Science.gov

Sample records for basic sodium aluminum

  1. 26Al-containing acidic and basic sodium aluminum phosphate preparation and use in studies of oral aluminum bioavailability from foods utilizing 26Al as an aluminum tracer

    NASA Astrophysics Data System (ADS)

    Yokel, Robert A.; Urbas, Aaron A.; Lodder, Robert A.; Selegue, John P.; Florence, Rebecca L.

    2005-04-01

    We synthesized 26Al-containing acidic and basic (alkaline) sodium aluminum phosphates (SALPs) which are FDA-approved leavening and emulsifying agents, respectively, and used them to determine the oral bioavailability of aluminum incorporated in selected foods. We selected applicable methods from published syntheses (patents) and scaled them down (∼3000- and 850-fold) to prepare ∼300-400 mg of each SALP. The 26Al was incorporated at the beginning of the syntheses to maximize 26Al and 27Al equilibration and incorporate the 26Al in the naturally-occurring Al-containing chemical species of the products. Near infrared spectroscopy (NIR) and X-ray powder diffraction (XRD) were used to characterize the two SALP samples and some intermediate samples. Multi-elemental analysis (MEA) was used to determine Na, Al and P content. Commercial products were included for comparison. Satisfactory XRD analyses, near infrared spectra and MEA results confirmed that we synthesized acidic and basic SALP, as well as some of the syntheses intermediates. The 26Al-containing acidic and basic SALPs were incorporated into a biscuit material and a processed cheese, respectively. These were used in oral bioavailability studies conducted in rats in which the 26Al present in blood after its oral absorption was quantified by accelerator mass spectrometry. The results showed oral Al bioavailability from acidic SALP in biscuit was ∼0.02% and from basic SALP in cheese ∼0.05%, lower than our previous determination of Al bioavailability from drinking water, ∼0.3%. Both food and water can appreciably contribute to the Al absorbed from typical human Al intake.

  2. Aluminum Zintl anion moieties within sodium aluminum clusters

    NASA Astrophysics Data System (ADS)

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Grubisic, Andrej; Li, Xiang; Ganteför, Gerd; Schnöckel, Hansgeorg; Eichhorn, Bryan W.; Lee, Mal-Soon; Jena, P.; Kandalam, Anil K.; Kiran, Boggavarapu; Bowen, Kit H.

    2014-02-01

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have established that aluminum moieties within selected sodium-aluminum clusters are Zintl anions. Sodium-aluminum cluster anions, NamAln-, were generated in a pulsed arc discharge source. After mass selection, their photoelectron spectra were measured by a magnetic bottle, electron energy analyzer. Calculations on a select sub-set of stoichiometries provided geometric structures and full charge analyses for both cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra), and fragment molecular orbital based correlation diagrams.

  3. Aluminum Zintl anion moieties within sodium aluminum clusters.

    PubMed

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Grubisic, Andrej; Li, Xiang; Ganteför, Gerd; Schnöckel, Hansgeorg; Eichhorn, Bryan W; Lee, Mal-Soon; Jena, P; Kandalam, Anil K; Kiran, Boggavarapu; Bowen, Kit H

    2014-02-01

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have established that aluminum moieties within selected sodium-aluminum clusters are Zintl anions. Sodium-aluminum cluster anions, Na(m)Al(n)(-), were generated in a pulsed arc discharge source. After mass selection, their photoelectron spectra were measured by a magnetic bottle, electron energy analyzer. Calculations on a select sub-set of stoichiometries provided geometric structures and full charge analyses for both cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra), and fragment molecular orbital based correlation diagrams. PMID:24511934

  4. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    SciTech Connect

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  5. Aluminum Zintl anion moieties within sodium aluminum clusters

    SciTech Connect

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Grubisic, Andrej; Li, Xiang; Ganteför, Gerd; Bowen, Kit H. E-mail: kiran@mcneese.edu; Schnöckel, Hansgeorg; Eichhorn, Bryan W.; Lee, Mal-Soon; Jena, P.; Kandalam, Anil K. E-mail: kiran@mcneese.edu; Kiran, Boggavarapu E-mail: kiran@mcneese.edu

    2014-02-07

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have established that aluminum moieties within selected sodium-aluminum clusters are Zintl anions. Sodium–aluminum cluster anions, Na{sub m}Al{sub n}{sup −}, were generated in a pulsed arc discharge source. After mass selection, their photoelectron spectra were measured by a magnetic bottle, electron energy analyzer. Calculations on a select sub-set of stoichiometries provided geometric structures and full charge analyses for both cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra), and fragment molecular orbital based correlation diagrams.

  6. Aluminum monocation basicity and affinity scales.

    PubMed

    Gal, Jean-François; Yáñez, Manuel; Mó, Otilia

    2015-01-01

    The experimental aspects of the determination of thermochemical data for the attachment of the aluminum monocation Al(+) to neutral atoms and molecules are reviewed. Literature aluminum cation affinities (enthalpy scale) and basicities (Gibbs energy scale) are tabulated and discussed. Ab initio quantum chemical calculations at the G4 level on 43 adducts provide a consistent picture of the energetics of the adducts and their structures. The Al(+)-ligand bonding is analyzed in terms of natural bond orbital and atom-in molecule analyses. A brief comparison of the Al(+) basicity scales and other gas- phase cation basicities is presented. PMID:26307732

  7. 21 CFR 182.1781 - Sodium aluminum phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium aluminum phosphate. 182.1781 Section 182.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate....

  8. 21 CFR 182.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sodium sulfate. 182.1131 Section 182.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  9. 21 CFR 182.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Aluminum sodium sulfate. 182.1131 Section 182.1131...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of use. This substance is...

  10. 21 CFR 182.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Aluminum sodium sulfate. 182.1131 Section 182.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  11. 21 CFR 182.1781 - Sodium aluminum phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium aluminum phosphate. 182.1781 Section 182.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate....

  12. 21 CFR 582.1781 - Sodium aluminum phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium aluminum phosphate. 582.1781 Section 582.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate. (b) Conditions...

  13. 21 CFR 582.1781 - Sodium aluminum phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium aluminum phosphate. 582.1781 Section 582.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate. (b) Conditions...

  14. 21 CFR 182.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Aluminum sodium sulfate. 182.1131 Section 182.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  15. 21 CFR 582.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aluminum sodium sulfate. 582.1131 Section 582.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  16. 21 CFR 582.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aluminum sodium sulfate. 582.1131 Section 582.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  17. 21 CFR 582.1781 - Sodium aluminum phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium aluminum phosphate. 582.1781 Section 582.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate. (b) Conditions...

  18. 21 CFR 582.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aluminum sodium sulfate. 582.1131 Section 582.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  19. 21 CFR 582.1781 - Sodium aluminum phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium aluminum phosphate. 582.1781 Section 582.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate. (b) Conditions...

  20. 21 CFR 182.1781 - Sodium aluminum phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium aluminum phosphate. 182.1781 Section 182.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate....

  1. 21 CFR 582.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aluminum sodium sulfate. 582.1131 Section 582.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  2. 21 CFR 182.1781 - Sodium aluminum phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium aluminum phosphate. 182.1781 Section 182...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate. (b) Conditions of use. This substance is...

  3. 21 CFR 582.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum sodium sulfate. 582.1131 Section 582.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  4. 21 CFR 182.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Aluminum sodium sulfate. 182.1131 Section 182.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  5. 21 CFR 582.1781 - Sodium aluminum phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium aluminum phosphate. 582.1781 Section 582.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate. (b) Conditions...

  6. 21 CFR 182.1781 - Sodium aluminum phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium aluminum phosphate. 182.1781 Section 182.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate....

  7. Exchange of sodium by magnesium in aluminum hydroxycarbonate gel.

    PubMed

    Scholtz, E C; Feldkamp, J R; White, J L; Hem, S L

    1984-07-01

    Approximately 90% of the sodium present in a washed aluminum hydroxycarbonate gel was removed by exchange with magnesium. This behavior supports recent structural studies which have suggested that cations such as sodium serve as counterions in aluminum hydroxycarbonate gel. However, sodium could not be removed from dihydroxyaluminum sodium carbonate by exchange with magnesium because sodium is part of the crystal structure. It is hypothesized that aluminum hydroxycarbonate gels which resist removal of sodium are actually mixtures containing dihydroxyaluminum sodium carbonate in addition to aluminum hydroxycarbonate. PMID:6470941

  8. Production of sodium-22 from proton irradiated aluminum

    DOEpatents

    Taylor, Wayne A.; Heaton, Richard C.; Jamriska, David J.

    1996-01-01

    A process for selective separation of sodium-22 from a proton irradiated minum target including dissolving a proton irradiated aluminum target in hydrochloric acid to form a first solution including aluminum ions and sodium ions, separating a portion of the aluminum ions from the first solution by crystallization of an aluminum salt, contacting the remaining first solution with an anion exchange resin whereby ions selected from the group consisting of iron and copper are selectively absorbed by the anion exchange resin while aluminum ions and sodium ions remain in solution, contacting the solution with an cation exchange resin whereby aluminum ions and sodium ions are adsorbed by the cation exchange resin, and, contacting the cation exchange resin with an acid solution capable of selectively separating the adsorbed sodium ions from the cation exchange resin while aluminum ions remain adsorbed on the cation exchange resin is disclosed.

  9. Hydrogen storage in sodium aluminum hydride.

    SciTech Connect

    Ozolins, Vidvuds; Herberg, J.L. (Lawrence Livermore National Laboratories, Livermore, CA); McCarty, Kevin F.; Maxwell, Robert S. (Lawrence Livermore National Laboratories, Livermore, CA); Stumpf, Roland Rudolph; Majzoub, Eric H.

    2005-11-01

    Sodium aluminum hydride, NaAlH{sub 4}, has been studied for use as a hydrogen storage material. The effect of Ti, as a few mol. % dopant in the system to increase kinetics of hydrogen sorption, is studied with respect to changes in lattice structure of the crystal. No Ti substitution is found in the crystal lattice. Electronic structure calculations indicate that the NaAlH{sub 4} and Na{sub 3}AlH{sub 6} structures are complex-ionic hydrides with Na{sup +} cations and AlH{sub 4}{sup -} and AlH{sub 6}{sup 3-} anions, respectively. Compound formation studies indicate the primary Ti-compound formed when doping the material at 33 at. % is TiAl{sub 3} , and likely Ti-Al compounds at lower doping rates. A general study of sorption kinetics of NaAlH{sub 4}, when doped with a variety of Ti-halide compounds, indicates a uniform response with the kinetics similar for all dopants. NMR multiple quantum studies of solution-doped samples indicate solvent interaction with the doped alanate. Raman spectroscopy was used to study the lattice dynamics of NaAlH{sub 4}, and illustrated the molecular ionic nature of the lattice as a separation of vibrational modes between the AlH{sub 4}{sup -} anion-modes and lattice-modes. In-situ Raman measurements indicate a stable AlH{sub 4}{sup -} anion that is stable at the melting temperature of NaAlH{sub 4}, indicating that Ti-dopants must affect the Al-H bond strength.

  10. Wall pressure exerted by hydrogenation of sodium aluminum hydride.

    SciTech Connect

    Perras, Yon E.; Dedrick, Daniel E.; Zimmerman, Mark D.

    2009-06-01

    Wall pressure exerted by the bulk expansion of a sodium aluminum hydride bed was measured as a function of hydrogen content. A custom apparatus was designed and loaded with sodium alanates at densities of 1.0, 1.1, and 1.16 g/cc. Four complete cycles were performed to identify variations in measured pressure. Results indicated poor correlation between exerted pressure and hydrogen capacity of the sodium alanate beds. Mechanical pressure due to the hydrogenation of sodium alanates does not influence full-scale system designs as it falls within common design factors of safety. Gas pressure gradients within the porous solid were identified and may limit reaction rates, especially for high aspect ratio beds.

  11. Aluminum grain boundary decohesion by dense sodium segregation

    NASA Astrophysics Data System (ADS)

    Zhang, Shengjun; Kontsevoi, Oleg Y.; Freeman, Arthur J.; Olson, Gregory B.

    2012-06-01

    Despite numerous investigations, grain boundary (GB) embrittlement of metallic structural materials is a poorly understood fundamental phenomenon in materials science. One of the well-known examples is that minute traces of sodium induce an embrittlement in aluminum alloys that results in drastic failure and limits their applications. From first-principles density function theory calculations, we found that sodium atoms densely segregate and neighbor into the ∑5(012)[100] GB in aluminum with large segregation energies and that the GB strength drops to only one fifth of the strength of the clean Al GB. Gradual sodium segregation leads to not only a large GB expansion but also to the replacement of stronger Al-Al metallic bonds with the weaker Al-Na mixed ionic-metallic bonds and Na-Na metallic bonds. This result in a drastic GB decohesion that reduces the GB tensile strength dramatically until it approaches the strength of bulk sodium. Dense segregation of sodium forms a Na film along the GB and opens an easy channel for oxidation and corrosion along the GB, which further accelerates the intergranular embrittlement.

  12. Low Sodium Diet (Beyond the Basics)

    MedlinePlus

    ... disease must control sodium intake to prevent volume overload, which increases blood pressure and causes swelling. (See " ... to substitute. Many grocery stores now supply this information. ● When dining out, request the food be prepared ...

  13. Tolerance to aluminum toxicity: Certain basic biochemical aspects

    SciTech Connect

    Ragunath, C.; Sivaguru, M.; Anbudurai, P.R.; James, M.R.; Balakumar, T. )

    1991-12-01

    Excessive acidity in cultivable soils is a serious challenge to crop production. One of the important toxic factors which become severe in acid soils is aluminum (Al) stress. Aluminum is a major constituent of mineral soils where it is present as aluminosilicates and other precipitated forms such as gibbsite (Lindsay 1979). When the pH of soil solutions falls below 4.5 the concentration of Al increases exponentially since its solubility is increased. Thereby, acid soils normally have more amounts of Al available for uptake by plants. While the nutritional role of Al in plants is still under question, its toxic effects have been investigated and reviewed extensively. In the present investigation the authors have attempted to analyze some basic biochemical aspects related to Al tolerance. The influence of two metabolic inhibitors, 2.4-dinitrophenol (DNP) and cycloheximide, and induction of tolerance to Al by Al pretreatment are envisaged.

  14. Gels composed of sodium-aluminum silicate, Lake Magadi, Kenya

    USGS Publications Warehouse

    Eugster, H.P.; Jones, B.F.

    1968-01-01

    Sodium-aluminum silicate gels are found in surftcial deposits as thick as 5 centimeters in the Magadi area of Kenya. Chemical data indicate they are formed by the interaction of hot alkaline springwaters (67?? to 82??C; pH, about 9) with alkali trachyte flows and their detritus, rather than by direct precipitation. In the process, Na2O is added from and silica is released to the saline waters of the springs. Algal mats protect the gels from erosion and act as thermal insulators. The gels are probably yearly accumulates that are washed into the lakes during floods. Crystallization of these gels in the laboratory yields analcite; this fact suggests that some analcite beds in lacustrine deposits may have formed from gels. Textural evidence indicates that cherts of rocks of the Pleistocene chert series in the Magadi area may have formed from soft sodium silicate gels. Similar gels may have acted as substrates for the accumulation and preservation of prebiological organic matter during the Precambrian.

  15. FT-IR characterization of the acidic and basic sites on a nanostructured aluminum nitride surface

    SciTech Connect

    Baraton, M.I.; Chen, X.; Gonsalves, K.E.

    1997-12-31

    A nanostructured aluminum nitride powder prepared by sol-gel type chemical synthesis is analyzed by Fourier transform infrared spectrometry. The surface acidic and basic sites are probed out by adsorption of several organic molecules. Resulting from the unavoidable presence of oxygen, the aluminum nitride surface is an oxinitride layer in fact, and its surface chemistry should present some analogies with alumina. Therefore, a thorough comparison between the acido-basicity of aluminum nitride and aluminum oxide is discussed. The remaining nitrogen atoms in the first atomic layer modify the acidity-basicity relative balance and reveals the specificity of the aluminum nitride surface.

  16. Production of aluminum orthophosphate and basic aluminum polyphosphate under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Adkhamov, A. A.; Iaroslavskii, I. M.; Popolitov, V. I.; Umarov, B. S.; Iliaev, A. B.

    Berlinite (AlPO4) crystals, which are used in piezoelectronic devices, have been produced by hydrothermal synthesis using the methods proposed by Stanley (1954) and Kolb and Laudise (1978). Also, the possibility of AlPO4 crystallization from metastable aluminophosphate glass has been investigated. It is found that berlinite can be crystallized by slowly raising the temperature in the retrograde solubility region; the crystal growth temperature can be reduced by using metastable aluminophosphate glass. Basic aluminum polyphosphate crystals, which decompose with the formation of Al(PO3)3, have been produced and investigated.

  17. The role of sodium in aluminum electrolysis: A possible indicator of cell performance

    SciTech Connect

    Tabereaux, A.T.

    1996-10-01

    The sodium concentration in the aluminum metal pad of modern prebake cells, having superior magnetic compensation and stable operating conditions, is substantially higher compared with that measured in older, less stable prebake and Soederberg cells. In one case, the sodium content was found to increase in the metal after the cells were retrofitted with improved technologies. The higher sodium level in aluminum in modern cells is due to the increase in the cathode polarization and build up of sodium containing species in the electrolyte near the bath metal interface as a consequence of reduced stirring and cell hydrodynamic forces. Correlations between sodium content in the aluminum metal pad and stability of the bath-metal pad interface of different cell technologies are discussed.

  18. 76 FR 5840 - The Basic Aluminum Castings Co., Cleveland, OH; Notice of Revised Determination on Reconsideration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-02

    ... was published in the Federal Register on November 3, 2010 (75 FR 67773). Workers at the subject firm... Employment and Training Administration The Basic Aluminum Castings Co., Cleveland, OH; Notice of Revised... Assistance (TAA) applicable to workers and former workers of The Basic Aluminum Castings Co., Cleveland,...

  19. 48 CFR 252.216-7000 - Economic price adjustment-basic steel, aluminum, brass, bronze, or copper mill products.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-basic steel, aluminum, brass, bronze, or copper mill products. 252.216-7000 Section 252.216-7000 Federal... adjustment—basic steel, aluminum, brass, bronze, or copper mill products. As prescribed in 216.203-4-70(a), use the following clause: Economic Price Adjustment—Basic Steel, Aluminum, Brass, Bronze, or...

  20. 48 CFR 252.216-7000 - Economic price adjustment-basic steel, aluminum, brass, bronze, or copper mill products.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-basic steel, aluminum, brass, bronze, or copper mill products. 252.216-7000 Section 252.216-7000 Federal... adjustment—basic steel, aluminum, brass, bronze, or copper mill products. As prescribed in 216.203-4-70(a), use the following clause: Economic Price Adjustment—Basic Steel, Aluminum, Brass, Bronze, or...

  1. 48 CFR 252.216-7000 - Economic price adjustment-basic steel, aluminum, brass, bronze, or copper mill products.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-basic steel, aluminum, brass, bronze, or copper mill products. 252.216-7000 Section 252.216-7000 Federal... adjustment—basic steel, aluminum, brass, bronze, or copper mill products. As prescribed in 216.203-4-70(a)(1), use the following clause: Economic Price Adjustment—Basic Steel, Aluminum, Brass, Bronze, or...

  2. 48 CFR 252.216-7000 - Economic price adjustment-basic steel, aluminum, brass, bronze, or copper mill products.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-basic steel, aluminum, brass, bronze, or copper mill products. 252.216-7000 Section 252.216-7000 Federal... adjustment—basic steel, aluminum, brass, bronze, or copper mill products. As prescribed in 216.203-4-70(a)(1), use the following clause: Economic Price Adjustment—Basic Steel, Aluminum, Brass, Bronze, or...

  3. 48 CFR 252.216-7000 - Economic price adjustment-basic steel, aluminum, brass, bronze, or copper mill products.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-basic steel, aluminum, brass, bronze, or copper mill products. 252.216-7000 Section 252.216-7000 Federal... adjustment—basic steel, aluminum, brass, bronze, or copper mill products. As prescribed in 216.203-4-70(a)(1), use the following clause: Economic Price Adjustment—Basic Steel, Aluminum, Brass, Bronze, or...

  4. Extractive separation of sodium 22 and aluminum 26 from cyclotron-irradiated magnesium targets

    SciTech Connect

    Iofa, B.Z.; Dzhigirkhanov, M.S.A.; Maklachkov, A.G.; Ovcharenko, V.P.; Sevast'yanov, Yu.G.; Silant'ev, A.I.

    1988-05-01

    An extraction procedure has been developed for the successive isolation of carrier-free sodium 22 and aluminum 26 from deuteron- (proton-) irradiated magnesium targets. The irradiated magnesium metal or alloy target is dissolved in sulfuric acid and the pH adjusted to 1.0-1.5 with ammonia. Sodium 22 is extracted with a chloroform solution of 15-crown-5 and picric acid and back-extracted with water in the presence of tetraphenylphosphonium chloride or a tetraalkylammonium chloride. Then aluminum 26 is extracted by trioctyl-ammonium oxalate in benzene (toluene) containing chloroform and back-extracted with 6M hydrochloric acid. The yields of sodium 22 and aluminum 26 are better than 95%.

  5. Effect of sulfate ions on corrosion inhibition of AA 7075 aluminum alloy in sodium chloride solutions

    SciTech Connect

    Wu, T.I.; Wu, J.K.

    1995-03-01

    The effect of the addition of sulfate ions on corrosion inhibition of Aluminum Association (AA) 7075 aluminum (Al) alloy (UNS A97075) in aqueous solution was studied. Corrosion behavior was affected significantly by the addition of SO{sub 4}{sup 2{minus}}. The corrosion morphology and corrosion rate changed with various thermomechanical treatment sand with the relative amount of sodium sulfate and sodium chloride in the immersion test solutions. However, the inhibitive effect of SO{sub 4}{sup 2{minus}} was evident with the increasing relative amount of Na{sub 2}SO{sub 4}. Corrosion data and morphologies obtained were illustrated by a competitive anion adsorption mechanism.

  6. 48 CFR 252.216-7007 - Economic price adjustment-basic steel, aluminum, brass, bronze, or copper mill products...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-basic steel, aluminum, brass, bronze, or copper mill products-representation. 252.216-7007 Section 252....216-7007 Economic price adjustment—basic steel, aluminum, brass, bronze, or copper mill products... Steel, Aluminum, Brass, Bronze, or Copper Mill Products—Representation (MAR 2012) (a) Definitions....

  7. 48 CFR 252.216-7007 - Economic price adjustment-basic steel, aluminum, brass, bronze, or copper mill products...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-basic steel, aluminum, brass, bronze, or copper mill products-representation. 252.216-7007 Section 252....216-7007 Economic price adjustment—basic steel, aluminum, brass, bronze, or copper mill products... Steel, Aluminum, Brass, Bronze, or Copper Mill Products—Representation (MAR 2012) (a) Definitions....

  8. 48 CFR 252.216-7007 - Economic price adjustment-basic steel, aluminum, brass, bronze, or copper mill products...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-basic steel, aluminum, brass, bronze, or copper mill products-representation. 252.216-7007 Section 252....216-7007 Economic price adjustment—basic steel, aluminum, brass, bronze, or copper mill products... Steel, Aluminum, Brass, Bronze, or Copper Mill Products—Representation (MAR 2012) (a) Definitions....

  9. Effect of chromuium, aluminum, and titanium on the corrosion resistance of nickel in molten sodium sulfate and chloride

    SciTech Connect

    Oryshich, I.V.

    1985-09-01

    The author reports on a study whose purpose was to determine the corrosion of binary nickel alloys, containing aluminum, titanium and chromium, in molten sodium sulfate and chloride. The work was undertaken because under operating conditions, gas-turbine materials are subject to oxidation and high-temperature corrosion caused by contact with molten salt based on sodium sulfate formed during fuel combustion. It is concluded that: on alloying nickel with chromium, resistance to sulfide corrosion increases, but with aluminum and titanium it is reduced; alloying nickel with aluminum, titanium (up to 6-8 %) and chromium (up to 10-12 %) leads to an increase in its resistance to the action of molten sodium chloride; and, binary Ni-Al, Ni-Ti and ternary Ni-Al-Ti alloys have a lower corrosion resistance in sodium solfate than in sodium chloride.

  10. Corrosion resistance of sodium sulfate coated cobalt-chromium-aluminum alloys at 900 C, 1000 C, and 1100 C

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.

    1979-01-01

    The corrosion of sodium sulfate coated cobalt alloys was measured and the results compared to the cyclic oxidation of alloys with the same composition, and to the hot corrosion of compositionally equivalent nickel-base alloys. Cobalt alloys with sufficient aluminum content to form aluminum containing scales corrode less than their nickel-base counterparts. The cobalt alloys with lower aluminum levels form CoO scales and corrode more than their nickel-base counterparts which form NiO scales.

  11. Multi-scale characterization of nanostructured sodium aluminum hydride

    NASA Astrophysics Data System (ADS)

    NaraseGowda, Shathabish

    Complex metal hydrides are the most promising candidate materials for onboard hydrogen storage. The practicality of this class of materials is counter-poised on three critical attributes: reversible hydrogen storage capacity, high hydrogen uptake/release kinetics, and favorable hydrogen uptake/release thermodynamics. While a majority of modern metallic hydrides that are being considered are those that meet the criteria of high theoretical storage capacity, the challenges lie in addressing poor kinetics, thermodynamics, and reversibility. One emerging strategy to resolve these issues is via nanostructuring or nano-confinement of complex hydrides. By down-sizing and scaffolding them to retain their nano-dimensions, these materials are expected to improve in performance and reversibility. This area of research has garnered immense interest lately and there is active research being pursued to address various aspects of nanostructured complex hydrides. The research effort documented here is focused on a detailed investigation of the effects of nano-confinement on aspects such as the long range atomic hydrogen diffusivities, localized hydrogen dynamics, microstructure, and dehydrogenation mechanism of sodium alanate. A wide variety of microporous and mesoporous materials (metal organic frameworks, porous silica and alumina) were investigated as scaffolds and the synthesis routes to achieve maximum pore-loading are discussed. Wet solution infiltration technique was adopted using tetrahydrofuran as the medium and the precursor concentrations were found to have a major role in achieving maximum pore loading. These concentrations were optimized for each scaffold with varying pore sizes and confinement was quantitatively characterized by measuring the loss in specific surface area. This work is also aimed at utilizing neutron and synchrotron x-ray characterization techniques to study and correlate multi-scale material properties and phenomena. Some of the most advanced

  12. ALUMINUM READINESS EVALUATION FOR ALUMINUM REMOVAL AND SODIUM HYDROXIDE REGENRATION FROM HANFORD TANK WASTE BY LITHIUM HYDROTALCITE PRECIPITATION

    SciTech Connect

    SAMS TL; MASSIE HL

    2011-01-27

    A Technology Readiness Evaluation (TRE) performed by AREV A Federal Services, LLC (AFS) for Washington River Protection Solutions, LLC (WRPS) shows the lithium hydrotalcite (LiHT) process invented and patented (pending) by AFS has reached an overall Technology Readiness Level (TRL) of 3. The LiHT process removes aluminum and regenerates sodium hydroxide. The evaluation used test results obtained with a 2-L laboratory-scale system to validate the process and its critical technology elements (CTEs) on Hanford tank waste simulants. The testing included detailed definition and evaluation for parameters of interest and validation by comparison to analytical predictions and data quality objectives for critical subsystems. The results of the TRE would support the development of strategies to further mature the design and implementation of the LiHT process as a supplemental pretreatment option for Hanford tank waste.

  13. Collaborative study of the Food Chemicals Codex method for the determination of the neutralizing value of sodium aluminum phosphate.

    PubMed

    Park, D L

    1976-01-01

    Fifteen laboratories participated in a collaborative study to evaluate the Food Chemicals Codex method for the determination of the neutralizing value of sodium aluminum phosphate. The AOAC method for determining the neutralizing value of sodium acid pyrophosphate, sec. 8.010, was also included in the study. The precisions of the Food chemicals Codex method, based on the between-replicate standard deviation and on one collaborator making one determination, are 1.16 and 3.66, respectively. The Food Chemicals Codex method for the determination of the neutralizing value of sodium aluminum phosphate has been adopted as official first action. PMID:2581

  14. Ultrastructural alterations of Erwinia carotovora subsp. atroseptica caused by treatment with aluminum chloride and sodium metabisulfite.

    PubMed

    Yaganza, Elian-Simplice; Rioux, Danny; Simard, Marie; Arul, Joseph; Tweddell, Russell J

    2004-11-01

    Aluminum and bisulfite salts inhibit the growth of several fungi and bacteria, and their application effectively controls potato soft rot caused by Erwinia carotovora. In an effort to understand their inhibitory action, ultrastructural changes in Erwinia carotovora subsp. atroseptica after exposure (0 to 20 min) to different concentrations (0.05, 0.1, and 0.2 M) of these salts were examined by using transmission electron microscopy. Plasma membrane integrity was evaluated by using the SYTOX Green fluorochrome that penetrates only cells with altered membranes. Bacteria exposed to all aluminum chloride concentrations, especially 0.2 M, exhibited loosening of the cell walls, cell wall rupture, cytoplasmic aggregation, and an absence of extracellular vesicles. Sodium metabisulfite caused mainly a retraction of plasma membrane and cellular voids which were more pronounced with increasing concentration. Bacterial mortality was closely associated with SYTOX stain absorption when bacteria were exposed to either a high concentration (0.2 M) of aluminum chloride or prolonged exposure (20 min) to 0.05 M aluminum chloride or to a pH of 2.5. Bacteria exposed to lower concentrations of aluminum chloride (0.05 and 0.1 M) for 10 min or less, or to metabisulfite at all concentrations, did not exhibit significant stain absorption, suggesting that no membrane damage occurred or it was too weak to allow the penetration of the stain into the cell. While mortality caused by aluminum chloride involves membrane damage and subsequent cytoplasmic aggregation, sulfite exerts its effect intracellularly; it is transported across the membrane by free diffusion of molecular SO2 with little damage to the cellular membrane. PMID:15528547

  15. Aluminum manganese oxides with mixed crystal structure: high-energy-density cathodes for rechargeable sodium batteries.

    PubMed

    Han, Dong-Wook; Ku, Jun-Hwan; Kim, Ryoung-Hee; Yun, Dong-Jin; Lee, Seok-Soo; Doo, Seok-Gwang

    2014-07-01

    We report a new discovery for enhancing the energy density of manganese oxide (Nax MnO2 ) cathode materials for sodium rechargeable batteries by incorporation of aluminum. The Al incorporation results in NaAl(0.1) Mn(0.9) O2 with a mixture of tunnel and layered crystal structures. NaAl(0.1) Mn(0.9) O2 shows a much higher initial discharge capacity and superior cycling performance compared to pristine Na(0.65) MnO2 . We ascribe this enhancement in performance to the formation of a new orthorhombic layered NaMnO2 phase merged with a small amount of tunnel Na(0.44) MnO2 phase in NaAl(0.1) Mn(0.9) O2 , and to improvements in the surface stability of the NaAl(0.1) Mn(0.9) O2 particles caused by the formation of Al-O bonds on their surfaces. Our findings regarding the phase transformation and structure stabilization induced by incorporation of aluminum, closely related to the structural analogy between orthorhombic Na(0.44) MnO2 and NaAl(0.1) Mn(0.9) O2 , suggest a strategy for achieving sodium rechargeable batteries with high energy density and stability. PMID:24797956

  16. H +, Na +, and K + ion sensing properties of sodium and aluminum coimplanted LPCVD silicon oxynitride thin films

    NASA Astrophysics Data System (ADS)

    Shin, Paik-Kyun; Mikolajick, Thomas

    2003-02-01

    Three different silicon oxynitride layers were fabricated by varying NH 3/N 2O flow rate ratios in low pressure chemical vapor deposition (LPCVD) process. Sodium and aluminum were then coimplanted by implanting sodium ions with the energy of 100 keV and dose of 5×10 16 cm -2 into an aluminum buffer layer on silicon dioxide and three different silicon oxynitride layers. The composition of the as-deposited silicon oxynitride layers was analyzed by sputtered neutral mass spectroscopy (SNMS). Sodium, potassium and pH-sensing properties of the layers were investigated on an electrolyte-isolator-silicon (EIS) structure using high frequency capacitance-voltage (HF-CV) measurements. Differences of pH, sodium and potassium sensing properties between the as-deposited silicon oxynitride layers and the coimplanted silicon oxynitride layers were investigated. The sodium and aluminum coimplanted layers showed better sodium and potassium sensitivity as well as a lower sensitivity towards hydrogen ions. The effect is more pronounced for higher oxygen concentration in the layers. On the other hand the stability of ion response of the layers, in contrast, is better for the higher nitrogen content of the layers.

  17. Improved virus removal by high-basicity polyaluminum coagulants compared to commercially available aluminum-based coagulants.

    PubMed

    Shirasaki, N; Matsushita, T; Matsui, Y; Oshiba, A; Marubayashi, T; Sato, S

    2014-01-01

    We investigated the effects of basicity, sulfate content, and aluminum hydrolyte species on the ability of polyaluminum chloride (PACl) coagulants to remove F-specific RNA bacteriophages from river water at a pH range of 6-8. An increase in PACl basicity from 1.5 to 2.1 and the absence of sulfate led to a reduction of the amount of monomeric aluminum species (i.e., an increase of the total amount of polymeric aluminum and colloidal aluminum species) in the PACl, to an increase in the colloid charge density of the PACl, or to both and, as a result, to high virus removal efficiency. The efficiency of virus removal at around pH 8 observed with PACl-2.1c, a nonsulfated high-basicity PACl (basicity 2.1-2.2) with a high colloidal aluminum content, was larger than that observed with PACl-2.1b, a nonsulfated high-basicity PACl (basicity 2.1-2.2) with a high polymeric aluminum content. In contrast, although extremely high basicity PACls (e.g., PACl-2.7ns, basicity 2.7) effectively removed turbidity and UV260-absorbing natural organic matter and resulted in a very low residual aluminum concentration, the virus removal ratio with PACl-2.7ns was smaller than the ratio with PACl-2.1c at around pH 8, possibly as a result of a reduction of the colloid charge density of the PACl as the basicity was increased from 2.1 to 2.7. Liquid (27)Al NMR analysis revealed that PACl-2.1c contained Al30 species, which was not the case for PACl-2.1b or PACl-2.7ns. This result suggests that Al30 species probably played a major role in virus removal during the coagulation process. In summary, PACl-2.1c, which has high colloidal aluminum content, contains Al30 species, and has a high colloid charge density, removed viruses more efficiently (>4 log10 for infectious viruses) than the other aluminum-based coagulants-including commercially available PACls (basicity 1.5-1.8), alum, and PACl-2.7ns-over the entire tested pH (6-8) and coagulant dosage (0.54-5.4 mg-Al/L) ranges. PMID:24139360

  18. Toxicity detection of sodium nitrite, borax and aluminum potassium sulfate using electrochemical method.

    PubMed

    Yu, Dengbin; Yong, Daming; Dong, Shaojun

    2013-04-01

    Based on the inhibition effect on the respiratory chain activity of microorganisms by toxicants, an electrochemical method has been developed to measure the current variation of a mediator in the presence of microorganisms contacted with a toxicant. Microelectrode arrays were adopted in this study, which can accelerate the mass transfer rate of an analyte to the electrode and also increase the total current signal, resulting in an improvement in detection sensitivity. We selected Escherichia coli as the testee and the standard glucose-glutamic acid as an exogenous material. Under oxygen restriction, the experiments in the presence of toxicant were performed at optimum conditions (solution pH 7.0, 37 degrees C and reaction for 3 hr). The resulting solution was then separated from the suspended microorganisms and was measured by an electrochemical method, using ferricyanide as a mediator. The current signal obtained represents the reoxidation of ferrocyanide, which was transformed to inhibiting efficiency, IC50, as a quantitative measure of toxicity. The IC50 values measured were 410, 570 and 830 mg/L for sodium nitrite, borax and aluminum potassium sulfate, respectively. The results show that the toxicity sequence for these three food additives is consistent with the value reported by other methods. Furthermore, the order of damage degree to the microorganism was also observed to be: sodium nitrite > borax > aluminum potassium sulfate > blank, according to the atomic force microscopy images of E. coli after being incubated for 3 hr with the toxic compound in buffer solutions. The electrochemical method is expected to be a sensitive and simple alternative to toxicity screening for chemical food additives. PMID:23923788

  19. The role of aluminum surface alloying in improving the corrosion resistance of silicon nitride under the influence of sodium vapor

    NASA Astrophysics Data System (ADS)

    Cheong, Yong Suk

    Corrosion of silicon nitride (Sisb3Nsb4) and associated degradation processes can severely limit the performance and reliability of advanced engine and structural systems employing it as a key component. The corrosion resistance of Sisb3Nsb4 is adversely affected by sodium, a reactive species commonly present in many service environments. Despite a number of studies on the sodium-accelerated corrosion, few attempts have been made to reduce the adverse effects of sodium on the corrosion resistance of Sisb3Nsb4. This work aimed to investigate the detailed role of aluminum surface alloying in minimizing the detrimental effect of sodium on the corrosion behavior of Sisb3Nsb4. Ion implantation was used as an alloying tool and pure hot-isostatically-pressed Sisb3Nsb4 as a base material. Surface regions (˜200nm) of highly polished Sisb3Nsb4 platelets were implanted with aluminum at multi-energies and multi-doses to achieve a uniform concentration distribution of 1, 5, and 10 at.%. Unimplanted and implanted Sisb3Nsb4 samples were exposed in atmospheric pressure oxygen enriched with 100 and 220 ppm sodium nitrate vapor at 900sp°-1100sp°C for 0.5 to 8 hours. Kinetics of corrosion were evaluated using profilometry in conjunction with etch patterning. The morphological, structural, and chemical characteristics of the corrosion layers were studied using various analytical techniques which include x-ray diffraction, secondary electron microscopy, atomic absorption analysis, Raman spectroscopy, and secondary ion mass spectroscopy. This investigation has shown that, under the influence of sodium, corrosion of unimplanted Sisb3Nsb4 follows a rapid and linear kinetic law. The corrosion layers are non-protective and rough. They also exhibit a high degree of morphological and phase instability, which can be attributed to increased thermodynamic and kinetic tendency towards the formation of low eutectic products, phase separation, and devitrification in the corrosion layer. Aluminum

  20. Optimization of hydraulic cement admixture waste forms for sodium-bearing, high aluminum, and high zirconium wastes

    SciTech Connect

    Herbst, A.K.

    1997-08-01

    A three-way blend of portland cement, blast furnace slag, and fly ash was successfully tested on simulated acidic high sodium, aluminum, and zirconium low-level wastes (LLW). Grout cubes were prepared at various waste loadings to maximize loading while meeting compressive strength and leach resistance requirements. For sodium LLW, a 21% waste loading achieves a volume reduction of 3.3 and a compressive strength of 2750 pounds per square inch while meeting leach, mix, and flow requirements. It was found that the sulfur in the slag reduces the chromium leach rate below regulatory limits. For aluminum LLW, a 10% waste loading achieves a volume reduction of 8.5 and a compressive strength of 4.50 pounds per square inch while meeting leach requirements. Likewise for zirconium LLW, a 21% waste loading achieves a volume reduction of 8.3 and a compressive strength of 3570 pounds per square inch.

  1. Ultrastructural alterations in Fusarium sambucinum and Heterobasidion annosum treated with aluminum chloride and sodium metabisulfite.

    PubMed

    Avis, T J; Rioux, D; Simard, M; Michaud, M; Tweddell, R J

    2009-02-01

    Aluminum chloride (AlCl(3)) and sodium metabisulfite (Na(2)S(2)O(5)) have received increasing attention as antifungal agents for the control of plant diseases. In an effort to understand their toxic action on fungi, ultrastructural changes and membrane damage in Fusarium sambucinum (Ascomycota) and Heterobasidion annosum (Basidiomycota) in response to salt exposure was investigated using transmission electron microscopy. Conidial membrane damage was quantified using SYTOX Green stain, which only enters altered membranes. The results showed that mortality of the conidia was generally closely associated with SYTOX stain absorption in F. sambucinum treated with Na(2)S(2)O(5) and in H. annosum treated with AlCl(3) or Na(2)S(2)O(5), suggesting that these salts cause membrane alterations. For both fungi, ultrastructural alterations in conidia treated with AlCl(3) and Na(2)S(2)O(5) included membrane retraction, undulation, and invagination. At higher concentrations or exposure periods to the salts, loss of membrane integrity, cytoplasmic leakage, and cell rupture were observed. Ultrastructural alterations and increased SYTOX stain absorption in salt-treated conidia appear consistent with a mode of action where AlCl(3) and Na(2)S(2)O(5) alter membrane integrity and permeability. PMID:19159309

  2. Transmission Electron Microscopy Studies on Titanium-doped Sodium Aluminum Hydride

    NASA Astrophysics Data System (ADS)

    Culnane, Lance F.

    Hydrogen fuel cells play an important role in today's diverse and blossoming alternative energy industry. One of the greatest technological barriers for vehicular applications is the storage of hydrogen (which is required to power hydrogen fuel cells). Storing hydrogen as a gas is not volume efficient, and storing it as a liquid is not cost effective, therefore solid-state storage of hydrogen, such as in metal hydrides offers the most potential for success since many metal hydrides have attractive qualities for hydrogen storage such as: high volumetric capacity, cost efficiency, weight efficiency, low refueling times, and most importantly, high safety. Unfortunately, a compound has not been discovered which contains all of the attractive hydrogen storage qualities for vehicular applications. Sodium aluminum hydride (NaAlH 4) is one of the few compounds which is close to meeting requirements for car manufacturers, and has perhaps been researched the most extensively out of all metal hydrides in the last 15 years. This arises from the remarkable discovery by Bogdanovic who found that doping NaAlH4 with Ti dopants enabled the reversible dehydrogenation and hydrogenation of NaAlH 4 at mild conditions. Various evidence and theories have been proposed to suggest explanations for the enhanced kinetic effect that Ti-doping and ball-milling provide. However, the research community has not reached a consensus as to the exact role of Ti-dopants. If the role of titanium in the NaAlH4 dehydrogenation/hydrogenation mechanism could be understood, then more attractive metal hydrides could be designed. To this end, we conducted Transmission Electron Microscopy (TEM) studies to explain the role of the Ti dopants. The first known thorough particle size analysis of the NaAlH4 system was conducted, as well as TEM-EELS (Electron Energy Loss Spectroscopy), TEM-EDS (Energy Dispersive X-ray Spectroscopy), and in-situ imaging studies. Preparation methods were found to be important for the

  3. Role of lipid composition and lipid peroxidation in the sensitivity of fungal plant pathogens to aluminum chloride and sodium metabisulfite.

    PubMed

    Avis, Tyler J; Michaud, Mélanie; Tweddell, Russell J

    2007-05-01

    Aluminum chloride and sodium metabisulfite have shown high efficacy at low doses in controlling postharvest pathogens on potato tubers. Direct effects of these two salts included the loss of cell membrane integrity in exposed pathogens. In this work, four fungal potato pathogens were studied in order to elucidate the role of membrane lipids and lipid peroxidation in the relative sensitivity of microorganisms exposed to these salts. Inhibition of mycelial growth in these fungi varied considerably and revealed sensitivity groups within the tested fungi. Analysis of fatty acids in these fungi demonstrated that sensitivity was related to high intrinsic fatty acid unsaturation. When exposed to the antifungal salts, sensitive fungi demonstrated a loss of fatty acid unsaturation, which was accompanied by an elevation in malondialdehyde content (a biochemical marker of lipid peroxidation). Our data suggest that aluminum chloride and sodium metabisulfite could induce lipid peroxidation in sensitive fungi, which may promote the ensuing loss of integrity in the plasma membrane. This direct effect on fungal membranes may contribute, at least in part, to the observed antimicrobial effects of these two salts. PMID:17337539

  4. Molecular Modeling of Ammonium, Calcium, Sulfur, and Sodium Lignosulphonates in Acid and Basic Aqueous Environments

    NASA Astrophysics Data System (ADS)

    Salazar Valencia, P. J.; Bolívar Marinez, L. E.; Pérez Merchancano, S. T.

    2015-12-01

    Lignosulphonates (LS), also known as lignin sulfonates or sulfite lignin, are lignins in sulfonated forms, obtained from the "sulfite liquors," a residue of the wood pulp extraction process. Their main utility lies in its wide range of properties, they can be used as additives, dispersants, binders, fluxing, binder agents, etc. in fields ranging from food to fertilizer manufacture and even as agents in the preparation of ion exchange membranes. Since they can be manufactured relatively easy and quickly, and that its molecular size can be manipulated to obtain fragments of very low molecular weight, they are used as transport agents in the food industry, cosmetics, pharmaceutical and drug development, and as molecular elements for the treatment of health problems. In this paper, we study the electronic structural and optical characteristics of LS incorporating ammonium, sulfur, calcium, and sodium ions in acidic and basic aqueous media in order to gain a better understanding of their behavior and the very interesting properties exhibit. The studies were performed using the molecular modeling program HyperChem 5 using the semiempirical method PM3 of the NDO Family (neglect of differential overlap), to calculate the structural properties. We calculated the electronic and optical properties using the semiempirical method ZINDO / CI.

  5. Computer simulation of solidification cracking in high strength aluminum alloys: Basic concepts and approach

    SciTech Connect

    Chang, K.M.; Lu, H.M.; Wan, J.; Harris, J.F.

    1996-12-31

    High-strength aluminum ingots are sensitive to hot cracking during solidification, and many finite element modelings have been applied to the solidification process of ingot casting. Most simulations can predict the thermal profile and thermal history quite accurately, but very few works succeed in estimating precise distribution of thermal stress because of no valid thermomechanical properties in the as-cast structure. As alloy strength is not only a function of temperature but also a function of microstructure which depends on the cooling history of the ingot, a constitutive modeling of these Al-alloys must be obtained by continuous cooling of different rates in the as-cast structure. In this study, methodology for prediction of solidification cracking, which considers cooling dependent properties, is presented, and thermomechanical properties of the as-cast material are measured, and results are employed in the finite element simulation of direct-chill casting of 7050 aluminum alloys to calculate thermal stress.

  6. Final report on the safety assessment of aluminum silicate, calcium silicate, magnesium aluminum silicate, magnesium silicate, magnesium trisilicate, sodium magnesium silicate, zirconium silicate, attapulgite, bentonite, Fuller's earth, hectorite, kaolin, lithium magnesium silicate, lithium magnesium sodium silicate, montmorillonite, pyrophyllite, and zeolite.

    PubMed

    Elmore, Amy R

    2003-01-01

    This report reviews the safety of Aluminum, Calcium, Lithium Magnesium, Lithium Magnesium Sodium, Magnesium Aluminum, Magnesium, Sodium Magnesium, and Zirconium Silicates, Magnesium Trisilicate, Attapulgite, Bentonite, Fuller's Earth, Hectorite, Kaolin, Montmorillonite, Pyrophyllite, and Zeolite as used in cosmetic formulations. The common aspect of all these claylike ingredients is that they contain silicon, oxygen, and one or more metals. Many silicates occur naturally and are mined; yet others are produced synthetically. Typical cosmetic uses of silicates include abrasive, opacifying agent, viscosity-increasing agent, anticaking agent, emulsion stabilizer, binder, and suspending agent. Clay silicates (silicates containing water in their structure) primarily function as adsorbents, opacifiers, and viscosity-increasing agents. Pyrophyllite is also used as a colorant. The International Agency for Research on Cancer has ruled Attapulgite fibers >5 microm as possibly carcinogenic to humans, but fibers <5 microm were not classified as to their carcinogenicity to humans. Likewise, Clinoptilolite, Phillipsite, Mordenite, Nonfibrous Japanese Zeolite, and synthetic Zeolites were not classified as to their carcinogenicity to humans. These ingredients are not significantly toxic in oral acute or short-term oral or parenteral toxicity studies in animals. Inhalation toxicity, however, is readily demonstrated in animals. Particle size, fibrogenicity, concentration, and mineral composition had the greatest effect on toxicity. Larger particle size and longer and wider fibers cause more adverse effects. Magnesium Aluminum Silicate was a weak primary skin irritant in rabbits and had no cumulative skin irritation in guinea pigs. No gross effects were reported in any of these studies. Sodium Magnesium Silicate had no primary skin irritation in rabbits and had no cumulative skin irritation in guinea pigs. Hectorite was nonirritating to the skin of rabbits in a Draize primary skin

  7. The optical constants of several atmospheric aerosol species - Ammonium sulfate, aluminum oxide, and sodium chloride

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Pollack, J. B.; Khare, B. N.

    1976-01-01

    An investigation is conducted of problems which are related to a use of measured optical constants in the simulation of the optical constants of real atmospheric aerosols. The techniques of measuring optical constants are discussed, taking into account transmission measurements through homogeneous and inhomogeneous materials, the immersion of a material in a liquid of a known refractive index, the consideration of the minimum deviation angle of prism measurement, the interference of multiply reflected light, reflectivity measurements, and aspects of mathematical analysis. Graphs show the real and the imaginary part of the refractive index as a function of wavelength for aluminum oxide, NaCl, and ammonium sulfate. Tables are provided for the dispersion parameters and the optical constants.

  8. A potentiodynamic study of aluminum-lithium alloys in an aqueous sodium chloride environment

    NASA Technical Reports Server (NTRS)

    Tsao, C.-H. T.; Pizzo, P. P.

    1985-01-01

    The characteristics of the potentiodynamic curves for Al-Li alloys in 3.5 percent NaCl aqueous solution are explained and the electrochemical parameters of the potentiodynamic technique are correlated to observed pitting and intergranular cracking behavior. It is shown that the oxygen content of the sodium chloride electrolyte plays an important role in the electrochemical behavior of Al-Li alloys. The potentiodynamic behavior of the alloys is found to be insensitive to variation in compositional content and heat treatment, both of which affect the stress-corrosion behavior. Stringer oxide particle attack and random pitting are observed. It is shown that alternate-immersion exposure prior to potentiodynamic polarization may offer a means of assessing susceptibility to stress-corrosion cracking.

  9. Cells with sodium hypochlorite or chlorite and anodes of magnesium or aluminum

    SciTech Connect

    Brenner, A.

    1996-10-01

    A cell composed of a chlorine oxy-ion salt, acting as the battery positive, and anodes of magnesium or aluminum was found to be capable of producing potentials and currents comparable to those of conventional batteries. However, its use would have to be limited to that of a reserve type of battery with a short service-life because of the chemical interaction of the anodes with the electrolyte. This rate of reaction was considerably reduced by the presence of nitrate ion in the electrolyte. The rate of decomposition of hypochlorite solutions on aging was found not to be significant for their use in a reserve type of battery. The utilization of the reactants in the magnesium-chlorine oxy-ion cells was about 60% on a continuous discharge. Since these cells after being discharged would contain only a solution of common salt and a slurry of a metal hydroxide, they were innocuous with respect to the environment. Since this characteristic might make the battery of possible interest for a green motor vehicles, a battery was evaluated with respect to the adaptations that would be necessary for such an application.

  10. ALUMINUM REMOVAL AND SODIUM HYDROXIDE REGENERATION FROM HANFORD TANK WASTE BY LITHIUM HYDROTALCITE PRECIPITATION SUMMARY OF PRIOR LAB-SCALE TESTING

    SciTech Connect

    SAMS TL; GUILLOT S

    2011-01-27

    Scoping laboratory scale tests were performed at the Chemical Engineering Department of the Georgia Institute of Technology (Georgia Tech), and the Hanford 222-S Laboratory, involving double-shell tank (DST) and single-shell tank (SST) Hanford waste simulants. These tests established the viability of the Lithium Hydrotalcite precipitation process as a solution to remove aluminum and recycle sodium hydroxide from the Hanford tank waste, and set the basis of a validation test campaign to demonstrate a Technology Readiness Level of 3.

  11. Entropic nature of the adsorption of sodium dodecylbenzenesulfonate on nanoparticles of aluminum and iron oxides in aqueous medium

    NASA Astrophysics Data System (ADS)

    Mansurov, R. R.; Safronov, A. P.; Lakiza, N. V.

    2016-06-01

    The adsorption of anionic surfactant sodium dodecylbenzenesulfonate (SDBS) from aqueous solution on the hydrophilic surfaces of aluminum oxide and iron oxide nanoparticles is studied via UV spectrophotometry, electrophoretic light scattering, and isothermal microcalorimetry. It is shown that the isotherms of the adsorption of SDBS on the surfaces of both oxides in the area of concentrations up to 0.6 mmol/L is linear. It is found that the positive zeta potential of the surfaces of the particles falls to zero and shifts toward the range of negative values due to adsorption. The adsorption of SDBS is characterized by positive enthalpy values over the investigated range of concentrations, while the loss of energy during adsorption indicates it is of an entropic nature. It is concluded that the probable cause of the increase in entropy is the dehydration of SDBS molecules during on surface adsorption. The obtained results are discussed in terms of the formation of hemimicelles of surfactant on the hydrophilic surfaces of metal oxide nanoparticles in an aqueous medium.

  12. The development of BCB-sealed galvanic cells. Case study: aluminum-platinum cells activated with sodium hypochlorite electrolyte solution

    NASA Astrophysics Data System (ADS)

    Dlutowski, J.; Biver, C. J.; Wang, W.; Knighton, S.; Bumgarner, J.; Langebrake, L.; Moreno, W.; Cardenas-Valencia, A. M.

    2007-08-01

    Energy on demand is an important concept in remote sensor development. The fabrication process for silicon-wafer-based, totally enclosed galvanic cells is presented herein. Benzocyclyobutene (BCB), a photo-patternable material, is used as the adhesive layer between the silicon wafers on which metal electrodes are patterned to form the cells' electrolyte cavity. As a case study, and since aluminum is an anode material with thermodynamic high energy density, this metal is evaporated onto a wafer and used as an anode. A sputtered platinum film collects the charge and provides a catalytic surface in the cell cathode. The metal film patterning process and wafer-to-wafer bonding with BCB is detailed. The difficulties encountered, and design modifications to overcome these, are presented. Cells of the mentioned design were activated with sodium hypochlorite solution electrolyte. Typical potential outputs for the cells, as a function of operational time, are also presented. With a 5 kΩ load, a potential of 1.4 V was maintained for over 240 min, until depletion of the electrolyte occurred. Average cell energy outputs under electrical loads between 100 Ω and 5 kΩ were in the range of 4-10 J with columbic densities ranging from 45 to 83 Ah L-1.

  13. FTIR and Mössbauer spectroscopic study of sodium-aluminum-iron phosphate glassy materials for high level waste immobilization

    NASA Astrophysics Data System (ADS)

    Stefanovsky, S. V.; Stefanovsky, O. I.; Remizov, M. B.; Belanova, E. A.; Kozlov, P. V.; Glazkova, Ya. S.; Sobolev, A. V.; Presniakov, I. A.; Kalmykov, S. N.; Myasoedov, B. F.

    2015-11-01

    Complex sodium-aluminum-iron phosphate glassy materials with various Al2O3 to Fe2O3 ratio containing high level waste (HLW) surrogate were characterized by X-ray diffraction and scanning electron microscopy and studied in details by Fourier transform infrared (FTIR) spectroscopy. The samples with high Al2O3 content and not containing Fe2O3 were predominantly amorphous but subjected to devitrification under annealing. Addition of B2O3 and partial Fe2O3 substitution for Al2O3 in the materials increases their resistance to devitrification whereas further substitution and NiO incorporation significantly increase the tendency to devitrification. FTIR spectra demonstrate changes in the structure of glassy materials caused by both structural variations in the anionic motif and occurrence of crystalline phases in the materials. According to Mössbauer spectroscopy data, iron in the glassy samples is present as octahedrally coordinated Fe3+ ions while in the partly devitrified samples iron is partitioned among vitreous and crystalline phases entering the vitreous phase mainly as Fe3+O6 units and crystalline phases as major Fe3+ and minor Fe2+ ions in a magnetically ordered state and participating in a "fast" electronic exchange.

  14. Concentrations of aluminum in gut tissue of crayfish (Procambarus clarkii), purged in sodium chloride

    SciTech Connect

    Madigosky, S.R.; Alvarez-Hernandez, X.; Glass, J.

    1992-10-01

    Recent concern over the release of Al in the environment has prompted researchers and health officials to assess its effects on biological systems. Aluminum, despite being the most abundant metal in earth`s lithosphere, is normally complexed in soil and is therefore unavailable for biological assimilation. The recent advent of acid rain, however, has prompted Al release due to mobilization from surrounding sediments into the environment. This is of particular concern in aquatic environments because organisms in aquatic food chains can access and concentrate sublethal levels of Al in their tissues relatively quickly. The ingestion of affected organisms by humans may therefore pose a potential health risk. One such organism, is known to concentrate metals in a variety of tissues. In northern Louisiana, many people trap or fish for crayfish in lowland areas which lie adjacent to highways and secondary roadways. Water, soil, and crayfish from these areas are known to contain high levels of Al. Some tissues known to concentrate Al (muscle, hepatopancreas and intestine tissue and contents) are those which humans commonly consume. The ingestion of these tissues may therefore expose humans to elevated Al levels. Many people who eat crayfish often purge them in dilute concentrations (1-2%) of NaCl to rid them of contaminants and make them more palatable. We are aware of no literature which corroborates the claim that purging removes contaminating metals. The objectives of this study were to (1) document the amount of Al found in water, soil, and gut tissue of crayfish (P. clarkii) collected from a roadside wetland site; (2) determine the affect of NaCl purging on the release of Al in P. clarkii and (3) assess the differences in Al levels found between stomach tissue, stomach tissue contents, intestine tissue, and intestine contents in P. clarkii. 12 refs., 3 figs., 1 tab.

  15. Preparation of sodium humate/{alpha}-aluminum oxide adsorbents for flue gas desulfurization

    SciTech Connect

    Sun, Z.G.; Gao, H.Y.; Hu, G.X.; Li, Y.H.

    2009-06-15

    A new composite adsorbent of sodium humate (HNa)=alpha-aluminium oxide ({alpha}-Al{sub 2}O{sub 3}) for flue gas desulfurization (FGD) was prepared using the impregnation method. Both the adsorbent of {alpha}-Al{sub 2}O{sub 3} and HNa={alpha}-Al{sub 2}O{sub 3} were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray spectrometer (EDS), and scanning electron microscope (SEM). Desulfurization activity of the adsorbent impregnated with ammonia (NH{sub 4}OH) was investigated in a fixed-bed quartz reactor. Experimental results indicate that HNa, which coats the {alpha}-Al{sub 2}O{sub 3} fibers impregnated with HNa solution, improved the property of {alpha}-Al{sub 2}O{sub 3} support for FGD. On the other hand, the HNa-coating on the adsorbent of HNa/{alpha}-Al{sub 2}O{sub 3} impregnated with NH{sub 4}OH played an important role in enhancing the desulfurization property of the {alpha}-Al{sub 2}O{sub 3}. Due to the strong adsorption capability of HNa, more NH{sub 4}OH was adsorbed in the adsorbent of HNa/{alpha}-Al{sub 2}O{sub 3} the longer a high sulfur dioxide (SO{sub 2}) conversation rate was maintained. In addition, because the desulfurization product was a compound fertilizer consisting of ammonium sulfate ((NH{sub 4}){sub 2}SO{sub 4}), ammonium humate (HNH{sub 4}), and HNa, the recycling use of {alpha}-Al{sub 2}O{sub 3} was also easily achieved. Thus, this study can provide a new cost-effective way to remove SO{sub 2} from flue gas.

  16. Treatment of Basic Red 29 dye solution using iron-aluminum electrode pairs by electrocoagulation and electro-Fenton methods.

    PubMed

    Yavuz, Yusuf; Shahbazi, Reza; Koparal, A Savaş; Öğütveren, Ulker Bakır

    2014-01-01

    The aim of this study is the treatment of Basic Red 29 (BR29) dye solution using hybrid iron-aluminum electrodes by electrocoagulation and electro-Fenton methods. The effect of current density, initial pH, supporting electrolyte, H₂O₂, and initial dye concentration on dye removal efficiency was investigated, and the best experimental conditions were obtained. Time-coarse variation of UV-Vis spectra and toxicity and chemical oxygen demand (COD) removal were also examined at the best experimental conditions. Both systems were found very successful for the removal of BR29 dye. The removal efficiency of >95% for BR29 dye solution was reached easily in a short time. At the best experimental conditions, for the initial BR29 concentration of 100 mg/L, >95% BR29 dye and 71.43% COD removal were obtained after 20 and 40 min of electrolysis, respectively. Additionally, toxicity results for electro-Fenton treatment of 100 mg/L BR29 were also very promising. According to the results obtained, although electro-Fenton is more effective, both systems can be used successfully to treat textile wastewater including dyes. PMID:24687790

  17. PROCESS FOR REMOVING ALUMINUM COATINGS

    DOEpatents

    Flox, J.

    1959-07-01

    A process is presented for removing aluminum jackets or cans from uranium slugs. This is accomplished by immersing the aluminum coated uranium slugs in an aqueous solution of 9 to 20% sodium hydroxide and 35 to 12% sodium nitrate to selectively dissolve the aluminum coating, the amount of solution being such as to obtain a molar ratio of sodium hydroxide to aluminum of at least

  18. X-ray photoelectron spectroscopic study of the oxide film on an aluminum-tin alloy in 3.5% sodium chloride solution

    SciTech Connect

    Venugopal, A.; Selvam, P.; Raja, V.S.; Veluchamy, P.; Minoura, H.

    1997-10-01

    Oxide films on Al and an Al-Sn alloy were analyzed by x-ray photoelectron spectroscopy (XPS) after immersion in 3.5% sodium chloride (NaCl) solution. Results showed Sn exhibited both Sn{sup 2+} and Sn{sup 4+} oxidation stats in the oxide film. It was proposed that incorporation of these cations in the film would result in generation of more anionic and cationic vacancies in aluminum oxide (Al{sub 2}O{sub 3}), leading to active dissolution of Al.

  19. Sodium Test

    MedlinePlus

    ... be limited. Home Visit Global Sites Search Help? Sodium Share this page: Was this page helpful? Also known as: Na Formal name: Sodium Related tests: Chloride , Bicarbonate , Potassium , Electrolytes , Osmolality , Basic ...

  20. Effects of aluminum chloride on sodium current, transient outward potassium current and delayed rectifier potassium current in acutely isolated rat hippocampal CA1 neurons.

    PubMed

    Zhang, Bo; Nie, Aifang; Bai, Wei; Meng, Ziqiang

    2004-09-01

    The effects of aluminum chloride (AlCl3) on sodium current (INa), the transient outward potassium (IA) and delayed rectifier potassium currents (IK) in hippocampal CA1 neurons of rats were studied using the whole cell patch-clamp technique. AlCl3 decreased INa, IA, and IK in a partly reversible, dose and voltage-dependent manner. AlCl3 prolonged the time to peak of INa, and increased the inactivation time constants of INa and IA . In addition, 1000 microM AlCl3 shifted the voltage dependence of steady-state activation of INa, IA and IK toward positive potential, and the voltage dependence of steady-state inactivation of INa, IA toward negative potential. These results imply that AlCl3 could affect the activation and inactivation courses of sodium current and potassium current of rat hippocampal CA1 neurons, which may contribute to damage of the central nervous system by aluminum. PMID:15234075

  1. Fabrication and icing property of superhydrophilic and superhydrophobic aluminum surfaces derived from anodizing aluminum foil in a sodium chloride aqueous solution

    NASA Astrophysics Data System (ADS)

    Song, Meirong; Liu, Yuru; Cui, Shumin; Liu, Long; Yang, Min

    2013-10-01

    An aluminum foil with a rough surface was first prepared by anodic treatment in a neutral aqueous solution with the help of pitting corrosion of chlorides. First, the hydrophobic Al surface (contact angle around 79°) became superhydrophilic (contact angle smaller than 5°) after the anodizing process. Secondly, the superhydrophilic Al surface became superhydrophobic (contact angle larger than 150°) after being modified by oleic acid. Finally, the icing property of superhydrophilic, untreated, and superhydrophobic Al foils were investigated in a refrigerated cabinet at -12 °C. The mean total times to freeze a water droplet (6 μL) on the three foils were 17 s, 158 s and 1604 s, respectively. Thus, the superhydrophilic surface accelerates the icing process, while the superhydrophobic surface delays the process. The main reason for this transition might mainly result from the difference of the contact area of the water droplet with Al substrate: the increase in contact area with Al substrate will accelerate the heat conduct process, as well as the icing process; the decrease in contact area with Al substrate will delay the heat conduct process, as well as the icing process. Compared to the untreated Al foil, the contact area of the water droplet with the Al substrate was higher on superhydrophilic surface and smaller on the superhydrophobic surface, which led to the difference of the heat transfer time as well as the icing time.

  2. The effect of electron irradiation on the structure and iron speciation in sodium aluminum (iron) phosphate glasses

    NASA Astrophysics Data System (ADS)

    Stefanovsky, S. V.; Presniakov, I. A.; Sobolev, A. V.; Glazkova, I. S.; Kadyko, M. I.; Stefanovsky, O. I.

    2016-08-01

    The effect of 8 MeV electron irradiation on the structure of glasses in the series 40 Na2O, (20-x) Al2O3, x Fe2O3, 40 P2O5 (mol.%) and on the iron speciation in these samples was studied by FTIR and Mössbauer spectroscopic techniques. Irradiation up to a dose of 1.0 MGy has no appreciable effects on the character of the bonds within anionic motif of the glass network. Electron irradiation increases the fraction of aluminum in octahedral coordination. Iron in both unirradiated and irradiated glasses is present mainly as Fe(III) (60-75% of the total amount) in the glasses and partly as Fe(II) and the ratio of two forms remains constant up to a dose of 1.0 MGy.

  3. Conductivity in nonpolar media: experimental and numerical studies on sodium AOT-hexadecane, lecithin-hexadecane and aluminum(III)-3,5-diisopropyl salicylate-hexadecane systems.

    PubMed

    Schmidt, Jochen; Prignitz, Rodolphe; Peschka, Dirk; Münch, Andreas; Wagner, Barbara; Bänsch, Eberhard; Peukert, Wolfgang

    2012-11-15

    The conductivity behavior of doped hydrocarbon systems is studied by applying impedance spectroscopy. In the case of 3,5-diisopropyl salicylato aluminum (III) the charge carriers are formed by dissociation of the compound and their concentration is proportional to the square root of the solute concentration. In hydrocarbon systems that consist of micelle forming compounds (sodium AOT/ lecithin) a linear dependence of charge carrier concentration on solute concentration is observed in the concentration regime where micelles are present. The conduction mechanisms are studied by numerical solution of a Poisson-Nernst-Planck system that describes the charge transport. We follow two different approaches to extract the degree of micelle dissociation from the impedance data. Firstly, by computing the response of a linear approximation of the Poisson-Nernst-Planck model, and secondly by computing the fully nonlinear response from direct numerical simulations using finite elements. For high and moderate frequencies both approaches agree very well with the experimental data. For small frequencies the response becomes nonlinear and the concept of impedance fails. Furthermore, the numerically computed values for the degree of dissociation are of the same order of magnitude as the values obtained with classical formulas, but still differ by a factor of about 1/3. The direct numerical simulation allows new insight into the conduction mechanisms for different frequency regimes. PMID:22925119

  4. Aluminum Bronze Alloys to Improve the System Life of Basic Oxygen and Electric Arc Furnace Hoods, Roofs and Side Vents.

    SciTech Connect

    Lawrence C. Boyd Jr.; Dr. Vinod K. Sikka

    2006-12-29

    Energy Industries of Ohio was the lead organization for a consortium that examined the current situation involving the service life of electric arc and basic oxygen furnace hoods, roofs and side vents. Republic Engineered Products (REP), one of the project partners, installed a full-scale Al-Bronze “skirt” in their BOF at their Lorain OH facility, believed to be the first such installation of this alloy in this service. In 24 months of operation, the Al-Bronze skirt has processed a total of 4,563 heats, requiring only 2 shutdowns for maintenance, both related to physical damage to the skirt from operational mishaps. Yearly energy savings related to the REP facility are projected to be ~ 10 billion Btu's with significant additional environmental and productivity benefits. In recognition of the excellent results, this project was selected as the winner of the Ohio’s 2006 Governor’s Award for Excellence in Energy, the state’s award for outstanding achievements in energy efficiency.

  5. {sup 27}Al and {sup 23}Na MAS NMR and powder x-ray diffraction studies of sodium aluminate speciation and the mechanistics of aluminum hydroxide precipitation upon acid hydrolysis

    SciTech Connect

    Bradley, S.M.; Hanna, J.V.

    1994-08-24

    {sup 27}Al and {sup 23}Na MAS NMR, powder X-ray diffraction, and infrared spectroscopic investigations of freeze-dried sodium aluminates and aluminum hydroxides formed through acid hydrolysis have been undertaken, with OH/Al hydrolysis ratios between 5.3 and 2.8 being analyzed. Numerous {sup 27}AlNMR resonances were observed, the intensities of which vary as a function of OH/Al ratio, and these have been assigned to four-, five-, and six-coordinate aluminum species constituting a variety of structural moieties. The dominant species at an OH/Al ratio above 4.4 appears to be a Q{sup o}Na[Al(OH);{sub 4}] salt, as indicated by a {sup 27}Al resonance at 86.6 ppm. In addition, a second, broader resonance at 71.3 ppm demonstrates the simultaneous existence of further four-coordinate aluminum species linked thorough oxo bonds to other four-coordinate aluminums (e.g., Q{sup 2} [Al(OH);{sub 2}(OAl){sub 2}];{sup x-}). At an OH/Al ratio between 4.4 and 4.1, a water-soluble phase forms that contains both four- and six-coordinate aluminum. At OH/Al ratios fo 4.0 and below, a water-soluble phase forms that contains both four-and six-coordinate aluminum. AT OH/Al ratios of 4.0 and below, a water-insoluble phase exists possessing four-, five-, and six-coordinate aluminum. At OH/Al{le}3.9 range exhibits {sup 27}Al chemical shifts similar to those reported for transitional aluminas such as {gamma}-, {eta}-, and 0-Al{sub 2}O{sub 3} and an infrared spectrum similar to pseudo-spinel gels, suggesting that a pseudo-spinel intermediate is the first phase involved in the crystallization of gibbsite. The resonance assigned to five-coordinate aluminum probably results from species involved in the transformation of the pseudo-spinal phase to pseudo-boehmite. The formation of gibbssite on the acid hydrolysis of alkaline sodium aluminate solutions thus appears to follow the pathway pseudo-spinel {r_arrow} pseudo-boehmite {r_arrow} bayerite {r_arrow} gibbsite. 82 refs., 7 figs., 3 tabs.

  6. Transfer of Amide and 2-Methoxyethoxy Groups and Sodium Encapsulation in the Reaction of TaCl3[N(TMS)2]2 with Sodium Bis(2-methoxyethoxy)aluminum Hydride: X-ray Structure of [NaAl{N(TMS)2}(OCH2CH2OMe)3]2

    SciTech Connect

    Huang, Shih-Huang Huang; Wang, Xiaoping; Richmond, Michael G.

    2009-01-01

    The reaction between the tantalum compound TaCl3[N(TMS)2]2 and the hydridic reducing agent sodium bis(2-methoxyethoxy)aluminum hydride (Vitride) has been investigated in toluene solution at room temperature and found to afford the dimeric aluminate complex [NaAl{N(TMS)2}(OCH2CH2OMe)3]2 as the sole isolable product. The molecular structure of the product establishes the existence of a four-coordinate aluminum atom and the formal transfer of the 2-methoxyethoxy and bis(trimethylsilyl)amide groups to the aluminate product. The aggregation of two NaAl{N(TMS)2}(OCH2CH2OMe)3 units serves to bind the two sodium cations in a crown-ether fashion through six ancillary oxygen atoms.

  7. Sodium blood test

    MedlinePlus

    ... foods. The most common form of sodium is sodium chloride, which is table salt. This test is usually done as part of an electrolyte or basic metabolic panel blood test . Your blood sodium level represents a balance between the sodium and ...

  8. Adsorption and reaction of sulfur dioxide on alumina and sodium-impregnated alumina

    SciTech Connect

    Mitchell, M.B.; Sheinker, V.N.; White, M.G.

    1996-05-02

    The adsorption and oxidation of SO{sub 2} on alumina and sodium-impregnated alumina has been examined using thermogravimetric analysis and diffuse reflectance infrared Fourier transform spectroscopy. Sulfur dioxide chemisorbs initially at basic sites to form an adsorbed sulfite, which is quantitatively converted to sulfate on oxidation. It has been observed that at low coverages, nearly 2.6 {mu}mol/m{sup 2}, sodium acts as a promoter for the formation of an adsorbed sulfite and sulfate which have structures similar to those of aluminum sulfite and sulfate, respectively. At higher sodium loadings, a second type of adsorbed SO{sub 2} is formed, similar to sodium sulfite and sulfate. The species with the aluminum sulfate structure appears to be more easily decomposed than does the sodium sulfate species and accounts for the regenerable adsorption capacity. Formation of the sodium sulfate species appears to account for the loss of adsorption capacity as the number of adsorption/regeneration cycles increases. Oxidation of the sulfite form to the sulfate form can occur in the absence of added oxygen, but it is an activated process and begins to occur in measurable amounts at temperatures between 150 and 300{degree}C. Partitioning of adsorbed SO{sub 2} between aluminum and sodium forms is not a function of temperature and depends on only sodium loading. 32 refs., 14 figs., 1 tab.

  9. XRD and NMR investigation of Ti-compound formation in solution-doping of sodium aluminum hydrides: Solubility of Ti in NaAlH4 crystals grown in THF

    SciTech Connect

    Majzoub, E H; Herberg, J L; Stumpf, R; Spangler, S; Maxwell, R S

    2004-08-26

    Sodium aluminum hydrides have gained attention due to their high hydrogen weight percent (5.5% ideal) compared to interstitial hydrides, and as a model for hydrides with even higher hydrogen weight fraction. The purpose of this paper is to investigate the Ti-compounds that are formed under solution-doping techniques, such as wet doping in solvents such as tetrahydrofuran (THF). Compound formation in Ti-doped sodium aluminum hydrides is investigated using x-ray diffraction (XRD) and magic angle spinning (MAS) nuclear magnetic resonance (NMR). We present lattice parameter measurements of crushed single crystals, which were exposed to Ti during growth. Rietveld refinements indicate no lattice parameter change and thus no solubility for Ti in NaAlH{sub 4} by this method of exposure. In addition, x-ray diffraction data indicate that no Ti substitutes in NaH, the final decomposition product for the alanate. Reaction products of completely reacted (33.3 at. %-doped) samples that were solvent-mixed or mechanically milled are investigated. Formation of TiAl{sub 3} is observed in mechanically milled materials, but not solution mixed samples, where bonding to THF likely stabilizes Ti-based nano-clusters. The Ti in these clusters is activated by mechanical milling.

  10. Cooling crystallization of aluminum sulfate in pure water

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoxue; Sun, Yuzhu; Yu, Jianguo

    2015-06-01

    This study investigated the cooling crystallization of aluminum sulfate to explore the basic data for the recovery of aluminum resources from coal spoil. First, the metastable zone width (MSZW) of aluminum sulfate was reported. A parallel synthesis platform (CrystalSCAN) was used to determine the solubility from 10 °C to 70 °C, and an automatic lab reactor (LabMax) equipped with focused beam reflectance measurement (FBRM) was adopted to determine the supersolubility. The effects of operating variables on MSZW were experimentally explored. Results show that the MSZW of aluminum sulfate decreases with increasing stirring speed, while it increases with increasing cooling rate. Second, the continuous crystallization kinetics of aluminum sulfate was investigated in a laboratory-scale mixed-suspension mixed-product removal (MSMPR) crystallizer at a steady state. Growth kinetics presented size-dependent growth rate, which was well fitted with the MJ3 model. Both the growth rate (G) and the total nucleation rate (BTOT) were correlated in the power law kinetic expressions with good correlation coefficients. Third, aluminum sulfate products were modified by sodium dodecylbenzenesulfonate (SDBS). Crystals with large sizes and regular hexagonal plate morphologies were obtained. These crystals reveal that SDBS can inhibit crystal nucleation and promote crystal growth.

  11. Partial compilation and revision of basic data in the WATEQ programs

    USGS Publications Warehouse

    Nordstrom, D.K.; Valentine, S.D.; Ball, J.W.; Plummer, L.N.; Jones, B.F.

    1984-01-01

    Several portions of the basic data in the WATEQ series of computer programs (WATEQ, WATEQF, WATEQ2, WATEQ3, and PHREEQE) are compiled. The density and dielectric constant of water and their temperature dependence are evaluated for the purpose of updating the Debye-Huckel solvent parameters in the activity coefficient equations. The standard state thermodynamic properties of the Fe2+ and Fe3+ aqueous ions are refined. The main portion of this report is a comprehensive listing of aluminum hydrolysis constants, aluminum fluoride, aluminum sulfate, calcium chloride, magnesium chloride, potassium sulfate and sodium sulfate stability constants, solubility product constants for gibbsite and amorphous aluminum hydroxide, and the standard electrode potentials for Fe (s)/Fe2+(aq) and Fe2 +(aq)/Fe3+(aq). (USGS)

  12. Lithotripsy of gallstones by means of a quality-switched giant-pulse neodymium:yttrium-aluminum-garnet laser. Basic in vitro studies using a highly flexible fiber system.

    PubMed

    Hochberger, J; Gruber, E; Wirtz, P; Dürr, U; Kolb, A; Zanger, U; Hahn, E G; Ell, C

    1991-11-01

    The quality-switched neodymium:yttrium-aluminum-garnet laser represents a new instrument for athermal fragmentation of gallstones by transformation of optical energy into mechanical energy in the form of shock waves via local plasma formation. A highly flexible 300-micron fiber transmission system was used in basic investigations to determine the influence of varying pulse repetition rates (5-30 Hz) and pulse energies (15 and 20 mJ) on shock wave intensity and stone fragmentation in vitro for 105 biliary calculi of known size and chemical composition. After performance of 1200 shock wave pressure measurements using polyvinylidenefluoride hydrophones, stone fragmentation was analyzed by determination of fragment removal rates (volume of fragments removed per fragmentation time), ablation rates (mean volume removed per laser pulse), and median fragment sizes for each laser setting. With the quality-switched neodymium:yttrium-aluminum-garnet laser system, all concrements could be reliably disintegrated into small fragments (median diameter, 0.7-1.7 mm). Compared with pure cholesterol stones, a significantly higher fragment removal rate was achieved in cholesterol stones containing 30% calcium phosphate (P = 0.039), in cholesterol stones containing 20% pigment (P = 0.015), and in pure pigment stones (P = 0.007). Fragment removal rates, local shock wave pressures, and median grain sizes were significantly higher at a pulse energy of 20 mJ than with 15 mJ. Shock wave pressures showed a distinct dependence on pulse repetition rates at 20 mJ, yet not at 15 mJ. Because there is no evident hazard of thermal damage to tissue using the quality-switched neodymium:yttrium-aluminum-garnet laser, it appears to be a promising device for nonsurgical biliary stone therapy. PMID:1682203

  13. Aluminum Hydroxide

    MedlinePlus

    Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...

  14. First principles pseudopotential calculations on aluminum and aluminum alloys

    SciTech Connect

    Davenport, J.W.; Chetty, N.; Marr, R.B.; Narasimhan, S.; Pasciak, J.E.; Peierls, R.F.; Weinert, M.

    1993-12-31

    Recent advances in computational techniques have led to the possibility of performing first principles calculations of the energetics of alloy formation on systems involving several hundred atoms. This includes impurity concentrations in the 1% range as well as realistic models of disordered materials (including liquids), vacancies, and grain boundaries. The new techniques involve the use of soft, fully nonlocal pseudopotentials, iterative diagonalization, and parallel computing algorithms. This approach has been pioneered by Car and Parrinello. Here the authors give a review of recent results using parallel and serial algorithms on metallic systems including liquid aluminum and liquid sodium, and also new results on vacancies in aluminum and on aluminum-magnesium alloys.

  15. Columbia/Willamette Skill Builders Consortium. Final Performance Report. Appendix 5B Anodizing Inc. (Aluminum Extrusion Manufacturing). Basic Measurement Math. Instructors' Reports and Sample Curriculum Materials.

    ERIC Educational Resources Information Center

    Taylor, Marjorie; And Others

    Anodizing, Inc., Teamsters Local 162, and Mt. Hood Community College (Oregon) developed a workplace literacy program for workers at Anodizing. These workers did not have the basic skill competencies to benefit from company training efforts in statistical process control and quality assurance and were not able to advance to lead and supervisory…

  16. On the mechanism of phosphoenolpyruvate synthetase (PEPs) and its inhibition by sodium fluoride: potential magnesium and aluminum fluoride complexes of phosphoryl transfer.

    PubMed

    McCormick, Nicole E; Jakeman, David L

    2015-06-01

    Phosphoenolpyruvate synthase (PEPs) catalyzes the conversion of pyruvate to phosphoenolpyruvate (PEP) using a two-step mechanism invoking a phosphorylated-His intermediate. Formation of PEP is an initial step in gluconeogenesis, and PEPs is essential for growth of Escherichia coli on 3-carbon sources such as pyruvate. The production of PEPs has also been linked to bacterial virulence and antibiotic resistance. As such, PEPs is of interest as a target for antibiotic development, and initial investigations of PEPs have indicated inhibition by sodium fluoride. Similar inhibition has been observed in a variety of phospho-transfer enzymes through the formation of metal fluoride complexes within the active site. Herein we quantify the inhibitory capacity of sodium fluoride through a coupled spectrophotometric assay. The observed inhibition provides indirect evidence for the formation of a MgF3(-) complex within the enzyme active site and insight into the phospho-transfer mechanism of PEPs. The effect of AlCl3 on PEPs enzyme activity was also assessed and found to decrease substrate binding and turnover. PMID:25707819

  17. Recovery of aluminum from composite propellants

    NASA Technical Reports Server (NTRS)

    Shaw, G. C. (Inventor)

    1980-01-01

    Aluminum was recovered from solid rocket propellant containing a small amount of oxidizer by depolymerizing and dissolving propellant binders (containing functional or hydrolyzable groups in a solution of sodium methoxide) in an alcohol solvent optionally containing an aliphatic or aromatic hydrocarbon co-solvent. The solution was filtered to recover substantially all the aluminum in active form.

  18. Effect of grain-boundary corrosion on impedance characteristics of an aluminum-zinc-indium alloy in 3.5% sodium chloride solution

    SciTech Connect

    Venugopal, A.; Angal, R.D.; Raja, V.S.

    1996-02-01

    Applications of Al alloy sacrificial anodes for cathodic protection (CP) of steel structures in marine environments are well known. Small changes in composition and heat treatment can affect the corrosion behavior of the alloy substantially. However, characterization of the alloy anodes in relation to such changes is lacking in the literature. Electrochemical impedance spectroscopy (EIS) was used to understand the dissolution behavior of an Al-Zn-In alloy in 3.5% sodium chloride (NaCl) solution as a function of time after the alloy was subjected to galvanostatic dissolution. Compared to optical microscopy, the changing trend in impedance spectra reflected the preferential dissolution of the alloy along the grain boundaries. The usefulness of EIS as a tool to indicate the current efficiency loss from grain-boundary attack was illustrated.

  19. In situ cross-linking of sodium alginate with calcium and aluminum ions to sustain the release of theophylline from polymeric matrices.

    PubMed

    Nokhodchi, Ali; Tailor, Anish

    2004-12-01

    Small matrices of calcium alginate or aluminium alginate have been investigated as possible controlled release systems for drugs. The objective of the present study was to sustain the release of theophylline from alginate matrices using different concentrations of aluminium chloride and calcium chloride in presence and absence of HPMC. Tablets containing differing concentrations of aluminium and calcium chloride were produced and the release rate of theophylline was tested using the basket dissolution apparatus over 8 h. Increasing amounts of aluminium chloride from 0.0001 to 0.00068 moles decreased the release of theophylline from 95.1 +/- 0.27 to 29.5 +/- 1.5, indicating a significant effect of aluminium ions on a reduction in the release rate of theophylline from sodium alginate matrices. In the case of matrices containing different concentrations of calcium ions, as the concentration of calcium chloride increased, the release rate increased to an optimum then declined after this. This was due to insufficient calcium ions being available to cross-link with the sodium alginate to form an insoluble gel. The effect of aluminium ions, as this is a trivalent ion compared to calcium, which is a divalent ion, aluminium ions are able to decrease the release rate with a smaller concentration compared to calcium ions. The results also showed that the presence of HPMC caused a reduction in release rate of theophylline from alginate matrices containing calcium chloride. Whereas, in the case of alginate matrices containing aluminium chloride the release rate of theophylline increased in presence of HPMC. For comparing the dissolution data, dissolution efficiency (DE) was used. The values of DE are consistent with the dissolution data. The results show that within a formulation series, DE values generally decrease when the cation concentration increases and this criterion can be used to describe the effect of calcium and aluminium ions on the release behaviour of theophylline

  20. Sodium/metal chloride batteries: Summary of status

    SciTech Connect

    Sen, R.K.

    1988-09-01

    In 1972, there was an effort underway at ESB to try to develop a sodium/antimony trichloride battery that would operate at 200/degree/C or less. These cells, like their sodium/sulfur counterpart, used beta alumina electrolyte tubes, but with a second component in the electrolyte, namely molten sodium tetrachloroaluminate. The latter was used on the acid side, i.e., with an excess of aluminum chloride. Starting a little later, about 1975 it is rumored, workers at the Anglo American Company in South Africa began experimenting with positive electrodes consisting of iron or nickel chloride, using an electrolyte system that was similar to that of ESB except that the sodium tetrachloroaluminate was used on the basic side, i.e., with an excess of sodium chloride. The Anglo American work was focused on the high-temperature chlorination of the metal carbides as the means to form the porous iron or nickel chloride positive electrodes. Ultimately, the work at ESB was abandoned, while that at Anglo American blossomed, eventually leading to the formation of Zebra Power Systems S.A. in South Africa. The latter has been involved, since about 1980, in a number of collaborative programs with UKAEA Harwell and Beta RandD Ltd. in the UK to develop the sodium/metal chloride battery technology. The embodiment with iron chloride has become known as the Zebra battery, while the nickel chloride variant is known as the Cheetah battery. 17 refs., 4 figs., 2 tabs.

  1. Heterojunction solar cell with 6% efficiency based on an n-type aluminum-gallium-oxide thin film and p-type sodium-doped Cu2O sheet

    NASA Astrophysics Data System (ADS)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2015-02-01

    In this paper, we describe efforts to enhance the efficiency of Cu2O-based heterojunction solar cells fabricated with an aluminum-gallium-oxide (Al-Ga-O) thin film as the n-type layer and a p-type sodium (Na)-doped Cu2O (Cu2O:Na) sheet prepared by thermally oxidizing copper sheets. The optimal Al content [X; Al/(Ga + Al) atomic ratio] of an AlX-Ga1-X-O thin-film n-type layer was found to be approximately 2.5 at. %. The optimized resistivity was approximately 15 Ω cm for n-type AlX-Ga1-X-O/p-type Cu2O:Na heterojunction solar cells. A MgF2/AZO/Al0.025-Ga0.975-O/Cu2O:Na heterojunction solar cell with 6.1% efficiency was fabricated using a 60-nm-thick n-type oxide thin-film layer and a 0.2-mm-thick Cu2O:Na sheet with the optimized resistivity.

  2. Aluminum chloride and membrane potentials of barley root cells

    SciTech Connect

    Etherton, B.; Shane, M.

    1986-04-01

    Aluminum chloride at pH 4 hyperpolarizes the membrane potentials of barley root epidermal cells. The authors tested to see whether this hyperpolarization could be caused by an aluminum induced alteration of the permeability of the membrane to potassium or sodium ions by measuring the effect of .04 mM aluminum ions (the Ca/sup + +/ conc. was 0.1 mM) on the membrane potential changes induced by changing the potassium or sodium concentrations in the medium bathing the roots. Aluminum ions did not change the magnitude of potassium or sodium induced changes in membrane potentials but significantly altered the rates of potassium and sodium induced changes of the potential. The results indicate that aluminum ions did not change sodium or potassium ion permeabilities of barley root cells.

  3. The Revision of Aluminum-containing Food Additive Provisions in China.

    PubMed

    Zhang, Hong; Zhang, Ji Yue; Wang, Hua Li; Luo, Peng Jie; Zhang, Jian Bo

    2016-06-01

    The aim of this study was to revise the provisions for aluminum-containing food additives in GB 2760-2011 (The National Food Safety Standard for Use of Food Additives), in order to reduce aluminum exposure among the Chinese population. According to the latest risk assessment results of JECFA and China on aluminum and the actual use of aluminum-containing food additives in certain products, the aluminum-containing food additive-related provisions in GB 2760-2011 were revised. Those revisions included narrowing down the applicable food categories and adjusting the maximum use level of aluminum potassium sulfate and aluminum ammonium sulfate, repealing nine aluminum-containing food additives in puffed food and repealing the use of sodium aluminum phosphate, sodium aluminosilicate and starch aluminum octenylsuccinate in all food. After revision of the use of aluminum food additive provisions, the weekly dietary intake of aluminum in the Chinese population can be reduced to a safe level. PMID:27470109

  4. Sodium bicarbonate in chemical flooding: Part 1: Topical report. [Sodium bicarbonate and sodium carbonate

    SciTech Connect

    Peru, D.A.; Lorenz, P.B.

    1987-07-01

    To compare oil recovery and alkali consumption in alkaline flooding using sodium bicarbonate with other alkaline agents, coreflooding experiments were performed in turn with viscosified sodium bicarbonate and viscosified sodium carbonate solutions. Oil recovery was monitored, and the effluent brine from these corefloods was analyzed for silicon, aluminum, pH, and total inorganic carbon. The results indicate that viscosified sodium bicarbonate recovered more of the asphaltic Cerro-Negro crude than of the less asphaltic Wilmington crude oil. The recovery efficiency using the viscosified sodium carbonate was similar for the two crudes. For both crudes, the percent oil recovery using viscosified sodium carbonate was slightly higher than that using the viscosified sodium bicarbonate. Mineral dissolution and decrease in pH were found to be greater in corefloods using viscosified sodium carbonate. Total inorganic carbon recovery can be obtained in corefloods with either agent, provided that a sufficient water drive follows the chemical slug. Long-term experiments were performed by recirculating alkaline solutions through oil-free, unfired Berea sandstone to monitor the rock/alkali interactions. The experimental results indicate an eight-fold decrease in quartz dissolution by sodium bicarbonate compared with sodium carbonate. Moderate magnesium solubility was observed at the pH of the bicarbonate solution. Low solubility of magnesium and aluminum at the pH of the carbonate indicates the possible formation of precipitates. In these experiments 13% of the carbonate was converted to bicarbonate. Total alkalinity was not significantly decreased with either agent. 18 refs., 5 tabs.

  5. Improved pH buffering agent for sodium hypochlorite

    NASA Technical Reports Server (NTRS)

    Nash, J. R.; Veeder, L. N.

    1969-01-01

    Sodium citrate/citric acid was found to be an effective buffer for pH control when used with sodium hypochlorite. The mixture does not corrode aluminum. The buffer appears to form a type of conversion coating that may provide corrosion-resistant properties to aluminum in other applications.

  6. Aluminum Analysis.

    ERIC Educational Resources Information Center

    Sumrall, William J.

    1998-01-01

    Presents three problems based on the price of aluminum designed to encourage students to be cooperative and to use an investigative approach to learning. Students collect and synthesize information, analyze results, and draw conclusions. (AIM)

  7. Aluminum Hydroxide

    MedlinePlus

    ... penicillamine (Cuprimine, Depen), prednisone (Deltasone, Orasone), products containing iron, tetracycline (Sumycin, Tetracap, and others), ticlopidine (Ticlid), and vitamins.be aware that aluminum hydroxide may interfere with other medicines, making them less effective. Take your other medications 1 ...

  8. First principles pseudopotential calculations on aluminum and aluminum alloys

    SciTech Connect

    Davenport, J.W.; Chetty, N.; Marr, R.B.; Narasimhan, S.; Pasciak, J.E.; Peierls, R.F.; Weinert, M.; Rahman, T.S.

    1994-12-31

    Recent advances in computational techniques have led to the possibility of performing first principles calculations of the energetics of alloy formation on systems involving several hundred atoms. This includes impurity concentrations in the 1% range as well as realistic models of disordered materials (including liquids), vacancies, and grain boundaries. The new techniques involve the use of soft, fully nonlocal pseudopotentials, iterative diagonalization, and parallel computing algorithms. This approach has been pioneered by Car and Parrinello. Here the authors give a review of recent results using parallel and serial algorithms by their group on metallic systems including liquid aluminum and liquid sodium, and also new results on vacancies in aluminum and on aluminum-magnesium alloys.

  9. Aluminum alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  10. Recycling of aluminum salt cake

    SciTech Connect

    Jody, B.J.; Daniels, E.J.; Bonsignore, P.V.; Karvelas, D.E.

    1991-12-01

    The secondary aluminum industry generates more than 110 {times} 10{sup 3} tons of salt-cake waste every year. This waste stream contains about 3--5% aluminum, 15--30% aluminum oxide, 30--40% sodium chloride, and 20--30% potassium chloride. As much as 50% of the content of this waste is combined salt (sodium and potassium chlorides). Salt-cake waste is currently disposed of in conventional landfills. In addition, over 50 {times} 10{sup 3} tons of black dross that is not economical to reprocess a rotary furnace for aluminum recovery ends up in landfills. The composition of the dross is similar to that of salt cake, except that it contains higher concentrations of aluminum (up to 20%) and correspondingly lower amounts of salts. Because of the high solubility of the salts in water, these residues, when put in landfills, represent a potential source of pollution to surface-water and groundwater supplies. The increasing number of environmental regulations on the generation and disposal of industrial wastes are likely to restrict the disposal of these salt-containing wastes in conventional landfills. Processes exist that employ the dissolution and recovery of the salts from the waste stream. These wet-processing methods are economical only when the aluminum concentration in that waste exceeds about 10%. Argonne National Laboratory (ANL) conducted a study in which existing technologies were reviewed and new concepts that are potentially more cost-effective than existing processes were developed and evaluated. These include freeze crystallization, solvent/antisolvent extraction, common-ion effect, high-pressure/high-temperature process, and capillary-effect systems. This paper presents some of the technical and economic results of the aforementioned ANL study.

  11. PREPARATION OF DIBASIC ALUMINUM NITRATE

    DOEpatents

    Gresky, A.T.; Nurmi, E.O.; Foster, D.L.; Wischow, R.P.; Savolainen, J.E.

    1960-04-01

    A method is given for the preparation and recovery of basic aluminum nltrates having an OH: Al ratio of at least two, comprising two steps. First, metallic aluminum is dissolved in aqueous Al(NO/sub 3/)/sub 3/, in the presence of a small quantity of elemental or ionic mercury, to increase its Al: NO/sub 3/ ratio into the range 1 to 1.2. The resulting aqueous solution is then added to an excess of a special organic solvent, typically a mixture of five parts methanol and six parts diethyl ether, whereupon the basic aluminum nitrate, e.g. Al/sub 6/(OH)/sub 13/-(NO/sub 3/)/sub 5/, recoverably precipitates.

  12. Mesoporous aluminum phosphite

    SciTech Connect

    El Haskouri, Jamal; Perez-Cabero, Monica; Guillem, Carmen; Latorre, Julio; Beltran, Aurelio; Beltran, Daniel; Amoros, Pedro

    2009-08-15

    High surface area pure mesoporous aluminum-phosphorus oxide-based derivatives have been synthesized through an S{sup +}I{sup -} surfactant-assisted cooperative mechanism by means of a one-pot preparative procedure from aqueous solution and starting from aluminum atrane complexes and phosphoric and/or phosphorous acids. A soft chemical extraction procedure allows opening the pore system of the parent as-prepared materials by exchanging the surfactant without mesostructure collapse. The nature of the pore wall can be modulated from mesoporous aluminum phosphate (ALPO) up to total incorporation of phosphite entities (mesoporous aluminum phosphite), which results in a gradual evolution of the acidic properties of the final materials. While phosphate groups in ALPO act as network building blocks (bridging Al atoms), the phosphite entities become basically attached to the pore surface, what gives practically empty channels. The mesoporous nature of the final materials is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and N{sub 2} adsorption-desorption isotherms. The materials present regular unimodal pore systems whose order decreases as the phosphite content increases. NMR spectroscopic results confirm the incorporation of oxo-phosphorus entities to the framework of these materials and also provide us useful information concerning the mechanism through which they are formed. - Abstract: TEM image of the mesoporous aluminum phosphite showing the hexagonal disordered pore array that is generated by using surfactant micelles as template. Also a scheme emphasizing the presence of an alumina-rich core and an ALPO-like pore surface is presented.

  13. Selecting an Algicide for Use with Aluminum Alloys

    SciTech Connect

    Wilde, E.W.

    2001-03-15

    This paper discusses the testing and results of five relatively noncorrosive commercially available compounds compared with one another and with sodium hypochlorite for their potential applicability as algicides in water systems containing aluminum alloys.

  14. Aluminum phosphide

    Integrated Risk Information System (IRIS)

    Aluminum phosphide ; CASRN 20859 - 73 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  15. Process for producing gallium-containing solution from the aluminum smelting dust

    SciTech Connect

    Era, A.; Matsui, S.; Ikeda, H.

    1988-03-01

    A process is described for producing a gallium-containing solution from aluminum smelting dust comprising leaching aluminum smelting dust with a mineral acid selected from the group consisting of sulfuric acid, hydrochloric acid and nitric acid, and adding an oxidizing agent to the aluminum smelting dust at the time of leaching to preferentially leach and extract gallium from the aluminum smelting dust without extracting aluminum from the aluminum smelting dust. The oxidizing agent is selected from the group consisting of potassium permanganate, manganese dioxide, hydrogen peroxide, ozone, potassium chromate, potassium dichromate, ammonium persulfate, sodium hydrochlorite, sodium chlorite and sodium chlorate. The leached aluminum smelting dust is filtered to obtain a gallium-containing solution of dissolved gallium.

  16. Sodium Oxybate

    MedlinePlus

    ... if you use or have ever used street drugs, or if you have overused prescription medications. Sodium oxybate may be harmful when taken by people other than the person for whom it was prescribed. Do not sell or give your sodium oxybate to anyone else; selling or sharing it is against the law. Store ...

  17. Design for aluminum recycling

    SciTech Connect

    Not Available

    1993-10-01

    This article describes the increasing use of aluminum in automobiles and the need to recycle to benefit further growth of aluminum applications by assuring an economical, high-quality source of metal. The article emphasizes that coordination of material specifications among designers can raise aluminum scrap value and facilitate recycling. Applications of aluminum in automobile construction are discussed.

  18. The viability of aluminum Zintl anion moieties within magnesium-aluminum clusters

    SciTech Connect

    Wang, Haopeng; Jae Ko, Yeon; Zhang, Xinxing; Gantefoer, Gerd; Bowen, Kit H. E-mail: akandalam@wcupa.edu; Schnoeckel, Hansgeorg; Eichhorn, Bryan W.; Jena, Puru; Kiran, Boggavarapu E-mail: akandalam@wcupa.edu; Kandalam, Anil K. E-mail: akandalam@wcupa.edu

    2014-03-28

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have investigated the extent to which the aluminum moieties within selected magnesium-aluminum clusters are Zintl anions. Magnesium-aluminum cluster anions were generated in a pulsed arc discharge source. After mass selection, photoelectron spectra of Mg{sub m}Al{sub n}{sup −} (m, n = 1,6; 2,5; 2,12; and 3,11) were measured by a magnetic bottle, electron energy analyzer. Calculations on these four stoichiometries provided geometric structures and full charge analyses for the cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra). Calculations revealed that, unlike the cases of recently reported sodium-aluminum clusters, the formation of aluminum Zintl anion moieties within magnesium-aluminum clusters was limited in most cases by weak charge transfer between the magnesium atoms and their aluminum cluster moieties. Only in cases of high magnesium content, e.g., in Mg{sub 3}Al{sub 11} and Mg{sub 2}Al{sub 12}{sup −}, did the aluminum moieties exhibit Zintl anion-like characteristics.

  19. The viability of aluminum Zintl anion moieties within magnesium-aluminum clusters.

    PubMed

    Wang, Haopeng; Ko, Yeon Jae; Zhang, Xinxing; Gantefoer, Gerd; Schnoeckel, Hansgeorg; Eichhorn, Bryan W; Jena, Puru; Kiran, Boggavarapu; Kandalam, Anil K; Bowen, Kit H

    2014-03-28

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have investigated the extent to which the aluminum moieties within selected magnesium-aluminum clusters are Zintl anions. Magnesium-aluminum cluster anions were generated in a pulsed arc discharge source. After mass selection, photoelectron spectra of MgmAln (-) (m, n = 1,6; 2,5; 2,12; and 3,11) were measured by a magnetic bottle, electron energy analyzer. Calculations on these four stoichiometries provided geometric structures and full charge analyses for the cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra). Calculations revealed that, unlike the cases of recently reported sodium-aluminum clusters, the formation of aluminum Zintl anion moieties within magnesium-aluminum clusters was limited in most cases by weak charge transfer between the magnesium atoms and their aluminum cluster moieties. Only in cases of high magnesium content, e.g., in Mg3Al11 and Mg2Al12 (-), did the aluminum moieties exhibit Zintl anion-like characteristics. PMID:24697443

  20. The viability of aluminum Zintl anion moieties within magnesium-aluminum clusters

    NASA Astrophysics Data System (ADS)

    Wang, Haopeng; Jae Ko, Yeon; Zhang, Xinxing; Gantefoer, Gerd; Schnoeckel, Hansgeorg; Eichhorn, Bryan W.; Jena, Puru; Kiran, Boggavarapu; Kandalam, Anil K.; Bowen, Kit H.

    2014-03-01

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have investigated the extent to which the aluminum moieties within selected magnesium-aluminum clusters are Zintl anions. Magnesium-aluminum cluster anions were generated in a pulsed arc discharge source. After mass selection, photoelectron spectra of MgmAln- (m, n = 1,6; 2,5; 2,12; and 3,11) were measured by a magnetic bottle, electron energy analyzer. Calculations on these four stoichiometries provided geometric structures and full charge analyses for the cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra). Calculations revealed that, unlike the cases of recently reported sodium-aluminum clusters, the formation of aluminum Zintl anion moieties within magnesium-aluminum clusters was limited in most cases by weak charge transfer between the magnesium atoms and their aluminum cluster moieties. Only in cases of high magnesium content, e.g., in Mg3Al11 and Mg2Al12-, did the aluminum moieties exhibit Zintl anion-like characteristics.

  1. Aluminum: The Next Twenty Years

    NASA Astrophysics Data System (ADS)

    Fitzgerald, M. Desmond; Pollio, Gerald

    1982-12-01

    This report concludes that the outlook for the world aluminum industry is quite favorable. Demand is expected to expand at a more rapid rate than for other basic metals, but not sufficiently to put undue strain on productive capacity. Capital requirements of the world aluminum industry are projected at 95.5 billion in 1980 prices — more than 200 billion in current prices—over the balance of the century. Given the aluminum industry's past success in generating internal funds, this level of capital expanditure should not cause undue financing problems. Finally, we expect changes to occur in the structure of the industry over the forecast period, with virtually all new alumina capacity being installed in proximity to bauxite production, and—with the exception of Australia—a major shift in smelting capacity away from other industrialized economies. While the large multinational companies will still play a dominant role in the world aluminum market, their share of production and ownership is likely to decline progressively during the period.

  2. Studies of aluminum in rat brain

    SciTech Connect

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using /sup 14/C autoradiography to measure the uptake of /sup 14/C 2-deoxy-D-glucose (/sup 14/C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-..mu..m resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The /sup 14/C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of /sup 14/C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10/sup 9/ Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab.

  3. Recovery of gallium from aluminum industry residues

    SciTech Connect

    Carvalho, M.S.; Neto, K.C.M.; Nobrega, A.W.; Medeiros, J.A.

    2000-01-01

    A procedure is proposed to recover gallium from flue dust aluminum residues produced in plants by using solid-phase extraction with a commercial polyether-type polyurethane foam (PUF). Gallium can be separated from high concentrations of aluminum, iron, nickel, titanium, vanadium, copper, zinc, sulfate, fluoride, and chloride by extraction with PUF from 3 M sulfuric acid and 3 M sodium chloride concentration medium with at least a 92% efficiency. Gallium backextraction was fast and quantitative with ethanol solution. In all recovery steps commercial-grade reagents could be used, including tap water. The recovered gallium was precipitated with sodium hydroxide solution, purified by dissolution and precipitation, calcinated, and the final oxide was 98.6% pure.

  4. Minimizing residual aluminum concentration in treated water by tailoring properties of polyaluminum coagulants.

    PubMed

    Kimura, Masaoki; Matsui, Yoshihiko; Kondo, Kenta; Ishikawa, Tairyo B; Matsushita, Taku; Shirasaki, Nobutaka

    2013-04-15

    Aluminum coagulants are widely used in water treatment plants to remove turbidity and dissolved substances. However, because high aluminum concentrations in treated water are associated with increased turbidity and because aluminum exerts undeniable human health effects, its concentration should be controlled in water treatment plants, especially in plants that use aluminum coagulants. In this study, the effect of polyaluminum chloride (PACl) coagulant characteristics on dissolved residual aluminum concentrations after coagulation and filtration was investigated. The dissolved residual aluminum concentrations at a given coagulation pH differed among the PACls tested. Very-high-basicity PACl yielded low dissolved residual aluminum concentrations and higher natural organic matter (NOM) removal. The low residual aluminum concentrations were related to the low content of monomeric aluminum (Ala) in the PACl. Polymeric (Alb)/colloidal (Alc) ratio in PACl did not greatly influence residual aluminum concentration. The presence of sulfate in PACl contributed to lower residual aluminum concentration only when coagulation was performed at around pH 6.5 or lower. At a wide pH range (6.5-8.5), residual aluminum concentrations <0.02 mg/L were attained by tailoring PACl properties (Ala percentage ≤0.5%, basicity ≥85%). The dissolved residual aluminum concentrations did not increase with increasing the dosage of high-basicity PACl, but did increase with increasing the dosage of normal-basicity PACl. We inferred that increasing the basicity of PACl afforded lower dissolved residual aluminum concentrations partly because the high-basicity PACls could have a small percentage of Ala, which tends to form soluble aluminum-NOM complexes with molecular weights of 100 kDa-0.45 μm. PMID:23422138

  5. Basic Warehousing.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on basic warehousing is designed to provide Marines with Military Occupation Speciality 3051 in the rank of private through corporal with instruction in those basic principles, methods, and procedures that can be applied to any warehousing or storage…

  6. BASIC Programming.

    ERIC Educational Resources Information Center

    Jennings, Carol Ann

    Designed for use by both secondary- and postsecondary-level business teachers, this curriculum guide consists of 10 units of instructional materials dealing with Beginners All-Purpose Symbol Instruction Code (BASIC) programing. Topics of the individual lessons are numbering BASIC programs and using the PRINT, END, and REM statements; system…

  7. Aluminum and Young Artists.

    ERIC Educational Resources Information Center

    Anderson, Thomas

    1980-01-01

    The author suggests a variety of ways in which aluminum and aluminum foil can be used in elementary and junior high art classes: relief drawing and rubbing; printing; repousse; sculpture; mobiles; foil sculpture; and three dimensional design. Sources of aluminum supplies are suggested. (SJL)

  8. Acifluorfen, sodium

    Integrated Risk Information System (IRIS)

    Acifluorfen , sodium ; CASRN 62476 - 59 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcino

  9. Sodium diethyldithiocarbamate

    Integrated Risk Information System (IRIS)

    Sodium diethyldithiocarbamate ; CASRN 148 - 18 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Non

  10. Sodium fluoroacetate

    Integrated Risk Information System (IRIS)

    Sodium fluoroacetate ; CASRN 62 - 74 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogen

  11. Sodium azide

    Integrated Risk Information System (IRIS)

    Sodium azide ; CASRN 26628 - 22 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  12. Sodium cyanide

    Integrated Risk Information System (IRIS)

    Jump to main content . Integrated Risk Information System Recent Additions | Contact Us Search : All EPA IRIS • You are here : EPA Home • Research • Environmental Assessment • IRIS • IRIS Summaries Redirect Page As of September 28 , 2010 , the assessment summary for sodium cyanide is included in the

  13. A pocket model for aluminum agglomeration in composite propellants

    NASA Technical Reports Server (NTRS)

    Cohen, N. S.

    1981-01-01

    This paper presents a model for the purpose of estimating the fraction of aluminum powder that will form agglomerates at the surface of deflagrating composite propellants. The basic idea is that the fraction agglomerated depends upon the amount of aluminum that melts within effective binder pocket volumes framed by oxidizer particles. The effective pocket depends upon the ability of ammonium perchlorate modals to encapsulate the aluminum and provide a local temperature sufficient to ignite the aluminum. Model results are discussed in the light of data showing effects of propellant formulation variables and pressure.

  14. Aluminum citrate inhibits cytotoxicity and aggregation of oxalate crystals.

    PubMed

    Guo, Chungang; McMartin, Kenneth E

    2007-02-12

    Calcium oxalate monohydrate (COM), which represents a major component of kidney stones, is an end metabolite of ethylene glycol. COM accumulation has been linked with acute renal toxicity in ethylene glycol poisoning. COM injures the kidney either by directly producing cytotoxicity to the kidney cells or by aggregating in the kidney lumen leading to the blockage of urine flow. The present studies were designed to examine whether aluminum citrate could reduce the toxicity of COM. Toxicity was determined in human proximal tubule cells by leakage of lactate dehydrogenase or uptake of ethidium homodimer and in erythrocytes by degree of hemolysis. Aluminum citrate significantly inhibited the leakage of lactate dehydrogenase from human proximal tubule cells and protected against cell death from COM. The inhibitory effect of aluminum citrate was greater than that of other citrate or aluminum salts such as sodium citrate, aluminum chloride, calcium citrate, ammonium citrate or potassium citrate. Aluminum citrate significantly inhibited the aggregation of COM crystals in vitro and decreased red cell membrane damage from COM. Aluminum citrate appeared to directly interact with COM, but not with the cell membrane. As such, aluminum citrate reduced the cytotoxicity by a physico-chemical interaction with the COM surface, and not by dissolving the COM crystals. These studies suggest that aluminum citrate may protect against tissue damage that occurs with high levels of oxalate accumulation, especially in ethylene glycol poisoning and possibly in hyperoxaluric states. PMID:17161516

  15. French Basic Course: Basic Situations.

    ERIC Educational Resources Information Center

    Defense Language Inst., Monterey, CA.

    This volume of the French Basic Course contains ten situations from daily life, each divided into five sub-situations. The material for each situation consists of cartoons and lists of selected words. The purpose of the volume is to provide a vehicle for reviewing the grammar and vocabulary of lessons 1-85 of the Basic Course and adding new words…

  16. Aluminum reference electrode

    DOEpatents

    Sadoway, Donald R.

    1988-01-01

    A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

  17. Aluminum reference electrode

    DOEpatents

    Sadoway, D.R.

    1988-08-16

    A stable reference electrode is described for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na[sub 3]AlF[sub 6], wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution. 1 fig.

  18. The Basics

    ERIC Educational Resources Information Center

    Indrisano, Roselmina; And Others

    1976-01-01

    These articles are presented as an aide in teaching basic subjects. This issue examines reading diagnosis, food preservation, prime numbers, electromagnets, acting out in language arts, self-directed spelling activities, and resources for environmental education. (Editor/RK)

  19. Cancer Basics

    MedlinePlus

    ... Cancer? Breast Cancer Colon/Rectum Cancer Lung Cancer Prostate Cancer Skin Cancer Show All Cancer Types News and Features Cancer Glossary ACS Bookstore Cancer Information Cancer Basics Cancer Prevention & Detection Signs & Symptoms of Cancer Treatments & Side Effects ...

  20. Basic Finance

    NASA Technical Reports Server (NTRS)

    Vittek, J. F.

    1972-01-01

    A discussion of the basic measures of corporate financial strength, and the sources of the information is reported. Considered are: balance sheet, income statement, funds and cash flow, and financial ratios.

  1. Schizophrenia Basics

    MedlinePlus

    ... I know with schizophrenia? For More Information Share Schizophrenia Basics Download PDF Download ePub Order a free hardcopy What is schizophrenia? Schizophrenia is a serious mental disorder that affects ...

  2. Fluoridation Basics

    MedlinePlus

    ... Water Fluoridation Journal Articles for Community Water Fluoridation Water Fluoridation Basics Recommend on Facebook Tweet Share Compartir ... because of tooth decay. History of Fluoride in Water In the 1930s, scientists examined the relationship between ...

  3. Organic electrolytes for sodium batteries

    NASA Astrophysics Data System (ADS)

    Vestergaard, B.

    1992-09-01

    A summary of earlier given status reports in connection with the project on organic electrolytes for sodium batteries is presented. The aim of the investigations was to develop new room temperature molten salts electrolytes mainly with radical substituted heterocyclic organic chlorides mixed with aluminum chloride. The new electrolytes should have an ionic conductivity comparable with MEIC1:AlCl3 or better. A computer model program MOPAC (Molecular Orbital Package) was to be included to calculate theoretically reduction potentials for a variety of organic cations. Furthermore, MOPAC could be utilized to predict the electron densities, and then give a prediction of the stability of the organic cation.

  4. Low sodium level

    MedlinePlus

    Low sodium level is a condition in which the amount of sodium (salt) in the blood is lower ... and this causes many of the symptoms of low sodium. With low sodium level (hyponatremia), the imbalance of ...

  5. Test Your Sodium Smarts

    MedlinePlus

    ... You may be surprised to learn how much sodium is in many foods. Sodium, including sodium chloride ... foods with little or no salt. Test your sodium smarts by answering these 10 questions about which ...

  6. Impact Of Sodium Oxalate, Sodium Aluminosilicate, and Gibbsite/Boehmite on ARP Filter Performance

    SciTech Connect

    Poirier, M.; Burket, P.

    2015-11-01

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. SRR requested SRNL to conduct bench-scale filter tests to evaluate whether sodium oxalate, sodium aluminosilicate, or aluminum solids (i.e., gibbsite and boehmite) could be the cause of excessive fouling of the crossflow or secondary filter at ARP. The authors conducted the tests by preparing slurries containing 6.6 M sodium Salt Batch 6 supernate, 2.5 g MST/L slurry, and varying concentrations of sodium oxalate, sodium aluminosilicate, and aluminum solids, processing the slurry through a bench-scale filter unit that contains a crossflow primary filter and a dead-end secondary filter, and measuring filter flux and transmembrane pressure as a function of time. Among the conclusions drwn from this work are the following: (1) All of the tests showed some evidence of fouling the secondary filter. This fouling could be from fine particles passing through the crossflow filter. (2) The sodium oxalate-containing feeds behaved differently from the sodium aluminosilicate- and gibbsite/boehmite-containing feeds.

  7. A MODERN INTERPRETATION OF THE BARNEY DIAGRAM FOR ALUMINUM SOLUBILITY IN TANK WASTE

    SciTech Connect

    REYNOLDS JG; REYNOLDS DA

    2009-12-16

    Experimental and modeling studies of aluminum solubility in Hanford tank waste have been developed and refined for many years in efforts to resolve new issues or develop waste treatment flowsheets. The earliest of these studies was conducted by G. Scott Barney, who performed solubility studies in highly concentrated electrolyte solutions to support evaporator campaign flowsheets in the 1970's. The 'Barney Diagram', a term still widely used at Hanford today, suggested gibbsite ({gamma}-Al(OH){sub 3}) was much more soluble in tank waste than in simple sodium hydroxide solutions. These results, which were highly surprising at the time, continue to be applied to new situations where aluminum solubility in tank waste is of interest. Here, we review the history and provide a modern explanation for the large gibbsite solubility observed by Barney, an explanation based on basic research that has been performed and published in the last 30 years. This explanation has both thermodynamic and kinetic aspects. Thermodynamically, saturated salt solutions stabilize soluble aluminate species that are minor components in simple sodium hydroxide solutions. These species are the aluminate dimer and the sodium-aluminate ion-pair. Ion-pairs must be present in the Barney simulants because calculations showed that there was insufficient space between the highly concentrated ions for a water molecule. Thus, most of the ions in the simulants have to be ion-paired. Kinetics likely played a role as well. The simulants were incubated for four to seven days, and more recent data indicate that this was unlikely sufficient time to achieve equilibrium from supersaturation. These results allow us to evaluate applications of the Barney results to current and future tank waste issues or flowsheets.

  8. Low sodium diet (image)

    MedlinePlus

    ... for you. Look for these words on labels: low-sodium, sodium-free, no salt added, sodium-reduced, or ... for you. Look for these words on labels: low-sodium, sodium-free, no salt added, sodium-reduced, or ...

  9. Aluminum: Recycling of Aluminum Dross/Saltcake

    SciTech Connect

    Blazek, S.

    1999-01-29

    As this NICE3 publication details, the objective of this project is to commercialize the process technology to eliminate all landfill waste associated with black dross and saltcake generated from aluminum recycling in the United States.

  10. Aluminum powder metallurgy processing

    NASA Astrophysics Data System (ADS)

    Flumerfelt, Joel Fredrick

    In recent years, the aluminum powder industry has expanded into non-aerospace applications. However, the alumina and aluminum hydroxide in the surface oxide film on aluminum powder require high cost powder processing routes. A driving force for this research is to broaden the knowledge base about aluminum powder metallurgy to provide ideas for fabricating low cost aluminum powder components. The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization commercial inert gas atomization and gas atomization reaction synthesis (GARS). The commercial atomization methods are bench marks of current aluminum powder technology. The GARS process is a laboratory scale inert gas atomization facility. A benefit of using pure aluminum powders is an unambiguous interpretation of the results without considering the effects of alloy elements. A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a

  11. Low Temperature Aluminum Dissolution Of Sludge Waste

    SciTech Connect

    Keefer, M.T.; Hamm, B.A.; Pike, J.A.

    2008-07-01

    High Level Waste (HLW) at the Savannah River Site (SRS) is currently stored in aging underground storage tanks. This waste is a complex mixture of insoluble solids, referred to as sludge, and soluble salts. Continued long-term storage of these radioactive wastes poses an environmental risk. The sludge is currently being stabilized in the Defense Waste Processing Facility (DWPF) through a vitrification process immobilizing the waste in a borosilicate glass matrix for long-term storage in a federal repository. Without additional treatment, the existing volume of sludge would produce nearly 8000 canisters of vitrified waste. Aluminum compounds, along with other non-radioactive components, represent a significant portion of the sludge mass currently planned for vitrification processing in DWPF. Removing the aluminum from the waste stream reduces the volume of sludge requiring vitrification and improves production rates. Treating the sludge with a concentrated sodium hydroxide (caustic) solution at elevated temperatures (>90 deg. C) to remove aluminum is part of an overall sludge mass reduction effort to reduce the number of vitrified canisters, shorten the life cycle for the HLW system, and reduce the risk associated with the long term storage of radioactive wastes at SRS. A projected reduction of nearly 900 canisters will be achieved by performing aluminum dissolution on six targeted sludge batches; however, a project to develop and install equipment will not be ready for operation until 2013. The associated upgrades necessary to implement a high temperature process in existing facilities are costly and present many technical challenges. Efforts to better understand the characteristics of the sludge mass and dissolution kinetics are warranted to overcome these challenges. Opportunities to further reduce the amount of vitrified waste and increase production rates should also be pursued. Sludge staged in Tank 51 as the next sludge batch for feed to DWPF consisted

  12. DOS basics

    SciTech Connect

    O`Connor, P.

    1994-09-01

    DOS is an acronym for Disk Operating System. It is actually a set of programs that allows you to control your personal computer. DOS offers the capabilities to create and manage files; organize and maintain information placed on disks; use application programs such as WordPerfect, Lotus 123, Excel, Windows, etc. In addition, DOS provides the basic utilities needed to copy files from one area to another, delete files and list files. The latest version of DOS also offers more advanced features that include hard disk compression and memory management. Basic DOS commands are discussed.

  13. Aspects of aluminum toxicity

    SciTech Connect

    Hewitt, C.D.; Savory, J.; Wills, M.R. )

    1990-06-01

    Aluminum is the most abundant metal in the earth's crust. The widespread occurrence of aluminum, both in the environment and in foodstuffs, makes it virtually impossible for man to avoid exposure to this metal ion. Attention was first drawn to the potential role of aluminum as a toxic metal over 50 years ago, but was dismissed as a toxic agent as recently as 15 years ago. The accumulation of aluminum, in some patients with chronic renal failure, is associated with the development of toxic phenomena; dialysis encephalopathy, osteomalacic dialysis osteodystrophy, and an anemia. Aluminum accumulation also occurs in patients who are not on dialysis, predominantly infants and children with immature or impaired renal function. Aluminum has also been implicated as a toxic agent in the etiology of Alzheimer's disease, Guamiam amyotrophic lateral sclerosis, and parkinsonism-dementia. 119 references.

  14. Basic Skills.

    ERIC Educational Resources Information Center

    Luparelli, Augustus N.; And Others

    1981-01-01

    These four articles focus on developing basic reading, science, and job search skills: "Reading Program for Vocational Classes" by Augustus Luparelli; "Why Teach Employability Skills?" by Larry Siefferman; "Improving Vocabulary and Reading Skills" by Edythe Conway; and "Science in Everyday Life" by Virginia Eleazer and George Carney. (SK)

  15. Body Basics

    MedlinePlus

    ... more about how the body works, what basic human anatomy is, and what happens when parts of the body don't function properly. Blood Bones, Muscles, and Joints Brain and Nervous System Digestive System Endocrine System Eyes Female Reproductive System ...

  16. Basic Backwardness.

    ERIC Educational Resources Information Center

    Weingartner, Charles

    This paper argues that the "back to basics" movement is regressive and that regression is the characteristic mode of fear-ridden personalities. It is argued that many people in American society today have lost their ability to laugh and do not have the sense of humor which is crucial to a healthy mental state. Such topics as necrophilia, mental…

  17. Armchair BASIC.

    ERIC Educational Resources Information Center

    Fox, Annie; Fox, David

    1983-01-01

    A first lesson in learning the computer programing language BASIC, this article explains how to give instructions to the computer; the commands PRINT, NEW, LIST, and RUN; and how to do simple line editing. There is a short quiz at the end. (EAO)

  18. Ethanol Basics

    SciTech Connect

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  19. Basic Science.

    ERIC Educational Resources Information Center

    Mercer County Community Coll., Trenton, NJ.

    Instructional materials are provided for a course that covers basic concepts of physics and chemistry. Designed for use in a workplace literacy project developed by Mercer County Community College (New Jersey) and its partners, the course describes applications of these concepts to real-life situations, with an emphasis on applications of…

  20. Basic Horticulture.

    ERIC Educational Resources Information Center

    Geer, Barbra Farabough

    This learning packet contains teaching suggestions and student learning materials for a course in basic horticulture aimed at preparing students for employment in a number of horticulture areas. The packet includes nine sections and twenty instructional units. Following the standard format established for Oklahoma vocational education materials in…

  1. Basic Education.

    ERIC Educational Resources Information Center

    Robinson, Virginia, Ed.

    1984-01-01

    This issue of "Basic Education" is devoted to the arts in education as a concern that should be addressed in a time of new priorities for the curriculum. Five articles and a book review are included. The opening article, "The State of the Arts in Education: Envisioning Active Participation By All" (Virginia Robinson), emphasizes that the study of…

  2. Low toxic corrosion inhibitors for aluminum in fresh water

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.

    1978-01-01

    Combinations of chemical compounds that reportedly reduce the corrosion of aluminum in fresh water were evaluated. These included combinations of borates, nitrates, nitrites, phosphates, silicates, and mercaptobenzothiazole. Eight of fifty inhibitor combinations evaluated gave excellent corrosion protection and compared favorably with sodium chromate, which has generally been considered standard for many years.

  3. BONDING ALUMINUM METALS

    DOEpatents

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  4. Aluminum powder metallurgy processing

    SciTech Connect

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  5. Investigation of acute nanoparticulate aluminum toxicity in zebrafish.

    PubMed

    Griffitt, Robert J; Feswick, April; Weil, Roxana; Hyndman, Kelly; Carpinone, Paul; Powers, Kevin; Denslow, Nancy D; Barber, David S

    2011-10-01

    In freshwater fish, aluminum is a well-recognized gill toxicant, although responses are influenced by pH. Aluminum nanomaterials are being used in diverse applications that are likely to lead to environmental release and exposure. However, it is unclear if the effects of nanoparticulate aluminum are similar to those of other forms of aluminum or require special consideration. To examine the acute toxicological effects of exposure to aluminum nanoparticle (Al-NP)s, adult female zebrafish were exposed to either Al-NPs or aluminum chloride for up to 48 hours in moderately hard fresh water. Al-NPs introduced into test water rapidly aggregated and up to 80% sedimented from the water column during exposures. No mortality was caused by concentrations of Al-NP up to 12.5 mg/L. After exposure, tissue concentrations of aluminum, effects on gill morphology, Na+, K+ -ATPase (NKA) activity, and global gene expression patterns were examined. Exposure to both aluminum chloride and nanoparticulate aluminum resulted in a concentration dependent decrease in sodium potassium ATPase activity, although Al-NP exposure did not alter gill morphology as measured by filament widths. Decreased ATPase activity coincided with decreases in filamental NKA staining and mucous cell counts. Analysis of gill transcriptional responses demonstrated that exposure to 5 mg/L Al-NP only resulted in significant changes in expression of two genes, whereas aluminum chloride exposure significantly affected the expression of 105 genes. Taken together, these results indicate that nanoparticulate aluminum has little acute toxicity for zebrafish in moderately hard freshwater. PMID:21910207

  6. Aluminum citrate prevents renal injury from calcium oxalate crystal deposition.

    PubMed

    Besenhofer, Lauren M; Cain, Marie C; Dunning, Cody; McMartin, Kenneth E

    2012-12-01

    Calcium oxalate monohydrate crystals are responsible for the kidney injury associated with exposure to ethylene glycol or severe hyperoxaluria. Current treatment strategies target the formation of calcium oxalate but not its interaction with kidney tissue. Because aluminum citrate blocks calcium oxalate binding and toxicity in human kidney cells, it may provide a different therapeutic approach to calcium oxalate-induced injury. Here, we tested the effects of aluminum citrate and sodium citrate in a Wistar rat model of acute high-dose ethylene glycol exposure. Aluminum citrate, but not sodium citrate, attenuated increases in urea nitrogen, creatinine, and the ratio of kidney to body weight in ethylene glycol-treated rats. Compared with ethylene glycol alone, the addition of aluminum citrate significantly increased the urinary excretion of both crystalline calcium and crystalline oxalate and decreased the deposition of crystals in renal tissue. In vitro, aluminum citrate interacted directly with oxalate crystals to inhibit their uptake by proximal tubule cells. These results suggest that treating with aluminum citrate attenuates renal injury in rats with severe ethylene glycol toxicity, apparently by inhibiting calcium oxalate's interaction with, and retention by, the kidney epithelium. PMID:23138489

  7. Aluminum Citrate Prevents Renal Injury from Calcium Oxalate Crystal Deposition

    PubMed Central

    Besenhofer, Lauren M.; Cain, Marie C.; Dunning, Cody

    2012-01-01

    Calcium oxalate monohydrate crystals are responsible for the kidney injury associated with exposure to ethylene glycol or severe hyperoxaluria. Current treatment strategies target the formation of calcium oxalate but not its interaction with kidney tissue. Because aluminum citrate blocks calcium oxalate binding and toxicity in human kidney cells, it may provide a different therapeutic approach to calcium oxalate-induced injury. Here, we tested the effects of aluminum citrate and sodium citrate in a Wistar rat model of acute high-dose ethylene glycol exposure. Aluminum citrate, but not sodium citrate, attenuated increases in urea nitrogen, creatinine, and the ratio of kidney to body weight in ethylene glycol–treated rats. Compared with ethylene glycol alone, the addition of aluminum citrate significantly increased the urinary excretion of both crystalline calcium and crystalline oxalate and decreased the deposition of crystals in renal tissue. In vitro, aluminum citrate interacted directly with oxalate crystals to inhibit their uptake by proximal tubule cells. These results suggest that treating with aluminum citrate attenuates renal injury in rats with severe ethylene glycol toxicity, apparently by inhibiting calcium oxalate’s interaction with, and retention by, the kidney epithelium. PMID:23138489

  8. The aluminum-air battery for electric vehicles - An update

    NASA Astrophysics Data System (ADS)

    1980-11-01

    The development of aluminum-air batteries as mechanically rechargeable power sources to be used in electric vehicles is discussed. The chemistry of the aluminum-air battery, which has a potential for providing the range, acceleration and rapid refueling capability of contemporary automobiles and is based on the reaction of aluminum metal with atmospheric oxygen in the presence of an aqueous sodium hydroxide/sodium aluminate electrolyte, is examined, and it is pointed out that the electric vehicle would be practically emissionless. The battery development program at the Lawrence Livermore National Laboratory, which includes evaluations of electrochemical and chemical phenomena, studies of the economics and energy balance of a transportation system based on aluminum, and power cell design and performance analysis, is presented. It is concluded that although difficult problems must be overcome before the technical and economic feasibility of aluminum-air batteries for electric vehicles can be established, projections indicate that the aluminum-air vehicle is potentially competitive with internal combustion vehicles powered by synthetic liquid fuels.

  9. ALUMINUM AND CHROMIUM LEACHING WORKSHOP WHITEPAPER

    SciTech Connect

    McCabe, D; Jeff Pike, J; Bill Wilmarth, B

    2007-04-25

    formulations. Disposal of the resulting aluminum and chromium-rich streams are different at the two sites, with vitrification into Low Activity Waste (LAW) glass at Hanford, and solidification in Saltstone at SRS. Prior to disposal, the leachate solutions must be treated to remove radionuclides, resulting in increased operating costs and extended facility processing schedules. Interim storage of leachate can also add costs and delay tank closure. Recent projections at Hanford indicate that up to 40,000 metric tons of sodium would be needed to dissolve the aluminum and maintain it in solution, which nearly doubles the amount of sodium in the entire current waste tank inventory. This underscores the dramatic impact that the aluminum leaching can have on the entire system. A comprehensive view of leaching and the downstream impacts must therefore be considered prior to implementation. Many laboratory scale tests for aluminum and chromium dissolution have been run on Hanford wastes, with samples from 46 tanks tested. Three samples from SRS tanks have been tested, out of seven tanks containing high aluminum sludge. One full-scale aluminum dissolution was successfully performed on waste at SRS in 1982, but generated a very large quantity of liquid waste ({approx}3,000,000 gallons). No large-scale tests have been done on Hanford wastes. Although the data to date give a generally positive indication that aluminum dissolution will work, many issues remain, predominantly because of variable waste compositions and changes in process conditions, downstream processing, or storage limitations. Better approaches are needed to deal with the waste volumes and limitations on disposal methods. To develop a better approach requires a more extensive understanding of the kinetics of dissolution, as well as the factors that effect rates, effectiveness, and secondary species. Models of the dissolution rate that have been developed are useful, but suffer from limitations on applicable compositional

  10. Carbothermic Aluminum Production Using Scrap Aluminum As A Coolant

    DOEpatents

    LaCamera, Alfred F.

    2002-11-05

    A process for producing aluminum metal by carbothermic reduction of alumina ore. Alumina ore is heated in the presence of carbon at an elevated temperature to produce an aluminum metal body contaminated with about 10-30% by wt. aluminum carbide. Aluminum metal or aluminum alloy scrap then is added to bring the temperature to about 900-1000.degree. C. and precipitate out aluminum carbide. The precipitated aluminum carbide is filtered, decanted, or fluxed with salt to form a molten body having reduced aluminum carbide content.

  11. Basic Skills--Basic Business.

    ERIC Educational Resources Information Center

    Conference Board of Canada, Ottawa (Ontario).

    The experience of eight prominent Canadian business organizations was examined in terms of how basic skills deficits are identified in their work force, the impact of those deficiencies on organizational competitiveness, and why corporate programs are developed in response to the issue. Some of the key findings were as follows: (1) employee…

  12. MTBE OXIDATION BY BIFUNCTIONAL ALUMINUM

    EPA Science Inventory

    Bifunctional aluminum, prepared by sulfating zero-valent aluminum with sulfuric acid, has a dual functionality of simultaneously decomposing both reductively- and oxidatively-degradable contaminants. In this work, the use of bifunctional aluminum for the degradation of methyl te...

  13. Aluminum: New challenges in downstream activities

    NASA Astrophysics Data System (ADS)

    Becker, Miklos N.

    1999-11-01

    During its history, aluminum’s attractive features, such as high strength-to-weight ratio, good electrical mass conductivity, and unique corrosion behavior, have led to a spectacular expansion in its use. The role of aluminum in non-aluminum-based materials is also very important; its contribution to the improvement of magnesium and titanium alloys and to highly complex packaging materials are some of the noteworthy examples. Significant cost reductions on the basic metal production level, near-to-shape fabricating methods, and the well-functioning recycling system are also major contributors to aluminum success. Imminent challenges for the industry are the need for products with very close tolerances on a mass fabricating repetitive basis and just-in-time delivery to original-equipment manufacturers and small users through distributors. A significant part of the challenges remains in the applications area, particularly automotive and aerospace.

  14. Studies on aluminum neurotoxicity

    SciTech Connect

    Cho, S.

    1988-01-01

    This work reports the inhibitory effects of aluminum on glucose-6-phosphate dehydrogenase (G6PD) from yeast and brains. The aluminum contents and several enzyme activities in aluminum-fed rat brain homogenates were compared with those in age-matched control groups. The concentration of aluminum in the homogenates of the aluminum-fed groups were twice of that of the controls. Acetylcholinesterase activities were the same as in both groups but hexokinase and G6PD activities in the aluminum-fed group were about 73% and 70% of the control, respectively. Further studies on the inhibitory effects of aluminum on G6PD were performed with the enzymes purified from human and pig brains. Two forms of G6PD isozymes were purified from human and pig brain by ammonium sulfate fractionation, hydroxylapatite chromatography, affinity chromatography with NADP-agarose and Blue-Sepharose CL-6B, and gel filtration with Sephadex S-300. The two forms of isozymes (isozyme I and II), purified to be homogeneous, had a molecular weight of 220,000, and composed of 4 subunits of molecular weight of 57,000. HPLC peptide maps of tryptic digests and amino acid analyses of the isozymes showed extensive homologies between the isozymes. Interestingly, only the isozyme II in human and pig brain were active with 6-phosphogluconate as a substrate. No such an activity was found in isozyme I. Aluminum inactivated G6PD activity of the human and pig brain isozyme I and isozyme II without affecting the 6-phosphogluconate dehydrogenase activity of the isozyme II. Circular dichroism studies showed that the binding of aluminum to G6PD induced a decrease in {alpha}-helix and {beta}-sheet and a increase in random coil. Therefore it is suggested that inactivation of G6PD by aluminum is due to the conformational change induced by aluminum binding.

  15. Corrosion Behavior of Aluminum Alloys in Acidic Media

    SciTech Connect

    Ramli, Rosliza; Seoh, S. Y.; Nik, W. B. Wan; Senin, H. B.

    2007-05-09

    The corrosion inhibition of Al and its alloys are the subject of tremendous technological importance due to the increased industrial applications of these materials. This study will report the results of weight loss, polarization and electrochemical impedance spectroscopic (EIS) measurements on the corrosion inhibition of AA6061 and AA6063 aluminum alloys in acidic media using sodium benzoate as an inhibitor. The results showed that addition of sodium benzoate retards the rate of dissolution and hence inhibits the corrosion of the aluminum alloy in acidic media. The inhibition efficiency increases with the increase of immersion time in acetic acid however it displays a different behavior in sulfuric acid. Langmuir adsorption isotherm fits well with the experimental data. EIS studies showed that there was a significant increase in overall resistance after addition of sodium benzoate, when compared to the case without inhibitor. Langmuir adsorption isotherm fits well with the experimental data.

  16. Aluminum: Reducing chloride emissions from aluminum production

    SciTech Connect

    Simon, P.

    1999-09-29

    Reynolds Metals Company (RMC), with assistance from a NICE{sup 3} grant, is developing for commercialization a closed-loop control process that greatly reduces chlorine emissions and increases plant efficiency while maintaining metal quality. The process still utilizes chlorine to remove impurities during aluminum processing, but is more effective than current methods. With the new technology chlorine in the stack is monitored and input chlorine is adjusted continuously. This optimization of chlorine use results in substantially less waste because less chlorine has to be bought or produced by aluminum manufacturers. This innovation is a significant improvement over conventional aluminum treatments, in which chlorine is injected in a more costly and wasteful manner. By the year 2010, the new technology has the potential to reduce the energy it takes to create chlorine by 8.4 billion Btu per year and to cut greenhouse gas emissions by 1,377 tons per year.

  17. Aluminum space frame technology

    SciTech Connect

    Birch, S.

    1994-01-01

    This article examines the increased application of aluminum to the construction of automobile frames. The topics of the article include a joint venture between Audi and Alcoa, forms in which aluminum is used, new alloys and construction methods, meeting rigidity and safety levels, manufacturing techniques, the use of extrusions, die casting, joining techniques, and pollution control during manufacturing.

  18. Anodizing Aluminum with Frills.

    ERIC Educational Resources Information Center

    Doeltz, Anne E.; And Others

    1983-01-01

    "Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are also…

  19. Cast aluminum denture base.

    PubMed

    Barco, M T; Dembert, M L

    1987-08-01

    The laboratory procedures for a cast aluminum base denture have been presented. If an induction casting machine is not available, the "two-oven technique" works well, provided the casting arm is kept spinning manually for 4 minutes after casting. If laboratory procedures are executed precisely and with care, the aluminum base denture can be cast with good results. PMID:3305884

  20. Is the Aluminum Hypothesis Dead?

    PubMed Central

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed with concern by some of the public. This review article discusses reasons that mainstream science has largely abandoned the Aluminum Hypothesis and explores a possible reason for some in the general public continuing to view aluminum with mistrust. PMID:24806729

  1. Anodic behavior of alloys in the systems aluminum-scandium(yttrium, praseodymium, neodymium) in a neutral medium

    SciTech Connect

    Ganiev, I.N.; Yunusov, I.; Krasnoyarskii, V.V.

    1988-03-10

    The authors investigated the influence of scandium, yttrium, praseodymium, and neodymium on the anodic behavior of aluminum in a 3% sodium chloride solution by a potentiodynamic method which provided information over a time interval during which the state of the electrode surface and the composition of the solution remained essentially unchanged. Data were derived for electrochemical and pitting corrosion for different alloy contents and compositions. Results were analyzed for aluminum-scandium, aluminum-yttrium, aluminum-praseodymium, and aluminum-neodymium binary systems.

  2. Aluminum structural applications

    SciTech Connect

    Lucas, G.

    1996-05-01

    Extensive research by aluminum producers and automakers in the 1980s resulted in the development of technologies that enable building of aluminum cars that meet and exceed all the expectations of today`s drivers and passengers, yet weigh several hundred pounds less than their steel counterparts. The Acura NSX sports car, the Audi A8, and the Jaguar XJ220 have all been introduced. Ford has built 40 aluminum-intensive automobiles based on the Taurus/Sable for test purposes, and General Motors recently announced an aluminum-structured electric vehicle. The design flexibility that aluminum allows is shown by these examples. Each uses a somewhat different technology that is particularly suited to the vehicle and its market.

  3. The aluminum smelting process.

    PubMed

    Kvande, Halvor

    2014-05-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development. PMID:24806722

  4. The Aluminum Smelting Process

    PubMed Central

    2014-01-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development. PMID:24806722

  5. Low sodium level

    MedlinePlus

    Low sodium level is a condition in which the amount of sodium (salt) in the blood is lower than normal. The ... Sodium is found mostly in the body fluids outside the cells. It is very important for maintaining ...

  6. Clinical biochemistry of aluminum

    SciTech Connect

    King, S.W.; Savory, J.; Wills, M.R.

    1981-05-01

    Aluminum toxicity has been implicated in the pathogenesis of a number of clinical disorders in patients with chronic renal failure on long-term intermittent hemodialysis treatment. The predominant disorders have been those involving either bone (osteomalacic dialysis osteodystrophy) or brain (dialysis encephalopathy). In nonuremic patients, an increased brain aluminum concentration has been implicated as a neurotoxic agent in the pathogenesis of Alzheimer's disease and was associated with experimental neurofibrillary degeneration in animals. The brain aluminum concentrations of patients dying with the syndrome of dialysis encephalopathy (dialysis dementia) are significantly higher than in dialyzed patients without the syndrome and in nondialyzed patients. Two potential sources for the increased tissue content of aluminum in patients on hemodialysis have been proposed: (1) intestinal absorption from aluminum containing phosphate-binding gels, and (2) transfer across the dialysis membrane from aluminum in the water used to prepare the dialysate. These findings, coupled with our everyday exposure to the ubiquitous occurrence of aluminum in nature, have created concerns over the potential toxicity of this metal.

  7. Sunspace basics

    SciTech Connect

    Not Available

    1994-11-01

    Anyone who lives in a home with a sunspace will tell you that the sunspace is the most enjoyable room in the house. Many times the homeowner`s only regret is that the sunspace is not larger. Although aesthetics often drive the decision to add a sunspace or include one in a new home design, sunspaces can also provide supplemental space heating and a healthy environment for plants and people. In fact, a well-designed sunspace can provide up to 60% of a home`s winter heating requirements. This publication addresses basic elements of sunspace design; design considerations for supplemental space heating, growing plants, and use as a living space; design guidelines including siting, heat distribution, and glazing angles; and major sunspace components including glazing options, thermal mass, insulation, and climate controls. A list of sources for more information is also provided.

  8. Electronic and chemical state of aluminum from the single- (K) and double-electron excitation (KLII&III, KLI) x-ray absorption near-edge spectra of α-alumina, sodium aluminate, aqueous Al³⁺•(H₂O)₆, and aqueous Al(OH)₄⁻

    SciTech Connect

    Fulton, John L.; Govind, Niranjan; Huthwelker, Thomas; Bylaska, Eric J.; Vjunov, Aleksei; Pin, Sonia; Smurthwaite, Tricia D.

    2015-07-02

    We probe, at high energy resolution, the double electron excitation (KLII&II) x-ray absorption region that lies approximately 115 eV above the main Al K-edge (1566 eV) of α-alumina and sodium aluminate. The two solid standards, α-alumina (octahedral) and sodium aluminate (tetrahedral) are compared to aqueous species that have the same Al coordination symmetries, Al³⁺•6H₂O (octahedral) and Al(OH)₄⁻ (tetrahedral). For the octahedral species, the edge height of the KLII&III-edge is approximately 10% of the main K-edge however the edge height is much weaker (3% of K-edge height) for Al species with tetrahedral symmetry. For the α-alumina and aqueous Al³⁺•6H₂O the KLII&III spectra contain white line features and extended absorption fine structure (EXAFS) that mimics the K-edge spectra. The KLII&III-edge feature interferes with an important region of the extended-XAFS region of the spectra for the K-edge of the crystalline and aqueous standards. The K-edge spectra and K-edge positions are predicted using time-dependent density functional theory (TDDFT). The TDDFT calculations for the K-edge XANES spectra reproduce the observed transitions in the experimental spectra of the four Al species. The KLII&III and KLI onsets and their corresponding chemical shifts for the four standards are estimated using the delta self-consistent field (ΔSCF) method. Research by JLF, NG, EJB, AV, TDS was supported by U.S. Department of Energy’s (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. NG thanks Amity Andersen for help with the α-Al₂O₃ and tetrahedral sodium aluminate (NaAlO₂) clusters. All the calculations were performed using the Molecular Science Computing Capability at EMSL, a national scientific user facility sponsored by the U.S. Department of Energy’s Office of Biological and Environmental Research and located at

  9. Purifying Aluminum by Vacuum Distillation

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1985-01-01

    Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.

  10. On the solubility of aluminum in cryolitic melts

    NASA Astrophysics Data System (ADS)

    Ødegård, R.; Sterten, Å.; Thonstad, J.

    1988-06-01

    The solubility of aluminum in NaF-AlF3-Al2O3 melts with various additives was found to increase with increasing NaF/AlF3 molar ratio (CR) and increasing temperature and to decrease with additions of A12O3, CaF2, MgF2, and LiF to the melts. With the use of literature data for the activities of NaF and A1F3 in cryolitic melts, three dissolution reaction models were found to give a good fit to the experimental solubility data. According to the most probable of these models the total concentration of dissolved aluminum (aluminum and sodium species) is given by cAl = cNa(diss) + cAlF2- + cAl2F3- + cAl3F4- + cAl4F5- In NaF rich melts, aluminum will dominantly dissolve as sodium, while at cryolite ratios commonly used in aluminum electrowinning (CR = 2.25 to 2.7) the AlF{-2/-}-ion is the predominant dissolved metal species. Other species (A12F3 -, A13F4-, A14F5-) were found to be of some significance only in melts with high excess A1F3 (CR < 2).

  11. Use of modified hydroxy-aluminum bentonites for chromium(III) removal from solutions.

    PubMed

    Volzone, Cristina; Beatriz Garrido, Liliana

    2008-09-01

    The retention of chromium(III) from a 2,000 ppm chromium basic sulfate and tannery waste solution at pH 4.5 using modified hydroxy-aluminum bentonites (OH-Al bentonites) as adsorbents was studied. OH-Al bentonite was prepared by mixing clay with a hydrolyzed commercial chlorohydroxy Al solution. The modified Al bentonites were obtained by (a) a treatment with 0.5M sodium chloride and (b) a treatment with a Na-hexametaphosphate solution (HMP) after adding sodium chloride. The effect of heating the adsorbents at 100, 500, 700 and 800 degrees C on Cr retention as a function of time was also analyzed. Cr retention by modified OH-Al bentonite with HMP increased with time (up to 100 mg Cr/g) where modified OH-Al bentonite was twice that of untreated bentonite. The relatively high uptake of metal from the salt solution by modified OH-Al bentonite treated at 800 degrees C, in which a complete interlayer collapse occurred, indicated the importance of the contribution of external surface sites to the retention capacity. The maximum Cr uptake from a water waste was 24 mg/g, due to interferences and different chromium species in the industrial solution. PMID:17900792

  12. Diclofenac sodium.

    PubMed

    Small, R E

    1989-08-01

    The pharmacology, pharmacokinetics, clinical efficacy, adverse effects, and dosage of diclofenac sodium are reviewed. Diclofenac, the first nonsteroidal anti-inflammatory agent (NSAID) to be approved that is a phenylacetic acid derivative, competes with arachidonic acid for binding to cyclo-oxygenase, resulting in decreased formation of prostaglandins. The drug has both analgesic and antipyretic activities. Diclofenac is efficiently absorbed from the gastrointestinal tract; peak plasma concentrations occur 1.5 to 2.0 hours after ingestion in fasting subjects. Even though diclofenac has a relatively short elimination half-life in plasma (1.5 hours), it persists in synovial fluid. The drug is metabolized in the liver and is eliminated by urinary and biliary excretion. In clinical trials, diclofenac was as effective as aspirin, diflunisal, indomethacin, sulindac, ibuprofen, ketoprofen, and naproxen in improving function and reducing pain in patients with rheumatoid arthritis. For treatment of osteoarthritis, diclofenac was equivalent in efficacy to aspirin, diflunisal, indomethacin, sulindac, ibuprofen, ketoprofen, naproxen, flurbiprofen, mefenamic acid, and piroxicam. Diclofenac was as effective as indomethacin or sulindac in treating ankylosing spondylitis. The most frequent adverse effects reported for diclofenac were gastrointestinal, but these effects were fewer and less serious than occurred with aspirin or indomethacin; in addition, diclofenac caused fewer central nervous system reactions than indomethacin. Diclofenac is administered in divided doses with meals. The recommended total daily dosage is 100 to 150 mg (osteoarthritis and ankylosing spondylitis) or 150 to 200 mg (rheumatoid arthritis). Diclofenac is effective, but no more so than other NSAIDs. It is structurally distinct and offers another choice in the treatment of rheumatological conditions. PMID:2670397

  13. Inflation Basics

    SciTech Connect

    Green, Dan

    2014-03-01

    metrical fluctuations, both scalar and tensor, are also produced in inflationary models. Thus, the time appears to be appropriate for a very basic and simple exposition of the inflationary model written from a particle physics perspective. Only the simplest scalar model will be explored because it is easy to understand and contains all the basic elements of the inflationary model.

  14. Advances in aluminum anodizing

    NASA Technical Reports Server (NTRS)

    Dale, K. H.

    1969-01-01

    White anodize is applied to aluminum alloy surfaces by specific surface preparation, anodizing, pigmentation, and sealing techniques. The development techniques resulted in alloys, which are used in space vehicles, with good reflectance values and excellent corrosive resistance.

  15. Walnut Hulls Clean Aluminum

    NASA Technical Reports Server (NTRS)

    Colberg, W. R.; Gordon, G. H.; Jackson, C. H.

    1984-01-01

    Hulls inflict minimal substrate damage. Walnut hulls found to be best abrasive for cleaning aluminum surfaces prior to painting. Samples blasted with walnut hulls showed no compressive stress of surface.

  16. Corrosion Inhibitors for Aluminum.

    ERIC Educational Resources Information Center

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  17. CORROSION PROTECTION OF ALUMINUM

    DOEpatents

    Dalrymple, R.S.; Nelson, W.B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

  18. Corrosion Protection of Aluminum

    DOEpatents

    Dalrymple, R. S.; Nelson, W. B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred.

  19. Light weight aluminum optics

    NASA Astrophysics Data System (ADS)

    Catura, R. C.; Vieira, J. R.

    1985-09-01

    Light weight mirror blanks were fabricated by dip-brazing a core of low mass aluminum foam material to thin face sheets of solid aluminum. The blanks weigh 40% of an equivalent size solid mirror and were diamond turned to provide reflective surfaces. Optical interferometry was used to assess their dimensional stability over 7 months. No changes in flatness are observed (to the sensitivity of the measurements of a half wavelength of red light).

  20. Hot corrosion resistance of nickel-chromium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Barrett, C. A.

    1977-01-01

    The hot corrosion resistance of nickel-chromium-aluminum alloy was examined by cyclically oxidizing sodium sulfate coated specimens in still air at 900, 1000 and 1100 C. The compositions tested were within the ternary region: Ni; Ni-50 at.% Cr; and Ni-50 at.% Al. At each temperature the corrosion data were statistically fitted to a third order regression equation as a function of chromium and aluminum contents. Corrosion isopleths were prepared from these equations. Compositional regions with the best hot corrosion resistance were identified.

  1. Molten aluminum: Recent advances in weighing and transportation

    SciTech Connect

    Stefansson, P.; Vee, O.I.

    1996-10-01

    Logistics of molten metal is an important aspect of the efficiency of any aluminum smelter operation. The paper discusses a tapping method developed by Hydro Aluminum which has proven superior to the conventional crane or forklift tapping of potroom metal. The overall manning can be halved by the extensive rationalization of this method. The remote computer operated control of molten metal transfer by electronic scales mounted on the tapping vehicle is explained. As the metal needs no skimming, the dross/skim generation and sodium content of metal is shown with collected data. The impact and advantages of this novel engineering on the casthouse is finally explained and discussed in detail.

  2. Corrosion behavior of aluminum-lithium alloys

    SciTech Connect

    Garrard, W.N. )

    1994-03-01

    Corrosion behavior of three aluminum-lithium (Al-Li) alloys was investigated in aerated 0.5 M sodium sulfate (Na[sub 2]SO[sub 4]), deaerated 3.5% sodium chloride (NaCl), and aerated 3.5% NaCl. Corrosion behavior of the Aluminum Association (AA) alloys 2090-T8E41 (UNS A92090, sheet), AA 8090-T851 (UNS A98090, sheet), and AA 8090-T82551 (UNS A98090, bar) was compared to behavior of the conventional AA 7075-T6 (UNS A97075, sheet). Uniform corrosion was the predominant form of attack in aerated Na[sub 2]SO[sub 4] and deaerated NaCl, although some localized attack resulted from corrosion of intermetallics on specimen surfaces. Pitting was the main form of attack in aerated NaCl. In all three media, the sheet materials corroded at a similar rate, but the bar form of AA 8090 corroded at a lower rate. Pretreatment of the alloys by immersion in a cerium (Ce) solution inhibited pitting in aerated NaCl but only for a short period.

  3. Bronchopulmonary Cellular Response to Aluminum and Zirconium Salts

    PubMed Central

    Stankus, Richard P.; Schuyler, Mark R.; D'Amato, Robert A.; Salvaggio, John E.

    1978-01-01

    The bronchopulmonary cellular immunological response to repeated intratracheal inoculation of aluminum chlorhydrate, sodium zirconium lactate, and zirconium aluminum glycine was examined in rabbits. Results of a dose-response experiment using 0.1, 1.0, and 10.0-mg intratracheal inoculations of each metallic salt demonstrated significant bronchopulmonary histopathology in the 10.0-mg dose-response groups only. Acute lesions were histologically characterized by an inflammatory response centered around respiratory bronchioles. Although epithelioid cell formation was evident in 10.0 mg of aluminum salt (aluminum chlorhydrate and zirconium aluminum glycine) -injected animals, no well-defined granulomas characterized by an orderly arrangement of epithelioid cells, lymphocytes, and giant cells were evident in any of the experimental groups employed. All three metallic salts induced “activated” bronchopulmonary macrophages as determined by an in vitro phagocytic assay. This activation was likely nonimmunological since no measurable differences were observed in metallic salt-induced delayed skin reactivity or migration inhibition factor production between inoculated and uninoculated rabbits. The above observations suggest that aluminum and zirconium salts administered in comparatively high dosage via the respiratory tract route can induce respiratory bronchiolitis and activation of alveolar macrophages in the absence of demonstrable delayed hypersensitivity. Images PMID:352963

  4. Aluminum, parathyroid hormone, and osteomalacia

    SciTech Connect

    Burnatowska-Hledin, M.A.; Kaiser, L.; Mayor, G.H.

    1983-01-01

    Aluminum exposure in man is unavoidable. The occurrence of dialysis dementia, vitamin D-resistant osteomalacia, and hypochromic microcytic anemia in dialysis patients underscores the potential for aluminum toxicity. Although exposure via dialysate and hyperalimentation leads to significant tissue aluminum accumulation, the ubiquitous occurrence of aluminum and the severe pathology associated with large aluminum burdens suggest that smaller exposures via the gastrointestinal tract and lungs could represent an important, though largely unrecognized, public health problem. It is clear that some aluminum absorption occurs with the ingestion of small amounts of aluminum in the diet and medicines, and even greater aluminum absorption is seen in individuals consuming large amounts of aluminum present in antacids. Aluminum absorption is enhanced in the presence of elevated circulating parathyroid hormone. In addition, elevated PTH leads to the preferential deposition of aluminum in brain and bone. Consequently, PTH is likely to be involved in the pathogenesis of toxicities in those organs. PTH excess also seems to lead to the deposition of aluminum in the parathyroid gland. The in vitro demonstration that aluminum inhibits parathyroid hormone release is consistent with the findings of a euparathyroid state in dialysis patients with aluminum related vitamin D-resistant osteomalacia. Nevertheless, it seems likely that hyperparathyroidism is at least initially involved in the pathogenesis of aluminum neurotoxicity and osteomalacia; the increases in tissue aluminum stores are followed by suppression of parathyroid hormone release, which is required for the evolution of osteomalacia. Impaired renal function is not a prerequisite for increased tissue aluminum burdens, nor for aluminum-related organ toxicity. Consequently, it is likely that these diseases will be observed in populations other than those with chronic renal disease.

  5. Distribution of aluminum species and the characteristics of structure of poly-aluminum-chloride-sulfate(PACS).

    PubMed

    Gao, B Y; Yue, Q Y; Yu, H; Wang, Y

    2001-01-01

    A series of poly-aluminum-chloride-sulfate (PACS), which has different basicities (gamma) and Al3+/SO4(2-) molar ratio, has been prepared and dried at 105 degrees C and 65 degrees C, respectively. The distribution of aluminum species of PACS was examined, and the effect of gamma value, Al3+/SO4(2-) molar ratio, dilution on the distribution of aluminum species of PACS was also investigated by using Alferron timed complex colorimetric method. The IR spectroscopy and X-ray diffraction were used to study the effect of gamma value, Al3+/SO4(2-) molar ratio and the drying temperature on the structure of PACS. The experimental results show that Al3+/SO4(2-) molar ratio has a great effect on the distribution of aluminum species, but the dilution has a little effect on the distribution of aluminum species. The lower the Al3+/SO4(2-) molar ratio, the higher the proportions of the polymer and colloidal species in PACS. The polymeric degree of PACS was related to gamma value and Al3+/SO4(2-) molar ratio. Drying temperature has an influence on the structure and the solubility of solid PACS products. PMID:11590710

  6. The Cryogenic Tensile Properties of an Extruded Aluminum-Beryllium Alloy

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.

    2002-01-01

    Basic mechanical properties; i.e., ultimate tensile strength, yield strength, percent elongation, and elastic modulus, were obtained for the aluminum-beryllium alloy, AlBeMet162, at cryogenic (-195.5 C (-320 F) and -252.8 C (-423 F)) temperatures. The material evaluated was purchased to the requirements of SAE-AMS7912, "Aluminum-Beryllium Alloy, Extrusions."

  7. ALUMINUM RECLAMATION BY ACIDIC EXTRACTION OF ALUMINUM-ANODIZING SLUDGES

    EPA Science Inventory

    Extraction of aluminum-anodizing sludges with sulfuric acid was examined to determine the potential for production of commercial-strength solutions of aluminum sulfate, that is liquid alum. The research established kinetic and stoichiometric relationships and evaluates product qu...

  8. Copper, aluminum, iron and calcium inhibit human acetylcholinesterase in vitro.

    PubMed

    Pohanka, Miroslav

    2014-01-01

    Acetylcholinesterase (AChE) is an important part of cholinergic nerves where it participates in termination of neurotransmission. AChE can be inhibited by e.g. some Alzheimer disease drugs, nerve agents, and secondary metabolites. In this work, metal salts aluminum chloride, calcium chloride, cupric chloride, ferric chloride, potassium chloride, magnesium chloride and sodium chloride were tested for their ability to inhibit AChE. Standard Ellman assay based on human recombinant AChE was done and inhibition was measured using Dixon plot. No inhibition was proved for sodium, potassium and magnesium ions. However, aluminum, cupric, ferric and calcium ions were able to inhibit AChE via noncompetitive mechanism of inhibition. Though the inhibition is much weaker when compared to e.g. drugs with noncompetitive mechanism of action, biological relevance of the findings can be anticipated. PMID:24473150

  9. Aluminum for plasmonics.

    PubMed

    Knight, Mark W; King, Nicholas S; Liu, Lifei; Everitt, Henry O; Nordlander, Peter; Halas, Naomi J

    2014-01-28

    Unlike silver and gold, aluminum has material properties that enable strong plasmon resonances spanning much of the visible region of the spectrum and into the ultraviolet. This extended response, combined with its natural abundance, low cost, and amenability to manufacturing processes, makes aluminum a highly promising material for commercial applications. Fabricating Al-based nanostructures whose optical properties correspond with theoretical predictions, however, can be a challenge. In this work, the Al plasmon resonance is observed to be remarkably sensitive to the presence of oxide within the metal. For Al nanodisks, we observe that the energy of the plasmon resonance is determined by, and serves as an optical reporter of, the percentage of oxide present within the Al. This understanding paves the way toward the use of aluminum as a low-cost plasmonic material with properties and potential applications similar to those of the coinage metals. PMID:24274662

  10. Solubility of Aluminum in Cryolite-Based Melts

    NASA Astrophysics Data System (ADS)

    Danielik, V.; Fellner, P.; Sýkorová, A.; Thonstad, J.

    2010-04-01

    The solubility of aluminum in NaF-AlF3-Al2O3 melts was investigated between 800 °C and 960 °C. The amount of dissolved metal in rapidly cooled samples was analyzed by the reaction with hydrochloric acid under the formation of hydrogen—the volume of which then was determined. Four thermodynamic models that describe the high-temperature equilibrium of aluminum reactions with the NaF-AlF3 melt were proposed. The best fit for the experimental data was obtained by assuming the existence of a monovalent aluminum species, AlF and {text{AlF}}_{ 2}^{ - } , as well as elemental sodium.

  11. Elevated temperature aluminum alloys

    NASA Technical Reports Server (NTRS)

    Meschter, Peter (Inventor); Lederich, Richard J. (Inventor); O'Neal, James E. (Inventor)

    1989-01-01

    Three aluminum-lithium alloys are provided for high performance aircraft structures and engines. All three alloys contain 3 wt % copper, 2 wt % lithium, 1 wt % magnesium, and 0.2 wt % zirconium. Alloy 1 has no further alloying elements. Alloy 2 has the addition of 1 wt % iron and 1 wt % nickel. Alloy 3 has the addition of 1.6 wt % chromium to the shared alloy composition of the three alloys. The balance of the three alloys, except for incidentql impurities, is aluminum. These alloys have low densities and improved strengths at temperatures up to 260.degree. C. for long periods of time.

  12. Regeneration of aluminum hydride

    DOEpatents

    Graetz, Jason Allan; Reilly, James J; Wegrzyn, James E

    2012-09-18

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, and by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  13. Regeneration of aluminum hydride

    DOEpatents

    Graetz, Jason Allan; Reilly, James J.

    2009-04-21

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  14. Aluminum Hydroxide and Magnesium Hydroxide

    MedlinePlus

    Aluminum Hydroxide, Magnesium Hydroxide are antacids used together to relieve heartburn, acid indigestion, and upset stomach. They ... They combine with stomach acid and neutralize it. Aluminum Hydroxide, Magnesium Hydroxide are available without a prescription. ...

  15. Docusate Sodium and Pregnancy

    MedlinePlus

    ... live chat Live Help Fact Sheets Share Docusate Sodium Friday, 01 April 2016 In every pregnancy, a ... This sheet talks about whether exposure to docusate sodium may increase the risk for birth defects over ...

  16. Sodium carbonate poisoning

    MedlinePlus

    Sodium carbonate (known as washing soda or soda ash) is a chemical found in many household and ... products. This article focuses on poisoning due to sodium carbonate. This article is for information only. Do ...

  17. Diclofenac sodium overdose

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002630.htm Diclofenac sodium overdose To use the sharing features on this page, please enable JavaScript. Diclofenac sodium is a prescription medicine used to relieve pain ...

  18. Sodium blood test

    MedlinePlus

    ... able to conserve water) Too much salt or sodium bicarbonate in the diet Use of certain medicines, including corticosteroids, laxatives, lithium, and medicines such as ibuprofen or naproxen Lower than normal sodium level is called hyponatremia. It may be due ...

  19. Fractional excretion of sodium

    MedlinePlus

    FE sodium; FENa ... to a lab. There, they are examined for salt (sodium) and creatinine levels. Creatinine is a chemical waste ... your normal foods with a normal amount of salt, unless otherwise instructed by your health care provider. ...

  20. Diclofenac sodium overdose

    MedlinePlus

    Diclofenac sodium is a prescription medicine used to relieve pain and swelling. It is a nonsteroidal anti-inflammatory drug (NSAID). Diclofenac sodium overdose occurs when someone takes more than the ...

  1. Sodium Ferric Gluconate Injection

    MedlinePlus

    Sodium ferric gluconate injection is used to treat iron-deficiency anemia (a lower than normal number of ... are also receiving the medication epoetin (Epogen, Procrit). Sodium ferric gluconate injection is in a class of ...

  2. RECLAMATION OF ALUMINUM FINISHING SLUDGES

    EPA Science Inventory

    The research study of the reclamation of aluminum-anodizing sludges was conducted in two sequential phases focused on enhanced dewatering of aluminum-anodizing sludges to produce commercial-strength solutions of aluminum sulfate, i.e., liquid alum. The use of high-pressure (14 to...

  3. Electrically conductive anodized aluminum coatings

    NASA Technical Reports Server (NTRS)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  4. Aluminum Sulfate 18 Hydrate

    ERIC Educational Resources Information Center

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  5. Fluxless aluminum brazing

    DOEpatents

    Werner, W.J.

    1974-01-01

    This invention relates to a fluxless brazing alloy for use in forming brazed composites made from members of aluminum and its alloys. The brazing alloy consists of 35-55% Al, 10--20% Si, 25-60% Ge; 65-88% Al, 2-20% Si, 2--18% In; 65--80% Al, 15-- 25% Si, 5- 15% Y. (0fficial Gazette)

  6. Aluminum battery alloys

    DOEpatents

    Thompson, D.S.; Scott, D.H.

    1984-09-28

    Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  7. Aluminum battery alloys

    DOEpatents

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  8. Mechanisms of aluminum tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminum (Al) toxicity limits agricultural productivity over much of the world’s arable land by inhibiting root growth and development. Affected plants have difficulty in acquiring adequate water and nutrition from their soil environments and thus have stunted shoot development and diminished yield....

  9. Maize aluminum tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize is one of the most economically important food crops grown on acid soils, where aluminum (Al) toxicity greatly limits crop yields. Considerable variation for Al tolerance exists in maize, and this variation has been exploited for many years by plant breeders to enhance maize Al tolerance. Curr...

  10. Aluminum-ferricyanide battery

    SciTech Connect

    Marsh, C.; Licht, S.L.

    1993-11-29

    A battery capable of producing high current densities with high charge capacity is described which includes an aluminum anode, a ferricyanide electrolyte and a second electrode capable of reducing ferricyanide electrolyte which is either dissolved in an alkaline solution or alkaline seawater solution. The performance of the battery is enhanced by high temperature and high electrolyte flow rates.

  11. REMOVAL OF ALUMINUM COATINGS

    DOEpatents

    Peterson, J.H.

    1959-08-25

    A process is presented for dissolving aluminum jackets from uranium fuel elements without attack of the uranium in a boiling nitric acid-mercuric nitrate solution containing up to 50% by weight of nitrtc acid and mercuric nitrate in a concentration of between 0.05 and 1% by weight.

  12. Building an aluminum car

    SciTech Connect

    Ashley, S.

    1994-05-01

    This article examines the increasing use of aluminum in automobiles to decrease weight and consequently increase fuel economy. The topics of the article include federal fuel economy goals, the development of optimum body structure and manufacturing techniques, comparison with steel, cost of materials, weight reduction and recycling of materials.

  13. Sensing of corrosion on aluminum surfaces by use of metallic optical fiber.

    PubMed

    Dong, Saying; Liao, Yanbiao; Tian, Qian

    2005-10-20

    We present a new method for monitoring aluminum corrosion by determining the kind of light output that is as corrosion occurs. We prepared some metallized multimode optical fibers by physical vacuum deposition of aluminum to monitor metal corrosion. The sensing area was 1-2 cm in length and had an uncladded part. We used scanning-electron microscopy (SEM) to observe the microappearance of the aluminum before and after corrosion by sodium hydroxide or hydrochloric acid. The film's thickness was also measured by SEM. The factors that affect the rate of corrosion were also investigated. PMID:16252643

  14. An XAFS study of nickel chloride in the ionic liquid 1-ethyl-3-methyl imidazolium chloride/ aluminum chloride

    SciTech Connect

    D Roeper; G Cheek; K Pandya; W OGrady

    2011-12-31

    Nickel chloride was studied with cyclic voltammetry and X-ray absorption spectroscopy in acidic and basic aluminum chloride/1-ethyl-3-methyl imidazolium chloride (EMIC) ionic liquids. Acidic melts display metal stripping peaks which are not observed in the basic melt. EXAFS analysis shows that the nickel is tetrahedrally coordinated with chloride ions in the basic solution. In the acidic solution the nickel is coordinated by six chloride ions that are also associated with aluminum ions.

  15. Rechargeable sodium alloy anode

    SciTech Connect

    Jow, T.R.

    1988-06-28

    A secondary battery is described comprising: (a) an anode which comprises an alloy of sodium and one or metals selected from the group consisting of tin, lead antimony, bismuth, selenium and tellerium, (b) an electrolyte comprising one or more organic solvents and one or more sodium salts dissolved therein forming dissolved sodium cations in solution; and (c) a cathode; the sodium cations from the electrolyte alloying with the one or more metals of the alloy in the anode during the charging of the battery and sodium in the alloy disoloving in the electrolyte during the discharging of the battery.

  16. SOLDERING OF ALUMINUM BASE METALS

    DOEpatents

    Erickson, G.F.

    1958-02-25

    This patent deals with the soldering of aluminum to metals of different types, such as copper, brass, and iron. This is accomplished by heating the aluminum metal to be soldered to slightly above 30 deg C, rubbing a small amount of metallic gallium into the part of the surface to be soldered, whereby an aluminum--gallium alloy forms on the surface, and then heating the aluminum piece to the melting point of lead--tin soft solder, applying lead--tin soft solder to this alloyed surface, and combining the aluminum with the other metal to which it is to be soldered.

  17. Aluminum Induces Rigor within the Actin Network of Soybean Cells.

    PubMed Central

    Grabski, S.; Schindler, M.

    1995-01-01

    Aluminum is toxic to both plants and animals. Root growth and pollen-tube extension are inhibited after aluminum stress in acidic environments. Incubation of cultured neurons with aluminum results in the formation of neurofibrillar tangles reminiscent of the neural pathology observed in Alzheimer's disease. The present communication demonstrates that aluminum induces a rapid and dramatic increase in the rigidity of the actin network in soybean (Glycine max) root cells. This rigidity can be prevented by either co-incubation with sodium fluoride or magnesium, or pretreatment with cytochalasin D. It is proposed that the growth-inhibitory activity and cytotoxicity of aluminum in plants may be a consequence of a global rigor that is induced within the actin network. This rigor may result from the formation of nonhydrolyzable [Al3+-ADP] or [Al3+-ATP] complexes whose binding to actin/myosin can modify contraction. Additionally, Al3+-mediated interference with the normal kinetics of F-actin filament assembly/disassembly could precipitate subsequent disorganization of associated cytoskeletal structures and promote altered expression of cytoskeletal proteins. PMID:12228515

  18. DEFLECTION MEASUREMENTS OF 25 mm ALUMINUM COLLARS

    SciTech Connect

    Peters, C.

    1984-10-01

    This report is a summary of mechanical load-deflection tests performed on prototype collars. The individual collar plates were N.C. machined from 0.125 inch thick 7075-T6 aluminum alloy plate. Inside corners were finished by EDM and outside corners and keyways were finished with an end milling operation. The last step was done with all the individual collar plates (98 pieces) assembled on pins to form the cross section shown in Fig. 1. Figure 1 also shows some of the basic collar dimensions.

  19. Nanocomposite anode materials for sodium-ion batteries

    DOEpatents

    Manthiram, Arumugam; Kim Il, Tae; Allcorn, Eric

    2016-06-14

    The disclosure relates to an anode material for a sodium-ion battery having the general formula AO.sub.x--C or AC.sub.x--C, where A is aluminum (Al), magnesium (Mg), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), zirconium (Zr), molybdenum (Mo), tungsten (W), niobium (Nb), tantalum (Ta), silicon (Si), or any combinations thereof. The anode material also contains an electrochemically active nanoparticles within the matrix. The nanoparticle may react with sodium ion (Na.sup.+) when placed in the anode of a sodium-ion battery. In more specific embodiments, the anode material may have the general formula M.sub.ySb-M'O.sub.x--C, Sb-MO.sub.x--C, M.sub.ySn-M'C.sub.x--C, or Sn-MC.sub.x--C. The disclosure also relates to rechargeable sodium-ion batteries containing these materials and methods of making these materials.

  20. Advanced intermediate temperature sodium copper chloride battery

    NASA Astrophysics Data System (ADS)

    Yang, Li-Ping; Liu, Xiao-Min; Zhang, Yi-Wei; Yang, Hui; Shen, Xiao-Dong

    2014-12-01

    Sodium metal chloride batteries, also called as ZEBRA batteries, possess many merits such as low cost, high energy density and high safety, but their high operation temperature (270-350 °C) may cause several issues and limit their applications. Therefore, decreasing the operation temperature is of great importance in order to broaden their usage. Using a room temperature ionic liquid (RTIL) catholyte composed of sodium chloride buffered 1-ethyl-3-methylimidazolium chloride-aluminum chloride and a dense β″-aluminates solid electrolyte film with 500 micron thickness, we report an intermediate temperature sodium copper chloride battery which can be operated at only 150 °C, therefore alleviating the corrosion issues, improving the material compatibilities and reducing the operating complexities associated with the conventional ZEBRA batteries. The RTIL presents a high ionic conductivity (0.247 S cm-1) at 150 °C and a wide electrochemical window (-2.6 to 2.18 vs. Al3+/Al). With the discharge plateau at 2.64 V toward sodium and the specific capacity of 285 mAh g-1, this intermediate temperature battery exhibits an energy density (750 mWh g-1) comparable to the conventional ZEBRA batteries (728-785 mWh g-1) and superior to commercialized Li-ion batteries (550-680 mWh g-1), making it very attractive for renewable energy integration and other grid related applications.

  1. Preparation of petaloid microspheres of basic magnesium carbonate.

    PubMed

    Ohkubo, Takahiro; Suzuki, Sei; Mitsuhashi, Kohei; Ogura, Taku; Iwanaga, Shinichi; Sakai, Hideki; Koishi, Masumi; Abe, Masahiko

    2007-05-22

    The synthesis of basic magnesium carbonate was examined under ultrasonic irradiation and was performed by the soda ash method using magnesium sulfate and sodium carbonate as starting materials. The particulate product was evaluated using SEM observations. Ultrasonic irradiation in the preparation of basic magnesium carbonate was found to give fine petaloid microspheres of about 3 mum in primary particle size. PMID:17458985

  2. Modelling Cometary Sodium Tails

    NASA Astrophysics Data System (ADS)

    Birkett, K. S.; Jones, G. H.; Coates, A. J.

    2013-12-01

    Neutral sodium is readily observed in cometary spectra and can be seen to form its own distinct tail at high activity comets. Solar radiation pressure accelerates the sodium atoms antisunward and, as strong sodium absorption lines are present in the solar spectrum, the magnitude of this force is dependent upon the Doppler shift of the incident solar radiation. Therefore the heliocentric velocity of the sodium atom directly determines its acceleration. This can produce unique effects, such as a stagnation region. Sodium is relatively easy to detect and so can potentially be used to trace mechanisms in the coma that are otherwise difficult to observe. The source of neutral sodium in the tail currently remains unknown. We have therefore developed a new, three dimensional Monte-Carlo model of neutral cometary sodium in order to facilitate testing of different source production functions. It includes weightings due to neutral sodium lifetime, variation of cometary sodium emission due to Fraunhofer absorption lines and solar flux variation with heliocentric distance. The Swings and Greenstein effects, which can have particularly dramatic effects in near-Sun comets, are also considered comprehensively. Preliminary results from this model are presented, focusing on a comparison of predictions of the neutral sodium tail of Comet C/2012 S1 (ISON) with initial observations.

  3. Aluminum permanganate battery

    SciTech Connect

    Marsh, C.; Licht, S.L.

    1993-11-30

    A battery is provided comprising an aluminum anode, an aqueous solution of permanganate as the cathodic species and a second electrode capable of reducing permanganate. Such a battery system is characterized by its high energy density and low polarization losses when operating at high temperatures in a strong caustic electrolyte, i.e., high concentration of hydroxyl ions. A variety of anode and electrocatalyst materials are suitable for the efficient oxidation-reduction process and are elucidated.

  4. Aluminum microstructures on anodic alumina for aluminum wiring boards.

    PubMed

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki

    2010-03-01

    The paper demonstrates simple methods for the fabrication of aluminum microstructures on the anodic oxide film of aluminum. The aluminum sheets were first engraved (patterned) either by laser beam or by embossing to form deep grooves on the surface. One side of the sheet was then anodized, blocking the other side by using polymer mask to form the anodic alumina. Because of the lower thickness at the bottom part of the grooves, the part was completely anodized before the complete oxidation of the other parts. Such selectively complete anodizing resulted in the patterns of metallic aluminum on anodic alumina. Using the technique, we fabricated microstructures such as line patterns and a simple wiring circuit-board-like structure on the anodic alumina. The aluminum microstructures fabricated by the techniques were embedded in anodic alumina/aluminum sheet, and this technique is promising for applications in electronic packaging and devices. PMID:20356280

  5. Sodium remote from Io

    NASA Astrophysics Data System (ADS)

    Brown, R. A.; Schneider, N. M.

    1981-12-01

    Measurements of sodium emission lines originating in the middle Jupiter magnetosphere are measured, confirming the wide dispersal of neutral sodium in the Jovian system in at least two distinct manifestations. Candidate neutral transport processes in the context of the observed kinematical signatures are discussed. It is argued that the normal emission feature is produced by sodium atoms on bound elliptical orbits originating in the Io sodium cloud but with apojove in the field of view. Observations of the fast sodium feature indicate that atoms episodically acquire a broad range of line-of-sight velocities above the Jupiter gravitational escape speed and far above the speeds characteristic of surface-sputtered atoms. Three suggested reactions are distinguished according to (1) production rates based on estimated plasmaspheric properties, (2) kinematical signature, and (3) the timing of occurrences of the fast sodium feature.

  6. Aluminum Carbothermic Technology

    SciTech Connect

    Bruno, Marshall J.

    2005-03-31

    This report documents the non-proprietary research and development conducted on the Aluminum Carbothermic Technology (ACT) project from contract inception on July 01, 2000 to termination on December 31, 2004. The objectives of the program were to demonstrate the technical and economic feasibility of a new carbothermic process for producing commercial grade aluminum, designated as the ''Advanced Reactor Process'' (ARP). The scope of the program ranged from fundamental research through small scale laboratory experiments (65 kW power input) to larger scale test modules at up to 1600 kW power input. The tasks included work on four components of the process, Stages 1 and 2 of the reactor, vapor recovery and metal alloy decarbonization; development of computer models; and economic analyses of capital and operating costs. Justification for developing a new, carbothermic route to aluminum production is defined by the potential benefits in reduced energy, lower costs and more favorable environmental characteristics than the conventional Hall-Heroult process presently used by the industry. The estimated metrics for these advantages include energy rates at approximately 10 kWh/kg Al (versus over 13 kWh/kg Al for Hall-Heroult), capital costs as low as $1250 per MTY (versus 4,000 per MTY for Hall-Heroult), operating cost reductions of over 10%, and up to 37% reduction in CO2 emissions for fossil-fuel power plants. Realization of these benefits would be critical to sustaining the US aluminum industries position as a global leader in primary aluminum production. One very attractive incentive for ARP is its perceived ability to cost effectively produce metal over a range of smelter sizes, not feasible for Hall-Heroult plants which must be large, 240,000 TPY or more, to be economical. Lower capacity stand alone carbothermic smelters could be utilized to supply molten metal at fabrication facilities similar to the mini-mill concept employed by the steel industry. Major

  7. ALUMINUM REMOVAL FROM HANFORD WASTE BY LITHIUM HYDROTALCITE PRECIPITATION - LABORATORY SCALE VALIDATION ON WASTE SIMULANTS TEST REPORT

    SciTech Connect

    SAMS T; HAGERTY K

    2011-01-27

    To reduce the additional sodium hydroxide and ease processing of aluminum bearing sludge, the lithium hydrotalcite (LiHT) process has been invented by AREV A and demonstrated on a laboratory scale to remove alumina and regenerate/recycle sodium hydroxide prior to processing in the WTP. The method uses lithium hydroxide (LiOH) to precipitate sodium aluminate (NaAI(OH){sub 4}) as lithium hydrotalcite (Li{sub 2}CO{sub 3}.4Al(OH){sub 3}.3H{sub 2}O) while generating sodium hydroxide (NaOH). In addition, phosphate substitutes in the reaction to a high degree, also as a filterable solid. The sodium hydroxide enriched leachate is depleted in aluminum and phosphate, and is recycled to double-shell tanks (DSTs) to leach aluminum bearing sludges. This method eliminates importing sodium hydroxide to leach alumina sludge and eliminates a large fraction of the total sludge mass to be treated by the WTP. Plugging of process equipment is reduced by removal of both aluminum and phosphate in the tank wastes. Laboratory tests were conducted to verify the efficacy of the process and confirm the results of previous tests. These tests used both single-shell tank (SST) and DST simulants.

  8. Sodium Polystyrene Sulfonate

    MedlinePlus

    ... allergic to sodium polystyrene sulfonate, other polystyrene sulfonate resins, any other medications, or any of the ingredients ... salt substitutes containing potassium or foods that are high in potassium.

  9. Extracting aluminum from dross tailings

    NASA Astrophysics Data System (ADS)

    Amer, A. M.

    2002-11-01

    Aluminum dross tailings, an industrial waste, from the Egyptian Aluminium Company (Egyptalum) was used to produce two types of alums: aluminum-sulfate alum [itAl2(SO4)3.12H2O] and ammonium-aluminum alum [ (NH 4)2SO4AL2(SO4)3.24H2O]. This was carried out in two processes. The first process is leaching the impurities using diluted H2SO4 with different solid/liquid ratios at different temperatures to dissolve the impurities present in the starting material in the form of solute sulfates. The second process is the extraction of aluminum (as aluminum sulfate) from the purifi ed aluminum dross tailings thus produced. The effects of temperature, time of reaction, and acid concentration on leaching and extraction processes were studied. The product alums were analyzed using x-ray diffraction and thermal analysis techniques.

  10. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....