Sample records for basic helix-loop-helix protein-mediated

  1. Phylogenetic analysis of the human basic helix-loop-helix proteins

    Microsoft Academic Search

    Valérie Ledent; Odier Paquet; Michel Vervoort

    2002-01-01

    BACKGROUND: The basic helix-loop-helix (bHLH) proteins are a large and complex multigene family of transcription factors with important roles in animal development, including that of fruitflies, nematodes and vertebrates. The identification of orthologous relationships among the bHLH genes from these widely divergent taxa allows reconstruction of the putative complement of bHLH genes present in the genome of their last common

  2. The HAND1 Basic Helix-Loop-Helix Transcription Factor Regulates Trophoblast Differentiation via Multiple Mechanisms

    Microsoft Academic Search

    IAN C. SCOTT; LYNN ANSON-CARTWRIGHT; PAUL RILEY; DANNY REDA; JAMES C. CROSS

    2000-01-01

    The basic helix-loop-helix (bHLH) transcription factor genes Hand1 and Mash2 are essential for placental development in mice. Hand1 promotes differentiation of trophoblast giant cells, whereas Mash2 is required for the maintenance of giant cell precursors, and its overexpression prevents giant cell differentiation. We found that Hand1 expression and Mash2 expression overlap in the ectoplacental cone and spongiotrophoblast, layers of the

  3. Helix–loop–helix/basic helix–loop–helix transcription factor network represses cell elongation in Arabidopsis through an apparent incoherent feed-forward loop

    PubMed Central

    Zhiponova, Miroslava K.; Morohashi, Kengo; Vanhoutte, Isabelle; Machemer-Noonan, Katja; Revalska, Miglena; Van Montagu, Marc; Grotewold, Erich; Russinova, Eugenia

    2014-01-01

    Cell elongation is promoted by different environmental and hormonal signals, involving light, temperature, brassinosteroid (BR), and gibberellin, that inhibit the atypical basic helix–loop–helix (bHLH) transcription factor INCREASED LEAF INCLINATION1 BINDING bHLH1 (IBH1). Ectopic accumulation of IBH1 causes a severe dwarf phenotype, but the cell elongation suppression mechanism is still not well understood. Here, we identified a close homolog of IBH1, IBH1-LIKE1 (IBL1), that also antagonized BR responses and cell elongation. Genome-wide expression analyses showed that IBH1 and IBL1 act interdependently downstream of the BRASSINAZOLE-RESISTANT1 (BZR1)–PHYTOCHROME-INTERACTING FACTOR 4 (PIF4)–DELLA module. Although characterized as non-DNA binding, IBH1 repressed direct IBL1 transcription, and they both acted in tandem to suppress the expression of a common downstream helix–loop–helix (HLH)/bHLH network, thus forming an incoherent feed-forward loop. IBH1 and IBL1 together repressed the expression of PIF4, known to stimulate skotomorphogenesis synergistically with BZR1. Strikingly, PIF4 bound all direct and down-regulated HLH/bHLH targets of IBH1 and IBL1. Additional genome-wide comparisons suggested a model in which IBH1 antagonized PIF4 but not the PIF4–BZR1 dimer. PMID:24505057

  4. A triple helix-loop-helix/basic helix-loop-helix cascade controls cell elongation downstream of multiple hormonal and environmental signaling pathways in Arabidopsis.

    PubMed

    Bai, Ming-Yi; Fan, Min; Oh, Eunkyoo; Wang, Zhi-Yong

    2012-12-01

    Environmental and endogenous signals, including light, temperature, brassinosteroid (BR), and gibberellin (GA), regulate cell elongation largely by influencing the expression of the paclobutrazol-resistant (PRE) family helix-loop-helix (HLH) factors, which promote cell elongation by interacting antagonistically with another HLH factor, IBH1. However, the molecular mechanism by which PREs and IBH1 regulate gene expression has remained unknown. Here, we show that IBH1 interacts with and inhibits a DNA binding basic helix-loop-helix (bHLH) protein, HBI1, in Arabidopsis thaliana. Overexpression of HBI1 increased hypocotyl and petiole elongation, whereas dominant inactivation of HBI1 and its homologs caused a dwarf phenotype, indicating that HBI1 is a positive regulator of cell elongation. In vitro and in vivo experiments showed that HBI1 directly bound to the promoters and activated two EXPANSIN genes encoding cell wall-loosening enzymes; HBI1's DNA binding and transcriptional activities were inhibited by IBH1, but the inhibitory effects of IBH1 were abolished by PRE1. The results indicate that PREs activate the DNA binding bHLH factor HBI1 by sequestering its inhibitor IBH1. Altering each of the three factors affected plant sensitivities to BR, GA, temperature, and light. Our study demonstrates that PREs, IBH1, and HBI1 form a chain of antagonistic switches that regulates cell elongation downstream of multiple external and endogenous signals. PMID:23221598

  5. The Basic Helix-Loop-Helix Transcription Factor PIF5 Acts on Ethylene Biosynthesis and Phytochrome Signaling by Distinct Mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    HYTOCHROME-INTERACTING FACTOR5 (PIF5), a basic helix-loop-helix transcription factor, interacts specifically with the photoactivated form of phytochrome B (phyB). Here, we report that dark-grown Arabidopsis thaliana seedlings overexpressing PIF5 (PIF5-OX) exhibit exaggerated apical hooks and short h...

  6. Regulation of Arabidopsis Brassinosteroid Signaling by Atypical Basic Helix-Loop-Helix Proteins[C][W

    PubMed Central

    Wang, Hao; Zhu, Yongyou; Fujioka, Shozo; Asami, Tadao; Li, Jiayang; Li, Jianming

    2009-01-01

    Basic helix-loop-helix (bHLH) proteins are highly conserved transcription factors critical for cell proliferation and differentiation. Recent studies have implicated bHLH proteins in many plant signaling processes, including brassinosteroid (BR) signaling. Here, we report identification of two families of atypical bHLH proteins capable of modulating BR signaling. We found that activation-tagged bri1 suppressor 1-Dominant (atbs1-D), previously identified as a dominant suppressor of a weak BR receptor mutant bri1-301, was caused by overexpression of a 93–amino acid atypical bHLH protein lacking amino acids critical for DNA binding. Interestingly, atbs1-D only suppresses weak BR mutants, while overexpression of a truncated ATBS1 lacking the basic motif also rescues bri1-301, suggesting that ATBS1 likely stimulates BR signaling by sequestering negative BR signaling components. A yeast two-hybrid screen using ATBS1 as bait discovered four ATBS1-Interacting Factors (AIFs) that are members of another atypical bHLH protein subfamily. AIF1 exhibits an overlapping expression pattern with ATBS1 and its homologs and interacts with ATBS1 in vitro and in vivo. AIF1 overexpression nullifies the suppressive effect of atbs1-D on bri1-301 and results in dwarf transgenic plants resembling BR mutants. By contrast, silencing of AIF1 partially suppressed the bri1-301 phenotype. Our results suggested that plants use these atypical bHLH proteins to regulate BR signaling. PMID:20023194

  7. Caught Red-Handed: Rc Encodes a Basic Helix-Loop-Helix Protein Conditioning Red Pericarp in Rice

    Microsoft Academic Search

    Megan T. Sweeney; Michael J. Thomson; Bernard E. Pfeil; Susan McCoucha

    2006-01-01

    Rc is a domestication-related gene required for red pericarp in rice (Oryza sativa). The red grain color is ubiquitous among the wild ancestors of O. sativa, in which it is closely associated with seed shattering and dormancy. Rc encodes a basic helix-loop-helix (bHLH) protein that was fine-mapped to an 18.5-kb region on rice chromosome 7 using a cross between Oryza

  8. Identification of a Novel Family of Oligodendrocyte Lineage-Specific Basic Helix–Loop–Helix Transcription Factors

    Microsoft Academic Search

    Qiao Zhou; Songli Wang; David J. Anderson

    2000-01-01

    Basic helix–loop–helix (bHLH) transcription factors have been identified for neurons and their precursors but not for glial cells. We have identified two bHLH factors, Oligo1 and Oligo2, that are specifically expressed in zones of neuroepithelium from which oligodendrocyte precursors emerge, as well as in the precursors themselves. Expression of Oligo2 in the spinal cord precedes that of platelet-derived growth factor

  9. The Basic Helix-Loop-Helix Factor Olig2 Is Essential for the Development of Motoneuron and Oligodendrocyte Lineages

    Microsoft Academic Search

    Hirohide Takebayashi; Yoko Nabeshima; Shosei Yoshida; Osamu Chisaka; Kazuhiro Ikenaka; Yo-ichi Nabeshima

    2002-01-01

    Sonic hedgehog (Shh), an organizing signal from ventral midline structures, is essential for the induction and maintenance of many ventral cell types in the embryonic neural tube. Olig1 and Olig2 are related basic helix-loop-helix factors induced by Shh in the ventral neural tube. Although expression analyses and gain-of–function experiments suggested that these factors were involved in motoneuron and oligodendrocyte development,

  10. Neuronal Basic Helix-Loop-Helix Proteins (NEX, neuroD, NDRF): Spatiotemporal Expression and Targeted Disruption of the NEX Gene in Transgenic Mice

    Microsoft Academic Search

    Markus H. Schwab; Silke Druffel-Augustin; Peter Gass; Martin Jung; Matthias Klugmann; Angelika Bartholomae; Moritz J. Rossner; Klaus-Armin Nave

    1998-01-01

    Basic helix-loop-helix (bHLH) genes have emerged as impor- tant regulators of neuronal determination and differentiation in vertebrates. Three putative neuronal differentiation factors (NEX for neuronal helix-loop-helix protein-1 (mammalian atonal homolog-2), neuroD (b-2), and NDRF for neuroD-related factor (neuroD2)) are highly homologous to each other in the bHLH region and comprise a new bHLH subfamily. To study the role of NEX,

  11. Phylogenetic analyses of vector mosquito basic helix-loop-helix transcription factors.

    PubMed

    Zhang, D B; Wang, Y; Liu, A K; Wang, X H; Dang, C W; Yao, Q; Chen, K P

    2013-10-01

    Basic helix-loop-helix (bHLH) transcription factors play critical roles in the regulation of a wide range of developmental processes in higher organisms and have been identified in more than 20 organisms. Mosquitoes are important vectors of certain human diseases. In this study, Aedes aegypti, Anopheles gambiae str. PEST and Culex quinquefasciatus genomes were found to encode 55, 55 and 57 bHLH genes, respectively. Further phylogenetic analyses and OrthoDB and Kyoto encyclopedia of genes and genomes orthology database searches led us to define orthology for all the identified mosquito bHLHs successfully. This provides useful information with which to update annotations to 40 Ae.?aegypti, 55 An.?gambiae and 38 C.?quinquefasciatus?bHLH genes in VectorBase. The mosquito lineage has more bHLH genes in the Atonal, neurogenin (Ngn) and Hes-related with YRPW motif (Hey) families than do other insect species, suggesting that mosquitoes have evolved to be more sensitive to vibration, light and chemicals. Mosquito bHLH genes generally have higher evolutionary rates than other insect species. However, no pervasive positive selection occurred in the evolution of insect bHLH genes. Only episodic positive selection was found to affect evolution of bHLH genes in 11 families. Besides, coding regions of several Ae.?aegypti?bHLH motifs have unusually long introns in which multiple copies of transposable elements have been identified. These data provide a solid basis for further studies on structures and functions of bHLH proteins in the regulation of mosquito development and for prevention and control of mosquito-mediated human diseases. PMID:23906262

  12. The PAX6 gene is activated by the basic helix-loop-helix transcription factor NeuroD/BETA2.

    PubMed Central

    Marsich, Eleonora; Vetere, Amedeo; Di Piazza, Matteo; Tell, Gianluca; Paoletti, Sergio

    2003-01-01

    PAX6 is a transcription factor that plays an important role during pancreatic morphogenesis. The aim of the present study is to identify the upstream activator(s) of the PAX6 gene possibly involved in the early stages of pancreatic differentiation. Recently, individual elements regulating PAX6 gene activity in the pancreas have been identified in a 1100 bp Spe / Hin cII fragment 4.6 kb upstream of exon 0. Preliminary sequence analysis of this region revealed some potential DNA-binding sites (E boxes) specific for the binding of basic helix-loop-helix transcription factors. By using electrophoretic mobility shift assays, we demonstrated that both nuclear protein extracts from insulin-secreting RINm5F cells and in vitro -translated NeuroD/BETA2 can bind specifically to these E boxes. Furthermore, by transient transfection experiments we demonstrated that the expression of basic helix-loop-helix transcription factor NeuroD/BETA2 can induce activation of the PAX6 promoter in the NIH-3T3 cell line. Thus we show that NeuroD/BETA2 is involved in the activation of the expression of PAX6 through E boxes in the PAX6 promoter localized in a 1.1 kb sequence within the 4.6 kb untranslated region upstream of exon 0. PMID:12962539

  13. Point mutations in the Drosophila hairy gene demonstrate in vivo requirements for basic, helix-loop-helix, and WRPW domains.

    PubMed Central

    Wainwright, S M; Ish-Horowicz, D

    1992-01-01

    The Drosophila pair-rule gene, hairy (h), encodes a nuclear basic helix-loop-helix (bHLH) protein that regulates embryonic segmentation and adult bristle patterning. In both cases, the h protein behaves as a transcriptional repressor. In this study, we determined the molecular nature of 12 h alleles. One mutation maps within the HLH domain, consistent with h function requiring homodimerization or heterodimerization with other HLH proteins. A second mutation lies in the basic domain, suggesting that DNA binding is required for h activity. Several mutations show that the h C terminus, in particular the WRPW domain, is also required for h activity, perhaps by interacting with other proteins to mediate transcriptional repression. We show that the h protein in Drosophila virilis closely resembles that in D. melanogaster and includes completely conserved bHLH and WRPW domains. Images PMID:1588951

  14. A novel basic helix-loop-helix protein is expressed in muscle attachment sites of the Drosophila epidermis.

    PubMed Central

    Armand, P; Knapp, A C; Hirsch, A J; Wieschaus, E F; Cole, M D

    1994-01-01

    We have found that a novel basic helix-loop-helix (bHLH) protein is expressed almost exclusively in the epidermal attachments sites for the somatic muscles of Drosophila melanogaster. A Drosophila cDNA library was screened with radioactively labeled E12 protein, which can dimerize with many HLH proteins. One clone that emerged from this screen encoded a previously unknown protein of 360 amino acids, named delilah, that contains both basic and HLH domains, similar to a group of cellular transcription factors implicated in cell type determination. Delilah protein formed heterodimers with E12 that bind to the muscle creatine kinase promoter. In situ hybridization with the delilah cDNA localized the expression of the gene to a subset of cells in the epidermis which form a distinct pattern involving both the segmental boundaries and intrasegmental clusters. This pattern was coincident with the known sites of attachment of the somatic muscles to tendon cells in the epidermis. delilah expression persists in snail mutant embryos which lack mesoderm, indicating that expression of the gene was not induced by attachment of the underlying muscles. The similarity of this gene to other bHLH genes suggests that it plays an important role in the differentiation of epidermal cells into muscle attachment sites. Images PMID:8196652

  15. A genome-wide survey on basic helix-loop-helix transcription factors in rat and mouse.

    PubMed

    Zheng, Xiaodong; Zheng, X; Wang, Yong; Wang, Y; Yao, Qin; Yao, Q; Yang, Zhe; Yang, Z; Chen, Keping; Chen, K

    2009-04-01

    The basic helix-loop-helix (bHLH) proteins play essential roles in a wide range of developmental processes in higher organisms. bHLH family members have been identified in over 20 organisms, including nematode, fruit fly, and human. Our study identified 114 rat and 14 additional mouse bHLH members in rat and mouse genomes, respectively. Phylogenetic analyses revealed that both rat and mouse had 49, 26, 15, 4, 12, and 4 bHLH members in groups A, B, C, D, E, and F, respectively. Only the rat Mxi1 gene has two copies in the genome. All other rat bHLH genes and all mouse bHLH genes are single-copy genes. The chromosomal distribution pattern of mouse, rat, and human bHLH genes suggests the emergence of some bHLH genes through gene duplication, which probably happened at least before the divergence of vertebrates from invertebrates. The present study provides useful information for future studies using rat as a model animal for mammalian development. PMID:19306043

  16. The Basic Helix-Loop-Helix Transcription Factor NEUROG3 Is Required for Development of the Human Endocrine Pancreas.

    PubMed

    McGrath, Patrick S; Watson, Carey L; Ingram, Cameron; Helmrath, Michael A; Wells, James M

    2015-07-01

    Neurogenin3 (NEUROG3) is a basic helix-loop-helix transcription factor required for development of the endocrine pancreas in mice. In contrast, humans with NEUROG3 mutations are born with endocrine pancreas function, calling into question whether NEUROG3 is required for human endocrine pancreas development. To test this directly, we generated human embryonic stem cell (hESC) lines where both alleles of NEUROG3 were disrupted using CRISPR/Cas9-mediated gene targeting. NEUROG3(-/-) hESC lines efficiently formed pancreatic progenitors but lacked detectible NEUROG3 protein and did not form endocrine cells in vitro. Moreover, NEUROG3(-/-) hESC lines were unable to form mature pancreatic endocrine cells after engraftment of PDX1(+)/NKX6.1(+) pancreatic progenitors into mice. In contrast, a 75-90% knockdown of NEUROG3 caused a reduction, but not a loss, of pancreatic endocrine cell development. We conclude that NEUROG3 is essential for endocrine pancreas development in humans and that as little as 10% NEUROG3 is sufficient for formation of pancreatic endocrine cells. PMID:25650326

  17. anthocyanin1 of Petunia Encodes a Basic Helix-Loop-Helix Protein That Directly Activates Transcription of Structural Anthocyanin Genes

    PubMed Central

    Spelt, Cornelis; Quattrocchio, Francesca; Mol, Joseph N. M.; Koes, Ronald

    2000-01-01

    The petunia loci anthocyanin1 (an1), an2, an4, and an11 are required for the transcription of anthocyanin biosynthetic genes in floral organs. The an2 and an11 loci were recently cloned and shown to encode a MYB-domain transcriptional activator and a cytosolic WD40 protein, respectively. Here, we report the isolation of an1 by transposon tagging. an1 encodes a new member of the basic helix-loop-helix family of transcription factors that is functionally and evolutionarily distinct from JAF13, the apparent petunia ortholog of maize RED1 and snapdragon DELILA. We provide genetic evidence that the transcription factors encoded by an1, an2, and an4 operate in an unexpectedly complex regulatory hierarchy. In leaves, ectopic expression of AN2 induces an1 expression, whereas in anthers, an1 expression depends on an4, encoding (or controlling) a MYB protein that is paralogous to AN2. Experiments with transgenic plants expressing a post-translationally controlled AN1–GLUCOCORTICOID RECEPTOR fusion protein indicated that independent of protein synthesis, AN1 directly activates the expression of the dfrA gene encoding the enzyme dihydroflavonol 4-reductase and of Pmyb27 encoding a MYB-domain protein of unknown function. PMID:11006336

  18. The basic helix loop helix transcription factor Twist1 is a novel regulator of ATF4 in osteoblasts.

    PubMed

    Danciu, Theodora E; Li, Yan; Koh, Amy; Xiao, Guozhi; McCauley, Laurie K; Franceschi, Renny T

    2012-01-01

    Parathyroid hormone (PTH) is an essential regulator of endochondral bone formation and an important anabolic agent for the reversal of bone loss. PTH mediates its functions in part by regulating binding of the bone-related activating transcription factor 4 (ATF4) to the osteoblast-specific gene, osteocalcin. The basic helix-loop-helix (bHLH) factors Twist1 and Twist2 also regulate osteocalcin transcription in part through the interaction of the C-terminal "box" domain in these factors and Runx2. In this study, we discovered a novel function of PTH: its ability to dramatically decrease Twist1 transcription. Since ATF4 is a major regulator of the PTH response in osteoblasts, we assessed the mutual regulation between these factors and determined that Twist proteins and ATF4 physically interact in a manner that affects ATF4 DNA binding function. We mapped the interaction domain of Twist proteins to the C-terminal "box" domain and of ATF4, to the N-terminus. Furthermore, we demonstrate that Twist1 overexpression in osteoblasts attenuates ATF4 binding to the osteocalcin promoter in response to PTH. This study thus identifies Twist proteins as novel inhibitory binding partners of ATF4 and explores the functional significance of this interaction. PMID:21866569

  19. Cloning of TCFL5 encoding a novel human basic helix-loop-helix motif protein that is specifically expressed in primary spermatocytes at the pachytene stage

    Microsoft Academic Search

    O. Maruyama; H. Nishimori; T. Katagiri; Y. Miki; A. Ueno; Y. Nakamura

    1998-01-01

    We have isolated a novel human gene that is expressed specifically in primary spermatocytes in the testis. The cDNA contains an open reading frame of 1356 bp, encoding a 452-amino-acid protein that includes a basic Helix-Loop-Helix (bHLH) motif. The gene, which was mapped to chromosome region 20q13.3?qter by fluorescence in situ hybridization, consists of six exons and spans approximately 24

  20. Functional Diversity of Human Basic Helix-Loop-Helix Transcription Factor TCF4 Isoforms Generated by Alternative 5? Exon Usage and Splicing

    Microsoft Academic Search

    Mari Sepp; Kaja Kannike; Ave Eesmaa; Mari Urb; Tőnis Timmusk

    2011-01-01

    BackgroundTranscription factor 4 (TCF4 alias ITF2, E2-2, ME2 or SEF2) is a ubiquitous class A basic helix-loop-helix protein that binds to E-box DNA sequences (CANNTG). While involved in the development and functioning of many different cell types, recent studies point to important roles for TCF4 in the nervous system. Specifically, human TCF4 gene is implicated in susceptibility to schizophrenia and

  1. atonal and achaete-scute-related genes in the annelid Platynereis dumerilii: insights into the evolution of neural basic-Helix-Loop-Helix genes

    Microsoft Academic Search

    Elena Simionato; Pierre Kerner; Nicolas Dray; Martine Le Gouar; Valérie Ledent; Detlev Arendt; Michel Vervoort

    2008-01-01

    BACKGROUND: Functional studies in model organisms, such as vertebrates and Drosophila, have shown that basic Helix-loop-Helix (bHLH) proteins have important roles in different steps of neurogenesis, from the acquisition of neural fate to the differentiation into specific neural cell types. However, these studies highlighted many differences in the expression and function of orthologous bHLH proteins during neural development between vertebrates

  2. Dynamic expression of basic helix-loop-helix Olig family members: implication of Olig2 in neuron and oligodendrocyte differentiation and identification of a new member, Olig3

    Microsoft Academic Search

    Hirohide Takebayashi; Shosei Yoshida; Michiya Sugimori; Hidetaka Kosako; Ryo Kominami; Masato Nakafuku; Yo-ichi Nabeshima

    2000-01-01

    Basic helix-loop-helix (bHLH) transcription factors have been shown to be essential for specification of various cell types. Here, we describe a novel bHLH family consisting of three members, two of which (Olig1, Olig2) are expressed in a nervous tissue-specific manner, whereas the third, Olig3 is found mainly in non-neural tissues. Olig1 and Olig2, which recently have been implicated in oligodendrogenesis,

  3. An Arabidopsis Basic Helix-Loop-Helix Leucine Zipper Protein Modulates Metal Homeostasis and Auxin Conjugate Responsiveness

    PubMed Central

    Rampey, Rebekah A.; Woodward, Andrew W.; Hobbs, Brianne N.; Tierney, Megan P.; Lahner, Brett; Salt, David E.; Bartel, Bonnie

    2006-01-01

    The plant hormone auxin can be regulated by formation and hydrolysis of amide-linked indole-3-acetic acid (IAA) conjugates. Here, we report the characterization of the dominant Arabidopsis iaa–leucine resistant3 (ilr3-1) mutant, which has reduced sensitivity to IAA–Leu and IAA–Phe, while retaining wild-type responses to free IAA. The gene defective in ilr3-1 encodes a basic helix-loop-helix leucine zipper protein, bHLH105, and the ilr3-1 lesion results in a truncated product. Overexpressing ilr3-1 in wild-type plants recapitulates certain ilr3-1 mutant phenotypes. In contrast, the loss-of-function ilr3-2 allele has increased IAA–Leu sensitivity compared to wild type, indicating that the ilr3-1 allele confers a gain of function. Microarray and quantitative real-time PCR analyses revealed five downregulated genes in ilr3-1, including three encoding putative membrane proteins similar to the yeast iron and manganese transporter Ccc1p. Transcript changes are accompanied by reciprocally misregulated metal accumulation in ilr3-1 and ilr3-2 mutants. Further, ilr3-1 seedlings are less sensitive than wild type to manganese, and auxin conjugate response phenotypes are dependent on exogenous metal concentration in ilr3 mutants. These data suggest a model in which the ILR3/bHLH105 transcription factor regulates expression of metal transporter genes, perhaps indirectly modulating IAA-conjugate hydrolysis by controlling the availability of metals previously shown to influence IAA–amino acid hydrolase protein activity. PMID:17028341

  4. Helt, a novel basic-helix-loop-helix transcriptional repressor expressed in the developing central nervous system.

    PubMed

    Nakatani, Tomoya; Mizuhara, Eri; Minaki, Yasuko; Sakamoto, Yoshimasa; Ono, Yuichi

    2004-04-16

    Neuronal differentiation is regulated by many basic-helix-loop-helix (bHLH) family transcriptional activators and repressors, and the balance of activity between these factors is important for the differentiation process. Here, we report the identification of a novel transcriptional repressor, designated Helt. Helt encoded a Hey-related bHLH protein containing the bHLH and Orange domains. Helt could homodimerize, and heterodimerize with Hes5 or Hey2. Both the bHLH and Orange domains were involved in the homodimerization. In contrast, only the bHLH domain was required for the heterodimerization with Hey2, whereas only the Orange domain mediated the interaction between Helt and Hes5. Thus, Helt has two dimerization domains, and these domains independently select a partner. Identification of preferred recognition sequences by CASTing experiments revealed that Helt bound to the E box, which was distinct from the Hes1 optimal sequence around the E box core. Not only the core sequence but also sequences flanking the E box were essential for the recognition by Helt and Hes1. Furthermore, Helt repressed transcription from an artificial promoter through binding to the optimal E box elements, as well as transcription from its own promoter. Using in situ hybridization and immunohistochemistry, Helt expression in embryos was investigated. Helt was mainly expressed in undifferentiated neural progenitors in some of the developing brain regions, including the mesencephalon and diencephalon, at the neurogenesis stage. These results suggest that Helt acts as a transcriptional repressor to regulate neuronal differentiation and/or identity. PMID:14764602

  5. The Basic/Helix-Loop-Helix Protein Family in Gossypium: Reference Genes and Their Evolution during Tetraploidization.

    PubMed

    Yan, Qian; Liu, Hou-Sheng; Yao, Dan; Li, Xin; Chen, Han; Dou, Yang; Wang, Yi; Pei, Yan; Xiao, Yue-Hua

    2015-01-01

    Basic/helix-loop-helix (bHLH) proteins comprise one of the largest transcription factor families and play important roles in diverse cellular and molecular processes. Comprehensive analyses of the composition and evolution of the bHLH family in cotton are essential to elucidate their functions and the molecular basis of cotton development. By searching bHLH homologous genes in sequenced diploid cotton genomes (Gossypium raimondii and G. arboreum), a set of cotton bHLH reference genes containing 289 paralogs were identified and named as GobHLH001-289. Based on their phylogenetic relationships, these cotton bHLH proteins were clustered into 27 subfamilies. Compared to those in Arabidopsis and cacao, cotton bHLH proteins generally increased in number, but unevenly in different subfamilies. To further uncover evolutionary changes of bHLH genes during tetraploidization of cotton, all genes of S5a and S5b subfamilies in upland cotton and its diploid progenitors were cloned and compared, and their transcript profiles were determined in upland cotton. A total of 10 genes of S5a and S5b subfamilies (doubled from A- and D-genome progenitors) maintained in tetraploid cottons. The major sequence changes in upland cotton included a 15-bp in-frame deletion in GhbHLH130D and a long terminal repeat retrotransposon inserted in GhbHLH062A, which eliminated GhbHLH062A expression in various tissues. The S5a and S5b bHLH genes of A and D genomes (except GobHLH062) showed similar transcription patterns in various tissues including roots, stems, leaves, petals, ovules, and fibers, while the A- and D-genome genes of GobHLH110 and GobHLH130 displayed clearly different transcript profiles during fiber development. In total, this study represented a genome-wide analysis of cotton bHLH family, and revealed significant changes in sequence and expression of these genes in tetraploid cottons, which paved the way for further functional analyses of bHLH genes in the cotton genus. PMID:25992947

  6. The Basic/Helix-Loop-Helix Protein Family in Gossypium: Reference Genes and Their Evolution during Tetraploidization

    PubMed Central

    Yan, Qian; Liu, Hou-Sheng; Yao, Dan; Li, Xin; Chen, Han; Dou, Yang; Wang, Yi; Pei, Yan; Xiao, Yue-Hua

    2015-01-01

    Basic/helix-loop-helix (bHLH) proteins comprise one of the largest transcription factor families and play important roles in diverse cellular and molecular processes. Comprehensive analyses of the composition and evolution of the bHLH family in cotton are essential to elucidate their functions and the molecular basis of cotton development. By searching bHLH homologous genes in sequenced diploid cotton genomes (Gossypium raimondii and G. arboreum), a set of cotton bHLH reference genes containing 289 paralogs were identified and named as GobHLH001-289. Based on their phylogenetic relationships, these cotton bHLH proteins were clustered into 27 subfamilies. Compared to those in Arabidopsis and cacao, cotton bHLH proteins generally increased in number, but unevenly in different subfamilies. To further uncover evolutionary changes of bHLH genes during tetraploidization of cotton, all genes of S5a and S5b subfamilies in upland cotton and its diploid progenitors were cloned and compared, and their transcript profiles were determined in upland cotton. A total of 10 genes of S5a and S5b subfamilies (doubled from A- and D-genome progenitors) maintained in tetraploid cottons. The major sequence changes in upland cotton included a 15-bp in-frame deletion in GhbHLH130D and a long terminal repeat retrotransposon inserted in GhbHLH062A, which eliminated GhbHLH062A expression in various tissues. The S5a and S5b bHLH genes of A and D genomes (except GobHLH062) showed similar transcription patterns in various tissues including roots, stems, leaves, petals, ovules, and fibers, while the A- and D-genome genes of GobHLH110 and GobHLH130 displayed clearly different transcript profiles during fiber development. In total, this study represented a genome-wide analysis of cotton bHLH family, and revealed significant changes in sequence and expression of these genes in tetraploid cottons, which paved the way for further functional analyses of bHLH genes in the cotton genus. PMID:25992947

  7. Conversion of ectoderm into a neural fate by ATH-3, a vertebrate basic helix-loop-helix gene homologous to Drosophila proneural gene atonal.

    PubMed Central

    Takebayashi, K; Takahashi, S; Yokota, C; Tsuda, H; Nakanishi, S; Asashima, M; Kageyama, R

    1997-01-01

    We have isolated a novel basic helix-loop-helix (bHLH) gene homologous to the Drosophila proneural gene atonal, termed ATH-3, from Xenopus and mouse. ATH-3 is expressed in the developing nervous system, with high levels of expression in the brain, retina and cranial ganglions. Injection of ATH-3 RNA into Xenopus embryos dramatically expands the neural tube and induces ectopic neural tissues in the epidermis but inhibits non-neural development. This ATH-3-induced neural hyperplasia does not require cell division, indicating that surrounding cells which are normally non-neural types adopt a neural fate. In a Xenopus animal cap assay, ATH-3 is able to convert ectodermal cells into neurons expressing anterior markers without inducing mesoderm. Interestingly, a single amino acid change from Ser to Asp in the basic region, which mimics phosphorylation of Ser, severely impairs the anterior marker-inducing ability without affecting general neurogenic activities. These results provide evidence that ATH-3 can directly convert non-neural or undetermined cells into a neural fate, and suggest that the Ser residue in the basic region may be critical for the regulation of ATH-3 activity by phosphorylation. PMID:9029157

  8. Molecular characterization of cold-responsive basic helix-loop-helix transcription factors MabHLHs that interact with MaICE1 in banana fruit.

    PubMed

    Peng, Huan-Huan; Shan, Wei; Kuang, Jian-Fei; Lu, Wang-Jin; Chen, Jian-Ye

    2013-11-01

    Basic helix-loop-helix (bHLH) transcription factors (TFs) are ubiquitously involved in the response of higher plants to various abiotic stresses. However, little is known about bHLH TFs involved in the cold stress response in economically important fruits. Here, five novel full-length bHLH genes, designated as MabHLH1-MabHLH5, were isolated and characterized from banana fruit. Gene expression profiles revealed that MabHLH1/2/4 were induced by cold stress and methyl jasmonate (MeJA) treatment. Transient assays in tobacco BY2 protoplasts showed that MabHLH1/2/4 promoters were activated by cold stress and MeJA treatments. Moreover, protein-protein interaction analysis demonstrated that MabHLH1/2/4 not only physically interacted with each other to form hetero-dimers in the nucleus, but also interacted with an important upstream component of cold signaling MaICE1, with different interaction domains at their N-terminus. These results indicate that banana fruit cold-responsive MabHLHs may form a big protein complex in the nucleus with MaICE1. Taken together, our findings advance our understanding of the possible involvement of bHLH TFs in the regulatory network of ICE-CBF cold signaling pathway. PMID:23955147

  9. Overexpression of Basic Helix-Loop-Helix Transcription Factors Enhances Neuronal Differentiation of Fetal Human Neural Progenitor Cells in Various Ways

    PubMed Central

    Serre, Angéline; Snyder, Evan Y.; Buchet, Delphine

    2012-01-01

    In a perspective of regenerative medicine, multipotent human neural progenitor cells (hNPCs) offer a therapeutic advantage over pluripotent stem cells in that they are already invariantly “neurally committed” and lack tumorigenicity. However, some of their intrinsic properties, such as slow differentiation and uncontrolled multipotency, remain among the obstacles to their routine use for transplantation. Although rodent NPCs have been genetically modified in vitro to overcome some of these limitations, the translation of this strategy to human cells remains in its early stages. In the present study, we compare the actions of 4 basic helix-loop-helix transcription factors on the proliferation, specification, and terminal differentiation of hNPCs isolated from the fetal dorsal telencephalon. Consistent with their proneural activity, Ngn1, Ngn2, Ngn3, and Mash1 prompted rapid commitment of the cells. The Ngns induced a decrease in proliferation, whereas Mash1 maintained committed progenitors in a proliferative state. As opposed to Ngn1 and Ngn3, which had no effect on glial differentiation, Ngn2 induced an increase in astrocytes in addition to neurons, whereas Mash1 led to both neuronal and oligodendroglial specification. GABAergic, cholinergic, and motor neuron differentiations were considerably increased by overexpression of Ngn2 and, to a lesser extent, of Ngn3 and Mash1. Thus, we provide evidence that hNPCs can be efficiently, rapidly, and safely expanded in vitro as well as rapidly differentiated toward mature neural (typically neuronal) lineages by the overexpression of select proneural genes. PMID:21561385

  10. The Rice Basic Helix-Loop-Helix Transcription Factor TDR INTERACTING PROTEIN2 Is a Central Switch in Early Anther Development.

    PubMed

    Fu, Zhenzhen; Yu, Jing; Cheng, Xiaowei; Zong, Xu; Xu, Jie; Chen, Mingjiao; Li, Zongyun; Zhang, Dabing; Liang, Wanqi

    2014-04-22

    In male reproductive development in plants, meristemoid precursor cells possessing transient, stem cell-like features undergo cell divisions and differentiation to produce the anther, the male reproductive organ. The anther contains centrally positioned microsporocytes surrounded by four distinct layers of wall: the epidermis, endothecium, middle layer, and tapetum. Here, we report that the rice (Oryza sativa) basic helix-loop-helix (bHLH) protein TDR INTERACTING PROTEIN2 (TIP2) functions as a crucial switch in the meristemoid transition and differentiation during early anther development. The tip2 mutants display undifferentiated inner three anther wall layers and abort tapetal programmed cell death, causing complete male sterility. TIP2 has two paralogs in rice, TDR and EAT1, which are key regulators of tapetal programmed cell death. We revealed that TIP2 acts upstream of TDR and EAT1 and directly regulates the expression of TDR and EAT1. In addition, TIP2 can interact with TDR, indicating a role of TIP2 in later anther development. Our findings suggest that the bHLH proteins TIP2, TDR, and EAT1 play a central role in regulating differentiation, morphogenesis, and degradation of anther somatic cell layers, highlighting the role of paralogous bHLH proteins in regulating distinct steps of plant cell-type determination. PMID:24755456

  11. An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice.

    PubMed

    Luo, Jianghong; Liu, Hui; Zhou, Taoying; Gu, Benguo; Huang, Xuehui; Shangguan, Yingying; Zhu, Jingjie; Li, Yan; Zhao, Yan; Wang, Yongchun; Zhao, Qiang; Wang, Ahong; Wang, Ziqun; Sang, Tao; Wang, Zixuan; Han, Bin

    2013-09-01

    Long awns are important for seed dispersal in wild rice (Oryza rufipogon), but are absent in cultivated rice (Oryza sativa). The genetic mechanism involved in loss-of-awn in cultivated rice remains unknown. We report here the molecular cloning of a major quantitative trait locus, An-1, which regulates long awn formation in O. rufipogon. An-1 encodes a basic helix-loop-helix protein, which regulates cell division. The nearly-isogenic line (NIL-An-1) carrying a wild allele An-1 in the genetic background of the awnless indica Guangluai4 produces long awns and longer grains, but significantly fewer grains per panicle compared with Guangluai4. Transgenic studies confirmed that An-1 positively regulates awn elongation, but negatively regulates grain number per panicle. Genetic variations in the An-1 locus were found to be associated with awn loss in cultivated rice. Population genetic analysis of wild and cultivated rice showed a significant reduction in nucleotide diversity of the An-1 locus in rice cultivars, suggesting that the An-1 locus was a major target for artificial selection. Thus, we propose that awn loss was favored and strongly selected by humans, as genetic variations at the An-1 locus that cause awn loss would increase grain numbers and subsequently improve grain yield in cultivated rice. PMID:24076974

  12. The basic helix-loop-helix region of human neurogenin 1 is a monomeric natively unfolded protein which forms a "fuzzy" complex upon DNA binding.

    PubMed

    Aguado-Llera, David; Goormaghtigh, Erik; de Geest, Natalie; Quan, Xiao-Jiang; Prieto, Alicia; Hassan, Bassen A; Gómez, Javier; Neira, José L

    2010-03-01

    Neuronal specification is regulated by the activity of transcription factors containing the basic helix-loop-helix motif (bHLH); these regulating proteins include, among others, the neurogenin (Ngn) family, related to the atonal family of genes. Neurogenin 1 (NGN1) is a 237-residue protein that contains a bHLH domain and is involved in neuronal differentiation. In this work, we synthesized the bHLH region of NGN1 (bHLHN) comprising residues 90-150 of the full-length NGN1. The domain is a monomeric natively unfolded protein with a pH-dependent premolten globule conformation, as shown by several spectroscopic techniques (namely, NMR, fluorescence, FTIR, and circular dichroism). The unfolded character of the domain also explains, first, the impossibility of its overexpression in several Escherichia coli strains and, second, its insolubility in aqueous buffers. To the best of our knowledge, this is the first extensive study of the conformational preferences of a bHLH domain under different solution conditions. Upon binding to two DNA E-boxes, the protein forms "fuzzy" complexes (that is, the complexes were not fully folded). The affinities of bHLHN for both DNA boxes were smaller than those of other bHLH domains, which might explain why the protein-DNA complexes were not fully folded. PMID:20102160

  13. Novel basic helix-loop-helix transcription factor hes4 antagonizes the function of twist-1 to regulate lineage commitment of bone marrow stromal/stem cells.

    PubMed

    Cakouros, Dimitrios; Isenmann, Sandra; Hemming, Sarah Elizabeth; Menicanin, Danijela; Camp, Esther; Zannetinno, Andrew Christopher William; Gronthos, Stan

    2015-06-01

    Basic helix-loop-helix (bHLH) transcription factors are pivotal regulators of cellular differentiation and development. The bHLH factor, Twist-1 has previously been found to control bone marrow stromal/stem cells (BMSC) self-renewal, life span, and differentiation, however not much is known about its mechanism of action. In this study, we have discovered a novel Twist-1 regulated bHLH gene, Hes4, expressed in humans, but not in mice. Its closest homologue in both humans and mice is Hes1. Overexpression and knockdown studies demonstrated that Hes4 promotes osteogenesis resulting in an increase in Runx2, osteocalcin, osteopontin, and bone sialoprotein expression. Conversely, Hes4 was found to inhibit adipogenesis accompanied by a decrease in PPAR?2, adiponectin, and adipsin expression. In vitro studies indicate that Hes4 employs a mechanism to counteract the negative function of Twist-1 on osteogenesis by binding to Twist-1 and inhibiting the ability of Twist-1 to bind and inhibit Runx2. In vivo chromatin immunoprecipitation and in vitro reporter assays illustrated that Runx2 recruitment to the osterix promoter, was found to be enhanced in the presence of Hes4 and inhibited in the presence of Twist-1. Therefore, Hes4 antagonizes the function of Twist-1 to regulate lineage commitment of BMSC. These studies highlight the potential differences in molecular mechanisms that regulate BMSC osteogenic differentiation between human and mouse. PMID:25579220

  14. Effects of postweaning administration of conjugated linoleic Acid on development of obesity in nescient basic helix-loop-helix 2 knockout mice.

    PubMed

    Kim, Yoo; Kim, Daeyoung; Good, Deborah J; Park, Yeonhwa

    2015-06-01

    Conjugated linoleic acid (CLA) has been reported to prevent body weight gain and fat accumulation in part by improving physical activity in mice. However, the effects of postweaning administration of CLA on the development of obesity later in life have not yet been demonstrated. The current study investigated the role of postweaning CLA treatment on skeletal muscle energy metabolism in genetically induced inactive adult-onset obese model, nescient basic helix-loop-helix 2 knockout (N2KO) mice. Four-week-old male N2KO and wild type mice were fed either control or a CLA-containing diet (0.5%) for 4 weeks, and then CLA was withdrawn and control diet provided to all mice for the following 8 weeks. Postweaning CLA supplementation in wild type animals, but not N2KO mice, may activate AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-? (PPAR?) as well as promote desensitization of phosphatase and tensin homologue (PTEN) and sensitization of protein kinase B (AKT) at threonine 308 in gastrocnemius skeletal muscle, improving voluntary activity and glucose homeostasis. We suggest that postweaning administration of CLA may in part stimulate the underlying molecular targets involved in muscle energy metabolism to reduce weight gain in normal animals, but not in the genetically induced inactive adult-onset animal model. PMID:25976059

  15. Arabidopsis Basic Helix-Loop-Helix Transcription Factors MYC2, MYC3, and MYC4 Regulate Glucosinolate Biosynthesis, Insect Performance, and Feeding Behavior[W][OPEN

    PubMed Central

    Schweizer, Fabian; Fernández-Calvo, Patricia; Zander, Mark; Diez-Diaz, Monica; Fonseca, Sandra; Glauser, Gaétan; Lewsey, Mathew G.; Ecker, Joseph R.; Solano, Roberto; Reymond, Philippe

    2013-01-01

    Arabidopsis thaliana plants fend off insect attack by constitutive and inducible production of toxic metabolites, such as glucosinolates (GSs). A triple mutant lacking MYC2, MYC3, and MYC4, three basic helix-loop-helix transcription factors that are known to additively control jasmonate-related defense responses, was shown to have a highly reduced expression of GS biosynthesis genes. The myc2 myc3 myc4 (myc234) triple mutant was almost completely devoid of GS and was extremely susceptible to the generalist herbivore Spodoptera littoralis. On the contrary, the specialist Pieris brassicae was unaffected by the presence of GS and preferred to feed on wild-type plants. In addition, lack of GS in myc234 drastically modified S. littoralis feeding behavior. Surprisingly, the expression of MYB factors known to regulate GS biosynthesis genes was not altered in myc234, suggesting that MYC2/MYC3/MYC4 are necessary for direct transcriptional activation of GS biosynthesis genes. To support this, chromatin immunoprecipitation analysis showed that MYC2 binds directly to the promoter of several GS biosynthesis genes in vivo. Furthermore, yeast two-hybrid and pull-down experiments indicated that MYC2/MYC3/MYC4 interact directly with GS-related MYBs. This specific MYC–MYB interaction plays a crucial role in the regulation of defense secondary metabolite production and underlines the importance of GS in shaping plant interactions with adapted and nonadapted herbivores. PMID:23943862

  16. HEN1 and HEN2: a subgroup of basic helix-loop-helix genes that are coexpressed in a human neuroblastoma.

    PubMed Central

    Brown, L; Espinosa, R; Le Beau, M M; Siciliano, M J; Baer, R

    1992-01-01

    An important family of regulatory molecules is made up of proteins that possess the DNA-binding and dimerization motif known as the basic helix-loop-helix (bHLH) domain. The bHLH family includes subgroups of closely related proteins that share common functional properties and overlapping patterns of expression (e.g., the MyoD1 and achaete-scute subgroups). In this report we describe HEN1 and HEN2, mammalian genes that encode a distinct subgroup of bHLH proteins. The HEN1 gene was identified on the basis of cross-hybridization with TAL1, a known bHLH gene implicated in T-cell acute lymphoblastic leukemia. In situ fluorescence hybridization was used to localize the human HEN1 gene to chromosome band 1q22. HEN1 and HEN2 are coexpressed in the IMR-32 human neuroblastoma cell line, and they encode highly related proteins of 133 and 135 residues, respectively, that share 98% amino acid identity in their hHLH domains. These data imply that the bHLH protein subgroup encoded by HEN1 and HEN2 may serve important regulatory functions in the developing nervous system. Images PMID:1528853

  17. Ras p21Val inhibits myogenesis without altering the DNA binding or transcriptional activities of the myogenic basic helix-loop-helix factors.

    PubMed Central

    Kong, Y; Johnson, S E; Taparowsky, E J; Konieczny, S F

    1995-01-01

    MRF4, MyoD, myogenin, and Myf-5 are muscle-specific basic helix-loop-helix transcription factors that share the ability to activate the expression of skeletal muscle genes such as those encoding alpha-actin, myosin heavy chain, and the acetylcholine receptor subunits. The muscle regulatory factors (MRFs) also exhibit the unique capacity to initiate the myogenic program when ectopically expressed in a variety of nonmuscle cell types, most notably C3H10T1/2 fibroblasts (10T1/2 cells). The commitment of myoblasts to terminal differentiation, although positively regulated by the MRFs, also is controlled negatively by a variety of agents, including several growth factors and oncoproteins such as fibroblast growth factor (FGF-2), transforming growth factor beta 1 (TGF-beta 1), and Ras p21Val. The molecular mechanisms by which these varied agents alter myogenic terminal differentiation events remain unclear. In an effort to establish whether Ras p21Val represses MRF activity by directly targeting the MRF proteins, we examined the DNA binding and transcription activation potentials of MRF4 and MyoD when expressed in 10T1/2 cells or in 10T1/2 cells expressing Ras p21Val. Our results demonstrate that Ras p21Val inhibits terminal differentiation events by targeting the basic domain of the MRFs, and yet the mechanism underlying this inhibition does not involve altering the DNA binding or the inherent transcriptional activity of these regulatory factors. In contrast, FGF-2 and TGF-beta 1 block terminal differentiation by repressing the transcriptional activity of the MRFs. We conclude that the Ras p21Val block in differentiation operates via an intracellular signaling pathway that is distinct from the FGF-2 and TGF-beta 1 pathways. PMID:7565669

  18. Basic helix-loop-helix transcription factor Bmsage is involved in regulation of fibroin H-chain gene via interaction with SGF1 in Bombyx mori.

    PubMed

    Zhao, Xiao-Ming; Liu, Chun; Li, Qiong-Yan; Hu, Wen-Bo; Zhou, Meng-Ting; Nie, Hong-Yi; Zhang, Yin-Xia; Peng, Zhang-Chuan; Zhao, Ping; Xia, Qing-You

    2014-01-01

    Silk glands are specialized in the synthesis of several secretory proteins. Expression of genes encoding the silk proteins in Bombyx mori silk glands with strict territorial and developmental specificities is regulated by many transcription factors. In this study, we have characterized B. mori sage, which is closely related to sage in the fruitfly Drosophila melanogaster. It is termed Bmsage; it encodes transcription factor Bmsage, which belongs to the Mesp subfamily, containing a basic helix-loop-helix motif. Bmsage transcripts were detected specifically in the silk glands of B. mori larvae through RT-PCR analysis. Immunoblotting analysis confirmed the Bmsage protein existed exclusively in B. mori middle and posterior silk gland cells. Bmsage has a low level of expression in the 4th instar molting stages, which increases gradually in the 5th instar feeding stages and then declines from the wandering to the pupation stages. Quantitative PCR analysis suggested the expression level of Bmsage in a high silk strain was higher compared to a lower silk strain on day 3 of the larval 5th instar. Furthermore, far western blotting and co-immunoprecipitation assays showed the Bmsage protein interacted with the fork head transcription factor silk gland factor 1 (SGF1). An electrophoretic mobility shift assay showed the complex of Bmsage and SGF1 proteins bound to the A and B elements in the promoter of fibroin H-chain gene(fib-H), respectively. Luciferase reporter gene assays confirmed the complex of Bmsage and SGF1 proteins increased the expression of fib-H. Together, these results suggest Bmsage is involved in the regulation of the expression of fib-H by being together with SGF1 in B. mori PSG cells. PMID:24740008

  19. Basic Helix-Loop-Helix Transcription Factor Bmsage Is Involved in Regulation of fibroin H-chain Gene via Interaction with SGF1 in Bombyx mori

    PubMed Central

    Li, Qiong-Yan; Hu, Wen-Bo; Zhou, Meng-Ting; Nie, Hong-Yi; Zhang, Yin-Xia; Peng, Zhang-Chuan; Zhao, Ping; Xia, Qing-You

    2014-01-01

    Silk glands are specialized in the synthesis of several secretory proteins. Expression of genes encoding the silk proteins in Bombyx mori silk glands with strict territorial and developmental specificities is regulated by many transcription factors. In this study, we have characterized B. mori sage, which is closely related to sage in the fruitfly Drosophila melanogaster. It is termed Bmsage; it encodes transcription factor Bmsage, which belongs to the Mesp subfamily, containing a basic helix–loop–helix motif. Bmsage transcripts were detected specifically in the silk glands of B. mori larvae through RT-PCR analysis. Immunoblotting analysis confirmed the Bmsage protein existed exclusively in B. mori middle and posterior silk gland cells. Bmsage has a low level of expression in the 4th instar molting stages, which increases gradually in the 5th instar feeding stages and then declines from the wandering to the pupation stages. Quantitative PCR analysis suggested the expression level of Bmsage in a high silk strain was higher compared to a lower silk strain on day 3 of the larval 5th instar. Furthermore, far western blotting and co-immunoprecipitation assays showed the Bmsage protein interacted with the fork head transcription factor silk gland factor 1 (SGF1). An electrophoretic mobility shift assay showed the complex of Bmsage and SGF1 proteins bound to the A and B elements in the promoter of fibroin H-chain gene(fib-H), respectively. Luciferase reporter gene assays confirmed the complex of Bmsage and SGF1 proteins increased the expression of fib-H. Together, these results suggest Bmsage is involved in the regulation of the expression of fib-H by being together with SGF1 in B. mori PSG cells. PMID:24740008

  20. Basic helix-loop-helix transcription factor BcbHLHpol functions as a positive regulator of pollen development in non-heading Chinese cabbage.

    PubMed

    Liu, Tongkun; Li, Ying; Zhang, Changwei; Duan, Weike; Huang, Feiyi; Hou, Xilin

    2014-12-01

    Cytoplasmic male sterility (CMS) is a common trait in higher plants, and several transcription factors regulate pollen development. Previously, we obtained a basic helix-loop-helix transcription factor, BcbHLHpol, via suppression subtractive hybridization in non-heading Chinese cabbage. However, the regulatory function of BcbHLHpol during anther and pollen development remains unclear. In this study, BcbHLHpol was cloned, and its tissue-specific expression profile was analyzed. The results of real-time polymerase chain reaction showed that BcbHLHpol was highly expressed in maintainer buds and that the transcripts of BcbHLHpol significantly decreased in the buds of pol CMS. A virus-induced gene silencing vector that targets BcbHLHpol was constructed and transformed into Brassica campestris plants to further explore the function of BcbHLHpol. Male sterility and short stature were observed in BcbHLHpol-silenced plants. The degradation of tapetal cells was inhibited in BcbHLHpol-silenced plants, and nutrients were insufficiently supplied to the microspore. These phenomena resulted in pollen abortion. This result indicates that BcbHLHpol functions as a positive regulator in pollen development. Yeast two-hybrid and bimolecular fluorescence complementation assays revealed that BcbHLHpol interacted with BcSKP1 in the nucleus. This finding suggests that BcbHLHpol and BcSKP1 are positive coordinating regulators of pollen development. Quantitative real-time PCR indicated that BcbHLHpol and BcSKP1 can be induced at low temperatures. Thus, we propose that BcbHLHpol is necessary for meiosis. This study provides insights into the regulatory functions of the BcbHLHpol network during anther development. PMID:25147023

  1. Constitutive Overexpression of the Basic Helix-Loop-Helix Nex1/MATH-2 Transcription Factor Promotes Neuronal Differentiation of PC12 Cells and Neurite Regeneration

    PubMed Central

    Uittenbogaard, Martine; Chiaramello, Anne

    2009-01-01

    Elucidation of the intricate transcriptional pathways leading to neural differentiation and the establishment of neuronal identity is critical to the understanding and design of therapeutic approaches. Among the important players, the basic helix-loop-helix (bHLH) transcription factors have been found to be pivotal regulators of neurogenesis. In this study, we investigate the role of the bHLH differentiation factor Nex1/MATH-2 in conjunction with the nerve growth factor (NGF) signaling pathway using the rat phenochromocytoma PC12 cell line. We report that the expression of Nex1 protein is induced after 5 hr of NGF treatment and reaches maximal levels at 24 hr, when very few PC12 cells have begun extending neurites and ceased cell division. Furthermore, our study demonstrates that Nex1 has the ability to trigger neuronal differentiation of PC12 cells in the absence of neurotrophic factor. We show that Nex1 plays an important role in neurite outgrowth and has the capacity to regenerate neurite outgrowth in the absence of NGF. These results are corroborated by the fact that Nex1 targets a repertoire of distinct types of genes associated with neuronal differentiation, such as GAP-43, ?III-tubulin, and NeuroD. In addition, our findings show that Nex1 up-regulates the expression of the mitotic inhibitor p21WAF1, thus linking neuronal differentiation to cell cycle withdrawal. Finally, our studies show that overexpression of a Nex1 mutant has the ability to block the execution of NGF-induced differentiation program, suggesting that Nex1 may be an important effector of the NGF signaling pathway. PMID:11782967

  2. Obligate Heterodimerization of Arabidopsis Phytochromes C and E and Interaction with the PIF3 Basic Helix-Loop-Helix Transcription Factor[W

    PubMed Central

    Clack, Ted; Shokry, Ahmed; Moffet, Matt; Liu, Peng; Faul, Michael; Sharrock, Robert A.

    2009-01-01

    Phytochromes are dimeric chromoproteins that regulate plant responses to red (R) and far-red (FR) light. The Arabidopsis thaliana genome encodes five phytochrome apoproteins: type I phyA mediates responses to FR, and type II phyB–phyE mediate shade avoidance and classical R/FR-reversible responses. In this study, we describe the complete in vivo complement of homodimeric and heterodimeric type II phytochromes. Unexpectedly, phyC and phyE do not homodimerize and are present in seedlings only as heterodimers with phyB and phyD. Roles in light regulation of hypocotyl length, leaf area, and flowering time are demonstrated for heterodimeric phytochromes containing phyC or phyE. Heterodimers of phyC and chromophoreless phyB are inactive, indicating that phyC subunits require spectrally intact dimer partners to be active themselves. Consistent with the obligate heterodimerization of phyC and phyE, phyC is made unstable by removal of its phyB binding partner, and overexpression of phyE results in accumulation of phyE monomers. Following a pulse of red light, phyA, phyB, phyC, and phyD interact in vivo with the PHYTOCHROME INTERACTING FACTOR3 basic helix-loop-helix transcription factor, and this interaction is FR reversible. Therefore, most or all of the type I and type II phytochromes, including heterodimeric forms, appear to function through PIF-mediated pathways. These findings link an unanticipated diversity of plant R/FR photoreceptor structures to established phytochrome signaling mechanisms. PMID:19286967

  3. Basic Helix-loop-Helix Transcription Factor NEUROG1 and Schizophrenia: Effects on Illness Susceptibility, MRI Brain Morphometry and Cognitive Abilities

    PubMed Central

    Ho, Beng-Choon; Epping, Eric; Wang, Kai; Andreasen, Nancy C.; Librant, Amy; Wassink, Thomas H.

    2008-01-01

    Transcription factors, including the basic helix-loop-helix (bHLH) family, regulate numerous genes and play vital roles in controlling gene expression. Consequently, transcription factor mutations can lead to phenotypic pleiotropy, and may be a candidate mechanism underlying the complex genetics and heterogeneous phenotype of schizophrenia. Neurogenin1 (NEUROG1; a.k.a. Ngn1 or Neurod3), a bHLH transcription factor encoded on a known schizophrenia linkage region in 5q31.1, induces glutamatergic and suppresses GABAergic neuronal differentiation during embryonic neurodevelopment. The goal of this study is to investigate NEUROG1 effects on schizophrenia risk and on phenotypic features of schizophrenia. We tested 392 patients with schizophrenia or schizoaffective disorder and 226 healthy normal volunteers for association with NEUROG1. Major alleles on two NEUROG1-associated SNPs (rs2344484-C-allele and rs8192558-G-allele) were significantly more prevalent among patients (p?.0018). Approximately 80% of the sample also underwent high-resolution, multi-spectral magnetic resonance brain imaging and standardized neuropsychological assessment. There were significant rs2344484 genotype main effects on total cerebral gray matter (GM) and temporal GM volumes (p?.05). C-allele-carrier patients and healthy volunteers had smaller total cerebral GM and temporal GM volumes than their respective T-homozygous counterparts. rs2344484-C-allele was further associated with generalized cognitive deficits among schizophrenia patients but not in healthy volunteers. Our findings replicate previous association between NEUROG1 and schizophrenia. More importantly, this is the first study to examine brain morphological and neurocognitive correlates of NEUROG1. rs2344484-C-allele may affect NEUROG1’s role in transcription regulation such that brain morphology and cognitive abilities are altered resulting in increased susceptibility to develop schizophrenia. PMID:18799289

  4. APETALA2/ETHYLENE RESPONSE FACTOR and basic helix-loop-helix tobacco transcription factors cooperatively mediate jasmonate-elicited nicotine biosynthesis.

    PubMed

    De Boer, Kathleen; Tilleman, Sofie; Pauwels, Laurens; Vanden Bossche, Robin; De Sutter, Valerie; Vanderhaeghen, Rudy; Hilson, Pierre; Hamill, John D; Goossens, Alain

    2011-06-01

    Transcription factors of the plant-specific apetala2/ethylene response factor (AP2/ERF) family control plant secondary metabolism, often as part of signalling cascades induced by jasmonate (JA) or other elicitors. Here, we functionally characterized the JA-inducible tobacco (Nicotiana tabacum) AP2/ERF factor ORC1, one of the members of the NIC2-locus ERFs that control nicotine biosynthesis and a close homologue of ORCA3, a transcriptional activator of alkaloid biosynthesis in Catharanthus roseus. ORC1 positively regulated the transcription of several structural genes coding for the enzymes involved in nicotine biosynthesis. Accordingly, overexpression of ORC1 was sufficient to stimulate alkaloid biosynthesis in tobacco plants and tree tobacco (Nicotiana glauca) root cultures. In contrast to ORCA3 in C. roseus, which needs only the GCC motif in the promoters of the alkaloid synthesis genes to induce their expression, ORC1 required the presence of both GCC-motif and G-box elements in the promoters of the tobacco nicotine biosynthesis genes for maximum transactivation. Correspondingly, combined application with the JA-inducible Nicotiana basic helix-loop-helix (bHLH) factors that bind the G-box element in these promoters enhanced ORC1 action. Conversely, overaccumulation of JAZ repressor proteins that block bHLH activity reduced ORC1 functionality. Finally, the activity of both ORC1 and bHLH proteins was post-translationally upregulated by a JA-modulated phosphorylation cascade, in which a specific mitogen-activated protein kinase kinase, JA-factor stimulating MAPKK1 (JAM1), was identified. This study highlights the complexity of the molecular machinery involved in the regulation of tobacco alkaloid biosynthesis and provides mechanistic insights about its transcriptional regulators. PMID:21418355

  5. Proprotein convertase PACE4 is down-regulated by the basic helix-loop-helix transcription factor hASH-1 and MASH-1.

    PubMed Central

    Yoshida, I; Koide, S; Hasegawa, S I; Nakagawara, A; Tsuji, A; Matsuda, Y

    2001-01-01

    PACE4 is a mammalian subtilisin-like proprotein convertase that activates transforming growth factor (TGF)-beta-related proteins such as bone morphogenetic protein 2 (BMP2), BMP4 and Nodal and exhibits a dynamic expression pattern during embryogenesis. We recently determined that the 1 kb 5'-upstream region of the PACE4 gene contains 12 E-box (E1-E12) elements and that an E-box cluster (E4-E9) acts as a negative regulator [Tsuji, Yoshida, Hasegawa, Bando, Yoshida, Koide, Mori and Matsuda (1999) J. Biochem. (Tokyo) 126, 494-502]. It is known that the mammalian achaete-scute homologue 1 (MASH-1) binds specifically to an E-box (CACCTG) sequence in collaboration with E47, a ubiquitously expressed basic helix-loop-helix (bHLH) factor. To identify the roles of the bHLH factor and E-box elements in regulating PACE4 gene expression in neural development, we analysed the effects of human achaete-scute homologue 1 (hASH-1) on PACE4 gene expression with various neuroblastoma cell lines. The expressions of PACE4 and hASH-1 are correlated inversely in these cell lines. The overexpression of hASH-1 or MASH-1 causes a marked decrease in endogenous PACE4 gene expression but has no effect on the expression of other subtilisin-like proprotein convertases such as furin, PC5/6 and PC7/8. In contrast, other neural bHLH factors (MATH-1, MATH-2, neurogenin 1, neurogenin 2, neurogenin 3 and E47) did not affect PACE4 gene expression. Furthermore, an E-box cluster was a negative regulatory element for the promoter activity in NBL-S cells expressing hASH-1 at high level as determined by a luciferase assay. Binding of hASH-1 to the E-box cluster was confirmed by gel mobility-shift assay. In the present study we identified the PACE4 gene as one of the targets of hASH-1, which is a key factor in the initiation of neural differentiation. These results suggest that the alteration of PACE4 gene expression by hASH-1 causes rapid changes in the biological activities of TGF-beta-related proteins via post-translational modification of these proteins. PMID:11736660

  6. Functional Diversity of Human Basic Helix-Loop-Helix Transcription Factor TCF4 Isoforms Generated by Alternative 5? Exon Usage and Splicing

    PubMed Central

    Sepp, Mari; Kannike, Kaja; Eesmaa, Ave; Urb, Mari; Timmusk, Tőnis

    2011-01-01

    Background Transcription factor 4 (TCF4 alias ITF2, E2-2, ME2 or SEF2) is a ubiquitous class A basic helix-loop-helix protein that binds to E-box DNA sequences (CANNTG). While involved in the development and functioning of many different cell types, recent studies point to important roles for TCF4 in the nervous system. Specifically, human TCF4 gene is implicated in susceptibility to schizophrenia and TCF4 haploinsufficiency is the cause of the Pitt-Hopkins mental retardation syndrome. However, the structure, expression and coding potential of the human TCF4 gene have not been described in detail. Principal Findings In the present study we used human tissue samples to characterize human TCF4 gene structure and TCF4 expression at mRNA and protein level. We report that although widely expressed, human TCF4 mRNA expression is particularly high in the brain. We demonstrate that usage of numerous 5? exons of the human TCF4 gene potentially yields in TCF4 protein isoforms with 18 different N-termini. In addition, the diversity of isoforms is increased by alternative splicing of several internal exons. For functional characterization of TCF4 isoforms, we overexpressed individual isoforms in cultured human cells. Our analysis revealed that subcellular distribution of TCF4 isoforms is differentially regulated: Some isoforms contain a bipartite nuclear localization signal and are exclusively nuclear, whereas distribution of other isoforms relies on heterodimerization partners. Furthermore, the ability of different TCF4 isoforms to regulate E-box controlled reporter gene transcription is varied depending on whether one or both of the two TCF4 transcription activation domains are present in the protein. Both TCF4 activation domains are able to activate transcription independently, but act synergistically in combination. Conclusions Altogether, in this study we have described the inter-tissue variability of TCF4 expression in human and provided evidence about the functional diversity of the alternative TCF4 protein isoforms. PMID:21789225

  7. Flavonoid-related basic helix-loop-helix regulators, NtAn1a and NtAn1b, of tobacco have originated from two ancestors and are functionally active

    Microsoft Academic Search

    Yanhong Bai; Sitakanta Pattanaik; Barunava Patra; Joshua R. Werkman; Claire H. Xie; Ling Yuan

    The basic helix-loop-helix (bHLH) transcription factors (TFs) comprise one of the largest families of TFs involved in developmental\\u000a and physiological processes in plants. Here, we describe the functional characterization of two bHLH TFs (NtAn1a and NtAn1b)\\u000a isolated from tobacco (Nicotiana tabacum) flowers. NtAn1a and NtAn1b originate from two ancestors of tobacco, N. sylvestris and N. tomentosiformis, respectively. NtAn1a and NtAn1b

  8. Basic helix-loop-helix transcription factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 are negative regulators of jasmonate responses in Arabidopsis.

    PubMed

    Sasaki-Sekimoto, Yuko; Jikumaru, Yusuke; Obayashi, Takeshi; Saito, Hikaru; Masuda, Shinji; Kamiya, Yuji; Ohta, Hiroyuki; Shirasu, Ken

    2013-09-01

    Jasmonates regulate transcriptional reprogramming during growth, development, and defense responses. Jasmonoyl-isoleucine, an amino acid conjugate of jasmonic acid (JA), is perceived by the protein complex composed of the F-box protein CORONATINE INSENSITIVE1 (COI1) and JASMONATE ZIM DOMAIN (JAZ) proteins, leading to the ubiquitin-dependent degradation of JAZ proteins. This activates basic helix-loop-helix-type MYC transcription factors to regulate JA-responsive genes. Here, we show that the expression of genes encoding other basic helix-loop-helix transcription factors, JASMONATE ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3, is positively regulated in a COI1- and MYC2-dependent manner in Arabidopsis (Arabidopsis thaliana). However, contrary to myc2, the jam1jam2jam3 triple mutant exhibited shorter roots when treated with methyl jasmonate (MJ), indicating enhanced responsiveness to JA. Our genome-wide expression analyses revealed that key jasmonate metabolic genes as well as a set of genes encoding transcription factors that regulate the JA-responsive metabolic genes are negatively regulated by JAMs after MJ treatment. Consistently, loss of JAM genes resulted in higher accumulation of anthocyanin in MJ-treated plants as well as higher accumulation of JA and 12-hydroxyjasmonic acid in wounded plants. These results show that JAMs negatively regulate the JA responses in a manner that is mostly antagonistic to MYC2. PMID:23852442

  9. Basic Helix-Loop-Helix Transcription Factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 Are Negative Regulators of Jasmonate Responses in Arabidopsis1[W][OPEN

    PubMed Central

    Sasaki-Sekimoto, Yuko; Jikumaru, Yusuke; Obayashi, Takeshi; Saito, Hikaru; Masuda, Shinji; Kamiya, Yuji; Ohta, Hiroyuki; Shirasu, Ken

    2013-01-01

    Jasmonates regulate transcriptional reprogramming during growth, development, and defense responses. Jasmonoyl-isoleucine, an amino acid conjugate of jasmonic acid (JA), is perceived by the protein complex composed of the F-box protein CORONATINE INSENSITIVE1 (COI1) and JASMONATE ZIM DOMAIN (JAZ) proteins, leading to the ubiquitin-dependent degradation of JAZ proteins. This activates basic helix-loop-helix-type MYC transcription factors to regulate JA-responsive genes. Here, we show that the expression of genes encoding other basic helix-loop-helix transcription factors, JASMONATE ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3, is positively regulated in a COI1- and MYC2-dependent manner in Arabidopsis (Arabidopsis thaliana). However, contrary to myc2, the jam1jam2jam3 triple mutant exhibited shorter roots when treated with methyl jasmonate (MJ), indicating enhanced responsiveness to JA. Our genome-wide expression analyses revealed that key jasmonate metabolic genes as well as a set of genes encoding transcription factors that regulate the JA-responsive metabolic genes are negatively regulated by JAMs after MJ treatment. Consistently, loss of JAM genes resulted in higher accumulation of anthocyanin in MJ-treated plants as well as higher accumulation of JA and 12-hydroxyjasmonic acid in wounded plants. These results show that JAMs negatively regulate the JA responses in a manner that is mostly antagonistic to MYC2. PMID:23852442

  10. Ectopic Expression of a Basic Helix-Loop-Helix Gene Transactivates Parallel Pathways of Proanthocyanidin Biosynthesis. Structure, Expression Analysis, and Genetic Control of Leucoanthocyanidin 4-Reductase and Anthocyanidin Reductase Genes in Lotus corniculatus1[W

    PubMed Central

    Paolocci, Francesco; Robbins, Mark P.; Madeo, Laura; Arcioni, Sergio; Martens, Stefan; Damiani, Francesco

    2007-01-01

    Proanthocyanidins (PAs) are plant secondary metabolites and are composed primarily of catechin and epicatechin units in higher plant species. Due to the ability of PAs to bind reversibly with plant proteins to improve digestion and reduce bloat, engineering this pathway in leaves is a major goal for forage breeders. Here, we report the cloning and expression analysis of anthocyanidin reductase (ANR) and leucoanthocyanidin 4-reductase (LAR), two genes encoding enzymes committed to epicatechin and catechin biosynthesis, respectively, in Lotus corniculatus. We show the presence of two LAR gene families (LAR1 and LAR2) and that the steady-state levels of ANR and LAR1 genes correlate with the levels of PAs in leaves of wild-type and transgenic plants. Interestingly, ANR and LAR1, but not LAR2, genes produced active proteins following heterologous expression in Escherichia coli and are affected by the same basic helix-loop-helix transcription factor that promotes PA accumulation in cells of palisade and spongy mesophyll. This study provides direct evidence that the same subclass of transcription factors can mediate the expression of the structural genes of both branches of PA biosynthesis. PMID:17098849

  11. Development of human plasmacytoid dendritic cells depends on the combined action of the basic helix-loop-helix factor E2-2 and the Ets factor Spi-B.

    PubMed

    Nagasawa, Maho; Schmidlin, Heike; Hazekamp, Mark G; Schotte, Remko; Blom, Bianca

    2008-09-01

    Plasmacytoid dendritic cells (pDC) are central players in the innate and adaptive immune response against viral infections. The molecular mechanism that underlies pDC development from progenitor cells is only beginning to be elucidated. Previously, we reported that the Ets factor Spi-B and the inhibitors of DNA binding protein 2 (Id2) or Id3, which antagonize E-protein activity, are crucially involved in promoting or impairing pDC development, respectively. Here we show that the basic helix-loop-helix protein E2-2 is predominantly expressed in pDC, but not in their progenitor cells or conventional DC. Forced expression of E2-2 in progenitor cells stimulated pDC development. Conversely, inhibition of E2-2 expression by RNA interference impaired the generation of pDC suggesting a key role of E2-2 in development of these cells. Notably, Spi-B was unable to overcome the Id2 enforced block in pDC development and moreover Spi-B transduced pDC expressed reduced Id2 levels. This might indicate that Spi-B contributes to pDC development by promoting E2-2 activity. Consistent with notion, simultaneous overexpression of E2-2 and Spi-B in progenitor cells further stimulated pDC development. Together our results provide additional insight into the transcriptional network controlling pDC development as evidenced by the joint venture of E2-2 and Spi-B. PMID:18792017

  12. A Basic Helix-Loop-Helix Transcription Factor, PtrbHLH, of Poncirus trifoliata Confers Cold Tolerance and Modulates Peroxidase-Mediated Scavenging of Hydrogen Peroxide1[C][W

    PubMed Central

    Huang, Xiao-San; Wang, Wei; Zhang, Qian; Liu, Ji-Hong

    2013-01-01

    The basic helix-loop-helix (bHLH) transcription factors are involved in a variety of physiological processes. However, plant bHLHs functioning in cold tolerance and the underlying mechanisms remain poorly understood. Here, we report the identification and functional characterization of PtrbHLH isolated from trifoliate orange (Poncirus trifoliata). The transcript levels of PtrbHLH were up-regulated under various abiotic stresses, particularly cold. PtrbHLH was localized in the nucleus with transactivation activity. Overexpression of PtrbHLH in tobacco (Nicotiana tabacum) or lemon (Citrus limon) conferred enhanced tolerance to cold under chilling or freezing temperatures, whereas down-regulation of PtrbHLH in trifoliate orange by RNA interference (RNAi) resulted in elevated cold sensitivity. A range of stress-responsive genes was up-regulated or down-regulated in the transgenic lemon. Of special note, several peroxidase (POD) genes were induced after cold treatment. Compared with the wild type, POD activity was increased in the overexpression plants but decreased in the RNAi plants, which was inversely correlated with the hydrogen peroxide (H2O2) levels in the tested lines. Treatment of the transgenic tobacco plants with POD inhibitors elevated the H2O2 levels and greatly compromised their cold tolerance, while exogenous replenishment of POD enhanced cold tolerance of the RNAi line. In addition, transgenic tobacco and lemon plants were more tolerant to oxidative stresses. Yeast one-hybrid assay and transient expression analysis demonstrated that PtrbHLH could bind to the E-box elements in the promoter region of a POD gene. Taken together, these results demonstrate that PtrbHLH plays an important role in cold tolerance, at least in part, by positively regulating POD-mediated reactive oxygen species removal. PMID:23624854

  13. Antagonistic regulation of growth and immunity by the Arabidopsis basic helix-loop-helix transcription factor homolog of brassinosteroid enhanced expression2 interacting with increased leaf inclination1 binding bHLH1.

    PubMed

    Malinovsky, Frederikke Gro; Batoux, Martine; Schwessinger, Benjamin; Youn, Ji Hyun; Stransfeld, Lena; Win, Joe; Kim, Seong-Ki; Zipfel, Cyril

    2014-03-01

    Plants need to finely balance resources allocated to growth and immunity to achieve optimal fitness. A tradeoff between pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and brassinosteroid (BR)-mediated growth was recently reported, but more information about the underlying mechanisms is needed. Here, we identify the basic helix-loop-helix (bHLH) transcription factor homolog of brassinosteroid enhanced expression2 interacting with IBH1 (HBI1) as a negative regulator of PTI signaling in Arabidopsis (Arabidopsis thaliana). HBI1 expression is down-regulated in response to different PAMPs. HBI1 overexpression leads to reduced PAMP-triggered responses. This inhibition correlates with reduced steady-state expression of immune marker genes, leading to increased susceptibility to the bacterium Pseudomonas syringae. Overexpression of the HBI1-related bHLHs brassinosteroid enhanced expression2 (BEE2) and cryptochrome-interacting bHLH (CIB1) partially inhibits immunity, indicating that BEE2 and CIB1 may act redundantly with HBI1. In contrast to its expression pattern upon PAMP treatment, HBI1 expression is enhanced by BR treatment. Also, HBI1-overexpressing plants are hyperresponsive to BR and more resistant to the BR biosynthetic inhibitor brassinazole. HBI1 is nucleus localized, and a mutation in a conserved leucine residue within the first helix of the protein interaction domain impairs its function in BR signaling. Interestingly, HBI1 interacts with several inhibitory atypical bHLHs, which likely keep HBI1 under negative control. Hence, HBI1 is a positive regulator of BR-triggered responses, and the negative effect of PTI is likely due to the antagonism between BR and PTI signaling. This study identifies a novel component involved in the complex tradeoff between innate immunity and BR-regulated growth. PMID:24443525

  14. Evolutionary aspects of developmentally regulated helix-loop-helix transcription factors in striated muscle of jellyfish

    Microsoft Academic Search

    Peter Müller; Katja Seipel; Nathalie Yanze; Susanne Reber-Müller; Ruth Streitwolf-Engel; Michael Stierwald; J. ürg Spring; Volker Schmid

    2003-01-01

    The function of basic helix-loop-helix (bHLH) proteins in cell differentiation was shown to be conserved from Drosophila to vertebrates, exemplified by the function of MyoD in striated muscle differentiation. In phylogeny striated muscle tissue appears first in jellyfish and the question of its evolutionary position is controversially discussed. For this reason we have studied the developmental role of myogenic bHLH

  15. Expression of a chimeric helix-loop-helix gene, Id-SCL, in K562 human leukemic cells is associated with nuclear segmentation.

    PubMed Central

    Goldfarb, A. N.; Wolf, M. L.; Greenberg, J. M.

    1992-01-01

    We have designed a chimeric gene, Id-SCL, in which the 3' helix-loop-helix encoding portion of the presumptive oncogene SCL/tal is joined to the 5' coding portion of Id, an inhibitory helix-loop-helix gene. The predicted protein product of this chimeric gene contains the helix-loop-helix dimerization domain of SCL/tal, but, lacking a basic DNA binding domain, is predicted to have the inhibitory function of the Id product. Expression of the Id-SCL fusion gene in stably transfected K562 cells reproducibly resulted in nuclear segmentation and depressed growth rates; both of these phenotypic effects demonstrated a dosage dependence on the levels of Id-SCL mRNA and protein expressed in the various clones. Electron microscopy of cells expressing high levels of Id-SCL mRNA showed a significant increase in cytoplasmic perinuclear thin filaments and diminution of marginal heterochromatin in the nuclei. No other changes in hematopoietic differentiation status were observed in association with Id-SCL expression. Expression of intact Id and SCL/tal genes, as well as deletion mutants of Id and SCL/tal, independently transfected into K562 cells, indicated that the nuclear segmentation effect is dependent on the presence of a protein possessing a helix-loop-helix domain but lacking a basic domain. Our studies suggest that the balance of transcriptional inhibitory and stimulatory helix-loop-helix proteins in cells may be important determinants of proliferation and of structural organization within cells. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 8 Figure 11 PMID:1443047

  16. Id proteins Id1 and Id2 selectively inhibit DNA binding by one class of helix-loop-helix proteins.

    PubMed Central

    Sun, X H; Copeland, N G; Jenkins, N A; Baltimore, D

    1991-01-01

    The DNA binding activities of some basic region and putative helix-loop-helix (bHLH)-containing transcriptional factors can be inhibited by the Id protein. Because Id contains the HLH motif for dimerization but not the basic amino acid region for DNA binding, heterodimers of Id with bHLH transcriptional factors may not bind to DNA. We have isolated and characterized the gene and cDNA clones for a new Id protein, designated Id2. The Id2 protein contains a helix-loop-helix motif similar to that of the previously described Id protein (referred to here as Id1), but the two proteins are different elsewhere. Id1 and Id2 are encoded by two unlinked genes, as shown by chromosome mapping. The two Id proteins have similar inhibitory activities. They selectively bind to and inhibit the function of one set of bHLH proteins, typified by E2A.E47 and E2B.m3, but not that of the other set, including TFE3, USF, and AP4. The Id proteins also homodimerize poorly. Expression of both Id genes is down-regulated during differentiation in a variety of cell types. Images PMID:1922066

  17. Single amino acid substitutions alter helix-loop-helix protein specificity for bases flanking the core CANNTG motif.

    PubMed Central

    Fisher, F; Goding, C R

    1992-01-01

    While all basic region/helix-loop-helix (bHLH) proteins bind the consensus CANNTG motif, other factors must be involved in determining regulatory specificity. In this report we show that bases outside this core 6 bp are involved in determining the specificity of binding. Thus, binding of the yeast bHLH protein PHO4, but not CPF-1, is inhibited by the presence of a T residue immediately 5' to their common CACGTG recognition sequence. PHO4 binding specificity is altered by mutation at any of three different positions in the basic region, including a single Glu to Asp substitution. The significance of these data for DNA-binding and transcription regulation by the bHLH family of transcription factors is discussed. Images PMID:1327757

  18. Genomic Organization, Sequence, and Chromosomal Localization of the Human Helix–Loop–Helix Id1 Gene

    Microsoft Academic Search

    Jan O. Nehlin; Eiji Hara; Wen-Lin Kuo; Colin Collins; Judith Campisi

    1997-01-01

    The helix–loop–helix protein Id-1 regulates growth and differentiation in many mammalian cells. In human fibroblasts, Id1 and Id1?, a putative splicing variant, are cell cycle regulated, essential for proliferation, repressed by senescence, and overexpressed by some tumor cells. To better understand Id1, we determined the complete sequence, transcriptional start, and localization of the human Id1 gene. Human Id1 has two

  19. Regulation of TCF ETS-domain transcription factors by helix-loop-helix motifs

    Microsoft Academic Search

    Julie Stinson; Toshiaki Inoue; Paula Yates; Anne Clancy; John D. Norton; Andrew D. Sharrocks

    2003-01-01

    DNA binding by the ternary complex factor (TCF) subfamily of ETS-domain transcription factors is tightly regulated by intramolecular and intermolecu- lar interactions. The helix-loop-helix (HLH)-contain- ing Id proteins are trans-acting negative regulators of DNA binding by the TCFs. In the TCF, SAP-2\\/Net\\/ ERP, intramolecular inhibition of DNA binding is promoted by the cis-acting NID region that also con- tains an

  20. Molecular cloning and chromosomal localization of the murine homolog of the human helix-loop-helix gene SCL

    Microsoft Academic Search

    C. G. Begley; J. Visvader; A. R. Green; D. Metcalf; N. M. Gough; P. D. Aplan; I. R. Kirsch

    1991-01-01

    The human SCL gene is a member of the family of genes that encode the helix-loop-helix (HLH) class of DNA-binding proteins. A murine SCL cDNA was isolated from a normal macrophage cDNA library by using HLH-specific oligonucleotides as hybridiazation probes. The coding region is 987 base pairs and encodes a predicted protein of 34 kDa. The nucleotide sequence of the

  1. The dual role of helixloophelix-zipper protein USF in ribosomal RNA gene transcription in vivo

    Microsoft Academic Search

    Asish K Ghosh; Prasun K Datta; Samson T Jacob

    1997-01-01

    We have previously demonstrated that the core promoter of rat ribosomal RNA gene (rDNA) contains an E-box-like sequence to which the core promoter binding factor CPBF binds and that the 44 kDa subunit of this protein is immunologically related to USF1, the helixloophelix-zipper DNA binding protein. Further, we showed that RNA polymerase I (pol I) transcription

  2. BuD, a helix–loop–helix DNA-binding domain for genome modification

    PubMed Central

    Stella, Stefano; Molina, Rafael; López-Méndez, Blanca; Juillerat, Alexandre; Bertonati, Claudia; Daboussi, Fayza; Campos-Olivas, Ramon; Duchateau, Phillippe; Montoya, Guillermo

    2014-01-01

    DNA editing offers new possibilities in synthetic biology and biomedicine for modulation or modification of cellular functions to organisms. However, inaccuracy in this process may lead to genome damage. To address this important problem, a strategy allowing specific gene modification has been achieved through the addition, removal or exchange of DNA sequences using customized proteins and the endogenous DNA-repair machinery. Therefore, the engineering of specific protein–DNA interactions in protein scaffolds is key to providing ‘toolkits’ for precise genome modification or regulation of gene expression. In a search for putative DNA-binding domains, BurrH, a protein that recognizes a 19?bp DNA target, was identified. Here, its apo and DNA-bound crystal structures are reported, revealing a central region containing 19 repeats of a helix–loop–helix modular domain (BurrH domain; BuD), which identifies the DNA target by a single residue-to-nucleotide code, thus facilitating its redesign for gene targeting. New DNA-binding specificities have been engineered in this template, showing that BuD-derived nucleases (BuDNs) induce high levels of gene targeting in a locus of the human haemoglobin ? (HBB) gene close to mutations responsible for sickle-cell anaemia. Hence, the unique combination of high efficiency and specificity of the BuD arrays can push forward diverse genome-modification approaches for cell or organism redesign, opening new avenues for gene editing. PMID:25004980

  3. Regulation of TCF ETS-domain transcription factors by helix-loop-helix motifs.

    PubMed

    Stinson, Julie; Inoue, Toshiaki; Yates, Paula; Clancy, Anne; Norton, John D; Sharrocks, Andrew D

    2003-08-15

    DNA binding by the ternary complex factor (TCF) subfamily of ETS-domain transcription factors is tightly regulated by intramolecular and intermolecular interactions. The helix-loop-helix (HLH)-containing Id proteins are trans-acting negative regulators of DNA binding by the TCFs. In the TCF, SAP-2/Net/ERP, intramolecular inhibition of DNA binding is promoted by the cis-acting NID region that also contains an HLH-like motif. The NID also acts as a transcriptional repression domain. Here, we have studied the role of HLH motifs in regulating DNA binding and transcription by the TCF protein SAP-1 and how Cdk-mediated phosphorylation affects the inhibitory activity of the Id proteins towards the TCFs. We demonstrate that the NID region of SAP-1 is an autoinhibitory motif that acts to inhibit DNA binding and also functions as a transcription repression domain. This region can be functionally replaced by fusion of Id proteins to SAP-1, whereby the Id moiety then acts to repress DNA binding in cis. Phosphorylation of the Ids by cyclin-Cdk complexes results in reduction in protein-protein interactions between the Ids and TCFs and relief of their DNA-binding inhibitory activity. In revealing distinct mechanisms through which HLH motifs modulate the activity of TCFs, our results therefore provide further insight into the role of HLH motifs in regulating TCF function and how the inhibitory properties of the trans-acting Id HLH proteins are themselves regulated by phosphorylation. PMID:12907712

  4. BuD, a helix–loop–helix DNA-binding domain for genome modification

    SciTech Connect

    Stella, Stefano [Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid (Spain); University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen (Denmark); Molina, Rafael; López-Méndez, Blanca [Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid (Spain); Juillerat, Alexandre; Bertonati, Claudia; Daboussi, Fayza [Cellectis, 8 Rue de la Croix Jarry, 75013 Paris (France); Campos-Olivas, Ramon [Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid (Spain); Duchateau, Phillippe [Cellectis, 8 Rue de la Croix Jarry, 75013 Paris (France); Montoya, Guillermo, E-mail: guillermo.montoya@cpr.ku.dk [Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid (Spain); University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen (Denmark)

    2014-07-01

    Crystal structures of BurrH and the BurrH–DNA complex are reported. DNA editing offers new possibilities in synthetic biology and biomedicine for modulation or modification of cellular functions to organisms. However, inaccuracy in this process may lead to genome damage. To address this important problem, a strategy allowing specific gene modification has been achieved through the addition, removal or exchange of DNA sequences using customized proteins and the endogenous DNA-repair machinery. Therefore, the engineering of specific protein–DNA interactions in protein scaffolds is key to providing ‘toolkits’ for precise genome modification or regulation of gene expression. In a search for putative DNA-binding domains, BurrH, a protein that recognizes a 19 bp DNA target, was identified. Here, its apo and DNA-bound crystal structures are reported, revealing a central region containing 19 repeats of a helix–loop–helix modular domain (BurrH domain; BuD), which identifies the DNA target by a single residue-to-nucleotide code, thus facilitating its redesign for gene targeting. New DNA-binding specificities have been engineered in this template, showing that BuD-derived nucleases (BuDNs) induce high levels of gene targeting in a locus of the human haemoglobin ? (HBB) gene close to mutations responsible for sickle-cell anaemia. Hence, the unique combination of high efficiency and specificity of the BuD arrays can push forward diverse genome-modification approaches for cell or organism redesign, opening new avenues for gene editing.

  5. Disruption of alpha beta but not of gamma delta T cell development by overexpression of the helix-loop-helix protein Id3 in committed T cell progenitors.

    PubMed Central

    Blom, B; Heemskerk, M H; Verschuren, M C; van Dongen, J J; Stegmann, A P; Bakker, A Q; Couwenberg, F; Res, P C; Spits, H

    1999-01-01

    Enforced expression of Id3, which has the capacity to inhibit many basic helix-loop-helix (bHLH) transcription factors, in human CD34(+) hematopoietic progenitor cells that have not undergone T cell receptor (TCR) gene rearrangements inhibits development of the transduced cells into TCRalpha beta and gamma delta cells in a fetal thymic organ culture (FTOC). Here we document that overexpression of Id3, in progenitors that have initiated TCR gene rearrangements (pre-T cells), inhibits development into TCRalpha beta but not into TCRgamma delta T cells. Furthermore, Id3 impedes expression of recombination activating genes and downregulates pre-Talpha mRNA. These observations suggest possible mechanisms by which Id3 overexpression can differentially affect development of pre-T cells into TCRalpha beta and gamma delta cells. We also observed that cell surface CD4(-)CD8(-)CD3(-) cells with rearranged TCR genes developed from Id3-transduced but not from control-transduced pre-T cells in an FTOC. These cells had properties of both natural killer (NK) and pre-T cells. These findings suggest that bHLH factors are required to control T cell development after the T/NK developmental checkpoint. PMID:10329625

  6. Net (ERP/SAP2) one of the Ras-inducible TCFs, has a novel inhibitory domain with resemblance to the helix-loop-helix motif.

    PubMed Central

    Maira, S M; Wurtz, J M; Wasylyk, B

    1996-01-01

    The three ternary complex factors (TCFs), Net (ERP/ SAP-2), ELK-1 and SAP-1, are highly related ets oncogene family members that participate in the response of the cell to Ras and growth signals. Understanding the different roles of these factors will provide insights into how the signals result in coordinate regulation of the cell. We show that Net inhibits transcription under basal conditions, in which SAP-1a is inactive and ELK-1 stimulates. Repression is mediated by the NID, the Net Inhibitory Domain of about 50 amino acids, which autoregulates the Net protein and also inhibits when it is isolated in a heterologous fusion protein. Net is particularly sensitive to Ras activation. Ras activates Net through the C-domain, which is conserved between the three TCFs, and the NID is an efficient inhibitor of Ras activation. The NID, as well as more C-terminal sequences, inhibit DNA binding. Net is more refractory to DNA binding than the other TCFs, possibly due to the presence of multiple inhibitory elements. The NID may adopt a helix-loop-helix (HLH) structure, as evidenced by homology to other HLH motifs, structure predictions, model building and mutagenesis of critical residues. The sequence resemblance with myogenic factors suggested that Net may form complexes with the same partners. Indeed, we found that Net can interact in vivo with the basic HLH factor, E47. We propose that Net is regulated at the level of its latent DNA-binding activity by protein interactions and/or phosphorylation. Net may form complexes with HLH proteins as well as SRF on specific promotor sequences. The identification of the novel inhibitory domain provides a new inroad into exploring the different roles of the ternary complex factors in growth control and transformation. Images PMID:8918463

  7. The helix-loop-helix transcription factor SEF-2 regulates the activity of a novel initiator element in the promoter of the human somatostatin receptor II gene.

    PubMed

    Pscherer, A; Dörflinger, U; Kirfel, J; Gawlas, K; Rüschoff, J; Buettner, R; Schüle, R

    1996-12-01

    The effects of somatostatin hormones are mediated by a family of five different seven-helix transmembrane spanning receptors (SSTR1-5). The expression of the five different SSTR subtypes displays a complex temporal- and tissue-specific pattern. To investigate the molecular mechanisms controlling the different expression patterns of the SSTRs, we cloned the 5'-flanking region of the human SSTR2 gene. Characterization of the SSTR2 promoter resulted in the identification of a novel initiator element (SSTR2inr). Transcriptional activity of the SSTR2inr is dependent on the presence of a binding site (E-box) for basic helix-loop-helix (bHLH) transcription factors. By screening a mouse brain cDNA expression library we isolated a cDNA coding for the bHLH transcription factor SEF-2. SEF-2 binds to the E-box present in the SSTR2inr, both in vitro and in vivo and activates transcription from the SSTR2inr. A single point mutation within the E-box eliminates binding of SEF-2 and results in a complete loss of transcriptional activity of the SSTR2inr. Furthermore, DNA binding studies demonstrate that the basal transcription factor TFIIB can be tethered to the SSTR2inr through physical interaction with SEF-2. In summary, the SSTR2inr represents a novel type of initiator element that confers gene expression in the absence of a TATA-box or binding sites for other known initiator factors, like YY-1 or USF. PMID:8978694

  8. Net (ERP/SAP2) one of the Ras-inducible TCFs, has a novel inhibitory domain with resemblance to the helix-loop-helix motif.

    PubMed

    Maira, S M; Wurtz, J M; Wasylyk, B

    1996-11-01

    The three ternary complex factors (TCFs), Net (ERP/ SAP-2), ELK-1 and SAP-1, are highly related ets oncogene family members that participate in the response of the cell to Ras and growth signals. Understanding the different roles of these factors will provide insights into how the signals result in coordinate regulation of the cell. We show that Net inhibits transcription under basal conditions, in which SAP-1a is inactive and ELK-1 stimulates. Repression is mediated by the NID, the Net Inhibitory Domain of about 50 amino acids, which autoregulates the Net protein and also inhibits when it is isolated in a heterologous fusion protein. Net is particularly sensitive to Ras activation. Ras activates Net through the C-domain, which is conserved between the three TCFs, and the NID is an efficient inhibitor of Ras activation. The NID, as well as more C-terminal sequences, inhibit DNA binding. Net is more refractory to DNA binding than the other TCFs, possibly due to the presence of multiple inhibitory elements. The NID may adopt a helix-loop-helix (HLH) structure, as evidenced by homology to other HLH motifs, structure predictions, model building and mutagenesis of critical residues. The sequence resemblance with myogenic factors suggested that Net may form complexes with the same partners. Indeed, we found that Net can interact in vivo with the basic HLH factor, E47. We propose that Net is regulated at the level of its latent DNA-binding activity by protein interactions and/or phosphorylation. Net may form complexes with HLH proteins as well as SRF on specific promotor sequences. The identification of the novel inhibitory domain provides a new inroad into exploring the different roles of the ternary complex factors in growth control and transformation. PMID:8918463

  9. Functional Isoforms of IkB Kinase a (IKKa) Lacking Leucine Zipper and Helix-Loop-Helix Domains Reveal that IKKa and IKKb Have Different Activation Requirements

    Microsoft Academic Search

    FERGUS R. MCKENZIE; MARGERY A. CONNELLY; DARLENE BALZARANO; JURGEN R. MULLER; ROMAS GELEZIUNAS; KENNETH B. MARCU

    2000-01-01

    The activity of the NF-kB family of transcription factors is regulated principally by phosphorylation and subsequent degradation of their inhibitory IkB subunits. Site-specific serine phosphorylation of IkBs by two IkB kinases (IKKa (also known as CHUK) and IKKb) targets them for proteolysis. IKKa and -b have a unique structure, with an amino-terminal serine-threonine kinase catalytic domain and carboxy-proximal helix-loop-helix (HLH)

  10. A novel initiator regulates expression of the nontissue-specific helix-loop-helix gene ME1.

    PubMed Central

    Shain, D H; Neuman, T; Zuber, M X

    1995-01-01

    The mouse ME1 gene (HEB, REB and GE1, homologues in human, rat and chick, respectively) is a member of the nontissue-specific helix-loop-helix (HLH) gene family that includes E2A, E2-2 and Drosophila daughterless. We have examined the factors that control ME1 gene expression. ME1 is a single copy gene that spans > or = 150 kb of DNA and contains > 10 exons. Transcription was directed by an unusual initiator element that contained a 13 bp poly d(A) tract flanked by palindromic and inverted repeat sequences. Both RNase protection and primer extension analyses mapped the ME1 transcriptional start site to the center of the 13 bp poly d(A) tract. The ME1 initiator and its proximal sequences were required for promoter activity, supported basal levels of transcription, and contributed to cell type-specific gene expression. Other cis-elements utilized by the TATA-less ME1 promoter included a cluster of Sp1 response elements, E-boxes and a strong repressor. Collectively, our results suggest that the ME1 initiator and other cis-elements in the proximal promoter play an important role in regulating ME1 gene expression. Images PMID:7784173

  11. Cell-specific helix-loop-helix factor required for pituitary expression of the pro-opiomelanocortin gene.

    PubMed Central

    Therrien, M; Drouin, J

    1993-01-01

    Pro-opiomelanocortin (POMC)-expressing cells appear to be the first pituitary cells committed to hormone production. In this work, we have identified an element of the POMC promoter which confers cell-specific activity. This element did not exhibit any activity on its own and required at least one other element of the promoter to manifest its cell-specific activity. Fine mutagenesis of this element indicated that a CANNTG motif is responsible for activity. This E-box motif is typical of binding sites for helix-loop-helix (HLH) transcription factors; however, the POMC cell-specific E box cannot be replaced by other E boxes like the kappa E2 site of the immunoglobulin gene or a muscle-specific E box. Similar E boxes which are present in the insulin gene promoter were shown to contribute to the pancreatic specificity of the insulin promoter. However, E-box-binding proteins found in nuclear extracts from POMC-expressing AtT-20 cells and from insulin-expressing cells have different electrophoretic mobilities. The AtT-20 proteins were named CUTE (for corticotroph upstream transcription element-binding) proteins, and they were not found in any other cells. CUTE proteins have DNA-binding properties characteristic of HLH transcription factors. Overexpression of the dominant negative HLH protein Id or of the ubiquitous positive HLH factor rat Pan-2 decreased or augmented POMC promoter activity, respectively. These observations are consistent with the hypothesis that CUTE factors might be heterodimers. This hypothesis was further supported by antibody shift experiments and by abrogation of DNA binding in the presence of bacterially expressed Id protein. Thus, the cell-specific CUTE proteins and their binding site in the POMC promoter appear to be important determinants for cell specificity of this promoter. The requirement for HLH factors in POMC transcription also presents the possibility that these factors are involved in differentiation of pituitary cells, in analogy with the role of HLH factors in muscle development. Images PMID:8455616

  12. Origin and diversification of the basic helix-loop-helix gene family in metazoans: insights from comparative genomics

    Microsoft Academic Search

    Elena Simionato; Valérie Ledent; Gemma Richards; Morgane Thomas-Chollier; Pierre Kerner; David Coornaert; Bernard M Degnan; Michel Vervoort

    2007-01-01

    BACKGROUND: Molecular and genetic analyses conducted in model organisms such as Drosophila and vertebrates, have provided a wealth of information about how networks of transcription factors control the proper development of these species. Much less is known, however, about the evolutionary origin of these elaborated networks and their large-scale evolution. Here we report the first evolutionary analysis of a whole

  13. EMBO J. 1998 March 2; 17(5): 14121422. The basic helix-loop-helix transcription factor Mist1 functions

    E-print Network

    Paris-Sud XI, Université de

    the ability to induce skeletal muscle terminal differentiation in a variety of non-muscle cell types, Myo to be a key regulator of many different developmental pathways. In the case of skeletal muscle, four b in the differentiation and maintenance of the skeletal muscle phenotype (reviewed in Buckingham, 1994; Olson and Klein

  14. Expression of the helix-loop-helix protein inhibitor of DNA binding-1 (ID-1) is activated by all-trans retinoic acid in normal human keratinocytes

    SciTech Connect

    Villano, C.M. [Department of Biochemistry and Microbiology, 76 Lipman Drive, Rutgers, State University of NJ, New Brunswick, NJ 08901 (United States); White, L.A. [Department of Biochemistry and Microbiology, 76 Lipman Drive, Rutgers, State University of NJ, New Brunswick, NJ 08901 (United States)]. E-mail: lawhite@aesop.rutgers.edu

    2006-08-01

    The ID (inhibitor of differentiation or DNA binding) helix-loop-helix proteins are important mediators of cellular differentiation and proliferation in a variety of cell types through regulation of gene expression. Overexpression of the ID proteins in normal human keratinocytes results in extension of culture lifespan, indicating that these proteins are important for epidermal differentiation. Our hypothesis is that the ID proteins are targets of the retinoic acid signaling pathway in keratinocytes. Retinoids, vitamin A analogues, are powerful regulators of cell growth and differentiation and are widely used in the prevention and treatment of a variety of cancers in humans. Furthermore, retinoic acid is necessary for the maintenance of epithelial differentiation and demonstrates an inhibitory action on skin carcinogenesis. We examined the effect of all-trans retinoic acid on expression of ID-1, -2, -3, and -4 in normal human keratinocytes and found that exposure of these cells to all-trans retinoic acid causes an increase in both ID-1 and ID-3 gene expression. Furthermore, our data show that this increase is mediated by increased transcription involving several cis-acting elements in the distal portion of the promoter, including a CREB-binding site, an Egr1 element, and an YY1 site. These data demonstrate that the ID proteins are direct targets of the retinoic acid signaling pathway. Given the importance of the ID proteins to epidermal differentiation, these results suggest that IDs may be mediating some of the effects of all-trans retinoic acid in normal human keratinocytes.

  15. Evidence supporting the existence of a NUPR1-like family of helix-loop-helix chromatin proteins related to, yet distinct from, AT hook-containing HMG proteins.

    PubMed

    Urrutia, Raul; Velez, Gabriel; Lin, Marisa; Lomberk, Gwen; Neira, Jose Luis; Iovanna, Juan

    2014-08-01

    NUPR1, a small chromatin protein, plays a critical role in cancer development, progression, and resistance to therapy. Here, using a combination of structural bioinformatics and molecular modeling methods, we report several novel findings that enhance our understanding of the biochemical function of this protein. We find that NUPR1 has been conserved throughout evolution, and over time it has undergone duplications and transpositions to form other transcriptional regulators. Using threading, homology-based molecular modeling, molecular mechanics calculations, and molecular dynamics simulations, we generated structural models for four of these proteins: NUPR1a, NUPR1b, NUPR2, and the NUPR-like domain of GTF2-I. Comparative analyses of these models combined with extensive linear motif identification reveal that these four proteins, though similar in their propensities for folding, differ in size, surface changes, and sites amenable for posttranslational modification. Lastly, taking NUPR1a as the paradigm for this family, we built models of a NUPR-DNA complex. Additional structural comparisons revealed that NUPR1 defines a new family of small-groove-binding proteins that share structural features with, yet are distinct from, helix-loop-helix AT-hook-containing HMG proteins. These models and inferences should lead to a better understanding of the function of this group of chromatin proteins, which play a critical role in the development of human malignant diseases. PMID:25056123

  16. Reovirus FAST Proteins Drive Pore Formation and Syncytiogenesis Using a Novel Helix-Loop-Helix Fusion-Inducing Lipid Packing Sensor

    PubMed Central

    Sarker, Muzaddid; de Antueno, Roberto; Langelaan, David N.; Parmar, Hiren B.; Shin, Kyungsoo; Rainey, Jan K.; Duncan, Roy

    2015-01-01

    Pore formation is the most energy-demanding step during virus-induced membrane fusion, where high curvature of the fusion pore rim increases the spacing between lipid headgroups, exposing the hydrophobic interior of the membrane to water. How protein fusogens breach this thermodynamic barrier to pore formation is unclear. We identified a novel fusion-inducing lipid packing sensor (FLiPS) in the cytosolic endodomain of the baboon reovirus p15 fusion-associated small transmembrane (FAST) protein that is essential for pore formation during cell-cell fusion and syncytiogenesis. NMR spectroscopy and mutational studies indicate the dependence of this FLiPS on a hydrophobic helix-loop-helix structure. Biochemical and biophysical assays reveal the p15 FLiPS preferentially partitions into membranes with high positive curvature, and this partitioning is impeded by bis-ANS, a small molecule that inserts into hydrophobic defects in membranes. Most notably, the p15 FLiPS can be functionally replaced by heterologous amphipathic lipid packing sensors (ALPS) but not by other membrane-interactive amphipathic helices. Furthermore, a previously unrecognized amphipathic helix in the cytosolic domain of the reptilian reovirus p14 FAST protein can functionally replace the p15 FLiPS, and is itself replaceable by a heterologous ALPS motif. Anchored near the cytoplasmic leaflet by the FAST protein transmembrane domain, the FLiPS is perfectly positioned to insert into hydrophobic defects that begin to appear in the highly curved rim of nascent fusion pores, thereby lowering the energy barrier to stable pore formation. PMID:26061049

  17. Amino-terminal domains of c-myc and N-myc proteins mediate binding to the retinoblastoma gene product

    NASA Astrophysics Data System (ADS)

    Rustgi, Anil K.; Dyson, Nicholas; Bernards, Rene

    1991-08-01

    THE proteins encoded by the myc gene family are involved in the control of cell proliferation and differentiation, and aberrant expression of myc proteins has been implicated in the genesis of a variety of neoplasms1. In the carboxyl terminus, myc proteins have two domains that encode a basic domain/helix-loop-helix and a leucine zipper motif, respectively. These motifs are involved both in DNA binding and in protein dimerization2-5. In addition, myc protein family members share several regions of highly conserved amino acids in their amino termini that are essential for transformation6,7. We report here that an N-terminal domain present in both the c-myc and N-myc proteins mediates binding to the retinoblastoma gene product, pRb. We show that the human papilloma virus E7 protein competes with c-myc for binding to pRb, indicating that these proteins share overlapping binding sites on pRb. Furthermore, a mutant Rb protein from a human tumour cell line that carried a 35-amino-acid deletion in its C terminus failed to bind to c-myc. Our results suggest that c-myc and pRb cooperate through direct binding to control cell proliferation.

  18. Human Variants in the Neuronal Basic Helix-Loop-Helix/Per-Arnt-Sim (bHLH/PAS) Transcription Factor Complex NPAS4/ARNT2 Disrupt Function

    PubMed Central

    Bersten, David C.; Bruning, John B.; Peet, Daniel J.; Whitelaw, Murray L.

    2014-01-01

    Neuronal Per-Arnt-Sim homology (PAS) Factor 4 (NPAS4) is a neuronal activity-dependent transcription factor which heterodimerises with ARNT2 to regulate genes involved in inhibitory synapse formation. NPAS4 functions to maintain excitatory/inhibitory balance in neurons, while mouse models have shown it to play roles in memory formation, social interaction and neurodegeneration. NPAS4 has therefore been implicated in a number of neuropsychiatric or neurodegenerative diseases which are underpinned by defects in excitatory/inhibitory balance. Here we have explored a broad set of non-synonymous human variants in NPAS4 and ARNT2 for disruption of NPAS4 function. We found two variants in NPAS4 (F147S and E257K) and two variants in ARNT2 (R46W and R107H) which significantly reduced transcriptional activity of the heterodimer on a luciferase reporter gene. Furthermore, we found that NPAS4.F147S was unable to activate expression of the NPAS4 target gene BDNF due to reduced dimerisation with ARNT2. Homology modelling predicts F147 in NPAS4 to lie at the dimer interface, where it appears to directly contribute to protein/protein interaction. We also found that reduced transcriptional activation by ARNT2 R46W was due to disruption of nuclear localisation. These results provide insight into the mechanisms of NPAS4/ARNT dimerisation and transcriptional activation and have potential implications for cognitive phenotypic variation and diseases such as autism, schizophrenia and dementia. PMID:24465693

  19. Regeneration of transgenic skeletal muscles with altered timing of expression of the basic helix-loop-helix muscle regulatory factor MRF4.

    PubMed

    Pavlath, Grace K; Dominov, Janice A; Kegley, Kristy M; Miller, Jeffrey Boone

    2003-05-01

    In regenerating muscle cells, muscle regulatory factor (MRF) 4 is normally the last of the four MRFs to be expressed. To analyze how the timing of MRF4 expression affects muscle regeneration, we compared regeneration after local freeze injury of muscles from wild-type mice with muscles from transgenic mice in which MRF4 expression was under control of an approximately 1.6-kb fragment of the myogenin promoter. Three days after injury, masseter and tibialis anterior (TA) muscles in wild-type mice expressed little or no MRF4 mRNA; whereas these muscles in transgenic mice expressed abundant MRF4 mRNA from both the transgene and the endogenous gene. Thus, MRF4 up-regulation was accelerated in transgenic compared to wild-type regenerating muscles, and expression of the transgene appeared to activate, perhaps indirectly, expression of the endogenous MRF4 gene. At 11 days after injury, regeneration, as measured by cross-sectional area and density of regenerated fibers, was significantly impaired in transgenic TA compared to wild-type TA, whereas at 19 days after injury both transgenic and TA muscle fibers had fully recovered to preinjury values. Regeneration of masseter muscles, which normally regenerate much less completely than TA muscles, was unaffected by the transgene. Thus, the timing of MRF4 up-regulation, as well as additional muscle-specific factors, can determine the progress of muscle regeneration. PMID:12707053

  20. Regeneration of Transgenic Skeletal Muscles with Altered Timing of Expression of the Basic Helix-Loop-Helix Muscle Regulatory Factor MRF4

    PubMed Central

    Pavlath, Grace K.; Dominov, Janice A.; Kegley, Kristy M.; Miller, Jeffrey Boone

    2003-01-01

    In regenerating muscle cells, muscle regulatory factor (MRF) 4 is normally the last of the four MRFs to be expressed. To analyze how the timing of MRF4 expression affects muscle regeneration, we compared regeneration after local freeze injury of muscles from wild-type mice with muscles from transgenic mice in which MRF4 expression was under control of an ?1.6-kb fragment of the myogenin promoter. Three days after injury, masseter and tibialis anterior (TA) muscles in wild-type mice expressed little or no MRF4 mRNA; whereas these muscles in transgenic mice expressed abundant MRF4 mRNA from both the transgene and the endogenous gene. Thus, MRF4 up-regulation was accelerated in transgenic compared to wild-type regenerating muscles, and expression of the transgene appeared to activate, perhaps indirectly, expression of the endogenous MRF4 gene. At 11 days after injury, regeneration, as measured by cross-sectional area and density of regenerated fibers, was significantly impaired in transgenic TA compared to wild-type TA, whereas at 19 days after injury both transgenic and TA muscle fibers had fully recovered to preinjury values. Regeneration of masseter muscles, which normally regenerate much less completely than TA muscles, was unaffected by the transgene. Thus, the timing of MRF4 up-regulation, as well as additional muscle-specific factors, can determine the progress of muscle regeneration. PMID:12707053

  1. hnulp1, a basic helix-loop-helix protein with a novel transcriptional repressive domain, inhibits transcriptional activity of serum response factor

    Microsoft Academic Search

    Zhenyu Cai; Yuequn Wang; Weishi Yu; Jing Xiao; Yongqing Li; Lian Liu; Chuanbing Zhu; Kunrong Tan; Yun Deng; Wuzhou Yuan; Mingyao Liu; Xiushan Wu

    2006-01-01

    Many bHLH proteins are involved in cardiac development and cardiovascular diseases. Herein, we identified and characterized the human homologue (hnulp1) of mouse gene nulp1. The predicted protein contains a bHLH domain and a DUF654 domain in N-terminal and C-terminal, respectively. Northern blot analysis shows that a 2.3-kb transcript expressed broadly in early human embryonic and adult tissues, especially with a

  2. Specificity for the Hairy/enhancer of split basic helix-loop-helix (bHLH) proteins maps outside the bHLH domain and suggests two separable modes of transcriptional repression

    SciTech Connect

    Dawson, S.R.; Turner, D.L.; Weintraub, H.; Parkhurst, S.M. [Fred Hutchinson Cancer Research Center, Seattle, WA (United States)

    1995-12-01

    This report investigates transcriptional repressors in Drosophila melanogaster and their function in and effect on developmental processes such as sex determination. Details on the mechanism of function of these transcriptional repressors are also discussed. 50 refs., 3 figs., 4 tabs.

  3. BASIC PENTACYSTEINE Proteins Mediate MADS Domain Complex Binding to the DNA for Tissue-Specific Expression of Target Genes in Arabidopsis[W

    PubMed Central

    Simonini, Sara; Roig-Villanova, Irma; Gregis, Veronica; Colombo, Bilitis; Colombo, Lucia; Kater, Martin M.

    2012-01-01

    BASIC PENTACYSTEINE (BPC) transcription factors have been identified in a large variety of plant species. In Arabidopsis thaliana there are seven BPC genes, which, except for BPC5, are expressed ubiquitously. BPC genes are functionally redundant in a wide range of developmental processes. Recently, we reported that BPC1 binds to guanine and adenine (GA)–rich consensus sequences in the SEEDSTICK (STK) promoter in vitro and induces conformational changes. Here we show by chromatin immunoprecipitation experiments that in vivo BPCs also bind to the consensus boxes, and when these were mutated, expression from the STK promoter was derepressed, resulting in ectopic expression in the inflorescence. We also reveal that SHORT VEGETATIVE PHASE (SVP) is a direct regulator of STK. SVP is a floral meristem identity gene belonging to the MADS box gene family. The SVP-APETALA1 (AP1) dimer recruits the SEUSS (SEU)-LEUNIG (LUG) transcriptional cosuppressor to repress floral homeotic gene expression in the floral meristem. Interestingly, we found that GA consensus sequences in the STK promoter to which BPCs bind are essential for recruitment of the corepressor complex to this promoter. Our data suggest that we have identified a new regulatory mechanism controlling plant gene expression that is probably generally used, when considering BPCs’ wide expression profile and the frequent presence of consensus binding sites in plant promoters. PMID:23054472

  4. Role of the ubiquitin-proteasome pathway in the inner ear : identification of an E3 ubiquitin ligase for Atoh1

    E-print Network

    Cheng, Yen-Fu

    2014-01-01

    Atoh1, the proneural basic-helix-loop-helix transcription factor, is critical for the differentiation of inner ear hair cells. Hair cells do not develop in mice that lack Atoh1, and overexpression of the transcription ...

  5. Transcriptional regulation of neurodevelopmental and metabolic pathways by the psychiatric illness candidate gene NPAS3 

    E-print Network

    Sha, Li

    2011-07-05

    The basic helix-loop-helix PAS domain transcription factor gene NPAS3 is a risk factor for psychiatric disorders. A knockout mouse model also exhibits behavioural and adult neurogenesis deficits consistent with human ...

  6. The helix-loop-helix protein id1 controls stem cell proliferation during regenerative neurogenesis in the adult zebrafish telencephalon.

    PubMed

    Viales, Rebecca Rodriguez; Diotel, Nicolas; Ferg, Marco; Armant, Olivier; Eich, Julia; Alunni, Alessandro; März, Martin; Bally-Cuif, Laure; Rastegar, Sepand; Strähle, Uwe

    2015-03-01

    The teleost brain has the remarkable ability to generate new neurons and to repair injuries during adult life stages. Maintaining life-long neurogenesis requires careful management of neural stem cell pools. In a genome-wide expression screen for transcription regulators, the id1 gene, encoding a negative regulator of E-proteins, was found to be upregulated in response to injury. id1 expression was mapped to quiescent type I neural stem cells in the adult telencephalic stem cell niche. Gain and loss of id1 function in vivo demonstrated that Id1 promotes stem cell quiescence. The increased id1 expression observed in neural stem cells in response to injury appeared independent of inflammatory signals, suggesting multiple antagonistic pathways in the regulation of reactive neurogenesis. Together, we propose that Id1 acts to maintain the neural stem cell pool by counteracting neurogenesis-promoting signals. PMID:25376791

  7. Recurrent Mutations in the Basic Domain of TWIST2 Cause Ablepharon Macrostomia and Barber-Say Syndromes.

    PubMed

    Marchegiani, Shannon; Davis, Taylor; Tessadori, Federico; van Haaften, Gijs; Brancati, Francesco; Hoischen, Alexander; Huang, Haigen; Valkanas, Elise; Pusey, Barbara; Schanze, Denny; Venselaar, Hanka; Vulto-van Silfhout, Anneke T; Wolfe, Lynne A; Tifft, Cynthia J; Zerfas, Patricia M; Zambruno, Giovanna; Kariminejad, Ariana; Sabbagh-Kermani, Farahnaz; Lee, Janice; Tsokos, Maria G; Lee, Chyi-Chia R; Ferraz, Victor; da Silva, Eduarda Morgana; Stevens, Cathy A; Roche, Nathalie; Bartsch, Oliver; Farndon, Peter; Bermejo-Sanchez, Eva; Brooks, Brian P; Maduro, Valerie; Dallapiccola, Bruno; Ramos, Feliciano J; Chung, Hon-Yin Brian; Le Caignec, Cédric; Martins, Fabiana; Jacyk, Witold K; Mazzanti, Laura; Brunner, Han G; Bakkers, Jeroen; Lin, Shuo; Malicdan, May Christine V; Boerkoel, Cornelius F; Gahl, William A; de Vries, Bert B A; van Haelst, Mieke M; Zenker, Martin; Markello, Thomas C

    2015-07-01

    Ablepharon macrostomia syndrome (AMS) and Barber-Say syndrome (BSS) are rare congenital ectodermal dysplasias characterized by similar clinical features. To establish the genetic basis of AMS and BSS, we performed extensive clinical phenotyping, whole exome and candidate gene sequencing, and functional validations. We identified a recurrent de novo mutation in TWIST2 in seven independent AMS-affected families, as well as another recurrent de novo mutation affecting the same amino acid in ten independent BSS-affected families. Moreover, a genotype-phenotype correlation was observed, because the two syndromes differed based solely upon the nature of the substituting amino acid: a lysine at TWIST2 residue 75 resulted in AMS, whereas a glutamine or alanine yielded BSS. TWIST2 encodes a basic helix-loop-helix transcription factor that regulates the development of mesenchymal tissues. All identified mutations fell in the basic domain of TWIST2 and altered the DNA-binding pattern of Flag-TWIST2 in HeLa cells. Comparison of wild-type and mutant TWIST2 expressed in zebrafish identified abnormal developmental phenotypes and widespread transcriptome changes. Our results suggest that autosomal-dominant TWIST2 mutations cause AMS or BSS by inducing protean effects on the transcription factor's DNA binding. PMID:26119818

  8. Phytochrome Induces Rapid PIF5 Phosphorylation and Degradation in Response to Red-Light Activation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phytochrome (phy) family of sensory photoreceptors (phyA–phyE in Arabidopsis thaliana) induces changes in target-gene expression upon light-induced translocation to the nucleus, where certain members interact with selected members of the constitutively nuclear basic helix-loop-helix transcriptio...

  9. Mechanistic duality of transcription factor function in phytochrome signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phytochrome (phy) family of sensory photoreceptors (phyA–E in Arabidopsis) elicit changes in gene expression after light-induced migration to the nucleus, where they interact with basic helix–loop–helix transcription factors, such as phytochrome-interacting factor 3 (PIF3). The mechanism by whic...

  10. FASTING AND REFEEDING EFFECTS THE EXPRESSION OF THE INHIBITOR OF DNA BINDING (ID)GENES IN RAINBOW TROUT (ONCORHYNCHUS MYKISS) MUSCLE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ID (Inhibitor of DNA Binding/Differentiation) proteins are a family of dominant negative regulators of the basic helix-loop-helix (bHLH) transcription factors, shown in mammals to delay cell differentiation and prolong proliferation. In the current study we investigated the effects of fasting a...

  11. Functional profiling identifies genes involved in organ specific branches of the PIF3 regulatory network in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phytochrome (phy)-interacting basic helix-loop-helix transcription factors (PIFs) constitutively sustain the etiolated state of dark-germinated seedlings by actively repressing deetiolation in darkness. This action is rapidly reversed upon light exposure by phy-induced proteolytic degradation of...

  12. Cellular/Molecular Olig1 and Sox10 Interact Synergistically to Drive Myelin

    E-print Network

    Richardson, William D.

    Transcription in Oligodendrocytes Huiliang Li,1 Yan Lu,2 Hazel K. Smith,1 and William D. Richardson1 1Wolfson W12 0NN, United Kingdom The oligodendrocyte lineage genes (Olig1/2), encoding basic helix-loop-helix transcription factors, were first identified in screens for master regulators of oligodendrocyte development

  13. In cancer cells, monoallelic expression of oncogenes can occur through a variety of mechanisms including chromo-

    E-print Network

    Napp, Nils

    Reports In cancer cells, monoallelic expression of oncogenes can occur through a variety in overexpression of TAL1, an oncogene coding for a basic helix-loop-helix transcription factor, by mediating fu at oncogenes critical for the malig- nant cell state (11­17). The super- enhancer encompassing TAL1 in Jurkat

  14. The Role of single minded 2 short in mammary gland development and breast cancer

    E-print Network

    Kwak, Hyeong-il

    2009-05-15

    Single minded 2 (Sim2) is a member of the basic helix-loop-helix Per-ARNT-Sim (Period-Arylhydrocarbon Nuclear Translocator-Single minded) family. Human SIM2 is involved in the etiology of the Down’s phenotype. In addition to the physical and mental...

  15. , M. Wan1,2,3 , J. Sun1,2

    E-print Network

    Klein, Ophir

    differentiation. We found that human SCAPs express NOTCH2, NOTCH3, JAG2, DLL3, and HES1, and we tested, such as hairy/enhancer of split (HES) genes, a family of basic helix-loop-helix (bHLH) transcription factors

  16. Armet is an effector protein mediating aphid-plant interactions.

    PubMed

    Wang, Wei; Dai, Huaien; Zhang, Yi; Chandrasekar, Raman; Luo, Lan; Hiromasa, Yasuaki; Sheng, Changzhong; Peng, Gongxin; Chen, Shaoliang; Tomich, John M; Reese, John; Edwards, Owain; Kang, Le; Reeck, Gerald; Cui, Feng

    2015-05-01

    Aphid saliva is predicted to contain proteins that modulate plant defenses and facilitate feeding. Armet is a well-characterized bifunctional protein in mammalian systems. Here we report a new role of Armet, namely as an effector protein in the pea aphid, Acyrthosiphon pisum. Pea aphid Armet's physical and chemical properties and its intracellular role are comparable to those reported for mammalian Armets. Uniquely, we detected Armet in aphid watery saliva and in the phloem sap of fava beans fed on by aphids. Armet's transcript level is several times higher in the salivary gland when aphids feed on bean plants than when they feed on an artificial diet. Knockdown of the Armet transcript by RNA interference disturbs aphid feeding behavior on fava beans measured by the electrical penetration graph technique and leads to a shortened life span. Inoculation of pea aphid Armet protein into tobacco leaves induced a transcriptional response that included pathogen-responsive genes. The data suggest that Armet is an effector protein mediating aphid-plant interactions.-Wang, W., Dai, H., Zhang, Y., Chandrasekar, R., Luo, L., Hiromasa, Y., Sheng, C., Peng, G., Chen, S., Tomich, J. M., Reese, J., Edwards, O., Kang, L., Reeck, G., Cui, F. Armet is an effector protein mediating aphid-plant interactions. PMID:25678626

  17. Carboxylation of cytosine (5caC) in the CG dinucleotide in the E-box motif (CGCAG|GTG) increases binding of the Tcf3|Ascl1 helix-loop-helix heterodimer 10-fold.

    PubMed

    Golla, Jaya Prakash; Zhao, Jianfei; Mann, Ishminder K; Sayeed, Syed K; Mandal, Ajeet; Rose, Robert B; Vinson, Charles

    2014-06-27

    Three oxidative products of 5-methylcytosine (5mC) occur in mammalian genomes. We evaluated if these cytosine modifications in a CG dinucleotide altered DNA binding of four B-HLH homodimers and three heterodimers to the E-Box motif CGCAG|GTG. We examined 25 DNA probes containing all combinations of cytosine in a CG dinucleotide and none changed binding except for carboxylation of cytosine (5caC) in the strand CGCAG|GTG. 5caC enhanced binding of all examined B-HLH homodimers and heterodimers, particularly the Tcf3|Ascl1 heterodimer which increased binding ~10-fold. These results highlight a potential function of the oxidative products of 5mC, changing the DNA binding of sequence-specific transcription factors. PMID:24835951

  18. Sequences of the 5?-flanking region of the human helix-loop-helix protein-encoding Id2A gene, and promoter activity regulated by serum and c-Jun\\/AP1

    Microsoft Academic Search

    Masahiko Kurabayashi; Raju Jeyaseelan; Larry Kedes

    1995-01-01

    The 5?-flanking region of the human Id2A gene between nt - 1213 and + 36 from the putative transcription start point was sequenced. Transient transfection studies showed that the region between nt - 834 and + 30 directs the expression of a reporter gene and contains regulatory elements responsive to serum and c-Jun\\/AP-1 over production.

  19. Dual role of the CLOCK\\/BMAL1 circadian complex in transcriptional regulation

    Microsoft Academic Search

    Roman V. Kondratov; Rashmi K. Shamanna; Anna A. Kondratova; Victoria Y. Gorbachev; Marina P. Antoch

    2006-01-01

    The basic helix-loop-helix (bHLH) -PAS domain containing transcription factors CLOCK and BMAL1 are two major components of the circadian molecular oscillator. It is known that the CLOCK\\/BMAL1 complex positively regulates the activity of E-box containing promoters. Here we demonstrate that the CLOCK\\/BMAL1 complex can also suppress the activity of some promoters upon its interaction with CRYPTOCHROME (CRY). Such a dual

  20. Preferential Heterodimeric Parallel Coiled-coil Formation by Synthetic Max and c-Myc Leucine Zippers: A Description of Putative Electrostatic Interactions Responsible for the Specificity of Heterodimerization

    Microsoft Academic Search

    Pierre Lavigne; Leslie H. Kondejewski; Michael E. Houston Jr; Frank D. Sönnichsen; Bruce Lix; Brian D. Sykes; Robert S. Hodges; Cyril M. Kay

    1995-01-01

    The oncoprotein c-Myc must heterodimerize with Max to bind DNA and perform its oncogenic activity. The c-Myc – Max heterodimer binds DNA through a basic helix-loop-helix leucine zipper (b-HLH-zip) motif and it is proposed that leucine zipper domains could, in concert with the HLH regions, provide the specificity and stability of the b-HLH-zip motif. In this context, we have synthesized

  1. ITF-2, a downstream target of the Wnt\\/TCF pathway, is activated in human cancers with ?-catenin defects and promotes neoplastic transformation

    Microsoft Academic Search

    Frank T. Kolligs; Marvin T. Nieman; Ira Winer; Gang Hu; David Van Mater; Ying Feng; Ian M. Smith; Rong Wu; Yali Zhai; Kathleen R. Cho; Eric R. Fearon

    2002-01-01

    In many cancers, inactivation of the adenomatous polyposis coli (APC) or Axin tumor suppressor proteins or activating mutations in ?-catenin lead to elevated ?-catenin levels, enhanced binding of ?-catenin to T cell factor (TCF) proteins, and increased expression of TCF-regulated genes. We found that the gene for the basic helix-loop-helix transcription factor ITF-2 (immunoglobulin transcription factor-2) was activated in rat

  2. Cell, Vol. 72, 223-232. January 29, 1993, Copyright 0 1993 by Cell Press Mxil, a Protein That Specifii#y Mmcts

    E-print Network

    Brent, Roger

    ). Of the Myc proteins, the best-studied are probably the c-myc and v-myc products (c-Myc and v, c-Myc and v-Myc contain a conserved structure, the basic region helix-loop- helix leucine zipper (b that the biological function of c-Myc and v-Myc might depend on their ability to bind specific sequences and activate

  3. Sequence-Specific DNA Binding by the c-Myc Protein

    Microsoft Academic Search

    T. Keith Blackwell; Leo Kretzner; Elizabeth M. Blackwood; Robert N. Eisenman; Harold Weintraub

    1990-01-01

    While it has been known for some time that the c-Myc protein binds to random DNA sequences, no sequence-specific binding activity has been detected. At its carboxyl terminus, c-Myc contains a basic-helix-loop-helix (bHLH) motif, which is important for dimerization and specific DNA binding, as demonstrated for other bHLH protein family members. Of those studied, most bHLH proteins bind to sites

  4. Vertebrate neurogenesis is counteracted by Sox1–3 activity

    Microsoft Academic Search

    Magdalena Bylund; Elisabeth Andersson; Bennett G Novitch; Jonas Muhr

    2003-01-01

    The generation of neurons from stem cells involves the activity of proneural basic helix-loop-helix (bHLH) proteins, but the mechanism by which these proteins irreversibly commit stem cells to neuronal differentiation is not known. Here we report that expression of the transcription factors Sox1, Sox2 and Sox3 (Sox1–3) is a critical determinant of neurogenesis. Using chick in ovo electroporation, we found

  5. Twist Expression Predicts Poor Clinical Outcome of Patients with Clear Cell Carcinoma of the Ovary

    Microsoft Academic Search

    Hiroaki Kajiyama; Satoyo Hosono; Mikio Terauchi; Kiyosumi Shibata; Kazuhiko Ino; Eiko Yamamoto; Seiji Nomura; Akihiro Nawa; Fumitaka Kikkawa; M. Singh; S. Prasad

    2006-01-01

    Objectives: Twist is a highly conserved basic helix-loop-helix transcription factor that regulates the expression of E-cadherin and promotes the epithelial-mesenchymal transition, which is critical for tumor infiltration. We examined the distribution and expression of this molecule in clear cell carcinoma of the ovary (CCC) to elucidate their clinical significance. Methods: Paraffin sections from CCC tissues (n = 27) were immunostained

  6. Molecular cloning and characterization of a novel ice gene from Capsella bursa-pastoris

    Microsoft Academic Search

    Xinglong Wang; Xiaoqing Sun; Sixiu Liu; Li Liu; Xiaojun Liu; Xiaofen Sun; Kexuan Tang

    2005-01-01

    A new ice gene (designated as Cbice53, an inducer of CBF expression) was cloned from Capsella bursa-pastoris by rapid amplification of cDNA ends (RACE). The full-length cDNA of Cbice53 was 1811 bp long, with a 1476-bp open reading frame (ORF) encoding a Myc-like protein of 492 amino acids. The predicted CbICE53 protein contained a potential basic helix-loop-helix domain, a nuclear

  7. Twist expression promotes migration and invasion in hepatocellular carcinoma

    Microsoft Academic Search

    Noriyuki Matsuo; Hidenori Shiraha; Tatsuya Fujikawa; Nobuyuki Takaoka; Naoki Ueda; Shigetomi Tanaka; Shinichi Nishina; Yutaka Nakanishi; Masayuki Uemura; Akinobu Takaki; Shinichiro Nakamura; Yoshiyuki Kobayashi; Kazuhiro Nouso; Takahito Yagi; Kazuhide Yamamoto

    2009-01-01

    BACKGROUND: Twist, a transcription factor of the basic helix-loop-helix class, is reported to regulate cancer metastasis. It is known to induce epithelial-mesenchymal transition (EMT). In this study, we evaluated the expression of twist and its effect on cell migration in hepatocellular carcinoma (HCC). METHODS: We examined twist expression using immunohistochemistry in 20 tissue samples of hepatocellular carcinoma, and assessed twist

  8. Transcriptional Link between Blood and Bone: the Stem Cell Leukemia Gene and Its +19 Stem Cell Enhancer Are Active in Bone Cells

    Microsoft Academic Search

    John E. Pimanda; Lev Silberstein; Massimo Dominici; Benjamin Dekel; Mark Bowen; Scott Oldham; Asha Kallianpur; Stephen J. Brandt; David Tannahill; Berthold Gottgens; Anthony R. Green

    2006-01-01

    Blood and vascular cells are generated during early embryogenesis from a common precursor, the heman- gioblast. The stem cell leukemia gene (SCL\\/tal 1) encodes a basic helix-loop-helix transcription factor that is essential for the normal development of blood progenitors and blood vessels. We have previously characterized a panel of SCL enhancers including the 19 element, which directs expression to hematopoietic

  9. Characterization of two repression mechanisms in Saccharomyces cerevisiae

    Microsoft Academic Search

    Mohan Rao Kaadige

    2003-01-01

    Gene expression is coordinately controlled by a network of regulatory proteins and mis-regulation of these proteins can affect cell metabolism globally. For example, mis-regulation of mammalian C-MYC proto-oncogene expression was identified in all cases of Burkitt's lymphoma and in several cases of breast cancers and prostrate cancers. Myc is a basic helix-loop-helix (bHLH) protein that activates the expression of numerous

  10. atonal is the proneural gene for Drosophila photoreceptors

    Microsoft Academic Search

    Andrew P. Jarman; Ellsworth H. Grell; Larry Ackerman; Lily Y. Jan; Yuh Nung Jan

    1994-01-01

    THE Drosophila peripheral nervous system comprises four major types of sensory element: external sense organs (such as mechano-sensory bristles), chordotonal organs (internal stretch receptors), multiple dendritic neurons, and photoreceptors. During development, the selection of neural precursors for external sense organs requires the proneural genes of the achaete-scute complex, which encode basic-helix-loop-helix transcription factors1-3. These genes do not, however, control precursor

  11. The myoD Gene Family: Nodal Point During Specification of the Muscle Cell Lineage

    Microsoft Academic Search

    Harold Weintraub; Robert Davis; Stephen Tapscott; Matthew Thayer; Michael Krause; Robert Benezra; T. Keith Blackwell; David Turner; Ralph Rupp; Stanley Hollenberg; Yuan Zhuang; Andrew Lassar

    1991-01-01

    The myoD gene converts many differentiated cell types into muscle. MyoD is a member of the basic-helix-loophelix family of proteins; this 68-amino acid domain in MyoD is necessary and sufficient for myogenesis. MyoD binds cooperatively to muscle-specific enhancers and activates transcription. The helix-loop-helix motif is responsible for dimerization, and, depending on its dimerization partner, MyoD activity can be controlled. MyoD

  12. Structure of the human gene encoding sterol regulatory element binding protein-1 ( SREBF1) and localization of SREBF1 and SREBF2 to chromosomes 17p11.2 and 22q13

    Microsoft Academic Search

    Xianxin Hua; Jian Wu; Joseph L. Goldstein; Michael S. Brown; Helen H. Hobbs

    1995-01-01

    Sterol regulatory element binding protein-1 (SREBP1) and SREBP2 are structurally related proteins that control cholesterol homeostasis by stimulating transcription of sterol-regulated genes, including those encoding the low-density lipoprotein (LDL) receptor and 3-hydroxy-3-methylglutaryl CoA synthase. SREBP1 and SREBP2 are 47% identical, and they share a novel structure comprising a transcriptionally active NH2-terminal basic helix—loop—helix—leucine zipper (bHLH-Zip) domain followed by a membrane

  13. Requirement of the paraxis gene for somite formation and musculoskeletal patterning

    Microsoft Academic Search

    Rob Burgess; Alan Rawls; Doris Brown; Allan Bradley; Eric N. Olson

    1996-01-01

    THE segmental organization of the vertebrate embryo is first apparent when somites form in a rostrocaudal progression from the paraxial mesoderm adjacent to the neural tube. Newly formed somites appear as paired epithelial spheres that become patterned to form vertebrae, ribs, skeletal muscle and dermis1-3. Paraxis is a basic helix-loop-helix transcription factor expressed in paraxial mesoderm and somites4. Here we

  14. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype?

    Microsoft Academic Search

    Héctor Peinado; David Olmeda; Amparo Cano

    2007-01-01

    The molecular mechanisms that underlie tumour progression are still poorly understood, but recently our knowledge of particular aspects of some of these processes has increased. Specifically, the identification of Snail, ZEB and some basic helix-loop-helix (bHLH) factors as inducers of epithelial–mesenchymal transition (EMT) and potent repressors of E-cadherin expression has opened new avenues of research with potential clinical implications.

  15. Inhibition of the hTERT promoter by the proto-oncogenic protein TAL1

    Microsoft Academic Search

    J-M Terme; V Mocquet; A-S Kuhlmann; L Zane; F Mortreux; E Wattel; M Duc Dodon; P Jalinot

    2009-01-01

    Telomerase activity, which has fundamental roles in development and carcinogenesis, strongly depends on the expression of human telomerase reverse transcriptase (hTERT), its catalytic subunit. In this report, we show that the basic helix-loop-helix factor, TAL1 (T-cell acute lymphoblastic leukemia 1), is a negative regulator of the hTERT promoter. Indeed, TAL1 overexpression leads to a decrease in hTERT mRNA abundance and

  16. Rewiring of the jasmonate signaling pathway in Arabidopsis during insect herbivory

    Microsoft Academic Search

    A. Verhage; I. Vlaardingerbroek; C. Raaijmakers; N. M. van Dam; M. Dicke; S. C. M. van Wees; C. M. J. Pieterse

    2011-01-01

    Plant defenses against insect herbivores and necrotrophic pathogens are differentially regulated by different branches of the jasmonic acid (JA) signaling pathway. In Arabidopsis, the basic helix-loop-helix leucine zipper transcription factor MYC2 and the APETALA2\\/ETHYLENE RESPONSE FACTOR (AP2\\/ERF) domain transcription factor ORA59 antagonistically control these distinct branches of the JA pathway. Feeding by larvae of the specialist insect herbivore Pieris rapae

  17. Mes2, a MADF-containing transcription factor essential for Drosophila development

    Microsoft Academic Search

    Gregor Zimmermann; Eileen E. Furlong; Kaye Suyama; Matthew P. Scott

    2006-01-01

    The development of the Drosophila mesoderm is initiated by the basic helix-loop-helix transcription factor twist. We identified a gene encoding a putative transcription factor, mes2, in a screen for essential mesoderm-expressed genes that function downstream of twist. Mes2 protein belongs to a family of 48 Drosophila proteins containing MADF domains. MADF domains exist in worms, flies, and fish. Mes2 is

  18. The T Cell Leukemia Oncoprotein SCL\\/tal-1 Is Essential for Development of All Hematopoietic Lineages

    Microsoft Academic Search

    Catherine Porcher; Wojciech Swat; Karen Rockwell; Yuko Fujiwara; Frederick W Alt; Stuart H Orkin

    1996-01-01

    The T cell leukemia oncoprotein SCL\\/tal-1, a basic–helix-loop-helix transcription factor, is required for production of embryonic red blood cells in the mouse yolk sac. To define roles in other lineages, we studied the hematopoietic potential of homozygous mutant SCL\\/tal-1 ?\\/? embryonic stem cells upon in vitro differentiation and in vivo in chimeric mice. Here we show that in the absence

  19. Anthocyanini of petunia controls pigment synthesis, vacuolar pH, and seed coat development by genetically distinct mechanisms

    Microsoft Academic Search

    Cornelis Spelt; Francesca Quattrocchio; Joseph Mol; Ronald Koes

    2002-01-01

    ANTHOCYANIN1 (AN1) of petunia is a transcription factor of the basic helix-loop-helix (bHLH) family that is required for the synthesis of anthocyanin pigments. Here, we show that AN1 controls additional aspects of cell differentiation: the acidification of vacuoles in petal cells, and the size and morphology of cells in the seed coat epidermis. We identified an1 alleles, formerly known as

  20. Sonic Hedgehog–Regulated Oligodendrocyte Lineage Genes Encoding bHLH Proteins in the Mammalian Central Nervous System

    Microsoft Academic Search

    Q. Richard Lu; Dong-in Yuk; John A Alberta; Zhimin Zhu; Inka Pawlitzky; Joanne Chan; Andrew P McMahon; Charles D Stiles; David H Rowitch

    2000-01-01

    During development, basic helix–loop–helix (bHLH) proteins regulate formation of neurons from multipotent progenitor cells. However, bHLH factors linked to gliogenesis have not been described. We have isolated a pair of oligodendrocyte lineage genes (Olg-1 and Olg-2) that encode bHLH proteins and are tightly associated with development of oligodendrocytes in the vertebrate central nervous system (CNS). Ectopic expression of Olg-1 in

  1. Structural and functional characterization of the polled interval on bovine chromosome 1

    E-print Network

    Wunderlich, Kris Rakowitz

    2008-10-10

    what is currently known, the following are candidate genes: 13 13 Oligodendrocyte Lineage Transcription Factors 1 and 2 (OLIG1 and OLIG2) Each of these genes encodes a basic helix-loop-helix transcription factor expresed in the brain... (Jakovcevski and Zecevic, 2005). These transcription factors are involved in the diferentiation of the oligodendrocyte lineage, are an esential regulator of neuroectodermal cel fate and may have a role in the learning deficits asociated with Down syndrome...

  2. The bHLH Transcription Factor Olig2 Promotes Oligodendrocyte Differentiation in Collaboration with Nkx2.2

    Microsoft Academic Search

    Qiao Zhou; Gloria Choi; David J. Anderson

    2001-01-01

    Olig2, a basic helix-loop-helix (bHLH) transcription factor, is expressed in a restricted domain of the spinal cord ventricular zone that sequentially generates motoneurons and oligodendrocytes. Just prior to oligo-dendrocyte precursor formation, the domains of Olig2 and Nkx2.2 expression switch from being mutually exclusive to overlapping, and Neurogenins1 and 2 are extinguished within this region. Coexpression of Olig2 with Nkx2.2 in

  3. c-Jun Inhibits Insulin Control Element-Mediated Transcription by Affecting the Transactivation Potential of the E2A Gene Products

    Microsoft Academic Search

    GARY L. W. G. ROBINSON; EVA HENDERSON; MARK E. MASSARI; CORNELIS MURRE; ANDROLAND STEIN

    1995-01-01

    Pancreatic b-cell-type-specific transcription of the insulin gene is principally controlled by trans-acting factors which influence insulin control element (ICE)-mediated expression. The ICE activator is composed, in part, of the basic helix-loop-helix proteins E12, E47, and E2-5 encoded by the E2A gene. Previous experiments showed that ICE activation in bcells was repressed in vivo by the c-junproto-oncogene (E. Henderson and R.

  4. Pathways mediating the effects of cannabidiol on the reduction of breast cancer cell proliferation, invasion, and metastasis

    Microsoft Academic Search

    Sean D. McAllister; Ryuichi Murase; Rigel T. Christian; Darryl Lau; Anne J. Zielinski; Juanita Allison; Carolina Almanza; Arash Pakdel; Jasmine Lee; Chandani Limbad; Yong Liu; Robert J. Debs; Dan H. Moore; Pierre-Yves Desprez

    2011-01-01

    Invasion and metastasis of aggressive breast cancer cells are the final and fatal steps during cancer progression. Clinically,\\u000a there are still limited therapeutic interventions for aggressive and metastatic breast cancers available. Therefore, effective,\\u000a targeted, and non-toxic therapies are urgently required. Id-1, an inhibitor of basic helix-loop-helix transcription factors,\\u000a has recently been shown to be a key regulator of the metastatic

  5. Glucose-Mediated Transactivation of Carbohydrate Response Element-Binding Protein Requires Cooperative Actions from Mondo Conserved Regions and Essential Trans-Acting Factor 14-3-3

    Microsoft Academic Search

    Ming V. Li; Weiqin Chen; Naravat Poungvarin; Minako Imamura; Lawrence Chan

    2008-01-01

    Carbohydrate response element-binding protein (ChREBP) is a basic helix-loop-helix\\/leucine zipper transcription factor that binds to the carbohydrate response element in the promoter of certain lipo- genic and glycolytic genes. High glucose can acti- vate ChREBP by releasing an intramolecular inhi- bition within the glucose-sensing module (GSM) that occurs in low glucose. We report here that the glucose response of GSM

  6. Evolution of proneural atonal expression during distinct regulatory phases in the developing Drosophila eye

    Microsoft Academic Search

    Nicholas E. Baker; Sung Yu; Doreen Han

    1996-01-01

    Background Receptors of the Notch family affect the determination of many cell types. In the Drosophila eye, Notch antagonises the basic helix–loop–helix (bHLH) protein atonal, which is required for R8 photoreceptor determination. Similar antagonism between Notch and proneural bHLH proteins regulates most neural cell determination, however, it is uncertain whether the mechanisms are similar in all cases. Here, we have

  7. Molecular cloning of the human Hand1 gene\\/cDNA and its tissue-restricted expression in cytotrophoblastic cells and heart

    Microsoft Academic Search

    Martin Knöfler; Gudrun Meinhardt; Richard Vasicek; Peter Husslein; Christian Egarter

    1998-01-01

    The basic helix–loop–helix (bHLH) factor Hand1 plays a role in the developing chicken heart and is required for trophoblast giant cell differentiation and cardiac looping of mouse embryonic development. Here, we report the cloning of the human Hand1 cDNA and gene from a heart-specific cDNA library and a genomic ?-DNA library, respectively. We present the nucleotide sequence of a 1.75kb

  8. Transcription of a zebrafish gene of the hairy-Enhancer of split family delineates the midbrain anlage in the neural plate

    Microsoft Academic Search

    Marcus Müller; Elisabeth von Weizsäcker; José A. Campos-Ortega

    1996-01-01

    her5 encodes a basic helix-loop-helix (bHLH) protein with all features characteristic of the Drosophila hairy-E(spl) family. her5 is expressed in a band of cells within the neural anlage from about 90% epiboly on to at least 36 h postfertilization (hpf).\\u000a After completion of brain morphogenesis, her5-expressing cells are located in the caudal region of the midbrain, at the boundary with

  9. Defects in the cerebella of conditional Neurod1 null mice correlate with effective Tg(Atoh1-cre) recombination and granule cell requirements for Neurod1 for differentiation

    Microsoft Academic Search

    Ning Pan; Israt Jahan; Jacqueline E. Lee; Bernd Fritzsch

    2009-01-01

    Neurod1 is a crucial basic helix-loop-helix gene for most cerebellar granule cells and mediates the differentiation of these cells\\u000a downstream of Atoh1-mediated proliferation of the precursors. In Neurod1 null mice, granule cells die throughout the posterior two thirds of the cerebellar cortex during development. However, Neurod1 is also necessary for pancreatic ?-cell development, and therefore Neurod1 null mice are diabetic,

  10. The bHLH Gene Hes1 Regulates Differentiation of Multiple Cell Types

    Microsoft Academic Search

    Ryoichiro Kageyama; Toshiyuki Ohtsuka; Koichi Tomita

    2000-01-01

    For embryos that have small pancreas and lack brain, eyes and thymus, the defects are caused by mutation of a single gene,\\u000a Hes1. Hes1 encodes a basic helix-loop-helix (bHLH) transcriptional repressor and functionally antagonizes positive bHLH genes such as\\u000a the neuronal determination gene, Mash1. Mis-expression of Hes1 inhibits cell differentiation and keeps cells at the precursor stage or proliferative stage.

  11. Molecular mechanisms for morphogenesis of the central nervous system in mammals

    Microsoft Academic Search

    Makoto Ishibashi

    2004-01-01

    The mammalian central nervous system (CNS) is a highly organized structure. In the beginning of CNS development, neural precursor\\/stem\\u000a cells are dividing in the neuroepithelium. After a while, these precursors gradually start to differentiate into neurons and\\u000a glial cells. Various factors are involved in the proliferation and differentiation of neural precursors. Recent studies have\\u000a demonstrated that the basic helix-loop-helix (bHLH)

  12. An aryl hydrocarbon receptor (AHR) homologue from the soft-shell clam, Mya arenaria: evidence that invertebrate AHR homologues lack 2,3,7,8-tetrachlorodibenzo- p-dioxin and ?-naphthoflavone binding

    Microsoft Academic Search

    Rondi A. Butler; Melissa L. Kelley; Wade H. Powell; Mark E. Hahn; Rebecca J. Van Beneden

    2001-01-01

    The aryl hydrocarbon receptor (AHR) mediates numerous toxic effects following exposure of vertebrate animals to certain aromatic environmental contaminants, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). To investigate possible effects of TCDD on invertebrates, a cDNA encoding an AHR homologue was cloned from the soft-shell clam, Mya arenaria. The predicted amino acid sequence contains regions characteristic of vertebrate AHRs: basic helix-loop-helix (bHLH) and PER-ARNT-SIM

  13. A New Turn (or Two) for Twist

    NSDL National Science Digital Library

    Alan M. Michelson (Brigham and Women's Hospital; Howard Hughes Medical Institute and the Department of Medicine)

    1996-06-07

    Access to the article is free, however registration and sign-in are required. Two reports in this week's issue of Science [Baylies (p. 1481) and Spicer (p. 1476)] describe new functions in muscle development for the gene twist, a basic helix-loop-helix transcription factor. In his Perspective, Michelson explains how these two seemingly contradictory functions of twist (specification of mesodermal cell fate in fruit flies and inhibition of muscle differentiation in vertebrates) can be reconciled.

  14. Combinatorial Roles of Olig2 and Neurogenin2 in the Coordinated Induction of Pan-Neuronal and Subtype-Specific Properties of Motoneurons

    Microsoft Academic Search

    Rumiko Mizuguchi; Michiya Sugimori; Hirohide Takebayashi; Hidetaka Kosako; Motoshi Nagao; Shosei Yoshida; Yo-ichi Nabeshima; Kenji Shimamura; Masato Nakafuku

    2001-01-01

    Distinct classes of neurons are generated at defined times and positions during development of the nervous system. It remains elusive how specification of neuronal identity coordinates with acquisition of pan-neuronal properties. Here we show that basic helix-loop-helix (bHLH) transcription factors Olig2 and Neurogenin2 (Ngn2) play vital roles in the coordinated induction of pan-neuronal and subtype-specific properties of motoneurons. Olig2 and

  15. Myogenin gene disruption results in perinatal lethality because of severe muscle defect

    Microsoft Academic Search

    Yoko Nabeshima; Kazunori Hanaoka; Michiko Hayasaka; Eisaku Esuml; Shaowei Li; Ikuya Nonaka; Yo-Ichi Nabeshima

    1993-01-01

    MYOGENIN is a member of the basic helix-loop-helix (bHLH) gene family and converts multipotential mesodermal cells to myoblasts1-4. The four members of the myoD family show unique spatio-temporal expression patterns5 and therefore may have different functions during myogenesis. Here we inactivate the myogenin gene in order to understand its role in myogenesis. Homozygous mutations are lethal perinatally owing to the

  16. The Mesoderm Specification Factor Twist in the Life Cycle of Jellyfish

    Microsoft Academic Search

    Jürg Spring; Nathalie Yanze; Arnoud M. Middel; Michael Stierwald; Hans Gröger; Volker Schmid

    2000-01-01

    The basic helix-loop-helix (bHLH) transcription factor Twist is highly conserved from Drosophila to vertebrates and plays a major role in mesoderm specification of triploblasts. The presence of a Twist homologue in diploblasts such as the cnidarian Podocoryne carnea raises questions on the evolution of mesoderm, the third cell layer characteristic for triploblasts. Podocoryne Twist is expressed in the early embryo

  17. Effect of supercoiling on formation of protein mediated DNA loops

    E-print Network

    Purohit, Prashant K

    2015-01-01

    DNA loop formation is one of several mechanisms used by organisms to regulate genes. The free energy of forming a loop is an important factor in determining whether the associated gene is switched on or off. In this paper we use an elastic rod model of DNA to determine the free energy of forming short (50--100 basepair), protein mediated DNA loops. Superhelical stress in the DNA of living cells is a critical factor determining the energetics of loop formation, and we explicitly account for it in our calculations. The repressor protein itself is regarded as a rigid coupler; its geometry enters the problem through the boundary conditions it applies on the DNA. We show that a theory with these ingredients is sufficient to explain certain features observed in modulation of in vivo gene activity as a function of the distance between operator sites for the lac repressor. We also use our theory to make quantitative predictions for the dependence of looping on superhelical stress, which may be testable both in vivo a...

  18. Morphology, Biophysical Properties and Protein-Mediated Fusion of Archaeosomes

    PubMed Central

    Šuštar, Vid; Zelko, Jasna; Lopalco, Patrizia; Lobasso, Simona; Ota, Ajda; Ulrih, Nataša Poklar; Corcelli, Angela; Kralj-Igli?, Veronika

    2012-01-01

    As variance from standard phospholipids of eubacteria and eukaryotes, archaebacterial diether phospholipids contain branched alcohol chains (phytanol) linked to glycerol exclusively with ether bonds. Giant vesicles (GVs) constituted of different species of archaebacterial diether phospholipids and glycolipids (archaeosomes) were prepared by electroformation and observed under a phase contrast and/or fluorescence microscope. Archaebacterial lipids and different mixtures of archaebacterial and standard lipids formed GVs which were analysed for size, yield and ability to adhere to each other due to the mediating effects of certain plasma proteins. GVs constituted of different proportions of archaeal or standard phosphatidylcholine were compared. In nonarchaebacterial GVs (in form of multilamellar lipid vesicles, MLVs) the main transition was detected at Tm?=?34. 2°C with an enthalpy of ?H?=?0.68 kcal/mol, whereas in archaebacterial GVs (MLVs) we did not observe the main phase transition in the range between 10 and 70°C. GVs constituted of archaebacterial lipids were subject to attractive interaction mediated by beta 2 glycoprotein I and by heparin. The adhesion constant of beta 2 glycoprotein I – mediated adhesion determined from adhesion angle between adhered GVs was in the range of 10?8 J/m2. In the course of protein mediated adhesion, lateral segregation of the membrane components and presence of thin tubular membranous structures were observed. The ability of archaebacterial diether lipids to combine with standard lipids in bilayers and their compatibility with adhesion-mediating molecules offer further evidence that archaebacterial lipids are appropriate for the design of drug carriers. PMID:22792173

  19. Nucleic Acid Conformational Changes Essential for HIV-1 Nucleocapsid Protein-mediated Inhibition of

    E-print Network

    Levin, Judith G.

    Nucleic Acid Conformational Changes Essential for HIV-1 Nucleocapsid Protein-mediated Inhibition) is a nucleic acid chaperone protein that has been shown to greatly facilitate the nucleic acid rearrangements and a TAR-containing acceptor RNA molecule, we find that when both nucleic acids are present, NC facilitates

  20. Maintenance of meiotic prophase arrest in vertebrate oocytes by a Gs protein-mediated pathway

    E-print Network

    Terasaki, Mark

    Maintenance of meiotic prophase arrest in vertebrate oocytes by a Gs protein-mediated pathway, CT 06032, USA b Weis Center for Research, Geisinger Clinic, Danville, PA 17822, USA c Metabolic; Heterotrimeric G proteins; Zebrafish; Xenopus; Mouse Introduction Fully grown oocytes of mammals, frogs and fish

  1. G Protein-Mediated Inhibition of Myosin Light-Chain Phosphatase in Vascular Smooth Muscle

    Microsoft Academic Search

    Toshio Kitazawa; Masatoshi Masuo; Andrew P. Somlyo

    1991-01-01

    The mechanism of G protein-mediated sensitization of the contractile apparatus of smooth muscle to Ca2+ was studied in receptor-coupled alpha-toxin-permeabilized rabbit portal vein smooth muscle. To test the hypothesis that Ca2+ sensitization is due to inhibition of myosin light-chain (MLC) phosphatase activity, we measured the effect of guanosine 5'-[gamma-thio]triphosphate and phenylephrine on the rate of MLC dephosphorylation in muscles preactivated

  2. Protein-mediated Loops and Phase Transition in Nonthermal Denaturation of DNA

    E-print Network

    K. G. Petrosyan; Chin-Kun Hu

    2009-12-21

    We use a statistical mechanical model to study nonthermal denaturation of DNA in the presence of protein-mediated loops. We find that looping proteins which randomly link DNA bases located at a distance along the chain could cause a first-order phase transition. We estimate the denaturation transition time near the phase transition, which can be compared with experimental data. The model describes the formation of multiple loops via dynamical (fluctuational) linking between looping proteins, that is essential in many cellular biological processes.

  3. A Novel bHLH-PAS Factor with Close Sequence Similarity to Hypoxia-Inducible Factor 1alpha (HIF1alpha ) Regulates the VEGF, Expression and is Potentially Involved in Lung and Vascular Development

    Microsoft Academic Search

    Masatsugu Ema; Shinichiro Taya; Noboru Yokotani; Kazuhiro Sogawa; Youichi Matsuda; Yoshiaki Fujii-Kuriyama

    1997-01-01

    We have isolated and characterized a cDNA for a novel Per-Arnt\\/AhR-Sim basic helix--loop--helix (bHLH-PAS) factor that interacts with the Ah receptor nuclear translocator (Arnt), and its predicted amino acid sequence exhibits significant similarity to the hypoxia-inducible factor 1alpha (HIF1alpha ) and Drosophila trachealess (dTrh) gene product. The HIF1alpha -like factor (HLF) encoded by the isolated cDNA bound the hypoxia-response element

  4. Tipping the MYC–MIZ1 balance: targeting the HUWE1 ubiquitin ligase selectively blocks MYC-activated genes

    PubMed Central

    Schaub, Franz X; Cleveland, John L

    2014-01-01

    MYC family oncoproteins (MYC, N-MYC and L-MYC) function as basic helix-loop-helix-leucine zipper (bHLH-Zip) transcription factors that are activated (i.e., overexpressed) in well over half of all human malignancies (Boxer & Dang, 2001; Beroukhim et al, 2010). In this issue of EMBO Molecular Medicine, Eilers and colleagues (Peter et al, 2014) describe a novel approach to disable MYC, whereby inhibition of the ubiquitin ligase HUWE1 stabilizes MIZ1 and leads to the selective repression of MYC-activated target genes. See also: S Peter et al (December 2014) PMID:25368331

  5. Association of TWIST1 gene polymorphisms with bone mineral density in postmenopausal women

    Microsoft Academic Search

    J.-Y. Hwang; S.-Y. Kim; S. H. Lee; G. S. Kim; M. J. Go; S. E. Kim; H.-C. Kim; H.-D. Shin; B. L. Park; T.-H. Kim; J. M. Hong; E. K. Park; H.-L. Kim; J.-Y. Lee; J.-M. Koh

    2010-01-01

    Summary  A novel polymorphism (+1871A>G) in the 3? flanking region and haplotypes were significantly associated with reduced osteoporosis risk and enhanced bone\\u000a mineral density (BMD). These results suggest that TWIST1 may be a useful genetic marker for osteoporosis. Our results provide preliminary evidence supporting an association of TWIST1 with osteoporosis in postmenopausal women.\\u000a \\u000a \\u000a \\u000a \\u000a Introduction  \\u000a TWIST1, a basic helix–loop–helix (bHLH) transcription factor,

  6. Expression of mouse HES-6, a new member of the Hairy/Enhancer of split family of bHLH transcription factors.

    PubMed

    Vasiliauskas, D; Stern, C D

    2000-11-01

    We studied the expression of mouse HES-6, a new member of the Hairy/Enhancer of split family of basic helix-loop-helix transcription factors. HES-6 is expressed in all neurogenic placodes and their derivatives and in the brain, where it is patterned along both the anteroposterior and dorsoventral axes. HES-6 is also expressed in the trunk, in the dorsal root ganglia and in the myotomes. In the limb buds HES-6 is expressed in skeletal muscle and presumptive tendons. PMID:11044617

  7. Mechanisms and Regulation of Protein-Mediated Cellular Fatty Acid Uptake: Molecular, Biochemical, and Physiological Evidence

    NSDL National Science Digital Library

    2007-02-01

    In recent years, there has been considerable debate as to whether fatty acid is transported into cells or diffuses rapidly into the cell. It now appears that this debate is less strident, as it has been acknowledged recently that evidence supporting passive diffusion as the main mechanism for fatty acid uptake is apparently in error, since "previous reports for rapid flip-flop were based on an incorrect interpretation of the measurements" (79), Because of this (79) and other experiments (78), it has been concluded that "the lipid bilayer portion of biological membranes may present a significant barrier to transport of FFA across cell membranes" (36) and that "flip-flop is the rate limiting step for FFA transport across lipid vesicles" (78). Furthermore, "this implies that at least certain biological membranes may require protein-mediated transporters to catalyze the flip-flop step" (78). Since we (13, 27Â?29, 73, 97, 98, 100) and others (32, 45, 54) have previously provided considerable support for the protein-mediated entry of long-chain fatty acids into the cell, especially in metabolically important tissues such as heart and skeletal muscle, we concur with these recent conclusions (36, 78, 79) that (membrane-associated) proteins are involved in cellular fatty acid uptake.

  8. The respiratory syncytial virus (RSV) nonstructural proteins mediate RSV suppression of glucocorticoid receptor transactivation.

    PubMed

    Webster Marketon, Jeanette I; Corry, Jacqueline; Teng, Michael N

    2014-01-20

    Respiratory syncytial virus (RSV)-induced bronchiolitis in infants is not responsive to glucocorticoids. We have shown that RSV infection impairs glucocorticoid receptor (GR) function. In this study, we have investigated the mechanism by which RSV impairs GR function. We have shown that RSV repression of GR-induced transactivation is not mediated through a soluble autocrine factor. Knock-down of mitochondrial antiviral signaling protein (MAVS), but not retinoic acid-inducible gene 1 (RIG-I) or myeloid differentiation primary response gene 88 (MyD88), impairs GR-mediated gene activation even in mock-infected cells. Over-expression of the RSV nonstructural protein NS1, but not NS2, impairs glucocorticoid-induced transactivation and viruses deleted in NS1 and/or NS2 are unable to repress glucocorticoid-induction of the known GR regulated gene glucocorticoid-inducible leucine zipper (GILZ). These data suggest that the RSV nonstructural proteins mediate RSV repression of GR-induced transactivation and that inhibition of the nonstructural proteins may be a viable target for therapy against RSV-related disease. PMID:24418538

  9. HIV-1 protein-mediated amyloidogenesis in rat hippocampal cell cultures

    PubMed Central

    Aksenov, M. Y.; Aksenova, M.V.; Mactutus, C. F; Booze, R.M.

    2010-01-01

    Since the beginning of the highly active antiretroviral therapy (HAART) era, epidemiological evidence indicates an increasing incidence of Alzheimer's (AD)-like brain pathology in aging HIV patients. Emerging evidence warns of potential convergent mechanisms underlying HIV- and A?-mediated neurodegeneration. We found that HIV-1 Tat and gp 120 promote the secretion of A? 1–42 in primary rat fetal hippocampal cell cultures. Our results demonstrate that the variant of Tat expressed by the neurotropic subtype of HIV-1 virus (HIV-1 clade B) specifically induces both the release of amyloidogenic A? 1–42 and the accumulation of cell-bound amyloid aggregates. The results of the research rationalize testing of the ability of ?-amyloid aggregation inhibitors to attenuate HIV protein-mediated cognitive deficits in animal models of NeuroAIDS. The long-term goal of the study is to evaluate the potential benefits of anti-amyloidogenic therapies for management of cognitive dysfunction in aging HIV-1 patients. PMID:20363291

  10. HIV-1 protein-mediated amyloidogenesis in rat hippocampal cell cultures.

    PubMed

    Aksenov, M Y; Aksenova, M V; Mactutus, C F; Booze, R M

    2010-05-21

    Since the beginning of the highly active antiretroviral therapy (HAART) era, epidemiological evidence indicates an increasing incidence of Alzheimer's (AD)-like brain pathology in aging HIV patients. Emerging evidence warns of potential convergent mechanisms underlying HIV- and Abeta-mediated neurodegeneration. We found that HIV-1 Tat B and gp120 promote the secretion of Abeta 1-42 in primary rat fetal hippocampal cell cultures. Our results demonstrate that the variant of Tat expressed by the neurotropic subtype of HIV-1 virus (HIV-1 clade B) specifically induces both the release of amyloidogenic Abeta 1-42 and the accumulation of cell-bound amyloid aggregates. The results of the research rationalize testing of the ability of beta-amyloid aggregation inhibitors to attenuate HIV protein-mediated cognitive deficits in animal models of NeuroAIDS. The long-term goal of the study is to evaluate the potential benefits of anti-amyloidogenic therapies for management of cognitive dysfunction in aging HIV-1 patients. PMID:20363291

  11. A juvenile hormone transcription factor Bmdimm-fibroin H chain pathway is involved in the synthesis of silk protein in silkworm, Bombyx mori.

    PubMed

    Zhao, Xiao-Ming; Liu, Chun; Jiang, Li-Jun; Li, Qiong-Yan; Zhou, Meng-Ting; Cheng, Ting-Cai; Mita, Kazuei; Xia, Qing-You

    2015-01-01

    The genes responsible for silk biosynthesis are switched on and off at particular times in the silk glands of Bombyx mori. This switch appears to be under the control of endogenous and exogenous hormones. However, the molecular mechanisms by which silk protein synthesis is regulated by the juvenile hormone (JH) are largely unknown. Here, we report a basic helix-loop-helix transcription factor, Bmdimm, its silk gland-specific expression, and its direct involvement in the regulation of fibroin H-chain (fib-H) by binding to an E-box (CAAATG) element of the fib-H gene promoter. Far-Western blots, enzyme-linked immunosorbent assays, and co-immunoprecipitation assays revealed that Bmdimm protein interacted with another basic helix-loop-helix transcription factor, Bmsage. Immunostaining revealed that Bmdimm and Bmsage proteins are co-localized in nuclei. Bmdimm expression was induced in larval silk glands in vivo, in silk glands cultured in vitro, and in B. mori cell lines after treatment with a JH analog. The JH effect on Bmdimm was mediated by the JH-Met-Kr-h1 signaling pathway, and Bmdimm expression did not respond to JH by RNA interference with double-stranded BmKr-h1 RNA. These data suggest that the JH regulatory pathway, the transcription factor Bmdimm, and the targeted fib-H gene contribute to the synthesis of fibroin H-chain protein in B. mori. PMID:25371208

  12. Helt determines GABAergic over glutamatergic neuronal fate by repressing Ngn genes in the developing mesencephalon.

    PubMed

    Nakatani, Tomoya; Minaki, Yasuko; Kumai, Minoru; Ono, Yuichi

    2007-08-01

    The mechanism underlying the determination of neurotransmitter phenotype in the developing mesencephalon, particularly GABAergic versus glutamatergic fate, remains largely unknown. Here, we show in mice that the basic helix-loop-helix transcriptional repressor gene Helt (also known as Megane and Heslike) functions as a selector gene that determines GABAergic over glutamatergic fate in the mesencephalon. Helt was coincidently expressed in all the progenitor domains for mesencephalic GABAergic neurons. In the mesencephalon of Helt-deficient embryos, GABAergic neurons were mostly absent and glutamatergic neurons emerged instead. Conversely, ectopically expressed Helt suppressed glutamatergic formation and induced GABAergic neurogenesis. However, the Helt mutants showed normal progenitor domain formation. In consequence, postmitotic expression of the homeodomain factor Nkx2.2, which was specifically expressed by GABAergic populations in wild-type embryos, was maintained despite the transmitter phenotype conversion from GABAergic to glutamatergic in the Helt mutants, suggesting that Helt is not involved in neuronal identity specification. Furthermore, we identified proneural genes Ngn1 and Ngn2, which were selectively expressed in glutamatergic progenitors in the developing mesencephalon and had the ability to confer the glutamatergic fate, as downstream target genes of Helt. These results suggest that Helt determines GABAergic over glutamatergic fate, at least in part, by repressing Ngn (Neurog) genes and that basic helix-loop-helix transcription factor networks involving Helt and Ngns are commonly used in the mesencephalon for determination of the GABAergic versus glutamatergic transmitter phenotype. PMID:17611227

  13. Specific conformational epitope features of pathogenesis-related proteins mediating cross-reactivity between pollen and food allergens

    Microsoft Academic Search

    Jose C. Jimenez-Lopez; Emma W. Gachomo; Oluwole A. Ariyo; Lamine Baba-Moussa; Simeon O. Kotchoni

    Selected members of plant pathogenesis-related and seed storage proteins represent specific groups of proteins with potential\\u000a characteristics of allergens. Efforts to understand the mechanism by which pathogenesis-related proteins mediate a broad cross-reactivity\\u000a in pollen-plant food allergens are still limited. In this study, computational biology approach was used to reveal specific\\u000a structural implications and conservation of different epitopes from members of

  14. The bHLH Transcription Factor HBI1 Mediates the Trade-Off between Growth and Pathogen-Associated Molecular Pattern–Triggered Immunity in Arabidopsis[W][OPEN

    PubMed Central

    Fan, Min; Bai, Ming-Yi; Kim, Jung-Gun; Wang, Tina; Oh, Eunkyoo; Chen, Lawrence; Park, Chan Ho; Son, Seung-Hyun; Kim, Seong-Ki; Mudgett, Mary Beth; Wang, Zhi-Yong

    2014-01-01

    The trade-off between growth and immunity is crucial for survival in plants. However, the mechanism underlying growth-immunity balance has remained elusive. The PRE-IBH1-HBI1 tripartite helix-loop-helix/basic helix-loop-helix module is part of a central transcription network that mediates growth regulation by several hormonal and environmental signals. Here, genome-wide analyses of HBI1 target genes show that HBI1 regulates both overlapping and unique targets compared with other DNA binding components of the network in Arabidopsis thaliana, supporting a role in specifying network outputs and fine-tuning feedback regulation. Furthermore, HBI1 negatively regulates a subset of genes involved in immunity, and pathogen-associated molecular pattern (PAMP) signals repress HBI1 transcription. Constitutive overexpression and loss-of-function experiments show that HBI1 inhibits PAMP-induced growth arrest, defense gene expression, reactive oxygen species production, and resistance to pathogen. These results show that HBI1, as a component of the central growth regulation circuit, functions as a major node of crosstalk that mediates a trade-off between growth and immunity in plants. PMID:24550223

  15. Dynamic expression of Notch-dependent neurogenic markers in the chick embryonic nervous system.

    PubMed

    Ratié, Leslie; Ware, Michelle; Jagline, Hélčne; David, Véronique; Dupé, Valérie

    2014-01-01

    The establishment of a functional nervous system requires a highly orchestrated process of neural proliferation and differentiation. The evolutionary conserved Notch signaling pathway is a key regulator of this process, regulating basic helix-loop-helix (bHLH) transcriptional repressors and proneural genes. However, little is known about downstream Notch targets and subsequently genes required for neuronal specification. In this report, the expression pattern of Transgelin 3 (Tagln3), Chromogranin A (Chga) and Contactin 2 (Cntn2) was described in detail during early chick embryogenesis. Expression of these genes was largely restricted to the nervous system including the early axon scaffold populations, cranial ganglia and spinal motor neurons. Their temporal and spatial expression were compared with the neuronal markers Nescient Helix-Loop-Helix 1 (Nhlh1), Stathmin 2 (Stmn2) and HuC/D. We show that Tagln3 is an early marker for post-mitotic neurons whereas Chga and Cntn2 are expressed in mature neurons. We demonstrate that inhibition of Notch signaling during spinal cord neurogenesis enhances expression of these markers. This data demonstrates that Tagln3, Chga and Cntn2 represent strong new candidates to contribute to the sequential progression of vertebrate neurogenesis. PMID:25565981

  16. Formation of in vivo complexes between the TAL1 and E2A polypeptides of leukemic T cells.

    PubMed Central

    Hsu, H L; Wadman, I; Baer, R

    1994-01-01

    Tumor-specific activation of the TAL1 gene occurs in approximately 25% of patients with T-cell acute lymphoblastic leukemia (T-ALL). The TAL1 gene products possess a basic helix-loop-helix (bHLH) domain that interacts in vitro with the bHLH proteins (E12 and E47) encoded by the E2A locus. We have now applied two independent methods, the two-hybrid procedure and co-immunoprecipitation analysis, to demonstrate that TAL1 and E2A polypeptides also associate in vivo. These studies show that the bHLH domain of TAL1 selectively interacts with the bHLH domains of E12 and E47, but not with the Id1 helix-loop-helix protein. TAL1 does not self-associate to form homodimeric complexes, implying that the in vivo functions of TAL1 depend on heterologous interaction with other bHLH proteins such as E12 and E47. Co-immunoprecipitation analysis revealed the presence of endogenous TAL1/E2A complexes in Jurkat cells, a leukemic line derived from a T-ALL patient. Thus, the malignant properties of TAL1 may be due to obligate interaction with the E2A polypeptides. Images PMID:8159721

  17. Heterotrimeric G protein mediates ethylene-induced stomatal closure via hydrogen peroxide synthesis in Arabidopsis.

    PubMed

    Ge, Xiao-Min; Cai, Hong-Li; Lei, Xue; Zhou, Xue; Yue, Ming; He, Jun-Min

    2015-04-01

    Heterotrimeric G proteins function as key players in hydrogen peroxide (H2O2) production in plant cells, but whether G proteins mediate ethylene-induced H2O2 production and stomatal closure are not clear. Here, evidences are provided to show the G? subunit GPA1 as a missing link between ethylene and H2O2 in guard cell ethylene signalling. In wild-type leaves, ethylene-triggered H2O2 synthesis and stomatal closure were dependent on activation of G?. GPA1 mutants showed the defect of ethylene-induced H2O2 production and stomatal closure, whereas wG? and cG? overexpression lines showed faster stomatal closure and H2O2 production in response to ethylene. Ethylene-triggered H2O2 generation and stomatal closure were impaired in RAN1, ETR1, ERS1 and EIN4 mutants but not impaired in ETR2 and ERS2 mutants. G? activator and H2O2 rescued the defect of RAN1 and EIN4 mutants or etr1-3 in ethylene-induced H2O2 production and stomatal closure, but only rescued the defect of ERS1 mutants or etr1-1 and etr1-9 in ethylene-induced H2O2 production. Stomata of CTR1 mutants showed constitutive H2O2 production and stomatal closure, but which could be abolished by G? inhibitor. Stomata of EIN2, EIN3 and ARR2 mutants did not close in responses to ethylene, G? activator or H2O2, but do generate H2O2 following challenge of ethylene or G? activator. The data indicate that G? mediates ethylene-induced stomatal closure via H2O2 production, and acts downstream of RAN1, ETR1, ERS1, EIN4 and CTR1 and upstream of EIN2, EIN3 and ARR2. The data also show that ETR1 and ERS1 mediate both ethylene and H2O2 signalling in guard cells. PMID:25704455

  18. Lipid transfer protein-mediated resistance to a trichothecene mycotoxin – Novel players in FHB resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipid transfer proteins are a class of basic cysteine rich proteins characterized by an eight cysteine motif backbone with intrinsic antimicrobial activities against bacterial and fungal pathogens. Previously, we identified two type IV nonspecific lipid transfer protein (nsLTP) genes (LTP4.4 and LTP...

  19. What's Basic About Basic Emotions?

    Microsoft Academic Search

    Andrew Ortony; Terence J. Turner

    1990-01-01

    A widespread assumption in theories of emotion is that there exists a small set of basic emotions. From a biological perspective, this idea is manifested in the belief that there might be neurophysiological and anatomical substrates corresponding to the basic emotions. From a psychological perspective, basic emotions are often held to be the primitive building blocks of other, nonbasic emotions.

  20. Corrosion Basics

    SciTech Connect

    Not Available

    1985-01-01

    Retaining much of the text of the Basic Corrosion Course, Corrosion Basics contains updated, and additional information on plastics, concrete, coatings, water, cracking phenomena, and design. Chapters were rearranged. The cross referenced index was retained and updated to facilitate the quick location of any topic throughout the text. This publication provides the general coverage of the field of corrosion.

  1. Fluoridation Basics

    MedlinePLUS

    ... on Facebook Tweet Share Compartir Basic Information About Fluoride The mineral fluoride occurs naturally on earth and ... and suffering because of tooth decay. History of Fluoride in Water In the 1930s, scientists examined the ...

  2. Citrus tristeza virus p23: a unique protein mediating key virus-host interactions.

    PubMed

    Flores, Ricardo; Ruiz-Ruiz, Susana; Soler, Nuria; Sánchez-Navarro, Jesús; Fagoaga, Carmen; López, Carmelo; Navarro, Luis; Moreno, Pedro; Peńa, Leandro

    2013-01-01

    The large RNA genome of Citrus tristeza virus (CTV; ca. 20 kb) contains 12 open reading frames, with the 3'-terminal one corresponding to a protein of 209 amino acids (p23) that is expressed from an abundant subgenomic RNA. p23, an RNA-binding protein with a putative zinc-finger domain and some basic motifs, is unique to CTV because no homologs have been found in other closteroviruses, including the type species of the genus Beet yellows virus (despite both viruses having many homologous genes). Consequently, p23 might have evolved for the specific interaction of CTV with its citrus hosts. From a functional perspective p23 has been involved in many roles: (i) regulation of the asymmetrical accumulation of CTV RNA strands, (ii) induction of the seedling yellows syndrome in sour orange and grapefruit, (iii) intracellular suppression of RNA silencing, (iv) elicitation of CTV-like symptoms when expressed ectopically as a transgene in several Citrus spp., and (v) enhancement of systemic infection (and virus accumulation) in sour orange and CTV release from the phloem in p23-expressing transgenic sweet and sour orange. Moreover, transformation of Mexican lime with intron-hairpin constructs designed for the co-inactivation of p23 and the two other CTV silencing suppressors results in complete resistance against the homologous virus. From a cellular point of view, recent data indicate that p23 accumulates preferentially in the nucleolus, being the first closterovirus protein with such a subcellular localization, as well as in plasmodesmata. These major accumulation sites most likely determine some of the functional roles of p23. PMID:23653624

  3. Citrus tristeza virus p23: a unique protein mediating key virus–host interactions

    PubMed Central

    Flores, Ricardo; Ruiz-Ruiz, Susana; Soler, Nuria; Sánchez-Navarro, Jesús; Fagoaga, Carmen; López, Carmelo; Navarro, Luis; Moreno, Pedro; Peńa, Leandro

    2013-01-01

    The large RNA genome of Citrus tristeza virus (CTV; ca. 20 kb) contains 12 open reading frames, with the 3?-terminal one corresponding to a protein of 209 amino acids (p23) that is expressed from an abundant subgenomic RNA. p23, an RNA-binding protein with a putative zinc-finger domain and some basic motifs, is unique to CTV because no homologs have been found in other closteroviruses, including the type species of the genus Beet yellows virus (despite both viruses having many homologous genes). Consequently, p23 might have evolved for the specific interaction of CTV with its citrus hosts. From a functional perspective p23 has been involved in many roles: (i) regulation of the asymmetrical accumulation of CTV RNA strands, (ii) induction of the seedling yellows syndrome in sour orange and grapefruit, (iii) intracellular suppression of RNA silencing, (iv) elicitation of CTV-like symptoms when expressed ectopically as a transgene in several Citrus spp., and (v) enhancement of systemic infection (and virus accumulation) in sour orange and CTV release from the phloem in p23-expressing transgenic sweet and sour orange. Moreover, transformation of Mexican lime with intron-hairpin constructs designed for the co-inactivation of p23 and the two other CTV silencing suppressors results in complete resistance against the homologous virus. From a cellular point of view, recent data indicate that p23 accumulates preferentially in the nucleolus, being the first closterovirus protein with such a subcellular localization, as well as in plasmodesmata. These major accumulation sites most likely determine some of the functional roles of p23. PMID:23653624

  4. The regulatory effect of nucleoside diphosphate kinase on G-protein and G-protein mediated phospholipase C.

    PubMed

    Zhang, D; Chang, K

    1995-03-01

    The effect of nucleoside diphosphate kinase (NDPK) on the activity of guanine nucleotide regulatory protein (G-protein) mediated phospholipase C (PLC) and on the [35S] GTPT tau S binding of G-protein was investigated in this work in order to demonstrate the mechanism behind the regulation of G-protein and its effector PLC by NDPK. The stimulation of PLC in turkey erythrocyte membrane by both GTP and GTP tau S indicated that the PLC stimulation was mediated by G-protein. NDPK alone stimulated PLC activity, as well as the stimulation in the presence of GTP and GDP, in a dose-dependent manner. However, NDPK inhibited GTP tau S-stimulated PLC. Furthermore, NDPK inhibited [35S]GTP tau S binding of purified Gi-protein in a non-competitive manner. A hypothesis implying an important role of direct interaction of G-protein and NDPK in the regulation of their functions is suggested and discussed. PMID:7780113

  5. Coat protein-mediated resistance in transgenic tobacco expressing the tobacco mosaic virus coat protein from tissue-specific promoters.

    PubMed

    Reimann-Philipp, U; Beachy, R N

    1993-01-01

    Coat protein-mediated resistance (CP-MR) was studied in transgenic Nicotiana tabacum 'Xanthi nn' and 'Xanthi NN' that express chimeric tobacco mosaic virus (TMV) coat protein (CP) gene constructs using two different tissue-specific promoters. The Phaseolus vulgaris pal2 promoter leads to gene expression in the upper leaf epidermis and the xylem, while the rolC promoter from Agrobacterium rhizogenes leads to gene expression in pholem and leaf hair tip cells. Tissue-specific gene expression was verified using the gusA(uidA) reporter gene, while accumulation of TMV CP was verified by Western blot analysis. Transgenic Xanthi nn plants harboring the pal2-CP gene construct were partially resistant to TMV infection. On Xanthi NN plants that expressed the pal2-CP gene construct, fewer necrotic lesions were formed after TMV inoculation compared to nontransformed control plants. The level of resistance, however, was substantially less than in plant lines that expressed TMV CP from the cauliflower mosaic virus 35S promoter. By contrast, expression of the rolC-CP construct did not confer resistance in either Xanthi nn or Xanthi NN. The results provide further evidence that CP-MR to systemic TMV infection in tobacco is probably due to inhibition of infection rather than to effects on long-distance spread through the phloem. PMID:8324249

  6. Phase Variation of PorA, a Major Outer Membrane Protein, Mediates Escape of Bactericidal Antibodies by Neisseria meningitidis

    PubMed Central

    Tauseef, Isfahan; Ali, Youssif M.

    2013-01-01

    Several outer membrane proteins of Neisseria meningitidis are subject to phase variation due to alterations in simple sequence repeat tracts. The PorA protein is a major outer membrane protein and a target for protective host immune responses. Phase variation of PorA is mediated by a poly-G repeat tract present within the promoter, leading to alterations in protein expression levels. N. meningitidis strain 8047 was subjected to serial passage in the presence of P1.2, a PorA-specific bactericidal monoclonal antibody. Rapid development of resistance to bactericidal activity was associated with a switch in the PorA repeat tract from 11G to 10G. Phase variants with a 10G repeat tract exhibited a 2-fold reduction in surface expression of PorA protein. A mutS mutant of strain 8047, with an elevated phase variation rate, exhibited a higher rate of escape and an association of escape with 10G and 9G variants, the latter having a 13-fold reduction in surface expression of PorA. We conclude that graduated reductions in the surface expression of outer membrane proteins mediated by phase variation enable meningococci to escape killing in vitro by bactericidal antibodies. These findings indicate how phase variation could have a major impact on immune escape and host persistence of meningococci. PMID:23403557

  7. Tremor (Beyond the Basics)

    MedlinePLUS

    ... Basics) Patient information: Myoclonus (The Basics) Patient information: Fragile X syndrome (The Basics) Beyond the Basics — Beyond the Basics ... of Parkinson disease Overview of tremor Patient information: Fragile X syndrome (The Basics) Patient information: Myoclonus (The Basics) Patient ...

  8. Basic Electricity

    NSDL National Science Digital Library

    This resource, created by National Aerospace Technical Education Center (SpaceTEC), is centered on basic electricity. The presentation focuses on standards for SpaceTEC certification. Safety when using electricity is the focal point of the slides. Basic diagrams and charts illustrate the do and donâ??ts when using electrical appliances. After the discussion of safety, the presentation shifts to the fundamental aspects of electricity. Such items as current, flow, voltage and other elements are discussed. Examples are used as representations of these basic processes. Overall, this is thorough presentation of this material. It totals nearly one-hundred twenty slides in length. Instructors could use this either as a presentation or simply to enhance existing curriculum.

  9. DOS basics

    SciTech Connect

    O`Connor, P.

    1994-09-01

    DOS is an acronym for Disk Operating System. It is actually a set of programs that allows you to control your personal computer. DOS offers the capabilities to create and manage files; organize and maintain information placed on disks; use application programs such as WordPerfect, Lotus 123, Excel, Windows, etc. In addition, DOS provides the basic utilities needed to copy files from one area to another, delete files and list files. The latest version of DOS also offers more advanced features that include hard disk compression and memory management. Basic DOS commands are discussed.

  10. Direct Detection of Transcription Factors in Cotyledons during Seedling Development Using Sensitive Silicon-Substrate Photonic Crystal Protein Arrays1[OPEN

    PubMed Central

    Jones, Sarah I.; Tan, Yafang; Shamimuzzaman, Md; George, Sherine; Cunningham, Brian T.; Vodkin, Lila

    2015-01-01

    Transcription factors control important gene networks, altering the expression of a wide variety of genes, including those of agronomic importance, despite often being expressed at low levels. Detecting transcription factor proteins is difficult, because current high-throughput methods may not be sensitive enough. One-dimensional, silicon-substrate photonic crystal (PC) arrays provide an alternative substrate for printing multiplexed protein microarrays that have greater sensitivity through an increased signal-to-noise ratio of the fluorescent signal compared with performing the same assay upon a traditional aminosilanized glass surface. As a model system to test proof of concept of the silicon-substrate PC arrays to directly detect rare proteins in crude plant extracts, we selected representatives of four different transcription factor families (zinc finger GATA, basic helix-loop-helix, BTF3/NAC [for basic transcription factor of the NAC family], and YABBY) that have increasing transcript levels during the stages of seedling cotyledon development. Antibodies to synthetic peptides representing the transcription factors were printed on both glass slides and silicon-substrate PC slides along with antibodies to abundant cotyledon proteins, seed lectin, and Kunitz trypsin inhibitor. The silicon-substrate PC arrays proved more sensitive than those performed on glass slides, detecting rare proteins that were below background on the glass slides. The zinc finger transcription factor was detected on the PC arrays in crude extracts of all stages of the seedling cotyledons, whereas YABBY seemed to be at the lower limit of their sensitivity. Interestingly, the basic helix-loop-helix and NAC proteins showed developmental profiles consistent with their transcript patterns, indicating proof of concept for detecting these low-abundance proteins in crude extracts. PMID:25635113

  11. Basic Skills.

    ERIC Educational Resources Information Center

    Addison-Rutland Supervisory Union, Fair Haven, VT.

    This publication lists basic skills curriculum objectives for kindergarten through eighth grade in the schools of the Addison-Rutland Supervisory Union in Fair Haven, Vermont. Objectives concern language arts, reading, mathematics, science, and social studies instruction. Kindergarten objectives for general skills, physical growth, motor skills,…

  12. Basic Horticulture.

    ERIC Educational Resources Information Center

    Geer, Barbra Farabough

    This learning packet contains teaching suggestions and student learning materials for a course in basic horticulture aimed at preparing students for employment in a number of horticulture areas. The packet includes nine sections and twenty instructional units. Following the standard format established for Oklahoma vocational education materials in…

  13. NeuroD-null mice are deaf due to a severe loss of the inner ear sensory neurons during development

    PubMed Central

    Kim, Woo-Young; Fritzsch, Bernd; Serls, Amanda; Bakel, Leigh Anne; Huang, Eric J.; Reichardt, Louis F.; Barth, Daniel S.; Lee, Jacqueline E.

    2009-01-01

    SUMMARY A key factor in the genetically programmed development of the nervous system is the death of massive numbers of neurons. Therefore, genetic mechanisms governing cell survival are of fundamental importance to developmental neuroscience. We report that inner ear sensory neurons are dependent on a basic helix-loop-helix transcription factor called NeuroD for survival during differentiation. Mice lacking NeuroD protein exhibit no auditory evoked potentials, reflecting a profound deafness. DiI fiber staining, immunostaining and cell death assays reveal that the deafness is due to the failure of inner ear sensory neuron survival during development. The affected inner ear sensory neurons fail to express neurotrophin receptors, TrkB and TrkC, suggesting that the ability of NeuroD to support neuronal survival may be directly mediated through regulation of responsiveness to the neurotrophins. PMID:11152640

  14. Id2 deficiency promotes metastasis in a mouse model of ocular cancer

    PubMed Central

    Agapova, Olga A.; Person, Erica

    2015-01-01

    The inhibitor of DNA binding 2 (Id2) basic helix-loop-helix protein interacts genetically and physically with the pocket proteins (Rb, p107 and p130) and has been implicated as an oncogene. In other studies, however, Id2 has been shown to function as a tumor suppressor. Here, we studied the role of Id2 in a well characterized model of ocular cancer in which the three pocket proteins are inactivated by generating mice lacking one or both Id2 alleles. Id2 deficiency had no impact on tumorigenesis in the eye. Unexpectedly, however, Id2 loss significantly increased the rate of metastasis. Liver metastases in Id2 heterozygotes demonstrated significant decrease of Id2 expression and loss of the remaining Id2 allele, strongly suggesting that Id2 inactivation specifically was required for metastasis in this model. These findings provide new insights into the role of Id2 in metastasis. PMID:20127274

  15. Unique CCT repeats mediate transcription of the TWIST1 gene in mesenchymal cell lines

    SciTech Connect

    Ohkuma, Mizue [Maxillofacial Orthognathics, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8549 (Japan); Human Gene Sciences Center, Tokyo Medical and Dental University, Tokyo 113-8510 (Japan); Funato, Noriko [Maxillofacial Orthognathics, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8549 (Japan); Higashihori, Norihisa [Maxillofacial Orthognathics, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8549 (Japan); Murakami, Masanori [Human Gene Sciences Center, Tokyo Medical and Dental University, Tokyo 113-8510 (Japan); Ohyama, Kimie [Maxillofacial Orthognathics, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8549 (Japan); Nakamura, Masataka [Human Gene Sciences Center, Tokyo Medical and Dental University, Tokyo 113-8510 (Japan)]. E-mail: naka.gene@cmn.tmd.ac.jp

    2007-01-26

    TWIST1, a basic helix-loop-helix transcription factor, plays critical roles in embryo development, cancer metastasis and mesenchymal progenitor differentiation. Little is known about transcriptional regulation of TWIST1 expression. Here we identified DNA sequences responsible for TWIST1 expression in mesenchymal lineage cell lines. Reporter assays with TWIST1 promoter mutants defined the -102 to -74 sequences that are essential for TWIST1 expression in human and mouse mesenchymal cell lines. Tandem repeats of CCT, but not putative CREB and NF-{kappa}B sites in the sequences substantially supported activity of the TWIST1 promoter. Electrophoretic mobility shift assay demonstrated that the DNA sequences with the CCT repeats formed complexes with nuclear factors, containing, at least, Sp1 and Sp3. These results suggest critical implication of the CCT repeats in association with Sp1 and Sp3 factors in sustaining expression of the TWIST1 gene in mesenchymal cells.

  16. Evolutionary aspects of variability in bHLH orthologous families: insights from the pearl oyster, Pinctada fucata.

    PubMed

    Gyoja, Fuki; Satoh, Nori

    2013-10-01

    Basic helix-loop-helix (bHLH) transcription factors play significant roles in multiple biological processes in metazoan cells. In recent work, we showed that three orthologous HLH families, pearl, amber, and peridot, have apparently been lost in the Drosophila melanogaster, Caenorhabditis elegans, and Homo sapiens lineages. To further address the gain and loss of bHLH proteins during bilaterian evolution, we examined the genome of the pearl oyster, Pinctada fucata, which has recently been sequenced. We characterized the putative full set 65 bHLH genes and showed that genes previously categorized into the orthologous family PTFb, actually fall into two distinct orthologous families, 48-related-1 and 48-related-2. We also identified a novel orthologous family, clockwork orange. Based on these newly identified orthologous family members and on orphan bHLH factors, we propose that genes encoding bHLH factors in bilaterians are not as evolutionarily stable as previously thought. PMID:24125650

  17. Molecular mechanisms of epithelial–mesenchymal transition

    PubMed Central

    Lamouille, Samy; Xu, Jian; Derynck, Rik

    2014-01-01

    The transdifferentiation of epithelial cells into motile mesenchymal cells, a process known as epithelial–mesenchymal transition (EMT), is integral in development, wound healing and stem cell behaviour, and contributes pathologically to fibrosis and cancer progression. This switch in cell differentiation and behaviour is mediated by key transcription factors, including SNAIL, zinc-finger E-box-binding (ZEB) and basic helix-loop-helix transcription factors, the functions of which are finely regulated at the transcriptional, translational and post-translational levels. The reprogramming of gene expression during EMT, as well as non-transcriptional changes, are initiated and controlled by signalling pathways that respond to extracellular cues. Among these, transforming growth factor-? (TGF?) family signalling has a predominant role; however, the convergence of signalling pathways is essential for EMT. PMID:24556840

  18. A mitogen-activated protein kinase cascade module, MKK3-MPK6 and MYC2, is involved in blue light-mediated seedling development in Arabidopsis.

    PubMed

    Sethi, Vishmita; Raghuram, Badmi; Sinha, Alok Krishna; Chattopadhyay, Sudip

    2014-08-01

    Mitogen-activated protein kinase (MAPK) pathways are involved in several signal transduction processes in eukaryotes. Light signal transduction pathways have been extensively studied in plants; however, the connection between MAPK and light signaling pathways is currently unknown. Here, we show that MKK3-MPK6 is activated by blue light in a MYC2-dependent manner. MPK6 physically interacts with and phosphorylates a basic helix-loop-helix transcription factor, MYC2, and is phosphorylated by a MAPK kinase, MKK3. Furthermore, MYC2 binds to the MPK6 promoter and regulates its expression in a feedback regulatory mechanism in blue light signaling. We present mutational and physiological studies that illustrate the function of the MKK3-MPK6-MYC2 module in Arabidopsis thaliana seedling development and provide a revised mechanistic view of photomorphogenesis. PMID:25139007

  19. Transactivation of gene expression by Myc is inhibited by mutation at the phosphorylation sites Thr-58 and Ser-62.

    PubMed Central

    Gupta, S; Seth, A; Davis, R J

    1993-01-01

    The product of the human c-myc protooncogene (Myc) is a sequence-specific DNA binding protein. Here, we demonstrate that the placement of the specific Myc DNA binding site CACGTG upstream of a luciferase reporter gene conferred Myc-stimulated expression that was inhibited by the overexpression of the basic-helix-loop-helix/leucine zipper protein Max. It was observed that Myc was phosphorylated in vivo within the NH2-terminal domain at Thr-58 and Ser-62. Replacement of these phosphorylation sites with Ala residues caused a marked decrease in Myc-stimulated reporter gene expression. In contrast, the replacement of Thr-58 or Ser-62 with an acidic residue (Glu) caused only a small inhibition of transactivation. Together, these data demonstrate that the NH2-terminal phosphorylation sites Thr-58 and Ser-62 are required for high levels of transactivation of gene expression by Myc. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 6 PMID:8386367

  20. Homeodomain-Leucine zipper II family of transcription factors to the limelight

    PubMed Central

    Carabelli, Monica; Turchi, Luana; Ruzza, Valentino; Morelli, Giorgio; Ruberti, Ida

    2013-01-01

    The Arabidopsis genome encodes 10 Homeodomain-Leucine Zipper (HD-Zip) II transcription factors that can be subdivided into 4 clades (?–?). All the ? (ARABIDOPSIS THALIANA HOMEOBOX 2 [ATHB2], HOMEOBOX ARABIDOPSIS THALIANA 1 [HAT1], HAT2) and ? (HAT3, ATHB4) genes are regulated by light quality changes (Low Red [R]/Far-Red [FR]) that induce the shade avoidance response in most of the angiosperms. HD-Zip II? and HD-Zip II? transcription factors function as positive regulators of shade avoidance, and there is evidence that at least ATHB2 is directly positively regulated by the basic Helix-Loop-Helix (bHLH) proteins PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF5. Recent evidence demonstrate that, in addition to their function in shade avoidance, HD-Zip II? and HD-Zip II? proteins play an essential role in plant development from embryogenesis onwards in a white light environment. PMID:23838958

  1. Aryl Hydrocarbon Receptor Control of Adaptive Immunity

    PubMed Central

    2013-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that belongs to the family of basic helix-loop-helix transcription factors. Although the AhR was initially recognized as the receptor mediating the pathologic effects of dioxins and other pollutants, the activation of AhR by endogenous and environmental factors has important physiologic effects, including the regulation of the immune response. Thus, the AhR provides a molecular pathway through which environmental factors modulate the immune response in health and disease. In this review, we discuss the role of AhR in the regulation of the immune response, the source and chemical nature of AhR ligands, factors controlling production and degradation of AhR ligands, and the potential to target the AhR for therapeutic immunomodulation. PMID:23908379

  2. Feedback regulation of NEUROG2 activity by MTGR1 is required for progression of neurogenesis

    PubMed Central

    Aaker, Joshua D.; Patineau, Andrea L.; Yang, Hyun-jin; Ewart, David T.; Gong, Wuming; Li, Tongbin; Nakagawa, Yasushi; McLoon, Steven C.; Koyano-Nakagawa, Naoko

    2009-01-01

    The sequential steps of neurogenesis are characterized by highly choreographed changes in transcription factor activity. In contrast to the well-studied mechanisms of transcription factor activation during neurogenesis, much less is understood regarding how such activity is terminated. We previously showed that MTGR1, a member of the MTG family of transcriptional repressors, is strongly induced by a proneural basic helix-loop-helix transcription factor, NEUROG2 in developing nervous system. In this study, we describe a novel feedback regulation of NEUROG2 activity by MTGR1. We show that MTGR1 physically interacts with NEUROG2 and represses transcriptional activity of NEUROG2. MTGR1 also prevents DNA binding of the NEUROG2/E47 complex. In addition, we provide evidence that proper termination of NEUROG2 activity by MTGR1 is necessary for normal progression of neurogenesis in the developing spinal cord. These results highlight the importance of feedback regulation of proneural gene activity in neurodevelopment. PMID:19646530

  3. Comparative expression analysis of the neurogenins in Xenopus tropicalis and Xenopus laevis.

    PubMed

    Nieber, Frank; Pieler, Tomas; Henningfeld, Kristine A

    2009-02-01

    The Neurogenin (Ngn 1-3) family of proneural basic helix-loop-helix (bHLH) transcription factors are key regulators of vertebrate neurogenesis. In the developing vertebrate nervous system, the Ngns are essential for the commitment to a neuronal fate and participate in the specification of neuronal cell-type identity. Xenopus laevis is widely used as a model system to study the early events of vertebrate neurogenesis, however, only Ngnr-1, which is most closely related to the mammalian Ngn2, has been described and characterized. Presently, we describe a comparative expression analysis of the Ngn1-3 in X. tropicalis and X. laevis embryos. The Xenopus Ngns are present in overlapping, as well as unique regions of the nervous system starting at gastrula stages, suggesting distinct roles for this important family of transcriptional factors in the establishment of the amphibian nervous system. PMID:19161242

  4. NGF-dependent and tissue-specific transcription of vgf is regulated by a CREB-p300 and bHLH factor interaction.

    PubMed

    Mandolesi, Georgia; Gargano, Silvia; Pennuto, Maria; Illi, Barbara; Molfetta, Rosa; Soucek, Laura; Mosca, Laura; Levi, Andrea; Jucker, Richard; Nasi, Sergio

    2002-01-01

    Neurotrophins support neuronal survival, development, and plasticity through processes requiring gene expression. We studied how vgf target gene transcription is mediated by a critical promoter region containing E-box, CCAAT and cAMP response element (CRE) sites. The p300 acetylase was present in two distinct protein complexes bound to this region. One complex, containing HEB (ubiquitous basic helix-loop-helix (bHLH)), bound the promoter in non-neuronal cells and was involved in repressing vgf expression. Neurotrophin-dependent transcription was mediated by the second complex, specific for neuronal cells, which included CRE binding protein and MASH1 (neuro-specific bHLH), bound the CCAAT motif, and was target of neurotrophin signalling. The interaction, mediated by p300, of different transcription factors may add specificity to the neurotrophin response. PMID:11755530

  5. Transcriptional Control of Early T and B Cell Developmental Choices

    PubMed Central

    Rothenberg, Ellen V.

    2014-01-01

    T and B cells share a common somatic gene rearrangement mechanism for assembling the genes that code for their antigen receptors and developmental pathways with many parallels. Shared usage of basic helix-loop-helix E proteins as transcriptional drivers underlies these common features. However, the transcription factor networks in which these E proteins are embedded are different both in membership and in architecture for T and B cell gene regulatory programs. These differences permit lineage commitment decisions to be made in different hierarchical orders. Furthermore, in a contrast to B-cell gene networks, the T-cell gene network architecture for effector differentiation is sufficiently modular so that E protein inputs can be removed. Complete “T-cell-like” effector differentiation can proceed without T-cell receptor rearrangement or selection when E proteins are neutralized, yielding natural killer and other innate lymphoid cells. PMID:24471430

  6. Potential for neural regeneration after neurotoxic injury in the adult mammalian retina

    NASA Astrophysics Data System (ADS)

    Ooto, Sotaro; Akagi, Tadamichi; Kageyama, Ryoichiro; Akita, Joe; Mandai, Michiko; Honda, Yoshihito; Takahashi, Masayo

    2004-09-01

    It has long been believed that the retina of mature mammals is incapable of regeneration. In this study, using the N-methyl-D-aspartate neurotoxicity model of adult rat retina, we observed that some Müller glial cells were stimulated to proliferate in response to a toxic injury and produce bipolar cells and rod photoreceptors. Although these newly produced neurons were limited in number, retinoic acid treatment promoted the number of regenerated bipolar cells. Moreover, misexpression of basic helix-loop-helix and homeobox genes promoted the induction of amacrine, horizontal, and rod photoreceptor specific phenotypes. These findings demonstrated that retinal neurons regenerated even in adult mammalian retina after toxic injury. Furthermore, we could partially control the fate of the regenerated neurons with extrinsic factors or intrinsic genes. The Müller glial cells constitute a potential source for the regeneration of adult mammalian retina and can be a target for drug delivery and gene therapy in retinal degenerative diseases.

  7. A bacterial effector acts as a plant transcription factor and induces a cell size regulator.

    PubMed

    Kay, Sabine; Hahn, Simone; Marois, Eric; Hause, Gerd; Bonas, Ulla

    2007-10-26

    Pathogenicity of many Gram-negative bacteria relies on the injection of effector proteins by type III secretion into eukaryotic cells, where they modulate host signaling pathways to the pathogen's benefit. One such effector protein injected by Xanthomonas into plants is AvrBs3, which localizes to the plant cell nucleus and causes hypertrophy of plant mesophyll cells. We show that AvrBs3 induces the expression of a master regulator of cell size, upa20, which encodes a transcription factor containing a basic helix-loop-helix domain. AvrBs3 binds to a conserved element in the upa20 promoter via its central repeat region and induces gene expression through its activation domain. Thus, AvrBs3 and likely other members of this family provoke developmental reprogramming of host cells by mimicking eukaryotic transcription factors. PMID:17962565

  8. Oscillatory control of bHLH factors in neural progenitors.

    PubMed

    Imayoshi, Itaru; Kageyama, Ryoichiro

    2014-10-01

    The mammalian brain consists of a complex ensemble of neurons and glia. Their production during development and remodeling is tightly controlled by various regulatory mechanisms in neural progenitor cells (NPCs). Among such regulations, basic helix-loop-helix (bHLH) factors have key functions in the self-renewal, multipotency, and fate determination of NPCs. Here, we highlight the importance of the expression dynamics of bHLH factors in these processes. The oscillatory expression of multiple bHLH factors is correlated with the multipotent and self-renewable state, whereas sustained expression of a selected bHLH factor regulates fate determination. We also discuss potential mechanisms by which a single bHLH factor can exhibit versatile functions in NPC regulation as well as the hierarchical structure of the bHLH factor oscillatory network. PMID:25149265

  9. bHLH factors in self-renewal, multipotency, and fate choice of neural progenitor cells.

    PubMed

    Imayoshi, Itaru; Kageyama, Ryoichiro

    2014-04-01

    Multipotent neural progenitor cells (NPCs) undergo self-renewal while producing neurons, astrocytes, and oligodendrocytes. These processes are controlled by multiple basic helix-loop-helix (bHLH) fate determination factors, which exhibit different functions by posttranslational modifications. Furthermore, depending on the expression dynamics, each bHLH factor seems to have two contradictory functions, promoting NPC proliferation and cell-cycle exit for differentiation. The oscillatory expression of multiple bHLH factors correlates with the multipotent and proliferative state, whereas sustained expression of a selected single bHLH factor regulates the fate determination. bHLH factors also regulate direct reprogramming of adult somatic cells into neurons and oligodendrocytes. Thus, bHLH factors play key roles in development and regeneration of the nervous system. Here, we review versatile functions of bHLH factors, focusing on telencephalic development. PMID:24698265

  10. Myc-Nick: The Force Behind c-Myc

    NSDL National Science Digital Library

    Kambiz Mousavi (Musculoskeletal and Skin Diseases; National Institute of Arthritis REV)

    2010-12-14

    In the field of molecular oncology, the Myc basic helix-loop-helix family of transcription factors has been extensively studied. The Myc proto-oncogene c-Myc binds DNA, activates or represses gene transcription, and consequently affects cellular proliferation. However, emerging evidence presents the existence of c-Myc variants that lack transcriptional activity. A cytoplasmic variant of c-Myc called “Myc-nick,” which arises from calpain-mediated cleavage of c-Myc, assists in stable microtubule assembly. Furthermore, Myc-nick promotes MyoD-mediated myogenic differentiation, thus antagonizing its precursor. These results provide exciting new opportunities in formulating molecular approaches for treatment of cancer and in our understanding of cell differentiation.

  11. Homeodomain-Leucine Zipper II family of transcription factors to the limelight: central regulators of plant development.

    PubMed

    Carabelli, Monica; Turchi, Luana; Ruzza, Valentino; Morelli, Giorgio; Ruberti, Ida

    2013-09-01

    The Arabidopsis genome encodes 10 Homeodomain-Leucine Zipper (HD-Zip) II transcription factors that can be subdivided into 4 clades (?-?). All the ? (ARABIDOPSIS THALIANA HOMEOBOX 2 [ATHB2], HOMEOBOX ARABIDOPSIS THALIANA 1 [HAT1], HAT2) and ? (HAT3, ATHB4) genes are regulated by light quality changes (Low Red [R]/Far-Red [FR]) that induce the shade avoidance response in most of the angiosperms. HD-Zip II? and HD-Zip II? transcription factors function as positive regulators of shade avoidance, and there is evidence that at least ATHB2 is directly positively regulated by the basic Helix-Loop-Helix (bHLH) proteins PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF5. Recent evidence demonstrate that, in addition to their function in shade avoidance, HD-Zip II? and HD-Zip II? proteins play an essential role in plant development from embryogenesis onwards in a white light environment. PMID:23838958

  12. Id: A Target of BMP Signaling

    NSDL National Science Digital Library

    Kohei Miyazono (University of Tokyo; Department of Molecular Pathology, Graduate School of Medicine REV)

    2002-09-24

    Cytokines of the transforming growth factor-? (TGF-?) superfamily transduce their signals by activating receptor-regulated Smads (R-Smads). Distinct R-Smads or combinations of R-Smads are activated by TGF-?, activin, or bone morphogenetic proteins (BMPs). R-Smads activated by BMPs induce expression of Id proteins, which act as inhibitors of differentiation and stimulators of cell growth by inhibiting the function of basic helix-loop-helix transcription factors. In endothelial cells, TGF-? binds to two distinct type I receptor serine-threonine kinases, ALK-5 and ALK-1; the latter activates the same R-Smads that are activated by BMP and induces synthesis of Id (inhibitor of differentation or inhibitor of DNA binding) proteins. Growing evidence suggests that Id proteins may play crucial roles in angiogenesis, neurogenesis, and osteogenesis and act as key molecules in regulating biological responses induced by BMPs and TGF-?.

  13. Nuclear localized protein-1 (Nulp1) increases cell death of human osteosarcoma cells and binds the X-linked inhibitor of apoptosis protein

    SciTech Connect

    Steen, Hakan [Department of Neuroscience, Uppsala University, Biomedical Centre, Box 587, Husargatan 3, SE-75123 Uppsala (Sweden); Lindholm, Dan [Department of Neuroscience, Uppsala University, Biomedical Centre, Box 587, Husargatan 3, SE-75123 Uppsala (Sweden); Minerva Institute for Medical Research, Biomedicum Helsinki, Helsinki (Finland)], E-mail: dan.lindholm@neuro.uu.se

    2008-02-08

    Nuclear localized protein-1 (Nulp1) is a recently identified gene expressed in mouse and human tissues particularly during embryonic development. Nulp1 belongs to the family of basic helix-loop-helix (bHLH) proteins that are important in development. The precise function of Nulp1 in cells is however not known. We observed that overexpression of Nulp1 induces a large increase in cell death of human osteosarcoma Saos2 cells with DNA fragmentation. In mouse N2A neuroblastoma cells Nulp1 affected cell proliferation and sensitized cells towards death induced by staurosporine. Staining using a novel antibody localized Nulp1 mainly to the cell nucleus and to some extent to the cytoplasm. Nulp1 binds the X-linked inhibitor of apoptosis protein (XIAP) and this interaction was increased during cell death. These results indicate that Nulp1 plays a role in cell death control and may influence tumor growth.

  14. Mutated ?-catenin evades a microRNA-dependent regulatory loop

    PubMed Central

    Veronese, Angelo; Visone, Rosa; Consiglio, Jessica; Acunzo, Mario; Lupini, Laura; Kim, Taewan; Ferracin, Manuela; Lovat, Francesca; Miotto, Elena; Balatti, Veronica; D'Abundo, Lucilla; Gramantieri, Laura; Bolondi, Luigi; Pekarsky, Yuri; Perrotti, Danilo; Negrini, Massimo; Croce, Carlo M.

    2011-01-01

    hsa-mir-483 is located within intron 2 of the IGF2 gene. We have previously shown oncogenic features of miR-483-3p through cooperation with IGF2 or by independently targeting the proapoptotic gene BBC3/PUMA. Here we demonstrate that expression of miR-483 can be induced independently of IGF2 by the oncoprotein ?-catenin through an interaction with the basic helix–loop–helix protein upstream stimulatory transcription factor 1. We also show that ?-catenin itself is a target of miR-483-3p, triggering a negative regulatory loop that becomes ineffective in cells harboring an activating mutation of ?-catenin. These results provide insights into the complex regulation of the IGF2/miR-483 locus, revealing players in the ?-catenin pathway. PMID:21383185

  15. TWIST and ovarian cancer stem cells: implications for chemoresistance and metastasis

    PubMed Central

    Nuti, Sudhakar V.; Mor, Gil; Li, Peiyao; Yin, Gang

    2014-01-01

    The transcription factor TWIST1 is a highly evolutionally conserved basic Helix-Loop-Helix (bHLH) transcription factor that functions as a master regulator of gastrulation and mesodermal development. Although TWIST1 was initially associated with embryo development, an increasing number of studies have shown TWIST1 role in the regulation of tissue homeostasis, primarily as a regulator of inflammation. More recently, TWIST1 has been found to be involved in the process of tumor metastasis through the regulation of Epithelial Mesenchymal Transition (EMT). The objective of this review is to examine the normal functions of TWIST1 and its role in tumor development, with a particular focus on ovarian cancer. We discuss the potential role of TWIST1 in the context of ovarian cancer stem cells and its influence in the process of tumor formation. PMID:25238494

  16. Blue light photoreceptors are required for the stability and function of a resistance protein mediating viral defense in Arabidopsis

    PubMed Central

    Jeong, Rae-Dong; Kachroo, Aardr

    2010-01-01

    This light-perceiving ability of plants requires the activities of proteins termed photoreceptors. In addition to various growth and developmental processes, light also plays a role in plant defense against pathogens and is required for activation of several defense genes and regulation of the cell death response. However, the molecular or biochemical basis of light modulated regulation of defense signaling is largely unclear. We demonstrate a direct role for blue-light photoreceptors in resistance (R) protein-mediated plant defense against Turnip Crinkle Virus (TCV) in Arabidopsis. The blue-light photoreceptors, cryptochrome (CRY) 2 and phototropin (PHOT) 2, are specifically required for maintaining the stability of the R protein HRT, and thereby resistance to TCV. Exogenous application of the phytohormone salicylic acid elevates HRT levels in phot2 but not in cry2 background. These data indicate that CRY2 and PHOT2 function distinctly in maintaining post-transcriptional stability of HRT. HRT-mediated resistance is also dependent on CRY1 and PHOT1 proteins, but these do not contribute to the stability of HRT. HRT interacts with the CRY2/PHOT2-interacting protein COP1, a E3 ubiquitin ligase. Exogenous application of a proteasome inhibitor prevents blue-light-dependent degradation of HRT, suggesting that HRT is degraded via the 26S proteasome. These and the fact that PHOT2 interacts directly with the R protein RPS2 suggest that blue-light photoreceptors might be involved in regulation and/or signaling mediated by several R proteins. PMID:21057210

  17. Alcohol oxidase protein mediated in-situ synthesized and stabilized gold nanoparticles for developing amperometric alcohol biosensor.

    PubMed

    Chinnadayyala, Somasekhar R; Santhosh, Mallesh; Singh, Naveen K; Goswami, Pranab

    2015-07-15

    A simple one step method for the alcohol oxidases (AOx) protein mediated synthesis of gold nano-particles (AuNPs) in alkaline (pH 8.5) condition with simultaneous stabilization of the nanoparticles on the AOx protein surface under native environment has been developed. The formation of the AOx conjugated AuNPs was confirmed by advanced analytical and spectroscopic techniques. The significant increase in zeta potential (?) value of -57mV for the synthesized AOx-AuNPs conjugate from the AOx (pI 4.5) protein (?, -30mV) implied good stability of the in-situ synthesized nano-conjugate. The AOx-AuNPs conjugate showed steady stability in alkaline (upto pH 8.5) and NaCl (up to 10(-1)M) solutions. The efficiency (Kcat/Km) of the AuNP conjugated AOx was increased by 18% from the free enzyme confirming the activating role of the surface stabilized AuNPs for the enzyme. The AuNPs-AOx conjugate was encapsulated with polyaniline (PANI) synthesized by oxidative polymerization of aniline using H2O2 generated in-situ from the AOx catalysed oxidation of alcohol. The PANI encapsulated AuNPs-AOx assembly was stabilized on a glassy carbon electrode (GCE) by chitosan-Nafion mixture and then utilized the fabricated bioelectrode for detection of alcohol amperometrically using H2O2 as redox indicator at +0.6V. The constructed biosensor showed high operational stability (6.3% loss after 25 measurements), wide linear detection range of 10µM-4.7mM (R(2)=0.9731), high sensitivity of 68.3±0.35µAmM(-1) and low detection limit of 7±0.027µM for ethanol. The fabricated bioelectrode was successfully used for the selective determination of alcohol in beverage samples. PMID:25725464

  18. Blue light photoreceptors are required for the stability and function of a resistance protein mediating viral defense in Arabidopsis.

    PubMed

    Jeong, Rae-Dong; Kachroo, Aardra; Kachroo, Pradeep

    2010-11-01

    This light-perciving ability of plants requires the activities of proteins termed photoreceptors. In addition to various growth and developmental processes, light also plays a role in plant defense against pathogens and is required for activation of several defense genes and regulation of the cell death response. However, the molecular or biochemical basis of light modulated regulation of defense signaling is largely unclear. We demonstrate a direct role for blue-light photoreceptors in resistance (R) protein-mediated plant defense against Turnip Crinkle Virus (TCV) in Arabidopsis. The blue-light photoreceptors, cryptochrome (CRY) 2 and phototropin (PHOT) 2, are specifically required for maintaining the stability of the R protein HRT, and thereby resistance to TCV. Exogenous application of the phytohormone salicylic acid elevates HRT levels in phot2 but not in cry2 background. These data indicate that CRY2 and PHOT2 function distinctly in maintaining post-transcriptional stability of HRT. HRT-mediated resistance is also dependent on CRY1 and PHOT1 proteins, but these do not contribute to the stability of HRT. HRT interacts with the CRY2/PHOT2-interacting protein COP1, a E3 ubiquitin ligase. Exogenous application of a proteasome inhibitor prevents blue-light-dependent degradation of HRT, suggesting that HRT is degraded via the 26S proteasome. These and the fact that PHOT2 interacts directly with the R protein RPS2 suggest that blue-light photoreceptors might be involved in regulation and/or signaling mediated by several R proteins. PMID:21057210

  19. Education: The Basics. The Basics

    ERIC Educational Resources Information Center

    Wood, Kay

    2011-01-01

    Everyone knows that education is important, we are confronted daily by discussion of it in the media and by politicians, but how much do we really know about education? "Education: The Basics" is a lively and engaging introduction to education as an academic subject, taking into account both theory and practice. Covering the schooling system, the…

  20. Basic Immunology

    NSDL National Science Digital Library

    Klimov, Vladimir V.

    Some individuals might blanch at the idea of a "basic" immunology overview, but Professor Vladimir V. Klimov provides just such a resource on this site. As the homepage notes, the site is designed to assist undergraduate students learning about the basics of immunology through essays, images, animations, quizzes, case histories, and external links. Visitors can begin by looking over the "Table of Contents" area, which includes seven complete chapters of information. These chapters include "The Immune Responses", "Effector Activity", and "Functional Organization of the Immune System". While some of the materials on the site require a paid subscription, there's enough free material here to get students on their way to learning more about this field of study.

  1. Contour Basics

    NSDL National Science Digital Library

    Ackerman, Steve

    Contour Basics is an exercise designed to introduce students to contour plots. The Contour Activity is a great on-line resource that starts slowly and increases in difficulty. It teaches students basic techniques for generating contours, introduces students to the subtleties of generating contour plots with sparse data, provides many opportunities for students to assess their own progress and understanding and has complete on-line drawing capabilities. The exercise is geared toward atmospheric and oceanic sciences but is beneficial for all geoscience students. In addition to the exercise, this site includes information on teaching materials, teaching notes and tips, assessment suggestions and additional references. This activity is part of the Starting Point Collection: http://serc.carleton.edu/introgeo/

  2. Eya1 and Six1 are essential for early steps of sensory neurogenesis in mammalian cranial placodes

    PubMed Central

    Zou, Dan; Silvius, Derek; Fritzsch, Bernd; Xu, Pin-Xian

    2013-01-01

    Summary Eya1 encodes a transcriptional co-activator and is expressed in cranial sensory placodes. It interacts with and functions upstream of the homeobox gene Six1 during otic placodal development. Here, we have examined their role in cranial sensory neurogenesis. Our data show that the initial cell fate determination for the vestibuloacoustic neurons and their delamination appeared to be unaffected in the absence of Eya1 or Six1 as judged by the expression of the basic helix-loop-helix genes, Neurog1 that specifies the neuroblast cell lineage, and Neurod that controls neuronal differentiation and survival. However, both genes are necessary for normal maintenance of neurogenesis. During the development of epibranchial placode-derived distal cranial sensory ganglia, while the phenotype appears less severe in Six1 than in Eya1 mutants, an early arrest of neurogenesis was observed in the mutants. The mutant epibranchial progenitor cells fail to express Neurog2 that is required for the determination of neuronal precursors, and other basic helix-loop-helix as well as the paired homeobox Phox2 genes that are essential for neural differentiation and maintenance. Failure to activate their normal differentiation program resulted in abnormal apoptosis of the progenitor cells. Furthermore, we show that disruption of viable ganglion formation leads to pathfinding errors of branchial motoneurons. Finally, our results suggest that the Eya-Six regulatory hierarchy also operates in the epibranchial placodal development. These findings uncover an essential function for Eya1 and Six1 as critical determination factors in acquiring both neuronal fate and neuronal subtype identity from epibranchial placodal progenitors. These analyses define a specific role for both genes in early differentiation and survival of the placodally derived cranial sensory neurons. PMID:15496442

  3. Regulation of E-box DNA binding during in vivo and in vitro activation of rat and human hepatic stellate cells

    PubMed Central

    Vincent, K; Jones, E; Arthur, M; Smart, D; Trim, J; Wright, M; Mann, D

    2001-01-01

    BACKGROUND—Activation of hepatic stellate cells (HSCs) to a myofibroblastic phenotype is a key event in liver fibrosis. Identification of transcription factors with activities that are modulated during HSC activation will improve our understanding of the molecular events controlling HSC activation.?AIMS—To determine if changes in E-box DNA binding activity occur during in vitro and in vivo activation of rat and human HSCs and to investigate mechanisms underlying any observed changes.?METHODS—Nuclear extracts were prepared from rat HSCs isolated and cultured from normal and carbon tetrachloride injured rat livers and from HSCs isolated from human liver. EMSA analysis of E-box DNA binding activity was performed on nuclear extracts to determine changes during HSC activation. Western and northern blot analysis of MyoD and Id1 basic helix-loop-helix (bHLH) proteins was performed to confirm expression in HSC.?RESULTS—HSC activation was associated with inducible expression of two low mobility E-box binding complexes that were immunoreactive with an anti-MyoD antibody. MyoD mRNA expression was found at similar levels in freshly isolated and activated HSCs; in contrast, MyoD protein expression was elevated in activated HSCs. Activation of rat HSCs was accompanied by reduced expression of the inhibitory bHLH protein Id1.?CONCLUSIONS—In vitro and in vivo activation of rat and human HSCs is accompanied by induction of MyoD binding to E-box DNA sequences which appears to be mechanistically associated with elevated MyoD protein expression and reduced expression of the inhibitory Id1 protein. Clarification of the role of MyoD and Id1 proteins in HSC activation and liver fibrogenesis is now required.???Keywords: liver fibrosis; hepatic stellate cell; basic helix-loop-helix transcription factors; MyoD; Id1 PMID:11600477

  4. The E47 transcription factor binds to the enhancer sequences of recombinant murine leukemia viruses and influences enhancer function.

    PubMed

    Lawrenz-Smith, S C; Thomas, C Y

    1995-07-01

    The genomes of most recombinant murine leukemia viruses (MuLVs) inherit pathogenic U3 region sequences from the endogenous xenotropic provirus Bxv-1. However, the U3 regions of about one-third of recombinant MuLVs from CWD mice, such as CWM-T15, have nonecotropic substitutions that are probably derived from an endogenous polytropic provirus. The CWM-T15 U3 region sequences contain five nucleotide substitutions compared with the less pathogenic sequences of the endogenous ecotropic virus parent, Emv-1. Three of these substitutions are located immediately 3' of the enhancer core, and two form part of an E-box motif that is also found in the Bxv-1 sequence. A series of electromobility shift assays revealed that nuclear extracts from S194 cells and the basic helix-loop-helix transcription factor E47 could distinguish between oligonucleotides that contained the core region sequences of CWM-T15 or Emv-1. The E47 homodimers appeared to bind to the CWM-T15 E-box motif and when expressed at high levels in cells transactivated the CWM-T15 but not the Emv-1 enhancer. Taken together, these results suggest that E47 or related basic helix-loop-helix proteins that are expressed in lymphoid cells bind to and transactivate the CWM-T15 enhancer in vivo. This transactivation may explain why the CWM-T15 and Bxv-1 U3 regions accelerate the onset of lymphoid neoplasms and why related enhancer core region sequences are preferentially incorporated into the genomes of recombinant MuLVs and are found in other leukemogenic mammalian retroviruses. PMID:7769673

  5. Phytochrome Induces Rapid PIF5 Phosphorylation and Degradation in Response to Red-Light Activation1[W][OA

    PubMed Central

    Shen, Yu; Khanna, Rajnish; Carle, Christine M.; Quail, Peter H.

    2007-01-01

    The phytochrome (phy) family of sensory photoreceptors (phyA–phyE in Arabidopsis thaliana) induces changes in target-gene expression upon light-induced translocation to the nucleus, where certain members interact with selected members of the constitutively nuclear basic helix-loop-helix transcription factor family, such as PHYTOCHROME-INTERACTING FACTOR3 (PIF3). Previous evidence indicates that the binding of the photoactivated photoreceptor molecule to PIF3 induces rapid phosphorylation of the transcription factor in the cell prior to its degradation via the ubiqitin-proteosome system. To investigate whether this apparent primary signaling mechanism can be generalized to other phy-interacting partners, we have examined the molecular behavior of a second related phy-interacting member of the basic helix-loop-helix family, PIF5, during early deetiolation, immediately following initial exposure of dark-grown seedlings to light. The data show that red light induces very rapid phosphorylation and subsequent degradation (t1/2 < 5 min) of PIF5 via the proteosome system upon irradiation. Photobiological and genetic evidence indicates that the photoactivated phy molecule acts within 60 s to induce this phosphorylation of PIF5, and that phyA and phyB redundantly dominate this process, with phyD playing an apparently minor role. Collectively, the data support the proposal that the rapid phy-induced phosphorylation of PIF3 and PIF5 may represent the biochemical mechanism of primary signal transfer from photoactivated photoreceptor to binding partner, and that phyA and phyB (and possibly phyD) may signal to multiple, shared partners utilizing this common mechanism. PMID:17827270

  6. Characterization of msim, a murine homologue of the Drosophila sim transcription factor

    SciTech Connect

    Moffett, P.; Reece, M.; Pelletier, J. [McGill Univ., Quebec (Canada)] [and others] [McGill Univ., Quebec (Canada); and others

    1996-07-01

    Mutations in the Drosophila single-minded (sim) gene result in loss of precursor cells that give rise to midline cells of the embryonic central nervous system. During the course of an exon-trapping strategy aimed at identifying transcripts that contribute to the etiology and pathophysiology of Down syndrome, we identified a human exon from the Down syndrome, we identified a human exon from the Down syndrome critical region showing significantly homology to the Drosophila sim gene. Using a cross-hybridization approach, we have isolated a murine homolog of Drosophila sim gene, which we designated msim. Nucleotide and predicted amino acid sequence analyses of msim cDNA clones indicate the this gene encodes a member of the basic-helix-loop-helix class of transcription factors. The murine and Drosophila proteins share 88% residues within the basic-helix-loop helix domain, with an overall homology of 92%. In addition, the N-terminal domain of MSIM contains two PAS dimerization motifs also featured in the Drosophila sim gene product, as well as a small number of other transcription factors. Northern blot analysis of adult murine tissues revealed that the msim gene produces a single mRNA species of {approximately}4 kb expressed in a small number of tissues, with the highest levels in the kidneys and lower levels present in skeletal muscle, lung, testis, brain, and heart. In situ hybridization experiments demonstrate that msim is also expressed in early fetal development in the central nervous system and in cartilage primordia. The characteristics of the msim gene are consistent with its putative function as a transcriptional regulator. 51 refs., 6 figs., 1 tab.

  7. Cloning of an Alpha-TFEB fusion in renal tumors harboring the t(6;11)(p21;q13) chromosome translocation

    PubMed Central

    Davis, Ian J.; Hsi, Bae-Li; Arroyo, Jason D.; Vargas, Sara O.; Yeh, Y. Albert; Motyckova, Gabriela; Valencia, Patricia; Perez-Atayde, Antonio R.; Argani, Pedram; Ladanyi, Marc; Fletcher, Jonathan A.; Fisher, David E.

    2003-01-01

    MITF, TFE3, TFEB, and TFEC comprise a transcription factor family (MiT) that regulates key developmental pathways in several cell lineages. Like MYC, MiT members are basic helix-loop-helix-leucine zipper transcription factors. MiT members share virtually perfect homology in their DNA binding domains and bind a common DNA motif. Translocations of TFE3 occur in specific subsets of human renal cell carcinomas and in alveolar soft part sarcomas. Although multiple translocation partners are fused to TFE3, each translocation product retains TFE3's basic helix–loop–helix leucine zipper. We have identified the genes fused by the chromosomal translocation t(6;11)(p21.1;q13), characteristic of another subset of renal neoplasms. In two primary tumors we found that Alpha, an intronless gene, rearranges with the first intron of TFEB, just upstream of TFEB's initiation ATG, preserving the entire TFEB coding sequence. Fluorescence in situ hybridization confirmed the involvement of both TFEB and Alpha in this translocation. Although the Alpha promoter drives expression of this fusion gene, the Alpha gene does not contribute to the ORF. Whereas TFE3 is typically fused to partner proteins in subsets of renal tumors, we found that wild-type, unfused TFE3 stimulates clonogenic growth in a cell-based assay, suggesting that dysregulated expression, rather than altered function of TFEB or TFE3 fusions, may confer neoplastic properties, a mechanism reminiscent of MYC activation by promoter substitution in Burkitt's lymphoma. Alpha-TFEB is thus identified as a fusion gene in a subset of pediatric renal neoplasms. PMID:12719541

  8. Overexpression of myogenin in muscles of transgenic mice: interaction with Id-1, negative crossregulation of myogenic factors, and induction of extrasynaptic acetylcholine receptor expression.

    PubMed Central

    Gundersen, K; Rabben, I; Klocke, B J; Merlie, J P

    1995-01-01

    To investigate the role of myogenin in regulating acetylcholine receptor expression in adult muscle, this muscle-specific basic helix-loop-helix transcription factor was overexpressed in transgenic mice by using regulatory elements conferring strong expression confined to differentiated postmitotic muscle fibers. Many of the transgenic mice died during the first postnatal week, but those that survived into adulthood displayed normal muscle histology, gross morphology, and motor behavior. The mRNA levels of all five acetylcholine receptor subunits (alpha, beta, gamma, delta, and epsilon) were, however, elevated. Also, the level of receptor protein was increased and high levels of receptors were present throughout the extrasynaptic surface membrane of the muscle fibers. Thus, elevated levels of myogenin are apparently sufficient to induce acetylcholine supersensitivity in normally innervated muscle of adult mice. The high neonatal mortality rate of the mice overexpressing myogenin hindered the propagation of a stable line. In an attempt to increase survival, myogenin overexpressers were mated with a line of transgenic mice overexpressing Id-1, a negative regulator that interacts with the basic helix-loop-helix family of transcription factors. The Id-1 transgene apparently worked as a second site suppressor and abolished the high rate of neonatal mortality. This effect indicates that Id-1 and myogenin interact directly or indirectly in these animals. Further study indicated that myogenin overexpression had no effect on the level of endogenous myogenin mRNA, while the levels of myoD and MRF4 mRNAs were reduced. Overexpression of the negative regulator Id-1 increased the mRNA levels of all the myogenic factors. These findings are consistent with a hypothesis suggesting that myogenic factors are influenced by mechanisms that maintain cellular homeostasis. PMID:8524280

  9. The genetics of rhizosheath size in a multiparent mapping population of wheat.

    PubMed

    Delhaize, Emmanuel; Rathjen, Tina M; Cavanagh, Colin R

    2015-08-01

    Rhizosheaths comprise soil that adheres to plant roots and, in some species, are indicative of root hair length. In this study, the genetics of rhizosheath size in wheat was investigated by screening the progeny of multiparent advanced generation intercrosses (MAGIC). Two MAGIC populations were screened for rhizosheath size using a high throughput method. One MAGIC population was developed from intercrosses between four parents (4-way) and the other from intercrosses between eight parents (8-way). Transgressive segregation for rhizosheath size was observed in both the 4-way and 8-way MAGIC populations. A quantitative trait loci (QTL) analysis of the 4-way population identified six major loci located on chromosomes 2B, 4D, 5A, 5B, 6A, and 7A together accounting for 42% of the variation in rhizosheath size. Rhizosheath size was strongly correlated with root hair length and was robust across different soil types in the absence of chemical constraints. Rhizosheath size in the MAGIC populations was a reliable surrogate for root hair length and, therefore, the QTL identified probably control root hair elongation. Members of the basic helix-loop-helix family of transcription factors have previously been identified to regulate root hair length in Arabidopsis and rice. Since several wheat members of the basic helix-loop-helix family of genes are located within or near the QTL, these genes are candidates for controlling the long root hair trait. The QTL for rhizosheath size identified in this study provides the opportunity to implement marker-assisted selection to increase root hair length for improved phosphate acquisition in wheat. PMID:25969556

  10. Protein mediated membrane adhesion

    NASA Astrophysics Data System (ADS)

    Carlson, Andreas; Mahadevan, L.

    2015-05-01

    Adhesion in the context of mechanical attachment, signaling, and movement in cellular dynamics is mediated by the kinetic interactions between membrane-embedded proteins in an aqueous environment. Here, we present a minimal theoretical framework for the dynamics of membrane adhesion that accounts for the kinetics of protein binding, the elastic deformation of the membrane, and the hydrodynamics of squeeze flow in the membrane gap. We analyze the resulting equations using scaling estimates to characterize the spatiotemporal features of the adhesive patterning and corroborate them using numerical simulations. In addition to characterizing aspects of cellular dynamics, our results might also be applicable to a range of phenomena in physical chemistry and materials science where flow, deformation, and kinetics are coupled to each other in slender geometries.

  11. Basically Acids

    NSDL National Science Digital Library

    University of Houston,

    Students learn the basics of acid/base chemistry in a fun, interactive way by studying instances of acid/base chemistry found in popular films such as Harry Potter and the Prisoner of Azkaban and National Treasure. Students learn what acids, bases and indicators are and how they can be used, including invisible ink. They also learn how engineers use acids and bases every day to better our quality of life. Students' interest is piqued by the use of popular culture in the classroom.

  12. Mutations Affecting the BHLHA9 DNA-Binding Domain Cause MSSD, Mesoaxial Synostotic Syndactyly with Phalangeal Reduction, Malik-Percin Type

    PubMed Central

    Malik, Sajid; Percin, Ferda E.; Bornholdt, Dorothea; Albrecht, Beate; Percesepe, Antonio; Koch, Manuela C.; Landi, Antonio; Fritz, Barbara; Khan, Rizwan; Mumtaz, Sara; Akarsu, Nurten A.; Grzeschik, Karl-Heinz

    2014-01-01

    Mesoaxial synostotic syndactyly, Malik-Percin type (MSSD) (syndactyly type IX) is a rare autosomal-recessive nonsyndromic digit anomaly with only two affected families reported so far. We previously showed that the trait is genetically distinct from other syndactyly types, and through autozygosity mapping we had identified a locus on chromosome 17p13.3 for this unique limb malformation. Here, we extend the number of independent pedigrees from various geographic regions segregating MSSD to a total of six. We demonstrate that three neighboring missense mutations affecting the highly conserved DNA-binding region of the basic helix-loop-helix A9 transcription factor (BHLHA9) are associated with this phenotype. Recombinant BHLHA9 generated by transient gene expression is shown to be located in the cytoplasm and the cell nucleus. Transcription factors 3, 4, and 12, members of the E protein (class I) family of helix-loop-helix transcription factors, are highlighted in yeast two-hybrid analysis as potential dimerization partners for BHLHA9. In the presence of BHLHA9, the potential of these three proteins to activate expression of an E-box-regulated target gene is reduced considerably. BHLHA9 harboring one of the three substitutions detected in MSSD-affected individuals eliminates entirely the transcription activation by these class I bHLH proteins. We conclude that by dimerizing with other bHLH protein monomers, BHLHA9 could fine tune the expression of regulatory factors governing determination of central limb mesenchyme cells, a function made impossible by altering critical amino acids in the DNA binding domain. These findings identify BHLHA9 as an essential player in the regulatory network governing limb morphogenesis in humans. PMID:25466284

  13. Familial Hemiplegic Migraine type 1 mutations W1684R and V1696I alter G protein-mediated regulation of CaV2.1 voltage-gated calcium channels

    E-print Network

    Paris-Sud XI, Université de

    . Manuel Gea González" General Hospital, Mexico City, Mexico. d Departments of Human Genetics & NeurologyFamilial Hemiplegic Migraine type 1 mutations W1684R and V1696I alter G protein- mediated into the human CaV2.11 subunit and their functional consequences investigated after heterologous expression

  14. Mussel-inspired protein-mediated surface functionalization of electrospun nanofibers for pH-responsive drug delivery.

    PubMed

    Jiang, J; Xie, J; Ma, B; Bartlett, D E; Xu, A; Wang, C-H

    2014-03-01

    pH-responsive drug delivery systems could mediate drug releasing rate by changing the pH values at specific times as per the pathophysiological need of the disease. This paper demonstrates that a mussel-inspired protein polydopamine coating can tune the loading and releasing rate of charged molecules from electrospun poly(?-caprolactone) (PCL) nanofibers in solutions with different pH values. In vitro release profiles show that the positive charged molecules release significantly faster in acidic than those in neutral and basic environments within the same incubation time. The results of fluorescein diacetate staining and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays show the viability of cancer cells after treatment with doxorubicin-released media at different pH values qualitatively and quantitatively, indicating that the media containing doxorubicin that were released in solutions at low pH values could kill a significantly higher number of cells than those released in solutions at high pH values. Together, the pH-responsive drug delivery systems based on polydopamine-coated PCL nanofibers could have potential application in the oral delivery of anticancer drugs for treating gastric cancer and in vaginal delivery of anti-viral drugs or anti-inflammatory drugs, which could raise their efficacy, deliver them to the specific target and minimize their toxic side effects. PMID:24287161

  15. Mussel inspired protein-mediated surface functionalization of electrospun nanofibers for pH-responsive drug delivery

    PubMed Central

    Jiang, Jiang; Xie, Jingwei; Ma, Bing; Bartlett, David E.; Xu, An; Wang, Chi-Hwa

    2014-01-01

    pH-responsive drug delivery systems could mediate drug releasing rate by changing pH values at specific time as per the pathophysiological need of the disease. Herein, we demonstrated a mussel inspired protein polydopamine coating can tune the loading and releasing rate of charged molecules from electrospun poly (?-caprolactone) (PCL) nanofibers in solutions with different pH values. In vitro release profiles showed that the positive charged molecules released significantly faster in acidic than those in neutral and basic environments within the same incubation time. The results of fluorescein diacetate staining and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays showed the viability of cancer cells after treatment with doxorubicin released media at different pH values qualitatively and quantitatively, indicating the media contained doxorubicin which was released in solutions at low pH values could kill significantly higher number of cells than that released in solutions at high pH values. Together, the pH-responsive drug delivery systems based on polydopamine-coated PCL nanofibers could have potential applications in oral delivery of anticancer drugs for treating gastric cancer and vaginal delivery of anti-viral drugs or anti-inflammatory drugs, which could raise their efficacy, deliver them to the specific target, and minimize their toxic side effects. PMID:24287161

  16. Mac Basic Recording Mac Basic Recording

    E-print Network

    Benos, Panayiotis "Takis"

    Mac Basic Recording Mac Basic Recording The Panopto (My Pitt Video) Mac Recorder allows a lot/recording. Logging In Creators are able to log in to the Mac Recorder with their credentials and record video, audio and Password" the next time the Mac Recorder is launched it will automatically login. 4. Click Create New

  17. Protein-mediated layer-by-layer synthesis of TiO?(B)/anatase/carbon coating on nickel foam as negative electrode material for lithium-ion battery.

    PubMed

    Wang, Xiaobo; Yan, Yong; Hao, Bo; Chen, Ge

    2013-05-01

    Through an aqueous, protein-mediated layer-by-layer titania deposition process, we have fabricated a protamine/titania composite layer on nickel foam. The coating was composed of amorphous carbon and TiO2(B)/anatase nanoparticles and formed upon organic pyrolysis under a reducing atmosphere (5% H2-Ar mixture). X-ray diffraction analyses, Auger electron spectroscopy, and high-resolution transmission electron microscopy revealed that the obtained coatings contained fine monoclinic TiO2(B) and anatase nanocrystals, along with amorphous carbon. Moreover, the coating can be used as a binder-free negative electrode material for lithium-ion batteries and exhibits high reversible capacity and fast charge-discharge properties; a reversible capacity of 245 mAh g(-1) was obtained at a current density of 50 mA g(-1), and capacities of 167 and 143 mAh g(-1) were obtained at current densities of 1 and 2 A g(-1), respectively. PMID:23597025

  18. Protein-Mediated Adhesion of the Dissimilatory Fe(III)-Reducing Bacterium Shewanella alga BrY to Hydrous Ferric Oxide

    PubMed Central

    Caccavo, Frank

    1999-01-01

    The rate and extent of bacterial Fe(III) mineral reduction are governed by molecular-scale interactions between the bacterial cell surface and the mineral surface. These interactions are poorly understood. This study examined the role of surface proteins in the adhesion of Shewanella alga BrY to hydrous ferric oxide (HFO). Enzymatic degradation of cell surface polysaccharides had no effect on cell adhesion to HFO. The proteolytic enzymes Streptomyces griseus protease and chymotrypsin inhibited the adhesion of S. alga BrY cells to HFO through catalytic degradation of surface proteins. Trypsin inhibited S. alga BrY adhesion solely through surface-coating effects. Protease and chymotrypsin also mediated desorption of adhered S. alga BrY cells from HFO while trypsin did not mediate cell desorption. Protease removed a single peptide band that represented a protein with an apparent molecular mass of 50 kDa. Chymotrypsin removed two peptide bands that represented proteins with apparent molecular masses of 60 and 31 kDa. These proteins represent putative HFO adhesion molecules. S. alga BrY adhesion was inhibited by up to 46% when cells were cultured at sub-MICs of chloramphenicol, suggesting that protein synthesis is necessary for adhesion. Proteins extracted from the surface of S. alga BrY cells inhibited adhesion to HFO by up to 41%. A number of these proteins bound specifically to HFO, suggesting that a complex system of surface proteins mediates S. alga BrY adhesion to HFO. PMID:10543817

  19. Attenuation of G protein-mediated inhibition of N-type calcium currents by expression of caveolins in mammalian NG108–15 cells

    PubMed Central

    Toselli, M; Taglietti, V; Parente, V; Flati, S; Pavan, A; Guzzi, F; Parenti, M

    2001-01-01

    Caveolins are integral proteins of glycolipid/cholesterol-rich plasmalemmal caveolae domains, where, they may function as a plasma membrane scaffold onto which many classes of signalling molecules, including receptors and heterotrimeric G proteins, can assemble. To ascertain whether caveolins influence G protein-mediated signal transduction, we stably expressed caveolin-1 and ?3 isoforms in the neuroblastoma × glioma NG108–15 hybrid cell line, lacking endogenous caveolins. Subsequently, using whole-cell voltage clamp methods, we examined whether the modulation of N-type voltage-gated Ca2+ channels by Go protein-coupled, ?-type opioid receptors might be affected by recombinant caveolin expression. In transfected NG108–15 cells, caveolins localized at the plasma membrane and, upon subcellular fractionation on sucrose density gradients, they co-localized in Triton-resistant, low buoyancy fractions, with endogenous Go protein ?-subunits. The voltage-dependent inhibition of ?-conotoxin GVIA-sensitive Ba2+ currents following either activation of ?-opioid receptors by the agonist [o-pen2,o-pen5]-enkephalin (DPDPE), or direct stimulation of G proteins with guanosine 5?-O-(thiotriphosphate) (GTP?S) was significantly attenuated in caveolin-expressing cells. The kinetics of Ca2+ channel inhibition were also modified by caveolins. Overall, these results suggest that caveolins may negatively affect G protein-dependent regulation of voltage-gated N-type Ca2+ channels, presumably by causing a reduction of the available pool of activated G proteins. PMID:11600672

  20. Protein-mediated adhesion of the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY to hydrous ferric oxide

    SciTech Connect

    Caccavo, F. Jr.

    1999-11-01

    The rate and extent of bacterial Fe(III) mineral reduction are governed by molecular-scale interactions between the bacterial cell surface and the mineral surface. These interactions are poorly understood. This study examined the role of surface proteins in the adhesion of Shewanella alga BrY to hydrous ferric oxide (HFO). Enzymatic degradation of cell surface polysaccharides had no effect on cell adhesion to HFO. The proteolytic enzymes Streptomyces griseus protease and chymotrypsin inhibited the adhesion of S. alga BrY cells to HFO through catalytic degradation of surface proteins. Trypsin inhibited S. alga BrY adhesion solely through surface-coating effects. Protease and chymotrypsin also mediated desorption of adhered S. alga BrY cells from HFO while trypsin did not mediate cell desorption. Protease removed a single peptide band that represented a protein with an apparent molecular mass of 50 kDa. Chymotrypsin removed two peptide bands that represented proteins with apparent molecular masses of 60 and 31 kDa. These proteins represent putative HGO adhesion molecules. A. alga BrY adhesion was inhibited by up to 46% when cells were cultured at sub-MICs of chloramphenicol, suggesting that protein synthesis is necessary for adhesion. Proteins extracted from the surface of S. alga BrY cells inhibited adhesion to HFO by up to 41%. A number of these proteins bound specifically to HFO, suggesting that a complex system of surface proteins mediates S. alga BrY adhesion to HFO.

  1. Basic Chemistry Review

    NSDL National Science Digital Library

    Thomas Meixner

    This assignment reviews basic of chemistry for students who should have had 2 introductory semesters of basic chemistry prior to enrolling in the Fundamental of Water Quality course for which the assignment is used. Assignment reviews basic equation balancing and questions about valence and concentration conversion that students will confront regularly in any geochemistry course.

  2. Press Release Basic Design

    E-print Network

    Stell, John

    Press Release Basic Design The pioneering art education work of Leeds College of Art is under of a wider research project called `Art School Educated' that looks at the vital role the Basic Design course the mid 1950's Leeds College of Art led the way in the Basic Design movement, which was a new and radical

  3. Basic Construction Course Syllabus

    NSDL National Science Digital Library

    Dickover, Jon

    This course syllabus provides an outline of a basic construction course. Students in this course learned "basic residential construction techniques with an emphasis on framing." The syllabus includes a basic course description and information on some class projects. This document may be downloaded in PDF file format.

  4. Basic BASIC; An Introduction to Computer Programming in BASIC Language.

    ERIC Educational Resources Information Center

    Coan, James S.

    With the increasing availability of computer access through remote terminals and time sharing, more and more schools and colleges are able to introduce programing to substantial numbers of students. This book is an attempt to incorporate computer programming, using BASIC language, and the teaching of mathematics. The general approach of the book…

  5. SharePoint Basics

    Microsoft Academic Search

    Sahil Malik

    \\u000a In the previous chapter, you configured your basic SharePoint development machine. Before you move any further, ensure that\\u000a you take a snapshot of that machine so you can get back to that position at any point in this book. In this chapter I will\\u000a walk you through the basics of SharePoint. When I say basics, I mean user level features

  6. Basic Science Training Program.

    ERIC Educational Resources Information Center

    Brummel, Clete

    These six learning modules were developed for Lake Michigan College's Basic Science Training Program, a workshop to develop good study skills while reviewing basic science. The first module, which was designed to provide students with the necessary skills to study efficiently, covers the following topics: time management; an overview of a study…

  7. Basic Microfluidic Lithographic

    E-print Network

    Prentiss, Mara

    CHAPTER 2 Basic Microfluidic and Soft Lithographic Techniques Sindy K.Y. Tang and George M in these devices are based on those developed for microfluidics used in biochemical anal- ysis. This chapter describes the basic ideas of microfluidics. We first summarize the materials most commonly used

  8. Basic biomechanics and biomaterials

    Microsoft Academic Search

    A. W. Miles; S. Gheduzzi

    2009-01-01

    This paper outlines the basic knowledge that should form an integral component of a training programme in basic biomechanics and biomaterials for orthopaedic residents. For a comprehensive learning package the reader is directed to the substantive textbooks listed in the suggested reading section.

  9. Asthma: The Basics

    MedlinePLUS

    ... Sports: Keeping Kids Safe Concussions: What to Know Asthma: The Basics (Video) KidsHealth > Parents > KH Misc. > Asthma: The Basics (Video) Print A A A Text Size In this video, find out what asthma is, and how to manage it and live ...

  10. Fluency with Basic Addition

    ERIC Educational Resources Information Center

    Garza-Kling, Gina

    2011-01-01

    Traditionally, learning basic facts has focused on rote memorization of isolated facts, typically through the use of flash cards, repeated drilling, and timed testing. However, as many experienced teachers have seen, "drill alone does not develop mastery of single-digit combinations." In contrast, a fluency approach to learning basic addition…

  11. Basic Terminal Forecast Strategies

    NSDL National Science Digital Library

    2014-09-14

    "Basic Terminal Forecast Strategies" is the first component of the Distance Learning Course 2, Producing Customer-Focused TAFs. Basic Terminal Forecast Strategies is comprised of two lessons that provide 1) an introduction to understanding aviation customers and their needs and 2) a technique to meet those needs by producing clear, concise, and consistent terminal aerodrome forecasts (TAFs).

  12. Weed Management -The Basics

    E-print Network

    Minnesota, University of

    Weed Management - The Basics Anthony Cortilet Minnesota Department of Agriculture Roger Becker University of Minnesota #12;Over-arching Weed Science Principles · Weed ecology and biology basic to all systems · Weed species cross over cropping boundaries · Perennial, biennial, or annual - disturbed

  13. Evolution strategies: basic introduction

    Microsoft Academic Search

    Thomas Bäck

    2008-01-01

    This tutorial gives a basic introduction to evolution strategies, a class of evolutionary algorithms. Key features such as mutation, recombination and selection operators are explained, and specifically the concept of self-adaptation of strategy parameters is introduced. All algorithmic concepts are explained to a level of detail such that an implementation of basic evolution strategies is possible. Some guidelines for utilization

  14. Evolution strategies: basic introduction

    Microsoft Academic Search

    Thomas Bäck

    2011-01-01

    This tutorial gives a basic introduction to evolution strategies, a class of evolutionary algorithms. Key features such as mutation, recombination and selection operators are explained, and specifically the concept of self-adaptation of strategy parameters is introduced. All algorithmic concepts are explained to a level of detail such that an implementation of basic evolution strategies is possible. Some guidelines for utilization

  15. Evolution strategies: basic introduction

    Microsoft Academic Search

    Thomas Baeck

    2010-01-01

    This tutorial gives a basic introduction to evolution strategies, a class of evolutionary algorithms. Key features such as mutation, recombination and selection operators are explained, and specifically the concept of self-adaptation of strategy parameters is introduced. All algorithmic concepts are explained to a level of detail such that an implementation of basic evolution strategies is possible. Some guidelines for utilization

  16. Evolution strategies: basic introduction

    Microsoft Academic Search

    Thomas Baeck

    2012-01-01

    This tutorial gives a basic introduction to evolution strategies, a class of evolutionary algorithms. Key features such as mutation, recombination and selection operators are explained, and specifically the concept of self-adaptation of strategy parameters is introduced. All algorithmic concepts are explained to a level of detail such that an implementation of basic evolution strategies is possible. Some guidelines for utilization

  17. Diabetic Neuropathy (Beyond the Basics)

    MedlinePLUS

    ... caused by diabetes (The Basics) Patient information: The ABCs of diabetes (The Basics) Patient information: Neuropathic pain ( ... information: Neuropathic pain (The Basics) Patient information: The ABCs of diabetes (The Basics) Patient information: Type 2 ...

  18. Gene expression is dynamically regulated in retinal progenitor cells prior to and during overt cellular differentiation.

    PubMed

    Dixit, Rajiv; Tachibana, Nobuhiko; Touahri, Yacine; Zinyk, Dawn; Logan, Cairine; Schuurmans, Carol

    2014-01-01

    The retina is comprised of one glial and six neuronal populations that are generated from a multipotent pool of retinal progenitor cells (RPCs) during development. To give rise to these different cell types, RPCs undergo temporal identity transitions, displaying distinct gene expression profiles at different stages of differentiation. Little, however, is known about temporal differences in RPC identities prior to the onset of overt cellular differentiation, during the period when a retinal identity is gradually acquired. Here we examined the sequential onset of expression of regional markers (i.e., homeodomain transcription factors) and cell fate determinants (i.e., basic-helix-loop-helix transcription factors and neurogenic genes) in RPCs from the earliest appearance of a morphologically-distinct retina. By performing a comparative analysis of the expression of a panel of 27 homeodomain, basic-helix-loop-helix and Notch pathway genes between embryonic day (E) 8.75 and postnatal day (P) 9, we identified six distinct RPC molecular profiles. At E8.75, the earliest stage assayed, murine RPCs expressed five homeodomain genes and a single neurogenic gene (Pax6, Six3, Six6, Rx, Otx2, Hes1). This early gene expression profile was remarkably similar to that of 'early' RPCs in the amphibian ciliary marginal zone (CMZ), where RPCs are compartmentalised according to developmental stage, and homologs of Pax6, Six3 and Rx are expressed in the 'early' stem cell zone. As development proceeds, expression of additional homeodomain, bHLH and neurogenic genes was gradually initiated in murine RPCs, allowing distinct genetic profiles to also be defined at E9.5, E10.5, E12.5, E15.5 and P0. In addition, RPCs in the postnatal ciliary margin, where retinal stem cells are retained throughout life, displayed a unique molecular signature, expressing all of the early-onset genes as well as several late-onset markers, indicative of a 'mixed' temporal identity. Taken together, the identification of temporal differences in gene expression in mammalian RPCs during pre-neurogenic developmental stages leads to new insights into how regional identities are progressively acquired during development, while comparisons at later stages highlight the dynamic nature of gene expression in temporally distinct RPC pools. PMID:24148613

  19. Radiation Protection Basics

    MedlinePLUS

    ... Basic Concepts of Radiation Protection time distance shielding Time The amount of radiation exposure increases and decreases ... exposure. How does EPA use the concept of time in radiation protection? When we set a radiation ...

  20. Basic Multiple Regression

    NSDL National Science Digital Library

    Lowry, Richard, 1940-

    This page will perform basic multiple regression analysis for the case where there are several independent predictor variables, X1, X2, etc., and one dependent or criterion variable, Y. Requires import of data from a spreadsheet.

  1. Health Literacy Basics

    MedlinePLUS

    ... of lay persons and professionals Lay and professional knowledge of health topics Culture Demands of the healthcare ... addition to basic literacy skills, health literacy requires knowledge of health topics. People with limited health literacy ...

  2. Basic Electricity Materials

    NSDL National Science Digital Library

    This site from SpaceTEC National Aerospace Technical Education Center presents basic materials electricity. Topics include safety, metric notations, atomic structure, instruments, electrical concepts, resistor and AC circuits, power supplies, circuit protection, relays, connections, and electrostatic states.

  3. Basics of Health Insurance

    MedlinePLUS

    Basics of Health Insurance The Cystic Fibrosis Foundation is committed to providing the information you need to make the best health care ... Here, you can learn about different types of health insurance and important questions to ask when choosing a ...

  4. Basic metabolic panel

    MedlinePLUS

    The basic metabolic panel is a group of blood tests that provides information about your body's metabolism . ... SMAC7; Sequential multi-channel analysis with computer-7; SMA7; Metabolic panel 7; CHEM-7

  5. Basic Cancer Research Program

    Cancer.gov

    Investigators in the Basic Cancer Research Program focus their research on biological variations across racially and ethnically diverse populations that either naturally, or in conjunction with environmental exposures, may lead to differences in cancer

  6. Brain Basics: Preventing Stroke

    MedlinePLUS

    Brain Basics: Preventing Stroke Request free mailed brochure Table of Contents Introduction What is a Stroke? What ... Americans are protecting their most important asset—their brain. Are you? Stroke ranks as the fourth leading ...

  7. Basics of Weight Control

    MedlinePLUS

    ... Combine the two for the best results The foods you eat and the beverages you drink provide energy and nutrients. The basic required nutrients are: water, carbohydrates, proteins, fats, dietary fibers, vitamins, and minerals. ...

  8. Reflections on Basic Science

    Microsoft Academic Search

    Joram Piatigorsky

    2010-01-01

    :After almost 50 years in science, I believe that there is an acceptable, often advantageous chasm between open-ended basic research—free exploration without a practical destination and in which the original ideas may fade into new concepts—and translational research or clinical research. My basic research on crystalline (proteins conferring the optical properties of the eye lens) led me down paths I

  9. Reflections on Basic Science

    Microsoft Academic Search

    Joram Piatigorsky

    2010-01-01

    After almost 50 years in science, I believe that there is an acceptable, often advantageous chasm between open-ended basic research—free exploration without a practical destination and in which the original ideas may fade into new concepts—and translational research or clinical research. My basic research on crystalline (proteins conferring the optical properties of the eye lens) led me down paths I

  10. Skywarn Spotter Convective Basics

    NSDL National Science Digital Library

    2014-09-14

    The "SKYWARN® Spotter Convective Basics" module will guide users to a basic understanding of convective storms. Through three different scenarios, you will cover reporting and proper communication of local storm reports to the National Weather Service (NWS), personal safety during these events, and field identification of convective storm hazards. After completing the scenarios, you will be given the opportunity to practice identifying storm features from a spectrum of photos.

  11. Expression dynamics and functions of Hes factors in development and diseases.

    PubMed

    Kobayashi, Taeko; Kageyama, Ryoichiro

    2014-01-01

    Hes genes, encoding basic helix-loop-helix (HLH) transcriptional repressors, are mammalian homologues of Drosophila hairy and Enhancer of split genes, both of which are required for normal neurogenesis in Drosophila. There are seven members in the human Hes family, Hes1-7, which are expressed in many tissues and play various roles mainly in development. All Hes proteins have three conserved domains: basic HLH (bHLH), Orange, and WRPW domains. The basic region binds to target DNA sequences, while the HLH region forms homo- and heterodimers with other bHLH proteins, the Orange domain is responsible for the selection of partners during heterodimer formation, and the WRPW domain recruits corepressors. Hes1, Hes5, and Hes7 are known as downstream effectors of canonical Notch signaling, which regulates cell differentiation via cell-cell interaction. Hes factors regulate many events in development by repressing the expression of target genes, many of which encode transcriptional activators that promote cell differentiation. For example, Hes1, Hes3, and Hes5 are highly expressed by neural stem cells, and inactivation of these genes results in insufficient maintenance of stem cell proliferation and prematurely promotes neuronal differentiation. Recently, it was shown that the expression dynamics of Hes1 plays crucial roles in proper developmental timings and fate-determination steps of embryonic stem cells and neural progenitor cells. Here, we discuss some key features of Hes factors in development and diseases. PMID:25248479

  12. The Tutorial 1 Basic Editing

    E-print Network

    Faccanoni, Gloria

    5 Windows 6 Basic Visual Mode 7 Commands for Programmers 8 Basic Abbreviations, Keyboard MappingThe Tutorial 1 Basic Editing 2 Editing a Little Faster 3 Searching 4 Text Blocks and Multiple Files, and Initialization Files 9 Basic Command-Mode Commands 10 Basic GUI Usage 11 Dealing with Text Files 12 Automatic

  13. Abdominal Hysterectomy (Beyond the Basics)

    MedlinePLUS

    ... to prevent pregnancy before surgery. (See "Patient information: Deep vein thrombosis (DVT) (Beyond the Basics)" .) Damage to ... Menopausal hormone therapy (Beyond the Basics) Patient information: Deep vein thrombosis (DVT) (Beyond the Basics) Patient information: ...

  14. Excel 1 - The Basics

    NSDL National Science Digital Library

    Mrs. Brewer

    2006-11-25

    Spreadsheets are used to keep track of numbers and other data in an organized fashion. It is kind of like a big calculator. In this lesson you will learn the basics of Microsoft\\'s spreadsheet program, Excel. The tutorial link below will take you through the very basics of Excel. You will start with an Overview of what Excel is and what kinds of documents it is used to create. Watch the video from the link on the right hand side of the screen. ...

  15. Gene Expression Profiling of Pulmonary Fibrosis Identifies Twist1 as an Antiapoptotic Molecular “Rectifier” of Growth Factor Signaling

    PubMed Central

    Bridges, Robert S.; Kass, Daniel; Loh, Katrina; Glackin, Carlota; Borczuk, Alain C.; Greenberg, Steven

    2009-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive and typically fatal lung disease. To gain insight into IPF pathogenesis, we performed gene expression profiling of IPF lungs. Twist1, a basic helix-loop-helix protein, was found among the most consistently and highly up-regulated genes and was expressed in nuclei of type II epithelial cells, macrophages, and fibroblasts in IPF lungs. We studied the function of Twist1 in fibroblasts further, because they are the major effector cells in this disease and persist despite an ambient proapoptotic environment. Twist1 was induced by the profibrotic growth factors (GFs) basic fibroblast growth factor, platelet-derived growth factor, and epidermal growth factor in primary rat lung fibroblasts (RLFs). Suppression of Twist1 expression resulted in decreased RLF accumulation due to increased apoptosis, whereas Twist1 overexpression protected RLFs against several apoptotic stimuli. Addition of platelet-derived growth factor in combination with other GFs led to an increase in proliferation. When Twist1 was depleted, GFs continued to act as mitogens but caused a marked increase in cell death. The increase in apoptosis under basal or growth factor-stimulated conditions was partly mediated by up-regulation of the proapoptotic Bcl-2 family members, Bim and PUMA. These findings indicate that Twist1 promotes survival and accumulation of fibroblasts by shaping their responsiveness to growth factor stimulation. We propose that Twist1 represents one of the factors that promotes pathogenic accumulation of fibroblasts in fibrotic lung disease. PMID:19893041

  16. Neural Stem Cell Self-renewal

    PubMed Central

    Shi, Yanhong; Sun, Guoqiang; Zhao, Chunnian; Stewart, Richard

    2008-01-01

    Two fundamental properties of stem cells are their ability to self-renew and to differentiate. Self-renewal is an integration of proliferation control with the maintenance of an undifferentiated state. Stem cell self-renewal is regulated by the dynamic interplay between transcription factors, epigenetic control, microRNA (miRNA) regulators, and cell-extrinsic signals from the microenvironment in which stem cells reside. Recent progress in defining specific roles for cell-intrinsic factors and extrinsic factors in regulating stem cell self-renewal starts to unfold the multilayered regulatory networks. This review focuses on cell-intrinsic regulators, including orphan nuclear receptor TLX, polycomb transcriptional repressor Bmi1, high-mobility-group DNA binding protein Sox2, basic helix-loop-helix Hes genes, histone modifying enzymes and chromatin remodeling proteins, and small RNA modulators, as well as cell-extrinsic signaling molecules, such as Wnt, Notch, Sonic hedgehog (Shh), TGF?, EGF, and FGF. Unraveling the mechanisms by which neural stem cells renew themselves will provide insights into both basic neurosciences and clinical applications of stem cell-based cell replacement therapies for neurodegenerative diseases. PMID:17644000

  17. Daxx inhibits muscle differentiation by repressing E2A-mediated transcription

    PubMed Central

    Gupta, Amitabh; Hou, Rong; Liu, Liming; Hiroyasu, Shungo; Hadix, Jennifer A.; Huggins, Gordon S.; Sibinga, Nicholas E. S.

    2009-01-01

    The basic helix-loop-helix (HLH) E2A transcription factors bind to DNA as homodimers or as heterodimers formed with other basic HLH factors, activate gene expression, and promote differentiation of muscle, lymphoid, neuronal, and other cell types. These E2A functions can be inhibited by the Id proteins, HLH factors that sequester E2A in non-DNA binding dimers. Here we describe the direct interaction of E2A with Daxx, a broadly expressed non-HLH protein previously associated with apoptosis and transcriptional repression. Daxx inhibits E2A function, but not via an Id-like mechanism; rather, it recruits histone deacetylase activity to E2A-dependent promoters. Increased Daxx expression during muscle differentiation inhibits E2A-dependent expression of key myogenic genes and reduces myotube formation, while decreased Daxx expression promotes myotube formation. These results identify a new mechanism for limiting E2A activity and establish a link between Daxx-mediated gene regulation and control of cellular differentiation. PMID:19308989

  18. Mini review roles of the bZIP gene family in rice.

    PubMed

    E, Z G; Zhang, Y P; Zhou, J H; Wang, L

    2014-01-01

    The basic leucine zipper (bZIP) genes encode transcription factors involved in the regulation of various biological processes. Similar to WRKY, basic helix-loop-helix, and several other groups of proteins, the bZIP proteins form a superfamily of transcription factors that mediate plant stress responses. In this review, we present the roles of bZIP proteins in multiple biological processes that include pathogen defense; responses to abiotic stresses; seed development and germination; senescence; and responses to salicylic, jasmonic, and abscisic acids in rice. We also examined the characteristics of the bZIP proteins and their genetic composition. To ascertain the evolutionary changes in and functions of this supergene family, we performed an exhaustive comparison among the 89 rice bZIP genes that were previously described and those more recently listed in the MSU Rice Genome Annotation Project Database using a Hidden Markov Model. We excluded 3 genes from the list, resulting in a total of 86 bZIP genes in japonica rice. PMID:24782137

  19. GPS Receiver Basics

    NSDL National Science Digital Library

    2014-09-18

    Students familiarize themselves — through trial and error — with the basics of GPS receiver operation. They view a receiver's satellite visibility screen as they walk in various directions and monitor their progress on the receiver's map. Students may enter waypoints and use the GPS information to guide them back to specific locations.

  20. Navajo Adult Basic Education.

    ERIC Educational Resources Information Center

    Navajo Community Coll., Tsaile, AZ.

    The objectives of this Special Experimental Demonstration Project in Adult Basic Education for the Navajo were: (1) to raise the educational and social level of Navajo adult students who are unable to read, write, and speak English; (2) to assist the Navajo adult students to take advantage of occupational and vocational training programs; (3) to…

  1. The New Basics.

    ERIC Educational Resources Information Center

    Murnane, Richard J.; Levy, Frank

    1997-01-01

    To teach the New Basic Skills to all students, schools can adopt the five principles of high-performance firms: (1) develop clear goals; (2) provide opportunities to solve problems and the incentives to do so; (3) provide the training needed to pursue solutions effectively; (4) measure progress toward goals regularly; and (5) persevere and learn…

  2. Intellectual Patent Basics

    E-print Network

    Heller, Barbara

    Intellectual Property Patent Basics Roland W. Norris Pauley Petersen Kinne & Erickson 2800 W;Introduction Intellectual property: Patents Trademarks Copyrights Trade Secrets #12;What is a Patent? A right For the term of the patent 20 years from date of filing of earliest related patent or application #12;A

  3. Canadian Adult Basic Education.

    ERIC Educational Resources Information Center

    Brooke, W. Michael, Comp.

    "Trends," a publication of the Canadian Association for Adult Education, is a collection of abstracts on selected subjects affecting adult education; this issue is on adult basic education (ABE). It covers teachers and teacher training, psychological factors relating to the ABE teacher and students, manuals for teachers, instructional materials,…

  4. Korean Basic Course.

    ERIC Educational Resources Information Center

    Defense Language Inst., Washington, DC.

    These 11 volumes of the Korean Basic Course comprise 112 lesson units designed to train native English language speakers to Level 3 proficiency in comprehension and speaking and Level 2 proficiency in reading and writing Korean. (Level 5 on this scale is native-speaker level.) Intended for classroom use in the Defense Language Institute intensive…

  5. Basic Electricity. Part 1.

    ERIC Educational Resources Information Center

    Kilmer, Donald C.

    A primarily illustrated introduction to the basics of electricity is presented in this guide, the first of a set of four designed for the student interested in a vocation in electrical work. This guide is intended for the first-year student and provides mostly diagrams with accompanying defintions/information in three units, each covering one of…

  6. FULA BASIC COURSE.

    ERIC Educational Resources Information Center

    SWIFT, LLOYD B.; AND OTHERS

    THIS BEGINNING COURSE IS AN INTRODUCTION TO FULA (KNOWN VARIOUSLY AS FULANI, FUL, PEUL, OR PHEUL), A NIGER-CONGO LANGUAGE SPOKEN THROUGHOUT THE GRASSLAND AREAS OF WEST AFRICA FROM THE ATLANTIC TO CAMEROUN. THE TEXT IS ONE OF A SERIES OF SHORT BASIC COURSES IN SELECTED AFRICAN LANGUAGES BEING PREPARED BY THE FOREIGN SERVICE INSTITUTE. IT IS…

  7. Hindi Basic Reader.

    ERIC Educational Resources Information Center

    Harter, J. Martin; And Others

    This reader is intended to accompany the Basic Course in Spoken Hindi. Following an outline of the Devanagari script, 20 lessons are presented. Each consists of a reading selection, several illustrative sentences in English and Hindi, and a series of questions. Most of the reading selections were adapted from the magazine "Bal-Bharati." (RM)

  8. A BASIC HINDI READER.

    ERIC Educational Resources Information Center

    HARRIS, RICHARD M.; SHARMA, RAMA NATH

    THIS TEXT WAS DESIGNED TO MEET THE SPECIFIC NEEDS OF FIRST-YEAR STUDENTS OF HINDI WITH A KNOWLEDGE OF HINDI VOCABULARY AND STRUCTURE EQUIVALENT TO THAT PRESENTED IN THE FIRST SEVEN LESSONS OF TWO WIDELY USED ELEMENTARY HINDI TEXTS, "SPOKEN AND WRITTEN HINDI" BY FAIRBANKS AND MISRA, AND "CONVERSATIONAL HINDI-URDU" BY GUMPERZ AND RUMERY. A BASIC

  9. Cloud Physics: The Basics

    NSDL National Science Digital Library

    Klatt, Michael L.

    This website from the Oklahoma Weather Modification Program encourages students to initiate a debate on the controversy surrounding the issue of inducing or enhancing precipitation. The exercise describes the two basic tenets of cloud seeding: the Static Phase Hypothesis and the Dynamic Phase Hypothesis. Also provided are links to a weather and climate glossary and further information about clouds and precipitation.

  10. Developing Basic Electronics Aptitudes.

    ERIC Educational Resources Information Center

    Lakeshore Technical Coll., Cleveland, WI.

    This curriculum guide provides materials for basic training in electrical and electronic theory to enable participants to analyze circuits and use test equipment to verify electrical operations and to succeed in the beginning electrical and electronic courses in the Lakeshore Technical College (Wisconsin) electronics programs. The course includes…

  11. Basic Nuclear Physics.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    Basic concepts of nuclear structures, radiation, nuclear reactions, and health physics are presented in this text, prepared for naval officers. Applications to the area of nuclear power are described in connection with pressurized water reactors, experimental boiling water reactors, homogeneous reactor experiments, and experimental breeder…

  12. Basic Soils. Revision.

    ERIC Educational Resources Information Center

    Montana State Univ., Bozeman. Dept. of Agricultural and Industrial Education.

    This curriculum guide is designed for use in teaching a course in basic soils that is intended for college freshmen. Addressed in the individual lessons of the unit are the following topics: the way in which soil is formed, the physical properties of soil, the chemical properties of soil, the biotic properties of soil, plant-soil-water…

  13. YORUBA, BASIC COURSE.

    ERIC Educational Resources Information Center

    STEVICK, EARL W.; AND OTHERS

    A BASIC COURSE IN YORUBA, A LANGUAGE OF WEST AFRICA, IS PROVIDED IN THIS TEXT. THE COURSE IS DESIGNED TO BE USED WITH TAPE RECORDINGS AND IS DIVIDED INTO THREE PARTS--(1) THREE SERIES OF TONE DRILLS WHICH CONCENTRATE ON THE TONE PATTERNS OF SHORT VOWELS IN SHORT UTTERANCES, THE TONE PATTERNS OF LONG OR DOUBLE VOWELS IN SHORT UTTERANCES, AND THE…

  14. Greek Basic Course.

    ERIC Educational Resources Information Center

    Defense Language Inst., Washington, DC.

    This course in Modern Greek, consisting of 100 lesson units in 13 volumes, is one of the Defense Language Institute's Basic Course Series. The course is designed to train native English language speakers to Level 3 proficiency in comprehension, speaking, reading, and writing Modern Greek. (Level 5 is native-speaker proficiency.) Lesson units…

  15. Basic Drafting: Book One.

    ERIC Educational Resources Information Center

    Davis, Ronald; And Others

    The first of a two-book course in drafting, this manual consists of 13 topics in the following units: introduction to drafting, general safety, basic tools and lines, major equipment, applying for a job, media, lettering, reproduction, drawing sheet layout, architect's scale usage, civil engineer's scale usage, mechanical engineer's scale usage,…

  16. Projectable Basic Electronics Kit.

    ERIC Educational Resources Information Center

    H'ng, John; And Others

    1982-01-01

    Outlines advantages derived from constructing and using a Projectable Basic Electronics Kit and provides: (1) list of components; (2) diagrams of 10 finished components (resistor; capacitor; diode; switch; bulb; transistor; meter; variable capacitor; coil; connecting terminal); and (3) diode and transistor activities. (JN)

  17. Basic Math I.

    ERIC Educational Resources Information Center

    Mercer County Community Coll., Trenton, NJ.

    This document offers instructional materials for a 60-hour course on basic math operations involving decimals, fractions, and proportions as applied in the workplace. The course, part of a workplace literacy project developed by Mercer County Community College (New Jersey) and its partners, contains the following: course outline; 17 lesson…

  18. Focus on Basics, 1997.

    ERIC Educational Resources Information Center

    Focus on Basics, 1997

    1997-01-01

    Together, these four newsletters contain 36 articles devoted to adult literacy research and practice and the relationship between them. The following articles are included: "A Productive Partnership" (Richard J. Murnane, Bob Bickerton); "Welcome to 'Focus on Basics'" (Barbara Garner); "Applying Research on the Last Frontier" (Karen Backlund, Kathy…

  19. Basic Experiments in Telecommunications.

    ERIC Educational Resources Information Center

    Andresen, S. G.

    Presented is a set of laboratory experiments developed to provide students with demonstrations and hands-on experiences with a variety of basic communications methods. These experiments may be used with students who have training in engineering, as well as those with social sciences who have no engineering background. Detailed exercises dealing…

  20. Basic Engineer Equipment Mechanic.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by basic engineer equipment mechanics. Addressed in the four individual units of the course are the following topics: mechanics and their tools (mechanics, hand tools, and power…

  1. CLIMATE PRODUCTS Basic Climatology

    E-print Network

    CLIMATE PRODUCTS Basic Climatology Colorado Climate Center Funding provided by NOAA Sectoral the computer or a telephone system Data are collected by the National Climatic Data Center (NCDC), where) The original observations relate to WEATHER, not CLIMATE. But if we look at this information over a much longer

  2. Focus on Basics, 1998.

    ERIC Educational Resources Information Center

    Focus on Basics, 1998

    1998-01-01

    This volume contains the four 1998 quarterly issues of this newsletter that present best practices, current research on adult learning and literacy, and information on how research is used by adult basic education teachers, counselors, program administrators, and policy makers. The following are among the major articles included: "Power, Literacy,…

  3. Basic lubrication equations

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1981-01-01

    Lubricants, usually Newtonian fluids, are assumed to experience laminar flow. The basic equations used to describe the flow are the Navier-Stokes equation of motion. The study of hydrodynamic lubrication is, from a mathematical standpoint, the application of a reduced form of these Navier-Stokes equations in association with the continuity equation. The Reynolds equation can also be derived from first principles, provided of course that the same basic assumptions are adopted in each case. Both methods are used in deriving the Reynolds equation, and the assumptions inherent in reducing the Navier-Stokes equations are specified. Because the Reynolds equation contains viscosity and density terms and these properties depend on temperature and pressure, it is often necessary to couple the Reynolds with energy equation. The lubricant properties and the energy equation are presented. Film thickness, a parameter of the Reynolds equation, is a function of the elastic behavior of the bearing surface. The governing elasticity equation is therefore presented.

  4. Basic Liquid Chromatography

    NSDL National Science Digital Library

    Kazakevich, Yuri.

    1996-01-01

    The online textbook, Basic Liquid Chromatography, is provided by Dr. Yuri Kazakevich and Dr. Harold McNair of Seton Hall University. For those needing review or an introduction to the subject, the well designed and easily read document contains a wealth of information. Sections include an introduction, instrumentation, detectors, theory, adsorbents, reversed phase, gel permeation chromatography, column selection, pH effect, and even an online short course.

  5. Weather Basics: Local Circulation

    NSDL National Science Digital Library

    2005-03-10

    This resource explains the basic forces behind atmospheric circulation on a local scale. Topics include phenomena that help to drive circulation, such as solar heating, gravity, pressure, the coriolis effect, and friction. Two types of local circulation patterns are also discussed: mountain and valley breezes; and land and sea breezes. Photos and diagrams are provided to augment the written discussion, and links to related websites are also included.

  6. Population: Basic Statistics

    NSDL National Science Digital Library

    Ken Rhinehart

    This lesson reinforces the idea that Earth's population, including the population of the United States, is gowing at a dramatic rate. It discusses some of the basics of demography, the study of population and its changes, and introduces key terms used to describe a population. The lesson inlcudes an activity in which students use an online reference to look up some population statistics and answer questions related to them.

  7. Basics of Space Flight

    NSDL National Science Digital Library

    This training module was designed to help the user identify and grasp basic concepts associated with space travel and deep space missions. Separate sections deal with topics such as the physical environment of space (solar system, gravity, orbital mechanics), flight projects (mission concepts, system requirements, design, onboard systems and instruments), and flight operations (launch, cruise, encounter). Links to related topics are embedded in the text.

  8. Basics of Endocrine Function

    NSDL National Science Digital Library

    Dr. Daniel Brouse (Human Anatomy and Physiology Society)

    2008-08-09

    This flash video presentation provides an introduction to the basics of the endocrine system. It defines the criteria for determining if a chemical is a hormone and compares the action of hormones with other signalling chemicals and with the way the nervous system functions. The last part of the presentation gives a preview of a flowchart homework activity that can be used by students as a way to learn the function of specific hormones.

  9. Basics of Biosafety

    NASA Technical Reports Server (NTRS)

    Wong, Willy

    2009-01-01

    This slide presentation reviews the basics of biosafety and the importance of assuring proper biosafety practices. The objectives of the presentation are to review regulations about biosafety, and the different biosafety levels; the biosafety facilities at Johnson Space Center; the usage and maintenance of the biosafety cabinet, the proper methods to handle biologically hazardous materials upon exposure, and the methods of cleanup in the event of a spill, and the training requirements that are mandated for personnel handling biologically hazardous materials.

  10. Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula

    PubMed Central

    Naoumkina, Marina A; He, XianZhi; Dixon, Richard A

    2008-01-01

    Background Exposure of Medicago truncatula cell suspension cultures to pathogen or wound signals leads to accumulation of various classes of flavonoid and/or triterpene defense molecules, orchestrated via a complex signalling network in which transcription factors (TFs) are essential components. Results In this study, we analyzed TFs responding to yeast elicitor (YE) or methyl jasmonate (MJ). From 502 differentially expressed TFs, WRKY and AP2/EREBP gene families were over-represented among YE-induced genes whereas Basic Helix-Loop-Helix (bHLH) family members were more over-represented among the MJ-induced genes. Jasmonate ZIM-domain (JAZ) transcriptional regulators were highly induced by MJ treatment. To investigate potential involvement of WRKY TFs in signalling, we expressed four Medicago WRKY genes in tobacco. Levels of soluble and wall bound phenolic compounds and lignin were increased in all cases. WRKY W109669 also induced tobacco endo-1,3-?-glucanase (NtPR2) and enhanced the systemic defense response to tobacco mosaic virus in transgenic tobacco plants. Conclusion These results confirm that Medicago WRKY TFs have broad roles in orchestrating metabolic responses to biotic stress, and that they also represent potentially valuable reagents for engineering metabolic changes that impact pathogen resistance. PMID:19102779

  11. Contribution of Tumor Heterogeneity in a New Animal Model of CNS Tumors

    PubMed Central

    Chen, Fuyi; Becker, Albert J.; LoTurco, Joseph J.

    2014-01-01

    The etiology of central nervous system (CNS) tumor heterogeneity is unclear. To clarify this issue, a novel animal model was developed of glioma and atypical teratoid/rhabdoid-like tumor (ATRT) produced in rats by non-viral cellular transgenesis initiated in utero. This model system affords the opportunity for directed oncogene expression, clonal labeling, and addition of tumor-modifying transgenes. By directing HRasV12 and AKT transgene expression in different cell populations with promoters that are active ubiquitously (CAG promoter), astrocyte-selective (GFAP promoter), or oligodendrocyte-selective (MBP promoter); thus, generating glioblastoma multiforme (GBM) and anaplastic oligoastrocytoma (AO), respectively. Importantly, the GBM and AO tumors were distinguishable at both the cellular and molecular level. Furthermore, proneural basic-helix-loop-helix (bHLH) transcription factors, Ngn2 (NEUROG2) or NeuroD1, were expressed along with HRasV12 and AKT in neocortical radial glia, leading to the formation of highly lethal atypical teratoid/rhabdoid-like tumors (ATRT). This study establishes a unique model in which determinants of CNS tumor diversity can be parsed out and reveals that both mutation and expression of neurogenic bHLH transcription factors contributes to CNS tumor diversity. PMID:24501428

  12. TRANSPARENT TESTA GLABRA1 and GLABRA1 Compete for Binding to GLABRA3 in Arabidopsis.

    PubMed

    Pesch, Martina; Schultheiß, Ilka; Klopffleisch, Karsten; Uhrig, Joachim F; Koegl, Manfred; Clemen, Christoph S; Simon, Rüdiger; Weidtkamp-Peters, Stefanie; Hülskamp, Martin

    2015-06-01

    The MBW (for R2R3MYB, basic helix-loop-helix [bHLH], and WD40) genes comprise an evolutionarily conserved gene cassette that regulates several traits such as (pro)anthocyanin and anthocyanin biosynthesis and epidermal cell differentiation in plants. Trichome differentiation in Arabidopsis (Arabidopsis thaliana) is governed by GLABRA1 (GL1; R2R3MYB), GL3 (bHLH), and TRANSPARENT TESTA GLABRA1 (TTG1; WD40). They are thought to form a trimeric complex that acts as a transcriptional activation complex. We provide evidence that these three MBW proteins form either GL1 GL3 or GL3 TTG1 dimers. The formation of each dimer is counteracted by the respective third protein in yeast three-hybrid assays, pulldown experiments (luminescence-based mammalian interactome), and fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer studies. We further show that two target promoters, TRIPTYCHON (TRY) and CAPRICE (CPC), are differentially regulated: GL1 represses the activation of the TRY promoter by GL3 and TTG1, and TTG1 suppresses the activation of the CPC promoter by GL1 and GL3. Our data suggest that the transcriptional activation by the MBW complex involves alternative complex formation and that the two dimers can differentially regulate downstream genes. PMID:25926482

  13. Essential Roles of Da Transactivation Domains in Neurogenesis and in E(spl)-Mediated Repression

    PubMed Central

    Zarifi, Ioanna; Kiparaki, Marianthi; Koumbanakis, Konstantinos A.; Giagtzoglou, Nikolaos; Zacharioudaki, Evanthia; Alexiadis, Anastasios; Livadaras, Ioannis

    2012-01-01

    E proteins are a special class of basic helix-loop-helix (bHLH) proteins that heterodimerize with many bHLH activators to regulate developmental decisions, such as myogenesis and neurogenesis. Daughterless (Da) is the sole E protein in Drosophila and is ubiquitously expressed. We have characterized two transcription activation domains (TADs) in Da, called activation domain 1 (AD1) and loop-helix (LH), and have evaluated their roles in promoting peripheral neurogenesis. In this context, Da heterodimerizes with proneural proteins, such as Scute (Sc), which is dynamically expressed and also contributes a TAD. We found that either one of the Da TADs in the Da/Sc complex is sufficient to promote neurogenesis, whereas the Sc TAD is incapable of doing so. Besides its transcriptional activation role, the Da AD1 domain serves as an interaction platform for E(spl) proteins, bHLH-Orange family repressors which antagonize Da/Sc function. We show that the E(spl) Orange domain is needed for this interaction and strongly contributes to the antiproneural activity of E(spl) proteins. We present a mechanistic model on the interplay of these bHLH factors in the context of neural fate assignment. PMID:22949507

  14. Interactional role of microRNAs and bHLH-PAS proteins in cancer (Review).

    PubMed

    Li, Yumin; Wei, Yucai; Guo, Jiwu; Cheng, Yusheng; He, Wenting

    2015-07-01

    MicroRNAs (miRNAs) are recognized as an emerging class of master regulators that regulate human gene expression at the post-transcriptional level and are involved in many normal and pathological cellular processes. Mammalian basic HLH (helix-loop-helix)-PER-ARNT-SIM (bHLH-PAS) proteins are heterodimeric transcriptional regulators that sense and respond to environmental signals (such as chemical pollutants) or to physiological signals (for instance hypoxia). In the normal state, bHLH-PAS proteins are responsible for multiple critical aspects of physiology to ensure the cell accurate homeostasis, but dysregulation of these proteins has been shown to contribute to carcinogenic events such as tumor initiation, promotion, and progression. Increasing epidemiological and experimental studies have shown that bHLH-PAS proteins regulate a panel of miRNAs, whereas some miRNAs also target bHLH-PAS proteins. The interaction between miRNAs and certain bHLH-PAS proteins [hypoxia-inducible factor (HIF) and aryl hydrocarbon receptor (AHR)] is relevant to many vital events associated with tumorigenesis. This review will summarize recent findings on the interesting and complicated underlying mechanisms that miRNAs interact with HIFs or AHR in tumors, hopefully to benefit the discovery of novel drug-interfering targets for cancer therapy. PMID:25997457

  15. The SWI/SNF KlSnf2 Subunit Controls the Glucose Signaling Pathway To Coordinate Glycolysis and Glucose Transport in Kluyveromyces lactis

    PubMed Central

    Soulard, Alexandre; Wésolowski-Louvel, Micheline; Lemaire, Marc

    2012-01-01

    In Kluyveromyces lactis, the expression of the major glucose permease gene RAG1 is controlled by extracellular glucose through a signaling cascade similar to the Saccharomyces cerevisiae Snf3/Rgt2/Rgt1 pathway. We have identified a key component of the K. lactis glucose signaling pathway by characterizing a new mutation, rag20-1, which impairs the regulation of RAG1 and hexokinase RAG5 genes by glucose. Functional complementation of the rag20-1 mutation identified the KlSNF2 gene, which encodes a protein 59% identical to S. cerevisiae Snf2, the major subunit of the SWI/SNF chromatin remodeling complex. Reverse transcription-quantitative PCR and chromatin immunoprecipitation analyses confirmed that the KlSnf2 protein binds to RAG1 and RAG5 promoters and promotes the recruitment of the basic helix-loop-helix Sck1 activator. Besides this transcriptional effect, KlSnf2 is also implicated in the glucose signaling pathway by controlling Sms1 and KlRgt1 posttranscriptional modifications. When KlSnf2 is absent, Sms1 is not degraded in the presence of glucose, leading to constitutive RAG1 gene repression by KlRgt1. Our work points out the crucial role played by KlSnf2 in the regulation of glucose transport and metabolism in K. lactis, notably, by suggesting a link between chromatin remodeling and the glucose signaling pathway. PMID:23002104

  16. Apterous A modulates wing size, bristle formation and patterning in Nilaparvata lugens

    PubMed Central

    Liu, Fangzhou; Li, Kaiyin; Li, Jie; Hu, Dingbang; Zhao, Jing; He, Yueping; Zou, Yulan; Feng, Yanni; Hua, Hongxia

    2015-01-01

    Apterous A (apA), a member of the LIM-homeobox gene family, plays a critical role in the development of wing. The achaete-scute Complex (AS-C) encodes basic helix-loop-helix (bHLH) transcription factors and functions in bristle development. In the present study, we cloned apA (NlapA) and an achaete-scute homologue (NlASH) from N. lugens. Levels of NlapA and NlASH were higher in nymphs than adults, with particularly high expression in the thorax of nymphs. NlapA expressed more highly in nymphs of the macropterous strain (MS) than those of the brachypterous strain (BS) at 2nd and 4th instar. Knockdown of NlapA and NlASH in vivo generated similar phenotypic defects in the wing (loss-of-bristles, twisted or erect wing). Silencing of NlapA in nymphs of MS led to decreased wing size in adults. Moreover, depletion of NlapA suppressed expression of NlDl, Nlsal, Nlser, Nlvg and Nlwg, both in MS and BS, but induced differential responses of Nlubx and Nlnotch expression between MS and BS. Notably, expression of NlASH was regulated by NlapA. These results collectively indicate that NlapA is an upstream modulator of wing size, bristle formation and patterning. Further studies on DNA-protein and protein-protein interactions are required to elucidate NlapA-mediated regulation of wing development. PMID:25995006

  17. Virulence factors of geminivirus interact with MYC2 to subvert plant resistance and promote vector performance.

    PubMed

    Li, Ran; Weldegergis, Berhane T; Li, Jie; Jung, Choonkyun; Qu, Jing; Sun, Yanwei; Qian, Hongmei; Tee, ChuanSia; van Loon, Joop J A; Dicke, Marcel; Chua, Nam-Hai; Liu, Shu-Sheng; Ye, Jian

    2014-12-01

    A pathogen may cause infected plants to promote the performance of its transmitting vector, which accelerates the spread of the pathogen. This positive effect of a pathogen on its vector via their shared host plant is termed indirect mutualism. For example, terpene biosynthesis is suppressed in begomovirus-infected plants, leading to reduced plant resistance and enhanced performance of the whiteflies (Bemisia tabaci) that transmit these viruses. Although begomovirus-whitefly mutualism has been known, the underlying mechanism is still elusive. Here, we identified ?C1 of Tomato yellow leaf curl China virus, a monopartite begomovirus, as the viral genetic factor that suppresses plant terpene biosynthesis. ?C1 directly interacts with the basic helix-loop-helix transcription factor MYC2 to compromise the activation of MYC2-regulated terpene synthase genes, thereby reducing whitefly resistance. MYC2 associates with the bipartite begomoviral protein BV1, suggesting that MYC2 is an evolutionarily conserved target of begomoviruses for the suppression of terpene-based resistance and the promotion of vector performance. Our findings describe how this viral pathogen regulates host plant metabolism to establish mutualism with its insect vector. PMID:25490915

  18. Correct Timing of Proliferation and Differentiation is Necessary for Normal Inner Ear Development and Auditory Hair Cell Viability

    PubMed Central

    Kopecky, Benjamin J.; Jahan, Israt; Fritzsch, Bernd

    2013-01-01

    Background Hearing restoration through hair cell regeneration will require revealing the dynamic interactions between proliferation and differentiation during development to avoid the limited viability of regenerated hair cells. Pax2-Cre N-Myc conditional knockout (CKO) mice highlighted the need of N-Myc for proper neurosensory development and possible redundancy with L-Myc. The late-onset hair cell death in the absence of early N-Myc expression could be due to mis-regulation of genes necessary for neurosensory formation and maintenance, such as Neurod1, Atoh1, Pou4f3, and Barhl1. Results Pax2-Cre N-Myc L-Myc double CKO mice show that proliferation and differentiation are linked together through Myc and in the absence of both Mycs, altered proliferation and differentiation results in morphologically abnormal ears. In particular, the organ of Corti apex is re-patterned into a vestibular-like organization and the base is truncated and fused with the saccule. Conclusions These data indicate that therapeutic approaches to restore hair cells must take into account a dynamic interaction of proliferation and differentiation regulation of basic Helix-Loop-Helix transcription factors in attempts to stably replace lost cochlear hair cells. In addition, our data indicate that Myc is an integral component of the evolutionary transformation process that resulted in the organ of Corti development. PMID:23193000

  19. Genome-wide association mapping to candidate polymorphism resolution in the unsequenced barley genome

    PubMed Central

    Cockram, James; White, Jon; Zuluaga, Diana L.; Smith, David; Comadran, Jordi; Macaulay, Malcolm; Luo, Zewei; Kearsey, Mike J.; Werner, Peter; Harrap, David; Tapsell, Chris; Liu, Hui; Hedley, Peter E.; Stein, Nils; Schulte, Daniela; Steuernagel, Burkhard; Marshall, David F.; Thomas, William T. B.; Ramsay, Luke; Mackay, Ian; Balding, David J.; Waugh, Robbie; O'Sullivan, Donal M.; Booer, Chris; Pike, Steve; Hamilton, Graeme; Jellis, Graham; Davies, Nigel; Ross, Anne; Bury, Paul; Habgood, Rodney; Klose, Steve; Vequaud, Dominique; Christerson, Therese; Brosnan, James; Newton, Adrian; Russell, Joanne; Shaw, Paul; Bayles, Rosemary; Wang, Minghui

    2010-01-01

    Although commonplace in human disease genetics, genome-wide association (GWA) studies have only relatively recently been applied to plants. Using 32 phenotypes in the inbreeding crop barley, we report GWA mapping of 15 morphological traits across ?500 cultivars genotyped with 1,536 SNPs. In contrast to the majority of human GWA studies, we observe high levels of linkage disequilibrium within and between chromosomes. Despite this, GWA analysis readily detected common alleles of high penetrance. To investigate the potential of combining GWA mapping with comparative analysis to resolve traits to candidate polymorphism level in unsequenced genomes, we fine-mapped a selected phenotype (anthocyanin pigmentation) within a 140-kb interval containing three genes. Of these, resequencing the putative anthocyanin pathway gene HvbHLH1 identified a deletion resulting in a premature stop codon upstream of the basic helix-loop-helix domain, which was diagnostic for lack of anthocyanin in our association and biparental mapping populations. The methodology described here is transferable to species with limited genomic resources, providing a paradigm for reducing the threshold of map-based cloning in unsequenced crops. PMID:21115826

  20. Regulation of cell divisions and differentiation by MALE STERILITY32 is required for anther development in maize

    PubMed Central

    Moon, Jihyun; Skibbe, David; Timofejeva, Ljudmilla; Rachel Wang, Chung-Ju; Kelliher, Timothy; Kremling, Karl; Walbot, Virginia; Zacheus Cande, William

    2014-01-01

    Summary Male fertility in flowering plants relies on proper division and differentiation of cells in the anther, a process that gives rise to four somatic layers surrounding central germinal cells. The maize gene male sterility32 (ms32) encodes a basic helix–loop–helix (bHLH) transcription factor, which functions as an important regulator of both division and differentiation during anther development. After the four somatic cell layers are generated properly through successive periclinal divisions, in the ms32 mutant, tapetal precursor cells fail to differentiate, and, instead, undergo additional periclinal divisions to form extra layers of cells. These cells become vacuolated and expand, and lead to failure in pollen mother cell development. ms32 expression is specific to the pre-meiotic anthers and is distributed initially broadly in the four lobes, but as the anther develops, its expression becomes restricted to the innermost somatic layer, the tapetum. The ms32-ref mac1-1 double mutant is unable to form tapetal precursors and also exhibits excessive somatic proliferation leading to numerous, disorganized cell layers, suggesting a synergistic interaction between ms32 and mac1. Altogether, our results show that MS32 is a major regulator in maize anther development that promotes tapetum differentiation and inhibits periclinal division once a tapetal cell is specified. PMID:24033746

  1. Functional specialization of stomatal bHLHs through modification of DNA-binding and phosphoregulation potential.

    PubMed

    Davies, Kelli A; Bergmann, Dominique C

    2014-10-28

    Transcription factor duplication events and subsequent specialization can drive evolution by facilitating biological innovation and developmental complexity. Identification of sequences that confer distinct biochemical function in vivo is an important step in understanding how related factors could refine specific developmental processes over time. Functional analysis of the basic helix-loop-helix (bHLH) protein SPEECHLESS, one of three closely related transcription factors required for stomatal lineage progression in Arabidopsis thaliana, allowed a dissection of motifs associated with specific developmental outputs. Phosphorylated residues, shown previously to quantitatively affect activity, also allow a qualitative shift in function between division and cell fate-promoting activities. Our data also provide surprising evidence that, despite deep sequence conservation in DNA-binding domains, the functional requirement for these domains has diverged, with the three stomatal bHLHs exhibiting absolute, partial, or no requirements for DNA-binding residues for their in vivo activities. Using these data, we build a plausible model describing how the current unique and overlapping roles of these proteins might have evolved from a single ancestral protein. PMID:25304637

  2. Functional specialization of stomatal bHLHs through modification of DNA-binding and phosphoregulation potential

    PubMed Central

    Davies, Kelli A.; Bergmann, Dominique C.

    2014-01-01

    Transcription factor duplication events and subsequent specialization can drive evolution by facilitating biological innovation and developmental complexity. Identification of sequences that confer distinct biochemical function in vivo is an important step in understanding how related factors could refine specific developmental processes over time. Functional analysis of the basic helix–loop–helix (bHLH) protein SPEECHLESS, one of three closely related transcription factors required for stomatal lineage progression in Arabidopsis thaliana, allowed a dissection of motifs associated with specific developmental outputs. Phosphorylated residues, shown previously to quantitatively affect activity, also allow a qualitative shift in function between division and cell fate-promoting activities. Our data also provide surprising evidence that, despite deep sequence conservation in DNA-binding domains, the functional requirement for these domains has diverged, with the three stomatal bHLHs exhibiting absolute, partial, or no requirements for DNA-binding residues for their in vivo activities. Using these data, we build a plausible model describing how the current unique and overlapping roles of these proteins might have evolved from a single ancestral protein. PMID:25304637

  3. PRMT1 Is a Novel Regulator of Epithelial-Mesenchymal-Transition in Non-small Cell Lung Cancer.

    PubMed

    Avasarala, Sreedevi; Van Scoyk, Michelle; Karuppusamy Rathinam, Manoj Kumar; Zerayesus, Sereke; Zhao, Xiangmin; Zhang, Wei; Pergande, Melissa R; Borgia, Jeffrey A; DeGregori, James; Port, J David; Winn, Robert A; Bikkavilli, Rama Kamesh

    2015-05-22

    Protein arginine methyl transferase 1 (PRMT1) was shown to be up-regulated in cancers and important for cancer cell proliferation. However, the role of PRMT1 in lung cancer progression and metastasis remains incompletely understood. In the present study, we show that PRMT1 is an important regulator of epithelial-mesenchymal transition (EMT), cancer cell migration, and invasion, which are essential processes during cancer progression, and metastasis. Additionally, we have identified Twist1, a basic helix-loop-helix transcription factor and a well-known E-cadherin repressor, as a novel PRMT1 substrate. Taken together, we show that PRMT1 is a novel regulator of EMT and arginine 34 (Arg-34) methylation of Twist1 as a unique "methyl arginine mark" for active E-cadherin repression. Therefore, targeting PRMT1-mediated Twist1 methylation might represent a novel strategy for developing new anti-invasive/anti-metastatic drugs. Moreover, methylated Twist1 (Arg-34), as such, could also emerge as a potential important biomarker for lung cancer. PMID:25847239

  4. Juvenile hormone regulates Aedes aegypti Krüppel homolog 1 through a conserved E box motif.

    PubMed

    Cui, Yingjun; Sui, Yipeng; Xu, Jingjing; Zhu, Fang; Palli, Subba Reddy

    2014-09-01

    Juvenile hormone (JH) plays important roles in regulation of many physiological processes including development, reproduction and metabolism in insects. However, the molecular mechanisms of JH signaling pathway are not completely understood. To elucidate the molecular mechanisms of JH regulation of Krüppel homolog 1 gene (Kr-h1) in Aedes aegypti, we employed JH-sensitive Aag-2 cells developed from the embryos of this insect. In Aag-2 cells, AaKr-h1 gene is induced by nanomolar concentration of JH III, its expression peaked at 1.5 h after treatment with JH III. RNAi studies showed that JH induction of this gene requires the presence of Ae. aegypti methoprene-tolerant (AaMet). A conserved 13 nucleotide JH response element (JHRE, TGCCTCCACGTGC) containing canonical E box motif (underlined) identified in the promoter of AaKr-h1 is required for JH induction of this gene. Critical nucleotides in the JHRE required for JH action were identified by employing mutagenesis and reporter assays. Reporter assays also showed that basic helix loop helix (bHLH) domain of AaMet is required for JH induction of AaKr-h1. 5' rapid amplification of cDNA ends method identified two isoforms of AaKr-h1, AaKr-h1? and AaKr-h1?, the expression of both isoforms is induced by JH III, but AaKr-h1? is the predominant isoform in both Aag-2 cells and Ae. aegypti larvae. PMID:24931431

  5. Fruit Growth in Arabidopsis Occurs via DELLA-Dependent and DELLA-Independent Gibberellin Responses[W][OA

    PubMed Central

    Fuentes, Sara; Ljung, Karin; Sorefan, Karim; Alvey, Elizabeth; Harberd, Nicholas P.; Řstergaard, Lars

    2012-01-01

    Fruit growth and development depend on highly coordinated hormonal activities. The phytohormone gibberellin (GA) promotes growth by inducing degradation of the growth-repressing DELLA proteins; however, the extent to which DELLA proteins contribute to GA-mediated gynoecium and fruit development remains to be clarified. Here, we provide an in-depth characterization of the role of DELLA proteins in Arabidopsis thaliana fruit growth. We show that DELLA proteins are key regulators of reproductive organ size and important for ensuring optimal fertilization. We demonstrate that the seedless fruit growth (parthenocarpy) observed in della mutants can be directly attributed to the constitutive activation of GA signaling. It has been known for >75 years that another hormone, auxin, can induce formation of seedless fruits. Using mutants with complete lack of DELLA activity, we show here that auxin-induced parthenocarpy occurs entirely through GA signaling in Arabidopsis. Finally, we uncover the existence of a DELLA-independent GA response that promotes fruit growth. This response requires GIBBERELLIN-INSENSITIVE DWARF1–mediated GA perception and a functional 26S proteasome and involves the basic helix-loop-helix protein SPATULA as a key component. Taken together, our results describe additional complexities in GA signaling during fruit development, which may be particularly important to optimize the conditions for successful reproduction. PMID:23064323

  6. Multisite Light-Induced Phosphorylation of the Transcription Factor PIF3 Is Necessary for Both Its Rapid Degradation and Concomitant Negative Feedback Modulation of Photoreceptor phyB Levels in Arabidopsis[C][W

    PubMed Central

    Ni, Weimin; Xu, Shou-Ling; Chalkley, Robert J.; Pham, Thao Nguyen D.; Guan, Shenheng; Maltby, Dave A.; Burlingame, Alma L.; Wang, Zhi-Yong; Quail, Peter H.

    2013-01-01

    Plants constantly monitor informational light signals using sensory photoreceptors, which include the phytochrome (phy) family (phyA to phyE), and adjust their growth and development accordingly. Following light-induced nuclear translocation, photoactivated phy molecules bind to and induce rapid phosphorylation and degradation of phy-interacting basic Helix Loop Helix (bHLH) transcription factors (PIFs), such as PIF3, thereby regulating the expression of target genes. However, the mechanisms underlying the signal-relay process are still not fully understood. Here, using mass spectrometry, we identify multiple, in vivo, light-induced Ser/Thr phosphorylation sites in PIF3. Using transgenic expression of site-directed mutants of PIF3, we provide evidence that a set of these phosphorylation events acts collectively to trigger rapid degradation of the PIF3 protein in response to initial exposure of dark-grown seedlings to light. In addition, we show that phyB-induced PIF3 phosphorylation is also required for the known negative feedback modulation of phyB levels in prolonged light, potentially through codegradation of phyB and PIF3. This mutually regulatory intermolecular transaction thus provides a mechanism with the dual capacity to promote early, graded, or threshold regulation of the primary, PIF3-controlled transcriptional network in response to initial light exposure, and later, to attenuate global sensitivity to the light signal through reductions in photoreceptor levels upon prolonged exposure. PMID:23903316

  7. [Molecular cloning and characterization of a novel ice gene from Capsella bursapastoris].

    PubMed

    Wang, Xinglong; Sun, Xiaoqing; Liu, Sixiu; Liu, Li; Liu, Xiaojun; Sun, Xiaofen; Tang, Kexuan

    2005-01-01

    A new ice gene (designated as Cbice53, an inducer of CBF expression) was cloned from Capsella bursa-pastoris by rapid amplification of cDNA ends (RACE). The full-length cDNA of Cbice53 was 1811 bp long with a 1476 bp open reading frame (ORF) encoding a Myc-like protein of 492 amino acids. The predicted CbICE53 protein contained a potential basic helix-loop-helix, a nuclear localization signal (NLS), a RNA-binding regions RGG box, N-glycosylation and kinase phosphorylation sites. Bioinformatic analysis revealed that CbICE53 was highly homologous to ICE1 from Arabidopsis thaliana. Transcription of Cbice53 gene was induced transiently during salt and cold treatments, suggesting that it was involved in someway in cold-acclimation process. Our study implies that the Cbice53 gene is a new member of the ice gene family and may exert functions in cold- and salt-responsiveness in C. bursa-pastoris. PMID:15773544

  8. The bHLH142 Transcription Factor Coordinates with TDR1 to Modulate the Expression of EAT1 and Regulate Pollen Development in Rice.

    PubMed

    Ko, Swee-Suak; Li, Min-Jeng; Sun-Ben Ku, Maurice; Ho, Yi-Cheng; Lin, Yi-Jyun; Chuang, Ming-Hsing; Hsing, Hong-Xian; Lien, Yi-Chen; Yang, Hui-Ting; Chang, Hung-Chia; Chan, Ming-Tsair

    2014-06-01

    Male sterility plays an important role in F1 hybrid seed production. We identified a male-sterile rice (Oryza sativa) mutant with impaired pollen development and a single T-DNA insertion in the transcription factor gene bHLH142. Knockout mutants of bHLH142 exhibited retarded meiosis and defects in tapetal programmed cell death. RT-PCR and in situ hybridization analyses showed that bHLH142 is specifically expressed in the anther, in the tapetum, and in meiocytes during early meiosis. Three basic helix-loop-helix transcription factors, UDT1 (bHLH164), TDR1 (bHLH5), and EAT1/DTD1 (bHLH141) are known to function in rice pollen development. bHLH142 acts downstream of UDT1 and GAMYB but upstream of TDR1 and EAT1 in pollen development. In vivo and in vitro assays demonstrated that bHLH142 and TDR1 proteins interact. Transient promoter assays demonstrated that regulation of the EAT1 promoter requires bHLH142 and TDR1. Consistent with these results, 3D protein structure modeling predicted that bHLH142 and TDR1 form a heterodimer to bind to the EAT1 promoter. EAT1 positively regulates the expression of AP37 and AP25, which induce tapetal programmed cell death. Thus, in this study, we identified bHLH142 as having a pivotal role in tapetal programmed cell death and pollen development. PMID:24894043

  9. Enhancer mutations of Akv murine leukemia virus inhibit the induction of mature B-cell lymphomas and shift disease specificity towards the more differentiated plasma cell stage

    SciTech Connect

    Sorensen, Karina Dalsgaard [Department of Molecular Biology, University of Aarhus, C.F. Mollers Alle, Bldg. 130, DK-8000 Aarhus C (Denmark); Kunder, Sandra [Institute of Pathology, GSF-National Research Center for Environment and Health, Neuherberg (Germany); Quintanilla-Martinez, Leticia [Institute of Pathology, GSF-National Research Center for Environment and Health, Neuherberg (Germany); Sorensen, Jonna [Department of Comparative Medicine, GSF-National Research Center for Environment and Health, Neuherberg (Germany); Schmidt, Joerg [Department of Comparative Medicine, GSF-National Research Center for Environment and Health, Neuherberg (Germany); Pedersen, Finn Skou [Department of Molecular Biology, University of Aarhus, C.F. Mollers Alle, Bldg. 130, DK-8000 Aarhus C (Denmark)]. E-mail: fsp@mb.au.dk

    2007-05-25

    This study investigates the role of the proviral transcriptional enhancer for B-lymphoma induction by exogenous Akv murine leukemia virus. Infection of newborn inbred NMRI mice with Akv induced 35% plasma cell proliferations (PCPs) (consistent with plasmacytoma), 33% diffuse large B-cell lymphomas, 25% follicular B-cell lymphomas and few splenic marginal zone and small B-cell lymphomas. Deleting one copy of the 99-bp proviral enhancer sequence still allowed induction of multiple B-cell tumor types, although PCPs dominated (77%). Additional mutation of binding sites for the glucocorticoid receptor, Ets, Runx, or basic helix-loop-helix transcription factors in the proviral U3 region, however, shifted disease induction to almost exclusively PCPs, but had no major influence on tumor latency periods. Southern analysis of immunoglobulin rearrangements and ecotropic provirus integration patterns showed that many of the tumors/cell proliferations induced by each virus were polyclonal. Our results indicate that enhancer mutations weaken the ability of Akv to induce mature B-cell lymphomas prior to the plasma cell stage, whereas development of plasma cell proliferations is less dependent of viral enhancer strength.

  10. PIFs: Systems Integrators in Plant Development[W

    PubMed Central

    Leivar, Pablo; Monte, Elena

    2014-01-01

    Phytochrome-interacting factors (PIFs) are members of the Arabidopsis thaliana basic helix-loop-helix family of transcriptional regulators that interact specifically with the active Pfr conformer of phytochrome (phy) photoreceptors. PIFs are central regulators of photomorphogenic development that act to promote stem growth, and this activity is reversed upon interaction with phy in response to light. Recently, significant progress has been made in defining the transcriptional networks directly regulated by PIFs, as well as the convergence of other signaling pathways on the PIFs to modulate growth. Here, we summarize and highlight these findings in the context of PIFs acting as integrators of light and other signals. We discuss progress in our understanding of the transcriptional and posttranslational regulation of PIFs that illustrates the integration of light with hormonal pathways and the circadian clock, and we review seedling hypocotyl growth as a paradigm of PIFs acting at the interface of these signals. Based on these advances, PIFs are emerging as required factors for growth, acting as central components of a regulatory node that integrates multiple internal and external signals to optimize plant development. PMID:24481072

  11. Math5 is required for retinal ganglion cell and optic nerve formation

    PubMed Central

    Brown, Nadean L.; Patel, Sima; Brzezinski, Joseph; Glaser, Tom

    2006-01-01

    SUMMARY The vertebrate retina contains seven major neuronal and glial cell types in an interconnected network that collects, processes and sends visual signals through the optic nerve to the brain. Retinal neuron differentiation is thought to require both intrinsic and extrinsic factors, yet few intrinsic gene products have been identified that direct this process. Math5 (Atoh7) encodes a basic helix-loop-helix (bHLH) transcription factor that is specifically expressed by mouse retinal progenitors. Math5 is highly homologous to atonal, which is critically required for R8 neuron formation during Drosophila eye development. Like R8 cells in the fly eye, retinal ganglion cells (RGCs) are the first neurons in the vertebrate eye. Here we show that Math5 mutant mice are fully viable, yet lack RGCs and optic nerves. Thus, two evolutionarily diverse eye types require atonal gene family function for the earliest stages of retinal neuron formation. At the same time, the abundance of cone photoreceptors is significantly increased in Math5?/? retinae, suggesting a binary change in cell fate from RGCs to cones. A small number of nascent RGCs are detected during embryogenesis, but these fail to develop further, suggesting that committed RGCs may also require Math5 function. PMID:11493566

  12. Origins of enhancer sequences of recombinant murine leukemia viruses from spontaneous B- and T-cell lymphomas of CWD mice.

    PubMed

    Massey, A C; Lawrenz-Smith, S C; Innes, D J; Thomas, C Y

    1994-06-01

    Recombinant murine leukemia viruses from the highly leukemic mouse strains AKR, HRS, and C58 usually acquire pathogenic U3 region sequences fro the endogenous xenotropic virus, Bxv-1. However, the majority of tumors from another highly leukemic strain, CWD, contained recombinant viruses that lacked Bxv-1-specific sequences. The nucleotide sequence of the U3 regions of two such CWD recombinants was nearly identical to that of the endogenous ecotropic virus parent Emv-1, but they shared three nucleotide substitutions immediately 3' of the enhancer core. These substitutions were found in recombinant proviruses from about one-third of spontaneous CWD lymphomas as determined by an oligonucleotide hybridization assay of proviral fragments that had been nucleotide substitutions in the CWD viruses were inherited from an endogenous polytropic provirus that is absent in the other highly leukemic strains. On the basis of the results of these and previous studies, we propose that CWD recombinants acquire pathogenic U3 region sequences through recombination with an endogenous polytropic virus or Bxv-1 and that the pathogenicity of these sequences may be related to a sequence motif that is known to bind members of the basic helix-loop-helix class of transcription factors. PMID:8189515

  13. ICE1 of Poncirus trifoliata functions in cold tolerance by modulating polyamine levels through interacting with arginine decarboxylase.

    PubMed

    Huang, Xiao-San; Zhang, Qinghua; Zhu, Dexin; Fu, Xingzheng; Wang, Min; Zhang, Qian; Moriguchi, Takaya; Liu, Ji-Hong

    2015-06-01

    ICE1 (Inducer of CBF Expression 1) encodes a MYC-like basic helix-loop-helix transcription factor that acts as a central regulator of cold response. In this study, we elucidated the function and underlying mechanisms of PtrICE1 from trifoliate orange [Poncirus trifoliata (L.) Raf.]. PtrICE1 was upregulated by cold, dehydration, and salt, with the greatest induction under cold conditions. PtrICE1 was localized in the nucleus and could bind to a MYC-recognizing sequence. Ectopic expression of PtrICE1 in tobacco and lemon conferred enhanced tolerance to cold stresses at either chilling or freezing temperatures. Yeast two-hybrid screening revealed that 21 proteins belonged to the PtrICE1 interactome, in which PtADC (arginine decarboxylase) was confirmed as a bona fide protein interacting with PtrICE1. Transcript levels of ADC genes in the transgenic lines were slightly elevated under normal growth condition but substantially increased under cold conditions, consistent with changes in free polyamine levels. By contrast, accumulation of the reactive oxygen species, H2O2 and O2 (-), was appreciably alleviated in the transgenic lines under cold stress. Higher activities of antioxidant enzymes, such as superoxide dismutase and catalase, were detected in the transgenic lines under cold conditions. Taken together, these results demonstrated that PtrICE1 plays a positive role in cold tolerance, which may be due to modulation of polyamine levels through interacting with the ADC gene. PMID:25873670

  14. Spatiotemporal expression of Math6 during mouse embryonic development.

    PubMed

    Wang, Baigang; Balakrishnan-Renuka, Ajeesh; Napirei, Markus; Theiss, Carsten; Brand-Saberi, Beate

    2015-06-01

    The basic helix-loop-helix transcription factor Math6 was shown to have important regulatory functions during many developmental events. However, a systematic description of Math6 expression during mouse embryonic development is up to now still lacking. We carried out this study to show Math6 expression at different stages of mouse embryonic development aiming to provide a wide insight into the regulatory functions during the mouse organogenesis. Using immunohistochemistry, we could show that Math6 expression is activated in the inner cell mass at the blastocyst stage and in the neural tube as well as somatic and splanchnic mesoderm at stage E8.5. At stages E8.5 and E10.5, Math6 transcripts were detected in the myotome, neural tube, pharyngeal arches, foregut and heart. At stages E11.5 and E12.5, Math6 transcripts were accumulated in the developing brain, heart, limb buds and liver. The heterozygous transgenic mouse embryos carrying EGFP-Cre under the Math6 promoter were used to analyze Math6 expression at later stages by means of immunohistochemistry against EGFP protein. EGFP was observed in the neural tube, heart, lung, skeletal muscle, skin, cartilage, trachea and aorta. We have observed Math6 expression in various organs at early and late stages of mouse development, which illustrates the involvement of Math6 in multiple developmental events. PMID:25578518

  15. The aryl hydrocarbon receptor nuclear translocator (ARNT) family of proteins: transcriptional modifiers with multi-functional protein interfaces.

    PubMed

    Labrecque, M P; Prefontaine, G G; Beischlag, T V

    2013-08-01

    The basic Helix-Loop-Helix/PER-ARNT-SIM (bHLH-PAS) domain family of transcription factors mediates cellular responses to a variety of internal and external stimuli. As functional transcription factors, these proteins act as bHLH-PAS heterodimers and can be further sub-classified into sensory/activated subunits and regulatory or ARNT-like proteins. This class of proteins act as master regulators of the bHLH-PAS superfamily of transcription factors that mediate circadian rhythm gene programs, innate and adaptive immune responses, oxygen-sensing mechanisms and compensate for deleterious environmental exposures. Some contribute to the etiology of human pathologies including cancer because of their effects on cell growth and metabolism. We will review the canonical roles of ARNT and ARNT-like proteins with an emphasis on coactivator selectivity and recruitment. We will also discuss recent advances in our understanding of noncanonical DNA-binding independent or off-target roles of ARNT that are uncoupled from its classic heterodimeric bHLH-PAS binding partners. Understanding the DNA binding-independent functions of ARNT may identify novel therapeutic options for the treatment of a large spectrum of disease states. PMID:23116263

  16. Antagonistic HLH/bHLH Transcription Factors Mediate Brassinosteroid Regulation of Cell Elongation and Plant Development in Rice and Arabidopsis[C][W][OA

    PubMed Central

    Zhang, Li-Ying; Bai, Ming-Yi; Wu, Jinxia; Zhu, Jia-Ying; Wang, Hao; Zhang, Zhiguo; Wang, Wenfei; Sun, Yu; Zhao, Jun; Sun, Xuehui; Yang, Hongjuan; Xu, Yunyuan; Kim, Soo-Hwan; Fujioka, Shozo; Lin, Wen-Hui; Chong, Kang; Lu, Tiegang; Wang, Zhi-Yong

    2009-01-01

    In rice (Oryza sativa), brassinosteroids (BRs) induce cell elongation at the adaxial side of the lamina joint to promote leaf bending. We identified a rice mutant (ili1-D) showing an increased lamina inclination phenotype similar to that caused by BR treatment. The ili1-D mutant overexpresses an HLH protein homologous to Arabidopsis thaliana Paclobutrazol Resistance1 (PRE1) and the human Inhibitor of DNA binding proteins. Overexpression and RNA interference suppression of ILI1 increase and reduce, respectively, rice laminar inclination, confirming a positive role of ILI1 in leaf bending. ILI1 and PRE1 interact with basic helix-loop-helix (bHLH) protein IBH1 (ILI1 binding bHLH), whose overexpression causes erect leaf in rice and dwarfism in Arabidopsis. Overexpression of ILI1 or PRE1 increases cell elongation and suppresses dwarf phenotypes caused by overexpression of IBH1 in Arabidopsis. Thus, ILI1 and PRE1 may inactivate inhibitory bHLH transcription factors through heterodimerization. BR increases the RNA levels of ILI1 and PRE1 but represses IBH1 through the transcription factor BZR1. The spatial and temporal expression patterns support roles of ILI1 in laminar joint bending and PRE1/At IBH1 in the transition from growth of young organs to growth arrest. These results demonstrate a conserved mechanism of BR regulation of plant development through a pair of antagonizing HLH/bHLH transcription factors that act downstream of BZR1 in Arabidopsis and rice. PMID:20009022

  17. MK615, a Prunus mume Steb. Et Zucc ('Ume') extract, attenuates the growth of A375 melanoma cells by inhibiting the ERK1/2-Id-1 pathway.

    PubMed

    Tada, Ko-ichi; Kawahara, Ko-ichi; Matsushita, Shigeto; Hashiguchi, Teruto; Maruyama, Ikuro; Kanekura, Takuro

    2012-06-01

    The Japanese apricot, a commonly consumed food called 'Ume' in Japan, has been used for a traditional Japanese medicine for centuries. MK615, an extract of compounds from 'Ume', has strong antitumorigenic and antiinflammatory effects including the induction of apoptosis and autophagy, and inhibition of cytokine production mediated via the inhibition of MAPKs signaling including ERK-1/2, JNK and p38MAPK. The inhibitor of DNA binding 1 (Id-1), a basic helix-loop-helix (bHLH) transcription factor family, is essential for DNA binding and the transcriptional regulation of various proteins that play important roles in the development, progression and invasion of tumors. In melanoma, Id-1 is constitutively expressed in the late and early stages, suggesting it as a therapeutic target in patients with melanoma. This study reports that MK615 profoundly reduced both the mRNA- and protein expression levels of Id-1 and inhibited cell growth in A375 melanoma cells. MK615 markedly inhibited the phosphorylation of ERK1/2, which is associated with Id-1 protein expression in A375 cells. Id-1-specific RNAi induced the death of A375 cells. Moreover, the expression of Bcl-2 was decreased by both MK615 and Id-1-specific RNAi in A375 cells. The results suggest that MK615 is a potential therapeutic agent for treating malignant melanoma. PMID:22076920

  18. Hand2 is an essential regulator for two Notch-dependent functions within the embryonic endocardium.

    PubMed

    VanDusen, Nathan J; Casanovas, Jose; Vincentz, Joshua W; Firulli, Beth A; Osterwalder, Marco; Lopez-Rios, Javier; Zeller, Rolf; Zhou, Bin; Grego-Bessa, Joaquim; De La Pompa, José Luis; Shou, Weinian; Firulli, Anthony B

    2014-12-24

    The basic-helix-loop-helix (bHLH) transcription factor Hand2 plays critical roles during cardiac morphogenesis via expression and function within myocardial, neural crest, and epicardial cell populations. Here, we show that Hand2 plays two essential Notch-dependent roles within the endocardium. Endocardial ablation of Hand2 results in failure to develop a patent tricuspid valve, intraventricular septum defects, and hypotrabeculated ventricles, which collectively resemble the human congenital defect tricuspid atresia. We show endocardial Hand2 to be an integral downstream component of a Notch endocardium-to-myocardium signaling pathway and a direct transcriptional regulator of Neuregulin1. Additionally, Hand2 participates in endocardium-to-endocardium-based cell signaling, with Hand2 mutant hearts displaying an increased density of coronary lumens. Molecular analyses further reveal dysregulation of several crucial components of Vegf signaling, including VegfA, VegfR2, Nrp1, and VegfR3. Thus, Hand2 functions as a crucial downstream transcriptional effector of endocardial Notch signaling during both cardiogenesis and coronary vasculogenesis. PMID:25497097

  19. Isolation and Characterization of Rice R Genes: Evidence for Distinct Evolutionary Paths in Rice and Maize

    PubMed Central

    Hu, J.; Anderson, B.; Wessler, S. R.

    1996-01-01

    R and B genes and their homologues encode basic helix-loop-helix (bHLH) transcriptional activators that regulate the anthocyanin biosynthetic pathway in flowering plants. In maize, R/B genes comprise a very small gene family whose organization reflects the unique evolutionary history and genome architecture of maize. To know whether the organization of the R gene family could provide information about the origins of the distantly related grass rice, we characterized members of the R gene family from rice Oryza sativa. Despite being a true diploid, O. sativa has at least two R genes. An active homologue (Ra) with extensive homology with other R genes is located at a position on chromosome 4 previously shown to be in synteny with regions of maize chromosomes 2 and 10 that contain the B and R loci, respectively. A second rice R gene (Rb) of undetermined function was identified on chromosome 1 and found to be present only in rice species with AA genomes. All non-AA species have but one R gene that is Ra-like. These data suggest that the common ancestor shared by maize and rice had a single R gene and that the small R gene families of grasses have arisen recently and independently. PMID:8849907

  20. Neurog1 Genetic Inducible Fate Mapping (GIFM) Reveals the Existence of Complex Spatiotemporal Cyto-Architectures in the Developing Cerebellum.

    PubMed

    Obana, Edwin A; Lundell, Travis G; Yi, Kevin J; Radomski, Kryslaine L; Zhou, Qiong; Doughty, Martin L

    2015-06-01

    Neurog1 is a pro-neural basic helix-loop-helix (bHLH) transcription factor expressed in progenitor cells located in the ventricular zone and subsequently the presumptive white matter tracts of the developing mouse cerebellum. We used genetic inducible fate mapping (GIFM) with a transgenic Neurog1-CreER allele to characterize the contributions of Neurog1 lineages to cerebellar circuit formation in mice. GIFM reveals Neurog1-expressing progenitors are fate-mapped to become Purkinje cells and all GABAergic interneuron cell types of the cerebellar cortex but not glia. The spatiotemporal sequence of GIFM is unique to each neuronal cell type. GIFM on embryonic days (E) 10.5 to E12.5 labels Purkinje cells with different medial-lateral settling patterns depending on the day of tamoxifen delivery. GIFM on E11.5 to P7 labels interneurons and the timing of tamoxifen administration correlates with the final inside-to-outside resting position of GABAergic interneurons in the cerebellar cortex. Proliferative status and long-term BrdU retention of GIFM lineages reveals Purkinje cells express Neurog1 around the time they become post-mitotic. In contrast, GIFM labels mitotic and post-mitotic interneurons. Neurog1-CreER GIFM reveals a correlation between the timing of Neurog1 expression and the spatial organization of GABAergic neurons in the cerebellar cortex with possible implications for cerebellar circuit assembly. PMID:25592069

  1. COP1 and phyB Physically Interact with PIL1 to Regulate Its Stability and Photomorphogenic Development in Arabidopsis[W

    PubMed Central

    Luo, Qian; Lian, Hong-Li; He, Sheng-Bo; Li, Ling; Jia, Kun-Peng; Yang, Hong-Quan

    2014-01-01

    In Arabidopsis thaliana, the cryptochrome and phytochrome photoreceptors act together to promote photomorphogenic development. The cryptochrome and phytochrome signaling mechanisms interact directly with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1), a RING motif–containing E3 ligase that acts to negatively regulate photomorphogenesis. COP1 interacts with and ubiquitinates the transcription factors that promote photomorphogenesis, such as ELONGATED HYPOCOTYL5 and LONG HYPOCOTYL IN FAR-RED1 (HFR1), to inhibit photomorphogenic development. Here, we show that COP1 physically interacts with PIF3-LIKE1 (PIL1) and promotes PIL1 degradation via the 26S proteasome. We further demonstrate that phyB physically interacts with PIL1 and enhances PIL1 protein accumulation upon red light irradiation, probably through suppressing the COP1–PIL1 association. Biochemical and genetic studies indicate that PIL1 and HFR1 form heterodimers and promote photomorphogenesis cooperatively. Moreover, we demonstrate that PIL1 interacts with PIF1, 3, 4, and 5, resulting in the inhibition of the transcription of PIF direct-target genes. Our results reveal that PIL1 stability is regulated by phyB and COP1, likely through physical interactions, and that PIL1 coordinates with HFR1 to inhibit the transcriptional activity of PIFs, suggesting that PIL1, HFR1, and PIFs constitute a subset of antagonistic basic helix-loop-helix factors acting downstream of phyB and COP1 to regulate photomorphogenic development. PMID:24951480

  2. ARNT2 mutation causes hypopituitarism, post-natal microcephaly, visual and renal anomalies

    PubMed Central

    Webb, Emma A.; AlMutair, Angham; Kelberman, Daniel; Bacchelli, Chiara; Chanudet, Estelle; Lescai, Francesco; Andoniadou, Cynthia L.; Banyan, Abdul; Alsawaid, Al; Alrifai, Muhammad T.; Alahmesh, Mohammed A.; Balwi, M.; Mousavy-Gharavy, Seyedeh N.; Lukovic, Biljana; Burke, Derek; McCabe, Mark J.; Kasia, Tessa; Kleta, Robert; Stupka, Elia; Beales, Philip L.; Thompson, Dorothy A.; Chong, W. Kling; Alkuraya, Fowzan S.; Martinez-Barbera, Juan-Pedro; Sowden, Jane C.

    2013-01-01

    We describe a previously unreported syndrome characterized by secondary (post-natal) microcephaly with fronto-temporal lobe hypoplasia, multiple pituitary hormone deficiency, seizures, severe visual impairment and abnormalities of the kidneys and urinary tract in a highly consanguineous family with six affected children. Homozygosity mapping and exome sequencing revealed a novel homozygous frameshift mutation in the basic helix-loop-helix transcription factor gene ARNT2 (c.1373_1374dupTC) in affected individuals. This mutation results in absence of detectable levels of ARNT2 transcript and protein from patient fibroblasts compared with controls, consistent with nonsense-mediated decay of the mutant transcript and loss of ARNT2 function. We also show expression of ARNT2 within the central nervous system, including the hypothalamus, as well as the renal tract during human embryonic development. The progressive neurological abnormalities, congenital hypopituitarism and post-retinal visual pathway dysfunction in affected individuals demonstrates for the first time the essential role of ARNT2 in the development of the hypothalamo-pituitary axis, post-natal brain growth, and visual and renal function in humans. PMID:24022475

  3. The zinc finger transcription factor RP58 negatively regulates Rnd2 for the control of neuronal migration during cerebral cortical development.

    PubMed

    Heng, Julian Ik-Tsen; Qu, Zhengdong; Ohtaka-Maruyama, Chiaki; Okado, Haruo; Kasai, Masataka; Castro, Diogo; Guillemot, François; Tan, Seong-Seng

    2015-03-01

    The zinc finger transcription factor RP58 (also known as ZNF238) regulates neurogenesis of the mouse neocortex and cerebellum (Okado et al. 2009; Xiang et al. 2011; Baubet et al. 2012; Ohtaka-Maruyama et al. 2013), but its mechanism of action remains unclear. In this study, we report a cell-autonomous function for RP58 during the differentiation of embryonic cortical projection neurons via its activities as a transcriptional repressor. Disruption of RP58 expression alters the differentiation of immature neurons and impairs their migration and positioning within the mouse cerebral cortex. Loss of RP58 within the embryonic cortex also leads to elevated mRNA for Rnd2, a member of the Rnd family of atypical RhoA-like GTPase proteins important for cortical neuron migration (Heng et al. 2008). Mechanistically, RP58 represses transcription of Rnd2 via binding to a 3'-regulatory enhancer in a sequence-specific fashion. Using reporter assays, we found that RP58 repression of Rnd2 is competed by proneural basic helix-loop-helix transcriptional activators. Finally, our rescue experiments revealed that negative regulation of Rnd2 by RP58 was important for cortical cell migration in vivo. Taken together, these studies demonstrate that RP58 is a key player in the transcriptional control of cell migration in the developing cerebral cortex. PMID:24084125

  4. Role of Dlx6 in regulation of an endothelin-1-dependent, dHAND branchial arch enhancer

    PubMed Central

    Charité, Jeroen; McFadden, David G.; Merlo, Giorgio; Levi, Giovanni; Clouthier, David E.; Yanagisawa, Masashi; Richardson, James A.; Olson, Eric N.

    2001-01-01

    Neural crest cells play a key role in craniofacial development. The endothelin family of secreted polypeptides regulates development of several neural crest sublineages, including the branchial arch neural crest. The basic helix–loop–helix transcription factor dHAND is also required for craniofacial development, and in endothelin-1 (ET-1) mutant embryos, dHAND expression in the branchial arches is down-regulated, implicating it as a transcriptional effector of ET-1 action. To determine the mechanism that links ET-1 signaling to dHAND transcription, we analyzed the dHAND gene for cis-regulatory elements that control transcription in the branchial arches. We describe an evolutionarily conserved dHAND enhancer that requires ET-1 signaling for activity. This enhancer contains four homeodomain binding sites that are required for branchial arch expression. By comparing protein binding to these sites in branchial arch extracts from endothelin receptor A (EdnrA) mutant and wild-type mouse embryos, we identified Dlx6, a member of the Distal-less family of homeodomain proteins, as an ET-1-dependent binding factor. Consistent with this conclusion, Dlx6 was down-regulated in branchial arches from EdnrA mutant mice. These results suggest that Dlx6 acts as an intermediary between ET-1 signaling and dHAND transcription during craniofacial morphogenesis. PMID:11711438

  5. MicroRNA 146 (Mir146) Modulates Spermatogonial Differentiation by Retinoic Acid in Mice1

    PubMed Central

    Huszar, Jessica M.; Payne, Christopher J.

    2012-01-01

    ABSTRACT Impaired biogenesis of microRNAs disrupts spermatogenesis and leads to infertility in male mice. Spermatogonial differentiation is a key step in spermatogenesis, yet the mechanisms that control this event remain poorly defined. In this study, we discovered microRNA 146 (Mir146) to be highly regulated during spermatogonial differentiation, a process dependent on retinoic acid (RA) signaling. Mir146 transcript levels were diminished nearly 180-fold in differentiating spermatogonia when compared with undifferentiated spermatogonia. Luciferase assays revealed the direct binding of Mir146 to the 3? untranslated region of the mediator complex subunit 1 (Med1), a coregulator of retinoid receptors (RARs and RXRs). Overexpression of Mir146 in cultured undifferentiated spermatogonia reduced Med1 transcript levels, as well as those of differentiation marker kit oncogene (Kit). MED1 protein was also diminished. Conversely, inhibition of Mir146 increased the levels of Kit. When undifferentiated spermatogonia were exposed to RA, Mir146 was downregulated along with a marker for undifferentiated germ cells, zinc finger and BTB domain containing 16 (Zbtb16; Plzf); Kit was upregulated. Overexpression of Mir146 in RA-treated spermatogonia inhibited the upregulation of Kit, stimulated by retinoic acid gene 8 (Stra8), and spermatogenesis- and oogenesis-specific basic helix-loop-helix 2 (Sohlh2). Inhibition of Mir146 in RA-treated spermatogonia greatly enhanced the upregulation of these genes. We conclude that Mir146 modulates the effects of RA on spermatogonial differentiation. PMID:23221399

  6. ULTRAPETALA trxG genes interact with KANADI transcription factor genes to regulate Arabidopsis gynoecium patterning.

    PubMed

    Pires, Helena R; Monfared, Mona M; Shemyakina, Elena A; Fletcher, Jennifer C

    2014-11-01

    Organ formation relies upon precise patterns of gene expression that are under tight spatial and temporal regulation. Transcription patterns are specified by several cellular processes during development, including chromatin remodeling, but little is known about how chromatin-remodeling factors contribute to plant organogenesis. We demonstrate that the trithorax group (trxG) gene ULTRAPETALA1 (ULT1) and the GARP transcription factor gene KANADI1 (KAN1) organize the Arabidopsis thaliana gynoecium along two distinct polarity axes. We show that ULT1 activity is required for the kan1 adaxialized polarity defect, indicating that ULT1 and KAN1 act oppositely to regulate the adaxial-abaxial axis. Conversely, ULT1 and KAN1 together establish apical-basal polarity by promoting basal cell fate in the gynoecium, restricting the expression domain of the basic helix-loop-helix transcription factor gene SPATULA. Finally, we show that ult alleles display dose-dependent genetic interactions with kan alleles and that ULT and KAN proteins can associate physically. Our findings identify a dual role for plant trxG factors in organ patterning, with ULT1 and KAN1 acting antagonistically to pattern the adaxial-abaxial polarity axis but jointly to pattern the apical-basal axis. Our data indicate that the ULT proteins function to link chromatin-remodeling factors with DNA binding transcription factors to regulate target gene expression. PMID:25381352

  7. Regulation of neurogenin stability by ubiquitin-mediated proteolysis.

    PubMed

    Vosper, Jonathan M D; Fiore-Heriche, Christelle S; Horan, Ian; Wilson, Kate; Wise, Helen; Philpott, Anna

    2007-10-15

    NGN (neurogenin), a proneural bHLH (basic helix-loop-helix) transcription factor, plays a central role in promoting neuronal specification and differentiation in many regions of the central nervous system. NGN activity has been shown extensively to be controlled at the transcriptional level. However, in addition, recent findings have indicated that the levels of NGN protein may also be regulated. In the present study, we have demonstrated that NGN protein stability was regulated in both Xenopus embryos and P19 embryonal carcinoma cells, a mammalian neuronal model system. In both systems, NGN was a highly unstable protein that was polyubiquitinated for destruction by the proteasome. NGN binds to DNA in complex with its heterodimeric E-protein partners E12 or E47. We observed that NGN was stabilized by the presence of E12/E47. Moreover, NGN was phosphorylated, and mutation of a single threonine residue substantially reduced E12-mediated stabilization of NGN. Thus E-protein partner binding and phosphorylation events act together to stabilize NGN, promoting its accumulation when it can be active. PMID:17623011

  8. Complex domain interactions regulate stability and activity of closely related proneural transcription factors

    PubMed Central

    McDowell, Gary S.; Hardwick, Laura J.A.; Philpott, Anna

    2014-01-01

    Characterising post-translational regulation of key transcriptional activators is crucial for understanding how cell division and differentiation are coordinated in developing organisms and cycling cells. One important mode of protein post-translational control is by regulation of half-life via ubiquitin-mediated proteolysis. Two key basic Helix-Loop-Helix transcription factors, Neurogenin 2 (Ngn2) and NeuroD, play central roles in development of the central nervous system but despite their homology, Ngn2 is a highly unstable protein whilst NeuroD is, by comparison, very stable. The basis for and the consequences of the difference in stability of these two structurally and functionally related proteins has not been explored. Here we see that ubiquitylation alone does not determine Ngn2 or NeuroD stability. By making chimeric proteins, we see that the N-terminus of NeuroD in particular has a stabilising effect, whilst despite their high levels of homology, the most conserved bHLH domains of these proneural proteins alone can confer significant changes in protein stability. Despite widely differing stabilities of Ngn2, NeuroD and the chimeric proteins composed of domains of both, there is little correlation between protein half-life and ability to drive neuronal differentiation. Therefore, we conclude that despite significant homology between Ngn2 and NeuroD, the regulation of their stability differs markedly and moreover, stability/instability of the proteins is not a direct correlate of their activity. PMID:24998442

  9. Vertebrate neurogenin evolution: long-term maintenance of redundant duplicates.

    PubMed

    Furlong, Rebecca F; Graham, Anthony

    2005-12-01

    The majority of the cranial sensory neurons of vertebrates, including all of those concerned with the special senses of hearing, balance and taste, are derived from the neurogenic placodes. A number of studies have shown that the production of neuronal cells by the placodes is dependent upon the function of the neurogenin (ngn) gene family of basic helix-loop-helix transcription factors. One member of the gene family is expressed in each placode, suggesting that this specificity of expression could help to determine different neuronal classes. An interesting feature of this expression, however, is that the expression patterns vary amongst the vertebrates; for example, mammals and fish express ngn-1 in the ophthalmic trigeminal placode where birds use ngn-2. This prompted us to use phylogenetic and genomic analysis to unravel the evolutionary history of this gene family. We determined that the duplication that created the neurogenin-1 and -2 subfamilies occurred deep in the vertebrate lineage before the divergence of bony fish 450 million years ago and suggest that concurrent expression of both genes was probably maintained in all neurogenic placodes until after the divergence of birds and mammals 270 million years ago. PMID:16220265

  10. Analysis of gene expression on ngn3 gene signaling pathway in endocrine pancreatic cancer

    PubMed Central

    Nagaraja, Prashantha; Parashivamurthy, Kavya; Sidnal, Nandini; Mali, Siddappa; Nagaraja, Dakshyani; Reddy, Sivarami

    2013-01-01

    In order to define the undifferentiated transcriptional factors present in neurogenesis of pancreatic ?-islet cells, we studied the effect of Pdx1 in embryonic stem cell derived endocrine lineage. There are undifferentiated transcriptional progenitors Pdx1+/Ptf1a+/Cpa1+ tracking the growth of acini, ducts, ? and ?-islet cells. The upregulated transcriptional factors Pdx1 and ngn3 specify consequences of cell cycle regulation in early gut endocrine cells. The undifferentiated transcriptional factors basic helix loop helix (bHLH) protein regulate Ptf1a+/Cpa1+ in acini, ducts and it also regulate ngn3 to decrease expression of insulin and other pancreas secretions. The Pdx1+ and other unknown gene mutations show abnormal growth of neurogenesis in endocrine lineages. Using microarray based gene expression analysis to determine undifferential gene ontology in tissue specific gene regulation and disease progression that common in both metabolic and biological signaling pathways. The data expression profiles of ngn3 of wild- type pancreatic islet and islet derived tumor stem cells provide information on endocrine specific ngn3 genes. Therefore, 3755 genes were significantly regulated by Ngn3 induced pancreatic islet cell development. Moreover 317 upregulated and 175 downregulated, 757 genes deemed as undifferential expressions in endocrine cell. Furthermore to predict signaling pathways that associates with diabetes is highlighted. PMID:23976832

  11. Ubiquitylation on canonical and non-canonical sites targets the transcription factor neurogenin for ubiquitin-mediated proteolysis.

    PubMed

    Vosper, Jonathan M D; McDowell, Gary S; Hindley, Christopher J; Fiore-Heriche, Christelle S; Kucerova, Romana; Horan, Ian; Philpott, Anna

    2009-06-01

    Polyubiquitylation targets multiple proteins for degradation by the proteasome. Typically, the first ubiquitin is linked to lysine residues in the substrate for degradation via an isopeptide bond, although rarely ubiquitin linkage to the N-terminal residue has also been observed. We have recently shown that Neurogenin (NGN), a basic helix-loop-helix transcription factor that plays a central role in regulating neuronal differentiation, is degraded by ubiquitin-mediated proteolysis. We have taken a biochemical and mutagenesis approach to investigate sites of ubiquitylation of NGN, initially using extracts of eggs from the frog Xenopus laevis as a source of ubiquitylation and degradation components. NGN can be targeted for destruction by ubiquitylation via lysines or the N terminus. However, we see that a modified NGN, where canonical lysine ubiquitylation and N-terminally linked ubiquitylation are prevented, is nevertheless ubiquitylated and degraded by the proteasome. We show that polyubiquitin chains covalently attach to non-canonical cysteine residues in NGN, and these non-canonical linkages alone are capable of targeting NGN protein for destruction. Importantly, canonical and non-canonical ubiquitylation occurs simultaneously in the native protein and may differ in importance for driving degradation in interphase and mitosis. We conclude that native NGN is ubiquitylated on multiple canonical and non-canonical sites by cellular ubiquitin ligases, and all types of linkage can contribute to protein turnover. PMID:19336407

  12. Geminin regulates neuronal differentiation by antagonizing Brg1 activity.

    PubMed

    Seo, Seongjin; Herr, Anabel; Lim, Jong-Won; Richardson, Genova A; Richardson, Helena; Kroll, Kristen L

    2005-07-15

    Precise control of cell proliferation and differentiation is critical for organogenesis. Geminin (Gem) has been proposed to link cell cycle exit and differentiation as a prodifferentiation factor and plays a role in neural cell fate acquisition. Here, we identified the SWI/SNF chromatin-remodeling protein Brg1 as an interacting partner of Gem. Brg1 has been implicated in cell cycle withdrawal and cellular differentiation. Surprisingly, we discovered that Gem antagonizes Brg1 activity during neurogenesis to maintain the undifferentiated cell state. Down-regulation of Gem expression normally precedes neuronal differentiation, and gain- and loss-of-function experiments in Xenopus embryos and mouse P19 cells demonstrated that Gem was essential to prevent premature neurogenesis. Misexpression of Gem also suppressed ectopic neurogenesis driven by Ngn and NeuroD. Gem's activity to block differentiation depended upon its ability to bind Brg1 and could be mediated by Gem's inhibition of proneural basic helix-loop-helix (bHLH)-Brg1 interactions required for bHLH target gene activation. Our data demonstrate a novel mechanism of Gem activity, through regulation of SWI/SNF chromatin-remodeling proteins, and indicate that Gem is an essential regulator of neurogenesis that can control the timing of neural progenitor differentiation and maintain the undifferentiated cell state. PMID:16024661

  13. Myrosin idioblast cell fate and development are regulated by the Arabidopsis transcription factor FAMA, the auxin pathway, and vesicular trafficking.

    PubMed

    Li, Meng; Sack, Fred D

    2014-10-01

    Crucifer shoots harbor a glucosinolate-myrosinase system that defends against insect predation. Arabidopsis thaliana myrosinase (thioglucoside glucohydrolase [TGG]) accumulates in stomata and in myrosin idioblasts (MIs). This work reports that the basic helix-loop-helix transcription factor FAMA that is key to stomatal development is also expressed in MIs. The loss of FAMA function abolishes MI fate as well as the expression of the myrosinase genes TGG1 and TGG2. MI cells have previously been reported to be located in the phloem. Instead, we found that MIs arise from the ground meristem rather than provascular tissues and thus are not homologous with phloem. Moreover, MI patterning and morphogenesis are abnormal when the function of the ARF-GEF gene GNOM is lost as well as when auxin efflux and vesicular trafficking are chemically disrupted. Stomata and MI cells constitute part of a wider system that reduces plant predation, the so-called "mustard oil bomb," in which vacuole breakage in cells harboring myrosinase and glucosinolate yields a brew toxic to many animals, especially insects. This identification of the gene that confers the fate of MIs, as well as stomata, might facilitate the development of strategies for engineering crops to mitigate predation. PMID:25304201

  14. Interplay of the E box, the cyclic AMP response element, and HTF4/HEB in transcriptional regulation of the neurospecific, neurotrophin-inducible vgf gene.

    PubMed

    Di Rocco, G; Pennuto, M; Illi, B; Canu, N; Filocamo, G; Trani, E; Rinaldi, A M; Possenti, R; Mandolesi, G; Sirinian, M I; Jucker, R; Levi, A; Nasi, S

    1997-03-01

    vgf is a neurotrophin response-specific, developmentally regulated gene that codes for a neurosecretory polypeptide. Its transcription in neuronal cells is selectively activated by the neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor, and neurotrophin 3, which induce survival and differentiation, and not by epidermal growth factor. We studied a short region of the rat vgf promoter which is essential for its regulated expression. A cyclic AMP response element (CRE) within this region is necessary for NGF induction of vgf transcription. Two sites upstream of CRE, an E box and a CCAAT sequence, bind nuclear protein complexes and are involved in transcriptional control. The E box has a dual role. It acts as an inhibitor in NIH 3T3 fibroblasts, together with a second E box located downstream, and as a stimulator in the NGF-responsive cell line PC12. By expression screening, we have isolated the cDNA for a basic helix-loop-helix transcription factor, a homolog of the HTF4/HEB E protein, that specifically binds the vgf promoter E box. The E protein was present in various cell lines, including PC12 cells, and was a component of a multiprotein nuclear complex that binds the promoter in vitro. The E box and CRE cooperate in binding to this complex, which may be an important determinant for neural cell-specific expression. PMID:9032251

  15. CUL4 forms an E3 ligase with COP1 and SPA to promote light-induced degradation of PIF1.

    PubMed

    Zhu, Ling; Bu, Qingyun; Xu, Xiaosa; Paik, Inyup; Huang, Xi; Hoecker, Ute; Deng, Xing Wang; Huq, Enamul

    2015-01-01

    Plants undergo contrasting developmental programs in dark and light. Photomorphogenesis, a light-adapted programme is repressed in the dark by the synergistic actions of CUL4(COP1-SPA) E3 ubiquitin ligase and a subset of basic helix-loop-helix transcription factors called phytochrome interacting factors (PIFs). To promote photomorphogenesis, light activates the phytochrome family of sensory photoreceptors, which inhibits these repressors by poorly understood mechanisms. Here, we show that the CUL4(COP1-SPA) E3 ubiquitin ligase is necessary for the light-induced degradation of PIF1 in Arabidopsis. The light-induced ubiquitylation and subsequent degradation of PIF1 is reduced in the cop1, spaQ and cul4 backgrounds. COP1, SPA1 and CUL4 preferentially form complexes with the phosphorylated forms of PIF1 in response to light. The cop1 and spaQ seeds display strong hyposensitive response to far-red light-mediated seed germination and light-regulated gene expression. These data show a mechanism by which an E3 ligase attenuates its activity by degrading its cofactor in response to light. PMID:26037329

  16. Modelling Myc inhibition as a cancer therapy

    PubMed Central

    Soucek, Laura; Whitfield, Jonathan; Martins, Carla P.; Finch, Andrew J.; Murphy, Daniel J.; Sodir, Nicole M.; Karnezis, Anthony N.; Swigart, Lamorna Brown; Nasi, Sergio; Evan, Gerard I.

    2015-01-01

    Myc is a pleiotropic basic helix–loop–helix leucine zipper transcription factor that coordinates expression of the diverse intracellular and extracellular programs that together are necessary for growth and expansion of somatic cells1. In principle, this makes inhibition of Myc an attractive pharmacological approach for treating diverse types of cancer. However, enthusiasm has been muted by lack of direct evidence that Myc inhibition would be therapeutically efficacious, concerns that it would induce serious side effects by inhibiting proliferation of normal tissues, and practical difficulties in designing Myc inhibitory drugs. We have modelled genetically both the therapeutic impact and the side effects of systemic Myc inhibition in a preclinical mouse model of Ras-induced lung adenocarcinoma by reversible, systemic expression of a dominant-interfering Myc mutant. We show that Myc inhibition triggers rapid regression of incipient and established lung tumours, defining an unexpected role for endogenous Myc function in the maintenance of Ras-dependent tumours in vivo. Systemic Myc inhibition also exerts profound effects on normal regenerating tissues. However, these effects are well tolerated over extended periods and rapidly and completely reversible. Our data demonstrate the feasibility of targeting Myc, a common downstream conduit for many oncogenic signals, as an effective, efficient and tumour-specific cancer therapy. PMID:18716624

  17. Growth-promoting and tumourigenic activity of c-Myc is suppressed by Hhex.

    PubMed

    Marfil, V; Blazquez, M; Serrano, F; Castell, J V; Bort, R

    2015-06-01

    c-Myc transcription factor is a key protein involved in cellular growth, proliferation and metabolism. c-Myc is one of the most frequently activated oncogenes, highlighting the need to identify intracellular molecules that interact directly with c-Myc to suppress its function. Here we show that Hhex is able to interact with the basic region/helix-loop-helix/leucine zipper of c-Myc. Knockdown of Hhex increases proliferation rate in hepatocellular carcinoma cells, whereas Hhex expression cell-autonomously reduces cell proliferation rate in multiple cell lines by increasing G1 phase length through a c-Myc-dependent mechanism. Global transcriptomic analysis shows that Hhex counter-regulates multiple c-Myc targets involved in cell proliferation and metabolism. Concomitantly, Hhex expression leads to reduced cell size, lower levels of cellular RNA, downregulation of metabolism-related genes, decreased sensitivity to methotrexate and severe reduction in the ability to form tumours in nude mouse xenografts, all indicative of decreased c-Myc activity. Our data suggest that Hhex is a novel regulator of c-Myc function that limits c-Myc activity in transformed cells. PMID:25220416

  18. The bHLH transcription factor E47 reprograms human pancreatic cancer cells to a quiescent acinar state with reduced tumorigenic potential

    PubMed Central

    Kim, SangWun; Lahmy, Reyhaneh; Riha, Chelsea; Yang, Challeng; Jakubison, Brad L.; van Niekerk, Jaco; Staub, Claudio; Wu, Yifan; Gates, Keith; Dong, Duc Si; Konieczny, Stephen F.; Itkin-Ansari, Pamela

    2015-01-01

    Objectives Pancreatic ductal adenocarcinoma (PDA) initiates from quiescent acinar cells that attain a Kras mutation, lose signaling from basic helix-loop-helix transcription (bHLH) factors, undergo acinar-ductal metaplasia (ADM), and rapidly acquire increased growth potential. We queried whether PDA cells can be reprogrammed to revert to their original quiescent acinar cell state by shifting key transcription programs. Methods Human PDA cell lines were engineered to express an inducible form of the bHLH protein E47. Gene expression, growth, and functional studies were investigated using microarray, qPCR, immunoblots, immunohistochemistry, siRNA, ChIP analyses, and cell transplantation into mice. Results In human PDA cells, E47 activity triggers stable G0/G1 arrest which requires the cyclin-dependent kinase inhibitor p21 and the stress response protein TP53INP1. Concurrently, E47 induces high level expression of acinar digestive enzymes and feed forward activation of the acinar maturation network regulated by the bHLH factor MIST1. Moreover, induction of E47 in human PDA cells in vitro is sufficient to inhibit tumorigenesis. Conclusions Human PDA cells retain a high degree of plasticity which can be exploited to induce a quiescent acinar cell state with reduced tumorigenic potential. Moreover, bHLH activity is a critical node coordinately regulating human PDA cell growth versus cell fate. PMID:25894862

  19. Atonal is the proneural gene for Drosophila photoreceptors.

    PubMed

    Jarman, A P; Grell, E H; Ackerman, L; Jan, L Y; Jan, Y N

    1994-06-01

    The Drosophila peripheral nervous system comprises four major types of sensory element: external sense organs (such as mechano-sensory bristles), chordotonal organs (internal stretch receptors), multiple dendritic neurons, and photoreceptors. During development, the selection of neural precursors for external sense organs requires the proneural genes of the achaete-scute complex, which encode basic-helix-loop-helix transcription factors. These genes do not, however, control precursor selection for chordotonal organs or photoreceptors, raising the question of whether other proneural genes exist or a different mechanism of neurogenesis operates. Here we show that atonal (ato), originally isolated as a proneural gene for chordotonal organs, is also the proneural gene for photoreceptors. Pattern formation in the Drosophila eye involves a succession of cell fate specifications. Of the eight photoreceptors within each ommatidium of the compound eye, the photoreceptor R8 is the first to appear in the eye imaginal disc, right behind the morphogenetic furrow. The appearance of other photoreceptors (R1-7) follows in a defined sequence that is thought to arise by induction from R8 (refs 8, 9, 11, 12). We find that photoreceptor formation requires the function of atonal at the morphogenetic furrow and that atonal is specifically required for R8 selection. Formation of other photoreceptors does not directly require atonal function, but does depend on R8 selection by atonal. Thus, photoreceptors are selected by two mechanisms: R8 by a proneural mechanism, and R1-7 by local recruitment. PMID:8196767

  20. Genome-wide identification, classification and functional analyses of the bHLH transcription factor family in the pig, Sus scrofa.

    PubMed

    Liu, Wuyi

    2015-08-01

    The basic helix-loop-helix (bHLH) transcription factors are one of the largest families of gene regulatory proteins and play crucial roles in genetic, developmental and physiological processes in eukaryotes. Here, we conducted a survey of the Sus scrofa genome and identified 109 putative bHLH transcription factor members belonging to super-groups A, B, C, D, E, and F, respectively, while four members were orphan genes. We identified 6 most significantly enriched KEGG pathways and 116 most significant GO annotation categories. Further comprehensive surveys in human genome and other 12 medical databases identified 72 significantly enriched biological pathways with these 113 pig bHLH transcription factors. From the functional protein association network analysis 93 hub proteins were identified and 55 hub proteins created a tight network or a functional module within their protein families. Especially, there were 20 hub proteins found highly connected in the functional interaction network. The present study deepens our understanding and provided insights into the evolution and functional aspects of animal bHLH proteins and should serve as a solid foundation for further for analyses of specific bHLH transcription factors in the pig and other mammals. PMID:25687626

  1. Sim1 inhibits bone formation by enhancing the sympathetic tone in male mice.

    PubMed

    Wang, Xunde; Wei, Wei; Zinn, Andrew R; Wan, Yihong

    2015-04-01

    Single-minded 1 (Sim1) is a basic helix-loop-helix Per-Arnt-Sim transcription factor that is important for neuronal development in the hypothalamus. Loss-of-function mutation of Sim1 causes early-onset obesity. However, it is unknown whether and how Sim1 regulates bone remodeling. In this study, we found that adult-onset Sim1 deletion increases bone formation, leading to high bone mass. In contrast, Sim1-overexpressing transgenic mice exhibit decreased bone formation and low bone mass. Sim1 does not directly regulate osteoblastogenesis, because bone marrow mesenchymal stem cells from Sim1 mutant mice display a normal capacity for osteoblast differentiation. Instead, Sim1 inhibits bone formation via stimulating the sympathetic nervous system, because sympathetic tone is decreased by Sim1 deletion but increased by Sim1 overexpression. Treatment with the ?-adrenergic agonist isoproterenol effectively reverses the high bone mass in Sim1-knockout mice. These findings reveal Sim1 as a critical yet previously unrecognized modulator of skeletal homeostasis that functions through a central relay. PMID:25607894

  2. Mechanism of dioxin action: receptor-enhancer interactions in intact cells.

    PubMed Central

    Wu, L; Whitlock, J P

    1993-01-01

    We have used a ligation-mediated polymerase chain reaction technique to analyze protein-DNA interactions at a dioxin-responsive enhancer upstream of the CYP1A1 gene in intact mouse hepatoma cells. In its inactive state, the enhancer binds few, if any, proteins within the major DNA groove in vivo. Thus, the inactive enhancer is relatively inaccessible to DNA-binding proteins. Exposure of cells to 2,3,7,8-tetrachlorodibenzo-p-dioxin leads to the binding of the liganded Ah receptor at six sites within the major DNA groove of the enhancer. The receptor-enhancer interactions occur rapidly and do not require ongoing transcription, consistent with their role in regulating CYP1A1 gene expression. The liganded receptor, which is a heteromer composed of at least two basic helix-loop-helix proteins, is probably the only DNA-binding transcription factor necessary to activate the enhancer in vivo. The small size and irregular distribution of receptor binding sites suggest that chromatin structure imposes substantial steric constraints upon the function of the receptor-enhancer system in intact cells. Images PMID:8382788

  3. Roles of bHLH genes in neural stem cell differentiation

    SciTech Connect

    Kageyama, Ryoichiro [Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507 (Japan)]. E-mail: rkageyam@virus.kyoto-u.ac.jp; Ohtsuka, Toshiyuki [Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507 (Japan); Hatakeyama, Jun [Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507 (Japan); Ohsawa, Ryosuke [Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507 (Japan)

    2005-06-10

    Neural stem cells change their characteristics over time during development: they initially proliferate only and then give rise to neurons first and glial cells later. In the absence of the repressor-type basic helix-loop-helix (bHLH) genes Hes1, Hes3 and Hes5, neural stem cells do not proliferate sufficiently but prematurely differentiate into neurons and become depleted without making the later born cell types such as astrocytes and ependymal cells. Thus, Hes genes are essential for maintenance of neural stem cells to make cells not only in correct numbers but also in full diversity. Hes genes antagonize the activator-type bHLH genes, which include Mash1, Math and Neurogenin. The activator-type bHLH genes promote the neuronal fate determination and induce expression of Notch ligands such as Delta. These ligands activate Notch signaling and upregulate Hes1 and Hes5 expression in neighboring cells, thereby maintaining these cells undifferentiated. Thus, the activator-type and repressor-type bHLH genes regulate each other, allowing only subsets of cells to undergo differentiation while keeping others to stay neural stem cells. This regulation is essential for generation of complex brain structures of appropriate size, shape and cell arrangement.

  4. Target-dependent inhibition of sympathetic neuron growth via modulation of a BMP signaling pathway

    PubMed Central

    Moon, Jung-Il; Birren, Susan J.

    2008-01-01

    Target-derived factors modulate many aspects of peripheral neuron development including neuronal growth, survival, and maturation. Less is known about how initial target contact regulates changes in gene expression associated with these developmental processes. One early consequence of contact between growing sympathetic neurons and their cardiac myocyte targets is the inhibition of neuronal outgrowth. Analysis of neuronal gene expression following this contact revealed coordinate regulation of a bone morphogenetic protein (BMP)-dependent growth pathway in which basic helix-loop-helix transcription factors and downstream neurofilament expression contribute to the growth dynamics of developing sympathetic neurons. BMP2 had dose-dependent growth promoting effects on sympathetic neurons cultured in the absence, but not the presence, of myocyte targets, suggesting that target contact alters neuronal responses to BMP signaling. Target contact also induced the expression of matrix Gla protein (MGP), a regulator of BMP function in the vascular system. Increased MGP expression inhibited BMP-dependent neuronal growth and MGP expression increased in sympathetic neurons during the period of target contact in vivo. These experiments establish MGP as a novel regulator of BMP function in the nervous system, and define developmental transitions in BMP responses during sympathetic development. PMID:18272145

  5. Generation of Atoh1-rtTA transgenic mice: a tool for inducible gene expression in hair cells of the inner ear.

    PubMed

    Cox, Brandon C; Dearman, Jennifer A; Brancheck, Joseph; Zindy, Frederique; Roussel, Martine F; Zuo, Jian

    2014-01-01

    Atoh1 is a basic helix-loop-helix transcription factor that controls differentiation of hair cells (HCs) in the inner ear and its enhancer region has been used to create several HC-specific mouse lines. We generated a transgenic tetracycline-inducible mouse line (called Atoh1-rtTA) using the Atoh1 enhancer to drive expression of the reverse tetracycline transactivator (rtTA) protein and human placental alkaline phosphatase. Presence of the transgene was confirmed by alkaline phosphatase staining and rtTA activity was measured using two tetracycline operator (TetO) reporter alleles with doxycycline administered between postnatal days 0-3. This characterization of five founder lines demonstrated that Atoh1-rtTA is expressed in the majority of cochlear and utricular HCs. Although the tetracycline-inducible system is thought to produce transient changes in gene expression, reporter positive HCs were still observed at 6 weeks of age. To confirm that Atoh1-rtTA activity was specific to Atoh1-expressing cells, we also analyzed the cerebellum and found rtTA-driven reporter expression in cerebellar granule neuron precursor cells. The Atoh1-rtTA mouse line provides a powerful tool for the field and can be used in combination with other existing Cre recombinase mouse lines to manipulate expression of multiple genes at different times in the same animal. PMID:25363458

  6. Generation of Atoh1-rtTA transgenic mice: a tool for inducible gene expression in hair cells of the inner ear

    PubMed Central

    Cox, Brandon C.; Dearman, Jennifer A.; Brancheck, Joseph; Zindy, Frederique; Roussel, Martine F.; Zuo, Jian

    2014-01-01

    Atoh1 is a basic helix-loop-helix transcription factor that controls differentiation of hair cells (HCs) in the inner ear and its enhancer region has been used to create several HC-specific mouse lines. We generated a transgenic tetracycline-inducible mouse line (called Atoh1-rtTA) using the Atoh1 enhancer to drive expression of the reverse tetracycline transactivator (rtTA) protein and human placental alkaline phosphatase. Presence of the transgene was confirmed by alkaline phosphatase staining and rtTA activity was measured using two tetracycline operator (TetO) reporter alleles with doxycycline administered between postnatal days 0–3. This characterization of five founder lines demonstrated that Atoh1-rtTA is expressed in the majority of cochlear and utricular HCs. Although the tetracycline-inducible system is thought to produce transient changes in gene expression, reporter positive HCs were still observed at 6 weeks of age. To confirm that Atoh1-rtTA activity was specific to Atoh1-expressing cells, we also analyzed the cerebellum and found rtTA-driven reporter expression in cerebellar granule neuron precursor cells. The Atoh1-rtTA mouse line provides a powerful tool for the field and can be used in combination with other existing Cre recombinase mouse lines to manipulate expression of multiple genes at different times in the same animal. PMID:25363458

  7. The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus.

    PubMed

    Van Moerkercke, Alex; Steensma, Priscille; Schweizer, Fabian; Pollier, Jacob; Gariboldi, Ivo; Payne, Richard; Vanden Bossche, Robin; Miettinen, Karel; Espoz, Javiera; Purnama, Purin Candra; Kellner, Franziska; Seppänen-Laakso, Tuulikki; O'Connor, Sarah E; Rischer, Heiko; Memelink, Johan; Goossens, Alain

    2015-06-30

    Plants make specialized bioactive metabolites to defend themselves against attackers. The conserved control mechanisms are based on transcriptional activation of the respective plant species-specific biosynthetic pathways by the phytohormone jasmonate. Knowledge of the transcription factors involved, particularly in terpenoid biosynthesis, remains fragmentary. By transcriptome analysis and functional screens in the medicinal plant Catharanthus roseus (Madagascar periwinkle), the unique source of the monoterpenoid indole alkaloid (MIA)-type anticancer drugs vincristine and vinblastine, we identified a jasmonate-regulated basic helix-loop-helix (bHLH) transcription factor from clade IVa inducing the monoterpenoid branch of the MIA pathway. The bHLH iridoid synthesis 1 (BIS1) transcription factor transactivated the expression of all of the genes encoding the enzymes that catalyze the sequential conversion of the ubiquitous terpenoid precursor geranyl diphosphate to the iridoid loganic acid. BIS1 acted in a complementary manner to the previously characterized ethylene response factor Octadecanoid derivative-Responsive Catharanthus APETALA2-domain 3 (ORCA3) that transactivates the expression of several genes encoding the enzymes catalyzing the conversion of loganic acid to the downstream MIAs. In contrast to ORCA3, overexpression of BIS1 was sufficient to boost production of high-value iridoids and MIAs in C. roseus suspension cell cultures. Hence, BIS1 might be a metabolic engineering tool to produce sustainably high-value MIAs in C. roseus plants or cultures. PMID:26080427

  8. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation

    PubMed Central

    McKinsey, Timothy A.; Zhang, Chun-Li; Lu, Jianrong; Olson, Eric N.

    2015-01-01

    Members of the myocyte enhancer factor-2 (MEF2) family of transcription factors associate with myogenic basic helix–loophelix transcription factors such as MyoD to activate skeletal myogenesis1. MEF2 proteins also interact with the class II histone deacetylases HDAC4 and HDAC5, resulting in repression of MEF2-dependent genes2–4. Execution of the muscle differentiation program requires release of MEF2 from repression by HDACs, which are expressed constitutively in myoblasts and myotubes5. Here we show that HDAC5 shuttles from the nucleus to the cytoplasm when myoblasts are triggered to differentiate. Calcium/ calmodulin-dependent protein kinase (CaMK) signalling, which stimulates myogenesis5 and prevents formation of MEF2–HDAC complexes4, also induces nuclear export ofHDAC4 and HDAC5 by phosphorylation of these transcriptional repressors. An HDAC5 mutant lacking two CaMK phosphorylation sites is resistant to CaMK-mediated nuclear export and acts as a dominant inhibitor of skeletal myogenesis, whereas a cytoplasmic HDAC5 mutant is unable to block efficiently the muscle differentiation program. Our results highlight a mechanism for transcriptional regulation through signal- and differentiation-dependent nuclear export of a chromatin-remodelling enzyme, and suggest that nucleo cytoplasmic trafficking of HDACs is involved in the control of cellular differentiation. PMID:11081517

  9. Structural basis for LMO2-driven recruitment of the SCL:E47bHLH heterodimer to hematopoietic-specific transcriptional targets.

    PubMed

    El Omari, Kamel; Hoosdally, Sarah J; Tuladhar, Kapil; Karia, Dimple; Hall-Ponselé, Elisa; Platonova, Olga; Vyas, Paresh; Patient, Roger; Porcher, Catherine; Mancini, Erika J

    2013-07-11

    Cell fate is governed by combinatorial actions of transcriptional regulators assembling into multiprotein complexes. However, the molecular details of how these complexes form are poorly understood. One such complex, which contains the basic-helix-loop-helix heterodimer SCL:E47 and bridging proteins LMO2:LDB1, critically regulates hematopoiesis and induces T cell leukemia. Here, we report the crystal structure of (SCL:E47)bHLH:LMO2:LDB1LID bound to DNA, providing a molecular account of the network of interactions assembling this complex. This reveals an unexpected role for LMO2. Upon binding to SCL, LMO2 induces new hydrogen bonds in SCL:E47, thereby strengthening heterodimer formation. This imposes a rotation movement onto E47 that weakens the heterodimer:DNA interaction, shifting the main DNA-binding activity onto additional protein partners. Along with biochemical analyses, this illustrates, at an atomic level, how hematopoietic-specific SCL sequesters ubiquitous E47 and associated cofactors and supports SCL's reported DNA-binding-independent functions. Importantly, this work will drive the design of small molecules inhibiting leukemogenic processes. PMID:23831025

  10. Nemo promotes Notch-mediated lateral inhibition downstream of proneural factors.

    PubMed

    Fernandes, Vilaiwan M; Panchapakesan, Shanker S S; Braid, Lorena R; Verheyen, Esther M

    2014-08-15

    During neurogenesis, conserved tissue-specific proneural factors establish a cell's competence to take on neural fate from within a field of unspecified cells. Proneural genes encode basic helix-loop-helix transcription factors that promote the expression of 'core' and subtype-specific target genes. Target genes include both pan-neuronal genes and genes that aid in the process of refinement, known as lateral inhibition. In this process, proneural gene expression is increased in the neural progenitor while simultaneously down-regulated in the surrounding cells, in a Notch signalling-dependent manner. Here, we identify nemo (nmo) as a target of members of both Drosophila Atonal and Achaete-Scute proneural factor families and find that mammalian proneural homologs induce Nemo-like-kinase (Nlk) expression in cell culture. We find that nmo loss of function leads to reduced expression of Notch targets and to perturbations in Notch-mediated lateral inhibition. Furthermore, Notch hyperactivity can compensate for nmo loss in the Drosophila eye. Thus nmo promotes Notch-mediated lateral inhibition downstream of proneural factors during neurogenesis. PMID:24880113

  11. USP17- and SCF?TrCP-Regulated Degradation of DEC1 Controls the DNA Damage Response

    PubMed Central

    Kim, Jihoon; D'Annibale, Sara; Magliozzi, Roberto; Low, Teck Yew; Jansen, Petra; Shaltiel, Indra A.; Mohammed, Shabaz; Heck, Albert J. R.; Medema, Rene H.

    2014-01-01

    In response to genotoxic stress, DNA damage checkpoints maintain the integrity of the genome by delaying cell cycle progression to allow for DNA repair. Here we show that the degradation of the basic helix-loop-helix (bHLH) transcription factor DEC1, a critical regulator of cell fate and circadian rhythms, controls the DNA damage response. During unperturbed cell cycles, DEC1 is a highly unstable protein that is targeted for proteasome-dependent degradation by the SCF?TrCP ubiquitin ligase in cooperation with CK1. Upon DNA damage, DEC1 is rapidly induced in an ATM/ATR-dependent manner. DEC1 induction results from protein stabilization via a mechanism that requires the USP17 ubiquitin protease. USP17 binds and deubiquitylates DEC1, markedly extending its half-life. Subsequently, during checkpoint recovery, DEC1 proteolysis is reestablished through ?TrCP-dependent ubiquitylation. Expression of a degradation-resistant DEC1 mutant prevents checkpoint recovery by inhibiting the downregulation of p53. These results indicate that the regulated degradation of DEC1 is a key factor controlling the DNA damage response. PMID:25202122

  12. The mammalian single-minded (SIM) gene: Mouse cDNA structure and diencephalic expression indicate a candidate gene for Down syndrome

    SciTech Connect

    Yamaki, Akiko [Keio Univ. School of Medicine, Tokyo (Japan)] [Keio Univ. School of Medicine, Tokyo (Japan); [Kyorin Univ., Tokyo (Japan); Kudoh, Jun; Shindoh, Nobuaki [Keio Univ. School of Medicine, Tokyo (Japan)] [and others] [Keio Univ. School of Medicine, Tokyo (Japan); and others

    1996-07-01

    We have recently isolated a human homolog (hSIM) of the Drosophila single-minded (sim) gene from the Down syndrome critical region of chromosome 21 using the exon trapping method. The Drosophila sim gene encodes a transcription factor that regulates the development of the central nervous system midline cell lineage. To elucidate the structure of the mammalian SIM protein, we have isolated cDNA clones from a mouse embryo cDNA library. The cDNA clones encode a polypeptide of 657 amino acids with a bHLH (basic-helix-loop-helix) domain, characteristic of a large family of transcription factors, and a PAS (Per-Arnt-Sim) domain in the amino-terminal half region. Both of these domains have striking sequence homology with human SIM and Drosophila SIM proteins. In contrast, the carboxy-terminal half of the mouse SIM protein consists of a proline-rich region with no sequence homology to the Drosophila SIM provator domain of a number of transcription factors. Whole-mount embryo in situ hybridization experiments revealed that the SIM mRNA is expressed prominently in the diencephalon during embryogenesis strongly suggest that the newly isolated mammalian SIM homolog may play a critical role in the development of the mammalian central nervous system. We propose that the human SIM gene may be one of the pathogenic genes of Down syndrome. 36 refs., 6 figs.

  13. Interaction between the bHLH Transcription Factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 Reveals Molecular Linkage between the Regulation of Iron Acquisition and Ethylene Signaling in Arabidopsis[C][W

    PubMed Central

    Lingam, Sivasenkar; Mohrbacher, Julia; Brumbarova, Tzvetina; Potuschak, Thomas; Fink-Straube, Claudia; Blondet, Eddy; Genschik, Pascal; Bauer, Petra

    2011-01-01

    Understanding the regulation of key genes involved in plant iron acquisition is of crucial importance for breeding of micronutrient-enriched crops. The basic helix-loop-helix protein FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT), a central regulator of Fe acquisition in roots, is regulated by environmental cues and internal requirements for iron at the transcriptional and posttranscriptional levels. The plant stress hormone ethylene promotes iron acquisition, but the molecular basis for this remained unknown. Here, we demonstrate a direct molecular link between ethylene signaling and FIT. We identified ETHYLENE INSENSITIVE3 (EIN3) and ETHYLENE INSENSITIVE3-LIKE1 (EIL1) in a screen for direct FIT interaction partners and validated their physical interaction in planta. We demonstrate that the ein3 eil1 transcriptome was affected to a greater extent upon iron deficiency than normal iron compared with the wild type. Ethylene signaling by way of EIN3/EIL1 was required for full-level FIT accumulation. FIT levels were reduced upon application of aminoethoxyvinylglycine and in the ein3 eil1 background. MG132 could restore FIT levels. We propose that upon ethylene signaling, FIT is less susceptible to proteasomal degradation, presumably due to a physical interaction between FIT and EIN3/EIL1. Increased FIT abundance then leads to the high level of expression of genes required for Fe acquisition. This way, ethylene is one of the signals that triggers Fe deficiency responses at the transcriptional and posttranscriptional levels. PMID:21586684

  14. Two Direct Targets of Cytokinin Signaling Regulate Symbiotic Nodulation in Medicago truncatula[W][OA

    PubMed Central

    Ariel, Federico; Brault-Hernandez, Marianne; Laffont, Carole; Huault, Emeline; Brault, Mathias; Plet, Julie; Moison, Michael; Blanchet, Sandrine; Ichanté, Jean Laurent; Chabaud, Mireille; Carrere, Sébastien; Crespi, Martin; Chan, Raquel L.; Frugier, Florian

    2012-01-01

    Cytokinin regulates many aspects of plant development, and in legume crops, this phytohormone is necessary and sufficient for symbiotic nodule organogenesis, allowing them to fix atmospheric nitrogen. To identify direct links between cytokinins and nodule organogenesis, we determined a consensus sequence bound in vitro by a transcription factor (TF) acting in cytokinin signaling, the nodule-enhanced Medicago truncatula Mt RR1 response regulator (RR). Among genes rapidly regulated by cytokinins and containing this so-called RR binding site (RRBS) in their promoters, we found the nodulation-related Type-A RR Mt RR4 and the Nodulation Signaling Pathway 2 (NSP2) TF. Site-directed mutagenesis revealed that RRBS cis-elements in the RR4 and NSP2 promoters are essential for expression during nodule development and for cytokinin induction. Furthermore, a microRNA targeting NSP2 (miR171 h) is also rapidly induced by cytokinins and then shows an expression pattern anticorrelated with NSP2. Other primary targets regulated by cytokinins depending on the Cytokinin Response1 (CRE1) receptor were a cytokinin oxidase/dehydrogenase (CKX1) and a basic Helix-Loop-Helix TF (bHLH476). RNA interference constructs as well as insertion of a Tnt1 retrotransposon in the bHLH gene led to reduced nodulation. Hence, we identified two TFs, NSP2 and bHLH476, as direct cytokinin targets acting at the convergence of phytohormonal and symbiotic cues. PMID:23023168

  15. A reducing redox environment promotes C2C12 myogenesis—implications for regeneration in aged muscle

    PubMed Central

    Hansen, Jason M.; Klass, Markus; Harris, Craig; Csete, Marie

    2007-01-01

    Intracellular redox potential of skeletal muscle becomes progressively more oxidized with aging, negatively impacting regenerative ability. We examined the effects of oxidizing redox potential on terminal differentiation of cultured C2C12 myoblasts. Redox potentials were manipulated by changing the culture O2 environment, by free radical scavenging, or addition of H2O2. Intracellular reactive oxygen species (ROS) production was higher in 20% environmental O2 and in this condition, redox potential became progressively oxidized compared to cultures in 6% O2. Treatment with a ROS trapping agent (phenyl-N-tert-butylnitrone, PBN) caused reducing redox potentials and enhanced C2C12 differentiation, while addition of 25 ?M H2O2 to cells in 20% O2 dramatically slowed differentiation. Under these most oxidative conditions, quantitative PCR showed a significant decrease in myogenic basic helix-loop-helix transcription factor expression compared to cultures treated with phenyl PBN or grown in 6% O2. Thus, oxidative intracellular environments impair myoblast differentiation, while reducing environments favor myogenesis. PMID:17241791

  16. The rice RING finger E3 ligase, OsHCI1, drives nuclear export of multiple substrate proteins and its heterogeneous overexpression enhances acquired thermotolerance

    PubMed Central

    Jang, Cheol Seong

    2013-01-01

    Thermotolerance is very important for plant survival when plants are subjected to lethally high temperature. However, thus far little is known about the functions of RING E3 ligase in response to heat shock in plants. This study found that one rice gene encoding the RING finger protein was specifically induced by heat and cold stress treatments but not by salinity or dehydration and named it OsHCI1 (Oryza sativa heat and cold induced 1). Subcellular localization results showed that OsHCI1 was mainly associated with the Golgi apparatus and moved rapidly and extensively along the cytoskeleton. In contrast, OsHCI1 may have accumulated in the nucleus under high temperatures. OsHCI1 physically interacted with nuclear substrate proteins including a basic helix-loop-helix transcription factor. Transient co-overexpression of OsHCI1 and each of three nuclear proteins showed that their fluorescent signals moved into the cytoplasm as punctuate formations. Heterogeneous overexpression of OsHCI1 in Arabidopsis highly increased survival rate through acquired thermotolerance. It is proposed that OsHCI1 mediates nuclear–cytoplasmic trafficking of nuclear substrate proteins via monoubiquitination and drives an inactivation device for the nuclear proteins under heat shock. PMID:23698632

  17. Stomatal development in Arabidopsis.

    PubMed

    Pillitteri, Lynn Jo; Dong, Juan

    2013-01-01

    Stomata consist of two guard cells that function as turgor-operated valves that regulate gas exchange in plants. In Arabidopsis, a dedicated cell lineage is initiated and undergoes a series of cell divisions and cell-state transitions to produce a stoma. A set of basic helix-loop-helix (bHLH) transcription factors regulates the transition and differentiation events through the lineage, while the placement of stomata relative to each other is controlled by intercellular signaling via peptide ligands, transmembrane receptors, and mitogen-activated protein kinase (MAPK) modules. Some genes involved in regulating stomatal differentiation or density are also involved in hormonal and environmental stress responses, which may provide a link between modulation of stomatal development or function in response to changes in the environment. Premitotic polarlylocalized proteins provide an added layer of regulation, which can be addressed more thoroughly with the identification of additional proteins in this pathway. Linking the networks that control stomatal development promises to bring advances to our understanding of signal transduction, cell polarity, and cell-fate specification in plants. PMID:23864836

  18. SRY Induced TCF21 Genome-Wide Targets and Cascade of bHLH Factors During Sertoli Cell Differentiation and Male Sex Determination in Rats1

    PubMed Central

    Bhandari, Ramji K.; Schinke, Ellyn N.; Haque, Md. M.; Sadler-Riggleman, Ingrid; Skinner, Michael K.

    2012-01-01

    ABSTRACT Male sex determination is initiated through the testis-determining factor SRY that promotes Sertoli cell differentiation and subsequent gonadal development. The basic helix-loop-helix (bHLH) gene Tcf21 was identified as one of the direct downstream targets of SRY. The current study was designed to identify the downstream targets of TCF21 and the potential cascade of bHLH genes that promote Sertoli cell differentiation. A modified ChIP-Chip comparative hybridization analysis identified 121 direct downstream binding targets for TCF21. The gene networks and cellular pathways potentially regulated by these TCF21 targets were identified. One of the main bHLH targets for TCF21 was the bHLH gene scleraxis (Scx). An embryonic ovarian gonadal cell culture was used to examine the functional role of Sry, Tcf21, and Scx to promote an in vitro sex reversal and induction of Sertoli cell differentiation. SRY and TCF21 were found to induce the initial stages of Sertoli cell differentiation, whereas SCX was found to induce the later stages of Sertoli cell differentiation associated with pubertal development using transferrin gene expression as a marker. Therefore, a cascade of SRY followed by TCF21 followed by SCX appears to promote, in part, Sertoli cell fate determination and subsequent differentiation. The current observations help elucidate the initial molecular events involved in the induction of Sertoli cell differentiation and testis development. PMID:23034159

  19. A DELLA in Disguise: SPATULA Restrains the Growth of the Developing Arabidopsis Seedling[C][W

    PubMed Central

    Josse, Eve-Marie; Gan, Yinbo; Bou-Torrent, Jordi; Stewart, Kelly L.; Gilday, Alison D.; Jeffree, Christopher E.; Vaistij, Fabián E.; Martínez-García, Jaime F.; Nagy, Ferenc; Graham, Ian A.; Halliday, Karen J.

    2011-01-01

    The period following seedling emergence is a particularly vulnerable stage in the plant life cycle. In Arabidopsis thaliana, the phytochrome-interacting factor (PIF) subgroup of basic-helix-loop-helix transcription factors has a pivotal role in regulating growth during this early phase, integrating environmental and hormonal signals. We previously showed that SPATULA (SPT), a PIF homolog, regulates seed dormancy. In this article, we establish that unlike PIFs, which mainly promote hypocotyl elongation, SPT is a potent regulator of cotyledon expansion. Here, SPT acts in an analogous manner to the gibberellin-dependent DELLAs, REPRESSOR OF GA1-3 and GIBBERELLIC ACID INSENSITIVE, which restrain cotyledon expansion alongside SPT. However, although DELLAs are not required for SPT action, we demonstrate that SPT is subject to negative regulation by DELLAs. Cross-regulation of SPT by DELLAs ensures that SPT protein levels are limited when DELLAs are abundant but rise following DELLA depletion. This regulation provides a means to prevent excessive growth suppression that would result from the dual activity of SPT and DELLAs, yet maintain growth restraint under DELLA-depleted conditions. We present evidence that SPT and DELLAs regulate common gene targets and illustrate that the balance of SPT and DELLA action depends on light quality signals in the natural environment. PMID:21478445

  20. The Role of GH/IGF-I Axis in Muscle Homeostasis During Weightlessness

    NASA Technical Reports Server (NTRS)

    Schwartz, Robert J.

    1997-01-01

    Exposure to reduced gravity during space travel profoundly alters the loads placed on bone and muscle. Astronauts suffer significant losses of muscle and bone strength during weightlessness. Exercise as a countermeasure is only partially effective in remedying severe muscle atrophy and bone demineralization. Similar wasting of muscles and bones affects people on Earth during prolonged bed rest or immobilization due to injury. In the absence of weight bearing activity, atrophy occurs primarily in the muscles that act in low power, routine movements and in maintaining posture. Hormonal disfunction could contribute in part to the loss of muscle and bone during spaceflight. Reduced levels of human Growth Hormone (hGH) were found in astronauts during space flight, as well as reduced GH secretory activity was observed from the anterior pituitary in 7-day space flight rats. Growth hormone has been shown to be required for maintenance of muscle mass and bone mineralization, in part by mediating the biosynthesis IGF-I, a small polypeptide growth factor. IGF biosynthesis and secretion plays an important role in potentiating muscle cell differentiation and has been shown to drive the expression of myogenin, a myogenic specific basic helix-loop-helix factor. IGF-I has also been shown to have an important role in potentiating muscle regeneration, repair and adult muscle hypertrophy.

  1. Genomic cloning and chromosomal localization of HRY, the human homolog to the Drosophila segmentation gene, hairy

    SciTech Connect

    Feder, J.N.; Jan, L.Y.; Jan, Y.N.; Li, L. (Univ. of California, San Francisco, CA (United States))

    1994-03-01

    The Drosophila hairy gene encodes a basic helix- loop-helix protein that functions in at least two steps during Drosophila development: (1) during embryogenesis, when it partakes in the establishment of segments, and (2) during the larval stage, when it functions negatively in determining the pattern of sensory bristles on the adult fly. In the rat, a structurally homologous gene (RHL) behaves as an immediate-early gene in its response to growth factors and can, like that in Drosophila, suppress neuronal differentiation events. Here, the authors report the genomic cloning of the human hairy gene homolog (HRY). The coding region of the gene is contained within four exons. The predicted amino acid sequence reveals only four amino acid differences between the human and rat genes. Analysis of the DNA sequence 5[prime] to the coding region reveals a putatitve untranslated exon. To increase the value of the HRY gene as a genetic marker and to assess its potential involvement in genetic disorders, they sublocalized the locus to chromosome 3q28-q29 by fluorescence in situ hybridization. 34 refs., 4 figs., 1 tab.

  2. Conserved regulatory mechanism controls the development of cells with rooting functions in land plants.

    PubMed

    Tam, Thomas Ho Yuen; Catarino, Bruno; Dolan, Liam

    2015-07-21

    Land plants develop filamentous cells-root hairs, rhizoids, and caulonemata-at the interface with the soil. Members of the group XI basic helix-loop-helix (bHLH) transcription factors encoded by LOTUS JAPONICUS ROOTHAIRLESS1-LIKE (LRL) genes positively regulate the development of root hairs in the angiosperms Lotus japonicus, Arabidopsis thaliana, and rice (Oryza sativa). Here we show that auxin promotes rhizoid and caulonema development by positively regulating the expression of PpLRL1 and PpLRL2, the two LRL genes in the Physcomitrella patens genome. Although the group VIII bHLH proteins, AtROOT HAIR DEFECTIVE6 and AtROOT HAIR DEFECTIVE SIX-LIKE1, promote root-hair development by positively regulating the expression of AtLRL3 in A. thaliana, LRL genes promote rhizoid development independently of PpROOT HAIR DEFECTIVE SIX-LIKE1 and PpROOT HAIR DEFECITVE SIX-LIKE2 (PpRSL1 and PpRSL2) gene function in P. patens. Together, these data demonstrate that both LRL and RSL genes are components of an ancient auxin-regulated gene network that controls the development of tip-growing cells with rooting functions among most extant land plants. Although this network has diverged in the moss and the angiosperm lineages, our data demonstrate that the core network acted in the last common ancestor of the mosses and angiosperms that existed sometime before 420 million years ago. PMID:26150509

  3. Dioxin induces localized, graded changes in chromatin structure: implications for Cyp1A1 gene transcription.

    PubMed Central

    Okino, S T; Whitlock, J P

    1995-01-01

    In mouse hepatoma cells, the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, or dioxin) induces Cyp1A1 gene transcription, a process that requires two basic helix-loop-helix regulatory proteins, the aromatic hydrocarbon receptor (AhR) and the aromatic hydrocarbon receptor nuclear translocator (Arnt). We have used a ligation-mediated PCR technique to analyze dioxin-induced changes in protein-DNA interactions and chromatin structure of the Cyp1A1 enhancer-promoter in its native chromosomal setting. Dioxin-induced binding of the AhR/Arnt heteromer to enhancer chromatin is associated with a localized (about 200 bp) alteration in chromatin structure that is manifested by increased accessibility of the DNA; these changes probably reflect direct disruption of a nucleosome by AhR/Arnt. Dioxin induces analogous AhR/Arnt-dependent changes in chromatin structure and accessibility at the Cyp1A1 promoter. However, the changes at the promoter must occur by a different, more indirect mechanism, because they are induced from a distance and do not reflect a local effect of AhR/Arnt binding. Dose-response experiments indicate that the changes in chromatin structure at the enhancer and promoter are graded and mirror the graded induction of Cyp1A1 transcription by dioxin. We discuss these results in terms of a TCDD-induced shift in an equilibrium between nucleosomal and nonnucleosomal chromatin configurations. PMID:7791778

  4. Tcf15 Primes Pluripotent Cells for Differentiation

    PubMed Central

    Davies, Owen R.; Lin, Chia-Yi; Radzisheuskaya, Aliaksandra; Zhou, Xinzhi; Taube, Jessica; Blin, Guillaume; Waterhouse, Anna; Smith, Andrew J.H.; Lowell, Sally

    2013-01-01

    Summary The events that prime pluripotent cells for differentiation are not well understood. Inhibitor of DNA binding/differentiation (Id) proteins, which are inhibitors of basic helix-loop-helix (bHLH) transcription factor activity, contribute to pluripotency by blocking sequential transitions toward differentiation. Using yeast-two-hybrid screens, we have identified Id-regulated transcription factors that are expressed in embryonic stem cells (ESCs). One of these, Tcf15, is also expressed in the embryonic day 4.5 embryo and is specifically associated with a novel subpopulation of primed ESCs. An Id-resistant form of Tcf15 rapidly downregulates Nanog and accelerates somatic lineage commitment. We propose that because Tcf15 can be held in an inactive state through Id activity, it may prime pluripotent cells for entry to somatic lineages upon downregulation of Id. We also find that Tcf15 expression is dependent on fibroblast growth factor (FGF) signaling, providing an explanation for how FGF can prime for differentiation without driving cells out of the pluripotent state. PMID:23395635

  5. Conditional deletion of neurogenin-3 using Nkx2.1iCre results in a mouse model for the central control of feeding, activity and obesity

    PubMed Central

    Anthwal, Neal; Pelling, Michelle; Claxton, Suzanne; Mellitzer, Georg; Collin, Caitlin; Kessaris, Nicoletta; Richardson, William D.; Gradwohl, Gérard; Ang, Siew-Lan

    2013-01-01

    SUMMARY The ventral hypothalamus acts to integrate visceral and systemic information to control energy balance. The basic helix-loop-helix transcription factor neurogenin-3 (Ngn3) is required for pancreatic ?-cell development and has been implicated in neuronal development in the hypothalamus. Here, we demonstrate that early embryonic hypothalamic inactivation of Ngn3 (also known as Neurog3) in mice results in rapid post-weaning obesity that is associated with hyperphagia and reduced energy expenditure. This obesity is caused by loss of expression of Pomc in Pomc- and Cart-expressing (Pomc/Cart) neurons in the arcuate nucleus, indicating an incomplete specification of anorexigenic first order neurons. Furthermore, following the onset of obesity, both the arcuate and ventromedial hypothalamic nuclei become insensitive to peripheral leptin treatment. This conditional mouse mutant therefore represents a novel model system for obesity that is associated with hyperphagia and underactivity, and sheds new light upon the roles of Ngn3 in the specification of hypothalamic neurons controlling energy balance. PMID:23649822

  6. Conditional deletion of neurogenin-3 using Nkx2.1iCre results in a mouse model for the central control of feeding, activity and obesity.

    PubMed

    Anthwal, Neal; Pelling, Michelle; Claxton, Suzanne; Mellitzer, Georg; Collin, Caitlin; Kessaris, Nicoletta; Richardson, William D; Gradwohl, Gérard; Ang, Siew-Lan

    2013-09-01

    The ventral hypothalamus acts to integrate visceral and systemic information to control energy balance. The basic helix-loop-helix transcription factor neurogenin-3 (Ngn3) is required for pancreatic ?-cell development and has been implicated in neuronal development in the hypothalamus. Here, we demonstrate that early embryonic hypothalamic inactivation of Ngn3 (also known as Neurog3) in mice results in rapid post-weaning obesity that is associated with hyperphagia and reduced energy expenditure. This obesity is caused by loss of expression of Pomc in Pomc- and Cart-expressing (Pomc/Cart) neurons in the arcuate nucleus, indicating an incomplete specification of anorexigenic first order neurons. Furthermore, following the onset of obesity, both the arcuate and ventromedial hypothalamic nuclei become insensitive to peripheral leptin treatment. This conditional mouse mutant therefore represents a novel model system for obesity that is associated with hyperphagia and underactivity, and sheds new light upon the roles of Ngn3 in the specification of hypothalamic neurons controlling energy balance. PMID:23649822

  7. ERK5 MAP kinase regulates neurogenin1 during cortical neurogenesis.

    PubMed

    Cundiff, Paige; Liu, Lidong; Wang, Yupeng; Zou, Junhui; Pan, Yung-Wei; Abel, Glen; Duan, Xin; Ming, Guo-Li; Englund, Chris; Hevner, Robert; Xia, Zhengui

    2009-01-01

    The commitment of multi-potent cortical progenitors to a neuronal fate depends on the transient induction of the basic-helix-loop-helix (bHLH) family of transcription factors including Neurogenin 1 (Neurog1). Previous studies have focused on mechanisms that control the expression of these proteins while little is known about whether their pro-neural activities can be regulated by kinase signaling pathways. Using primary cultures and ex vivo slice cultures, here we report that both the transcriptional and pro-neural activities of Neurog1 are regulated by extracellular signal-regulated kinase (ERK) 5 signaling in cortical progenitors. Activation of ERK5 potentiated, while blocking ERK5 inhibited Neurog1-induced neurogenesis. Furthermore, endogenous ERK5 activity was required for Neurog1-initiated transcription. Interestingly, ERK5 activation was sufficient to induce Neurog1 phosphorylation and ERK5 directly phosphorylated Neurog1 in vitro. We identified S179/S208 as putative ERK5 phosphorylation sites in Neurog1. Mutations of S179/S208 to alanines inhibited the transcriptional and pro-neural activities of Neurog1. Our data identify ERK5 phosphorylation of Neurog1 as a novel mechanism regulating neuronal fate commitment of cortical progenitors. PMID:19365559

  8. ERK5 MAP Kinase Regulates Neurogenin1 during Cortical Neurogenesis

    PubMed Central

    Cundiff, Paige; Liu, Lidong; Wang, Yupeng; Zou, Junhui; Pan, Yung-Wei; Abel, Glen; Duan, Xin; Ming, Guo-li; Englund, Chris; Hevner, Robert; Xia, Zhengui

    2009-01-01

    The commitment of multi-potent cortical progenitors to a neuronal fate depends on the transient induction of the basic-helix-loop-helix (bHLH) family of transcription factors including Neurogenin 1 (Neurog1). Previous studies have focused on mechanisms that control the expression of these proteins while little is known about whether their pro-neural activities can be regulated by kinase signaling pathways. Using primary cultures and ex vivo slice cultures, here we report that both the transcriptional and pro-neural activities of Neurog1 are regulated by extracellular signal-regulated kinase (ERK) 5 signaling in cortical progenitors. Activation of ERK5 potentiated, while blocking ERK5 inhibited Neurog1-induced neurogenesis. Furthermore, endogenous ERK5 activity was required for Neurog1-initiated transcription. Interestingly, ERK5 activation was sufficient to induce Neurog1 phosphorylation and ERK5 directly phosphorylated Neurog1 in vitro. We identified S179/S208 as putative ERK5 phosphorylation sites in Neurog1. Mutations of S179/S208 to alanines inhibited the transcriptional and pro-neural activities of Neurog1. Our data identify ERK5 phosphorylation of Neurog1 as a novel mechanism regulating neuronal fate commitment of cortical progenitors. PMID:19365559

  9. The Origin, Development and Molecular Diversity of Rodent Olfactory Bulb Glutamatergic Neurons Distinguished by Expression of Transcription Factor NeuroD1

    PubMed Central

    Roybon, Laurent; Mastracci, Teresa L.; Li, Joyce; Stott, Simon R. W.; Leiter, Andrew B.; Sussel, Lori; Brundin, Patrik; Li, Jia-Yi

    2015-01-01

    Production of olfactory bulb neurons occurs continuously in the rodent brain. Little is known, however, about cellular diversity in the glutamatergic neuron subpopulation. In the central nervous system, the basic helix-loop-helix transcription factor NeuroD1 (ND1) is commonly associated with glutamatergic neuron development. In this study, we utilized ND1 to identify the different subpopulations of olfactory bulb glutamategic neurons and their progenitors, both in the embryo and postnatally. Using knock-in mice, transgenic mice and retroviral transgene delivery, we demonstrate the existence of several different populations of glutamatergic olfactory bulb neurons, the progenitors of which are ND1+ and ND1- lineage-restricted, and are temporally and regionally separated. We show that the first olfactory bulb glutamatergic neurons produced – the mitral cells – can be divided into molecularly diverse subpopulations. Our findings illustrate the complexity of neuronal diversity in the olfactory bulb and that seemingly homogenous neuronal populations can consist of multiple subpopulations with unique molecular signatures of transcription factors and expressing neuronal subtype-specific markers. PMID:26030886

  10. The putative transcription factor CaRtg3 is involved in tolerance to cations and antifungal drugs as well as serum-induced filamentation in Candida albicans.

    PubMed

    Yan, Hongbo; Zhao, Yunying; Jiang, Linghuo

    2014-06-01

    The activated retrograde (RTG) pathway controls transcription of target genes through a heterodimer of transcription factors, Rtg1 and Rtg3, in Saccharomyces cerevisiae. Here, we have identified the sole homologous gene CaRTG3 that encodes a protein of 520 amino acids with characteristics of the basic helix-loop-helix/leucine zipper (bHLH/Zip) family in Candida albicans. Deletion of CaRTG3 results in C. albicans cells being sensitive to high concentrations of calcium and lithium cations as well as sodium dodecyl sulfate and activates the calcium/calcineurin signaling pathway in C. albicans cells. CaRTG3 is also involved in the tolerance of C. albicans cells to the antifungal drugs azoles and terbinafine, but not to the antifungal drugs casponfungin and amphotericin B as well as the cell-wall-damaging reagents Calcoflour White and Congo red. In contrast to ScRtg3, CaRtg3 is not involved in the osmolar response and is constitutively localized in the nucleus. However, deletion of CaRTG3 results in a delay in serum-induced filamentation of C. albicans cells. Therefore, CaRtg3 plays a role in tolerance to cations and antifungal drugs as well as serum-induced filamentation in C. albicans. PMID:24606409

  11. High-temperature inhibition of biosynthesis and transportation of anthocyanins results in the poor red coloration in red-fleshed Actinidia chinensis.

    PubMed

    Man, Yu-Ping; Wang, Yan-Chang; Li, Zuo-Zhou; Jiang, Zheng-Wang; Yang, Hong-Li; Gong, Jun-Jie; He, Shi-Song; Wu, Shi-Quan; Yang, Zuo-Quan; Zheng, Jing; Wang, Zhong-Yan

    2015-04-01

    In plants, the role of anthocyanins trafficking in response to high temperature has been rarely studied, and therefore poorly understood. Red-fleshed kiwifruit has stimulated the world kiwifruit industry owing to its appealing color. However, fruit in warmer climates have been found to have poor flesh coloration, and the factors responsible for this response remain elusive. Partial correlation and regression analysis confirmed that accumulative temperatures above 25 °C (T25) was one of the dominant factors inhibiting anthocyanin accumulation in red-fleshed Actinidia chinensis, 'Hongyang'. Expression of structural genes, AcMRP and AcMYB1 in inner pericarp sampled from the two high altitudes (low temperature area), was notably higher than the low altitude (high temperature area) during fruit coloration. AcMYB1 and structural genes coordinate expression supported the MYB-bHLH (basic helix-loop-helix)-WD40 regulatory complex mediated downregulation of anthocyanin biosynthesis induced by high temperatures in kiwifruit. Moreover, cytological observations using the light and transmission electronic microscopy showed that there were a series of anthocyanic vacuolar inclusion (AVI)-like structures involved in their vacuolization process and dissolution of the pigmented bodies inside cells of fruit inner pericarp. Anthocyanin transport was inhibited by high temperature via retardation of vacuolization or reduction in AIV-like structure formation. Our findings strongly suggested that complex multimechanisms influenced the effects of high temperature on red-fleshed kiwifruit coloration. PMID:25143057

  12. Molecular Characterisation, Evolution and Expression of Hypoxia-Inducible Factor in Aurelia sp.1

    PubMed Central

    Wang, Guoshan; Yu, Zhigang; Zhen, Yu; Mi, Tiezhu; Shi, Yan; Wang, Jianyan; Wang, Minxiao; Sun, Song

    2014-01-01

    The maintenance of physiological oxygen homeostasis is mediated by hypoxia-inducible factor (HIF), a key transcriptional factor of the PHD-HIF system in all metazoans. However, the molecular evolutionary origin of this central physiological regulatory system is not well characterized. As the earliest eumetazoans, Cnidarians can be served as an interesting model for exploring the HIF system from an evolutionary perspective. We identified the complete cDNA sequence of HIF-1? (ASHIF) from the Aurelia sp.1, and the predicted HIF-1? protein (pASHIF) was comprised of 674 amino acids originating from 2,025 bp nucleotides. A Pairwise comparison revealed that pASHIF not only possessed conserved basic helix-loop-helix (bHLH) and Per-Arnt-Sim (PAS) domains but also contained the oxygen dependent degradation (ODD) and the C-terminal transactivation domains (C-TAD), the key domains for hypoxia regulation. As indicated by sequence analysis, the ASHIF gene contains 8 exons interrupted by 7 introns. Western blot analysis indicated that pASHIF that existed in the polyps and medusa of Aurelia. sp.1 was more stable for a hypoxic response than normoxia. PMID:24926666

  13. Tal2 expression is induced by all-trans retinoic acid in P19 cells prior to acquisition of neural fate

    PubMed Central

    Kobayashi, Takanobu; Komori, Rie; Ishida, Kiyoshi; Kino, Katsuhito; Tanuma, Sei-ichi; Miyazawa, Hiroshi

    2014-01-01

    TAL2 is a member of the basic helix-loop-helix family and is essential for the normal development of the mouse brain. However, the function of TAL2 during brain development is unclear. P19 cells are pluripotent mouse embryonal carcinoma cells that adopt neural fates upon exposure to all-trans retinoic acid (atRA) and culture in suspension. We found that the expression of Tal2 gene was induced in P19 cells after addition of atRA in suspension culture. Tal2 expression was detected within 3?h after the induction, and had nearly returned to basal levels by 24?h. When GFP-tagged TAL2 (GFP-TAL2) was expressed in P19 cells, we observed GFP-TAL2 in the nucleus. Moreover, we showed that atRA and retinoic acid receptor ? regulated Tal2 expression. These results demonstrate for the first time that atRA induces Tal2 expression in P19 cells, and suggest that TAL2 commits to the acquisition of neural fate in brain development. PMID:24816818

  14. Identification of Candidate Genes Underlying an Iron Efficiency Quantitative Trait Locus in Soybean1

    PubMed Central

    Peiffer, Gregory A.; King, Keith E.; Severin, Andrew J.; May, Gregory D.; Cianzio, Silvia R.; Lin, Shun Fu; Lauter, Nicholas C.; Shoemaker, Randy C.

    2012-01-01

    Prevalent on calcareous soils in the United States and abroad, iron deficiency is among the most common and severe nutritional stresses in plants. In soybean (Glycine max) commercial plantings, the identification and use of iron-efficient genotypes has proven to be the best form of managing this soil-related plant stress. Previous studies conducted in soybean identified a significant iron efficiency quantitative trait locus (QTL) explaining more than 70% of the phenotypic variation for the trait. In this research, we identified candidate genes underlying this QTL through molecular breeding, mapping, and transcriptome sequencing. Introgression mapping was performed using two related near-isogenic lines in which a region located on soybean chromosome 3 required for iron efficiency was identified. The region corresponds to the previously reported iron efficiency QTL. The location was further confirmed through QTL mapping conducted in this study. Transcriptome sequencing and quantitative real-time-polymerase chain reaction identified two genes encoding transcription factors within the region that were significantly induced in soybean roots under iron stress. The two induced transcription factors were identified as homologs of the subgroup lb basic helix-loop-helix (bHLH) genes that are known to regulate the strategy I response in Arabidopsis (Arabidopsis thaliana). Resequencing of these differentially expressed genes unveiled a significant deletion within a predicted dimerization domain. We hypothesize that this deletion disrupts the Fe-DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT)/bHLH heterodimer that has been shown to induce known iron acquisition genes. PMID:22319075

  15. The mutational spectrum in Waardenburg syndrome

    SciTech Connect

    Read, A.P.; Tassabehji, M.; Liu, X.Z. [and others

    1994-09-01

    101 individuals or families with Waardenburg syndrome (WS) or related abnormalities have been screened for mutations in the PAX3 gene. PAX3 mutations were seen in 19 of 35 individuals or families with features of Type I Waardenburg syndrome. None of the 47 Type 2 WS families showed any PAX3 mutation, nor did any of 19 individuals with other neural crest syndromes or pigmentary disturbances. PAX3 mutations included substitutions of highly conserved amino acids, splice site mutations, nonsense mutations and frameshifting deletions or insertions. One patient (with Type 1 WS, mental retardation and growth retardation) had a chromosomal deletion of 7-8 Mb encompassing the PAX3 gene. Mutations were seen in each of exons 2-6, with a concentration in the 5{prime} part of the paired box (exon 2) and the 3{prime} part of the homeobox (exon 6). There was no evident relation between the molecular change and the clinical manifestations in mutation carriers. We conclude that PAX3 dosage effects very specifically produce dystopia canthorum, the distinguishing feature of Type 1 WS, and variably produce the other features of Type 1 WS depending on genetic background or chance events. Two of the Type 2 families showed linkage to markers from 3p14, the location of the MITF gene. MITF encodes a basic helix-loop-helix-zipper protein which is the homologue of the mouse microphthalmia gene product. It is likely that mutations in MITF cause some but not all Type 2 WS.

  16. A bHLH-Type Transcription Factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, Acts as a Repressor to Negatively Regulate Jasmonate Signaling in Arabidopsis[C][W

    PubMed Central

    Nakata, Masaru; Mitsuda, Nobutaka; Herde, Marco; Koo, Abraham J.K.; Moreno, Javier E.; Suzuki, Kaoru; Howe, Gregg A.; Ohme-Takagi, Masaru

    2013-01-01

    Jasmonates (JAs) are plant hormones that regulate the balance between plant growth and responses to biotic and abiotic stresses. Although recent studies have uncovered the mechanisms for JA-induced responses in Arabidopsis thaliana, the mechanisms by which plants attenuate the JA-induced responses remain elusive. Here, we report that a basic helix-loop-helix–type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1 (JAM1), acts as a transcriptional repressor and negatively regulates JA signaling. Gain-of-function transgenic plants expressing the chimeric repressor for JAM1 exhibited substantial reduction of JA responses, including JA-induced inhibition of root growth, accumulation of anthocyanin, and male fertility. These plants were also compromised in resistance to attack by the insect herbivore Spodoptera exigua. Conversely, jam1 loss-of-function mutants showed enhanced JA responsiveness, including increased resistance to insect attack. JAM1 and MYC2 competitively bind to the target sequence of MYC2, which likely provides the mechanism for negative regulation of JA signaling and suppression of MYC2 functions by JAM1. These results indicate that JAM1 negatively regulates JA signaling, thereby playing a pivotal role in fine-tuning of JA-mediated stress responses and plant growth. PMID:23673982

  17. RICE SALT SENSITIVE3 Forms a Ternary Complex with JAZ and Class-C bHLH Factors and Regulates Jasmonate-Induced Gene Expression and Root Cell Elongation[C][W

    PubMed Central

    Toda, Yosuke; Tanaka, Maiko; Ogawa, Daisuke; Kurata, Kyo; Kurotani, Ken-ichi; Habu, Yoshiki; Ando, Tsuyu; Sugimoto, Kazuhiko; Mitsuda, Nobutaka; Katoh, Etsuko; Abe, Kiyomi; Miyao, Akio; Hirochika, Hirohiko; Hattori, Tsukaho; Takeda, Shin

    2013-01-01

    Plasticity of root growth in response to environmental cues and stresses is a fundamental characteristic of land plants. However, the molecular basis underlying the regulation of root growth under stressful conditions is poorly understood. Here, we report that a rice nuclear factor, RICE SALT SENSITIVE3 (RSS3), regulates root cell elongation during adaptation to salinity. Loss of function of RSS3 only moderately inhibits cell elongation under normal conditions, but it provokes spontaneous root cell swelling, accompanied by severe root growth inhibition, under saline conditions. RSS3 is preferentially expressed in the root tip and forms a ternary complex with class-C basic helix-loop-helix (bHLH) transcription factors and JASMONATE ZIM-DOMAIN proteins, the latter of which are the key regulators of jasmonate (JA) signaling. The mutated protein arising from the rss3 allele fails to interact with bHLH factors, and the expression of a significant portion of JA-responsive genes is upregulated in rss3. These results, together with the known roles of JAs in root growth regulation, suggest that RSS3 modulates the expression of JA-responsive genes and plays a crucial role in a mechanism that sustains root cell elongation at appropriate rates under stressful conditions. PMID:23715469

  18. Phosphorylation-Coupled Proteolysis of the Transcription Factor MYC2 Is Important for Jasmonate-Signaled Plant Immunity

    PubMed Central

    Zhai, Qingzhe; Yan, Liuhua; Tan, Dan; Chen, Rong; Sun, Jiaqiang; Gao, Liyan; Dong, Meng-Qiu; Wang, Yingchun; Li, Chuanyou

    2013-01-01

    As a master regulator of jasmonic acid (JA)–signaled plant immune responses, the basic helix-loop-helix (bHLH) Leu zipper transcription factor MYC2 differentially regulates different subsets of JA–responsive genes through distinct mechanisms. However, how MYC2 itself is regulated at the protein level remains unknown. Here, we show that proteolysis of MYC2 plays a positive role in regulating the transcription of its target genes. We discovered a 12-amino-acid element in the transcription activation domain (TAD) of MYC2 that is required for both the proteolysis and the transcriptional activity of MYC2. Interestingly, MYC2 phosphorylation at residue Thr328, which facilitates its turnover, is also required for the MYC2 function to regulate gene transcription. Together, these results reveal that phosphorylation-coupled turnover of MYC2 stimulates its transcription activity. Our results exemplify that, as with animals, plants employ an “activation by destruction” mechanism to fine-tune their transcriptome to adapt to their ever-changing environment. PMID:23593022

  19. Development of the Drosophila olfactory sense organs utilizes cell-cell interactions as well as lineage.

    PubMed

    Reddy, G V; Gupta, B; Ray, K; Rodrigues, V

    1997-02-01

    We have examined the mechanisms underlying the development of the olfactory sense organs on the third segment of the antenna of Drosophila. Our studies suggest that a novel developmental strategy is employed. Specification of the founder or precursor cell is not governed by the genes of the achaete-scute complex. Another basic helix-loop-helix encoding gene, atonal, is essential for determination of only a subset of the sensilla types--the sensilla coeloconica. Therefore, we predict the existence of additional proneural genes for the selection of sensilla trichoidea and sensilla basiconica. The choice of a founder cell from the presumed proneural domain is regulated by Notch activity. Soon after delamination of the founder cell, two to three additional neighboring cells also take on a sensory fate and these cells together form a presensillum cluster. The selection of neighbors does not occur when endocytosis is blocked using a temperature sensitive allele of shibire, thus suggesting that cell-cell communication is required for this step. The cells of the cluster divide once before terminal differentiation which is influenced by Notch activity. The final cell number within each sensillum is controlled by programmed cell death. PMID:9043085

  20. Take a deep breath: peptide signalling in stomatal patterning and differentiation.

    PubMed

    Richardson, Lynn G L; Torii, Keiko U

    2013-12-01

    Stomata are pores in the leaf surface that open and close to regulate gas exchange and minimize water loss. In Arabidopsis, a pair of guard cells surrounds each stoma and they are derived from precursors distributed in an organized pattern on the epidermis. Stomatal differentiation follows a well-defined developmental programme, regulated by stomatal lineage-specific basic helix-loop-helix transcription factors, and stomata are consistently separated by at least one epidermal cell (referred to as the 'one-cell-spacing rule') to allow for proper opening and closure of the stomatal aperture. Peptide signalling is involved in regulating stomatal differentiation and in enforcing the one-cell-spacing rule. The cysteine-rich peptides EPIDERMAL PATTERNING FACTOR 1 (EPF1) and EPF2 negatively regulate stomatal differentiation in cells adjacent to stomatal precursors, while STOMAGEN/EPFL9 is expressed in the mesophyll of developing leaves and positively regulates stomatal development. These peptides work co-ordinately with the ERECTA family of leucine-rich repeat (LRR) receptor-like kinases and the LRR receptor-like protein TOO MANY MOUTHS. Recently, specific ligand-receptor pairs were identified that function at two different stages of stomatal development to restrict entry into the stomatal lineage, and later to orient precursor division away from existing stomata. These studies have provided the groundwork to begin to understand the molecular mechanisms involved in cell-cell communication during stomatal development. PMID:23997204

  1. FAMA is an essential component for the differentiation of two distinct cell types, myrosin cells and guard cells, in Arabidopsis.

    PubMed

    Shirakawa, Makoto; Ueda, Haruko; Nagano, Atsushi J; Shimada, Tomoo; Kohchi, Takayuki; Hara-Nishimura, Ikuko

    2014-10-01

    Brassicales plants, including Arabidopsis thaliana, have an ingenious two-compartment defense system, which sequesters myrosinase from the substrate glucosinolate and produces a toxic compound when cells are damaged by herbivores. Myrosinase is stored in vacuoles of idioblast myrosin cells. The molecular mechanism that regulates myrosin cell development remains elusive. Here, we identify the basic helix-loop-helix transcription factor FAMA as an essential component for myrosin cell development along Arabidopsis leaf veins. FAMA is known as a regulator of stomatal development. We detected FAMA expression in myrosin cell precursors in leaf primordia in addition to stomatal lineage cells. FAMA deficiency caused defects in myrosin cell development and in the biosynthesis of myrosinases THIOGLUCOSIDE GLUCOHYDROLASE1 (TGG1) and TGG2. Conversely, ectopic FAMA expression conferred myrosin cell characteristics to hypocotyl and root cells, both of which normally lack myrosin cells. The FAMA interactors ICE1/SCREAM and its closest paralog SCREAM2/ICE2 were essential for myrosin cell development. DNA microarray analysis identified 32 candidate genes involved in myrosin cell development under the control of FAMA. This study provides a common regulatory pathway that determines two distinct cell types in leaves: epidermal guard cells and inner-tissue myrosin cells. PMID:25304202

  2. ULTRAPETALA trxG Genes Interact with KANADI Transcription Factor Genes to Regulate Arabidopsis Gynoecium Patterning[C][W][OPEN

    PubMed Central

    Monfared, Mona M.; Shemyakina, Elena A.; Fletcher, Jennifer C.

    2014-01-01

    Organ formation relies upon precise patterns of gene expression that are under tight spatial and temporal regulation. Transcription patterns are specified by several cellular processes during development, including chromatin remodeling, but little is known about how chromatin-remodeling factors contribute to plant organogenesis. We demonstrate that the trithorax group (trxG) gene ULTRAPETALA1 (ULT1) and the GARP transcription factor gene KANADI1 (KAN1) organize the Arabidopsis thaliana gynoecium along two distinct polarity axes. We show that ULT1 activity is required for the kan1 adaxialized polarity defect, indicating that ULT1 and KAN1 act oppositely to regulate the adaxial-abaxial axis. Conversely, ULT1 and KAN1 together establish apical-basal polarity by promoting basal cell fate in the gynoecium, restricting the expression domain of the basic helix-loop-helix transcription factor gene SPATULA. Finally, we show that ult alleles display dose-dependent genetic interactions with kan alleles and that ULT and KAN proteins can associate physically. Our findings identify a dual role for plant trxG factors in organ patterning, with ULT1 and KAN1 acting antagonistically to pattern the adaxial-abaxial polarity axis but jointly to pattern the apical-basal axis. Our data indicate that the ULT proteins function to link chromatin-remodeling factors with DNA binding transcription factors to regulate target gene expression. PMID:25381352

  3. Antagonistic Actions of HLH/bHLH Proteins Are Involved in Grain Length and Weight in Rice

    PubMed Central

    Heang, Dany; Sassa, Hidenori

    2012-01-01

    Grain size is a major yield component in rice, and partly controlled by the sizes of the lemma and palea. Molecular mechanisms controlling the sizes of these organs largely remain unknown. In this study, we show that an antagonistic pair of basic helix-loop-helix (bHLH) proteins is involved in determining rice grain length by controlling cell length in the lemma/palea. Overexpression of an atypical bHLH, named POSITIVE REGULATOR OF GRAIN LENGTH 1 (PGL1), in lemma/palea increased grain length and weight in transgenic rice. PGL1 is an atypical non-DNA-binding bHLH and assumed to function as an inhibitor of a typical DNA-binding bHLH through heterodimerization. We identified the interaction partner of PGL1 and named it ANTAGONIST OF PGL1 (APG). PGL1 and APG interacted in vivo and localized in the nucleus. As expected, silencing of APG produced the same phenotype as overexpression of PGL1, suggesting antagonistic roles for the two genes. Transcription of two known grain-length-related genes, GS3 and SRS3, was largely unaffected in the PGL1-overexpressing and APG-silenced plants. Observation of the inner epidermal cells of lemma revealed that are caused by increased cell length. PGL1-APG represents a new grain length and weight-controlling pathway in which APG is a negative regulator whose function is inhibited by PGL1. PMID:22363621

  4. An atypical bHLH protein encoded by POSITIVE REGULATOR OF GRAIN LENGTH 2 is involved in controlling grain length and weight of rice through interaction with a typical bHLH protein APG

    PubMed Central

    Heang, Dany; Sassa, Hidenori

    2012-01-01

    Grain size is an important yield component in rice, however, genes controlling the trait remain poorly understood. Previously, we have shown that an antagonistic pair of basic helix-loop-helix (bHLH) proteins, POSITIVE REGULATOR OF GRAIN LENGTH 1 (PGL1) and ANTAGONIST OF PGL1 (APG), is involved in controlling rice grain length. Here, we report the involvement of another atypical bHLH protein gene, POSITIVE REGULATOR OF GRAIN LENGTH 2 (PGL2), in the regulation of rice grain length. Over-expression of PGL2 in the lemma/palea increased grain length and weight in correlation with the level of transgene expression. Observation of the inner epidermal cells of lemma of PGL2-overexpressing lines revealed that the long grain size is caused by an increase in cell length. PGL2 interacts with a typical bHLH protein APG, a negative regulator of rice grain length and weight, in vitro and in vivo. It was reported that overexpression of BU1 (BRASSINOSTEROID UPREGULATED 1), the closest homolog of PGL2, caused an increase in grain length. However, we detected no interaction between BU1 and APG. These findings suggest that PGL2 and PGL1 redundantly suppress the function of APG by forming heterodimers to positively regulate the rice grain length, while the pathway through which BU1, the closest homolog of PGL2, controls grain length is independent of APG. PMID:23136524

  5. Stomatal Development in Arabidopsis

    PubMed Central

    Pillitteri, Lynn Jo; Dong, Juan

    2013-01-01

    Stomata consist of two guard cells that function as turgor-operated valves that regulate gas exchange in plants. In Arabidopsis, a dedicated cell lineage is initiated and undergoes a series of cell divisions and cell-state transitions to produce a stoma. A set of basic helix-loop-helix (bHLH) transcription factors regulates the transition and differentiation events through the lineage, while the placement of stomata relative to each other is controlled by intercellular signaling via peptide ligands, transmembrane receptors, and mitogen-activated protein kinase (MAPK) modules. Some genes involved in regulating stomatal differentiation or density are also involved in hormonal and environmental stress responses, which may provide a link between modulation of stomatal development or function in response to changes in the environment. Premitotic polarlylocalized proteins provide an added layer of regulation, which can be addressed more thoroughly with the identification of additional proteins in this pathway. Linking the networks that control stomatal development promises to bring advances to our understanding of signal transduction, cell polarity, and cell-fate specification in plants. PMID:23864836

  6. RNA-Seq Data Mining: Downregulation of NeuroD6 Serves as a Possible Biomarker for Alzheimer's Disease Brains

    PubMed Central

    Yamamoto, Yoji; Asahina, Naohiro; Kitano, Shouta; Kino, Yoshihiro

    2014-01-01

    Alzheimer's disease (AD) is the most common cause of dementia worldwide with no curative therapies currently available. Previously, global transcriptome analysis of AD brains by microarray failed to identify the set of consistently deregulated genes for biomarker development of AD. Therefore, the molecular pathogenesis of AD remains largely unknown. Whole RNA sequencing (RNA-Seq) is an innovative technology for the comprehensive transcriptome profiling on a genome-wide scale that overcomes several drawbacks of the microarray-based approach. To identify biomarker genes for AD, we analyzed a RNA-Seq dataset composed of the comprehensive transcriptome of autopsized AD brains derived from two independent cohorts. We identified the core set of 522 genes deregulated in AD brains shared between both, compared with normal control subjects. They included downregulation of neuronal differentiation 6 (NeuroD6), a basic helix-loop-helix (bHLH) transcription factor involved in neuronal development, differentiation, and survival in AD brains of both cohorts. We verified the results of RNA-Seq by analyzing three microarray datasets of AD brains different in brain regions, ethnicities, and microarray platforms. Thus, both RNA-Seq and microarray data analysis indicated consistent downregulation of NeuroD6 in AD brains. These results suggested that downregulation of NeuroD6 serves as a possible biomarker for AD brains. PMID:25548427

  7. Diversity in the utilization of glucose and lactate in synthetic mammalian myotubes generated by engineered configurations of MyoD and E12 in otherwise non-differentiation growth conditions.

    PubMed

    Grubiši?, Vladimir; Parpura, Vladimir

    2015-03-01

    We previously used the expression of various combinations and configurations of MyoD and E12, two basic helix-loop-helix transcription factors (TF), to produce populations of myotubes assuming distinct morphology, myofibrillar development and Ca2+ dynamics, from mammalian C2C12 myoblasts in non-differentiation growth conditions. Here, we assessed the synthetically generated myotubes in terms of energetics, otherwise necessary to sustain their mechanical output as bio-actuators. We found that the myotubes exhibit changed expression of key regulators for the uptake and utilization of two major cellular fuels, glucose and lactate. Furthermore, while lactate transport was uniformly slowed in all the populations of myotubes, glucose uptake and utilization were modified by particular TF configuration. Our approach allows the production of a class of biomaterials with predetermined energetics that could be applied in biorobotics, where fuel of choice could be used, and also in reparative medicine where, for example, particular population of myotubes could be additionally employed as glucose sinks to mitigate effects of secondary metabolic syndrome. PMID:25591961

  8. A BAC transgenic Hes1-EGFP reporter reveals novel expression domains in mouse embryos

    PubMed Central

    Klinck, Rasmus; Füchtbauer, Ernst-Martin; Ahnfelt-Rřnne, Jonas; Serup, Palle; Jensen, Jan Nygaard; Jřrgensen, Mette Christine

    2011-01-01

    Expression of the basic helix-loop-helix factor Hairy and Enhancer of Split-1 (Hes1) is required for normal development of a number of tissues during embryonic development. Depending on context, Hes1 may act as a Notch signalling effector which promotes the undifferentiated and proliferative state of progenitor cells, but increasing evidence also points to Notch independent regulation of Hes1 expression. Here we use high resolution confocal scanning of EGFP in a novel BAC transgenic mouse reporter line, Tg(Hes1-EGFP)1Hri, to analyse Hes1 expression from embryonic day 7.0 (e7.0). Our data recapitulates some previous observations on Hes1 expression and suggests new, hitherto unrecognised expression domains including expression in the definitive endoderm at early somite stages before gut tube closure and thus preceding organogenesis. This mouse line will be a valuable tool for studies addressing the role of Hes1 in a number of different research areas including organ specification, development and regeneration. PMID:21745596

  9. Bhlhe40 Represses PGC-1? Activity on Metabolic Gene Promoters in Myogenic Cells.

    PubMed

    Chung, Shih Ying; Kao, Chien Han; Villarroya, Francesc; Chang, Hsin Yu; Chang, Hsuan Chia; Hsiao, Sheng Pin; Liou, Gunn-Guang; Chen, Shen Liang

    2015-07-15

    PGC-1? is a transcriptional coactivator promoting oxidative metabolism in many tissues. Its expression in skeletal muscle (SKM) is induced by hypoxia and reactive oxidative species (ROS) generated during exercise, suggesting that PGC-1? might mediate the cross talk between oxidative metabolism and cellular responses to hypoxia and ROS. Here we found that PGC-1? directly interacted with Bhlhe40, a basic helix-loop-helix (bHLH) transcriptional repressor induced by hypoxia, and protects SKM from ROS damage, and they cooccupied PGC-1?-targeted gene promoters/enhancers, which in turn repressed PGC-1? transactivational activity. Bhlhe40 repressed PGC-1? activity through recruiting histone deacetylases (HDACs) and preventing the relief of PGC-1? intramolecular repression caused by its own intrinsic suppressor domain. Knockdown of Bhlhe40 mRNA increased levels of ROS, fatty acid oxidation, mitochondrial DNA, and expression of PGC-1? target genes. Similar effects were also observed when the Bhlhe40-mediated repression was rescued by a dominantly active form of the PGC-1?-interacting domain (PID) from Bhlhe40. We further found that Bhlhe40-mediated repression can be largely relieved by exercise, in which its recruitment to PGC-1?-targeted cis elements was significantly reduced. These observations suggest that Bhlhe40 is a novel regulator of PGC-1? activity repressing oxidative metabolism gene expression and mitochondrion biogenesis in sedentary SKM. PMID:25963661

  10. The Arabidopsis bHLH Transcription Factors MYC3 and MYC4 Are Targets of JAZ Repressors and Act Additively with MYC2 in the Activation of Jasmonate Responses[C][W

    PubMed Central

    Fernández-Calvo, Patricia; Chini, Andrea; Fernández-Barbero, Gemma; Chico, José-Manuel; Gimenez-Ibanez, Selena; Geerinck, Jan; Eeckhout, Dominique; Schweizer, Fabian; Godoy, Marta; Franco-Zorrilla, José Manuel; Pauwels, Laurens; Witters, Erwin; Puga, María Isabel; Paz-Ares, Javier; Goossens, Alain; Reymond, Philippe; De Jaeger, Geert; Solano, Roberto

    2011-01-01

    Jasmonates (JAs) trigger an important transcriptional reprogramming of plant cells to modulate both basal development and stress responses. In spite of the importance of transcriptional regulation, only one transcription factor (TF), the Arabidopsis thaliana basic helix-loop-helix MYC2, has been described so far as a direct target of JAZ repressors. By means of yeast two-hybrid screening and tandem affinity purification strategies, we identified two previously unknown targets of JAZ repressors, the TFs MYC3 and MYC4, phylogenetically closely related to MYC2. We show that MYC3 and MYC4 interact in vitro and in vivo with JAZ repressors and also form homo- and heterodimers with MYC2 and among themselves. They both are nuclear proteins that bind DNA with sequence specificity similar to that of MYC2. Loss-of-function mutations in any of these two TFs impair full responsiveness to JA and enhance the JA insensitivity of myc2 mutants. Moreover, the triple mutant myc2 myc3 myc4 is as impaired as coi1-1 in the activation of several, but not all, JA-mediated responses such as the defense against bacterial pathogens and insect herbivory. Our results show that MYC3 and MYC4 are activators of JA-regulated programs that act additively with MYC2 to regulate specifically different subsets of the JA-dependent transcriptional response. PMID:21335373

  11. Vsx2 in the zebrafish retina: restricted lineages through derepression

    PubMed Central

    Vitorino, Marta; Jusuf, Patricia R; Maurus, Daniel; Kimura, Yukiko; Higashijima, Shin-ichi; Harris, William A

    2009-01-01

    Background The neurons in the vertebrate retina arise from multipotent retinal progenitor cells (RPCs). It is not clear, however, which progenitors are multipotent or why they are multipotent. Results In this study we show that the homeodomain transcription factor Vsx2 is initially expressed throughout the retinal epithelium, but later it is downregulated in all but a minor population of bipolar cells and all Müller glia. The Vsx2-negative daughters of Vsx2-positive RPCs divide and give rise to all other cell types in the retina. Vsx2 is a repressor whose targets include transcription factors such as Vsx1, which is expressed in the progenitors of distinct non-Vsx2 bipolars, and the basic helix-loop-helix transcription factor Ath5, which restricts the fate of progenitors to retinal ganglion cells, horizontal cells, amacrine cells and photoreceptors fates. Foxn4, expressed in the progenitors of amacrine and horizontal cells, is also negatively regulated by Vsx2. Conclusion Our data thus suggest Vsx2-positive RPCs are fully multipotent retinal progenitors and that when Vsx2 is downregulated, Vsx2-negative progenitors escape Vsx2 repression and so are able to express factors that restrict lineage potential. PMID:19344499

  12. The proneural bHLH gene ascl1a is required for retina regeneration

    PubMed Central

    Fausett, Blake V.; Gumerson, Jessica D.; Goldman, Daniel

    2009-01-01

    Unlike mammals, teleost fish can regenerate an injured retina and restore lost visual function. Although retina regeneration has been studied for decades little is known of the molecular events that govern it. We previously showed that in the damaged zebrafish retina Müller glia re-enter the cell cycle, increase ?1tubulin (?1T) promoter activity and generate new neurons and glia for retinal repair. Here we report the identification of an E-box in the ?1T promoter that is necessary for its induction during retina regeneration. We show that the proneural basic helix-loop-helix transcription factor achaete-scute complex-like 1a (ascl1a) transactivates the ?1T promoter via this particular E-box. More importantly, we show that ascl1a is essential for retina regeneration. Within 4 hrs following retinal injury ascl1a is induced in Müller glia. Knockdown of ascl1a expression in the injured retina blocks the induction of the regeneration markers ?1T and Pax6, as well as Müller glial proliferation, consequently preventing the generation of retinal progenitors and their differentiated progeny. These data suggest ascl1a is required to convert quiescent Müller glia into actively dividing retinal progenitors, and that ascl1a is a key regulator in initiating retina regeneration. PMID:18234889

  13. Apterous A modulates wing size, bristle formation and patterning in Nilaparvata lugens.

    PubMed

    Liu, Fangzhou; Li, Kaiyin; Li, Jie; Hu, Dingbang; Zhao, Jing; He, Yueping; Zou, Yulan; Feng, Yanni; Hua, Hongxia

    2015-01-01

    Apterous A (apA), a member of the LIM-homeobox gene family, plays a critical role in the development of wing. The achaete-scute Complex (AS-C) encodes basic helix-loop-helix (bHLH) transcription factors and functions in bristle development. In the present study, we cloned apA (NlapA) and an achaete-scute homologue (NlASH) from N. lugens. Levels of NlapA and NlASH were higher in nymphs than adults, with particularly high expression in the thorax of nymphs. NlapA expressed more highly in nymphs of the macropterous strain (MS) than those of the brachypterous strain (BS) at 2(nd) and 4(th) instar. Knockdown of NlapA and NlASH in vivo generated similar phenotypic defects in the wing (loss-of-bristles, twisted or erect wing). Silencing of NlapA in nymphs of MS led to decreased wing size in adults. Moreover, depletion of NlapA suppressed expression of NlDl, Nlsal, Nlser, Nlvg and Nlwg, both in MS and BS, but induced differential responses of Nlubx and Nlnotch expression between MS and BS. Notably, expression of NlASH was regulated by NlapA. These results collectively indicate that NlapA is an upstream modulator of wing size, bristle formation and patterning. Further studies on DNA-protein and protein-protein interactions are required to elucidate NlapA-mediated regulation of wing development. PMID:25995006

  14. ICE1 of Poncirus trifoliata functions in cold tolerance by modulating polyamine levels through interacting with arginine decarboxylase

    PubMed Central

    Huang, Xiao-San; Zhang, Qinghua; Zhu, Dexin; Fu, Xingzheng; Wang, Min; Zhang, Qian; Moriguchi, Takaya; Liu, Ji-Hong

    2015-01-01

    ICE1 (Inducer of CBF Expression 1) encodes a MYC-like basic helix–loop–helix transcription factor that acts as a central regulator of cold response. In this study, we elucidated the function and underlying mechanisms of PtrICE1 from trifoliate orange [Poncirus trifoliata (L.) Raf.]. PtrICE1 was upregulated by cold, dehydration, and salt, with the greatest induction under cold conditions. PtrICE1 was localized in the nucleus and could bind to a MYC-recognizing sequence. Ectopic expression of PtrICE1 in tobacco and lemon conferred enhanced tolerance to cold stresses at either chilling or freezing temperatures. Yeast two-hybrid screening revealed that 21 proteins belonged to the PtrICE1 interactome, in which PtADC (arginine decarboxylase) was confirmed as a bona fide protein interacting with PtrICE1. Transcript levels of ADC genes in the transgenic lines were slightly elevated under normal growth condition but substantially increased under cold conditions, consistent with changes in free polyamine levels. By contrast, accumulation of the reactive oxygen species, H2O2 and O2 –, was appreciably alleviated in the transgenic lines under cold stress. Higher activities of antioxidant enzymes, such as superoxide dismutase and catalase, were detected in the transgenic lines under cold conditions. Taken together, these results demonstrated that PtrICE1 plays a positive role in cold tolerance, which may be due to modulation of polyamine levels through interacting with the ADC gene. PMID:25873670

  15. Inhibition of desmin expression blocks myoblast fusion and interferes with the myogenic regulators MyoD and myogenin

    PubMed Central

    1994-01-01

    The muscle-specific intermediate filament protein, desmin, is one of the earliest myogenic markers whose functional role during myogenic commitment and differentiation is unknown. Sequence comparison of the presently isolated and fully characterized mouse desmin cDNA clones revealed a single domain of polypeptide similarity between desmin and the basic and helix-loop-helix region of members of the myoD family myogenic regulators. This further substantiated the need to search for the function of desmin. Constructs designed to express anti-sense desmin RNA were used to obtain stably transfected C2C12 myoblast cell lines. Several lines were obtained where expression of the anti-sense desmin RNA inhibited the expression of desmin RNA and protein down to basal levels. As a consequence, the differentiation of these myoblasts was blocked; complete inhibition of myoblast fusion and myotube formation was observed. Rescue of the normal phenotype was achieved either by spontaneous revertants, or by overexpression of the desmin sense RNA in the defective cell lines. In several of the cell lines obtained, inhibition of desmin expression was followed by differential inhibition of the myogenic regulators myoD and/or myogenin, depending on the stage and extent of desmin inhibition in these cells. These data suggested that myogenesis is modulated by at least more than one pathway and desmin, which so far was believed to be merely an architectural protein, seems to play a key role in this process. PMID:8120103

  16. ETO2 coordinates cellular proliferation and differentiation during erythropoiesis

    PubMed Central

    Goardon, Nicolas; Lambert, Julie A; Rodriguez, Patrick; Nissaire, Philippe; Herblot, Sabine; Thibault, Pierre; Dumenil, Dominique; Strouboulis, John; Romeo, Paul-Henri; Hoang, Trang

    2006-01-01

    The passage from proliferation to terminal differentiation is critical for normal development and is often perturbed in malignancies. To define the molecular mechanisms that govern this process during erythropoiesis, we have used tagging/proteomics approaches and characterized protein complexes nucleated by TAL-1/SCL, a basic helix–loop–helix transcription factor that specifies the erythrocytic lineage. In addition to known TAL-1 partners, GATA-1, E2A, HEB, LMO2 and Ldb1, we identify the ETO2 repressor as a novel component recruited to TAL-1 complexes through interaction with E2A/HEB. Ectopic expression and siRNA knockdown experiments in hematopoietic progenitor cells show that ETO2 actively represses erythroid TAL-1 target genes and governs the expansion of erythroid progenitors. At the onset of erythroid differentiation, a change in the stoichiometry of ETO2 within the TAL-1 complex activates the expression of known erythroid-specific TAL-1 target genes and of Gfi-1b and p21Cip, encoding two essential regulators of erythroid cell proliferation. These results suggest that the dynamics of ETO2 recruitment within nuclear complexes couple cell proliferation to cell differentiation and determine the onset of terminal erythroid maturation. PMID:16407974

  17. Ligand-binding properties of a juvenile hormone receptor, Methoprene-tolerant

    PubMed Central

    Charles, Jean-Philippe; Iwema, Thomas; Epa, V. Chandana; Takaki, Keiko; Rynes, Jan; Jindra, Marek

    2011-01-01

    Juvenile hormone (JH) is a sesquiterpenoid of vital importance for insect development, yet the molecular basis of JH signaling remains obscure, mainly because a bona fide JH receptor has not been identified. Mounting evidence points to the basic helix–loop–helix (bHLH)/Per-Arnt-Sim (PAS) domain protein Methoprene-tolerant (Met) as the best JH receptor candidate. However, details of how Met transduces the hormonal signal are missing. Here, we demonstrate that Met specifically binds JH III and its biologically active mimics, methoprene and pyriproxyfen, through its C-terminal PAS domain. Substitution of individual amino acids, predicted to form a ligand-binding pocket, with residues possessing bulkier side chains reduces JH III binding likely because of steric hindrance. Although a mutation that abolishes JH III binding does not affect a Met–Met complex that forms in the absence of methoprene, it prevents both the ligand-dependent dissociation of the Met–Met dimer and the ligand-dependent interaction of Met with its partner bHLH-PAS protein Taiman. These results show that Met can sense the JH signal through direct, specific binding, thus establishing a unique class of intracellular hormone receptors. PMID:22167806

  18. Phosphatidic acid and phosphoinositides facilitate liposome association of Yas3p and potentiate derepression of ARE1 (alkane-responsive element one)-mediated transcription control.

    PubMed

    Kobayashi, Satoshi; Hirakawa, Kiyoshi; Horiuchi, Hiroyuki; Fukuda, Ryouichi; Ohta, Akinori

    2013-12-01

    In the n-alkane assimilating yeast Yarrowia lipolytica, the expression of ALK1, encoding a cytochrome P450 that catalyzes terminal mono-oxygenation of n-alkanes, is induced by n-alkanes. The transcription of ALK1 is regulated by a heterocomplex that comprises the basic helix-loop-helix transcription activators, Yas1p and Yas2p, and binds to alkane-responsive element 1 (ARE1) in the ALK1 promoter. An Opi1 family transcription repressor, Yas3p, represses transcription by binding to Yas2p. Yas3p localizes in the nucleus when Y. lipolytica is grown on glucose but localizes to the endoplasmic reticulum (ER) upon the addition of n-alkanes. In this study, we showed that recombinant Yas3p binds to the acidic phospholipids, phosphatidic acid (PA) and phosphoinositides (PIPs), in vitro. The ARE1-mediated transcription was enhanced in vivo in mutants defective in an ortholog of the Saccharomyces cerevisiae gene PAH1, encoding PA phosphatase, and in an ortholog of SAC1, encoding PIP phosphatase in the ER. Truncation mutation analyses for Yas3p revealed two regions that bound to PA and PIPs. These results suggest that the interaction with acidic phospholipids is important for the n-alkane-induced association of Yas3p with the ER membrane. PMID:24120453

  19. Notch signaling differentially regulates Atoh7 and Neurog2 in the distal mouse retina.

    PubMed

    Maurer, Kate A; Riesenberg, Amy N; Brown, Nadean L

    2014-08-01

    Notch signaling regulates basic helix-loop-helix (bHLH) factors as an evolutionarily conserved module, but the tissue-specific mechanisms are incompletely elucidated. In the mouse retina, bHLH genes Atoh7 and Neurog2 have distinct functions, with Atoh7 regulating retinal competence and Neurog2 required for progression of neurogenesis. These transcription factors are extensively co-expressed, suggesting similar regulation. We directly compared Atoh7 and Neurog2 regulation at the earliest stages of retinal neurogenesis in a broad spectrum of Notch pathway mutants. Notch1 and Rbpj normally block Atoh7 and Neurog2 expression. However, the combined activities of Notch1, Notch3 and Rbpj regulate Neurog2 patterning in the distal retina. Downstream of the Notch complex, we found the Hes1 repressor mediates Atoh7 suppression, but Hes1, Hes3 and Hes5 do not regulate Neurog2 expression. We also tested Notch-mediated regulation of Jag1 and Pax6 in the distal retina, to establish the appropriate context for Neurog2 patterning. We found that Notch1;Notch3 and Rbpj block co-expression of Jag1 and Neurog2, while specifically stimulating Pax6 within an adjacent domain. Our data suggest that Notch signaling controls the overall tempo of retinogenesis, by integrating cell fate specification, the wave of neurogenesis and the developmental status of cells ahead of this wave. PMID:25100656

  20. RICE SALT SENSITIVE3 forms a ternary complex with JAZ and class-C bHLH factors and regulates jasmonate-induced gene expression and root cell elongation.

    PubMed

    Toda, Yosuke; Tanaka, Maiko; Ogawa, Daisuke; Kurata, Kyo; Kurotani, Ken-Ichi; Habu, Yoshiki; Ando, Tsuyu; Sugimoto, Kazuhiko; Mitsuda, Nobutaka; Katoh, Etsuko; Abe, Kiyomi; Miyao, Akio; Hirochika, Hirohiko; Hattori, Tsukaho; Takeda, Shin

    2013-05-01

    Plasticity of root growth in response to environmental cues and stresses is a fundamental characteristic of land plants. However, the molecular basis underlying the regulation of root growth under stressful conditions is poorly understood. Here, we report that a rice nuclear factor, RICE SALT SENSITIVE3 (RSS3), regulates root cell elongation during adaptation to salinity. Loss of function of RSS3 only moderately inhibits cell elongation under normal conditions, but it provokes spontaneous root cell swelling, accompanied by severe root growth inhibition, under saline conditions. RSS3 is preferentially expressed in the root tip and forms a ternary complex with class-C basic helix-loop-helix (bHLH) transcription factors and JASMONATE ZIM-DOMAIN proteins, the latter of which are the key regulators of jasmonate (JA) signaling. The mutated protein arising from the rss3 allele fails to interact with bHLH factors, and the expression of a significant portion of JA-responsive genes is upregulated in rss3. These results, together with the known roles of JAs in root growth regulation, suggest that RSS3 modulates the expression of JA-responsive genes and plays a crucial role in a mechanism that sustains root cell elongation at appropriate rates under stressful conditions. PMID:23715469

  1. A Conserved Network of Transcriptional Activators and Repressors Regulates Anthocyanin Pigmentation in Eudicots[C][W][OPEN

    PubMed Central

    Albert, Nick W.; Davies, Kevin M.; Lewis, David H.; Zhang, Huaibi; Montefiori, Mirco; Brendolise, Cyril; Boase, Murray R.; Ngo, Hanh; Jameson, Paula E.; Schwinn, Kathy E.

    2014-01-01

    Plants require sophisticated regulatory mechanisms to ensure the degree of anthocyanin pigmentation is appropriate to myriad developmental and environmental signals. Central to this process are the activity of MYB-bHLH-WD repeat (MBW) complexes that regulate the transcription of anthocyanin genes. In this study, the gene regulatory network that regulates anthocyanin synthesis in petunia (Petunia hybrida) has been characterized. Genetic and molecular evidence show that the R2R3-MYB, MYB27, is an anthocyanin repressor that functions as part of the MBW complex and represses transcription through its C-terminal EAR motif. MYB27 targets both the anthocyanin pathway genes and basic-helix-loop-helix (bHLH) ANTHOCYANIN1 (AN1), itself an essential component of the MBW activation complex for pigmentation. Other features of the regulatory network identified include inhibition of AN1 activity by the competitive R3-MYB repressor MYBx and the activation of AN1, MYB27, and MYBx by the MBW activation complex, providing for both reinforcement and feedback regulation. We also demonstrate the intercellular movement of the WDR protein (AN11) and R3-repressor (MYBx), which may facilitate anthocyanin pigment pattern formation. The fundamental features of this regulatory network in the Asterid model of petunia are similar to those in the Rosid model of Arabidopsis thaliana and are thus likely to be widespread in the Eudicots. PMID:24642943

  2. Mutations within the 5' half of the avian retrovirus MC29 v-myc gene alter or abolish transformation of chicken embryo fibroblasts and macrophages.

    PubMed Central

    Farina, S F; Huff, J L; Parsons, J T

    1992-01-01

    Avian myelocytomatosis virus MC29 induces a wide variety of neoplastic diseases in infected birds and transforms cells of the macrophage lineage as well as fibroblasts and epithelial cells. A biological and biochemical analysis, carried out on a series of in-frame insertion and deletion mutations within the gag-myc gene of MC29, revealed several mutations within the 5' portion of the v-myc gene that encode proteins either completely defective for transformation or compromised in their ability to transform chicken embryo fibroblasts but not macrophages. Mutations within the 3' end of the v-myc gene which disrupt sequences encoding the basic/helix-loop-helix region were defective for transformation of both fibroblasts and macrophages. Eight variants were cloned into the replication-competent avian expression vector RCAS. Analysis of cells infected with transformation-defective, replication-competent viruses confirmed the expression of functionally defective Myc proteins. Further, expression of the transformation defective variant dl91-137 in chicken fibroblasts inhibited subsequent transformation by wild-type MC29. The results reported herein support the hypothesis that Myc proteins function as regulators of transcription in a variety of cell types and clearly point out the necessity of putative regulatory domains within the amino-terminal half of the Myc protein. Images PMID:1313895

  3. Neurogenin3 triggers beta-cell differentiation of retinoic acid-derived endoderm cells.

    PubMed Central

    Vetere, Amedeo; Marsich, Eleonora; Di Piazza, Matteo; Koncan, Raffaella; Micali, Fulvio; Paoletti, Sergio

    2003-01-01

    Neurogenin3 is a member of the basic helix-loop-helix ('bHLH') family of transcription factors. It plays a crucial role in the commitment of embryonic endoderm into the pancreatic differentiation programme. This factor is considered to act upstream of a cascade of other transcription factors, leading to the fully differentiated endocrine phenotype. Direct observation of the sequential activation of these factors starting from Neurogenin3 had never been demonstrated. By using retinoic acid-derived-endoderm F9 cells as a model, the present study indicates that the ectopic expression of Neurogenin3 is able to start the differentiation pathway of endocrine pancreas. Neurogenin3 triggers the expression of several pancreatic transcription factors following a well defined temporal activation sequence. By reverse transcriptase PCR, immunohistochemistry and RIA, it is shown that stable transfected cells are able to form embryod bodies that produce insulin in response to glucose stimulation. This is the first report of a differentiation event induced by the ectopic expression of a transcription factor in embryonic pluripotent stem cells. PMID:12529176

  4. Tgf?-Smad and MAPK signaling mediate scleraxis and proteoglycan expression in heart valves.

    PubMed

    Barnette, Damien N; Hulin, Alexia; Ahmed, A S Ishtiaq; Colige, Alain C; Azhar, Mohamad; Lincoln, Joy

    2013-12-01

    Mature heart valves are complex structures consisting of three highly organized extracellular matrix layers primarily composed of collagens, proteoglycans and elastin. Collectively, these diverse matrix components provide all the necessary biomechanical properties for valve function throughout life. In contrast to healthy valves, myxomatous valve disease is the most common cause of mitral valve prolapse in the human population and is characterized by an abnormal abundance of proteoglycans within the valve tri-laminar structure. Despite the clinical significance, the etiology of this phenotype is not known. Scleraxis (Scx) is a basic-helix-loop-helix transcription factor that we previously showed to be required for establishing heart valve structure during remodeling stages of valvulogenesis. In this study, we report that remodeling heart valves from Scx null mice express decreased levels of proteoglycans, particularly chondroitin sulfate proteoglycans (CSPGs), while overexpression in embryonic avian valve precursor cells and adult porcine valve interstitial cells increases CSPGs. Using these systems we further identify that Scx is positively regulated by canonical Tgf?2 signaling during this process and this is attenuated by MAPK activity. Finally, we show that Scx is increased in myxomatous valves from human patients and mouse models, and overexpression in human mitral valve interstitial cells modestly increases proteoglycan expression consistent with myxomatous mitral valve phenotypes. Together, these studies identify an important role for Scx in regulating proteoglycans in embryonic and mature valve cells and suggest that imbalanced regulation could influence myxomatous pathogenesis. PMID:24157418

  5. A DELLA in disguise: SPATULA restrains the growth of the developing Arabidopsis seedling.

    PubMed

    Josse, Eve-Marie; Gan, Yinbo; Bou-Torrent, Jordi; Stewart, Kelly L; Gilday, Alison D; Jeffree, Christopher E; Vaistij, Fabián E; Martínez-García, Jaime F; Nagy, Ferenc; Graham, Ian A; Halliday, Karen J

    2011-04-01

    The period following seedling emergence is a particularly vulnerable stage in the plant life cycle. In Arabidopsis thaliana, the phytochrome-interacting factor (PIF) subgroup of basic-helix-loop-helix transcription factors has a pivotal role in regulating growth during this early phase, integrating environmental and hormonal signals. We previously showed that SPATULA (SPT), a PIF homolog, regulates seed dormancy. In this article, we establish that unlike PIFs, which mainly promote hypocotyl elongation, SPT is a potent regulator of cotyledon expansion. Here, SPT acts in an analogous manner to the gibberellin-dependent DELLAs, REPRESSOR OF GA1-3 and GIBBERELLIC ACID INSENSITIVE, which restrain cotyledon expansion alongside SPT. However, although DELLAs are not required for SPT action, we demonstrate that SPT is subject to negative regulation by DELLAs. Cross-regulation of SPT by DELLAs ensures that SPT protein levels are limited when DELLAs are abundant but rise following DELLA depletion. This regulation provides a means to prevent excessive growth suppression that would result from the dual activity of SPT and DELLAs, yet maintain growth restraint under DELLA-depleted conditions. We present evidence that SPT and DELLAs regulate common gene targets and illustrate that the balance of SPT and DELLA action depends on light quality signals in the natural environment. PMID:21478445

  6. Spatiotemporal Fate Map of Neurogenin1 (Neurog1) Lineages in the Mouse Central Nervous System

    PubMed Central

    Kim, Euiseok J.; Hori, Kei; Wyckoff, Alex; Dickel, Lauren K.; Koundakjian, Edmund J.; Goodrich, Lisa V.; Johnson, Jane E.

    2014-01-01

    Neurog1 (Ngn1, Neurod3, neurogenin1) is a basic helix-loop-helix (bHLH) transcription factor essential for neuronal differentiation and subtype specification during embryogenesis. Due to the transient expression of Neurog1 and extensive migration of neuronal precursors, it has been challenging to understand the full complement of Neurog1 lineage cells throughout the central nervous system (CNS). Here we labeled and followed Neurog1 lineages using inducible Cre-flox recombination systems with Neurog1-Cre and Neurog1-CreERT2 BAC (bacterial artificial chromosome) transgenic mice. Neurog1 lineage cells are restricted to neuronal fates and contribute to diverse but discrete populations in each brain region. In the forebrain, Neurog1 lineages include mitral cells and glutamatergic interneurons in the olfactory bulb, pyramidal and granule neurons in the hippocampus, and pyramidal cells in the cortex. In addition, most of the thalamus, but not the hypothalamus, arises from Neurog1 progenitors. Although Neurog1 lineages are largely restricted to glutamatergic neurons, there are multiple exceptions including Purkinje cells and other GABAergic neurons in the cerebellum. This study provides the first overview of the spatiotemporal fate map of Neurog1 lineages in the CNS. PMID:21452201

  7. Members of the bHLH-PAS family regulate Shh transcription in forebrain regions of the mouse CNS.

    PubMed

    Epstein, D J; Martinu, L; Michaud, J L; Losos, K M; Fan, C; Joyner, A L

    2000-11-01

    The secreted protein sonic hedgehog (Shh) is required to establish patterns of cellular growth and differentiation within ventral regions of the developing CNS. The expression of Shh in the two tissue sources responsible for this activity, the axial mesoderm and the ventral midline of the neural tube, is regulated along the anteroposterior neuraxis. Separate cis-acting regulatory sequences have been identified which direct Shh expression to distinct regions of the neural tube, supporting the view that multiple genes are involved in activating Shh transcription along the length of the CNS. We show here that the activity of one Shh enhancer, which directs reporter expression to portions of the ventral midbrain and diencephalon, overlaps both temporally and spatially with the expression of Sim2. Sim2 encodes a basic helix-loop-helix (bHLH-PAS) PAS domain containing transcriptional regulator whose Drosophila homolog, single-minded, is a master regulator of ventral midline development. Both vertebrate and invertebrate Sim family members were found sufficient for the activation of the Shh reporter as well as endogenous Shh mRNA. Although Shh expression is maintained in Sim2(-)(/)(-) embryos, it was determined to be absent from the rostral midbrain and caudal diencephalon of embryos carrying a dominant-negative transgene that disrupts the function of bHLH-PAS proteins. Together, these results suggest that bHLH-PAS family members are required for the regulation of Shh transcription within aspects of the ventral midbrain and diencephalon. PMID:11023872

  8. The bHLH142 Transcription Factor Coordinates with TDR1 to Modulate the Expression of EAT1 and Regulate Pollen Development in Rice[C][W][OPEN

    PubMed Central

    Ko, Swee-Suak; Li, Min-Jeng; Sun-Ben Ku, Maurice; Ho, Yi-Cheng; Lin, Yi-Jyun; Chuang, Ming-Hsing; Hsing, Hong-Xian; Lien, Yi-Chen; Yang, Hui-Ting; Chang, Hung-Chia; Chan, Ming-Tsair

    2014-01-01

    Male sterility plays an important role in F1 hybrid seed production. We identified a male-sterile rice (Oryza sativa) mutant with impaired pollen development and a single T-DNA insertion in the transcription factor gene bHLH142. Knockout mutants of bHLH142 exhibited retarded meiosis and defects in tapetal programmed cell death. RT-PCR and in situ hybridization analyses showed that bHLH142 is specifically expressed in the anther, in the tapetum, and in meiocytes during early meiosis. Three basic helix-loop-helix transcription factors, UDT1 (bHLH164), TDR1 (bHLH5), and EAT1/DTD1 (bHLH141) are known to function in rice pollen development. bHLH142 acts downstream of UDT1 and GAMYB but upstream of TDR1 and EAT1 in pollen development. In vivo and in vitro assays demonstrated that bHLH142 and TDR1 proteins interact. Transient promoter assays demonstrated that regulation of the EAT1 promoter requires bHLH142 and TDR1. Consistent with these results, 3D protein structure modeling predicted that bHLH142 and TDR1 form a heterodimer to bind to the EAT1 promoter. EAT1 positively regulates the expression of AP37 and AP25, which induce tapetal programmed cell death. Thus, in this study, we identified bHLH142 as having a pivotal role in tapetal programmed cell death and pollen development. PMID:24894043

  9. Biological function and molecular mechanism of Twist2.

    PubMed

    Chengxiao, Zhao; Ze, Yang

    2015-01-01

    Twist2, one of the basic helix-loop-helix protein (bHLH) family members, is responsible for the transcriptional regulation in mesenchymal cell lineages during its development. Twist2 functions as a molecular switch to activate or repress target genes by direct or indirect mechanisms. Twist2 can directly bind with conserved E-box on DNA sequence, to recruit co-activators or repressors, and interfere with the activation or inhibition function through protein-protein interactions with E-protein modulators. Nonsense mutations of Twist2 cause Setleis syndrome. Early research on Twist2 focused on osteogenesis, and then expression differences were found in a wide variety of tumors. Further studies showed that Twist2 plays an important role in cancer epithelial-mesenchymal transition (EMT). Regulation function of Twist2 is controlled by temporal and spatial expression, phosphorylation, dimerization and cell positioning adjustment. The involvement of Twist2 in a broad spectrum of regulatory pathways highlights the importance of understanding its role in normal development, homeostasis and disease. In this review, we summarize the role of Twist2 in osteogenesis differentiation, tumor formation and EMT, and its molecular mechanism. It is helpful to have a thorough understanding of the biological functions of Twist2, and facilitate the transformation and application in diagnosis, development and therapy. PMID:25608809

  10. Twist1 Promotes Gastric Cancer Cell Proliferation through Up-Regulation of FoxM1

    PubMed Central

    Gu, Xiaoqiang; Zhan, Wang; Wang, Xi

    2013-01-01

    Twist-related protein 1 (Twist1), also known as class A basic helix-loop-helix protein 38 (bHLHa38), has been implicated in cell lineage determination and differentiation. Previous studies demonstrate that Twist1 expression is up-regulated in gastric cancer with poor clinical outcomes. Besides, Twist1 is suggested to be involved in progression of human gastric cancer. However, its biological functions remain largely unexplored. In the present study, we show that Twist 1 overexpression leads to a significant up-regulation of FoxM1, which plays a key role in cell cycle progression in gastric cancer cells. In contrast, knockdown of Twist 1 reduces FoxM1 expression, suggesting that FoxM1 might be a direct transcriptional target of Twist 1. At the molecular level, we further reveal that Twist 1 could bind to the promoter region of FoxM1, and subsequently recruit p300 to induce FoxM1 mRNA transcription. Therefore, our results uncover a previous unknown Twist 1/FoxM1 regulatory pathway, which may help to understand the mechanisms of gastric cancer proliferation. PMID:24204899

  11. The mouse Clock mutation reduces circadian pacemaker amplitude and enhances efficacy of resetting stimuli and phase-response curve amplitude.

    PubMed

    Vitaterna, Martha Hotz; Ko, Caroline H; Chang, Anne-Marie; Buhr, Ethan D; Fruechte, Ethan M; Schook, Andrew; Antoch, Marina P; Turek, Fred W; Takahashi, Joseph S

    2006-06-13

    The mouse Clock gene encodes a basic helix-loop-helix-PAS transcription factor, CLOCK, that acts in concert with BMAL1 to form the positive elements of the circadian clock mechanism in mammals. The original Clock mutant allele is a dominant negative (antimorphic) mutation that deletes exon 19 and causes an internal deletion of 51 aa in the C-terminal activation domain of the CLOCK protein. Here we report that heterozygous Clock/+ mice exhibit high-amplitude phase-resetting responses to 6-h light pulses (Type 0 resetting) as compared with wild-type mice that have low amplitude (Type 1) phase resetting. The magnitude and time course of acute light induction in the suprachiasmatic nuclei of the only known light-induced core clock genes, Per1 and Per2, are not affected by the Clock/+ mutation. However, the amplitude of the circadian rhythms of Per gene expression are significantly reduced in Clock homozygous and heterozygous mutants. Rhythms of PER2::LUCIFERASE expression in suprachiasmatic nuclei explant cultures also are reduced in amplitude in Clock heterozygotes. The phase-response curves to changes in culture medium are Type 0 in Clock heterozygotes, but Type 1 in wild types, similar to that seen for light in vivo. The increased efficacy of resetting stimuli and decreased PER expression amplitude can be explained in a unified manner by a model in which the Clock mutation reduces circadian pacemaker amplitude in the suprachiasmatic nuclei. PMID:16754844

  12. Arabidopsis HFR1 Is a Potential Nuclear Substrate Regulated by the Xanthomonas Type III Effector XopDXcc8004

    PubMed Central

    Tan, Choon Meng; Li, Meng-Ying; Yang, Pei-Yun; Chang, Shu Heng; Ho, Yi-Ping; Lin, Hong; Deng, Wen-Ling; Yang, Jun-Yi

    2015-01-01

    XopDXcc8004, a type III effector of Xanthomonas campestris pv. campestris (Xcc) 8004, is considered a shorter version of the XopD, which lacks the N-terminal domain. To understand the functions of XopDXcc8004, in planta, a transgenic approach combined with inducible promoter to analyze the effects of XopDXcc8004 in Arabidopsis was done. Here, the expression of XopDXcc8004, in Arabidopsis elicited the accumulation of host defense-response genes. These molecular changes were dependent on salicylic acid and correlated with lesion-mimic phenotypes observed in XVE::XopDXcc8004 transgenic plants. Moreover, XopDXcc8004 was able to desumoylate HFR1, a basic helix-loop-helix transcription factor involved in photomorphogenesis, through SUMO protease activity. Interestingly, the hfr1-201 mutant increased the expression of host defense-response genes and displayed a resistance phenotype to Xcc8004. These data suggest that HFR1 is involved in plant innate immunity and is potentially regulated by XopDXcc8004. PMID:25647296

  13. In vivo Atoh1 targetome reveals how a proneural transcription factor regulates cerebellar development

    PubMed Central

    Klisch, Tiemo J.; Xi, Yuanxin; Flora, Adriano; Wang, Liguo; Li, Wei; Zoghbi, Huda Y.

    2011-01-01

    The proneural, basic helix–loop–helix transcription factor Atoh1 governs the development of numerous key neuronal subtypes, such as cerebellar granule and brainstem neurons, inner ear hair cells, and several neurons of the proprioceptive system, as well as diverse nonneuronal cell types, such as Merkel cells and intestinal secretory lineages. However, the mere handful of targets that have been identified barely begin to account for Atoh1’s astonishing range of functions, which also encompasses seemingly paradoxical activities, such as promoting cell proliferation and medulloblastoma formation in the cerebellum and inducing cell cycle exit and suppressing tumorigenesis in the intestine. We used a multipronged approach to create a comprehensive, unbiased list of over 600 direct Atoh1 target genes in the postnatal cerebellum. We found that Atoh1 binds to a 10 nucleotide motif (AtEAM) to directly regulate genes involved in migration, cell adhesion, metabolism, and other previously unsuspected functions. This study expands current thinking about the transcriptional activities driving neuronal differentiation and provides a framework for further neurodevelopmental studies. PMID:21300888

  14. Interhelical loops within the bHLH domain are determinant in maintaining TWIST1–DNA complexes

    PubMed Central

    Bouard, Charlotte; Terreux, Raphael; Hope, Jennifer; Chemelle, Julie Anne; Puisieux, Alain; Ansieau, Stéphane; Payen, Léa

    2013-01-01

    The basic helix-loop-helix (bHLH) transcription factor TWIST1 is essential to embryonic development, and hijacking of its function contributes to the development of numerous cancer types. It forms either a homodimer or a heterodimeric complex with an E2A or HAND partner. These functionally distinct complexes display sometimes antagonistic functions during development, so that alterations in the balance between them lead to pronounced morphological alterations, as observed in mice and in Saethre–Chotzen syndrome patients. We, here, describe the structures of TWIST1 bHLH–DNA complexes produced in silico through molecular dynamics simulations. We highlight the determinant role of the interhelical loops in maintaining the TWIST1–DNA complex structures and provide a structural explanation for the loss of function associated with several TWIST1 mutations/insertions observed in Saethre–Chotzen syndrome patients. An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:27 PMID:23527594

  15. MondoA deficiency enhances sprint performance in mice

    PubMed Central

    Imamura, Minako; Chang, Benny Hung-Junn; Kohjima, Motoyuki; Li, Ming; Hwang, Byounghoon; Taegtmeyer, Heinrich; Harris, Robert A.; Chan, Lawrence

    2015-01-01

    MondoA is a basic helix–loop–helix (bHLH)/leucine zipper (ZIP) transcription factor that is expressed predominantly in skeletal muscle. Studies in vitro suggest that the Max-like protein X (MondoA:Mlx) heterodimer senses the intracellular energy status and directly targets the promoter region of thioredoxin interacting protein (Txnip) and possibly glycolytic enzymes. We generated MondoA-inactivated (MondoA?/?) mice by gene targeting. MondoA?/? mice had normal body weight at birth, exhibited normal growth and appeared to be healthy. However, they exhibited unique metabolic characteristics. MondoA?/? mice built up serum lactate and alanine levels and utilized fatty acids for fuel during exercise. Gene expression and promoter analysis suggested that MondoA functionally represses peroxisome-proliferator-activated receptor ? co-activator-1? (PGC-1?)–mediated activation of pyruvate dehydrogenase kinase 4 (PDK4) transcription. PDK4 normally down-regulates the activity of pyruvate dehydrogenase, an enzyme complex that catalyses the decarboxylation of pyruvate to acetyl-CoA for entry into the Krebs cycle; in the absence of MondoA, pyruvate is diverted towards lactate and alanine, both products of glycolysis. Dynamic testing revealed that MondoA?/? mice excel in sprinting as their skeletal muscles display an enhanced glycolytic capacity. Our studies uncover a hitherto unappreciated function of MondoA in fuel selection in vivo. Lack of MondoA results in enhanced exercise capacity with sprinting. PMID:25145386

  16. Bhlhe40 controls cytokine production by T cells and is essential for pathogenicity in autoimmune neuroinflammation

    PubMed Central

    Lin, Chih-Chung; Bradstreet, Tara R.; Schwarzkopf, Elizabeth A.; Sim, Julia; Carrero, Javier A.; Chou, Chun; Cook, Lindsey E.; Egawa, Takeshi; Taneja, Reshma; Murphy, Theresa L.; Russell, John H.; Edelson, Brian T.

    2014-01-01

    TH1 and TH17 cells mediate neuroinflammation in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. Pathogenic TH cells in EAE must produce the pro-inflammatory cytokine granulocyte-macrophage colony stimulating factor (GM-CSF). TH cell pathogenicity in EAE is also regulated by cell-intrinsic production of the immunosuppressive cytokine interleukin 10 (IL-10). Here, we demonstrate that mice deficient for the basic helix-loop-helix (bHLH) transcription factor Bhlhe40 (Bhlhe40?/?) are resistant to the induction of EAE. Bhlhe40 is required in vivo in a T cell-intrinsic manner, where it positively regulates the production of GM-CSF and negatively regulates the production of IL-10. In vitro, GM-CSF secretion is selectively abrogated in polarized Bhlhe40?/? TH1 and TH17 cells, and these cells show increased production of IL-10. Blockade of IL-10 receptor in Bhlhe40?/? mice renders them susceptible to EAE. These findings identify Bhlhe40 as a critical regulator of autoreactive T cell pathogenicity. PMID:24699451

  17. Organ-specific effects of brassinosteroids on stomatal production coordinate with the action of Too Many Mouths.

    PubMed

    Wang, Ming; Yang, Kezhen; Le, Jie

    2015-03-01

    In Arabidopsis, stomatal development initiates after protodermal cells acquire stomatal lineage cell fate. Stomata or their precursors communicate with their neighbor epidermal cells to ensure the "one cell spacing" rule. The signals from EPF/EPFL peptide ligands received by Too Many Mouths (TMM) and ERECTA-family receptors are supposed to be transduced by YODA MAPK cascade. A basic helix-loop-helix transcription factor SPEECHLESS (SPCH) is another key regulator of stomatal cell fate determination and asymmetric entry divisions, and SPCH activity is regulated by YODA MAPK cascade. Brassinosteroid (BR) signaling, one of the most well characterized signal transduction pathways in plants, contributes to the control of stomatal production. But opposite organ-specific effects of BR on stomatal production were reported. Here we confirm that stomatal production in hypocotyls is controlled by BR levels. YODA and CYCD4 are not essential for BR stomata-promoting function. Furthermore, we found that BR could confer tmm hypocotyls clustered stomatal phenotype, indicating that the BR organ-specific effects on stomatal production might coordinate with the TMM organ-specific actions. PMID:25234048

  18. Phosphorylation of Serine 186 of bHLH Transcription Factor SPEECHLESS Promotes Stomatal Development in Arabidopsis.

    PubMed

    Yang, Ke-Zhen; Jiang, Min; Wang, Ming; Xue, Shan; Zhu, Ling-Ling; Wang, Hong-Zhe; Zou, Jun-Jie; Lee, Eun-Kyoung; Sack, Fred; Le, Jie

    2015-05-01

    The initiation of stomatal lineage and subsequent asymmetric divisions in Arabidopsis require the activity of the basic helix-loop-helix transcription factor SPEECHLESS (SPCH). It has been shown that SPCH controls entry into the stomatal lineage as a substrate either of the MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) cascade or GSK3-like kinase BRASSINOSTEROID INSENSITIVE 2 (BIN2). Here we show that three serine residues of SPCH appear to be the primary phosphorylation targets of Cyclin-Dependent Kinases A;1 (CDKA;1) in vitro, and among them Serine 186 plays a crucial role in stomatal formation. Expression of an SPCH construct harboring a mutation that results in phosphorylation deficiencies on Serine 186 residue failed to rescue stomatal defects in spch null mutants. Expression of a phosphorylation-mimic mutant SPCH(S186D) complemented stomatal production defects in the transgenic lines harboring the targeted expression of dominant-negative CDKA;1.N146. Therefore, in addition to MAPK- and BIN2-mediated phosphorylation on SPCH, phosphorylation at Serine 186 is positively required for SPCH function in regulating stomatal development. PMID:25680231

  19. Clean Energy Basics

    NSDL National Science Digital Library

    From the National Renewable Energy Laboratory, the Clean Energy Basics Website amounts to a good primer on renewable energy. The four sections of the site are each introduced by a question (What is renewable energy? Why is renewable energy important? Why is energy efficiency important? What does clean energy have to do with me?). The What is renewable energy? section is further divided into topics including information and links for solar energy, wind energy, bioenergy, geothermal energy, hydropower, and ocean energy. While many of the links highlighted within the text are internal, there are quite a few links to reliable external sites as well.

  20. Basic Financial Statements

    NSDL National Science Digital Library

    Garrison, Sharon Hatten

    Dr. Sharon Garrison of the University of Arizona created this basic overview of financial statements for students. Concepts covered in this tutorial include the accounting equation, double entry accounting, debits and credits, balance sheets and income statements. The resources on this site are designed to equip users with the ability identify specific components of a balance sheet and what it says about a company, and the knowledge to put together an income statement. The information on financial statements introduces accounting students to general concepts, and serves as an excellent reference resource for finance fundamentals.

  1. Basic and clinical immunology

    NASA Technical Reports Server (NTRS)

    Chinen, Javier; Shearer, William T.

    2003-01-01

    Progress in immunology continues to grow exponentially every year. New applications of this knowledge are being developed for a broad range of clinical conditions. Conversely, the study of primary and secondary immunodeficiencies is helping to elucidate the intricate mechanisms of the immune system. We have selected a few of the most significant contributions to the fields of basic and clinical immunology published between October 2001 and October 2002. Our choice of topics in basic immunology included the description of T-bet as a determinant factor for T(H)1 differentiation, the role of the activation-induced cytosine deaminase gene in B-cell development, the characterization of CD4(+)CD25(+) regulatory T cells, and the use of dynamic imaging to study MHC class II transport and T-cell and dendritic cell membrane interactions. Articles related to clinical immunology that were selected for review include the description of immunodeficiency caused by caspase 8 deficiency; a case series report on X-linked agammaglobulinemia; the mechanism of action, efficacy, and complications of intravenous immunoglobulin; mechanisms of autoimmunity diseases; and advances in HIV pathogenesis and vaccine development. We also reviewed two articles that explore the possible alterations of the immune system caused by spaceflights, a new field with increasing importance as human space expeditions become a reality in the 21st century.

  2. Mitral Regurgitation (Beyond the Basics)

    MedlinePLUS

    ... developed countries, although it still occurs commonly in developing countries. ? Congenital heart abnormality – Children who are born with ... level information — UpToDate offers two types of patient education materials. The Basics — The Basics patient education pieces ...

  3. The Time for Basic Education.

    ERIC Educational Resources Information Center

    Howard, James

    1981-01-01

    The author urges school boards to respond to retrenchment by cutting back on all school activities except those necessary to providing a sound, basic education. He presents the Council for Basic Education's definition of this concept. Condensed from "Basic Education", March 1981, p3-5. (Editor/SJL)

  4. Basic logic: reflection, symmetry, visibility.

    E-print Network

    Sambin, Giovanni

    Basic logic: reflection, symmetry, visibility. Giovanni Sambin - Giulia Battilotti - Claudia Faggian Abstract We introduce a sequent calculus B for a new logic, named basic logic. The aim of basic logic is to find a structure in the space of logics. Classical, intuitionistic, quantum and non

  5. Basic Business Statistics

    NSDL National Science Digital Library

    Berenson, Mark L.

    As business is one of the most popular undergraduate majors in the United States, it stands to reason that there are a number of specialized textbooks and supporting instructional materials that are dedicated to various topics within this field. This particular website is designed to serve as the companion to a basic business statistic textbook published by Prentice Hall, and it contains quizzes, overviews, and other materials that will be helpful to both students of the discipline and educators. The materials here are divided into nineteen chapters that cover topics like sampling, data presentation, linear regression, and decision making. Visitors can also take advantage of the search engine here, which is located at the top right-hand corner of each page.

  6. Basics of Electrical Products

    NSDL National Science Digital Library

    This course is one of the quickStep series offered by Siemens in Electrical Products. These are FREE on-line industrial knowledge building tutorials. quickSTEPs are a great start for industry novices moving into technical jobs or staff in operational support rolls. They can also be very effectively used as out of class assignments for review or to build fundamental skills. Each course includes: -an online tutorial organized as a number of units and lessons with self check quiz questions-a glossary of terms-a self-check final exam with scoring -an extensive downloadable pdf study guideThis course on the basics of electrical products covers residential, commerical, and industrial applications.

  7. Basics of Circuit Breakers

    NSDL National Science Digital Library

    This course is one of the quickStep series offered by Siemens in Circuit Breakers. These are FREE on-line industrial knowledge building tutorials. quickSTEPs are a great start for industry novices moving into technical jobs or staff in operational support rolls. They can also be very effectively used as out of class assignments for review or to build fundamental skills. Each course includes: an online tutorial organized as a number of units, lessons with self check quiz questions, a glossary of terms, a self-check final exam with scoring, an extensive downloadable PDF study guide. This course offers: basic concepts, breakers part one, breakers part two, a final exam, a glossary and an 88 page study guide.

  8. Basics of AC Motors

    NSDL National Science Digital Library

    This course is one of the quickStep series offered by Siemens in AC Motors. These are FREE on-line industrial knowledge building tutorials. quickSTEPs are a great start for industry novices moving into technical jobs or staff in operational support rolls. They can also be very effectively used as out of class assignments for review or to build fundamental skills. Each course includes: an online tutorial organized as a number of units, lessons with self check quiz questions, a glossary of terms, a self-check final exam with scoring, an extensive downloadable PDF study guide. This course covers: motor basics, NEMA motors, Siemens motorr, final exam, a glossary, plus a 116 page study guide.

  9. Basic Concepts of Electricity

    NSDL National Science Digital Library

    Kuphaldt, Tony R.

    All About Circuits is a website that â??provides a series of online textbooks covering electricity and electronics.â?ť Written by Tony R. Kuphaldt, the textbooks available here are wonderful resources for students, teachers, and anyone who is interested in learning more about electronics. This particular section, Basic Concepts of Electricity, is the first chapter in Volume I. Topics covered in this chapter include: static electricity, conductors, insulators, electron flow, electric circuits, voltage, current, and resistance. Diagrams and detailed descriptions of concepts are included throughout the chapter to provide users with a comprehensive lesson. Visitors to the site are also encouraged to discuss concepts and topics using the All About Circuits discussion forums (registration with the site is required to post materials).

  10. Basic and Clinical Neurosciences

    NSDL National Science Digital Library

    Columbia University's College of Physicians and Surgeons has been a leader in medical education for over a century, and this website is provided as public service for those in the field of medicine and neuroscience. The website provides a series of lectures and videos that provide a "comprehensive and concise review of the neurosciences." It's best to start by reading the executive summary, and then click on over to the "Topics and Speakers" area. Here visitors can look over several dozen lectures that include "Basic Mechanisms of Pain", "Molecular Genetics", and "Neurobiology of Schizophrenia". The lectures are all of very high quality, and visitors who are seeking additional information should look through the "References and Resources" area for external links to relevant medical organizations, research institutes, and academic departments.

  11. Basics of NMR

    NSDL National Science Digital Library

    Hornak, Joseph P.

    Dr. Joseph Hornak of the Rochester Institute of Technology presents this high quality hypertextbook for in-depth coverage of the physics and technique behind Nuclear Magnetic Resonance (NMR) (For Dr. Hornak's Basics of MRI, see the August 4, 1999 Scout Report for Science & Engineering). The material is presented in a detailed and clear manner without over simplifying the concepts. Chapters include "The Mathematics of NMR," "Spin Physics," "NMR Spectroscopy," "Fourier Transforms," "Pulse Sequences," and much more. A chapter on "NMR Hardware" offers an overview of components (like the superconducting magnet and various coils) used in most NMR systems. The "Practical Considerations" chapter emphasizes spectroscopic techniques. With the screen split into two separate frames, explanatory graphics can be viewed alongside the text. A glossary and a list of symbols are also included in this carefully produced textbook.

  12. Corrosion: Understanding the basics

    SciTech Connect

    Davis, J.R. [ed.

    2000-07-01

    This new book presents a practical how to approach to understanding and solving the problems of corrosion of structural materials. Although it is written mainly for those having a limited technical background in corrosion, it also provides more experienced engineers with a useful overview of the principles of corrosion and can be used as a general guide for developing a corrosion-control program. Contents include: the effects and economic impact of corrosion; basic concepts important to corrosion; principles of aqueous corrosion; forms of corrosion: recognition and prevention; types of corrosive environments; corrosion characteristics of structural materials; corrosion control by proper design; corrosion control by materials selection; corrosion control by protective coatings and inhibitors; corrosion control by cathodic and anodic protection; corrosion testing and monitoring; techniques for diagnosis of corrosion failures; and glossary of corrosion-related terms.

  13. Basic Accounting Lesson Plans

    NSDL National Science Digital Library

    Are balance sheets, income statements and cash flow statements keeping you up at night? Well, beginning accounting students (or others with an interest in such matters) will appreciate these basic accounting lesson plans, provided courtesy of the MoneyInstructors.com website. The first section contains a number of lesson plans and worksheets that include topics such as the fundamental concepts of accounting, transaction analysis, accrual accounting and adjusting entries. Moving on, the site also contains a number of useful articles on various topics within the field, such as bookkeeping, ledgers, and profit and loss reports. The site is rounded out by a selection of helpful accounting textbooks that students may wish to look for as they continue their journey through the world of accounting.

  14. Basic memory module

    NASA Technical Reports Server (NTRS)

    Tietze, F. C.

    1974-01-01

    Construction and electrical characterization of the 4096 x 2-bit Basic Memory Module (BMM) are reported for the Space Ultrareliable Modular Computer (SUMC) program. The module uses four 2K x 1-bit N-channel FET, random access memory chips, called array chips, and two sense amplifier chips, mounted and interconnected on a ceramic substrate. Four 5% tolerance power supplies are required. At the Module, the address, chip select, and array select lines require a 0-8.5 V MOS signal level. The data output, read-strobe, and write-enable lines operate at TTl levels. Although the module is organized as 4096 x 2 bits, it can be used in a 8196 x 1-bit application with appropriate external connections. A 4096 x 1-bit organization can be obtained by depopulating chips.

  15. Basic properties and variability

    NASA Technical Reports Server (NTRS)

    Querci, Francois R.

    1987-01-01

    Giant and supergiant M, S, and C stars are discussed in this survey of research. Basic properties as determined by spectra, chemical composition, photometry, or variability type are discussed. Space motions and space distributions of cool giants are described. Distribution of these stars in our galaxy and those nearby is discussed. Mira variables in particular are surveyed with emphasis on the following topics: (1) phase lag phenomenon; (2) Mira light curves; (3) variations in color indices; (4) determination of multiple periods; (5) correlations between quantities such as period length, light-curve shape, infrared (IR) excess, and visible and IR color diagram; (6) semiregular (SR) variables and different time scales in SR light variations; (7) irregular variable Lb and Lc stars; (8) different time-scale light variations; (9) hydrogen-deficient carbon (HdC) stars, in particular RCB stars; and (10) irreversible changes and rapid evolution in red variable stars.

  16. Class WorkbookClass Workbook Basic ExcelBasic ExcelBasic Excel

    E-print Network

    California at San Diego, University of

    Class WorkbookClass Workbook Basic ExcelBasic ExcelBasic Excel Workshop 101Workshop 101Workshop 101 Instructors: David Newbold Jennifer Tran UCSD Libraries Educational Services 09/29/10 #12;2 Why Use Excel? 1 in Excel Formulas are calculations which can show relationships between numbers. Formulas in Excel can

  17. Troxerutin counteracts domoic acid-induced memory deficits in mice by inhibiting CCAAT/enhancer binding protein ?-mediated inflammatory response and oxidative stress.

    PubMed

    Lu, Jun; Wu, Dong-mei; Zheng, Yuan-lin; Hu, Bin; Cheng, Wei; Zhang, Zi-feng; Li, Meng-qiu

    2013-04-01

    The C/EBP ? is a basic leucine zipper transcription factor that regulates a variety of biological processes, including metabolism, cell proliferation and differentiation, and immune response. Recent findings show that C/EBP ?-induced inflammatory responses mediate kainic acid-triggered excitotoxic brain injury. In this article, we show that protein kinase C ? enhances K-ras expression and subsequently activates the Raf/MEK/ERK1/2 pathway in the hippocampus of domoic acid (DA)-treated mice, which promotes C/EBP ? expression and induces inflammatory responses. Elevated production of TNF-? impairs mitochondrial function and increases the levels of reactive oxygen species by I?B kinase ?/NF-?B signaling. The aforementioned inflammation and oxidative stress lead to memory deficits in DA-treated mice. However, troxerutin inhibits cyclin-dependent kinase 1 expression, enhances type 1 protein phosphatase ? dephosphorylation, and abolishes MEK/ERK1/2/C/EBP ? activation, which subsequently reverses the memory impairment observed in the DA-treated mice. Thus, troxerutin is recommended as a potential candidate for the prevention and therapeutic treatment of cognitive deficits resulting from excitotoxic brain damage and other brain disorders. PMID:23420885

  18. Basic concepts of epigenetics

    PubMed Central

    Mazzio, Elizabeth A

    2012-01-01

    Through epigenetic modifications, specific long-term phenotypic consequences can arise from environmental influence on slowly evolving genomic DNA. Heritable epigenetic information regulates nucleosomal arrangement around DNA and determines patterns of gene silencing or active transcription. One of the greatest challenges in the study of epigenetics as it relates to disease is the enormous diversity of proteins, histone modifications and DNA methylation patterns associated with each unique maladaptive phenotype. This is further complicated by a limitless combination of environmental cues that could alter the epigenome of specific cell types, tissues, organs and systems. In addition, complexities arise from the interpretation of studies describing analogous but not identical processes in flies, plants, worms, yeast, ciliated protozoans, tumor cells and mammals. This review integrates fundamental basic concepts of epigenetics with specific focus on how the epigenetic machinery interacts and operates in continuity to silence or activate gene expression. Topics covered include the connection between DNA methylation, methyl-CpG-binding proteins, transcriptional repression complexes, histone residues, histone modifications that mediate gene repression or relaxation, histone core variant stability, H1 histone linker flexibility, FACT complex, nucleosomal remodeling complexes, HP1 and nuclear lamins. PMID:22395460

  19. Network basics for telemedicine.

    PubMed

    Gemmill, Jill

    2005-01-01

    Early telemedicine networks employed dedicated telecommunications circuits (e.g. leased digital lines) in which the sender and receiver were connected by a private circuit. More recently, the Internet has become widely available for general use, including telemedicine. The Internet was engineered to permit network paths to be shared by all users, so data transmission is fundamentally different from traditional, circuit-switched networks. Early telemedicine applications demonstrated the feasibility of Internet Protocol transmission. The basic performance criteria to use in evaluating newer digital communications technologies that carry both voice and data are: (1) bandwidth; (2) packet loss; (3) end-to-end delay; (4) jitter; (5) privacy and security. Network engineering involves performance trade-offs between the hardware, architecture, security and the budget available. A telemedicine application may be running over a network whose design is entirely under the user's control, or the application may employ some part of the Internet whose design is unknown to the user. If an application is not running to satisfaction, then a network engineer should be consulted. PMID:15829050

  20. Biosimilar Insulins: Basic Considerations.

    PubMed

    Heinemann, Lutz; Hompesch, Marcus

    2014-01-01

    Until now most of the insulin used in developed countries has been manufactured and distributed by a small number of multinational companies. Beyond the established insulin manufacturers, a number of new players have developed insulin manufacturing capacities based on modern biotechnological methods. Because the patents for many of the approved insulin formulations have expired or are going to expire soon, these not yet established companies are increasingly interested in seeking market approval for their insulin products as biosimilar insulins (BI) in highly regulated markets like the EU and the United States. Differences in the manufacturing process (none of the insulin manufacturing procedures are 100% identical) can lead to insulins that to some extent may differ from the originator insulin. The key questions are if subtle differences in the structure of the insulins, purity, and so on are clinically relevant and may result in different biological effects. The aim of this article is to introduce and discuss basic aspects that may be of relevance with regard to BI. PMID:24876530

  1. Online Basic Courses for Energy and Automation

    NSDL National Science Digital Library

    Free on-line industrial knowledge building tutorials. quickSTEPs are a great start for industry novices moving into technical jobs or staff in operational support rolls. These are pretty basic courses but could be a good out of classroom review activity. Each Basic course has some self check quiz questions. Each course comes with a pdf manual and reference guide.The topics include: introductory courses basics of electricity; basics of electrical products; motors & control courses; basics of AC drives; basics of AC motors; basics of control components; basics of DC drives; basics of motor control centers; basics of PLCs; basics of sensors; power distribution courses; basics of busway; basics of circuit breakers; basics of load centers; basics of panel boards; basics of power monitoring; basics of safety switches; basics of surge protection. Admittedly this is a site for Siemens personnel and sales staff to get on line training for Siemens products but it genuinely has some good fundamental information.

  2. Visual Basic Representations: An Atlas

    Microsoft Academic Search

    Eugene Plotkin; Andrei Semenov; Nikolai Vavilov

    1998-01-01

    . We depict the weight diagrams of basic and adjoint representationsof complex simple Lie algebras\\/algebraic groups and describesome of their uses.IntroductionIn this paper we collect the weight diagrams of basic representations of complexsimple Lie algebras as well as of those adjoint representations, which are not basic.These pictures arise in a number of contexts, but their main significance stemsfrom the fact

  3. Join patterns for visual basic

    Microsoft Academic Search

    Claudio V. Russo

    2008-01-01

    We describe an extension of Visual Basic 9.0 with asyn- chronous concurrency constructs - join patterns - based on the join calculus. Our design of Concurrent Basic (CB) builds on earlier work on Polyphonic C # and C!. Since that work, the need for language-integrated concurrency has only grown, both due to the arrival of commodity, multi-core hardware, and the

  4. Basic local alignment search tool

    Microsoft Academic Search

    Stephen F. Altschul; Warren Gish; Webb C. Miller; Eugene W. Myers; David J. Lipman

    1990-01-01

    A new approach to rapid sequence comparison, basic local alignment search tool (BLAST),directly approsimates alignments that optimize a measure of local similarity, the maximal segment pair (3ISP) score. Recent mathematical results on the stochastic properties of MSP scores allow an anallrsis of the performance of this method as well as the statistical significance of alignments it generates. The basic algorithm

  5. Czech Basic Course: Verb List.

    ERIC Educational Resources Information Center

    Stoner, William; Vit, Karel V.

    This compilation of verbs, intended for students of the Defense Language Institute (DLI) Basic Course, provides brief definitions for each entry. No sentence examples are included. The text is intended to serve as a compact reference and study aid. Examples are selected from the Basic Course and the DLI Czech-English Dictionary. Entries are listed…

  6. Introduction Basics of gravity theory

    E-print Network

    Visser, Matt

    Introduction Basics of gravity theory Actions and Field Equations Phenomenology Discussion;Introduction Basics of gravity theory Actions and Field Equations Phenomenology Discussion and Conclusions Is there a way out? A high-energy theory of gravity? Fact GR is a classical theory what happens in the Plank

  7. Proc. Natl. Acad. Sci. USA Vol. 92, pp. 10531-10534, November 1995

    E-print Network

    Brent, Roger

    of c-Myc. Mxi2 phosphorylates Max both in vitro and in vivo. The Mxi2 putative substrate recognition region has sequence similarity to the helix-loop-helix region in Max and c-Myc, suggesting that substrate function in the proliferation, differentiation, and oncogenic transformation of higher cells (1, 2). c-Myc

  8. Structural Basis for Simultaneous Binding of Two Carboxy-terminal Peptides of Plant Glutamate

    E-print Network

    Ikura, Mitsuhiko

    . Proteins containing the Ca2ţ -binding EF-hand (helix-loop-helix) motif are known to be involvedM), an acidic, 148 residue protein containing four EF-hands. CaM is able to bind and regulate dozens of the small-conductance potassium channel; EF, anthrax oedema factor; HSQC, 1 H­15 N heteronuclear single

  9. Oligomerization of Hantavirus N Protein: C-Terminal  Helices Interact To Form a Shared Hydrophobic Space

    Microsoft Academic Search

    Pasi Kaukinen; Vibhor Kumar; Kirsi Tulimaki; Peter Engelhardt; Antti Vaheri; Alexander Plyusnin

    2004-01-01

    The structure of the nucleocapsid protein of bunyaviruses has not been defined. Earlier we have shown that Tula hantavirus N protein oligomerization is dependent on the C-terminal domains. Of them, the helix-loop- helix motif was found to be an essential structure. Computer modeling predicted that oligomerization occurs via helix protrusions, and the shared hydrophobic space formed by amino acids residues

  10. Vector Geometry Mapping 1 Job: Vogel 2 689-8 (MiMB) Operator: Sean Murdock

    E-print Network

    Ikura, Mitsuhiko

    Vector Geometry Mapping 1 Job: Vogel 2 689-8 (MiMB) Operator: Sean Murdock Chapter: 24 (Yap et al 24 Vector Geometry Mapping: A Method to Characterize the Conformation of Helix-Loop-Helix Calcium of parameters to be interpreted by the user. In this chapter, we describe a method termed Vector Geometry

  11. The Effect of Organic Osmolytes on the Functional Properties of Parvalbumin from a Euryhaline Stingray

    Microsoft Academic Search

    Jennifer Kate Heffron

    2009-01-01

    Parvalbumin (PV) is an intracellular cation binding protein containing the helix-loop-helix divalent binding domain characteristic of the large EF hand super family of proteins. Parvalbumin was the first EF hand protein to be structurally characterized and is the model for understanding other EF hand proteins including troponin C, myosin light chain, and calmodulin. PV facilitates muscle relaxation by sequestering Ca2+

  12. Introduction to Basic GIS Skills

    NSDL National Science Digital Library

    Chad Heinzel

    Chad Heinzel, University of Northern Iowa Summary Develops basic GIS skills, directs students to other shapefiles (on-campus and off), sets the stage for adding additional class/campus data later in the semester. ...

  13. Bell's Palsy (Beyond the Basics)

    MedlinePLUS

    ... the same virus that causes cold sores and genital herpes. Other viruses may also cause the condition, including ... cytomegalovirus, and Epstein-Barr virus. (See "Patient information: Genital herpes (Beyond the Basics)" and "Patient information: Shingles (Beyond ...

  14. Raynaud Phenomenon (Beyond the Basics)

    MedlinePLUS

    ... autoimmune rheumatic diseases, such as scleroderma or systemic lupus erythematosus. These diseases cause a secondary injury that ... damage the blood vessel. (See "Patient information: Systemic lupus erythematosus (SLE) (Beyond the Basics)" .) RAYNAUD PHENOMENON CAUSES ...

  15. Severe Weather 101: Flood Basics

    MedlinePLUS

    Severe Weather 101 Flood Basics What is flooding? Flooding is an overflowing of water onto land that is normally dry. Floods can happen during heavy rains, when ocean waves come on shore, when snow melts too fast, ...

  16. Basic Electricity/Electronics Syllabus

    NSDL National Science Digital Library

    This pdf contains a syllabus for a course on basic electricity and electronics as part of the Aerospace Technology Program. Topics include safety, instruments, sources and characteristics of electricity, electric connections, circuits, batteries, conductors and insulators, and electrical current.

  17. Basic Blood Tests (For Parents)

    MedlinePLUS

    ... the basic blood chemistry test include blood urea nitrogen and creatinine, which tell how well the kidneys ... amount of sugar in the blood. Blood urea nitrogen (BUN) is a measure of how well the ...

  18. Basic electrical submergible pump sizing

    Microsoft Academic Search

    Logi

    1982-01-01

    A typical submergible electric pumping unit is composed of 7 basic components: electric motor, multi-stage centrifugal pump, protector, power cable, motor flat cable, switchboard and an auto transformer, single 3-phase or a bank of 3 single-phase transformers. In addition to these basic components, various auxiliary items are used. The most common required items to complete an installation are cable clamps,

  19. NANOMATERIALS FOR PROTEIN MEDIATED THERAPY AND DELIVERY

    PubMed Central

    Barry, John N.; Vertegel, Alexey A.

    2014-01-01

    There has been a significant amount of research done on liposomes and nanoparticles as drug carriers for protein drugs. Proteins and enzymes have been used both as targeting moieties and for their therapeutic potential. High specificity and rapid reaction rates make proteins and enzymes excellent candidates for therapeutic treatment, but some limitations exist. Many of these limitations can be addressed by a well studied nanotechnology based delivery system. Such a system can provide a medium for delivery, stabilization of the drugs, and enable site specific accumulation of drugs. Nanomedicines such as these have great potential to revolutionize the pharmaceutical industry and improve healthcare worldwide. PMID:25414730

  20. Cell Metabolism Identification of a Protein Mediating

    E-print Network

    Rutter, Jared

    . INTRODUCTION Mitochondria are unique and complex organelles that perform essential functions in many aspects@biochem.utah.edu DOI 10.1016/j.cmet.2012.02.006 SUMMARY The complexes of the electron transport chain asso- ciate into large macromolecular assemblies, which are believed to facilitate efficient electron flow. We have

  1. Orm family proteins mediate sphingolipid homeostasis

    PubMed Central

    Breslow, David K.; Collins, Sean R.; Bodenmiller, Bernd; Aebersold, Ruedi; Simons, Kai; Shevchenko, Andrej; Ejsing, Christer S.; Weissman, Jonathan S.

    2010-01-01

    Despite the essential roles of sphingolipids as both structural components of membranes and critical signalling molecules, we have a limited understanding of how cells sense and regulate their levels. Here we reveal the function in sphingolipid metabolism of the ORM/ORMDL genes, a conserved gene family that includes ORMDL3, which has recently been identified as a potential risk factor for childhood asthma. Starting from an unbiased functional genomic approach, we identify Orm proteins as negative regulators of sphingolipid synthesis that form a conserved complex with serine palmitoyltransferase, the first and rate-limiting enzyme in sphingolipid production. We also define a regulatory pathway in which phosphorylation of Orm proteins relieves their inhibitory activity when sphingolipid production is disrupted. Changes in ORM gene expression or mutations to their phosphorylation sites cause dysregulation of sphingolipid metabolism. Our work identifies the Orm proteins as critical mediators of sphingolipid homeostasis and raises the possibility that sphingolipid misregulation contributes to the development of childhood asthma. PMID:20182505

  2. Basic Communication Course Annual. Volume 5.

    ERIC Educational Resources Information Center

    Hugenberg, Lawrence W., Ed.

    This volume of an annual collection of essays relating to instruction in the basic communication course presents 1992 Speech Communication Association Basic Course Committee award winning papers, articles on teaching assistants in the basic course, approaches to teaching in the basic course, research on the basic course, and a commentary. Essays…

  3. Smoothed Particle Hydrodynamics Code Basics

    NASA Astrophysics Data System (ADS)

    Monaghan, J. J.

    2001-12-01

    SPH is the shorthand for Smoothed Particle Hydrodynamics. This method is a Lagrangian method which means that it involves following the motion of elements of fluid. These elements have the characteristics of particles and the method is called a particle method. A useful review of SPH (Monaghan 1992) gives the basic technique and how it can be applied to numerous problems relevant to astrophysics. You can get some basic SPH programs from http://www.maths.monash.edu.au/~jjm/sphlect. In the present lecture I will assume that the student has studied this review and therefore understands the basic principles. In today's lecture I plan to approach the equations from a different perspective by using a variational principle.

  4. Basic research for environmental restoration

    SciTech Connect

    Not Available

    1990-12-01

    The Department of Energy (DOE) is in the midst of a major environmental restoration effort to reduce the health and environmental risks resulting from past waste management and disposal practices at DOE sites. This report describes research needs in environmental restoration and complements a previously published document, DOE/ER-0419, Evaluation of Mid-to-Long Term Basic Research for Environmental Restoration. Basic research needs have been grouped into five major categories patterned after those identified in DOE/ER-0419: (1) environmental transport and transformations; (2) advanced sampling, characterization, and monitoring methods; (3) new remediation technologies; (4) performance assessment; and (5) health and environmental effects. In addition to basic research, this document deals with education and training needs for environmental restoration. 2 figs., 6 tabs.

  5. Adult Basic Education: Aligning Adult Basic Education and Postsecondary Education

    ERIC Educational Resources Information Center

    Texas Higher Education Coordinating Board, 2008

    2008-01-01

    In 2007, the 80th Texas Legislature included a rider to the General Appropriations Act for the Texas Higher Education Coordinating Board. The rider directed the agency to coordinate with the Texas Education Agency to develop and implement plans to align adult basic education with postsecondary education. The Coordinating Board, in collaboration…

  6. Total Hip Replacement (Arthroplasty) (Beyond the Basics)

    MedlinePLUS

    ... will develop a blood clot. (See "Patient information: Deep vein thrombosis (DVT) (Beyond the Basics)" and "Patient ... information: Hip pain (Beyond the Basics) Patient information: Deep vein thrombosis (DVT) (Beyond the Basics) Patient information: ...

  7. The GCN4 bZIP can bind to noncognate gene regulatory sequences

    PubMed Central

    Fedorova, Anna V.; Chan, I-San; Shin, Jumi A.

    2008-01-01

    We show that a minimalist basic region/leucine zipper (bZIP) hybrid, comprising the yeast GCN4 basic region and C/EBP leucine zipper, can target mammalian and other gene regulatory sequences naturally targeted by other bZIP and basic/helix–loop–helix (bHLH) proteins. We previously reported that this hybrid, wt bZIP, is capable of sequence-specific, high-affinity binding of DNA comparable to that of native GCN4 to the cognate AP-1 and CRE DNA sites. In this work, we used DNase I footprinting and electrophoretic mobility shift assay to show that wt bZIP can also specifically target noncognate gene regulatory sequences: C/EBP (CCAAT/enhancer binding protein, 5?-TTGCGCAA), XRE1 (Xenobiotic response element, 5?-TTGCGTGA), HRE (HIF response element, 5?-GCACGTAG), and the E-box (Enhancer box, 5?-CACGTG). Although wt bZIP still targets AP-1 with strongest affinity, both DNA-binding specificity and affinity are maintained with wt bZIP binding to noncognate gene regulatory sequences: the dissociation constant for wt bZIP in complex with AP-1 is 13 nM, while that for C/EBP is 120 nM, XRE1 240 nM, and E-box and HRE are in the ?M range. These results demonstrate that the bZIP possesses the versatility to bind various sequences with varying affinities, illustrating the potential to fine-tune a designed protein’s affinity for its DNA target. Thus, the bZIP scaffold may be a powerful tool in design of small, ?-helical proteins with desired DNA recognition properties. PMID:16784907

  8. Edema (Swelling) (Beyond the Basics)

    MedlinePLUS

    ... a result of a blood clot in the deep veins of the lower leg (called deep vein thrombosis [DVT]). In this case, the edema ... cause swelling of both legs. (See "Patient information: Deep vein thrombosis (DVT) (Beyond the Basics)" .) Pregnancy — Pregnant ...

  9. A psychology of learning BASIC

    Microsoft Academic Search

    Richard E. Mayer

    1979-01-01

    This paper addresses the question: What does a person know following learning of BASIC programming? Several underlying conceptual structures are identified: (1) a transaction is an event that occurs in the computer and involves some operation on some object at some location, (2) a prestatement is a set of transactions corresponding to a line of code, (3) chunks are frequently

  10. IP contains basic observations or

    E-print Network

    IP contains basic observations or measurements (data) in static form (e.g., tables, figures.g., metadata). IP contains any of the following: new methods for data acquisition or processing; stated data or analyses of data; extrapolation from data to predictions. IP presents new original data

  11. Nuclear basic proteins in spermiogenesis

    Microsoft Academic Search

    D. Wouters-Tyrou; A. Martinage; P. Chevaillier; P. Sautičre

    1998-01-01

    In animal species, spermiogenesis, the late stage of spermatogenesis is characterized by a dramatic remodelling of chromatin which involves morphological changes and various modifications in the nature of the nuclear basic proteins. According to the evolution of species, three situations can be observed: a) persistence of somatic histones or appearance of sperm-specific histones: b) direct replacement of histones by generally

  12. Welding. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of eight terminal objectives for a basic welding course. The materials were developed for a 36-week (2 hours daily) course developed to teach the fundamentals of welding shop work, to become familiar with the operation of the welding shop…

  13. Guarani Basic Course, Part I.

    ERIC Educational Resources Information Center

    Blair, Robert W.; And Others

    This is the first in a two-volume basic course in Guarani, the indigenous language of Paraguay. The volume consists of an introduction to the Guarani language, some general principles for adult language-learning, and ten instructional units. Because the goal of the course is to encourage and lead the learner to communicate in Guarani in class and…

  14. Guarani Basic Course, Part II.

    ERIC Educational Resources Information Center

    Blair, Robert W.; And Others

    This volume of the basic course in Guarani (the indigenous language of Paraguay) contains the core stage, or class-instructional phase, of the ten units presented in Volume One. These units contain explanations, exercises, dialogues, various types of pattern drills, suggestions for games and communication activities, and various types of…

  15. Federal Grants: A Basic Handbook.

    ERIC Educational Resources Information Center

    Mohrman, Kathryn; And Others

    Presented are some basic facts about the process of getting federal money for individual research projects, institutional activities, curriculum development, or other programs in higher education institutions. Some background is given on the purposes and history of federal grant monies, and steps in the proposal process are outlined: gathering…

  16. Keep Communication Professional BASIC TIPS

    E-print Network

    Gering, Jon C.

    Keep Communication Professional BASIC TIPS: Staying professional in your career is vital. You the way through your career until you retire. It's important to not become too casual when communicating with employers or other professionals while seeking an internship/co-op. Don't use slang when communicating

  17. Geography's Place in Basic Education.

    ERIC Educational Resources Information Center

    Woodring, Paul

    1984-01-01

    Geography instruction provides a basis for more education and for life. A knowledge of geography is basic to the study of history, economics, political science, geology, biology, and many other disciplines. Geographical knowledge is essential for daily activities such as reading a newspaper or comprehending world events. (RM)

  18. Basic Telecommunications, The Physical Layer

    NSDL National Science Digital Library

    Mullett, Gary J.

    This page from Delmar Learning provides more information about the book "Basic Telecommunications, The Physical Layer" by Gary J. Mullet. The book includes information on wireline, wireless, and other fiber optic topics, focusing on physical layer implementation of system hardware. Users may order the book via this website. A link is also provided to request a review copy.

  19. PHOSPHORUS BASICS Larry G. Bundy

    E-print Network

    Balser, Teri C.

    PHOSPHORUS BASICS Larry G. Bundy Dept. of Soil Science University of Wisconsin #12;Phosphorus Terminology · Phosphorus (P) = element name and symbol · P2O5 = phosphate (oxide) Amount of P in fertilizers use #12;Forms & Concentrations of Phosphorus (P) in Soils Form Concentration (ppm) Total 1000 Soil

  20. 1. Introduction 2. Basic operations

    E-print Network

    INDEX 1. Introduction 2. Basic operations 3. Useful copy operations 4. Useful printing operations 5/Print/Fax/Scan/Box Operations] #12;C652/C652DS/C552/C552DS/C452 x-1 Contents 1 Introduction 1.1 Energy Star® .................................................................................................................................... 1-2 What is an ENERGY STAR® Product

  1. Getting Back to Basics (& Acidics)

    ERIC Educational Resources Information Center

    Rhodes, Sam

    2006-01-01

    This article describes a few novel acid-base experiments intended to introduce students to the basic concepts of acid-base chemistry and provide practical examples that apply directly to the study of biology and the human body. Important concepts such as the reaction between carbon dioxide and water, buffers and protein denaturation, are covered.…

  2. Topics in Basic Maser Theory

    E-print Network

    Moshe Elitzur

    2001-05-11

    This review covers some of the developments in basic theory of astronomical masers over the past ten years. Topics included are the effects of three dimensional geometry and polarization, with special emphasis on the differences between maser and non-maser radiation.

  3. French Basic Course. Area Studies.

    ERIC Educational Resources Information Center

    Defense Language Inst., Monterey, CA.

    This volume provides the prescribed cultural background that is part of the final phase of the Basic Course in French. The texts provide the basis for discussions and personal research through which students become acquainted with various aspects of the French-speaking world and learn the referential meaning of words and expressions as they are…

  4. Basic Skills in Asian Studies.

    ERIC Educational Resources Information Center

    Hantula, James

    This publication contains field tested learning activities which will help secondary students develop basic skills while learning about Asian history, culture, and geography. The activities can be used or easily adapted by teachers in any Asian studies course. The publication is organized by the skills taught. These are: reading; applying…

  5. Core Competencies for Basic Drafting.

    ERIC Educational Resources Information Center

    Werner, Claire; Calderon, Ray

    These competencies for drafting are designed to cover basic principles and practices for beginning drafters. Each competency appears in a one-page format. It is presented as a goal statement followed by one or more "indicator" statements, which are performance objectives describing an ability that, upon attainment, will establish competency for…

  6. Basic Considerations in Interviewing Children.

    ERIC Educational Resources Information Center

    Jennings, Rick L.

    This manual summarizes and highlights basic considerations in interviewing children. The relationship between interviewing for data collection and interviewing within the counseling or psychotherapeutic context is discussed. The Interviewer's Functional Checklist is presented to provide a method for self-evaluating interviewer behavior, and for…

  7. Robot Control Basics Feedback control!

    E-print Network

    Kosecka, Jana

    for ! · linear and angular velocities to reach the desired configuration! ! Problem statement ! · Given arbitrary1! Robot Control Basics CS 685! Feedback control! · More suitable alternative! · Use state feedback and desired position! y #12;2! Kinematic Position Control The kinematic of a differential drive mobile robot

  8. The Junction Diode Basic Operation

    E-print Network

    Leach Jr.,W. Marshall

    The Junction Diode Basic Operation The diode is fabricated of a semiconductor material, usually section of the diode. The junction is the dividing line between the n-type and p-type sides. Thermal the electric field sweeps them out. Figure 1: (a) Diode cross section. (b) Reverse biased diode. (c) Forward

  9. Building a Basic Series Circuit

    NSDL National Science Digital Library

    Perkins School for the Blind

    2012-06-26

    This activity was designed for blind learners, but all types of learners can use it to build and examine a basic electrical circuit. Other activities using the circuit set-up are outlined, such as making an electric fan. A safety note cautions that goggles should be worn at all times when using electricity.

  10. JSC interactive basic accounting system

    NASA Technical Reports Server (NTRS)

    Spitzer, J. F.

    1978-01-01

    Design concepts for an interactive basic accounting system (IBAS) are considered in terms of selecting the design option which provides the best response at the lowest cost. Modeling the IBAS workload and applying this workload to a U1108 EXEC 8 based system using both a simulation model and the real system is discussed.

  11. 1988-89 Basic Agenda.

    ERIC Educational Resources Information Center

    Randall, John D.; And Others

    The "Basic Agenda" of the Board of Governors of the California Community Colleges (CCC) is developed annually to establish priorities for the community college system and act as the Board's chief policy-making document. The 1988-89 agenda identifies 20 major issues facing the colleges and offers concrete solutions for their resolution during the…

  12. Turkish Basic Course. Graded Reader.

    ERIC Educational Resources Information Center

    Agrali, Selman N., Comp.; And Others

    The present Reader is the third and final volume in the Foreign Service Institute's "Turkish Basic Course." (See ED 013 451 and ED 024 050 for Units 1-30 and Units 31-50.) Reading selections are arranged in approximate ascending order of difficulty with some grouping of selections in subject matter categories. The selections, which have not been…

  13. BASICS OF GENERALIZED PARTON DISTRIBUTIONS

    SciTech Connect

    Anatoly Radyushkin

    2012-12-01

    A brief review of the theory of generalized parton distributions (GPDs) is given. We discuss the basic concepts of the GPD theory and relationship between GPDs and simpler phenomenological functions, viz. form factors, parton densities and distribution amplitudes. A special emphasis is given to the formulation of GPDs in terms of double distributions.

  14. Environmental Education: Back to Basics.

    ERIC Educational Resources Information Center

    Warpinski, Robert

    1984-01-01

    Describes an instructional framework based on concepts of energy, ecosystems, carrying capacity, change, and stewardship. Stresses the importance of determining what is really important (basic) for each student to experience or learn in relation to each concept and grade level. Student-centered learning activities and sample lesson on energy…

  15. Basic Mechanisms of the Epilepsies.

    ERIC Educational Resources Information Center

    Jasper, Herbert H., Ed.; And Others

    A collection of highly technical scientific articles by international basic and clinical neuroscientists constitutes a review of their knowledge of the brain and nervous system, particularly the aspects related to loss of brain function control and its explosive discharges which cause epileptic seizures. Anatomy, biophysics, biochemistry, and…

  16. Basic Communication Course Annual. Volume 4.

    ERIC Educational Resources Information Center

    Hugenberg, Lawrence W., Ed.

    This collection of 11 papers contains three types of papers: (1) 1991 Speech Communication Association Basic Course Committee award winning papers; (2) articles on the basic communication course; and (3) the public speaking basic course. The papers are: "Academic Success in the Basic Course: The Influence of Apprehension and Demographics" (Charles…

  17. Poster Presentations 1 Poster Presentation Basics

    E-print Network

    Texas at Arlington, University of

    Basics Poster Presentations 1 Poster Presentation Basics #12;Poster presentations involve two things Poster Presentation Basics2 Creating an effective poster The oral presentation you do standing by your poster #12;Effective posters A poster should convey the basic, most crucial points of your work

  18. The Basics of Brain Development

    PubMed Central

    Stiles, Joan

    2010-01-01

    Over the past several decades, significant advances have been made in our understanding of the basic stages and mechanisms of mammalian brain development. Studies elucidating the neurobiology of brain development span the levels of neural organization from the macroanatomic, to the cellular, to the molecular. Together this large body of work provides a picture of brain development as the product of a complex series of dynamic and adaptive processes operating within a highly constrained, genetically organized but constantly changing context. The view of brain development that has emerged from the developmental neurobiology literature presents both challenges and opportunities to psychologists seeking to understand the fundamental processes that underlie social and cognitive development, and the neural systems that mediate them. This chapter is intended to provide an overview of some very basic principles of brain development, drawn from contemporary developmental neurobiology, that may be of use to investigators from a wide range of disciplines. PMID:21042938

  19. Comprehensive analysis of expressed sequence tags from the pulp of the red mutant 'Cara Cara' navel orange (Citrus sinensis Osbeck).

    PubMed

    Ye, Jun-Li; Zhu, An-Dan; Tao, Neng-Guo; Xu, Qiang; Xu, Juan; Deng, Xiu-Xin

    2010-10-01

    Expressed sequence tag (EST) analysis of the pulp of the red-fleshed mutant 'Cara Cara' navel orange provided a starting point for gene discovery and transcriptome survey during citrus fruit maturation. Interpretation of the EST datasets revealed that the mutant pulp transcriptome held a high section of stress responses related genes, such as the type III metallothionein-like gene (6.0%), heat shock protein (2.8%), Cu/Zn superoxide dismutase (0.8%), late embryogenesis abundant protein 5 (0.8%), etc. 133 transcripts were detected to be differentially expressed between the red mutant and its orange-color wild genotype 'Washington' via digital expression analysis. Among them, genes involved in metabolism, defense/stress and signal transduction were statistical overrepresented. Fifteen transcription factors, composed of NAM, ATAF, and CUC transcription factor (NAC); myeloblastosis (MYB); myelocytomatosis (MYC); basic helix-loop-helix (bHLH); basic leucine zipper (bZIP) domain members, were also included. The data reflected the distinct expression profile and the unique regulatory module associated with these two genotypes. Eight differently expressed genes analyzed in digital were validated by quantitative real-time polymerase chain reaction. For structural polymorphism, both simple sequence repeats and single nucleotide polymorphisms (SNP) loci were surveyed; dinucleotide presentation revealed a bias toward AG/GA/TC/CT repeats (52.5%), against GC/CG repeats (0%). SNPs analysis found that transitions (73%) outnumbered transversions (27%). Seventeen potential cultivar-specific and 387 heterozygous SNP loci were detected from 'Cara Cara' and 'Washington' EST pool. PMID:20883438

  20. Basic Concepts of Optical Microscopy

    NSDL National Science Digital Library

    Davidson, Michael W.

    This site is a comprehensive primer focused on the basic optical microscope, as well as the electron, confocal, polarizing, and stereoscopic microscopes. Virtual microscopes allow the user to simulate the use of a variety of real-life microscopes. There are galleries of photomicrographs illustrating a variety of specimens. This website provides complete instructional materials on the theory of light and the applications of microscopy to a variety of analytical problems.