Science.gov

Sample records for basic sciences branch

  1. Annual report, Basic Sciences Branch, FY 1991

    SciTech Connect

    Not Available

    1993-04-01

    This report summarizes the progress of the Basic Sciences Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1990, through September 30, 1991. Seven technical sections of the report cover these main areas of NREL's in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, Solid-State Spectroscopy, and Superconductivity. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy's National Photovoltaic Research Program plans.

  2. Annual report, Basic Sciences Branch, FY 1991

    SciTech Connect

    Not Available

    1993-04-01

    This report summarizes the progress of the Basic Sciences Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1990, through September 30, 1991. Seven technical sections of the report cover these main areas of NREL`s in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, Solid-State Spectroscopy, and Superconductivity. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy`s National Photovoltaic Research Program plans.

  3. Basic Sciences Branch annual report, FY 1990

    SciTech Connect

    Not Available

    1991-12-01

    This report summarizes the progress of the Basic Sciences Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1989, through September 30, 1990. Six technical sections of the report cover these main areas of NREL's in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Solid-State Spectroscopy. Each section of the report was written by the group leader principally in charge of the work. The task in each case was to explain the purpose and major accomplishments of the work in the context of the US Department of Energy's National Photovoltaic Research Program plans.

  4. Basic Sciences Branch annual report, FY 1990

    SciTech Connect

    Not Available

    1991-12-01

    This report summarizes the progress of the Basic Sciences Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1989, through September 30, 1990. Six technical sections of the report cover these main areas of NREL`s in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Solid-State Spectroscopy. Each section of the report was written by the group leader principally in charge of the work. The task in each case was to explain the purpose and major accomplishments of the work in the context of the US Department of Energy`s National Photovoltaic Research Program plans.

  5. Basic Science.

    ERIC Educational Resources Information Center

    Mercer County Community Coll., Trenton, NJ.

    Instructional materials are provided for a course that covers basic concepts of physics and chemistry. Designed for use in a workplace literacy project developed by Mercer County Community College (New Jersey) and its partners, the course describes applications of these concepts to real-life situations, with an emphasis on applications of…

  6. Improving Graduate Education to Support a Branching Career Pipeline: Recommendations Based on a Survey of Doctoral Students in the Basic Biomedical Sciences

    PubMed Central

    Fuhrmann, C. N.; Halme, D. G.; O’Sullivan, P. S.; Lindstaedt, B.

    2011-01-01

    Today's doctoral programs continue to prepare students for a traditional academic career path despite the inadequate supply of research-focused faculty positions. We advocate for a broader doctoral curriculum that prepares trainees for a wide range of science-related career paths. In support of this argument, we describe data from our survey of doctoral students in the basic biomedical sciences at University of California, San Francisco (UCSF). Midway through graduate training, UCSF students are already considering a broad range of career options, with one-third intending to pursue a non–research career path. To better support this branching career pipeline, we recommend that national standards for training and mentoring include emphasis on career planning and professional skills development to ensure the success of PhD-level scientists as they contribute to a broadly defined global scientific enterprise. PMID:21885820

  7. Basic Science Training Program.

    ERIC Educational Resources Information Center

    Brummel, Clete

    These six learning modules were developed for Lake Michigan College's Basic Science Training Program, a workshop to develop good study skills while reviewing basic science. The first module, which was designed to provide students with the necessary skills to study efficiently, covers the following topics: time management; an overview of a study…

  8. Basic science highlights.

    PubMed

    Stevenson, Mario

    2007-01-01

    The 14th Conference on Retroviruses and Opportunistic Infections generated a lot of excitement with the announcement of clinical studies employing the use of 2 new classes of antiretroviral drugs that target the viral integrase enzyme and the viral coreceptor CCR5. In addition, a number of presentations on cellular restriction factors provided surprises regarding the mechanism by which cellular restrictions antagonize viral infection. There was also much interest in studies presenting novel cellular cofactors of HIV-1 infection. The conference illustrated how basic science research is paying off. Essential steps in the viral life cycle, uncovered through basic research, are now being targeted by new classes of antiviral agents. In addition, basic science is unveiling potential new targets of antiretroviral therapy. PMID:17485783

  9. Reflections on basic science.

    PubMed

    Piatigorsky, Joram

    2010-01-01

    After almost 50 years in science, I believe that there is an acceptable, often advantageous chasm between open-ended basic research-free exploration without a practical destination and in which the original ideas may fade into new concepts-and translational research or clinical research. My basic research on crystalline (proteins conferring the optical properties of the eye lens) led me down paths I never would have considered if I were conducting translational research. My investigations ranged from jellyfish to mice and resulted in the gene-sharing concept, which showed that the same protein can have distinct molecular functions depending upon its expression pattern and, conversely, that different proteins can serve similar functional roles. This essay portrays basic science as a creative narrative, comparable to literary and artistic endeavors. Preserving the autonomy of open-ended basic research and recognizing its artistic, narrative qualities will accelerate the development of innovative concepts, create a rich resource of information feeding translational research, and have a positive impact by attracting creative individuals to science. PMID:21037410

  10. Code 672 observational science branch computer networks

    NASA Technical Reports Server (NTRS)

    Hancock, D. W.; Shirk, H. G.

    1988-01-01

    In general, networking increases productivity due to the speed of transmission, easy access to remote computers, ability to share files, and increased availability of peripherals. Two different networks within the Observational Science Branch are described in detail.

  11. Basic sciences: an alternative career?

    PubMed

    Khatri, R

    2013-01-01

    Career selection is a crucial and a complex process which is also true for the medical profession. In the context of our country, due to the limited opportunity and proper guidance, migration of medical graduates to foreign countries is increasing. Though, clinical subjects have a huge attraction, basic science field has failed to impress our medical graduates. In current scenario, basic science field seems to be a dumping site for the incompetent as the candidates who have failed trying their luck elsewhere stumble upon basic science careers though it is not true for all. Moreover, a very few medical graduates are interested in developing their career as a basic scientist. Therefore, to motivate today's young medical graduates, there is a need of a good mentor along with a proper career guidance which can help them to understand the basic science field as an alternative career. PMID:23774420

  12. Basic science of osteoarthritis.

    PubMed

    Cucchiarini, Magali; de Girolamo, Laura; Filardo, Giuseppe; Oliveira, J Miguel; Orth, Patrick; Pape, Dietrich; Reboul, Pascal

    2016-12-01

    Osteoarthritis (OA) is a prevalent, disabling disorder of the joints that affects a large population worldwide and for which there is no definitive cure. This review provides critical insights into the basic knowledge on OA that may lead to innovative end efficient new therapeutic regimens. While degradation of the articular cartilage is the hallmark of OA, with altered interactions between chondrocytes and compounds of the extracellular matrix, the subchondral bone has been also described as a key component of the disease, involving specific pathomechanisms controlling its initiation and progression. The identification of such events (and thus of possible targets for therapy) has been made possible by the availability of a number of animal models that aim at reproducing the human pathology, in particular large models of high tibial osteotomy (HTO). From a therapeutic point of view, mesenchymal stem cells (MSCs) represent a promising option for the treatment of OA and may be used concomitantly with functional substitutes integrating scaffolds and drugs/growth factors in tissue engineering setups. Altogether, these advances in the fundamental and experimental knowledge on OA may allow for the generation of improved, adapted therapeutic regimens to treat human OA. PMID:27624438

  13. Improving Graduate Education to Support a Branching Career Pipeline: Recommendations Based on a Survey of Doctoral Students in the Basic Biomedical Sciences

    ERIC Educational Resources Information Center

    Fuhrmann, C. N.; Halme, D. G.; O'Sullivan, P. S.; Lindstaedt, B.

    2011-01-01

    Today's doctoral programs continue to prepare students for a traditional academic career path despite the inadequate supply of research-focused faculty positions. We advocate for a broader doctoral curriculum that prepares trainees for a wide range of science-related career paths. In support of this argument, we describe data from our survey of…

  14. Basic Space Sciences in Jordan

    NASA Astrophysics Data System (ADS)

    Al-Naimy, H. M. K.; Konsul, Khalil

    The aim of this paper is to summarize the activities and research projects of Basic Space Sciences (Astronomy and Space Sciences (AASS)) in the following Jordanian organizations and Institutions: 1. Jordanian Astronomical Society (JAS). 2. Universities {Mainly Al al-Bayt University}. Institute of Astronomy and Space Sciences (IAASS). Maragha Astronomical Observatory (MAO). 3. Arab Union for Astronomy and Space Sciences (AUASS). 4. ICOP Activities: Islamic Crescent Observational Program. The paper summarizes also other activities in some Jordanian organizations and the future expectation, for AASS in Jordan.

  15. FY 1990 Applied Sciences Branch annual report

    SciTech Connect

    Keyes, B.M.; Dippo, P.C.

    1991-11-01

    The Applied Sciences Branch actively supports the advancement of DOE/SERI goals for the development and implementation of the solar photovoltaic technology. The primary focus of the laboratories is to provide state-of-the-art analytical capabilities for materials and device characterization and fabrication. The branch houses a comprehensive facility which is capable of providing information on the full range of photovoltaic components. A major objective of the branch is to aggressively pursue collaborative research with other government laboratories, universities, and industrial firms for the advancement of photovoltaic technologies. Members of the branch disseminate research findings to the technical community in publications and presentations. This report contains information on surface and interface analysis, materials characterization, development, electro-optical characterization module testing and performance, surface interactions and FTIR spectroscopy.

  16. Basic Science and The NIH

    PubMed Central

    Varmus, Harold

    1994-01-01

    The following is an edited version of the Keynote Speech delivered at the Annual Meeting of the American Society for Cell Biology by Harold Varmus, Director of the National Institutes of Health. The address, entitled Basic Science and the NIH, was given at the opening of the meeting in New Orleans on December 11, 1993. It was Varmus' first public policy talk as NIH Director. PMID:8049519

  17. Basic sciences agonize in Turkey!

    NASA Astrophysics Data System (ADS)

    Akdemir, Fatma; Araz, Asli; Akman, Ferdi; Durak, Rıdvan

    2016-04-01

    In this study, changes from past to present in the departments of physics, chemistry, biology and mathematics, which are considered as the basic sciences in Turkey, are shown. The importance of basic science for the country emphasized and the status of our country was discussed with a critical perspective. The number of academic staff, the number of students, opened quotas according to years for these four departments at universities were calculated and analysis of the resulting changes were made. In examined graphics changes to these four departments were similar. Especially a significant change was observed in the physics department. Lack of jobs employing young people who have graduated from basic science is also an issue that must be discussed. There are also qualitative results of this study that we have discussed as quantitative. Psychological problems caused by unemployment have become a disease among young people. This study was focused on more quantitative results. We have tried to explain the causes of obtained results and propose solutions.

  18. Fort Collins Science Center Ecosystem Dynamics Branch

    USGS Publications Warehouse

    Wilson, Jim; Melcher, C.; Bowen, Z.

    2009-01-01

    Complex natural resource issues require understanding a web of interactions among ecosystem components that are (1) interdisciplinary, encompassing physical, chemical, and biological processes; (2) spatially complex, involving movements of animals, water, and airborne materials across a range of landscapes and jurisdictions; and (3) temporally complex, occurring over days, weeks, or years, sometimes involving response lags to alteration or exhibiting large natural variation. Scientists in the Ecosystem Dynamics Branch of the U.S. Geological Survey, Fort Collins Science Center, investigate a diversity of these complex natural resource questions at the landscape and systems levels. This Fact Sheet describes the work of the Ecosystems Dynamics Branch, which is focused on energy and land use, climate change and long-term integrated assessments, herbivore-ecosystem interactions, fire and post-fire restoration, and environmental flows and river restoration.

  19. Annual report, Materials Science Branch, FY 1992

    SciTech Connect

    Padilla, S.

    1993-10-01

    This report summarizes the progress of the Materials Science Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1991, through September 30, 1992. Six technical sections of the report cover these main areas of NREL`s in-house research: Crystal Growth, Amorphous Silicon, III-V High-Efficiency Photovoltaic Cells, Solid State Theory, Solid State Spectroscopy, and Program Management. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy`s National Photovoltaic Research Program plans.

  20. Basic space sciences in Africa

    NASA Astrophysics Data System (ADS)

    Abiodun, Adigun Ade; Odingo, Richard S.

    Through space applications, a number of social and economic programmes in education, communications, agro-climatology, weather forecasting and remote sensing are being realized within the African continent. Regional and international organizations and agencies such as the African Remote Sensing Council, the Pan-African Telecommunication Union and the United Nations system have been instrumental in making Africa conscious of the impact and implications of space science and technology on its peoples. The above notwithstanding, discernible interests in space research, to date, in Africa, have been limited to the work on the solar system and on interplanetary matters including satellite tracking, and to the joint African-Indian proposal for the establishment of an International Institute for Space Sciences and Electronics (INISSE) and the construction, in Kenya, of a Giant Equatorial Radio Telescope (GERT). During this ``Transport and Communications Decade in Africa,'' Africa's basic space research efforts would need to initially focus on the appropriateness, modification and adaptation of existing technologies for African conditions with a view to providing economic, reliable and functional services for the continent. These should include elements of electronics, communications, structural and tooling industries, and upper-atmosphere research. The experience of and collaborative work with India, Brazil and Argentina, as well as the roles of African scientists, are examined.

  1. Basic space science education in Nigeria

    NASA Astrophysics Data System (ADS)

    Onuora, L. I.; Ubachukwu, A. A.; Asogwa, M. O.

    1995-01-01

    The role of basic space science in the present curriculum for primary and secondary schools is discussed as well as the future development of Space Science Education at all levels (Primary, Secondary, and Tertiary). The importance of educating teachers in basic space science is emphasized. Provision of Planetariums in the country could go a long way to help in the education process as well as in popularizing space science.

  2. Basic Sciences Instruction, The Columbia University Model.

    ERIC Educational Resources Information Center

    Formicola, Allan J.; Kahn, Norman

    1992-01-01

    The redesign of basic science curriculum at the Columbia University (New York) dental school is outlined. Goals included development of a medical continuum allowing students to apply basic science to patient care; decompression of crowded second-year content; and facilitation of student pursuit of research and other biomedical interests in third…

  3. Basic Energy Sciences FY 2014 Research Summaries

    SciTech Connect

    2014-01-01

    This report provides a collection of research abstracts and highlights for more than 1,200 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2014 at some 200 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  4. Basic Energy Sciences FY 2012 Research Summaries

    SciTech Connect

    2012-01-01

    This report provides a collection of research abstracts and highlights for more than 1,400 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2012 at some 180 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  5. Basic Energy Sciences FY 2011 Research Summaries

    SciTech Connect

    2011-01-01

    This report provides a collection of research abstracts for more than 1,300 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2011 at some 180 institutions across the U.S. This volume is organized along the three BES divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  6. Basic Principles of Animal Science. Reprinted.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee.

    The reference book is designed to fulfill the need for organized subject matter dealing with basic principles of animal science to be incorporated into the high school agriculture curriculum. The material presented is scientific knowledge basic to livestock production. Five units contain specific information on the following topics: anatomy and…

  7. Radiological Dispersion Devices and Basic Radiation Science

    ERIC Educational Resources Information Center

    Bevelacqua, Joseph John

    2010-01-01

    Introductory physics courses present the basic concepts of radioactivity and an overview of nuclear physics that emphasizes the basic decay relationship and the various types of emitted radiation. Although this presentation provides insight into radiological science, it often fails to interest students to explore these concepts in a more rigorous…

  8. [Challenges of basical sciences in medical education].

    PubMed

    Rodríguez Carranza, Rodolfo

    2014-12-01

    The relevance of basic sciences in medical education has been recognized for centuries, and the importance of exposing medical students to science was acknowledged and reinforced by the recommendations of Flexner in 1910. Since then, traditional medical education has been divided into preclinical and clinical subjects; within this scheme, the first terms of undergraduate medical education usually concentrate on basic sciences, while subsequent ones focus on clinical sciences and clinical training. Since 1956, this educational scheme has been questioned and, in some schools, the medical curriculum has undergone significant structural changes; some of these reforms, especially integrated curricula, are associated with important reductions in the time allotted to individual basic science courses or even with their removal. The removal of basic science subjects from the medical curriculum is paradoxical because nowadays the value of biomedical knowledge and the scientific reasoning to make medical decisions is more appreciated than ever. To maintain its relevance in medical education, basic sciences have to confront three challenges: a) increasing its presence in clinical education; b) developing nuclear programs; and c) renewing laboratory instruction. PMID:25643888

  9. Basic energy sciences: Summary of accomplishments

    NASA Astrophysics Data System (ADS)

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  10. Basic Energy Sciences: Summary of Accomplishments

    DOE R&D Accomplishments Database

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  11. Basic science curriculum in vascular surgery residency.

    PubMed

    Sidawy, A N; Sumpio, B; Clowes, A W; Rhodes, R S

    2001-04-01

    Recognizing the importance of basic science teaching in surgical education, the leadership of the Association of Program Directors in Vascular Surgery (APDVS) appointed a panel to gather information and to present its findings at the 1999 annual fall meeting of the Apdvs. A questionnaire was distributed to the program directors present. In addition, information was gathered from the American Board of Surgery regarding the basic science content in the vascular surgery item pool on the vascular surgery qualifying examination (VQE). The vascular surgery unit of the surgical resident curriculum was also analyzed. Fifty-three program directors (64%) completed the questionnaire. Although only two program directors felt that their residents were better prepared to answer basic science questions, the results of the Vqe showed that the examinees do not, as a group, perform differently on basic science items than on clinical management questions. In addition, only a minority of program directors (15%) use a specific method to monitor the learning process of their residents. The majority of the program directors responding (75%) felt that they were capable of teaching basic science to residents. Interestingly, almost half the 53 respondents (47%) said that a basic science curriculum should be comprehensive, not exclusively relevant to the clinical setting. Vqe content outline and the vascular surgery unit of the surgical resident curriculum revealed great emphasis on clinically relevant basic science information. The Apdvs panel recommends that a basic science curriculum should be comprehensive, yet clinically pertinent, and completely integrated with the clinical curriculum. In terms of how to teach basic science in vascular residencies, the panel supports teaching conferences that are problem-based with a faculty member acting as the "resource person" and with specific goals set for the conferences. The panel also suggested establishing a Web site that provides a series of

  12. FWP executive summaries: Basic energy sciences materials sciences programs

    SciTech Connect

    Samara, G.A.

    1996-02-01

    This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

  13. Primary Science Curriculum Guide, C. Branching Out.

    ERIC Educational Resources Information Center

    Victoria Education Dept. (Australia).

    Examples of reports from children in grades 4-6 of Education Department of Victoria schools are used to illustrate the suggestions made for teaching the topics included in the science course. Emphasis is given to methods of inter-relating science and other activities, including social studies, mathematics, writing and history. Teachers are…

  14. Teaching Toxicology as a Basic Medical Science

    ERIC Educational Resources Information Center

    Gralla, Edward J.

    1976-01-01

    A 4-year effort at Yale University School of Medicine to teach toxicology as an elective basic science from the standpoint of organ-specific toxic effects is described. The objective of the successful multidisciplinary program is to prepare physicians to understand, recognize, and manage adverse effects from drugs and other environmental…

  15. Integration of Basic Sciences in Health's Courses

    ERIC Educational Resources Information Center

    Azzalis, L. A.; Giavarotti, L.; Sato, S. N.; Barros, N. M. T.; Junqueira, V. B. C.; Fonseca, F. L. A.

    2012-01-01

    Concepts from disciplines such as Biochemistry, Genetics, Cellular and Molecular Biology are essential to the understanding and treatment of an elevated number of illnesses, but often they are studied separately, with no integration between them. This article proposes a model for basic sciences integration based on problem-based learning (PBL) and…

  16. Basic Physical Science. Apprentice Related Training Module.

    ERIC Educational Resources Information Center

    Rice, Eric

    One in a series of core instructional materials for apprentices to use during the first or second years of apprentice-related subjects training, this booklet deals with basic physical science. The first section consists of an outline of the content and scope of the core materials as well as a self-assessment pretest. Covered in the four…

  17. Radiological Dispersion Devices and Basic Radiation Science

    NASA Astrophysics Data System (ADS)

    Bevelacqua, Joseph John

    2010-05-01

    Introductory physics courses present the basic concepts of radioactivity and an overview of nuclear physics that emphasizes the basic decay relationship and the various types of emitted radiation. Although this presentation provides insight into radiological science, it often fails to interest students to explore these concepts in a more rigorous manner. One reason for limited student interest is the failure to link the discussion to topics of current interest. The author has found that presenting this material with a link to radiological dispersion devices (RDDs), or dirty bombs, and their associated health effects provides added motivation for students. The events of Sept. 11, 2001, and periodic media focus on RDDs heighten student interest from both a scientific curiosity as well as a personal protection perspective. This article presents a framework for a more interesting discussion of the basics of radiation science and their associated health effects. The presentation can be integrated with existing radioactivity lectures or added as a supplementary or enrichment activity.

  18. The United Nations Basic Space Science Initiative

    NASA Astrophysics Data System (ADS)

    Haubold, Hans; Balogh, Werner

    2014-05-01

    The basic space science initiative was a long-term effort for the development of astronomy and space science through regional and international cooperation in this field on a worldwide basis, particularly in developing nations. Basic space science workshops were co-sponsored and co-organized by ESA, JAXA, and NASA. A series of workshops on basic space science was held from 1991 to 2004 (India 1991, Costa Rica and Colombia 1992, Nigeria 1993, Egypt 1994, Sri Lanka 1995, Germany 1996, Honduras 1997, Jordan 1999, France 2000, Mauritius 2001, Argentina 2002, and China 2004; http://neutrino.aquaphoenix.com/un-esa/) and addressed the status of astronomy in Asia and the Pacific, Latin America and the Caribbean, Africa, and Western Asia. Through the lead of the National Astronomical Observatory Japan, astronomical telescope facilities were inaugurated in seven developing nations and planetariums were established in twenty developing nations based on the donation of respective equipment by Japan.Pursuant to resolutions of the Committee on the Peaceful Uses of Outer Space of the United Nations (COPUOS) and its Scientific and Technical Subcommittee, since 2005, these workshops focused on the preparations for and the follow-ups to the International Heliophysical Year 2007 (UAE 2005, India 2006, Japan 2007, Bulgaria 2008, South Korea 2009; www.unoosa.org/oosa/SAP/bss/ihy2007/index.html). IHY's legacy is the current operation of 16 worldwide instrument arrays with more than 1000 instruments recording data on solar-terrestrial interaction from coronal mass ejections to variations of the total electron content in the ionosphere (http://iswisecretariat.org/). Instruments are provided to hosting institutions by entities of Armenia, Brazil, France, Israel, Japan, Switzerland, and the United States. Starting in 2010, the workshops focused on the International Space Weather Initiative (ISWI) as mandated in a three-year-work plan as part of the deliberations of COPUOS. Workshops on ISWI

  19. TÜV - Zertifizierungen in der Life Science Branche

    NASA Astrophysics Data System (ADS)

    Schaff, Peter; Gerbl-Rieger, Susanne; Kloth, Sabine; Schübel, Christian; Daxenberger, Andreas; Engler, Claus

    Life Sciences [1] (Lebenswissenschaften) sind ein globales Innovationsfeld mit Anwendungen der Bio- und Medizinwissenschaften, der Pharma-, Chemie-, Kosmetik- und Lebensmittelindustrie. Diese Branche zeichnet sich durch eine stark interdisziplinäre Ausrichtung aus, mit Anwendung wissenschaftlicher Erkenntnisse und Einsatz von Ausgangsstoffen aus der modernen Biologie, Chemie und Humanmedizin sowie gezielter marktwirtschaftlich orientierter Arbeit.

  20. Horton and Tokunaga self-similarity in basic models of branching, aggregation, time series

    NASA Astrophysics Data System (ADS)

    Zaliapin, I.; Kovchegov, Y.

    2012-12-01

    Hierarchical branching structures are readily seen in river and drainage networks, lightening, botanical trees, vein structure of leaves, snowflakes, and bronchial passages, to mention but a few. Empirical evidence reveals a surprising similarity among natural hierarchies of diverse origin; many of them are closely approximated by so-called self-similar trees (SSTs). A two-parametric subclass of Tokunaga SSTs plays a special role in theory and applications, as it has been shown to emerge in unprecedented variety of modeled and natural phenomena. The Tokunaga SSTs with a broad range of parameters are seen in studies of river networks, aftershock sequences, vein structure of botanical leaves, numerical analyses of diffusion limited aggregation, two dimensional site percolation, and nearest-neighbor clustering in Euclidean spaces. The omnipresence of Tokunaga self-similarity hints at the existence of universal underlying mechanisms responsible for its appearance and prompts the question: What basic probability models may generate Tokunaga self-similar trees? This paper reviews the existing results on Tokunaga self-similarity of the critical binary Galton-Watson process, also known as Shreve's random topology model or equiprobable binary tree model. We then present new analytic results that establish Horton and Tokunaga self-similarity in (i) level-set tree representation of white noise, (ii) level-set tree representation of random walk and Brownian motion, and (iii) Kingman's coalescent process. We also formulate a conjecture, based on extensive numerical experiments, about Tokunaga self-similarity for the (iv) additive and (v) multiplicative coalescents as well as (vi) fractional Brownian motion. The listed processes are among the essential building blocks in natural and computer sciences modeling. Accordingly, the results of this study may provide at least a partial explanation for the presence of Horton and Tokunaga self-similarity in observed and modeled branching

  1. SCIENCE INTERVIEW: China's Leader Commits to Basic Research, Global Science.

    PubMed

    2000-06-16

    SCIENCE INTERVIEW:China's Leader Commits to Basic Research, Global Science In an exclusive interview with Science, President Jiang Zemin offers a glimpse of a new China that is encouraging young scientists to use the Internet for their work--and reveals his secret past as a nuclear engineer. Alternately tough, charming, charismatic, and personally warm, Jiang makes clear in this interview that he is a pragmatist and is committed to major structural change. His comments are edited for brevity and include written answers to questions submitted prior to the interview. PMID:17835103

  2. Limitations on diversity in basic science departments.

    PubMed

    Leboy, Phoebe S; Madden, Janice F

    2012-08-01

    It has been over 30 years since the beginning of efforts to improve diversity in academia. We can identify four major stages: (1) early and continuing efforts to diversify the pipeline by increasing numbers of women and minorities getting advanced degrees, particularly in science, technology, engineering, and math (STEM); (2) requiring academic institutions to develop their own "affirmative action plans" for hiring and promotion; (3) introducing mentoring programs and coping strategies to help women and minorities deal with faculty practices from an earlier era; (4) asking academic institutions to rethink their practices and policies with an eye toward enabling more faculty diversity, a process known as institutional transformation. The thesis of this article is that research-intensive basic science departments of highly ranked U.S. medical schools are stuck at stage 3, resulting in a less diverse tenured and tenure-track faculty than seen in well-funded science departments of major universities. A review of Web-based records of research-intensive departments in universities with both medical school and nonmedical school departments indicates that the proportion of women and Black faculty in science departments of medical schools is lower than the proportion in similarly research-intensive university science departments. Expectations for faculty productivity in research-intensive medical school departments versus university-based departments may lead to these differences in faculty diversity. PMID:22775445

  3. The United Nations Basic Space Science Initiative

    NASA Astrophysics Data System (ADS)

    Haubold, H. J.

    2006-08-01

    Pursuant to recommendations of the United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS), annual UN/ European Space Agency workshops on basic space science have been held around the world since 1991. These workshops contribute to the development of astrophysics and space science, particularly in developing nations. Following a process of prioritization, the workshops identified the following elements as particularly important for international cooperation in the field: (i) operation of astronomical telescope facilities implementing TRIPOD, (ii) virtual observatories, (iii) astrophysical data systems, (iv) concurrent design capabilities for the development of international space missions, and (v) theoretical astrophysics such as applications of nonextensive statistical mechanics. Beginning in 2005, the workshops focus on preparations for the International Heliophysical Year 2007 (IHY2007). The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost, ground-based, world-wide instrument arrays as lead by the IHY secretariat. Wamsteker, W., Albrecht, R. and Haubold, H.J.: Developing Basic Space Science World-Wide: A Decade of UN/ESA Workshops. Kluwer Academic Publishers, Dordrecht 2004. http://ihy2007.org http://www.unoosa.org/oosa/en/SAP/bss/ihy2007/index.html http://www.cbpf.br/GrupPesq/StatisticalPhys/biblio.htm

  4. Basic Science for a Secure Energy Future

    NASA Astrophysics Data System (ADS)

    Horton, Linda

    2010-03-01

    Anticipating a doubling in the world's energy use by the year 2050 coupled with an increasing focus on clean energy technologies, there is a national imperative for new energy technologies and improved energy efficiency. The Department of Energy's Office of Basic Energy Sciences (BES) supports fundamental research that provides the foundations for new energy technologies and supports DOE missions in energy, environment, and national security. The research crosses the full spectrum of materials and chemical sciences, as well as aspects of biosciences and geosciences, with a focus on understanding, predicting, and ultimately controlling matter and energy at electronic, atomic, and molecular levels. In addition, BES is the home for national user facilities for x-ray, neutron, nanoscale sciences, and electron beam characterization that serve over 10,000 users annually. To provide a strategic focus for these programs, BES has held a series of ``Basic Research Needs'' workshops on a number of energy topics over the past 6 years. These workshops have defined a number of research priorities in areas related to renewable, fossil, and nuclear energy -- as well as cross-cutting scientific grand challenges. These directions have helped to define the research for the recently established Energy Frontier Research Centers (EFRCs) and are foundational for the newly announced Energy Innovation Hubs. This overview will review the current BES research portfolio, including the EFRCs and user facilities, will highlight past research that has had an impact on energy technologies, and will discuss future directions as defined through the BES workshops and research opportunities.

  5. Basic principles of pharmaceutical science in Ayurvĕda.

    PubMed

    Subhose, Varanasi; Srinivas, Pitta; Narayana, Ala

    2005-01-01

    Pharmaceutical is one of the allied branches of science, which is closely associated with Medical science. Today pharmaceutical chemistry and pharmacognosy are playing important role in treatment for a disease and its prevention. Herbal medicines are being used by about 80% of the world population mostly in the developing countries in the primary health care. There has been an upsurge in demand for the Phyto-pharmaceutical products of Ayurvĕda in western nations, because of the fact that the synthetic drugs are considered to be unsafe. Due to this many national and multinational pharmaceutical companies are now concentrating on manufacturing of Ayurvĕdic Phyto-pharmaceutical products. Ayurvĕda is the Indian traditional system of medicine, which also deals about pharmaceutical science. The Ayurvĕdic knowledge of the pharmaceutical science is scattered in Ayurvĕdic classical texts. Săranghadhara Samhita, which is written by Săranghadhara, explain systematically about the information of the Ayurvĕdic pharmaceutical science and also updated it. Industrialized manufacturing of Ayurvĕdic dosage forms has brought in new challenges like deviation from basic concepts of medicine preparation. Săranghadhara Samrhită the devout text on pharmaceutics in Ayurvĕda comes handy to solve such problems, as the methods described are very lucid and easy to follow. PMID:17333665

  6. Basic Science Living Skills for Today's World. Teacher's Edition.

    ERIC Educational Resources Information Center

    Zellers (Robert W.) Educational Services, Johnstown, PA.

    This document is a teacher's edition of a basic skills curriculum in science for adult basic education (ABE) students. The course consists of 25 lessons on basic science concepts, designed to give students a good understanding of the biological and physical sciences. Suggested activities and experiments that the student can do are also included.…

  7. 78 FR 38696 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee...; Office of Basic Energy Sciences; U.S. Department of Energy; Germantown Building, 1000 Independence...

  8. 76 FR 48147 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of renewal of the Basic Energy Sciences Advisory Committee. SUMMARY: Pursuant to Section 14(a)(2)(A) of the..., ] General Services Administration, notice is hereby given that the Basic Energy Sciences Advisory...

  9. 77 FR 5246 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... Energy Sciences Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of open meeting. ] SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory... Perine; Office of Basic Energy Sciences; U.S. Department of Energy; Germantown Building,...

  10. 78 FR 6088 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-29

    ... Energy Sciences Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee... Basic Energy Sciences, U.S. Department of Energy; SC-22/Germantown Building, 1000 Independence Avenue...

  11. 75 FR 41838 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee...; Office of Basic Energy Sciences; U.S. Department of Energy; Germantown Building, 1000 Independence...

  12. Science Advising in the Legislative and Executive Branches

    NASA Astrophysics Data System (ADS)

    Zimmerman, Peter D.

    2002-04-01

    Almost every action of modern government has some scientific and technical component. However, most senior officials who must set policy and make decisions have little or no scientific training. As a result a small, but growing, number of professional scientists have left their research careers for new ones providing the needed technical advice. Interestingly enough, the job of "science adviser" is very different in the Executive Branch than it is in Congress. The major part of that difference comes from the responsibilities of the parent organization: the Executive actually sets the policies, proposes budgets, and then must perform. As science adviser to the Arms Control and Disarmament Agency and, after its merger with the State Department, I felt that I had a direct effect on how some issues were resolved. Congress, on the other hand, has the responsibility for authorizing and appropriating funds and setting the terms for their use. It exerts much of its power through holding hearings to make points to the public and the administration, but the adviser is usually placed bureaucratically much closer to the Senator or Congressman being advised than to a principal within the Executive Branch and may have more opportunities to communicate with his boss A science adviser is paid to advise on science, not policy, and must do his or her best not to shape the science to fit a desired outcome, the adviser's or the boss's. There are never enough scientists on staff to cover the territory; in all likelihood, there never will be. That makes it incumbent upon the adviser to reach out to his colleagues in ever-widening circles and across boundaries of disciplines. It certainly means learning new science along the way -- when I joined the SFRC staff last summer, I never dreamed that I would have to learn so much biology and medicine in a matter of days. The science community also has an obligation if it wants to see good science advising in Washington: be available; provide

  13. 78 FR 47677 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... Energy Sciences Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of... Sciences Advisory Committee's (BESAC) charter will be renewed for a two-year period. The Committee will provide advice and recommendations to the Office of Science on the Basic Energy Sciences...

  14. 77 FR 41395 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee... Energy Sciences, U.S. Department of Energy, Germantown Building, 1000 Independence Avenue SW.,...

  15. 76 FR 8358 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee... Energy Sciences; U.S. Department of Energy; Germantown Building, 1000 Independence Avenue,...

  16. 76 FR 41234 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee... Sciences; U.S. Department of Energy; Germantown Building, 1000 Independence Avenue, SW., Washington,...

  17. 75 FR 6369 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee... Energy Sciences; U.S. Department of Energy; Germantown Building, Independence Avenue, Washington,...

  18. Attendance at Basic Sciences Lectures: A Student Perspective.

    ERIC Educational Resources Information Center

    Mendez, Antonio; Ramos, Gilberto

    Factors that may affect a medical student's decision to attend basic science lectures were investigated. Basic science faculty members and administrators' views on student lecture attendance were elicited to construct a questionnaire. A total of 103 first-year and 75 second-year medical students attending a Puerto Rican medical school responded to…

  19. Basic research supported by the Office of Basic Energy Sciences, U.S. Department of Energy

    SciTech Connect

    Kelley, R.D.

    1995-08-01

    This presentation will outline the basic research activities of the Office of Basic Energy Sciences (BES) of the U.S. Department of Energy. The BES mission is to develop understanding and to stimulate innovative thinking needed to fortify the Department`s mission. Of particular focus in the presentation are the research programs, amounting to about $10 million, supported by the Materials Sciences Division and the Chemical Sciences Division which are fairly directly related to electrochemical technologies.

  20. Clinical Competencies and the Basic Sciences: An Online Case Tutorial Paradigm for Delivery of Integrated Clinical and Basic Science Content

    ERIC Educational Resources Information Center

    DiLullo, Camille; Morris, Harry J.; Kriebel, Richard M.

    2009-01-01

    Understanding the relevance of basic science knowledge in the determination of patient assessment, diagnosis, and treatment is critical to good medical practice. One method often used to direct students in the fundamental process of integrating basic science and clinical information is problem-based learning (PBL). The faculty facilitated small…

  1. Populations. Basic Edition. Science for Micronesia.

    ERIC Educational Resources Information Center

    Trust Territory of the Pacific Islands Dept. of Education, Saipan.

    This teacher's guide is for an elementary school science unit designed for use with third grade (or older) children in the Trust Territory of Micronesia. Although there is a degree of similarity to curriculum materials developed for the Science Curriculum Improvement Study, this Micronesian unit does not purport to be an adaptation or edition of…

  2. Website for the Astrochemistry Laboratory, Astrophysics Branch, Space Sciences Division

    NASA Technical Reports Server (NTRS)

    Sandford, Scott; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The Astrochemistry Laboratory in the Astrophysics Branch (SSA) of the Space Sciences Division at NASA's Ames Research Center specializes in the study of extraterrestrial materials and their analogs. The staff has pioneered laboratory studies of space environments including interstellar, cometary, and planetary ices, simulations of the so-called 'Unidentified' Infrared Emission Bands and Diffuse Interstellar Bands using PAHs (Polycyclic Aromatic Hydrocarbons) and PAH-related materials, and has extensive experience with low-temperature spectroscopy and astronomical observation. Important discoveries made by the Astrochemistry Group include: (1) The recognition that polycyclic aromatic hydrocarbons and their ions are common in space; (2) The identification of a major fraction of the known molecular species frozen in interstellar/pre-cometary ices; (3) The recognition that a significant fraction of the carbon in the interstellar medium is carried by both microdiamonds and organic materials; (4) The expansion of the types of molecules expected to be synthesized in interstellar/pre-cometary ices. These could be delivered to the early Earth (or other body) and influence the origin or early evolution of life.

  3. BASIC STEPS IN DESIGNING SCIENCE LABORATORIES.

    ERIC Educational Resources Information Center

    WHITNEY, FRANK L.

    PLANNERS OF CURRENT UNIVERSITY LABORATORIES OFTEN MAKE THE SAME MISTAKES MADE BY INDUSTRIAL LABORATORIES 20 YEARS AGO. THIS CAN BE REMEDIED BY INCREASED COMMUNICATION BETWEEN SCIENTISTS AND DESIGNERS IN SEMINARS DEFINING THE BASIC NEEDS OF A PARTICULAR LABORATORY SITUATION. ELECTRONIC AND MECHANICAL EQUIPMENT ACCOUNT FOR OVER 50 PER CENT OF TOTAL…

  4. Psychopathology as the basic science of psychiatry.

    PubMed

    Stanghellini, Giovanni; Broome, Matthew R

    2014-09-01

    We argue that psychopathology, as the discipline that assesses and makes sense of abnormal human subjectivity, should be at the heart of psychiatry. It should be a basic educational prerequisite in the curriculum for mental health professionals and a key element of the shared intellectual identity of clinicians and researchers in this field. PMID:25179621

  5. Office of Basic Energy Sciences 1990 summary report

    SciTech Connect

    Not Available

    1990-10-01

    Basic research is an important investment in the future which will help the US maintain and enhance its economic strength. The Office of Basic Energy Sciences (BES) basic research activities, carried out mainly in universities and Department of Energy (DOE) laboratories, are critical to the Nation's leadership in science, for training future scientists, and to fortify the Nation's foundations for social and economic well-being. Attainment of the national goals -- energy self-sufficiency, improved health and quality of life for all, economic growth, national security -- depends on both technological research achievements and the ability to exploit them rapidly. Basic research is a necessary element for technology development and economic growth. This report presents the Department of Energy's Office of Basic Energy Sciences program. The BES mission is to develop understanding and to stimulate innovative thinking needed to fortify the Department's missions.

  6. Micro-Economic Models of Problem Choice in Basic Science.

    ERIC Educational Resources Information Center

    Sneed, Joseph D.

    Certain representations of basic scientific knowledge can be coupled with traditional micro-economic analysis to provide an analysis of rational research planning or agenda setting in basic science. Research planning is conceived of as a resource allocation decision in which resources are being allocated to activities directed toward the solution…

  7. [Basic areas of medical science in Uzbekistan].

    PubMed

    Abdullakhodzhaeva, M S

    2016-01-01

    The paper considers the issues of medicine development in the Republic of Uzbekistan and the contribution made by prominent scientists developing effective methods for diagnosing and treating different diseases in medical science. A great part is assigned to medical science advances in our country. To solve the urgent problems of public health, much attention is given to the training of scientific manpower, the setting up of specialized research and practical medical centers of different profile, research laboratories of medical higher educational establishments as a base for conducting researches and investigations, which will be able to improve the quality of medical care to the population and corresponds to a health care reform program. PMID:27070775

  8. The Museum of Science and Industry Basic List of Children's Science Books, 1986.

    ERIC Educational Resources Information Center

    Richter, Bernice, Comp.; Wenzel, Duane, Comp.

    This first supplement to the Museum of Science and Industry Basic List of Children's Science Books contains books received for the museum's 13th annual children's science book fair. Children's science books are listed under these headings: animals; astronomy; aviation and space; biography; careers; earth sciences; environment/conservation;…

  9. Family Science Activities for Adult Basic and Literacy Education.

    ERIC Educational Resources Information Center

    Community Action Southwest, Waynesburg, PA.

    A staff development project created a series of family science activities to be used in adult basic and literacy education (ABLE) and family literacy programs and a training guide for staff and volunteers. The training guide provides background principles and concepts for science activities. The activities identify materials and indicate ways the…

  10. Basic space science in Africa: The Nigerian experience

    NASA Astrophysics Data System (ADS)

    Okeke, P. N.; Onuora, L. I.

    1995-01-01

    The present status of basic space science research in African countries is reviewed. The efforts being made to develop space science research at the University of Nigeria are discussed, as well as the proposed international collaboration on solar seismology. Such international collaborations appear to be the only way forward for African countries. It is emphasized that policy makers in African countries need to be made aware of the importance of space science and its various technological spin offs.

  11. Welding As Science: Applying Basic Engineering Principles to the Discipline

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.

    2010-01-01

    This Technical Memorandum provides sample problems illustrating ways in which basic engineering science has been applied to the discipline of welding. Perhaps inferences may be drawn regarding optimal approaches to particular welding problems, as well as for the optimal education for welding engineers. Perhaps also some readers may be attracted to the science(s) of welding and may make worthwhile contributions to the discipline.

  12. Assessment of the basic energy sciences program. Volume II. Appendices

    SciTech Connect

    Not Available

    1982-03-01

    A list of experts reviewing the Basic Energy Sciences (BES) program and their organizations are given. The assessment plan is explained; the program examined the following: quality of science being conducted in the program, quality of performers supported by the Basic Energy Sciences (BES) program, and the impact of the research on mission oriented needs. The intent of the assessment is to provide an indication of general status relative to these questions for the BES divisions. The approach to the assessment is described. The sampling plan which was used as a guide in determining the sample size and selecting the sample to evaluate the research program of the Office of Basic Energy Sciences are discussed. Special analyses were conducted on the dispersion of reviewers' ratings, the ratings of the lower funded projects, and the amount of time the principal investigator devoted to the project. These are presented in the final appendix together with histograms for individual rating variables for each program area. (MCW)

  13. The Museum of Science and Industry Basic List of Children's Science Books, 1987.

    ERIC Educational Resources Information Center

    Richter, Bernice, Comp.; Wenzel, Duane, Comp.

    Presented is the second annual supplement to the Museum of Science and Industry Basic List of Children's Science Books 1973-1984. In this supplement, children's science books are listed under the headings of animals, astronomy, aviation and space, biography, earth sciences, encyclopedias and reference books, environment and conservation, fiction,…

  14. Speaking of food: connecting basic and applied plant science.

    PubMed

    Gross, Briana L; Kellogg, Elizabeth A; Miller, Allison J

    2014-10-01

    The Food and Agriculture Organization (FAO) predicts that food production must rise 70% over the next 40 years to meet the demands of a growing population that is expected to reach nine billion by the year 2050. Many facets of basic plant science promoted by the Botanical Society of America are important for agriculture; however, more explicit connections are needed to bridge the gap between basic and applied plant research. This special issue, Speaking of Food: Connecting Basic and Applied Plant Science, was conceived to showcase productive overlaps of basic and applied research to address the challenges posed by feeding billions of people and to stimulate more research, fresh connections, and new paradigms. Contributions to this special issue thus illustrate some interactive areas of study in plant science-historical and modern plant-human interaction, crop and weed origins and evolution, and the effects of natural and artificial selection on crops and their wild relatives. These papers provide examples of how research integrating the basic and applied aspects of plant science benefits the pursuit of knowledge and the translation of that knowledge into actions toward sustainable production of crops and conservation of diversity in a changing climate. PMID:25326609

  15. Fort Collins Science Center- Policy Analysis and Science Assistance Branch : Integrating social, behavioral, economic and biological sciences

    USGS Publications Warehouse

    2010-01-01

    The Fort Collins Science Center's Policy Analysis and Science Assistance (PASA) Branch is a team of approximately 22 scientists, technicians, and graduate student researchers. PASA provides unique capabilities in the U.S. Geological Survey by leading projects that integrate social, behavioral, economic, and biological analyses in the context of human-natural resource interactions. Resource planners, managers, and policymakers in the U.S. Departments of the Interior (DOI) and Agriculture (USDA), State and local agencies, as well as international agencies use information from PASA studies to make informed natural resource management and policy decisions. PASA scientists' primary functions are to conduct both theoretical and applied social science research, provide technical assistance, and offer training to advance performance in policy relevant research areas. Management and research issues associated with human-resource interactions typically occur in a unique context, involve difficult to access populations, require knowledge of both natural/biological science in addition to social science, and require the skill to integrate multiple science disciplines. In response to these difficult contexts, PASA researchers apply traditional and state-of-the-art social science methods drawing from the fields of sociology, demography, economics, political science, communications, social-psychology, and applied industrial organization psychology. Social science methods work in concert with our rangeland/agricultural management, wildlife, ecology, and biology capabilities. The goal of PASA's research is to enhance natural resource management, agency functions, policies, and decision-making. Our research is organized into four broad areas of study.

  16. Curriculum Considerations for Correlating Basic and Clinical Sciences.

    ERIC Educational Resources Information Center

    Mackenzie, Richard S.

    1980-01-01

    Six ways a dentist can profit from the basic sciences are: (1) increased sensitivity to the environment, (2) improved judgment, (3) better explanations to patients, (4) enhanced ability to learn, (5) improved communication with health professionals, and (6) greater role diversity. Literature is reviewed related to mental processes. (Author/MLW)

  17. Nutrition in pediatrics: basic science and clinical applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The first edition of Nutrition in Pediatrics: Basic Science and Clinical Applications was published in 1985 to "...offer a comprehensive review of general concepts of nutrition as they pertain to pediatrics as well as relevant information on the nutritional management of specific disease states." A ...

  18. A brief simulation intervention increasing basic science and clinical knowledge

    PubMed Central

    Sheakley, Maria L.; Gilbert, Gregory E.; Leighton, Kim; Hall, Maureen; Callender, Diana; Pederson, David

    2016-01-01

    Background The United States Medical Licensing Examination (USMLE) is increasing clinical content on the Step 1 exam; thus, inclusion of clinical applications within the basic science curriculum is crucial. Including simulation activities during basic science years bridges the knowledge gap between basic science content and clinical application. Purpose To evaluate the effects of a one-off, 1-hour cardiovascular simulation intervention on a summative assessment after adjusting for relevant demographic and academic predictors. Methods This study was a non-randomized study using historical controls to evaluate curricular change. The control group received lecture (nl=515) and the intervention group received lecture plus a simulation exercise (nl+s=1,066). Assessment included summative exam questions (n=4) that were scored as pass/fail (≥75%). USMLE-style assessment questions were identical for both cohorts. Descriptive statistics for variables are presented and odds of passage calculated using logistic regression. Results Undergraduate grade point ratio, MCAT-BS, MCAT-PS, age, attendance at an academic review program, and gender were significant predictors of summative exam passage. Students receiving the intervention were significantly more likely to pass the summative exam than students receiving lecture only (P=0.0003). Discussion Simulation plus lecture increases short-term understanding as tested by a written exam. A longitudinal study is needed to assess the effect of a brief simulation intervention on long-term retention of clinical concepts in a basic science curriculum. PMID:27060102

  19. BASIC ELECTRICITY. SCIENCE IN ACTION SERIES, NUMBER 14.

    ERIC Educational Resources Information Center

    CASSEL, RICHARD

    THIS TEACHING GUIDE, INVOLVING ACTIVITIES FOR DEVELOPING AN UNDERSTANDING OF BASIC ELECTRICITY, EMPHASIZES STUDENT INVESTIGATIONS RATHER THAN FACTS, AND IS BASED ON THE PREMISE THAT THE MAJOR GOAL IN SCIENCE TEACHING IS THE DEVELOPMENT OF THE INVESTIGATIVE ATTITUDE IN THE STUDENT. ACTIVITIES SUGGESTED INVOLVE SIMPLE DEMONSTRATIONS AND EXPERIMENTS…

  20. The New Millennium and an Education That Captures the Basic Spirit of Science.

    ERIC Educational Resources Information Center

    Bybee, Rodger W.

    This document discusses reflections of the old and new millennium on education that capture the basic spirit of science. The explanation includes basic scientific ideas in physical sciences, earth systems, solar system and space; living systems; basic scientific thinking; the basic distinction between science and technology; basic connections…

  1. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    SciTech Connect

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  2. Storytelling in Earth sciences: The eight basic plots

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan

    2012-11-01

    Reporting results and promoting ideas in science in general, and Earth science in particular, is treated here as storytelling. Just as in literature and drama, storytelling in Earth science is characterized by a small number of basic plots. Though the list is not exhaustive, and acknowledging that multiple or hybrid plots and subplots are possible in a single piece, eight standard plots are identified, and examples provided: cause-and-effect, genesis, emergence, destruction, metamorphosis, convergence, divergence, and oscillation. The plots of Earth science stories are not those of literary traditions, nor those of persuasion or moral philosophy, and deserve separate consideration. Earth science plots do not conform those of storytelling more generally, implying that Earth scientists may have fundamentally different motivations than other storytellers, and that the basic plots of Earth Science derive from the characteristics and behaviors of Earth systems. In some cases preference or affinity to different plots results in fundamentally different interpretations and conclusions of the same evidence. In other situations exploration of additional plots could help resolve scientific controversies. Thus explicit acknowledgement of plots can yield direct scientific benefits. Consideration of plots and storytelling devices may also assist in the interpretation of published work, and can help scientists improve their own storytelling.

  3. Social and Economic Analysis Branch: integrating policy, social, economic, and natural science

    USGS Publications Warehouse

    Schuster, Rudy; Walters, Katie D.

    2015-01-01

    The Fort Collins Science Center's Social and Economic Analysis Branch provides unique capabilities in the U.S. Geological Survey by leading projects that integrate social, behavioral, economic, and natural science in the context of human–natural resource interactions. Our research provides scientific understanding and support for the management and conservation of our natural resources in support of multiple agency missions. We focus on meeting the scientific needs of the Department of the Interior natural resource management bureaus in addition to fostering partnerships with other Federal and State managers to protect, restore, and enhance our environment. The Social and Economic Analysis Branch has an interdisciplinary group of scientists whose primary functions are to conduct both theoretical and applied social science research, provide technical assistance, and offer training to support the development of skills in natural resource management activities. Management and research issues associated with human-resource interactions typically occur in a unique context and require knowledge of both natural and social sciences, along with the skill to integrate multiple science disciplines. In response to these challenging contexts, Social and Economic Analysis Branch researchers apply a wide variety of social science concepts and methods which complement our rangeland/agricultural, wildlife, ecology, and biology capabilities. The goal of the Social and Economic Analysis Branch's research is to enhance natural-resource management, agency functions, policies, and decisionmaking.

  4. Interprofessional education and the basic sciences: Rationale and outcomes.

    PubMed

    Thistlethwaite, Jill E

    2015-01-01

    Interprofessional education (IPE) aims to improve patient outcomes and the quality of care. Interprofessional learning outcomes and interprofessional competencies are now included in many countries' health and social care professions' accreditation standards. While IPE may take place at any time in health professions curricula it tends to focus on professionalism and clinical topics rather than basic science activities. However generic interprofessional competencies could be included in basic science courses that are offered to at least two different professional groups. In developing interprofessional activities at the preclinical level, it is important to define explicit interprofessional learning outcomes plus the content and process of the learning. Interprofessional education must involve interactive learning processes and integration of theory and practice. This paper provides examples of IPE in anatomy and makes recommendations for course development and evaluation. PMID:25688869

  5. 15th International Headache Congress: basic science highlights.

    PubMed

    Cutrer, F Michael; Smith, Jonathan H

    2012-05-01

    The 15th Congress of the International Headache Society was held in Berlin from June 23rd to 26th of 2011. Interesting new data from several areas of the basic sciences of headache were presented. This is a review of some of the most exciting platform and poster presentations of the meeting. Research addressing 3 general areas of interest is presented in this review: pathophysiology, pharmacology, and genetics. PMID:22486216

  6. Current Tumor Ablation Technologies: Basic Science and Device Review

    PubMed Central

    Saldanha, David F.; Khiatani, Vishal L.; Carrillo, Tami C.; Yap, Felix Y.; Bui, James T.; Knuttinen, M. Grace; Owens, Charles A.; Gaba, Ron C.

    2010-01-01

    Image-guided tumor ablation is an increasingly utilized tool to treat focal malignancy. Tumor ablation can be divided into two large categories, thermal and chemical ablation. The authors provide an overview of the current methods used to achieve thermal and chemical ablation of tumors, specifically addressing the basic science behind the ablation methods as well as providing a brief synopsis of the commercial devices currently available for use in the United States. PMID:22550363

  7. PROJECT SUCCESS: Marine Science. (Introductory Packet, Basic Marine Science Laboratory Techniques, Oceanographic Instruments, Individual Projects, Bibliography).

    ERIC Educational Resources Information Center

    Demaray, Bryan

    Five packets comprise the marine science component of an enrichment program for gifted elementary students. Considered in the introductory section are identification (pre/post measure) procedures. Remaining packets address the following topics (subtopics in parentheses): basic marine science laboratory techniques (microscope techniques and metric…

  8. Basic Science Considerations in Primary Total Hip Replacement Arthroplasty

    PubMed Central

    Mirza, Saqeb B; Dunlop, Douglas G; Panesar, Sukhmeet S; Naqvi, Syed G; Gangoo, Shafat; Salih, Saif

    2010-01-01

    Total Hip Replacement is one of the most common operations performed in the developed world today. An increasingly ageing population means that the numbers of people undergoing this operation is set to rise. There are a numerous number of prosthesis on the market and it is often difficult to choose between them. It is therefore necessary to have a good understanding of the basic scientific principles in Total Hip Replacement and the evidence base underpinning them. This paper reviews the relevant anatomical and biomechanical principles in THA. It goes on to elaborate on the structural properties of materials used in modern implants and looks at the evidence base for different types of fixation including cemented and uncemented components. Modern bearing surfaces are discussed in addition to the scientific basis of various surface engineering modifications in THA prostheses. The basic science considerations in component alignment and abductor tension are also discussed. A brief discussion on modular and custom designs of THR is also included. This article reviews basic science concepts and the rationale underpinning the use of the femoral and acetabular component in total hip replacement. PMID:20582240

  9. Nutritional biology: a neglected basic discipline of nutritional science.

    PubMed

    Döring, Frank; Ströhle, Alexander

    2015-11-01

    On the basis of a scientific-philosophical analysis, this paper tries to show that the approaches in current nutritional science-including its subdisciplines which focus on molecular aspects-are predominantly application-oriented. This becomes particularly evident through a number of conceptual problems characterized by the triad of 'dearth of theoretical foundation,' 'particularist research questions,' and 'reductionist understanding of nutrition.' The thesis presented here is that an interpretive framework based on nutritional biology is able to shed constructive light on the fundamental problems of nutritional science. In this context, the establishment of 'nutritional biology' as a basic discipline in research and education would be a first step toward recognizing the phenomenon of 'nutrition' as an oecic process as a special case of an organism-environment interaction. Modern nutritional science should be substantively grounded on ecological-and therefore systems biology as well as organismic-principles. The aim of nutritional biology, then, should be to develop near-universal 'law statements' in nutritional science-a task which presents a major challenge for the current science system. PMID:26584807

  10. Republished: A straightforward guide to the basic science behind arrhythmogenesis.

    PubMed

    Dumotier, Berengere M

    2015-04-01

    The underlying mechanisms behind cardiac arrhythmias are described in this manuscript. In clinical practice, significant arrhythmias are unpredictable, and under some conditions, potentially life-threatening. How can basic science help improve our understanding of molecular entities and factors behind the arrhythmia to advance, develop, adapt or deliver available medications? Structural heart disease and remodelling (e.g., heart failure, cardiomyopathy), the presence of modulating factors (i.e., diabetes mellitus, autonomic nervous system), genetic predispositions (i.e., channelopathies) are considerable preconditions, and influence the development of an arrhythmia. Cardiac arrhythmias may indeed share common basic mechanisms, while elements and substrates perpetuating these may be different and ultimately manifest as various ECG abnormalities. This article lists cellular and subcellular iatrogenic disorders responsible for abnormal impulse generation, or conduction disturbances, including the latest development in theories and biological research, for a better understanding of cellular disorders behind arrhythmogenesis. PMID:25862707

  11. Study habits and attitude of medical students of basic sciences.

    PubMed

    Dhungel, Kshitiz Upadhyay; Prajapati, Rajesh; Pramanik, Tapas; Ghosh, Arijit; Roychowdhury, Paresh

    2007-06-01

    Study habits and attitude for learning of Basic Medical Sciences amongst 133 students of first and second year MBBS course were analyzed (through questionnaires). The study revealed that the most of the students desired to be physicians to serve the patient/society. They preferred to learn more through self study (48.0%) and lecture classes (43.0%), less through group discussion (8.0%) and PBL (1.0%). Only 5.0% use to surf the internet regularly for their study matter and 79.0% students had never consulted any medical journals. PMID:17899965

  12. Vitamin D in sepsis: from basic science to clinical impact

    PubMed Central

    2012-01-01

    The growing basic and clinical investigations into the extraskeletal effects of vitamin D have revealed roles in the functioning of the immune system, generating interesting questions about this nutrient's connections to sepsis. This article briefly reviews the current science of the function of vitamin D in the immune system as well as the emerging clinical literature regarding its associations with respiratory infections, sepsis, and critical illness. Finally, we offer views on the potential future directions for research in the field by outlining potential relevant scenarios and outcomes. PMID:22809263

  13. The United Nations Basic Space Science Initiative for IHY 2007

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.; Davila, J. M.; Thompson, B. J.; Haubold, H.

    2006-08-01

    The United Nations, in cooperation with national and international space-related agencies and organizations, has been organizing annual workshops since 1990 on basic space science, particularly for the benefit of scientists and engineers from developing nations. The United Nations Office for Outer Space Affairs, through the IHY Secretariat and the United Nations Basic Space Science Initiative (UNBSSI) will assist scientists and engineers from all over the world in participating in the International Heliophysical Year (IHY) 2007. A major thrust of the IHY/UNBSSI program is to deploy arrays of small, inexpensive instruments such as magnetometers, radio telescopes, GPS receivers, all-sky cameras, etc. around the world to provide global measurements of ionospheric and heliospheric phenomena. The small instrument program is envisioned as a partnership between instrument providers, and instrument hosts in developing countries. The lead scientist will provide the instruments (or fabrication plans for instruments) in the array; the host country will provide manpower, facilities, and operational support to obtain data with the instrument typically at a local university. Funds are not available through the IHY to build the instruments; these must be obtained through the normal proposal channels. However all instrument operational support for local scientists, facilities, data acquisition, etc will be provided by the host nation. It is our hope that the IHY/UNBSSI program can facilitate the deployment of several of these networks world wide. Existing data bases and relevant software tools that can will be identified to promote space science activities in developing countries. Extensive data on space science have been accumulated by a number of space missions. Similarly, long-term data bases are available from ground based observations. These data can be utilized in ways different from originally intended for understanding the heliophysical processes. This paper provides an

  14. Altering Amine Basicities in Biodegradable Branched Polycationic Polymers for Non-Viral Gene Delivery

    PubMed Central

    Chew, Sue Anne; Hacker, Michael C.; Saraf, Anita; Raphael, Robert M.; Kasper, F. Kurtis; Mikos, Antonios G.

    2010-01-01

    In this work, biodegradable branched polycationic polymers were synthesized by Michael addition polymerization from different amine monomers and the triacrylate monomer trimethylolpropane triacrylate. The polymers varied in the amount of amines that dissociate in different pH ranges, which are considered to be beneficial to different parts of the gene delivery process. P-DED, a polymer synthesized from trimethylolpropane triacrylate and dimethylethylenediamine, had the highest number of protonated amines that are available for pDNA complexation at pH 7.4 of all polymers synthesized. P-DED formed a positive polyplex (13.9 ± 0.5 mV) at a polymer/plasmid DNA (pDNA) weight ratio of 10:1 in contrast to the other polymers synthesized, which formed positive polyplexes only at higher weight ratios. Polyplexes formed with the synthesized polymers at the highest polymer/pDNA weight ratio tested (300:1) resulted in higher transfection with enhanced green fluorescent protein reporter gene (5.3 ± 1.0% to 30.6 ± 6.6%) compared to naked pDNA (0.8 ± 0.4%), as quantified by flow cytometry. Polyplexes formed with P-DED (weight ratio of 300:1) also showed higher transfection (30.6 ± 6.6%) as compared to polyplexes formed with branched polyethylenimine (weight ratio of 2:1, 25.5 ± 2.7%). The results from this study demonstrated that polymers with amines that dissociate above pH 7.4, which are available as positively charged groups for pDNA complexation at pH 7.4, can be synthesized to produce stable polyplexes with increased zeta potential and decreased hydrodynamic size that efficiently transfect cells. This work indicated that polymers containing varying amine functionalities with different buffering capabilities can be synthesized by using different amine monomers and used as effective gene delivery vectors. PMID:20170180

  15. Opportunities for discovery: Theory and computation in Basic Energy Sciences

    SciTech Connect

    Harmon, Bruce; Kirby, Kate; McCurdy, C. William

    2005-01-11

    New scientific frontiers, recent advances in theory, and rapid increases in computational capabilities have created compelling opportunities for theory and computation to advance the scientific mission of the Office of Basic Energy Sciences (BES). The prospects for success in the experimental programs of BES will be enhanced by pursuing these opportunities. This report makes the case for an expanded research program in theory and computation in BES. The Subcommittee on Theory and Computation of the Basic Energy Sciences Advisory Committee was charged with identifying current and emerging challenges and opportunities for theoretical research within the scientific mission of BES, paying particular attention to how computing will be employed to enable that research. A primary purpose of the Subcommittee was to identify those investments that are necessary to ensure that theoretical research will have maximum impact in the areas of importance to BES, and to assure that BES researchers will be able to exploit the entire spectrum of computational tools, including leadership class computing facilities. The Subcommittee s Findings and Recommendations are presented in Section VII of this report.

  16. Introduction to the year in basic science series...2009.

    PubMed

    Shupnik, Margaret A

    2010-01-01

    This year represents the second, of what we expect to be an annual series, of articles based on The Endocrine Society annual meeting presentations that highlight recent advances in vibrant basic science areas in endocrinology. For ENDO 09, two general areas with broad appeal and significance to our members were chosen: neuroendocrinology and G protein-coupled receptors. The invited participants were charged with presenting and discussing important papers that were published approximately during the year leading up to the most recent annual meetings (June 2009) and to put them into broad perspective for the greater endocrine community. Two distinguished members, Jeffrey Blaustein and Robert Millar, continued on last year's successful features by synthesizing the top findings in their fields, and these articles are based on their annual meeting presentations. Interestingly, there were several points of intersection in these topics and chosen papers, as advances in the neuroendocrinology of reproduction have been coupled to identification and/or characterization of additional novel G protein-coupled receptors. In both presentations, fundamental basic science findings deriving from structural studies and signaling pathways are linked to broad endocrine physiology issues and to potential use in clinical treatment and therapeutics. PMID:20019125

  17. Basic Science Research and the Protection of Human Research Participants

    NASA Astrophysics Data System (ADS)

    Eiseman, Elisa

    2001-03-01

    Technological advances in basic biological research have been instrumental in recent biomedical discoveries, such as in the understanding and treatment of cancer, HIV/AIDS, and heart disease. However, many of these advances also raise several new ethical challenges. For example, genetic research may pose no physical risk beyond that of obtaining the initial blood sample, yet it can pose significant psychological and economic risks to research participants, such as stigmatization, discrimination in insurance and employment, invasion of privacy, or breach of confidentiality. These harms may occur even when investigators do not directly interact with the person whose DNA they are studying. Moreover, this type of basic research also raises broader questions, such as what is the definition of a human subject, and what kinds of expertise do Institutional Review Boards (IRBs) need to review the increasingly diverse types of research made possible by these advances in technology. The National Bioethics Advisory Commission (NBAC), a presidentially appointed federal advisory committee, has addressed these and other ethical, scientific and policy issues that arise in basic science research involving human participants. Two of its six reports, in particular, have proposed recommendations in this regard. "Research Involving Human Biological Materials: Ethical and Policy Guidance" addresses the basic research use of human tissues, cells and DNA and the protection of human participants in this type of research. In "Ethical and Policy Issues in the Oversight of Human Research" NBAC proposes a definition of research involving human participants that would apply to all scientific disciplines, including physical, biological, and social sciences, as well as the humanities and related professions, such as business and law. Both of these reports make it clear that the protection of research participants is key to conducting ethically sound research. By ensuring that all participants in

  18. Invasive Species Science Branch: research and management tools for controlling invasive species

    USGS Publications Warehouse

    Reed, Robert N.; Walters, Katie D.

    2015-01-01

    Invasive, nonnative species of plants, animals, and disease organisms adversely affect the ecosystems they enter. Like “biological wildfires,” they can quickly spread and affect nearly all terrestrial and aquatic ecosystems. Invasive species have become one of the greatest environmental challenges of the 21st century in economic, environmental, and human health costs, with an estimated effect in the United States of more than $120 billion per year. Managers of the Department of the Interior and other public and private lands often rank invasive species as their top resource management problem. The Invasive Species Science Branch of the Fort Collins Science Center provides research and technical assistance relating to management concerns for invasive species, including understanding how these species are introduced, identifying areas vulnerable to invasion, forecasting invasions, and developing control methods. To disseminate this information, branch scientists are developing platforms to share invasive species information with DOI cooperators, other agency partners, and the public. From these and other data, branch scientists are constructing models to understand and predict invasive species distributions for more effective management. The branch also has extensive herpetological and population biology expertise that is applied to harmful reptile invaders such as the Brown Treesnake on Guam and Burmese Python in Florida.

  19. Basic Science Research to Support the Nuclear Materials Focus Area

    SciTech Connect

    Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

    2002-02-26

    The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area

  20. Basic science research to support the nuclear material focus area

    SciTech Connect

    Boak, J. M.; Eller, P. Gary; Chipman, N. A.; Castle, P. M.

    2002-01-01

    The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area

  1. Truth in basic biomedical science will set future mankind free.

    PubMed

    Ling, Gilbert N

    2011-01-01

    It is self-evident that continued wellbeing and prosperity of our species in time to come depends upon a steady supply of major scientific and technologic innovations. However, major scientific and technical innovations are rare. As a rule, they grow only in the exceptionally fertile minds of men and women, who have fully mastered the underlying basic sciences. To waken their interest in science at an early critical age and to nurture and enhance that interest afterward, good textbooks at all level of education that accurately portray the relevant up-to-date knowledge are vital. As of now, the field of science that offers by far the greatest promise for the future of humanity is the science of life at the most basic cell and below-cell level. Unfortunately, it is precisely this crucial part of the (standardized) biological textbooks for all high schools and colleges in the US and abroad that have become, so to speak, fossilized. As a result, generation after generation of (educated) young men and women have been and are still being force-fed as established scientific truth an obsolete membrane (pump) theory, which has been categorically disproved half a century ago (see Endnote 1.) To reveal this Trojan horse of a theory for what it really is demands the concerted efforts of many courageous individuals especially young biology teachers who take themselves and their career seriously. But even the most courageous and the most resourceful won't find the task easy. To begin with, they would find it hard to access the critical scientific knowledge, with which to convert the skeptic and to rally the friendly. For the wealth of mutually supportive evidence against the membrane (pump) theory are often hidden in inaccessible publications and/or in languages other than English. To overcome this seemingly trivial but in fact formidable obstacle and to reveal the beauty and coherence of the existing but untaught truth, I put together in this small package a collection of the

  2. Basic and Applied Science Research at the Los Alamos Neutron Science Center

    SciTech Connect

    Lisowski, Paul W.

    2005-05-24

    The Los Alamos Neutron Science Center, or LANSCE, is an accelerator-based national user facility for research in basic and applied science using four experimental areas. LANSCE has two areas that provide neutrons generated by the 800-MeV proton beam striking tungsten target systems. A third area uses the proton beam for radiography. The fourth area uses 100 MeV protons to produce medical radioisotopes. This paper describes the four LANSCE experimental areas, gives nuclear science highlights of the past operating period, and discusses plans for the future.

  3. Spinal cord injury I: A synopsis of the basic science

    PubMed Central

    Webb, Aubrey A.; Ngan, Sybil; Fowler, J. David

    2010-01-01

    Substantial knowledge has been gained in the pathological findings following naturally occurring spinal cord injury (SCI) in dogs and cats. The molecular mechanisms involved in failure of neural regeneration within the central nervous system, potential therapeutics including cellular transplantation therapy, neural plasticity, and prognostic indicators of recovery from SCI have been studied. This 2-part review summarizes 1) basic science perspectives regarding treating and curing spinal cord injury, 2) recent studies that shed light on prognosis and recovery from SCI, 3) current thinking regarding standards of care for dogs with SCI, 4) experimental approaches in the laboratory setting, and 5) current clinical trials being conducted in veterinary medicine. Part I presents timely information on the pathophysiology of spinal cord injury, challenges associated with promoting regeneration of neurons of the central nervous system, and experimental approaches aimed at developing treatments for spinal cord injury. PMID:20676289

  4. Using educational games to engage students in veterinary basic sciences.

    PubMed

    Buur, Jennifer L; Schmidt, Peggy L; Barr, Margaret C

    2013-01-01

    Educational games are an example of an active learning teaching technique based on Kolb's learning cycle. We have designed multiple games to provide concrete experiences for social groups of learners in the basic sciences. "Antimicrobial Set" is a card game that illustrates global patterns in antimicrobial therapy. "SHOCK!" is a card game designed to enhance student understanding of the four types of hypersensitivity reactions. After each game is played, students undergo a structured debriefing session with faculty members to further enhance their self-reflective skills. "Foodborne Outbreak Clue" utilizes the famous Parker Brothers® board game as a means to practice skills associated with outbreak investigation and risk assessment. This game is used as a review activity and fun application of epidemiologic concepts. Anecdotal feedback from students suggests that they enjoyed the activities. Games such as these can be easily implemented in large- or small-group settings and can be adapted to other disciplines as needed. PMID:23975070

  5. Cryotherapy of cardiac arrhythmia: From basic science to the bedside.

    PubMed

    Avitall, Boaz; Kalinski, Arthur

    2015-10-01

    This review focuses on the basic science of cellular destruction by tissue freezing and application of transvenous cryocatheter technology to treat cardiac arrhythmia. Ideally, foci for arrhythmias are selectively ablated, arrhythmogenic tissues are destroyed, and reentry circuits are bisected in order to silence adverse electrical activity, with the goal of restoring normal sinus rhythm. The mechanism of ablation using cryotherapy results in distinct lesion qualities advantageous to radiofrequency (Khairy P, Chauvet M, Lehman J, et al. Lower incidence of thrombus formation with cryoenergy versus radiofrequency catheter ablation. Circulation 2003;107:2045-2050). This review is devoted to the mechanism of cryoablation, postablation histopathological changes, and how this information should be used by the clinicians to improve safety and maximize ablation success. PMID:26031374

  6. Attitude of Basic Science Medical Students Toward Interprofessional Collaboration

    PubMed Central

    Dwivedi, Neelam R; Nandy, Atanu; Balasubramanium, Ramanan

    2015-01-01

    Purpose: Interprofessional collaboration (IPC) and interprofessional education (IPE) are increasingly emphasized in the education of health professions. Xavier University School of Medicine, a Caribbean medical school admits students from the United States, Canada, and other countries to the undergraduate medical course. The present study was carried out to obtain information about the attitude toward IPC among basic science medical students and note differences, if any, among different subgroups. Methods: The study was conducted among first to fifth semester students during July 2015 using the previously validated Jefferson Scale of Attitudes Toward Interprofessional Collaboration (JeffSATIC). Gender, age, semester, and nationality were noted. Participants’ agreement with a set of 20 statements was studied. Mean total scores, working relationship, and accountability scores were calculated and compared among different subgroups of respondents (p<0.05). Results: Sixty-seven of the 71 students (94.4%) participated. Cronbach’s alpha value of the questionnaire was 0.827, indicating good internal consistency. The mean total score was 104.48 (maximum score 140) while the working relationship and accountability scores were 63.51 (maximum score 84) and 40.97 (maximum score 56), respectively. Total scores were significantly higher among third-semester students and students of Canadian nationality. Working relationship and accountability scores were higher among first and third-semester students. Conclusion: The total working relationship and accountability scores were lower compared to those obtained in a previous study. Opportunities for IPE and IPC during the basic science years should be strengthened. Longitudinal studies in the institution may be helpful. Similar studies in other Caribbean medical schools are required. PMID:26543691

  7. Basic science breaks through: New therapeutic advances in Parkinson's disease.

    PubMed

    Brundin, Patrik; Atkin, Graham; Lamberts, Jennifer T

    2015-09-15

    Parkinson's disease (PD) is the second most common neurodegenerative disease and is typically associated with progressive motor dysfunction, although PD patients also exhibit a variety of non-motor symptoms. The neuropathological hallmark of PD is intraneuronal inclusions containing primarily α-Synuclein (α-Syn), and several lines of evidence point to α-Syn as a key contributor to disease progression. Thus, basic research in the field of PD is largely focused on understanding the pathogenic properties of α-Syn. Over the past 2 y, these studies helped to identify several novel therapeutic strategies that have the potential to slow PD progression; such strategies include sequestration of extracellular α-Syn through immunotherapy, reduction of α-Syn multimerization or intracellular toxicity, and attenuation of the neuroinflammatory response. This review describes these and other putative therapeutic strategies, together with the basic science research that led to their identification. The current breadth of novel targets for the treatment of PD warrants cautious optimism in the fight against this devastating disease. PMID:26177603

  8. Basic science faculty in surgical departments: advantages, disadvantages and opportunities.

    PubMed

    Chinoy, Mala R; Moskowitz, Jay; Wilmore, Douglas W; Souba, Wiley W

    2005-01-01

    The number of Ph.D. faculty in clinical departments now exceeds the number of Ph.D. faculty in basic science departments. Given the escalating pressures on academic surgeons to produce in the clinical arena, the recruitment and retention of high-quality Ph.D.s will become critical to the success of an academic surgical department. This success will be as dependent on the surgical faculty understanding the importance of the partnership as the success of the Ph.D. investigator. Tighter alignment among the various clinical and research programs and between surgeons and basic scientists will facilitate the generation of new knowledge that can be translated into useful products and services (thus improving care). To capitalize on what Ph.D.s bring to the table, surgery departments may need to establish a more formal research infrastructure that encourages the ongoing exchange of ideas and resources. Physically removing barriers between the research groups, encouraging the open exchange of techniques and observations and sharing core laboratories is characteristic of successful research teams. These strategies can meaningfully contribute to developing successful training program grants, program projects and bringing greater research recognition to the department of surgery. PMID:15652964

  9. Shock wave physics and detonation physics — a stimulus for the emergence of numerous new branches in science and engineering

    NASA Astrophysics Data System (ADS)

    Krehl, Peter O. K.

    2011-07-01

    In the period of the Cold War (1945-1991), Shock Wave Physics and Detonation Physics (SWP&DP) — until the beginning of WWII mostly confined to gas dynamics, high-speed aerodynamics, and military technology (such as aero- and terminal ballistics, armor construction, chemical explosions, supersonic gun, and other firearms developments) — quickly developed into a large interdisciplinary field by its own. This rapid expansion was driven by an enormous financial support and two efficient feedbacks: the Terminal Ballistic Cycleand the Research& Development Cycle. Basic knowledge in SWP&DP, initially gained in the Classic Period(from 1808) and further extended in the Post-Classic Period(from the 1930s to present), is now increasingly used also in other branches of Science and Engineering (S&E). However, also independent S&E branches developed, based upon the fundamentals of SWP&DP, many of those developments will be addressed (see Tab. 2). Thus, shock wave and detonation phenomena are now studied within an enormous range of dimensions, covering microscopic, macroscopic, and cosmic dimensions as well as enormous time spans ranging from nano-/picosecond shock durations (such as produced by ultra-short laser pulses) to shock durations that continue for centuries (such as blast waves emitted from ancient supernova explosions). This paper reviews these developments from a historical perspective.

  10. 75 FR 65363 - Basic Behavioral and Social Science Opportunity Network (OppNet)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... HUMAN SERVICES National Institutes of Health Basic Behavioral and Social Science Opportunity Network... promote and publicize the Basic Behavioral and Social Science Opportunity Network (OppNet) initiative... Behavioral and Social Science Opportunity Network (OppNet) is a trans-NIH initiative to expand the...

  11. Alternative Methods by Which Basic Science Pharmacy Faculty Can Relate to Clinical Practice.

    ERIC Educational Resources Information Center

    Kabat, Hugh F.; And Others

    1982-01-01

    A panel of pharmacy faculty ranked a broad inventory of basic pharmaceutical science topics in terms of their applicability to clinical pharmacy practice. The panel concluded that basic pharmaceutical sciences are essentially applications of foundation areas in biological, physical, and social sciences. (Author/MLW)

  12. The Reorganization of Basic Science Departments in U.S. Medical Schools, 1980-1999.

    ERIC Educational Resources Information Center

    Mallon, William T.; Biebuyck, Julien F.; Jones, Robert F.

    2003-01-01

    Constructed a longitudinal database to examine how basic science departments have been reorganized at U.S. medical schools. Found that there were fewer basic science departments in the traditional disciplines of anatomy, biochemistry, microbiology, pharmacology, and physiology in 1999 than in 1980. But as biomedical science has developed in an…

  13. Basic Science at the Extreme States of Matter

    NASA Astrophysics Data System (ADS)

    Solem, Johndale C.

    1996-05-01

    The scientific regime accessed by pulsed power is most succinctly described as the extreme states of matter. These include: high pressure, (2) high temperature, and (3) high magnetic fields. The opportunities for new and exciting basic research range through the disciplines of; (1) astrophysics, (2) planetary physics, (3) geophysics, (4) materials science, (5) plasma physics, (6) atomic physics, and (7) condensed-matter physics. Scientists of the High-Energy-Density Physics Program at Los Alamos currently utilize both explosive-driven generators and capacitor-driven systems to achieve space-time compression of energy. Explosive magnetocumulative generators of Russian design are being used to obtain isentropic compression at pressures near 700 Gpa and magnetic fields in excess of 1000 T. A 4-MJ versatile capacitor bank called Pegasus is now reliably delivering 12 MA to experimental targets with risetime of 6μs. Special z-pinch liners can convert this energy into shock pressures of several TPa and special designs may offer quasi-isentropic compressions at several 10s of GPa. A design to use a liner to compress a magnetic seed field may reach 500 T. A 36-MJ capacitor bank called Atlas is tentatively designed to deliver 20-25 MA in 2-3μs. This device may be capable of isentropic compressions in the 100s of Gpa, magnetic fields in the 1000-T range, and x-ray yield over 1MJ at temperatures over 100 eV. This lecture will review current collaborations to observe of (1) quantum-limit phenomena, (2) magnetic field induced superconductivity, (3) Zeeman-driven bond breaking, (4) exciton spectra, (5) unusual Faraday rotation, and (6) high-compression metalization of simple gases. Speculations on future basic research activities at extreme field, compression, and temperature will also be discussed.

  14. Basic science behind the cardiovascular benefits of exercise.

    PubMed

    Wilson, Mathew G; Ellison, Georgina M; Cable, N Tim

    2016-01-01

    Cardiorespiratory fitness is a strong predictor of cardiovascular (CV) disease and all-cause mortality, with increases in cardiorespiratory fitness associated with corresponding decreases in CV disease risk. The effects of exercise upon the myocardium and vascular system are dependent upon the frequency, intensity and duration of the exercise itself. Following a prolonged period (≥6 months) of regular intensive exercise in previously untrained individuals, resting and submaximal exercising heart rates are typically 5-20 beats lower, with an increase in stroke volume of ∼20% and enhanced myocardial contractility. Structurally, all four heart chambers increase in volume with mild increases in wall thickness, resulting in greater cardiac mass due to increased myocardial cell size. With this in mind, the present paper aims to review the basic science behind the CV benefits of exercise. Attention will be paid to understanding (1) the relationship between exercise and cardiac remodelling; (2) the cardiac cellular and molecular adaptations in response to exercise, including the examination of molecular mechanisms of physiological cardiac growth and applying these mechanisms to identify new therapeutic targets to prevent or reverse pathological remodelling and heart failure; and (3) vascular adaptations in response to exercise. Finally, this review will briefly examine how to optimise the CV benefits of exercise by considering how much and how intense exercise should be. PMID:26729891

  15. Basic science behind the cardiovascular benefits of exercise.

    PubMed

    Wilson, Mathew G; Ellison, Georgina M; Cable, N Tim

    2015-12-01

    Cardiorespiratory fitness is a strong predictor of cardiovascular (CV) disease and all-cause mortality, with increases in cardiorespiratory fitness associated with corresponding decreases in CV disease risk. The effects of exercise upon the myocardium and vascular system are dependent upon the frequency, intensity and duration of the exercise itself. Following a prolonged period (≥ 6 months) of regular intensive exercise in previously untrained individuals, resting and submaximal exercising heart rates are typically 5-20 beats lower, with an increase in stroke volume of ∼ 20% and enhanced myocardial contractility. Structurally, all four heart chambers increase in volume with mild increases in wall thickness, resulting in greater cardiac mass due to increased myocardial cell size. With this in mind, the present paper aims to review the basic science behind the CV benefits of exercise. Attention will be paid to understanding (1) the relationship between exercise and cardiac remodelling; (2) the cardiac cellular and molecular adaptations in response to exercise, including the examination of molecular mechanisms of physiological cardiac growth and applying these mechanisms to identify new therapeutic targets to prevent or reverse pathological remodelling and heart failure; and (3) vascular adaptations in response to exercise. Finally, this review will briefly examine how to optimise the CV benefits of exercise by considering how much and how intense exercise should be. PMID:26607736

  16. Basic science behind the cardiovascular benefits of exercise.

    PubMed

    Wilson, Mathew G; Ellison, Georgina M; Cable, N Tim

    2015-05-15

    Cardiorespiratory fitness is a strong predictor of cardiovascular (CV) disease and all-cause mortality, with increases in cardiorespiratory fitness associated with corresponding decreases in CV disease risk. The effects of exercise upon the myocardium and vascular system are dependent upon the frequency, intensity and duration of the exercise itself. Following a prolonged period (≥6 months) of regular intensive exercise in previously untrained individuals, resting and submaximal exercising heart rates are typically 5-20 beats lower, with an increase in stroke volume of ∼20% and enhanced myocardial contractility. Structurally, all four heart chambers increase in volume with mild increases in wall thickness, resulting in greater cardiac mass due to increased myocardial cell size. With this in mind, the present paper aims to review the basic science behind the CV benefits of exercise. Attention will be paid to understanding (1) the relationship between exercise and cardiac remodelling; (2) the cardiac cellular and molecular adaptations in response to exercise, including the examination of molecular mechanisms of physiological cardiac growth and applying these mechanisms to identify new therapeutic targets to prevent or reverse pathological remodelling and heart failure; and (3) vascular adaptations in response to exercise. Finally, this review will briefly examine how to optimise the CV benefits of exercise by considering how much and how intense exercise should be. PMID:25911667

  17. The HelCat basic plasma science device

    NASA Astrophysics Data System (ADS)

    Gilmore, M.; Lynn, A. G.; Desjardins, T. R.; Zhang, Y.; Watts, C.; Hsu, S. C.; Betts, S.; Kelly, R.; Schamiloglu, E.

    2015-01-01

    The Helicon-Cathode(HelCat) device is a medium-size linear experiment suitable for a wide range of basic plasma science experiments in areas such as electrostatic turbulence and transport, magnetic relaxation, and high power microwave (HPM)-plasma interactions. The HelCat device is based on dual plasma sources located at opposite ends of the 4 m long vacuum chamber - an RF helicon source at one end and a thermionic cathode at the other. Thirteen coils provide an axial magnetic field B >= 0.220 T that can be configured individually to give various magnetic configurations (e.g. solenoid, mirror, cusp). Additional plasma sources, such as a compact coaxial plasma gun, are also utilized in some experiments, and can be located either along the chamber for perpendicular (to the background magnetic field) plasma injection, or at one of the ends for parallel injection. Using the multiple plasma sources, a wide range of plasma parameters can be obtained. Here, the HelCat device is described in detail and some examples of results from previous and ongoing experiments are given. Additionally, examples of planned experiments and device modifications are also discussed.

  18. Cancer Pharmacogenomics: Integrating Discoveries in Basic, Clinical and Population Sciences to Advance Predictive Cancer Care

    Cancer.gov

    Cancer Pharmacogenomics: Integrating Discoveries in Basic, Clinical and Population Sciences to Advance Predictive Cancer Care, a 2010 workshop sponsored by the Epidemiology and Genomics Research Program.

  19. PNNL Highlights for the Office of Basic Energy Sciences (July 2013-July 2014)

    SciTech Connect

    Anderson, Benjamin; Warren, Pamela M.; Manke, Kristin L.

    2014-08-13

    This report includes research highlights of work funded in part or whole by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences as well as selected leadership accomplishments.

  20. Basic medical science education must include medical informatics.

    PubMed

    Sarbadhikari, Suptendra Nath

    2004-10-01

    Medical Informatics is the science and art of processing medical information. In this age of "Information Explosion" choosing the useful one is rather difficult, and there lies the scope of electronic database management. However, still many outstanding personnel related to the healthcare sector take pride in being "computer illiterate". The onus of the best use lies on the end-user health care providers only. Another term tele-health encompasses all the e-health and telemedicine services. Computer aided or assisted learning (CAL) is a computer based tutorial method that uses the computer to pose questions, provide remedial information and chart a student through a course. Now the emphasis in medical education, is on problem based learning (PBL) and there CAL could be of utmost help if used judiciously. Basic Medical Education and Research lays the foundation for advancing and applying proper healthcare delivery systems. There is no doubt that deep knowledge of anatomy is mandatory for successful surgery. Also, comprehensive knowledge of physiology is essential for grasping the principles of pathology and pharmacology adequately, to avoid incorrect and inadequate practice of medicine. Similarly, medical informatics is not just a subject to be learnt and forgotten after the first professional MBBS examination. The final aim of every student should not only be to become a good user but also an expert for advancing medical knowledge base through medical informatics. In view of the fast changing world of medical informatics, it is of utmost necessity to formulate a flexible syllabus rather than a rigid one. PMID:15907048

  1. Science Serving the Nation: The Impact of Basic Research

    SciTech Connect

    None, None

    2012-01-01

    Impacts: The BES program supports basic research that underpins a broad range of energy technologies. Research in materials sciences and engineering leads to the development of materials that improve the efficiency, economy, environmental acceptability, and safety of energy generation, conversion, transmission, storage, and use. For example, advances in superconductivity have been introduced commercially in a number of demonstration projects around the country. Improvements in alloy design for high temperature applications are used in commercial furnaces and in green technologies such as lead-free solder. Research in chemistry has led to advances such as efficient combustion systems with reduced emissions of pollutants; new solar photoconversion processes; improved catalysts for the production of fuels and chemicals; and better separations and analytical methods for applications in energy processes, environmental remediation, and waste management. Research in geosciences results in advanced monitoring and measurement techniques for reservoir definition and an understanding of the fluid dynamics of complex fluids through porous and fractured subsurface rock. Research in the molecular and biochemical nature of photosynthesis aids the development of solar photo-energy conversion. The BES program also plays a major role in enabling the nanoscale revolution. The importance of nanoscience to future energy technologies is clearly reflected by the fact that all of the elementary steps of energy conversion (e.g., charge transfer, molecular rearrangement, and chemical reactions) take place on the nanoscale. The development of new nanoscale materials, as well as the methods to characterize, manipulate, and assemble them, create an entirely new paradigm for developing new and revolutionary energy technologies.

  2. Japanese medical students' interest in basic sciences: a questionnaire survey of a medical school in Japan.

    PubMed

    Yamazaki, Yuka; Uka, Takanori; Shimizu, Haruhiko; Miyahira, Akira; Sakai, Tatsuo; Marui, Eiji

    2013-01-01

    The number of physicians engaged in basic sciences and teaching is sharply decreasing in Japan. To alleviate this shortage, central government has increased the quota of medical students entering the field. This study investigated medical students' interest in basic sciences in efforts to recruit talent. A questionnaire distributed to 501 medical students in years 2 to 6 of Juntendo University School of Medicine inquired about sex, grade, interest in basic sciences, interest in research, career path as a basic science physician, faculties' efforts to encourage students to conduct research, increases in the number of lectures, and practical training sessions on research. Associations between interest in basic sciences and other variables were examined using χ(2) tests. From among the 269 medical students (171 female) who returned the questionnaire (response rate 53.7%), 24.5% of respondents were interested in basic sciences and half of them considered basic sciences as their future career. Obstacles to this career were their original aim to become a clinician and concerns about salary. Medical students who were likely to be interested in basic sciences were fifth- and sixth-year students, were interested in research, considered basic sciences as their future career, considered faculties were making efforts to encourage medical students to conduct research, and wanted more research-related lectures. Improving physicians' salaries in basic sciences is important for securing talent. Moreover, offering continuous opportunities for medical students to experience research and encouraging advanced-year students during and after bedside learning to engage in basic sciences are important for recruiting talent. PMID:23337622

  3. Back to Basics for Science Teachers in Rural India.

    ERIC Educational Resources Information Center

    Waldron, Nick

    1998-01-01

    Describes how practical science can be taught using locally-collected junk materials and encourages a new approach to science teaching in rural India. Emphasizes science relevant to the villages to which children will return to when they leave school. (DDR)

  4. Progress in the Utilization of High-Fidelity Simulation in Basic Science Education

    ERIC Educational Resources Information Center

    Helyer, Richard; Dickens, Peter

    2016-01-01

    High-fidelity patient simulators are mainly used to teach clinical skills and remain underutilized in teaching basic sciences. This article summarizes our current views on the use of simulation in basic science education and identifies pitfalls and opportunities for progress.

  5. A Simulation for Teaching the Basic and Clinical Science of Fluid Therapy

    ERIC Educational Resources Information Center

    Rawson, Richard E.; Dispensa, Marilyn E.; Goldstein, Richard E.; Nicholson, Kimberley W.; Vidal, Noni Korf

    2009-01-01

    The course "Management of Fluid and Electrolyte Disorders" is an applied physiology course taught using lectures and paper-based cases. The course approaches fluid therapy from both basic science and clinical perspectives. While paper cases provide a basis for application of basic science concepts, they lack key components of genuine clinical…

  6. Teachers' Involvement in Implementing the Basic Science and Technology Curriculum of the Nine-Year Basic Education

    ERIC Educational Resources Information Center

    Odili, John Nwanibeze; Ebisine, Sele Sylvester; Ajuar, Helen Nwakaife

    2011-01-01

    The study investigated teachers' involvement in implementing the basic science and technology curriculum in primary schools in WSLGA (Warri South Local Government Area) of Delta State. It sought to identify the availability of the document in primary schools and teachers' knowledge of the objectives and activities specified in the curriculum.…

  7. Connecting Science and Society: Basic Research in the Service of Social Objectives

    NASA Astrophysics Data System (ADS)

    Sonnert, Gerhard

    2007-03-01

    A flawed dichotomy of basic versus applied science (or of ``curiosity-driven'' vs. ``mission-oriented'' science) pervades today's thinking about science policy. This talk argues for the addition of a third mode of scientific research, called Jeffersonian science. Whereas basic science, as traditionally understood, is a quest for the unknown regardless of societal needs, and applied science is known science applied to known needs, Jeffersonian science is the quest for the unknown in the service of a known social need. It is research in an identified area of basic scientific ignorance that lies at the heart of a social problem. The talk discusses the conceptual foundations and then provides some case examples of Jeffersonian-type science initiatives, such as the Lewis and Clark Expedition, initiated by Thomas Jefferson (which led us to call this mode of research Jeffersonian), research conducted under the auspices of the National Institutes of Health, and a science policy project by President Jimmy Carter and his Science Adviser, Frank Press, in the late 1970s. Because the concept of Jeffersonian science explicitly ties basic research to the social good, one of the potential benefits of adding a Jeffersonian dimension to our thinking about science is that it might make science careers more attractive to women and underrepresented minorities.

  8. The Relationship between Immediate Relevant Basic Science Knowledge and Clinical Knowledge: Physiology Knowledge and Transthoracic Echocardiography Image Interpretation

    ERIC Educational Resources Information Center

    Nielsen, Dorte Guldbrand; Gotzsche, Ole; Sonne, Ole; Eika, Berit

    2012-01-01

    Two major views on the relationship between basic science knowledge and clinical knowledge stand out; the Two-world view seeing basic science and clinical science as two separate knowledge bases and the encapsulated knowledge view stating that basic science knowledge plays an overt role being encapsulated in the clinical knowledge. However, resent…

  9. Growth in Turkish Positive Basic Sciences, 1933-1966.

    ERIC Educational Resources Information Center

    Ozinonu, A. Kemal

    This study collected data on the measurable qualities of Turkish science in terms of high level scientific manpower, scientific productivity, and scientific fertility from 1933 to 1966 and analyzed the data collected with the goal of providing a deeper understanding of the nature of Turkish science. Scientific personnel, including Turkish…

  10. The Impact of Hands-On-Approach on Student Academic Performance in Basic Science and Mathematics

    ERIC Educational Resources Information Center

    Ekwueme, Cecilia O.; Ekon, Esther E.; Ezenwa-Nebife, Dorothy C.

    2015-01-01

    Children can learn mathematics and sciences effectively even before being exposed to formal school curriculum if basic Mathematics and Sciences concepts are communicated to them early using activity oriented (Hands-on) method of teaching. Mathematics and Science are practical and activity oriented and can best be learnt through inquiry (Okebukola…

  11. Analysis of the basic science section of the orthopaedic in-training examination.

    PubMed

    Sheibani-Rad, Shahin; Arnoczky, Steven Paul; Walter, Norman E

    2012-08-01

    Since 1963, the Orthopaedic In-Training Examination (OITE) has been administered to orthopedic residents to assess residents' knowledge and measure the quality of teaching within individual programs. The OITE currently consists of 275 questions divided among 12 domains. This study analyzed all OITE basic science questions between 2006 and 2010. The following data were recorded: number of questions, question taxonomy, category of question, type of imaging modality, and recommended journal and book references. Between 2006 and 2010, the basic science section constituted 12.2% of the OITE. The assessment of taxonomy classification showed that recall-type questions were the most common, at 81.4%. Imaging modalities typically involved questions on radiographs and constituted 6.2% of the OITE basic science section. The majority of questions were basic science questions (eg, genetics, cell replication, and bone metabolism), with an average of 26.4 questions per year. The Journal of Bone & Joint Surgery (American Volume) and the American Academy of Orthopaedic Surgeons' Orthopaedic Basic Science were the most commonly and consistently cited journal and review book, respectively. This study provides the first review of the question content and recommended references of the OITE basic science section. This information will provide orthopedic trainees, orthopedic residency programs, and the American Academy of Orthopaedic Surgeons Evaluation Committee valuable information related to improving residents' knowledge and performance and optimizing basic science educational curricula. PMID:22868614

  12. Basic space science for the benefit of developing countries. Proceedings. Conference, Lagos (Nigeria), 18 - 22 Oct 1993.

    NASA Astrophysics Data System (ADS)

    The following topics were dealt with: international cooperation in basic space science, education for space science, atmospheric science, planetary science, the Sun, binary stars, ground-based and space-based astronomical observations, and astrophysics and cosmology.

  13. Teaching Basic Science Environmentally, The Concept: The cell is basic unit of structure of most organisms.

    ERIC Educational Resources Information Center

    Busch, Phyllis S.

    1985-01-01

    Suggests simple ways to introduce students to the concept that the cell is the basic unit of structure of most organisms. Mentions materials for microscope study that are readily available and easy to handle, e.g., membranes from between the scales of the onion bulb, thin-leaved plants, pond water, and pollen. (JHZ)

  14. Basic science and energy research sector profile: Background for the National Energy Strategy

    SciTech Connect

    March, F.; Ashton, W.B.; Kinzey, B.R.; McDonald, S.C.; Lee, V.E.

    1990-11-01

    This Profile report provides a general perspective on the role of basic science in the spectrum of research and development in the United States, and basic research's contributions to the goals of the National Energy Strategy (NES). It includes selected facts, figures, and analysis of strategic issues affecting the future of science in the United States. It is provided as background for people from government, the private sector, academia, and the public, who will be reviewing the NES in the coming months; and it is intended to serve as the basis for discussion of basic science issues within the context of the developing NES.

  15. Teaching Basic Classification through an Elementary Science Unit on Food.

    ERIC Educational Resources Information Center

    Schubert, Nancy A.

    Five lesson plans are included in this unit designed to teach basic classification skills through the study of food. Each lesson plan contains an objective, list of materials needed, statement of the lesson problem, instructional strategies, learning outcomes, and evaluation method(s). Objectives of the lessons include: (1) grouping common animals…

  16. The Integration of Nutrition Education in the Basic Biomedical Sciences

    ERIC Educational Resources Information Center

    Raw, Isaias

    1977-01-01

    At the Center for Biomedical Education at the City University of New York, nutrition is integrated into the chemistry-biochemistry sequence of a six-year B.S.-M.D. program. Students perform an actual analysis of a sample of their own food, learning basic techniques and concepts, and also carry on experiments with rats on other diets. (Editor/LBH)

  17. Basic Research: Behavioral and Social Sciences. 1984 Annual Report.

    ERIC Educational Resources Information Center

    Army Research Inst. for the Behavioral and Social Sciences, Alexandria, VA.

    This is the second annual report of the Army Research Institute's (ARI) basic research program. It describes the current focus of the program and the individual research efforts sponsored within each of the four principal thrust areas: ability assessment; instructional technology; cognitive processing limitations; and intelligent systems. In…

  18. Astrosociology and Space Exploration: Taking Advantage of the Other Branch of Science

    NASA Astrophysics Data System (ADS)

    Pass, Jim

    2008-01-01

    The space age marches on. Following President Bush's Vision for Space Exploration (VSE) and our recent celebration of the fiftieth anniversary of spaceflight on October 4, 2007, we should now take time to contemplate where we have been as it relates to where we are going. Space exploration has depended most strongly on engineers and space scientists in the past. This made sense when crews remained small, manned missions tended to operate in low Earth orbit and on a temporary basis, and the bulk of missions were carried out by robotic spacecraft. The question one must now ask is this: What will change in the next fifty years? One fundamental answer to this question involves the strong probability that human beings will increasingly go into space to live and work on long-duration missions and begin to live in space permanently. This article addresses the need to utilize the other neglected branch of science, comprised of the social and behavioral sciences along with the humanities, as it relates to the shift to a more substantial human presence in space. It focuses on the social science perspective needed to make this possible rather than the practical aspects of doing so, such as the engineering of functional habitats. A most important consideration involves the permanent establishment of a formal collaborative mechanism between astrosociologists and the engineers and space scientists who traditionally comprise the space community. The theoretical and applied aspects of astrosociology each have much to contribute toward the human dimension of space exploration, both on the Earth and beyond its atmosphere. The bottom line is that a social species such as ours cannot determine how to live in space without the input from a social science perspective, namely astrosociology.

  19. Using Soils to Teach Basic Concepts in Science and Art

    NASA Astrophysics Data System (ADS)

    Lindbo, David L.; Kozlowski, Deborah; Robinson, Clay; Chapman, Susan

    2014-05-01

    Teaching primary and secondary school students (K-12) about science and art, although absolutely critical, can be difficult. Teachers have specific standards or subject matters that they are required to cover and often soils and soil science is not included in that list. We have struggled with ways to bring soil science information to the larger audience as the direct approach meets with resistance due to the time commitments to other standards. Our approach now is to use soils as a media or vehicle to teach key concepts in broad subject areas. We have developed several lesson plans in science, geography, math and art that focus on a concept but use soils to convey it. For example students make "mini" monoliths of a state soil. During this exercise students need to use skills in geography to find where their state soil occurs in their state and in the country. They need to understand colors in order to choose the correct colors to use to make their monolith. Finally, they must understand how scales work in order to make the monolith accurate in terms of horizon depths. Throughout the exercise discussion on my certain colors occur in the soil can be discussed. This discussion can lead to a qualitative understanding of chemistry and biology. This presentation will demonstrate this lesson and several others that have been developed and available through the Soil Science Society of America's K12 Education Committee.

  20. Funding the Foundation: Basic Science at the Crossroads

    ERIC Educational Resources Information Center

    Hughes, Kent, Ed.; Sha, Lynn, Ed.

    2006-01-01

    These proceedings from a conference with leading experts examines the hugely successful American model of technological and scientific innovation. They stress the critical importance of government funding of physical science for the realms of national security, education, and industry. Kent Hughes and Frederick M. Bush, both of the Woodrow Wilson…

  1. Top Liberal Arts Colleges Need More Money for Basic Science.

    ERIC Educational Resources Information Center

    Worthy, Ward

    1986-01-01

    Discusses findings from report "Maintaining America's Scientific Productivity: The Necessity of the Liberal Arts Colleges" produced at Oberlin College. Characterizes science majors, faculty, and state of facilities at such schools, and speculates on needed financial support to maintain and enhance their current position. (JM)

  2. Why our patients (and we) need basic science research.

    PubMed

    Schor, Nina F

    2013-05-28

    In times of fiscal austerity, the tendency is to seek instant, inexpensive gratification. In the case of biomedical research, this means the shortest path to practical clinical implementation. But fueling the translational pipeline with discovery depends critically on allowing the biomedical research community to follow their science where it takes them. Fiscal constraints carry with them the risk of squelching creativity and forfeiting the power of serendipity to provide the substrate for the translational engine in the future. PMID:23713087

  3. Why our patients (and we) need basic science research

    PubMed Central

    2013-01-01

    In times of fiscal austerity, the tendency is to seek instant, inexpensive gratification. In the case of biomedical research, this means the shortest path to practical clinical implementation. But fueling the translational pipeline with discovery depends critically on allowing the biomedical research community to follow their science where it takes them. Fiscal constraints carry with them the risk of squelching creativity and forfeiting the power of serendipity to provide the substrate for the translational engine in the future. PMID:23713087

  4. US biomedical research: basic, translational, and clinical sciences.

    PubMed

    Zerhouni, Elias A

    2005-09-21

    The National Institutes of Health (NIH) is the world's largest biomedical research agency, with a 75-year record of responding to the nation's key medical challenges. Today, medical science is entering a revolutionary period marked by a shift in focus from acute to chronic diseases, rapidly escalating health care costs, a torrent of biological data generated by the sequencing of the human genome, and the development of advanced high-throughput technologies that allow for the study of vast molecular networks in health and disease. This unique period offers the unprecedented opportunity to identify individuals at risk of disease based on precise molecular knowledge, and the chance to intervene to preempt disease before it strikes. Conceptually, this represents the core scientific challenge of the coming century. The NIH is committed to the discoveries that will change the practice of medicine as we know it in order to meet this challenge. The NIH Roadmap constitutes an important vehicle for generating change-a most critical element of this plan is the reengineering of the national clinical research enterprise. This reinvention will call for the transformation of translational clinical science and for novel interdisciplinary approaches that will advance science and enhance the health of the nation. PMID:16174693

  5. The Museum of Science and Industry Basic List of Children's Science Books 1973-1984.

    ERIC Educational Resources Information Center

    Richter, Bernice; Wenzel, Duane

    Children's science books are listed under these headings: animals; astronomy; aviation and space; biography; careers; earth sciences; encyclopedias and reference books; environment and conservation; fiction; general science; life sciences; marine life; mathematics and computer science; medical and health sciences; physics and chemistry; plant…

  6. Endoglin in liver fibrogenesis: Bridging basic science and clinical practice

    PubMed Central

    Meurer, Steffen K; Alsamman, Muhammad; Scholten, David; Weiskirchen, Ralf

    2014-01-01

    Endoglin, also known as cluster of differentiation CD105, was originally identified 25 years ago as a novel marker of endothelial cells. Later it was shown that endoglin is also expressed in pro-fibrogenic cells including mesangial cells, cardiac and scleroderma fibroblasts, and hepatic stellate cells. It is an integral membrane-bound disulfide-linked 180 kDa homodimeric receptor that acts as a transforming growth factor-β (TGF-β) auxiliary co-receptor. In humans, several hundreds of mutations of the endoglin gene are known that give rise to an autosomal dominant bleeding disorder that is characterized by localized angiodysplasia and arteriovenous malformation. This disease is termed hereditary hemorrhagic telangiectasia type I and induces various vascular lesions, mainly on the face, lips, hands and gastrointestinal mucosa. Two variants of endoglin (i.e., S- and L-endoglin) are formed by alternative splicing that distinguishes from each other in the length of their cytoplasmic tails. Moreover, a soluble form of endoglin, i.e., sol-Eng, is shedded by the matrix metalloprotease-14 that cleaves within the extracellular juxtamembrane region. Endoglin interacts with the TGF-β signaling receptors and influences Smad-dependent and -independent effects. Recent work has demonstrated that endoglin is a crucial mediator during liver fibrogenesis that critically controls the activity of the different Smad branches. In the present review, we summarize the present knowledge of endoglin expression and function, its involvement in fibrogenic Smad signaling, current models to investigate endoglin function, and the diagnostic value of endoglin in liver disease. PMID:24921008

  7. Development and Validation of a Project Package for Junior Secondary School Basic Science

    ERIC Educational Resources Information Center

    Udofia, Nsikak-Abasi

    2014-01-01

    This was a Research and Developmental study designed to develop and validate projects for Junior Secondary School Basic Science instruction and evaluation. The projects were developed using the project blueprint and sent for validation by experts in science education and measurement and evaluation; using a project validation scale. They were to…

  8. DOE Office of Science Funded Basic Research at NREL that Impacts Photovoltaic Technologies

    SciTech Connect

    Deb, S. K.

    2005-01-01

    The DOE Office of Science, Basic Energy Sciences, supports a number of basic research projects in materials, chemicals, and biosciences at the National Renewable Energy Laboratory (NREL) that impact several renewable energy technologies, including photovoltaics (PV). The goal of the Material Sciences projects is to study the structural, optical, electrical, and defect properties of semiconductors and related materials using state-of-the-art experimental and theoretical techniques. Specific projects involving PV include: ordering in III-V semiconductors, isoelectronic co-doping, doping bottlenecks in semiconductors, solid-state theory, and computational science. The goal of the Chemical Sciences projects is to advance the fundamental understanding of the relevant science involving materials, photochemistry, photoelectrochemistry, nanoscale chemistry, and catalysis that support solar photochemical conversion technologies. Specific projects relating to PV include: dye-sensitized TiO2 solar cells, semiconductor nanostructures, and molecular semiconductors. This presentation will give an overview of some of the major accomplishments of these projects.

  9. Flexner revisited: the role and value of the basic sciences in medical education.

    PubMed

    Finnerty, Edward P; Chauvin, Sheila; Bonaminio, Giulia; Andrews, Mark; Carroll, Robert G; Pangaro, Louis N

    2010-02-01

    A central tenet of Flexner's report was the fundamental role of science in medical education. Today, there is tension between the time needed to teach an ever-expanding knowledge base in science and the time needed for increased instruction in clinical application and in the behavioral, ethical, and managerial knowledge and skills needed to prepare for clinical experiences. One result has been at least a perceived reduction in time and focus on the foundational sciences. In this context, the International Association of Medical Science Educators initiated a study to address the role and value of the basic sciences in medical education by seeking perspectives from various groups of medical educators to five questions: (1) What are the sciences that constitute the foundation for medical practice? (2) What is the value and role of the foundational sciences in medical education? (3) When and how should these foundational sciences be incorporated into the medical education curriculum? (4) What sciences should be prerequisite to entering the undergraduate medical curriculum? (5) What are examples of the best practices for incorporating the foundational sciences into the medical education curriculum? The results suggest a broad group of experts believes that an understanding of basic science content remains essential to clinical practice and that teaching should be accomplished across the entire undergraduate medical education experience and integrated with clinical applications. Learning the sciences also plays a foundational role in developing discipline and rigor in learners' thinking skills, including logical reasoning, critical appraisal, problem solving, decision making, and creativity. PMID:20107367

  10. Is basic science disappearing from medicine? The decline of biomedical research in the medical literature.

    PubMed

    Steinberg, Benjamin E; Goldenberg, Neil M; Fairn, Gregory D; Kuebler, Wolfgang M; Slutsky, Arthur S; Lee, Warren L

    2016-02-01

    Explosive growth in our understanding of genomics and molecular biology have fueled calls for the pursuit of personalized medicine, the notion of harnessing biologic variability to provide patient-specific care. This vision will necessitate a deep understanding of the underlying pathophysiology in each patient. Medical journals play a pivotal role in the education of trainees and clinicians, yet we suspected that the amount of basic science in the top medical journals has been in decline. We conducted an automated search strategy in PubMed to identify basic science articles and calculated the proportion of articles dealing with basic science in the highest impact journals for 8 different medical specialties from 1994 to 2013. We observed a steep decline (40-60%) in such articles over time in almost all of the journals examined. This rapid decline in basic science from medical journals is likely to affect practitioners' understanding of and interest in the basic mechanisms of disease and therapy. In this Life Sciences Forum, we discuss why this decline may be occurring and what it means for the future of science and medicine. PMID:26467794

  11. Japanese representation in leading general medicine and basic science journals: a comparison of two decades.

    PubMed

    Fukui, Tsuguya; Takahashi, Osamu; Rahman, Mahbubur

    2013-01-01

    During 1991-2000, Japan contribution to the top general medicine journals was very small although the contribution to the top basic science journals was sizeable. However, it has not been examined whether the contribution to the top general medicine and basic science journals has changed during the last decade (2001-2010). The objective of this study was to compare Japan representation in high-impact general medicine and basic science journals between the years 1991-2000 and 2001-2010. We used PubMed database to examine the frequency of articles originated from Japan and published in 7 high-impact general medicine and 6 high-impact basic science journals. Several Boolean operators were used to connect name of the journal, year of publication and corresponding authors' affiliation in Japan. Compared to the 1991-2000 decade, Japan contribution to the top general medicine journals did not increase over the 2001-2010 period (0.66% vs. 0.74%, P = 0.255). However, compared to the same period, its contribution to the top basic science journals increased during 2001-2010 (2.51% vs. 3.60%, P < 0.001). Japan representation in basic science journals showed an upward trend over the 1991-2000 period (P < 0.001) but remained flat during 2001-2010 (P = 0.177). In contrast, the trend of Japan representation in general medicine journals remained flat both during 1991-2000 (P = 0.273) and 2001-2010 (P = 0.073). Overall, Japan contribution to the top general medicine journals has remained small and unchanged over the last two decades. However, top basic science journals had higher Japan representation during 2001-2010 compared to 1991-2000. PMID:24189990

  12. The basic science of peri-implant bone healing

    PubMed Central

    Kuzyk, Paul RT; Schemitsch, Emil H

    2011-01-01

    Given the popularity of cementless orthopedic implants, it is imperative for orthopedic surgeons to have a basic understanding of the process of peri-implant bone healing. Contact and distance osteogenesis have been used to explain peri-implant bone healing. In contact osteogenesis, de novo bone forms on the implant surface, while in distance osteogenesis, the bone grows from the old bone surface toward the implant surface in an appositional manner. Contact osteogenesis may lead to bone bonding if the surface of the implant displays the appropriate surface topography. The early stage of peri-implant bone healing is very important and involves the body’s initial response to a foreign material: protein adsorption, platelet activation, coagulation, and inflammation. This results in the formation of a stable fibrin clot that is a depot for growth factors and allows for osteoconduction. Osteoconduction is the migration and differentiation of osteogenic cells, such as pericytes, into osteoblasts. Osteoconduction allows for contact osteogenesis to occur at the implant surface. The late stage of healing involves the remodeling of this woven bone. In many respects, this process is similar to the bone healing occurring at a fracture site. PMID:21430864

  13. Communicating and advocating for science and medicine: beyond the basics.

    PubMed

    Feussner, John R

    2015-02-01

    I have discussed several advocacy strategies to improve effective communications for those motivated to do the necessary work to make a difference in policy decisions involving science and health care. I encourage you to get involved personally with members of Congress, their key “staffers,” and to contribute financially to their election efforts. Other suggestions are self-evident, for example, think strategically, only advocate for important policies and do not “over promise” or “under deliver.” If you “get to yes,” stop negotiating and leave gratefully. Remember, you are operating in a high stakes arena and while you understand the intended consequences, you may misjudge unintended consequences that could diminish success. But if you want to make a difference, you must become a “player in the policy and political game.” And if you “get in the game,” you should play to win! PMID:25291339

  14. Neutron Capture Reactions for Stockpile Stewardship and Basic Science

    SciTech Connect

    Parker, W; Agvaanluvsan, U; Becker, J; Wilk, P; Wu, C; Bredeweg, T; Couture, A; Haight, R; Jandel, M; O'Donnell, J; Reifarth, R; Rundberg, R; Ullmann, J; Vieira, D; Wouters, J; Sheets, S; Mitchell, G; Becvar, F; Krticka, M

    2007-08-04

    The capture process is a nuclear reaction in which a target atom captures an incident projectile, e.g. a neutron. The excited-state compound nucleus de-excites by emitting photons. This process creates an atom that has one more neutron than the target atom, so it is a different isotope of the same element. With low energy (slow) neutron projectiles, capture is the dominant reaction, other than elastic scattering. However, with very heavy nuclei, fission competes with capture as a method of de-excitation of the compound nucleus. With higher energy (faster) incident neutrons, additional reactions are also possible, such as emission of protons or emission of multiple neutrons. The probability of a particular reaction occurring (such as capture) is referred to as the cross section for that reaction. Cross sections are very dependent on the incoming neutron's energy. Capture reactions can be studied either using monoenergetic neutron sources or 'white' neutron sources. A 'white' neutron source has a wide range of neutron energies in one neutron beam. The advantage to the white neutron source is that it allows the study of cross sections as they depend on neutron energies. The Los Alamos Neutron Science Center, located at Los Alamos National Laboratory, provides an intense white neutron source. Neutrons there are created by a high-energy proton beam from a linear accelerator striking a heavy metal (tungsten) target. The neutrons range in energy from subthermal up to very fast - over 100 MeV in energy. Low-energy neutron reaction cross sections fluctuate dramatically from one target to another, and they are very difficult to predict by theoretical modeling. The cross sections for particular capture reactions are important for defense sciences, advanced reactor concepts, transmutation of radioactive wastes and nuclear astrophysics. We now have a strong collaboration between Lawrence Livermore National Laboratory, Los Alamos National Laboratory, North Carolina State

  15. Lost in Translation—Basic Science in the Era of Translational Research ▿

    PubMed Central

    Fang, Ferric C.; Casadevall, Arturo

    2010-01-01

    The concept of translational research, which aims to facilitate the application of basic scientific discoveries in clinical and community settings, is currently in vogue. While there are powerful forces driving this trend, support for translational research must be accompanied by a robust investment in basic science, which provides the essential raw material for translation and continues to represent humanity's best hope to meet a wide range of public health challenges. PMID:20038540

  16. Information-seeking behavior of basic science researchers: implications for library services

    PubMed Central

    Haines, Laura L.; Light, Jeanene; O'Malley, Donna; Delwiche, Frances A.

    2010-01-01

    Objectives: This study examined the information-seeking behaviors of basic science researchers to inform the development of customized library services. Methods: A qualitative study using semi-structured interviews was conducted on a sample of basic science researchers employed at a university medical school. Results: The basic science researchers used a variety of information resources ranging from popular Internet search engines to highly technical databases. They generally relied on basic keyword searching, using the simplest interface of a database or search engine. They were highly collegial, interacting primarily with coworkers in their laboratories and colleagues employed at other institutions. They made little use of traditional library services and instead performed many traditional library functions internally. Conclusions: Although the basic science researchers expressed a positive attitude toward the library, they did not view its resources or services as integral to their work. To maximize their use by researchers, library resources must be accessible via departmental websites. Use of library services may be increased by cultivating relationships with key departmental administrative personnel. Despite their self-sufficiency, subjects expressed a desire for centralized information about ongoing research on campus and shared resources, suggesting a role for the library in creating and managing an institutional repository. PMID:20098658

  17. The Challenge of the Humanities and Social Science Education Through the Basic Seminar (Science of Snow Sports)

    NASA Astrophysics Data System (ADS)

    Taniai, Tetsuyuki; Sugimoto, Taku; Sato, Ken-Ichi; Ikota, Masaru

    The Education Center of Chiba Institute of Technology is taking a new approach to the introduction of liberal arts subjects commonly included in the curriculum of all departments through a newly established basic seminar, the Science of Snow Sports. Each faculty member has been working on setting up classes that cross the conventional boundaries of fields and disciplines and which are targeted at students of all faculties and departments. This paper describes the potential for teaching liberal arts and social science subjects to engineering students through the medium of sports science, based on actual experience gained via this new approach.

  18. An Academic Career in a Basic Medical Science Department of Physiology.

    ERIC Educational Resources Information Center

    Saba, Thomas M.

    1981-01-01

    The availability of opportunities and the development of an academic career in a physiology department within a medical school or basic science department by graduates and postgraduates who intend to participate in physiology on a full-time basis are discussed, emphasizing typical background and job responsibilities. (Author/DC)

  19. Effects of Concept Mapping Instruction Approach on Students' Achievement in Basic Science

    ERIC Educational Resources Information Center

    Ogonnaya, Ukpai Patricia; Okafor, Gabriel; Abonyi, Okechukwu S.; Ugama, J. O.

    2016-01-01

    The study investigated the effects of concept mapping on students' achievement in basic science. The study was carried out in Ebonyi State of Nigeria. The study employed a quasi-experimental design. Specifically the pretest posttest non-equivalent control group research design was used. The sample was 122 students selected from two secondary…

  20. Pharmacy Student Perception of Characteristics and Activities of Pharmacy Faculty; Basic Science Compared with Pharmacy Practice.

    ERIC Educational Resources Information Center

    Doering, Paul L.; House, Michael L.

    1981-01-01

    Student attitudes toward pharmacy faculty were measured. Areas of inquiry included faculty characteristics such as age, sex, academic rank, education, licensure, experience, teaching, research, service and credibility. Analysis of data involved a comparision of student answers for pharmacy practice and basic science faculty. (Author/MLW)

  1. Undergraduate Student Researchers, Preferred Learning Styles, and Basic Science Research: A Winning Combination

    ERIC Educational Resources Information Center

    Woeste, Lori A.; Barham, Beverly J.

    2007-01-01

    In basic science research, student researchers are often challenged with not only the technical portion of the research design but also the team dynamic. Understanding how a student prefers to learn can provide an advantage for mentors to better meet these challenges. In this article, the authors describe the experience of working with student…

  2. Translating Basic Behavioral and Social Science Research to Clinical Application: The EVOLVE Mixed Methods Approach

    ERIC Educational Resources Information Center

    Peterson, Janey C.; Czajkowski, Susan; Charlson, Mary E.; Link, Alissa R.; Wells, Martin T.; Isen, Alice M.; Mancuso, Carol A.; Allegrante, John P.; Boutin-Foster, Carla; Ogedegbe, Gbenga; Jobe, Jared B.

    2013-01-01

    Objective: To describe a mixed-methods approach to develop and test a basic behavioral science-informed intervention to motivate behavior change in 3 high-risk clinical populations. Our theoretically derived intervention comprised a combination of positive affect and self-affirmation (PA/SA), which we applied to 3 clinical chronic disease…

  3. Long-Term Retention of Basic Science Knowledge: A Review Study

    ERIC Educational Resources Information Center

    Custers, Eugene J. F. M.

    2010-01-01

    In this paper, a review of long-term retention of basic science knowledge is presented. First, it is argued that retention of this knowledge has been a long-standing problem in medical education. Next, three types of studies are described that are employed in the literature to investigate long-term retention of knowledge in general. Subsequently,…

  4. Using "Basic Principles" to Understand Complex Science: Nicotine Smoke Chemistry and Literature Analogies

    ERIC Educational Resources Information Center

    Seeman, Jeffrey I.

    2005-01-01

    The chemical and physical properties of nicotine and its carboxylic acid salts found in tobacco provided as an interesting example to understand basic principles of complex science. The result showed that the experimental data used were inconsistent to the conclusion made, and the transfer of nicotine smoke from tobacco to smoke cannot be…

  5. A Hybrid Model of Mathematics Support for Science Students Emphasizing Basic Skills and Discipline Relevance

    ERIC Educational Resources Information Center

    Jackson, Deborah C.; Johnson, Elizabeth D.

    2013-01-01

    The problem of students entering university lacking basic mathematical skills is a critical issue in the Australian higher-education sector and relevant globally. The Maths Skills programme at La Trobe University has been developed to address under preparation in the first-year science cohort in the absence of an institutional mathematics support…

  6. Integrating Basic Science and Clinical Teaching for Third-Year Medical Students.

    ERIC Educational Resources Information Center

    Croen, Lila G.; And Others

    1986-01-01

    A 2-month program for third-year students at Yeshiva's Albert Einstein College of Medicine that provides a model for integrating basic sciences and clinical training is described. It demonstrates the importance of lifelong learning in a field that constantly changes. (Author/MLW)

  7. The Dilemma of Medical Curriculum Innovation for the University Basic Science Departments

    ERIC Educational Resources Information Center

    Weil, William B., Jr.

    1970-01-01

    In his address to the Council of Academic Societies at the 80th Annual Meeting of the Association of American Medical Colleges in Cincinnati, Ohio, November 1969, author re-examines the advantages and disadvantages of a basic science department that is exclusively a medical school department. (IR)

  8. A First-Year, Student-Managed Course to Correlate Basic Sciences with Clinical Medicine.

    ERIC Educational Resources Information Center

    Saffran, Murray; Yeasting, Richard A.

    1985-01-01

    A course, designed to illustrate the correlation of the biochemistry and physiology content of the curriculum with clinical applications, is described. The entire presentation, from introduction and interview of the patient to the correlation of the clinical application with the basic sciences, was managed by the students. (Author/MLW)

  9. Use of NBME Examinations to Assess Retention of Basic Science Knowledge.

    ERIC Educational Resources Information Center

    Kennedy, William B.; And Others

    1981-01-01

    Ten years ago the results of the National Board of Medical Examiners (NBME) minitest suggested that there would be little change in total basic science examination performance between the second and fourth year of medical school. Five projects are reported that sustain these results. (Author/JMD)

  10. Effect of Self Regulated Learning Approach on Junior Secondary School Students' Achievement in Basic Science

    ERIC Educational Resources Information Center

    Nwafor, Chika E.; Obodo, Abigail Chikaodinaka; Okafor, Gabriel

    2015-01-01

    This study explored the effect of self-regulated learning approach on junior secondary school students' achievement in basic science. Quasi-experimental design was used for the study.Two co-educational schools were drawn for the study through simple random sampling technique. One school was assigned to the treatment group while the other was…

  11. Mesenchymal Stem Cells in Lipogems, a Reverse Story: from Clinical Practice to Basic Science.

    PubMed

    Tremolada, Carlo; Ricordi, Camillo; Caplan, Arnold I; Ventura, Carlo

    2016-01-01

    The idea that basic science should be the starting point for modern clinical approaches has been consolidated over the years, and emerged as the cornerstone of Molecular Medicine. Nevertheless, there is increasing concern over the low efficiency and inherent costs related to the translation of achievements from the bench to the bedside. These burdens are also perceived with respect to the effectiveness of translating basic discoveries in stem cell biology to the newly developing field of advanced cell therapy or Regenerative Medicine. As an alternative paradigm, past and recent history in Medical Science provides remarkable reverse stories in which clinical observations at the patient's bedside have fed major advances in basic research which, in turn, led to consistent progression in clinical practice. Within this context, we discuss our recently developed method and device, which forms the core of a system (Lipogems) for processing of human adipose tissue solely with the aid of mild mechanical forces to yield a microfractured tissue product. PMID:27236668

  12. A hybrid model of mathematics support for science students emphasizing basic skills and discipline relevance

    NASA Astrophysics Data System (ADS)

    Jackson, Deborah C.; Johnson, Elizabeth D.

    2013-09-01

    The problem of students entering university lacking basic mathematical skills is a critical issue in the Australian higher-education sector and relevant globally. The Maths Skills programme at La Trobe University has been developed to address under preparation in the first-year science cohort in the absence of an institutional mathematics support centre. The programme was delivered through first-year science and statistics subjects with large enrolments and focused on basic mathematical skills relevant to each science discipline. The programme offered a new approach to the traditional mathematical support centre or class. It was designed through close collaboration between science subject coordinators and the project leader, a mathematician, and includes resources relevant to science and mathematics questions written in context. Evaluation of the programme showed it improved the confidence of the participating students who found it helpful and relevant. The programme was delivered through three learning modes to allow students to select activities most suitable for them, which was appreciated by students. Mathematics skills appeared to increase following completion of the programme and student participation in the programme correlated positively and highly with academic grades in their relevant science subjects. This programme offers an alternative model for mathematics support tailored to science disciplines.

  13. Basic research needs to assure a secure energy future. A report from the Basic Energy Sciences Advisory Committee

    SciTech Connect

    2003-02-01

    This report has highlighted many of the possible fundamental research areas that will help our country avoid a future energy crisis. The report may not have adequately captured the atmosphere of concern that permeated the discussions at the workshop. The difficulties facing our nation and the world in meeting our energy needs over the next several decades are very challenging. It was generally felt that traditional solutions and approaches will not solve the total energy problem. Knowledge that does not exist must be obtained to address both the quantity of energy needed to increase the standard of living world-wide and the quality of energy generation needed to preserve the environment. In terms of investments, it was clear that there is no single research area that will secure the future energy supply. A diverse range of economic energy sources will be required--and a broad range of fundamental research is needed to enable these. Many of the issues fall into the traditional materials and chemical sciences research areas, but with specific emphasis on understanding mechanisms, energy related phenomena, and pursuing novel directions in, for example, nanoscience and integrated modeling. An important result from the discussions, which is hopefully apparent from the brief presentations above, is that the problems that must be dealt with are truly multidisciplinary. This means that they require the participation of investigators with different skill sets. Basic science skills have to be complemented by awareness of the overall nature of the problem in a national and world context, and with knowledge of the engineering, design, and control issues in any eventual solution. It is necessary to find ways in which this can be done while still preserving the ability to do first-class basic science. The traditional structure of research, with specific disciplinary groupings, will not be sufficient. This presents great challenges and opportunities for the funders of the

  14. United Nations/European Space Agency Workshops on Basic Space Science

    NASA Astrophysics Data System (ADS)

    Haubold, H. J.; Ocampo, A.; Torres, S.; Wamsteker, W.

    1995-02-01

    In 1958, the United Nations (UN) formally recognized a new potential for international cooperation by establishing an ad hoc Committee on the Peaceful Uses of Outer Space (COPUOS). A year later the Committee became a permanent body, and by 1983 membership had expanded to 53 states, with more than half of the members coming from the developing world. In 1970, COPUOS established the UN Program on Space Applications in order to strengthen cooperation in space science and technology between non-industrialized and industrialized countries. In the last few years, the UN and its COPUOS have paid increasing attention to education and research in space science and technology, including basic space science. In 1991 the UN, in cooperation with ESA, initiated the organization of annual Workshops in Basic Space Science for developing countries. These Workshops are designed to be held in one of the following major regions: Asia and the Pacific, Latin America and the Caribbean, Africa, Western Asia, and Europe. Accordingly, Basic Space Science Workshops have already been held in India (1991), Costa Rica and Colombia (1992), and Nigeria (1993). The fourth Workshop was held from 27 June to 1 July 1994 at the Cairo University, in Egypt, for Western Asia.

  15. United Nations/European Space Agency Workshops on Basic Space Science

    NASA Technical Reports Server (NTRS)

    Haubold, H. J.; Ocampo, A.; Torres, S.; Wamsteker, W.

    1995-01-01

    In 1958, the United Nations (UN) formally recognized a new potential for international cooperation by establishing an ad hoc Committee on the Peaceful Uses of Outer Space (COPUOS). A year later the Committee became a permanent body, and by 1983 membership had expanded to 53 states, with more than half of the members coming from the developing world. In 1970, COPUOS established the UN Program on Space Applications in order to strengthen cooperation in space science and technology between non-industrialized and industrialized countries. In the last few years, the UN and its COPUOS have paid increasing attention to education and research in space science and technology, including basic space science. In 1991 the UN, in cooperation with ESA, initiated the organization of annual Workshops in Basic Space Science for developing countries. These Workshops are designed to be held in one of the following major regions: Asia and the Pacific, Latin America and the Caribbean, Africa, Western Asia, and Europe. Accordingly, Basic Space Science Workshops have already been held in India (1991), Costa Rica andColombia (1992), and Nigeria (1993). The fourth Workshop was held from 27 June to 1 July 1994 at the Cairo University, in Egypt, for Western Asia.

  16. In Defense of Basic Science Funding: Today’s Scientific Discovery Is Tomorrow’s Medical Advance

    PubMed Central

    Tessier-Lavigne, Marc

    2013-01-01

    In this address, I will discuss the importance of basic science in tackling our health problems. I will also describe how the funding cuts are damaging our economic competitiveness and turning our young people away from science. PMID:23686129

  17. Science and scientific literacy vs science and scientific awareness through basic physics lectures: A study of wish and reality

    NASA Astrophysics Data System (ADS)

    Rusli, Aloysius

    2012-06-01

    Scientific literacy was already discussed in the 1950s, as a prerequisite for the general citizen in a world increasingly served and infused by science and technology: the so-called knowledge or learning society. This kind of literacy has been described in detail by Victor Showalter in 1975, expanded by others, and later defined succinctly by the OECD in 2003. As a complement, science literacy is described also by the National Science Digital Library (NSDL) as a content knowledge needed in setting up practical models for handling daily matters with science and engineering. These important and worthy aims were studied, and compared with reality and existing conditions. One hypothesis put forward and argued for is, that it is more realistic, considering existing trends, to aim for scientific and science awareness for the general student, while scientific and science literacy remain important and worthy aims for the common good of the global community, and important to be strived for by teachers, lecturers and intellectuals. The Basic Physics lectures can also lend themselves usefully for the more realistic aim, due to the science-based nature of the present knowledge society.

  18. FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)

    SciTech Connect

    Samara, G.A.

    1997-05-01

    The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfaces for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.

  19. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    SciTech Connect

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-10-01

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X

  20. Meeting report: "Depression and Anxiety Spectrum disorders: from basic science to the clinic and back".

    PubMed

    Haber, Suzanne N; Safadi, Ziad; Milad, Mohammad R

    2013-01-01

    In March, 2012 we held the first Mideast conference on "Depression and Anxiety Spectrum disorders: from basic science to the clinic and back", at the University of Amman, Jordan. This event brought together both clinical and basic scientists with expertise in depression and anxiety spectrum disorders. The meeting took place in a large lecture hall at the University of Jordan Medical School. The audience included faculty, residents, and students. The Dean of the Medical School opened the meeting, welcoming the guest speakers and participants. PMID:23497694

  1. Evaluation of Some Approved Basic Science and Technology Textbooks in Use in Junior Secondary Schools in Nigeria

    ERIC Educational Resources Information Center

    Nwafor, C. E.; Umoke, C. C.

    2016-01-01

    This study was designed to evaluate the content adequacy and readability of approved basic science and technology textbooks in use in junior secondary schools in Nigeria. Eight research questions guided the study. The sample of the study consisted of six (6) approved basic science and technology textbooks, 30 Junior Secondary Schools randomly…

  2. Adult-Rated Oceanography Part 1: A Project Integrating Ocean Sciences into Adult Basic Education Programs.

    NASA Astrophysics Data System (ADS)

    Cowles, S.; Collier, R.; Torres, M. K.

    2004-12-01

    Busy scientists seek opportunities to implement education and outreach efforts, but often don't know where to start. One easy and tested method is to form collaborations with federally-funded adult education and adult literacy programs. These programs exist in every U.S. state and territory and serve underrepresented populations through such major initiatives as adult basic education, adult secondary education (and GED preparation), and English language acquisition. These students are workers, consumers, voters, parents, grandparents, and members of every community. They have specific needs that are often overlooked in outreach activities. This presentation will describe the steps by which the Oregon Ocean Science and Math Collaborative program was developed. It is based on a partnership between the Oregon Department of Community Colleges and Workforce Development, Oregon State University College of Oceanic and Atmospheric Sciences, Oregon Sea Grant, and the OSU Hatfield Marine Science Center. It includes professional development through instructor institutes; teachers at sea and informal education opportunities; curriculum and web site development. Through the partnership described here, instructors in adult basic education programs participate in a yearlong experience in which they develop, test, and adapt innovative instructional strategies to meet the specific needs of adult learners. This, in turn, leads to new prospects for study in the areas of ocean science and math and introduces non-academic careers in marine science to a new community. Working directly with instructors, we have identified expertise level, instructional environment, instructor background and current teaching strategies used to address science literacy and numeracy goals of the adult learners in the State of Oregon. Preliminary evaluation of our ongoing project in meeting these goals will be discussed. These efforts contribute to national goals of science literacy for all, by providing

  3. Defense, basic, and industrial research at the Los Alamos Neutron Science Center: Proceedings

    SciTech Connect

    Longshore, A.; Salgado, K.

    1995-10-01

    The Workshop on Defense, Basic, and Industrial Research at the Los Alamos Neutron Science Center gathered scientists from Department of Energy national laboratories, other federal institutions, universities, and industry to discuss the use of neutrons in science-based stockpile stewardship, The workshop began with presentations by government officials, senior representatives from the three weapons laboratories, and scientific opinion leaders. Workshop participants then met in breakout sessions on the following topics: materials science and engineering; polymers, complex fluids, and biomaterials; fundamental neutron physics; applied nuclear physics; condensed matter physics and chemistry; and nuclear weapons research. They concluded that neutrons can play an essential role in science-based stockpile stewardship and that there is overlap and synergy between defense and other uses of neutrons in basic, applied, and industrial research from which defense and civilian research can benefit. This proceedings is a collection of talks and papers from the plenary, technical, and breakout session presentations. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  4. U.S. National Science Foundation Budget Proposal Focuses on Basic Research

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    2008-03-01

    The budget request of the U.S. National Science Foundation (NSF) for fiscal year (FY) 2009 focuses attention on basic research, establishes and supports several cross-foundation investment projects designed to have a transformative impact across science and engineering, and puts foundation activities back on track to double their research budgets by the next decade. The foundation's total proposed budget is US$6.85 billion, an increase of 13% over that enacted for FY 2008. Most of this funding increase goes to NSF's Research and Related Activities (R&RA) account, which, at $5.59 billion, is $772.5 million above the FY 2008 enacted amount.

  5. PRP Treatment Efficacy for Tendinopathy: A Review of Basic Science Studies.

    PubMed

    Zhou, Yiqin; Wang, James H-C

    2016-01-01

    Platelet-Rich Plasma (PRP) has been widely used in orthopaedic surgery and sport medicine to treat tendon injuries. However, the efficacy of PRP treatment for tendinopathy is controversial. This paper focuses on reviewing the basic science studies on PRP performed under well-controlled conditions. Both in vitro and in vivo studies describe PRP's anabolic and anti-inflammatory effects on tendons. While some clinical trials support these findings, others refute them. In this review, we discuss the effectiveness of PRP to treat tendon injuries with evidence presented in basic science studies and the potential reasons for the controversial results in clinical trials. Finally, we comment on the approaches that may be required to improve the efficacy of PRP treatment for tendinopathy. PMID:27610386

  6. PRP Treatment Efficacy for Tendinopathy: A Review of Basic Science Studies

    PubMed Central

    2016-01-01

    Platelet-Rich Plasma (PRP) has been widely used in orthopaedic surgery and sport medicine to treat tendon injuries. However, the efficacy of PRP treatment for tendinopathy is controversial. This paper focuses on reviewing the basic science studies on PRP performed under well-controlled conditions. Both in vitro and in vivo studies describe PRP's anabolic and anti-inflammatory effects on tendons. While some clinical trials support these findings, others refute them. In this review, we discuss the effectiveness of PRP to treat tendon injuries with evidence presented in basic science studies and the potential reasons for the controversial results in clinical trials. Finally, we comment on the approaches that may be required to improve the efficacy of PRP treatment for tendinopathy. PMID:27610386

  7. Neutron Transfer Reactions: Surrogates for Neutron Capture for Basic and Applied Nuclear Science

    SciTech Connect

    Cizewski, J. A.; Peters, W. A.; Allen, J.; Hatarik, R.; Matthews, C.; O'Malley, P.; Jones, K. L.; Kozub, R. L.; Howard, J.; Patterson, N.; Paulauskas, S. V.; Rogers, J.; Sissom, D. J.; Pain, S. D.; Adekola, A.; Bardayan, D. W.; Blackmon, J. C.; Liang, F.; Nesaraja, C. D.; Pittman, S. T.

    2009-03-10

    Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on {sup 130,132}Sn, {sup 134}Te and {sup 75}As are discussed.

  8. Neutron transfer reactions: Surrogates for neutron capture for basic and applied nuclear science

    SciTech Connect

    Cizewski, J. A.; Jones, K. L.; Kozub, R. L.; Pain, Steven D; Peters, W. A.; Adekola, Aderemi S; Allen, J.; Bardayan, Daniel W; Becker, J.; Blackmon, Jeff C; Chae, K. Y.; Chipps, K.; Erikson, Luke; Gaddis, A. L.; Harlin, Christopher W; Hatarik, Robert; Howard, Joshua A; Jandel, M.; Johnson, Micah; Kapler, R.; Krolas, W.; Liang, J Felix; Livesay, Jake; Ma, Zhanwen; Matei, Catalin; Matthews, C.; Moazen, Brian; Nesaraja, Caroline D; O'Malley, Patrick; Patterson, N. P.; Paulauskas, Stanley; Pelham, T.; Pittman, S. T.; Radford, David C; Rogers, J.; Schmitt, Kyle; Shapira, Dan; ShrinerJr., J. F.; Sissom, D. J.; Smith, Michael Scott; Swan, T. P.; Thomas, J. S.; Vieira, D. J.; Wilhelmy, J. B.; Wilson, Gemma L

    2009-04-01

    Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on {sup 130,132}Sn, {sup 134}Te and {sup 75}As are discussed.

  9. Research programs for Division of Chemical Sciences, Office of Basic Energy Sciences, Department of Energy

    SciTech Connect

    Not Available

    1988-01-01

    A chemical sciences review meeting was held in which research programs in chemistry were discussed. Major topics included: chemistry of actinides and fission products, interactions of solvents, solutes and surfaces in supercritical extraction, chemical and physical principles in multiphase separations, and chemical kinetics of enzyme catalyzed reactions. Individual projects are processed separately for the data bases. (CBS)

  10. Agent-based computer simulation and sirs: building a bridge between basic science and clinical trials.

    PubMed

    An, G

    2001-10-01

    The management of Systemic Inflammatory Response Syndrome (SIRS)/Multiple Organ Failure (MOF) remains the greatest challenge in the field of critical care. There has been uniform difficulty in translating the results of basic science research into effective therapeutic regimes. We propose that this is due in part to a failure to account for the complex, nonlinear nature of the inflammatory process of which SIRS/MOF represents a disordered state. Attempts to manipulate this process without an understanding of the dynamics of the system may potentially produce unintended consequences. Agent-Based Computer Simulation (ABCS) provides a means to synthesize the information acquired from the linear analysis of basic science into a model that preserves the complexity of the inflammatory system. We have constructed an abstracted version of the inflammatory process using an ABCS that is based at the cellular level. Despite its abstraction, the simulation produces non-linear behavior and reproduces the dynamic structure of the inflammatory response. Furthermore, adjustment of the simulation to model one of the unsuccessful initial anti-inflammatory trials of the 1990's demonstrates the adverse outcome that was observed in those clinical trials. It must be emphasized that the current model is extremely abstract and simplified. However, it is hoped that future ABCSs of sufficient sophistication eventually may provide an important bridging tool to translate basic science discoveries into clinical applications. Creating these simulations will require a large collaborative effort, and it is hoped that this paper will stimulate interest in this form of analysis. PMID:11580108

  11. A report of the Basic Energy Sciences Advisory Committee: 1992 review of the Basic Energy Sciences Program of the Department of Energy

    SciTech Connect

    Not Available

    1993-09-01

    The general quality of BES research at each of the 4 laboratories is high. Diversity of management at the different laboratories is beneficial as long as the primary BES mission and goals are clearly identified and effectively pursued. External sources of personnel should be encouraged. DOE has been designing a new high flux research reactor, the Advanced Neutron Source, to replace DOE`s two aging research reactors; BESAC conducted a panel evaluation of neutron sources for the future. The two new light sources, Advanced Light Source and Advanced Photon source will come on line well before all of their beamline instrumentation can be funded, developed, and installed. Appointment of a permanent director and deputy for OBES would enhance OBES effectiveness in budget planning and intra-DOE program coordination. Some DOE and DP laboratories have substantial infrastructure which match well industry development-applications needs; interlaboratory partnerships in this area are encouraged. Funding for basic science research programs should be maintained at FY1993 levels, adjusted for inflation; OBES plans should be updated and monitored to maintain the balance between basic research and facilities construction and operation. The recommendations are discussed in detail in this document.

  12. Science for Energy Technology: Strengthening the Link Between Basic Research and Industry

    SciTech Connect

    2010-04-01

    The nation faces two severe challenges that will determine our prosperity for decades to come: assuring clean, secure, and sustainable energy to power our world, and establishing a new foundation for enduring economic and jobs growth. These challenges are linked: the global demand for clean sustainable energy is an unprecedented economic opportunity for creating jobs and exporting energy technology to the developing and developed world. But achieving the tremendous potential of clean energy technology is not easy. In contrast to traditional fossil fuel-based technologies, clean energy technologies are in their infancy, operating far below their potential, with many scientific and technological challenges to overcome. Industry is ultimately the agent for commercializing clean energy technology and for reestablishing the foundation for our economic and jobs growth. For industry to succeed in these challenges, it must overcome many roadblocks and continuously innovate new generations of renewable, sustainable, and low-carbon energy technologies such as solar energy, carbon sequestration, nuclear energy, electricity delivery and efficiency, solid state lighting, batteries and biofuels. The roadblocks to higher performing clean energy technology are not just challenges of engineering design but are also limited by scientific understanding.Innovation relies on contributions from basic research to bridge major gaps in our understanding of the phenomena that limit efficiency, performance, or lifetime of the materials or chemistries of these sustainable energy technologies. Thus, efforts aimed at understanding the scientific issues behind performance limitations can have a real and immediate impact on cost, reliability, and performance of technology, and ultimately a transformative impact on our economy. With its broad research base and unique scientific user facilities, the DOE Office of Basic Energy Sciences (BES) is ideally positioned to address these needs. BES has laid

  13. Materials Sciences Programs. Fiscal Year 1980, Office of Basic Energy Sciences

    SciTech Connect

    Not Available

    1980-09-01

    This report provides a convenient compilation index of the DOE Materials Sciences Division programs. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs and is divided into Sections A and B, listing all the projects, Section C, a summary of funding levels, and Section D, an index (the investigator index is in two parts - laboratory and contract research).

  14. Movement as a basic concept in physiotherapy--a human science approach.

    PubMed

    Wikström-Grotell, Camilla; Eriksson, Katie

    2012-08-01

    The development of scientific knowledge of physiotherapy (PT) has advanced significantly. Research is mostly conducted within a biomedical paradigm and theory-building is underpinned by a positivist paradigm. The basic philosophical questions and concepts are not much reflected on, and PT lacks an established theoretical frame. The first step in theory development is to define the basic concepts. The aim of this professional theoretical paper was to reflect on and describe the concept of movement in PT based on earlier research as a standpoint for a broader and deeper understanding of the complex nature of PT reality inspired by a model for concept analysis developed in caring science [Eriksson K 2010 Concept determination as part of the development of knowledge in caring science. Scandinavian Journal of Caring Sciences 24: 2-11]. The concept of movement in PT is conceptualized as complex and multidimensional. The understanding of human movement in PT is based on five categories described in the paper. The conceptualization of movement includes acting in relation to the socio-cultural environment, inter-dynamic aspects, as well as personal, intradynamic aspects. This paper argues for the need to further develop the concept of movement in PT within a human science approach. A deeper understanding is needed as a basis for understanding complex clinical practice as well as in shaping the PT discipline. PMID:22765213

  15. Integrating Basic Analytical Methods and Computer-Interface Technology into an Environmental Science Water Quality Lab Improves Student Attitude

    ERIC Educational Resources Information Center

    Carvalho-Knighton, Kathleen M.; Smoak, Joseph M.

    2009-01-01

    The aim of this study was to investigate if integrating basic analytical methods and computer interface technology would result in a positive change in student attitude. Students' self-concept of science knowledge and skills (Capability), opinion towards science (Affect), and perceptions of the value of science (Value) were determined with…

  16. The United Nations Basic Space Science Initiative (UNBSSI): A Historical Introduction

    NASA Astrophysics Data System (ADS)

    Haubold, H. J.

    2006-11-01

    Pursuant to recommendations of the Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS), annual UN/European Space Agency workshops on basic space science have been held around the world since 1991. These workshops contributed to the development of astrophysics and space science, particularly in developing nations. Following a process of prioritization, the workshops identified the following elements as particularly important for international cooperation in the field: (i) operation of astronomical telescope facilities implementing TRIPOD, (ii) virtual observatories, (iii) astrophysical data systems, (iv) con-current design capabilities for the development of international space missions, and (v) theoretical astrophysics such as applications of non-extensive statistical mechanics. Beginning in 2005, the workshops are focusing on preparations for the International Heliophysical Year 2007 (IHY2007). The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost, ground-based, world- wide instrument arrays as led by the IHY secretariat. Wamsteker, W., Albrecht, R. and Haubold, H.J.: Developing Basic Space Science World-Wide: A Decade of UN/ESA Workshops: Kluwer Academic Publishers, Dordrecht 2004. http://ihy2007.org http://www.unoosa.org/oosa/en/SAP/bss/ihy2007/index.html http://www.cbpf.br/GrupPesq/StatisticalPhys/biblio.htm

  17. The articulation of integration of clinical and basic sciences in concept maps: differences between experienced and resident groups.

    PubMed

    Vink, Sylvia; van Tartwijk, Jan; Verloop, Nico; Gosselink, Manon; Driessen, Erik; Bolk, Jan

    2016-08-01

    To determine the content of integrated curricula, clinical concepts and the underlying basic science concepts need to be made explicit. Preconstructed concept maps are recommended for this purpose. They are mainly constructed by experts. However, concept maps constructed by residents are hypothesized to be less complex, to reveal more tacit basic science concepts and these basic science concepts are expected to be used for the organization of the maps. These hypotheses are derived from studies about knowledge development of individuals. However, integrated curricula require a high degree of cooperation between clinicians and basic scientists. This study examined whether there are consistent variations regarding the articulation of integration when groups of experienced clinicians and basic scientists and groups of residents and basic scientists-in-training construct concept maps. Seven groups of three clinicians and basic scientists on experienced level and seven such groups on resident level constructed concept maps illuminating clinical problems. They were guided by instructions that focused them on articulation of integration. The concept maps were analysed by features that described integration. Descriptive statistics showed consistent variations between the two expertise levels. The concept maps of the resident groups exceeded those of the experienced groups in articulated integration. First, they used significantly more links between clinical and basic science concepts. Second, these links connected basic science concepts with a greater variety of clinical concepts than the experienced groups. Third, although residents did not use significantly more basic science concepts, they used them significantly more frequent to organize the clinical concepts. The conclusion was drawn that not all hypotheses could be confirmed and that the resident concept maps were more elaborate than expected. This article discusses the implications for the role that residents and

  18. Vertical integration of basic science in final year of medical education

    PubMed Central

    Rajan, Sudha Jasmine; Jacob, Tripti Meriel; Sathyendra, Sowmya

    2016-01-01

    Background: Development of health professionals with ability to integrate, synthesize, and apply knowledge gained through medical college is greatly hampered by the system of delivery that is compartmentalized and piecemeal. There is a need to integrate basic sciences with clinical teaching to enable application in clinical care. Aim: To study the benefit and acceptance of vertical integration of basic science in final year MBBS undergraduate curriculum. Materials and Methods: After Institutional Ethics Clearance, neuroanatomy refresher classes with clinical application to neurological diseases were held as part of the final year posting in two medical units. Feedback was collected. Pre- and post-tests which tested application and synthesis were conducted. Summative assessment was compared with the control group of students who had standard teaching in other two medical units. In-depth interview was conducted on 2 willing participants and 2 teachers who did neurology bedside teaching. Results: Majority (>80%) found the classes useful and interesting. There was statistically significant improvement in the post-test scores. There was a statistically significant difference between the intervention and control groups' scores during summative assessment (76.2 vs. 61.8 P < 0.01). Students felt that it reinforced, motivated self-directed learning, enabled correlations, improved understanding, put things in perspective, gave confidence, aided application, and enabled them to follow discussions during clinical teaching. Conclusion: Vertical integration of basic science in final year was beneficial and resulted in knowledge gain and improved summative scores. The classes were found to be useful, interesting and thought to help in clinical care and application by majority of students. PMID:27563584

  19. Peer-assisted learning: filling the gaps in basic science education for preclinical medical students.

    PubMed

    Sammaraiee, Yezen; Mistry, Ravi D; Lim, Julian; Wittner, Liora; Deepak, Shantal; Lim, Gareth

    2016-09-01

    In contrast to peer-assisted learning (PAL) in clinical training, there is scant literature on the efficacy of PAL during basic medical sciences teaching for preclinical students. A group of senior medical students aimed to design and deliver clinically oriented small-group tutorials after every module in the preclinical curriculum at a United Kingdom medical school. Twenty tutorials were delivered by senior students throughout the year to first- and second-year students. A baseline questionnaire was delivered to inform the development of the program followed by an end-point questionnaire the next year (n = 122). Quizzes were administered before and after five separate tutorials to assess changes in mean student scores. Additionally, each tutorial was evaluated via a questionnaire for participants (n = 949). All five posttutorial quizzes showed a significant improvement in mean student score (P < 0.05). Questionnaires showed students found the program to be relevant and useful for revision purposes and appreciated how tutorials contextualized basic science to clinical medicine. Students appreciated the interactive nature of the sessions and found receiving personalized feedback about their learning and consolidating information with someone familiar with the material to be useful. With the inclusion of the program, students felt there were now an adequate number of tutorials during the year. In conclusion, this study shows that senior medical students can design and deliver a program that adds value to the mostly lecture-based formal preclinical curriculum. We hope that our study can prompt further work to explore the effect of PAL on the teaching of basic sciences during preclinical studies. PMID:27445276

  20. Medication-Related Osteonecrosis of the Jaw: Basic and Translational Science Updates.

    PubMed

    Allen, Matthew R

    2015-11-01

    In the late 1990s and the early 2000s, bisphosphonates had become the clinical pillar of excellence for treating metabolic bone disease, and thus their connection with osteonecrosis of the jaw (ONJ) caused significant concern. Over the past decade, progress has been made in understanding what is now referred to as medication-related ONJ (MRONJ), because of its connections to agents other than bisphosphonates, although in many respects the progress has been slow. This review highlights the key basic science and translational (animal) studies in the area of MRONJ and suggests areas of focus as the field moves into the next decade. PMID:26277349

  1. Library and Information Science and Archive Administration: A Guide to Building Up a Basic Collection for Library Schools.

    ERIC Educational Resources Information Center

    Parker, J. Stephen, Comp.

    This bibliography identifies a useful selection of basic documents and publications to provide help and guidance to schools of library and information science and archival studies--especially those in developing countries--that wish to establish a basic collection for the use of students and teachers or to enlarge their existing collection.…

  2. Use of the National Ignition Facility for defense, energy, and basic research science

    SciTech Connect

    Logan, B.G.

    1994-07-15

    On January 15, 1993, the Department of Energy (DOE) approved the Justification for Mission Need (JMN) for the National Ignition Facility (NIF). This action (Key Decision Zero, or KD0) commenced the conceptual design for the facility, which has resulted in a recently completed Conceptual Design Report (CDR). The JMN document defined the NIF mission elements to include laboratory fusion ignition and energy gain, weapons physics, and nuclear weapons effects testing research (NWET). NIF has a dual benefit by contributing to inertial fusion energy (IFE), industrial technology development, new basic science areas applying high power lasers, and training young scientists for future stewardship activities. For consideration of the next DOE action, Key Decision One (KD1), all mission elements of the NIF as stated in the JMN are consistent with and important to the US stockpile stewardship program, and are expected to continue to be in the vital interest of the United States for the long term. This document provides further information on the utility of NIF for stockpile stewardship, including support for a Comprehensive Test Ban Treaty (CTBT), and specific findings of four national workshops on the NIF utility for weapons physics, NWET, IFE and basic science research. The role of NIF for stockpile stewardship has been refined since a DOE meeting in Albuquerque, NM Feb. 1--2, 1994. The possible compliance of NIF research with anticipated CTBT and NPT limitations was discussed at the DOE Office of Arms Control and Nonproliferation in Washington, DC on March 8, 1994.

  3. Using WebCt to Implement a Basic Science Competency Education Course

    PubMed Central

    Gaasch, Julie A.; Borges, Karin; Ehlo, Alan; Smith, Quentin R.

    2008-01-01

    Objective To implement a model of competency-based education in a basic science competency course using WebCT to improve doctor of pharmacy (PharmD) students' understanding and long-term retention of course materials. Methods An anatomy-cell biology course was broken down into 23 modules, and worksheets and mirrored examinations were created for each module. Students were allowed to take the proctored examinations using WebCT as many times as they wanted, with each subsequent test containing a new random subset of questions. Examination scores and the number of attempts required to obtain a passing score were analyzed. Results Student performance improved with the number of times a module examination was taken. Students who initially had low scores achieved final competency levels similar to those of students who initially had high scores. Score on module scores (didactic work) correlated with scores on practical work Conclusions Using WebCT to implement a model of competency-based education was effective in teaching foundational anatomy and cell biology to pharmacy students and could potentially be applied to other basic science courses. PMID:18483605

  4. International cooperation in basic space science, Western Asian countries and the world

    NASA Astrophysics Data System (ADS)

    de Morais Mendonca Teles, Antonio

    The world will never better develop and attain a global peace state, if it does not exist a world-wide cooperation, union of interests among all countries on planet Earth, respecting and understanding each other culture differences. So, if the countries interested in space science want to create or better develop this field, they need to firstly construct peace states and social cooperation, while scientific and technological cooperation will develop -among them. Here in this paper, under the principles in the United Nations (UN)' Agenda 21 (UN UNCED, 1992), I propose four points that can lead to a practical and solid international cooperation in basic aerospace science and technology, based on ground studies, with sustainable space programs in countries with social necessities, and to the construction of an avenue of peace states in those areas and in the world, 1) The creation of LINKS among the "developing" countries, among the "developed" ones and between them -with scientists, engineers, educators and administrative personnel. This can catalyze a self-sustainable scientific and technological production in the "developing" countries. Financial matters could be done through the World Bank in coopera-tion with UNESCO. 2) The administration of this difficult enterprise of international coopera-tion. With the increasing complexity of relationships among the aerospace-interested countries, it will be necessary the creation of a center capable to serve as an INTERNATIONAL CO-ORDINATOR CENTER FOR AEROSPACE ACTIVITIES. 3) CULTURE: in Western Asian countries there is a cultural habit that when somebody gives something valuable to a person, this person should give something back. Thus, the Western Asian countries receiving infor-mation on basic aerospace science and technology from the "developed" ones, those countries would probably feel they should give something in return. Western Asian countries could trans-mit their costumes, thinking ways, habits, persons' worries

  5. Obstacles of Implementing the Science Curricula of the Basic Stage as Perceived by the Teachers in a Jordanian Town

    ERIC Educational Resources Information Center

    Ayasra, Ahmad

    2015-01-01

    This study aimed to investigate obstacles that prevent implementation of science curriculum which was developed within the Education Reform for the Knowledge Economy project (ErfKE). To achieve this, a purposeful sample consisted of four teachers of science for the basic stage in the town located in the north of Jordan in the first semester of the…

  6. The Views of Science Pre-Service Teachers about the Usage of Basic Information Technologies (BIT) in Education and Instruction

    ERIC Educational Resources Information Center

    Çetin, Oguz

    2016-01-01

    In this study aiming to present a description based on science pre-service teachers' views related to use of Basic Information Technologies (BIT) in education and training, an interview is carried out with 21 pre-service science teachers who study in different classes in Faculty of Education, Nigde University. For this aim, improved interview form…

  7. Lessons learned: the switch from VMS to UNIX operations for the STScI's Science and Mission Scheduling Branch

    NASA Astrophysics Data System (ADS)

    Adler, David S.; Workman, William M., III; Chance, Don

    2004-09-01

    The Science and Mission Scheduling Branch (SMSB) of the Space Telescope Science Institute (STScI) historically operated exclusively under VMS. Due to diminished support for VMS-based platforms at STScI, SMSB recently transitioned to Unix operations. No additional resources were available to the group; the project was SMSB's to design, develop, and implement. Early decisions included the choice of Python as the primary scripting language; adoption of Object-Oriented Design in the development of base utilities; and the development of a Python utility to interact directly with the Sybase database. The project was completed in January 2004 with the implementation of a GUI to generate the Command Loads that are uplinked to HST. The current tool suite consists of 31 utilities and 271 tools comprising over 60,000 lines of code. In this paper, we summarize the decision-making process used to determine the primary scripting language, database interface, and code management library. We also describe the finished product and summarize lessons learned along the way to completing the project.

  8. Review of the Lujan neutron scattering center: basic energy sciences prereport February 2009

    SciTech Connect

    Hurd, Alan J; Rhyne, James J; Lewis, Paul S

    2009-01-01

    The Lujan Neutron Scattering Center (Lujan Center) at LANSCE is a designated National User Facility for neutron scattering and nuclear physics studies with pulsed beams of moderated neutrons (cold, thermal, and epithermal). As one of five experimental areas at the Los Alamos Neutron Science Center (LANSCE), the Lujan Center hosts engineers, scientists, and students from around the world. The Lujan Center consists of Experimental Room (ER) 1 (ERl) built by the Laboratory in 1977, ER2 built by the Office of Basic Energy Sciences (BES) in 1989, and the Office Building (622) also built by BES in 1989, along with a chem-bio lab, a shop, and other out-buildings. According to a 1996 Memorandum of Agreement (MOA) between the Defense Programs (DP) Office of the National Nuclear Security Agency (NNSA) and the Office of Science (SC, then the Office of Energy Research), the Lujan Center flight paths were transferred from DP to SC, including those in ERI. That MOA was updated in 2001. Under the MOA, NNSA-DP delivers neutron beam to the windows of the target crypt, outside of which BES becomes the 'landlord.' The leveraging nature of the Lujan Center on the LANSCE accelerator is a substantial annual leverage to the $11 M BES operating fund worth approximately $56 M operating cost of the linear accelerator (LINAC)-in beam delivery.

  9. Science as Knowledge, Practice, and Map Making: The Challenge of Defining Metrics for Evaluating and Improving DOE-Funded Basic Experimental Science

    SciTech Connect

    Bodnarczuk, M.

    1993-03-01

    Industrial R&D laboratories have been surprisingly successful in developing performance objectives and metrics that convincingly show that planning, management, and improvement techniques can be value-added to the actual output of R&D organizations. In this paper, I will discuss the more difficult case of developing analogous constructs for DOE-funded non-nuclear, non-weapons basic research, or as I will refer to it - basic experimental science. Unlike most industrial R&D or the bulk of applied science performed at the National Renewable Energy Laboratory (NREL), the purpose of basic experimental science is producing new knowledge (usually published in professional journals) that has no immediate application to the first link (the R) of a planned R&D chain. Consequently, performance objectives and metrics are far more difficult to define. My claim is that if one can successfully define metrics for evaluating and improving DOE-funded basic experimental science (which is the most difficult case), then defining such constructs for DOE-funded applied science should be much less problematic. With the publication of the DOE Standard - Implementation Guide for Quality Assurance Programs for Basic and Applied Research (DOE-ER-STD-6001-92) and the development of a conceptual framework for integrating all the DOE orders, we need to move aggressively toward the threefold next phase: (1) focusing the management elements found in DOE-ER-STD-6001-92 on the main output of national laboratories - the experimental science itself; (2) developing clearer definitions of basic experimental science as practice not just knowledge; and (3) understanding the relationship between the metrics that scientists use for evaluating the performance of DOE-funded basic experimental science, the management elements of DOE-ER-STD-6001-92, and the notion of continuous improvement.

  10. The Cognitive Outcome in the Physical Games at the College of Students of the Basic Science in the World Islamic Sciences and Education University

    ERIC Educational Resources Information Center

    Salameh, Ibrahim A. M.; Al-Maharmeh, Yaseen A. M.; Oudat, Mo'een A.

    2013-01-01

    The study aimed at reconnoitering the cognitive outcome in the physical games at students of the college of basic science in the World Islamic Science and Education University. The descriptive method was employed, where the sample was randomly chosen, and amounted to (16) students (males & females) from the faculty. The sample discussed five…

  11. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences

    PubMed Central

    NAKAJIMA, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker’s review article on “Laser Acceleration and its future” [Toshiki Tajima, (2010)],1) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated. PMID:26062737

  12. Development of Radio Astronomy at Centre for Basic Space Science Observatory, Nsukka Nigeria

    NASA Astrophysics Data System (ADS)

    Aliyu, Nasiru; Okere, Bonaventure I.; Lanre, Daniyan O.; Ezechi, Nwachukwu E.

    2015-08-01

    Radio telescopes for research, teaching and learning at Centre for Basic Space Science (CBSS) observatory are currently in place of development. A small parabolic radio telescope with diameter of 3.0 m working at 1420 MHz is already available for general purpose of radio astronomical observations. In addition, a Radio Jove telescope with dual dipole antenna working at 20 MHz and Sudden Ionospheric Disturbance (SID) monitor working at 24 KHz are also available. It is suitable to monitor daily solar burst, solar flares as well as Jupiter decametric emission. More over, CBSS radio interferometers are now under construction. It consists of non-tracking Radio Jove array and SID monitor as well as two radio telescope tracking interferometers. The latter is planned to utilize up to 4 antennas. Multi frequency receivers are made available at 24 KHz, 20 and 1420 MHz and will be used for VLBI in the near future.

  13. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences.

    PubMed

    Nakajima, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker's review article on "Laser Acceleration and its future" [Toshiki Tajima, (2010)],(1)) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated. PMID:26062737

  14. Data and Communications in Basic Energy Sciences: Creating a Pathway for Scientific Discovery

    SciTech Connect

    Nugent, Peter E.; Simonson, J. Michael

    2011-10-24

    This report is based on the Department of Energy (DOE) Workshop on “Data and Communications in Basic Energy Sciences: Creating a Pathway for Scientific Discovery” that was held at the Bethesda Marriott in Maryland on October 24-25, 2011. The workshop brought together leading researchers from the Basic Energy Sciences (BES) facilities and Advanced Scientific Computing Research (ASCR). The workshop was co-sponsored by these two Offices to identify opportunities and needs for data analysis, ownership, storage, mining, provenance and data transfer at light sources, neutron sources, microscopy centers and other facilities. Their charge was to identify current and anticipated issues in the acquisition, analysis, communication and storage of experimental data that could impact the progress of scientific discovery, ascertain what knowledge, methods and tools are needed to mitigate present and projected shortcomings and to create the foundation for information exchanges and collaboration between ASCR and BES supported researchers and facilities. The workshop was organized in the context of the impending data tsunami that will be produced by DOE’s BES facilities. Current facilities, like SLAC National Accelerator Laboratory’s Linac Coherent Light Source, can produce up to 18 terabytes (TB) per day, while upgraded detectors at Lawrence Berkeley National Laboratory’s Advanced Light Source will generate ~10TB per hour. The expectation is that these rates will increase by over an order of magnitude in the coming decade. The urgency to develop new strategies and methods in order to stay ahead of this deluge and extract the most science from these facilities was recognized by all. The four focus areas addressed in this workshop were: Workflow Management - Experiment to Science: Identifying and managing the data path from experiment to publication. Theory and Algorithms: Recognizing the need for new tools for computation at scale, supporting large data sets and realistic

  15. Systematic Review: The Association and Impact of Financial Conflicts of Interest in Basic Science Research

    PubMed Central

    Bennett, Charles L.; Boyle, Simone N.; Kuykendal, Adam; Fisher, Matthew J.; Samaras, Athena T.; Barnato, Sara E.; Wagner, Robin L.; Goldstein, Carolyn E.; Tallman, Jacob; Munshi, Hidayatullah G.; Lai, Stephen Y.; Henke, Michael

    2009-01-01

    Background No prior study has evaluated financial relationships of investigators with pharmaceutical manufacturers for basic science. An example of the importance and impact of such relationships is in the evaluation of erythropoietin receptors’(EpoRs) effects on cancer cell lines, since studies have reported increased mortality when cancer patients receive erythropoiesis stimulating agents (ESAs). Purpose To assess the disclosed association that exist between pharmaceutical industry support and EpoRs effects on solid cancer cell lines. Data Sources MEDLINE and EMBASE (1988- July 2008) and two EpoR conferences sponsored by the National Institutes of Health. Study Selection All publications investigating EpoRs that met inclusion criteria were identified and included. Data Extraction Data were extracted on detection of EpoRs, presence of erythropoietin-induced signaling events, presence of erythropoietin-induced changes in cellular function, nature of qualitative conclusions, and sources of funding for all 74 studies. Data Synthesis In comparison to studies of academic investigators with no disclosed funding support from ESA manufacturers (n=64), the studies from academic investigators with funding support from ESA manufacturers (n= 7) and the laboratories directed by investigators employed by ESA manufacturers (n=3) were both less likely to identify: EpoR presence on solid tumor cells; erythropoietin-induced signaling events; erythropoietin-induced changes in cellular function; and less likely to conclude that their research had identified potentially harmful effects of erythropoietin on cancer cells. Additionally, presentations from industry-based investigator teams at NIH conferences were less likely to report EpoRs on cancer cell lines, downstream effects of erythropoietin, and cell proliferation and migration effects following EpoR administration. Conclusion Financial conflicts of interest impact the outcomes and presentation of basic science research data as

  16. International Space Science Programs: Basic Research with a High Public Purpose

    NASA Astrophysics Data System (ADS)

    Baker, D. N.

    2009-04-01

    The exploration of outer space, and the use of platforms in space to monitor the Earth, are increasingly international enterprises. The spacefaring nations of the world have programs to study the moon, the Sun, the other planets of the solar system, and the universe beyond. Space is also the domain from which navigation, communication, reconnaissance, and resource management functions are carried out by civilian and military agencies. Recent decades of experience have shown the immense benefits of international cooperation to pursue scientific research goals. In turn, the products of such basic research have immense potential to improve space situational awareness and to mitigate the effects of ''space weather'' on human technology. A key to future success of space exploration is to minimize the impacts of laws and regulations such as ITAR (International Traffic in Arms Regulations) that have already had a devastating effect on space commerce and basic space research. In this presentation I discuss the conduct of forefront science in the context of sensible, prudent international space policy and evolving governmental regulations.

  17. Strengthening Faculty Recruitment for Health Professions Training in Basic Sciences in Zambia

    PubMed Central

    Simuyemba, Moses; Talib, Zohray; Michelo, Charles; Mutale, Wilbroad; Zulu, Joseph; Andrews, Ben; Katubulushi, Max; Njelesani, Evariste; Bowa, Kasonde; Maimbolwa, Margaret; Mudenda, John; Mulla, Yakub

    2014-01-01

    Zambia is facing a crisis in its human resources for health (HRH), with deficits in the number and skill mix of health workers. The University of Zambia School of Medicine (UNZA SOM) was the only medical school in the country for decades, but recently it was joined by three new medical schools—two private and one public. In addition to expanding medical education, the government has also approved several allied health programs, including pharmacy, physiotherapy, biomedical sciences, and environmental health. This expansion has been constrained by insufficient numbers of faculty. Through a grant from the Medical Education Partnership Initiative (MEPI), UNZA SOM has been investing in ways to address faculty recruitment, training, and retention. The MEPI-funded strategy involves directly sponsoring a cohort of faculty at UNZA SOM during the five-year grant, as well as establishing more than a dozen new master’s programs, with the goal that all sponsored faculty are locally trained and retained. Because the issue of limited basic science faculty plagues medical schools throughout Sub-Saharan Africa, this strategy of using seed funding to build sustainable local capacity to recruit, train, and retain faculty could be a model for the region. PMID:25072591

  18. Strengthening faculty recruitment for health professions training in basic sciences in Zambia.

    PubMed

    Simuyemba, Moses; Talib, Zohray; Michelo, Charles; Mutale, Wilbroad; Zulu, Joseph; Andrews, Ben; Nzala, Selestine; Katubulushi, Max; Njelesani, Evariste; Bowa, Kasonde; Maimbolwa, Margaret; Mudenda, John; Mulla, Yakub

    2014-08-01

    Zambia is facing a crisis in its human resources for health, with deficits in the number and skill mix of health workers. The University of Zambia School of Medicine (UNZA SOM) was the only medical school in the country for decades, but recently it was joined by three new medical schools--two private and one public. In addition to expanding medical education, the government has also approved several allied health programs, including pharmacy, physiotherapy, biomedical sciences, and environmental health. This expansion has been constrained by insufficient numbers of faculty. Through a grant from the Medical Education Partnership Initiative (MEPI), UNZA SOM has been investing in ways to address faculty recruitment, training, and retention. The MEPI-funded strategy involves directly sponsoring a cohort of faculty at UNZA SOM during the five-year grant, as well as establishing more than a dozen new master's programs, with the goal that all sponsored faculty are locally trained and retained. Because the issue of limited basic science faculty plagues medical schools throughout Sub-Saharan Africa, this strategy of using seed funding to build sustainable local capacity to recruit, train, and retain faculty could be a model for the region. PMID:25072591

  19. Looking forward in geriatric anxiety and depression: implications of basic science for the future.

    PubMed

    Gershenfeld, Howard K; Philibert, Robert A; Boehm, Gary W

    2005-12-01

    Major depression and anxiety are common psychiatric illnesses whose etiology remains incompletely understood. This review highlights progress in understanding the etiology of these illnesses through genetic strategies and looks forward to their impact on geriatric psychiatry. We briefly address three broad domains of progress, namely 1) genetic approaches to etiology, including linkage and association studies, pharmacogenetics ("personalized medicine"), and gene x environment interactions; 2) mechanisms of thyroid and testosterone action via nuclear receptors, given these hormones' status as possible augmenters of antidepressants; and 3) the role of the neuroimmune system as a contributor to the stress response. Genetic strategies offer one path for converting correlational findings into causal pathways while complementing studies of a gene's function at the molecular, cellular, network, and whole-organismal levels. Neuroendocrine supplementation (thyroid and testosterone) has a long history and tradition. A molecular understanding of nuclear receptor pathways and their coactivators, the mediator complex proteins, provides a rationale for improved targeting of hormonal action in a tissue-selective manner, yielding drugs with improved safety and efficacy. Neural-immune interactions in psychiatric illness remain tantalizing topics. Research suggests that cytokine pathways may contribute to the maintenance or susceptibility to stress, anxiety, and depressive disorders. The reciprocal and recursive interactions among basic science, drug discovery, and clinical science will continue to provide hopeful themes for improving the lives of patients with treatment-refractive psychiatric illness. PMID:16319295

  20. Fort Collins Science Center Ecosystem Dynamics branch--interdisciplinary research for addressing complex natural resource issues across landscapes and time

    USGS Publications Warehouse

    Bowen, Zachary H.; Melcher, Cynthia P.; Wilson, Juliette T.

    2013-01-01

    The Ecosystem Dynamics Branch of the Fort Collins Science Center offers an interdisciplinary team of talented and creative scientists with expertise in biology, botany, ecology, geology, biogeochemistry, physical sciences, geographic information systems, and remote-sensing, for tackling complex questions about natural resources. As demand for natural resources increases, the issues facing natural resource managers, planners, policy makers, industry, and private landowners are increasing in spatial and temporal scope, often involving entire regions, multiple jurisdictions, and long timeframes. Needs for addressing these issues include (1) a better understanding of biotic and abiotic ecosystem components and their complex interactions; (2) the ability to easily monitor, assess, and visualize the spatially complex movements of animals, plants, water, and elements across highly variable landscapes; and (3) the techniques for accurately predicting both immediate and long-term responses of system components to natural and human-caused change. The overall objectives of our research are to provide the knowledge, tools, and techniques needed by the U.S. Department of the Interior, state agencies, and other stakeholders in their endeavors to meet the demand for natural resources while conserving biodiversity and ecosystem services. Ecosystem Dynamics scientists use field and laboratory research, data assimilation, and ecological modeling to understand ecosystem patterns, trends, and mechanistic processes. This information is used to predict the outcomes of changes imposed on species, habitats, landscapes, and climate across spatiotemporal scales. The products we develop include conceptual models to illustrate system structure and processes; regional baseline and integrated assessments; predictive spatial and mathematical models; literature syntheses; and frameworks or protocols for improved ecosystem monitoring, adaptive management, and program evaluation. The descriptions

  1. Large Scale Computing and Storage Requirements for Basic Energy Sciences Research

    SciTech Connect

    Gerber, Richard; Wasserman, Harvey

    2011-03-31

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility supporting research within the Department of Energy's Office of Science. NERSC provides high-performance computing (HPC) resources to approximately 4,000 researchers working on about 400 projects. In addition to hosting large-scale computing facilities, NERSC provides the support and expertise scientists need to effectively and efficiently use HPC systems. In February 2010, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR) and DOE's Office of Basic Energy Sciences (BES) held a workshop to characterize HPC requirements for BES research through 2013. The workshop was part of NERSC's legacy of anticipating users future needs and deploying the necessary resources to meet these demands. Workshop participants reached a consensus on several key findings, in addition to achieving the workshop's goal of collecting and characterizing computing requirements. The key requirements for scientists conducting research in BES are: (1) Larger allocations of computational resources; (2) Continued support for standard application software packages; (3) Adequate job turnaround time and throughput; and (4) Guidance and support for using future computer architectures. This report expands upon these key points and presents others. Several 'case studies' are included as significant representative samples of the needs of science teams within BES. Research teams scientific goals, computational methods of solution, current and 2013 computing requirements, and special software and support needs are summarized in these case studies. Also included are researchers strategies for computing in the highly parallel, 'multi-core' environment that is expected to dominate HPC architectures over the next few years. NERSC has strategic plans and initiatives already underway that address key workshop findings. This report includes a brief summary of those relevant to issues

  2. An international basic science and clinical research summer program for medical students.

    PubMed

    Ramjiawan, Bram; Pierce, Grant N; Anindo, Mohammad Iffat Kabir; Alkukhun, Abedalrazaq; Alshammari, Abdullah; Chamsi, Ahmad Talal; Abousaleh, Mohannad; Alkhani, Anas; Ganguly, Pallab K

    2012-03-01

    An important part of training the next generation of physicians is ensuring that they are exposed to the integral role that research plays in improving medical treatment. However, medical students often do not have sufficient time to be trained to carry out any projects in biomedical and clinical research. Many medical students also fail to understand and grasp translational research as an important concept today. In addition, since medical training is often an international affair whereby a medical student/resident/fellow will likely train in many different countries during his/her early training years, it is important to provide a learning environment whereby a young medical student experiences the unique challenges and value of an international educational experience. This article describes a program that bridges the gap between the basic and clinical research concepts in a unique international educational experience. After completing two semester curricula at Alfaisal University in Riyadh, Kingdom of Saudi Arabia, six medical students undertook a summer program at St. Boniface Hospital Research Centre, in Winnipeg, MB, Canada. The program lasted for 2 mo and addressed advanced training in basic science research topics in medicine such as cell isolation, functional assessment, and molecular techniques of analysis and manipulation as well as sessions on the conduct of clinical research trials, ethics, and intellectual property management. Programs such as these are essential to provide a base from which medical students can decide if research is an attractive career choice for them during their clinical practice in subsequent years. An innovative international summer research course for medical students is necessary to cater to the needs of the medical students in the 21st century. PMID:22383409

  3. Using Basic Science to Develop an Innovative Program in Complementary and Alternative Medicine.

    PubMed

    Amri, Hakima; Haramati, Aviad

    2010-01-01

    The growing interest in Complementary and Alternative Medicine (CAM) and the increasing incorporation of its modalities in the United States' healthcare system have exposed a number of problems in the field. These include a shortage of qualified CAM providers, scarcity of evidence-based research, lack of trained scientists in the field, and the ubiquitous marketing of frequently uncontrolled CAM products. Thus, the development of a comprehensive and scientifically sound educational infrastructure has become a crucial initial step in redirecting these adverse trends.With support from the NIH-sponsored curricular CAM initiative, faculty from the department of physiology and biophysics at Georgetown University developed a M.S. program in CAM in 2003. This unique, first of its kind, science-based graduate program offers a master's degree (MS) in physiology with an emphasis on CAM. The CAM-MS degree in physiology is designed to enable students to critically assess various CAM modalities, apply scientific rigor, and carry out evidence-based CAM research. The curriculum includes core science courses and CAM-related classes. Additionally, in order to emphasize the application of academic knowledge and further strengthen problem-solving skills, the students complete an eight-week summer practicum in a professional CAM-related environment.Here, we report on our innovative and interdisciplinary CAM graduate program where creative teaching is implemented by basic scientists and enhanced by the application of their disciplines in tandem with the clinical expertise of CAM practitioners in the community. Thus, the faculty in the Department of Physiology & Biophysics is developing emerging cross disciplinary areas of study and interest in order to prepare new generations of future physicians, health professionals, educators, and researchers capable of objectively assessing the safety and efficacy of various CAM modalities, and introducing scientific rigor to much needed research

  4. Using Basic Science to Develop an Innovative Program in Complementary and Alternative Medicine

    PubMed Central

    Amri, Hakima; Haramati, Aviad

    2010-01-01

    The growing interest in Complementary and Alternative Medicine (CAM) and the increasing incorporation of its modalities in the United States' healthcare system have exposed a number of problems in the field. These include a shortage of qualified CAM providers, scarcity of evidence-based research, lack of trained scientists in the field, and the ubiquitous marketing of frequently uncontrolled CAM products. Thus, the development of a comprehensive and scientifically sound educational infrastructure has become a crucial initial step in redirecting these adverse trends. With support from the NIH-sponsored curricular CAM initiative, faculty from the department of physiology and biophysics at Georgetown University developed a M.S. program in CAM in 2003. This unique, first of its kind, science-based graduate program offers a master's degree (MS) in physiology with an emphasis on CAM. The CAM-MS degree in physiology is designed to enable students to critically assess various CAM modalities, apply scientific rigor, and carry out evidence-based CAM research. The curriculum includes core science courses and CAM-related classes. Additionally, in order to emphasize the application of academic knowledge and further strengthen problem-solving skills, the students complete an eight-week summer practicum in a professional CAM-related environment. Here, we report on our innovative and interdisciplinary CAM graduate program where creative teaching is implemented by basic scientists and enhanced by the application of their disciplines in tandem with the clinical expertise of CAM practitioners in the community. Thus, the faculty in the Department of Physiology & Biophysics is developing emerging cross disciplinary areas of study and interest in order to prepare new generations of future physicians, health professionals, educators, and researchers capable of objectively assessing the safety and efficacy of various CAM modalities, and introducing scientific rigor to much needed research

  5. [Etiological characteristics of the influenza epidemics of 2006-2009 in the Russian Federation (according to the data of the Research Institute of Influenza, North-Western Branch, Russian Academy of Medical Sciences)].

    PubMed

    Konovalova, N I; Eropkin, M Iu; Gudkova, T M; Grigor'eva, V A; Danilenko, D M; Ivanova, A V; Smirnova, T S; Lobova, T G; Shchekanova, S M

    2010-01-01

    The basic trends in the evolution of influenza A and B in the Russian Federation during the epidemic seasons of 2006-2009 were studied on the basis of an antigenic analysis of 1774 Influenza isolated at the Research Institute of Influenza (RII), North-Western Branch, Russian Academy of Medical Sciences, and sent from resting bases (the regional centers of the Russian Inspectorate for the Protection of Consumer Rights and Human Welfare, which collaborate with the RII). Although the trends in the substitution of representative strains generally coincide with the world patterns, the authors revealed some specific features of the antigenic drift of influenza viruses in the Russian Federation and regional varieties. Data on some biological properties and those of the antigenic analysis of the first pandemic influenza A(H1NI)v strains isolated at the RII from Saint Petersburg patients in July-August 2009 are also given in the paper. PMID:20886706

  6. From Ischemic Conditioning to ‘Hyperconditioning’: Clinical Phenomenon and Basic Science Opportunity

    PubMed Central

    Whittaker, Peter; Przyklenk, Karin

    2014-01-01

    Thousands of articles have been published on the topic of ischemic conditioning. Nevertheless, relatively little attention has been given to assessment of conditioning’s dose-response characteristics. Specifically, the consequences of multiple conditioning episodes, what we will term “hyperconditioning”, have seldom been examined. We propose that hyperconditioning warrants investigation because it; (1) may be of clinical importance, (2) could provide insight into conditioning mechanisms, and (3) might result in development of novel models of human disease. The prevalence of angina pectoris and intermittent claudication is sufficiently high and the potential for daily ischemia-reperfusion episodes sufficiently large that hyperconditioning is a clinically relevant phenomenon. In basic science, attenuation of conditioning-mediated infarct size reduction found in some studies after hyperconditioning offers a possible means to facilitate further discernment of cardioprotective signaling pathways. Moreover, hyperconditioning’s impact extends beyond cytoprotection to tissue structural elements. Several studies demonstrate that hyperconditioning produces collagen injury (primarily fiber breakage). Such structural impairment could have adverse clinical consequences; however, in laboratory studies, selective collagen damage could provide the basis for models of cardiac rupture and dilated cardiomyopathy. Accordingly, we propose that hyperconditioning represents the dark, but potentially illuminating, side of ischemic conditioning - a paradigm that merits attention and prospective evaluation. PMID:25552962

  7. Arthroscopic contact Nd:YAG laser meniscectomy: basic science, surgical technique, and clinical follow up

    NASA Astrophysics Data System (ADS)

    O'Brien, Stephen J.; Fealy, Stephen V.; Gibney, Mary A.; Miller, Drew V.; Kelly, Anne M.

    1990-06-01

    Recent basic science studies (5) have provided a scientific foundation for the use of the Contact Nd:YAG Laser as an arthroscopic tool for xneniscal resection and acroxnioplasty of the shoulder in a saline medium. This study prospectively evaluates the results of a three stage laboratory investigation as well as the clinical results of arthroscopic xneniscal resection. Fifteen patients with meniscal tears underwent subtotal meniscectomies utilizing a Contact Nd:YAG Laser (Surgical Laser Technologies; Malvern, Pennsylvania) . This was done in a saline medium with an average laser wattage of 25 W, (range 20 W to 30 W). Patients were evaluated postoperatively with reference to subjective and objective parameters at one week and four weeks postoperatively. Patients were evaluated with regard to wound healing, intraarticular swelling and pain. Assessment of technical parameters such as ease of resection, time of resection and instrument access were compared to conventional instruments. All fifteen patients were rated as having clinically excellent results based on pain relief, wound healing and swelling. In addition, although there was increased time with setting up the laser and calibrating it, there was not an increase in time for meniscal resection. Little, or no, secondary "trimmuning" was necessary with the laser. Increased accessibility was noted due to the small size of the laser. Arthroscopic Contact Nd:YAG Laser surgery is a safe and effective tool for menisca]. resection and coagulation in arthroscopic acromioplasties. It provides significant advantages over conventional cutting instruments with regard to accessibility and reduced need for secondary instruments.

  8. Physiology education in North American dental schools: the basic science survey series.

    PubMed

    Gautam, Medha; Shaw, David H; Pate, Ted D; Lambert, H Wayne

    2014-06-01

    As part of the Basic Science Survey Series for Dentistry, members of the American Dental Education Association (ADEA) Physiology, Pharmacology, and Therapeutics Section surveyed directors of physiology courses in North American dental schools. The survey was designed to assess, among other things, faculty affiliation and experience of course directors, teaching methods, general course content and emphasis, extent of interdisciplinary (shared) instruction, and impact of recent curricular changes. Responses were received from forty-four of sixty-seven (65.7 percent) U.S. and Canadian dental schools. The findings suggest the following: substantial variation exists in instructional hours, faculty affiliation, class size, and interdisciplinary nature of physiology courses; physiology course content emphasis is similar between schools; student contact hours in physiology, which have remained relatively stable in the past fifteen years, are starting to be reduced; recent curricular changes have often been directed towards enhancing the integrative and clinically relevant aspects of physiology instruction; and a trend toward innovative content delivery, such as use of computer-assisted instruction, is evident. Data from this study may be useful to physiology course directors, curriculum committees, and other dental educators with an interest in integrative and interprofessional education. PMID:24882774

  9. The Effectiveness of an Educational Game for Teaching Optometry Students Basic and Applied Science

    PubMed Central

    Trevino, Richard; Majcher, Carolyn; Rabin, Jeff; Kent, Theresa; Maki, Yutaka; Wingert, Timothy

    2016-01-01

    Purpose To compare the effectiveness of an educational board game with interactive didactic instruction for teaching optometry students elements of the core optometric curriculum. Methods Forty-two optometry students were divided into two GPA-matched groups and assigned to either 12 hours of game play (game group) or 12 hours of interactive didactic instruction (lecture group). The same material from the core optometric curriculum was delivered to both groups. Game play was accomplished via an original board game. Written examinations assessed change in knowledge level. A post-intervention opinion survey assessed student attitudes. Results There was no significant difference in pre- or post-intervention test scores between the lecture and game groups (Pre-test: p = 0.9; Post-test: p = 0.5). Post-intervention test scores increased significantly from baseline (Game group: 29.3% gain, Didactic group: 31.5% gain; p<0.001 for each). The score increase difference between groups was not statistically significant (p = 0.6). The post-intervention attitude survey did not reveal any significant between group differences (p = 0.5). Conclusions Our results indicate that an educational game and interactive didactic instruction can be equally effective in teaching optometry students basic and applied science. Furthermore, both modes of instruction have the potential to be equally engaging and enjoyable experiences. PMID:27233041

  10. The Unexpected Evolution of Basic Science Studies about Cyclic Nucleotide Action into a Treatment for Erectile Dysfunction

    PubMed Central

    Corbin, Jackie

    2015-01-01

    In these Reflections, I describe my perceived role in discoveries made in the cyclic nucleotide field that culminated in the advent of PDE5 inhibitors that treat erectile dysfunction, such as Viagra, Levitra, and Cialis. The discoveries emphasize the critical role of basic science, which often evolves in unpredictable and circuitous paths, in improving human health. PMID:25505249

  11. The Buffalo Approach to Changing the Basic Science Curriculum, or Toiling and Dreaming in the Vineyards of Dental Education.

    ERIC Educational Resources Information Center

    Tedesco, Lisa A.; And Others

    1992-01-01

    The State University of New York at Buffalo dental school's reform of basic science curriculum is discussed. The paper first outlines the curriculum review/development process, focusing on incorporation of specific competencies, computer-based curriculum analysis, and the role of a dental schools consortium. The paper then looks at future…

  12. The Use of Self-Learning Modules to Facilitate Learning of Basic Science Concepts in an Integrated Medical Curriculum

    ERIC Educational Resources Information Center

    Khalil, Mohammed K.; Nelson, Loren D.; Kibble, Jonathan D.

    2010-01-01

    This study used qualitative and quantitative approaches to evaluate the effectiveness of self-learning modules (SLMs) developed to facilitate and individualize students' learning of basic medical sciences. Twenty physiology and nineteen microanatomy SLMs were designed with interactive images, animations, narrations, and self-assessments. Of 41…

  13. Changes in Study Strategies of Medical Students between Basic Science Courses and Clerkships Are Associated with Performance

    ERIC Educational Resources Information Center

    Ensminger, David C.; Hoyt, Amy E.; Chandrasekhar, Arcot J.; McNulty, John A.

    2013-01-01

    We tested the hypothesis that medical students change their study strategies when transitioning from basic science courses to clerkships, and that their study practices are associated with performance scores. Factor scores for three approaches to studying (construction, rote, and review) generated from student (n = 150) responses to a…

  14. Investigation of Pre-Service Teachers' Opinions about Science in Terms of the Basic Elements of the Education Program

    ERIC Educational Resources Information Center

    Sengul, Ozge Aydin

    2016-01-01

    The purpose of the current study is to investigate the pre-service teachers' opinions about science within the context of the basic elements of the education program, such as objectives, content, learning-teaching process and evaluation. The study was designed as a case study, one of the qualitative research methods. The participants of the study…

  15. Coherent Teaching and Need-Based Learning in Science: An Approach to Teach Engineering Students in Basic Physics Courses

    ERIC Educational Resources Information Center

    Kurki-Suonio, T.; Hakola, A.

    2007-01-01

    In the present paper, we propose an alternative, based on constructivism, to the conventional way of teaching basic physics courses at the university level. We call this approach "coherent teaching" and the underlying philosophy of teaching science and engineering "need-based learning". We have been applying this philosophy in practice in a basic…

  16. The Articulation of Integration of Clinical and Basic Sciences in Concept Maps: Differences between Experienced and Resident Groups

    ERIC Educational Resources Information Center

    Vink, Sylvia; van Tartwijk, Jan; Verloop, Nico; Gosselink, Manon; Driessen, Erik; Bolk, Jan

    2016-01-01

    To determine the content of integrated curricula, clinical concepts and the underlying basic science concepts need to be made explicit. Preconstructed concept maps are recommended for this purpose. They are mainly constructed by experts. However, concept maps constructed by residents are hypothesized to be less complex, to reveal more tacit basic…

  17. Thinking science with thinking machines: The multiple realities of basic and applied knowledge in a research border zone.

    PubMed

    Hoffman, Steve G

    2015-04-01

    Some scholars dismiss the distinction between basic and applied science as passé, yet substantive assumptions about this boundary remain obdurate in research policy, popular rhetoric, the sociology and philosophy of science, and, indeed, at the level of bench practice. In this article, I draw on a multiple ontology framework to provide a more stable affirmation of a constructivist position in science and technology studies that cannot be reduced to a matter of competing perspectives on a single reality. The analysis is grounded in ethnographic research in the border zone of Artificial Intelligence science. I translate in-situ moments in which members of neighboring but differently situated labs engage in three distinct repertoires that render the reality of basic and applied science: partitioning, flipping, and collapsing. While the essences of scientific objects are nowhere to be found, the boundary between basic and applied is neither illusion nor mere propaganda. Instead, distinctions among scientific knowledge are made real as a matter of course. PMID:26477207

  18. The Teaching of Sciences in African Universities. [Report of the Seminar on the Teaching of Basic Sciences in African Universities, Rabat, 13 to 22 December 1962].

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France).

    Eighteen recommendations made by a 1962 United Nations Educational, Scientific and Cultural Organization (UNESCO) seminar on teaching the basic sciences in African universities introduce the conference report. A general summary of the conference proceedings, reported separately for pedagogic problems and difficulties of organization and…

  19. Assessment of scientific thinking in basic science in the Iranian second national Olympiad

    PubMed Central

    2012-01-01

    Background To evaluate the scientific reasoning in basic science among undergraduate medical students, we established the National Medical Science Olympiad in Iran. In this Olympiad, the drawing of a concept map was used to evaluate a student's knowledge framework; students' ability in hypothesis generation and testing were also evaluated in four different steps. All medical students were invited to participate in this program. Finally, 133 undergraduate medical students with average grades ≥ 16/20 from 45 different medical schools in Iran were selected. The program took the form of four exams: drawing a concept map (Exam I), hypothesis generation (Exam II), choosing variables based on the hypothesis (Exam III), measuring scientific thought (Exam IV). The examinees were asked to complete all examination items in their own time without using textbooks, websites, or personal consultations. Data were presented as mean ± SE of each parameter. The correlation coefficient between students' scores in each exam with the total final score and average grade was calculated using the Spearman test. Results Out of a possible score of 200, the mean ± SE of each exam were as follows: 183.88 ± 5.590 for Exam I; 78.68 ± 9.168 for Exam II; 92.04 ± 2.503 for exam III; 106.13 ± 2.345 for Exam IV. The correlation of each exam score with the total final score was calculated, and there was a significant correlation between them (p < 0.001). The scatter plot of the data showed a linear correlation between the score for each exam and the total final score. This meant that students with a higher final score were able to perform better in each exam through having drawn up a meaningful concept map. The average grade was significantly correlated with the total final score (R = 0.770), (p < 0.001). There was also a significant correlation between each exam score and the average grade (p < 0.001). The highest correlation was observed between Exam I (R = 0.7708) and the average grade

  20. Shoot branching.

    PubMed

    Ward, Sally P; Leyser, Ottoline

    2004-02-01

    The mature form of a plant shoot system is an expression of several genetically controlled traits, many of which are also environmentally regulated. A major component of this architectural variation is the degree of shoot branching. Recent results indicate conserved mechanisms for shoot branch development across the monocots and eudicots. The existence of a novel long-range branch-inhibiting signal has been inferred from studies of branching mutants in pea and Arabidopsis. PMID:14732444

  1. Meeting report: “Depression and Anxiety Spectrum disorders: from basic science to the clinic and back”

    PubMed Central

    2013-01-01

    In March, 2012 we held the first Mideast conference on “Depression and Anxiety Spectrum disorders: from basic science to the clinic and back”, at the University of Amman, Jordan. This event brought together both clinical and basic scientists with expertise in depression and anxiety spectrum disorders. The meeting took place in a large lecture hall at the University of Jordan Medical School. The audience included faculty, residents, and students. The Dean of the Medical School opened the meeting, welcoming the guest speakers and participants. PMID:23497694

  2. The Relationship between Preservice Science Teachers' Attitude toward Astronomy and Their Understanding of Basic Astronomy Concepts

    ERIC Educational Resources Information Center

    Bektasli, Behzat

    2016-01-01

    Turkish preservice science teachers have been taking a two-credit astronomy class during the last semester of their undergraduate program since 2010. The current study aims to investigate the relationship between preservice science teachers' astronomy misconceptions and their attitudes toward astronomy. Preservice science teachers were given an…

  3. Opportunities to Learn in School and at Home: How can they predict students' understanding of basic science concepts and principles?

    NASA Astrophysics Data System (ADS)

    Wang, Su; Liu, Xiufeng; Zhao, Yandong

    2012-09-01

    As the breadth and depth of economic reforms increase in China, growing attention is being paid to equalities in opportunities to learn science by students of various backgrounds. In early 2009, the Chinese Ministry of Education and Ministry of Science and Technology jointly sponsored a national survey of urban eighth-grade students' science literacy along with their family and school backgrounds. The present study focused on students' understanding of basic science concepts and principles (BSCP), a subset of science literacy. The sample analyzed included 3,031 students from 109 randomly selected classes/schools. Correlation analysis, one-way analysis of variance, and two-level linear regression were conducted. The results showed that having a refrigerator, internet, more books, parents purchasing books and magazines related to school work, higher father's education level, and parents' higher expectation of the education level of their child significantly predicted higher BSCP scores; having siblings at home, owning an apartment, and frequently contacting teachers about the child significantly predicted lower BSCP scores. At the school level, the results showed that being in the first-tier or key schools, having school libraries, science popularization galleries, computer labs, adequate equipment for teaching, special budget for teacher training, special budget for science equipment, and mutual trust between teachers and students significantly predicated higher BSCP scores; and having science and technology rooms, offering science and technology interest clubs, special budget for science curriculum development, and special budget for science social practice activities significantly predicted lower BSCP scores. The implications of the above findings are discussed.

  4. Alternative Methods by Which Basic Science Pharmacy Faculty Can Relate to Clinical Practice, Executive Summary and Final Report, October 1, 1978 - March 15, 1980.

    ERIC Educational Resources Information Center

    Kabat, Hugh F.; And Others

    The areas of basic science pharmacy instruction and clinical pharmacy practice and their interrelationships were identified in order to help develop didactic and clinical experience alternatives. A 10-member advisory committee ranked basic pharmaceutical science topical areas in terms of their applicability to clinical practice utilizing a Delphi…

  5. Enhancing Science Teaching through Performing Marbling Art Using Basic Solutions and Base Indicators

    ERIC Educational Resources Information Center

    Çil, Emine; Çelik, Kevser; Maçin, Tuba; Demirbas, Gülay; Gökçimen, Özlem

    2014-01-01

    Basic solutions are an indispensable part of our daily life. Basic solutions are commonly used in industries such as the textile industry, oil refineries, the fertilizer industry, and pharmaceutical products. Most cleaning agents, such as soap, detergent, and bleach, and some of our foods, such as chocolate and eggs, include bases. Bases are the…

  6. The Development of a Basic Social Science Course for Undergraduate Students in the Natural Sciences and Engineering. Final Report.

    ERIC Educational Resources Information Center

    Pool, Ithiel de Sola; Angell, George W., Jr.

    At the Massachusetts Institute of Technology, a 4-year project was undertaken to restructure the sophomore elective course in social science for natural science and engineering students. The restructured course emphasized an objective, rigorous, and exact approach to social phenomena. Readings were designed to carry the student step by step from…

  7. Basic and Applied Materials Science Research Efforts at MSFC Germane to NASA Goals

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Presently, a number of investigations are ongoing that blend basic research with engineering applications in support of NASA goals. These include (1) "Pore Formation and Mobility (PFMI) " An ISS Glovebox Investigation" NASA Selected Project - 400-34-3D; (2) "Interactions Between Rotating Bodies" Center Director's Discretionary Fund (CDDF) Project - 279-62-00-16; (3) "Molybdenum - Rhenium (Mo-Re) Alloys for Nuclear Fuel Containment" TD Collaboration - 800-11-02; (4) "Fabrication of Alumina - Metal Composites for Propulsion Components" ED Collaboration - 090-50-10; (5) "Radiation Shielding for Deep-Space Missions" SD Effort; (6) "Other Research". In brief, "Pore Formation and Mobility" is an experiment to be conducted in the ISS Microgravity Science Glovebox that will systematically investigate the development, movement, and interactions of bubbles (porosity) during the controlled directional solidification of a transparent material. In addition to promoting our general knowledge of porosity physics, this work will serve as a guide to future ISS experiments utilizing metal alloys. "Interactions Between Rotating Bodies" is a CDDF sponsored project that is critically examining, through theory and experiment, claims of "new" physics relating to gravity modification and electric field effects. "Molybdenum - Rhenium Alloys for Nuclear Fuel Containment" is a TD collaboration in support of nuclear propulsion. Mo-Re alloys are being evaluated and developed for nuclear fuel containment. "Fabrication of Alumina - Metal Composites for Propulsion Components" is an ED collaboration with the intent of increasing strength and decreasing weight of metal engine components through the incorporation of nanometer-sized alumina fibers. "Radiation Shielding for Deep-Space Missions" is an SD effort aimed at minimizing the health risk from radiation to human space voyagers; work to date has been primarily programmatic but experiments to develop hydrogen-rich materials for shielding are

  8. Basic science and clinical application of stem cells in veterinary medicine.

    PubMed

    Ribitsch, I; Burk, J; Delling, U; Geißler, C; Gittel, C; Jülke, H; Brehm, W

    2010-01-01

    :329-336, 2008). It is believed that these stem cells serve as cell source to maintain tissue and organ mass during normal cell turnover in adult individuals. Therefore, the focus of attention in veterinary science is currently drawn to adult stem cells and their potential in regenerative medicine. Also experience gained from the treatment of animal patients provides valuable information for human medicine and serves as precursor to future stem cell use in human medicine.Compared to human medicine, haematopoietic stem cells only play a minor role in veterinary medicine because medical conditions requiring myeloablative chemotherapy followed by haematopoietic stem cell induced recovery of the immune system are relatively rare and usually not being treated for monetary as well as animal welfare reasons.In contrast, regenerative medicine utilising MSCs for the treatment of acute injuries as well as chronic disorders is gradually turning into clinical routine. Therefore, MSCs from either extra embryonic or adult tissues are in the focus of attention in veterinary medicine and research. Hence the purpose of this chapter is to offer an overview on basic science and clinical application of MSCs in veterinary medicine. PMID:20309674

  9. Synthesis of a stationary phase based on silica modified with branched octadecyl groups by Michael addition and photoinduced thiol-yne click chemistry for the separation of basic compounds.

    PubMed

    Huang, Guang; Ou, Junjie; Wang, Hongwei; Ji, Yongsheng; Wan, Hao; Zhang, Zhang; Peng, Xiaojun; Zou, Hanfa

    2016-04-01

    A novel silica-based stationary phase with branched octadecyl groups was prepared by the sequential employment of the Michael addition reaction and photoinduced thiol-yne click chemistry with 3-aminopropyl-functionalized silica microspheres as the initial material. The resulting stationary phase denoted as SiO2 -N(C18)4 was characterized by elemental analysis, FTIR spectroscopy and Raman spectroscopy, demonstrating the existence of branched octadecyl groups in silica microspheres. The separations of benzene homologous compounds, acid compounds and amine analogues were conducted, demonstrating mixed-mode separation mechanism on SiO2 -N(C18)4 . Baseline separation of basic drugs mixture was acquired with the mobile phase of acetonitrile/H2 O (5%, v/v). SiO2 -N(C18)4 was further applied to separate Corydalis yanhusuo Wang water extracts, and more baseline separation peaks were obtained for SiO2 -N(C18)4 than those on Atlantis dC18 column. It can be expected that this new silica-based stationary phase will exhibit great potential in the analysis of basic compounds. PMID:26910263

  10. A Multi-Instructor, Team-Based, Active-Learning Exercise to Integrate Basic and Clinical Sciences Content

    PubMed Central

    Roesch, Darren M.; Akhtar de la Fuente, Ayesha

    2012-01-01

    Objectives. To introduce a multiple-instructor, team-based, active-learning exercise to promote the integration of basic sciences (pathophysiology, pharmacology, and medicinal chemistry) and clinical sciences in a doctor of pharmacy curriculum. Design. A team-based learning activity that involved pre-class reading assignments, individual-and team-answered multiple-choice questions, and evaluation and discussion of a clinical case, was designed, implemented, and moderated by 3 faculty members from the pharmaceutical sciences and pharmacy practice departments. Assessment. Student performance was assessed using a multiple-choice examination, an individual readiness assurance test (IRAT), a team readiness assurance test (TRAT), and a subjective, objective, assessment, and plan (SOAP) note. Student attitudes were assessed using a pre- and post-exercise survey instrument. Students’ understanding of possible correct treatment strategies for depression improved. Students were appreciative of this true integration of basic sciences knowledge in a pharmacotherapy course and to have faculty members from both disciplines present to answer questions. Mean student score on the on depression module for the examination was 80.4%, indicating mastery of the content. Conclusions. An exercise led by multiple instructors improved student perceptions of the importance of team-based teaching. Integrated teaching and learning may be achieved when instructors from multiple disciplines work together in the classroom using proven team-based, active-learning exercises. PMID:22438605