped TiO2 (S-TiO2) nanoparticles. The effect of various treatment processes that is sonolysis, photolysis, catalysis, sonocatalysis, photocatalysis, and sonophotocatalysis were investigated for RB 19 removal. S-TiO2 were synthesized in 1, 3 and 5wt.% of sulfur by sol-gel process and characterized by X-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive X-ray (SEM-EDX), UV-Visible diffuse reflectance spectra (DRS). The results confirm anatase phase of TiO2, porous agglomerate structure, and a red shift in the absorbance spectra of S-TiO2. The dye degradation was studied by using UV-Vis spectrophotometer at ?max=594nm. The reaction parameters such as pH, catalyst dosage, initial dye concentration, ultrasonic power and effect of sulfur doping in different weight percent were studied to find out the optimum degradation conditions. Optimum conditions were found as: S-TiO2=5wt.%, catalyst (S-TiO2 5wt.%)=50mg, RB 19 solution concentration=20mgL(-1), pH=3, ultrasound power=100 and operating temperature=25°C. The response of 5wt.% S-TiO2 was found better than 1 and 3wt.% S-TiO2 and other forms TiO2. The sonophotocatalysis process was superior to other methods. During this process the ultrasound cavitation and photocatalysis water splitting takes place which leads to the generation of OH. As reveled by the GCMS results the reactive blue 19 (20mgL(-1)) was degraded to 90% within 120min. The S-TiO2 sonophotocatalysis system was studied for the first time for dye degradation and was found practicable, efficient and cost effective for the degradation of complex and resistant dyes such as RB19. PMID:25899438

  13. Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions

    Microsoft Academic Search

    K Kadirvelu; M Kavipriya; C Karthika; M Radhika; N Vennilamani; S Pattabhi

    2003-01-01

    Activated carbons were prepared from the agricultural solid wastes, silk cotton hull, coconut tree sawdust, sago waste, maize cob and banana pith and used to eliminate heavy metals and dyes from aqueous solution. Adsorption of all dyes and metal ions required a very short time and gave quantitative removal. Experimental results show all carbons were effective for the removal of

  14. Applicability of waste materials—bottom ash and deoiled soya—as adsorbents for the removal and recovery of a hazardous dye, brilliant green

    Microsoft Academic Search

    Alok Mittal; Dipika Kaur; Jyoti Mittal

    2008-01-01

    Deoiled soya, an agricultural waste material, and bottom ash, a waste of power plants, have been successfully used for the removal and recovery of the hazardous water-soluble dye brilliant green from water. To remove the dye from water, batch adsorption studies have been carried out by observing the effects of pH, concentration, amounts of adsorbents, size of adsorbent particles, etc.

  15. Equilibrium and Thermodynamic Studies on the Removal and Recovery of Safranine-T Dye from Industrial Effluents

    Microsoft Academic Search

    Vinod K. Gupta; Rajeev Jain; T. A. Saleh; A. Nayak; S. Malathi; Shilpi Agarwal

    2011-01-01

    In this study, deoiled-mustard obtained from local oil mills has been used as an inexpensive and effective adsorbent for the removal of Safranine-T dye from wastewater. The influence of various factors on the adsorption capacity has been studied by batch experiments. The adsorption studies revealed that the ongoing adsorption validates Langmuir adsorption isotherms better than the Freundlich adsorption isotherm at

  16. An All-or-None Response in the Release of Potassium by Yeast Cells Treated with Methylene Blue and Other Basic Redox Dyes

    Microsoft Academic Search

    HERMANN PASSOW; ASER ROTHSTEIN; BARBARA LOEWENSTEIN

    1959-01-01

    A ~ s T R A C T Basic redox dyes, such as methylene blue, induce a loss of K + from yeast cells. The maximal loss, rather than the rate of loss, is related to the dye concentration, the response following a normal distribution on a plot of log- dose, versus percentage loss of K +. This fact taken

  17. Removal of Anionic Dyes from Water by Potash Alum Doped Polyaniline: Investigation of Kinetics and Thermodynamic Parameters of Adsorption.

    PubMed

    Patra, Braja N; Majhi, Deola

    2015-06-25

    Polyaniline was synthesized by the oxidative polymerization method by using ammonium persulfate as an oxidant. The positive charge in the backbone of the polymer was generated by using Potash alum as a dopant. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR), X-ray fluorescence (XRF), and X-ray diffraction (XRD) techniques were used for characterization of doped polyaniline. The doped polyaniline can be used for selective adsorption of various dyes (selectively sulfonated dyes) from aqueous solution. Adsorption studies regarding the effect of contact time, initial dye concentration, pH, doses of adsorbent, and temperature on adsorption kinetics were investigated. The influence of other anions like Cl(-), NO3(-), and SO4(2-) on the adsorption density of dyes onto doped polyaniline was also explored. Langmuir isotherm and pseudo-second-order kinetics were found to be the most appropriate models to describe the removal of anionic dyes from water through adsorption. Thermodynamic parameters such as free energy (?G(0)), enthalpy (?H(0)), and entropy (?S(0)) changes were also evaluated. The interaction of dyes with doped polyaniline was also investigated by FTIR and UV spectroscopy. PMID:26079693

  18. Novel synthesis of a versatile magnetic adsorbent derived from corncob for dye removal.

    PubMed

    Ma, Huan; Li, Jia-Bao; Liu, Wei-Wei; Miao, Miao; Cheng, Bei-Jiu; Zhu, Su-Wen

    2015-08-01

    Corncob, an agricultural waste, was successfully converted into a novel magnetic adsorbent by a low-temperature hydrothermal method (453K), including carbonization under saline conditions and magnetization using iron (III) salt. The resultant magnetic carbonaceous adsorbent (MCA) exhibited a porous structure with a higher specific surface area and more oxygen-containing functional groups than its carbonaceous precursor (CP), which can be attributed to the catalytic effect of Fe (III). The adsorption behaviors of both MCA and CP could be described well by Langmuir isotherm and pseudo-second-order model. The adsorption capacity for Methylene blue (MB) revealed by adsorption isotherms were 163.93mg/g on MCA and 103.09mg/g on CP, respectively. Moreover, MCA was demonstrated as a versatile adsorbent for removal of both anionic and cationic dyes, and it showed good reusability in regeneration studies. This work provides an alternative approach for effective conversion of biomass waste and application of them in pollutant removal. PMID:25919932

  19. MIL-68 (In) nano-rods for the removal of Congo red dye from aqueous solution.

    PubMed

    Jin, Li-Na; Qian, Xin-Ye; Wang, Jian-Guo; Aslan, Hüsnü; Dong, Mingdong

    2015-09-01

    MIL-68 (In) nano-rods were prepared by a facile solvothermal synthesis using NaOAc as modulator agent at 100°C for 30min. The BET test showed that the specific surface area and pore volume of MIL-68 (In) nanorods were 1252m(2)g(-1) and 0.80cm(3)g(-1), respectively. The as-prepared MIL-68 (In) nanorods showed excellent adsorption capacity and rapid adsorption rate for removal of Congo red (CR) dye from water. The maximum adsorption capacity of MIL-68 (In) nanorods toward CR reached 1204mgg(-1), much higher than MIL-68 (In) microrods and most of the previously reported adsorbents. The adsorption process of CR by MIL-68 (In) nano-rods was investigated and found to be obeying the Langmuir adsorption model in addition to pseudo-second-order rate equation. Moreover, the MIL-68 (In) nanorods showed an acceptable reusability after regeneration with ethanol. All information gives an indication that the as-prepared MIL-68 (In) nanorods show their potential as the adsorbent for highly efficient removal of CR in wastewater. PMID:25989058

  20. Removal of dyes using immobilized titanium dioxide illuminated by fluorescent lamps

    Microsoft Academic Search

    Zulkarnain Zainal; Lee Kong Hui; Mohd Zobir Hussein; Yun Hin Taufiq-Yap; Abdul Halim Abdullah; Irmawati Ramli

    2005-01-01

    The photodegradation of various dyes in aqueous solution was studied. Experiments were carried out using glass coated titanium dioxide thin film as photocatalyst. Photodegradation processes of methylene blue (MB), methyl orange (MO), indigo carmine (IC), chicago sky blue 6B (CSB), and mixed dye (MD, mixture of the four mentioned single dye) were reported. As each photodegradation system is pH dependent,

  1. Efficient removal of malachite green dye using biodegradable graft copolymer derived from amylopectin and poly(acrylic acid).

    PubMed

    Sarkar, Amit Kumar; Pal, Aniruddha; Ghorai, Soumitra; Mandre, N R; Pal, Sagar

    2014-10-13

    This article reports on the application of a high performance biodegradable adsorbent based on amylopectin and poly(acrylic acid) (AP-g-PAA) for removal of toxic malachite green dye (MG) from aqueous solution. The graft copolymer has been synthesized and characterized using various techniques including FTIR, GPC, SEM and XRD analyses. Biodegradation study suggests that the co-polymer is biodegradable in nature. The adsorbent shows excellent potential (Qmax, 352.11 mg g(-1); 99.05% of MG has been removed within 30 min) for removal of MG from aqueous solution. It has been observed that point to zero charge (pzc) of graft copolymer plays significant role in adsorption efficacy. The adsorption kinetics and isotherm follow pseudo-second order and Langmuir isotherm models, respectively. Thermodynamics parameters suggest that the process of dye uptake is spontaneous. Finally desorption study shows excellent regeneration efficiency of adsorbent. PMID:25037335

  2. Electrochemical studies of adsorption and inhibitive performance of basic yellow 28 dye on mild steel corrosion in Acid solutions.

    PubMed

    Ashassi-Sorkhabi, Habib; Asghari, Elnaz; Ejbari, Parisa

    2011-06-01

    Organic corrosion inhibitors are widely used to control the corrosion of different metals in various corrosive solutions. The inhibition performance of Basic yellow 28 (BY28) dye for mild steel corrosion was investigated in 0.1 M HCl solution and in a solution of 0.1 M HCl and 1% NaCl. Two electrochemical methods including Tafel polarization and electrochemical impedance spectroscopy (EIS) measurements were used. The corrosion parameters as well as inhibition efficiencies were obtained for different concentrations of inhibitor. The inhibition efficiencies showed that the BY28 dye acts as a good corrosion inhibitor for mild steel in both solutions. The studies on adsorption isotherm of the dye on mild steel proved that the adsorption of BY28 obeys the Langmuir adsorption isotherm. The average value of -?Gads in both solutions was more than 20 and a little less than 40 kJ mol-1. Therefore, both chemisorption and physisorption phenomena were involved in the adsorption of the studied dye on mild steel surface. PMID:24062037

  3. Processing fly ash stabilized hydrogen titanate nano-sheets for industrial dye-removal application.

    PubMed

    Hareesh, P; Babitha, K B; Shukla, S

    2012-08-30

    We report a new method for the processing of fly ash (FA) stabilized hydrogen titanate nano-sheets in the form of aggregated microspheres. The industrial silica-based FA has been utilized for this purpose which has been surface-modified by coating with the anatase-titania (TiO(2)) via sol-gel. The anatase-TiO(2) coated FA particles are subjected to the hydrothermal treatment in an autoclave under high temperature and pressure conditions in a highly alkaline solution. The hydrothermal conditions cause dissolution of silica resulting in the disintegration of other constituents of FA which are adsorbed in ionic and/or oxidized form on the surface of intermediate product of the hydrothermal treatment of anatase-TiO(2), specifically the hydrogen titanate. The adsorption of FA constituents has resulted in the stabilization of hydrogen titanate in the nano-sheet morphology instead of nanotubes. The FA stabilized hydrogen titanate nano-sheets exhibit higher specific surface-area than that of the hydrogen titanate nanotubes and have been successfully utilized for the removal of an organic synthetic-dye from an aqueous solution via surface-adsorption, involving the electrostatic-attraction and ion-exchange mechanisms operating, in the dark-condition. PMID:22717069

  4. Removal of dyes from aqueous solutions by cellulosic waste orange peel

    Microsoft Academic Search

    C. Namasivayam; N. Muniasamy; K. Gayatri; M. Rani; K. Ranganathan

    1996-01-01

    The adsorption of dyes such as congo red, procion orange and rhodamine-B by waste orange peel was examined at different concentrations of dyes, adsorbent dosage, agitation time and pH. The adsorption obeyed both the Langmuir and Freundlich isotherms and the process of uptake followed first-order rate kinetics. Acidic pH was favourable for adsorption for all three dyes. Desorption studies showed

  5. Assessment of the biosorption characteristics of lychee (Litchi chinensis) peel waste for the removal of Acid Blue 25 dye from water

    Microsoft Academic Search

    Amit Bhatnagar; A. K. Minocha

    2010-01-01

    The aim of this study was to examine the adsorption potential of lychee (Litchi chinensis) peel waste for the removal of Acid Blue 25 dye from aqueous solutions. The adsorption was studied as a function of contact time, initial dye concentration and temperature by batch method. Equilibrium sorption isotherms showed that the lychee peel adsorbent possessed a high affinity and

  6. Application of Aqai Stalks as Biosorbents for the Removal of the Dye Procion Blue MX-R from Aqueous Solution

    Microsoft Academic Search

    Wagner S. Alencar; Eder C. Lima; Betina Royer; Bruna D. dos Santos; Tatiana Calvete; Edson A. da Silva; Claudio N. Alves

    2012-01-01

    The aqai palm stalk (Euterpe oleracea) is a food residue used in its natural form (AS) and also protonated (AAS) as biosorbents for the removal of the textile dye Procion Blue MX-R from aqueous solutions. This biosorbent was characterized by infrared spectroscopy, scanning electron microscopy, and nitrogen adsorption-desorption curves. The effects of pH, biosorbent dosages, and shaking time on the

  7. Effectiveness of photochemical and sonochemical processes in degradation of Basic Violet 16 (BV16) dye from aqueous solutions

    PubMed Central

    2012-01-01

    In this study, degradation of Basic Violet 16 (BV16) by ultraviolet radiation (UV), ultrasonic irradiation (US), UV/H2O2 and US/H2O2 processes was investigated in a laboratory-scale batch photoreactor equipped with a 55W immersed-type low-pressure mercury vapor lamp and a sonoreactor with high frequency (130kHz) plate type transducer at 100W of acoustic power. The effects of initial dye concentration, concentration of H2O2 and solution pH and presence of Na2SO4 was studied on the sonochemical and photochemical destruction of BV16 in aqueous phase. The results indicated that in the UV/H2O2 and US/H2O2 systems, a sufficient amount of H2O2 was necessary, but a very high H2O2 concentration would inhibit the reaction rate. The optimum H2O2 concentration was achieved in the range of 17 mmol/L at dye concentration of 30 mg/L. A degradation of 99% was obtained with UV/H2O2 within 8 minutes while decolorization efficiency by using UV (23%), US (<6%) and US/H2O2(<15%) processes were negligible for this kind of dye. Pseudo-first order kinetics with respect to dyestuffs concentrations was found to fit all the experimental data. PMID:23369268

  8. Adsorption of basic dye from wastewater using raw and activated red mud

    Microsoft Academic Search

    Semra Çoruh; Feza Geyikçi; Osman Nuri Ergun

    2011-01-01

    Red mud, an industrial by?product generated during the processing of bauxite ore, was investigated as an inexpensive and effective adsorbent for the adsorption of methylene blue from aqueous solution. Chemical and heat treatments were applied to the raw red mud. The effects of contact time, adsorbent amount, pH, temperature and initial dye concentration were investigated. The adsorption isotherm and kinetics

  9. Removal of malachite green dye from aqueous solution by adsorption using agro-industry waste: a case study of Prosopis cineraria

    Microsoft Academic Search

    V. K Garg; Rakesh Kumar; Renuka Gupta

    2004-01-01

    Adsorbents prepared from Prosopis Cineraria sawdust—an agro-industry waste—were successfully used to remove the malachite green from an aqueous solution in a batch reactor. The adsorbents included formaldehyde-treated sawdust (PCSD) and sulphuric acid-treated sawdust (PCSDC). The effects of adsorbent surface change, initial pH, initial dye concentration, adsorbent mass and contact time on dye removal have been determined. Similar experiments were carried

  10. Removal of acid dye (violet 54) and adsorption kinetics model of using musa spp. waste: A low-cost natural sorbent material

    Microsoft Academic Search

    G. Vijaya Kumar; P. Ramalingam; Min Jung Kim; Chang Kyoo Yoo; M. Dharmendira Kumar

    2010-01-01

    Experimental studies and biosorption kinetics of an intraparticle diffusion model for acid dye removal using a musa spp. waste\\u000a sorbent were carried out to find the removal effects and dynamics of various operating parameters, such as initial dye concentration,\\u000a sorbent dosage, pH and temperature. Experimental data were modeled with kinetic models and two biosorption isotherms of intraparticle\\u000a diffusion models as

  11. Sunflower stalks as adsorbents for color removal from textile wastewater

    SciTech Connect

    Sun, G.; Xu, X. [Univ. of California, Davis, CA (United States). Div. of Textiles and Clothing] [Univ. of California, Davis, CA (United States). Div. of Textiles and Clothing

    1997-03-01

    Sunflower stalks as adsorbents for two basic dyes (Methylene Blue and Basic Red 9) and two direct dyes (Congo Red and Direct Blue 71) in aqueous solutions were studied with equilibrium isotherms and kinetic adsorptions. The maximum adsorptions of two basic dyes on sunflower stalks are very high, i.e., 205 and 317 mg/g for Methylene Blue and Basic Red 9, respectively. The two direct dyes have relatively lower adsorption on sunflower stalks. The adsorptive behaviors of sunflower stalk components are different. The pith, which is the soft and porous material in the center of stalks, has twice the adsorptive capacity of the skin. Particle sizes of sunflower stalks also affect the adsorption of dyes. The adsorption rates of two basic dyestuffs are much higher than that of the direct dyes. Within 30 min about 80% basic dyes were removed from the solutions.

  12. Adsorptive removal of acid blue 113 and tartrazine by fly ash from single and binary dye solutions

    SciTech Connect

    Pura, S.; Atun, G. [Istanbul University, Avcilar (Turkey). Dept. of Chemistry

    2009-07-01

    Adsorption of two acid dyestuffs, acid blue 113 (AB) and tartrazine (TA), has been studied from their single and binary solutions by using fly ash (FA) as an adsorbent. The S shaped isotherms observed for dye adsorption from single solutions show that both acid dyes are not preferred at a low concentration region whereas adsorption of the dyes from binary solutions is enhanced via solute-solute interactions. Although the L-shaped isotherm is observed in binary solutions adsorbability of AB decreases in concentrated solutions with respect to single one, time dependency of adsorption is well described with a pseudo-second-order kinetic model as well as the linear relation of Bt vs. t plots (not passing through origin) indicates that film diffusion is effective on dye adsorption. Modeled isotherm curves using isotherm parameters of the Freundlich and Dubinin-Radushkevich (D-R) equations adequately fit to experimental equilibrium data. Equilibrium adsorption of AB in binary solutions has been quite well predicted by the extended Freundlich and the Sheindorf-Rebuhn-Sheintuch (SRS) models. In general, the isotherm curves constructed in the temperature range of 298-328K show that the optimum temperature is 318K for AB removal from both single and binary solutions.

  13. Application of acidic treated pumice as an adsorbent for the removal of azo dye from aqueous solutions: kinetic, equilibrium and thermodynamic studies.

    PubMed

    Samarghandi, Mohammad Reza; Zarrabi, Mansur; Sepehr, Mohammad Noori; Amrane, Abdeltif; Safari, Gholam Hossein; Bashiri, Saied

    2012-01-01

    Colored effluents are one of the important environment pollution sources since they contain unused dye compounds which are toxic and less-biodegradable. In this work removal of Acid Red 14 and Acid Red 18 azo dyes was investigated by acidic treated pumice stone as an efficient adsorbent at various experimental conditions. Removal of dye increased with increase in contact time and initial dye concentration, while decreased for increment in solution temperature and pH. Results of the equilibrium study showed that the removal of AR14 and AR18 followed Freundlich (r2>0.99) and Langmuir (r2>0.99) isotherm models. Maximum sorption capacities were 3.1 and 29.7 mg/g for AR 14 and AR18, namely significantly higher than those reported in the literature, even for activated carbon. Fitting of experimental data onto kinetic models showed the relevance of the pseudo-second order (r2>0.99) and intra-particle diffusion (r2>0.98) models for AR14 and AR18, respectively. For both dyes, the values of external mass transfer coefficient decreased for increasing initial dye concentrations, showing increasing external mass transfer resistance at solid/liquid layer. Desorption experiments confirmed the relevance of pumice stone for dye removal, since the pH regeneration method showed 86% and 89% regeneration for AR14 and AR18, respectively. PMID:23369579

  14. Application of acidic treated pumice as an adsorbent for the removal of azo dye from aqueous solutions: kinetic, equilibrium and thermodynamic studies

    PubMed Central

    2012-01-01

    Colored effluents are one of the important environment pollution sources since they contain unused dye compounds which are toxic and less-biodegradable. In this work removal of Acid Red 14 and Acid Red 18 azo dyes was investigated by acidic treated pumice stone as an efficient adsorbent at various experimental conditions. Removal of dye increased with increase in contact time and initial dye concentration, while decreased for increment in solution temperature and pH. Results of the equilibrium study showed that the removal of AR14 and AR18 followed Freundlich (r2>0.99) and Langmuir (r2>0.99) isotherm models. Maximum sorption capacities were 3.1 and 29.7 mg/g for AR 14 and AR18, namely significantly higher than those reported in the literature, even for activated carbon. Fitting of experimental data onto kinetic models showed the relevance of the pseudo-second order (r2>0.99) and intra-particle diffusion (r2>0.98) models for AR14 and AR18, respectively. For both dyes, the values of external mass transfer coefficient decreased for increasing initial dye concentrations, showing increasing external mass transfer resistance at solid/liquid layer. Desorption experiments confirmed the relevance of pumice stone for dye removal, since the pH regeneration method showed 86% and 89% regeneration for AR14 and AR18, respectively. PMID:23369579

  15. A Novel Biosorbent Lagenaria vulgaris Shell - ZrO2 for the Removal of Textile Dye From Water.

    PubMed

    Petrovi?, Milica M; Radovi?, Miljana D; Kosti?, Miloš M; Mitrovi?, Jelena Z; Boji?, Danijela V; Zarubica, Aleksandra R; Boji?, Aleksandar Lj

    2015-07-01

    A new biosorbent, abbreviated as LVB-ZrO2, was synthesized by chemically modifying Lagenaria vulgaris shell with ZrO2. The removal of textile dye RB19 from aqueous solution by LVB-ZrO2 was studied. Characterization by SEM, FTIR and XRD confirmed the chemical modification of the biomaterial, which showed significant improvement of removal efficiency compared with unmodified Lagenaria vulgaris shell. LVB-ZrO2 point of zero charge is 5.49. The biosorption process is highly pH dependent and the optimal pH is 2.0, at which complete dye removal was attained. The results are the best by a pseudo-second order kinetic model. The optimal adsorbent dosage is 4 mg/dm(3).The RB19 biosorption follows the Langmuir isotherm model (R(2)=0.9978), with the maximum sorption capacity of 75.12 mg/g. LVB-ZrO2 is a mechanically stable, easy to synthesize, cost-effective, biocompatible and environmentally-friendly biosorbent with the high potential for the removal of RB19 from aqueous solution. PMID:26163499

  16. Design of high-strength recyclable graphene oxide-based porous composite for the removal of dyes

    NASA Astrophysics Data System (ADS)

    Jiao, Chenlu; Xiong, Jiaqing; Tao, Jin; Zhang, Desuo; Chen, Yuyue; Lin, Hong

    2015-06-01

    Graphene oxide-based composite (SSGO) with orderly pores was prepared by freeze-drying method. Its chemical structure, morphology and mechanical property were investigated. The results show that it has a unidirectional microporous structure which facilitates the diffusion of dyes. The incorporation of GO significantly improves the porous structure, and increases the compressive strength of SSGO. A 26.6 kPa increase and a 3 kPa improvement of strength in dry and wet states were achieved when 4 wt % GO was added. Moreover, the equilibrated adsorption capacity for methylene blue (MB) increased about 78.9%, up to 161 mg/g. With superior compressive strength and excellent adsorption capacity, the SSGO has promising recyclable application in dyes removal from wastewater.

  17. Novelties of combustion synthesized titania ultrafiltration membrane in efficient removal of methylene blue dye from aqueous effluent.

    PubMed

    Doke, Suresh M; Yadav, Ganapati D

    2014-12-01

    In this study, titania nanoparticles were synthesized by combustion and used to make ultrafiltration membrane. Characteristics of titania membranes such as textural evaluation, surface morphology, pure water permeability and protein rejection were investigated. Titania membrane sintered at 450 °C showed pure water permeability 11 × 10?2 L h?1 m?2 kPa?1 and 76% protein rejection. The membrane presented good water flux and retention properties with regards to protein and methylene blue dye. Ultrafiltration process was operated at lower pressure (100 kPa) and showed 99% removal of methylene blue using adsorptive micellar flocculation at sodium dodecyl sulfate concentration below its critical micellar concentration. Ferric chloride was used as the coagulant. The method of making titania membrane and its use are new. These studies can be extended to other dyes and pollutants. PMID:25461945

  18. Removal of textile dyes from water by the electro-Fenton process

    Microsoft Academic Search

    Amal Lahkimi; Mehmet A. Oturan; Nihal Oturan; Mehdi Chaouch

    2007-01-01

    An environmentally friendly electrochemical treatment, electro-Fenton process, was applied to the depollution of a synthetic\\u000a dismissal composed of three dyes, yellow drimaren, congo red and methylene blue, frequently used in textile and dyehouses.\\u000a Here, we show that those dyes and their mixture are quickly degraded under current controlled electrolysis conditions, leading\\u000a to an almost complete mineralization. The results show the

  19. Removal of cationic dyes by poly(acrylamide-co-acrylic acid) hydrogels in aqueous solutions

    NASA Astrophysics Data System (ADS)

    ?olpan, Dilek; Duran, Sibel; Torun, Murat

    2008-04-01

    Poly(acrylamide-co-acrylic acid (poly(AAm-co-AAc)) hydrogels prepared by irradiating with ?-radiation were used in experiments on swelling, diffusion, and uptake of some cationic dyes such as Safranine-O (SO) and Magenta (M). Poly(AAm-co-AAc) hydrogels irradiated at 8.0 kGy have been used for swelling and diffusion studies in water and cationic dye solutions. The maximum swellings in water, and SO, and M solutions observed are 2700%, 3500%, and 4000%, respectively. Diffusions of water and cationic dyes within hydrogels have been found to be non-Fickian in character. Adsorption of the cationic dyes onto poly(AAm-co-AAc) hydrogels is studied by the batch adsorption technique. The adsorption type was found Langmuir type in the Giles classification system. The moles of adsorbed dye for SO and M per repeating unit in hydrogel (binding ratio, r) have been calculated as 3834×10 -6 and 1323×10 -6, respectively. These results show that poly(AAm-co-AAc) hydrogels can be used as adsorbent for water pollutants such as cationic dyes.

  20. Dissolved organic matter removal using magnetic anion exchange resin treatment on biological effluent of textile dyeing wastewater.

    PubMed

    Fan, Jun; Li, Haibo; Shuang, Chendong; Li, Wentao; Li, Aimin

    2014-08-01

    This study investigated the removal of dissolved organic matter (DOM) from real dyeing bio-treatment effluents (DBEs) with the use of a novel magnetic anion exchange resin (NDMP). DOMs in two typical DBEs were fractionized using DAX-8/XAD-4 resin and ultrafiltration membranes. The hydrophilic fractions and the low molecular weight (MW) (<3kDa) DOM fractions constituted a major portion (>50%) of DOMs for the two effluents. The hydrophilic and low MW fractions of both effluents were the greatest contributors of specific UV254 absorbance (SUVA254), and the SUVA254 of DOM fractions decreased with hydrophobicity and MW. Two DBEs exhibited acute and chronic biotoxicities. Both acute and chronic toxicities of DOM fractions increased linearly with the increase of SUVA254 value. Kinetics of dissolved organic carbon (DOC) removal via NDMP treatment was performed by comparing it with that of particle active carbon (PAC). Results indicated that the removal of DOC from DBEs via NDMP was 60%, whereas DOC removals by PAC were lower than 15%. Acidic organics could be significantly removed with the use of NDMP. DOM with large MW in DBE could be removed significantly by using the same means. Removal efficiency of NDMP for DOM decreased with the decrease of MW. Compared with PAC, NDMP could significantly reduce the acute and chronic bio-toxicities of DBEs. NaCl/NaOH mixture regenerants, with selected concentrations of 10% NaCl (m/m)/1% NaOH (m/m), could improve desorption efficiency. PMID:25108712

  1. Removal of cationic dye methylene blue by zero-valent iron: Effects of pH and dissolved oxygen on removal mechanisms.

    PubMed

    Sun, Xuan; Kurokawa, Tomoyo; Suzuki, Moe; Takagi, Minoru; Kawase, Yoshinori

    2015-08-24

    Effects of pH and dissolved oxygen on mechanisms for decolorization and total organic carbon (TOC) removal of cationic dye methylene blue (MB) by zero-valent iron (ZVI) were systematically examined. Decolorization and TOC removal of MB by ZVI are attributed to the four potential mechanisms, i.e. reduction, degradation, precipitation and adsorption. The contributions of four mechanisms were quantified at pH 3.0, 6.0 and 10.0 in the oxic and anoxic systems. The maximum efficiencies of decolorization and TOC removal of MB were found at pH 6.0. The TOC removal efficiencies at pH 3.0 and 10.0 were 11.0 and 17.0%, respectively which were considerably lower as compared with 68.1% at pH 6.0. The adsorption, which was favorable at higher pH but was depressed by the passive layer formed on the ZVI surface at alkaline conditions, characterized the effects of pH on decolorization and TOC removal of MB. The efficiencies of decolorization and TOC removal at pH 6.0 under the anoxic condition were 73.0 and 59.0%, respectively, which were comparable to 79.9 and 55.5% obtained under the oxic condition. In the oxic and anoxic conditions, however, the contributions of removal mechanisms were quite different. Although the adsorption dominated the decolorization and TOC removal under the oxic condition, the contribution of precipitation was largely superior to that of adsorption under the anoxic condition. PMID:26121021

  2. Resonant Rayleigh scattering for the determination of trace amounts of mercury (II) with thiocyanate and basic triphenylmethane dyes

    SciTech Connect

    Liu, S.; Liu, Z.; Zhou, G. [Southwest Normal Univ., Chongqing (China). Inst. of Environmental Chemistry

    1998-05-01

    Intense resonance Rayleigh scattering (RRS) appears when mercury (II) reacts with thiocyanate and a basic triphenylmethane dye (BTPMD), such as crystal violet (CV), ethyl violet (EV), brilliant green (BG), malachite green (MG) or indine green (IG), to form an ion-association complex of the type (BTPMD){sub 2}[Hg(SCN){sub 4}]. The characteristics of RRS spectra of the ion-association complexes and suitable conditions for the reactions were investigated. The intensity of RRS is directly proportional to the concentration of mercury (II) in the range of 0--2.0 {micro}g/25 ml. The RRS methods have very high sensitivities for determination of mercury (II); their detection limits are between 1.68 ng/ml and 6.00 ng/ml on different dye systems. The effects of foreign ions and ways to improve the selectivity were studied. The new highly sensitive methods for the determination of trace amounts of mercury based on the RRS of the ion-association complexes have been developed.

  3. Imaging with the fluorogenic dye Basic Fuchsin reveals subcellular patterning and ecotype variation of lignification in Brachypodium distachyon.

    PubMed

    Kapp, Nikki; Barnes, William J; Richard, Tom L; Anderson, Charles T

    2015-07-01

    Lignin is a complex polyphenolic heteropolymer that is abundant in the secondary cell walls of plants and functions in growth and defence. It is also a major barrier to the deconstruction of plant biomass for bioenergy production, but the spatiotemporal details of how lignin is deposited in actively lignifying tissues and the precise relationships between wall lignification in different cell types and developmental events, such as flowering, are incompletely understood. Here, the lignin-detecting fluorogenic dye, Basic Fuchsin, was adapted to enable comparative fluorescence-based imaging of lignin in the basal internodes of three Brachypodium distachyon ecotypes that display divergent flowering times. It was found that the extent and intensity of Basic Fuchsin fluorescence increase over time in the Bd21-3 ecotype, that Basic Fuchsin staining is more widespread and intense in 4-week-old Bd21-3 and Adi-10 basal internodes than in Bd1-1 internodes, and that Basic Fuchsin staining reveals subcellular patterns of lignin in vascular and interfascicular fibre cell walls. Basic Fuchsin fluorescence did not correlate with lignin quantification by acetyl bromide analysis, indicating that whole-plant and subcellular lignin analyses provide distinct information about the extent and patterns of lignification in B. distachyon. Finally, it was found that flowering time correlated with a transient increase in total lignin, but did not correlate strongly with the patterning of stem lignification, suggesting that additional developmental pathways might regulate secondary wall formation in grasses. This study provides a new comparative tool for imaging lignin in plants and helps inform our views of how lignification proceeds in grasses. PMID:25922482

  4. Imaging with the fluorogenic dye Basic Fuchsin reveals subcellular patterning and ecotype variation of lignification in Brachypodium distachyon

    PubMed Central

    Kapp, Nikki; Barnes, William J.; Richard, Tom L.; Anderson, Charles T.

    2015-01-01

    Lignin is a complex polyphenolic heteropolymer that is abundant in the secondary cell walls of plants and functions in growth and defence. It is also a major barrier to the deconstruction of plant biomass for bioenergy production, but the spatiotemporal details of how lignin is deposited in actively lignifying tissues and the precise relationships between wall lignification in different cell types and developmental events, such as flowering, are incompletely understood. Here, the lignin-detecting fluorogenic dye, Basic Fuchsin, was adapted to enable comparative fluorescence-based imaging of lignin in the basal internodes of three Brachypodium distachyon ecotypes that display divergent flowering times. It was found that the extent and intensity of Basic Fuchsin fluorescence increase over time in the Bd21-3 ecotype, that Basic Fuchsin staining is more widespread and intense in 4-week-old Bd21-3 and Adi-10 basal internodes than in Bd1-1 internodes, and that Basic Fuchsin staining reveals subcellular patterns of lignin in vascular and interfascicular fibre cell walls. Basic Fuchsin fluorescence did not correlate with lignin quantification by acetyl bromide analysis, indicating that whole-plant and subcellular lignin analyses provide distinct information about the extent and patterns of lignification in B. distachyon. Finally, it was found that flowering time correlated with a transient increase in total lignin, but did not correlate strongly with the patterning of stem lignification, suggesting that additional developmental pathways might regulate secondary wall formation in grasses. This study provides a new comparative tool for imaging lignin in plants and helps inform our views of how lignification proceeds in grasses. PMID:25922482

  5. Ozone for Dye Waste Color Removal: Four Years Operation at Leek STW

    Microsoft Academic Search

    J. H. Churchley

    1998-01-01

    The problems caused by discharges of colored dye waste into the sewer are described. Coloration of the River Churnet by the Leek Sewage Treatment Works (STW) effluent necessitated the setting of color discharge consent conditions by the National Rivers Authority (now the Environment Agency). These and other tightened consent conditions led to the planning of a major works extension to

  6. Chemical modification of chitosan by tetraethylenepentamine and adsorption study for anionic dye removal

    Microsoft Academic Search

    Xiao-Yi Huang; Xiao-Yun Mao; Huai-Tian Bu; Xiao-Yuan Yu; Gang-Biao Jiang; Ming-Hua Zeng

    2011-01-01

    To utilize the contribution of introduced amino groups to the adsorption of an anionic dye (eosin Y), a batch adsorption system was applied to study the adsorption of eosin Y from aqueous solution by tetraethylenepentamine (TEPA) modified chitosan (TEPA–CS). Experiments were carried out as a function of particle size, initial pH, agitation rate, adsorbent dosage, agitation period, temperature and initial

  7. Reactive dyes removal from wastewaters by adsorption on eucalyptus bark: variables that define the process

    Microsoft Academic Search

    L. C Morais; O. M Freitas; E. P Gonçalves; L. T Vasconcelos; C. G González Beça

    1999-01-01

    An attempt to help solving the pollution problem caused by the presence of reactive dyes in textile effluents, was undertaken. Owing to the fact that eucalyptus bark is a very abundant, inexpensive, forest residue in the authors' country, Portugal, it was decided to experiment with it as a potential adsorbent for a certain type of the supracited pollutants used in

  8. Superwetting double-layer polyester materials for effective removal of both insoluble oils and soluble dyes in water.

    PubMed

    Li, Bucheng; Wu, Lei; Li, Lingxiao; Seeger, Stefan; Zhang, Junping; Wang, Aiqin

    2014-07-23

    Inspired by the mussel adhesive protein and the lotus leaf, Ag-based double-layer polyester (DL-PET) textiles were fabricated for effective removal of organic pollutants in water. The DL-PET textiles are composed of a top superamphiphilic layer and a bottom superhydrophobic/superoleophilic layer. First, the PET textiles were modified with a layer of polydopamine (PDA) and deposited with Ag nanoparticles to form the PET@PDA@Ag textiles. The top superamphiphilic layer, formed by immobilizing Ag3PO4 nanoparticles on the PET@PDA@Ag textile, shows excellent visible-light photocatalytic activity. The bottom superhydrophobic/superoleophilic layer, formed by modifying the PET@PDA@Ag textile using dodecyl mercaptan, is mechanically, environmentally, and chemically very stable. The water-insoluble oils with low surface tension can penetrate both layers of the DL-PET textiles, while the water with soluble organic dyes can only selectively wet the top layer owing to their unique wettability. Consequently, the water-soluble organic contaminants in the collected water can be decomposed by the Ag3PO4 nanoparticles of the top layer under visible-light irradiation or even sunlight in room conditions. Thus, the DL-PET textiles can remove various kinds of organic pollutants in water including both insoluble oils and soluble dyes. The DL-PET textiles feature unique wettability, high oil/water separation efficiency, and visible-light photocatalytic activity. PMID:24956183

  9. Simultaneous removal of binary mixture of Brilliant Green and Crystal Violet using derivative spectrophotometric determination, multivariate optimization and adsorption characterization of dyes on surfactant modified nano-?-alumina.

    PubMed

    Zolgharnein, Javad; Bagtash, Maryam; Shariatmanesh, Tahere

    2015-02-25

    The present study deals with the simultaneous removal of Brilliant Green (BG) and Crystal Violet (CV) by surfactant-modified alumina. The utilization of alumina nanoparticles with an anionic surfactant (sodium dodecyl sulfate (SDS)) as a novel and efficient adsorbent is successfully carried out to remove two cationic dyes from aqueous solutions in binary batch systems. A first-order derivative spectrophotometric method is developed for the simultaneous determination of BG and CV in binary solutions. The linear concentration range and limits of detection for the simultaneous determination of BG and CV were found to be: 1-20, 1-15 mg/L, 0.3 and 0.5 mg/L, respectively. The influence of various parameters, such as contact time, initial concentration of dyes and sorbent mass on the dye adsorption is investigated. A response surface methodology achieved through performing the Box-Behnken design is utilized to optimize the removal of dyes by surfactant-modified nanoparticle alumina through a batch adsorption process. The proposed quadratic model resulting from the Box-Behnken design approach fitted very well with the experimental data. The optimal conditions for dye removal were contact time t=50 min, sorbent dose=0.036 g, CBG (Initial BG concentration)=215 mg/L and CCV (Initial CV concentration)=170 mg/L. Furthermore, FT-IR analysis, the isotherms and kinetics of adsorption were also explored. PMID:25286114

  10. Photocatalytic removal of hazardous Ponceau S dye using Nano structured Ni-doped TiO2 thin film prepared by chemical method

    NASA Astrophysics Data System (ADS)

    Marathe, Sunil D.; Shrivastava, Vinod S.

    2015-02-01

    Many attempts have been made by researchers for the removal of various dyes using nano structured Ni-doped TiO2; however, removal of `hazardous Ponceau S dye' using nano structured Ni-doped TiO2 has been not studied yet. In the present work, environmental application of Nano structured Ni doped TiO2 has been studied. Nano structured Ni-doped TiO2 thin films were deposited by the chemical method on a glass substrate. The prepared thin film was characterized by XRD, SEM, and EDX. The crystal size calculated from XRD is about 26.2 nm. The SEM analysis reveals nano spherical morphology of average particle size about 92 nm. The optical analysis was carried by using UV-visible spectroscopy. The band gap estimated from absorbance spectra for thin film was around 3.5 eV, making suitable Ni-doped TiO2 for photocatalytic removal of hazardous Ponceau S dye. In photocatalytic application different parameters like dye concentration, contact time, pH, UV light and sunlight were optimized for the removal of Ponceau S dye, respectively. The change in chemical oxygen demand after photo catalytic treatment was also studied.

  11. Basic dye adsorption onto an agro-based waste material--sesame hull (Sesamum indicum L.).

    PubMed

    Feng, Yanfang; Yang, Fan; Wang, Yongqian; Ma, Li; Wu, Yonghong; Kerr, Philip G; Yang, Linzhang

    2011-11-01

    The aim of this project was to establish an economical and environmentally benign biotechnology for removing methylene blue (MB) from wastewater. The adsorption process of MB onto abandoned sesame hull (Sesamum indicum L.) (SH) was investigated in a batch system. The results showed that a wide range of pH (3.54-10.50) was favorable for the adsorption of MB onto SH. The Langmuir model displayed the best fit for the isothermal data. The exothermic adsorption process fits a pseudo-second-order kinetic model. The maximum monolayer adsorption capacity (359.88 mg g(-1)) was higher than most previously investigated low-cost bioadsorbents (e.g., peanut hull, wheat straw, etc.). This study indicated that sesame hull is a promising, unconventional, affordable and environmentally friendly bio-measure that is easily deployed for removing high levels of MB from wastewater. PMID:21962534

  12. Tyre char preparation from waste tyre rubber for dye removal from effluents.

    PubMed

    Mui, Edward L K; Cheung, W H; McKay, Gordon

    2010-03-15

    A number of chars from waste tyre rubber were prepared by carbonisation at 673-1173 K. The effects of holding time, heating rate and particle size on the textural characteristics and elemental composition of the resultant chars were investigated. It was demonstrated that temperatures over 773 K did not have a significant improvement on the total surface area but resulted in lower char yields following increased aromatisation. Modelling of dye adsorption isotherms showed that the Redlich-Peterson expression yields the best-fit between experimental and predicted data. Furthermore, for a larger sized dye like Acid Yellow 117 (MW=848 g/mol), the amount adsorbed by the tyre char is not directly proportional to the total surface area when compared with a commercial carbon, revealing that factors other than total surface area are involved in the adsorption potential of the tyre chars. PMID:19854570

  13. Use of activated clays in the removal of dyes and surfactants from tannery waste waters

    Microsoft Academic Search

    A. G Espantaleón; J. A Nieto; M Fernández; A Marsal

    2003-01-01

    A method is tested to reduce the pollution of effluents produced in the hide transformation process. Adsorption processes with clays could constitute a simple, selective and economical alternative to conventional physical–chemical treatments.The adsorption capacity of natural and acid-activated bentonite and sepiolite for anionic dyes normally used in the tannery was compared with that of a conventional adsorbent such as activated

  14. Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions.

    PubMed

    Kadirvelu, K; Kavipriya, M; Karthika, C; Radhika, M; Vennilamani, N; Pattabhi, S

    2003-03-01

    Activated carbons were prepared from the agricultural solid wastes, silk cotton hull, coconut tree sawdust, sago waste, maize cob and banana pith and used to eliminate heavy metals and dyes from aqueous solution. Adsorption of all dyes and metal ions required a very short time and gave quantitative removal. Experimental results show all carbons were effective for the removal of pollutants from water. Since all agricultural solid wastes used in this investigation are freely, abundantly and locally available, the resulting carbons are expected to be economically viable for wastewater treatment. PMID:12733586

  15. Removal of malachite green dye from wastewater by different organic acid-modified natural adsorbent: kinetics, equilibriums, mechanisms, practical application, and disposal of dye-loaded adsorbent.

    PubMed

    Wang, Hou; Yuan, Xingzhong; Zeng, Guangming; Leng, Lijian; Peng, Xin; Liao, Kailingli; Peng, Lijuan; Xiao, Zhihua

    2014-10-01

    Natural adsorbent (Cinnamomum camphora sawdust) modified by organic acid (oxalic acid, citric acid, and tartaric acid) was investigated as a potential adsorbent for the removal of hazardous malachite green (MG) dye in aqueous media in a batch process. The extent of MG adsorption onto modified sawdust increased with increasing organic acid concentrations, pH, contact time, and temperature but decreased with increasing adsorbent dosage and ionic strength. Kinetic study indicated that the pseudo-second-order kinetic model could best describe the adsorption kinetics of MG. Equilibrium data were found to fit well with the Langmuir model, and the maximum adsorption capacity of the three kinds of organic acid-modified sawdust was 280.3, 222.8, and 157.5 mg/g, respectively. Thermodynamic parameters suggested that the sorption of MG was an endothermic process. The adsorption mechanism, the application of adsorbents in practical wastewater, the prediction of single-stage batch adsorption system, and the disposal of depleted adsorbents were also discussed. PMID:25028314

  16. Potential of immobilized bitter gourd ( Momordica charantia) peroxidases in the decolorization and removal of textile dyes from polluted wastewater and dyeing effluent

    Microsoft Academic Search

    Suhail Akhtar; Amjad Ali Khan; Qayyum Husain

    2005-01-01

    Immobilized peroxidases from Momordica charantia were highly effective in decolorizing reactive textile dyes compared to its soluble counterpart. Dye solutions, 50–200mg\\/l, were treated with soluble and immobilized bitter gourd peroxidases (specific activity of 99.0 EU per mg protein). The decolorization of dyes with soluble and immobilized enzyme was maximum in the range of pH 3.0–4.0. The effect of different temperatures

  17. Study of the physical properties of calcium alginate hydrogel beads containing vineyard pruning waste for dye removal.

    PubMed

    Vecino, X; Devesa-Rey, R; Cruz, J M; Moldes, A B

    2015-01-22

    In this work the morphological and surface properties of a biocomposite formulated with vineyard pruning waste entrapped in calcium alginate hydrogel beads were studied. The formulation of the calcium alginate hydrogel beads, containing vineyard pruning waste, was based on the capacity of this green adsorbent to remove dye compounds from wastewater, observing that in the optimum condition (1.25% of cellulosic residue, 2.2% of sodium alginate and 0.475 mol L(-1) CaCl2) the percentage of dyes was reduced up to 74.6%. At lower concentration of CaCl2, high-resolution optical images show that the elongation of the vineyard-alginate biocomposite decreased, whereas the compactness increased. Moreover, higher concentrations of cellulosic residue increased the biocomposite roundness in comparison with biocomposite without the cellulosic residue. Interferometric perfilometry analysis (Ra, Rq, Rz and Rt) revealed that high concentrations of CaCl2 increased the roughness of the of the calcium alginate hydrogel beads observing vesicles in the external surface. PMID:25439877

  18. Preparation of carbon microspheres decorated with silver nanoparticles and their ability to remove dyes from aqueous solution.

    PubMed

    Chen, Qingchun; Wu, Qingsheng

    2015-02-11

    Solid, but not hollow or porous, carbon microspheres decorated with silver nanoparticles (AgNP-CMSs) were prepared from silver nitrate and CMSs by a redox reaction at room temperature. The CMSs and AgNP-CMSs were characterized using X-ray diffraction, scanning electron microscopy, field emission scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and UV-vis spectrophotometry. Though with non-high specific surface area, the AgNP-CMSs exhibited a high adsorption capacity toward methylene blue (MB) in an aqueous solution. The AgNP-CMSs were able to remove all the MB from a solution of 30 mg/L MB in water within 1 min when the adsorbent concentration was 0.12 g/L. The AgNP-CMSs also exhibited good adsorption and photocatalytic activity in the decomposition of aqueous Rhodamine B as well as MB under visible light. FTIR was used to examine the interaction between AgNP-CMSs and MB, and the spectrum and more extra experiments suggest ionic interactions between cationic dyes and the negatively charged groups can be formed but not the presence of abundant ?-? conjugations between dye molecules and the aromatic rings. The origin of the photocatalytic activity of AgNP-CMSs was attributed to a surface plasmon resonance (SPR) effect of the silver nanoparticles on the CMSs. PMID:25278157

  19. Chemical and structural evaluation of activated carbon prepared from jute sticks for Brilliant Green dye removal from aqueous solution.

    PubMed

    Asadullah, Mohammad; Asaduzzaman, Mohammad; Kabir, Mohammad Shajahan; Mostofa, Mohammad Golam; Miyazawa, Tomohisa

    2010-02-15

    Activated carbons have been prepared from jute sticks by chemical activation using ZnCl(2) and physical activation using steam for the removal of Brilliant Green dye from aqueous solution. The activated carbons and charcoal prepared from jute sticks were characterized by evaluating the surface chemistry, structural features and surface morphology. The maximum BET surface area was obtained to be 2304 m(2)/g for chemical activated carbon (ACC) while it is 730 and 80 m(2)/g for steam activated carbon (ACS) and charcoal, respectively. The FT-IR spectra exhibited that the pyrolysis and steam activation of jute sticks resulted in the release of aliphatic and O-containing functional groups by thermal effect. However, the release of functional groups is the effect of chemical reaction in the ZnCl(2) activation process. A honeycomb-type carbon structure in ACC was formed as observed on SEM images. Although charcoal and ACC were prepared at 500 degrees C the ACC exhibited much lower Raman sensitivity due to the formation of condensed aromatic ring systems. Due to high surface area and high porous structure with abundance of functional groups, the ACC adsorbed dye molecules with much higher efficiency than those of ACS and charcoal. PMID:19815339

  20. Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: adsorption equilibrium and kinetics.

    PubMed

    Amin, Nevine Kamal

    2009-06-15

    The use of cheap, high efficiency and ecofriendly adsorbent has been studied as an alternative source of activated carbon for the removal of dyes from wastewater. This study investigates the use of activated carbons prepared from pomegranate peel for the removal of direct blue dye from aqueous solution. A series of experiments were conducted in a batch system to assess the effect of the system variables, i.e. initial pH, temperature, initial dye concentration adsorbent dosage and contact time. The results showed that the adsorption of direct blue dye was maximal at pH 2, as the amount of adsorbent increased, the percentage of dye removal increased accordingly but it decreased with the increase in initial dye concentration and solution temperature. The adsorption kinetics was found to follow pseudo-second-order rate kinetic model, with a good correlation (R(2)>0.99) and intra-particle diffusion as one of the rate determining steps. Langmuir, Freundlich, Temkin, Dubinin-RadushKevich (D-R) and Harkins-Jura isotherms were used to analyze the equilibrium data at different temperatures. In addition, various thermodynamic parameters, such as standard Gibbs free energy (DeltaG degrees ), standard enthalpy (DeltaH degrees ), standard entropy (DeltaS degrees ), and the activation energy (E(a)) have been calculated. The adsorption process of direct blue dye onto different activated carbons prepared from pomegranate peel was found to be spontaneous and exothermic process. The findings of this investigation suggest that the physical sorption plays a role in controlling the sorption rate. PMID:18986765

  1. Acidity control of plasma-chemical oxidation: applications to dye removal, urban waste abatement and microbial inactivation

    NASA Astrophysics Data System (ADS)

    Brisset, Jean-Louis; Benstaali, Baghdad; Moussa, David; Fanmoe, Jean; Njoyim-Tamungang, Estella

    2011-06-01

    Electric discharges burning in humid air at atmospheric pressure over aqueous solutions induce acid effects in the liquid phase resulting from the formation of nitric acid and peroxynitrous acid as transient precursor. These acid effects affect the degradation mechanisms of organic wastes and the relevant kinetic rates; therefore they thus must be controlled (e.g. using buffers). Nitrogen reactive species such as peroxynitrous acid or its salt are directly concerned with both acid effects as precursor to nitric acid, and strong oxidizing properties E°(ONO2H/NO2) = 2.02 V/SHE. Illustrating examples are given in the case of an organic dye (Alizarin S) removal and the gliding discharge treatment of urban wastewaters. Additional arguments are presented to explain the biocidal effect of humid air discharges.

  2. Template-free hydrothermal derived cobalt oxide nanopowders: Synthesis, characterization, and removal of organic dyes

    SciTech Connect

    Nassar, Mostafa Y. [Chemistry Department, Faculty of Science, Benha University, Benha 13518 (Egypt)] [Chemistry Department, Faculty of Science, Benha University, Benha 13518 (Egypt); Ahmed, Ibrahim S., E-mail: isahmed2010@gmail.com [Chemistry Department, Faculty of Science, Benha University, Benha 13518 (Egypt)

    2012-09-15

    Graphical abstract: XRD patterns of the products obtained by hydrothermal treatment at 160 °C for 24 h, and at different [Co{sup 2+}]/[CO{sub 3}{sup 2?}] ratios: (a) 1:6, (b) 1:3, (c) 1:1.5, (d) 1:1, (e) 1:0.5. Highlights: ? Spinel cobalt oxide nanoparticles with different morphologies were prepared by hydrothermal approach. ? The optical characteristics of the as-prepared cobalt oxide revealed the presence of two band gaps. ? Adsorption of methylene blue dye on Co{sub 3}O{sub 4} was investigated and the percent uptake was found to be >99% in 24 h. -- Abstract: Pure spinel cobalt oxide nanoparticles were prepared through hydrothermal approach using different counter ions. First, the pure and uniform cobalt carbonate (with particle size of 21.8–29.8 nm) were prepared in high yield (94%) in an autoclave in absence unfriendly organic surfactants or solvents by adjusting different experimental parameters such as: pH, reaction time, temperature, counter ions, and (Co{sup 2+}:CO{sub 3}{sup 2?}) molar ratios. Thence, the spinel Co{sub 3}O{sub 4} (with mean particle size of 30.5–47.35 nm) was produced by thermal decomposition of cobalt carbonate in air at 500 °C for 3 h. The products were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission electron microscope (TEM), scanning electron microscope (SEM), and thermal analysis (TA). Also, the optical characteristics of the as-prepared Co{sub 3}O{sub 4} nanoparticles revealed the presence of two band gaps (1.45–1.47, and 1.83–1.93 eV). Additionally, adsorption of methylene blue dye on Co{sub 3}O{sub 4} nanoparticles was investigated and the uptake% was found to be >99% in 24 h.

  3. Functional display of triphenylmethane reductase for dye removal on the surface of Escherichia coli using N-terminal domain of ice nucleation protein.

    PubMed

    Gao, Fen; Ding, Haitao; Feng, Zhuo; Liu, Danfeng; Zhao, Yuhua

    2014-10-01

    Traditional biological treatment for triphenylmethane dye effluent is stuck with the inaccessibility of dye molecules to intracellular dye-degrading enzyme, thus a high-efficiency and low-cost method for dye decolorization is highly desirable. Here we established a bioremediation approach to display triphenylmethane reductase (TMR) on the surface of Escherichia coli (E. coli) using N-terminal of ice nucleation protein as anchoring motif for triphenylmethane dye decolorization for the first time. Approximately 85% of recombinant protein positioning on the surface of E. coil cells exhibited high activity and stability. The optimal temperature and pH of the surface-displayed TMR are 50 °C and 8.5, respectively. Comparing with other reported microorganisms, the decolorization rate for malachite green of this engineered strain is the highest so far, reaching 640 ?mol min(-1) g(-1) dry weight cells. These results indicate that this engineered E. coli strain is a very promising candidate for synthetic dye removal. PMID:25058292

  4. Dye removal from aqueous solution by magnetic alginate beads crosslinked with epichlorohydrin

    Microsoft Academic Search

    Vincent Rocher; Agnès Bee; Jean-Michel Siaugue; Valérie Cabuil

    2010-01-01

    Innovative magnetic alginate beads are used to remove organic pollutants from aqueous solution under different experimental conditions. These alginate beads (EpiMAB) are prepared by an extrusion technique and crosslinked with epichlorohydrin. They contain both magnetic nanoparticles and activated carbon (AC). With the addition of magnetic properties, the beads can be easily recovered or manipulated with an external magnetic field. Their

  5. An advanced Ag-based photocatalyst Ag2Ta4O11 with outstanding activity, durability and universality for removing organic dyes.

    PubMed

    Dong, Hongjun; Sun, Jingxue; Chen, Gang; Li, Chunmei; Hu, Yidong; Lv, Chade

    2014-11-21

    Constructing Ag-based photocatalysts by the incorporation of Ag(+) ions into metal/nonmetal oxides for removing organic pollutants is a recently developed strategy, but overcoming their own photocorrosion is still a tremendous challenge. In this work, an advanced Ag-based photocatalyst Ag2Ta4O11 is obtained by this strategy, which exhibits improved photocatalytic activity compared with Ta2O5 and the universality for degrading several organic dyes. Importantly, the Ag2Ta4O11 photocatalyst has outstanding durability and reusability, which indicates that it has potential application prospects for organic wastewater treatment in the printing and dyeing industry. PMID:25277949

  6. Template-Free Synthesis of Functional 3D BN architecture for removal of dyes from water

    PubMed Central

    Liu, Dan; Lei, Weiwei; Qin, Si; Chen, Ying

    2014-01-01

    Three-dimensional (3D) architectures are of interest in applications in electronics, catalysis devices, sensors and adsorption materials. However, it is still a challenge to fabricate 3D BN architectures by a simple method. Here, we report the direct synthesis of 3D BN architectures by a simple thermal treatment process. A 3D BN architecture consists of an interconnected flexible network of nanosheets. The typical nitrogen adsorption/desorption results demonstrate that the specific surface area for the as-prepared samples is up to 1156?m2 g?1, and the total pore volume is about 1.17?cm3 g?1. The 3D BN architecture displays very high adsorption rates and large capacities for organic dyes in water without any other additives due to its low densities, high resistance to oxidation, good chemical inertness and high surface area. Importantly, 88% of the starting adsorption capacity is maintained after 15 cycles. These results indicate that the 3D BN architecture is potential environmental materials for water purification and treatment. PMID:24663292

  7. Chemical modification of chitosan by tetraethylenepentamine and adsorption study for anionic dye removal.

    PubMed

    Huang, Xiao-Yi; Mao, Xiao-Yun; Bu, Huai-Tian; Yu, Xiao-Yuan; Jiang, Gang-Biao; Zeng, Ming-Hua

    2011-07-15

    To utilize the contribution of introduced amino groups to the adsorption of an anionic dye (eosin Y), a batch adsorption system was applied to study the adsorption of eosin Y from aqueous solution by tetraethylenepentamine (TEPA) modified chitosan (TEPA-CS). Experiments were carried out as a function of particle size, initial pH, agitation rate, adsorbent dosage, agitation period, temperature and initial concentration of eosin Y. The Langmuir and Freundlich models were used to fit the adsorption isotherms. From the values of correlation coefficients (R2), it was observed that the experimental data fit very well to the Langmuir model, giving a maximum sorption capacity of 292.4mg/g at 298K. Kinetic studies showed that the kinetic data were well described by the pseudo-second-order kinetic model. The thermodynamic study revealed negative value of enthalpy change (?H°) and free energy change (?G°), indicating spontaneous and endothermic nature of the adsorption of eosin Y on to TEPA-CS. PMID:21550023

  8. Synthesis of magnetic metal-organic framework (MOF) for efficient removal of organic dyes from water

    PubMed Central

    Zhao, Xiaoli; Liu, Shuangliu; Tang, Zhi; Niu, Hongyun; Cai, Yaqi; Meng, Wei; Wu, Fengchang; Giesy, John P.

    2015-01-01

    A novel, simple and efficient strategy for fabricating a magnetic metal-organic framework (MOF) as sorbent to remove organic compounds from simulated water samples is presented and tested for removal of methylene blue (MB) as an example. The novel adsorbents combine advantages of MOFs and magnetic nanoparticles and possess large capacity, low cost, rapid removal and easy separation of the solid phase, which makes it an excellent sorbent for treatment of wastewaters. The resulting magnetic MOFs composites (also known as MFCs) have large surface areas (79.52?m2 g?1), excellent magnetic response (14.89?emu g?1), and large mesopore volume (0.09?cm3 g?1), as well as good chemical inertness and mechanical stability. Adsorption was not drastically affected by pH, suggesting ?–? stacking interaction and/or hydrophobic interactions between MB and MFCs. Kinetic parameters followed pseudo-second-order kinetics and adsorption was described by the Freundlich isotherm. Adsorption capacity was 84?mg MB g?1 at an initial MB concentration of 30?mg L?1, which increased to 245?mg g?1 when the initial MB concentration was 300?mg L?1. This capacity was much greater than most other adsorbents reported in the literature. In addition, MFC adsorbents possess excellent reusability, being effective after at least five consecutive cycles. PMID:26149818

  9. Synthesis of magnetic metal-organic framework (MOF) for efficient removal of organic dyes from water.

    PubMed

    Zhao, Xiaoli; Liu, Shuangliu; Tang, Zhi; Niu, Hongyun; Cai, Yaqi; Meng, Wei; Wu, Fengchang; Giesy, John P

    2015-01-01

    A novel, simple and efficient strategy for fabricating a magnetic metal-organic framework (MOF) as sorbent to remove organic compounds from simulated water samples is presented and tested for removal of methylene blue (MB) as an example. The novel adsorbents combine advantages of MOFs and magnetic nanoparticles and possess large capacity, low cost, rapid removal and easy separation of the solid phase, which makes it an excellent sorbent for treatment of wastewaters. The resulting magnetic MOFs composites (also known as MFCs) have large surface areas (79.52?m(2) g(-1)), excellent magnetic response (14.89?emu g(-1)), and large mesopore volume (0.09?cm(3) g(-1)), as well as good chemical inertness and mechanical stability. Adsorption was not drastically affected by pH, suggesting ?-? stacking interaction and/or hydrophobic interactions between MB and MFCs. Kinetic parameters followed pseudo-second-order kinetics and adsorption was described by the Freundlich isotherm. Adsorption capacity was 84?mg MB g(-1) at an initial MB concentration of 30?mg L(-1), which increased to 245?mg g(-1) when the initial MB concentration was 300?mg L(-1). This capacity was much greater than most other adsorbents reported in the literature. In addition, MFC adsorbents possess excellent reusability, being effective after at least five consecutive cycles. PMID:26149818

  10. Sequential study on reactive blue 29 dye removal from aqueous solution by peroxy acid and single wall carbon nanotubes: experiment and theory

    PubMed Central

    2013-01-01

    The majority of anthraquinone dye released to the environment come from antrapogenic sources. Several techniques are available for dyes' removal. In this study removal of reactive blue 29 (RB29) by an advanced oxidation process sequenced with single wall carbon nanotubes was investigated. Advanced oxidation process was optimized over a period of 60 minutes by changing the ratio of acetic acid to hydrogen peroxide, the compounds which form peroxy acid. Reduction of 20.2% -56.4% of reactive blue 29 was observed when the ratio of hydrogen peroxide/acetic acid/dye changed from 344/344/1 to 344/344/0.08 at different times (60, 120 and 180 min). The optimum ratio of acetic acid/hydrogen peroxide/dye was found to be 344/344/0.16 over 60 min. The resultant then was introduced for further removal by single wall carbon nanotubes(SWCNTs) as adsorbent. The adsorption of reactive blue 29 onto SWCNTs was also investigated. Langmuir, Freundlich and BET isotherms were determined and the results revealed that the adsorption of RB29 onto SWCNTs was well explained by BET model and changed to Freundlich isotherm when SWCNTs was used after the application of peroxy acid. Kinetic study showed that the equilibrium time for adsorption of RB 29 on to SWCNT is 4 h. Experiments were carried out to investigate adsorption kinetics, adsorbent capacity and the effect of solution pH on the removal of reactive blue29. The pseudo-second order kinetic equation could best describe the sorption kinetics. The most efficient pH for color removal (amongst pH=3, 5 and 8) was pH= 5. Further studies are needed to identify the peroxy acid degradation intermediates and to investigate their effects on SWCNTs. PMID:23369540

  11. Potential Biosorbent Derived from Calligonum polygonoides for Removal of Methylene Blue Dye from Aqueous Solution

    PubMed Central

    Nasrullah, Asma; Khan, Hizbullah; Khan, Amir Sada; Man, Zakaria; Muhammad, Nawshad; Khan, Muhammad Irfan; Abd El-Salam, Naser M.

    2015-01-01

    The ash of C. polygonoides (locally called balanza) was collected from Lakki Marwat, Khyber Pakhtunkhwa, Pakistan, and was utilized as biosorbent for methylene blue (MB) removal from aqueous solution. The ash was used as biosorbent without any physical or chemical treatment. The biosorbent was characterized by using various techniques such as Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The particle size and surface area were measured using particle size analyzer and Brunauer-Emmett-Teller equation (BET), respectively. The SEM and BET results expressed that the adsorbent has porous nature. Effects of various conditions such as initial concentration of methylene blue (MB), initial pH, contact time, dosage of biosorbent, and stirring rate were also investigated for the adsorption process. The rate of the adsorption of MB on biomass sample was fast, and equilibrium has been achieved within 1 hour. The kinetics of MB adsorption on biosorbent was studied by pseudo-first- and pseudo-second-order kinetic models and the pseudo-second-order has better mathematical fit with correlation coefficient value (R2) of 0.999. The study revealed that C. polygonoides ash proved to be an effective, alternative, inexpensive, and environmentally benign biosorbent for MB removal from aqueous solution. PMID:25705714

  12. Hydrothermal synthesis of TiO2 nanocrystals in different basic pHs and their applications in dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Anajafi, Z.; Marandi, M.; Taghavinia, N.

    2015-06-01

    In this research TiO2 nanocrystals with sizes about 11-70 nm were grown by hydrothermal method. The process was performed in basic autoclaving pH in the range of 8.0-12.0. The synthesized anatase phase TiO2 nanocrystals were then applied in the phtoanode of the dye sensitized solar cells. It was shown that the final average size of the nanocrystals was larger when the growth was carried out in higher autoclaving pHs. The photoanodes made of TiO2 nanocrystals prepared in the pHs of 8.0 and 9.0 represented low amounts of dye adsorption and light scattering. The performance of the corresponding dye sensitized solar cells was also not acceptable. Nevertheless, the energy conversion efficiency was better for the state of pH of 9.0. For the photoanodes made of TiO2 nanocrystals prepared at autoclaving pH of 10.0, the dye adsorption and light scattering were quite higher. The photovoltaic characteristics of the best cell in this state were 15.25 mA/cm2, 740 mV, 0.6 and 6.8% for the short-circuit current density, open-circuit voltage, fill factor and efficiency, respectively. The photoanodes composed of TiO2 nanocrystals prepared in autoclaving pHs of 11.0 and 12.0 demonstrated lower amount of dye adsorption and higher light scattering. This was quite considerable for the state of pH of 12.0. The energy conversion efficiencies were consequently decreased compared to that of the pH of 10.0. The optimum situation was finally discussed based on the nanocrystals size and its influence on the sensitization and light harvesting efficiency.

  13. Batch and dynamic biosorption of basic dyes from binary solutions by alkaline-treated cypress cone chips.

    PubMed

    Fernandez, M E; Nunell, G V; Bonelli, P R; Cukierman, A L

    2012-02-01

    A simple alkaline pre-treatment of Cupressus sempervirens cone chips was performed to improve their biosorption capacity towards methylene blue and rhodamine B from aqueous solutions, in batch and continuous modes. Biosorption kinetics were determined from single and binary dyes solutions, and properly described by the pseudo-second-order rate model. Experimental single-dye equilibrium isotherms fitted the Langmuir-Freundlich model, with maximum biosorption capacities of 0.68mmol/g for methylene blue and 0.50mmol/g for rhodamine B. Single-dye dynamic biosorption showed that breakthrough time for methylene blue biosorption was almost four times longer than for rhodamine B and that the alkaline modification of the chips greatly improved the biosorption performance. Competitive dynamic biosorption demonstrated the preference of the modified cone chips for biosorbing methylene blue, confirmed by the exit concentration overshoots obtained in the breakthrough curves of rhodamine B. PMID:22197337

  14. Competitive adsorption of dyes and heavy metals on zeolitic structures.

    PubMed

    Hernández-Montoya, V; Pérez-Cruz, M A; Mendoza-Castillo, D I; Moreno-Virgen, M R; Bonilla-Petriciolet, A

    2013-02-15

    The adsorption of Acid blue 25, basic blue 9, basic violet 3, Pb(2+), Ni(2+), Zn(2+) and Cd(2+) ions has been studied in single and dye-metal binary solutions using two mineral materials: Clinoptilolite (CL) and ER (Erionite). These zeolites were characterized by FT-IR spectroscopy; potentiometric titration and nitrogen adsorption isotherms at 77 K to obtain their textural parameters. Results indicated that ER has an acidic character and a high specific surface (401 m(2) g(-1)) in contrast with the zeolite CL (21 m(2) g(-1)). Surprisingly, the removal of dyes was very similar for the two zeolites and they showed a considerable selectivity by the basic dyes in comparison with the acid dyes. In the case of heavy metals, ER was more effective in the adsorption process showing a selectivity of: Pb(2+) > Ni(2+) > Zn(2+) > Cd(2+). In the multicomponent adsorption experiments an antagonistic effect was observed in the removal of basic dyes and heavy metals. Particularly, the adsorbed amount of basic violet 3 decreased more significantly when the heavy metals are presents in contrast with the basic blue 9. PMID:23321372

  15. Fabrication and dye removal performance of magnetic CuFe2O4@CeO2 nanofibers

    NASA Astrophysics Data System (ADS)

    Zou, Lianli; Wang, Qiuju; Shen, Xiangqian; Wang, Zhou; Jing, Maoxiang; Luo, Zhou

    2015-03-01

    Novel magnetic adsorbents with CeO2 nanoparticles (about 20 nm) coated on CuFe2O4 nanofibers were fabricated by combining electrospinning technique and chemical precipitation methods. The prepared CuFe2O4@CeO2 composite nanofibers show a diameter of 200 nm with a high specific surface area of 64.12 m2/g. These composite nanofibers exhibit a typical soft-magnetic materials behavior with a specific saturation magnetization (Ms) of 20.51 Am2/kg. The adsorption performances of these composite nanofibers were evaluated by column bed studies for methyl orange (MO) removal from aqueous solution. The effect of pH, flow rate and dye concentration on adsorption performances were investigated. The results show that the adsorption capacity decreases with increase of pH. The largest adsorption capacity of the column beds shows about 100 g/mL under the condition of C0 = 0.05 mg/mL, F = 2.0 mL/min and pH 4.0. The kinetic process is described by Thomas model. The rate constant decreases with the extension of reaction time and decreasing pH. The desorption behaviors are also studied in 0.5 M NaCl solution, ethyl alcohol and deionized water, respectively, which show that the adsorbed MO molecules can be easily desorbed from CuFe2O4@CeO2 composite nanofibers in NaCl solution. The adsorption mechanism of ionic interaction, formation of hydrogen bonds and pore diffusion is rationally proposed.

  16. Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor.

    PubMed

    Cui, Dan; Guo, Yu-Qi; Cheng, Hao-Yi; Liang, Bin; Kong, Fan-Ying; Lee, Hyung-Sool; Wang, Ai-Jie

    2012-11-15

    Azo dyes that consist of a large quantity of dye wastewater are toxic and persistent to biodegradation, while they should be removed before being discharged to water body. In this study, Alizarin Yellow R (AYR) as a model azo dye was decolorized in a combined bio-system of membrane-free, continuous up-flow bio-catalyzed electrolysis reactor (UBER) and subsequent aerobic bio-contact oxidation reactor (ABOR). With the supply of external power source 0.5 V in the UBER, AYR decolorization efficiency increased up to 94.8±1.5%. Products formation efficiencies of p-phenylenediamine (PPD) and 5-aminosalicylic acid (5-ASA) were above 90% and 60%, respectively. Electron recovery efficiency based on AYR removal in cathode zone was nearly 100% at HRTs longer than 6 h. Relatively high concentration of AYR accumulated at higher AYR loading rates (>780 gm(-3) d(-1)) likely inhibited acetate oxidation of anode-respiring bacteria on the anode, which decreased current density in the UBER; optimal AYR loading rate for the UBER was 680 gm(-3) d(-1) (HRT 2.5 h). The subsequent ABOR further improved effluent quality. Overall the Chroma decreased from 320 times to 80 times in the combined bio-system to meet the textile wastewater discharge standard II in China. PMID:23009797

  17. Dye remover poisoning

    MedlinePLUS

    ... blood pressure that develops rapidly Skin: Burns Holes (necrosis) in the skin or tissues underneath Irritation ... in the airways and lungs Chest x-ray EKG (heart tracing) Endoscopy -- camera down the throat to ...

  18. Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent

    Microsoft Academic Search

    N. Azbar; T. Yonar; K. Kestioglu

    2004-01-01

    In this paper, a comparison of various advanced oxidation processes (O3, O3\\/UV, H2O2\\/UV, O3\\/H2O2\\/UV, Fe2+\\/H2O2) and chemical treatment methods using Al2(SO4)3·18H2O, FeCl3 and FeSO4 for the chemical oxygen demand (COD) and color removal from a polyester and acetate fiber dyeing effluent is undertaken. Advanced oxidation processes (AOPs) showed a superior performance compared to conventional chemical treatment, which maximum achievable color

  19. Removing Structural Disorder from Oriented TiO2 Nanotube Arrays: Reducing the Dimensionality of Transport and Recombination in Dye-Sensitized Solar Cells

    SciTech Connect

    Zhu, K.; Vinzant, T. B.; Neale, N. R.; Frank, A. J.

    2007-01-01

    We report on the influence of morphological disorder, arising from bundling of nanotubes (NTs) and microcracks in films of oriented TiO{sub 2} NT arrays, on charge transport and recombination in dye-sensitized solar cells (DSSCs). Capillary stress created during evaporation of liquids from the mesopores of dense TiO{sub 2} NT arrays was of sufficient magnitude to induce bundling and microcrack formation. The average lateral deflection of the NTs in the bundles increased with the surface tension of the liquids and with the film thicknesses. The supercritical CO{sub 2} drying technique was used to produce bundle-free and crack-free NT films. Charge transport and recombination properties of sensitized films were studied by frequency-resolved modulated photocurrent/photovoltage spectroscopies. Transport became significantly faster with decreased clustering of the NTs, indicating that bundling creates additional pathways via intertube contacts. Removing such contacts alters the transport mechanism from a combination of one and three dimensions to the expected one dimension and shortens the electron-transport pathway. Reducing intertube contacts also resulted in a lower density of surface recombination centers by minimizing distortion-induced surface defects in bundled NTs. A causal connection between transport and recombination is observed. The dye coverage was greater in the more aligned NT arrays, suggesting that reducing intertube contacts increases the internal surface area of the films accessible to dye molecules. The solar conversion efficiency and photocurrent density were highest for DSSCs incorporating films with more aligned NT arrays owing to an enhanced light-harvesting efficiency. Removing structural disorder from other materials and devices consisting of nominally one-dimensional architectures (e.g., nanowire arrays) should produce similar effects.

  20. Removing structural disorder from oriented TiO2 nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitized solar cells.

    PubMed

    Zhu, Kai; Vinzant, Todd B; Neale, Nathan R; Frank, Arthur J

    2007-12-01

    We report on the influence of morphological disorder, arising from bundling of nanotubes (NTs) and microcracks in films of oriented TiO2 NT arrays, on charge transport and recombination in dye-sensitized solar cells (DSSCs). Capillary stress created during evaporation of liquids from the mesopores of dense TiO2 NT arrays was of sufficient magnitude to induce bundling and microcrack formation. The average lateral deflection of the NTs in the bundles increased with the surface tension of the liquids and with the film thicknesses. The supercritical CO2 drying technique was used to produce bundle-free and crack-free NT films. Charge transport and recombination properties of sensitized films were studied by frequency-resolved modulated photocurrent/photovoltage spectroscopies. Transport became significantly faster with decreased clustering of the NTs, indicating that bundling creates additional pathways via intertube contacts. Removing such contacts alters the transport mechanism from a combination of one and three dimensions to the expected one dimension and shortens the electron-transport pathway. Reducing intertube contacts also resulted in a lower density of surface recombination centers by minimizing distortion-induced surface defects in bundled NTs. A causal connection between transport and recombination is observed. The dye coverage was greater in the more aligned NT arrays, suggesting that reducing intertube contacts increases the internal surface area of the films accessible to dye molecules. The solar conversion efficiency and photocurrent density were highest for DSSCs incorporating films with more aligned NT arrays owing to an enhanced light-harvesting efficiency. Removing structural disorder from other materials and devices consisting of nominally one-dimensional architectures (e.g., nanowire arrays) should produce similar effects. PMID:17983250

  1. Characterization and utilization of mesoporous fertilizer plant waste carbon for adsorptive removal of dyes from aqueous solution

    Microsoft Academic Search

    I. D. Mall; V. C. Srivastava; G. V. A. Kumar; I. M. Mishra

    2006-01-01

    This paper presents the physico-chemical characteristics of low-cost fertilizer plant waste carbon (WC) for the adsorption of different dyes. The particle size analysis showed an average particle size of 167.35?m. Proximate and CHN analysis showed the presence of high amount of carbon in WC. Bulk density and heating value of WC were found to be 308.03kg\\/m3 and 22.3MJ\\/kg, respectively. The

  2. Determination of textile dyes by means of non-aqueous capillary electrophoresis with electrochemical detection

    Microsoft Academic Search

    Alejandra-Alicia Peláez-Cid; Sonia Blasco-Sancho; Frank-Michael Matysik

    2008-01-01

    Eight textile dye compounds including five cationic dyes, namely, basic blue 41, basic blue 9, basic green 4, basic violet 16 and basic violet 3, and three anionic dyes, acid green 25, acid red 1 and acid blue 324, were separated and detected by non-aqueous capillary electrophoresis (NACE) with electrochemical detection. Simultaneous separations of acid and basic dyes were performed

  3. Green synthesis of AgI-reduced graphene oxide nanocomposites: Toward enhanced visible-light photocatalytic activity for organic dye removal

    NASA Astrophysics Data System (ADS)

    Reddy, D. Amaranatha; Lee, Seunghee; Choi, Jiha; Park, Seonhwa; Ma, Rory; Yang, Haesik; Kim, Tae Kyu

    2015-06-01

    Novel reduced graphene oxide (RGO) enwrapped AgI nanocomposites were successfully fabricated by a facile template-free ultrasound-assisted method at room temperature. The structural, morphological, and optical studies demonstrate that the obtained nanostructures have good crystallinity and that the graphene nanosheets are decorated densely with AgI nanostructures. The photocatalytic activity of the composite was evaluated by the degradation of an organic dye, Rhodamine B (RhB), under visible-light irradiation. The results indicate that AgI with incorporated graphene exhibited much higher photocatalytic activity than the pure AgI due to the improved separation efficiency of the photogenerated carriers and that it prolonged the lifetime of the electron-hole pairs due to the chemical bonding between AgI and graphene. AgI (0.4 mg mL-1 of graphene oxide) nanocomposites displayed the highest photocatalytic degradation efficiency and the corresponding catalytic efficiencies within 70 min were ?96%. Moreover, with the assistance of H2O2 the photocatalytic ability of the as-obtained AgI-RGO nanocomposites was enhanced. The corresponding catalytic efficiencies within 30 min were ?96.8% (for 1 mL H2O2) under the same irradiation conditions. The excellent visible-light photocatalytic efficiency and luminescence properties make the AgI-RGO nanocomposites promising candidates for the removal of organic dyes for water purification and enable their application in near-UV white LEDs.

  4. Efficient and rapid adsorption characteristics of templating modified guar gum and silica nanocomposite toward removal of toxic reactive blue and Congo red dyes.

    PubMed

    Pal, Sagar; Patra, Abhay Shankar; Ghorai, Soumitra; Sarkar, Amit Kumar; Mahato, Vivekananda; Sarkar, Supriyo; Singh, R P

    2015-09-01

    The present study highlights the potentiality of sol-gel synthesized guar gum-graft-poly (acrylamide)/silica (g-GG/SiO2) hybrid nanocomposite toward the rapid removal of toxic reactive blue 4 (RB) and Congo red (CR) dyes from aqueous solution. Various physicochemical characterizations support the feasibility of the functionalized guar gum matrix as efficient template for the formation of homogeneous nanoscale silica particles. The composite demonstrates rapid and superior adsorption efficiency of RB (Qmax: 579.01mgg(-1) within 40min) and CR (Qmax: 233.24mgg(-1) within 30min) dyes from aqueous environment. Here, the pH driven adsorption process depends strongly on the ionic strength of the salt solution. The adsorption kinetics data predicts that pseudo second-order (surface adsorption) and intraparticle diffusion take place simultaneously. The adsorption equilibrium is in good agreement with the Langmuir isotherm, while the thermodynamics study confirms spontaneous nature of the adsorption process. Desorption study predicts the excellent regenerative efficacy of nanocomposite. PMID:26002148

  5. Decolorization of textile dyes by fungal pellets

    Microsoft Academic Search

    Ozfer Yesilada; Dilek Asma; Seval Cing

    2003-01-01

    Decolorization of various dyes by pellets of white rot fungi was studied. All fungal pellets used could remove more than 75% of the color of these dyes in 24 h. Effect of various conditions such as initial pH, concentration of dye, amount of pellet, temperature and agitation on Astrazone blue dye decolorization activity of Funalia trogii was tested and the

  6. Silica coated magnetic particles using microwave synthesis for removal of dyes from natural water samples: Synthesis, characterization, equilibrium, isotherm and kinetics studies

    NASA Astrophysics Data System (ADS)

    Ahmed, Salwa A.; Soliman, Ezzat M.

    2013-11-01

    Monitoring pollutants in water samples is a challenge to analysts. So, the removal of Napthol blue black (NBB) and Erichrome blue black R (EBBR) from aqueous solutions was investigated using magnetic chelated silica particles. Magnetic solids are widely used in detection and analytical systems because of the performance advantages they offer compared to similar solids that lack magnetic properties. In this context, a fast, simple and clean method for modification of magnetic particles (Fe3O4) with silica gel was developed using microwave technique to introduce silica gel coated magnetic particles (SG-MPs) sorbent. The magnetic sorbent was characterized by the FT-IR, X-ray diffraction (XRD), and scan electron microscope (SEM) analyses. The effects of pH, time, weight of sorbent and initial concentration of dye were evaluated. It was interesting to find from results that SG-MPs exhibits high percentage extraction of the studied dyes (100% for NBB and 98.75% for EBBR) from aqueous solutions. The Freundlich isotherm with r2 = 0.973 and 0.962 and Langmuir isotherms with r2 = 0.993 and 0.988 for NBB and EBBR, respectively were used to describe adsorption equilibrium. Also, adsorption kinetic experiments have been carried out and the data have been well fitted by a pseudo-second-order equation r2 = 1.0 for NBB and 0.999 for EBBR. The prepared sorbent with rapid adsorption rate and separation convenience was applied for removal of NBB and EBBR pollutants from natural water samples with good precision (RSD% = 0.05-0.3%).

  7. Treatment of Azo Dye-Containing Wastewater Using Integrated Processes

    Microsoft Academic Search

    Xujie Lu; Rongrong Liu

    \\u000a Azo dyes are the most widely used dyes in textile industry. During the dyeing process, the degree of exhaustion of dyes is\\u000a never complete, resulting in azo dye-containing effluents. The biodegradation of azo dyes is difficult due to their complex\\u000a structure and synthetic nature. The removal of azo dyes from industry effluents is desirable not only for aesthetic reasons\\u000a but

  8. Parametric study on the effect of the ratios [H2O2]\\/[Fe] and [H2O2]\\/[substrate] on the photo-Fenton degradation of cationic azo dye Basic Blue 41

    Microsoft Academic Search

    Souâd Bouafia-Chergui; Nihal Oturan; Hussein Khalaf; Mehmet A. Oturan

    2010-01-01

    An experimental parametric study was carried out to investigate the effects of [H2O2], [Fe] and [H2O2]\\/[Fe] ratio on the photo-Fenton degradation of a azo dye Basic Blue 41 (BB41) in aqueous solution. This method consists of coupling between Fenton's reagent and UV irradiation in order to catalyze the in situ generation of hydroxyl radicals, a powerful oxidizing agent which leads

  9. Humic acid adsorption onto cationic cellulose nanofibers for bioinspired removal of copper(ii) and a positively charged dye.

    PubMed

    Sehaqui, H; Perez de Larraya, Uxua; Tingaut, P; Zimmermann, T

    2015-07-14

    Waste pulp residues are herein exploited for the synthesis of a sorbent for humic acid (HA), which is a major water pollutant. Cellulose pulp was etherified with a quaternary ammonium salt in water thereby introducing positive charges onto the surface of the pulp fibers, and subsequently mechanically disintegrated into high surface area cellulose nanofibers (CNF). CNF with three different charge contents were produced and their adsorption capacity towards HA was investigated with UV-spectrophotometry, quartz crystal microbalance with dissipation, and ?-potential measurements. Substantial coverage of the CNF surface with HA in a wide pH range led to a reversal of the positive ?-potentials of CNF suspensions. The HA adsorption capacity and the kinetics of HA uptake were found to be promoted by both acidic pH conditions and the surface charge content of CNF. It is suggested that HA adsorption onto CNF depends on electrostatic interactions between the two components, as well as on the conformation of HA. At pH ? 6, up to 310 mg g(-1) of HA were adsorbed by the functionalized CNF, a substantially higher capacity than that of previously reported HA sorbents in the literature. It is further shown that CNF-HA complexes could be freeze-dried into "soil-mimicking" porous foams having good capacity to capture Cu(ii) ions and positive dyes from contaminated water. Thus, the most abundant natural polymer, i.e., cellulose could effectively bind the most abundant natural organic matter for environmental remediation purpose. PMID:26052685

  10. Microwave induced synthesis of graft copolymer of binary vinyl monomer mixtures onto delignified Grewia optiva fibre: Application in dye removal

    NASA Astrophysics Data System (ADS)

    Gupta, Vinod; Pathania, Deepak; Priya, Bhanu; Singha, A. K.; Sharma, Gaurav

    2014-08-01

    Grafting method, through microwave radiation technique is very effective in terms of time consumption, cost effectiveness and environmental friendliness. Via this method, delignified Grewia optiva identified as a waste biomass, was graft copolymerized with methylmethacrylate (MMA) as an principal monomer in a binary mixture of ethyl methacrylate (EMA) and ethyl acrylate (EA) under microwave irradiation (MWR) using ascorbic acid/H2O2 as an initiator system. The concentration of the comonomer was optimized to maximize the graft yield with respect to the primary monomer. Maximum graft yield (86.32%) was found for dGo-poly(MMA-co-EA) binary mixture as compared to other synthesized copolymer. The experimental results inferred that the optimal concentrations for the comonomers to the optimized primary monomer was observed to be 3.19 mol/L×10-1 for EMA and 2.76 mol/L×10-1 for EA. Delignified and graft copolymerized fibre were subjected to evaluation of physicochemical properties such as swelling behaviour and chemical resistance. The synthesized graft copolymers were characterized with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and X-ray diffraction techniques. Thermal stability of dGo-poly(MMA-co-EA) was found to be more as compared to the delignified Grewia optiva fibre and other graft copolymers. Although the grafting technique was found to decrease percentage crystallinity and crystallinity index among the graft copolymers but there was significant increase in their acid/base and thermal resistance properties. The grafted samples have been explored for the adsorption of hazardous methylene dye from aqueous system.

  11. Dye removal from aqueous solution by cobalt-nano particles decorated aluminum silicate: kinetic, thermodynamic and mechanism studies.

    PubMed

    Arshadi, M; Faraji, A R; Mehravar, M

    2015-02-15

    This article describes the preparation of a nanoadsorbent containing Co-nanoparticles decorated functionalized SiO2-Al2O3 mixed-oxides as a scavenger toward removal of methyl orange. SiO2-Al2O3 mixed-oxides were functionalized with pyridine-2-carbaldehyde and thereafter, in the next step, Co-nanoparticle was prepared over the modified mixed-oxides. The as-prepared nanoadsorbent was characterized by Fourier transform infrared (FTIR), UV-visible diffuse reflectance spectra (UV-vis DRS), inductively coupled plasma atomic emission spectroscopy (ICP-AES), Brunauer-Emmett-Teller (BET), transmission electron microscopy (TEM), electron paramagnetic resonance (EPR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Results showed that Co-nanoparticle with average size of about 5-25 nm was immobilized successfully on the surface of modified mixed-oxides and was widely dispersed. EPR and CV of Si/Al-PAEA=PyCA@CoNP confirmed that most of the covalently bond active sites of the nano-adsorbent are in the form of Co(II) ions. The supported cobalt is a suitable and efficient adsorbent for the removal of methyl orange from aqueous solution. The heterogeneous Co-NPs were found to be effective adsorbent for the removal of methyl orange ions from solution. The adsorption process was spontaneous and endothermic in nature and followed pseudo-second-order kinetic model. The CV and EIS of the Co-NPs-MO indicates an easily oxidizable environment, this being in agreement with the FTIR data, where the electron density at Co-NPs is higher due to the presence of a donor-electron ligand (methyl orange), that is, reduction of Co-NPs from +3 to +2 oxidation state is more favored. PMID:25460694

  12. Arsenic removal from contaminated groundwater by membrane-integrated hybrid plant: optimization and control using Visual Basic platform.

    PubMed

    Chakrabortty, S; Sen, M; Pal, P

    2014-03-01

    A simulation software (ARRPA) has been developed in Microsoft Visual Basic platform for optimization and control of a novel membrane-integrated arsenic separation plant in the backdrop of absence of such software. The user-friendly, menu-driven software is based on a dynamic linearized mathematical model, developed for the hybrid treatment scheme. The model captures the chemical kinetics in the pre-treating chemical reactor and the separation and transport phenomena involved in nanofiltration. The software has been validated through extensive experimental investigations. The agreement between the outputs from computer simulation program and the experimental findings are excellent and consistent under varying operating conditions reflecting high degree of accuracy and reliability of the software. High values of the overall correlation coefficient (R (2)?=?0.989) and Willmott d-index (0.989) are indicators of the capability of the software in analyzing performance of the plant. The software permits pre-analysis, manipulation of input data, helps in optimization and exhibits performance of an integrated plant visually on a graphical platform. Performance analysis of the whole system as well as the individual units is possible using the tool. The software first of its kind in its domain and in the well-known Microsoft Excel environment is likely to be very useful in successful design, optimization and operation of an advanced hybrid treatment plant for removal of arsenic from contaminated groundwater. PMID:24288068

  13. Blast furnace slag of a ferrosilicon firm in aswan governorate, Upper Egypt, as an adsorbent for the removal of merocyanine dye from its aqueous solution.

    PubMed

    Taha, Gharib Mahmoud; Mosaed, Taghreed Mahmoud

    2010-04-01

    The adsorption potential of the blast furnace slag of a ferrosilicon firm in Aswan Governorate, Egypt, to decolorize aqueous solutions of 3-methyl-1-phenylpyrazol-5-one 4[2] merocyanine dye (1) was investigated at room temperature. The influence of the solution pH, the quantity of adsorbent, the initial concentration of 1, and the applied contact time were studied with the batch technique. The maximum percentage of removal of 1 was observed at pH 4. The adsorption data were better fitted by the Freundlich than by the Langmuir adsorption isotherm model, confirming the formation of monolayers of 1 on the adsorbent surface. Kinetic rate constants and the transient behavior at different initial concentrations of 1 were determined with both the Lagergren pseudo-first-order and the Ho and McKay pseudo-second-order kinetic models. The calculated kinetic parameters revealed that the adsorption of 1 on blast furnace slag followed a second-order chemisorption process. PMID:20397223

  14. Pilot-scale study on nitrogen and aromatic compounds removal in printing and dyeing wastewater by reinforced hydrolysis-denitrification coupling process and its microbial community analysis.

    PubMed

    Li, Chao; Ren, Hongqiang; Yin, Erqin; Tang, Siyuan; Li, Yi; Cao, Jiashun

    2015-06-01

    Aiming to efficiently dispose printing and dyeing wastewater with "high organic nitrogen and aromatic compounds, but low carbon source quality", the reinforced anaerobic hydrolysis-denitrification coupling process, based on improved UASB reactors and segregated collection-disposition strategy, was designed and applied at the pilot scale. Results showed that the coupling process displayed efficient removal for these two kinds of pollutants (nitrogen and aromatics), since the concentration of NH3-N (shortened as ? (NH3-N))?

  15. Facile preparation of magnetic C/TiO2/Ni composites and their photocatalytic performance for removal of a dye from water under UV light irradiation.

    PubMed

    Gondal, Mohammed A; Li, Chunli; Chang, Xiaofeng; Sikong, Lek; Yamani, Zain H; Zhou, Qin; Yang, Fan; Lin, Qin

    2012-01-01

    Development of a photocatalyst with high efficiency and separability is still a challenging task in the field of wastewater treatment. In this study, new magnetic separable C/TiO(2)/Ni composite as a photocatalyst was prepared by a facile pyrolysis reaction, using powdered activated carbon (PAC), TiO(2) and Ni(Ac)(2) as precursors. The results proved that the photocatalyst (C/TiO(2)/Ni) synthesized in this work exhibited greater removal activity for Methyl Orange (MO) dye from water as compared with the commercially available well reported TiO(2) nanoparticles (P25). This significant enhancement in the photocatalytic activity for wastewater treatment due to the combination of PAC and TiO(2) could be presumed as the synergetic effect on the contacting interface of TiO(2) and PAC, and such effect was initially demonstrated by electrochemical impedance measurements. Furthermore, the trait that it consists of magnetic properties and therefore is easy to be recycled, which could be harnessed by an external magnet and may have many advantages over pure metal oxides (like TiO(2)) especially in the industrial procedures. PMID:22375540

  16. Supramolecular phase-selective gelation by peptides bearing side-chain azobenzenes: effect of ultrasound and potential for dye removal and oil spill remediation.

    PubMed

    Bachl, Jürgen; Oehm, Stefan; Mayr, Judith; Cativiela, Carlos; Marrero-Tellado, José Juan; Díaz, David Díaz

    2015-01-01

    Phase selective gelation (PSG) of organic phases from their non-miscible mixtures with water was achieved using tetrapeptides bearing a side-chain azobenzene moiety. The presence of the chromophore allowed PSG at the same concentration as the minimum gelation concentration (MGC) necessary to obtain the gels in pure organic phases. Remarkably, the presence of the water phase during PSG did not impact the thermal, mechanical, and morphological properties of the corresponding organogels. In the case of miscible oil/water mixtures, the entire mixture was gelled, resulting in the formation of quasi-hydrogels. Importantly, PSG could be triggered at room temperature by ultrasound treatment of the mixture or by adding ultrasound-aided concentrated solution of the peptide in an oil-phase to a mixture of the same oil and water. Moreover, the PSG was not affected by the presence of salts or impurities existing in water from natural sources. The process could be scaled-up, and the oil phases (e.g., aromatic solvents, gasoline, diesel fuel) recovered almost quantitatively after a simple distillation process, which also allowed the recovery and reuse of the gelator. Finally, these peptidic gelators could be used to quantitatively remove toxic dyes from aqueous solutions. PMID:26006247

  17. Supramolecular Phase-Selective Gelation by Peptides Bearing Side-Chain Azobenzenes: Effect of Ultrasound and Potential for Dye Removal and Oil Spill Remediation

    PubMed Central

    Bachl, Jürgen; Oehm, Stefan; Mayr, Judith; Cativiela, Carlos; Marrero-Tellado, José Juan; Díaz Díaz, David

    2015-01-01

    Phase selective gelation (PSG) of organic phases from their non-miscible mixtures with water was achieved using tetrapeptides bearing a side-chain azobenzene moiety. The presence of the chromophore allowed PSG at the same concentration as the minimum gelation concentration (MGC) necessary to obtain the gels in pure organic phases. Remarkably, the presence of the water phase during PSG did not impact the thermal, mechanical, and morphological properties of the corresponding organogels. In the case of miscible oil/water mixtures, the entire mixture was gelled, resulting in the formation of quasi-hydrogels. Importantly, PSG could be triggered at room temperature by ultrasound treatment of the mixture or by adding ultrasound-aided concentrated solution of the peptide in an oil-phase to a mixture of the same oil and water. Moreover, the PSG was not affected by the presence of salts or impurities existing in water from natural sources. The process could be scaled-up, and the oil phases (e.g., aromatic solvents, gasoline, diesel fuel) recovered almost quantitatively after a simple distillation process, which also allowed the recovery and reuse of the gelator. Finally, these peptidic gelators could be used to quantitatively remove toxic dyes from aqueous solutions. PMID:26006247

  18. Removal of Reactive Black 5 azo dye from aqueous solutions by catalytic oxidation using CuO\\/Al 2O 3 and NiO\\/Al 2O 3

    Microsoft Academic Search

    Corina Bradu; Ligia Frunza; Nicoleta Mihalche; Sorin-Marius Avramescu; Marian Nea??; Ion Udrea

    2010-01-01

    CuO\\/Al2O3 and NiO\\/Al2O3 catalysts prepared by incipient wetness impregnation were used for the oxidation of Reactive Black 5 (RB5) in aqueous solution. Removal of the dye was assessed by High Performance Liquid Chromatography (HPLC) and Total Organic Carbon (TOC) measurements and the generation of the hydroxyl radicals in the process was evaluated by chemiluminescence measurements. To put in evidence the

  19. Biological decolorization of xanthene dyes by anaerobic granular biomass.

    PubMed

    Apostol, Laura Carmen; Pereira, Luciana; Pereira, Raquel; Gavrilescu, Maria; Alves, Maria Madalena

    2012-09-01

    Biodegradation of a xanthene dyes was investigated for the first time using anaerobic granular sludge. On a first screening, biomass was able to decolorize, at different extents, six azo dye solutions: acid orange 7, direct black 19, direct blue 71, mordant yellow 10, reactive red 2 and reactive red 120 and two xanthene dyes--Erythrosine B and Eosin Y. Biomass concentration, type of electron donor, induction of biomass with dye and mediation with activated carbon (AC) were variables studied for Erythrosine B (Ery) as model dye. Maximum color removal efficiency was achieved with 4.71 g VSS L?¹, while the process rates were independent of the biomass concentration above 1.89 g VSS L?¹. No considerable effects were observed when different substrates were used as electron donors (VFA, glucose or lactose). Addition of Ery in the incubation period of biomass led to a fivefold increase of the decolorization rate. The rate of Ery decolorization almost duplicated in the presence of commercial AC (0.1 g L?¹ AC?). Using different modified AC samples (from the treatment of AC?), a threefold higher rate was obtained with the most basic one, AC(H?), as compared with non-mediated reaction. Higher rates were obtained at pH 6.0. Chemical reduction using Na?S confirmed the recalcitrant nature of this dye. The results attest that decolorization of Ery is essentially due to enzymatic and adsorption phenomena. PMID:22437968

  20. Fast removal of malachite green dye using novel superparamagnetic sodium alginate-coated Fe3O4 nanoparticles.

    PubMed

    Mohammadi, Abbas; Daemi, Hamed; Barikani, Mehdi

    2014-08-01

    In this study, superparamagnetic sodium alginate-coated Fe3O4 nanoparticles (Alg-Fe3O4) as a novel magnetic adsorbent were prepared by in situ coprecipitation method, in which Fe3O4 nanoparticles were precipitated from FeCl3 and FeCl2 under alkaline medium in the presence of sodium alginate. The Alg-Fe3O4 nanoparticles were used for removal of malachite green (MG) from aqueous solutions using batch adsorption technique. The characterization of synthesized nanoparticles was performed using XRD, FTIR, TEM, TGA and vibrating sample magnetometer (VSM) techniques. FTIR analysis of synthesized nanoparticles provided the evidence that sodium alginate was successfully coated on the surface of Fe3O4 nanoparticles. The FT-IR and TGA characterization showed that the Alg-Fe3O4 nanoparticles contained about 14% (w/w) of sodium alginate. Moreover, TEM analysis indicated that the average diameter of the Alg-Fe3O4 nanoparticles was about 12nm. The effects of adsorbent dosage, pH and temperature were investigated on the adsorption properties of MG onto Alg-Fe3O4 nanoparticles. The equilibrium adsorption data were modeled using the Langmuir and Freundlich isotherms. The maximum adsorption capacity obtained from Langmuir isotherm equation was 47.84mg/g. The kinetics of adsorption of MG onto Alg-Fe3O4 nanoparticles were investigated using the pseudo-first-order and pseudo-second-order kinetic models. The results showed that the adsorption of MG onto nanoparticles followed pseudo-second-order kinetic model. PMID:24875322

  1. Degradation of Congo Red Dye by Ozonation

    Microsoft Academic Search

    Arthit Neramittagapong

    The purpose of this study was to investigate the degradation of azo dye in synthetic wastewater by ozonation and to optimize the reaction parameters such as pH, time and type of catalysts which influence the efficiencies of color and COD removal. Congo red dye was selected as model pollutant. Catalytic and non-catalytic ozonation of Congo red dye were carried out

  2. Adsorption of basic fuchsin using waste materials—bottom ash and deoiled soya—as adsorbents

    Microsoft Academic Search

    V. K. Gupta; Alok Mittal; Vibha Gajbe; Jyoti Mittal

    2008-01-01

    Basic fuchsin, a triaminotriphenylmethane dye, was removed by adsorption utilizing two waste materials—“bottom ash,” a power plant waste material, and “deoiled soya,” an agriculture waste product. The adsorbents were characterized through IR spectroscopy and differential thermal analysis (DTA). Batch adsorption experiments were carried out by measuring effects of pH, adsorbate concentration, sieve size, amount of adsorbent, contact time, temperature, etc.

  3. Adsorption and kinetic studies of seven different organic dyes onto magnetite nanoparticles loaded tea waste and removal of them from wastewater samples

    NASA Astrophysics Data System (ADS)

    Madrakian, Tayyebeh; Afkhami, Abbas; Ahmadi, Mazaher

    2012-12-01

    Adsorption of seven different organic dyes from aqueous solutions onto magnetite nanoparticles loaded tea waste (MNLTW) was studied. MNLTW was prepared via a simple method and was fully characterized. The properties of this magnetic adsorbent were characterized by scanning electron microscopy and X-ray diffraction. Adsorption characteristics of the MNLTW adsorbent was examined using Janus green, methylene blue, thionine, crystal violet, Congo red, neutral red and reactive blue 19 as adsorbates. Dyes adsorption process was thoroughly studied from both kinetic and equilibrium points of view for all adsorbents. The experimental isotherm data were analyzed using Langmuir, Freundlich, Sips, Redlich-Peterson, Brouers-Sotolongo and Temkin isotherms. The results from Langmuir isotherm indicated that the capacity of MNLTW for the adsorption of cationic dyes was higher than that for anionic dyes. The adsorption kinetics was tested for the pseudo-first order and pseudo-second order kinetic models at different experimental conditions.

  4. Environmentally stable adsorbent of tetrahedral silica and non-tetrahedral alumina for removal and recovery of malachite green dye from aqueous solution.

    PubMed

    Kannan, Chellapandian; Sundaram, Thiravium; Palvannan, Thayumanavan

    2008-08-30

    The conventional adsorbents like activated carbon, agricultural wastes, molecular sieves, etc., used for dye adsorption are unstable in the environment for long time, and hence the adsorbed dyes again gets liberated and pollute the environment. To avoid this problem, environmentally stable adsorbent of silica and alumina should be employed for malachite green adsorption. The adsorbents were characterized by Fourier transformed infrared spectroscopy (FT-IR) to confirm the tetrahedral framework of silica and non-tetrahedral framework of alumina. The adsorption equilibrium of dye on alumina and silica were 4 and 5h, respectively, this less adsorption time on alumina might be due to the less activation energy on alumina (63.46 kJ mol(-1)) than silica (69.93 kJ mol(-1)). Adsorption increased with increase of temperature on silica, in alumina, adsorption increased up to 60 degrees C, and further increase of temperature decreased the adsorption due to the structural change of non-tetrahedral alumina in water. The optimum pH for dye adsorption on alumina was 5 and silica was 6. The dye adsorptions on both adsorbents followed pseudo-second-order kinetics. The adsorption well matched with Langmuir and Freundlich adsorption isotherms and found that adsorption capacity on alumina was more than silica. The thermodynamic studies proved that the adsorption was endothermic and chemisorptions (DeltaH degrees >40 kJ mol(-1)) on alumina and silica. Recovery of dye on alumina and silica were studied from 30 to 90 degrees C and observed that 52% of dye was recovered from alumina and only 3.5% from silica. The less recovery on silica proved the strong adsorption of dye on silica than alumina. PMID:18289784

  5. Equilibrium, kinetics and mechanism modeling and simulation of basic and acid dyes sorption onto jute fiber carbon: Eosin yellow, malachite green and crystal violet single component systems

    Microsoft Academic Search

    K. Porkodi; K. Vasanth Kumar

    2007-01-01

    Batch experiments were carried out for the sorption of eosin yellow, malachite green and crystal violet onto jute fiber carbon (JFC). The operating variables studied are the initial dye concentration, initial solution pH, adsorbent dosage and contact time. Experimental equilibrium data were fitted to Freundlich, Langmuir and Redlich–Peterson isotherm by non-linear regression method. Langmuir isotherm was found to be the

  6. Sorption of Acid Dyes by Chemically Modified Peanut Hulls

    Microsoft Academic Search

    K. S. Low; C. K. Lee; W. H. Koo

    1999-01-01

    Dyes, while comprising only a very small fraction of the total organic load in wastewater, render themselves easily recognizable substances in the aqueous environment. At present there are no general and economically suitable methods for the removal of dyes from textile effluents. Though dyes can be removed by activated carbon, the cost of treatment is high. Treatment of textile wastewater

  7. Removing user fees for basic health services: a pilot study and national roll-out in Afghanistan

    PubMed Central

    Steinhardt, Laura C; Aman, Iqbal; Pakzad, Iqbalshah; Kumar, Binay; Singh, Lakhwinder P; Peters, David H

    2011-01-01

    Background User fees for primary care tend to suppress utilization, and many countries are experimenting with fee removal. Studies show that additional inputs are needed after removing fees, although well-documented experiences are lacking. This study presents data on the effects of fee removal on facility quality and utilization in Afghanistan, based on a pilot experiment and subsequent nationwide ban on fees. Methods Data on utilization and observed structural and perceived overall quality of health care were compared from before-and-after facility assessments, patient exit interviews and catchment area household surveys from eight facilities where fees were removed and 14 facilities where fee levels remained constant, as part of a larger health financing pilot study from 2005 to 2007. After a national user fee ban was instituted in 2008, health facility administrative data were analysed to assess subsequent changes in utilization and quality. Results The pilot study analysis indicated that observed and perceived quality increased across facilities but did not differ by fee removal status. Difference-in-difference analysis showed that utilization at facilities previously charging both service and drug fees increased by 400% more after fee removal, prompting additional inputs from service providers, compared with facilities that previously only charged service fees or had no change in fees (P = 0.001). Following the national fee ban, visits for curative care increased significantly (P < 0.001), but institutional deliveries did not. Services typically free before the ban—immunization and antenatal care—had immediate increases in utilization but these were not sustained. Conclusion Both pilot and nationwide data indicated that curative care utilization increased following fee removal, without differential changes in quality. Concerns raised by non-governmental organizations, health workers and community leaders over the effects of lost revenue and increased utilization require continued effort to raise revenues, monitor health worker and patient perceptions, and carefully manage health facility performance. PMID:22027924

  8. Removing user fees for basic health services: a pilot study and national roll-out in Afghanistan.

    PubMed

    Steinhardt, Laura C; Aman, Iqbal; Pakzad, Iqbalshah; Kumar, Binay; Singh, Lakhwinder P; Peters, David H

    2011-11-01

    BACKGROUND User fees for primary care tend to suppress utilization, and many countries are experimenting with fee removal. Studies show that additional inputs are needed after removing fees, although well-documented experiences are lacking. This study presents data on the effects of fee removal on facility quality and utilization in Afghanistan, based on a pilot experiment and subsequent nationwide ban on fees. METHODS Data on utilization and observed structural and perceived overall quality of health care were compared from before-and-after facility assessments, patient exit interviews and catchment area household surveys from eight facilities where fees were removed and 14 facilities where fee levels remained constant, as part of a larger health financing pilot study from 2005 to 2007. After a national user fee ban was instituted in 2008, health facility administrative data were analysed to assess subsequent changes in utilization and quality. RESULTS The pilot study analysis indicated that observed and perceived quality increased across facilities but did not differ by fee removal status. Difference-in-difference analysis showed that utilization at facilities previously charging both service and drug fees increased by 400% more after fee removal, prompting additional inputs from service providers, compared with facilities that previously only charged service fees or had no change in fees (P = 0.001). Following the national fee ban, visits for curative care increased significantly (P < 0.001), but institutional deliveries did not. Services typically free before the ban-immunization and antenatal care-had immediate increases in utilization but these were not sustained. CONCLUSION Both pilot and nationwide data indicated that curative care utilization increased following fee removal, without differential changes in quality. Concerns raised by non-governmental organizations, health workers and community leaders over the effects of lost revenue and increased utilization require continued effort to raise revenues, monitor health worker and patient perceptions, and carefully manage health facility performance. PMID:22027924

  9. Dye filled security seal

    DOEpatents

    Wilson, Dennis C. W. (Tijeras, NM)

    1982-04-27

    A security seal for providing an indication of unauthorized access to a sealed object includes an elongate member to be entwined in the object such that access is denied unless the member is removed. The elongate member has a hollow, pressurizable chamber extending throughout its length that is filled with a permanent dye under greater than atmospheric pressure. Attempts to cut the member and weld it together are revealed when dye flows through a rupture in the chamber wall and stains the outside surface of the member.

  10. Hair Dyes

    Microsoft Academic Search

    David Basketter; Jeanne Duus Johansen; John McFadden; Heidi Søsted

    \\u000a Contact dermatitis to hair dye ingredients have been known since human started dyeing with aromatic amines like p-phenylenediamine\\u000a (PPD). Hair dye allergy may cause severe clinical reactions, with edema of the face, eyelids, and scalp. More moderate reactions\\u000a such as erythema, suppuration, and ulceration, typically at the scalp margin, on the ears, and sometimes with evidence of\\u000a eczema where the

  11. Synthesis of interpenetrating network hydrogel from poly(acrylic acid-co-hydroxyethyl methacrylate) and sodium alginate: modeling and kinetics study for removal of synthetic dyes from water.

    PubMed

    Mandal, Bidyadhar; Ray, Samit Kumar

    2013-10-15

    Several interpenetrating network (IPN) hydrogels were made by free radical in situ crosslink copolymerization of acrylic acid (AA) and hydroxy ethyl methacrylate in aqueous solution of sodium alginate. N,N'-methylenebisacrylamide (MBA) was used as comonomer crosslinker for making these crosslink hydrogels. All of these hydrogels were characterized by carboxylic content, FTIR, SEM, XRD, DTA-TGA and mechanical properties. Swelling, diffusion and network parameters of the hydrogels were studied. These hydrogels were used for adsorption of two important synthetic dyes, i.e. Congo red and methyl violet from water. Isotherms, kinetics and thermodynamics of dye adsorption by these hydrogels were also studied. PMID:23987343

  12. Treatment of Dyeing Wastewater by TiO2\\/H2O2\\/UV Process: Experimental Design Approach for Evaluating Total Organic Carbon (TOC) Removal Efficiency

    Microsoft Academic Search

    Seung-Mok Lee; Young-Gyu Kim; Il-Hyoung Cho

    2005-01-01

    Optimal operating conditions in order to treat dyeing wastewater were investigated by using the factorial design and responses surface methodology (RSM). The experiment was statistically designed and carried out according to a 2 full factorial design with four factorial points, three center points, and four axial points. Then, the linear and nonlinear regression was applied on the data by using

  13. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature

    Microsoft Academic Search

    Grégorio Crini; Pierre-Marie Badot

    2008-01-01

    Application of chitinous products in wastewater treatment has received considerable attention in recent years in the literature. In particular, the development of chitosan-based materials as useful adsorbent polymeric matrices is an expanding field in the area of adsorption science. This review highlights some of the notable examples in the use of chitosan and its grafted and crosslinked derivatives for dye

  14. Process development for the removal and recovery of hazardous dye erythrosine from wastewater by waste materials—Bottom Ash and De-Oiled Soya as adsorbents

    Microsoft Academic Search

    Alok Mittal; Jyoti Mittal; Lisha Kurup; A. K. Singh

    2006-01-01

    Erythrosine is a water-soluble xanthene class of dye. It is widely used as colorant in foods, textiles, drugs and cosmetics. It is highly toxic, causes various types of allergies, thyroid activities, carcinogenicity, DNA damage behaviour, neurotoxicity and xenoestrogen nature in the humans and animals. The photochemical and biochemical degradation of the erythrosine is not recommended due to formation of toxic

  15. Removing Structural Disorder from Oriented TiO2 Nanotube Arrays: Reducing the Dimensionality of Transport and Recombination in Dye-Sensitized Solar Cells

    Microsoft Academic Search

    Kai Zhu; Todd B. Vinzant; Nathan R. Neale; Arthur J. Frank

    2007-01-01

    We report on the influence of morphological disorder, arising from bundling of nanotubes (NTs) and microcracks in films of oriented TiO NT arrays, on charge transport and recombination in dye-sensitized solar cells (DSSCs). Capillary stress created during evaporation of liquids from the mesopores of dense TiO NT arrays was of sufficient magnitude to induce bundling and microcrack formation. The average

  16. Removal of dyes from water using chitosan hydrogel/SiO2 and chitin hydrogel/SiO2 hybrid materials obtained by the sol-gel method.

    PubMed

    Copello, Guillermo J; Mebert, Andrea M; Raineri, M; Pesenti, Mariela P; Diaz, Luis E

    2011-02-15

    This work describes the synthesis of chitosan hydrogel/SiO(2) and chitin hydrogel/SiO(2) hybrid mesoporous materials obtained by the sol-gel method for their use as biosorbents. Their adsorption capabilities against four dyes (Remazol Black B, Erythrosine B, Neutral Red and Gentian Violet) were compared in order to evaluate chitin as a plausible replacement for chitosan considering its efficiency and lower cost. Both chitin and chitosan were used in the form of hydrogels. This allowed full compatibility with the ethanol release from tetraethoxysilane. The hybrid materials were characterized by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), Nitrogen Adsorption Isotherms and (13)C solid-state Nuclear Magnetic Resonance. Adsorption experimental data were analyzed using Langmuir, Freundlich and Dubinin-Radushkevich isotherm models along with the evaluation of adsorption energy and standard free energy (?G(0)). The adsorption was observed to be pH dependent. The main mechanism of dye adsorption was found to be a spontaneous charge associated interaction, except for EB adsorption on chitin/SiO(2) matrix, which showed to involve a lower energy physical adsorption interaction. Aside from highly charged dyes the chitin containing matrix has similar or higher adsorption capacity than the chitosan one. PMID:21163576

  17. Dye Painting with Fiber Reactive Dyes

    ERIC Educational Resources Information Center

    Benjamin-Murray, Betsy

    1977-01-01

    In her description of how to use dyes directly onto fabrics the author lists materials to be used, directions for mixing dyes, techniques for applying dyes, references for additional reading and sources for dye materials. Preceding the activity with several lessons in design and other textile techniques with the dye process will ensure a…

  18. Application of novel copolymer-TiO 2 membranes for some textile dyes adsorptive removal from aqueous solution and photocatalytic decolorization

    Microsoft Academic Search

    Amr A. Essawy; A. El-Hag Ali; M. S. A. Abdel-Mottaleb

    2008-01-01

    Novel low density polyethylene-grafted-poly(4-vinylpyridine-co-acrylamide) (LDPE-g-P(4-VP\\/AAm)) films were prepared by means of ?-radiation-induced graft copolymerization as support for photocatalytic application. Nanometer-sized TiO2 particles were immobilized to the grafted LDPE via dip coating technique. The efficiency of immobilized photocatalyst is tested on two target pollutants (textile azo dyes: Remazol red RB-133 (RR RB 133) and reactive blue 2 (RB2)). The efficient photocatalytic

  19. Photocatalytic and combined anaerobic–photocatalytic treatment of textile dyes

    Microsoft Academic Search

    F. Harrelkas; A. Paulo; M. M. Alves; L. El Khadir; O. Zahraa; M. N. Pons; F. P. van der Zee

    2008-01-01

    A photocatalytic process based on immobilized titanium dioxide was used to treat crude solutions of azo, anthraquinone and phthalocyanine textile dyes. In addition, the process was applied to the treat autoxidized chemically reduced azo dyes, i.e. representatives of recalcitrant dye residues after biological sequential anaerobic–aerobic treatment. Photocatalysis was able to remove more than 90% color from crude as well as

  20. One-pot synthesis of ZnO2/ZnO composite with enhanced photocatalytic performance for organic dye removal.

    PubMed

    Liu, Wei; Wang, Mingliang; Xu, Chunxiang; Chen, Shifu; Fu, Xianliang

    2013-01-01

    The ZnO2/ZnO photocatalysts with various ZnO2 contents were prepared by one-pot synthesis method using ZnO and H2O2 as raw materials. The photocatalysts were characterized by XRD, UV-vis DRS, SEM, EDS, FT-IR spectra, fluorescence emission spectra, and BET specific area. The photocatalytic performance of the photocatalyst was evaluated by photocatalytic degradation of methyl orange (MO) and rhodamine B (RhB). The results showed that the photocatalytic activity of the ZnO2/ZnO was much higher than that of single-phase ZnO or ZnO2. The optimum ZnO2 content was 1.0 wt.%. The maximal degradation rate constant of MO and RhB was 4.1 times and 2.2 times that observed for pure ZnO, respectively. The stability of the prepared photocatalyst in the photocatalytic process was also investigated. The active species in dye degradation were examined by adding a series of scavengers. The possible mechanisms involved in the photocatalytic degradation of dye were also discussed. PMID:23646793

  1. Dyeing properties of natural dyes extracted from eucalyptus

    Microsoft Academic Search

    S. Ali; N. Nisar; T. Hussain

    2007-01-01

    A natural dye was extracted from Eucalyptus camaldulensis and was used to dye cotton by direct dyeing method at different dyeing conditions. Then, the fastness properties of dyeing with different dyeing techniques were compared.

  2. Facile fabrication of mesoporous iron modified Al2O3 nanoparticles pillared montmorillonite nanocomposite: a smart photo-Fenton catalyst for quick removal of organic dyes.

    PubMed

    Pradhan, Amaresh C; Varadwaj, G Bishwa Bidita; Parida, K M

    2013-11-14

    A mesoporous iron modified Al2O3 nanoparticle pillared montmorillonite nanocomposite (mesoporous Fe/APM nanocomposite) was synthesized by using sodium exchanged montmorillonite by cation-exchange, gallery-templated synthesis and impregnation method. Formation of Al2O3 nanoparticles (Al2O3 NPs) having average particle size 5.20-6.50 nm within montmorillonite, formation of mesoporous Al2O3 NPs pillared montmorillonite (mesoporous APM) from montmorillonite and formation of a mesoporous Fe/APM nanocomposite signifies the present investigation. The roles of ammonia, CTAB, octyl amine and calcination temperature for fabrication of mesoporous Fe/APM nanocomposite were highly significant. Ammonia was used for post-synthesis treatment, which helped in the formation of micellar assemblies in the interlayer space. The materials were characterized by different techniques such as N2 adsorption-desorption study, which demonstrated the mesoporosity of the material. A transmission electron microscopy (TEM) image proves the morphology and size of the Al2O3 NPs and mesoporous Fe/APM nanocomposites. X-ray diffraction technique (XRD) describes the formation of the pillaring of the Al2O3 NPs within montmorillonite (APM). It has been noted that pure montmorillonite is a micro/mesoporous material. But after pillaring of Al2O3 NPs within the montmorillonite, mesoporosity developed, which is the vital aspect of present investigation. It was observed that the mesoporous Fe/APM nanocomposite has high photo-Fenton activity towards degradation of organic dyes such as acid blue (AB) and reactive blue (RB). Nearly 100% degradation took place within 30 minutes with high concentration of dye (500 mg L(-1)) by mesoporous 5 Fe/APM nanocomposite under ambient conditions. Small particle sizes of nanocomposite, quick reduction of Fe(III) and mesoporosity are the key points for proficient degradation of AB and RB. PMID:24002045

  3. Treatment of simulated Reactive Yellow 22 (Azo) dye effluents using Spirogyra species

    Microsoft Academic Search

    S Venkata Mohan; N Chandrasekhar Rao; K Krishna Prasad; J Karthikeyan

    2002-01-01

    The potential of commonly available green algae belonging to Spirogyra species was investigated as viable biomaterials for biological treatment of simulated synthetic azo dye (Reactive Yellow 22) effluents. The results obtained from the batch experiments revealed the ability of the algal species in removing the dye colour and was dependent both on the dye concentration and algal biomass. Maximum dye

  4. Unblocking the Sink: Improved CID-Based Analysis of Phosphorylated Peptides by Enzymatic Removal of the Basic C-Terminal Residue

    NASA Astrophysics Data System (ADS)

    Lanucara, Francesco; Chi Hoo Lee, Dave; Eyers, Claire E.

    2013-12-01

    A one-step enzymatic reaction for improving the collision-induced dissociation (CID)-based tandem mass spectrometry (MS/MS) analysis of phosphorylated peptides in an ion trap is presented. Carboxypeptidase-B (CBP-B) was used to selectively remove C-terminal arginine or lysine residues from phosphorylated tryptic/Lys-C peptides prior to their MS/MS analysis by CID with a Paul-type ion trap. Removal of this basic C-terminal residue served to limit the extent of gas-phase neutral loss of phosphoric acid (H3PO4), favoring the formation of diagnostic b and y ions as determined by an increase in both the number and relative intensities of the sequence-specific product ions. Such differential fragmentation is particularly valuable when the H3PO4 elimination is so predominant that localizing the phosphorylation site on the peptide sequence is hindered. Improvement in the quality of tandem mass spectral data generated by CID upon CBP-B treatment resulted in greater confidence both in assignment of the phosphopeptide primary sequence and for pinpointing the site of phosphorylation. Higher Mascot ion scores were also generated, combined with lower expectation values and higher delta scores for improved confidence in site assignment; Ascore values also improved. These results are rationalized in accordance with the accepted mechanisms for the elimination of H3PO4 upon low energy CID and insights into the factors dictating the observed dissociation pathways are presented. We anticipate this approach will be of utility in the MS analysis of phosphorylated peptides, especially when alternative electron-driven fragmentation techniques are not available.

  5. Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon-kinetic study and equilibrium isotherm analyses

    Microsoft Academic Search

    Indra Deo Mall; Vimal Chandra Srivastava; Nitin Kumar Agarwal; Indra Mani Mishra

    2005-01-01

    Adsorption of malachite green (MG) was studied using three adsorbents namely, bagasse fly ash (BFA), a sugar industry waste, and activated carbons commercial grade (ACC) and laboratory grade (ACL). Batch adsorption studies were conducted to evaluate the effect of various parameters such as pH, adsorbent dose, contact time and initial MG concentration on the removal of MG. The initial pH

  6. Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability.

    PubMed

    Rani, Babita; Kumar, Vivek; Singh, Jagvijay; Bisht, Sandeep; Teotia, Priyanku; Sharma, Shivesh; Kela, Ritu

    2014-01-01

    Biodegradation and detoxification of dyes, Malachite green, Nigrosin and Basic fuchsin have been carried out using two fungal isolates Aspergillus niger, and Phanerochaete chrysosporium, isolated from dye effluent soil. Three methods were selected for biodegradation, viz. agar overlay and liquid media methods; stationary and shaking conditions at 25 °C. Aspergillus niger recorded maximum decolorization of the dye Basic fuchsin (81.85%) followed by Nigrosin (77.47%), Malachite green (72.77%) and dye mixture (33.08%) under shaking condition. Whereas, P. chrysosporium recorded decolorization to the maximum with the Nigrosin (90.15%) followed by Basic fuchsin (89.8%), Malachite green (83.25%) and mixture (78.4%). The selected fungal strains performed better under shaking conditions compared to stationary method; moreover the inoculation of fungus also brought the pH of the dye solutions to neutral from acidic. Seed germination bioassay study exhibited that when inoculated dye solutions were used, seed showed germination while uninoculated dyes inhibited germination even after four days of observation. Similarly, microbial growth was also inhibited by uninoculated dyes. The excellent performance of A. niger and P. chrysporium in the biodegradation of textile dyes of different chemical structures suggests and reinforces the potential of these fungi for environmental decontamination. PMID:25477943

  7. Nuclear stains with soluble metachrome metal mordant dye lakes

    Microsoft Academic Search

    R. D. Lillie; P. Pizzolato; P. T. Donaldson

    1976-01-01

    Following our study on the effect of deoxyribonucleic acid (DNA) extraction on nuclear staining with soluble metal mordant dye lakes covering 29 dye lakes we chose a series of lakes representing the three groups: (1) readily prevented by DNA removal, (2) weakened by DNA extraction but not prevented, (3) unaffected by DNA removal, for application of other endgroup blockade reactions.

  8. Efficient removal of lead (II) ions and methylene blue from aqueous solution using chitosan/Fe-hydroxyapatite nanocomposite beads.

    PubMed

    Saber-Samandari, Samaneh; Saber-Samandari, Saeed; Nezafati, Nader; Yahya, Kovan

    2014-12-15

    Chitosan is a well-known sorbent and effective in the uptake of anionic or reactive dyes, but it has deficiency in adsorption of basic dyes. In this work, chitosan/Fe-substituted hydroxyapatite composite beads were prepared in a different ratio via embedding of hydroxyapatite into chitosan solution for removal of basic dye and heavy metal from aqueous solution. The composite beads were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy in order to reveal their composition and surface morphology. In this particular study, methylene blue (MB) and lead (Pb (II)) ions were selected as representatives of dye and a heavy metal, respectively. The various experimental conditions affecting dye adsorption were explored to achieve maximum adsorption capacity. Moreover, the kinetic, thermodynamic and adsorption isotherm models were employed for the description of the heavy metal and dye adsorption processes. The results indicated that the prepared hydrogel is an efficient adsorbent for the aforementioned dye and metal concomitant with the ability of regeneration without losing the original activity and stability for water treatment applications. PMID:25199605

  9. Hierarchical Heteroaggregation of Binary Metal-Organic Gels with Tunable Porosity and Mixed Valence Metal Sites for Removal of Dyes in Water

    PubMed Central

    Mahmood, Asif; Xia, Wei; Mahmood, Nasir; Wang, Qingfei; Zou, Ruqiang

    2015-01-01

    Hierarchical heteronuclear metal-organic gels (MOGs) based on iron (Fe) and aluminium (Al) metal-organic framework (MOF) backbones bridged by tri-carboxylate ligands have firstly been synthesized by simple solvothermal method. Monometallic MOGs based on Fe or Al give homogenous monoliths, which have been tuned by introduction of heterogeneity in the system (mismatched growth). The developed gels demonstrate that surface areas, pore volumes and pore sizes can be readily tuned by optimizing heterogeneity. The work also elaborates effect of heterogeneity on size of MOG particles which increase substantially with increasing heterogeneity as well as obtaining mixed valence sites in the gels. High surface areas (1861?m2/g) and pore volumes (9.737?cc/g) were obtained for heterogeneous gels (0.5Fe-0.5Al). The large uptakes of dye molecules (290?mg/g rhodamine B and 265?mg/g methyl orange) with fast sorption kinetics in both neutral and acidic mediums show good stability and accessibility of MOG channels (micro and meso-/macropores), further demonstrating their potential applications in catalysis and sorption of large molecules. PMID:26014755

  10. Adsorption characteristics of the dye, Brilliant Green, on Neem leaf powder

    Microsoft Academic Search

    Krishna G. Bhattacharyya; Arunima Sarma

    2003-01-01

    A novel adsorbent was developed from mature leaves of natural Neem trees for removing dyes from water. The adsorbent, in the form of fine powder, was found to be very effective in removing the dye, Brilliant Green, from aqueous solution. The adsorption process was carried out in a batch process with different concentrations of the aqueous dye solution as well

  11. Zinc chloride as a coagulant for textile dyes and treatment of generated dye sludge under the solid state fermentation: hybrid treatment strategy.

    PubMed

    Kadam, Avinash A; Lade, Harshad S; Lee, Dae Sung; Govindwar, Sanjay P

    2015-01-01

    Dye sludge generation is major drawback of coagulation process. Efficient hybrid technology by combining coagulation and solid state fermentation (SSF) has capacity to solve generated dye sludge problem. Coagulation of 100mg/L Reactive Red 120 (RR120) using ZnCl2 showed 99% color removal. Mixture of textile dyes (MTD) and textile wastewater (TW) showed 96% and 98% ADMI (American Dye Manufacturing Institute) removal after coagulation by ZnCl2. 92% and 94% ADMI removal from MTD and TW dye sludge and 96% decolorization of RR120 sludge was observed respectively by developed microbial consortium (DCM) in 72h under SSF. Scale up of coagulation process by coagulation reactor (CR) having 50L capacity operated for 30min/cycle. CR showed average 94% ADMI removal from TW in 10 successive cycles. Scale up of SSF composting bioreactor (CB) showed complete dye removal from dye sludge obtained from CR (500L of TW) in 30days. PMID:25460982

  12. Utilization of Fly ash as Low-Cost Adsorbent for the Removal of Methylene Blue, Malachite Green and Rhodamine B Dyes from Textile Wastewater

    Microsoft Academic Search

    Tabrez A. KHAN; Imran ALI; Ved VATI SINGH; Sangeeta SHARMA

    Fly ash was utilized as a potential low-cost adsorbent for the removal of methylene blue, malachite green and rhodamine B from artificial textile wastewater. The adsorbent was characterized by its physico-chemical analyses, porosity, surface area, ignition loss measurements and scanning electron micrograph. Adsorption studies were carried out in a batch process with different concentrations of dyestuffs, pH, temperature and contact

  13. Application of Brazilian pine-fruit shell as a biosorbent to removal of reactive red 194 textile dye from aqueous solution

    Microsoft Academic Search

    Eder C. Lima; Betina Royer; Julio C. P. Vaghetti; Nathalia M. Simon; Bruna M. da Cunha; Flavio A. Pavan; Edilson V. Benvenutti; Renato Cataluña-Veses; Claudio Airoldi

    2008-01-01

    The Brazilian pine-fruit shell (Araucaria angustifolia) is a food residue, that was used as biosorbent for the removal of non-hydrolyzed reactive red 194 (NRR) and hydrolyzed reactive red 194 (HRR) forms from aqueous solutions. Chemical treatment of Brazilian pine-fruit shell (PW), with chromium (Cr–PW), with acid (A–PW), and with acid followed by chromium (Cr–A–PW) were also tested as alternative biosorbents

  14. Retinal tolerance to dyes

    PubMed Central

    Lüke, C; Lüke, M; Dietlein, T S; Hueber, A; Jordan, J; Sickel, W; Kirchhof, B

    2005-01-01

    Background: Dye solutions for intraoperative staining of epiretinal membranes and the internal limiting membrane improve the visualisation of these thin structures and facilitate their removal. In the present study the authors investigated the effects of indocyanine green 0.05%, trypan blue 0.15%, and patent blue 0.48% on bovine retinal function. Methods: Bovine retina preparations were perfused with a standard solution and the electroretinogram (ERG) was recorded repeatedly. After recording of stable ERG amplitudes the nutrient solution was substituted by one of the dye solutions. The duration of retinal exposure to a dye solution was varied between 10 seconds and 2 minutes. Thereupon, the preparation was reperfused with standard solution for at least 115 minutes. The percentage of b-wave reduction after exposition was calculated. Results: Reductions of the b-wave amplitude were found for each dye solution tested. The effects after application of patent blue and indocyanine green were completely reversible within the recovery time for an exposure period of 60 and 30 seconds, respectively. The application of trypan blue lead to a loss of the b-wave when the retina was exposed for 15 seconds or longer. This effect was only partly reversible within the recovery time. Conclusion: The ERG showed toxic effects of trypan blue after a short period of retinal exposure. The intraocular application of trypan blue should be limited to selected cases. However, intraocular application of indocyanine green and patent blue in a sufficient concentration and taking account of a short period of retinal exposure seems possible. PMID:16113379

  15. Treatment of simulated Reactive Yellow 22 (azo) dye effluents using Spirogyra species.

    PubMed

    Mohan, S Venkata; Rao, N Chandrasekhar; Srinivas, S; Prasad, K Krishna; Karthikeyan, J

    2002-01-01

    The potential of commonly available green algae belonging to Spirogyra species was investigated as viable biomaterials for biological treatment of simulated synthetic azo dye (Reactive Yellow 22) effluents. The results obtained from the batch experiments revealed the ability of the algal species in removing the dye colour and was dependent both on the dye concentration and algal biomass. Maximum dye colour removal was observed on the third day for all the system conditions. Monitoring of ORP values helped to understand the overlying biochemical mechanism of algal-dye system. Based upon the results, the dye-algal treatment mechanism was attributed to biosorption (sorption of dye molecules over the surface of algal cells), bioconversion (diffusion of dye molecules into the algal cells and subsequent conversion) and biocoagulation (coagulation of dye molecules present in the aqueous phase onto the biopolymers released as metabolic intermediates during metabolic conversion of dye and subsequent settlement). PMID:12214968

  16. Determination of minimum enzymatic decolorization time of reactive dye solution by spectroscopic & mathematical approach.

    PubMed

    Celebi, Mithat; Ozdemir, Zafer Omer; Eroglu, Emre; Altikatoglu, Melda; Guney, Ibrahim

    2015-02-01

    Synthetic dyes are very important for textile dyeing, paper printing, color photography and petroleum products. Traditional methods of dye removal include biodegradation, precipitation, adsorption, chemical degradation, photo degradation, and chemical coagulation. Dye decolorization with enzymatic reaction is an important issue for several research field (chemistry, environment) In this study, minimum decolorization time of Remazol Brilliant Blue R dye with Horseradish peroxidase enzyme was calculated using with mathematical equation depending on experimental data. Dye decolorization was determined by monitoring the absorbance decrease at the specific maximum wavelength for dye. All experiments were carried out with different initial dye concentrations of Remazol Brilliant Blue R at 25 degrees C constant temperature for 30 minutes. The development of the least squares estimators for a nonlinear model brings about complications not encountered in the case of the linear model. Decolorization times for completely removal of dye were calculated according to equation. It was shown that mathematical equation was conformed exponential curve for dye degradation. PMID:25970889

  17. Decolourisation of Red 5 MB dye by microbes isolated from textile dye effluent.

    PubMed

    Subashini, P; Hiranmaiyadav, R; Premalatha, M S

    2010-07-01

    One of the major environmental problems is the presence of dye materials in textile wastewater, which need to be removed before releasing into the environment. Some dyes are toxic and carcinogenic in nature. The discharge of the textile effluent into rivers and lakes leads to higher BOD causing threat to aquatic life. Development of efficient dye degradation requires suitable strain and its use under favorable condition to realize the degradation potential. In this study, three microorganisms were isolated from the Red 5 MB dye containing textile wastewater. They were identified and tested for the dye decolourisation provided with different sugars as carbon source. The percentage of dye decolorized by Bacillus subtilis, Aspergillus flavus and Aspergillus fumigatus were found to be about 40%, 75% and 53.8% respectively. PMID:21391393

  18. Just Dyeing to Find Out.

    ERIC Educational Resources Information Center

    Monhardt, Becky Meyer

    1996-01-01

    Presents a multidisciplinary unit on natural dyes designed to take advantage of the natural curiosity of middle school students. Discusses history of dyes, natural dyes, preparation of dyes, and the dyeing process. (JRH)

  19. The adsorption of dyes from aqueous solution using diatomite

    Microsoft Academic Search

    J. X. Lin; S. L. Zhan; M. H. Fang; X. Q. Qian

    2007-01-01

    Raw diatomite was calcined at 450 °C for dyes removal from aqueous solution. SEM and FTIR analysis show that the raw diatomite\\u000a contains organic impurities, which are removed after the calcination. The impurities removal decreases the specific surface\\u000a area and increases the average pore diameter of raw diatomite, while improves its adsorption capability of dyes. The adsorption\\u000a isotherm and kinetics experiments

  20. A facile one-pot method to synthesize a polypyrrole/hemin nanocomposite and its application in biosensor, dye removal, and photothermal therapy.

    PubMed

    Hu, Peng; Han, Lei; Dong, Shaojun

    2014-01-01

    In this work, we introduced a facile method for the construction of a polypyrrole/hemin (PPy/hemin) nanocomposite via one-pot chemical oxidative polymerization. In this process, a hemin molecule serving as a dopant was entrapped in the PPy nanocomposite during chemical oxidative polymerization. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and UV-visible spectroscopy results demonstrated that the PPy/hemin nanocomposite was successfully synthesized. The as-prepared nanocomposite exhibited intrinsic peroxidase-like catalytic activities, strong adsorption properties, and an excellent near-infrared (NIR) light-induced thermal effect. We utilized the nanomaterials to catalyze the oxidation of a peroxidase substrate 3,3,5,5-tetramethylbenzidine by H2O2 to the oxidized colored product which provided a colorimetric detection of glucose. As low as 50 ?M glucose could be detected with a linear range from 0.05 to 8 mM. Moreover, the obtained nanocomposite also showed excellent removal efficiency for methyl orange and rhodamine B and a photothermal effect, which implied a promising application as the pollutant adsorbent and photothermal agent. The unique nature of the PPy/hemin nanocomposite makes it very promising for the fabrication of inexpensive, high-performance bioelectronic devices in the future. PMID:24308420

  1. Preparation, characterization and adsorption properties of chitosan modified magnetic graphitized multi-walled carbon nanotubes for highly effective removal of a carcinogenic dye from aqueous solution

    NASA Astrophysics Data System (ADS)

    Zhu, HuaYue; Fu, YongQian; Jiang, Ru; Yao, Jun; Liu, Li; Chen, YanWen; Xiao, Ling; Zeng, GuangMing

    2013-11-01

    Novel chitosan-modified magnetic graphitized multi-walled carbon nanotubes (CS-m-GMCNTs) were synthesized via a suspension cross-linking method. Composition, morphology and magnetic properties of as-prepared CS-m-GMCNTs were characterized by XRD, SEM-EDS, BET and VSM. The large saturation magnetization (12.27 emu g-1) allows fast separation of CS-m-GMCNTs from treated aqueous solution. The adsorption of congo red (CR) on CS-m-GMCNTs was strongly dependent on pH, temperature of the aqueous phase and adsorbent dosage. Up to 100 and 94.58% color removal could be achieved in 100 min contact time with 10 and 50 mg L-1 of initial concentrations, respectively. The adsorption capacity of CR onto CS-m-GMCNTs could reach 262.9 mg g-1. The pseudo-second-order kinetic model with high correlation coefficients (R2 > 0.999) was suitable to describe the process of CR adsorption onto CS-m-GMCNTs. The Langmuir model fitted the adsorption isotherm data better than the Freundlich model. Values of thermodynamic parameters (?G°, ?H° and ?S°) indicated that the adsorption process was strongly dependent on temperature of the aqueous phase, and spontaneous and endothermic process in nature. Therefore, CS-m-GMCNTs adsorbent displays main advantages of excellent dispersion, convenience separation and high adsorption capacity, which implies their potential application in the environmental cleanup.

  2. Ultrasound for wool dyeing and finishing.

    PubMed

    McNeil, S J; McCall, R A

    2011-01-01

    The effects of ultrasound at 35-39 kHz on several wool dyeing and finishing processes have been investigated as a way of reducing environmental impact. Ultrasound improved the effectiveness of cleaning scoured wool in water and to a lesser extent in water-nonionic surfactant. Scanning electron microscopy did not indicate any surface damage. Fluorescence microscopy revealed increased levels of sulphydryl groups on the wool surface suggesting ultrasound caused the removal of thioester-bound lipids. Ultrasound pre-treatment increased the effectiveness of subsequent oxidative-reductive bleaching, but had no effect on the uptake of acid levelling and acid milling dyes. The pre-treatment retarded the uptake of reactive dye, possibly by increasing the crystallinity of the fibre or removing surface bound lipids. Ultrasound did not improve dyeing under conditions that are currently used in industry, but did show potential to reduce the chemical and energy requirements of dyeing wool with reactive and acid milling dyes, but not acid levelling dyes. PMID:20675174

  3. Removal of some textile dyes from aqueous solutions by poly( N-vinyl-2-pyrrolidone) and poly( N-vinyl-2-pyrrolidone)/K 2S 2O 8 hydrogels

    NASA Astrophysics Data System (ADS)

    Can, Hatice Kaplan; Kirci, Betül; Kavlak, Serap; Güner, Ali

    2003-12-01

    Poly( N-vinyl-2-pyrrolidone)/water and poly( N-vinyl-2-pyrrolidone)/K 2S 2O 8/water systems are hydrogels prepared by irradiation with ?-rays at ambient temperature. Both hydrogel systems were employed for diffusion and swelling experiments in various textile dyes aqueous solutions (textile dyes such as Cibacron Blue (CB) F3GA, Methyl Orange (MO), Congo Red (CR)). For these hydrogel systems, swelling studies indicated that swelling percentages increased in the following order: MO>CB F3GA>CR at fixed dose 96 kGy. Because of this reason MO dye solution has been chosen and all swelling properties are investigated for 26, 64, 96 and 124 kGy. The swelling capabilities of PVP and PVP/K 2S 2O 8 hydrogels in MO dye solution vary in the range of 400-1500%. The diffusion of dye solutions PVP and PVP/K 2S 2O 8 hydrogels was assumed to be Fickian character. The swelling behavior of PVP and PVP/K 2S 2O 8 hydrogels exhibits second-order kinetic in all dye solutions. Diffusion coefficient, initial swelling rate, swelling rate constant, maximum swelling and equilibrium water/dye content were found for all gel systems in dye solutions.

  4. Fungal mediated decolorization of media containing procion dyes

    Microsoft Academic Search

    S. Sumathi; B. S. Manju

    An isolated fungus, Aspergillus foetidus was found to effectively decolorize media containing azo reactive dyes, namely Procion dyes, under aerobic conditions. The extent of colour removal was 90% within 48 h of growth of the fungus. The entire colour was found to be strongly bioadsorbed to the rapidly settling spherical fungal biomass pellets. Our investigations reveal that the process of

  5. Relationship of Cotton Fiber Calcium and Magnesium Contents on Dye Uptake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton from a single bale was processed into knit fabrics and prepared for dyeing. Following scouring, fabrics were soaked in either a metal sequestering solution or a water solution, bleached and dyed using 5 dye shades from both reatice and direct dye classes. Results indicate that removal of re...

  6. Biological decolorization of dye solution containing Malachite Green by microalgae Cosmarium sp

    Microsoft Academic Search

    N. Daneshvar; M. Ayazloo; A. R. Khataee; M. Pourhassan

    2007-01-01

    The potential of Cosmarium species, belonging to green algae, was investigated as a viable biomaterial for biological treatment of triphenylmethane dye, Malachite Green (MG). The results obtained from the batch experiments revealed the ability of algal species in removing dye. The effects of operational parameters (temperature, pH, dye concentration and algal concentration) on decolorization were examined. Optimal initial pH was

  7. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review

    Microsoft Academic Search

    Fang Han; Venkata Subba Rao Kambala; Madapusi Srinivasan; Dharmarajan Rajarathnam; Ravi Naidu

    2009-01-01

    Organic dyes are one of the largest groups of pollutants released into wastewaters from textile and other industrial processes. Because of potential toxicity of the dyes and their visibility in surface waters, removal and degradation of organic dyes have been a matter of considerable interest. A wide range of methods have been developed, amongst which the heterogeneous photocatalysis involving titanium

  8. Thermal treatment of dyes from military munitions

    SciTech Connect

    NONE

    1996-09-01

    Los Alamos National Laboratory has developed thermal treatment equipment to treat Navy smoke and dye compounds. Navy smokes were burned in the Los Alamos Controlled Air Incinerator (CAI) in the early 1980s. These test results were used in the development of a portable system consisting of a Thermal Treatment Unit (TTU), feed preparation and pumping skid, utility skid, and control trailer. This equipment was started up at Navy facilities at China Lake, CA where several destruction removal efficiency tests were completed in 1993 burning smoke compositions. The equipment was set up at the Nevada Test Site (NTS) in 1996 where tests were completed burning green Navy spotting dyes. Operating and test results from the NTS efforts resulted in clearer understanding of equipment deficiencies, dye characteristics and composition, and secondary wastes generated. Future tests, scheduled for July, 1996 will demonstrate higher bum rates, better pH measurement and control, and stack emission test results for other colored dyes.

  9. Dyeing Behaviour of Unmodified and Modified Polyamide 6.6 Fibers of Different Levels of Fineness

    NASA Astrophysics Data System (ADS)

    Makhlouf, Chahira; Kacem, Chiraz; Roudesli, Sadok; Sakli, Faouzi

    In present study, the dyeing behaviour of unmodified and modified polyamide 6.6 fibers of different levels of fineness was investigated. The color strength of all the dyeings as well as their color fastness properties were studied. The obtained results revealed that with the use of acid or disperse dyes, color strength of dyeings decreased for microfibers compared to conventional fibers. Thus, the unmodified microfibers appeared to be more accessible to dyes than conventional ones, especially when small dye molecules were used. Both microfibers and conventional polyamide 6.6 fibers were modified with acrylic acid monomer using the free radical polymerization method. The dyeability of both modified fibers with basic dyes was significantly improved due to the incorporation of carboxylic groups. The consequences were an increase of color strength and an improvement of light fastness properties of basic dyeings by increasing the percent of graftings.

  10. Optofluidic dye lasers

    Microsoft Academic Search

    Zhenyu Li; Demetri Psaltis

    2008-01-01

    Optofluidic dye lasers are microfabricated liquid dye lasers enabled by the microfluidics technology. The integration of dye\\u000a lasers with microfluidics not only facilitates the implementation of complete “lab-on-a-chip” systems, but also allows the\\u000a dynamical control of the laser properties which is not achievable with solid-state optical components. We review the recent\\u000a demonstrations of on-chip liquid dye lasers and some of

  11. Dye Like A Natural

    NSDL National Science Digital Library

    Julie Yu

    2010-01-01

    In this activity, learners stain fabrics--on purpose! Learners explore the art of natural dyeing by using dyes and substrates that are both derived from plant or animal sources as well as mordant solutions. Learners compare the color and effectiveness of different mordant/dye combinations on the different substrates.

  12. Photocatalytic and combined anaerobic-photocatalytic treatment of textile dyes.

    PubMed

    Harrelkas, F; Paulo, A; Alves, M M; El Khadir, L; Zahraa, O; Pons, M N; van der Zee, F P

    2008-08-01

    A photocatalytic process based on immobilized titanium dioxide was used to treat crude solutions of azo, anthraquinone and phthalocyanine textile dyes. In addition, the process was applied to the treat autoxidized chemically reduced azo dyes, i.e. representatives of recalcitrant dye residues after biological sequential anaerobic-aerobic treatment. Photocatalysis was able to remove more than 90% color from crude as well as autoxidized chemically reduced dye solutions. UV-absorbance and COD were also removed but to a lower extent (50% in average). The end products of photocatalytic treatment were not toxic toward methanogenic bacteria. The results demonstrate that photocatalysis can be used as a pre- or post-treatment method to biological anaerobic treatment of dye-containing textile wastewater. PMID:18585754

  13. THE USE OF BASIC OXYGEN STEEL FURNACE SLAG (BOS) AS A HIGH SURFACE AREA MEDIA FOR THE REMOVAL OF IRON FROM CIRCUM NEUTRAL MINE WATERS1

    Microsoft Academic Search

    Lawrence I. Bowden; Karen L. Johnson; Adam P. Jarvis; Howard Robinson; Nizar Ghazireh; Paul L. Younger

    Pilot scale reactors have been installed at a mine water pumping station in County Durham, UK, to investigate the potential of Surface Catalysed Oxidation Of Ferrous Iron (SCOOFI) for rapid removal of iron, using BOS as the treatment medium. The water is circum-neutral, with (Fe) in the range 2-5 mg\\/L, (Mn) 0.60 - 0.70 mg\\/L, and (SO4) approximately 300 mg\\/L.

  14. Influence of Temperature and pH on the Stability and Colorimetric Measurement of Textile Dyes

    Microsoft Academic Search

    A. S. Mahmoud; A. E. Ghaly; S. L. Brooks

    Most of the textile dye removal techniques operate within temperature and pH ranges of 20- 60 °C and 2-12, respectively. Both the pH and temperature have been reported to have significant effects on the efficiencies of the dye removal techniques. In this study, the effects of pH and temperature on the stability and color measurement (absorbance) of the textile dye

  15. Electrocoagulation/electroflotation of reactive, disperse and mixture dyes in an external-loop airlift reactor.

    PubMed

    Balla, Wafaa; Essadki, A H; Gourich, B; Dassaa, A; Chenik, H; Azzi, M

    2010-12-15

    This paper studied the efficiency of electrocoagulation/electroflotation in removing colour from synthetic and real textile wastewater by using aluminium and iron electrodes in an external-loop airlift reactor of 20 L. The disperse dye is a mixture of Yellow terasil 4G, Red terasil 343 150% and Blue terasil 3R02, the reactive dye is a mixture of Red S3B 195, Yellow SPD, Blue BRFS. For disperse dye, the removal efficiency was better using aluminium electrodes, whereas, the iron electrodes showed more efficiency for removing colour for reactive dye and mixed synthetic dye. Both for disperse, reactive and mixed dye, 40 mA cm(-2) and 20 min were respectively the optimal current density and electrolysis time. 7.5 was an optimal initial pH for both reactive and mixed synthetic dye and 6.2 was an optimal initial pH for disperse dye. The colour efficiency reached in general 90%. The results showed also that Red and Blue disappeared quickly comparatively to the Yellow component both for reactive and disperse dyes. The real textile wastewater was then used. Three effluents were also used: disperse, reactive and the mixture. The colour efficiency is between 70 and 90% and COD efficiency reached 78%. The specific electrical energy consumption per kg dye removed (E(dye)) in optimal conditions for real effluent was calculated. 170 kWh/kg(dye) was required for a reactive dye, 120 kWh/kg(dye) for disperse and 50 kWh/kg(dye) for the mixture. PMID:20870356

  16. Retail Florist: Designing Basic Types of Arrangements.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale.

    This retail florist unit guide is provided to help teachers teach a unit on designing basic types of flower arrangements. Topics covered are principles of design, foundation materials used, foundation securing methods, tints and flower dyes, wire and ribbon sizes, color harmony, and basic types of arrangements. Learning activities include choosing…

  17. Peruvian natural dye plants

    Microsoft Academic Search

    Kay K. Antúnez de Mayolo

    1989-01-01

    The use of natural dyes to color textiles and other objects has a long history in Andean South America, but has for the most\\u000a part become a lost technology with the introduction of synthetic dyes. A literature and field survey to recover information\\u000a about the traditional use of dye plants in Peru, from pre-Hispanic to recent times, was accompanied by

  18. Ultrasonic assisted dyeing. IV. Dyeing of cationised cotton with lac natural dye

    Microsoft Academic Search

    M. M. Kamel; Reda M. El-Shishtawy; B. M. Youssef; H. Mashaly

    2007-01-01

    The dyeing of cationised cotton fabrics with lac natural dye has been studied using both conventional and ultrasonic techniques. The effects of dye bath pH, salt concentration, ultrasonic power, dyeing time and temperature were studied and the resulting shades obtained by dyeing with ultrasonic and conventional techniques were compared. Colour strength values obtained were found to be higher with ultrasonic

  19. Solar light induced degradation of reactive dye using photocatalysis.

    PubMed

    Park, Jae-Hong; Cho, Il-Hyoung; Kim, Young-Gyu

    2004-01-01

    Outdoors experiment with natural solar light instead of using artificial UV light was also conducted to investigate alternative energy source applicability on organics degradation. The results of this study were as follows. Degradation of the reactive dye, Red 120, with TiO2/solar light was enhanced by augmentation in TiO2 loading, and UV light intensity but was inhibited by increase in initial dye concentration. With both solar light illumination and TiO2 present, reactive dye was more effectively eliminated than with either solar light or TiO, alone. Photocatalytic removal efficiency of reactive dye increased with increasing TiO2 dosage. However, over 1.5 gL(-1) of TiO2 dosage, the efficiency reached a plateau. The degradation rate of reactive dye, Red 120, was strongly dependent on initial dye concentration, and all the experimental data were fit to the first-order rate equation. Photocatalytic degradation of reactive dye increased linearly with increasing UV light intensity. It is found that the presence of thick clouds in the sky markedly increased the time required for degradation of reactive dye. On the basis of these experimental observations, the photo-oxidation degradation of reactive dye using TiO2 under solar light irradiation can be feasible application of the advanced oxidation process. PMID:15030149

  20. [Anaphylaxis to blue dyes].

    PubMed

    Langner-Viviani, F; Chappuis, S; Bergmann, M M; Ribi, C

    2014-04-16

    In medicine, vital blue dyes are mainly used for the evaluation of sentinel lymph nodes in oncologic surgery. Perioperative anaphylaxis to blue dyes is a rare but significant complication. Allergic reactions to blue dyes are supposedly IgE-mediated and mainly caused by triarylmethanes (patent blue and isosulfane blue) and less frequently by methylene blue. These substances usually do not feature on the anesthesia record and should not be omitted from the list of suspects having caused the perioperative reaction, in the same manner as latex and chlorhexidine. The diagnosis of hypersensitivity to vital blue dyes can be established by skin test. We illustrate this topic with three clinical cases. PMID:24834647

  1. Dyeing Wool with Fungi

    NSDL National Science Digital Library

    Sue Assinder

    2002-01-01

    In this activity (p.23 of PDF), learners dye wool with fungi. Learners discover that natural chemicals in fungi can dye wool different colors. Note: Natural dyeing normally requires a color fixative such as alum. This is not necessary if you use an aluminum, tin, or copper pot as the metal in the pot will take part in the dyeing reaction. However, if you use a non-stick saucepan you should add a few copper coins to the mix. Safety note: Always wash your hands after touching fungi! Adult supervision recommended.

  2. Application of Brazilian kaolinite clay as adsorbent to removal of U(VI) from aqueous solution: Kinetic and thermodynamic of cation-basic interactions

    SciTech Connect

    Guerra, Denis L., E-mail: denis@cpd.ufmt.b [Universidade Federal de Mato Grosso, UFMT, Centro de Recursos Minerais, Cuiaba 78060 900, Mato Grosso (Brazil); Leidens, Victor L.; Viana, Rubia R. [Universidade Federal de Mato Grosso, UFMT, Centro de Recursos Minerais, Cuiaba 78060 900, Mato Grosso (Brazil); Airoldi, Claudio [Chemistry Institute, State University of Campinas, P.O. Box 6154, 13084-971 Campinas, Sao Paulo (Brazil)

    2010-05-15

    The compound N{sup 1}-[3-(trimethoxysilyl)propyl]diethylenetriamine was anchored onto Amazon kaolinite surface by heterogeneous route. The modified and natural kaolinite samples were characterized by transmission electron microscopy, scanning electron microscopic, X-ray diffraction, and nuclear magnetic nuclei of {sup 29}Si and {sup 13}C. The well-defined peaks obtained in the {sup 13}C NMR spectrum in the 5.0-62.1 ppm region confirmed the attachment of organic functional groups as pendant chains bonded into the porous clay. The ability of these materials to remove U(VI) from aqueous solution was followed by a series of adsorption isotherms adjusted to a Sips equation at room temperature and pH 4.0. The kinetic parameters analyzed by the Lagergren and Elovich models gave a good fit for a pseudo-second order reaction with k{sub 2} values 16.0 and 25.1 mmol g{sup -1} min{sup -1} ranges for natural and modified kaolinite clays, respectively. The energetic effects caused by metal ion adsorption were determined through calorimetric titrations. - Graphical abstract: This investigation reports the use of original and modified kaolinites as alternative absorbents. The compound N-[3-trimethoxysilyl)propyl]diethylenetriamine was anchored onto Amazon kaolinite surface by heterogeneous route.

  3. Degradation of environment pollutant dyes using phytosynthesized metal nanocatalysts.

    PubMed

    MeenaKumari, M; Philip, Daizy

    2015-01-25

    We present for the first time biogenic reduction and stabilization of gold and silver ions at room temperature using fruit juice of Punica granatum. The formation, morphology and crystalline structure of the synthesized nanoparticles are determined using UV-Visible, XRD and TEM. An attempt to reveal the partial role of phenolic hydroxyls in the reduction of Au(3+) and Ag(+) is done through FTIR analysis. The synthesized nanoparticles are used as potential catalysts in the degradation of a cationic phenothiazine dye, an anionic mono azo dye and a cationic fluorescent dye. The calculated values of percentage removal of dyes and the rate constants from pseudo first order kinetic data fit give a comparative study on degradation of organic dyes in presence of prepared gold and silver nanoparticles. PMID:25128675

  4. Wastewater treatment: Dye and pigment industry. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-03-01

    The bibliography contains citations concerning treatment of wastewater containing dyes and pigments. The citations discuss the of dyes and pigments in wastewater treatment systems, biodegradation of dyes, absorption and adsorption processes to remove dyes from wastewater, environmental effects from the disposal of dye-containing wastes, and methods of analysis for dyes in waste streams. Treatment methods such as ozonation, reverse osmosis, activated charcoal filtration, activated sludge, electrochemical treatments, thermal treatments, simple filtration, and absorption media are included. (Contains a minimum of 112 citations and includes a subject term index and title list.)

  5. Oxazine laser dyes

    DOEpatents

    Hammond, Peter R. (Livermore, CA); Field, George F. (Danville, CA)

    1992-01-01

    New oxazine compounds useful as dye laser media in solution, are superiior to prior art materials. The oxazine dyes useful when pumped by the 578.2 nm copper line to operate in the 700-800 nm range are described by formula I ##STR1##

  6. Tie-Dye Chemistry

    NSDL National Science Digital Library

    Gretchen Cessna

    2001-03-01

    In their travels to the indigo dye pits of northern Nigeria, the authors were struck by the beauty, history, and chemistry of indigo dyeing. They returned from Nigeria eager to develop a laboratory exercise that would expose students to the science of ind

  7. Kinetics of decolorization of azo dye by bipolar pulsed barrier discharge in a three-phase discharge plasma reactor

    Microsoft Academic Search

    Ruobing Zhang; Chi Zhang; XingXin Cheng; Liming Wang; Yan Wu; Zhicheng Guan

    2007-01-01

    Removal of amaranth, a commercial synthetic azo dye widely used in the dye and food industry, was examined as a possible remediation technology for treating dye-contaminated water. Effects of various parameters such as gas flow rate, solution conductivity, pulse repetition frequency, etc., on decolorization kinetics were investigated. Experimental results show that an aqueous solution of 24mg\\/l dye is 81.24% decolorized

  8. Monolithic dye laser amplifier

    DOEpatents

    Kuklo, T.C.

    1993-03-30

    A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

  9. Monolithic dye laser amplifier

    DOEpatents

    Kuklo, Thomas C. (Ripon, CA)

    1993-01-01

    A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

  10. Adsorption of a hazardous dye, erythrosine, over hen feathers

    Microsoft Academic Search

    Vinod K. Gupta; Alok Mittal; Lisha Kurup; Jyoti Mittal

    2006-01-01

    Erythrosine is a popular dye that is widely used in cosmetics, foodstuffs, medicines, and textiles. It is highly toxic to mankind and can lead to many diseases including carcinogenicity. Removal of erythrosine has been carried out using waste material—hen feathers—as adsorbent. The effects of pH, concentration of the dye, temperature, and adsorbent dosage have been studied. Adsorption of erythrosine over

  11. Treatment of dyeing wastewater by hollow fiber membrane biological reactor

    Microsoft Academic Search

    Rong-Rong Huang; Jan Hoinkis; Qi Hu; Florian Koch

    2009-01-01

    A submerged hollow fiber membrane bioreactor (MBR) with a capacity up to 400 L\\/d was used for treatment of dyeing wastewater from a printing and dyeing factory in Changzhou, China. The MBR device was operated continuously for 100 days. The removal ratio of COD reached 90% and the COD values of effluent from the reactor were 52–97 mg\\/L, when the

  12. Bioremediation and Detoxification of Synthetic Wastewater Containing Triarylmethane Dyes by Aeromonas hydrophila Isolated from Industrial Effluent

    PubMed Central

    Ogugbue, Chimezie Jason; Sawidis, Thomas

    2011-01-01

    Economical and bio-friendly approaches are needed to remediate dye-contaminated wastewater from various industries. In this study, a novel bacterial strain capable of decolorizing triarylmethane dyes was isolated from a textile wastewater treatment plant in Greece. The bacterial isolate was identified as Aeromonas hydrophila and was shown to decolorize three triarylmethane dyes tested within 24?h with color removal in the range of 72% to 96%. Decolorization efficiency of the bacterium was a function of operational parameters (aeration, dye concentration, temperature, and pH) and the optimal operational conditions obtained for decolorization of the dyes were: pH 7-8, 35°C and culture agitation. Effective color removal within 24?h was obtained at a maximum dye concentration of 50?mg/L. Dye decolorization was monitored using a scanning UV/visible spectrophotometer which indicated that decolorization was due to the degradation of dyes into non-colored intermediates. Phytotoxicity studies carried out using Triticum aestivum, Hordeum vulgare, and Lens esculenta revealed the triarylmethane dyes exerted toxic effects on plant growth parameters monitored. However, significant reduction in toxicity was obtained with the decolorized dye metabolites thus, indicating the detoxification of the dyes following degradation by Aeromonas hydrophila. PMID:21808740

  13. The removal of Acid Red 274 from wastewater: Combined biosorption and biocoagulation with Spirogyra rhizopus

    Microsoft Academic Search

    Ayla Özer; Gönül Akkaya; Meral Turabik

    2006-01-01

    In this study, the removal of Acid Red 274 dye by Spirogyra rhizopus, a green algae, was studied in a batch mode as a function of the initial pH, temperature, initial dye and algae concentrations. The optimum removal conditions were determined as initial pH 3.0, temperature 30°C and algae concentration 0.5gL?1. The dye removal amounts increased linearly with increasing initial

  14. Characteristics of dye-sensitized solar cells using natural dye

    Microsoft Academic Search

    Shoji Furukawa; Hiroshi Iino; Tomohisa Iwamoto; Koudai Kukita; Shoji Yamauchi

    2009-01-01

    Dye-sensitized solar cells are expected to be used for future clean energy. Recently, most of the researchers in this field use Ruthenium complex as dye in the dye-sensitized solar cells. However, Ruthenium is a rare metal, so the cost of the Ruthenium complex is very high. In this paper, various dye-sensitized solar cells have been fabricated using natural dye, such

  15. Mordant dyes as sensitisers in dye-sensitised solar cells

    Microsoft Academic Search

    Keith R. Millington; Keith W. Fincher; A. Lee King

    2007-01-01

    Many mordant dyes commonly used in the textile industry form coordination complexes at the surface of nanocrystalline TiO2. Dyes having a salicylate chelating group are particularly effective. Forty-nine commercial mordant dyes were studied as sensitisers in a non-optimised dye-sensitised solar cell (DSSC) and their performance compared to the N3 ruthenium complex. Although N3 produced the highest output, six mordant dyes

  16. Dye system for dye laser applications

    DOEpatents

    Hammond, Peter R. (Livermore, CA)

    1991-01-01

    A dye of the DCM family, [2-methyl-6-[2-(1,2,3,4-tetrahydro-1-methyl-6-quinolinyl)ethenyl]-4H-pyran -4-ylidene]-propanedinitrile, dissolved in 2-phenoxyethanol, is non-mutagenic, stable and efficient, particularly in a pumped continuous wave laser system.

  17. Physics based simulation of dye solar cells

    Microsoft Academic Search

    M. Auf der Maur; A. Gagliardi; A. Di Carlo

    Dye sensitized solar cells are interesting candidates for providing a renewable, cost efficient energy source with low environmental\\u000a impact. The lack of a suitable simulation software to study basic cell properties and to optimize the cell topology is currently\\u000a one of the factors hindering their commercialization. We present in this paper a theoretical model of the entire device based\\u000a on

  18. Investigation of Basic Parameters in Organic Photovoltaic Cells

    Microsoft Academic Search

    Masaaki Iizuka; Kazuhiro Kudo; Sigekazu Kuniyoshi; Kuniaki Tanaka

    2000-01-01

    We have fabricated photovoltaic cells using merocyanine and copper phthalocyanine dyes. The basic parameters, such as diffusion length of the photogenerated excitons, dielectric constant, and the carrier density in organic photovoltaic cells were estimated.

  19. A comparative study on biosorption characteristics of certain fungi for bromophenol blue dye

    Microsoft Academic Search

    Youssef Zeroual; Beom Su Kim; Choel Sang Kim; Mohamed Blaghen; Kang Min Lee

    2006-01-01

    Laboratory investigations of the potential use of dried biomasses of Rhizopus stolonifer, Fusarium sp., Geotrichum sp., and Aspergillus fumigatus as biosorbents for the removal of bromophenol blue (BPB) dye from aqueous solutions were conducted. Kinetics studies indicated\\u000a that the BPB dye uptake processes can be well described by the pseudo-second-order model. The fungal biomasses exhibited the\\u000a highest dye biosorption at

  20. Biosorption of reactive dye from textile wastewater by non-viable biomass of Aspergillus niger and Spirogyra sp.

    PubMed

    Khalaf, Mahmoud A

    2008-09-01

    The potential of Aspergillus niger fungus and Spirogyra sp., a fresh water green algae, was investigated as a biosorbents for removal of reactive dye (Synazol) from its multi component textile wastewater. The results showed that pre-treatment of fungal and algal biomasses with autoclaving increased the removal of dye than pre-treatment with gamma-irradiation. The effects of operational parameters (pH, temperature, biomass concentration and time) on dye removal were examined. The results obtained revealed that dried autoclaved biomass of A. niger and Spirogyra sp. exhibited maximum dye removal (88% and 85%, respectively) at pH3, temperature 30 degrees C and 8 gl(-1)(w/v) biomass conc. after 18h contact time. The stability and efficiency of both organisms in the long-term repetitive operation were also investigated. The results showed that the non-viable biomasses possessed high stability and efficiency of dye removal over 3 repeated batches. PMID:18242981

  1. Preparation of Graphene Oxide-Based Hydrogels as Efficient Dye Adsorbents for Wastewater Treatment.

    PubMed

    Guo, Haiying; Jiao, Tifeng; Zhang, Qingrui; Guo, Wenfeng; Peng, Qiuming; Yan, Xuehai

    2015-12-01

    Graphene oxide (GO) sheets exhibit superior adsorption capacity for removing organic dye pollutants from an aqueous environment. In this paper, the facile preparation of GO/polyethylenimine (PEI) hydrogels as efficient dye adsorbents has been reported. The GO/PEI hydrogels were achieved through both hydrogen bonding and electrostatic interactions between amine-rich PEI and GO sheets. For both methylene blue (MB) and rhodamine B (RhB), the as-prepared hydrogels exhibit removal rates within about 4 h in accordance with the pseudo-second-order model. The dye adsorption capacity of the hydrogel is mainly attributed to the GO sheets, whereas the PEI was incorporated to facilitate the gelation process of GO sheets. More importantly, the dye-adsorbed hydrogels can be conveniently separated from an aqueous environment, suggesting potential large-scale applications of the GO-based hydrogels for organic dye removal and wastewater treatment. PMID:26123269

  2. Activated Carbon Produced from Waste Wood Pallets: Adsorption of Three Classes of Dyes

    Microsoft Academic Search

    Daniel C. W. Tsang; Jing Hu; Mei Yi Liu; Weihua Zhang; Keith C. K. Lai; Irene M. C. Lo

    2007-01-01

    Activated carbon was derived from waste wood pallets in Hong Kong via phosphoric acid activation and applied to adsorption\\u000a of basic dye (methylene blue), acid dyes (acid blue 25 and acid red 151), and reactive dye (reactive red 23). The results\\u000a showed that respective adjustment in phosphoric acid concentration, impregnation ratio, activation temperature, and activation\\u000a time could maximize the surface

  3. Density functional theory study on dye-sensitized solar cells using oxadiazole-based dyes

    NASA Astrophysics Data System (ADS)

    Mehmood, Umer; Hussein, Ibnelwaleed A.; Harrabi, Khalil; Reddy, Belum V. S.

    2015-01-01

    Density functional theory (DFT) and time-dependent DFT(TD-DFT) modeling techniques are used to conduct a computational study of the geometry and electronic structure of oxadiazole-based organic sensitizers. A DFT study on the thermodynamic aspects of the charge transport processes associated with dye-sensitized solar cells (DSSCs) suggests that the system with 1,2,4-oxadiazole has a balance among the different crucial factors and may result in the highest incident photon to charge carrier efficiency. The dye/) anatase clusters were also simulated to illustrate the electron injection efficiency at the interface. This study provides basic understanding of the impact of molecular design on the performance of oxadiazole dyes in DSSCs.

  4. What's Basic About Basic Emotions?

    Microsoft Academic Search

    Andrew Ortony; Terence J. Turner

    1990-01-01

    A widespread assumption in theories of emotion is that there exists a small set of basic emotions. From a biological perspective, this idea is manifested in the belief that there might be neurophysiological and anatomical substrates corresponding to the basic emotions. From a psychological perspective, basic emotions are often held to be the primitive building blocks of other, nonbasic emotions.

  5. Titanate nanosheets as highly efficient non-light-driven catalysts for degradation of organic dyes.

    PubMed

    Zhou, Chenjuan; Luo, Junjie; Chen, Qinqin; Jiang, Yinzhi; Dong, Xiaoping; Cui, Fangming

    2015-06-23

    A novel non-light-driven catalysis by the delaminated two dimensional titanate nanosheets (TNSs) has been explored for degradation of organic dyes with hydrogen peroxide (H2O2). This catalyst can efficiently remove dyes at high concentration and over a wide pH range, as well as with a long cycle number and superior universality. PMID:26051325

  6. Dye Decolorization and Dissolved Oxygen Properties of Sodium Alginate\\/Carbon Nanotubes Microsphere

    Microsoft Academic Search

    Fang-Chang Tsai; Yu-Ting Zhang; Ning Ma; Lung-Chang Tsai; Chi-Min Shu; Wei-Ping Liao; Wei Zhou; Han-Wen Xiao; Jen-Taut Yeh; Tao Jiang

    2011-01-01

    In an effort to produce more environmentally friendly materials, renewable and biodegradable biopolymers have been investigated as coating materials. A sodium alginate (SA) and multi-wall carbon nanotube (MWNTs), one of the SA, has been used for the removal of harmful dyes (anionic dye methyl orange (MO)) from contaminated water via adsorption. Adsorption of MO onto SA\\/MWNTs was investigated with respect

  7. Transport of textile dye in vegetable oils based supported liquid membrane

    Microsoft Academic Search

    G. Muthuraman; K. Palanivelu

    2006-01-01

    A laboratory study on supported liquid membrane (SLM) system has been investigated for removal and recovery of textile dye from the aqueous solution using renewable, non-toxic, natural vegetable oils, never used before as a liquid membrane. A flat sheet polypropylene (PP) supported Teflon membrane impregnated with vegetable oils has been tested for transport of Astacryl golden yellow a cationic dye.

  8. Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: a review

    Microsoft Academic Search

    Sze-Mun Lam; Jin-Chung Sin; Ahmad Zuhairi Abdullah; Abdul Rahman Mohamed

    2012-01-01

    Organic dyes are one of the largest groups of pollutants discharged into wastewaters from textile and other industrial processes. Owing to the potential toxicity of the dyes and their visibility in surface waters, removal and degradation of them have attracted considerable attention worldwide. A wide range of approaches have been developed, amongst which the heterogeneous photocatalysis involving zinc oxide (ZnO)

  9. The use of caffeine as a liquid filter in coaxial flashlamp pumped dye lasers

    NASA Astrophysics Data System (ADS)

    Calkins, John; Colley, Ed; Hazle, John

    1982-07-01

    Problems of cooling and preserving laser dyes can be solved by adding caffeine or other suitable filter materials to the cooling water in coaxial systems. Systems using dissolved filter chemicals are cheap, versatile and assist in heat removal from coaxial type dye lasers.

  10. SEDIMENT REMOVAL

    EPA Science Inventory

    When properly conducted, sediment removal is an effective lake management technique. This chapter describes: (1) purposes of sediment removal, (2) environmental concerns, (3) appropriate depth of sediment removal, (4) sediment removal techniques, (5) suitable lake conditions, (6)...

  11. Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of Acid Yellow 36

    Microsoft Academic Search

    P. K. Malik

    2003-01-01

    Activated carbons, prepared from low-cost mahogany sawdust and rice husk have been utilized as the adsorbents for the removal of acid dyes from aqueous solution. An acid dye, Acid Yellow 36 has been used as the adsorbate. Results show that a pH value of 3 is favourable for the adsorption of acid dye. The isothermal data could be well described

  12. Degradation of Synthetic Dyeing Wastewater by Underwater Electrical Discharge Processes

    NASA Astrophysics Data System (ADS)

    D. Kim, S.; I. Jang, D.; J. Lim, B.; B. Lee, S.; S. Mok, Y.

    2013-07-01

    Electrical discharge treatments of synthetic dyeing wastewater were carried out with two different systems: underwater pulsed electrical discharge (UPED) and underwater dielectric barrier discharge (UDBD). Reactive Blue 4 (RB4) and Acid Red 4 (AR4) were used as model contaminants for the synthetic wastewater. The performance of the aforementioned systems was compared with respect to the chromaticity removal and the energy requirement. The results showed that the present electrical discharge systems were very effective for degradation of the dyes. The dependences of the dye degradation rate on treatment time, initial dye concentration, electrical energy, and the type of working gas including air, O2, and N2 were examined. The change in the initial dye concentration did not largely affect the degradation of either RB4 or AR4. The energy delivered to the UPED system was only partially utilized for generating reactive species capable of degrading the dyes, leading to higher energy requirement than the UDBD system. Among the working gases, the best performance was observed with O2. As the degradation proceeded, the concentration of total dissolved solids and the solution conductivity kept increasing while pH showed a decreasing trend, revealing that the dyes were effectively mineralized.

  13. Visible to near infra red absorption in natural dye (Mondo Grass Berry) for Dye Sensitized Solar Cell

    NASA Astrophysics Data System (ADS)

    Pitigala, Duleepa; Desilva, L. A. A.; Perera, A. G. U.

    2012-03-01

    The development of dye sensitized solar cells (DSSC) is an exciting field in the low cost renewable energy production. Two major draw backs in the DSSCs are the narrow spectral response and the short term stability. Research on development of artificial dyes for broadening the response is important in finding a solution. Work presented here shows a broad spectral response with a natural dye extracted from a Mondo Grass berry (Ophiopogonjaponicus).The dye is extracted by crushing the berries and filtering to remove the pulp. A DSSC sensitized with Mondo Grass dye, and with TiO2 film screen printed on a Florien doped Tin Oxide (FTO) glass and baked for 30 minutes at 450 C as the working electrode and Iodine/triiodide red-ox electrolyte as the hole collector was tested for its performance. An open circuit photovoltage of 495 mV and a short circuit photocurrent of 0.6 mA/cm2were observed under a simulated lamp equivalent to 1 sun illumination. The broad spectral response from 400 nm to 750 nm was also observed for the Mondo Grass dye compared to other natural dyes consists of anthocyanins or tannins.

  14. Corrosion Basics

    SciTech Connect

    Not Available

    1985-01-01

    Retaining much of the text of the Basic Corrosion Course, Corrosion Basics contains updated, and additional information on plastics, concrete, coatings, water, cracking phenomena, and design. Chapters were rearranged. The cross referenced index was retained and updated to facilitate the quick location of any topic throughout the text. This publication provides the general coverage of the field of corrosion.

  15. New perylene derivative dyes for dye-sensitized solar cells

    Microsoft Academic Search

    Ceylan Zafer; Mahmut Kus; Gulsah Turkmen; Haluk Dincalp; Serafettin Demic; Baha Kuban; Yildirim Teoman; Siddik Icli

    2007-01-01

    We have studied the influence of the spacer alkyl chain length of perylenemonoimide (PMI) dyes on the device performance in dye-sensitized solar cells (DSSCs). We observed that the dyes with longer and brunched alkyl chains exhibit higher efficiencies in DSSCs. In line with these statements we now report the highest efficiency obtained under standard conditions for a perylene imide derivative

  16. Anthraquinone dyes as photosensitizers for dye-sensitized solar cells

    Microsoft Academic Search

    Chaoyan Li; Xichuan Yang; Ruikui Chen; Jingxi Pan; Haining Tian; Hongjun Zhu; Xiuna Wang; Anders Hagfeldt; Licheng Sun

    2007-01-01

    Three anthraquinone dyes with carboxylic acid as anchoring group are designed and synthesized as sensitizers for dye-sensitized solar cells (DSSCs). Preliminary photophysical and photoelectrochemical measurements show that these anthraquinone dyes have very low performance on DSSC applications, although they have broad and intense absorption spectra in the visible region (up to 800nm). Transient absorption kinetics, fluorescence lifetime measurements and density

  17. Water soluble laser dyes

    DOEpatents

    Hammond, Peter R. (Livermore, CA); Feeman, James F. (Wyomissing, PA); Field, George F. (Santa Ana, CA)

    1998-01-01

    Novel water soluble dyes of the formula I are provided ##STR1## wherein R.sup.1 and R.sup.4 are alkyl of 1 to 4 carbon atoms or hydrogen; or R.sup.1 -R.sup.2 or R.sup.2 -R.sup.4 form part of aliphatic heterocyclic rings; R.sup.2 is hydrogen or joined with R.sup.1 or R.sup.4 as described above; R.sup.3 is --(CH.sub.2).sub.m --SO.sub.3.sup.-, where m is 1 to 6; X is N, CH or ##STR2## where Y is 2 --SO.sub.3.sup.- ; Z is 3, 4, 5 or 6 --SO.sub.3.sup.-. The novel dyes are particularly useful as the active media in water solution dye lasers.

  18. Laser dye technology

    SciTech Connect

    Hammond, P R

    1999-09-01

    The author has worked with laser dyes for a number of years. A first interest was in the Navy blue-green program where a flashlamp pumped dye laser was used as an underwater communication and detection device. It made use of the optical window of sea-water--blue for deep ocean, green for coastal water. A major activity however has been with the Atomic Vapor Laser Isotope Separation Program (AVLIS) at the Lawrence Livermore National Laboratory. The aim here has been enriching isotopes for the nuclear fuel cycle. The tunability of the dye laser is utilized to selectively excite one isotope in uranium vapor, and this isotope is collected electrostatically as shown in Figure 1. The interests in the AVLIS program have been in the near ultra-violet, violet, red and deep-red.

  19. Hair cosmetics: dyes.

    PubMed

    Guerra-Tapia, A; Gonzalez-Guerra, E

    2014-11-01

    Hair plays a significant role in body image, and its appearance can be changed relatively easily without resort to surgical procedures. Cosmetics and techniques have therefore been used to change hair appearance since time immemorial. The cosmetics industry has developed efficient products that can be used on healthy hair or act on concomitant diseases of the hair and scalp. Dyes embellish the hair by bleaching or coloring it briefly, for temporary periods of longer duration, or permanently, depending on the composition of a dye (oxidative or nonoxidative) and its degree of penetration of the hair shaft. The dermatologist's knowledge of dyes, their use, and their possible side effects (contact eczema, cancer, increased porosity, brittleness) can extend to an understanding of cosmetic resources that also treat hair and scalp conditions. PMID:24656996

  20. Water soluble laser dyes

    DOEpatents

    Hammond, P.R.; Feeman, J.F.; Field, G.F.

    1998-08-11

    Novel water soluble dyes of the formula 1 are provided by the formula described in the paper wherein R{sup 1} and R{sup 4} are alkyl of 1 to 4 carbon atoms or hydrogen; or R{sup 1}--R{sup 2} or R{sup 2}--R{sup 4} form part of aliphatic heterocyclic rings; R{sup 2} is hydrogen or joined with R{sup 1} or R{sup 4} as described above; R{sup 3} is --(CH{sub 2}){sub m}--SO{sub 3}{sup {minus}}, where m is 1 to 6; X is N, CH or formula 2 given in paper where Y is 2 --SO{sub 3}{sup {minus}} ; Z is 3, 4, 5 or 6 --SO{sub 3}{sup {minus}}. The novel dyes are particularly useful as the active media in water solution dye lasers.

  1. Fluoridation Basics

    MedlinePLUS

    ... on Facebook Tweet Share Compartir Basic Information About Fluoride The mineral fluoride occurs naturally on earth and ... and suffering because of tooth decay. History of Fluoride in Water In the 1930s, scientists examined the ...

  2. Synthetic reactive dye wastewater treatment by narrow-leaved cattails (Typha angustifolia Linn.): effects of dye, salinity and metals.

    PubMed

    Nilratnisakorn, S; Thiravetyan, P; Nakbanpote, W

    2007-10-01

    Narrow-leaved cattails were studied in synthetic reactive dye wastewater (SRDW) under caustic conditions. The effects of the toxic dye were expressed in terms of relative plant growth rate and the appearance of symptoms such as necrosis, and chronic or acute wilting. The dye toxicity was 25.33 mg l(-1) which was close to approximate the concentration of dye residue from the textile effluent in the public stream. The system pH and % color removal were decreased, indicating that narrow-leaved cattail can treat wastewater. The average system pH decreased from 9 to 7. The maximum color removal was approximately 60% when cultured under soil conditions. The SEM image of narrow-leaved cattail root after treatment with SRDW indicated that the root cortex was damaged and the crystalline sodium salts deposited in the root cells which caused evaporation and transpiration decreased in SRDW. The salinity under caustic conditions also affects the growth of the plants. The maximum sodium removal was approximately 44% and was found in the SRDW under soil conditions within 14 days. A small amount of sodium could enhance the relative growth rate. However, the sodium removal of the plants was limited after the third week of treatment. It should be noted that narrow-leaved cattails are known to avoid the textile dye and salt stress conditions during SRDW treatment through special mechanisms such as salt accumulation in the roots or shedding of older leaves. In addition, elements such as silicon, calcium and iron in plants might help the plant to detoxify by forming complexes with dye molecules. PMID:17688914

  3. Plasma surface functionalization and dyeing kinetics of Pan-Pmma copolymers

    NASA Astrophysics Data System (ADS)

    Labay, C.; Canal, C.; Rodríguez, C.; Caballero, G.; Canal, J. M.

    2013-10-01

    Fiber surface modification with air corona plasma has been studied through dyeing kinetics under isothermal conditions at 30 °C on an acrylic-fiber fabric with a cationic dye (CI Basic Blue 3) analyzing the absorption, desorption and fixing on the surface of molecules having defined cationic character. The initial dyeing rate in the first 60 s indicates an increase of 58.3% in the dyeing rate due to the effect of corona plasma on the acrylic fiber surface. At the end of the dyeing process, the plasma-treated fabrics absorb 24.7% more dye, and the K/S value of the acrylic fabric increases by 8.8%. With selected dyestuff molecules, new techniques can be designed to amplify the knowledge about plasma-treated surface modifications of macromolecules.

  4. Potential of Hydrocotyle vulgaris for phytoremediation of a textile dye: Inducing antioxidant response in roots and leaves.

    PubMed

    Vafaei, F; Movafeghi, A; Khataee, A R; Zarei, M; Salehi Lisar, S Y

    2013-07-01

    The potential of Hydrocotyle vulgaris as an aquatic plant species was evaluated for phytoremediation of C.I. Basic Red 46 (BR46) from nutrient solution. Under the optimized experimental conditions, BR46 was removed up to 95% from incubation medium by H. vulgaris. The ability of the plant in consecutive removal under long term repetitive experiments confirmed the biodegradation process. Accordingly, a number of produced intermediate compounds were identified. An artificial neural network (ANN) model was developed to predict the biodegradation efficiency. A predictive performance (R(2)=0.974) was obtained based on the network results. Interestingly, dye stress enhanced the activity of antioxidant enzymes including superoxide dismutase, peroxidase and catalase in H. vulgaris roots and leaves. Enzymatic responses found to be highly depended on the plant organ and dye concentration in the liquid medium. Overall, the increase in the activity of antioxidant enzymes was much higher in the roots than in the leaves. Nevertheless, no significant increase in the malondialdehyde (MDA) content was detected in both roots and leaves which reflects the high efficiency of antioxidant system in the elimination of reactive oxygen species. PMID:23660490

  5. Mutagenicity of textile dye products.

    PubMed

    Schneider, Klaus; Hafner, Christoph; Jäger, Ismene

    2004-01-01

    Within an EU-funded research project, 281 textile dye products in use at nine textile finishing companies from eight European countries were assessed for potential mutagenic properties. Most of the dyes belonged to the so-called existing substances. Data sources considered were data published in the literature, unpublished industrial data provided by dye producing companies, and laboratory testing. Data on mutagenicity are virtually absent for many of the dyes. Unpublished test results performed on behalf of the dye manufacturing industry proved to be an important data source that is not accessible under usual circumstances. Four dye stuffs contained in seven dye products in use at the textile finishing companies were judged to be mutagenic, based on published data from the literature. Mutagenicity testing using Salmonella typhimurium, strains TA98 and TA100, revealed positive results for about 28% (15 out of 53) of the dye products investigated. Upon further testing with the mouse lymphoma assay (L5178Y/TK(+/-)) 67% (6 out of 9) of Ames-positive dyes proved to be mutagenic in this mammalian cell test. All data sources combined led to an overall assessment of 14 dye products out of 281 being mutagenic. For 16 there is a suspicion of mutagenicity due to positive responses in one test but 71 of the dye products are without any data on mutagenicity. This paper describes the data aggregation process, evaluation criteria and the overall assessment, and exemplifies controversial evaluations. PMID:15052602

  6. Studies on the adsorption kinetics and isotherms for the removal and recovery of Methyl Orange from wastewaters using waste materials

    Microsoft Academic Search

    Alok Mittal; Arti Malviya; Dipika Kaur; Jyoti Mittal; Lisha Kurup

    2007-01-01

    De-Oiled Soya a waste of Soya oil industries and Bottom Ash a waste of thermal power plants have been used as effective adsorbent for recovery and removal of hazardous dye Methyl Orange from wastewater. During the studies effects of amount of dye and adsorbents, pH, sieve sizes, column studies etc. have been carried out. Adsorption of the dye over both

  7. Recent Advances in Heterogeneous Photocatalytic Decolorization of Synthetic Dyes

    PubMed Central

    Muhd Julkapli, Nurhidayatullaili; Bagheri, Samira; Bee Abd Hamid, Sharifah

    2014-01-01

    During the process and operation of the dyes, the wastes produced were commonly found to contain organic and inorganic impurities leading to risks in the ecosystem and biodiversity with the resultant impact on the environment. Improper effluent disposal in aqueous ecosystems leads to reduction of sunlight penetration which in turn diminishes photosynthetic activity, resulting in acute toxic effects on the aquatic flora/fauna and dissolved oxygen concentration. Recently, photodegradation of various synthetic dyes has been studied in terms of their absorbance and the reduction of oxygen content by changes in the concentration of the dye. The advantages that make photocatalytic techniques superior to traditional methods are the ability to remove contaminates in the range of ppb, no generation of polycyclic compounds, higher speed, and lower cost. Semiconductor metal oxides, typically TiO2, ZnO, SnO, NiO, Cu2O, Fe3O4, and also CdS have been utilized as photocatalyst for their nontoxic nature, high photosensitivity, wide band gap and high stability. Various process parameters like photocatalyst dose, pH and initial dye concentrations have been varied and highlighted. Research focused on surface modification of semiconductors and mixed oxide semiconductors by doping them with noble metals (Pt, Pd, Au, and Ag) and organic matter (C, N, Cl, and F) showed enhanced dye degradation compared to corresponding native semiconductors. This paper reviews recent advances in heterogeneous photocatalytic decolorization for the removal of synthetic dyes from water and wastewater. Thus, the main core highlighted in this paper is the critical selection of semiconductors for photocatalysis based on the chemical, physical, and selective nature of the poisoning dyes. PMID:25054183

  8. Tremor (Beyond the Basics)

    MedlinePLUS

    ... Basics) Patient information: Myoclonus (The Basics) Patient information: Fragile X syndrome (The Basics) Beyond the Basics — Beyond the Basics ... of Parkinson disease Overview of tremor Patient information: Fragile X syndrome (The Basics) Patient information: Myoclonus (The Basics) Patient ...

  9. Basic Electricity

    NSDL National Science Digital Library

    This resource, created by National Aerospace Technical Education Center (SpaceTEC), is centered on basic electricity. The presentation focuses on standards for SpaceTEC certification. Safety when using electricity is the focal point of the slides. Basic diagrams and charts illustrate the do and donâ??ts when using electrical appliances. After the discussion of safety, the presentation shifts to the fundamental aspects of electricity. Such items as current, flow, voltage and other elements are discussed. Examples are used as representations of these basic processes. Overall, this is thorough presentation of this material. It totals nearly one-hundred twenty slides in length. Instructors could use this either as a presentation or simply to enhance existing curriculum.

  10. A new method of monitoring membrane potential in rat hippocampal slices using cyanine voltage-sensitive dyes.

    PubMed

    Dasheiff, R M

    1985-05-01

    A novel application of voltage-sensitive dyes is described. Hippocampal slices in vitro accumulated voltage-sensitive cyanine dyes under conditions presumed to cause depolarization and hyperpolarization. Increasing extracellular potassium caused a depression of dye uptake that correlated linearly with the membrane potential calculated from the Goldman equation. Veratrine depressed dye uptake, and this effect was blocked by addition of tetrodotoxin or removal of extracellular sodium. Ouabain also depressed dye uptake. Conversely, hyperpolarizing conditions using reduced extracellular sodium caused increased dye uptake. These results support a voltage-dependent mechanism for the uptake of cyanine dyes in hippocampal slices. Application of this phenomenon as an alternative to 2-deoxyglucose autoradiography for mapping neuronal activity will be presented. PMID:4010331

  11. DOS basics

    SciTech Connect

    O`Connor, P.

    1994-09-01

    DOS is an acronym for Disk Operating System. It is actually a set of programs that allows you to control your personal computer. DOS offers the capabilities to create and manage files; organize and maintain information placed on disks; use application programs such as WordPerfect, Lotus 123, Excel, Windows, etc. In addition, DOS provides the basic utilities needed to copy files from one area to another, delete files and list files. The latest version of DOS also offers more advanced features that include hard disk compression and memory management. Basic DOS commands are discussed.

  12. New fluorescent symmetrically substituted perylene-3,4,9,10-dianhydride-azohybrid dyes: synthesis and spectroscopic studies.

    PubMed

    Saeed, Aamer; Shabir, Ghulam

    2014-12-10

    Five phenolic azo-dyes (3a-e) were synthesized by diazo coupling of the suitably substituted anilines (1a-e) with phenol at low temperature in alkaline medium. The resulting dyes have low solubility in aqueous medium due to lack of carboxylic or sulfonic solubilizing functionalities. The hybridization of perylene dianhydride with phenolic azo-dyes was achieved by the nucleophilic aromatic substitution (SNAr) reaction of perylene-3,4,9,10-dianhydride 4 with phenolic azo-dyes 3a-e in basic medium. The hybrid dyes exhibit absorption maxima ?max in the range 440-460nm in aqueous medium due to presence of azo linkage and highly conjugated system of ? bonds. Fluorescence spectra of these dyes in water show sharp emission peaks with small band widths. The structures of perylene-azo dyes were confirmed by FTIR and NMR spectroscopy. PMID:24914994

  13. Basic Skills.

    ERIC Educational Resources Information Center

    Addison-Rutland Supervisory Union, Fair Haven, VT.

    This publication lists basic skills curriculum objectives for kindergarten through eighth grade in the schools of the Addison-Rutland Supervisory Union in Fair Haven, Vermont. Objectives concern language arts, reading, mathematics, science, and social studies instruction. Kindergarten objectives for general skills, physical growth, motor skills,…

  14. Basic Horticulture.

    ERIC Educational Resources Information Center

    Geer, Barbra Farabough

    This learning packet contains teaching suggestions and student learning materials for a course in basic horticulture aimed at preparing students for employment in a number of horticulture areas. The packet includes nine sections and twenty instructional units. Following the standard format established for Oklahoma vocational education materials in…

  15. Bioremediation of Dyes in Textile Effluents by Aspergillus oryzae

    Microsoft Academic Search

    Carlos Renato Corso; Ana Carolina Maganha de Almeida

    2009-01-01

    In this study Aspergillus oryzae was utilized to remove azo dyes from aqueous solution. Physically induced in its paramorphogenic form to produce standardized\\u000a mycelial pellets, the non-autoclaved and autoclaved hyphae biomass was applied to biosorb the reactive dyes Procion Red HE7B\\u000a (PR-HE7B) and Procion Violet H3R (PV-H3R) at different pH values (2.50, 4.50, and 6.50). The best pH for biosorption

  16. Dyeing of wool with natural anthraquinone dyes from Fusarium oxysporum

    Microsoft Academic Search

    F. A. Nagia; R. S. R. EL-Mohamedy

    2007-01-01

    Two anthraquinone compounds are described which were produced by liquid cultures of Fusarium oxysporum (isolate no. 4), isolated from the roots of citrus trees affected with root rot disease. These anthraquinone compounds are 2-acetyl-3,8-dihydroxy-6-methoxy anthraquinone or 3-acetyl-2,8-dihydroxy-6-methoxy anthraquinone. Dyeing of wool fabrics with these new anthraquinone compounds as natural dyes has been studied. The values of dyeing rate constant, half-time

  17. Biodecolorization and biodegradation potential of recalcitrant triphenylmethane dyes by Coriolopsis sp. isolated from compost.

    PubMed

    Chen, Si Hui; Yien Ting, Adeline Su

    2015-03-01

    Triphenylmethane dyes (TPM) are recalcitrant colorants brought into the environment. In this study, a lesser-known white rot fungus Coriolopsis sp. (1c3), isolated from compost of Empty Fruit Bunch (EFB) of oil palm, was explored for its decolorization potential of TPM dyes. The isolate 1c3 demonstrated good decolorization efficiencies in the treatment of Crystal Violet (CV; 100 mg l(-1)), Methyl Violet (MV; 100 mg l(-1)) and Cotton Blue (CB; 50 mg(-1)), with 94%, 97% and 91%, within 7, 7 and 1 day(s), respectively. Malachite Green (MG; 100 mg l(-1)) was the most recalcitrant dye, with 52% decolorization after 9 days. Dye removal by 1c3 was presumably via biosorption, whereby the process was determined to be influenced by fungal biomass, initial dye concentrations and oxygen requirements. Biodegradation was also a likely mechanism responsible for dye removal by 1c3, occurred as indicated by the reduction of dye spectra peaks. Detection of laccase, lignin peroxidase and NADH-DCIP reductase activities further substantiate the possible occurrence of biodegradation of TPM dyes by 1c3. PMID:25527986

  18. Fiberized fluorescent dye microtubes

    NASA Astrophysics Data System (ADS)

    Vladev, Veselin; Eftimov, Tinko

    2013-03-01

    In the present work we study the effect of the length of fluorescent dye-filled micro-capillaries on the fluorescence spectra. Two types of micro-capillaries have been studied: a 100 ?m inner diameter fused silica capillary with a transparent coating and one of the holes of a fiber optic glass ferrule with 125 ?m inner diameter. The tubes were filled with solutions of Rhodamine 6G dissolved in ethanol and then in glycerin. Experimental data show that the maximum fluorescence and the largest spectral widths are observed for a sample length of about 0.25 mm for the used concentration. This results show that miniature tunable fiberized dye lasers can be developed using available standard micro-and fibre-optic components.

  19. Painting With Natural Dyes

    NSDL National Science Digital Library

    Barbara Arrowtop (Heart Butte School)

    1999-07-01

    This activity is part of an integrated elementary unit called "Painted Tipis." The unit is best taught in the fall in conjunction with the September celebration "American Indian Heritage Week." It integrates lessons on literature through legends and myths, language (Blackfeet), and mathematics through structural components of the tipi. The activity introduces the students to the art of dyeing as used in ancestral tipi paintings. Historical cultural ties are an integral part of the Native American students learning and this unit provides those connections. The purpose of this lesson is to provide elementary students with the opportunity to explore, identify and locate area plants. The inquiry cooperative learning component of this lesson will be to determine the color (dye) producing possibilities of the plant. Students will also plan and carry out an experiment to produce the dyestuff of the plant as well as create possible mordants, which is a chemical or metallic compound that will "fasten" the color to the fabric.

  20. Dye laser tuner

    SciTech Connect

    Arthurs, E.G.; Purdie, A.F.

    1980-11-11

    A laser of the kind in which the lasing medium is a free flowing dye stream incorporates a means of tuning the output wave length of the laser, this means being in the form of a wedged birefringent plate which is driven in a linear mode by a linear translator so that the thickness of the birefringent plate traversed by the intracavity beam of laser light may be varied.

  1. Study of a natural dye solubilisation in o\\/w microemulsions and its dyeing behaviour

    Microsoft Academic Search

    Roshan Paul; Conxita Solans; Pilar Erra

    2005-01-01

    The manufacture of synthetic dyes involves many non eco-friendly chemical procedures. For this reason, the application of natural dyes in textile dyeing is being explored worldwide. The dye exhaustion, fixation and levelness of dyeing depends on several factors such as the properties of fibres, the molecular structure of dyes, and the medium of the dyebath. The solubilisation of insoluble natural

  2. Natural polysaccharides and their interactions with dye molecules: applications in effluent treatment.

    PubMed

    Blackburn, Richard S

    2004-09-15

    Dyeing effluent is one of the largest contributors to textile effluent and such colored wastewater has a seriously destructive impact on the environment. Adsorption can be a very effective treatment for decolorization of textile dyeing effluent, but current techniques employ adsorption chemistry that is not particularly environmentally friendly, such as the use of alum. In this study, natural polysaccharides were used as adsorbents for removal of dye molecules from effluent. The results showed that naturally cationic polysaccharides such as chitin and chitosan gave excellent levels of color removal, and this was attributed to a combination of electrostatic attraction, van der Waals forces, and hydrogen bonding. Nonionic galactomannans (locust bean gum, guar gum, cassia gum) were also highly effective in removing dye from effluent, whereas other nonionic polysaccharides, such as starch, were not effective. This was attributed to the structure of the polysaccharides and the relative degree of inter- and intramolecular interactions between separate polymer chains. The pendant galactose residues of galactomannans prevented strong interaction, allowing greater hydrogen bonding with dye; comparatively, starch has extensive chain interactions, and as such had limited potential for hydrogen bonding with the dye molecules at the temperature of application. In addition, hydrophobic interactions between the hydrophobic parts of the dye and the alpha-face of the pendant galactose residues may have contributed to the superior performance. Repulsion between anionic polysaccharides and the dye anions prevented any hydrogen bonding and as such pectin, carrageenans, and alginic acid were not effective in dye removal from effluent. The use of galactomannans derived from plants in this system presents a sustainable method of effluent treatment. The raw materials are derived from renewable plant sources and are available in tonnage quantities, the adsorption system itself is highly effective and does not involve any additional chemical input or treatment other than the use of the adsorbent, and the adsorption agents themselves are nontoxic and biodegradable. PMID:15487803

  3. Decolorization of Remazol Brilliant Blue Dye Effluent by Advanced Photo Oxidation Process (H2O2\\/UV system)

    Microsoft Academic Search

    A. S. Mahmoud; M. S. Brooks; A. E. Ghaly

    Advanced photo oxidation processes hold great promise for the improved treatment of textile dye effluent. In this study, the effectiveness of a H2O2\\/UV system for the decolorization of remazol brilliant blue effluent was investigated by examining the optimum conditions for dye removal in two reactors (coil and conventional). The results showed that the coil reactor had a higher temperature profile

  4. Dye-coated europium monosulfide

    SciTech Connect

    Kar, Srotoswini [Department of Chemistry, Georgetown University, Washington D.C. 20057 (United States); Dollahon, Norman R. [Department of Biology, Villanova University, Villanova, PA 19085 (United States); Stoll, Sarah L., E-mail: sls55@georgetown.ed [Department of Chemistry, Georgetown University, Washington D.C. 20057 (United States)

    2011-05-15

    Nanoparticles of EuS were synthesized using europium dithiocarbamate complexes. The resulting nanoparticles were coated with the dye, 1-pyrene carboxylic acid and the resulting material was characterized using X-ray powder diffraction, TEM, and UV-visible spectroscopy. Fluorescence spectroscopy was used to determine the relative energy of the conduction band edge to the excited state energy of the dye. -- Graphical abstract: Dye sensitized magnetic semiconductor materials were prepared by synthesizing EuS nanoparticles using single source precursors and coating with the dye, 1-pyrene carboxylic acid. Display Omitted highlights: > Synthesized EuS nanoparticles, 11{+-}2.4 nm characterized using XRD, TEM, and UV-vis. spect. > Grafted a dye to the surface and characterized the product using XRD, FTIR, UV-vis., and TEM. > Studied the photophysical properties using fluorescence spectroscopy. > Determined the relative dye excited state to the conduction band of the semiconductor.

  5. Education: The Basics. The Basics

    ERIC Educational Resources Information Center

    Wood, Kay

    2011-01-01

    Everyone knows that education is important, we are confronted daily by discussion of it in the media and by politicians, but how much do we really know about education? "Education: The Basics" is a lively and engaging introduction to education as an academic subject, taking into account both theory and practice. Covering the schooling system, the…

  6. Basic Immunology

    NSDL National Science Digital Library

    Klimov, Vladimir V.

    Some individuals might blanch at the idea of a "basic" immunology overview, but Professor Vladimir V. Klimov provides just such a resource on this site. As the homepage notes, the site is designed to assist undergraduate students learning about the basics of immunology through essays, images, animations, quizzes, case histories, and external links. Visitors can begin by looking over the "Table of Contents" area, which includes seven complete chapters of information. These chapters include "The Immune Responses", "Effector Activity", and "Functional Organization of the Immune System". While some of the materials on the site require a paid subscription, there's enough free material here to get students on their way to learning more about this field of study.

  7. Contour Basics

    NSDL National Science Digital Library

    Ackerman, Steve

    Contour Basics is an exercise designed to introduce students to contour plots. The Contour Activity is a great on-line resource that starts slowly and increases in difficulty. It teaches students basic techniques for generating contours, introduces students to the subtleties of generating contour plots with sparse data, provides many opportunities for students to assess their own progress and understanding and has complete on-line drawing capabilities. The exercise is geared toward atmospheric and oceanic sciences but is beneficial for all geoscience students. In addition to the exercise, this site includes information on teaching materials, teaching notes and tips, assessment suggestions and additional references. This activity is part of the Starting Point Collection: http://serc.carleton.edu/introgeo/

  8. Effect of activated carbon fiber anode structure and electrolysis conditions on electrochemical degradation of dye wastewater.

    PubMed

    Yi, Fenyun; Chen, Shuixia; Yuan, Chan'e

    2008-08-30

    The alizarin red S (ARS) in simulated dye wastewater was electrochemically oxidized using an activated carbon fiber (ACF) felt as an anode. The influence of electrolytic conditions and anode structure on the dye degradation was investigated. The results indicated that initial pH, current density and supporting electrolyte type all played an important role in the dye degradation. The chemical oxygen demand (COD) removal efficiency of dye solution in neutral or alkaline medium was about 74% after 60 min of electrolysis, which was higher than that in acidic medium. Increasing current density would lead to a corresponding increase in the dye removal. The addition of NaCl could also improve the treatment effect by enhancing the COD removal efficiency 10.3%. For ACF anodes, larger specific surface area and higher mesopore percentage could ensure more effective electrochemical degradation of dye. The data showed that the color removal efficiency increased from 54.2 to 83.9% with the specific surface area of ACF anodes increasing correspondingly from 894 to 1,682 m(2)/g. PMID:18258359

  9. Using resin supported nano zero-valent iron particles for decoloration of Acid Blue 113 azo dye solution.

    PubMed

    Shu, Hung-Yee; Chang, Ming-Chin; Chen, Chi-Chun; Chen, Po-En

    2010-12-15

    In this study, a synthesized cation exchange resin supported nano zero-valent iron (NZVI) complex forming NZVI-resin was proposed for the decoloration of an azo dye Acid Blue 113 (AB 113), taking into account reaction time, initial dye concentration, NZVI dose and pH. From results, the successful decoloration of the AB 113 solution was observed using a NZVI-resin. Increasing the iron load to 50.8 mg g(-1), the removal efficiencies of the AB 113 concentration increased exponentially. With an initial dye concentration of 100 mg l(-1) and nano iron load of 50.8 mg g(-1), the best removal efficiencies were obtained at 100 and 12.6% for dye concentration and total organic carbon, respectively. Color removal efficiency was dependent on initial dye concentration and iron load. Moreover, the removal rates followed modified pseudo-first order kinetic equations with respect to dye concentration. Thus, the observed removal rate constants (k) were 0.137-0.756 min(-1) by NZVI loads of 4.9-50.8 mg g(-1). Consequently, the NZVI-resin performed effectively for the decoloration of AB 113 azo dye, offering great potential in the application of NZVI-resins in larger scale column tests and further field processes. PMID:20833471

  10. Organization of butadienyl dyes containing benzodithiacrown-ether or dimethoxybenzene in monolayers at the air/aqueous salt solution interface.

    PubMed

    Sergeeva, T I; Gromov, S P; Zaitsev, S Yu; Möbius, D

    2009-12-01

    Two amphiphilic butadienyl dyes 1 and 2 form stable monolayers at the air/water interface in the presence of various salts. Dye 1 consists of the basic amphiphilic butadienyl chromophore. In dye 2, the dimethoxybenzene part of dye 1 is substituted by benzodithia-15-crown-5. The monolayers have been characterized by surface pressure-area and surface potential-area isotherms as well as Brewster angle microscopy and reflection spectroscopy. In contrast to dye 1, dye 2 interacts specifically with Hg(2+) and Ag(+) cations forming complexes. No complex formation was observed with alkali and earth alkali metal ions. The nature of the anion (Cl(-) or ClO(4)(-)) influences the monolayer behaviour of both dyes. At the air/water interface, besides monomers of the dyes, two types of associates are coexisting in the pure dye monolayers on aqueous salt solutions, attributed to dimers and aggregates, respectively. Their equilibria depend on the nature of both cations and anions in the subphase, as in the case of dye 2, or only anions, as in the case of dye 1. The dimers may be organized as head-to-tail dimers with the intermolecular distances 0.38 and 0.45nm for dye 1 and dye 2, respectively. According to the extended dipole model, we propose formation of aggregates in which the chromophores are parallel to each other with the same intermolecular distances as in the dimers, and the centers of their transition moments shifted by 0.95nm (dye 1) and 1.2nm (dye 2). PMID:19720508

  11. Removal of acridine orange from water by graphene oxide

    NASA Astrophysics Data System (ADS)

    Fiallos, D. Coello; Gómez, C. Vacacela; Usca, G. Tubón; Pérez, D. Cid; Tavolaro, P.; Martino, G.; Caputi, L. S.; Tavolaro, A.

    2015-02-01

    Dyes are usually used in textile manufacturing and are one of the major contaminations in water. Thus, from an environmental point of view, the removal of dyes is of great concern, and recent applications using carbon-based materials showed high adsorption ability. In this work we use graphene oxide (GO) produced by improved Hummer's method, for adsorption of acridine orange dye (AO) in water. GO is a material containing functional groups such as carboxyl, epoxy, ketone, and hydroxyl, that can adsorb cationic dyes. Factors such as initial concentration of dye, the amount of GO, temperature and contact time were evaluated. Results show that the adsorption equilibrium, with the removal of 40% of the dye, is reached in approximately 1 hour, and that the adsorption capacity increases at higher initial concentrations. The highest value of AO adsorbed was 229.8 mg/g equivalent to 92% removal percentage by using AO initial concentration 0.10 mg/mL. FT-IR analysis of GO with adsorbed AO shows changes in the stretching vibrational bands, which corroborate the AO/GO interaction due to the functional groups present in GO. Furthermore, AO adsorbed on GO does not desorb back into water. Our results show that GO is an effective adsorbent and could be used to treat effluents contaminated with dyes.

  12. The Determination of Surface Basicity of the Oxygen Planes of Expanding Clay Minerals by Acridine Orange

    Microsoft Academic Search

    Diana Garfinkel-Shweky; Shmuel Yariv

    1997-01-01

    The surface basicity of the oxygen planes of four Na–smectites and one Na–vermiculite was studied by visible spectroscopy of clay suspensions saturated with the metachromic cationic dye acridine orange. A metachromic band in the spectrum is an indication of ? interactions in which the cationic dye is involved. Curves describing the wavelength of the metachromic band in the presence of

  13. Basically Acids

    NSDL National Science Digital Library

    University of Houston,

    Students learn the basics of acid/base chemistry in a fun, interactive way by studying instances of acid/base chemistry found in popular films such as Harry Potter and the Prisoner of Azkaban and National Treasure. Students learn what acids, bases and indicators are and how they can be used, including invisible ink. They also learn how engineers use acids and bases every day to better our quality of life. Students' interest is piqued by the use of popular culture in the classroom.

  14. Biosorption of reactive dye from textile wastewater by non-viable biomass of Aspergillus niger and Spirogyra sp

    Microsoft Academic Search

    Mahmoud A. Khalaf

    2008-01-01

    The potential of Aspergillus niger fungus and Spirogyra sp., a fresh water green algae, was investigated as a biosorbents for removal of reactive dye (Synazol) from its multi component textile wastewater. The results showed that pre-treatment of fungal and algal biomasses with autoclaving increased the removal of dye than pre-treatment with gamma-irradiation. The effects of operational parameters (pH, temperature, biomass

  15. Selective adsorption of cationic dyes by UiO-66-NH2

    NASA Astrophysics Data System (ADS)

    Chen, Qi; He, Qinqin; Lv, Mengmeng; Xu, Yanli; Yang, Hanbiao; Liu, Xueting; Wei, Fengyu

    2015-02-01

    Herein, two zirconium(IV)-based MOFs UiO-66 and UiO-66-NH2 had been successfully prepared by a facile solvothermal method and were characterized by X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM), N2 adsorption-desorption (BET), X-ray photoelectron spectroscopy (XPS), and zeta potential. They exhibit small size, large surface area, and can remove cationic dyes from aqueous solution more effectively than anionic dyes. This adsorption selectivity is due to the favorable electrostatic interactions between the adsorbents and cationic dyes. Furthermore, owing to the individual micropore structure of UiO-66-NH2 and its more negative zeta potential resulted from the charge balance for the protonation of -NH2, UiO-66-NH2 displays much higher adsorption capacity for cationic dyes and lower adsorption capacity for anionic dyes than UiO-66.

  16. Equilibrium uptake, sorption dynamics, process optimization, and column operations for the removal and recovery of malachite green from wastewater using activated carbon and activated slag

    SciTech Connect

    Gupta, V.K.; Srivastava, S.K.; Mohan, D. [Univ. of Roorkee (India). Chemistry Dept.] [Univ. of Roorkee (India). Chemistry Dept.

    1997-06-01

    The waste slurry generated in fertilizer plants and slag (blast furnace waste) have been converted into low-cost adsorbents, activated carbon and activated slag, respectively, and these are utilized for the removal of malachite green (a basic dye) from wastewater. In the batch experiments, parameters studied include the effect of pH, sorbent dosage, adsorbate concentration, temperature, and contact time. Kinetic studies have been performed to have an idea of the mechanistic aspects and to obtain the thermodynamic parameters of the process. The uptake of the dye is greater on carbonaceous material than on activated slag. Sorption data have been correlated with both Langmuir and Freundlich adsorption models. The presence of anionic surfactants does not affect the uptake of dye significantly. The mass transfer kinetic approach has been applied for the determination of various parameters necessary for the designing of fixed-bed contactors. Chemical regeneration has been achieved with acetone in order to recover the loaded dye and restore the column to its original capacity without dismantling the same.

  17. Dye Sensitized Solar Cells

    PubMed Central

    Wei, Di

    2010-01-01

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO2, ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed. PMID:20480003

  18. Gel Electrophoresis of Dyes

    NSDL National Science Digital Library

    Janice Stephens

    2011-01-01

    In this experiment related to plant biotechnology, learners discover how to prepare and load an electrophoresis gel. They will then run the gels in an electrophoresis system to separate several dyes that are of different molecular sizes and carry different charges. This technique is fundamental to many of the procedures used in biotechnology. This lesson guide includes background information for the educator, safety precautions, and questions with answers for learners. For safety reasons, adult supervision is recommended. Modifications for use with younger learners are described in a related PDF (see related resource).

  19. Removal of malachite green from aqueous solution by activated carbon prepared from the epicarp of Ricinus communis by adsorption.

    PubMed

    Santhi, T; Manonmani, S; Smitha, T

    2010-07-15

    The use of low-cost, locally available, highly efficient and eco-friendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. This study investigates the potential use of activated carbon prepared from the epicarp of Ricinus communis for the removal of malachite green (MG) dye from simulated wastewater. The effects of different system variables, adsorbent dosage, initial dye concentration, pH and contact time were investigated and optimal experimental conditions were ascertained. The results showed that as the amount of the adsorbent increased, the percentage of dye removal increased accordingly. Optimum pH value for dye adsorption was 7.0. Maximum dye was sequestered within 50 min of the start of every experiment. The adsorption of malachite green followed the pseudo-second-order rate equation and fits the Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Tempkin equations well. The maximum removal of MG was obtained at pH 7 as 99.04% for adsorbent dose of 1 g 50 mL(-1) and 25 mg L(-1) initial dye concentration at room temperature. Activated carbon developed from R. communis can be an attractive option for dye removal from diluted industrial effluents since test reaction made on simulated dyeing wastewater showed better removal percentage of MG. PMID:20303654

  20. Adsorbent Derived from Pinus pinaster Tannin for Cationic Surfactant Removal

    Microsoft Academic Search

    J. Sánchez-Martín; J. Beltrán-Heredia; I. J. Seabra; M. E. M. Braga; H. C. de Sousa

    2012-01-01

    Pinus tannin gel (PTG) has proven to be an effective adsorbent for removing various cationic pollutants including heavy metals, dyes, and surfactants. The form of obtaining these condensed tannins from Pinus pinaster bark was conventional aqueous extraction using 5.0% ethanol as additive. The present study focused on the removal of the surfactant hexadecyltrimethylammonium bromide (CTAB) from aqueous solutions using PTG.

  1. Abatement of Azo Dye from Wastewater Using Bimetal-Chitosan

    PubMed Central

    Asgari, Ghorban; Farjadfard, Sima

    2013-01-01

    We introduce a new adsorbent, bimetallic chitosan particle (BCP) that is successfully synthesized and applied to remove the orange II dye from wastewater. The effects of pH, BCP quantity, and contact time are initially verified on the basis of the percentage of orange II removed from the wastewater. Experimental data reveal that the Cu/Mg bimetal and chitosan have a synergistic effect on the adsorption process of the adsorbate, where the dye adsorption by Cu/Mg bimetal, chitosan alone, and bimetal-chitosan is 10, 49, and 99.5%, respectively. The time required for the complete decolorization of orange II by 1?mg/L of BCP is 10?min. The Langmuir model is the best fit for the experimental data, which attains a maximum adsorption capacity of 384.6?mg/g. The consideration of the kinetic behavior indicates that the adsorption of orange II onto the BCP fits best with the pseudo-second-order and Elovich models. Further, the simulated azo dye wastewater can be effectively treated using a relatively low quantity of the adsorbent, 1?mg/L, within a short reaction time of 20?min. Overall, the use of BCP can be considered a promising method for eliminating the azo dye from wastewater effectively. PMID:24348163

  2. Effects of pH of Dyes on Characteristics of Dye-Sensitized Solar Cells

    Microsoft Academic Search

    Shoji Furukawa; Hiroshi Iino; Koudai Kukita; Kaoru Kaminosono

    2010-01-01

    Dye-sensitized solar cells were fabricated using natural dyes and synthesized dyes in which rear metal was not contained. Effects of pH of dyes on the characteristics of the dye-sensitized solar cells were also examined. As a result, it was found that the conversion efficiency of the dye-sensitized solar cell fabricated using red-cabbage dye with a pH of 2.5 was 0.10

  3. Synthesis and characterization of triphenylamine-based organic dyes for dye-sensitized solar cells

    Microsoft Academic Search

    Jihyun Heo; Jin-Woo Oh; Ho-Ik Ahn; Su-Bin Lee; Sang-Eun Cho; Mi-Ra Kim; Jin-Kook Lee; Nakjoong Kim

    2010-01-01

    We synthesized three organic dyes (DYE 1, DYE 2, and DYE 3) containing triphenylamine (TPA) moieties as electron donors and cyanoacrylic acid moieties as electron acceptors, designed at the molecular level, and developed them for use in dye-sensitized solar cells (DSSCs). Among all the dyes, DYE 2 exhibited the highest overall solar-energy-to-electricity conversion efficiency of 4.06% with a short-circuit photocurrent

  4. Fluorometric procedures for dye tracing

    USGS Publications Warehouse

    Wilson, James E., Jr.; Cobb, E.D.; Kilpatrick, F.A.

    1984-01-01

    This manual describes the current fluorometric procedures used by the U.S. Geological Survey in dye tracer studies such as time of travel, dispersion, reaeration, and dilution-type discharge measurements. The outstanding characteristics of dye tracing are: (1) the low detection and measurement limits, and (2) the simplicity and accuracy of measuring dye tracer concentrations using fluorometric techniques. The manual contains necessary background information about fluorescence, dyes, and fluorometers and a description of fluorometric operation and calibration procedures as a general guide for laboratory and field use. The background information should be useful to anyone wishing to experiment with dyes, fluorometer components, or procedures different from those described. In addition, a brief section is included on aerial photography because of its possible use to supplement ground-level fluorometry. (USGS)

  5. Fluorometric procedures for dye tracing

    USGS Publications Warehouse

    Wilson, James F.; Cobb, Ernest D.; Kilpatrick, F.A.

    1986-01-01

    This manual describes the current fluorometric procedures used by the U.S. Geological Survey in dye tracer studies such as time of travel, dispersion, reaeration, and dilution-type discharge measurements. The advantages of dye tracing are (1) low detection and measurement limits and (2) simplicity and accuracy in measuring dye tracer concentrations using fluorometric techniques. The manual contains necessary background information about fluorescence, dyes, and fluorometers and a description of fluorometric operation and calibration procedures as a guide for laboratory and field use. The background information should be useful to anyone wishing to experiment with dyes, fluorometer components, or procedures different from those described. In addition, a brief section on aerial photography is included because of its possible use to supplement ground-level fluorometry.

  6. Fluorometric procedures for dye tracing

    USGS Publications Warehouse

    Wilson, James F.

    1968-01-01

    This manual describes the current fluorometric procedures used by the U.S. Geological Survey in dye tracer studies such as time of travel, dispersion, reaeration, and dilution-type discharge measurements. The advantages of dye tracing are (1) low detection and measurement limits and (2) simplicity and accuracy in measuring dye tracer concentrations using fluorometric techniques. The manual contains necessary background information about fluorescence, dyes, and fluorometers and a description of fluorometric operation and calibration procedures as a guide for laboratory and field use. The background information should be useful to anyone wishing to experiment with dyes, fluorometer components, or procedures different from those described. In addition, a brief section on aerial photography is included because of its possible use to supplement ground-level fluorometry.

  7. Photocatalytic decomposition of azo-dye acid black 1 in water over modified titanium dioxide

    Microsoft Academic Search

    Joanna Grzechulska; Antoni Waldemar Morawski

    2002-01-01

    The photocatalytic oxidation of an azo-dye acid black 1 (AB1) in water has been investigated over modified titanium dioxide (Tytanpol A11, “Police” Chemical Factory, Poland). The effect of operational parameters, i.e. pH of the solution, photocatalyst content, initial dye concentration on the photocatalytic process has been examined. It can be stated that the complete removal of color, after selection of

  8. Electrocoagulation\\/electroflotation of reactive, disperse and mixture dyes in an external-loop airlift reactor

    Microsoft Academic Search

    Wafaa Balla; A. H. Essadki; B. Gourich; A. Dassaa; H. Chenik; M. Azzi

    2010-01-01

    This paper studied the efficiency of electrocoagulation\\/electroflotation in removing colour from synthetic and real textile wastewater by using aluminium and iron electrodes in an external-loop airlift reactor of 20L. The disperse dye is a mixture of Yellow terasil 4G, Red terasil 343 150% and Blue terasil 3R02, the reactive dye is a mixture of Red S3B 195, Yellow SPD, Blue

  9. Decolorization of textile dye by Candida albicans isolated from industrial effluents

    Microsoft Academic Search

    Vivian Vitor; Carlos Renato Corso

    2008-01-01

    The aim of the present work was to observe microbial decolorization and biodegradation of the Direct Violet 51 azo dye by\\u000a Candida albicans isolated from industrial effluents and study the metabolites formed after degradation. C. albicans was used in the removal of the dye in order to further biosorption and biodegradation at different pH values in aqueous solutions.\\u000a A comparative

  10. Levitated droplet dye laser

    E-print Network

    Azzouz, H; Balslev, S; Johansson, J; Mortensen, N A; Nilsson, S; Kristensen, A

    2006-01-01

    We present the first observation, to our knowledge, of lasing from a levitated, dye droplet. The levitated droplets are created by computer controlled pico-liter dispensing into one of the nodes of a standing ultrasonic wave (100 kHz), where the droplet is trapped. The free hanging droplet forms a high quality optical resonator. Our 750 nL lasing droplets consist of Rhodamine 6G dissolved in ethylene glycol, at a concentration of 0.02 M. The droplets are optically pumped at 532 nm light from a pulsed, frequency doubled Nd:YAG laser, and the dye laser emission is analyzed by a fixed grating spectrometer. With this setup we have achieved reproducible lasing spectra in the visible wavelength range from 610 nm to 650 nm. The levitated droplet technique has previously successfully been applied for a variety of bio-analytical applications at single cell level. In combination with the lasing droplets, the capability of this high precision setup has potential applications within highly sensitive intra-cavity absorban...

  11. Levitated droplet dye laser

    NASA Astrophysics Data System (ADS)

    Azzouz, H.; Alkhafadiji, L.; Balslev, S.; Johansson, J.; Mortensen, N. A.; Nilsson, S.; Kristensen, A.

    2006-05-01

    We present the first observation, to our knowledge, of lasing from a levitated, dye droplet. The levitated droplets are created by computer controlled pico-liter dispensing into one of the nodes of a standing ultrasonic wave (100 kHz), where the droplet is trapped. The free hanging droplet forms a high quality optical resonator. Our 750 nL lasing droplets consist of Rhodamine 6G dissolved in ethylene glycol, at a concentration of 0.02 M. The droplets are optically pumped at 532 nm light from a pulsed, frequency doubled Nd:YAG laser, and the dye laser emission is analyzed by a fixed grating spectrometer. With this setup we have achieved reproducible lasing spectra in the visible wavelength range from 610 nm to 650 nm. The levitated droplet technique has previously successfully been applied for a variety of bio-analytical applications at single cell level. In combination with the lasing droplets, the capability of this high precision setup has potential applications within highly sensitive intra-cavity absorbance detection.

  12. Adsorption of methylene blue dye from aqueous solutions using Eichhornia crassipes.

    PubMed

    Wanyonyi, Wycliffe Chisutia; Onyari, John Mmari; Shiundu, Paul Mwanza

    2013-09-01

    Adsorption of methylene blue (MB) from aqueous solution using dried roots, stems, and leaves of Eichhornia crassipes biomass obtained from Lake Victoria was studied. Batch experimental results revealed that the adsorption process was highly dependent on adsorbent dosage, initial MB concentration, E. crassipes particle size and aqueous solution temperature. The isotherm data fitted Freundlich mathematical models with maximum dye adsorption of 35.37 mg g(-1). Roots adsorbed over 99 % of the MB in <5 min. Sorption kinetics followed a pseudo-second-order model. Results provide evidence that E. crassipes is an effective and inexpensive biomaterial for dye removal from aqueous dye solutions and industrial effluents. PMID:23839152

  13. Performance of TX-100 and TX-114 for the separation of chrysoidine dye using cloud point extraction.

    PubMed

    Purkait, M K; DasGupta, S; De, S

    2006-09-21

    Cloud point extraction (CPE) is carried out to extract chrysoidine dye from aqueous solution using two different non-ionic surfactants, TX-100 and TX-114. The effects of different operating parameters, e.g., concentrations of surfactant, dye and salt, temperature, pH on extraction of both dye and surfactant have been studied in detail. The extraction of dye increases with temperature, surfactant concentration and salt concentration. Various design parameters of a CPE process have been estimated by developing correlations for dye solubilization and fractional coacervate phase volume with the operating conditions. The equilibrium solubilization data at four different temperatures follow Langmuir type isotherm. A method is presented to calculate the feed surfactant concentration required for the removal of dyes up to a level of 3.82x10(-6) M. The developed correlations may be useful to design a cloud point extractor of a desired efficiency. PMID:16600488

  14. Linewidth characteristics of Raman-shifted dye laser output at 720 and 940 nm

    NASA Technical Reports Server (NTRS)

    Grossmann, B. E.; Higdon, N. S.; Higdon, N. S.; Higdon, N. S.; Higdon, N. S.; Higdon, N. S.; Higdon, N. S.

    1986-01-01

    A compact and simple simultaneous multi-wavelength dye laser cavity was developed for a differential absorption technique. Dielectric multilayer interference filters were inserted inside the cavities as tuning elements, and two types of a DIAL system were constucted by using the dye laser tuned with dielectric multilayer filters to measure NO2 concentration. The usefulness of this dye laser was clarified for the differential absoroption technique in outdoor experiments. Some basic designs of the laser cavity with these filters to get simultaneously multi-wavelength output are summarized.

  15. Mondo Grass Berry Pigment for Visible to Near Infrared Absorption in Dye Sensitized Solar Cell

    NASA Astrophysics Data System (ADS)

    Desilva, L. A. A.; Pitigala, P. K. D. D. P.; Perera, A. G. U.

    2013-03-01

    The development of dye sensitized solar cells (DSSC) is an exciting field in the low cost renewable energy production. Two major draw backs in the DSSCs are the narrow spectral response and the short term stability. Synthesis of artificial dyes with broad response is important in developing an efficient DSSC. Artificial dyes can add up to the cost of the device; therefore, it is important to identify natural dyes with broad abortion and required energy levels. Work presented here shows a broad spectral response with a natural dye extracted from a Mondo Grass berry (Ophiopogonjaponicus).The dye is extracted by crushing the berries and filtering to remove the pulp. A DSSC sensitized with Mondo Grass dye, and with TiO2 film screen printed on a Florien doped Tin Oxide (FTO) glass and baked for 30 minutes at 450 degree C as the working electrode and Iodine/triiodide red-ox electrolyte as the hole collector was tested for its performance. An open circuit photovoltage of 495 mV and a short circuit photocurrent of 0.6 mA/cm2 were observed under a simulated lamp equivalent to 1 sun illumination and have a broad spectral response extending from 400 nm to 750 nm. The development of dye sensitized solar cells (DSSC) is an exciting field in the low cost renewable energy production. Two major draw backs in the DSSCs are the narrow spectral response and the short term stability. Synthesis of artificial dyes with broad response is important in developing an efficient DSSC. Artificial dyes can add up to the cost of the device; therefore, it is important to identify natural dyes with broad abortion and required energy levels. Work presented here shows a broad spectral response with a natural dye extracted from a Mondo Grass berry (Ophiopogonjaponicus).The dye is extracted by crushing the berries and filtering to remove the pulp. A DSSC sensitized with Mondo Grass dye, and with TiO2 film screen printed on a Florien doped Tin Oxide (FTO) glass and baked for 30 minutes at 450 degree C as the working electrode and Iodine/triiodide red-ox electrolyte as the hole collector was tested for its performance. An open circuit photovoltage of 495 mV and a short circuit photocurrent of 0.6 mA/cm2 were observed under a simulated lamp equivalent to 1 sun illumination and have a broad spectral response extending from 400 nm to 750 nm. This work is supported by COSM at UWG.

  16. Natural dyes as photosensitizers for dye-sensitized solar cell

    Microsoft Academic Search

    Sancun Hao; Jihuai Wu; Yunfang Huang; Jianming Lin

    2006-01-01

    The dye-sensitized solar cells (DSC) were assembled by using natural dyes extracted from black rice, capsicum, erythrina variegata flower, rosa xanthina, and kelp as sensitizers. The ISC from 1.142mA to 0.225mA, the VOC from 0.551V to 0.412V, the fill factor from 0.52 to 0.63, and Pmax from 58?W to 327?W were obtained from the DSC sensitized with natural dye extracts.

  17. Decolourization of azo dyes using magnesium–palladium system

    Microsoft Academic Search

    Rachna Patel; Sumathi Suresh

    2006-01-01

    Magnesium–palladium system was found to efficiently decolourize reactive black 5, sunset yellow FCF and tartrazine dyes. There is complete loss of visible range absorption peaks and extent of colour removal exceeded 95% within 24h of reaction. There is appearance of new peak(s) in the UV region and\\/or gradual and significant shift of the ?max in the UV range during 1–24h

  18. Modeling materials and processes in dye-sensitized solar cells: understanding the mechanism, improving the efficiency.

    PubMed

    Pastore, Mariachiara; De Angelis, Filippo

    2014-01-01

    We present a review of recent first-principles computational modeling studies on dye-sensitized solar cells (DSCs), focusing on the materials and processes modeling aspects which are key to the functioning of this promising class of photovoltaic devices. Crucial to the DSCs functioning is the photoinduced charge separation occurring at the heterointerface(s) between a dye-sensitized nanocrystalline, mesoporous metal oxide electrode and a redox shuttle. Theoretical and computational modeling of isolated cell components (e.g., dye, semiconductor nanoparticles, redox shuttle, etc…) as well as of combined dye/semiconductor/redox shuttle systems can successfully assist the experimental research by providing basic design rules of new sensitizers and a deeper comprehension of the fundamental chemical and physical processes governing the cell functioning and its performances. A computational approach to DSCs modeling can essentially be cast into a stepwise problem, whereby one first needs to simulate accurately the individual DSCs components to move to relevant pair (or higher order) interactions characterizing the device functioning. This information can contribute to enhancing further the target DSCs characteristics, such as temporal stability and optimization of device components. After presenting selected results for isolated dyes, including the computational design of new dyes, and model semiconductors, including realistic nanostructure models, we focus in the remainder of this review on the interaction between dye-sensitizers and semiconductor oxides, covering organic as well as metallorganic dyes. PMID:24682760

  19. Dye-sensitized solar cells

    DOEpatents

    Skotheim, Terje A. [Berkeley, CA

    1980-03-04

    A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.

  20. Dye-sensitized solar cells

    DOEpatents

    Skotheim, T.A.

    1980-03-04

    A low-cost dye-sensitized Schottky barrier solar cell is comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent. 3 figs.

  1. Dyeing Properties of Natural Dye Syzygium cuminii on Silk

    NASA Astrophysics Data System (ADS)

    Narayana Swamy, V.; Ninge Gowda, K. N.; Sudhakar, R.

    2014-04-01

    Dyeing behavior of natural dye extracted from the bark of Syzygium cuminii L has been studied on silk fabric. Colour values and colour co-ordinates were examined in terms of K/S and L* a* b* C and h. A range of shades were obtained by using various mordants and mordanting techniques. Dye was tested for some of the eco-parameters using atomic absorption spectrophotometry and GC/MS. The test results were compared with the set standards to determine the eco-friendliness of natural dye. Their concentrations were much below the stipulated limits. Dyed samples were tested for antimicrobial activity against Gram-positive and Gram-negative bacteria and were found to possess antibacterial activity.

  2. Optimization of extraction and dyeing conditions for traditional turmeric dye

    Microsoft Academic Search

    Kiran Sachan; VP Kapoor

    Water soluble yellow dye was extracted from turmeric rhizomes (Curcuma longa L.), collected from Lucknow, Shillong and from local market, through aqueous\\/solvent extraction procedure using vacuum evaporator and spray drying of aqueous extract. Shillong sample was found to contain higher dye content (21.3-27.6%) followed by Lucknow sample (15.5- 18.9%) and market sample (14.0-18.2%). Shillong sample was also been found to

  3. Removal of organic dyes by magnetic alginate beads

    Microsoft Academic Search

    Vincent Rocher; Jean-Michel Siaugue; Valérie Cabuil; Agnès Bee

    2008-01-01

    This study deals with the development of a clean and safe process for water pollution remediation. We have synthesized a magnetic adsorbent in order to develop a solid-phase extraction process assisted by a magnetic field. To follow an ‘ecoconception’ approach, magnetic beads containing magnetic nanoparticles and activated carbon are prepared with a biopolymer extracted from algae, sodium alginate. The use

  4. A constructed wetland model for synthetic reactive dye wastewater treatment by narrow-leaved cattails (Typha angustifolia Linn.).

    PubMed

    Nilratnisakorn, S; Thiravetyan, P; Nakbanpote, W

    2009-01-01

    Textile wastewater is contaminated by reactive dye causing unattractive levels of wastewater color, high pH and high salt content when discharged into public water systems. Decolorization of textile wastewater by plant, phytoremediation, is an alternative, sustainable method which is suitable for long term operation. Narrow-leaved cattails are one species of wetland plant with efficiency for decolorizing and remediating textile wastewater. In addition, chemical oxygen demand (COD) can be lowered and dye residue can be removed. The plant also showed a good salt tolerance even after being exposed to a salt solution for 15 days. The narrow-leaved cattails were set up in a constructed wetland model with a vertical flow system operating from bottom to top for synthetic reactive dye wastewater (SRDW) removal. Narrow-leaved cattails could achieve the removal of SRDW at approximately 0.8 g(SRDW) m(-2) day(-1). Decolorization of SRDW by this plant was approximately 60%. The advantage of this method is that it is suitable for textile wastewater management and improvement of wetland. These plants could lower COD, remove dye, sodium and total dissolved solids (TDS) whereas other biological and chemical methods could not remove TDS and dye in the same time. These results suggested that the spongy cell structure of this plant has the ability to absorb large amounts of water and nutrients. Physico-chemical analysis revealed increasing amounts of sulfur, silicon, iron and calcium in the plant leafs and roots after exposure to wastewater. Proteins or amide groups in the plant might help in textile dye removal. Regarding decolorization, this plant accumulates dye in the intercellular space and still grows in this SRDW condition. Hence, it can be noted here that narrow-leaved cattails are efficient for textile dye wastewater treatment. PMID:19759459

  5. Dye molecules in electrolytes: new approach for suppression of dye-desorption in dye-sensitized solar cells

    PubMed Central

    Heo, Nansra; Jun, Yongseok; Park, Jong Hyeok

    2013-01-01

    The widespread commercialization of dye-sensitized solar cells remains limited because of the poor long-term stability. We report on the influence of dye-molecules added in liquid electrolyte on long-term stability of dye-sensitized solar cells. Dye-desorption from the TiO2 surface during long-term cycling is one of the decisive factors that degrade photocurrent densities of devices which in turn determine the efficiencies of the devices. For the first time, desorption of dye from the TiO2 surface could be suppressed by controlling thermodynamic equilibrium; by addition of dye molecules in the electrolyte. The dye molecules in the electrolyte can suppress the driving forces for the adsorbed dye molecules to be desorbed from TiO2 nanoparticles. As a result, highly enhanced device stabilities were achieved due to the reduction of dye-desorption although there was a little decrease in the initial efficiencies.

  6. Color removal from textile effluents by electrochemical destruction

    SciTech Connect

    Oeguetveren, U.B.; Koparal, S. (Anadolu Ueniversitesi, Eskisehir (Turkey))

    1994-01-01

    In this work, aqueous solutions of three azo dyes and a waste water sample taking from a local textile plant have been studied. Effect of several factors such as color, pH, presence of NaCl, applied potential, initial dye concentration and solution flow rate on the removal rate has been investigated. Energy consumption values have been calculated for different initial dye concentrations and flow rates, and shown as the function of applied potential. Removal rates of 98%, 86% and 85% have been achieved with energy consumption values of 0.044 kWhg[sup [minus]1], 0.106 kWhg[sup [minus]1] and 0.044 kWhg[sup [minus]1] for Ostazin Rod H3B, Ostazin Black HN and Ostazin Olive HG respectively. Removal rate of 82% with energy consumption value of 2 kWhm[sup [minus]3] has been observed for textile effluent. 10 refs., 14 figs., 3 tabs.

  7. A Low-Cost Wheat Bran Medium for Biodegradation of the Benzidine-Based Carcinogenic Dye Trypan Blue Using a Microbial Consortium

    PubMed Central

    Lade, Harshad; Kadam, Avinash; Paul, Diby; Govindwar, Sanjay

    2015-01-01

    Environmental release of benzidine-based dyes is a matter of health concern. Here, a microbial consortium was enriched from textile dye contaminated soils and investigated for biodegradation of the carcinogenic benzidine-based dye Trypan Blue using wheat bran (WB) as growth medium. The PCR-DGGE analysis of enriched microbial consortium revealed the presence of 15 different bacteria. Decolorization studies suggested that the microbial consortium has high metabolic activity towards Trypan Blue as complete removal of 50 mg?L?1 dye was observed within 24 h at 30 ± 0.2 °C and pH 7. Significant reduction in TOC (64%) and COD (88%) of dye decolorized broths confirmed mineralization. Induction in azoreductase (500%), NADH-DCIP reductase (264%) and laccase (275%) proved enzymatic decolorization of dye. HPLC analysis of dye decolorized products showed the formation of six metabolites while the FTIR spectrum indicated removal of diazo bonds at 1612.30 and 1581.34 cm?1. The proposed dye degradation pathway based on GC-MS and enzyme analysis suggested the formation of two low molecular weight intermediates. Phytotoxicity and acute toxicity studies revealed the less toxic nature of the dye degradation products. These results provide experimental evidence for the utilization of agricultural waste as a novel low-cost growth medium for biodegradation of benzidine-based dyes, and suggested the potential of the microbial consortium in detoxification. PMID:25815522

  8. A low-cost wheat bran medium for biodegradation of the benzidine-based carcinogenic dye Trypan Blue using a microbial consortium.

    PubMed

    Lade, Harshad; Kadam, Avinash; Paul, Diby; Govindwar, Sanjay

    2015-04-01

    Environmental release of benzidine-based dyes is a matter of health concern. Here, a microbial consortium was enriched from textile dye contaminated soils and investigated for biodegradation of the carcinogenic benzidine-based dye Trypan Blue using wheat bran (WB) as growth medium. The PCR-DGGE analysis of enriched microbial consortium revealed the presence of 15 different bacteria. Decolorization studies suggested that the microbial consortium has high metabolic activity towards Trypan Blue as complete removal of 50 mg?L-1 dye was observed within 24 h at 30 ± 0.2 °C and pH 7. Significant reduction in TOC (64%) and COD (88%) of dye decolorized broths confirmed mineralization. Induction in azoreductase (500%), NADH-DCIP reductase (264%) and laccase (275%) proved enzymatic decolorization of dye. HPLC analysis of dye decolorized products showed the formation of six metabolites while the FTIR spectrum indicated removal of diazo bonds at 1612.30 and 1581.34 cm-1. The proposed dye degradation pathway based on GC-MS and enzyme analysis suggested the formation of two low molecular weight intermediates. Phytotoxicity and acute toxicity studies revealed the less toxic nature of the dye degradation products. These results provide experimental evidence for the utilization of agricultural waste as a novel low-cost growth medium for biodegradation of benzidine-based dyes, and suggested the potential of the microbial consortium in detoxification. PMID:25815522

  9. Dye laser amplifier including a dye cell contained within a support vessel

    DOEpatents

    Davin, James (Gilroy, CA)

    1992-01-01

    A large (high flow rate) dye laser amplifier in which a continous replenished supply of dye is excited by a first light beam, specifically a copper vapor laser beam, in order to amplify the intensity of a second different light beam, specifically a dye beam, passing through the dye is disclosed herein. This amplifier includes a dye cell defining a dye chamber through which a continuous stream of dye is caused to pass at a flow rate of greater than 30 gallons/minute at a static pressure greater than 150 pounds/square inch and a specifically designed support vessel for containing the dye cell.

  10. Fungal mediated decolorization of media containing procion dyes.

    PubMed

    Sumathi, S; Manju, B S

    2001-01-01

    An isolated fungus, Aspergillus foetidus was found to effectively decolorize media containing azo reactive dyes, namely Procion dyes, under aerobic conditions. The extent of colour removal was 90% within 48 h of growth of the fungus. The entire colour was found to be strongly bioadsorbed to the rapidly settling spherical fungal biomass pellets. Our investigations reveal that the process of decolorization is concomitant with the exponential growth phase of the fungus and has an obligate requirement for a biodegradable substrate such as glucose. Kinetic analyses of fungal decolorization indicate that the rates of colour uptake decrease to a significant extent with increasing initial concentrations of dye. The fungus was able to grow and decolorize media in the presence of 5 ppm of chromium and 1% sodium chloride. An alternate and cheaper carbon source such as starch supported the growth and decolorization process. These results suggest that the dye uptake process mediated by Aspergillus foetidus has a potential for large-scale treatment of textile mill discharges. PMID:11380192

  11. UV/TiO2 photocatalytic degradation of xanthene dyes.

    PubMed

    Pereira, Luciana; Pereira, Raquel; Oliveira, Catarina S; Apostol, Laura; Gavrilescu, Mariana; Pons, Marie-Noëlle; Zahraa, Orfan; Alves, Maria Madalena

    2013-01-01

    UV/titanium dioxide (TiO(2)) degradation of two xanthene dyes, erythrosine B (Ery) and eosin Y (Eos), was studied in a photocatalytic reactor. Photocatalysis was able to degrade 98% of Ery and 73% of Eos and led to 65% of chemical oxygen demand removal. Experiments in buffered solutions at different initial pH values reveal the pH dependence of the process, with better results obtained under acidic conditions due to the electrostatic attraction caused by the opposite charges of TiO(2) (positive) and of anionic dyes (negative). Batch activity tests under methanogenic conditions showed the high toxicity exerted by the dyes even at low concentrations (~85% with initial concentration of 0.3 mmol L(-1)), but the end products of photocatalytic treatment were much less toxic toward methanogenic bacteria, as detoxification of 85 ± 5% for Eos and 64 ± 7% for Ery were obtained. In contrast, the dyes had no inhibitory effect on the biogenic-carbon biodegradation activity of aerobic biomass, obtained by respirometry. The results demonstrate that photocatalysis combining UV/TiO(2) as a pretreatment followed by an anaerobic biological process may be promising for the treatment of wastewaters produced by many industries. PMID:22817135

  12. Adsorption of methylene blue dye from aqueous solution by sugar extracted spent rice biomass.

    PubMed

    Ur Rehman, Muhammad Saif; Kim, Ilgook; Han, Jong-In

    2012-10-15

    This study was aimed at using sugar extracted spent rice biomass (SRB) as a potential adsorbent to remove methylene blue (MB) dye from aqueous solution. The SRB was used without any modification. A three factor full factorial experimental design (2(3)) was employed to investigate the effect of factors (adsorbent dose, dye concentration, temperature) and their interaction on the adsorption capacity and color removal. Two levels for each factor were used; adsorbent dose (0.25-0.5g/100mL), dye concentration (25-50mg/L), and temperature (25-45°C). Initial dye concentration and adsorbent dosage were found as significant factors for the adsorption of MB dye. Langmuir isotherm (R(2)>0.998) best explained the equilibrium of MB adsorption on SRB with monolayer adsorption capacity of 8.13mg/g. The pseudo-second order model (R(2)>0.999) was best fitted to explain the adsorption kinetics. Thermodynamic investigation revealed that the adsorption process was spontaneous, endothermic, and was feasible to treat dyeing wastewater. PMID:22939346

  13. Nature of photovoltaic action in dye-sensitized solar cells

    SciTech Connect

    Cahen, D.; Hodes, G.; Graetzel, M.; Guillemoles, J.F.; Riess, I.

    2000-03-09

    The authors explain the cause for the photocurrent and photovoltage in nanocrystalline, mesoporous dye-sensitized solar cells, in terms of the separation, recombination, and transport of electronic charge as well as in terms of electron energetics. On the basis of available experimental data, the basic cause for the photovoltage was confirmed as the change in the electron concentration in the nanocrystalline electron conductor that results from photoinduced charge injection from the dye. The maximum photovoltage is given by the difference in electron energies between the redox level and the bottom of the electron conductor's conduction band, rather than by any difference in electrical potential in the cell, in the dark. Charge separation occurs because of the energetic and entropic driving forces that exist at the dye/electron conductor interface, with charge transport aided by such driving forces at the electron conductor-contact interface. The mesoporosity and nanocrystallinity of the semiconductor are important not only because of the large amount of dye that can be adsorbed on the system's very large surface, but also for two additional reasons: (1) it allows the semiconductor small particles to become almost totally depleted upon immersion in the electrolyte (allowing for large photovoltages), and (2) the proximity of the electrolyte to all particles modes screening of injected electrons, and thus their transport, possible.

  14. Mapping of cavitational activity in a pilot plant dyeing equipment.

    PubMed

    Actis Grande, G; Giansetti, M; Pezzin, A; Rovero, G; Sicardi, S

    2015-11-01

    A large number of papers of the literature quote dyeing intensification based on the application of ultrasound (US) in the dyeing liquor. Mass transfer mechanisms are described and quantified, nevertheless these experimental results in general refer to small laboratory apparatuses with a capacity of a few hundred millilitres and extremely high volumetric energy intensity. With the strategy of overcoming the scale-up inaccuracy consequent to the technological application of ultrasounds, a dyeing pilot-plant prototype of suitable liquor capacity (about 40L) and properly simulating several liquor to textile hydraulic relationships was designed by including US transducers with different geometries. Optimal dyeing may be obtained by optimising the distance between transducer and textile material, the liquid height being a non-negligible operating parameter. Hence, mapping the cavitation energy in the machinery is expected to provide basic data on the intensity and distribution of the ultrasonic field in the aqueous liquor. A flat ultrasonic transducer (absorbed electrical power of 600W), equipped with eight devices emitting at 25kHz, was mounted horizontally at the equipment bottom. Considering industrial scale dyeing, liquor and textile substrate are reciprocally displaced to achieve a uniform colouration. In this technology a non uniform US field could affect the dyeing evenness to a large extent; hence, mapping the cavitation energy distribution in the machinery is expected to provide fundamental data and define optimal operating conditions. Local values of the cavitation intensity were recorded by using a carefully calibrated Ultrasonic Energy Meter, which is able to measure the power per unit surface generated by the cavitation implosion of bubbles. More than 200 measurements were recorded to define the map at each horizontal plane positioned at a different distance from the US transducer; tap water was heated at the same temperature used for dyeing tests (60°C). Different liquid flow rates were tested to investigate the effect of the hydrodynamics characterising the equipment. The mapping of the cavitation intensity in the pilot-plant machinery was performed to achieve with the following goals: (a) to evaluate the influence of turbulence on the cavitation intensity, and (b) to determine the optimal distance from the ultrasound device at which a fabric should be positioned, this parameter being a compromise between the cavitation intensity (higher next to the transducer) and the US field uniformity (achieved at some distance from this device). By carrying out dyeing tests of wool fabrics in the prototype unit, consistent results were confirmed by comparison with the mapping of cavitation intensity. PMID:26186865

  15. Photodegradation of environmental mutagens by visible irradiation in the presence of xanthene dyes as photosensitizers.

    PubMed

    Odo, Junichi; Torimoto, Sei-ichi; Nakanishi, Suguru; Niitani, Tomoya; Aoki, Hiroyuki; Inoguchi, Masahiko; Yamasaki, Yu

    2012-01-01

    The photodegradation of environmental mutagens, such as 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeA?C), and 2-amino-3-methyl-imidazo[4,5-f]quinoline (IQ), was investigated by visible irradiation in the presence of xanthene dyes as photosensitizers. Although the environmental mutagens themselves were very stable during visible irradiation under the conditions in this study, they were effectively photodegraded in the presence of the xanthene dyes (erythrosine, rose bengal, and phloxine). Moreover, photodegradation of the mutagens was further enhanced for xanthene dyes loaded onto a water-soluble diethylaminoethyl (DEAE)-dextran anion-exchanger via ionic interactions (xanthene-dyeDEX). Photodegradation was inhibited by O2 removal from the reaction solution. In ESR spin-trapping experiments using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a trapping reagent, signals characteristic of DMPO-•OH (hydroxyl radical) were observed in the presence of xanthene-dyeDEX. These results suggest that reactive oxygen species derived from O2, such as singlet molecular oxygen (•1O2) and/or •OH, were active participants in photodegradation of the mutagens in the presence of xanthene dyes or xanthene-dyeDEX. PMID:22790816

  16. Assessment of the breakdown products of solar/UV induced photolytic degradation of food dye tartrazine.

    PubMed

    dos Santos, Tuane Cristina; Zocolo, Guilherme Julião; Morales, Daniel Alexandre; Umbuzeiro, Gisela de Aragão; Zanoni, Maria Valnice Boldrin

    2014-06-01

    The food dye tartrazine (CI 19140) was exposed to UV irradiation from an artificial source, a mercury vapor lamp, and a natural one, sunlight. It was observed that conditions such as energy dose, irradiation time, pH and initial dye concentration affected its discoloration. There was 100% of color removal, after 30min of irradiation, when a dye solution 1×10(-5)molL(-1) was submitted to an energy dose of 37.8Jcm(-2). Liquid Chromatography coupled to Diode Array Detection and Mass Spectrometry confirmed the cleavage of the chromophore group and the formation of five by-products at low concentration. Although by-products were formed, the Salmonella/microsome mutagenicity assay performed for both, the dye solution at a dose of 5.34mg/plate and the solutions obtained after exposure to UV irradiation, did not present mutagenic activity for TA98 and TA100 with and without S9. PMID:24704040

  17. Master dye laser oscillator including a specific grating assembly for use therein

    DOEpatents

    Davin, James M. (Livermore, CA)

    1992-01-01

    A dye laser oscillator for producing a tuned dye beam is disclosed herein and includes, among other components, a beam output coupling assembly, a dye cell assembly, a beam expander assembly, an etalon assembly, and a grating assembly. Each of three assemblies is vertically supported from a horizontal base so as to be readily removable from the base without interference from or interfering with the other assemblies. The particular grating assembly disclosed is specifically designed for proper optical alignment with the intended path of the dye beam to be produced and for accurate pivotal movement relative to the beam path in order to function as a coarse tuning mechanism in the production of the ultimately tuned beam.

  18. Artificial food dyes and attention deficit hyperactivity disorder.

    PubMed

    Kanarek, Robin B

    2011-07-01

    Attention deficit hyperactivity disorder (ADHD) is one of the most common behavioral disorders in children. Symptoms of ADHD include hyperactivity, low frustration tolerance, impulsivity, and inattention. While the biological pathways leading to ADHD are not clearly delineated, a number of genetic and environmental risk factors for the disorder are recognized. In the early 1970s, research conducted by Dr. Benjamin Feingold found that when hyperactive children were given a diet free of artificial food additives and dyes, symptoms of hyperactivity were reduced. While some clinical studies supported these findings, more rigorous empirical studies conducted over the next 20 years were less positive. As a result, research on the role of food additives in contributing to ADHD waned. In recent years, however, interest in this area has revived. In response to more recent research and public petitions, in December 2009 the British government requested that food manufacturers remove most artificial food dyes from their products. While these strictures could have positive effects on behavior, the removal of food dyes is not a panacea for ADHD, which is a multifaceted disorder with both biological and environmental underpinnings. PMID:21729092

  19. Novel fluoranthene dyes for efficient dye-sensitized solar cells

    Microsoft Academic Search

    Xuemei Ma; Wenjun Wu; Qiong Zhang; Fuling Guo; Fanshun Meng; Jianli Hua

    2009-01-01

    Three, novel, fluoranthene-based dyes, 2-cyano-3-(5-(7,12-diphenylbenzo[k]fluoranthen-3-yl)thiophen-2-yl)acrylic acid, 2-(5-((5-(7,12-diphenylben-zo[k]fluoranthen-3-yl)thiophen-2-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid and 2-cyano-3-(4-(2-(7,12-diphenylbenzo[k]fluoranthen-3-yl)ethynyl) phenyl) acrylic acid, were synthesized for application as sensitizers in dye-sensitized solar cells. In each dye, the 7,12-diphenyl-benzo[k]fluoranthene moiety acted as electron donor with phenyl and thiophene units as electron spacers and carboxylic acid as electron acceptor. Tuning of the HOMO and LUMO energy levels was conveniently accomplished by changing

  20. Dyes as tracers for vadose zone hydrology

    NASA Astrophysics Data System (ADS)

    Flury, Markus; Wai, Nu Nu

    2003-03-01

    Dyes are important tracers to investigate subsurface water movement. For more than a century, dye tracers have provided clues about the hydrological cycle as well as flow and transport processes in the subsurface. Groundwater contamination often originates in the vadose zone. Agrochemicals applied to the soil surface, toxic compounds accidentally spilled by human activities, and contaminants released from waste repositories leach through the vadose zone and can ultimately pollute groundwater resources. Dyes are an important tool to assess flow pathways of such contaminants. This review compiles information on dyes used as hydrological tracers, with particular emphasis on vadose zone hydrology. We summarize briefly different human-applied tracers, including nondye tracers. We then provide a historical sketch of the use of dyes as tracers and describe newer developments in visualization and quantification of tracer experiments. Relevant chemical properties of dyes used as tracers are discussed and illustrated with dye intermediates and selected dye tracers. The types of dyes used as tracers in subsurface hydrology are summarized, and recommendations are made regarding the use of dye tracers. The review concludes with a toxicological assessment of dyes used as hydrological tracers. Many different dyes have been proposed as tracers for water movement in the subsurface. All of these compounds, however, are to some degree retarded by the subsurface medium. Nevertheless, dyes are useful tracers to visualize flow pathways.

  1. Laccase/mediator assisted degradation of triarylmethane dyes in a continuous membrane reactor.

    PubMed

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, Trichur Ramaswamy

    2009-08-10

    Laccase/mediator systems are important bioremediation agents as the rates of reactions can be enhanced in the presence of the mediators. The decolorization mechanism of two triarylmethane dyes, namely, Basic Green 4 and Acid Violet 17 is reported using Cyathus bulleri laccase. Basic Green 4 was decolorized through N-demethylation by laccase alone, while in mediator assisted reactions, dye breakdown was initiated from oxidation of carbinol form of the dye. Benzaldehyde and N,N-dimethyl aniline were the major end products. With Acid Violet 17, laccase carried out N-deethylation and in mediator assisted reactions, oxidation of the carbinol form of the dye occurred resulting in formation of formyl benzene sulfonic acid, carboxy benzene sulfonic acid and benzene sulfonic acid. Toxicity analysis revealed that Basic Green 4 was toxic and treatment with laccase/mediators resulted in 80-100% detoxification. The treatment of the textile dye solution using laccase and 2,2'-azino-di-(-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was demonstrated in an enzyme membrane reactor. At a hydraulic retention time of 6h, the process was operated for a period of 15 days with nearly 95% decolorization, 10% reduction in flux and 70% recovery of active ABTS. PMID:19539671

  2. Surfactant-modified alumina: an efficient adsorbent for malachite green removal from water environment.

    PubMed

    Das, Asit K; Saha, Sandip; Pal, Anjali; Maji, Sanjoy K

    2009-07-15

    Surface of alumina was modified with sodium dodecyl sulfate (SDS), an anionic surfactant. The surfactant-modified alumina (SMA) was characterized by FTIR and thermal analysis. The SMA was then used for the removal of malachite green (MG; Basic Green 4), a well-known toxic cationic dye from aqueous environment. The removal of MG takes place in the micellar structure formed on alumina surface, and the process is called adsolubilization. All the studies were carried out in batch mode. The kinetic studies showed that 1 h contact time was sufficient to attain equilibrium. SMA was very efficient to remove MG up to 99% under optimum conditions. The concentration range of MG was 20-100 mg/L. The isotherm studies showed that it follows Langmuir model better than the Freundlich model. The maximum adsorption capacity was 185 mg/g. The effects of various parameters such as pH, presence of interfering ions (Cl-, NO3-, H2PO4-, SO4(2-), Fe2+, Ca2+) and organics (pesticides such as 2,4-dichlorophenoxyacetic acid, atrazine, endosulfan, and humic acid) are evaluated. It was observed that H2PO4-, Fe2+, endosulfan, and humic acid have maximum interference. Desorption of MG from exhausted SMA using acetone, and its reuse was studied. The regenerated adsorbent shows approximately 80% efficiency on the removal of MG. The usability of SMA for the removal of MG from real wastewater was also examined. The kinetic equilibrium was attained within 1 h and the removal could be achieved up to approximately 95% at a dose of 20 g/L. The adsorption followed Freundlich isotherm model better than the Langmuir model. PMID:19799058

  3. Anaerobic\\/aerobic treatment of selected azo dyes in wastewater

    Microsoft Academic Search

    S. Seshadri; P. L. Bishop; A. M. Agha

    1994-01-01

    Azo dyes represent the largest class of dyes in use today. Current environmental concern with these dyes revolves around the potential carcinogenic health risk presented by these dyes or their intermediate biodegradation products when exposed to microflora in the human digestive tract. These dyes may build up in the environment, since many wastewater treatment plants allow these dyes to pass

  4. High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells

    E-print Network

    McGehee, Michael

    High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells Brian E, TT1, to increase the overall power conversion efficiency of a dye-sensitized solar cell (DSC) from 3 be efficiently implemented in optimized dye-sensitized solar cells, but also highlights the need to design highly

  5. Increased light harvesting in dye-sensitized solar cells with energy relay dyes

    E-print Network

    McGehee, Michael

    Increased light harvesting in dye-sensitized solar cells with energy relay dyes Brian E. Hardin1 factors. However, dye-sensitized solar cells do not completely absorb all of the photons from the visible pathway to develop more efficient dye-sensitized solar cells. D ye-sensitized solar cells (DSCs) work

  6. New fluoranthene-based cyanine dye for dye-sensitized solar cells

    Microsoft Academic Search

    Wenjun Wu; Fuling Guo; Jing Li; Jinxiang He; Jianli Hua

    2010-01-01

    In this paper, a new fluoranthene-based unsymmetrical organic cyanine dye I and the corresponding cyanine dye II containing ethynyl unit for the purpose of comparison were designed and synthesized as sensitizers for the application in dye-sensitized solar cells (DSSCs). The absorption spectra, electrochemical and photovoltaic properties of I and II were extensively investigated. The DSSCs based on the fluoranthene dye

  7. TEXTILE DYEING WASTEWATERS: CHARACTERIZATION AND TREATMENT

    EPA Science Inventory

    The report gives results of an examination of the biological, chemical, and physical treatability of wastewaters from selected typical dye baths. Twenty systems providing a broad cross section of dye classes, fibers, and application techniques, were examined. Wastes, produced usi...

  8. Application of adaptive heuristic criticism control (AHCC) to dye wastewater.

    PubMed

    Zeybek, Z; Karapinar, T; Alpbaz, M; Hapoglu, H

    2007-09-01

    This paper presents an experimental application of AHCC to study the coagulation process of wastewater treatment in a dye plant. Also this study includes a series of tests in which an AHCC control was used for pH control. The performance results of the AHCC controller are compared with the results obtained by using a conventional proportional-integral-derivative (PID) algorithm. It is useful to compare PID with AHCC to illustrate the extreme range of the nonlinearity of the dye wastewater treatment process. Although the removal of pollutants from wastewater is similar with AHCC and PID, our results show excellent AHCC performance in the region where conventional PID control fails. PMID:16949196

  9. 'Photo-degeneration' of neurones after extracellular dye application.

    PubMed

    Picaud, S; Wunderer, H J; Franceschini, N

    1988-12-19

    Irradiation in the presence of a dye applied to the extracellular space was found to trigger neuronal degeneration in fly photoreceptor neurones. This phenomenon endowed the selected cells with a dark and fine-grained label such that they could be traced and scrutinized for synaptic specializations. It also initiated their phagocytotic removal from the neural network. Various states of degeneration fitting classical descriptions could be achieved by acting upon the light dose. The phenomenon seems to rely on photosensitization of the cell by the dye. The simplicity and precision with which this phenomenon can be induced makes 'photo-degeneration' an exciting prospective tool for combined anatomical and physiological studies on (natural) neural networks and may provide a new line of medical applications. PMID:3226611

  10. [False low oximetry reading caused by patent blue vital dye during breast surgery].

    PubMed

    Nasif, L A; Campos, J M; Piñol, S; Delgado, M O; Casas, J I; Landeira, J M

    2005-03-01

    Patent blue vital (patent blue V; Laboratoire Guerbet, France) is used to identify the sentinel node during surgery for invasive breast cancer. Detecting the sentinel node that first drains the primary tumor reduces the need for total breast and wide axillary node removal, with the problems that such radical surgery involves. Like other dyes, patent blue V can interfere with accurate pulse oximeter reading, leading to underestimation of real values. We report the case of a 31-year-old woman who underwent lumpectomy and removal of the sentinel node. After intradermal injection of patent blue V dye into the left breast (100 mg administered because the sentinel node was difficult to locate) a drop in peripheral oxyhemoglobin saturation from 99% to 93% was detected by the pulse oximeter. When arterial blood gas analysis showed normal values and other causes were ruled out, the diagnosis was false low oximetry reading due to patent blue V dye. PMID:15850305

  11. Comparative studies of Remazol Brillant Blue removal by immobilized organisms; investigation of metabolites by GC/MS and FTIR spectrometry.

    PubMed

    Akdogan, Hatice Ardag; Topuz, Merve Canpolat

    2015-01-01

    Reactive dyes are important chemical pollutants from textile industries. Treatment of effluents from dye-based industries poses a major problem, and biotreatment with white rot fungi seems to be a viable option. The biological treatment of synthetic dyes at a low cost and in the shortest possible time is used especially in dye and textile industries and leads to pollution in the wastewater dumped into the environment by these industries. For this study, decolorization of the recalcitrant dye Remazol Brilliant Blue R by immobilized Pleurotus ostreatus and Coprinus plicatilis was investigated. This dye was removed 100% (dye concentration: 10.0 mg/L) by both immobilized organisms. Extracellular ligninolytic enzyme activities were also measured during the decolorization. There was an attempt to identify metabolites with FTIR spectrometry and GC/MS at the end of the decolorization. These results indicated that the samples did not include any detectable metabolite. PMID:25905752

  12. Feasibility of solar-pumped dye lasers

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.; Kim, Kyung C.; Kim, Kyong H.

    1987-01-01

    Dye laser gains were measured at various pump-beam irradiances on a dye cell in order to evaluate the feasibility of solar pumping. Rhodamine 6G dye was considered as a candidate for the solar-pumped laser because of its high utilization of the solar spectrum and high quantum efficiency. Measurements show that a solar concentration of 20,000 is required to reach the threshold of the dye.

  13. Industrial hygiene concerns of laser dyes

    Microsoft Academic Search

    1990-01-01

    A variety of materials are used as dyes in laser systems, but often very little is known about each dye`s toxicity or mutagenicity\\/carcinogenicity. As a precaution, we have devised guidelines for handling these materials. We studied the literature to determine the hazards associated with various common laser dye solutions, taking into account the possible toxicity and mutagenicity\\/carcinogenicity of the solvent

  14. Optofluidic ring resonator dye lasers

    NASA Astrophysics Data System (ADS)

    Sun, Yuze; Suter, Jonathan D.; Fan, Xudong

    2010-02-01

    We overview the recent progress on optofluidic ring resonator (OFRR) dye lasers developed in our research group. The fluidics and laser cavity design can be divided into three categories: capillary optofluidic ring resonator (COFRR), integrated cylindrical optofluidic ring resonator (ICOFRR), and coupled optofluidic ring resonator (CpOFRR). The COFRR dye laser is based on a micro-sized glass capillary with a wall thickness of a few micrometers. The capillary circular cross-section forms the ring resonator and supports the whispering gallery modes (WGMs) that interact evanescently with the gain medium in the core. The laser cavity structure is versatile to adapt to the gain medium of any refractive index. Owing to the high Q-factor (>109), the lasing threshold of 25 nJ/mm2 is achieved. Besides directly pump the dye molecules, lasing through fluorescence resonance energy transfer (FRET) between the donor and acceptor dye molecules is also studied in COFRR laser. The energy transfer process can be further controlled by designed DNA scaffold labeled with donor/acceptor molecules. The ICOFRR dye laser is based on a cylindrical ring resonator fused onto the inner surface of a thick walled glass capillary. The structure has robust mechanical strength to sustain rapid gain medium circulation. The CpOFRR utilizes a cylindrical ring resonator fused on the inner surface of the COFRR capillary. Since the capillary wall is thin, the individual WGMs of the cylindrical ring resonator and the COFRR couples strongly and forms Vernier effect, which provides a way to generate a single mode dye laser.

  15. Kinetics of Solvent Blue and Reactive Yellow removal using microwave radiation in combination with nanoscale zero-valent iron.

    PubMed

    Mao, Yanpeng; Xi, Zhenqian; Wang, Wenlong; Ma, Chunyuan; Yue, Qinyan

    2015-04-01

    We investigated the efficiency and kinetics of the degradation of soluble dyes over the pH range 5.0-9.0 using a method employing microwave radiation in combination with nanoscale zero-valent iron (MW-nZVI). The nZVI particles (40-70nm in diameter) were prepared by a liquid-phase chemical reduction method employing starch as a dispersant. Compared to the removal of Solvent Blue 36 and Reactive Yellow K-RN using only nZVI, more rapid and efficient dye removal and total organic carbon removal were achieved using MW-nZVI. The dye removal efficiency increased significantly with decreasing pH, but was negligibly affected by variation in the microwave power. The kinetics of dye removal by MW-nZVI followed both an empirical equation and the pseudo first-order model, while the kinetics of dye removal using nZVI could only be described by an empirical equation. It was also concluded that microwave heating of the dye solutions as well as acceleration of corrosion of nZVI and consumption of Fe(II) were possible reasons behind the enhanced dye degradation. PMID:25872723

  16. Dye laser amplifier including a low turbulence, stagnation-free dye flow configuration

    DOEpatents

    Davin, J.

    1992-12-01

    A large (high flow rate) dye laser amplifier in which a continuous replenished supply of dye is excited by a first light beam, specifically a copper vapor laser beam, in order to amplify the intensity of a second different light beam, specifically a dye beam, passing through the dye is disclosed herein. This amplifier includes a dye cell defining a dye chamber through which a continuous stream of dye is caused to pass at a flow rate of for example 30 gallons/minute, a specifically designed support vessel for containing the dye cell and a screen device for insuring that the dye stream passes into the dye cell in a substantially turbulent free, stagnation-free manner. 9 figs.

  17. Dye laser amplifier including a low turbulence, stagnation-free dye flow configuration

    DOEpatents

    Davin, James (Gilroy, CA)

    1992-01-01

    A large (high flow rate) dye laser amplifier in which a continuous replenished supply of dye is excited by a first light beam, specifically a copper vapor laser beam, in order to amplify the intensity of a second different light beam, specifically a dye beam, passing through the dye is disclosed herein. This amplifier includes a dye cell defining a dye chamber through which a continuous stream of dye is caused to pass at a flow rate of for example 30 gallons/minute, a specifically designed support vessel for containing the dye cell and a screen device for insuring that the dye stream passes into the dye cell in a substantially turbulent free, stagnation-free manner.

  18. ARSENIC REMOVAL

    EPA Science Inventory

    Presentation covered five topics; arsenic chemistry, best available technology (BAT), surface water technology, ground water technology and case studies of arsenic removal. The discussion on arsenic chemistry focused on the need and method of speciation for AsIII and AsV. BAT me...

  19. Industrial hygiene concerns of laser dyes

    Microsoft Academic Search

    1990-01-01

    A variety of materials are used as dyes in laser systems, but often very little is known about each dye's toxicity or mutagenicity\\/carcinogenicity. As a precaution, we have devised guidelines for handling these materials. We studied the literature to determine the hazards associated with various common laser dye solutions, taking into account the possible toxicity and mutagenicity\\/carcinogenicity of the solvent

  20. Dye-Sensitized Cuprrous Iodide Photocathode

    NASA Astrophysics Data System (ADS)

    Tennakone, K.; Fernando, C. A. N.; Dewasurendra, M.; Kariappert, M. S.

    1987-04-01

    Copper plates coated with cuprous iodide (p-type semiconductor) are found to adsorb iodides of cationic dyes extremely well. Photocurrent efficiency and stability of dye-sensitized CuI photocathodes in aqueous KI+I2 are studied. Deposition of trace quantities of platinum on top of the dye layer is found to increase the stability and the photocurrent quantum efficiency.

  1. Studies on Treating the Printing and Dyeing Wastewater with the Ferrate Oxidization and Photochemical Process

    Microsoft Academic Search

    Zong-ping Wang; Lizhi Huang; Jiewen Su; Song Xiang; Guanghong Liu; Feng Wu

    2008-01-01

    This experimental study was conducted to investigate the COD and color removal efficiency in printing and dyeing wastewater by ferrate and by UV irradiation combined with the ferrate pre-oxidization. The experiment results showed that 77.5% COD and 76.6% color removal efficiency could be attained at pH 5 with 77.0 mgldrL-1 ferrate (in terms of Fe(VI) ions). After the oxidation by

  2. A Novel Pretreatment Method of Lignocellulosic Material as Adsorbent and Kinetic Study of Dye Waste Adsorption

    Microsoft Academic Search

    Ling Wei Low; Tjoon Tow Teng; Anees Ahmad; Norhashimah Morad; Yee Shian Wong

    2011-01-01

    Sulphuric acid-modified bagasse has been used as low-cost adsorbent for the removal of methylene blue (MB) dye from aqueous\\u000a solution. In order to remove organic compounds that contribute to chemical oxygen demand (COD), pretreatment with thorough\\u000a washing of adsorbent using boiling distilled water was performed instead of conventional washing using distilled water at\\u000a room temperature only. This has resulted in

  3. Degradation of textile dye by solar light using TiO2 and ZnO photocatalysts

    Microsoft Academic Search

    B. Neppolian; S. Sakthivel; Banumathi Arabindoo; M. Palanichamy; V. Murugesan

    1999-01-01

    The photocatalytic degradation of a textile dye, reactive red 2 in presence of sunlight using TiO2 and ZnO as photocatalysts is reported. The experimental studies have indicated complete decolourisation of the dye in a short period and degradation within 8 hr of irradiation. ZnO was found to be more effective in the removal of colour than TiO2, but the degradation

  4. Enhanced efficiency of dye-sensitized solar cells by UV–O 3 treatment of TiO 2 layer

    Microsoft Academic Search

    Byoung-Kuk Lee; Jang-Joo Kim

    2009-01-01

    Solar conversion efficiency of dye-sensitized solar cells was improved by UV–O3 treatment of TiO2 before and\\/or after sintering. The enhancement was resulted from the removal of the residual organics originated from the TiO2 precursor pastes, increased adsorption of dyes to the TiO2, surface, and longer diffusion length and shorter electron transit time of electrons through the TiO2 mesoscopic structure. The

  5. Modeling the efficiency of Frster resonant energy transfer from energy relay dyes in dye-

    E-print Network

    McGehee, Michael

    of dye sensitized solar cells. In this design, unattached relay dyes absorb the high energy photons-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films," Nature 353(6346), 737­740 (1991). 2. M. K in dye-sensitized solar cells with energy relay dyes," Nat. Photonics 3(7), 406­411 (2009). 4. P. R. F

  6. Theory of pulsed dye lasers including dye-molecule rotational relaxation

    Microsoft Academic Search

    Roger A. Haas; Mark D. Rotter

    1991-01-01

    In this paper a phenomenological semiclassical theory of pulsed-laser-pumped dye-laser light amplifiers is presented. The theory accounts for the broadband radiation absorption and emission characteristics of dye molecules in liquid solvents. Dye-molecule fluorescence, vibrational, rotational, and electric polarization relaxation processes are represented by phenomenological relaxation rates. In general, it is found that due to dye-molecule rotational relaxation the laser-pumped dye

  7. Novel iminocoumarin dyes as photosensitizers for dye-sensitized solar cell

    Microsoft Academic Search

    Velappan Kandavelu; Hsin-Sian Huang; Jia-Liang Jian; Thomas C.-K. Yang; Kun-Li Wang; Sheng-Tung Huang

    2009-01-01

    Novel iminocoumarin dyes (2a–c and 3a–c) having carboxyl and hydroxyl anchoring groups onto the dyes skeletons have been designed and synthesized for the application of dye-sensitized nanocrystalline TiO2 solar cells (DSSCs). The photophysical and electrochemical studies showed that these iminocoumarin dyes are suitable as light harvesting sensitizers in DSSC application. The dyes having carboxyl and hydroxyl anchoring groups (2a–c) showed

  8. Efficient dye-sensitized solar cells with triarylamine organic dyes featuring functionalized-truxene unit

    Microsoft Academic Search

    Mao Liang; Meng Lu; Qi-Lin Wang; Wei-Yi Chen; Hong-Yu Han; Zhe Sun; Song Xue

    2011-01-01

    Four triarylamine organic dyes featuring functionalized-truxene unit (MXD1–4) have been designed, synthesized, and characterized. It was found that these dyes favored light harvesting, prevented dye aggregation and suppressed the dark current significantly in dye-sensitized solar cells (DSSCs), leading to enhanced performance compared to the corresponding triphenylamine dye. As a result of retarding charge recombination benefiting from the steric hindrance of

  9. False low oximetry reading caused by patent blue vital dye during breast surgery

    Microsoft Academic Search

    L. A. Nasif; S. Piñol; M. O. Delgado; J. M. Landeira

    Summary Patent blue vital (patent blue V; Laboratoire Guerbet, France) is used to identify the sentinel node during sur- gery for invasive breast cancer. Detecting the sentinel node that first drains the primary tumor reduces the need for total breast and wide axillary node removal, with the problems that such radical surgery involves. Like other dyes, patent blue V can

  10. Biosorption of malachite green, a cationic dye onto Pithophora sp., a fresh water algae

    Microsoft Academic Search

    K. Vasanth Kumar; V. Ramamurthi; S. Sivanesan

    2006-01-01

    Batch sorption experiments were carried out for the removal of malachite green from its aqueous solution using Pithophora sp., a fresh water algae as biosorbent. Dye uptake was found to increase with contact time and initial malachite green concentration. Equilibrium uptake was found to be pH dependent and maximum uptake was observed at a pH of 6. The effect of

  11. Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries

    Microsoft Academic Search

    P. C. C Faria; J. J. M Órfão; M. F. R Pereira

    2004-01-01

    The influence of the surface chemical groups of an activated carbon on the removal of different classes of dyes is evaluated. Starting from the same material (NORIT GAC 1240 PLUS), the following treatments were carried out in order to produce a series of samples with different surface chemical properties but with no major differences in their textural properties: oxidation in

  12. Electronic and optical properties of dye-sensitized TiO? interfaces.

    PubMed

    Pastore, Mariachiara; Selloni, Annabella; Fantacci, Simona; De Angelis, Filippo

    2014-01-01

    Dye-sensitized solar cells (DSCs) represent a promising approach to the direct conversion of sunlight to electrical energy at low cost and high efficiency. DSCs are based on a film of anatase TiO? nanoparticles covered by adsorbed molecular dyes and immersed in a liquid redox electrolyte. Upon photoexcitation of the chemisorbed dye, electrons are injected into the TiO? conduction band and can travel across the nanostructured film to reach the counter-electrode, while the oxidized dye is regenerated by the redox electrolyte. In this review we present a summary of recent computational studies of the electronic and optical properties of dye-sensitized TiO2 interfaces, with the aim of providing the basic understanding of the operation principles of DSCs and establishing the conceptual basis for their design and optimization.We start with a discussion of isolated dyes in solution, focusing on the dye's atomic structure, ground and excited state oxidation potentials, and optical absorption spectra. We examine both Ru(II)-polypyridyl complexes and organic "push-pull" dyes with a D-?-A structure, where the donor group (D) is an electron-rich unit, linked through a conjugated linker (?) to the electron-acceptor group (A). We show that a properly calibrated computational approach based on Density Functional Theory (DFT) combined with Time Dependent DFT (TD-DFT) can provide a good description of both the absorption spectra and ground and excited state oxidation potential values of the Ru(II) complexes. On the other hand, organic push-pull dyes are not well described by the standard DFT/TD-DFT approach. For these dyes, an excellent description of the electronic structure in gas phase can be obtained by the many body perturbation theory GW method, which has, however, a much higher computational cost.We next consider interacting dye/semiconductor systems. Key properties are the dye adsorption structure onto the semiconductor, the nature and localization of the dye@semiconductor excited states, and the alignment of ground and excited state energy levels at the dye/semiconductor heterointerface. These properties, along with an estimate of the electronic coupling, constitute the fundamental parameters that determine the electron injection and dye regeneration processes. For metallorganic dyes, standard DFT/TDDFT methods are again found to reproduce accurately most of the relevant electronic and optical properties. For highly conjugated organic dyes, characterized by a high degree of charge transfer excited states, instead, the problems associated to the charge-transfer nature of their excited states extend to their interaction with TiO? and translate into an erroneous description of the relative energetics of dye/semiconductor excited states. A full description of push-pull organic dyes/semiconductor excited states, which is essential for modeling the key process of electron injection in DSCs, still represents a challenge which should be addressed by next generation DFT or post-DFT methods. PMID:24488437

  13. Importance of matrix correlations in dye-doped solid rare gases: A hole-burning study

    Microsoft Academic Search

    P. Geissinger; L. Kador; D. Haarer

    1996-01-01

    The present investigation was motivated by the apparent success of a statistical model to describe the effects of external pressure on spectral holes in dye-doped amorphous polymers. With its help, the polymer compressibility could be determined in a purely optical experiment. This success was surprising since polymers usually meet the basic assumptions of this model quite poorly. Furthermore, two conflicting

  14. Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter

    Microsoft Academic Search

    Greg P. Smestad; Michael Gratzel

    1998-01-01

    A unique solar cell fabrication procedure has been developed using natural anthocyanin dyes extracted from berries. It can be reproduced with a minimum amount of resources in order to provide an interdisciplinary approach for lower-division undergraduate students learning the basic principles of biological extraction, physical chemistry, and spectroscopy as well as environmental science and electron transfer. Electron transfer is the

  15. Removal of Methylene Blue From Aqueous Solutions by Using Cold Plasma, Microwave Radiation and Formaldehyde Treated Acorn Shell

    Microsoft Academic Search

    Cafer Saka; Ömer ?ahin; Hamdullah Adsoy; ?irin M. Akyel

    2012-01-01

    In this paper, cold plasma (CPTAS), formaldehyde (FTAS) and microwave radiation treated (MTAS) acorn shell obtained from Quercus petraea tree as biosorbent was characterized and its dye removal ability at different dye concentrations was studied. The isoelectric point, functional groups and morphology of acorn shell was investigated as adsorbent surface characteristics. Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and

  16. Industrial hygiene concerns of laser dyes

    SciTech Connect

    Miller, G.

    1990-11-01

    A variety of materials are used as dyes in laser systems, but often very little is known about each dye`s toxicity or mutagenicity/carcinogenicity. As a precaution, we have devised guidelines for handling these materials. We studied the literature to determine the hazards associated with various common laser dye solutions, taking into account the possible toxicity and mutagenicity/carcinogenicity of the solvent used. Working from this information, we have proposed three control classes -- limited, moderate, and strict -- for work performed with dyes in each class. This paper describes the considerations that went into preparing our guidelines and summarizes the precautions themselves.

  17. Spectroscopic investigations on the H-type aggregation of coumarin 153 dye molecules: role of Au nanoparticles and ?-cyclodextrin.

    PubMed

    Sen, Tapasi; Bhattacharyya, Santanu; Mandal, Sadananda; Patra, Amitava

    2012-01-01

    Here, we study the formation of H-type aggregation of coumarin 153 (C153) dye molecule in presence of Au nanoparticles and the removal of dye aggregation in presence of ?-cyclodextrin (CD) due to confinement of dye molecules inside the nanocavity of ?-cyclodextrin (CD) using steady state and time resolved spectroscopy. Blue shifting of absorption band, photoluminescence (PL) band and the enhancement of decay time of C153 dye confirm the formation of H-aggregation. It is found that the concentrations of ?-CD and Au nanoparticles play an important role on H-type aggregation of dye. The rotational relaxation time of free C153 is 0.113 ns and the average relaxation time of C153 dye are 0.275 ns and 0.425 ns for 2 mM and 5 mM ?-CD confined systems, respectively, indicating the anisotropy increases due to confinement of dye. An associated type anisotropy decay of C153 dye is found at 20 mM concentration of CD may be due to formation of nanotubular aggregates of ?-CD. PMID:21909637

  18. Dye-sensitized solar cells

    Microsoft Academic Search

    Michael Grätzel

    2003-01-01

    The dye-sensitized solar cells (DSC) provides a technically and economically credible alternative concept to present day p–n junction photovoltaic devices. In contrast to the conventional systems where the semiconductor assume both the task of light absorption and charge carrier transport the two functions are separated here. Light is absorbed by a sensitizer, which is anchored to the surface of a

  19. The chromonic phases of dyes

    Microsoft Academic Search

    T. K. Attwood; J. E. Lydon; F. Jones

    1986-01-01

    It has been shown that the lyotropic liquid-crystalline phases formed by certain dyes are structurally analogous to the chromonic N and M liquid-crystalline phases previously thought to be unique to certain anti-asthmatic\\/anti-allergic drugs. We suspect that these two groups of compounds will prove to be representatives of a large new class of mesogenic materials.

  20. Electrochemical degradation and toxicity reduction of C.I. Basic Red 29 solution and textile wastewater by using diamond anode.

    PubMed

    Koparal, A Sava?; Yavuz, Yusuf; Gürel, Canan; O?ütveren, Ulker Bakir

    2007-06-25

    Electrochemical oxidation of Basic Red 29 (BR29) was studied in a bipolar trickle tower (BTT) reactor by using Raschig ring shaped boron-doped diamond (BDD) electrodes, which were originally employed by the present researchers, in a recirculated batch mode. The model solution was prepared with BR29 using distilled water. The effects of initial dye concentration, Na(2)SO(4) concentration as supporting electrolyte, current density, flow rate and initial pH on the removal efficiency were investigated, and practically, complete BR29 removal (over 99%) was obtained in all the studies. After optimum experimental conditions were determined, textile wastewater has also studied by monitoring the destruction of color and COD. With the textile wastewater, 97.2% of color and 91% of COD removal were, respectively, achieved at the current density of 1mA/cm(2). Microtox toxicity tests were performed in both BR29 solution and textile wastewater under optimum experimental conditions, and relatively good toxicity reductions were obtained with respect to the initial values. According to the results, BDD anode was seen to be a unique material for the degradation of BR29 and COD and also the reduction of toxicity simultaneously. PMID:17140728

  1. Improving optical absorptivity of natural dyes for fabrication of efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Hemmatzadeh, Reza; Mohammadi, Ahmad

    2013-11-01

    Efficient and cheap dye-sensitized solar cells (DSSCs) were fabricated using natural dyes from Pastinaca sativa and Beta vulgaris. Natural dyes are environmentally and economically superior to ruthenium-based dyes because they are nontoxic and cheap. However, the conversion efficiency of dye-sensitized solar cells based on natural dyes is low. One way to improve the DSSC performance is to enhance the absorptivity of extracted dyes. We investigated the influence of various factors in the extraction process, such as utilization of different extraction approaches, the acidity of extraction solvent, and different compounds of solvents on the optical absorption spectra. It was found that we could considerably enhance the optical absorptivity of dye and consequently the performance of DSSC by choosing a proper mixture of ethanol and water for extracting solvent and also the acidity of dye solution.

  2. Characteristics of a Broadband Dye Laser Using Pyrromethene and Rhodamine Dyes

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah A.; Danehy, Paul M.; Wheeler, Jeffrey L.

    2011-01-01

    A broadband dye laser pumped by a frequency-doubled Nd:YAG laser with a full-width half-maximum (FWHM) from 592 to 610 nm was created for the use in a dual-pump broadband CARS system called WIDECARS. The desired broadband dye laser was generated with a mixture of Pyrromethene dyes as an oscillator gain medium and a spectral selective optic in the oscillator cavity. A mixture of Rhodamine dyes were used in the amplifier dye cell. To create this laser a study was performed to characterize the spectral behavior of broadband dye lasers created with Rhodamine dyes 590, 610, and 640, Pyrromethene dyes 597 and 650 as well as mixture of these dyes.

  3. Characteristics of a broadband dye laser using Pyrromethene and Rhodamine dyes.

    PubMed

    Tedder, Sarah A; Wheeler, Jeffrey L; Danehy, Paul M

    2011-02-20

    A broadband dye laser pumped by a frequency-doubled Nd:YAG laser with a full width at half-maximum from 592 to 610?nm was created for the use in a dual-pump broadband coherent anti-Stokes Raman spectroscopy (CARS) system called width increased dual-pump enhanced CARS (WIDECARS). The desired broadband dye laser was generated with a mixture of Pyrromethene dyes as an oscillator gain medium and a spectral selective optic in the oscillator cavity. A mixture of Rhodamine dyes was used in the amplifier dye cell. To create this laser, a study was performed to characterize the spectral behavior of broadband dye lasers created with Rhodamine dyes 590, 610, and 640 and Pyrromethene dyes 597 and 650, as well as mixtures of these dyes. PMID:21343970

  4. DCM-based organic dyes with electron donating groups for dye-sensitized solar cells.

    PubMed

    Kim, Joo Young; Yoon, Seung Soo; Kim, Young Sik

    2014-07-01

    Herein, 4-(dicyanomethylene)-2-methyl-6-[p-(dimethylamino)styryl]-4H-pyran (DCM)-based dyes with electron donating groups were designed and their electronic and optical properties were investigated theoretically for dye-sensitized solar cells (DSSCs). Among the dyes, the D1 and D2 dyes were composed of single electron donating group and the D3 and D4 dyes composed of dual donating group. We performed DFT/TDDFT calculations to get insight into the factors responsible for photovoltaic properties as dye sensitizers. It showed that all the dyes in this work are available as dye sensitizers from the energy consideration compared to TiO2 electrode and iodide electrolyte. It also showed that the D3 and D4 dyes produced additional absorption bands by the introduction of dual donor in absorption spectra and the absorption band of the D4 dye is more red-shifted than that of the D3 dye. It is attributed to the fact that the M2 (a coumarin derivative) moiety with stronger electron withdrawing ability stabilized its LUMO level. In terms of molar extinction coefficient and panchromatic feature, we suggest that the D4 dye would show better performance than other dyes in the present study as a dye sensitizer for DSSCs. PMID:24758003

  5. Efficacy of Two Caries Detector Dyes in the Diagnosis of Dental Caries

    PubMed Central

    Javaheri, M.; Maleki-Kambakhsh, S.; Etemad-Moghadam, Sh.

    2010-01-01

    Objective: The aim of the present study was to evaluate the efficacy of two caries detector dyes in the diagnosis of dental caries. Materials and Methods: Twenty extracted human posterior teeth without pulpal exposure were sectioned mesiodistally through the center of the lesions using a water-cooled disk. The tooth halves were randomly divided into two groups and treated with Caries Detector (CD) and Caries Check (CC) detector dyes. Access cavities were prepared followed by caries removal and dye application. All cavities were arbitrarily divided into two right and left sections and excavation of the stained areas was performed on the left parts, while the right sections remained untouched. Bacterial penetration into dentinal tubules was evaluated using Gram-stained decalcified sections under light microscopy. Sensitivity and specificity of both dyes were calculated. Results: The sensitivity of CD and CC were 74% and 71%, respectively. The specificity obtained for both dyes was 100%. Conclusion: Considering the low sensitivity of the dyes evaluated in the present study, it seems that they may not be reliable when used as the sole diagnostic technique for detection of carious lesions in posterior teeth. PMID:21998778

  6. Photo-decolorization and detoxification of toxic dyes using titanium dioxide impregnated chitosan beads.

    PubMed

    Farzana, M Hasmath; Meenakshi, Sankaran

    2014-09-01

    The removal of three different dyes namely Reactive Red 2 (RR), Methylene Blue (MB) and Rhodamine B (RB) using titanium dioxide impregnated chitosan beads (TCB) by photocatalytic method has been studied. The TCB was characterized by Fourier transform Infrared (FTIR) Spectral studies and Scanning Electron Microscope (SEM), Energy Dispersive Analysis of X-ray (EDAX). The photocatalytic activity of TCB for the decolorization of the three dyes is much higher than that of bare titanium dioxide, which can be attributed to the synergistic effect of TiO2 and chitosan. The chitosan adsorbs dye molecule which continuously supplies, dye molecule for degradation by TiO2 thereby preventing the electron-hole recombination. The photocatalytic experiment was carried out by varying different parameters such as irradiation time, dosage, pH, substrate concentration and co-ions. The kinetics of decolorization of dyes are explained on the basis of Langmuir-Hinshelwood mechanism. The mineralization of dyes has also been confirmed by COD measurements. PMID:25038261

  7. Recovery of small dye molecules from aqueous solutions using charged ultrafiltration membranes.

    PubMed

    Chen, Xiuwen; Zhao, Yiru; Moutinho, Jennifer; Shao, Jiahui; Zydney, Andrew L; He, Yiliang

    2015-03-01

    Recovery of reactive dyes from effluent streams is a growing environmental challenge. In this study, various charged regenerated cellulose (RC) ultrafiltration (UF) membranes were prepared and tested for removal of three model reactive dyes (reactive red ED-2B, reactive brilliant yellow K-6G, and reactive brilliant blue KN-R). Data were obtained with charged UF membranes having different spacer arm lengths between the base cellulose and the charge functionality. The effects of charge density of the dye molecules, ionic strength of the feed solution, spacer arm length of charged membranes and filtrate flux were studied. Results indicated that dye retention was greatest with the most negatively charged dye molecule. Higher rejection was also observed in low ionic strength solutions. Results were consistent with model calculations based on the partitioning of a charged sphere into a charged cylindrical pore. The membranes with longer spacer arm length had higher rejection coefficients, consistent with the greater negative charge on these membranes. This study confirms that charged UF membranes can effectively recover small reactive dye molecules at low pressures (below 100 kPa) under appropriate solution conditions due to the strong electrostatic repulsion from the membrane pores. PMID:25463218

  8. The Enzymatic Decolorization of Textile Dyes by the Immobilized Polyphenol Oxidase from Quince Leaves

    PubMed Central

    Arabaci, Gulnur; Usluoglu, Ayse

    2014-01-01

    Water pollution due to release of industrial wastewater has already become a serious problem in almost every industry using dyes to color its products. In this work, polyphenol oxidase enzyme from quince (Cydonia Oblonga) leaves immobilized on calcium alginate beads was used for the successful and effective decolorization of textile industrial effluent. Polyphenol oxidase (PPO) enzyme was extracted from quince (Cydonia Oblonga) leaves and immobilized on calcium alginate beads. The kinetic properties of free and immobilized PPO were determined. Quince leaf PPO enzyme stability was increased after immobilization. The immobilized and free enzymes were employed for the decolorization of textile dyes. The dye solutions were prepared in the concentration of 100?mg/L in distilled water and incubated with free and immobilized quince (Cydonia Oblonga) leaf PPO for one hour. The percent decolorization was calculated by taking untreated dye solution. Immobilized PPO was significantly more effective in decolorizing the dyes as compared to free enzyme. Our results showed that the immobilized quince leaf PPO enzyme could be efficiently used for the removal of synthetic dyes from industrial effluents. PMID:24587743

  9. Potential of combined fungal and bacterial treatment for color removal in textile wastewater.

    PubMed

    Novotný, Cen?k; Svobodová, Kate?ina; Benada, Old?ich; Kofro?ová, Olga; Heissenberger, Andreas; Fuchs, Werner

    2011-01-01

    Low efficiency of dye removal by mixed bacterial communities and high rates of dye decolorization by white-rot fungi suggest a combination of both processes to be an option of treatment of textile wastewaters containing dyes and high concentrations of organics. Bacteria were able to remove mono-azo dye but not other chemically different dyes whereas decolorization rates using Irpex lacteus mostly exceeded 90% within less than one week irrespective of dye structure. Decolorization rates for industrial textile wastewaters containing 2-3 different dyes by fungal trickling filters (FTF) attained 91%, 86%, 35% within 5-12 d. Sequential two-step application of FTF and bacterial reactors resulted in efficient decolorization in 1st step (various single dyes, 94-99% within 5 d; wastewater I, 90% within 7 d) and TOC reduction of 95-97% in the two steps. Large potential of combined use of white-rot fungi and traditional bacterial treatment systems for bioremediation of textile wastewaters was demonstrated. PMID:20888761

  10. Kinetics and thermodynamics of textile dye adsorption from aqueous solutions using babassu coconut mesocarp.

    PubMed

    Vieira, Adriana P; Santana, Sirlane A A; Bezerra, Cícero W B; Silva, Hildo A S; Chaves, José A P; de Melo, Júlio C P; da Silva Filho, Edson C; Airoldi, Claudio

    2009-07-30

    Extracted babassu coconut (Orbignya speciosa) mesocarp (BCM) was applied as a biosorbent for aqueous Blue Remazol R160 (BR 160), Rubi S2G (R S2G), Red Remazol 5R (RR 5), Violet Remazol 5R (VR 5) and Indanthrene Olive Green (IOG) dye solutions. The natural sorbent was processed batchwise while varying several system parameters such as stirring time, pH and temperature. The interactions were assayed with respect to both pseudo-first-order and second-order reaction kinetics, with the latter the more suitable kinetic model. The maximum adsorption was obtained at pH 1.0 for all dyes due to available anionic groups attached to the structures, which can be justified by pH(pzc) 6.7 for the biosorbent BCM. The ability of babassu coconut mesocarp to adsorb dyes gave the order R S2G>VR 5>BR 160>IOG>RR 5, which data were best fit to Freundlich model, but did not well-adjusted for all dyes. The dye/biopolymer interactions at the solid/liquid interface are all spontaneous as given by free Gibbs energy, with exothermic enthalpic values of -26.1, -15.8, -17.8, -15.8 and -23.7 kJ mol(-1) for BR 160, R S2G, RR 5, IOG and VR 5, respectively. In spite of the negative entropic values contribution, the set of thermodynamic data is favorable for all dyes removal. However, the results pointed to the effectiveness of the mesocarp of babassu coconut as a biosorbent for removing textile dyes from aqueous solutions. PMID:19150173

  11. Effect of solution temperature, pH and ionic strength on dye adsorption onto Magellanic peat.

    PubMed

    Sepulveda, Luisa Antonia; Santana, Cesar Costapinto

    2013-01-01

    The aim of this research was to study the effect of the solution temperature, pH and ionic strength on the adsorption of the Basic Blue 3 (BB3) and Acid Black 1 (AB1) dyes in Magellanic peat. The peat used was physically characterized as fibrous, of low decomposition level, without the presence of crystalline material and with a highly porous morphology. The functional groups with major concentration in the surface adsorbent were the carboxylics and phenolics, with values of 0.91 and 0.47 mmol/g, respectively. The results of the batch assays showed that the adsorption of the AB1 dye was strongly dependent of electrical charge density on the surface, contrary to what occurred to the BB3 dye, because the interactions between the dyes and carboxylic groups of the peat could be either electrostatic or non-electrostatic. The Langmuir, Freundlich and Sips isotherm models were fitted to the experimental data; among them, the Sips model presented the best adjustment quality. The maximum adsorption capacities for BB3 and AB1 dyes were 33.1 and 33.7 mg/g, respectively. The adsorption of BB3 dye onto Magellan peat has an exothermic behaviour, obtaining an adsorption enthalpy of -3.44 kJ/mol. Contrarily the adsorption of AB1 has an adsorption enthalpy of 56.76 kJ/mol. PMID:23837348

  12. Azo Dye Biodecolorization Enhanced by Echinodontium taxodii Cultured with Lignin

    PubMed Central

    Meng, Jing; Yu, Hongbo; Zhang, Xiaoyu

    2014-01-01

    Lignocellulose facilitates the fungal oxidization of recalcitrant organic pollutants through the extracellular ligninolytic enzymes induced by lignin in wood or other plant tissues. However, available information on this phenomenon is insufficient. Free radical chain reactions during lignin metabolism are important in xenobiotic removal. Thus, the effect of lignin on azo dye decolorization in vivo by Echinodontium taxodii was evaluated. In the presence of lignin, optimum decolorization percentages for Remazol Brilliant Violet 5R, Direct Red 5B, Direct Black 38, and Direct Black 22 were 91.75% (control, 65.96%), 76.89% (control, 43.78%), 43.44% (control, 17.02%), and 44.75% (control, 12.16%), respectively, in the submerged cultures. Laccase was the most important enzyme during biodecolorization. Aside from the stimulating of laccase activity, lignin might be degraded by E. taxodii, and then these degraded low-molecular-weight metabolites could act as redox mediators promoting decolorization of azo dyes. The relationship between laccase and lignin degradation was investigated through decolorization tests in vitro with purified enzyme and dozens of aromatics, which can be derivatives of lignin and can function as laccase mediators or inducers. Dyes were decolorized at triple or even higher rates in certain laccase–aromatic systems at chemical concentrations as low as 10 µM. PMID:25285777

  13. Synthetic dye decolorization by three sources of fungal laccase

    PubMed Central

    2012-01-01

    Decolorization of six synthetic dyes using three sources of fungal laccase with the origin of Aspergillus oryzae, Trametes versicolor, and Paraconiothyrium variabile was investigated. Among them, the enzyme from P. variabile was the most efficient which decolorized bromophenol blue (100%), commassie brilliant blue (91%), panseu-S (56%), Rimazol brilliant blue R (RBBR; 47%), Congo red (18.5%), and methylene blue (21.3%) after 3 h incubation in presence of hydroxybenzotriazole (HBT; 5 mM) as the laccase mediator. It was also observed that decolorization efficiency of all dyes was enhanced by increasing of HBT concentration from 0.1 mM to 5 mM. Laccase from A. oryzae was able to remove 53% of methylene blue and 26% of RBBR after 30 min incubation in absence of HBT, but the enzyme could not efficiently decolorize other dyes even in presence of 5 mM of HBT. In the case of laccase from T. versicolor, only RBBR was decolorized (93%) in absence of HBT after 3 h incubation. PMID:23369690

  14. Mac Basic Recording Mac Basic Recording

    E-print Network

    Benos, Panayiotis "Takis"

    Mac Basic Recording Mac Basic Recording The Panopto (My Pitt Video) Mac Recorder allows a lot/recording. Logging In Creators are able to log in to the Mac Recorder with their credentials and record video, audio and Password" the next time the Mac Recorder is launched it will automatically login. 4. Click Create New

  15. Basicity, Catalytic and Adsorptive Properties of Hydrotalcites

    NASA Astrophysics Data System (ADS)

    Figueras, Francois

    Solid bases have numerous potential applications, not only as catalyst for the manufacture of fine chemicals, in refining and petrochemistry, but also for adsorption and anion exchange. The present processes use liquid bases, typically alcoholic potash, and require neutralisation of the reaction medium at the end of the reaction, with production of salts. The substitution of these liquid bases by solids would provide cleaner and safer processes, due to the reduction of salts, and facilitate separation of the products and recycling of the catalyst. This chapter reviews the recent ideas on the modification of the basic properties of hydrotalcites by anion exchange and on the catalytic properties of solid bases as catalysts. Many examples of successful applications are given, with emphasis to industrial processes recently presented such as isomerisation of olefins. The basic properties of hydrotalcites can also be used to carry the exchange of toxic anions, humic acids or dyes, and have driven recent developments proposing HDT as drug carriers.

  16. The copper-pumped dye laser system at Lawrence Livermore National Laboratory

    SciTech Connect

    Hackel, R.P.; Warner, B.E.

    1993-01-12

    The Atomic Vapor Isotope Separation (AVLIS) Program has developed a high-average-power, pulsed, tunable, visible laser system. Testing of this hardware is in progress at industrial scales. The copper-dye Laser system is prototypical of a basic module of a uranium-AVLIS plant The laser demonstration facility (LDF) system consists of copper vapor lasers arranged in oscillator-amplifier chains providing optical pump power to dye-laser master-oscillator-power-amplifier chains. This system is capable of thousands of watts (average) tunable between 550 and 650 mm. The copper laser system consists of 12 chains operating continuously. The copper lasers operate at nominally 4.4 kHz, with 50 ns pulse widths and produce 20 W at near the diffraction limit from oscillators and >250 W from each amplifier. Chains consist of an oscillator and three amplifiers and produce >750 W average, with availabilities >95% (i.e., >8300 h/y). The total copper laser system power averages {approximately}9000 W and has operated at over 10,000 W for extended intervals. The 12 copper laser beams are multiplexed and delivered to the dye laser system where they pump multiple dye laser chains. Each dye chain consists of a master oscillator and three or four power amplifiers. The master oscillator operates at nominally 100 mW with a 50 MHz single mode bandwidth. Sustained dye chain powers are up to 1400 W with dye conversion efficiency >50%, ASE content <5%, and wavefront quality correctable to <{lambda}/10 RMS, using deformable mirrors. The dye laser system is capable of repetition rates which are multiples of 4.4 kHz, up to 26 kHz.

  17. The copper-pumped dye laser system at Lawrence Livermore National Laboratory

    SciTech Connect

    Hackel, R.P.; Warner, B.E.

    1993-01-12

    The Atomic Vapor Isotope Separation (AVLIS) Program has developed a high-average-power, pulsed, tunable, visible laser system. Testing of this hardware is in progress at industrial scales. The copper-dye Laser system is prototypical of a basic module of a uranium-AVLIS plant The laser demonstration facility (LDF) system consists of copper vapor lasers arranged in oscillator-amplifier chains providing optical pump power to dye-laser master-oscillator-power-amplifier chains. This system is capable of thousands of watts (average) tunable between 550 and 650 mm. The copper laser system consists of 12 chains operating continuously. The copper lasers operate at nominally 4.4 kHz, with 50 ns pulse widths and produce 20 W at near the diffraction limit from oscillators and >250 W from each amplifier. Chains consist of an oscillator and three amplifiers and produce >750 W average, with availabilities >95% (i.e., >8300 h/y). The total copper laser system power averages [approximately]9000 W and has operated at over 10,000 W for extended intervals. The 12 copper laser beams are multiplexed and delivered to the dye laser system where they pump multiple dye laser chains. Each dye chain consists of a master oscillator and three or four power amplifiers. The master oscillator operates at nominally 100 mW with a 50 MHz single mode bandwidth. Sustained dye chain powers are up to 1400 W with dye conversion efficiency >50%, ASE content <5%, and wavefront quality correctable to <[lambda]/10 RMS, using deformable mirrors. The dye laser system is capable of repetition rates which are multiples of 4.4 kHz, up to 26 kHz.

  18. Highly efficient passive Q switches for a neodymium laser based on thiopyrylotricarbocyanine dyes

    SciTech Connect

    Bezrodnyi, V I [Institute of Physics, National Academy of Sciences of Ukraine, Kiev (Ukraine); Derevyanko, Nadezhda A; Ishchenko, Aleksandr A; Kropachev, A V [Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kiev (Ukraine)

    2009-01-31

    The spectral, photochemical and nonlinear optical properties of a group of thiopyrylotricarbocyanine dyes in a polyurethane matrix are studied and compared with well-known materials for passive Q-switching such as nickel BDN and BDNII complexes. Passive laser Q switches based on these dyes feature the high modulation efficiency (up to 76%) in neodymium lasers and high photochemical stability. It is shown that the service life of Q switches can be considerably increased by removing oxygen from a polymer matrix. (elements of laser setups)

  19. Nano-fluidic dye laser

    E-print Network

    Gersborg-Hansen, M; Gersborg-Hansen, Morten; Kristensen, Anders

    2006-01-01

    This letter describes the design and operation of a single mode polymer-based nano-fluidic dye laser. The device relies on light-confinement in a nano-structured polymer film where an array of nano-fluidic channels is filled by capillary action with a liquid dye solution which has a refractive index lower than that of the polymer. In combination with a third order distributed feed-back (DFB) grating, formed by the array of nano-fluidic channels, this yields a low threshold for lasing. The laser is straight-forward to integrate on Lab-on-a-Chip micro-systems, e.g. for novel sensor concepts, where coherent, tunable light in the visible range is desired.

  20. Dye-Sensitized Solar Cells

    NSDL National Science Digital Library

    This lesson from The Lawrence Hall of Science was taught in spring 2012 and teaches students about nano and environmental technologies. Students will create "dye-sensitized solar cells (DSSC) using nano-crystalline titanium dioxide." This page includes links to the Source Articles for the Hands-on Module and Project Staff Write-ups of the Hands-on Module. Additionally, five documents provide lecture and lab materials for instructor use.

  1. Mineralization and Detoxification of the Carcinogenic Azo Dye Congo Red and Real Textile Effluent by a Polyurethane Foam Immobilized Microbial Consortium in an Upflow Column Bioreactor.

    PubMed

    Lade, Harshad; Govindwar, Sanjay; Paul, Diby

    2015-01-01

    A microbial consortium that is able to grow in wheat bran (WB) medium and decolorize the carcinogenic azo dye Congo red (CR) was developed. The microbial consortium was immobilized on polyurethane foam (PUF). Batch studies with the PUF-immobilized microbial consortium showed complete removal of CR dye (100 mg·L-1) within 12 h at pH 7.5 and temperature 30 ± 0.2 °C under microaerophilic conditions. Additionally, 92% American Dye Manufactureing Institute (ADMI) removal for real textile effluent (RTE, 50%) was also observed within 20 h under the same conditions. An upflow column reactor containing PUF-immobilized microbial consortium achieved 99% CR dye (100 mg·L-1) and 92% ADMI removal of RTE (50%) at 35 and 20 mL·h-l flow rates, respectively. Consequent reduction in TOC (83 and 79%), COD (85 and 83%) and BOD (79 and 78%) of CR dye and RTE were also observed, which suggested mineralization. The decolorization process was traced to be enzymatic as treated samples showed significant induction of oxidoreductive enzymes. The proposed biodegradation pathway of the dye revealed the formation of lower molecular weight compounds. Toxicity studies with a plant bioassay and acute tests indicated that the PUF-immobilized microbial consortium favors detoxification of the dye and textile effluents. PMID:26086710

  2. Mineralization and Detoxification of the Carcinogenic Azo Dye Congo Red and Real Textile Effluent by a Polyurethane Foam Immobilized Microbial Consortium in an Upflow Column Bioreactor

    PubMed Central

    Lade, Harshad; Govindwar, Sanjay; Paul, Diby

    2015-01-01

    A microbial consortium that is able to grow in wheat bran (WB) medium and decolorize the carcinogenic azo dye Congo red (CR) was developed. The microbial consortium was immobilized on polyurethane foam (PUF). Batch studies with the PUF-immobilized microbial consortium showed complete removal of CR dye (100 mg·L?1) within 12 h at pH 7.5 and temperature 30 ± 0.2 °C under microaerophilic conditions. Additionally, 92% American Dye Manufactureing Institute (ADMI) removal for real textile effluent (RTE, 50%) was also observed within 20 h under the same conditions. An upflow column reactor containing PUF-immobilized microbial consortium achieved 99% CR dye (100 mg·L?1) and 92% ADMI removal of RTE (50%) at 35 and 20 mL·h?l flow rates, respectively. Consequent reduction in TOC (83 and 79%), COD (85 and 83%) and BOD (79 and 78%) of CR dye and RTE were also observed, which suggested mineralization. The decolorization process was traced to be enzymatic as treated samples showed significant induction of oxidoreductive enzymes. The proposed biodegradation pathway of the dye revealed the formation of lower molecular weight compounds. Toxicity studies with a plant bioassay and acute tests indicated that the PUF-immobilized microbial consortium favors detoxification of the dye and textile effluents. PMID:26086710

  3. Dye laser traveling wave amplifier

    NASA Technical Reports Server (NTRS)

    Davidson, F.; Hohman, J.

    1985-01-01

    Injection locking was applied to a cavity-dumped coaxial flashlamp pumped dye laser in an effort to obtain nanosecond duration pulses which have both high energy and narrow-linewidth. In the absence of an injected laser pulse, the cavity-dumped dye laser was capable of generating high energy (approx. 60mJ) nanosecond duration output pulses. These pulses, however, had a fixed center wavelength and were extremely broadband (approx. 6nm FWHM). Experimental investigations were performed to determine if the spectral properties of these outputs could be improved through the use of injection-locking techniques. A parametric study to determine the specific conditions under which the laser could be injection-locked was also carried out. Significant linewidth reduction to 0.0015nm) of the outputs was obtained through injection-locking but only at wavelengths near the peak lasing wavelength of the dye. It was found, however; that by inserting weakly dispersive tuning elements in the laser cavity, these narrow-linewidth outputs could be obtained over a wide (24nm) tuning range. Since the tuning elements had low insertion losses, the tunability of the output was obtained without sacrificing output pulse energy.

  4. Predicting dye biodegradation from redox potentials.

    PubMed

    Zille, Andrea; Ramalho, Patricia; Tzanov, Tzanko; Millward, Roy; Aires, Veronika; Cardoso, Maria Helena; Ramalho, Maria Teresa; Gübitz, Georg M; Cavaco-Paulo, Artur

    2004-01-01

    Two biological approaches for decolorization of azo sulfonated dyes have been compared: reductive decolorization with the ascomycete yeast Issatchenkia occidentalis and enzymatic oxidative decolorization with Trametes villosa laccase alone or in the presence of the mediator 1-hydroxybenzotriazole. The redox potential difference between the biological cofactor involved in the reductive activity of growing cells and the azo dye is a reliable indication for the decolorization ability of the biocatalyst. A linear relationship exists between the redox potential of the azo dyes and the decolorization efficiency of enzyme, enzyme/mediator, and yeast. The less positive the anodic peak of the dye, the more easily it is degraded oxidatively with laccase. The more positive the cathodic peak of the dye, the more rapidly the dye molecule is reduced with yeast. PMID:15458349

  5. Electronic structure measurements of metal-organic solar cell dyes using x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Johnson, Phillip S.

    The focus of this thesis is twofold: to report the results of X-ray absorption studies of metal-organic dye molecules for dye-sensitized solar cells and to provide a basic training manual on X-ray absorption spectroscopy techniques and data analysis. The purpose of our research on solar cell dyes is to work toward an understanding of the factors influencing the electronic structure of the dye: the choice of the metal, its oxidation state, ligands, and cage structure. First we study the effect of replacing Ru in several common dye structures by Fe. First-principles calculations and X-ray absorption spectroscopy at the C 1s and N 1s edges are combined to investigate transition metal dyes in octahedral and square planar N cages. Octahedral molecules are found to have a downward shift in the N 1s-to-pi* transition energy and an upward shift in C 1s-to-pi* transition energy when Ru is replaced by Fe, explained by an extra transfer of negative charge from Fe to the N ligands compared to Ru. For the square planar molecules, the behavior is more complex because of the influence of axial ligands and oxidation state. Next the crystal field parameters for a series of phthalocyanine and porphyrins dyes are systematically determined using density functional calculations and atomic multiplet calculations with polarization-dependent X-ray absorption spectra. The polarization dependence of the spectra provides information on orbital symmetries which ensures the determination of the crystal field parameters is unique. A uniform downward scaling of the calculated crystal field parameters by 5-30% is found to be necessary to best fit the spectra. This work is a part of the ongoing effort to design and test new solar cell dyes. Replacing the rare metal Ru with abundant metals like Fe would be a significant advance for dye-sensitized solar cells. Understanding the effects of changing the metal centers in these dyes in terms of optical absorption, charge transfer, and electronic structure enables the systematic design of new dyes using less expensive materials.

  6. Inner-Sphere Electron-Transfer Single Iodide Mechanism for Dye Regeneration in Dye-Sensitized Solar Cells

    E-print Network

    Goddard III, William A.

    the regeneration of the oxidized dye in dye-sensitized solar cells, the redox couple of I- /I3 - reduces the photo dye- sensitized solar cell (DSSC) in 1991,1 DSSCs have been considered as promising alternativesInner-Sphere Electron-Transfer Single Iodide Mechanism for Dye Regeneration in Dye-Sensitized Solar

  7. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye.

    PubMed

    Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal

    2015-09-01

    The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450°C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8g/100mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it. PMID:25875031

  8. Anthocyanin dyes in titanium dioxide nanoparticle-dye sensitized solar cells

    Microsoft Academic Search

    Hailey Cramer; Daniel Choi; Mark Griep; Shashi P. Karna

    2011-01-01

    Dye-sensitized solar cells are a class of thin-film solar cells, which can be made using low-cost materials and natural dyes. They can potentially achieve the same efficiency compared to bulky silicon photovoltaic cells, while providing many other advantages. In this research, anthocyanin dyes taken from different fruits were used in titanium dioxide dye-sensitized solar cells. The unique ability of anthocyanin

  9. High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells

    Microsoft Academic Search

    Brian E. Hardin; Jun-Ho Yum; Eric T. Hoke; Young Chul Jun; Peter Pe?chy; Toma?s Torres; Mark L. Brongersma; Michael Gra?tzel; Michael D. McGehee

    2010-01-01

    The energy relay dye, 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM), was used with a near- infrared sensitizing dye, TT1, to increase the overall power conversion efficiency of a dye-sensitized solar cell (DSC) from 3.5% to 4.5%. The unattached DCM dyes exhibit an average excitation transfer efficiency (ETE) of 96% inside TT1-covered, mesostructured TiO2 films. Further performance increases were limited by the solubility of DCM

  10. Low-cost dyes based on methylthiophene for high-performance dye-sensitized solar cells

    Microsoft Academic Search

    Zongfang Tian; Meihua Huang; Bin Zhao; Hui Huang; Xiaoming Feng; Yujuan Nie; Ping Shen; Songting Tan

    2010-01-01

    Three donor–acceptor, ?-conjugated (D–?–A) dyes containing methylthiophene or vinylene methylthiophene as ?-conjugated spacer were utilised in dye-sensitized nanocrystalline TiO2 solar cells. The relationship between the structure of the dyes and their photophysical, electrochemical and photovoltaic properties was investigated systematically. The vinyl unit, introduced as the ?-conjugated spacer, leads to unfavorable back-electron transfer and decrease of the open-circuit voltage. A dye-sensitized

  11. Tetrahydroquinoline dyes with different spacers for organic dye-sensitized solar cells

    Microsoft Academic Search

    Ruikui Chen; Xichuan Yang; Haining Tian; Licheng Sun

    2007-01-01

    Novel organic dyes (C1-1, C1-5 and C2-1) with a tetrahydroquinoline moiety as the electron donor, different thiophene-containing electron spacers and a cyanoacrylic acid moiety as the electron acceptor have been designed and synthesized for the application in dye-sensitized solar cells (DSSCs). An interesting relationship between the dye structures, properties, and the performance of DSSCs based on these tetrahydroquinoline dyes is

  12. Heterogeneous Catalytic Ozonation of Aqueous Reactive Dye

    Microsoft Academic Search

    Kintoo Yong; Jiangning Wu; Susan Andrews

    2005-01-01

    The aqueous solution of a model reactive dye, C.I. Reactive Blue 5, was ozonated in the presence of a heterogeneous catalyst, CuS. It was found that CuS was very effective for catalyzing the decolorization so that both treatment time and ozone consumption were significantly reduced. For 1 g\\/L of the reactive dye, the stoichiometric ratios of ozone to dye in

  13. Electrochromism of an aggregating thiapyrylium dye

    Microsoft Academic Search

    A. P. Marchetti; M. Scozzafava; R. H. Young

    1988-01-01

    Electrochromism (electric-field-modulated absorption) spectra are reported for a thiapyrylium dye in a polycarbonate host. When the dye is homogeneously dissolved in the polymer, excitation to the first excited singlet state changes its dipole moment by approximately 6 D (2×10?29 C m). When the dye is aggregated with the host polymer, the structure of the aggregate is believed to consist of

  14. Preliminary investigation of the effects of dye concentration on the output of a multiwavelength dye laser

    NASA Technical Reports Server (NTRS)

    Clark, I. O.; Burney, L. G.

    1974-01-01

    The effects of dye concentration on the output wavelength and energy of a multiwavelength dye laser were investigated. The dyes tested were Coumarin 2 in methyl alcohol and Rhodomine 6G, Acridine Red, and 7-diethylamino-4-methyl Coumarin (7DA 4MC) in ethyl alcohol.

  15. Organic dyes incorporating low-band-gap chromophores for dye-sensitized solar cells.

    PubMed

    Velusamy, Marappan; Justin Thomas, K R; Lin, Jiann T; Hsu, Ying-Chan; Ho, Kuo-Chuan

    2005-05-12

    Versatile dyes based on benzothiadiazole and benzoselenadiazole chromophores have been developed that perform efficiently in dye-sensitized solar cells. Power conversion efficiency of 3.77% is realized for a dye in which charge recombination is probably hindered by the nonplanar charge-separated structure. PMID:15876014

  16. [Toxicogenetic effects of azo- and arylmethane dyes].

    PubMed

    Zimina, T A; Pavlenko, V V

    1990-12-01

    The haploid strain 15B-II4 of Saccharomyces cerevisiae was used to study in an acute experiment the toxic and mutagenic effects of arylmethane dyes Victory Blue (C.I. 44040), Methyl Violet (C.I. 42535), Brilliant Green (C.I. 42040) and cancerogenic aminoazo dye Chrysoidine (C.I. 11270). High biological activity of all the dyes tested was found, based on such toxic effects as cell killing and growth inhibition. Also, it was shown that the dyes could increase the frequency of appearance of nuclear point mutations and cytoplasmic mutations of respiratory deficiency. PMID:2086349

  17. Industrial hygiene concerns of laser dyes

    SciTech Connect

    Miller, G.

    1990-11-01

    A variety of materials are used as dyes in laser systems, but often very little is known about each dye's toxicity or mutagenicity/carcinogenicity. As a precaution, we have devised guidelines for handling these materials. We studied the literature to determine the hazards associated with various common laser dye solutions, taking into account the possible toxicity and mutagenicity/carcinogenicity of the solvent used. Working from this information, we have proposed three control classes -- limited, moderate, and strict -- for work performed with dyes in each class. This paper describes the considerations that went into preparing our guidelines and summarizes the precautions themselves.

  18. A near-infrared phthalocyanine dye-labeled agent for integrin ?v?6-targeted theranostics of pancreatic cancer.

    PubMed

    Gao, Duo; Gao, Liquan; Zhang, Chenran; Liu, Hao; Jia, Bing; Zhu, Zhaohui; Wang, Fan; Liu, Zhaofei

    2015-06-01

    Integrin ?v?6 is widely upregulated in variant malignant cancers but is undetectable in normal organs, making it a promising target for cancer diagnostic imaging and therapy. Using streptavidin-biotin chemistry, we synthesized an integrin ?v?6-targeted near-infrared phthalocyanine dye-labeled agent, termed Dye-SA-B-HK, and investigated whether it could be used for cancer imaging, optical imaging-guided surgery, and phototherapy in pancreatic cancer mouse models. Dye-SA-B-HK specifically bound to integrin ?v?6 in vitro and in vivo with high receptor binding affinity. Using small-animal optical imaging, we detected subcutaneous and orthotopic BxPC-3 human pancreatic cancer xenografts in vivo. Upon optical image-guidance, the orthotopically growing pancreatic cancer lesions could be successfully removed by surgery. Using light irradiation, Dye-SA-B-HK manifested remarkable antitumor effects both in vitro and in vivo. (18)F-FDG positron emission tomography (PET) imaging and ex vivo fluorescence staining validated the observed decrease in proliferation of treated tumors by Dye-DA-B-HK phototherapy. Tissue microarray results revealed overexpression of integrin ?v?6 in over 95% cases of human pancreatic cancer, indicating that theranostic application of Dye-DA-B-HK has clear translational potential. Overall, the results of this study demonstrated that integrin ?v?6-specific Dye-SA-B-HK is a promising theranostic agent for the management of pancreatic cancer. PMID:25890722

  19. Ink remover poisoning

    MedlinePLUS

    Ink remover is a chemical used to get out ink stains. Ink remover poisoning occurs when someone swallows this substance. ... Ink removers Liquid bleaches Note: This list may not include all sources of ink removers.

  20. 21 CFR 864.1850 - Dye and chemical solution stains.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...Biological Stains § 864.1850 Dye and chemical solution stains. (a) Identification. Dye and chemical solution stains for...purposes are mixtures of synthetic or natural dyes or nondye chemicals in...

  1. Basic Chemistry Review

    NSDL National Science Digital Library

    Thomas Meixner

    This assignment reviews basic of chemistry for students who should have had 2 introductory semesters of basic chemistry prior to enrolling in the Fundamental of Water Quality course for which the assignment is used. Assignment reviews basic equation balancing and questions about valence and concentration conversion that students will confront regularly in any geochemistry course.

  2. Press Release Basic Design

    E-print Network

    Stell, John

    Press Release Basic Design The pioneering art education work of Leeds College of Art is under of a wider research project called `Art School Educated' that looks at the vital role the Basic Design course the mid 1950's Leeds College of Art led the way in the Basic Design movement, which was a new and radical

  3. Basic Construction Course Syllabus

    NSDL National Science Digital Library

    Dickover, Jon

    This course syllabus provides an outline of a basic construction course. Students in this course learned "basic residential construction techniques with an emphasis on framing." The syllabus includes a basic course description and information on some class projects. This document may be downloaded in PDF file format.

  4. Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor.

    PubMed

    Wijetunga, Somasiri; Li, Xiu-Fen; Jian, Chen

    2010-05-15

    Textile wastewater (TW) is one of the most hazardous wastewater for the environment when discharged without proper treatment. Biological treatment technologies have shown encouraging results over the treatment of recalcitrant compounds containing wastewaters. Upflow anaerobic sludge blanket reactor (UASB) was evaluated in terms of colour and the reduction of chemical oxygen demand (COD) with different organic loads using TW containing dyes belonging to different chemical groups. The study was performed using six different dye concentrations (10mg/L, 25mg/L, 50mg/L, 100mg/L, 150 mg/L, 300 mg/L) with three COD levels ( approximately 1000 mg/L, approximately 2000 mg/L, approximately 3000 mg/L). Decolourization, COD removal and reactor stability were monitored. Over 85% of colour removal was observed with all dye concentrations with three organic loads. Acid Red 131 and Acid Yellow 79 were decolourized through biodegradation while Acid Blue 204 was decolourized due to adsorption onto anaerobic granules. COD removal was high in all dye concentrations, regardless of co-substrate levels. The reactor did not show any instability during the study. The activity of granules was not affected by the dyes. Methanothrix like bacteria were the dominant group in granules before introducing TW, however, they were reduced and cocci-shape microorganism increased after the treatment of textile wastewater. PMID:20074855

  5. Basic BASIC; An Introduction to Computer Programming in BASIC Language.

    ERIC Educational Resources Information Center

    Coan, James S.

    With the increasing availability of computer access through remote terminals and time sharing, more and more schools and colleges are able to introduce programing to substantial numbers of students. This book is an attempt to incorporate computer programming, using BASIC language, and the teaching of mathematics. The general approach of the book…

  6. Estimation of Fluorescent Dye Amount in Tracer Dye Test

    NASA Astrophysics Data System (ADS)

    Pekkan, Emrah; Balkan, Erman; Balkan, Emir

    2015-04-01

    Karstic groundwater is more influenced by human than the groundwater that disperse in pores. On the other hand karstic groundwater resources, in addition to providing agricultural needs, livestock breeding, drinking and domestic water in most of the months of the year, they also supply drinking water to the wild life at high altitudes. Therefore sustainability and hydrogeological investigation of karstic resources is critical. Tracing techniques are widely used in hydrologic and hydrogeologic studies to determine water storage, flow rate, direction and protection area of groundwater resources. Karanfil Mountain (2800 m), located in Adana, Turkey, is one of the karstic recharge areas of the natural springs spread around its periphery. During explorations of the caves of Karanfil mountain, a 600 m deep cave was found by the Turkish and Polish cavers. At the bottom of the cave there is an underground river with a flow rate of approximately 0.5 m3/s during August 2014. The main spring is located 8 km far from the cave's entrance and its mean flow rate changes between 3.4 m3/s and 0.21 m3/s in March and September respectively according to a flowrate observation station of Directorate of Water Works of Turkey. As such frequent storms, snowmelt and normal seasonal variations in rainfall have a significant and rapid effect on the volume of this main spring resource. The objective of our research is to determine and estimate dye amount before its application on the field inspired from the previously literature on the subject. This estimation is intended to provide a preliminary application of a tracer test of a karstic system. In this study dye injection, inlet point will be an underground river located inside the cave and the observation station will be the spring that is approximately 8 km far from the cave entrance. On the other hand there is 600 meter elevation difference between cave entrance and outlet spring. In this test Rodamin-WT will be used as tracer and the appropriate amount of tracers was found according to the flowrate of the spring. The amount of dye is very important for the consistency of the results and the applicability of the tests. For example if the amount of tracer that is estimated is found to be inadequate, any field readings and data could be lost. Most importantly tracer dye is costly and hard to prepare, transport and will follow a torturous path through the cave to the underground river.

  7. Amino-functionalized silica magnetite nanoparticles for the simultaneous removal of pollutants from aqueous solution

    NASA Astrophysics Data System (ADS)

    Hozhabr Araghi, Samira; Entezari, Mohammad H.

    2015-04-01

    Amino-functionalized silica magnetite nanoparticles (A-S-MNPs) have been prepared through coating of sono-synthesized magnetite nanoparticles (MNPs) in a basic medium by SiO2. Then, the resultant silica magnetite nanoparticles (S-MNPs) were modified with 3-aminpropyltriethoxysilane (APTES). The modification was carried out by the organic solvent method in dry hexane to graft amine groups on the surface. The adsorption behavior of this novel magnetic sorbent was studied for the simultaneous removal of two organic pollutants containing the sulfonate group, e.g., Reactive Black 5 (RB5) and sodium dodecylbenzenesulfonate (SDBS) in aqueous solutions. The results show that a pseudo-second-order model fits well the experimental data and the rate constant of adsorption for SDBS is higher than for RB5. The adsorption capacity was obtained by the Langmuir isotherm. The qmax was 83.33 and 62.5 mg/g for RB5 and SDBS at pH 2 and 298 K, respectively. Furthermore, the loaded A-S-MNPs can be recovered easily from aqueous solution by magnetic separation and regenerated by simply washing with 0.1 M NaOH solution. Therefore, the synthesized novel magnetic sorbent can be used as an effective and recyclable adsorbent for the simultaneous removal of dye and surfactant from aqueous solutions.

  8. Removal of unwanted facial hair.

    PubMed

    Shenenberger, Donald W; Utecht, Lynn M

    2002-11-15

    Unwanted facial hair is a common problem that is seldom discussed in the primary care setting. Although men occasionally request removal of unwanted facial hair, women most often seek help with this condition. Physicians generally neglect to address the problem if the patient does not first request help. The condition may be caused by androgen overproduction, increased sensitivity to circulating androgens, or other metabolic and endocrine disorders, and should be properly evaluated. Options for hair removal vary in efficacy, degree of discomfort, and cost. Clinical studies on the efficacy of many therapies are lacking. Short of surgical removal of the hair follicle, the only permanent treatment is electrolysis. However, the practice of electrolysis lacks standardization, and regulation of the procedure varies from state to state. Shaving, epilation, and depilation are the most commonly attempted initial options for facial hair removal. Although these methods are less expensive, they are only temporary. Laser hair removal, although better studied than most methods and more strictly regulated, has yet to be proved permanent in all patients. Eflornithine, a topical treatment, is simple to apply and has minimal side effects. By the time most patients consult a physician, they have tried several methods of hair removal. Family physicians can properly educate patients and recommend treatment for this common condition if they are armed with basic knowledge about the treatment options. PMID:12469966

  9. Dyeing of jute with binary mixtures of jackfruit wood and other natural dyes — Study on colour performance and dye compatibility

    Microsoft Academic Search

    Ashis Kumar Samanta; Priti Agarwal; Siddhartha Datta

    manjistha (MJ), red sandal wood (RSW), mariegold (MG), sappan wood (SW) and babool (BL), have been used to dye bleached jute fabric pre-mordanted with 20% myrobolan followed by 20% aluminium sulphate. Binary combinations of JFW with each of the five natural dye extracts have been evaluated for colour strength (K\\/S value) and its coefficient of variation, brightness index (BI), changes

  10. Theory of pulsed dye lasers including dye-molecule rotational relaxation

    SciTech Connect

    Haas, R.A.; Rotter, M.D. (Department of Applied Science, University of California, Davis-Livermore, L-794, P.O. Box 808, Livermore, California 94550 (US) Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550)

    1991-02-01

    In this paper a phenomenological semiclassical theory of pulsed-laser-pumped dye-laser light amplifiers is presented. The theory accounts for the broadband radiation absorption and emission characteristics of dye molecules in liquid solvents. Dye-molecule fluorescence, vibrational, rotational, and electric polarization relaxation processes are represented by phenomenological relaxation rates. In general, it is found that due to dye-molecule rotational relaxation the laser-pumped dye medium is optically anisotropic. The pump- and dye-laser beams propagate through the dye medium as essentially transverse electromagnetic waves whose amplitude and polarization state changes. The theory is applicable to pulse durations {tau}{approx lt}10--100 ns including the ultrashort pulse regime. The regime {tau}{approx gt}1 ps in which the pump- and dye-laser pulse lengths are long compared to the dye-molecule vibrational and electric polarization relaxation times is considered in detail. Amplification of partially polarized quasimonochromatic light is described by a self-consistent set of equations for the components of the pump- and dye-laser light coherency matrices and the orientation populations of the lowest vibronic levels of the dye molecule's {ital S}{sub 0} and {ital S}{sub 1} electronic states.

  11. High efficiency dye laser with low fluorescence yield pyrromethene dyes: experimental and theoretical studies

    NASA Astrophysics Data System (ADS)

    Jagtap, K. K.; Maity, D. K.; Ray, A. K.; Dasgupta, K.; Ghosh, S. K.

    2011-06-01

    A combined experimental and theoretical study of the photo-physical, laser properties and molecular structures of three relatively recent Pyrromethene (PM) class dyes, PM597, PM580 and PM567, have been carried out. Laser characteristics of these three PM dyes were compared with three other widely used Rhodamine (RH) class dyes, RH6G, RHB and KRS, using a narrow-band dye laser setup, transversely pumped by the second harmonic (532 nm) of a Q-switched Nd-YAG laser. In addition to generating comparative data of these dyes for optimal use in dye lasers, we observed that unlike the RH dyes, the PM dyes show high efficiencies and wide tunability, despite the low fluorescence yield and high rate of non-radiative decay. Particularly, PM597 dye, in spite of a very low quantum yield of fluorescence (?=0.42), high non-radiative decay rate, and a large distortion from planarity in its excited state, when used in a laser cavity it exhibited similar laser efficiency and a beneficially wider tuning curve in comparison to other two PM dyes. Theoretical studies were carried out applying density functional theory and time-dependent density functional theory (DFT/TDDFT) to obtain new information on ground and the first excited state geometrical parameters of the PM dyes. Good correlation between calculated molecular properties and experimental results was observed for the evolution of the longest wavelength absorption maximum.

  12. Use of cellulose-based wastes for adsorption of dyes from aqueous solutions.

    PubMed

    Annadurai, Gurusamy; Juang, Ruey-Shin; Lee, Duu-Jong

    2002-06-10

    Low-cost banana and orange peels were prepared as adsorbents for the adsorption of dyes from aqueous solutions. Dye concentration and pH were varied. The adsorption capacities for both peels decreased in the order methyl orange (MO) > methylene blue (MB) > Rhodamine B (RB) > Congo red (CR) > methyl violet (MV) > amido black 10B (AB). The isotherm data could be well described by the Freundlich and Langmuir equations in the concentration range of 10-120 mg/l. An alkaline pH was favorable for the adsorption of dyes. Based on the adsorption capacity, it was shown that banana peel was more effective than orange peel. Kinetic parameters of adsorption such as the Langergren rate constant and the intraparticle diffusion rate constant were determined. For the present adsorption process intraparticle diffusion of dyes within the particle was identified to be rate limiting. Both peel wastes were shown to be promising materials for adsorption removal of dyes from aqueous solutions. PMID:12031611

  13. Eco-Friendly Dyeing of Cotton with Indigo Dye By Electrochemical Method

    NASA Astrophysics Data System (ADS)

    Prabu, H. Gurumallesh; Sarala, K.; Babu, S. Ananda; Savitha, K. U.

    2011-07-01

    Eco-friendly dyeing of cotton was performed in two step process; (i) enzymatic pre-treatment of grey cotton fabric and (ii) Electrochemical dyeing of the pre-treated cotton fabric with indigo. The enzymatic pre-treatment was done in three methods; (i) amylase treatment only, (ii) amylase and hydrogen peroxide treatment and (iii) single bath method. The dyeing was carried out with the pre-treated cotton fabric. The reduction of indigo dye by electrochemical method was initiated by applying potential. Then the dyeing was carried out different concentrations of dye, glucose and NaOH. Conventional method of dyeing was also carried out and compared with the electrochemical method. Dyeability was measured by computer colour matching (CCM) GretagMacbeth colour eye 2180UV instrument.

  14. On the correlation between dye coverage and photoelectrochemical performance in dye-sensitized solar cells.

    PubMed

    Johansson, Viktor; Ellis-Gibbings, Lilian; Clarke, Trevor; Gorlov, Mikhail; Andersson, Gunther G; Kloo, Lars

    2014-01-14

    Concentration depth profiles of the ruthenium based dyes Z907 and N719 adsorbed onto titania are measured directly and used for determining the adsorption isotherm of the dyes. Dye layers formed by both grow in islands on the titania which do not cover the entire titania surface even at the maximum coverage. Impedance spectroscopy in conjunction with the adsorption isotherms shows that recombination losses mainly appear between the dye and the electrolyte solution. The short circuit current and the efficiency increase linearly with the dye coverage. The open circuit voltage slightly increases with increasing dye coverage which is interpreted as most likely to be a consequence of the higher charge in the particles upon higher dye loading on the TiO2 surface. PMID:24263223

  15. Dyeing behaviour of gamma irradiated cotton fabric using Lawson dye extracted from henna leaves (Lawsonia inermis)

    NASA Astrophysics Data System (ADS)

    Rehman, Fazal-ur; Adeel, Shahid; Qaiser, Summia; Ahmad Bhatti, Ijaz; Shahid, Muhammad; Zuber, Mohammad

    2012-11-01

    Dyeing behavior of gamma irradiated cotton fabric using Lawson dye extracted from henna leaves has been investigated. Cotton and dye powder are irradiated to different absorbed doses of 2, 4, 6, 8 and 10 kGy using Cs-137 gamma irradiator. The dyeing parameters such as dyeing time, electrolyte (salt) concentration and mordant concentrations using copper and iron as mordants are optimized. Dyeing is performed using un-irradiated and irradiated cotton with dye solutions and their color strength values are evaluated in CIE Lab system using Spectraflash -SF650. Methods suggested by International Standard Organization (ISO) have been employed to investigate the colourfastness properties such as colourfastness to light, washing and rubbing of irradiated dyed fabric. It is found that gamma ray treatment of cotton dyed with extracts of henna leaves has significantly improved the color strength as well as enhanced the rating of fastness properties.

  16. Biosorption of Basic Violet 5BN and Basic Green by waste brewery’s yeast from single and multicomponent systems

    Microsoft Academic Search

    Yunhai Wu; Li Jiang; YaJun Wen; JianXin Zhou; Shixun Feng

    Background and aim  The biosorption of Basic Violet 5BN (BV) and Basic Green (BG) by waste brewery’s yeast (WBY) from single and binary systems\\u000a was investigated.\\u000a \\u000a \\u000a \\u000a \\u000a Results and discussion  For the single system, the adsorption of both dyes is pH-dependent and the optimum value is 5.0. At a lower initial concentration,\\u000a the kinetic data agree well with both pseudo-first-order and pseudo-second-order models,

  17. Reduction of azo dyes by desulfovibrio desulfuricans

    Microsoft Academic Search

    E. S. Yoo; J. Libra; U. Wiesmann

    2000-01-01

    Azo dyes are widely used in textile finishing, and have become of concern in wastewater treatment because of their color, bio-recalcitrance, and potential toxicity to animals and humans. Thus, wastewater with azo dyes must be decolorized and furthermore mineralized in appropriate systems combining biological and chemical processes. In this study, the potential for sulfate reducing bacteria (SRB) to decolorize azo

  18. ORGANIC DYES AND PIGMENTS DATA BASE

    EPA Science Inventory

    The objective of this research program was to compile a data base covering all the commercially significant dyes and pigments produced or imported in the United States. The Organic Dyes and Pigments Data Base (ODPDB) contains the following data elements: chemical-related data (co...

  19. Quirks of dye nomenclature. 2. Congo red.

    PubMed

    Cooksey, C J

    2014-07-01

    The history, origin, identity, chemistry and uses of Congo red are described. Originally patented in 1884, Congo red soon found applications in dyeing cotton, as a pH indicator for chemists and as a biological stain. Unlike the majority of the 19th century synthetic dyes, it still is available commercially. PMID:24520883

  20. Fungal decolorization of dye wastewaters: a review

    Microsoft Academic Search

    Yuzhu Fu; T Viraraghavan

    2001-01-01

    In recent years, there has been an intensive research on fungal decolorization of dye wastewater. It is becoming a promising alternative to replace or supplement present treatment processes. This paper examines various fungi, living or dead cells, which are capable of decolorizing dye wastewaters; discusses various mechanisms involved; reports some elution and regeneration methods for fungal biomass; summarizes the present

  1. Response of Hydrilla to selected dyes

    Microsoft Academic Search

    John Barltrop; Barbara B. Martin; Dean F. Martin

    1982-01-01

    The perennial submersed noxious aquatic plant Hydrilla verticillata (Royle) was treated with well water solutions of methylene blue, hematoporphyrin, and Eosin Y, and compared with control systems. Statistically significant reductions in growth were observed for treatments with all three dyes at initial dye concentrations of 10 M. Typically, reductions in growth of 30 percent on a relative basis for the

  2. Plant-mediated synthesis of silver-nanocomposite as novel effective azo dye adsorbent

    NASA Astrophysics Data System (ADS)

    Satapathy, Mantosh Kumar; Banerjee, Priya; Das, Papita

    2015-01-01

    Toxicity of textile effluent is a globally alarming issue nowadays. In order to address this problem, a cost-effective and environment-friendly technique for adsorption of toxic dyes has been introduced in this research. Firstly in this study, green synthesis of silver nanoparticles (AgNPs) having antibacterial efficacy, had been carried out using leaf extracts of Azadirachta indica as reducing as well as capping agent. This research idea was further extended for the development and application of a novel method of preparation of silver-nanocomposite using synthesized microwave-assisted AgNPs with soil as a novel nanocomposite to adsorb hazardous dyes. However, this nanocomposite was found to possess higher efficiency and adsorption capacity in comparison to soil as adsorbent for the removal of crystal violet dye under same experimental conditions. Additionally, it was also observed that use of this Ag-nanocomposite as adsorbent helped in achieving about 97.2 % removal of crystal violet dye from the effluent solution.

  3. Assessment of by-products of chlorination and photoelectrocatalytic chlorination of an azo dye.

    PubMed

    de Oliveira, Rafael Leite; Anderson, Marc A; Umbuzeiro, Gisela de Aragão; Zocolo, Guilherme Julião; Zanoni, Maria Valnice Boldrin

    2012-02-29

    The present work describes a more efficient methodology for the chlorination of water containing disperse dyes, where the chlorinated byproducts identified by mass spectra are compared. For this investigation, we tested the degradation of CI Disperse Blue 291 dye, 2-[(2-Bromo-4,6-dinitrophenyl)azo]-5-(diethylamino)-4-methoxyacetanilide) a commercial azo dye with mutagenic properties. The present work evaluates the photoelectrocatalytic efficiency of removing the CI Disperse Blue 291 dye from a wastewater of the textile industry. We employed NaCl as a supporting electrolyte. It should be noted that photoelectrocatalytic techniques are non-conventional method of generating chlorine radicals. The by-products formed in this process were analyzed using spectrophotometry, liquid chromatography, dissolved organic carbon, mass spectral analysis and mutagenicity assays. The process efficiency was compared with the conventional chlorination process adopted during sewage and effluents treatment processes. This conventional chlorination process is less efficient in removing color, total organic carbon than the photoelectrochemistry technique. Furthermore, we shall demonstrate that the mutagenicity of the generated by-products obtained using photoelectrocatalysis is completely different from that obtained by the conventional oxidation of chloride ions in the drinking water treatment process. PMID:22230753

  4. Photocatalytic decolorization of soluble dyes by a bis-ions coexistence system of NH4(+) and NO3(-) with high photoreduction ability.

    PubMed

    Shifu, Chen; Wei, Liu; Huaye, Zhang; Xiaoling, Yu

    2011-02-28

    In this paper, we found that the acidic and basic dyes were easily decolorized by a bis-ions coexistence system of NH(4)(+) and NO(3)(-) under UV light irradiation. The coexistence of NH(4)(+) and NO(3)(-) is a necessary condition for the photocatalytic decolorization of soluble dyes. The photocatalytic decolorization of methyl orange (MO) and methylene blue (MB) follows the first order rate kinetics. The location of an absorption peak in the visible region is blue-shifted with the increase in the illumination time. It is proposed that the photocatalytic decolorization of soluble dyes in the bis-ions coexistence system of NH(4)(+) and NO(3)(-) is a photoreduction reaction, in which the ammonium nitrate acts as a photocatalyst. The chromophore of acidic and basic dyes reacts with hydrogen and then results in their rapid decolorization. PMID:21227584

  5. Nonlinear dye response under nitrogen laser pumping

    NASA Astrophysics Data System (ADS)

    Milani, Marziale; Ferraro, Lorenzo

    2002-03-01

    Nitrogen lasers have been used since many years to make dye solutions to lase. A nitrogen laser (337.1 nm) TEA at atmospheric pressure has been built in our laboratory. It has been characterized and used to pump cells of different sizes containing different dyes: Rhodamine 6G, Coumarin 440, DOTCI and pyranine. As a preliminary result it has been shown that pyranine can lase, and this happens at very low threshold. Moreover, we have found that, independently on the dye concentration in the solvent, the dyes under consideration can be grouped into two major classes of behavior: Rhodamine 6G and DOTCI can lase both axially and transversally; Coumarin 440 and pyranine can lase only axially. Other intriguing features will be discussed and attention will be devoted to simultaneous multiple beam generation, superfluorescence and distributed axial pumping of dye solutions.

  6. A simple method to prepare magnetic modified beer yeast and its application for cationic dye adsorption.

    PubMed

    Yu, Jun-Xia; Wang, Li-Yan; Chi, Ru-An; Zhang, Yue-Fei; Xu, Zhi-Gao; Guo, Jia

    2013-01-01

    The purpose of this research is to use a simple method to prepare magnetic modified biomass with good adsorption performances for cationic ions. The magnetic modified biomass was prepared by two steps: (1) preparation of pyromellitic dianhydride (PMDA) modified biomass in N, N-dimethylacetamide solution and (2) preparation of magnetic PMDA modified biomass by a situ co-precipitation method under the assistance of ultrasound irradiation in ammonia water. The adsorption potential of the as-prepared magnetic modified biomass was analyzed by using cationic dyes: methylene blue and basic magenta as model dyes. Optical micrograph and x-ray diffraction analyses showed that Fe(3)O(4) particles were precipitated on the modified biomass surface. The as-prepared biosorbent could be recycled easily by using an applied magnetic field. Titration analysis showed that the total concentration of the functional groups on the magnetic PMDA modified biomass was calculated to be 0.75 mmol g(-1) by using the first derivative method. The adsorption capacities (q(m)) of the magnetic PMDA modified biomass for methylene blue and basic magenta were 609.0 and 520.9 mg g(-1), respectively, according to the Langmuir equation. Kinetics experiment showed that adsorption could be completed within 150 min for both dyes. The desorption experiment showed that the magnetic sorbent could be used repeatedly after regeneration. The as-prepared magnetic modified sorbent had a potential in the dyeing industry wastewater treatment. PMID:22529003

  7. Nanocrystalline CeO2-? as effective adsorbent of azo dyes.

    PubMed

    Tomi?, Nataša M; Doh?evi?-Mitrovi?, Zorana D; Paunovi?, Novica M; Mijin, Dušan Ž; Radi?, Nenad D; Grbi?, Boško V; Aškrabi?, Sonja M; Babi?, Biljana M; Bajuk-Bogdanovi?, Danica V

    2014-10-01

    Ultrafine CeO2-? nanopowder, prepared by a simple and cost-effective self-propagating room temperature synthesis method (SPRT), showed high adsorption capability for removal of different azo dyes. Batch type of adsorption experiments with fixed initial pH value were conducted for the removal of Reactive Orange 16 (RO16), Methyl Orange (MO), and Mordant Blue 9 (MB9). The equilibrium adsorption data were evaluated using Freundlich and Langmuir isotherm models. The Langmuir model slightly better describes isotherm data for RO16 and MO, whereas the Freundlich model was found to best fit the isotherm data for MB9 over the whole concentration range. The maximum adsorption capacities, determined from isotherm data for MO, MB9, and RO16 were 113, 101, and 91 mg g(-1) respectively. The adsorption process follows the pseudo-second-order kinetic model indicating the coexistence of chemisorption and physisorption. The mechanism of azo dye adsorption is also discussed. PMID:25220220

  8. SharePoint Basics

    Microsoft Academic Search

    Sahil Malik

    \\u000a In the previous chapter, you configured your basic SharePoint development machine. Before you move any further, ensure that\\u000a you take a snapshot of that machine so you can get back to that position at any point in this book. In this chapter I will\\u000a walk you through the basics of SharePoint. When I say basics, I mean user level features

  9. Degradation of magenta dye using different approaches based on ultrasonic and ultraviolet irradiations: Comparison of effectiveness and effect of additives for intensification.

    PubMed

    Karnjkar, Yogesh S; Dinde, Raveena M; Dinde, Nikita M; Bawankar, Kanchan N; Hinge, Shruti P; Mohod, Ashish V; Gogate, Parag R

    2015-11-01

    The conventional chemical oxidation methods have not been very successful for the treatment of dyes due to higher stability against the oxidizing agents. The present work investigates the application of an improved treatment approach based on the ultrasonic and ultraviolet irradiations for treatment of dye containing wastewaters. Magenta dye, which is commonly used in textile industries, has been used as a model compound. Initially, the experiments have been performed using individual operation of ultrasonic and ultraviolet irradiations. Studies related to effect of concentration revealed that the extent of degradation increased with an increase in the concentration of dye solution till an optimum loading. Intensification of the extent of degradation using ultrasonic irradiation has been investigated using different additives such as NaCl, TiO2, air and starch. Also the efficacy of combined treatment approaches based on different approaches involving ultrasound, ultraviolet irradiation and additives for the removal of magenta dye from the aqueous solution have been evaluated. For the use of additives, maximum intensification was achieved for TiO2 followed by use of NaCl and least effect was observed for starch. For the combined treatment approaches, the maximum extent of degradation (98.8%) and maximum COD removal (94.0%) has been obtained for the combination of ultrasound with 1g/L TiO2 and air. The present work has clearly demonstrated the efficacy of combined treatment approaches for removal of dyes from the wastewater. PMID:26186828

  10. Ultra Q-bodies: quench-based antibody probes that utilize dye-dye interactions with enhanced antigen-dependent fluorescence

    PubMed Central

    Abe, Ryoji; Jeong, Hee-Jin; Arakawa, Dai; Dong, Jinhua; Ohashi, Hiroyuki; Kaigome, Rena; Saiki, Fujio; Yamane, Kyosuke; Takagi, Hiroaki; Ueda, Hiroshi

    2014-01-01

    Recently, we described a novel reagentless fluorescent biosensor strategy named Quenchbody, which functions via the antigen-dependent removal of the quenching effect on a fluorophore that is attached to a single-chain antibody variable region. To explore the practical utility of Quenchbodies, we prepared antibody Fab fragments that were fluorolabeled at either one or two of the N-terminal regions, using a cell-free translation-mediated position-specific protein labeling system. Unexpectedly, the Fab fragment labeled at the heavy chain N-terminal region demonstrated a deeper quenching and antigen-dependent release compared to that observed using scFv. Moreover, when the Fab was fluorolabeled at the two N-termini with either the same dye or with two different dyes, an improved response due to enhanced quenching via dye-dye interactions was observed. On the basis of this approach, several targets, including peptides, proteins, and haptens, as well as narcotics, were quantified with a higher response up to 50-fold. In addition, differentiation of osteosarcoma to osteoblasts was successfully imaged using a similarly fluorolabeled recombinant Fab protein prepared from E. coli. Due to its versatility, this “Ultra-Quenchbody” is expected to exhibit a range of applications from in vitro diagnostics to the live imaging of various targets in situ. PMID:24721819

  11. Dust removal apparatus

    Microsoft Academic Search

    Eisenbarth

    1981-01-01

    Compact pollution control and\\/or dust removal apparatus is provided for removing entrained dust particles and\\/or other dry pollutants from an air or gas flow. The apparatus provides for a single pollutant particle discharge in a first or initial removal housing with a plurality of secondary removal housings mounted in spaced fashion circumferentially around the initial removal housing. The construction is

  12. Sorption kinetics and isotherm studies of a cationic dye using agricultural waste: Broad bean peels

    Microsoft Academic Search

    B. H. Hameed; M. I. El-Khaiary

    2008-01-01

    In this paper, broad bean peels (BBP), an agricultural waste, was evaluated for its ability to remove cationic dye (methylene blue) from aqueous solutions. Batch mode experiments were conducted at 30°C. Equilibrium sorption isotherms and kinetics were investigated. The kinetic data obtained at different concentrations have been analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion equations. The experimental data fitted very

  13. Adsorptive and Desorption Studies on Toxic Dye Erioglaucine Over Deoiled Mustard

    Microsoft Academic Search

    Rajeev Jain; Shalini Sikarwar

    2010-01-01

    In this work, a fundamental investigation on the removal of Erioglaucine dye by deoiled mustard is conducted in batch conditions. This article incorporates effect of pH, temperature, amount of adsorbent, contact time, concentration of adsorbate, particle size on adsorption. The adsorption kinetics was shown to be pseudo-first-order. The adsorption equilibrium data can be fitted well by both Freundlich and Langmuir

  14. An effective use of nanocrystalline CdO thin films in dye-sensitized solar cells

    Microsoft Academic Search

    R. S. Mane; H. M. Pathan; C. D. Lokhande; Sung-Hwan Han

    2006-01-01

    Thin films of cadmium oxide (CdO) were synthesized by layer-by-layer deposition method on indium doped tin oxide (ITO) substrates. Post-deposition annealing at 250°C for 24h produced pure phase CdO films by removal of trace amount of cadmium hydroxide, as confirmed from X-ray diffractogram. First time employment of CdO in place of TiO2 in dye-sensitized solar cells is reported to check

  15. Investigation of the stability of solid-state dye-sensitized solar cells

    Microsoft Academic Search

    XIN-TONG ZHANG; TAKETO TAGUCHI; HAI-BIN WANG; QING-BO MENG; OSAMU SATO; AKIRA FUJISHIMA

    2006-01-01

    The stability of the TiO2\\/ruthenium dye\\/CuI solid-state solar cell was investigated under continuous simulated sunlight illumination. The cells showed fast degradation under full-spectrum sunlight illumination, but showed rather good stability when the ultraviolet part of the illumination was removed. XPS measurements showed evidence that TiO2 could oxidize CuI in the presence of UV light. The photo-degradation mechanism of the cells

  16. Decoloration and degradation of Reactive Red120 dye by electron beam irradiation in aqueous solution

    Microsoft Academic Search

    Jhimli Paul; K. P. Rawat; K. S. S. Sarma; S. Sabharwal

    2011-01-01

    The decoloration and degradation of aqueous solution of the reactive azo dye viz. Reactive Red-120 (RR-120) was carried out by electron beam irradiation. The change in decoloration percentage, removal of chemical oxygen demand (COD) and total organic carbon (TOC), solution pH and five-day biochemical oxygen demand (BOD5) were investigated with respect to the applied dose. However, the concentration of the

  17. Effective NH 2-grafting on attapulgite surfaces for adsorption of reactive dyes

    Microsoft Academic Search

    Ailian Xue; Shouyong Zhou; Yijiang Zhao; Xiaoping Lu; Pingfang Han

    2011-01-01

    The amine moiety has an important function in many applications, including, adsorption, catalysis, electrochemistry, chromatography, and nanocomposite materials. We developed an effective adsorbent for aqueous reactive dye removal by modifying attapulgite with an amino-terminated organosilicon (3-aminopropyltriethoxysilane, APTES). Surface properties of the APTES-modified attapulgite were characterized by the Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and

  18. Porous nanocrystalline TiO2 thin films for dye-sensitized solar cells

    Microsoft Academic Search

    Xiaojuan Fan; Claudia Swanson; David Rogow; Akhilesh Tripathi; Scott Oliver

    2008-01-01

    We report a rapid and low cost method to fabricate porous TiO2 thin films used as anode electrodes for solid state dye-sensitized solar cells. Polymethylmethacrylate (PMMA) gel was used as template to define a network co-structure with alkali titanium oxide, then spin cast on substrates. After thermally removing polymer, smooth and crack-free large area TiO2 thin films with fine pores

  19. Effect of variability on the treatment of textile dyeing wastewater by activated sludge

    Microsoft Academic Search

    A. Alinsafi; M. da Motta; S. Le Bonté; M. N. Pons; A. Benhammou

    2006-01-01

    Using a pilot scale continuous system with activated sludge, the effect of the variability of non-pretreated synthetic textile wastewater containing reactive dyes on the pollution bio-removal and on the characteristics of activated sludge (sludge volume index, floc size and shape, filamentous bacteria abundance) has been monitored. Off-line batch respirometry tests have been used in parallel to assess the toxic effects

  20. Decolorization of adsorbed textile dyes by developed consortium of Pseudomonas sp. SUK1 and Aspergillus ochraceus NCIM-1146 under solid state fermentation.

    PubMed

    Kadam, Avinash A; Telke, Amar A; Jagtap, Sujit S; Govindwar, Sanjay P

    2011-05-15

    The objective of this study was to develop consortium using Pseudomonas sp. SUK1 and Aspergillus ochraceus NCIM-1146 to decolorize adsorbed dyes from textile effluent wastewater under solid state fermentation. Among various agricultural wastes rice bran showed dye adsorption up to 90, 62 and 80% from textile dye reactive navy blue HE2R (RNB HE2R) solution, mixture of textile dyes and textile industry wastewater, respectively. Pseudomonas sp. SUK1 and A. ochraceus NCIM-1146 showed 62 and 38% decolorization of RNB HE2R adsorbed on rice bran in 24h under solid state fermentation. However, the consortium of Pseudomonas sp. SUK1 and A. ochraceus NCIM-1146 (consortium-PA) showed 80% decolorization in 24h. The consortium-PA showed effective ADMI removal ratio of adsorbed dyes from textile industry wastewater (77%), mixture of textile dyes (82%) and chemical precipitate of textile dye effluent (CPTDE) (86%). Secretion of extracellular enzymes such as laccase, azoreductase, tyrosinase and NADH-DCIP reductase and their significant induction in the presence of adsorbed dye suggests their role in the decolorization of RNB HE2R. GCMS and HPLC analysis of product suggests the different fates of biodegradation of RNB HE2R when used Pseudomonas sp. SUK1, A. ochraceus NCIM-1146 and consortium PA. PMID:21414720

  1. ZnO Nanotube Based Dye-Sensitized Solar Cells

    E-print Network

    ZnO Nanotube Based Dye-Sensitized Solar Cells Alex B. F. Martinson,, Jeffrey W. Elam, Joseph T templated by anodic aluminum oxide for use in dye-sensitized solar cells (DSSCs). Atomic layer deposition of the best dye- sensitized solar cells (DSSCs) is the product of a dye with moderate extinction

  2. An expert system for the dyeing recipes determination

    Microsoft Academic Search

    R. Convert; L. Schacher; P. Viallier

    2000-01-01

    This article deals with the modelization of the reasoning of an expert in dyeing. The dyeing operation is one of the latest stage in the whole textile process which alters the intrinsic properties of the articles. At present, there are expert systems for dyeing industries. Most of them have been developed by dyes and chemical auxiliary suppliers, and these tools

  3. Ecofriendly ultrasonic natural dyeing of cotton fabric with enzyme pretreatments

    Microsoft Academic Search

    Padma S. Vankar; Rakhi Shanker

    2008-01-01

    Ecofriendly ultrasonic textile dyeing with natural dyes such as Acacia catechu and Tectona grandis show better and faster dye uptake after enzyme pretreatment on cotton fabric, and results of dyeing are better than metal mordanted fabric. It is observed that there is marked improvement in wash-fastness and light-fastness. The role of enzyme pretreatment is primarily for better absorbency, adherence and

  4. Measurement of the thickness and volume of adherent cells using transmission-through-dye microscopy

    Microsoft Academic Search

    Jennifer L. Gregg; Karen M. McGuire; Daniel C. Focht; Michael A. Model

    2010-01-01

    Cell volume is one of the basic characteristics of a cell and is being extensively studied in relationship to a variety of\\u000a processes, such as proliferation, apoptosis, fertility, or locomotion. At the same time, its measurement under a microscope\\u000a has not been well developed. The method we propose uses negative transmission contrast rendered to cells by a strongly absorbing\\u000a dye

  5. Phenomenological modeling of dye-sensitized solar cells under transient conditions

    Microsoft Academic Search

    Luísa Andrade; José Sousa; Helena Aguilar Ribeiro; Adélio Mendes

    2011-01-01

    A phenomenological model is proposed for a better understanding of the basic working mechanisms of dye-sensitized solar cells (DSCs). A steady-state approach allows the construction of the I–V characteristics, giving important informations about the main factors that influence DSCs’ performance. On the other hand, the transient approach model is an important tool to relate the phenomenological behavior with certain dynamic

  6. The Design of Auto-control System on Overflow Dyeing Machine

    NASA Astrophysics Data System (ADS)

    Xie, Shuiying

    The composition and working principle of DCS system are introduced, as well as its configuration, function and basic language. An account of the design of auto-control system on dyeing machine is narrated, and the advancement of the system and the importance of cascade control are further put forward. Its control rate can achieve above 95%, which can reduce labor intensity and improve working environment.

  7. Basic Science Training Program.

    ERIC Educational Resources Information Center

    Brummel, Clete

    These six learning modules were developed for Lake Michigan College's Basic Science Training Program, a workshop to develop good study skills while reviewing basic science. The first module, which was designed to provide students with the necessary skills to study efficiently, covers the following topics: time management; an overview of a study…

  8. Basic Microfluidic Lithographic

    E-print Network

    Prentiss, Mara

    CHAPTER 2 Basic Microfluidic and Soft Lithographic Techniques Sindy K.Y. Tang and George M in these devices are based on those developed for microfluidics used in biochemical anal- ysis. This chapter describes the basic ideas of microfluidics. We first summarize the materials most commonly used

  9. Basic biomechanics and biomaterials

    Microsoft Academic Search

    A. W. Miles; S. Gheduzzi

    2009-01-01

    This paper outlines the basic knowledge that should form an integral component of a training programme in basic biomechanics and biomaterials for orthopaedic residents. For a comprehensive learning package the reader is directed to the substantive textbooks listed in the suggested reading section.

  10. Asthma: The Basics

    MedlinePLUS

    ... Sports: Keeping Kids Safe Concussions: What to Know Asthma: The Basics (Video) KidsHealth > Parents > KH Misc. > Asthma: The Basics (Video) Print A A A Text Size In this video, find out what asthma is, and how to manage it and live ...

  11. Fluency with Basic Addition

    ERIC Educational Resources Information Center

    Garza-Kling, Gina

    2011-01-01

    Traditionally, learning basic facts has focused on rote memorization of isolated facts, typically through the use of flash cards, repeated drilling, and timed testing. However, as many experienced teachers have seen, "drill alone does not develop mastery of single-digit combinations." In contrast, a fluency approach to learning basic addition…

  12. Basic Terminal Forecast Strategies

    NSDL National Science Digital Library

    2014-09-14

    "Basic Terminal Forecast Strategies" is the first component of the Distance Learning Course 2, Producing Customer-Focused TAFs. Basic Terminal Forecast Strategies is comprised of two lessons that provide 1) an introduction to understanding aviation customers and their needs and 2) a technique to meet those needs by producing clear, concise, and consistent terminal aerodrome forecasts (TAFs).

  13. Weed Management -The Basics

    E-print Network

    Minnesota, University of

    Weed Management - The Basics Anthony Cortilet Minnesota Department of Agriculture Roger Becker University of Minnesota #12;Over-arching Weed Science Principles · Weed ecology and biology basic to all systems · Weed species cross over cropping boundaries · Perennial, biennial, or annual - disturbed

  14. Evolution strategies: basic introduction

    Microsoft Academic Search

    Thomas Bäck

    2008-01-01

    This tutorial gives a basic introduction to evolution strategies, a class of evolutionary algorithms. Key features such as mutation, recombination and selection operators are explained, and specifically the concept of self-adaptation of strategy parameters is introduced. All algorithmic concepts are explained to a level of detail such that an implementation of basic evolution strategies is possible. Some guidelines for utilization

  15. Evolution strategies: basic introduction

    Microsoft Academic Search

    Thomas Bäck

    2011-01-01

    This tutorial gives a basic introduction to evolution strategies, a class of evolutionary algorithms. Key features such as mutation, recombination and selection operators are explained, and specifically the concept of self-adaptation of strategy parameters is introduced. All algorithmic concepts are explained to a level of detail such that an implementation of basic evolution strategies is possible. Some guidelines for utilization

  16. Evolution strategies: basic introduction

    Microsoft Academic Search

    Thomas Baeck

    2010-01-01

    This tutorial gives a basic introduction to evolution strategies, a class of evolutionary algorithms. Key features such as mutation, recombination and selection operators are explained, and specifically the concept of self-adaptation of strategy parameters is introduced. All algorithmic concepts are explained to a level of detail such that an implementation of basic evolution strategies is possible. Some guidelines for utilization

  17. Evolution strategies: basic introduction

    Microsoft Academic Search

    Thomas Baeck

    2012-01-01

    This tutorial gives a basic introduction to evolution strategies, a class of evolutionary algorithms. Key features such as mutation, recombination and selection operators are explained, and specifically the concept of self-adaptation of strategy parameters is introduced. All algorithmic concepts are explained to a level of detail such that an implementation of basic evolution strategies is possible. Some guidelines for utilization

  18. Predictive modeling of sorption and desorption of a reactive azo dye by pumpkin husk.

    PubMed

    Çelekli, Abuzer; Çelekli, Fadime; Çiçek, Erdo?an; Bozkurt, Hüseyin

    2014-04-01

    The use of effective disposal of redundant pumpkin husk (PH) to remove pollutants is an important issue for environmental protection and utilization of resource. The aim of this study was to remove a potentially toxic reactive azo dye, Reactive Red (RR) 120, by widespread PH as a low-cost adsorbent. Particle size, adsorbent dose, pH, temperature, initial dye concentration, and contact time affected the sorption process. Amine, amide, hydroxyl, and carboxyl groups of PH played significant roles on the sorption process. Rapid sorption occurred within the first 2 min and equilibrium was reached within 60 min. Sorption kinetic was well represented by logistic equation. Generated secondary logistic model can be used to describe effects of initial dye concentration, contact time, and temperature by a single equation with high R (2) value. Monolayer sorption capacity was found as 98.61 mg g(-1). Activation energy, thermodynamic, and desorption studies showed that this process was physical, endothermic, and spontaneous. This study indicated that redundant PH as a low-cost adsorbent had a great potential for the removal of RR 120 as an alternative eco-friendly process. PMID:24374618

  19. DESIGN MANUAL: PHOSPHORUS REMOVAL

    EPA Science Inventory

    This manual summarizes process design information for the best developed methods for removing phosphorus from wastewater. his manual discusses several proven phosphorus removal methods, including phosphorus removal obtainable through biological activity as well as chemical precip...

  20. [Decolorization of azo dyes using quinone reductase and quinoid compounds].

    PubMed

    Zhou, Mi; Liu, Guang-Fei; Zhou, Ji-Ti; Jin, Ruo-Fei; Chen, Ming-Xiang; Wang, Yan-Qing

    2009-06-15

    Using quinoid redox mediator and bacterial cellular quinone reductase, we investigated the decolorization ability of gene-engineered strain Escherichia coli YB and the effects of methylhydroquinone (MHQ) pretreatement on decolorization performance of E. coli JM109 and anaerobic sludge. The results indicate that lawsone is an effective accelerator for azo dye decolorization by E. coli YB overexpressing cellular quinone reductase AZR. In the presence of 0.2 mmol x L(-1) lawsone, 75% Amaranth (1 mmol x L(-1)) can be decolorized in 2 h. E. coli YB can also decolorize high concentration of azo dye in the presence of lawsone. Around 50% Amaranth (5 mmol x L(-1)) is decolorized in 8 h. Compared to lawsone, menadione is a less effective mediator. E. coli YB takes 12 h to reach 70% decolorization in the presence of 2.5 mmol x L(-1) menadione. Repeated decolorization studies showed that E. coli YB had stable decolorizing ability in the presence of lawsone. Four rounds of repeated decolorization can be completed in 12 h. Lawsone can also accelerate the decolorization of azo dyes with complex structures such as Acid Scarlet GR and Reactive Brilliant Red K-2BP. With the optimal LQ concentrations, 70% Acid Scarlet GR and Reactive Brilliant Red K-2BP are decolorized in 9 h and 30 h,respectively. Decolorization performances of E. coli JM109 and anaerobic sludge pretreated with MHQ are improved. After MHQ pretreatment,in the presence of lawsone, 80% Amaranth (1 mmol x L(-1)) can be decolorized in 5 h by E. coli JM109, while more than 75% Amaranth can be removed in 11 h by sludge. PMID:19662873