Sample records for basin clastic reservoirs

  1. Preservation of primary porosity in the Neogene clastic reservoirs of the Surma Basin, Bangladesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferdous, H.S.; Renaut, R.W.

    1996-01-01

    The Surma Basin is a Tertiary sub-basin within the greater Bengal Basin, in N.E. Bangladesh. The Neogene sequence ([approximately]17 km thick) contains the producing hydrocarbon reservoirs with proven gas reserves. These sediments are alternating coarse and fine clastics, representing a complex interfingering of deltaic and marine subenvironments, with the former dominating. The principal reservoir facies are distributary channel-fill sandstones in a lower delta-plain setting. Kailashtila, Beanibazar and Rashidpur, located in anticlinal structures, are major hydrocarbon-producing fields in the E. Surma Basin. Petrographic analysis shows that primary intergranular porosity mainly controls the reservoir quality of these Neogene sands, which occur atmore » a depth of [approximately]3000 m. Most samples show primary pores with about 20% porosity and permeabilities of about 200 mD. The preservation of a higher proportion of primary pores in fine to medium grained sandstones is a result of (1) moderate compaction resulting from overpressuring caused by a higher rate of subsidence and sedimentation, (2) weak cementation, and (3) a general lack of deleterious clays and the presence of some grain-rimming chlorites. The general absence of long and sutured grain contacts also supports these observations. Some of the existing literature suggests that secondary pores are dominant in the Neogene sandy reservoirs of the Bengal Basin; however, they contribute little ([approximately]2%) to the total porosity in the Surma Basin.« less

  2. Preservation of primary porosity in the Neogene clastic reservoirs of the Surma Basin, Bangladesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferdous, H.S.; Renaut, R.W.

    1996-12-31

    The Surma Basin is a Tertiary sub-basin within the greater Bengal Basin, in N.E. Bangladesh. The Neogene sequence ({approximately}17 km thick) contains the producing hydrocarbon reservoirs with proven gas reserves. These sediments are alternating coarse and fine clastics, representing a complex interfingering of deltaic and marine subenvironments, with the former dominating. The principal reservoir facies are distributary channel-fill sandstones in a lower delta-plain setting. Kailashtila, Beanibazar and Rashidpur, located in anticlinal structures, are major hydrocarbon-producing fields in the E. Surma Basin. Petrographic analysis shows that primary intergranular porosity mainly controls the reservoir quality of these Neogene sands, which occur atmore » a depth of {approximately}3000 m. Most samples show primary pores with about 20% porosity and permeabilities of about 200 mD. The preservation of a higher proportion of primary pores in fine to medium grained sandstones is a result of (1) moderate compaction resulting from overpressuring caused by a higher rate of subsidence and sedimentation, (2) weak cementation, and (3) a general lack of deleterious clays and the presence of some grain-rimming chlorites. The general absence of long and sutured grain contacts also supports these observations. Some of the existing literature suggests that secondary pores are dominant in the Neogene sandy reservoirs of the Bengal Basin; however, they contribute little ({approximately}2%) to the total porosity in the Surma Basin.« less

  3. Simulation of the mulltizones clastic reservoir: A case study of Upper Qishn Clastic Member, Masila Basin-Yemen

    NASA Astrophysics Data System (ADS)

    Khamis, Mohamed; Marta, Ebrahim Bin; Al Natifi, Ali; Fattah, Khaled Abdel; Lashin, Aref

    2017-06-01

    The Upper Qishn Clastic Member is one of the main oil-bearing reservoirs that are located at Masila Basin-Yemen. It produces oil from many zones with different reservoir properties. The aim of this study is to simulate and model the Qishn sandstone reservoir to provide more understanding of its properties. The available, core plugs, petrophysical, PVT, pressure and production datasets, as well as the seismic structural and geologic information, are all integrated and used in the simulation process. Eclipse simulator was used as a powerful tool for reservoir modeling. A simplified approach based on a pseudo steady-state productivity index and a material balance relationship between the aquifer pressure and the cumulative influx, is applied. The petrophysical properties of the Qishn sandstone reservoir are mainly investigated based on the well logging and core plug analyses. Three reservoir zones of good hydrocarbon potentiality are indicated and named from above to below as S1A, S1C and S2. Among of these zones, the S1A zone attains the best petrophysical and reservoir quality properties. It has an average hydrocarbon saturation of more than 65%, high effective porosity up to 20% and good permeability record (66 mD). The reservoir structure is represented by faulted anticline at the middle of the study with a down going decrease in geometry from S1A zone to S2 zone. It is limited by NE-SW and E-W bounding faults, with a weak aquifer connection from the east. The analysis of pressure and PVT data has revealed that the reservoir fluid type is dead oil with very low gas liquid ratio (GLR). The simulation results indicate heterogeneous reservoir associated with weak aquifer, supported by high initial water saturation and high water cut. Initial oil in place is estimated to be around 628 MM BBL, however, the oil recovery during the period of production is very low (<10%) because of the high water cut due to the fractures associated with many faults. Hence, secondary and

  4. Lower Cretaceous Avile Sandstone, Neuquen basin, Argentina - Exploration model for a lowstand clastic wedge in a back-arc basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryer, T.A.

    1991-03-01

    The Neuquen basin of western Argentina is a back-arc basin that was occupied by epeiric seas during much of Jurassic and Cretaceous time. The Avile Sandstone Member of the Agrio Formation records a pronounced but short-lived regression of the Agrio sea during middle Hauterivian (Early Cretaceous) time. Abrupt lowering of relative sea level resulted in emergence and erosion of the Agrio sea floor; shoreline and fluvial facies characteristic of the Centenario Formation shifted basinward. The Avile rests erosionally upon lower Agrio shale over a large area; well-sorted, porous sandstones within the member pinch out laterally against the base-Avile erosional surface.more » Avile deposition closed with an abrupt transgression of the shoreline to the approximate position it had occupied prior to the Avile regression. The transgressive deposits are carbonate rich, reflecting starvation of the basin as a consequence of sea-level rise. The Avile lowstand clastic wedge consists predominantly of sandstones deposited in fluvial to shallow-marine paleoenvironments; eolian sandstones probably constitute an important component in the eastern part of the area. The sandstones locally have excellent reservoir characteristics; they constitute the reservoirs in the Puesto Hernandez, Chihuido de la Sierra Negra, and Filo Morado fields. The pinch-out of the Avile lowstand clastic wedge has the potential to form stratigraphic traps in favorable structural positions. The depositional model indicates that there may be a viable stratigraphic play to be made along the Avile pinch-out in the deep, relatively undrilled, northwestern part of the Neuquen basin.« less

  5. Some Cenozoic hydrocarbon basins on the continental shelf of Vietnam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dien, P.T.

    1994-07-01

    The formation of the East Vietnam Sea basins was related to different geodynamic processes. The pre-Oligocene basement consists of igneous, metamorphic, and metasediment complexes. The Cretaceous-Eocene basement formations are formed by convergence of continents after destruction of the Tethys Ocean. Many Jurassic-Eocene fractured magmatic highs of the Cuulong basin basement constitute important reservoirs that are producing good crude oil. The Paleocene-Eocene formations are characterized by intramountain metamolasses, sometimes interbedded volcanic rocks. Interior structures of the Tertiary basins connect with rifted branches of the widened East Vietnam Sea. Bacbo (Song Hong) basin is predominated by alluvial-rhythmic clastics in high-constructive deltas, whichmore » developed on the rifting and sagging structures of the continental branch. Petroleum plays are constituted from Type III source rocks, clastic reservoirs, and local caprocks. Cuulong basin represents sagging structures and is predominated by fine clastics, with tidal-lagoonal fine sandstone and shalestone in high-destructive deltas that are rich in Type II source rocks. The association of the pre-Cenozoic fractured basement reservoirs and the Oligocene-Miocene clastic reservoir sequences with the Oligocene source rocks and the good caprocks is frequently met in petroleum plays of this basin. Nan Conson basin was formed from complicated structures that are related to spreading of the oceanic branch. This basin is characterized by Oligocene epicontinental fine clastics and Miocene marine carbonates that are rich in Types I, II, and III organic matter. There are both pre-Cenozoic fractured basement reservoirs, Miocene buildup carbonate reservoir rocks and Oligocene-Miocene clastic reservoir sequences, in this basin. Pliocene-Quaternary sediments are sand and mud carbonates in the shelf facies of the East Vietnam Sea back-arc basin. Their great thickness provides good conditions for maturation and

  6. Depositional environments, sequence stratigraphy, and trap configuration of lower Wolfcampian clastics along eastern edge of Midland basin, west Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, N.R.; Reuter, S.G.

    1989-03-01

    The Lower Permian (lower Wolfcampian) along the eastern edge of the Midland basin, west Texas, is characterized by ramp-type shelf margins. During eustatic lowstand, nearshore sedimentation shifted drastically to the west into a basinal setting below the Pennsylvanian (Canyon) shelf margin. Core descriptions demonstrate that lowstand systems tract (LST) and transgressive systems tract (TST) siliciclastics were deposited in deltaic and coastal-plain environments. Prodelta, delta-front, and stream-mouth bar facies are associated with the LST. Coastal-plain and distributary channels are preserved in the TST. The sequence stratigraphic framework indicates type 1 sequence boundaries at 287 Ma, 282 Ma, and 280 Ma inmore » the lower Wolfcampian clastics. This lower Wolfcampian package of sedimentary rocks overlies the Pennsylvanian and is capped by the 279-Ma middle Wolfcampian unconformity. All three sequence boundaries and associated systems tract deposits exhibit a prograding stacking pattern within the sequence stratigraphic framework. Basinally restricted prograding LST deltaic rocks are overlain by backstepping TST deltaics and highstand systems tract (HST) outer marine shales. Production in lower Wolfcampian clastic fields is associated with fine-grained quartzarenites up to 45 ft thick which were deposited in stream-mouth bars. Delta-front and prodelta low-permeability shales encase the reservoir facies, forming lateral permeability barriers. HST outer marine shales deposited over the stream-mouth-bar sandstones act as a top seal, creating a stratigraphic trap and providing source for the high-BTU gas and oil produced from these basinally restricted LST deltaics.« less

  7. Seismic attribute analysis for reservoir and fluid prediction, Malay Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mansor, M.N.; Rudolph, K.W.; Richards, F.B.

    1994-07-01

    The Malay Basin is characterized by excellent seismic data quality, but complex clastic reservoir architecture. With these characteristics, seismic attribute analysis is a very important tool in exploration and development geoscience and is routinely used for mapping fluids and reservoir, recognizing and risking traps, assessment, depth conversion, well placement, and field development planning. Attribute analysis can be successfully applied to both 2-D and 3-D data as demonstrated by comparisons of 2-D and 3-D amplitude maps of the same area. There are many different methods of extracting amplitude information from seismic data, including amplitude mapping, horizon slice, summed horizon slice, isochronmore » slice, and horizon slice from AVO (amplitude versus offset) cube. Within the Malay Basin, horizon/isochron slice techniques have several advantages over simply extracting amplitudes from a picked horizon: they are much faster, permit examination of the amplitude structure of the entire cube, yield better results for weak/variable signatures, and aid summation of amplitudes. Summation in itself often yields improved results because it incorporates the signature from the entire reservoir interval, reducing any effects due to noise, mispicking, or waveform variations. Dip and azimuth attributes have been widely applied by industry for fault identification. In addition, these attributes can also be used to map signature variations associated with hydrocarbon contacts or stratigraphic changes, and this must be considered when using these attributes for structural interpretation.« less

  8. Advanced Oil Recovery Technologies for Improved Recovery From Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark B. Murphy

    The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.

  9. Clastic rocks associated with the Midcontinent rift system in Iowa

    USGS Publications Warehouse

    Anderson, Raymond R.; McKay, Robert M.

    1997-01-01

    The Middle Proterozoic Midcontinent Rift System (MRS) of North America is a failed rift that formed in response to region-wide stresses about 1,100 Ma. In Iowa, the MRS is buried beneath 2,200?3,500 ft of Paleozoic and Mesozoic sedimentary rocks and Quaternary glaciogenic deposits. An extremely large volume of sediments was deposited within basins associated with the rift at several stages during its development. Although the uplift of a rift-axial horst resulted in the erosional removal of most of these clastic rocks from the central region of the MRS in Iowa, thick sequences are preserved in a series of horst-bounding basins. Recent studies incorporating petrographic analysis, geophysical modeling, and other analytical procedures have led to the establishment of a preliminary stratigraphy for these clastic rocks and interpretations of basin geometries. This information has allowed the refinement of existing theories and history of MRS formation in Iowa. Additionally, drill samples previously interpreted as indicating the existence of early Paleozoic basins overlying the Proterozoic MRS basins were re-examined. Samples previously interpreted as deep-lying Paleozoic rocks are now known to have caved from upper levels of the drillhole and were out of stratigraphic position. No deep Paleozoic basins exist in this area. These investigations led to the development of petrographic parameters useful in differentiating the Proterozoic MRS Red clastics from Paleozoic clastic rocks having similar lithologies.

  10. Geologic assessment of undiscovered oil and gas resources in the Albian Clastic and Updip Albian Clastic Assessment Units, U.S. Gulf Coast Region

    USGS Publications Warehouse

    Merrill, Matthew D.

    2016-03-11

    U.S. Geological Survey National Oil and Gas Assessments (NOGA) of Albian aged clastic reservoirs in the U.S. Gulf Coast region indicate a relatively low prospectivity for undiscovered hydrocarbon resources due to high levels of past production and exploration. Evaluation of two assessment units (AUs), (1) the Albian Clastic AU 50490125, and (2) the Updip Albian Clastic AU 50490126, were based on a geologic model incorporating consideration of source rock, thermal maturity, migration, events timing, depositional environments, reservoir rock characteristics, and production analyses built on well and field-level production histories. The Albian Clastic AU is a mature conventional hydrocarbon prospect with undiscovered accumulations probably restricted to small faulted and salt-associated structural traps that could be revealed using high resolution subsurface imaging and from targeting structures at increased drilling depths that were unproductive at shallower intervals. Mean undiscovered accumulation volumes from the probabilistic assessment are 37 million barrels of oil (MMBO), 152 billion cubic feet of gas (BCFG), and 4 million barrels of natural gas liquids (MMBNGL). Limited exploration of the Updip Albian Clastic AU reflects a paucity of hydrocarbon discoveries updip of the periphery fault zones in the northern Gulf Coastal region. Restricted migration across fault zones is a major factor behind the small discovered fields and estimation of undiscovered resources in the AU. Mean undiscovered accumulation volumes from the probabilistic assessment are 1 MMBO and 5 BCFG for the Updip Albian Clastic AU.

  11. Sedimentation, zoning of reservoir rocks in W. Siberian basin oil fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kliger, J.A.

    1994-02-07

    A line pattern of well cluster spacing was chosen in western Siberia because of taiga, marshes, etc., on the surface. The zoning of the oil pools within productive Upper Jurassic J[sub 3] intervals is complicated. This is why until the early 1990s almost each third well drilled in the Shaimsky region on the western edge of the West Siberian basin came up dry. The results of development drilling would be much better if one used some sedimentological relationships of zoning of the reservoir rocks within the oil fields. These natural phenomena are: Paleobasin bathymetry; Distances from the sources of themore » clastic material; and Proximity of the area of deposition. Using the diagram in this article, one can avoid drilling toward areas where the sandstone pinch out, area of argillization of sand-stones, or where the probability of their absence is high.« less

  12. Geology and hydrocarbon potential of the Oued Mya Basin, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benamrane, O.; Messaoudi, M.; Messelles, H.

    1992-01-01

    The hydrocarbon System Ourd Mya is located in the Sahara Basin. It is one of the producing basin in Algeria. The stratigraphic section consists of Paleozoic and Mesosoic, it is about 5000m thick. In the eastern part, the basin is limited by the Hassi-Messaoud high zone which is a giant oil field producing from the Cambrian sands. The western part is limited by Hassi R'mel which is one of the biggest gas field in the world, it is producing from the triassic sands. The Mesozoic section is laying on the lower Devonian and in the eastern part, on the Cambrian.more » The main source rock is the Silurian shale with an average thickness of 50m and a total organic matter of 6% (14% in some cases). Results of maturation modeling indicate that the lower Silurian source is in the oil window. The Ordovician shales are also a source rock, but in a second order. Clastic reservoirs are in the Triassic sequence which is mainly fluvial deposits with complex alluvial channels, it is the main target in the basin. Clastic reservoirs within the lower Devonian section have a good hydrocarbon potential in the east of the basin through a southwest-northeast orientation. The late Triassic-Early Jurassic evaporites overlie the Triassic clastic interval and extend over the entire Oued Mya Basin. This is considered as a super-seal evaporate package, which consists predominantly of anhydrite and halite. For Paleozoic targets, a large number of potential seals exist within the stratigraphic column. The authors infer that a large amount of the oil volume generated by the Silurian source rock from the beginning of Cretaceous until now, still not discovered could be trapped within structure closures and mixed or stratigraphic traps related to the fluvial Triassic sandstones, marine Devonian sands and Cambro-Ordovician reservoirs.« less

  13. Geology and hydrocarbon potential of the Oued Mya basin, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benamrane, O.; Messaoudi, M.; Messelles, H.

    1993-09-01

    The Oued Mya hydrocarbon system is located in the Sahara basin. It is one of the best producing basins in Algeria, along with the Ghadames and Illizi basins. The stratigraphic section consists of Paleozoic and Mesozoic, and is about 5000 m thick. This intracratonic basin is limited to the north by the Toughourt saddle, and to the west and east it is flanked by regional arches, Allal-Tilghemt and Amguid-Hassi Messaoud, which culminate in the super giant Hassi Messaoud and Hassi R'mel hydrocarbon accumulations, respectively, producing oil from the Cambrian sands and gas from the Trissic sands. The primary source rockmore » in this basin is lower Silurian shale, with an average thickness of 50 m and a total organic carbon of 6% (14% in some cases). Results of maturation modeling indicate that the lower Silurian source is in the oil window. The Ordovician shales are also source rocks, but in a second order. Clastic reservoirs are in the Trissic sequence, which is mainly fluvial deposits with complex alluvial channels, and the main target in the basin. Clastic reservoirs in the lower Devonian section have a good hydrocarbon potential east of the basin through a southwest-northwest orientation. The Late Trissic-Early Jurassic evaporites that overlie the Triassic clastic interval and extend over the entire Oued Mya basin, are considered to be a super-seal evaporite package, which consists predominantly of anhydrite and halite. For paleozoic targets, a large number of potential seals exist within the stratigraphic column. This super seal does not present oil dismigration possibilities. We can infer that a large amount of the oil generated by the Silurian source rock from the beginning of Cretaceous until now still is not discovered and significantly greater volumes could be trapped within structure closures and mixed or stratigraphic traps related to the fluvial Triassic sandstones, marine Devonian sands, and Cambrian-Ordovician reservoirs.« less

  14. Comparison of transgressive and regressive clastic reservoirs, late Albian Viking Formation, Alberta basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinson, G.E.

    1996-06-01

    Detailed stratigraphic analysis of hydrocarbon reservoirs from the Basal Colorado upwards through the Viking/Bow Island and Cardium formations indicates that the distributional trends, overall size and geometry, internal heterogeneity, and hydrocarbon productivity of the sand bodies are related directly to a transgressive-regressive (T-R) sequence stratigraphic model. The Viking Formation (equivalent to the Muddy Sandstone of Wyoming) contains examples of both transgressive and regressive reservoirs. Viking reservoirs can be divided into progradational shoreface bars associated with the regressive systems tract, and bar/sheet sands and estuary/channel deposits associated with the transgressive systems tract. Shoreface bars, usually consisting of fine- to medium-grained sandstones,more » are tens of kilometers long, kilometers in width, and in the order of five to ten meters thick. Transgressive bar and sheet sandstones range from coarse-grained to conglomeratic, and occur in deposits that are tens of kilometers long, several kilometers wide, and from less than one to four meters in thickness. Estuary and valley-fill reservoir sandstones vary from fine-grained to conglomeratic, occur as isolated bodies that have channel-like geometries, and are usually greater than 10 meters thick. From an exploration viewpoint the most prospective reservoir trends in the Viking Formation are those associated with transgressive systems tracts. In particular, bounding discontinuities between T-R systems tracts are the principal sites of the most productive hydrocarbon-bearing sandstones.« less

  15. The Sirte Basin province of Libya; Sirte-Zelten total petroleum system

    USGS Publications Warehouse

    Ahlbrandt, Thomas S.

    2001-01-01

    The Sirte (Sirt) Basin province ranks 13th among the world?s petroleum provinces, having known reserves of 43.1 bil-lion barrels of oil equivalent (36.7 billion barrels of oil, 37.7 tril-lion cubic feet of gas, 0.1 billion barrels of natural gas liquids). It includes an area about the size of the Williston Basin of the north-ern United States and southern Canada (?490,000 square kilome-ters). The province contains one dominant total petroleum system, the Sirte-Zelten, based on geochemical data. The Upper Cretaceous Sirte Shale is the primary hydrocarbon source bed. Reservoirs range in rock type and age from fractured Precam-brian basement, clastic reservoirs in the Cambrian-Ordovician Gargaf sandstones, and Lower Cretaceous Nubian (Sarir) Sand-stone to Paleocene Zelten Formation and Eocene carbonates commonly in the form of bioherms. More than 23 large oil fields (>100 million barrels of oil equivalent) and 16 giant oil fields (>500 million barrels of oil equivalent) occur in the province. Abstract 1 Production from both clastic and carbonate onshore reservoirs is associated with well-defined horst blocks related to a triple junc-tion with three arms?an eastern Sarir arm, a northern Sirte arm, and a southwestern Tibesti arm. Stratigraphic traps in combina-tion with these horsts in the Sarir arm are shown as giant fields (for example, Messla and Sarir fields in the southeastern portion of the province). Significant potential is identified in areas marginal to the horsts, in the deeper grabens and in the offshore area. Four assessment units are defined in the Sirte Basin prov-ince, two reflecting established clastic and carbonate reservoir areas and two defined as hypothetical units. Of the latter, one is offshore in water depths greater than 200 meters, and the other is onshore where clastic units, mainly of Mesozoic age, may be res-ervoirs for laterally migrating hydrocarbons that were generated in the deep-graben areas. The Sirte Basin reflects significant rifting

  16. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

  17. Fluvial reservoir architecture in the Malay Basin: Opportunities and challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elias, M.R.; Dharmarajan, K.

    1994-07-01

    Miocene fluvial sandstones are significant hydrocarbon-bearing reservoirs in the Malay Basin. These include high energy, braided stream deposits of group K, associated with late development of extensional half grabens and relatively lower energy, meandering, and anastomosing channel deposits of group I formed during the subsequent basin sag phase. Group K reservoirs are typically massive, commonly tens of meters thick, and cover an extensive part of the Malay Basin. These reservoirs have good porosity and permeability at shallow burial depths. However, reservoir quality deteriorates rapidly with increasing depth. Lateral and vertical reservoir continuity is generally good within a field, commonly formingmore » a single system. Good water drive enhances recovery. Seismic modeling to determine fluid type and the extent of interfluvial shales is possible due to reservoir homogeneity.« less

  18. Reservoirs operation and water resources utilization coordination in Hongshuihe basin

    NASA Astrophysics Data System (ADS)

    Li, Chonghao; Chi, Kaige; Pang, Bo; Tang, Hongbin

    2018-06-01

    In the recent decade, the demand for water resources has been increasing with the economic development. The reservoirs of cascade hydropower stations in Hongshuihe basin, which are constructed with a main purpose of power generation, are facing more integrated water resources utilization problem. The conflict between power generation of cascade reservoirs and flood control, shipping, environmental protection and water supply has become increasingly prominent. This paper introduces the general situation and integrated water demand of cascade reservoirs in Hongshuihe basin, and it analyses the impact of various types of integrated water demand on power generation and supply. It establishes mathematic models, constrained by various types of integrated water demand, to guide the operation and water resources utilization management of cascade reservoirs in Hongshuihe basin. Integrated water coordination mechanism of Hongshuihe basin is also introduced. It provides a technical and management guide and demonstration for cascade reservoirs operation and integrated water management at home and abroad.

  19. Deep-water facies and petrography of the Galoc clastic unit, offshore Palawan, Philippines (south China Sea)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, M.H.; Helmold, K.P.

    1988-02-01

    The lower Miocene Galoc clastic unit, offshore Palawan, Philippines, is about 500-600 ft thick. The unit overlies the Galoc Limestone and is overlain by the Pelitic Pagasa Formation. The Galoc clastic unit consists of alternating quartzose sandstone, mudstone, and resedimented carbonate deposited at bathyal depths, mainly as turbidites. The deep-water deposits are confined to the axis of a northeast-trending trough in which slope, submarine channel, interchannel, depositional lobe, slump, and basinal facies are recognized. Eroded shallow-marine carbonate lithoclasts are commonly incorporated within the siliciclastic turbidites. The main reservoir sandstones occur in submarine channels and depositional lobes. The sandstones are texturallymore » submature, very fine to medium-grained feldspathic litharenites and subarkoses. The sandstones have detrital modes of Q78:F11:L11 and Qm51:F11:Lt38, with partial modes of the monocrystalline components of Qm82:P13:K5. Lithic fragments include chert, shale, schist, volcanic rock fragments, and minor plutonic rock fragments. Porosity in the better reservoir sandstones ranges from 11 to 25%, and calcite is the dominant cement. Dissolution textures and inhomogeneity of calcite distribution suggest that at least half of the porosity in the sandstones has formed through the leaching of calcite cement and labile framework grains. A source terrain of quartzo-feldspathic sediments and metasediments, chert, volcanics, and acid-intermediate plutonic rocks is visualized.« less

  20. Assessment of Deep Seated Geothermal Reservoirs in Selected European Sedimentary Environments

    NASA Astrophysics Data System (ADS)

    Ungemach, Pierre; Antics, Miklos

    2014-05-01

    Europe at large enjoys a variety of sedimentary environments. They most often host dependable geothermal reservoirs thus favouring the farming of hot fluids, within the low to medium enthalpy range, among which geothermal district heating (GDH) and combined heat and power (CHP) undertakings hold a dominant share. Three selected reservoir settings, addressing carbonate and clastic deposits, the Central part of the Paris Basin, the Southern Germany Molasse Basin in the Münich area and the Netherland Basin respectively will be presented and the exploratory, modeling and development strategies discussed accordingly. Whereas 2D (reprocessed) and 3D seismics have become a standard in matching the distinctive (reef facies, an echelon faulting, carbonate platform layering) features of a deep buried karst and a key to drilling success in the Molasse Basin, thus emphasizing a leading exploratory rationale, the Netherland and Paris Basin instead benefit from a mature data base inherited from extensive hydrocarbon exploration campaigns, with concerns focused on reservoir modeling and sustainable management issues. As a result the lessons learned from the foregoing have enabled to build up a nucleus of expertise in the whole chain from resource identification to reservoir assessment and market penetration. The seismic risk, indeed a sensitive though somewhat emotional issue, which is requiring special attention and due microseismic monitoring from the geothermal community will also be commented.

  1. Reservoir Performance Under Future Climate For Basins With Different Hydrologic Sensitivities

    NASA Astrophysics Data System (ADS)

    Mateus, M. C.; Tullos, D. D.

    2013-12-01

    In addition to long-standing uncertainties related to variable inflows and market price of power, reservoir operators face a number of new uncertainties related to hydrologic nonstationarity, changing environmental regulations, and rapidly growing water and energy demands. This study investigates the impact, sensitivity, and uncertainty of changing hydrology on hydrosystem performance across different hydrogeologic settings. We evaluate the performance of reservoirs in the Santiam River basin, including a case study in the North Santiam Basin, with high permeability and extensive groundwater storage, and the South Santiam Basin, with low permeability, little groundwater storage and rapid runoff response. The modeling objective is to address the following study questions: (1) for the two hydrologic regimes, how does the flood management, water supply, and environmental performance of current reservoir operations change under future 2.5, 50 and 97.5 percentile streamflow projections; and (2) how much change in inflow is required to initiate a failure to meet downstream minimum or maximum flows in the future. We couple global climate model results with a rainfall-runoff model and a formal Bayesian uncertainty analysis to simulate future inflow hydrographs as inputs to a reservoir operations model. To evaluate reservoir performance under a changing climate, we calculate reservoir refill reliability, changes in flood frequency, and reservoir time and volumetric reliability of meeting minimum spring and summer flow target. Reservoir performance under future hydrology appears to vary with hydrogeology. We find higher sensitivity to floods for the North Santiam Basin and higher sensitivity to minimum flow targets for the South Santiam Basin. Higher uncertainty is related with basins with a more complex hydrologeology. Results from model simulations contribute to understanding of the reliability and vulnerability of reservoirs to a changing climate.

  2. Water-quality conditions and relation to drainage-basin characteristics in the Scituate Reservoir Basin, Rhode Island, 1982-95

    USGS Publications Warehouse

    Breault, Robert F.; Waldron, Marcus C.; Barlow, Lora K.; Dickerman, David C.

    2000-01-01

    The Scituate Reservoir Basin covers about 94 square miles in north central Rhode Island and supplies more than 60 percent of the State of Rhode Island's drinking water. The basin includes the Scituate Reservoir Basin and six smaller tributary reservoirs with a combined capacity of about 40 billion gallons. Most of the basin is forested and undeveloped. However, because of its proximity to the Providence, Rhode Island, metropolitan area, the basin is subject to increasing development pressure and there is concern that this may lead to the degradation of the water supply. Selected water-quality constituent concentrations, loads, and trends in the Scituate Reservoir Basin, Rhode Island, were investigated locate parts of the basin likely responsible for exporting disproportionately large amounts of water-quality constituents to streams, rivers, and tributary reservoirs, and to determine whether water quality in the basin has been changing with time. Water-quality data collected between 1982 and 1995 by the Providence Water Supply Board PWSB) in 34 subbasins of the Scituate Reservoir Basin were analyzed. Subbasin loads and yields of total coliform bacteria, chloride, nitrate, iron, and manganese, estimated from constituent concentrations and estimated mean daily discharge records for the 1995 water year, were used to determine which subbasins contributed disproportionately large amounts of these constituents. Measurements of pH, color, turbidity, and concentrations of total coliform bacteria, sodium, alkalinity, chloride, nitrate, orthophosphate, iron, and manganese made between 1982 and 1995 by the PWSB were evaluated for trends. To determine the potential effects of human-induced changes in drainage- basin characteristics on water quality in the basin, relations between drainage-basin characteristics and concentrations of selected water-quality constituents also were investigated. Median values for pH, turbidity, total coliform bacteria, sodium, alkalinity, chloride

  3. Petroleum geology and resources of the North Caspian Basin, Kazakhstan and Russia

    USGS Publications Warehouse

    Ulmishek, Gregory F.

    2001-01-01

    on the Kashagan structure offshore in the Caspian Sea is probably also of the supergiant status. Major oil and gas reserves are located in carbonate reservoirs in reefs and structural traps of the subsalt sequence. Substantially smaller reserves are located in numerous fields in the suprasalt sequence. These suprasalt fields are largely in shallow Jurassic and Cretaceous clastic reservoirs in salt dome-related traps. Petroleum source rocks are poorly identified by geochemical methods. However, geologic data indicate that the principal source rocks are Upper Devonian to Lower Permian deep-water black-shale facies stratigraphically correlative to shallow-shelf carbonate platforms on the basin margins. The main stage of hydrocarbon generation was probably in Late Permian and Triassic time, during deposition of thick orogenic clastics. Generated hydrocarbons migrated laterally into adjacent subsalt reservoirs and vertically, through depressions between Kungurian salt domes where the salt is thin or absent, into suprasalt clastic reservoirs. Six assessment units have been identified in the North Caspian basin. Four of them include Paleozoic subsalt rocks of the basin margins, and a fifth unit, which encompasses the entire total petroleum system area, includes the suprasalt sequence. All five of these assessment units are underexplored and have significant potential for new discoveries. Most undiscovered petroleum resources are expected in Paleozoic subsalt carbonate rocks. The assessment unit in subsalt rocks with the greatest undiscovered potential occupies the south basin margin. Petroleum potential of suprasalt rocks is lower; however, discoveries of many small to medium size fields are expected. The sixth identified assessment unit embraces subsalt rocks of the central basin areas. The top of subsalt rocks in these areas occurs at depths ranging from 7 to 10 kilometers and has not been reached by wells. Undiscovered resources of this unit did not rec

  4. Mixing of biogenic siliceous and terrigenous clastic sediments: South Belridge field and Beta field, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, D.E.

    1990-05-01

    The intermixing and interbedding of biogenically derived siliceous sediment with terrigenous clastic sediment in reservoirs of upper Miocene age provides both reservoir rock and seal and influences productivity by affecting porosity and permeability. Miocene reservoirs commonly contain either biogenic-dominated cyclic diatomite, porcelanite, or chert (classic Monterey Formation) or clastic-dominated submarine fan sequences with interbedded or intermixed siliceous members of biogenic origin. Biogenic-clastic cycles, 30-180 ft thick, at South Belridge field were formed by episodic influx of clastic sediment from distant submarine fans mixing with slowly accumulating diatomaceous ooze. The cycles consist of basal silt and pelletized massive diatomaceous mudstone, overlainmore » by burrowed, faintly bedded clayey diatomite and topped by laminated diatomite. Cycle tops have higher porosity and permeability, lower grain density, and higher oil saturation than clay and silt-rich portions of the cycles. Submarine fan sediments forming reservoirs at the Beta field are comprised of interbedded sands and silts deposited in a channelized middle fan to outer fan setting. Individual turbidites display fining-upward sequences, with oil-bearing sands capped by wet micaceous silts. Average sands are moderately to poorly sorted, fine- to medium-grained arkosic arenites. Sands contain pore-filling carbonate and porcelaneous cements. Porcelaneous cement consists of a mixture of opal-A, opal-CT, and chert with montmorillonite and minor zeolite. This cement is an authigenic material precipitated in intergranular pore space. The origin of the opal is biogenic, with recrystallization of diatom frustules (opal-A) into opal-CT lepispheres and quartz crystals. Porcelaneous cement comprises 4-21% of the bulk volume of the rock. Seventy percent of the bulk volume of the cement is micropore space.« less

  5. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  6. Petroleum geology and resources of the West Siberian Basin, Russia

    USGS Publications Warehouse

    Ulmishek, Gregory F.

    2003-01-01

    during Neocomian time. The clastic material was transported by a system of rivers dominantly from the eastern provenance. Sandstones within the Neocomian clinoforms contain the principal oil reservoirs. The thick continental Aptian?Cenomanian Pokur Formation above the Neocomian sequence contains giant gas reserves in the northern part of the basin. Three total petroleum systems are identified in the West Siberian basin. Volumes of discovered hydrocarbons in these systems are 144 billion barrels of oil and more than 1,300 trillion cubic feet of gas. The assessed mean undiscovered resources are 55.2 billion barrels of oil, 642.9 trillion cubic feet of gas, and 20.5 billion barrels of natural gas liquids. The largest known oil reserves are in the Bazhenov-Neocomian total petroleum system that includes Upper Jurassic and younger rocks of the central and southern parts of the basin. Oil reservoirs are mainly in Neocomian and Upper Jurassic clastic strata. Source rocks are organic-rich siliceous shales of the Bazhenov Formation. Most discovered reserves are in structural traps, but stratigraphic traps in the Neocomian clinoform sequence are pro-ductive and are expected to contain much of the undiscovered resources. Two assessment units are identified in this total petroleum system. The first assessment unit includes all conventional reservoirs in the stratigraphic interval from the Upper Jurassic to the Cenomanian. The second unit includes unconventional (or continuous), self-sourced, fractured reservoirs in the Bazhenov Formation. This unit was not assessed quantitatively. The Togur-Tyumen total petroleum system covers the same geographic area as the Bazhenov-Neocomian system, but it includes older, Lower?Middle Jurassic strata and weathered rocks at the top of the pre-Jurassic sequence. A Callovian regional shale seal of the Abalak and lower Vasyugan Formations separates the two systems. The Togur-Tyumen system is oil-prone; gas reserves are insignificant. The principal o

  7. Facies heterogeneity, pay continuity, and infill potential in barrier-island, fluvial, and submarine fan reservoirs: examples from the Texas Gulf Coast and Midland basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrose, W.A.; Tyler, N.

    1989-03-01

    Three reservoirs representing different depositional environments - barrier island (West Ranch field, south-central Texas), fluvial (La Gloria field, south Texas), and submarine fan (Spraberry trend, Midland basin) - illustrate variations in reservoir continuity. Pay continuity methods based on facies geometry and variations in permeability and thickness between wells can quantify reservoir heterogeneity in each of these examples. Although barrier-island reservoirs are relatively homogeneous, West Ranch field contains wide (1000-5000 ft or 300-1500 m) dip-parallel belts of lenticular inlet-fill facies that disrupt reservoir continuity in the main barrier-core facies. Other reservoir compartments in West Ranch field are in flood-tidal delta depositsmore » partly encased in lagoonal mudstones updip of the barrier core. Fluvial reservoirs have a higher degree of internal complexity than barrier-island reservoirs. In La Gloria field, reservoirs exhibit significant heterogeneity in the form of numerous sandstone stringers bounded vertically and laterally by thin mudstone layers. Successful infill wells in La Gloria field contact partly drained reservoir compartments in splay deposits that pinch out laterally into flood-plain mudstones. Recompletions in vertically isolated sandstone stringers in La Gloria field contact other reservoir compartments. Submarine fan deposits are extremely heterogeneous and may have the greatest potential for infill drilling to tap isolated compartments in clastic reservoirs. The Spraberry trend contains thin discontinuous reservoir sandstones deposited in complex mid-fan channels. Although facies relationships in Spraberry reservoirs are similar to those in fluvial reservoirs in La Gloria field, individual pay stringers are thinner and more completely encased in low-permeability mudstone facies.« less

  8. Sedimentation and basin-fill history of the Neogene clastic succession exposed in the southeastern fold belt of the Bengal Basin, Bangladesh: a high-resolution sequence stratigraphic approach

    NASA Astrophysics Data System (ADS)

    Royhan Gani, M.; Mustafa Alam, M.

    2003-02-01

    The Tertiary basin-fill history of the Bengal Basin suffers from oversimplification. The interpretation of the sedimentary history of the basin should be consistent with the evolution of its three geo-tectonic provinces, namely, western, northeastern and eastern. Each province has its own basin generation and sediment-fill history related mainly to the Indo-Burmese and subordinately to the Indo-Tibetan plate convergence. This paper is mainly concerned with facies and facies sequence analysis of the Neogene clastic succession within the subduction-related active margin setting (oblique convergence) in the southeastern fold belt of the Bengal Basin. Detailed fieldwork was carried out in the Sitapahar anticline of the Rangamati area and the Mirinja anticline of the Lama area. The study shows that the exposed Neogene succession represents an overall basinward progradation from deep marine through shallow marine to continental-fluvial environments. Based on regionally correlatable erosion surfaces the entire succession (3000+ m thick) has been grouped into three composite sequences C, B and A, from oldest to youngest. Composite sequence C begins with deep-water base-of-slope clastics overlain by thick slope mud that passes upward into shallow marine and nearshore clastics. Composite sequence B characteristically depicts tide-dominated open-marine to coastal depositional systems with evidence of cyclic marine regression and transgression. Repetitive occurrence of incised channel, tidal inlet, tidal ridge/shoal, tidal flat and other tidal deposits is separated by shelfal mudstone. Most of the sandbodies contain a full spectrum of tide-generated structures (e.g. herringbone cross-bedding, bundle structure, mud couplet, bipolar cross-lamination with reactivation surfaces, 'tidal' bedding). Storm activities appear to have played a subordinate role in the mid and inner shelf region. Rizocorallium, Rosselia, Planolites and Zoophycos are the dominant ichnofacies within the

  9. Sedimentology and genetic stratigraphy of Dean and Spraberry Formations (Permian), Midland basin, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handford, C.R.

    1981-09-01

    The Spraberry trend of west Texas, once known as the world's largest uneconomic oil field, will undoubtedly become an increasingly important objective for the development of enhanced oil recovery techniques in fine-grained, low-permeability, low-pressure reservoirs. As the trend expands, facies and stratigraphic data should be integrated into exploration strategies. The Spraberry and Dean Formations may be divided into three genetic sequences, each consisting of several hundred feet of interbedded shale and carbonate overlain by a roughly equal amount of sandstone and siltstone. These sequences record episodes of shelf-margin progradation, deep-water resedimentation of shelf-derived carbonate debris, followed by influxes of terrigenousmore » clastics into the basin by way of feeder channels or submarine canyons, and suspension settling of fine-grained sediment from the water column. Four lithofacies comprise the terrigenous clastics of the Spraberry and Dean Fomations: (1) cross-laminated, massive, and parallel-laminated sandstone, (2) laminated siltstone, (3) bioturbated siltstone, and (4) black, organic-rich shale. Carbonate lithofacies occur mostly in the form of thin-bedded turbidites, slump, and debris-flow deposits. Terrigenous clastic rocks display facies sequences, isopach patterns, and sedimentary structures suggestive of deposition from turbidity currents, and long-lived saline density underflow and interflow currents. Clastic isopach patterns reflect an overall southward thinning of clastics in the Midland basin. Channelized flow and suspension settling were responsible for the formation of elongate fan-shaped accumulations of clastic sediments.« less

  10. Ground Penetrating Radar Imaging of Ancient Clastic Deposits: A Tool for Three-Dimensional Outcrop Studies

    NASA Astrophysics Data System (ADS)

    Akinpelu, Oluwatosin Caleb

    The growing need for better definition of flow units and depositional heterogeneities in petroleum reservoirs and aquifers has stimulated a renewed interest in outcrop studies as reservoir analogues in the last two decades. Despite this surge in interest, outcrop studies remain largely two-dimensional; a major limitation to direct application of outcrop knowledge to the three dimensional heterogeneous world of subsurface reservoirs. Behind-outcrop Ground Penetrating Radar (GPR) imaging provides high-resolution geophysical data, which when combined with two dimensional architectural outcrop observation, becomes a powerful interpretation tool. Due to the high resolution, non-destructive and non-invasive nature of the GPR signal, as well as its reflection-amplitude sensitivity to shaly lithologies, three-dimensional outcrop studies combining two dimensional architectural element data and behind-outcrop GPR imaging hold significant promise with the potential to revolutionize outcrop studies the way seismic imaging changed basin analysis. Earlier attempts at GPR imaging on ancient clastic deposits were fraught with difficulties resulting from inappropriate field techniques and subsequent poorly-informed data processing steps. This project documents advances in GPR field methodology, recommends appropriate data collection and processing procedures and validates the value of integrating outcrop-based architectural-element mapping with GPR imaging to obtain three dimensional architectural data from outcrops. Case studies from a variety of clastic deposits: Whirlpool Formation (Niagara Escarpment), Navajo Sandstone (Moab, Utah), Dunvegan Formation (Pink Mountain, British Columbia), Chinle Formation (Southern Utah) and St. Mary River Formation (Alberta) demonstrate the usefulness of this approach for better interpretation of outcrop scale ancient depositional processes and ultimately as a tool for refining existing facies models, as well as a predictive tool for subsurface

  11. Reservoir heterogeneity in Carboniferous sandstone of the Black Warrior basin. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kugler, R.L.; Pashin, J.C.; Carroll, R.E.

    1994-04-01

    Although oil production in the Black Warrior basin of Alabama is declining, additional oil may be produced through improved recovery strategies, such as waterflooding, chemical injection, strategic well placement, and infill drilling. High-quality characterization of reservoirs in the Black Warrior basin is necessary to utilize advanced technology to recover additional oil and to avoid premature abandonment of fields. This report documents controls on the distribution and producibility of oil from heterogeneous Carboniferous reservoirs in the Black Warrior basin of Alabama. The first part of the report summarizes the structural and depositional evolution of the Black Warrior basin and establishes themore » geochemical characteristics of hydrocarbon source rocks and oil in the basin. This second part characterizes facies heterogeneity and petrologic and petrophysical properties of Carter and Millerella sandstone reservoirs. This is followed by a summary of oil production in the Black Warrior basin and an evaluation of seven improved-recovery projects in Alabama. In the final part, controls on the producibility of oil from sandstone reservoirs are discussed in terms of a scale-dependent heterogeneity classification.« less

  12. Petroleum geology and resources of the North Ustyurt Basin, Kazakhstan and Uzbekistan

    USGS Publications Warehouse

    Ulmishek, Gregory F.

    2001-01-01

    The triangular-shaped North Ustyurt basin is located between the Caspian Sea and the Aral Lake in Kazakhstan and Uzbekistan and extends offshore both on the west and east. Along all its sides, the basin is bounded by the late Paleozoic and Triassic foldbelts that are partially overlain by Jurassic and younger rocks. The basin formed on a cratonic microcontinental block that was accreted northward to the Russian craton in Visean or Early Permian time. Continental collision and deformation along the southern and eastern basin margins occurred in Early Permian time. In Late Triassic time, the basin was subjected to strong compression that resulted in intrabasinal thrusting and faulting. Jurassic-Tertiary, mostly clastic rocks several hundred meters to 5 km thick overlie an older sequence of Devonian?Middle Carboniferous carbonates, Upper Precambrian massifs and deformed Caledonian foldbelts. The Carboniferous?Lower Permian clastics, carbonates, and volca-basement is at depths from 5.5 km on the highest uplifts to 11 nics, and Upper Permian?Triassic continental clastic rocks, pri-km in the deepest depressions. marily red beds. Paleogeographic conditions of sedimentation, Three total petroleum systems are identified in the basin. the distribution of rock types, and the thicknesses of pre-Triassic Combined volumes of discovered hydrocarbons in these sysstratigraphic units are poorly known because the rocks have been tems are nearly 2.4 billion barrels of oil and 2.4 trillion cubic penetrated by only a few wells in the western and eastern basin feet of gas. Almost all of the oil reserves are in the Buzachi Arch areas. The basement probably is heterogeneous; it includes and Surrounding Areas Composite Total Petroleum System in 2 Petroleum Geology, Resources?North Ustyurt Basin, Kazakhstan and Uzbekistan the western part of the basin. Oil pools are in shallow Jurassic and Neocomian sandstone reservoirs, in structural traps. Source rocks are absent in the total petroleum

  13. Restoration of original 3D sedimentary geometries in deformed basin fill supporting reservoir characterization

    NASA Astrophysics Data System (ADS)

    Back, S.

    2009-04-01

    A large progradational clastic system centred on Brunei Darussalam has been present on the NW Borneo margin since the early middle Miocene. This system has many sedimentary and structural similarities with major deltaic provinces such as the Niger and Nile. It differs from these systems by being affected in the hinterland by contemporaneous compressional tectonics. Uplift partially forced strong progradation of the clastic system, but also folded older deltaic units. Erosion and the exhumation of folded strata in the area of the Jerudong Anticline resulted in the exposure of large-scale prograding clinoforms and syn-sedimentary deltaic faults of middle Miocene age along a natural cross-section of several tens of kilometres in extent. Westward of the key outcrop sites on the Jerudong Anticline, the middle Miocene deltaic units are overlain by late Miocene, Pliocene and Quaternary clastics up to 3 kilometres thick. Both, the middle Miocene target units of this study as well as the late Miocene to recent overburden are recorded in the subsurface of the Belait Syncline on regional 2D seismic lines (total line length around 1400 km) and at 7 well locations. In this study, we integrate the available geophysical subsurface information with existing structural, sedimentological and geomorphological field data of the "classic" Jerudong Anticline exposures (e.g., Back et al. 2001, Morley et al. 2003, Back et al. 2005) into a static 3D surface-subsurface model that provides quantitative constraints on the structural and stratigraphic architecture of the Miocene Belait delta and the overlying units in three dimensions, supporting basin-scale as well as reservoir-scale analysis of the subsurface rock volume. Additionally, we use the static surface-subsurface model as input for a tectonic retro-deformation of the study area, in which the 3D paleo-relief of the middle Miocene Belait delta is restored by unfolding and fault balancing (Back et al. 2008). This kinematic

  14. Hydrodynamics of coalbed methane reservoirs in the Black Warrior Basin: Key to understanding reservoir performance and environmental issues

    USGS Publications Warehouse

    Pashin, J.C.

    2007-01-01

    The Black Warrior Basin of the southeastern United States hosts one of the world's most prolific and long-lived coalbed methane plays, and the wealth of experience in this basin provides insight into the relationships among basin hydrology, production performance, and environmental issues. Along the southeast margin of the basin, meteoric recharge of reservoir coal beds exposed in an upturned fold limb exerts a strong control on water chemistry, reservoir pressure, and production performance. Fresh-water plumes containing Na-HCO3 waters with low TDS content extend from the structurally upturned basin margin into the interior of the basin. Northwest of the plumes, coal beds contain Na-Cl waters with moderate to high-TDS content. Carbon isotope data from produced gas and mineral cements suggest that the fresh-water plumes have been the site of significant bacterial activity and that the coalbed methane reservoirs contain a mixture of thermogenic and late-stage biogenic gases. Water produced from the fresh-water plumes may be disposed safely at the surface, whereas underground injection has been used locally to dispose of highly saline water. Wells in areas that had normal hydrostatic reservoir pressure prior to development tend to produce large volumes of water and may take up to 4 a to reach peak gas production. In contrast, wells drilled in naturally underpressured areas distal to the fresh-water plumes typically produce little water and achieve peak gas rates during the first year of production. Environmental debate has focused largely on issues associated with hydrologic communication between deep reservoir coal beds and shallow aquifers. In the coalbed methane fields of the Black Warrior Basin, a broad range of geologic evidence suggests that flow is effectively confined within coal and that the thick intervals of marine shale separating coal zones limit cross-formational flow. ?? 2007 Elsevier Ltd. All rights reserved.

  15. Reservoir Characterization for Unconventional Resource Potential, Pitsanulok Basin, Onshore Thailand

    NASA Astrophysics Data System (ADS)

    Boonyasatphan, Prat

    The Pitsanulok Basin is the largest onshore basin in Thailand. Located within the basin is the largest oil field in Thailand, the Sirikit field. As conventional oil production has plateaued and EOR is not yet underway, an unconventional play has emerged as a promising alternative to help supply the energy needs. Source rocks in the basin are from the Oligocene lacustrine shale of the Chum Saeng Formation. This study aims to quantify and characterize the potential of shale gas/oil development in the Chum Saeng Formation using advanced reservoir characterization techniques. The study starts with rock physics analysis to determine the relationship between geophysical, lithological, and geomechanical properties of rocks. Simultaneous seismic inversion is later performed. Seismic inversion provides spatial variation of geophysical properties, i.e. P-impedance, S-impedance, and density. With results from rock physics analysis and from seismic inversion, the reservoir is characterized by applying analyses from wells to the inverted seismic data. And a 3D lithofacies cube is generated. TOC is computed from inverted AI. Static moduli are calculated. A seismic derived brittleness cube is calculated from Poisson's ratio and Young's modulus. The reservoir characterization shows a spatial variation in rock facies and shale reservoir properties, including TOC, brittleness, and elastic moduli. From analysis, the most suitable location for shale gas/oil pilot exploration and development are identified. The southern area of the survey near the MD-1 well with an approximate depth around 650-850 m has the highest shale reservoir potential. The shale formation is thick, with intermediate brittleness and high TOC. These properties make it as a potential sweet spot for a future shale reservoir exploration and development.

  16. Selenium in Reservoir Sediment from the Republican River Basin

    USGS Publications Warehouse

    Juracek, Kyle E.; Ziegler, Andrew C.

    1998-01-01

    Reservoir sediment quality is an important environmental concern because sediment may act as both a sink and a source of water-quality constituents to the overlying water column and biota. Once in the food chain, sediment-derived constituents may pose an even greater concern due to bioaccumulation. An analysis of reservoir bottom sediment can provide historical information on sediment deposition as well as magnitudes and trends in constituents that may be related to changes in human activity in the basin. The assessment described in this fact sheet was initiated in 1997 by the U.S. Geological Survey (USGS), in cooperation with the Bureau of Reclamation (BOR), U.S. Department of the Interior, to determine if irrigation activities have affected selenium concentrations in reservoir sediment of the Republican River Basin of Colorado, Kansas, and Nebraska.

  17. Ghaba salt basin province and Fahud salt basin province, Oman; geological overview and total petroleum systems

    USGS Publications Warehouse

    Pollastro, Richard M.

    1999-01-01

    Three Total Petroleum Systems each consisting of one assessment unit have been identified in the Ghaba and Fahud Salt Basin Provinces of north-central Oman. One Total Petroleum System and corresponding assessment unit, the North Oman Huqf/?Q??Haushi(!) Total Petroleum System (201401) and Ghaba- Makarem Combined Structural Assessment Unit (20140101), were identified for the Ghaba Salt Basin Province (2014). In the Fahud Salt Basin Province, however, two overlapping Total Petroleum Systems (TPS) were recognized: (1) the North Oman Huqf?Shu?aiba(!) TPS (201601); Fahud-Huqf Combined Structural Assessment Unit (20160101), and (2) the middle Cretaceous Natih(!) TPS (201602); Natih-Fiqa Structural/Stratigraphic Assessment Unit (20160201). The boundary for each Total Petroleum System also defines the boundary of the corresponding assessment unit and includes all trap styles and hydrocarbon-producing reservoirs within the petroleum system. In both the Ghaba and Fahud Salt Basin Provinces, hydrocarbons were generated from several deeply buried source rocks within the Infracambrian Huqf Supergroup. One general ?North Oman Huqf? type oil is dominant in the Fahud Salt Basin. Oils in the Ghaba Salt Basin are linked to at least two distinct Huqf source-rock units based on oil geochemistry: a general North Oman Huqf-type oil source and a more dominant ?questionable unidentified source? or ?Q?-type Huqf oil source. These two Huqf-sourced oils are commonly found as admixtures in reservoirs throughout northcentral Oman. Hydrocarbons generated from Huqf sources are produced from a variety of reservoir types and ages ranging from Precambrian to Cretaceous in both the Ghaba and Fahud Salt Basin Provinces. Clastic reservoirs of the Gharif and Al Khlata Formations, Haushi Group (middle Carboniferous to Lower Permian), dominate oil production in the Ghaba Salt Basin Province and form the basis for the Huqf/?Q??Haushi(!) TPS. In contrast, the Lower Cretaceous Shu?aiba and middle Cretaceous

  18. Ghaba salt basin province and Fahud salt basin province, Oman; geological overview and total petroleum systems

    USGS Publications Warehouse

    Pollastro, R.M.

    1999-01-01

    Three Total Petroleum Systems each consisting of one assessment unit have been identified in the Ghaba and Fahud Salt Basin Provinces of north-central Oman. One Total Petroleum System and corresponding assessment unit, the North Oman Huqf/`Q'? Haushi(!) Total Petroleum System (201401) and Ghaba-Makarem Combined Structural Assessment Unit (20140101), were identified for the Ghaba Salt Basin Province (2014). In the Fahud Salt Basin Province, however, two overlapping Total Petroleum Systems (TPS) were recognized: 1) the North Oman Huqf ? Shu'aiba(!) TPS (201601); Fahud-Huqf Combined Structural Assessment Unit (20160101), and 2) the Middle Cretaceous Natih(!) TPS (201602); Natih-Fiqa Structural/Stratigraphic Assessment Unit (20160201). The boundary for each Total Petroleum System also defines the boundary of the corresponding assessment unit and includes all trap styles and hydrocarbon producing reservoirs within the petroleum system. In both the Ghaba and Fahud Salt Basin Provinces, hydrocarbons were generated from several deeply-buried source rocks within the Infracambrian Huqf Supergroup. One general `North Oman Huqf' type oil is dominant in the Fahud Salt Basin. Oils in the Ghaba Salt Basin are linked to at least two distinct Huqf source-rock units based on oil geochemistry: a general North Oman Huqf-type oil source and a more dominant `questionable unidentified-source' or `Q'-type Huqf oil source. These two Huqf-sourced oils are commonly found as admixtures in reservoirs throughout north-central Oman. Hydrocarbons generated from Huqf sources are produced from a variety of reservoir types and ages ranging from Precambrian to Cretaceous in both the Ghaba and Fahud Salt Basin Provinces. Clastic reservoirs of the Gharif and Al Khlata Formations, Haushi Group (M. Carboniferous to L. Permian), dominate oil production in the Ghaba Salt Basin Province and form the basis for the Huqf/`Q' ? Haushi(!) TPS. In contrast, the Lower Cretaceous Shu'aiba and Middle Cretaceous

  19. Two-dimensional simulation of clastic and carbonate sedimentation, consolidation, subsidence, fluid flow, heat flow and solute transport during the formation of sedimentary basins

    NASA Astrophysics Data System (ADS)

    Bitzer, Klaus

    1999-05-01

    Geological processes that create sedimentary basins or act during their formation can be simulated using the public domain computer code `BASIN'. For a given set of geological initial and boundary conditions the sedimentary basin evolution is calculated in a forward modeling approach. The basin is represented in a two-dimensional vertical cross section with individual layers. The stratigraphic, tectonic, hydrodynamic and thermal evolution is calculated beginning at an initial state, and subsequent changes of basin geometry are calculated from sedimentation rates, compaction and pore fluid mobilization, isostatic compensation, fault movement and subsidence. The sedimentologic, hydraulic and thermal parameters are stored at discrete time steps allowing the temporal evolution of the basin to be analyzed. A maximum flexibility in terms of geological conditions is achieved by using individual program modules representing geological processes which can be switched on and off depending on the data available for a specific simulation experiment. The code incorporates a module for clastic and carbonate sedimentation, taking into account the impact of clastic sediment supply on carbonate production. A maximum of four different sediment types, which may be mixed during sedimentation, can be defined. Compaction and fluid flow are coupled through the consolidation equation and the nonlinear form of the equation of state for porosity, allowing nonequilibrium compaction and overpressuring to be calculated. Instead of empirical porosity-effective stress equations, a physically consistent consolidation model is applied which incorporates a porosity dependent sediment compressibility. Transient solute transport and heat flow are calculated as well, applying calculated fluid flow rates from the hydraulic model. As a measure for hydrocarbon generation, the Time-Temperature Index (TTI) is calculated. Three postprocessing programs are available to provide graphic output in Post

  20. Electrofacies vs. lithofacies sandstone reservoir characterization Campanian sequence, Arshad gas/oil field, Central Sirt Basin, Libya

    NASA Astrophysics Data System (ADS)

    Burki, Milad; Darwish, Mohamed

    2017-06-01

    The present study focuses on the vertically stacked sandstones of the Arshad Sandstone in Arshad gas/oil field, Central Sirt Basin, Libya, and is based on the conventional cores analysis and wireline log interpretation. Six lithofacies types (F1 to F6) were identified based on the lithology, sedimentary structures and biogenic features, and are supported by wireline log calibration. From which four types (F1-F4) represent the main Campanian sandstone reservoirs in the Arshad gas/oil field. Lithofacies F5 is the basal conglomerates at the lower part of the Arshad sandstones. The Paleozoic Gargaf Formation is represented by lithofacies F6 which is the source provenance for the above lithofacies types. Arshad sediments are interpreted to be deposited in shallow marginal and nearshore marine environment influenced by waves and storms representing interactive shelf to fluvio-marine conditions. The main seal rocks are the Campanian Sirte shale deposited in a major flooding events during sea level rise. It is contended that the syn-depositional tectonics controlled the distribution of the reservoir facies in time and space. In addition, the post-depositional changes controlled the reservoir quality and performance. Petrophysical interpretation from the porosity log values were confirmed by the conventional core measurements of the different sandstone lithofacies types. Porosity ranges from 5 to 20% and permeability is between 0 and 20 mD. Petrophysical cut-off summary of the lower part of the clastic dominated sequence (i. e. Arshad Sandstone) calculated from six wells includes net pay sand ranging from 19.5‧ to 202.05‧, average porosity from 7.7 to 15% and water saturation from 19 to 58%.

  1. Sedimentological reservoir characteristics of the Paleocene fluvial/lacustrine Yabus Sandstone, Melut Basin, Sudan

    NASA Astrophysics Data System (ADS)

    Mahgoub, M. I.; Padmanabhan, E.; Abdullatif, O. M.

    2016-11-01

    Melut Basin in Sudan is regionally linked to the Mesozoic-Cenozoic Central and Western African Rift System (CWARS). The Paleocene Yabus Formation is the main oil producing reservoir in the basin. It is dominated by channel sandstone and shales deposited in fluvial/lacustrine environment during the third phase of rifting in the basin. Different scales of sedimentological heterogeneities influenced reservoir quality and architecture. The cores and well logs analyses revealed seven lithofacies representing fluvial, deltaic and lacustrine depositional environments. The sandstone is medium to coarse-grained, poorly to moderately-sorted and sub-angular to sub-rounded, arkosic-subarkosic to sublitharenite. On the basin scale, the Yabus Formation showed variation in sandstone bodies, thickness, geometry and architecture. On macro-scale, reservoir quality varies vertically and laterally within Yabus Sandstone where it shows progressive fining upward tendencies with different degrees of connectivity. The lower part of the reservoir showed well-connected and amalgamated sandstone bodies, the middle to the upper parts, however, have moderate to low sandstone bodies' connectivity and amalgamation. On micro-scale, sandstone reservoir quality is directly affected by textures and diagenetic changes such as compaction, cementation, alteration, dissolution and kaolinite clays pore fill and coat all have significantly reduced the reservoir porosity and permeability. The estimated porosity in Yabus Formation ranges from 2 to 20% with an average of 12%; while permeability varies from 200 to 500 mD and up to 1 Darcy. The understanding of different scales of sedimentological reservoir heterogeneities might contribute to better reservoir quality prediction, architecture, consequently enhancing development and productivity.

  2. Mesozoic evolution of the Amu Darya basin

    NASA Astrophysics Data System (ADS)

    Brunet, Marie-Françoise; Ershov, Andrey; Korotaev, Maxim; Mordvintsev, Dmitriy; Barrier, Eric; Sidorova, Irina

    2014-05-01

    of the basin is occupied by the Pre-Kopet Dagh Cenozoic foreland basin NW oriented, possibly underlain by an earlier extensional trough. The main elements of the sedimentary pile, which can be partly observed in the South-Western Gissar are: Lower to Middle Jurassic continental to paralic clastic rocks; upper Middle to Upper Jurassic marine carbonate then thick Tithonian evaporite rocks, sealing the reservoirs in the Jurassic carbonates; continental Neocomian clastic rocks and red beds, Aptian to Paleogene marine carbonate and clastic rocks. To reconstruct the geodynamic evolution of the Amu Darya Basin, we analysed the subsidence by backstripping of some wells/pseudo-wells and of three cross-sections with some examples of thermal modelling on the periods of maturation of the potential source rocks. The crustal thinning events take place in the Permo-Triassic? (depending on the age of the rifts underlying the basin), in Early-Middle Jurassic and during the Early Cretaceous, resulting in increases of the tectonic subsidence rates.

  3. Lower permian reef-bank bodies’ characterization in the pre-caspian basin

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Wang, Yankun; Yin, Jiquan; Luo, Man; Liang, Shuang

    2018-02-01

    Reef-bank reservoir is one of the targets for exploration of marine carbonate rocks in the Pre-Caspian Basin. Within this basin, the reef-bank bodies were primarily developed in the subsalt Devonian-Lower Permian formations, and are dominated by carbonate platform interior and margin reef-banks. The Lower Permian reef-bank present in the eastern part of the basin is considered prospective. This article provides a sequence and sedimentary facies study utilizing drilling and other data, as well as an analysis and identification of the Lower Permian reef-bank features along the eastern margin of the Pre-Caspian Basin using sub-volume coherence and seismic inversion techniques. The results indicate that the sub-volume coherence technique gives a better reflection of lateral distribution of reefs, and the seismic inversion impedance enables the identification of reef bodies’ development phases in the vertical direction, since AI (impedance) is petrophysically considered a tool for distinguishing the reef limestone and the clastic rocks within the formation (limestone exhibits a relatively high impedance than clastic rock). With this method, the existence of multiple phases of the Lower Permian reef-bank bodies along the eastern margin of the Pre-Caspian Basin has been confirmed. These reef-bank bodies are considered good subsalt exploration targets due to their lateral connectivity from south to north, large distribution range and large scale.

  4. Geothermal prospection in the Greater Geneva Basin (Switzerland and France): Structural and reservoir quality assessment

    NASA Astrophysics Data System (ADS)

    Rusillon, Elme; Clerc, Nicolas; Makhloufi, Yasin; Brentini, Maud; Moscariello, Andrea

    2017-04-01

    A reservoir assessment was performed in the Greater Geneva Basin to evaluate the geothermal resources potential of low to medium enthalpy (Moscariello, 2016). For this purpose, a detail structural analysis of the basin was performed (Clerc et al., 2016) simultaneously with a reservoir appraisal study including petrophysical properties assessment in a consistent sedimentological and stratigraphical frame (Brentini et al., 2017). This multi-disciplinary study was organised in 4 steps: (1) investigation of the surrounding outcrops to understand the stratigraphy and lateral facies distribution of the sedimentary sequence from Permo-Carboniferous to Lower Cretaceous units; (2) development of 3D geological models derived from 2D seismic and well data focusing on the structural scheme of the basin to constrain better the tectonic influence on facies distribution and to assess potential hydraulic connectivity through faults between reservoir units ; (3) evaluation of the distribution, geometry, sedimentology and petrophysical properties of potential reservoir units from well data; (4) identification and selection of the most promising reservoir units for in-depth rock type characterization and 3D modeling. Petrophysical investigations revealed that the Kimmeridgian-Tithonian Reef Complex and the underlying Calcaires de Tabalcon units are the most promising geothermal reservoir targets (porosity range 10-20%; permeability to 1mD). Best reservoir properties are measured in patch reefs and high-energy peri-reefal depositional environments, which are surrounded by synchronous tight lagoonal deposits. Associated highly porous dolomitized intervals reported in the western part of the basin also provide enhanced reservoir quality. The distribution and geometry of best reservoir bodies is complex and constrained by (1) palaeotopography, which can be affected by synsedimentary fault activity during Mesozoic times, (2) sedimentary factors such as hydrodynamics, sea level variations

  5. Late Mississippian (Chesterian) carbonate to carbonate-clastic cycles in the eastern Illinois Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, L.B.; Read, J.F.

    1994-03-01

    Late Mississippian (Chesterian) rocks of the eastern Illinois Basin in Kentucky and Indiana show depositional cycles (3--20 meters thick) composed of a range of facies deposited during the transition from carbonate-dominated deposition of the Middle Mississippian to the predominantly siliciclastic regime of the Pennsylvanian. Within the basal Ste. Genevieve Formation (30--70 meters thick) there are five predominantly carbonate cycles. Cycle bases vary from thin calcareous sandstone near the northern clastic source to ooid-quartz dolomitic pelletal grainstone and mudstone further south. Massive cross-bedded and channeled ooid-skeletal grainstones represent the cycle tops and are commonly capped by caliche and subaerial breccia, particularlymore » where there was no subsequent siliciclastic deposition. The cycles are interpreted to be driven by fourth-order (400 k.y.) glacio-eustatic sea-level fluctuations based on coincidence of the calculated cycle period with the long-term eccentricity signal, the Late Mississippian onset of Gondwana glaciation and cycle correlation over more than 100 kilometers. The breccia and caliche formed during lowstands, the siliciclastics, eolianites and dolomitic pelletal grainstones are transgressive facies and the ooid-skeletal grainstones represent sea-level highstands.« less

  6. Applications of the SWOT Mission to Reservoirs in the Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Bonnema, M.; Hossain, F.

    2017-12-01

    The forthcoming Surface Water and Ocean Topography (SWOT) mission has the potential to significantly improve our ability to observe artificial reservoirs globally from a remote sensing perspective. By providing simultaneous estimates of reservoir water surface extent and elevation with near global coverage, reservoir storage changes can be estimated. Knowing how reservoir storage changes over time is critical for understanding reservoir impacts on river systems. In data limited regions, remote sensing is often the only viable method of retrieving such information about reservoir operations. When SWOT launches in 2021, it will join an array of satellite sensors with long histories of reservoir observation and monitoring capabilities. There are many potential synergies in the complimentary use of future SWOT observations with observations from current satellite sensors. The work presented here explores the potential benefits of utilizing SWOT observations over 20 reservoirs in the Mekong River Basin. The SWOT hydrologic simulator, developed by NASA Jet Propulsion Laboratory, is used to generate realistic SWOT observations, which are then inserted into a previously established remote sensing modeling framework of the 20 Mekong Basin reservoirs. This framework currently combines data from Landsat missions, Jason radar altimeters, and the Shuttle Radar and Topography Mission (SRTM), to provide monthly estimates of reservoir storage change. The incorporation of SWOT derived reservoir surface area and elevation into the model is explored in an effort to improve both accuracy and temporal resolution of observed reservoir operations.

  7. Reservoir-development impacts on surface-water quantity and quality in the Yampa River basin, Colorado and Wyoming

    USGS Publications Warehouse

    Adams, D. Briane; Bauer, Daniel P.; Dale, Robert H.; Steele, Timothy Doak

    1983-01-01

    Development of coal resources and associated economy is accelerating in the Yampa River basin in northwestern Colorado and south-central Wyoming. Increased use of the water resources of the area will have a direct impact on their quantity and quality. As part of 18 surface-water projects, 35 reservoirs have been proposed with a combined total storage of 2.18 million acre-feet, 41% greater than the mean annual outflow from the basin. Three computer models were used to demonstrate methods of evaluating future impacts of reservoir development in the Yampa River basin. Four different reservoir configurations were used to simulate the effects of different degrees of proposed reservoir development. A multireservoir-flow model included both within-basin and transmountain diversions. Simulations indicated that in many cases diversion amounts would not be available for either type of diversion. A corresponding frequency analysis of reservoir storage levels indicated that most reservoirs would be operating with small percentages of total capacities and generally with less than 20% of conservation-pool volumes. Simulations using a dissolved-solids model indicated that extensive reservoir development could increase average annual concentrations at most locations. Simulations using a single-reservoir model indicated no significant occurrence of water-temperature stratification in most reservoirs due to limited reservoir storage. (USGS)

  8. The combined effects of eustasy, tectonism, and clastic influx on the development of Pennsylvanian cyclic carbonates, southern Sangre de Cristo Mountains, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong Shouyeh; Humphrey, J.D.

    1991-03-01

    Pennsylvania cyclothems are well documented on stable continental shelves and the cyclicity has generally been attributed to glacio-eustasy. As a contrast, Atokan-Desmoinesian cyclic carbonates of the southern Sangre de Cristo Mountains developed in a tectonically active foreland basin, formed by thrusting along the Picuris-Pecos fault during early Pennsylvanian time. Strata exposed in two sections (Dalton Bluff, 260 m; Johnson Mesa, 340 m) are characterized by (1) shallowing-upward cycles, (2) cycles of variable thickness (5-20 m), (3) incomplete cycles, (4) cycles interrupted by terrigenous clastic input, and (5) noncyclic intervals. Allocyclic mechanisms alone cannot fully explain these observations; the authors hereinmore » propose that a complex interplay among eustasy, tectonism, and clastic sediment supply were responsible for the observed cycles. Lithofacies analysis indicates that location within the foreland basin played a significant role in cycle attributes. In the deeper portions of the basin (e.g., Dalton Bluff), an idealized cycle, from base to top consists of (1) shale/marl facies, (2) brachiopod wackestone facies, (3) phylloid algal facies, and (4) marine clastic facies. No evidence for subaerial exposure of cycle caps is noted. In contrast, in shallow portions of the basin near the forebulge (e.g., Johnson Mesa) the marine clastic facies is substituted by crinoidal grainstone/packstone facies that is capped by subaerial exposure surface. Each of the two cycles displays an overall grand (lower order) shallowing-upward cycle. This grand cycle developed as sediments infilled the initially starved foreland basin.« less

  9. Petroleum geology of Cretaceous-Tertiary rift basins in Niger, Chad, and Central African Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genik, G.J.

    1993-08-01

    This overview of the petroleum geology of rift basins in Niger, Chad, and Central African Republic (CAR) is based on exploration work by Exxon and partners in the years 1969-1991. The work included 50,000 km of modern reflection seismic, 53 exploration wells, 1,000,000 km[sup 2] of aeromagnetic coverage, and about 10,500 km of gravity profiles. The results outline ten Cretaceous and Tertiary rift basins, which constitute a major part of the West and Central African rift system (WCARS). The rift basins derive from a multiphased geologic history dating from the Pan-African (approximately 750-550 Ma) to the Holocene. WCARS in themore » study area is divided into the West African rift subsystem (WAS) and the Central African rift subsystem (WAS) and the Central African rift subsystem (CAS). WAS basins in Niger and Chad are chiefly extensional, and are filled by up to 13,000 m of Lower Cretaceous to Holocene continental and marine clastics. The basins contain five oil (19-43[degrees]API) and two oil and gas accumulations in Upper Cretaceous and Eocene sandstone reservoirs. The hydrocarbons are sourced and sealed by Upper Cretaceous and Eocene marine and lacustrine shales. The most common structural styles and hydrocarbon traps usually are associated with normal fault blocks. CAS rift basins in Chad and CAR are extensional and transtensional, and are filled by up to 7500 m of chiefly Lower Cretaceous continental clastics. The basins contain eight oil (15-39[degrees]API) and one oil and gas discovery in Lower and Upper Cretaceous sandstone reservoirs. The hydrocarbons are sourced by Lower Cretaceous shales and sealed by interbedded lacustrine and flood-plain shales. Structural styles range from simple fault blocks through complex flower structures. The main hydrocarbon traps are in contractional anticlines. Geological conditions favor the discovery of potentially commercial volumes of oil in WCARS basins, of Niger, Chad and CAR. 108 refs., 24 figs., 4 tabs.« less

  10. Sedimentology and Reservoir Characteristics of Early Cretaceous Fluvio-Deltaic and Lacustrine Deposits, Upper Abu Gabra Formation, Sufyan Sub-basin, Muglad Rift Basin, Sudan

    NASA Astrophysics Data System (ADS)

    Yassin, Mohamed; Abdullatif, Osman; Hariri, Mustafa

    2017-04-01

    Sufyan Sub-basin is an East-West trending Sub-basin located in the northwestern part of the Muglad Basin (Sudan), in the eastern extension of the West and Central Africa Rift System (WCARS). The Early Cretaceous Abu Gabra Formation considered as the main source rock in the Muglad Basin. In Sufyan Sub-basin the Early Cretaceous Upper Abu Gabra Formation is the main oil-producing reservoir. It is dominated by sandstone and shales deposited in fluvio-deltaic and lacustrine environment during the first rift cycle in the basin. Depositional and post-depositional processes highly influenced the reservoir quality and architecture. This study investigates different scales of reservoir heterogeneities from macro to micro scale. Subsurface facies analysis was analyzed based on the description of six conventional cores from two wells. Approaches include well log analysis, thin sections and scanning electron microscope (SEM) investigations, grain-size, and X-ray diffraction (XRD) analysis of the Abu Gabra sandstone. The cores and well logs analyses revealed six lithofacies representing fluvio-deltaic and lacustrine depositional environment. The sandstone is medium to coarse-grained, poorly to moderately sorted and sub-angular to subrounded, Sub-feldspathic arenite to quartz arenite. On macro-scale, reservoir quality varies within Abu Gabra reservoir where it shows progressive coarsening upward tendencies with different degrees of connectivity. The upper part of the reservoir showed well connected and amalgamated sandstone bodies, the middle to lower parts, however, have moderate to low sandstone bodies' connectivity and amalgamation. On micro-scale, sandstone reservoir quality is directly affected by textures and diagenesis.The XRD and SEM analyses show that kaolinite and chlorite clay are the common clay minerals in the studied samples. Clay matrix and quartz overgrowth have significantly reduced the reservoir porosity and permeability, while the dissolution of feldspars

  11. Clastic sediment flux to tropical Andean lakes: records of glaciation and soil erosion

    NASA Astrophysics Data System (ADS)

    Rodbell, Donald T.; Seltzer, Geoffrey O.; Mark, Bryan G.; Smith, Jacqueline A.; Abbott, Mark B.

    2008-08-01

    We developed records of clastic sediment flux to 13 alpine lakes in Peru, Ecuador, and Bolivia, and compared these with independently dated records of regional glaciation. Our objectives are to determine whether a strong relationship exists between the extent of ice cover in the region and the rate of clastic sediment delivery to alpine lakes, and thus whether clastic sediment records serve as reliable proxies for glaciation during the late Pleistocene. We isolated the clastic component in lake sediment cores by removing the majority of the biogenic and authigenic components from the bulk sediment record, and we dated cores by a combination of radiocarbon and tephrochronology. In order to partially account for intra-basin differences in sediment focusing, bedrock erosivity, and sediment availability, we normalized each record to the weighted mean value of clastic sediment flux for each respective core. This enabled the stacking of all 13 lake records to produce a composite record that is generally representative of the tropical Andes. There is a striking similarity between the composite record of clastic sediment flux and the distribution of ˜100 cosmogenic radionuclide (CRN) exposure ages for erratics on moraine crests in the central Peruvian and northern Bolivian Andes. The extent of ice cover thus appears to be the primary variable controlling the delivery of clastic sediment to alpine lakes in the region, which bolsters the increasing use of clastic sediment flux as a proxy for the extent of ice cover in the region. The CRN moraine record and the stacked lake core composite record together indicate that the expansion of ice cover and concomitant increase in clastic sediment flux began at least 40 ka, and the local last glacial maximum (LLGM) culminated between 30 and 20 ka. A decline in clastic sediment flux that began ˜20 ka appears to mark the onset of deglaciation from the LLGM, at least one millennium prior to significant warming in high latitude regions

  12. Potential for deep basin-centered gas accumulation in Travis Peak (Hosston) Formation, Gulf Coastal Basin

    USGS Publications Warehouse

    Bartberger, Charles E.; Dyman, Thaddeus S.; Condon, Steven M.

    2003-01-01

    The potential of Lower Cretaceous sandstones of the Travis Peak Formation in the northern Gulf Coast Basin to harbor a basin-centered gas accumulation was evaluated by examining (1) the depositional and diagenetic history and reservoir properties of Travis Peak sandstones, (2) the presence and quality of source rocks for generating gas, (3) the burial and thermal history of source rocks and time of gas generation and migration relative to tectonic development of Travis Peak traps, (4) gas and water recoveries from drill-stem and formation tests, (5) the distribution of abnormal pressures based on shut-in-pressure data, and (6) the presence or absence of gas-water contacts associated with gas accumulations in Travis Peak sandstones. The Travis Peak Formation (and correlative Hosston Formation) is a basinward-thickening wedge of terrigenous clastic sedimentary rocks that underlies the northern Gulf Coast Basin from eastern Texas across northern Louisiana to southern Mississippi. Clastic infl ux was focused in two main fl uvial-deltaic depocenters?one located in northeastern Texas and the other in southeastern Mississippi and northeastern Louisiana. Across the main hydrocarbon-productive trend in eastern Texas and northern Louisiana, the Travis Peak Formation is about 2,000 ft thick. Most Travis Peak hydrocarbon production in eastern Texas comes from drilling depths between 6,000 and 10,000 ft. Signifi cant decrease in porosity and permeability occurs through that depth interval. Above 8,000-ft drilling depth in eastern Texas, Travis Peak sandstone matrix permeabilities often are signifi cantly higher than the 0.1-millidarcy (mD) cutoff that characterizes tight-gas reservoirs. Below 8,000 ft, matrix permeability of Travis Peak sandstones is low because of pervasive quartz cementation, but abundant natural fractures impart signifi cant fracture permeability. Although pressure data within the middle and lower Travis Peak Formation are limited in eastern Texas

  13. South Sumatra Basin Province, Indonesia; the Lahat/Talang Akar-Cenozoic total petroleum system

    USGS Publications Warehouse

    Bishop, Michele G.

    2000-01-01

    Oil and gas are produced from the onshore South Sumatra Basin Province. The province consists of Tertiary half-graben basins infilled with carbonate and clastic sedimentary rocks unconformably overlying pre-Tertiary metamorphic and igneous rocks. Eocene through lower Oligocene lacustrine shales and Oligocene through lower Miocene lacustrine and deltaic coaly shales are the mature source rocks. Reserves of 4.3 billion barrels of oil equivalent have been discovered in reservoirs that range from pre-Tertiary basement through upper Miocene sandstones and carbonates deposited as synrift strata and as marine shoreline, deltaic-fluvial, and deep-water strata. Carbonate and sandstone reservoirs produce oil and gas primarily from anticlinal traps of Plio-Pleistocene age. Stratigraphic trapping and faulting are important locally. Production is compartmentalized due to numerous intraformational seals. The regional marine shale seal, deposited by a maximum sea level highstand in early middle Miocene time, was faulted during post-depositional folding allowing migration of hydrocarbons to reservoirs above the seal. The province contains the Lahat/Talang Akar-Cenozoic total petroleum system with one assessment unit, South Sumatra.

  14. Petroleum geology and resources of the Dnieper-Donets Basin, Ukraine and Russia

    USGS Publications Warehouse

    Ulmishek, Gregory F.

    2001-01-01

    the Dnieper-Donets basin. Discovered reserves of the system are 1.6 billion barrels of oil and 59 trillion cubic feet of gas. More than one-half of the reserves are in Lower Permian rocks below the salt seal. Most of remaining reserves are in upper Visean-Serpukhovian (Lower Carboniferous) strata. The majority of discovered fields are in salt-cored anticlines or in drapes over Devonian horst blocks; little exploration has been conducted for stratigraphic traps. Synrift Upper Devonian carbonate reservoirs are almost unexplored. Two identified source-rock intervals are the black anoxic shales and carbonates in the lower Visean and Devonian sections. However, additional source rocks possibly are present in the deep central area of the basin. The role of Carboniferous coals as a source rock for gas is uncertain; no coal-related gas has been identified by the limited geochemical studies. The source rocks are in the gas-generation window over most of the basin area; consequently gas dominates over oil in the reserves. Three assessment units were identified in the Dnieper-Donets Paleozoic total petroleum system. The assessment unit that contains all discovered reserves embraces postrift Carboniferous and younger rocks. This unit also contains the largest portion of undiscovered resources, especially gas. Stratigraphic and combination structural and stratigraphic traps probably will be the prime targets for future exploration. The second assessment unit includes poorly known synrift Devonian rocks. Carbonate reef reservoirs along the basin margins probably will contain most of the undiscovered resources. The third assessment unit is an unconventional, continuous, basin-centered gas accumulation in Carboniferous low-permeability clastic rocks. The entire extent of this accumulation is unknown, but it occupies much of the basin area. Resources of this assessment unit were not estimated quantitatively.

  15. Palaeogeography of late Cambrian to early Ordovician sediments in the Amadeus Basin, central Australia

    NASA Astrophysics Data System (ADS)

    Gorter, John D.

    The depositional history of 6 sequences encompassing 18 parasequence of the Late Cambrian to Early Ordovician age in the Amadeus Basin is presented in a seried of generalized paleogeographic maps. As some of the parasequence sets are known to host large deposits of oil and gas, a thorough understanding of the potential reservoir-source rock combinations in the Amadeus Basin is essential for the discovery of further oil and gas reserves in this vast, under-explored basin. The best reservoir rocks in the Pacoota Sandstone are concentrated above the major sequence boundary between the Wallaby and Tempe Vale sequences on the Central Ridge. Poorer reservoirs occur within other sequences (e.g., parasequence set 3 and 13). Parasequence set 3 reservoirs, localized on the Central Ridge, are generally poor but owe their reservoir character to weathering at the pre-Tempe Vale sequence unconformity. Parasequence set 13 reservoirs are also concenterated along the Central Ridge, where small-scale shoaling clastic cycles are better developed. Basal Stairway Sandstone reservoirs in the Mereenie area on the Central Ridge are generally very poor, due to the cementation of the clean sandstone, but should improve to the southwest due to lesser burial-induced silicification. The source potential of the major Arenig organic-rich sediments is concentrated in the transitional zone between parasequence sets 15 and 16. East of West Waterhouse 1 well, these parasequence sets have been eroded and there is no remaining source potential. The transitional source-rich zone is better developed on the Central Ridge than in the Missionary Plain Trough. The Central Ridge is therefore of prime importance in the localization of both reservoir and source rocks in the Late Cambrian and Early Ordovician section of the Amadeus Basin.

  16. Modelling fluid flow in clastic eruptions: application to the Lusi mud eruption.

    NASA Astrophysics Data System (ADS)

    Collignon, Marine; Schmid, Daniel W.; Galerne, Christophe; Lupi, Matteo; Mazzini, Adriano

    2017-04-01

    Clastic eruptions involve the rapid ascension of clasts together with fluids, gas and/or liquid phases that may deform and brecciate the host rocks. These fluids transport the resulting mixture, called mud breccia, to the surface. Such eruptions are often associated with geological structures such as mud volcanoes, hydrothermal vent complexes and more generally piercement structures. They involve various processes, acting over a wide range of scales which makes them a complex and challenging, multi-phase system to model. Although piercement structures have been widely studied and discussed, only few attempts have been made to model the dynamics of such clastic eruptions. The ongoing Lusi mud eruption, in the East Java back-arc basin, which began in May 2006, is probably the most spectacular clastic eruption. Lusi's eruptive behaviour has been extensively studied over the past decade and thus represents a unique opportunity to better understand the dynamics driving clastic eruptions, including fossil clastic systems. We use both analytical formulations and numerical models to simulate Lusi's eruptive dynamics and to investigate simple relationships between the mud breccia properties (density, viscosity, gas and clast content) and the volumetric flow rate. Our results show that the conduit radius of such piercement system cannot exceeds a few meters at depth, and that clasts, if not densely packed, will not affect the flow rate when they are smaller than a fifth of the conduit size. Using published data for the annual gas fluxes at Lusi, we infer a maximal depth at which exsolution starts. This occurs between 1800 m and 3200 m deep for the methane and between 750 m and 1000 m for the carbon dioxide.

  17. Influence of depositional environment on diagenesis in St. Peter sandstone, Michigan basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundgren, C.E. Jr.; Barnes, D.A.

    1989-03-01

    The Middle Ordovician St. Peter Sandstone in the Michigan basin was deposited in marine peritidal to storm-dominated, outer shelf depositional environments that evolved in a regionally significant transgressive pattern. The formation is bounded by carbonate and shaly clastic strata of the Prairie du Chien Group below and is transitional to condensed sequence clastics and carbonates of the Glenwood Formation above. Sedimentologic and petrographic analysis of conventional core from 25 wells suggests that reservoir quality in the formation is strongly dependent on a complex diagenetic history, especially the nature and subsequent dissolution of intergranular carbonate in the sandstone. Petrographic evidence indicatesmore » that porosity in the formation formed by dissolution of precursor dolomite of various origins and, locally, the formation of pore-filling authigenic clay (chlorite-illite). Authigenic clay is the incongruent dissolution product of dolomite, detrital K-feldspar, and, possibly, muscovite and results in diminished reservoir quality where abundant in the St. Peter Sandstone. Authigenic clay is volumetrically more significant in the upper portions of the formation and is associated with higher concentrations of detrital K-feldspar. Depositional facies controlled the distribution and types of intergranular carbonate (now dolomite) and detrital K-feldspar in the St. Peter Sandstone and hence reservoir quality; both components were more significant in storm-shelf sandstone facies.« less

  18. The Sredne-Amursky basin: A migrating cretaceous depocenter for the Amur river, eastern Siberia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Light, M.; Maslanyj, M.; Davidson, K.

    1993-09-01

    Recently acquired seismic, well, and regional geological data imply favorable conditions for the accumulation of oil and gas in the 20,000 km[sup 2] Sredne-Amursky basin. Major graben and northeast-trending sinistral wrench-fault systems are recognized in the basin. Lower and Upper Cretaceous sediments are up to 9000 and 3000 m thick, respectively. Paleogeographic reconstructions imply that during the Late Triassic-Early Cretaceous the Sredne-Amursky basin was part of a narrow marine embayment (back-arc basin), which was open to the north. During the Cretaceous, the region was part of a foreland basin complicated by strike-slip, which produced subsidence related to transtension during obliquemore » collision of the Sikhote-Alin arc with Eurasian margin. Contemporaneous uplift also related to this collision migrated from south to north and may have sourced northward-directed deltas and alluvial fans, which fed northward into the closing back-arc basin between 130 and 85 Ma. The progradational clastic succession of the Berriasian-Albian and the Late Cretaceous fluvial, brackish water and paralic sediments within the basin may be analogous to the highly productive late Tertiary clastics of the Amur River delta in the northeast Sakhalin basin. Cretaceous-Tertiary lacustrine-deltaic sapropelic shales provide significant source and seal potential and potential reservoirs occur in the Cretaceous and Tertiary. Structural plays were developed during Cretaceous rifting and subsequent strike-slip deformation. If the full hydrocarbon potential of the Sredne-Amursky basin is to be realized, the regional appraisal suggests that exploration should be focused toward the identification of plays related to prograding Cretaceous deltaic depositional systems.« less

  19. River and Reservoir Operations Model, Truckee River basin, California and Nevada, 1998

    USGS Publications Warehouse

    Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.

    2001-01-01

    The demand for all uses of water in the Truckee River Basin, California and Nevada, commonly is greater than can be supplied. Storage reservoirs in the system have a maximum effective total capacity equivalent to less than two years of average river flows, so longer-term droughts can result in substantial water-supply shortages for irrigation and municipal users and may stress fish and wildlife ecosystems. Title II of Public Law (P.L.) 101-618, the Truckee?Carson?Pyramid Lake Water Rights Settlement Act of 1990, provides a foundation for negotiating and developing operating criteria, known as the Truckee River Operating Agreement (TROA), to balance interstate and interbasin allocation of water rights among the many interests competing for water from the Truckee River. In addition to TROA, the Truckee River Water Quality Settlement Agreement (WQSA), signed in 1996, provides for acquisition of water rights to resolve water-quality problems during low flows along the Truckee River in Nevada. Efficient execution of many of the planning, management, or environmental assessment requirements of TROA and WQSA will require detailed water-resources data coupled with sound analytical tools. Analytical modeling tools constructed and evaluated with such data could help assess effects of alternative operational scenarios related to reservoir and river operations, water-rights transfers, and changes in irrigation practices. The Truckee?Carson Program of the U.S. Geological Survey, to support U.S. Department of the Interior implementation of P.L. 101-618, is developing a modeling system to support efficient water-resources planning, management, and allocation. The daily operations model documented herein is a part of the modeling system that includes a database management program, a graphical user interface program, and a program with modules that simulate river/reservoir operations and a variety of hydrologic processes. The operations module is capable of simulating lake

  20. Well-Production Data and Gas-Reservoir Heterogeneity -- Reserve Growth Applications

    USGS Publications Warehouse

    Dyman, Thaddeus S.; Schmoker, James W.

    2003-01-01

    Oil and gas well production parameters, including peakmonthly production (PMP), peak-consecutive-twelve month production (PYP), and cumulative production (CP), are tested as tools to quantify and understand the heterogeneity of reservoirs in fields where current monthly production is 10 percent or less of PMP. Variation coefficients, defined as VC= (F5-F95)/F50, where F5, F95, and F50 are the 5th, 95th, and 50th (median) fractiles of a probability distribution, are calculated for peak and cumulative production and examined with respect to internal consistency, type of production parameter, conventional versus unconventional accumulations, and reservoir depth. Well-production data for this study were compiled for 69 oil and gas fields in the Lower Pennsylvanian Morrow Formation of the Anadarko Basin, Oklahoma. Of these, 47 fields represent production from marine clastic facies. The Morrow data were supplemented by data from the Upper Cambrian and Lower Ordovician Arbuckle Group, Middle Ordovician Simpson Group, Middle Pennsylvanian Atoka Formation, and Silurian and Lower Devonian Hunton Group of the Anadarko Basin, one large gas field in Upper Cretaceous reservoirs of north-central Montana (Bowdoin field), and three areas of the Upper Devonian and Lower Mississippian Bakken Formation continuous-type (unconventional) oil accumulation in the Williston Basin, North Dakota and Montana. Production parameters (PMP, PYP, and CP) measure the net result of complex geologic, engineering, and economic processes. Our fundamental hypothesis is that well-production data provide information about subsurface heterogeneity in older fields that would be impossible to obtain using geologic techniques with smaller measurement scales such as petrographic, core, and well-log analysis. Results such as these indicate that quantitative measures of production rates and production volumes of wells, expressed as dimensionless variation coefficients, are potentially valuable tools for

  1. Advances in coalbed methane reservoirs using integrated reservoir characterization and hydraulic fracturing in Karaganda coal basin, Kazakhstan

    NASA Astrophysics Data System (ADS)

    Ivakhnenko, Aleksandr; Aimukhan, Adina; Kenshimova, Aida; Mullagaliyev, Fandus; Akbarov, Erlan; Mullagaliyeva, Lylia; Kabirova, Svetlana; Almukhametov, Azamat

    2017-04-01

    Coalbed methane from Karaganda coal basin is considered to be an unconventional source of energy for the Central and Eastern parts of Kazakhstan. These regions are situated far away from the main traditional sources of oil and gas related to Precaspian petroleum basin. Coalbed methane fields in Karaganda coal basin are characterized by geological and structural complexity. Majority of production zones were characterized by high methane content and extremely low coal permeability. The coal reservoirs also contained a considerable natural system of primary, secondary, and tertiary fractures that were usually capable to accommodate passing fluid during hydraulic fracturing process. However, after closing was often observed coal formation damage including the loss of fluids, migration of fines and higher pressures required to treat formation than were expected. Unusual or less expected reservoir characteristics and values of properties of the coal reservoir might be the cause of the unusual occurred patterns in obtained fracturing, such as lithological peculiarities, rock mechanical properties and previous natural fracture systems in the coals. Based on these properties we found that during the drilling and fracturing of the coal-induced fractures have great sensitivity to complex reservoir lithology and stress profiles, as well as changes of those stresses. In order to have a successful program of hydraulic fracturing and avoid unnecessary fracturing anomalies we applied integrated reservoir characterization to monitor key parameters. In addition to logging data, core sample analysis was applied for coalbed methane reservoirs to observe dependence tiny lithological variations through the magnetic susceptibility values and their relation to permeability together with expected principal stress. The values of magnetic susceptibility were measured by the core logging sensor, which is equipped with the probe that provides volume magnetic susceptibility parameters

  2. Remotely Sensed Based Lake/Reservoir Routing in Congo River Basin

    NASA Astrophysics Data System (ADS)

    Raoufi, R.; Beighley, E.; Lee, H.

    2017-12-01

    Lake and reservoir dynamics can influence local to regional water cycles but are often not well represented in hydrologic models. One challenge that limits their inclusion in models is the need for detailed storage-discharge behavior that can be further complicated in reservoirs where specific operation rules are employed. Here, the Hillslope River Routing (HRR) model is combined with a remotely sensed based Reservoir Routing (RR) method and applied to the Congo River Basin. Given that topographic data are often continuous over the entire terrestrial surface (i.e., does not differentiate between land and open water), the HRR-RR model integrates topographic derived river networks and catchment boundaries (e.g., HydroSHEDs) with water boundary extents (e.g., Global Lakes and Wetlands Database) to develop the computational framework. The catchments bordering lakes and reservoirs are partitioned into water and land portions, where representative flowpath characteristics are determined and vertical water balance and lateral routings is performed separately on each partition based on applicable process models (e.g., open water evaporation vs. evapotranspiration). To enable reservoir routing, remotely sensed water surface elevations and extents are combined to determine the storage change time series. Based on the available time series, representative storage change patterns are determined. Lake/reservoir routing is performed by combining inflows from the HRR-RR model and the representative storage change patterns to determine outflows. In this study, a suite of storage change patterns derived from remotely sensed measurements are determined representative patterns for wet, dry and average conditions. The HRR-RR model dynamically selects and uses the optimal storage change pattern for the routing process based on these hydrologic conditions. The HRR-RR model results are presented to highlight the importance of lake attenuation/routing in the Congo Basin.

  3. Regional framework, structural and petroleum aspects of rift basins in Niger, Chad and the Central African Republic (C.A.R.)

    NASA Astrophysics Data System (ADS)

    Genik, G. J.

    1992-10-01

    This paper overviews the regional framework, tectonic, structural and petroleum aspects of rifts in Niger, Chad and the C.A.R. The data base is from mainly proprietary exploration work consisting of some 50,000 kilometres of seismic profiles, 50 exploration wells, one million square kilometres of aeromagnetics coverage and extensive gravity surveys. There have been 13 oil and two oil and gas discoveries. A five phased tectonic history dating from the Pan African orogeny (750-550 MY B.P.) to the present suggests that the Western Central African Rift System (WCAS) with its component West African Rift Subsystem (WAS) and Central African Subsystem (CAS) formed mainly by the mechanical separation of African crustal blocks during the Early Cretaceous. Among the resulting rift basins in Niger, Chad and the C.A.R., seven are in the WAS—Grein, Kafra, Tenere. Tefidet, Termit, Bongor, and N'Dgel Edgi and three, Doba, Doseo, and Salamat are in the CAS. The WAS basins in Niger and Chad are all extensional and contain more than 14,000 m of continental to marine Early Cretaceous to Recent clastic sediments and minor amounts of volcanics. Medium to light oil (20° API-46° API) and gas have been discovered in the Termit basin in reservoir, source and seal beds of Late Cretaceous and Palaeogene age. The most common structural styles are extensional normal fault blocks and transtensional synthetic and antithetic normal fault blocks. The CAS Doba, Doseo and Salamat are extensional to transtensional rift basins containing up to 7500 m of terrestrial mainly Early Cretaceous clastics. Heavy to light oil (15°-39° API) and gas have been discovered in Doba and Doseo basins. Source rocks are Early Cretaceous lacustrine shales, whereas reservoirs and seals are both Early and Late Cretaceous. Dominant structural styles are extensional and transtensional fault blocks, transpressional anticlines and flower structures. The existence of a total rift basin sediment volume of more than one

  4. Modeling water-quality loads to the reservoirs of the Upper Trinity River Basin, Texas, USA

    USDA-ARS?s Scientific Manuscript database

    Water quality modeling efforts have been conducted for 12 reservoirs in ten watersheds in Upper Trinity River Basin located in north Texas. The reservoirs are being used for water supply to the populated area around the Dallas-Fort Worth Metro and the water quality of some of these reservoirs has b...

  5. Stratigraphy of the Sarkisla area, Sivas basin, eastern central Anatolia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilgic, T.; Sumengen, M.; Terlemez, I.

    1988-08-01

    The stratigraphy of the Sarkisla area, southeastern Central Anatolian Massif, is characterized by a succession of rock units ranging from late Paleocene to Pliocene in age. The Caldag group mostly consists of deep-water units and forms the base of the Tertiary rocks. However, its relation to the basement rocks is not observed in the area. This group is represented by late Paleocene-Lutetian-age turbiditic pyroclastics and limestones, andesitic lavas and pyroclastics topped with reefal limestones, and turbiditic limestones and pyroclastics alternating with limestone blocks. During Lutetian to early Priabonian time, shallow marine clastics were deposited along the southern margin of themore » basin, while continental clastics and platform limestones accumulated along the northern margin. Late Priabonian to early Oligocene time is represented by gypsiferous deposits followed by late Oligocene-age fluvial clastics. The gypsiferous deposits conformably overlie the shallow marine formations but rest on the Caldag group unconformably. During early to middle Miocene time, alternating lacustrine limestones, gypsum, and basalts formed on the fluvial clastics; to the north, basalts formed on the platform limestones. The uppermost sequence of the basin, composed of Tortonian-early Pliocene-age fluvial clastics, lacustrine limestones, and fan deposits, unconformably overlies the older formations. The stratigraphy of the study area is similar to the Ulukisla basin, southwestern Central Anatolian Massif. Therefore, this basin can be considered to be the prolongation of the Ulukisla basin offset by the Ecemis fault.« less

  6. Modeling pollution potential input from the drainage basin into Barra Bonita reservoir, São Paulo - Brazil.

    PubMed

    Prado, R B; Novo, E M L M

    2015-05-01

    In this study multi-criteria modeling tools are applied to map the spatial distribution of drainage basin potential to pollute Barra Bonita Reservoir, São Paulo State, Brasil. Barra Bonita Reservoir Basin had undergone intense land use/land cover changes in the last decades, including the fast conversion from pasture into sugarcane. In this respect, this study answers to the lack of information about the variables (criteria) which affect the pollution potential of the drainage basin by building a Geographic Information System which provides their spatial distribution at sub-basin level. The GIS was fed by several data (geomorphology, pedology, geology, drainage network and rainfall) provided by public agencies. Landsat satellite images provided land use/land cover map for 2002. Ratings and weights of each criterion defined by specialists supported the modeling process. The results showed a wide variability in the pollution potential of different sub-basins according to the application of different criterion. If only land use is analyzed, for instance, less than 50% of the basin is classified as highly threatening to water quality and include sub basins located near the reservoir, indicating the importance of protection areas at the margins. Despite the subjectivity involved in the weighing processes, the multi-criteria analysis model allowed the simulation of scenarios which support rational land use polices at sub-basin level regarding the protection of water resources.

  7. The formation of giant clastic extrusions at the end of the Messinian Salinity Crisis

    NASA Astrophysics Data System (ADS)

    Kirkham, Christopher; Cartwright, Joe; Hermanrud, Christian; Jebsen, Christopher

    2018-01-01

    This paper documents the discovery of five multi-km scale lensoid bodies that directly overlie the upper surface of the thick (>1 km) Messinian Evaporite sequence. They were identified through the analysis of 3D seismic data from the western Nile Cone. The convergence of the upper and lower bounding reflections of these lensoid bodies, their external and internal reflection configuration, the positive 'depositional' relief at their upper surface, and the stratal relationship with underlying and overlying deposits supports the interpretation that these are giant clastic extrusions. The interpretations combined with the stratal position of these clastic extrusions demonstrate a prior unsuspected link between periods of major environment change and basin hydrodynamics on a plate scale. All five lensoid bodies were extruded onto a single, seismically resolvable marker horizon correlatable with the end of the Messinian Salinity Crisis (Horizon M). It is argued that the source of these clastic extrusions is pre-Messinian in origin, which implies massive sediment remobilisation at depth in the pre-evaporitic succession and intrusion through the thick evaporite layer. We propose that the scale and timing of this dramatic event was primed and triggered by near-lithostatic overpressure in the pre-evaporitic sediments generated through (1) their rapid burial and loading during the Messinian Salinity Crisis and (2) catastrophic re-flooding during its immediate aftermath. The largest of these clastic extrusions has a volume of over c. 116 km3, making it amongst the largest extruded sedimentary bodies described on Earth. The findings extend the understanding of the upper scale of other analogous clastic extrusions such as mud volcanoes and sediment-hosted hydrothermal systems. Following the 2006 eruption of the Lusi sediment-hosted hydrothermal system in Indonesia, an understanding of the upper scale limit of clastic extrusions has even greater societal relevance, in order to

  8. Reservoir Characterization of the Lower Green River Formation, Southwest Uinta Basin, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Craig D.; Chidsey, Jr., Thomas C.; McClure, Kevin P.

    The objectives of the study were to increase both primary and secondary hydrocarbon recovery through improved characterization (at the regional, unit, interwell, well, and microscopic scale) of fluvial-deltaic lacustrine reservoirs, thereby preventing premature abandonment of producing wells. The study will encourage exploration and establishment of additional water-flood units throughout the southwest region of the Uinta Basin, and other areas with production from fluvial-deltaic reservoirs.

  9. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott Hara

    2001-06-27

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands,more » high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.« less

  10. Sedimentation in Rio La Venta Canyon in Netzahualcoyotl Reservoir, Chiapas, Mexico

    NASA Astrophysics Data System (ADS)

    de La Fuente, J. A.; Lisle, T.; Velasquez, J.; Allison, B. L.; Miller, A.

    2002-12-01

    Sedimentation of Rio La Venta as it enters the Netzahualcoyotl Reservoir in Chiapas, Mexico, threatens a unique part of the aquatic ecosystem. Rio La Venta enters the reservoir via a narrow canyon about 16 km long with spectacular, near-vertical limestone bluffs up to 320 m high and inhabited by the flora and fauna of a pristine tropical forest. Karst terrain underlies most of the Rio La Venta basin in the vicinity of the reservoir, while deeply weathered granitic terrain underlies the Rio Negro basin, and the headwaters of the Rio La Venta to the south. The Rio Negro joins Rio La Venta 3 km downstream of the upper limit of the reservoir and delivers the bulk of the total clastic sediment (mostly sand and finer material). The canyon and much of the contributing basin lie within the Reserva de la Biosfera, Selva El Ocote, administered by the Comision Nacional de Areas Naturales Protegidas, part of the Secretaria de Medioambiente y Recursos Naturales. The Klamath National Forest Forest has cooperated with its Mexican counterparts since 1993 in natural resource management, neo-tropical bird inventories, wildfire management, and more recently in watershed analyses. Rates of sedimentation are estimated from bathymetric surveys conducted in March, 2002. A longitudinal profile down the inundated canyon during a high reservoir level shows an inflection from a slope of 0.0017 to one of 0.0075 at 7.2 km downstream of the mouth of Rio Negro. The bed elevation at this point corresponds to the lowest reservoir level, suggesting that the gentler sloping bed upstream is formed by fluvial processes during drawdown and that downstream by pluvial processes. Using accounts that boats could access Rio Negro during low water levels in 1984, we estimate an annual sedimentation rate of roughly 3 million cubic meters per year. This suggests that boats might no longer be able to access the most spectacular section of canyon upstream of Rio Negro within a decade, depending on how the

  11. Bluebell Field, Uinta Basin: reservoir characterization for improved well completion and oil recovery

    USGS Publications Warehouse

    Montgomery, S.L.; Morgan, C.D.

    1998-01-01

    Bluefield Field is the largest oil-producing area in the Unita basin of northern Utah. The field inclucdes over 300 wells and has produced 137 Mbbl oil and 177 bcf gas from fractured Paleocene-Eocene lacustrine and fluvial deposits of the Green River and Wasatch (Colton) formations. Oil and gas are produced at depths of 10 500-13 000 ft (3330-3940 m), with the most prolific reservoirs existing in over-pressured sandstones of the Colton Formation and the underlying Flagstaff Member of the lower Green River Formation. Despite a number of high-recovery wells (1-3 MMbbl), overall field recovery remains low, less than 10% original oil in place. This low recovery rate is interpreted to be at least partly a result of completion practices. Typically, 40-120 beds are perforated and stimulated with acid (no proppant) over intervals of up to 3000 ft (900 m). Little or no evaluation of individual beds is performed, preventing identification of good-quality reservoir zones, water-producing zones, and thief zones. As a result, detailed understanding of Bluebell reservoirs historically has been poor, inhibiting any improvements in recovery strategies. A recent project undertaken in Bluebell field as part of the U.S. Department of Energy's Class 1 (fluvial-deltaic reservoir) Oil Demonstration program has focused considerable effort on reservoir characterization. This effort has involved interdisciplinary analysis of core, log, fracture, geostatistical, production, and other data. Much valuable new information on reservoir character has resulted, with important implications for completion techniques and recovery expectations. Such data should have excellent applicability to other producing areas in the Uinta Basin withi reservoirs in similar lacustrine and related deposits.Bluebell field is the largest oil-producing area in the Uinta basin of northern Utah. The field includes over 300 wells and has produced 137 MMbbl oil and 177 bcf gas from fractured Paleocene-Eocene lacustrine

  12. Genetic research of fractures in carbonate reservoir: a case study of NT carbonate reservoir in the pre-Caspian basin

    NASA Astrophysics Data System (ADS)

    Fan, Zifei; Wang, Shuqin; Li, Jianxin; Zhao, Wenqi; Sun, Meng; Li, Weiqiang; Li, Changhai

    2018-02-01

    The degree of development and characteristics of fractures are key factors for the appraisal of carbonate reservoirs. In this paper, core data and well logging data from the NT oilfield in the Pre-Caspian Basin are used to study the formation mechanism and distribution characteristics of different genetic fractures, and analyze their influence on reservoir properties. Fractures in carbonate reservoirs can be divided into three categories according to their formation mechanism; these are tectonic fracture, dissolved fracture, and diagenetic fracture,which is further divided into interlayer fracture and stylolite. Fractures of different formation mechanism influence fluid seepage in different degree, tectonic fractures possessing strong connecting ability to pores, and dissolved fractures also improving reservoir properties effectively, however, diagenetic fractures contributing relatively little to fluid seepage.

  13. Hydrogeology and hydrogeochemistry at a site of strategic importance: the Pareja Limno-reservoir drainage basin (Guadalajara, central Spain)

    NASA Astrophysics Data System (ADS)

    Molina-Navarro, Eugenio; Sastre-Merlín, Antonio; Vicente, Rosa; Martínez-Pérez, Silvia

    2014-08-01

    A small calcareous basin in central Spain was studied to establish the role of groundwater in the Pareja Limno-reservoir. Limno-reservoirs aim to preserve a constant water level in the riverine zone of large reservoirs to mitigate the impacts arising from their construction. Groundwater flow contribution (mean 60 %) was derived by recharge estimation. In situ measurements (spring discharge, electrical conductivity and sulfate) were undertaken and spring discharge was compared with a drought index. Twenty-eight springs were monitored and three hydrogeological units (HGUs) were defined: a carbonate plateau (HGU1), the underlying aquitard (HGU2), and the gypsum-enriched HGU3. HGU1 is the main aquifer and may play a role in the preservation of the limno-reservoir water level. Hydrogeochemical sampling was conducted and the code PHREEQC used to describe the main geochemical processes. Weathering and dissolution of calcite and gypsum seem to control the hydrogeochemical processes in the basin. Water progresses from Ca2+-HCO3 - in the upper basin to Ca2+-SO4 2- in the lower basin, where HGU3 outcrops. A clear temporal pattern was observed in the limno-reservoir, with salinity decreasing in winter and increasing in summer. This variation was wider at the river outlet, but the mixing of the river discharge with limno-reservoir water buffered it.

  14. Long-term trend analysis of reservoir water quality and quantity at the landscape scale in two major river basins of Texas, USA.

    USGS Publications Warehouse

    Patino, Reynaldo; Asquith, William H.; VanLandeghem, Matthew M.; Dawson, D.

    2016-01-01

    Trends in water quality and quantity were assessed for 11 major reservoirs of the Brazos and Colorado river basins in the southern Great Plains (maximum period of record, 1965–2010). Water quality, major contributing-stream inflow, storage, local precipitation, and basin-wide total water withdrawals were analyzed. Inflow and storage decreased and total phosphorus increased in most reservoirs. The overall, warmest-, or coldest-monthly temperatures increased in 7 reservoirs, decreased in 1 reservoir, and did not significantly change in 3 reservoirs. The most common monotonic trend in salinity-related variables (specific conductance, chloride, sulfate) was one of no change, and when significant change occurred, it was inconsistent among reservoirs. No significant change was detected in monthly sums of local precipitation. Annual water withdrawals increased in both basins, but the increase was significant (P < 0.05) only in the Colorado River and marginally significant (P < 0.1) in the Brazos River. Salinity-related variables dominated spatial variability in water quality data due to the presence of high- and low-salinity reservoirs in both basins. These observations present a landscape in the Brazos and Colorado river basins where, in the last ∼40 years, reservoir inflow and storage generally decreased, eutrophication generally increased, and water temperature generally increased in at least 1 of 3 temperature indicators evaluated. Because local precipitation remained generally stable, observed reductions in reservoir inflow and storage during the study period may be attributable to other proximate factors, including increased water withdrawals (at least in the Colorado River basin) or decreased runoff from contributing watersheds.

  15. New exploration targets in Malaysia: Deep sandstone reservoirs in Malay basin and turbidites in Sabah basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngah, K.B.

    1996-12-31

    Much of the production in Malaysia is from middle to upper Miocene sandstones and carbonates in three main basins: Malay, Sarawak (Its three subbasins-Central Luconia, Balingian and Baram), and Sabah. Fifteen fields produce an average of 630,000 bopd and 3.0 bcfgpd. More than 4.0 billion barrels of oil and 20 tcf of gas have been produced, and reserves are 4.2 billion barrels of oil and 90 tcf. Oil production will decline within the next 1 0 years unless new discoveries are made and/or improved oil recovery methods introduced, but gas production of 5 tcf, expected after the turn of themore » century, can be sustained for several decades. Successful exploratory wells continue to be drilled in the Malaysian Tertiary basins, and others are anticipated with application of new ideas and technology. In the Malay basin, Miocene sandstone reservoirs in Groups L and M have been considered as very {open_quote}high risk{close_quotes} targets, the quality of the reservoirs has generally been thought to be poor, especially toward the basinal center, where they occur at greater depth. The cause of porosity loss is primarily burial-related. Because of this factor and overpressuring, drilling of many exploration wells has been suspended at or near the top of Group L. In a recent prospect drilled near the basinal axis on the basis of advanced seismic technology, Groups L and M sandstones show fair porosity (8-15%) and contain gas. In the Sabah basin, turbidite play has received little attention, partly because of generally poor seismic resolution in a very complex structural setting. Only one field is known to produce oil from middle Miocene turbidities. However, using recently acquired 3-D seismic data over this field, new oil pools have been discovered, and they are currently being developed. These finds have created new interest, as has Shell`s recent major gas discovery from a turbidite play in this basin.« less

  16. New exploration targets in Malaysia: Deep sandstone reservoirs in Malay basin and turbidites in Sabah basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngah, K.B.

    1996-01-01

    Much of the production in Malaysia is from middle to upper Miocene sandstones and carbonates in three main basins: Malay, Sarawak (Its three subbasins-Central Luconia, Balingian and Baram), and Sabah. Fifteen fields produce an average of 630,000 bopd and 3.0 bcfgpd. More than 4.0 billion barrels of oil and 20 tcf of gas have been produced, and reserves are 4.2 billion barrels of oil and 90 tcf. Oil production will decline within the next 1 0 years unless new discoveries are made and/or improved oil recovery methods introduced, but gas production of 5 tcf, expected after the turn of themore » century, can be sustained for several decades. Successful exploratory wells continue to be drilled in the Malaysian Tertiary basins, and others are anticipated with application of new ideas and technology. In the Malay basin, Miocene sandstone reservoirs in Groups L and M have been considered as very [open quote]high risk[close quotes] targets, the quality of the reservoirs has generally been thought to be poor, especially toward the basinal center, where they occur at greater depth. The cause of porosity loss is primarily burial-related. Because of this factor and overpressuring, drilling of many exploration wells has been suspended at or near the top of Group L. In a recent prospect drilled near the basinal axis on the basis of advanced seismic technology, Groups L and M sandstones show fair porosity (8-15%) and contain gas. In the Sabah basin, turbidite play has received little attention, partly because of generally poor seismic resolution in a very complex structural setting. Only one field is known to produce oil from middle Miocene turbidities. However, using recently acquired 3-D seismic data over this field, new oil pools have been discovered, and they are currently being developed. These finds have created new interest, as has Shell's recent major gas discovery from a turbidite play in this basin.« less

  17. Assessing the Benefits Provided by SWOT Data Towards Estimating Reservoir Residence Time in the Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Bonnema, M.; Hossain, F.

    2016-12-01

    The Mekong River Basin is undergoing rapid hydropower development. Nine dams are planned on the main stem of the Mekong and many more on its extensive tributaries. Understanding the effects that current and future dams have on the river system and water cycle as a whole is vital for the millions of people living in the basin. reservoir residence time, the amount of time water spends stored in a reservoir, is a key parameter in investigating these impacts. The forthcoming Surface Water and Ocean Topography (SWOT) mission is poised to provide an unprecedented amount of surface water observations. SWOT, when augmented by current satellite missions, will provide the necessary information to estimate the residence time of reservoirs across the entire basin in a more comprehensive way than ever before. In this study, we first combine observations from current satellite missions (altimetry, spectral imaging, precipitation) to estimate the residence times of existing reservoirs. We then use this information to project how future reservoirs will increase the residence time of the river system. Next, we explore how SWOT observations can be used to improve residence time estimation by examining the accuracy of reservoir surface area and elevation observations as well as the accuracy of river discharge observations.

  18. Reservoir heterogeneity in Carter Sandstone, North Blowhorn Creek oil unit and vicinity, Black Warrior Basin, Alabama

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kugler, R.L.; Pashin, J.C.

    1992-05-01

    This report presents accomplishments made in completing Task 3 of this project which involves development of criteria for recognizing reservoir heterogeneity in the Black Warrior basin. The report focuses on characterization of the Upper Mississippian Carter sandstone reservoir in North Blowhorn Creek and adjacent oil units in Lamar County, Alabama. This oil unit has produced more than 60 percent of total oil extracted from the Black Warrior basin of Alabama. The Carter sandstone in North Blowhorn Creek oil unit is typical of the most productive Carter oil reservoirs in the Black Warrior basin of Alabama. The first part of themore » report synthesizes data derived from geophysical well logs and cores from North Blowhorn Creek oil unit to develop a depositional model for the Carter sandstone reservoir. The second part of the report describes the detrital and diagenetic character of Carter sandstone utilizing data from petrographic and scanning electron microscopes and the electron microprobe. The third part synthesizes porosity and pore-throat-size-distribution data determined by high-pressure mercury porosimetry and commercial core analyses with results of the sedimentologic and petrographic studies. The final section of the report discusses reservoir heterogeneity within the context of the five-fold classification of Moore and Kugler (1990).« less

  19. Provenance of the Walash-Naopurdan back-arc-arc clastic sequences in the Iraqi Zagros Suture Zone

    NASA Astrophysics Data System (ADS)

    Ali, Sarmad A.; Sleabi, Rajaa S.; Talabani, Mohammad J. A.; Jones, Brian G.

    2017-01-01

    Marine clastic rocks occurring in the Walash and Naopurdan Groups in the Hasanbag and Qalander areas, Kurdistan region, Iraqi Zagros Suture Zone, are lithic arenites with high proportions of volcanic rock fragments. Geochemical classification of the Eocene Walash and Oligocene Naopurdan clastic rocks indicates that they were mainly derived from associated sub-alkaline basalt and andesitic basalt in back-arc and island arc tectonic settings. Major and trace element geochemical data reveal that the Naopurdan samples are chemically less mature than the Walash samples and both were subjected to moderate weathering. The seaway in the southern Neotethys Ocean was shallow during both Eocene and Oligocene permitting mixing of sediment from the volcanic arcs with sediment derived from the Arabian continental margin. The Walash and Naopurdan clastic rocks enhance an earlier tectonic model of the Zagros Suture Zone with their deposition occurring during the Eocene Walash calc-alkaline back-arc magmatism and Early Oligocene Naopurdan island arc magmatism in the final stages of intra-oceanic subduction before the Miocene closure and obduction of the Neotethys basin.

  20. Estimating probabilities of reservoir storage for the upper Delaware River basin

    USGS Publications Warehouse

    Hirsch, Robert M.

    1981-01-01

    A technique for estimating conditional probabilities of reservoir system storage is described and applied to the upper Delaware River Basin. The results indicate that there is a 73 percent probability that the three major New York City reservoirs (Pepacton, Cannonsville, and Neversink) would be full by June 1, 1981, and only a 9 percent probability that storage would return to the ' drought warning ' sector of the operations curve sometime in the next year. In contrast, if restrictions are lifted and there is an immediate return to normal operating policies, the probability of the reservoir system being full by June 1 is 37 percent and the probability that storage would return to the ' drought warning ' sector in the next year is 30 percent. (USGS)

  1. Potential evaluation of CO2 storage and enhanced oil recovery of tight oil reservoir in the Ordos Basin, China.

    PubMed

    Tian, Xiaofeng; Cheng, Linsong; Cao, Renyi; Zhang, Miaoyi; Guo, Qiang; Wang, Yimin; Zhang, Jian; Cui, Yu

    2015-07-01

    Carbon -di-oxide (CO2) is regarded as the most important greenhouse gas to accelerate climate change and ocean acidification. The Chinese government is seeking methods to reduce anthropogenic CO2 gas emission. CO2 capture and geological storage is one of the main methods. In addition, injecting CO2 is also an effective method to replenish formation energy in developing tight oil reservoirs. However, exiting methods to estimate CO2 storage capacity are all based on the material balance theory. This was absolutely correct for normal reservoirs. However, as natural fractures widely exist in tight oil reservoirs and majority of them are vertical ones, tight oil reservoirs are not close. Therefore, material balance theory is not adaptive. In the present study, a new method to calculate CO2 storage capacity is presented. The CO2 effective storage capacity, in this new method, consisted of free CO2, CO2 dissolved in oil and CO2 dissolved in water. Case studies of tight oil reservoir from Ordos Basin was conducted and it was found that due to far lower viscosity of CO2 and larger solubility in oil, CO2 could flow in tight oil reservoirs more easily. As a result, injecting CO2 in tight oil reservoirs could obviously enhance sweep efficiency by 24.5% and oil recovery efficiency by 7.5%. CO2 effective storage capacity of Chang 7 tight oil reservoir in Longdong area was 1.88 x 10(7) t. The Chang 7 tight oil reservoir in Ordos Basin was estimated to be 6.38 x 10(11) t. As tight oil reservoirs were widely distributed in Songliao Basin, Sichuan Basin and so on, geological storage capacity of CO2 in China is potential.

  2. Seasonal Forecasting of Reservoir Inflow for the Segura River Basin, Spain

    NASA Astrophysics Data System (ADS)

    de Tomas, Alberto; Hunink, Johannes

    2017-04-01

    A major threat to the agricultural sector in Europe is an increasing occurrence of low water availability for irrigation, affecting the local and regional food security and economies. Especially in the Mediterranean region, such as in the Segura river basin (Spain), drought epidodes are relatively frequent. Part of the irrigation water demand in this basin is met by a water transfer from the Tagus basin (central Spain), but also in this basin an increasing pressure on the water resources has reduced the water available to be transferred. Currently, Drought Management Plans in these Spanish basins are in place and mitigate the impact of drought periods to some extent. Drought indicators that are derived from the available water in the storage reservoirs impose a set of drought mitigation measures. Decisions on water transfers are dependent on a regression-based time series forecast from the reservoir inflows of the preceding months. This user-forecast has its limitations and can potentially be improved using more advanced techniques. Nowadays, seasonal climate forecasts have shown to have increasing skill for certain areas and for certain applications. So far, such forecasts have not been evaluated in a seasonal hydrologic forecasting system in the Spanish context. The objective of this work is to develop a prototype of a Seasonal Hydrologic Forecasting System and compare this with a reference forecast. The reference forecast in this case is the locally used regression-based forecast. Additionally, hydrological simulations derived from climatological reanalysis (ERA-Interim) are taken as a reference forecast. The Spatial Processes in Hydrology model (SPHY - http://www.sphy.nl/) forced with the ECMWF- SFS4 (15 ensembles) Seasonal Forecast Systems is used to predict reservoir inflows of the upper basins of the Segura and Tagus rivers. The system is evaluated for 4 seasons with a forecasting lead time of 3 months. First results show that only for certain initialization

  3. Potential for a significant deep basin geothermal system in Tintic Valley, Utah

    NASA Astrophysics Data System (ADS)

    Hardwick, C.; Kirby, S.

    2014-12-01

    The combination of regionally high heat flow, deep basins, and permeable reservoir rocks in the eastern Great Basin may yield substantial new geothermal resources. We explore a deep sedimentary basin geothermal prospect beneath Tintic Valley in central Utah using new 2D and 3D models coupled with existing estimates of heat flow, geothermometry, and shallow hydrologic data. Tintic Valley is a sediment-filled basin bounded to the east and west by bedrock mountain ranges where heat-flow values vary from 85 to over 240 mW/m2. Based on modeling of new and existing gravity data, a prominent 30 mGal low indicates basin fill thickness may exceed 2 km. The insulating effect of relatively low thermal conductivity basin fill in Tintic Valley, combined with typical Great Basin heat flow, predict temperatures greater than 150 °C at 3 km depth. The potential reservoir beneath the basin fill is comprised of Paleozoic carbonate and clastic rocks. The hydrology of the Tintic Valley is characterized by a shallow, cool groundwater system that recharges along the upper reaches of the basin and discharges along the valley axis and to a series of wells. The east mountain block is warm and dry, with groundwater levels just above the basin floor and temperatures >50 °C at depth. The west mountain block contains a shallow, cool meteoric groundwater system. Fluid temperatures over 50 °C are sufficient for direct-use applications, such as greenhouses and aquaculture, while temperatures exceeding 140°C are suitable for binary geothermal power plants. The geologic setting and regionally high heat flow in Tintic Valley suggest a geothermal resource capable of supporting direct-use geothermal applications and binary power production could be present.

  4. Structural controls on fractured coal reservoirs in the southern Appalachian Black Warrior foreland basin

    USGS Publications Warehouse

    Groshong, R.H.; Pashin, J.C.; McIntyre, M.R.

    2009-01-01

    Coal is a nearly impermeable rock type for which the production of fluids requires the presence of open fractures. Basin-wide controls on the fractured coal reservoirs of the Black Warrior foreland basin are demonstrated by the variability of maximum production rates from coalbed methane wells. Reservoir behavior depends on distance from the thrust front. Far from the thrust front, normal faults are barriers to fluid migration and compartmentalize the reservoirs. Close to the thrust front, rates are enhanced along some normal faults, and a new trend is developed. The two trends have the geometry of conjugate strike-slip faults with the same ??1 direction as the Appalachian fold-thrust belt and are inferred to be the result of late pure-shear deformation of the foreland. Face cleat causes significant permeability anisotropy in some shallow coal seams but does not produce a map-scale production trend. ?? 2008 Elsevier Ltd. All rights reserved.

  5. Can nearby eutrophic reservoirs sustain a differentiated biodiversity of planktonic microcrustaceans in a tropical semiarid basin?

    PubMed

    Diniz, Leidiane P; Melo-Júnior, Mauro DE

    2017-01-01

    This paper aims to compare alpha and beta diversities of planktonic microcrustaceans from three reservoirs located nearby in a tropical semiarid basin. Our hypothesis was that alpha and beta diversities of the community are different, although the ecosystems are located close to each other. We carried out two sampling campaigns: dry and rainy seasons. The sampling of microcrustaceans and environmental variables (dissolved oxygen, chlorophyll a and nutrient) was performed at twelve stations and were distributed throughout the three zones (river, transition, and lacustrine), using a plankton net (45 µm). The reservoirs showed different uses and types of nitrogen predominance: Cachoeira (supply/nitrate), Borborema (sewage/ammonia) and Saco (aquaculture/ammonia). Seventeen species were recorded whose richness was assessed as particularly specific to each one of the studied reservoirs. Seasonally, both reservoirs with high anthropogenic alteration showed greater richness in the dry season. The three reservoirs located in a same basin showed different richness and composition, but the diversity did not differ between the zones of the reservoirs. Although communities are close to each other, their composition and richness were found to be distinct for each reservoir. This may be in response to the peculiar particularities, such as nitrogen sources and the different uses.

  6. Drought propagation in the Paraná Basin, Brazil: from rainfall deficits to impacts on reservoir storage

    NASA Astrophysics Data System (ADS)

    Melo, D. D.; Wendland, E.

    2017-12-01

    The sensibility and resilience of hydrologic systems to climate changes are crucial for estimating potential impacts of droughts, responsible for major economic and human losses globally. Understanding how droughts propagate is a key element to develop a predictive understanding for future management and mitigation strategies. In this context, this study investigated the drought propagation in the Paraná Basin (PB), Southeast Brazil, a major hydroelectricity producing region with 32 % (60 million people) of the country's population. Reservoir storage (RESS), river discharge (Q) and rainfall (P) data were used to assess the linkages between meteorological and hydrological droughts, characterized by the Standard Precipitation Index (SPI) and Streamflow Drought Index (SDI), respectively. The data are from 37 sub-basins within the PB, consisting of contributing areas of 37 reservoirs (250 km3 of stored water) within the PB for the period between 1995 and 2015. The response time (RT) of the hydrologic system to droughts, given as the time lag between P, Q and RESS, was quantified using a non-parametric statistical method that combines cumulative sums and Bootstrap resampling technique. Based on our results, the RTs of the hydrologic system of the PB varies from 0 to 6 months, depending on a number of aspects: lithology, topography, dam operation, etc. Linkages between SPI and SDI indicated that the anthropogenic control (dam operation) plays an important role in buffering drought impacts to downstream sub-basins: SDI decreased from upstream to downstream despite similar SPI values over the whole area. Comparisons between sub-basins, with variable drainage sizes (5,000 - 50,000 km2), confirmed the benefice of upstream reservoirs in reducing hydrological droughts. For example, the RT for a 4,800 km2 basin was 6 months between P and Q and 9 months between Q and RESS, under anthropogenic control. Conversely, the RT to precipitation for a reservoir subjected to natural

  7. Play-level distributions of estimates of recovery factors for a miscible carbon dioxide enhanced oil recovery method used in oil reservoirs in the conterminous United States

    USGS Publications Warehouse

    Attanasi, E.D.; Freeman, P.A.

    2016-03-02

    The retention factor is the percentage of injected CO2 that is naturally retained in the reservoir. Retention factors were also estimated in this study. For clastic reservoirs, 90 percent of the estimated retention factors were between 21.7 and 32.1 percent, and for carbonate reservoirs, 90 percent were between 23.7 and 38.2 percent. The respective median values were 22.9 for clastic reservoirs and 26.1 for carbonate reservoirs. Both distributions were right skewed. The recovery and retention factors that were calculated are consistent with the corresponding factors reported in the literature.

  8. Quantifying the potential for reservoirs to secure future surface water yields in the world’s largest river basins

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Parkinson, Simon; Gidden, Matthew; Byers, Edward; Satoh, Yusuke; Riahi, Keywan; Forman, Barton

    2018-04-01

    Surface water reservoirs provide us with reliable water supply, hydropower generation, flood control and recreation services. Yet reservoirs also cause flow fragmentation in rivers and lead to flooding of upstream areas, thereby displacing existing land-use activities and ecosystems. Anticipated population growth and development coupled with climate change in many regions of the globe suggests a critical need to assess the potential for future reservoir capacity to help balance rising water demands with long-term water availability. Here, we assess the potential of large-scale reservoirs to provide reliable surface water yields while also considering environmental flows within 235 of the world’s largest river basins. Maps of existing cropland and habitat conservation zones are integrated with spatially-explicit population and urbanization projections from the Shared Socioeconomic Pathways to identify regions unsuitable for increasing water supply by exploiting new reservoir storage. Results show that even when maximizing the global reservoir storage to its potential limit (∼4.3–4.8 times the current capacity), firm yields would only increase by about 50% over current levels. However, there exist large disparities across different basins. The majority of river basins in North America are found to gain relatively little firm yield by increasing storage capacity, whereas basins in Southeast Asia display greater potential for expansion as well as proportional gains in firm yield under multiple uncertainties. Parts of Europe, the United States and South America show relatively low reliability of maintaining current firm yields under future climate change, whereas most of Asia and higher latitude regions display comparatively high reliability. Findings from this study highlight the importance of incorporating different factors, including human development, land-use activities, and climate change, over a time span of multiple decades and across a range of different

  9. Sedimentologic and reservoir characteristics under the tectono-sequence stratigraphic framework: A case study from the Early Cretaceous, upper Abu Gabra sandstones, Sufyan Sub-basin, Muglad Basin, Sudan

    NASA Astrophysics Data System (ADS)

    Yassin, Mohamed A.; Hariri, Mustafa M.; Abdullatif, Osman M.; Makkawi, M.; Bertotti, G.; Kaminski, Michael A.

    2018-06-01

    The Sufyan Sub-basin is an east-west trending Sub-basin located in the northwestern part of the Muglad Basin, in the eastern extension of the West and Central Africa Rift System (WCARS). Exploration results showed the occurrence of accumulations of hydrocarbon. The source rock for these hydrocarbons is believed to be the lacustrine shale of the Abu Gabra Formation. Fluvio-deltaic sandstones within the Abu Gabra Formation represent the primary reservoir. Depositional and post-depositional processes influence reservoir heterogeneity, quality, and architecture. This study investigates different scales of reservoir heterogeneities from basin to micro scale and discusses the impact of depositional facies and diagenesis on reservoir quality. Approaches include seismic interpretation, seismic attribute analysis, well log analysis, thin sections and scanning electron microscope (SEM) investigations, and X-ray diffraction (XRD) analysis of the Abu Gabra Formation. Sedimentologic interpretation in this study was performed based on core cuttings, well logs, and seismic data. Subsurface facies analysis was analyzed based on the description of six conventional cores from two wells. Seven lithofacies in Abu Gabra Formation are identified. Four types of depositional systems are identified in the studied succession. These are braided delta, fan delta, sublacustrine fan, and lacustrine systems. The sandstone is medium to coarse-grained, poorly to moderately sorted and sub-angular to sub-rounded, sub-feldspathic arenite to quartz arenite. At the basin scale, the Abu Gabra Formation showed different sandstone bodies thickness, geometry, and architecture and are ascribed to different depositional systems. At macro and meso-scales, reservoir quality varies within the Abu Gabra reservoir where it shows progressive coarsening upward tendencies with different degrees of connectivity. The upper part of the reservoir is well connected with amalgamated sandstone bodies, however, the middle

  10. Historical trends in organochlorine compounds in river basins identified using sediment cores from reservoirs

    USGS Publications Warehouse

    Van Metre, P.C.; Callender, E.; Fuller, C.C.

    1997-01-01

    This study used chemical analyses of dated sediment cores from reservoirs to define historical trends in water quality in the influent river basins. This work applies techniques from paleolimnology to reservoirs, and in the process, highlights differences between sediment-core interpretations for reservoirs and natural lakes. Sediment cores were collected from six reservoirs in the central and southeastern United States, sectioned, and analyzed for 137Cs and organochlorine compounds. 137Cs analyses were used to demonstrate limited post-depositional mixing, to indicate sediment deposition dates, and to estimate sediment focusing factors. Relative lack of mixing, high sedimentation rates, and high focusing factors distinguish reservoir sediment cores from cores collected in natural lakes. Temporal trends in concentrations of PCBs, total DDT (DDT + DDD + DDE), and chlordane reflect historical use and regulation of these compounds and differences in land use between reservoir drainages. PCB and total DDT core burdens, normalized for sediment focusing, greatly exceed reported cumulative regional atmospheric fallout of PCBs and total DDT estimated using cores from peat hogs and natural lakes, indicating the dominance of fluvial inputs of both groups of compounds to the reservoirs.This study used chemical analyses of dated sediment cores from reservoirs to define historical trends in water quality in the influent river basins. This work applies techniques from paleolimnology to reservoirs, and in the process, highlights differences between sediment-core interpretations for reservoirs and natural lakes. Sediment cores were collected from six reservoirs in the central and southeastern United States, sectioned, and analyzed for 137Cs and organochlorine compounds. 137Cs analyses were used to demonstrate limited post-depositional mixing, to indicate sediment deposition dates, and to estimate sediment focusing factors. Relative lack of mixing, high sedimentation rates, and high

  11. Regional frontier exploration in Sinu basin, northwestern Colombia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindberg, F.A.; Ellis, J.M.; Dekker, L.L.

    1989-03-01

    In 1983, Gulf and Ecopetrol undertook a regional hydrocarbon evaluation of northwestern Colombia, during the course of which much of the Sinu basin was mapped by field geologists aided by low-altitude aerial photographs. Additional seismic and airborne radar data were acquired to assist in developing a regional structural model. The dominant structures of the Sinu basin were produced by westward-vergent thrust faults, which are offset on the order of 10 to 20 km by northwest-southeast-trending compartmental faults. Numerous mud volcanos are surface expressions of overpressured shales, which migrate upward along both thrust and strike-slip faults. Thrust faults are expressed, onmore » the surface, by steep-sided, asymmetrical anticlines, which are separated by broad synclines filled with clastics shed during Tertiary thrusting. The extremely thick section of Tertiary sediments is dominated by shale but contains some potential reservoir sandstones. These resistive sandstones could be accurately mapped on the radar imagery and projected into the subsurface allowing traps to be better defined. Combining field geology with geologic interpretation of aerial photographs and radar images was very effective in developing a regional structural framework of the Sinu basin.« less

  12. Estimation of small reservoir storage capacities in the São Francisco, Limpopo, Bandama and Volta river basins using remotely sensed surface areas

    NASA Astrophysics Data System (ADS)

    Rodrigues, Lineu; Senzanje, Aidan; Cecchi, Philippe; Liebe, Jens

    2010-05-01

    People living in areas with highly variable rainfall, experience droughts and floods and often have insecure livelihoods. Small multi-purpose reservoirs (SR) are a widely used form of infrastructures to provide people in such areas with water during the dry season, e.g. in the basins of São Francisco, Brazil, Limpopo, Zimbabwe, Bandama, Ivory Coast and Volta, Ghana. In these areas, the available natural flow in the streams is sometimes less than the flow required for water supply or irrigation, however water can be stored in times of surplus, for example, from a wet season to a dry season. Efficient water management and sound reservoir planning are hindered by the lack of information about the functioning of these reservoirs. Reservoirs in these regions were constructed in a series of projects funded by different agencies, at different times, with little or no coordination among the implementing partners. Poor record keeping and the lack of appropriate institutional support result in deficiencies of information on the capacity, operation, and maintenance of these structures. Estimating the storage capacity of dams is essential to the responsible management of water diversion. Most of SR in these basins have never been evaluated, possibly because the tools currently used for such measurement are labor-intensive, costly and time-consuming. The objective of this research was to develop methodology to estimate small reservoir capacities as a function of their remotely sensed surface areas in the São Francisco, Limpopo, Bandama and Volta basins, as a way to contribute to improve the water resource management in those catchments. Remote sensing was used to identify, localize and characterize small reservoirs. The surface area of each was calculated from satellite images. A sub-set of reservoirs was selected. For each reservoir in the sub-set, the surface area was estimated from field surveys, and storage capacity was estimated using information on reservoir surface

  13. Madbi Amran/Qishn total petroleum system of the Ma'Rib-Al Jawf/Shabwah, and Masila-Jeza basins, Yemen

    USGS Publications Warehouse

    Ahlbrandt, Thomas S.

    2002-01-01

    Since the first discovery of petroleum in Yemen in 1984, several recent advances have been made in the understanding of that countrys geologic history and petroleum systems. The total petroleum resource endowment for the combined petroleum provinces within Yemen, as estimated in the recent U.S. Geological Survey world assessment, ranks 51st in the world, exclusive of the United States, at 9.8 BBOE, which includes cumulative production and remaining reserves, as well as a mean estimate of undiscovered resources. Such undiscovered petroleum resources are about 2.7 billion barrels of oil, 17 trillion cubic feet (2.8 billion barrels of oil equivalent) of natural gas and 1 billion barrels of natural gas liquids. A single total petroleum system, the Jurassic Madbi Amran/Qishn, dominates petroleum generation and production; it was formed in response to a Late Jurassic rifting event related to the separation of the Arabian Peninsula from the Gondwana supercontinent. This rifting resulted in the development of two petroleum-bearing sedimentary basins: (1) the western MaRibAl Jawf / Shabwah basin, and (2) the eastern Masila-Jeza basin. In both basins, petroleum source rocks of the Jurassic (Kimmeridgian) Madbi Formation generated hydrocarbons during Late Cretaceous time that migrated, mostly vertically, into Jurassic and Cretaceous reservoirs. In the western MaRibAl Jawf / Shabwah basin, the petroleum system is largely confined to syn-rift deposits, with reservoirs ranging from deep-water turbidites to continental clastics buried beneath a thick Upper Jurassic (Tithonian) salt. The salt initially deformed in Early Cretaceous time, and continued halokinesis resulted in salt diapirism and associated salt withdrawal during extension. The eastern Masila-Jeza basin contained similar early syn-rift deposits but received less clastic sediment during the Jurassic; however, no salt formed because the basin remained open to ocean circulation in the Late Jurassic. Thus, Madbi Formation

  14. Depositional setting and diagenetic evolution of some Tertiary unconventional reservoir rocks, Uinta Basin, Utah.

    USGS Publications Warehouse

    Pitman, Janet K.; Fouch, T.D.; Goldhaber, M.B.

    1982-01-01

    The Douglas Creek Member of the Tertiary Green River Formation underlies much of the Uinta basin, Utah, and contains large volumes of oil and gas trapped in a complex of fractured low-permeability sandstone reservoirs. In the SE part of the basin at Pariette Bench, the Eocene Douglas Creek Member is a thick sequence of fine- grained alluvial sandstone complexly intercalated with lacustrine claystone and carbonate rock. Sediments were deposited in a subsiding intermontane basin along the shallow fluctuating margin of ancient Lake Uinta. Although the Uinta basin has undergone postdepositional uplift and erosion, the deepest cored rocks at Pariette Bench have never been buried more than 3000m.-from Authors

  15. Understanding CO2 Plume Behavior and Basin-Scale Pressure Changes during Sequestration Projects through the use of Reservoir Fluid Modeling

    USGS Publications Warehouse

    Leetaru, H.E.; Frailey, S.M.; Damico, J.; Mehnert, E.; Birkholzer, J.; Zhou, Q.; Jordan, P.D.

    2009-01-01

    Large scale geologic sequestration tests are in the planning stages around the world. The liability and safety issues of the migration of CO2 away from the primary injection site and/or reservoir are of significant concerns for these sequestration tests. Reservoir models for simulating single or multi-phase fluid flow are used to understand the migration of CO2 in the subsurface. These models can also help evaluate concerns related to brine migration and basin-scale pressure increases that occur due to the injection of additional fluid volumes into the subsurface. The current paper presents different modeling examples addressing these issues, ranging from simple geometric models to more complex reservoir fluid models with single-site and basin-scale applications. Simple geometric models assuming a homogeneous geologic reservoir and piston-like displacement have been used for understanding pressure changes and fluid migration around each CO2 storage site. These geometric models are useful only as broad approximations because they do not account for the variation in porosity, permeability, asymmetry of the reservoir, and dip of the beds. In addition, these simple models are not capable of predicting the interference between different injection sites within the same reservoir. A more realistic model of CO2 plume behavior can be produced using reservoir fluid models. Reservoir simulation of natural gas storage reservoirs in the Illinois Basin Cambrian-age Mt. Simon Sandstone suggest that reservoir heterogeneity will be an important factor for evaluating storage capacity. The Mt. Simon Sandstone is a thick sandstone that underlies many significant coal fired power plants (emitting at least 1 million tonnes per year) in the midwestern United States including the states of Illinois, Indiana, Kentucky, Michigan, and Ohio. The initial commercial sequestration sites are expected to inject 1 to 2 million tonnes of CO2 per year. Depending on the geologic structure and

  16. Pennsylvanian-Permian tectonism in the Great Basin: The Dry Mountain trough and related basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, W.S.; Spinosa, C.; Gallegos, D.M.

    1991-02-01

    Pennsylvanian-Permian tectonism affected the continental margin of western North America from the Yukon to the Mojave Desert. Specific signatures of this tectonism include local angular unconformities, regional disconformities, renewed outpouring of clastic debris from a reactivated Antler and related highlands, and development of deeper water basins with anoxic sediments deposited below wave base. The basins formed include Ishbel trough (Canada), the Wood River basin (Idaho), Cassia basin, Ferguson trough, Dry Mountain trough (all Nevada), and unnamed basins in Death Valley-Mojave Desert region. The Dry Mountain trough (DMT) was initiated during early Wolfcampian and received up to 1,200 m of sedimentmore » by the late Leonardian. The lower contact is a regional unconformity with the Ely Limestone, or locally with the Diamond Peak or Vinini formations. Thus, following a period of localized regional uplift that destroyed the Ely basin, portions of the uplifted and exposed shelf subsided creating the Dry Mountain trough. Evidence suggesting a tectonic origin for the DMT includes (1) high subsidence rates (60-140 m/m.y.); (2) renewed influx of coarse clastic debris from the Antler highlands: (3) possible pre-Early Permian folding, thrusting, and tilting within the highlands; and (4) differential subsidence within the Dry Mountain trough, suggesting the existence of independent fault blocks.« less

  17. National Dam Safety Program. Brocton Reservoir (Inventory Number NY 785) , Lake Erie Basin, Chautauqua County, New York. Phase I Inspection Report

    DTIC Science & Technology

    1980-09-26

    Inspection Report Brocton Reservoir National Dam Safety Program Lake Erie Basin, Chautauqua County, New York 6. PERFORMING ORG. REPORT NUMBER Inventory No...LAKE ERIE BASIN BROCTON RESERVOIR I ’CHAUTAUQUA COUNTY, NEW YORK I INVENTORY NO. N.Y. 785 PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAMI. I...Drawings I I I I I I I I I I PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAIM NAME OF DAM: Brocton Reservoir Inventory No. N.Y. 785 I STATE LOCATED

  18. Pennsylvanian carbonate buildups, Paradox basin: Increasing reserves in heterogeneous, shallow-shelf reservoirs

    USGS Publications Warehouse

    Montgomery, S.L.; Chidsey, T.C.; Eby, D.E.; Lorenz, D.M.; Culham, W.E.

    1999-01-01

    Productive carbonate buildups of Pennsylvanian age in the southern Paradox basin, Utah, contain up to 200 million bbl remaining oil potentially recoverable by enhanced recovery methods. These buildups comprise over 100 satellite fields to the giant Greater Aneth field, where secondary recovery operations thus far have been concentrated. Several types of satellite buildups exist and produce oil from the Desert Creek zone of the Paradox Formation. Many of the relevant fields have undergone early abandonment; wells in Desert Creek carbonate mounds commonly produce at very high initial rates (>1000 bbl/day) and then suffer precipitous declines. An important new study focused on the detailed characterization of five separate reservoirs has resulted in significant information relevant to their future redevelopment. Completed assessment of Anasazi field suggests that phylloid algal mounds, the major productive buildup type in this area, consist of ten separate lithotypes and can be described in terms of a two-level reservoir system with an underlying high-permeability mound-core interval overlain by a lower permeability but volumetrically larger supramound (mound capping) interval. Reservoir simulations and related performance predictions indicate that CO2 flooding of these reservoirs should have considerable success in recovering remaining oil reserves.Productive carbonate buildups of Pennsylvanian age in the southern Paradox basin, Utah, contain up to 200 million bbl remaining oil potentially recoverable by enhanced recovery methods. These buildups comprise over 100 satellite fields to the giant Greater Aneth field, where secondary recovery operations thus far have been concentrated. Several types of satellite buildups exist and produce oil from the Desert Creek zone of the Paradox Formation. Many of the relevant fields have undergone early abandonment; wells in Desert Creek carbonate mounds commonly produce at very high initial rates (>1000 bbl/day) and then suffer

  19. Deposition of selenium and other constituents in reservoir bottom sediment of the Solomon River Basin, north-central Kansas

    USGS Publications Warehouse

    Christensen, Victoria G.

    1999-01-01

    The Solomon River drains approximately 6,840 square miles of mainly agricultural land in north-central Kansas. The Bureau of Reclamation, U.S. Department of the Interior, has begun a Resource Management Assessment (RMA) of the Solomon River Basin to provide the necessary data for National Environmental Policy Act (NEPA) compliance before renewal of long-term water-service contracts with irrigation districts in the basin. In May 1998, the U.S. Geological Survey (USGS) collected bottom-sediment cores from Kirwin and Webster Reservoirs, which are not affected by Bureau irrigation, and Waconda Lake, which receives water from both Bureau and non-Bureau irrigated lands. The cores were analyzed for selected physical properties, total recoverable metals, nutrients, cesium-137, and total organic carbon. Spearman's rho correlations and Kendall's tau trend tests were done for sediment concentrations in cores from each reservoir. Selenium, arsenic, and strontium were the only constituents that showed an increasing trend in concentrations for core samples from more than one reservoir. Concentrations and trends for these three constituents were compared to information on historical irrigation to determine any causal effect. Increases in selenium, arsenic, and strontium concentrations can not be completely explained by Bureau irrigation. However, mean selenium, arsenic, and strontium concentrations in sediment from all three reservoirs may be related to total irrigated acres (Bureau and non-Bureau irrigation) in the basin. Selenium, arsenic, and strontium loads were calculated for Webster Reservoir to determine if annual loads deposited in the reservoir were increasing along with constituent concentrations. Background selenium, arsenic, and strontium loads in Webster Reservoir are significantly larger than post-background loads.

  20. Geothermal prospection in the Greater Geneva Basin (Switzerland and France). Impact of diagenesis on reservoir properties of the Upper Jurassic carbonate sediments

    NASA Astrophysics Data System (ADS)

    Makhloufi, Yasin; Rusillon, Elme; Brentini, Maud; Clerc, Nicolas; Meyer, Michel; Samankassou, Elias

    2017-04-01

    Diagenesis of carbonate rocks is known to affect the petrophysical properties (porosity, permeability) of the host rock. Assessing the diagenetic history of the rock is thus essential when evaluating any reservoir exploitation project. The Canton of Geneva (Switzerland) is currently exploring the opportunities for geothermal energy exploitation in the Great Geneva Basin (GGB) sub-surface. In this context, a structural analysis of the basin (Clerc et al., 2016) associated with reservoir appraisal (Brentini et al., 2017) and rock-typing of reservoir bodies of potential interest were conducted (Rusillon et al., 2017). Other geothermal exploitation projects elsewhere (e.g. Bavaria, south Germany, Paris Basin, France) showed that dolomitized carbonate rocks have good reservoir properties and are suitable for geothermal energy production. The objectives of this work are to (1) describe and characterize the dolomitized bodies in the GGB and especially their diagenetic history and (2) quantify the reservoir properties of those bodies (porosity, permeability). Currently, our study focuses on the Upper Jurassic sedimentary bodies of the GGB. Field and well data show that the dolomitization is not ubiquitous in the GGB. Results from the petrographical analyses of the Kimmeridgian cores (Humilly-2) and of field analogues (Jura, Saleve and Vuache mountains) display complex diagenetic histories, dependent of the study sites. The paragenesis exhibits several stages of interparticular calcite cementation as well as different stages of dolomitization and/or dedolomitization. Those processes seem to follow constrained path of fluid migrations through burial, faulting or exhumation during the basin's history. These complex diagenetic histories affected the petrophysical and microstructural properties via porogenesis (conservation of initial porosity, moldic porosity) and/or poronecrosis events. The best reservoir properties appear to be recorded in patch reef and peri

  1. PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead

    2003-04-01

    A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest petroleum-producing basin in the US. Approximately 1300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl of oil through 2000. Of these major reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. On a preliminary basis, 32 geologic plays have been defined for Permian Basin oil reservoirs and assignment of each of the 1300 major reservoirs to a play has begun. The reservoirs are being mapped and compiled in a Geographic Informationmore » System (GIS) by play. Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonardian Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.« less

  2. Gas Resource Potential of Volcanic Reservoir in Yingtai Fault Depression of Southern Songliao Basin,China

    NASA Astrophysics Data System (ADS)

    Zheng, M.

    2016-12-01

    There are 2 kinds of volcanic reservoir of gas resource in the Yingtai fault depression, southern Songliao basin,China: volcanic lava reservoir in the Yingcheng-1formation and sedimentary pryoclastics rock of the Yingcheng-2 formation. Based on analysis of the 2 kinds of gas pool features and controlling factors, distribution of each kind has been studied. The resources of these gas reservoirs have been estimated by Delphi method and volumetric method, respectively. The results of resources assessment show the total volcanic gas resources of the Yingtai depression is rich, and the resource proving rate is low, with the remaining gas resource in volcanic reservoir accounting for more than 70%. Thus there will be great exploration potential in the volcanic reservoir in the future gas exploration of this area.

  3. Rationale for finding and exploiting fractured reservoirs, based on the MWX/SHCT-Piceance basin experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenz, J.C.; Warpinski, N.R.; Teufel, L.W.

    The deliverability of a reservoir depends primarily on its permeability, which, in many reservoirs, is controlled by a combination of natural fractures and the in situ stresses. Therefore it is important to be able to predict which parts of a basin are most likely to contain naturally fractured strata, what the characteristics of those fractures might be, and what the most likely in situ stresses are at a given location. This paper presents a set of geologic criteria that can be superimposed onto factors, such as levels of maturation and porosity development, in order to predict whether fractures are presentmore » once the likelihood of petroleum presence and reservoir development have been determined. Stress causes fracturing, but stresses are not permanent. A natural-fracture permeability pathway opened by one system of stresses may be held open by those stresses, or narrowed or even closed by changes of the stress to an oblique or normal orientation. The origin of stresses and stress anisotropies in a basin, the potential for stress to create natural fractures, and the causes of stress reorientation are examined in this paper. The appendices to this paper present specific techniques for exploiting and characterizing natural fractures, for measuring the present-day in situ stresses, and for reconstructing a computerized stress history for a basin.« less

  4. The Approach to Study the Kama Reservoir Basin Deformation in the Zone of a Variable Backwater

    NASA Astrophysics Data System (ADS)

    Dvinskikh, S. A.; Kitaev, A. B.; Shaydulina, A. A.

    2018-01-01

    A reservoir floor starts to change since it has been filled up to a normal headwater level (NHL) under the impact of hydrosphere and lithosphere interactions as well as under the impact of chemical and biological processes that occur in its water masses. At that complicated and often contradictory “relations” between features of geo- and hydrodynamic processes are created. The consequences of these relations are the alterations of values of morphometric indices of the reservoir water surface, depth and volume. We observe two processes that are oppositely directed. They are accumulation and erosion. They are more complex at the upper area of the reservoir - the zone of a variable backwater. The basin deformation observed there is lop-sided and relatively quiet, but with time these deformations make difficulties for water users. To provide good navigation and to reduce harmful effect of waters on other water consumption objects, it is necessary to study and to forecast constantly the basin transformation processes that occur at this zone.

  5. Petroleum geology of the Southern Bida Basin, Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braide, S.P.

    1990-05-01

    The Southern Bida basin is located in central Nigeria and is a major sedimentary area with a 3.5-km-thick sedimentary fill. However, it is the least understood of Nigeria's sedimentary basins because serious oil and gas exploration has not been undertaken in the basin. The surrounding Precambrian basement rocks experienced severe deformation during the Late Panafrican phase (600 {plus minus} 150 m.y.), and developed megashears that were reactivated during the Late Campanian-Maestrichtian. The ensuing wrenchfault tectonics formed the basin. The sedimentary fill, which comprises the Lokoja Formation are chiefly, if not wholly, nonmarine clastics. These have been characterized into facies thatmore » rapidly change from basin margin to basin axis, and have undergone only relatively mild tectonic distortion. Subsurface relations of the Lokoja Formation are postulated from outcrop study. The potential source rocks are most likely within the basinal axis fill and have not been deeply buried based on vitrinite reflectance of <0.65%. These findings, with the largely nonmarine depositional environment, suggest gas and condensate are the most likely hydrocarbons. Alluvial fans and deltaic facies that interfinger with lacustrine facies provide excellent reservoir capabilities. Potential traps for hydrocarbon accumulation were formed by a northwest-southeast-trending Campanian-Maestrichtian wrench system with associated northeast-southwest-oriented normal faults. The traps include strata in alluvial fans, fractured uplifted basement blocks, and arched strata over uplifted blocks. However, the size of hydrocarbon accumulations could be limited to some extent by a lack of effective hydrocarbon seal, because the dominant seals in the formation are unconformities.« less

  6. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shu-Guang

    2012-01-01

    Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (~78%) and nutrients (~30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.

  7. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin.

    PubMed

    Wu, Yiping; Liu, Shuguang

    2012-09-01

    Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (∼78%) and nutrients (∼30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.

  8. Regional stratigraphy and petroleum potential, Ghadames basin, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emme, J.J.; Sunderland, B.L.

    1991-03-01

    The Ghadames basin in east-central Algeria extends over 65,000 km{sup 2} (25,000 mi{sup 2}), of which 90% is covered by dunes of the eastern Erg. This intracratonic basin consists of up to 6000 m (20,000 ft) of dominantly clastic Paleozoic through Mesozoic strata. The Ghadames basin is part of a larger, composite basin complex (Ilizzi-Ghadames-Triassic basins) where Paleozoic strata have been truncated during a Hercynian erosional event and subsequently overlain by a northward-thickening wedge of Mesozoic sediments. Major reservoir rocks include Triassic sandstones that produce oil, gas, and condensate in the western Ghadames basin, Siluro-Devonian sandstones that produce mostly oilmore » in the shallower Ilizzi basin to the south, and Cambro-Ordovician orthoquartzites that produce oil at Hassi Messaoud to the northwest. Organic shales of the Silurian and Middle-Upper Devonian are considered primary source rocks. Paleozoic shales and Triassic evaporite/red bed sequences act as seals for hydrocarbon accumulations. The central Ghadames basin is underexplored, with less than one wildcat well/1700 km{sup 2} (one well/420,000 ac). Recent Devonian and Triassic oil discoveries below 3500 m (11,500 ft) indicate that deep oil potential exists. Exploration to date has concentrated on structural traps. Subcrop and facies trends indicate that potential for giant stratigraphic or combination traps exists for both Siluro-Devonian and Triassic intervals. Modern seismic acquisition and processing techniques in high dune areas can be used to successfully identify critical unconformity-bound sequences with significant stratigraphic trap potential. Advances in seismic and drilling technology combined with creative exploration should result in major petroleum discoveries in the Ghadames basin.« less

  9. Heterogeneities of mechanical properties in potential geothermal reservoir rocks of the North German Basin

    NASA Astrophysics Data System (ADS)

    Reyer, D.; Philipp, S. L.

    2012-04-01

    Heterogeneous rock properties in terms of layering and complex infrastructure of fault zones are typical phenomena in sedimentary basins such as the North German Basin. To be able to model reservoir stimulation in layered stratifications and to better adapt the drilling strategy to the rock mechanical conditions it is important to have knowledge about the effects of heterogeneous rock properties on fracture propagation and fault zone infrastructure for typical sedimentary reservoir rocks in the North German Basin. Therefore we aim at quantifying these properties by performing structural geological field studies in outcrop analogues combined with laboratory analyses. The field studies in Rotliegend sandstones (Lower Permian), the sandstones of the Middle Bunter (Lower Triassic) and the sandstones of the Upper Keuper (Upper Triassic) focus on 1) host rock fracture systems and 2) fault zone infrastructure. We analyse quantitatively the dimension, geometry, persistence and connectivity of fracture systems separately for host rocks and fault damage zones. The results show that in rocks with distinctive layering (sandstones and shales) natural fractures are often restricted to individual layers, that is, they are stratabound. The probability of fracture arrest seems to depend on the stiffness contrast between the two layers and on the thickness of the softer layer. The field studies are complemented by systematic sampling to obtain mechanical property variations caused by the layering. For the samples we measure the parameters Young's modulus, compressive and tensile strengths, elastic strain energy, density and porosity. The results show that the mechanical properties vary considerably and many samples are clearly anisotropic. That is, samples taken perpendicular to layering commonly have higher strengths but lower stiffnesses than those taken parallel to layering. We combine the results of laboratory analyses and field measurements to specify the mechanical

  10. Hydrogeologic Framework and Occurrence and Movement of Ground Water in the Upper Humboldt River Basin, Northeastern Nevada

    USGS Publications Warehouse

    Plume, Russell W.

    2009-01-01

    The upper Humboldt River basin encompasses 4,364 square miles in northeastern Nevada, and it comprises the headwaters area of the Humboldt River. Nearly all flow of the river originates in this area. The upper Humboldt River basin consists of several structural basins, in places greater than 5,000 feet deep, in which basin-fill deposits of Tertiary and Quaternary age and volcanic rocks of Tertiary age have accumulated. The bedrock of each structural basin and adjacent mountains is composed of carbonate and clastic sedimentary rocks of Paleozoic age and crystalline rocks of Paleozoic, Mesozoic and Cenozoic age. The permeability of bedrock generally is very low except for carbonate rocks, which can be very permeable where circulating ground water has widened fractures through geologic time. The principal aquifers in the upper Humboldt River basin occur within the water-bearing strata of the extensive older basin-fill deposits and the thinner, younger basin-fill deposits that underlie stream flood plains. Ground water in these aquifers moves from recharge areas along mountain fronts to discharge areas along stream flood plains, the largest of which is the Humboldt River flood plain. The river gains flow from ground-water seepage to its channel from a few miles west of Wells, Nevada, to the west boundary of the study area. Water levels in the upper Humboldt River basin fluctuate annually in response to the spring snowmelt and to the distribution of streamflow diverted for irrigation of crops and meadows. Water levels also have responded to extended periods (several years) of above or below average precipitation. As a result of infiltration from the South Fork Reservoir during the past 20 years, ground-water levels in basin-fill deposits have risen over an area as much as one mile beyond the reservoir and possibly even farther away in Paleozoic bedrock.

  11. Characterization of petroleum reservoirs in the Eocene Green River Formation, Central Uinta Basin, Utah

    USGS Publications Warehouse

    Morgan, C.D.; Bereskin, S.R.

    2003-01-01

    The oil-productive Eocene Green River Formation in the central Uinta Basin of northeastern Utah is divided into five distinct intervals. In stratigraphically ascending order these are: 1) Uteland Butte, 2) Castle Peak, 3) Travis, 4) Monument Butte, and 5) Beluga. The reservoir in the Uteland Butte interval is mainly lacustrine limestone with rare bar sandstone beds, whereas the reservoirs in the other four intervals are mainly channel and lacustrine sandstone beds. The changing depositional environments of Paleocene-Eocene Lake Uinta controlled the characteristics of each interval and the reservoir rock contained within. The Uteland Butte consists of carbonate and rare, thin, shallow-lacustrine sandstone bars deposited during the initial rise of the lake. The Castle Peak interval was deposited during a time of numerous and rapid lake-level fluctuations, which developed a simple drainage pattern across the exposed shallow and gentle shelf with each fall and rise cycle. The Travis interval records a time of active tectonism that created a steeper slope and a pronounced shelf break where thick cut-and-fill valleys developed during lake-level falls and rises. The Monument Butte interval represents a return to a gentle, shallow shelf where channel deposits are stacked in a lowstand delta plain and amalgamated into the most extensive reservoir in the central Uinta Basin. The Beluga interval represents a time of major lake expansion with fewer, less pronounced lake-level falls, resulting in isolated single-storied channel and shallow-bar sandstone deposits.

  12. Sequence Stratigraphy of the Dakota Sandstone, Eastern San Juan Basin, New Mexico, and its Relationship to Reservoir Compartmentalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varney, Peter J.

    2002-04-23

    This research established the Dakota-outcrop sequence stratigraphy in part of the eastern San Juan Basin, New Mexico, and relates reservoir quality lithologies in depositional sequences to structure and reservoir compartmentalization in the South Lindrith Field area. The result was a predictive tool that will help guide further exploration and development.

  13. Reservoir characterization of the Mt. Simon Sandstone, Illinois Basin, USA

    USGS Publications Warehouse

    Frailey, S.M.; Damico, J.; Leetaru, H.E.

    2011-01-01

    The integration of open hole well log analyses, core analyses and pressure transient analyses was used for reservoir characterization of the Mt. Simon sandstone. Characterization of the injection interval provides the basis for a geologic model to support the baseline MVA model, specify pressure design requirements of surface equipment, develop completion strategies, estimate injection rates, and project the CO2 plume distribution.The Cambrian-age Mt. Simon Sandstone overlies the Precambrian granite basement of the Illinois Basin. The Mt. Simon is relatively thick formation exceeding 800 meters in some areas of the Illinois Basin. In the deeper part of the basin where sequestration is likely to occur at depths exceeding 1000 m, horizontal core permeability ranges from less than 1 ?? 10-12 cm 2 to greater than 1 ?? 10-8 cm2. Well log and core porosity can be up to 30% in the basal Mt. Simon reservoir. For modeling purposes, reservoir characterization includes absolute horizontal and vertical permeability, effective porosity, net and gross thickness, and depth. For horizontal permeability, log porosity was correlated with core. The core porosity-permeability correlation was improved by using grain size as an indication of pore throat size. After numerous attempts to identify an appropriate log signature, the calculated cementation exponent from Archie's porosity and resistivity relationships was used to identify which porosity-permeability correlation to apply and a permeability log was made. Due to the relatively large thickness of the Mt. Simon, vertical permeability is an important attribute to understand the distribution of CO2 when the injection interval is in the lower part of the unit. Only core analyses and specifically designed pressure transient tests can yield vertical permeability. Many reservoir flow models show that 500-800 m from the injection well most of the CO2 migrates upward depending on the magnitude of the vertical permeability and CO2 injection

  14. Development of a Reservoir System Operation Model for Water Sustainability in the Yaqui River Basin

    NASA Astrophysics Data System (ADS)

    Mounir, A.; Che, D.; Robles-Morua, A.; Kauneckis, D.

    2017-12-01

    The arid state of Sonora, Mexico underwent the Sonora SI project to provide additional water supply to the capital of Hermosillo. The main component of the project involves an interbasin transfer from the Yaqui River Basin (YRB) to the Sonora River Basin via the Independencia aqueduct. This project has generated conflicts over water among different social sectors in the YRB. To improve the management of the Yaqui reservoir system, we developed a daily watershed model. This model allowed us to predict the amount of water available in different regions of the basin. We integrated this simulation to an optimization model which calculates the best water allocation according to water rights established in Mexico's National Water Law. We compared different precipitation forcing scenarios: (1) a network of ground observations from Mexican water agencies during the historical period of 1980-2013, (2) gridded fields from the North America Land Data Assimilation System (NLDAS) at 12 km resolution, and (3) we will be studying a future forecast scenario. The simulation results were compared to historical observations at the three reservoirs existing in the YRB to generate confidence in the simulation tools. Our results are presented in the form of flow duration, reliability and exceedance frequency curves that are commonly used in the water management agencies. Through this effort, we anticipate building confidence among regional stakeholders in utilizing hydrological models in the development of reservoir operation policies.

  15. Hydrocarbons related to early Cretaceous source rocks, reservoirs and seals, trapped in northeastern Neuqun basin, Argentina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulisano, C.; Minniti, S.; Rossi, G.

    1996-08-01

    The Jurassic-Cretaceous backarc Neuqun Basin, located in the west central part of Argentina, is currently the most prolific oil basin of the country. The primary objective of this study is to evaluate an Early Cretaceous to Tertiary petroleum system in the northeastern portion of the basin, where oil and gas occurrences (e.g., Puesto Hernandez, Chihuido de la Sierra Negra, El Trapial and Filo Morado oil fields, among others) provide 82 MMBO/yr comprising 67% of the basin oil production and 31% of Argentina. The source rocks are represented by two thick sections of basinal kerogen type I and II organic-rich shales,more » deposited during transgressive peaks (Agrio Formation), with TOC content up to 5.1%. Lowstand sandstones bodies, 10 to 100 m thick, are composed of eolian and fluvial facies with good reservoir conditions (Avil and Troncoso Sandstones). The seals are provided by the organic-rich shales resting sharply upon the Avil Sandstone and a widespread Aptian-Albian evaporitic event (Huitrin Formation) on top of the Troncoso reservoir. Tertiary structural traps (duplex anticlines) are developed in the outer foothills, whereas structural, combined and stratigraphic traps are present in the adjacent stable structural platform. Oil-to-source rock and oil-to-oil correlation by chromatographic and biomarker fingerprints, carbon isotopic composition and the geological evidences support the proposed oil system.« less

  16. Petroleum geology and resources of northeastern Mexico

    USGS Publications Warehouse

    Peterson, James A.

    1985-01-01

    Petroleum deposits (primarily gas) in northeastern Mexico occur in two main basins, the Tertiary Burgos basin and the Mesozoic Sabinas basin. About 90 gas fields are present in the Burgos basin, which has undergone active exploration for the past 30-40 years. Production in this basin is from Oligocene and Eocene nearshore marine and deltaic sandstone reservoirs. Most of the fields are small to medium in size on faulted anticlinal or domal structures, some of which may be related to deep-seated salt intrusion. Cumulative production from these fields is about 4 trillion cubic feet gas and 100 million barrels condensate and oil. Since 1975, about 10 gas fields, some with large production rates, have been discovered in Cretaceous carbonate and Jurassic sandstone reservoirs in the Sabinas basin and adjacent Burro-Picachos platform areas. The Sabinas basin, which is in the early stages of exploration and development, may have potential for very large gas reserves. The Sabinas basin is oriented northwesterly with a large number of elongate northwest- or west-trending asymmetric and overturned Laramide anticlines, most of which-are faulted. Some of the structures may be related to movement of Jurassic salt or gypsum. Lower Cretaceous and in some cases Jurassic rocks are exposed in the centers of the larger anticlines, and Upper Cretaceous rocks are exposed in much of the remainder of the basin. A thick section of Upper Cretaceous clastic rocks is partly exposed in tightly folded and thrust-faulted structures of the west-east oriented, deeply subsided Parras basin, which lies south of the Sabinas basin and north of the Sierra Madre Oriental fold and thrust belt south and west of Monterrey. The sedimentary cover of Cretaceous and Jurassic rocks in the Sabinas and Parras basins ranges from about 1,550 m (5,000 ft) to 9,000 m (30,000 ft) in thickness. Upper Jurassic rocks are composed of carbonate and dark organic shaly or sandy beds underlain by an unknown thickness of Late

  17. Play Analysis and Digital Portfolio of Major Oil Reservoirs in the Permian Basin: Application and Transfer of Advanced Geological and Engineering Technologies for Incremental Production Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead

    2004-01-13

    A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest onshore petroleum-producing basin in the United States. Approximately 1,300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of oil through 2000. Of these significant-sized reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. There are 32 geologic plays that have been defined for Permian Basin oil reservoirs, and each of the 1,300 major reservoirs was assigned to a play. The reservoirs were mapped and compiledmore » in a Geographic Information System (GIS) by play. The final reservoir shapefile for each play contains the geographic location of each reservoir. Associated reservoir information within the linked data tables includes RRC reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are smaller than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. Oil production from the reservoirs in the Permian Basin having cumulative production of >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl [5.25 x 10{sup 8} m{sup 3}]), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San Andres Platform Carbonate play (2.15 Bbbl [3.42 x 10{sup 8} m{sup 3}]). Detailed studies of three

  18. Small reservoir distribution, rate of construction, and uses in the upper and middle Chattahoochee basins of the Georgia Piedmont, USA, 1950-2010

    USGS Publications Warehouse

    Ignatius, Amber R.; Jones, John W.

    2014-01-01

    Construction of small reservoirs affects ecosystem processes in numerous ways including fragmenting stream habitat, altering hydrology, and modifying water chemistry. While the upper and middle Chattahoochee River basins within the Southeastern United States Piedmont contain few natural lakes, they have a high density of small reservoirs (more than 7500 small reservoirs in the nearly 12,000 km2 basin). Policymakers and water managers in the region have little information about small reservoir distribution, uses, or the cumulative inundation of land cover caused by small reservoir construction. Examination of aerial photography reveals the spatiotemporal patterns and extent of small reservoir construction from 1950 to 2010. Over that 60 year timeframe, the area inundated by water increased nearly six fold (from 19 reservoirs covering 0.16% of the study area in 1950 to 329 reservoirs covering 0.95% of the study area in 2010). While agricultural practices were associated with reservoir creation from 1950 to 1970, the highest rates of reservoir construction occurred during subsequent suburban development between 1980 and 1990. Land cover adjacent to individual reservoirs transitioned over time through agricultural abandonment, land reforestation, and conversion to development during suburban expansion. The prolific rate of ongoing small reservoir creation, particularly in newly urbanizing regions and developing counties, necessitates additional attention from watershed managers and continued scientific research into cumulative environmental impacts at the watershed scale.

  19. Improvements in 2016 to Natural Reservoir Analysis in Low-Temperature Geothermal Play Fairway Analysis for the Appalachian Basin

    DOE Data Explorer

    Teresa E. Jordan

    2016-08-18

    *These files add to and replace same-named files found within Submission 559 (https://gdr.openei.org/submissions/559)* The files included in this submission contain all data pertinent to the methods and results of a cohesive multi-state analysis of all known potential geothermal reservoirs in sedimentary rocks in the Appalachian Basin region, ranked by their potential favorability. Favorability is quantified using three metrics: Reservoir Productivity Index for water; Reservoir Productivity Index; Reservoir Flow Capacity. The metrics are explained in the Reservoirs Methodology Memo (included in zip file). The product represents a minimum spatial extent of potential sedimentary rock geothermal reservoirs. Only natural porosity and permeability were analyzed. Shapefile and images of the spatial distributions of these reservoir quality metrics and of the uncertainty on these metrics are included as well. UPDATE: Accompanying geologic reservoirs data may be found at: https://gdr.openei.org/submissions/881 (linked below).

  20. Geochemical characteristics and reservoir continuity of Silurian Acacus in Ghadames Basin, Southern Tunisia

    NASA Astrophysics Data System (ADS)

    Mahmoudi, S.; Mohamed, A. Belhaj; Saidi, M.; Rezgui, F.

    2017-11-01

    The present work is dealing with the study of lateral and vertical continuity of the multi-layers Acacus reservoir (Ghadames Basin-Southern Tunisia) using the distribution of hydrocarbon fraction. For this purpose, oil-oil and source rock-oil correlations as well as the composition of the light fractions and a number of saturate and aromatic biomarkers parameters, including C35/C34 hopanes and DBT/P, have been investigated. Based on the ratios of light fraction and their fingerprints, the Acacus reservoir from Well1 and Well2 have found to be laterally non-connected although the hydrocarbons they contain have the same source rock. Moreover, the two oil samples from two different Acacus reservoir layers crossed by Well3-A3 and A9, display a similar hydrocarbons distribution, suggesting vertical reservoir continuity. On the other hand, the biomarker distributions of the oils samples and source rocks assess a Silurian ;Hot shale; that is the source rock feeding the Acacus reservoir. The biomarker distribution is characterized by high tricyclic terpanes contents compared to hopanes for the Silurian source rock and the two crude oils. This result is also confirmed by the dendrogram that precludes the Devonian source rocks as a source rock in the study area.

  1. Petroleum systems of the Malay Basin Province, Malaysia

    USGS Publications Warehouse

    Bishop, Michele G.

    2002-01-01

    The offshore Malay Basin province is a Tertiary oil and gas province composed of a complex of half grabens that were filled by lacustrine shales and continental clastics.These deposits were overlain by clastics of a large delta system that covered the basin.Delta progradation was interupted by transgressions of the South China Sea to the southeast, which finally flooded the basin to form the Gulf of Thailand.Oil and gas from the Oligocene to Miocene lacustrine shales and Miocene deltaic coals is trapped primarily in anticlines formed by inversion of the half grabens during the late Miocene.Hydrocarbon reserves that have been discovered amount to 12 billion barrels of oil equivalent.The U.S. Geological Survey assessment of the estimated quantities of conventional oil, gas and condensate that have the potential to be added to reserves by the year 2025 for this province is 6.3 billion barrels of oil equivalent (BBOE) (U. S. Geological Survey World Energy Assessment Team, 2000).

  2. Flow units classification for geostatisitical three-dimensional modeling of a non-marine sandstone reservoir: A case study from the Paleocene Funing Formation of the Gaoji Oilfield, east China

    NASA Astrophysics Data System (ADS)

    Zhang, Penghui; Zhang, Jinliang; Wang, Jinkai; Li, Ming; Liang, Jie; Wu, Yingli

    2018-05-01

    Flow units classification can be used in reservoir characterization. In addition, characterizing the reservoir interval into flow units is an effective way to simulate the reservoir. Paraflow units (PFUs), the second level of flow units, are used to estimate the spatial distribution of continental clastic reservoirs at the detailed reservoir description stage. In this study, we investigate a nonroutine methodology to predict the external and internal distribution of PFUs. The methodology outlined enables the classification of PFUs using sandstone core samples and log data. The relationships obtained between porosity, permeability and pore throat aperture radii (r35) values were established for core and log data obtained from 26 wells from the Funing Formation, Gaoji Oilfield, Subei Basin, China. The present study refines predicted PFUs at logged (0.125-m) intervals, whose scale is much smaller than routine methods. Meanwhile, three-dimensional models are built using sequential indicator simulation to characterize PFUs in wells. Four distinct PFUs are classified and located based on the statistical methodology of cluster analysis, and each PFU has different seepage ability. The results of this study demonstrate the obtained models are able to quantify reservoir heterogeneity. Due to different petrophysical characteristics and seepage ability, PFUs have a significant impact on the distribution of the remaining oil. Considering these allows a more accurate understanding of reservoir quality, especially within non-marine sandstone reservoirs.

  3. Diagenesis and porosity evolution of tight sand reservoirs in Carboniferous Benxi Formation, Southeast Ordos Basin

    NASA Astrophysics Data System (ADS)

    Hu, Peng; Yu, Xinghe; Shan, Xin; Su, Dongxu; Wang, Jiao; Li, Yalong; Shi, Xin; Xu, Liqiang

    2016-04-01

    The Ordos Basin, situated in west-central China, is one of the oldest and most important fossil-fuel energy base, which contains large reserves of coal, oil and natural gas. The Upper Palaeozoic strata are widely distributed with rich gas-bearing and large natural gas resources, whose potential is tremendous. Recent years have witnessed a great tight gas exploration improvement of the Upper Paleozoic in Southeastern Ordos basin. The Carboniferous Benxi Formation, mainly buried more than 2,500m, is the key target strata for hydrocarbon exploration, which was deposited in a barrier island and tidal flat environment. The sandy bars and flats are the favorable sedimentary microfacies. With an integrated approach of thin-section petrophysics, constant velocity mercury injection test, scanning electron microscopy and X-ray diffractometry, diagenesis and porosity evolution of tight sand reservoirs of Benxi Formation were analyzed in detail. The result shows that the main lithology of sandstone in this area is dominated by moderately to well sorted quartz sandstone. The average porosity and permeability is 4.72% and 1.22mD. The reservoirs of Benxi Formation holds a variety of pore types and the pore throats, with obvious heterogeneity and poor connection. Based on the capillary pressure curve morphological characteristics and parameters, combined with thin section and phycical property data, the reservoir pore structure of Benxi Formation can be divided into 4 types, including mid pore mid throat type(I), mid pore fine throat type(II), small pore fine throat type(III) and micro pro micro throat type(Ⅳ). The reservoirs primarily fall in B-subsate of middle diagenesis and late diagenesis, which mainly undergo compaction, cmentation, dissolution and fracturing process. Employing the empirical formula of different sorting for unconsolideated sandstone porosity, the initial sandstone porosity is 38.32% on average. Quantitative evaluation of the increase and decrease of

  4. Hydrologic data for water years 1933-97 used in the River and Reservoir Operations Model, Truckee River basin, California and Nevada

    USGS Publications Warehouse

    Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.

    2000-01-01

    Title II of Public Law 101-618, the Truckee?Carson?Pyramid Lake Water Rights Settlement Act of 1990, provides direction, authority, and a mechanism for resolving conflicts over water rights in the Truckee and Carson River Basins. The Truckee Carson Program of the U.S. Geological Survey, to support implementation of Public Law 101-618, has developed an operations model to simulate lake/reservoir and river operations for the Truckee River Basin including diversion of Truckee River water to the Truckee Canal for transport to the Carson River Basin. Several types of hydrologic data, formatted in a chronological order with a daily time interval called 'time series,' are described in this report. Time series from water years 1933 to 1997 can be used to run the operations model. Auxiliary hydrologic data not currently used by the model are also described. The time series of hydrologic data consist of flow, lake/reservoir elevation and storage, precipitation, evaporation, evapotranspiration, municipal and industrial (M&I) demand, and streamflow and lake/reservoir level forecast data.

  5. Chapter 2. Assessment of undiscovered conventional oil and gas resources--Upper Jurassic-Lower Cretaceous Cotton Valley group, Jurassic Smackover interior salt basins total petroleum system, in the East Texas basin and Louisiana-Mississippi salt basins provinces.

    USGS Publications Warehouse

    Dyman, T.S.; Condon, S.M.

    2006-01-01

    The Jurassic Smackover Interior Salt Basins Total Petroleum System is defined for this assessment to include (1) Upper Jurassic Smackover Formation carbonates and calcareous shales and (2) Upper Jurassic and Lower Cretaceous Cotton Valley Group organic-rich shales. The Jurassic Smackover Interior Salt Basins Total Petroleum System includes four conventional Cotton Valley assessment units: Cotton Valley Blanket Sandstone Gas (AU 50490201), Cotton Valley Massive Sandstone Gas (AU 50490202), Cotton Valley Updip Oil and Gas (AU 50490203), and Cotton Valley Hypothetical Updip Oil (AU 50490204). Together, these four assessment units are estimated to contain a mean undiscovered conventional resource of 29.81 million barrels of oil, 605.03 billion cubic feet of gas, and 19.00 million barrels of natural gas liquids. The Cotton Valley Group represents the first major influx of clastic sediment into the ancestral Gulf of Mexico. Major depocenters were located in south-central Mississippi, along the Louisiana-Mississippi border, and in northeast Texas. Reservoir properties and production characteristics were used to identify two Cotton Valley Group sandstone trends across northern Louisiana and east Texas: a high-permeability blanket-sandstone trend and a downdip, low-permeability massive-sandstone trend. Pressure gradients throughout most of both trends are normal, which is characteristic of conventional rather than continuous basin-center gas accumulations. Indications that accumulations in this trend are conventional rather than continuous include (1) gas-water contacts in at least seven fields across the blanket-sandstone trend, (2) relatively high reservoir permeabilities, and (3) high gas-production rates without fracture stimulation. Permeability is sufficiently low in the massive-sandstone trend that gas-water transition zones are vertically extensive and gas-water contacts are poorly defined. The interpreted presence of gas-water contacts within the Cotton Valley

  6. The interplay of fractures and sedimentary architecture: Natural gas from reservoirs in the Molina sandstones, Piceance Basin, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenz, J.C.

    1997-03-01

    The Molina Member of the Wasatch Formation produces natural gas from several fields along the Colorado River in the Piceance Basin, northwestern Colorado. The Molina Member is a distinctive sandstone that was deposited in a unique fluvial environment of shallow-water floods. This is recorded by the dominance of plane-parallel bedding in many of the sandstones. The Molina sandstones crop out on the western edge of the basin, and have been projected into the subsurface and across the basin to correlate with thinner sandy units of the Wasatch Formation at the eastern side of the basin. Detailed study, however, has shownmore » that the sedimentary characteristics of the type-section Molina sandstones are incompatible with a model in which the eastern sandstones are its distal facies equivalent. Rather, the eastern sandstones represent separate and unrelated sedimentary systems that prograded into the basin from nearby source-area highlands. Therefore, only the subsurface {open_quotes}Molina{close_quotes} reservoirs that are in close proximity to the western edge of the basin are continuous with the type-section sandstones. Reservoirs in the Grand Valley and Rulison gas fields were deposited in separate fluvial systems. These sandstones contain more typical fluvial sedimentary structures such as crossbeds and lateral accretion surfaces. Natural fractures play an important role in enhancing the conductivity and permeability of the Molina and related sandstones of the Wasatch Formation.« less

  7. Geology of the Roswell artesian basin, New Mexico, and its relation to the Hondo Reservoir and Effect on artesian aquifer storage of flood water in Hondo Reservoir

    USGS Publications Warehouse

    Bean, Robert T.; Theis, Charles V.

    1949-01-01

    In the Roswell Basin in southeastern New Mexico artesian water is produced from cavernous zones in the carbonate rocks of the San Andres formation and the lower part of the Chalk Bluff formation, both of Permian age. The Hondo Reservoir, 9 miles west-southwest of Roswell, was completed by the U. S. Bureau of Reclamation in 1907, to store waters of the Rio Hondo for irrigation. The project was not successful, as the impounded water escaped rapidly through holes in the gypsum and limestone of the San Andres formation constituting its floor. Of 27,000 acre~feet that entered the reservoir between 1908 and 1913, only 1,100 acre-feet was drawn Ollt for use, the remainder escaping through the floor of the reservoir. Since 1939, plans have been drawn up by the State Engineer and by Federal agencies to utilize the reservoir to protect Roswell from floods. It has also been suggested that water from the Pecos River might be diverted into underground storage through the reservoir. Sinkholes in the Roswell Basin are largely clustered in areas where gypsum occurs in the bedrock. Collapse of strata is due to solution of underlying rock commonly containing gypsum. Domes occur in gypsiferous strata near Salt Creek. The Bottomless Lakes, sinkhole lakes in the escarpment on the east side of the Pecos, are believed to have developed in north-south hinge-line fractures opened when the westernmost beds in the escarpment collapsed. Collapse was due to solution and removal of gypsiferous rock by artesian water which now fills the lakes.

  8. Longitudinal gradients along a reservoir cascade

    USGS Publications Warehouse

    Miranda, L.E.; Habrat, M.D.; Miyazono, S.

    2008-01-01

    Reservoirs have traditionally been regarded as spatially independent entities rather than as longitudinal segments of a river system that are connected upstream and downstream to the river and other reservoirs. This view has frustrated advancement in reservoir science by impeding adequate organization of available information and by hindering interchanges with allied disciplines that often consider impounded rivers at the basin scale. We analyzed reservoir morphology, water quality, and fish assemblage data collected in 24 reservoirs of the Tennessee River; we wanted to describe longitudinal changes occurring at the scale of the entire reservoir series (i.e., cascade) and to test the hypothesis that fish communities and environmental factors display predictable gradients like those recognized for unimpounded rivers. We used a data set collected over a 7-year period; over 3 million fish representing 94 species were included in the data set. Characteristics such as reservoir mean depth, relative size of the limnetic zone, water retention time, oxygen stratification, thermal stratification, substrate size, and water level fluctuations increased in upstream reservoirs. Conversely, reservoir area, extent of riverine and littoral zones, access to floodplains and associated wetlands, habitat diversity, and nutrient and sediment inputs increased in downstream reservoirs. Upstream reservoirs included few, largely lacustrine, ubiquitous fish taxa that were characteristic of the lentic upper reaches of the basin. Fish species richness increased in a downstream direction from 12 to 67 species/ reservoir as riverine species became more common. Considering impoundments at a basin scale by viewing them as sections in a river or links in a chain may generate insight that is not always available when the impoundments are viewed as isolated entities. Basin-scale variables are rarely controllable but constrain the expression of processes at smaller scales and can facilitate the

  9. Diagenetic effects of compaction on reservoir properties: The case of early callovian ``Dalle Nacrée'' formation (Paris basin, France)

    NASA Astrophysics Data System (ADS)

    Nader, Fadi H.; Champenois, France; Barbier, Mickaël; Adelinet, Mathilde; Rosenberg, Elisabeth; Houel, Pascal; Delmas, Jocelyne; Swennen, Rudy

    2016-11-01

    The impact of compaction diagenesis on reservoir properties is addressed by means of observations made on five boreholes with different burial histories of the Early Callovian ;Dalle Nacrée; Formation in the Paris Basin. Petrographic analyses were carried out in order to investigate the rock-texture, pore space type and volume, micro-fabrics, and cement phases. Based on the acquired data, a chronologically ordered sequence of diagenetic events (paragenesis) for each borehole was reconstructed taking the burial history into account. Point counting and a segmentation algorithm (Matlab) were used to quantify porosity, as well as the amounts of grain constituents and cement phases on scanned images of studied thin sections. In addition, four key samples were analyzed by 3D imaging using microfocus X-ray computer tomography. Basin margin grainstones display a different burial diagenesis when compared to basin centre grainstones and wackestones. The former have been affected by considerable cementation (especially by blocky calcite) prior to effective burial, in contrast to the basin centre lithologies where burial and compaction prevailed with relatively less cementation. Fracturing and bed-parallel stylolitization, observed especially in basinal wackestone facies also invoke higher levels of mechanical and chemical compaction than observed in basin marginal equivalents. Compaction fluids may have migrated at the time of burial from the basin centre towards its margins, affecting hence the reservoir properties of similar rock textures and facies and resulting in cross-basin spatial diagenetic heterogeneities.

  10. Diagenetic controls on reservoir heterogeneity in St. Peter Sandstone, deep Michigan basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, D.A.; Turmelle, T.M.; Adam, R.

    1989-03-01

    The St. Peter Sandstone is a highly productive gas and condensate reservoir throughout the central part of the Michigan basin. Production occurs in several intervals: a laterally continuous zone at the top of the formation typified in the Woodville, Falmouth, and Rose City fields and less continuous intervals lower in the formation typified in the Ruwe Gulf zone of the Reed City field. Porosity is not limited to hydrocarbon productive zones, however. Diagenesis has dramatically modified primary mineralogy and textures in the formation. Dominant diagenetic components are quartz, dolomite, and clay authigenic cements, extensive chemical compaction, and pervasive mineral leaching.more » Their model for sandstone diagenesis is consistent throughout the basin. Variation in the significance of these diagenetic components is strongly templated by stratigraphically predictable facies variations within the St. Peter Sandstone.« less

  11. Digital Core Modelling for Clastic Oil and Gas Reservoir

    NASA Astrophysics Data System (ADS)

    Belozerov, I.; Berezovsky, V.; Gubaydullin, M.; Yur’ev, A.

    2018-05-01

    "Digital core" is a multi-purpose tool for solving a variety of tasks in the field of geological exploration and production of hydrocarbons at various stages, designed to improve the accuracy of geological study of subsurface resources, the efficiency of reproduction and use of mineral resources, as well as applying the results obtained in production practice. The actuality of the development of the "Digital core" software is that even a partial replacement of natural laboratory experiments with mathematical modelling can be used in the operative calculation of reserves in exploratory drilling, as well as in the absence of core material from wells. Or impossibility of its research by existing laboratory methods (weakly cemented, loose, etc. rocks). 3D-reconstruction of the core microstructure can be considered as a cheap and least time-consuming method for obtaining petrophysical information about the main filtration-capacitive properties and fluid motion in reservoir rocks.

  12. Global prediction of continuous hydrocarbon accumulations in self-sourced reservoirs

    USGS Publications Warehouse

    Eoff, Jennifer D.

    2012-01-01

    occurred. In contrast, deposition of this resource type on rifted passive margins was likely the result of reactivation of long-lived cratonic features or salt tectonic regimes that created semi-confined basins. Commonly, loading by thick sections of clastic material, following thermal relaxation after plate collision or rift phases, advances kerogen maturation. With few exceptions, North American self-sourced reservoirs appear to be associated with calcitic seas and predominantly greenhouse or transitional ("warm" to "cool") global climatic conditions. Significant changes to the global carbon budget may also be a contributing factor in the stratigraphic distribution of continuous resource plays, requiring additional evaluation.

  13. Sequential filling of a late paleozoic foreland basin

    USGS Publications Warehouse

    Mars', J. C.; Thomas, W.A.

    1999-01-01

    Through the use of an extensive data base of geophysical well logs, parasequence-scale subdivisions within a late Paleozoic synorogenic clastic wedge resolve cycles of sequential subsidence of a foreland basin, sediment progradation, subsidence of a carbonate shelf edge, diachronously subsiding discrete depositional centers, and basinwide transgression. Although temporal resolution of biostratigraphic markers is less precise in Paleozoic successions than in younger basins, parasequence-scale subdivisions provide more detailed resolution within marker-defined units in Paleozoic strata. As an example, the late Paleozoic Black Warrior basin in the foreland of the Ouachita thrust belt is filled with a synorogenic clastic wedge, the lower part of which intertongues with the fringe of a cratonic carbonate facie??s in the distal part of the basin. The stratal geometry of one tongue of the carbonate facie??s (lower tongue of Bangor Limestone) defines a ramp that grades basinward into a thin black shale. An overlying tongue of the synorogenic clastic wedge (lower tongue of Parkwood Formation) consists of cyclic delta and delta-front deposits, in which parasequences are defined by marine-flooding surfaces above coarsening- and shallow ing-upward successions of mudstone and sandstone. Within the lower Parkwood tongue, two genetic stratigraphie sequences (A and B) are defined by parasequence offlap and downlap patterns and are bounded at the tops by basinwide maximum-flooding surfaces. The distribution of parasequences within sequences A and B indicates two cycles of sequential subsidence (deepening) and progradation, suggesting subsidence during thrust advance and progradation during thrust quiescence. Parasequence stacking in sequences A and B also indicates diachronous differential tectonic subsidence of two discrete depositional centers within the basin. The uppermost sequence (C) includes reworked sandstones and an overlying shallow-marine limestone, a vertical succession

  14. Standardizing texture and facies codes for a process-based classification of clastic sediment and rock

    USGS Publications Warehouse

    Farrell, K.M.; Harris, W.B.; Mallinson, D.J.; Culver, S.J.; Riggs, S.R.; Pierson, J.; ,; Lautier, J.C.

    2012-01-01

    Proposed here is a universally applicable, texturally based classification of clastic sediment that is independent from composition, cementation, and geologic environment, is closely allied to process sedimentology, and applies to all compartments in the source-to-sink system. The classification is contingent on defining the term "clastic" so that it is independent from composition or origin and includes any particles or grains that are subject to erosion, transportation, and deposition. Modifications to Folk's (1980) texturally based classification that include applying new assumptions and defining a broader array of textural fields are proposed to accommodate this. The revised ternary diagrams include additional textural fields that better define poorly sorted and coarse-grained deposits, so that all end members (gravel, sand, and mud size fractions) are included in textural codes. Revised textural fields, or classes, are based on a strict adherence to volumetric estimates of percentages of gravel, sand, and mud size grain populations, which by definition must sum to 100%. The new classification ensures that descriptors are applied consistently to all end members in the ternary diagram (gravel, sand, and mud) according to several rules, and that none of the end members are ignored. These modifications provide bases for standardizing vertical displays of texture in graphic logs, lithofacies codes, and their derivatives- hydrofacies. Hydrofacies codes are nondirectional permeability indicators that predict aquifer or reservoir potential. Folk's (1980) ternary diagram for fine-grained clastic sediments (sand, silt, and clay size fractions) is also revised to preserve consistency with the revised diagram for gravel, sand, and mud. Standardizing texture ensures that the principles of process sedimentology are consistently applied to compositionally variable rock sequences, such as mixed carbonate-siliciclastic ramp settings, and the extreme ends of depositional

  15. Geochemistry of formation waters from the Wolfcamp and “Cline” shales: Insights into brine origin, reservoir connectivity, and fluid flow in the Permian Basin, USA

    USGS Publications Warehouse

    Engle, Mark A.; Reyes, Francisco R.; Varonka, Matthew S.; Orem, William H.; Lin, Ma; Ianno, Adam J.; Westphal, Tiffani M.; Xu, Pei; Carroll, Kenneth C.

    2016-01-01

    Despite being one of the most important oil producing provinces in the United States, information on basinal hydrogeology and fluid flow in the Permian Basin of Texas and New Mexico is lacking. The source and geochemistry of brines from the basin were investigated (Ordovician- to Guadalupian-age reservoirs) by combining previously published data from conventional reservoirs with geochemical results for 39 new produced water samples, with a focus on those from shales. Salinity of the Ca–Cl-type brines in the basin generally increases with depth reaching a maximum in Devonian (median = 154 g/L) reservoirs, followed by decreases in salinity in the Silurian (median = 77 g/L) and Ordovician (median = 70 g/L) reservoirs. Isotopic data for B, O, H, and Sr and ion chemistry indicate three major types of water. Lower salinity fluids (<70 g/L) of meteoric origin in the middle and upper Permian hydrocarbon reservoirs (1.2–2.5 km depth; Guadalupian and Leonardian age) likely represent meteoric waters that infiltrated through and dissolved halite and anhydrite in the overlying evaporite layer. Saline (>100 g/L), isotopically heavy (O and H) water in Leonardian [Permian] to Pennsylvanian reservoirs (2–3.2 km depth) is evaporated, Late Permian seawater. Water from the Permian Wolfcamp and Pennsylvanian “Cline” shales, which are isotopically similar but lower in salinity and enriched in alkalis, appear to have developed their composition due to post-illitization diffusion into the shales. Samples from the “Cline” shale are further enriched with NH4, Br, I and isotopically light B, sourced from the breakdown of marine kerogen in the unit. Lower salinity waters (<100 g/L) in Devonian and deeper reservoirs (>3 km depth), which plot near the modern local meteoric water line, are distinct from the water in overlying reservoirs. We propose that these deep meteoric waters are part of a newly identified hydrogeologic unit: the Deep Basin Meteoric Aquifer System

  16. Geologic summary of the Appalachian Basin, with reference to the subsurface disposal of radioactive waste solutions

    USGS Publications Warehouse

    Colton, G.W.

    1962-01-01

    The Appalachian basin is an elongate depression in the crystalline basement complex< which contains a great volume of predominantly sedimentary stratified rocks. As defined in this paper it extends from the Adirondack Mountains in New York to central Alabama. From east to west it extends from the west flank of the Blue Ridge Mountains to the crest of the Findlay and Cincinnati arches and the Nashville dome. It encompasses an area of about 207,000 square miles, including all of West Virginia and parts of New York, New Jersey, Pennsylvania, Ohio, Maryland, Virginia, Kentucky, Tennessee, North Carolina, Georgia, and Alabama. The stratified rocks that occupy the basin constitute a wedge-shaped mass whose axis of greatest thickness lies close to and parallel to the east edge of the basin. The maximum thickness of stratified rocks preserved in any one part of the basin today is between 35,000 and 40,000 feet. The volume of the sedimentary rocks is approximately 510,000 cubic miles and of volcanic rocks is a few thousand cubic miles. The sedimentary rocks are predominantly Paleozoic in age, whereas the volcanic rocks are predominantly Late Precambrian. On the basis of gross lithology the stratified rocks overlying the crystalline basement complex can be divided into nine vertically sequential units, which are designated 'sequences' in this report. The boundaries between contiguous sequences do not necessarily coincide with the commonly recognized boundaries between systems or series. All sequences are grossly wedge shaped, being thickest along the eastern margin of the basin and thinnest along the western margin. The lowermost unit--the Late Precambrian stratified sequence--is present only along part of the eastern margin of the basin, where it lies unconformably on the basement complex. It consists largely of volcanic tuffs and flows but contains some interbedded sedimentary rocks. The Late Precambrian sequence is overlain by the Early Cambrian clastic sequence. Where

  17. Mapping lacustrine syn-rift reservoir distribution using spectral attributes: A case study of the Pematang Brownshale Central Sumatra Basin

    NASA Astrophysics Data System (ADS)

    Haris, A.; Yustiawan, R.; Riyanto, A.; Ramadian, R.

    2017-07-01

    Pematang Brownshale is the lake sediment, which is proven as the main source rock in Malacca Strait Area. So far Brownshale is only considered as source rock, but the well data show intercalated sand layers encountered within the Pematang Brownshale, where several downhole tests proved this series as a potential hydrocarbon reservoir. Pematang formation is a syn-rift sequent deposited in Malacca Strait following the opening of central Sumatra basin during a late cretaceous to early Oligocene, which is proven as potential source rock and reservoir. The aim of the study is to identify the distribution of sandstone reservoir in Pematang Brownshale using spectral attributes. These works were carried out by integrating log data analysis and frequency maps extracted from spectral attributes Continuous Wavelet Transform (CWT). All these data are used to delineate reservoir distribution in Pematang Brownshale. Based on CWT analysis the anomalies are only visible on the frequency of I5 and I0 Hz maps, which are categorized as low frequencies. Low-frequency shadow anomaly is commonly used as an indication of the presence of hydrocarbons. The distribution of these anomalies is covering an area of approximately 3840.66 acres or equal to I554.25 sq. km, where the low-frequency pattern is interpreted as a deltaic lacustrine feature. By considering the Pematang Brown Shale of Malacca Strait area as a potential reservoir, it would open new play to another basin that has similar characteristics.

  18. PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead

    2004-05-01

    The Permian Basin of west Texas and southeast New Mexico has produced >30 Bbbl (4.77 x 10{sup 9} m{sup 3}) of oil through 2000, most of it from 1,339 reservoirs having individual cumulative production >1 MMbbl (1.59 x 10{sup 5} m{sup 3}). These significant-sized reservoirs are the focus of this report. Thirty-two Permian Basin oil plays were defined, and each of the 1,339 significant-sized reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. Associated reservoir information within linked data tables includes Railroad Commission of Texas reservoir number and districtmore » (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are <1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. This report contains a summary description of each play, including key reservoir characteristics and successful reservoir-management practices that have been used in the play. The CD accompanying the report contains a pdf version of the report, the GIS project, pdf maps of all plays, and digital data files. Oil production from the reservoirs in the Permian Basin having cumulative production >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 from these significant-sized reservoirs was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl 5.25 x 10{sup 8} m{sup 3}), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San

  19. Nutrient sources and transport in the Missouri River Basin, with emphasis on the effects of irrigation and reservoirs

    USGS Publications Warehouse

    Brown, J.B.; Sprague, L.A.; Dupree, J.A.

    2011-01-01

    SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some areas. Sediment mobilized from stream channels was a source of phosphorus in medium and larger streams. Irrigation on agricultural land was estimated to decrease the nitrogen load reaching the Mississippi River by as much as 17%, likely as a result of increased anoxia and denitrification in the soil zone. Approximately 16% of the nitrogen load and 33% of the phosphorus load that would have otherwise reached the Mississippi River was retained in reservoirs and lakes throughout the basin. Nearly half of the total attenuation occurred in the eight largest water bodies. Unlike the other major tributary basins, nearly the entire instream nutrient load leaving the outlet of the Platte and Kansas River subbasins reached the Mississippi River. Most of the larger reservoirs and lakes in the Platte River subbasin are upstream of the major sources, whereas in the Kansas River subbasin, most of the source inputs are in the southeast part of the subbasin where characteristics of the area and proximity to the Missouri River facilitate delivery of nutrients to the Mississippi River.

  20. Liquid-Rich Shale Potential of Utah’s Uinta and Paradox Basins: Reservoir Characterization and Development Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanden Berg, Michael; Morgan, Craig; Chidsey, Thomas

    The enclosed report is the culmination of a multi-year and multi-faceted research project investigating Utah’s unconventional tight oil potential. From the beginning, the project team focused efforts on two different plays: (1) the basal Green River Formation’s (GRF) Uteland Butte unconventional play in the Uinta Basin and (2) the more established but understudied Cane Creek shale play in the Paradox Basin. The 2009-2014 high price of crude oil, coupled with lower natural gas prices, generated renewed interest in exploration and development of liquid hydrocarbon reserves. Following the success of the mid-2000s shale gas boom and employing many of the samemore » well completion techniques, petroleum companies started exploring for liquid petroleum in shale formations. In fact, many shales targeted for natural gas include areas in which the shale is more prone to liquid production. In Utah, organic-rich shales in the Uinta and Paradox Basins have been the source of significant hydrocarbon generation, with companies traditionally targeting the interbedded sands or carbonates for their conventional resource recovery. Because of the advances in horizontal drilling and hydraulic fracturing techniques, operators in these basins started to explore the petroleum production potential of the shale units themselves. The GRF in the Uinta Basin has been studied for over 50 years, since the first hydrocarbon discoveries. However, those studies focused on the many conventional sandstone reservoirs currently producing oil and gas. In contrast, less information was available about the more unconventional crude oil production potential of thinner carbonate/shale units, most notably the basal Uteland Butte member. The Cane Creek shale of the Paradox Basin has been a target for exploration periodically since the 1960s and produces oil from several small fields. The play generated much interest in the early 1990s with the successful use of horizontal drilling. Recently, the USGS

  1. Reservoir and Source Rock Identification Based on Geologycal, Geophysics and Petrophysics Analysis Study Case: South Sumatra Basin

    NASA Astrophysics Data System (ADS)

    Anggit Maulana, Hiska; Haris, Abdul

    2018-05-01

    Reservoir and source rock Identification has been performed to deliniate the reservoir distribution of Talangakar Formation South Sumatra Basin. This study is based on integrated geophysical, geological and petrophysical data. The aims of study to determine the characteristics of the reservoir and source rock, to differentiate reservoir and source rock in same Talangakar formation, to find out the distribution of net pay reservoir and source rock layers. The method of geophysical included seismic data interpretation using time and depth structures map, post-stack inversion, interval velocity, geological interpretations included the analysis of structures and faults, and petrophysical processing is interpret data log wells that penetrating Talangakar formation containing hydrocarbons (oil and gas). Based on seismic interpretation perform subsurface mapping on Layer A and Layer I to determine the development of structures in the Regional Research. Based on the geological interpretation, trapping in the form of regional research is anticline structure on southwest-northeast trending and bounded by normal faults on the southwest-southeast regional research structure. Based on petrophysical analysis, the main reservoir in the field of research, is a layer 1,375 m of depth and a thickness 2 to 8.3 meters.

  2. Geology, sequence stratigraphy, and oil and gas assessment of the Lewis Shale Total Petroleum System, San Juan Basin, New Mexico and Colorado: Chapter 5 in Total petroleum systems and geologic assessment of undiscovered oil and gas resources in the San Juan Basin Province, exclusive of Paleozoic rocks, New Mexico and Colorado

    USGS Publications Warehouse

    Dubiel, R.F.

    2013-01-01

    The Lewis Shale Total Petroleum System (TPS) in the San Juan Basin Province contains a continuous gas accumulation in three distinct stratigraphic units deposited in genetically related depositional environments: offshore-marine shales, mudstones, siltstones, and sandstones of the Lewis Shale, and marginal-marine shoreface sandstones and siltstones of both the La Ventana Tongue and the Chacra Tongue of the Cliff House Sandstone. The Lewis Shale was not a completion target in the San Juan Basin (SJB) in early drilling from about the 1950s through 1990. During that time, only 16 wells were completed in the Lewis from natural fracture systems encountered while drilling for deeper reservoir objectives. In 1991, existing wells that penetrated the Lewis Shale were re-entered by petroleum industry operators in order to fracture-stimulate the Lewis and to add Lewis gas production onto preexisting, and presumably often declining, Mesaverde Group production stratigraphically lower in the section. By 1997, approximately 101 Lewis completions had been made, both as re-entries into existing wells and as add-ons to Mesaverde production in new wells. Based on recent industry drilling and completion practices leading to successful gas production from the Lewis and because new geologic models indicate that the Lewis Shale contains both source rocks and reservoir rocks, the Lewis Shale TPS was defined and evaluated as part of this U.S. Geological Survey oil and gas assessment of the San Juan Basin. Gas in the Lewis Shale Total Petroleum System is produced from shoreface sandstones and siltstones in the La Ventana and Chacra Tongues and from distal facies of these prograding clastic units that extend into marine rocks of the Lewis Shale in the central part of the San Juan Basin. Reservoirs are in shoreface sandstone parasequences of the La Ventana and Chacra and their correlative distal parasequences in the Lewis Shale where both natural and artificially enhanced fractures produce

  3. Sedimentology of the Sbaa oil reservoir in the Timimoun basin (S. Algeria)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehadi, Z.

    1990-05-01

    In 1980 oil was discovered in the Timimoun portion of the Sbaa depression in Southern Algeria. Until that time this basin had produced only dry gas. Since the 1980 oil discovery, several wells have been drilled. Data acquired from these wells were analyzed and are presented in this study. The oil reservoir is located within a sandstone interval of the Sbaa formation which has an average thickness of 75 m. The Sbaa lies between the Tournaisian (Lower Carboniferous) silts and the Strunian (uppermost Devonian) shales and sandstones. The sedimentological study reveals that the Sbaa formation contains bimodal facies consisting ofmore » coarse siltstones and fine sandstones. The sequence has been attributed to a deltaic environment developed in the central part of the Ahnet basin. The sources of the associated fluvial system are from the surrounding In-Semmen, Tinessourine, and Arak-Foum-Belrem paleohighs. Thermoluminescence indicates the provenance for the Sbaa sands was the crystalline basement Cambrian and Ordovician sections.« less

  4. Petrography and geochemistry of clastic rocks within the Inthanon zone, northern Thailand: Implications for Paleo-Tethys subduction and convergence

    NASA Astrophysics Data System (ADS)

    Hara, Hidetoshi; Kunii, Miyuki; Hisada, Ken-ichiro; Ueno, Katsumi; Kamata, Yoshihito; Srichan, Weerapan; Charusiri, Punya; Charoentitirat, Thasinee; Watarai, Megumi; Adachi, Yoshiko; Kurihara, Toshiyuki

    2012-11-01

    The provenance, source rock compositions, and sediment supply system for a convergence zone of the Paleo-Tethys were reconstructed based on the petrography and geochemistry of clastic rocks of the Inthanon Zone, northern Thailand. The clastic rocks are classified into two types based on field and microscopic observations, the modal composition of sandstone, and mineral compositions: (1) lithic sandstone and shale within mélange in a Permo-Triassic accretionary complex; and (2) Carboniferous quartzose sandstone and mudstone within the Sibumasu Block. Geochemical data indicate that the clastic rocks of the mélange were derived from continental island arc and continental margin settings, which correspond to felsic volcanic rocks within the Sukhothai Zone and quartz-rich fragments within the Indochina Block, respectively. The results of a mixing model indicate the source rocks were approximately 35% volcanic rocks of the Sukhothai Zone and 65% craton sandstone and upper continental crust of the Indochina Block. In contrast, Carboniferous quartzose sedimentary rocks within the Sibumasu Block originated from a continental margin, without a contribution from volcanic rocks. In terms of Paleo-Tethys subduction, a continental island arc in the Sukhothai Zone evolved in tandem with Late Permian-Triassic forearc basins and volcanic activity during the Middle-early Late Triassic. The accretionary complex formed contemporaneously with the evolution of continental island arc during the Permo-Triassic, supplied with sediment from the Sukhothai Zone and the Indochina Block.

  5. Sedimentological and geophysical studies of clastic reservoir analogs: Methods, applications and developments of ground-penetrating radar for determination of reservoir geometries in near-surface settings. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMechan, G.A.; Soegaard, K.

    1998-05-25

    An integrated sedimentologic and GPR investigation has been carried out on a fluvial channel sandstone in the mid-Cretaceous Ferron Sandstone at Coyote Basin along the southwestern flank of the San Rafael Uplift in east-central Utah. This near-surface study, which covers a area of 40 {times} 16.5 meters to a depth of 15 meters, integrates detailed stratigraphic data from outcrop sections and facies maps with multi-frequency 3-D GPR surveys. The objectives of this investigation are two-fold: (1) to develop new ground-penetrating radar (GPR) technology for imaging shallow subsurface sandstone bodies, and (2) to construct an empirical three-dimensional sandstone reservoir model suitablemore » for hydrocarbon flow-simulation by imaging near-surface sandstone reservoir analogs with the use of GPR. The sedimentological data base consists of a geologic map of the survey area and a detailed facies map of the cliff face immediately adjacent to the survey area. Five vertical sections were measured along the cliff face adjacent to the survey area. In addition, four wells were cored within the survey area from which logs were recorded. In the sections and well logs primary sedimentary structures were documented along with textural information and permeability data. Gamma-ray profiles were also obtained for all sections and core logs. The sedimentologic and stratigraphic information serves as the basis from which much of the processing and interpretation of the GPR data was made. Three 3-D GPR data sets were collected over the survey area at frequencies of 50 MHZ, 100 MHZ, and 200 MHZ.« less

  6. Eustatic and tectonic control of deposition of the lower and middle Pennsylvanian strata of the Central Appalachian Basin

    USGS Publications Warehouse

    Chesnut, D.R.

    1997-01-01

    Stratigraphic analysis of Lower and Middle Pennsylvanian rocks of part of the Central Appalachian Basin reveals two orders of cycles and one overall trend in the vertical sequence of coal-bearing rocks. The smallest order cycle, the coal-clastic cycle, begins at the top of a major-resource coal bed and is composed of a vertical sequence of shale, siltstone, sandstone, seat rock, and overlying coal, which, in turn, is overlain by the next coal-clastic sequence. The average duration of the coal-clastic cycle has been calculated to be about 0.4 m.y. The major marine-transgression cycle is composed of five to seven coal-clastic cycles and is distinguished by the occurrence of widespread, relatively thick (generally thicker than 5 m) marine strata at its base. The duration of this cycle has been calculated to be about 2.5 m.y. The Breathitt coarsening-upward trend describes the general upward coarsening of the Middle Pennsylvanian part of the Breathitt Group. The Breathitt Group includes eight major marine-transgression cycles, and was deposited during a period of approximately 20 m.y. The average duration of coal-clastic cycles is of the same order of magnitude (105 year) as the Milankovitch orbital-eccentricity cycles, and matches the 0.4 m.y. second-order eccentricity cycle (Long Earth-Eccentricity cycle). These orbital periodicities are thought to modulate glacial stages and glacio-eustatic levels. The calculated periodicities of the coal-clastic cycles can be used as evidence for glacio-eustatic control of the coal-bearing rocks of the Appalachian Basin. The 2.5-m.y. periodicity of the major marine-transgression cycle does not match any known orbital or tectonic cycle; the cause of this cycle is unknown, but it might represent episodic thrusting in the orogen, propagation of intraplate stresses, or an unidentified orbital cycle. The Breathitt coarsening-upward trend is interpreted to represent the increasing intensity and proximity of the Alleghenian Orogeny

  7. Phase I (Year 1) Summary of Research--Establishing the Relationship between Fracture-Related Dolomite and Primary Rock Fabric on the Distribution of Reservoirs in the Michigan Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Michael Grammer

    2005-11-09

    This topical report covers the first 12 months of the subject 3-year grant, evaluating the relationship between fracture-related dolomite and dolomite constrained by primary rock fabric in the 3 most prolific reservoir intervals in the Michigan Basin (Ordovician Trenton-Black River Formations; Silurian Niagara Group; and the Devonian Dundee Formation). Phase I tasks, including Developing a Reservoir Catalog for selected dolomite reservoirs in the Michigan Basin, Characterization of Dolomite Reservoirs in Representative Fields and Technology Transfer have all been initiated and progress is consistent with our original scheduling. The development of a reservoir catalog for the 3 subject formations in themore » Michigan Basin has been a primary focus of our efforts during Phase I. As part of this effort, we currently have scanned some 13,000 wireline logs, and compiled in excess of 940 key references and 275 reprints that cover reservoir aspects of the 3 intervals in the Michigan Basin. A summary evaluation of the data in these publications is currently ongoing, with the Silurian Niagara Group being handled as a first priority. In addition, full production and reservoir parameter data bases obtained from available data sources have been developed for the 3 intervals in Excel and Microsoft Access data bases. We currently have an excess of 25 million cells of data for wells in the Basin. All Task 2 objectives are on time and on target for Phase I per our original proposal. Our mapping efforts to date, which have focused in large part on the Devonian Dundee Formation, have important implications for both new exploration plays and improved enhanced recovery methods in the Dundee ''play'' in Michigan--i.e. the interpreted fracture-related dolomitization control on the distribution of hydrocarbon reservoirs. In an exploration context, high-resolution structure mapping using quality-controlled well data should provide leads to convergence zones of fault/fracture trends

  8. Diagenesis of an 'overmature' gas reservoir: The Spiro sand of the Arkoma Basin, USA

    USGS Publications Warehouse

    Spotl, C.; Houseknecht, D.W.; Burns, S.J.

    1996-01-01

    The Spiro sand is a laterally extensive thin sandstone of earliest Atokan (Pennsylvanian) age that forms a major natural gas reservoir in the western Arkoma Basin, Oklahoma. Petrographic analysis reveals a variety of diagenetic alterations, the majority of which occurred during moderate to deep burial. Early diagenetic processes include calcite cementation and the formation of Fe-clay mineral peloids and coatings around quartz framework grains. These clays, which underwent transformation to well-crystallized chamosite [polytype Ib(?? = 90??)] on burial, are particularly abundant in medium-grained channel sandstones, whereas illitic clays are predominant in fine-grained interchannel sandstones. Subsequent to mechanical compaction, saddle ankerite precipitated in the reservoir at temperatures in excess of 70??C. Crude oil collected in favourable structural locations during and after ankeritization. Whereas hydrocarbons apparently halted inorganic diagenesis in oil-saturated zones, cementation continued in the underlying water-saturated zones. As reservoir temperatures increased further, hydrocarbons were cracked and a solid pyrobitumen residue remained in the reservoir. At temperatures exceeding ???140-150??C, non-syntaxial quartz cement, ferroan calcite and traces of dickite(?) locally reduced the reservoir quality. Local secondary porosity was created by carbonate cement dissolution. This alteration post-dated hydrocarbon emplacement and is probably related to late-stage infiltration of freshwater along 'leaky' faults. The study shows that the Spiro sandstone locally retained excellent porosities despite deep burial and thermal conditions that correspond to the zone of incipient very low grade metamorphism.

  9. Genesis analysis of high-gamma ray sandstone reservoir and its log evaluation techniques: a case study from the Junggar basin, northwest China.

    PubMed

    Wang, Liang; Mao, Zhiqiang; Sun, Zhongchun; Luo, Xingping; Song, Yong; Liu, Zhen

    2013-01-01

    In the Junggar basin, northwest China, many high gamma-ray (GR) sandstone reservoirs are found and routinely interpreted as mudstone non-reservoirs, with negative implications for the exploration and exploitation of oil and gas. Then, the high GR sandstone reservoirs' recognition principles, genesis, and log evaluation techniques are systematically studied. Studies show that the sandstone reservoirs with apparent shale content greater than 50% and GR value higher than 110API can be regarded as high GR sandstone reservoir. The high GR sandstone reservoir is mainly and directly caused by abnormally high uranium enrichment, but not the tuff, feldspar or clay mineral. Affected by formation's high water sensitivity and poor borehole quality, the conventional logs can not recognize reservoir and evaluate the physical property of reservoirs. Then, the nuclear magnetic resonance (NMR) logs is proposed and proved to be useful in reservoir recognition and physical property evaluation.

  10. Genesis Analysis of High-Gamma Ray Sandstone Reservoir and Its Log Evaluation Techniques: A Case Study from the Junggar Basin, Northwest China

    PubMed Central

    Wang, Liang; Mao, Zhiqiang; Sun, Zhongchun; Luo, Xingping; Song, Yong; Liu, Zhen

    2013-01-01

    In the Junggar basin, northwest China, many high gamma-ray (GR) sandstone reservoirs are found and routinely interpreted as mudstone non-reservoirs, with negative implications for the exploration and exploitation of oil and gas. Then, the high GR sandstone reservoirs' recognition principles, genesis, and log evaluation techniques are systematically studied. Studies show that the sandstone reservoirs with apparent shale content greater than 50% and GR value higher than 110API can be regarded as high GR sandstone reservoir. The high GR sandstone reservoir is mainly and directly caused by abnormally high uranium enrichment, but not the tuff, feldspar or clay mineral. Affected by formation's high water sensitivity and poor borehole quality, the conventional logs can not recognize reservoir and evaluate the physical property of reservoirs. Then, the nuclear magnetic resonance (NMR) logs is proposed and proved to be useful in reservoir recognition and physical property evaluation. PMID:24078797

  11. Fractal Nature of Porosity in Volcanic Tight Reservoirs of the Santanghu Basin and its Relationship to Pore Formation Processes

    NASA Astrophysics Data System (ADS)

    Wang, Weiming; Wang, Zhixuan; Chen, Xuan; Long, Fei; Lu, Shuangfang; Liu, Guohong; Tian, Weichao; Su, Yue

    In this paper, in a case study of Santanghu Basin in China, the morphological characteristics and size distribution of nanoscale pores in the volcanic rocks of the Haerjiawu Formation were investigated using the results of low temperature nitrogen adsorption experiments. This research showed that within the target layer, a large number of nanoscale, eroded pores showed an “ink bottle” morphology with narrow pore mouths and wide bodies. The fractal dimension of pores increases gradually with increasing depth. Moreover, as fractal dimension increases, BET-specific surface area gradually increases, average pore diameter decreases and total pore volume gradually increases. The deeper burial of the Haerjiawu volcanic rocks in the Santanghu Basin leads to more intense erosion by organic acids derived from the basin’s source rocks. Furthermore, the internal surface roughness of these corrosion pores results in poor connectivity. As stated above, the corrosion process is directly related to the organic acids generated by the source rock of the interbedded volcanic rocks. The deeper the reservoir, the more the organic acids being released from the source rock. However, due to the fact that the Haerjiawu volcanic rocks are tight reservoirs and have complicated pore-throat systems, while organic acids dissolve unstable minerals such as feldspars which improve the effective reservoir space; the dissolution of feldspars results in the formation of new minerals, which cannot be expelled from the tight reservoirs. They are instead precipitated in the fine pore throats, thereby reducing pore connectivity, while enhancing reservoir micro-preservation conditions.

  12. Multivariate classification of small order watersheds in the Quabbin Reservoir Basin, Massachusetts

    USGS Publications Warehouse

    Lent, R.M.; Waldron, M.C.; Rader, J.C.

    1998-01-01

    A multivariate approach was used to analyze hydrologic, geologic, geographic, and water-chemistry data from small order watersheds in the Quabbin Reservoir Basin in central Massachusetts. Eighty three small order watersheds were delineated and landscape attributes defining hydrologic, geologic, and geographic features of the watersheds were compiled from geographic information system data layers. Principal components analysis was used to evaluate 11 chemical constituents collected bi-weekly for 1 year at 15 surface-water stations in order to subdivide the basin into subbasins comprised of watersheds with similar water quality characteristics. Three principal components accounted for about 90 percent of the variance in water chemistry data. The principal components were defined as a biogeochemical variable related to wetland density, an acid-neutralization variable, and a road-salt variable related to density of primary roads. Three subbasins were identified. Analysis of variance and multiple comparisons of means were used to identify significant differences in stream water chemistry and landscape attributes among subbasins. All stream water constituents were significantly different among subbasins. Multiple regression techniques were used to relate stream water chemistry to landscape attributes. Important differences in landscape attributes were related to wetlands, slope, and soil type.A multivariate approach was used to analyze hydrologic, geologic, geographic, and water-chemistry data from small order watersheds in the Quabbin Reservoir Basin in central Massachusetts. Eighty three small order watersheds were delineated and landscape attributes defining hydrologic, geologic, and geographic features of the watersheds were compiled from geographic information system data layers. Principal components analysis was used to evaluate 11 chemical constituents collected bi-weekly for 1 year at 15 surface-water stations in order to subdivide the basin into subbasins

  13. Study of the relation between soil use, vegetation coverage, and the discharge of sediments from artificial reservoirs using MSS/LANDSAT images. Example: The Tres Marias reservoir and its supply basin

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Sausen, T. M.

    1981-01-01

    The land use and types of vegetation in the region of the upper Sao Francisco River, Brazil, are identified. This region comprises the supply basin of the Tres Marias reservoir. Imagery from channels 5 and 7 of the LANDSAT multispectral band scanner during wet and rainy seasons and ground truth data were employed to characterize and map the vegetation, land use, and sedimentary discharges from the reservoir. Agricultural and reforested lands, meadows, and forests are identified. Changes in land use due to human activity are demonstrated.

  14. Unusual occurrence of some sedimentary structures and their significance in Jurassic transgressive clastic successions of Northern Ethiopia

    NASA Astrophysics Data System (ADS)

    Dubey, N.; Bheemalingeswara, K.

    2009-04-01

    Mesozoic sedimentary successions produced by marine transgression and regression of sea in northeastern part of Africa are well preserved in Mekelle basin of Ethiopia. Here, a typical second order sequence is well developed and preserved overlying the Precambrian basement rocks or patchy Palaeozoic sedimentary successions. Initiation of Mesozoic sedimentation in Mekelle basin has started with deposition of Adigrat Sandstone Formation (ASF). It is a retrogradational succession of siliciclastics in coastline/beach environment due to transgression of sea from southeast. ASF is followed by Antallo Limestone Formation (ALF)- an aggradational succession of carbonates in tidal flat environment; Agula Shale/Mudstone Formation (AMF); and Upper/Ambaradom Sandstone Formation (USF)- a progradational succession formed during regression in ascending order (Dubey et al., 2007). AMF is deposited in a lagoonal evaporatic environment whereas USF in a fluvial coastal margin. ASF is an aggregate of cyclically stacked two lithologies ASF1 and ASF2 produced by sea-level rise and fall of a lower order mini-cycle. ASF1 is a thick, multistoried, pink to red, friable, medium to fine grained, cross-bedded sandstone deposited in a high energy environment. ASF2 is a thin, hard and maroon colored iron-rich mudstone (ironstones) deposited in a low energy environment. ASF1 has resulted during regressive phase of the mini-cycle when rate of sedimentation was extremely high due to abundant coarser clastic supply from land to the coastal area. On the other hand, ASF2 has resulted during transgressive phase of the mini-cycle which restricted the supply of the coarser clastic to the coastal area and deposited the muddy ferruginous sediments in low energy offshore part of the basin where sedimentation rate was very low. Apart from these two major lithologies, there are also few other minor lithologies like fine-grained white sandstone, carbonate (as bands), claystone and mudstone present in ASF. ASF is

  15. Paleogeographic evolution of carbonate reservoirs: geological and geophysical analysis at the Albian Campos Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Castillo Vincentelli, Maria Gabriela; Favoreto, Julia; Roemers-Oliveira, Eduardo

    2018-02-01

    An integrated geophysical and geological analysis of a carbonate reservoir can offer an effective method to better understand the paleogeographical evolution and distribution of a geological reservoir and non-reservoir facies. Therefore, we propose a better method for obtaining geological facies from geophysical facies, helping to characterize the permo-porous system of this kind of play. The goal is to determine the main geological phases from a specific hydrocarbon producer (Albian Campos Basin, Brazil). The applied method includes the use of a petrographic and qualitative description from the integrated reservoir with seismic interpretation of an attribute map (energy, root mean square, mean amplitude, maximum negative amplitude, etc), all calculated at the Albian level for each of the five identified phases. The studied carbonate reservoir is approximately 6 km long with a main direction of NE-SW, and it was sub-divided as follows (from bottom to top): (1) the first depositional sequence of the bank was composed mainly of packstone, indicating that the local structure adjacent to the main bank is protected from environmental conditions; (2) characterized by the presence of grainstone developed at the higher structure; (3) the main sequence of the peloidal packstone with mudstones oncoids; (4) corresponds to the oil production of carbonate reservoirs formed by oolitic grainstone deposited at the top of the carbonate bank; at this phase, rising sea levels formed channels that connected the open sea shelf with the restricted circulation shelf; and (5) mudstone and wackestone represent the system’s flooding phase.

  16. Reservoir geology of Landslide field, southern San Joaquin basin, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, T.R.; Tucker, R.D.; Singleton, M.T.

    1991-02-01

    The Landslide field, which is located on the southern margin of the San Joaquin basin, was discovered in 1985 and consists of 13 producers and six injectors. Cumulative production as of mid-1990 was approximately 10 million bbl of oil with an average daily production of 4700 BOPD. Production is from a series of late Miocene turbidite sands (Stevens Sand) that were deposited as a small constructional submarine fan (less than 2 mi in diameter). Based on interpretation of wireline logs and engineering data, deposition of the fan and of individual lobes within the fan was strongly influenced by preexisting paleotopographymore » and small syndepositional slump features. Based on mapping of individual depositional units and stratigraphic dipmeter analysis, transport direction of the sand was to the north-north across these paleotopographic breaks in slope. Dipmeter data and pressure data from individual sands are especially useful for recognition and mapping of individual flow units between well bores. Detailed engineering, geophysical and geological studies have increased our understanding of the dimensions, continuity, geometry, and inherent reservoir properties of the individual flow units within the reservoir. Based on the results of these studies a series of water isolation workovers and extension wells were proposed and successfully undertaken. This work has increased recoverable reserves and arrested the rapid production decline.« less

  17. Chemical and isotopic changes in Williston Basin brines during long-term oil production: An example from the Poplar dome, Montana

    USGS Publications Warehouse

    Peterman, Zell; Thamke, Joanna N.

    2016-01-01

    Brine samples were collected from 30 conventional oil wells producing mostly from the Charles Formation of the Madison Group in the East and Northwest Poplar oil fields on the Fort Peck Indian Reservation, Montana. Dissolved concentrations of major ions, trace metals, Sr isotopes, and stable isotopes (oxygen and hydrogen) were analyzed to compare with a brine contaminant that affected groundwater northeast of the town of Poplar. Two groups of brine compositions, designated group I and group II, are identified on the basis of chemistry and 87Sr/86Sr ratios. The solute chemistry and Sr isotopic composition of group I brines are consistent with long-term residency in Mississippian carbonate rocks, and brines similar to these contaminated the groundwater. Group II brines probably resided in clastic rocks younger than the Mississippian limestones before moving into the Poplar dome to replenish the long-term fluid extraction from the Charles Formation. Collapse of strata at the crest of the Poplar dome resulting from dissolution of Charles salt in the early Paleogene probably developed pathways for the ingress of group II brines from overlying clastic aquifers into the Charles reservoir. Such changes in brine chemistry associated with long-term oil production may be a widespread phenomenon in the Williston Basin.

  18. Tectonic setting and hydrocarbon habitat of external Carpathian basins in Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dicea, O.; Morariu, D.C.

    1993-09-01

    During the Alpine evolution of Romania, two distinct depositional areas evolved in the external zones of the Carpathians: the Paleogene flysch and Neogene Molasse basin of the eastern Carpathians, and the Paleogene and Neogene Molasse basin of the southern Carpathians. Both basins were compressionally deformed during the Neogene, giving rise to the development of a succession of nappes and thrust sheets. The internal elements of the external Carpathians corresponding to the Tarcau and marginal folds nappes and the external elements forming the sub-carpathian nappe and foredeep were thrusted over significant distances onto the European platform. Intense exploration of the externalmore » Carpathian thrustbelt has led to the discovery of more than 100 oil and gas pools. Reservoirs are provided by Oligocene, Burdigalian, Sarmatian, and Pliocene clastic rocks. A prolific hydrocarbon charge is derived from regionally distributed Oligocene oil source rocks. Traps are mainly of the structural type and involve faulted anticlines, [open quotes]scale folds,[close quotes] and compressional structures modified by salt; stratigraphic pinch-out and unconformity related traps play a secondary role. On the basis of selected examples, the development and distribution of hydrocarbon pools will be discussed in terms of thrust kinematics and the structure of different platform blocks. The philosophy of past exploration activities will be reviewed, and both success cases and failures will be discussed. Remaining oil and gas plays, aimed at shallow as well as at deep objectives, will be highlighted.« less

  19. Simulation of reservoir storage and firm yields of three surface-water supplies, Ipswich River Basin, Massachusetts

    USGS Publications Warehouse

    Zarriello, Phillip J.

    2002-01-01

    A Hydrologic Simulation Program FORTRAN (HSPF) model previously developed for the Ipswich River Basin was modified to simulate the hydrologic response and firm yields of the water-supply systems of Lynn, Peabody, and Salem-Beverly. The updated model, expanded to include a portion of the Saugus River Basin that supplies water to Lynn, simulated reservoir system storage over a 35-year period (1961-95) under permitted withdrawals and hypothetical restrictions designed to maintain seasonally varied streamflow for aquatic habitat. A firm yield was calculated for each system and each withdrawal restriction by altering demands until the system failed. This is considered the maximum withdrawal rate that satisfies demands, but depletes reservoir storage. Simulations indicate that, under the permitted withdrawals, Lynn and Salem-Beverly were able to meet demands and generally have their reservoir system recover to full capacity during most years; reservoir storage averaged 83 and 82 percent of capacity, respectively. The firm yields for the Lynn and Salem-Beverly systems were 11.4 and 12.2 million gallons per day (Mgal/d), respectively, or 8 and 21 percent more than average 1998-2000 demands, respectively. Under permitted withdrawals and average 1998-2000 demands, the Peabody system failed in all years; thus Peabody purchased water to meet demands. The firm yield for the Peabody system is 3.70 Mgal/d, or 37 percent less than the average 1998-2000 demand. Simulations that limit withdrawals to levels recommended by the Ipswich River Fisheries Restoration Task Group (IRFRTG) indicate that under average 1998-2000 demands, reservoir storage was depleted in each of the three systems. Reservoir storage under average 1998-2000 demands and IRFRTG-recommended streamflow requirements averaged 15, 22, and 71 percent of capacity for the Lynn, Peabody, Salem-Beverly systems, respectively. The firm-yield estimates under the IRFRTG-recommended streamflow requirements were 6.02, 1.94, and 7

  20. Diagenesis and reservoir quality of Bhuban sandstones (Neogene), Titas Gas Field, Bengal Basin, Bangladesh

    NASA Astrophysics Data System (ADS)

    Aminul Islam, M.

    2009-06-01

    This study deals with the diagenesis and reservoir quality of sandstones of the Bhuban Formation located at the Titas Gas Field of Bengal Basin. Petrographic study including XRD, CL, SEM and BSE image analysis and quantitative determination of reservoir properties were carried out for this study. The sandstones are fine to medium-grained, moderately well to well sorted subfeldspathic arenites with subordinate feldspathic and lithic arenites. The diagenetic processes include clay infiltration, compaction and cementation (quartz overgrowth, chlorite, kaolinite, calcite and minor amount of pyrite, dolomite and K-feldspar overgrowth). Quartz is the dominant pore occluding cement and generally occurred as small euhedral crystals, locally as large pyramidal crystals in the primary pores. Pressure solution derived from grain contact is the main contributor of quartz overgrowths. Chlorite occurs as pore-lining and pore filling cement. In some cases, chlorite helps to retain porosity by preventing quartz overgrowth. In some restricted depth interval, pore-occlusion by calcite cement is very much intense. Kaolinite locally developed as vermiform and accelerated the minor porosity loss due to pore-occlusion. Kaolinite/chlorite enhances ineffective microporosity. Kaolinite is a by-product of feldspar leaching in the presence of acidic fluid produced during the maturation of organic matter in the adjacent Miocene or deeper Oligocene source rocks. The relation between diagenesis and reservoir quality is as follows: the initial porosity was decreased by compaction and cementation and then increased by leaching of the metastable grains and dissolution of cement. Good quality reservoir rocks were deposited in fluvial environment and hence quality of reservoir rocks is also environment selective. Porosity and permeability data exhibit good inverse correlation with cement. However, some data points indicate multiple controls on permeability. Reservoir quality is thus controlled by

  1. Nutrient Sources and Transport in the Missouri River Basin, with Emphasis on the Effects of Irrigation and Reservoirs1

    PubMed Central

    Brown, Juliane B; Sprague, Lori A; Dupree, Jean A

    2011-01-01

    Abstract SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some areas. Sediment mobilized from stream channels was a source of phosphorus in medium and larger streams. Irrigation on agricultural land was estimated to decrease the nitrogen load reaching the Mississippi River by as much as 17%, likely as a result of increased anoxia and denitrification in the soil zone. Approximately 16% of the nitrogen load and 33% of the phosphorus load that would have otherwise reached the Mississippi River was retained in reservoirs and lakes throughout the basin. Nearly half of the total attenuation occurred in the eight largest water bodies. Unlike the other major tributary basins, nearly the entire instream nutrient load leaving the outlet of the Platte and Kansas River subbasins reached the Mississippi River. Most of the larger reservoirs and lakes in the Platte River subbasin are upstream of the major sources, whereas in the Kansas River subbasin, most of the source inputs are in the southeast part of the subbasin where characteristics of the area and proximity to the Missouri River facilitate delivery of nutrients to the Mississippi River. PMID:22457581

  2. Reservoir development in bryozoan bafflestone facies of the Ullin (Warsaw) Limestone (Middle Mississippian) in the Illinois basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasemi, Z.; Treworgy, J.D.; Norby, R.D.

    1994-08-01

    Recent drilling in Enfield South and Johnsonville fields in southern Illinois has encountered prolific petroleum-producing zones within the Ullin (Warsaw) Limestone. This and large cumulative production from a number of older wells in the Illinois basin indicate that the Ullin has greater reservoir potential than previously recognized. The Ullin reservoir facies is mainly a fenestrate bryozoan-dominated bafflestone developed on the flanks of Waulsortian-type mud mounds or on transported skeletal sand buildups. Subsurface geology and petrography reveal such porous bryozoan bafflestone facies (some with shows of oil) at various horizons within the Ullin. However, in part because of water problems inmore » some areas, only the upper part of the Ullin has been tested thus far and, as a result, significant reservoirs in the deeper part of the unit may have been missed. Preliminary data indicate several facies in the Ullin that vary in their aerial distribution in the basin. These facies include (1) skeletal sand-wave facies and/or bryozoan bafflestone in the upper Ullin, (2) bryozoan bafflestone with a dense Waulsortian mud mound core, (3) thick bryozoan bafflestone over a skeletal grainstone facies, and (4) thick mud mound-dominated facies with thin porous flanking bafflestone/grainstone facies. Areas with facies type 1 and 2 have the highest potential for commercial reservoir development. Facies type 3, although quite porous, is commonly wet, and the porous facies type 4 may be localized and not extensive enough to be commercial. Petrographic examination shows excellent preservation of primary intra- and interparticle porosities within the bryozoan bafflestone facies. The generally stable original mineralogy prevented extensive dissolution-reprecipitation and occlusion of porosity. Further, the stable mineralogy and minor early marine cementation prevented later compaction and burial diagenesis.« less

  3. Sequence Stratigraphic Framework Analysis of Putaohua Oil Reservoir in Chaochang Area of Songliao Basin

    NASA Astrophysics Data System (ADS)

    Chang, Yan; Liu, Dameng; Yao, Yanbin

    2018-01-01

    The regional structure of the Changchang area in the Songliao Basin is located on the Chaoyangou terrace and Changchunling anticline belt in the central depression of the northern part of the Songliao Basin, across the two secondary tectonic units of the Chaoyanggou terrace and Changchunling anticline. However, with the continuous development of oil and gas, the unused reserves of Fuyu oil reservoir decreased year by year, and the oil field faced a serious shortage of reserve reserves. At the same time, during the evaluation process, a better oil-bearing display was found during the drilling and test oil in the Putao depression to the Chaoyanggou terraces, the Yudong-Taipingchuan area, and in the process of drilling and testing oil in the Putaohua reservoir. Zhao41, Zhao18-1, Shu38 and other exploration wells to obtain oil oil, indicating that the area has a further evaluation of the potential. Based on the principle of stratification, the Putao area was divided into three parts by using the core, logging and logging. It is concluded that the middle and western strata of the study area are well developed, including three sequences, one cycle from bottom to top (three small layers), two cycles (one small layer), three cycles (two small layers) Rhythm is positive-anti-positive. From the Midwest to the southeastern part of the strata, the strata are overtaken, the lower strata are missing, and the top rhythms become rhythmic.

  4. Reservoir characterization of the Mississippian Ratcliffe, Richland County, Montana, Williston Basin. Topical report, September 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sippel, M.; Luff, K.D.; Hendricks, M.L.

    1998-07-01

    This topical report is a compilation of characterizations by different disciplines of the Mississippian Ratcliffe in portions of Richland County, MT. Goals of the report are to increase understanding of the reservoir rocks, oil-in-place, heterogeneity and methods for improved recovery. The report covers investigations of geology, petrography, reservoir engineering and seismic. The Ratcliffe is a low permeability oil reservoir which appears to be developed across much of the study area and occurs across much of the Williston Basin. The reservoir has not been a primary drilling target in the study area because average reserves have been insufficient to payout themore » cost of drilling and completion despite the application of hydraulic fracture stimulation. Oil trapping does not appear to be structurally controlled. For the Ratcliffe to be a viable drilling objective, methods need to be developed for (1) targeting better reservoir development and (2) better completions. A geological model is presented for targeting areas with greater potential for commercial reserves in the Ratcliffe. This model can be best utilized with the aid of 3D seismic. A 3D seismic survey was acquired and is used to demonstrate a methodology for targeting the Ratcliffe. Other data obtained during the project include oriented core, special formation-imaging log, pressure transient measurements and oil PVT. Although re-entry horizontal drilling was unsuccessfully tested, this completion technology should improve the economic viability of the Ratcliffe. Reservoir simulation of horizontal completions with productivity of three times that of a vertical well suggested two or three horizontal wells in a 258-ha (640-acre) area could recover sufficient reserves for profitable drilling.« less

  5. Low flows and reservoir management for the Durance River basin (Southern France) in the 2050s

    NASA Astrophysics Data System (ADS)

    Sauquet, Eric

    2015-04-01

    . A model of water management similar to the tools used by Electricité De France was calibrated to simulate the behavior of the three reservoirs Serre-Ponçon, Castillon, Sainte-Croix on present-day conditions. This model simulates water releases from reservoir under constraints imposed by rule curves, ecological flows downstream to the dams and water levels in summer for recreational purposes. The results demonstrate the relatively good performance of this simplified model and its ability to represent the influence of reservoir operations on the natural hydrological river flow regime, the decision-making involved in water management and the interactions at regional scale. Four territorial socio-economic scenarios have been also elaborated with the help of stake holders to project water needs in the 2050s for the area supplied with water from the Durance River basin. This presentation will focus on the specific tools developed within the project to simulate water management and water abstractions. The main conclusions related to the risk of water shortage in the 2050s and the level of satisfaction for each water use will be also discussed.

  6. Assessing Reservoir Depositional Environments to Develop and Quantify Improvements in CO 2 Storage Efficiency. A Reservoir Simulation Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okwen, Roland; Frailey, Scott; Leetaru, Hannes

    2014-09-30

    The storage potential and fluid movement within formations are dependent on the unique hydraulic characteristics of their respective depositional environments. Storage efficiency (E) quantifies the potential for storage in a geologic depositional environment and is used to assess basinal or regional CO 2 storage resources. Current estimates of storage resources are calculated using common E ranges by lithology and not by depositional environment. The objectives of this project are to quantify E ranges and identify E enhancement strategies for different depositional environments via reservoir simulation studies. The depositional environments considered include deltaic, shelf clastic, shelf carbonate, fluvial deltaic, strandplain, reef,more » fluvial and alluvial, and turbidite. Strategies considered for enhancing E include CO 2 injection via vertical, horizontal, and deviated wells, selective completions, water production, and multi-well injection. Conceptual geologic and geocellular models of the depositional environments were developed based on data from Illinois Basin oil fields and gas storage sites. The geologic and geocellular models were generalized for use in other US sedimentary basins. An important aspect of this work is the development of conceptual geologic and geocellular models that reflect the uniqueness of each depositional environment. Different injection well completions methods were simulated to investigate methods of enhancing E in the presence of geologic heterogeneity specific to a depositional environment. Modeling scenarios included horizontal wells (length, orientation, and inclination), selective and dynamic completions, water production, and multiwell injection. A Geologic Storage Efficiency Calculator (GSECalc) was developed to calculate E from reservoir simulation output. Estimated E values were normalized to diminish their dependency on fluid relative permeability. Classifying depositional environments according to normalized baseline

  7. The potential of coordinated reservoir operation for flood mitigation in large basins - A case study on the Bavarian Danube using coupled hydrological-hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Seibert, S. P.; Skublics, D.; Ehret, U.

    2014-09-01

    The coordinated operation of reservoirs in large-scale river basins has great potential to improve flood mitigation. However, this requires large scale hydrological models to translate the effect of reservoir operation to downstream points of interest, in a quality sufficient for the iterative development of optimized operation strategies. And, of course, it requires reservoirs large enough to make a noticeable impact. In this paper, we present and discuss several methods dealing with these prerequisites for reservoir operation using the example of three major floods in the Bavarian Danube basin (45,000 km2) and nine reservoirs therein: We start by presenting an approach for multi-criteria evaluation of model performance during floods, including aspects of local sensitivity to simulation quality. Then we investigate the potential of joint hydrologic-2d-hydrodynamic modeling to improve model performance. Based on this, we evaluate upper limits of reservoir impact under idealized conditions (perfect knowledge of future rainfall) with two methods: Detailed simulations and statistical analysis of the reservoirs' specific retention volume. Finally, we investigate to what degree reservoir operation strategies optimized for local (downstream vicinity to the reservoir) and regional (at the Danube) points of interest are compatible. With respect to model evaluation, we found that the consideration of local sensitivities to simulation quality added valuable information not included in the other evaluation criteria (Nash-Sutcliffe efficiency and Peak timing). With respect to the second question, adding hydrodynamic models to the model chain did, contrary to our expectations, not improve simulations, despite the fact that under idealized conditions (using observed instead of simulated lateral inflow) the hydrodynamic models clearly outperformed the routing schemes of the hydrological models. Apparently, the advantages of hydrodynamic models could not be fully exploited when

  8. Estimation of reservoir inflow in data scarce region by using Sacramento rainfall runoff model - A case study for Sittaung River Basin, Myanmar

    NASA Astrophysics Data System (ADS)

    Myo Lin, Nay; Rutten, Martine

    2017-04-01

    The Sittaung River is one of four major rivers in Myanmar. This river basin is developing fast and facing problems with flood, sedimentation, river bank erosion and salt intrusion. At present, more than 20 numbers of reservoirs have already been constructed for multiple purposes such as irrigation, domestic water supply, hydro-power generation, and flood control. The rainfall runoff models are required for the operational management of this reservoir system. In this study, the river basin is divided into (64) sub-catchments and the Sacramento Soil Moisture Accounting (SAC-SMA) models are developed by using satellite rainfall and Geographic Information System (GIS) data. The SAC-SMA model has sixteen calibration parameters, and also uses a unit hydrograph for surface flow routing. The Sobek software package is used for SAC-SMA modelling and simulation of river system. The models are calibrated and tested by using observed discharge and water level data. The statistical results show that the model is applicable to use for data scarce region. Keywords: Sacramento, Sobek, rainfall runoff, reservoir

  9. Groundwater age, life expectancy and transit time distributions in advective dispersive systems; 2. Reservoir theory for sub-drainage basins

    NASA Astrophysics Data System (ADS)

    Cornaton, F.; Perrochet, P.

    2006-09-01

    Groundwater age and life expectancy probability density functions (pdf) have been defined, and solved in a general three-dimensional context by means of forward and backward advection-dispersion equations [Cornaton F, Perrochet P. Groundwater age, life expectancy and transit time distributions in advective-dispersive systems; 1. Generalized reservoir theory. Adv Water Res (xxxx)]. The discharge and recharge zones transit time pdfs were then derived by applying the reservoir theory (RT) to the global system, thus considering as ensemble the union of all inlet boundaries on one hand, and the union of all outlet boundaries on the other hand. The main advantages in using the RT to calculate the transit time pdf is that the outlet boundary geometry does not represent a computational limiting factor (e.g. outlets of small sizes), since the methodology is based on the integration over the entire domain of each age, or life expectancy, occurrence. In the present paper, we extend the applicability of the RT to sub-drainage basins of groundwater reservoirs by treating the reservoir flow systems as compartments which transfer the water fluxes to a particular discharge zone, and inside which mixing and dispersion processes can take place. Drainage basins are defined by the field of probability of exit at outlet. In this way, we make the RT applicable to each sub-drainage system of an aquifer of arbitrary complexity and configuration. The case of the well-head protection problem is taken as illustrative example, and sensitivity analysis of the effect of pore velocity variations on the simulated ages is carried out.

  10. The system controlling the composition of clastic sediments

    USGS Publications Warehouse

    Johnsson, Mark J.

    1993-01-01

    The composition of clastic sediments and rocks is controlled by a complex suite of parameters operating during pedogenesis, erosion, transport, deposition, and burial. The principal first-order parameters include source rock composition, modification by chemical weathering, mechanical disaggregation and abrasion, authigenic inputs, hydrodynamic sorting, and diagenesis. Each of these first-order parameters is influenced to varying degrees by such factors as the tectonic settings of the source region, transportational system and depositional environment, climate, vegetation, relief, slope, and the nature and energy of transportational and depositional systems. These factors are not independent; rather a complicated web of interrelationships and feedback mechanisms causes many factors to be modulated by others. Accordingly, processes controlling the composition of clastic sediments are best viewed as constituting a system, and in evaluating compositional information the dynamics of the system must be considered as whole.

  11. Correlation between hydrological drought, climatic factors, reservoir operation, and vegetation cover in the Xijiang Basin, South China

    NASA Astrophysics Data System (ADS)

    Lin, Qingxia; Wu, Zhiyong; Singh, Vijay P.; Sadeghi, S. H. R.; He, Hai; Lu, Guihua

    2017-06-01

    The Xijiang River is known as the Golden Watercourse because of its role in the development of the Pearl River Delta Regional Economic System in China, which was made possible by its abundant water resources. At present, the hydrological regime of the Xijiang River has now become complicated, the water shortages and successive droughts pose a threat to regional economic development. However, the complexity of hydroclimatological processes with emphasizes on drought has not been comprehended. In order to effectively predict and develop the adaptation strategies to cope with the water scarcity damage caused by hydrological droughts, it is essential to thoroughly analyze the relationship between hydrological droughts and pre/post-dependent hydroclimatological factors. To accomplish this, the extreme-point symmetric mode decomposition method (ESMD) was utilized to reveal the periodic variation in hydrological droughts that is characterized by the Standardized Drought Index (SDI). In addition, the cross-wavelet transform method was applied to investigate the correlation between large-scale climate indices and drought. The results showed that hydrological drought had the most significant response to spring ENSO (El Niño-Southern Oscillation), and the response lags in sub-basins were mostly 8-9 months except that in Yujiang River were mainly 5 or 8 months. Signal reservoir operation in the Yujiang River reduced drought severity by 52-95.8% from January to April over the 2003-2014 time period. Similarly, the cascade reservoir alleviated winter and spring droughts in the Hongshuihe River Basin. However, autumn drought was aggravated with severity increased by 41.9% in September and by 160.9% in October, so that the land surface models without considering human intervention must be used with caution in the hydrological simulation. The response lags of the VCI (Vegetation Condition Index) to hydrological drought were different in the sub-basins. The response lag for the

  12. Development of an integrated hydrological modeling system for near-real-time multi-objective reservoir operation in large river basins

    NASA Astrophysics Data System (ADS)

    Wang, L.; Koike, T.

    2010-12-01

    The climate change-induced variability in hydrological cycles directly affects regional water resources management. For improved multiple multi-objective reservoir operation, an integrated modeling system has been developed by incorporating a global optimization system (SCE-UA) into a distributed biosphere hydrological model (WEB-DHM) coupled with the reservoir routing module. The reservoir storage change is estimated from the difference between the simulated inflows and outflows; while the reservoir water level can be defined from the updated reservoir storage by using the H-V curve. According to the reservoir water level, the new operation rule can be decided. For optimization: (1) WEB-DHM is calibrated for each dam’s inflows separately; (2) then the calibrated WEB-DHM is used to simulate inflows and outflows by assuming outflow proportional to inflow; and (3) the proportion coefficients are optimized with Shuffle Complex Evolution method (SCE-UA), to fulfill an objective function towards minimum flood risk at downstream and maximum reservoir water storage for future use. The GSMaP product offers hourly global precipitation maps in near real-time (about four hours after observation). Aiming at near real-time reservoir operation in large river basins, the integrated modeling system takes the inputs from both an operational global quantitative precipitation forecast (JMA-GPV; to achieve an optimal operation rule in the assumed lead time period) and the GSMaP product (to perform current operation with the obtained optimal rule, after correction by gauge rainfall). The newly-developed system was then applied to the Red River Basin, with an area of 160,000 km2, to test its performance for near real-time dam operation. In Vietnam, three reservoirs are located in the upstream of Hanoi city, with Hoa Binh the largest (69% of total volume). After calibration with the gauge rainfall, the inflows to three reservoirs are well simulated; the discharge and water level at

  13. Big River Reservoir Project. Pawcatuck River and Narragansett Bay Drainage Basins. Water and Related Land Resources Study. Volume I. Main Report.

    DTIC Science & Technology

    1981-07-01

    blueberry , beech, laurel, wintergreen and scrub oak. Wetland types found in the study area include wooded and shrub swamps, deep and shallow marshes, and...temporary I Impacts io reservoir area, c) Les disruption in reservoir vicinity due to more negative Impacts in areas of pipeline river m02"t...19.7 miles of stream habitat (54.5% of the 36.2 nfiles in the big River Basin) Lnd at least IO small ponds totalling about 45 acres would be inundated

  14. Research on the Log Interpretation Method of Tuffaceous Sandstone Reservoirs of X Depression in Hailar-Tamtsag Basin

    NASA Astrophysics Data System (ADS)

    Liu, S.; Pan, B.

    2015-12-01

    The logging evaluation of tuffaceous sandstone reservoirs is always a difficult problem. Experiments show that the tuff and shale have different logging responses. Since the tuff content exerts an influence on the computation of shale content and the parameters of the reservoir, and the accuracy of saturation evaluation is reduced. Therefore, the effect of tuff on the calculation of saturation cannot be ignored. This study takes the tuffaceous sandstone reservoirs in the X depression of Hailar-Tamtsag basin as an example to analyze. And the electric conduction model of tuffaceous sandstone reservoirs is established. The method which combines bacterial foraging algorithm and particle swarm optimization algorithm is used to calculate the content of reservoir components in well logging for the first time, and the calculated content of tuff and shale corresponds to the results analysis of thin sections. The experiment on cation exchange capacity (CEC) proves that tuff has conductivity, and the conversion relationship between CEC and resistivity proposed by Toshinobu Iton has been improved. According to the rock electric experiment under simulated reservoir conditions, the rock-electro parameters (a, b, m and n) are determined. The improved relationship between CEC and resistivity and the rock-electro parameters are used in the calculation of saturation. Formula (1) shows the saturation equation of the tuffaceous reservoirs:According to the comparative analysis between irreducible water saturation and the calculated saturation, we find that the saturation equation used CEC data and rock-electro parameters has a better application effect at oil layer than Archie's formulas.

  15. Global Assessment of Exploitable Surface Reservoir Storage under Climate Change

    NASA Astrophysics Data System (ADS)

    Liu, L.; Parkinson, S.; Gidden, M.; Byers, E.; Satoh, Y.; Riahi, K.

    2016-12-01

    Surface water reservoirs provide us with reliable water supply systems, hydropower generation, flood control, and recreation services. Reliable reservoirs can be robust measures for water security and can help smooth out challenging seasonal variability of river flows. Yet, reservoirs also cause flow fragmentation in rivers and can lead to flooding of upstream areas, thereby displacing existing land-uses and ecosystems. The anticipated population growth, land use and climate change in many regions globally suggest a critical need to assess the potential for appropriate reservoir capacity that can balance rising demands with long-term water security. In this research, we assessed exploitable reservoir potential under climate change and human development constraints by deriving storage-yield relationships for 235 river basins globally. The storage-yield relationships map the amount of storage capacity required to meet a given water demand based on a 30-year inflow sequence. Runoff data is simulated with an ensemble of Global Hydrological Models (GHMs) for each of five bias-corrected general circulation models (GCMs) under four climate change pathways. These data are used to define future 30-year inflows in each river basin for time period between 2010 and 2080. The calculated capacity is then combined with geographical information of environmental and human development exclusion zones to further limit the storage capacity expansion potential in each basin. We investigated the reliability of reservoir potentials across different climate change scenarios and Shared Socioeconomic Pathways (SSPs) to identify river basins where reservoir expansion will be particularly challenging. Preliminary results suggest large disparities in reservoir potential across basins: some basins have already approached exploitable reserves, while some others display abundant potential. Exclusions zones pose significant impact on the amount of actual exploitable storage and firm yields

  16. Anomalies of natural gas compositions and carbon isotope ratios caused by gas diffusion - A case from the Donghe Sandstone reservoir in the Hadexun Oilfield, Tarim Basin, northwest China

    NASA Astrophysics Data System (ADS)

    Wang, Yangyang; Chen, Jianfa; Pang, Xiongqi; Zhang, Baoshou; Wang, Yifan; He, Liwen; Chen, Zeya; Zhang, Guoqiang

    2018-05-01

    Natural gases in the Carboniferous Donghe Sandstone reservoir within the Block HD4 of the Hadexun Oilfield, Tarim Basin are characterized by abnormally low total hydrocarbon gas contents (<65%), low methane contents (<10%) and low dryness coefficients (<0.5), and a reversal of the normal trend of carbon isotope ratios, showing δ13C methane (C1) > δ13C ethane (C2) < δ13C propane (C3) < δ13C butane (C4). Specifically, methane is enriched in 13C with the variations in δ13C1 values between gases from Block HD4 and gases from its neighboring blocks reaching 10‰. This type of abnormal gas has never been reported previously in the Tarim Basin and such large variations in δ13C have rarely been observed in other basins globally. Based on a comprehensive analysis of gas geochemical data and the geological setting of the Carboniferous reservoirs in the Hadexun Oilfield, we reveal that the anomalies of the gas compositions and carbon isotope ratios in the Donghe Sandstone reservoir are caused by gas diffusion through the poorly-sealed caprock rather than by pathways such as gas mixing, microorganism degradation, different kerogen types or thermal maturity degrees of source rocks. The documentation of an in-reservoir gas diffusion during the post entrapment process as a major cause for gas geochemical anomalies may offer important insight into exploring natural gas resources in deeply buried sedimentary basins.

  17. Reservoir characterization of the Upper Jurassic geothermal target formations (Molasse Basin, Germany): role of thermofacies as exploration tool

    NASA Astrophysics Data System (ADS)

    Homuth, S.; Götz, A. E.; Sass, I.

    2015-06-01

    The Upper Jurassic carbonates of the southern German Molasse Basin are the target of numerous geothermal combined heat and power production projects since the year 2000. A production-orientated reservoir characterization is therefore of high economic interest. Outcrop analogue studies enable reservoir property prediction by determination and correlation of lithofacies-related thermo- and petrophysical parameters. A thermofacies classification of the carbonate formations serves to identify heterogeneities and production zones. The hydraulic conductivity is mainly controlled by tectonic structures and karstification, whilst the type and grade of karstification is facies related. The rock permeability has only a minor effect on the reservoir's sustainability. Physical parameters determined on oven-dried samples have to be corrected, applying reservoir transfer models to water-saturated reservoir conditions. To validate these calculated parameters, a Thermo-Triaxial-Cell simulating the temperature and pressure conditions of the reservoir is used and calorimetric and thermal conductivity measurements under elevated temperature conditions are performed. Additionally, core and cutting material from a 1600 m deep research drilling and a 4850 m (total vertical depth, measured depth: 6020 m) deep well is used to validate the reservoir property predictions. Under reservoir conditions a decrease in permeability of 2-3 magnitudes is observed due to the thermal expansion of the rock matrix. For tight carbonates the matrix permeability is temperature-controlled; the thermophysical matrix parameters are density-controlled. Density increases typically with depth and especially with higher dolomite content. Therefore, thermal conductivity increases; however the dominant factor temperature also decreases the thermal conductivity. Specific heat capacity typically increases with increasing depth and temperature. The lithofacies-related characterization and prediction of reservoir

  18. Assessment of spatial distribution of soil loss over the upper basin of Miyun reservoir in China based on RS and GIS techniques.

    PubMed

    Chen, Tao; Niu, Rui-qing; Wang, Yi; Li, Ping-xiang; Zhang, Liang-pei; Du, Bo

    2011-08-01

    Soil conservation planning often requires estimates of the spatial distribution of soil erosion at a catchment or regional scale. This paper applied the Revised Universal Soil Loss Equation (RUSLE) to investigate the spatial distribution of annual soil loss over the upper basin of Miyun reservoir in China. Among the soil erosion factors, which are rainfall erosivity (R), soil erodibility (K), slope length (L), slope steepness (S), vegetation cover (C), and support practice factor (P), the vegetative cover or C factor, which represents the effects of vegetation canopy and ground covers in reducing soil loss, has been one of the most difficult to estimate over broad geographic areas. In this paper, the C factor was estimated based on back propagation neural network and the results were compared with the values measured in the field. The correlation coefficient (r) obtained was 0.929. Then the C factor and the other factors were used as the input to RUSLE model. By integrating the six factor maps in geographical information system (GIS) through pixel-based computing, the spatial distribution of soil loss over the upper basin of Miyun reservoir was obtained. The results showed that the annual average soil loss for the upper basin of Miyun reservoir was 9.86 t ha(-1) ya(-1) in 2005, and the area of 46.61 km(2) (0.3%) experiences extremely severe erosion risk, which needs suitable conservation measures to be adopted on a priority basis. The spatial distribution of erosion risk classes was 66.9% very low, 21.89% low, 6.18% moderate, 2.89% severe, and 1.84% very severe. Thus, by using RUSLE in a GIS environment, the spatial distribution of water erosion can be obtained and the regions which susceptible to water erosion and need immediate soil conservation planning and application over the upper watershed of Miyun reservoir in China can be identified.

  19. Tertiary stratigraphy and basin evolution, southern Sabah (Malaysian Borneo)

    NASA Astrophysics Data System (ADS)

    Balaguru, Allagu; Nichols, Gary

    2004-08-01

    New mapping and dating of strata in the southern part of the Central Sabah Basin in northern Borneo has made it possible to revise the lithostratigraphy and chronostratigraphy of the area. The recognition in the field of an Early Miocene regional unconformity, which may be equivalent to the Deep Regional Unconformity recognised offshore, has allowed the development of a stratigraphic framework of groups and formations, which correspond to stages in the sedimentary basin development of the area. Below the Early Miocene unconformity lies ophiolitic basement, which is overlain by an accretionary complex of Eocene age and a late Paleogene deep water succession which formed in a fore-arc basin. The late Paleogene deposits underwent syn-depositional deformation, including the development of extensive melanges, all of which can be demonstrated to lie below the unconformity in this area. Some localised limestone deposition occurred during a period of uplift and erosion in the Early Miocene, following which there was an influx of clastic sediments deposited in delta and pro-deltaic environments in the Middle Miocene. These deltaic to shallow marine deposits are now recognised as forming two coarsening-upward successions, mapped as the Tanjong and Kapilit Formations. The total thickness of these two formations in the Central Sabah Basin amounts to 6000 m, only half of the previous estimates, although the total stratigraphic thickness of Cenozoic clastic strata in Sabah may be more than 20,000 m.

  20. Hydrology and model study of the proposed Prosperity Reservoir, Center Creek Basin, southwestern Missouri

    USGS Publications Warehouse

    Harvey, Edward Joseph; Emmett, Leo F.

    1980-01-01

    A dam and reservoir have been proposed for construction on Center Creek, Jasper County, in southwestern Missouri. Ground-water levels in the hills adjacent to the reservoir will rise when the impoundment is completed. One of the problems is that the proposed site of Prosperity Reservoir is a few miles upstream from the lead-zinc mining area known as the Oronogo-Duenweg belt. In this belt transmissivities are variable but appear to be higher than they are in the immediate area of the reservoir.Grove Creek lies down-gradient from the reservoir area and separates it from the mining belt. A model study indicates that inflow from the proposed reservoir to the water table could cause water level rises varying from about 20 feet near the reservoir to 0.5 to 1.0 foot in the southern part of Grove Creek drainage basin. These rises will cause significant changes to the natural ground-water flow system. Increased ground-water elevations in the reservoir area could result in increased ground-water gradients and discharge to Grove and Center Creeks. The increase in ground-water discharge to Grove Creek, and in turn Center Creek, will have the beneficial effect of diluting mine-water discharge from the Oronogo-Duenweg belt during periods of low flow.However, if Grove Creek does not act as an effective drain and if conduits extend beneath Grove Creek to transfer the increased water available to the Oronogo-Duenweg belt, the flow regimen could change in the mining belt west of Grove Creek increasing mine-water discharge to Center Creek downstream from the reservoir.Bedrock in the area is Mississippian limestone, the deeply solutioned formation that contained the ore deposits. The limestone in the mining district was greatly altered by solution prior to ore deposition while the limestone in the area of the reservoir was altered less. The extent of the alteration is related to the aquifer characteristics in that high and low values of transmissivity and storage coefficient

  1. Lithogeochemical character of near-surface bedrock in the New England coastal basins

    USGS Publications Warehouse

    Robinson, Gilpin R.; Ayotte, Joseph D.; Montgomery, Denise L.; DeSimone, Leslie A.

    2002-01-01

    This geographic information system (GIS) data layer shows the generalized lithologic and geochemical, termed lithogeochemical, character of near-surface bedrock in the New England Coastal Basin (NECB) study area of the U.S. Geological Survey's National Water Quality Assessment (NAWQA) Program. The area encompasses 23,000 square miles in western and central Maine, eastern Massachusetts, most of Rhode Island, eastern New Hampshire and a small part of eastern Connecticut. The NECB study area includes the Kennebec, Androscoggin, Saco, Merrimack, Charles, and Blackstone River Basins, as well as all of Cape Cod. Bedrock units in the NECB study area are classified into lithogeochemical units based on the relative reactivity of their constituent minerals to dissolution and the presence of carbonate or sulfide minerals. The 38 lithogeochemical units are generalized into 7 major groups: (1) carbonate-bearing metasedimentary rocks; (2) primarily noncalcareous, clastic sedimentary rocks with restricted deposition in discrete fault-bounded sedimentary basins of Mississipian or younger age; (3) primarily noncalcareous, clastic sedimentary rocks at or above biotite-grade of regional metamorphism; (4) mafic igneous rocks and their metamorphic equivalents; (5) ultramafic rocks; (6) felsic igneous rocks and their metamorphic equivalents; and (7) unconsolidated and poorly consolidated sediments.

  2. 3D Sedimentological and geophysical studies of clastic reservoir analogs: Facies architecture, reservoir properties, and flow behavior within delta front facies elements of the Cretaceous Wall Creek Member, Frontier Formation, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher D. White

    2009-12-21

    distribution of rock types (\\Eg sandstones and mudstones) and the variation of transport properties (\\Eg permeability and porosity) within bodies of a particular rock type. Both basin-wide processes such as sea-level change and the autocyclicity of deltaic processes commonly cause deltaic reservoirs to have large variability in rock properties; in particular, alternations between mudstones and sandstones may form baffles and trends in rock body permeability can influence productivity and recovery efficiency. In addition, diagenetic processes such as compaction, dissolution, and cementation can alter the spatial pattern of flow properties. A better understanding of these properties, and improved methods to model the properties and their effects, will allow improved reservoir development planning and increased recovery of oil and gas from deltaic reservoirs. Surface exposures of ancient deltaic rocks provide a high resolution, low uncertainty view of subsurface variability. Patterns and insights gleaned from these exposures can be used to model analogous reservoirs, for which data is much sparser. This approach is particularly attractive when reservoir formations are exposed at the surface. The Frontier Formation in central Wyoming provides an opportunity for high resolution characterization. The same rocks exposed in the vicinity of the Tisdale anticline are productive in nearby oil fields, including Salt Creek. Many kilometers of good-quality exposure are accessible, and the common bedding-plane exposures allow use of shallow-penetration, high-resolution electromagnetic methods known as ground-penetrating radar. This study combined geologic interpretations, maps, vertical sections, core data, and ground-penetrating radar to construct high-resolution geostatistical and flow models for the Wall Creek Member of the Frontier Formation. Stratal-conforming grids were use to reproduce the progradational and aggradational geometries observed in outcrop and radar data. A new

  3. Reservoirs in the United States

    USGS Publications Warehouse

    Harbeck, G. Earl

    1948-01-01

    Man has engaged in the control of flowing water since history began. Among his early recorded efforts were reservoirs for muncipal water-supplies constructed near ancient Jerusalem to store water which was brought there in masonry conduits. 1/  Irrigation was practiced in Egypt as early as 2000 B. C. There the "basin system" was used from ancient times until the 19th century. The land was divided , into basins of approximately 40,000 acres, separated by earthen dikes. 2/  Flood waters of the Nile generally inundated the basins through canals, many of which were built by the Pharaohs. Even then the economic consequences of a deficient annual flood were recognized. Lake Maeris, which according to Herodotus was an ancient storage reservoir, is said to have had an area of 30,000 acres. In India, the British found at the time of their occupancy of the Presidency of Madras about 50,000 reservoirs for irrigation, many believed to be of ancient construction. 3/ During the period 115-130 A. D. reservoirs were built to improve the water-supply of Athens. Much has been written concerning the elaborate collection and distribution system built to supply Rome, and parts of it remain to this day as monuments to the engineering skill employed by the Romans in solving the problem of large-scale municipal water-supplies.

  4. Factors affecting water quality and net flux of solutes in two stream basins in the Quabbin Reservoir drainage basin, central Massachusetts,1983-85

    USGS Publications Warehouse

    Rittmaster, R.L.; Shanley, J.B.

    1995-01-01

    The factors that affect stream-water quality were studied at West Branch Swift River (Swift River), and East Branch Fever Brook (Fever Brook), two forested watersheds that drain into the Quabbin Reservoir, central Massachusetts, from December 1983 through August 1985. Spatial and temporal variations of chemistry of precipitation, surface water; and ground water and the linkages between chemical changes and hydrologic processes were used to identify the mechanisms that control stream chemistry. Precipitation chemistry was dominated by hydrogen ion (composite p.H 4.23), sulfate, and nitrate. Inputs of hydrogen and nitrate from pre- cipitation were almost entirely retained in the basins, whereas input of sulfate was approximately balanced by export by streamflow draining the basins. Both streams were poorly buffered, with mean pH near 5.7, mean alkalinity less than 30 microequivalents per liter, and sulfate concen- trations greater than 130 microequivalents per liter. Sodium and chloride, derived primarily from highway deicing salts, were the dominant solutes at Fever Brook. After adjustments for deicing salts, fluxes of base cations during the 21-month study were 2,014 and 1,429 equivalents per hectare in Swift River and Fever Brook, respectively. Base cation fluxes were controlled primarily by weathering of hornblende (Fever Brook) and plagioclase (Swift River). The overall weathering rate was greater in the Swift River Basin because easily weathered gabbro underlies one subbasin which comprises 11.2 percent of the total basin area but contributed about 77 percent of the total alkalinity. Alkalinity export was nearly equal in the two basins, however, because some alkalinity was generated in wetlands in the Fever Brook Basin through bacterial sulfate reduction coupled with organic-carbon oxidation.

  5. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Second annual technical progress report, October 1, 1996--September 30, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-09-01

    The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration in the US Department of Energy Class III Program. Advanced reservoir characterization techniques are being used at the Nash Draw project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir description was too simplistic to capture the critical features of this complex formation. As a result of the analysis, a proposed pilot area was reconsidered. Comparison of seismic data and engineering data have shownmore » evidence of discontinuities in the area surrounding the proposed injector. Analysis of the 3-D seismic has shown that wells in the proposed pilot are in an area of poor quality amplitude development. The implication is that since amplitude attenuation is a function of porosity, then this is not the best area to be attempting a pilot pressure maintenance project. Because the original pilot area appears to be compartmentalized, the lateral continuity between the pilot wells could be reduced. The 3-D seismic interpretation indicates other areas may be better suited for the initial pilot area. Therefore, the current focus has shifted more to targeted drilling, and the pilot injection will be considered in a more continuous area of the NDP in the future. Results of reservoir simulation studies indicate that pressure maintenance should be started early when reservoir pressure is still high.« less

  6. Will building new reservoirs always help increase the water supply reliability? - insight from a modeling-based global study

    NASA Astrophysics Data System (ADS)

    Zhuang, Y.; Tian, F.; Yigzaw, W.; Hejazi, M. I.; Li, H. Y.; Turner, S. W. D.; Vernon, C. R.

    2017-12-01

    More and more reservoirs are being build or planned in order to help meet the increasing water demand all over the world. However, is building new reservoirs always helpful to water supply? To address this question, the river routing module of Global Change Assessment Model (GCAM) has been extended with a simple yet physical-based reservoir scheme accounting for irrigation, flood control and hydropower operations at each individual reservoir. The new GCAM river routing model has been applied over the global domain with the runoff inputs from the Variable Infiltration Capacity Model. The simulated streamflow is validated at 150 global river basins where the observed streamflow data are available. The model performance has been significantly improved at 77 basins and worsened at 35 basins. To facilitate the analysis of additional reservoir storage impacts at the basin level, a lumped version of GCAM reservoir model has been developed, representing a single lumped reservoir at each river basin which has the regulation capacity of all reservoir combined. A Sequent Peak Analysis is used to estimate how much additional reservoir storage is required to satisfy the current water demand. For basins with water deficit, the water supply reliability can be improved with additional storage. However, there is a threshold storage value at each basin beyond which the reliability stops increasing, suggesting that building new reservoirs will not help better relieve the water stress. Findings in the research can be helpful to the future planning and management of new reservoirs.

  7. Hydrocarbon Potential in Sandstone Reservoir Isolated inside Low Permeability Shale Rock (Case Study: Beruk Field, Central Sumatra Basin)

    NASA Astrophysics Data System (ADS)

    Diria, Shidqi A.; Musu, Junita T.; Hasan, Meutia F.; Permono, Widyo; Anwari, Jakson; Purba, Humbang; Rahmi, Shafa; Sadjati, Ory; Sopandi, Iyep; Ruzi, Fadli

    2018-03-01

    Upper Red Bed, Menggala Formation, Bangko Formation, Bekasap Formation and Duri Formationare considered as the major reservoirs in Central Sumatra Basin (CSB). However, Telisa Formation which is well-known as seal within CSB also has potential as reservoir rock. Field study discovered that lenses and layers which has low to high permeability sandstone enclosed inside low permeability shale of Telisa Formation. This matter is very distinctive and giving a new perspective and information related to the invention of hydrocarbon potential in reservoir sandstone that isolated inside low permeability shale. This study has been conducted by integrating seismic data, well logs, and petrophysical data throughly. Facies and static model are constructed to estimate hydrocarbon potential resource. Facies model shows that Telisa Formation was deposited in deltaic system while the potential reservoir was deposited in distributary mouth bar sandstone but would be discontinued bedding among shale mud-flat. Besides, well log data shows crossover between RHOB and NPHI, indicated that distributary mouth bar sandstone is potentially saturated by hydrocarbon. Target area has permeability ranging from 0.01-1000 mD, whereas porosity varies from 1-30% and water saturation varies from 30-70%. The hydrocarbon resource calculation approximates 36.723 MSTB.

  8. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott Hara

    2000-02-18

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 1999, project work has been completed related to data preparation, basic reservoir engineering, developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model, and a rock-log model, well drilling and completions, and surface facilities. Work is continuing on the stochastic geologic model, developing a 3-D stochastic thermal reservoir simulation model of the Fault Block IIA Tarmore » (Tar II-A) Zone, and operational work and research studies to prevent thermal-related formation compaction. Thermal-related formation compaction is a concern of the project team due to observed surface subsidence in the local area above the steamflood project. Last quarter on January 12, the steamflood project lost its inexpensive steam source from the Harbor Cogeneration Plant as a result of the recent deregulation of electrical power rates in California. An operational plan was developed and implemented to mitigate the effects of the two situations. Seven water injection wells were placed in service in November and December 1998 on the flanks of the Phase 1 steamflood area to pressure up the reservoir to fill up the existing steam chest. Intensive reservoir engineering and geomechanics studies are continuing to determine the best ways to shut down the steamflood operations in Fault Block II while minimizing any future surface subsidence. The new 3-D deterministic thermal reservoir simulator model is being used to provide sensitivity cases to optimize production, steam injection, future flank cold water injection and reservoir temperature and pressure. According to the model, reservoir fill up of the steam chest at the current injection rate of 28,000 BPD

  9. Petroleum geology and resources of the Amu-Darya basin, Turkmenistan, Uzbekistan, Afghanistan, and Iran

    USGS Publications Warehouse

    Ulmishek, Gregory F.

    2004-01-01

    The Amu-Darya basin is a highly productive petroleum province in Turkmenistan and Uzbekistan (former Soviet Union), extending southwestward into Iran and southeastward into Afghanistan. The basin underlies deserts and semideserts north of the high ridges of the Kopet-Dag and Bande-Turkestan Mountains. On the northwest, the basin boundary crosses the crest of the Karakum regional structural high, and on the north the basin is bounded by the shallow basement of the Kyzylkum high. On the east, the Amu-Darya basin is separated by the buried southeast spur of the Gissar Range from the Afghan-Tajik basin, which is deformed into a series of north-south-trending synclinoria and anticlinoria. The separation of the two basins occurred during the Neogene Alpine orogeny; earlier, they were parts of a single sedimentary province. The basement of the Amu-Darya basin is a Hercynian accreted terrane composed of deformed and commonly metamorphosed Paleozoic rocks. These rocks are overlain by rift grabens filled with Upper Permian-Triassic rocks that are strongly compacted and diagenetically altered. This taphrogenic sequence, also considered to be a part of the economic basement, is overlain by thick Lower to Middle Jurassic, largely continental, coal-bearing rocks. The overlying Callovian-Oxfordian rocks are primarily carbonates. A deep-water basin surrounded by shallow shelves with reefs along their margins was formed during this time and reached its maximum topographic expression in the late Oxfordian. In Kimmeridgian-Tithonian time, the basin was filled with thick evaporites of the Gaurdak Formation. The Cretaceous-Paleogene sequence is composed chiefly of marine clastic rocks with carbonate intervals prominent in the Valanginian, Barremian, Maastrichtian, and Paleocene stratigraphic units. In Neogene time, the Alpine orogeny on the basin periphery resulted in deposition of continental clastics, initiation of new and rejuvenation of old faults, and formation of most structural

  10. Designing multi-reservoir system designs via efficient water-energy-food nexus trade-offs - Selecting new hydropower dams for the Blue Nile and Nepal's Koshi Basin

    NASA Astrophysics Data System (ADS)

    Harou, J. J.; Hurford, A.; Geressu, R. T.

    2015-12-01

    Many of the world's multi-reservoir water resource systems are being considered for further development of hydropower and irrigation aiming to meet economic, political and ecological goals. Complex river basins serve many needs so how should the different proposed groupings of reservoirs and their operations be evaluated? How should uncertainty about future supply and demand conditions be factored in? What reservoir designs can meet multiple goals and perform robustly in a context of global change? We propose an optimized multi-criteria screening approach to identify best performing designs, i.e., the selection, size and operating rules of new reservoirs within multi-reservoir systems in a context of deeply uncertain change. Reservoir release operating rules and storage sizes are optimized concurrently for each separate infrastructure design under consideration across many scenarios representing plausible future conditions. Outputs reveal system trade-offs using multi-dimensional scatter plots where each point represents an approximately Pareto-optimal design. The method is applied to proposed Blue Nile River reservoirs in Ethiopia, where trade-offs between capital costs, total and firm energy output, aggregate storage and downstream irrigation and energy provision for the best performing designs are evaluated. The impact of filling period for large reservoirs is considered in a context of hydrological uncertainty. The approach is also applied to the Koshi basin in Nepal where combinations of hydropower storage and run-of-river dams are being considered for investment. We show searching for investment portfolios that meet multiple objectives provides stakeholders with a rich view on the trade-offs inherent in the nexus and how different investment bundles perform differently under plausible futures. Both case-studies show how the proposed approach helps explore and understand the implications of investing in new dams in a global change context.

  11. Characteristics and origin of the relatively high-quality tight reservoir in the Silurian Xiaoheba Formation in the southeastern Sichuan Basin

    PubMed Central

    Gong, Xiaoxing; Shi, Zejin; Wang, Yong; Tian, Yaming; Li, Wenjie; Liu, Lei

    2017-01-01

    A mature understanding of the sandstone gas reservoir in the Xiaoheba Formation in the southeastern Sichuan Basin remains lacking. To assess the reservoir characteristics and the origin of the high-quality reservoir in the Xiaoheba Formation, this paper uses systematic field investigations, physical property analysis, thin section identification, scanning electron microscopy and electron microprobe methods. The results indicate that the Xiaoheba sandstone is an ultra-tight and ultra-low permeability reservoir, with an average porosity of 2.97% and an average permeability of 0.56×10−3 μm2. This promising reservoir is mainly distributed in the Lengshuixi and Shuangliuba regions and the latter has a relatively high-quality reservoir with an average porosity of 5.28% and average permeability of 0.53×10−3 μm2. The reservoir space comprises secondary intergranular dissolved pores, moldic pores and fractures. Microfacies, feldspar dissolution and fracture connectivity control the quality of this reservoir. The relatively weak compaction and cementation in the interbedded delta front distal bar and interdistributary bay microfacies indirectly protected the primary intergranular pores and enhanced late-stage dissolution. Late-stage potassium feldspar dissolution was controlled by the early-stage organic acid dissolution intensity and the distance from the hydrocarbon generation center. Early-stage fractures acted as pathways for organic acid migration and were therefore important factors in the formation of the reservoir. Based on these observations, the area to the west of the Shuangliuba and Lengshuixi regions has potential for gas exploration. PMID:28686735

  12. Structure, stratigraphy, and hydrocarbons offshore southern Kalimantan, Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, W.F.

    1980-01-01

    Offshore southern Kalimantan (Borneo), Indonesia, the Sunda Shelf is bounded on the south by the east-west-trending Java-Madura foreland basin and on the north by outcrops of the granitic core of Kalimantan. Major northeast-southwest-trending faults created a basin and ridge province which controlled sedimentation at least until early Miocene time. Just above the unconformity, the oldest pre-CD Limestone clastic strata are fluviatile and lacustrine, the remainder consisting largely of shallow-marine, calcareous shale with interbeds of fine-grained, quartzose sandstone. A flood of terrigenous detritus - Kudjung unit 3 - resulted from post-CD Limestone uplift, and is more widely distributed. Unit 3 consistsmore » largely of fluviatile sandstone interbedded with shale and mudstone, grading upward to marine clastics with a few thin limestones near the top. The resulting Kudjing unit 2 is largely a shallow-basinal deposit, comprising thin, micritic limestones interbedded with calcareous shale and mudstone. Infilling of the basins was nearly complete by the end of Kudjing unit 1 deposition. Eastern equivalents of Kudjing units 1 and 2 are known as the Berai limestone interval (comprising bank, reefal, basinal, and open-marine limestones, and marl). Of the three oil fields in the area, two are shut in, but one has produced nearly 100 million bbl. Gas shows were recorded in most wells of the area, but the maximum flow was 1.8 MMcf methane/day, although larger flows with high percentages of carbon dioxide and nitrogen were reported. Fine-grained clastic strata of unit 3 are continuous with those farther south, where geochemical data indicate good source and hydrocarbon-generating potential. Sandstones with reservoir capability are present in the clastic intervals, and several carbonate facies have sporadically developed porosity. A variety of structural and stratigraphic traps is present. 20 figures, 1 table.« less

  13. Integrated Water Basin Management Including a Large Pit Lake and a Water Supply Reservoir: The Mero-Barcés Basin

    NASA Astrophysics Data System (ADS)

    Delgado, Jordi; Juncosa-Rivera, Ricardo; Hernández-Anguiano, Horacio; Muñoz-Ibáñez, Andrea

    2016-04-01

    use of lake water is acceptable from different points of view (water quality, legal constrains, etc.). Our results indicate that the joint use of the lake/reservoir system is feasible. Based on this and other complementary study, the basin water authorities has developed a project by which a 2.1 km uptake tunnel will be excavated in the next years to drain water from the lake towards the Barcés river and complement the water supply necessities of the Abegondo-Cecebre reservoir in case of hydric emergencies.

  14. Petroleum potential of the Reggane Basin, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boudjema, A.; Hamel, M.; Mohamedi, A.

    1990-05-01

    The intracratonic Reggane basin is located on the Saharan platform, southwest of Algeria. The basin covers an area of approximately 140,000 km{sup 2}, extending between the Eglab shield in the south and the Ougarta ranges in the north. Although exploration started in the early 1950s, only a few wells were drilled in this basin. Gas was discovered with a number of oil shows. The sedimentary fill, mainly Paleozoic shales and sandstones, has a thickness exceeding 5,000 m in the central part of the basin. The reservoirs are Cambrian-Ordovician, Siegenian, Emsian, Tournaisian, and Visean sandstones with prospective petrophysical characteristics. Silurian Uppermore » Devonian and, to a lesser extent Carboniferous shales are the main source rocks. An integrated study was done to assess the hydrocarbon potential of this basin. Tectonic evolution source rocks and reservoirs distribution maturation analyses followed by kinetic modeling, and hydrogeological conditions were studied. Results indicate that gas accumulations could be expected in the central and deeper part of the basin, and oil reservoirs could be discovered on the basin edge.« less

  15. Active transtensional intracontinental basins: Walker Lane in the western Great Basin

    USGS Publications Warehouse

    Jayko, Angela S.; Bursik, Marcus

    2012-01-01

    The geometry and dimensions of sedimentary basins within the Walker Lane are a result of Plio-Pleistocene transtensive deformation and partial detachment of the Sierra Nevada crustal block from the North American plate. Distinct morpho-tectonic domains lie within this active transtensive zone. The northeast end of the Walker Lane is partly buried by active volcanism of the southern Cascades, and adjacent basins are filled or poorly developed. To the south, the basin sizes are moderate, 25–45km × 15–10 km, with narrow 8-12km wide mountain ranges mainly oriented N-S to NNE. These basins form subparallel arrays in discrete zones trending about 300° and have documented clockwise rotation. This is succeeded to the south by a releasing stepover domain ∼85-100km wide, where the basins are elongated E-W to ENE, small (∼15-30km long, 5-15km wide), and locally occupied by active volcanic centers. The southernmost part of the Walker Lane is structurally integrated, with high to extreme relief. Adjacent basins are elongate, 50-200km long and ∼5 -20km wide. Variations in transtensive basin orientations in the Walker Lane are largely attributable to variations in strain partitioning. Large basins in the Walker Lane have 2-6km displacement across basin bounding faults with up to 3 km of clastic accumulation based on gravity and drill hole data. The sedimentary deposits of the basins may include interbedded volcanic deposits with bimodal basaltic and rhyolitic associations. The basins may include lacustrine deposits that record a wide range of water chemistry from cold fresh water conditions to saline-evaporative

  16. Experiments with Interaction between the National Water Model and the Reservoir System Simulation Model: A Case Study of Russian River Basin

    NASA Astrophysics Data System (ADS)

    Kim, J.; Johnson, L.; Cifelli, R.; Chandra, C. V.; Gochis, D.; McCreight, J. L.; Yates, D. N.; Read, L.; Flowers, T.; Cosgrove, B.

    2017-12-01

    NOAA National Water Center (NWC) in partnership with the National Centers for Environmental Prediction (NCEP), the National Center for Atmospheric Research (NCAR) and other academic partners have produced operational hydrologic predictions for the nation using a new National Water Model (NWM) that is based on the community WRF-Hydro modeling system since the summer of 2016 (Gochis et al., 2015). The NWM produces a variety of hydrologic analysis and prediction products, including gridded fields of soil moisture, snowpack, shallow groundwater levels, inundated area depths, evapotranspiration as well as estimates of river flow and velocity for approximately 2.7 million river reaches. Also included in the NWM are representations for more than 1,200 reservoirs which are linked into the national channel network defined by the USGS NHDPlusv2.0 hydrography dataset. Despite the unprecedented spatial and temporal coverage of the NWM, many known deficiencies exist, including the representation of lakes and reservoirs. This study addresses the implementation of a reservoir assimilation scheme through coupling of a reservoir simulation model to represent the influence of managed flows. We examine the use of the reservoir operations to dynamically update lake/reservoir storage volume states, characterize flow characteristics of river reaches flowing into and out of lakes and reservoirs, and incorporate enhanced reservoir operating rules for the reservoir model options within the NWM. Model experiments focus on a pilot reservoir domain-Lake Mendocino, CA, and its contributing watershed, the East Fork Russian River. This reservoir is modeled using United States Army Corps of Engineers (USACE) HEC-ResSim developed for application to examine forecast informed reservoir operations (FIRO) in the Russian River basin.

  17. Monitoring Impacts of Long-Term Drought on Surface Water Quantity and Quality in Middle Rio Grande Basin Reservoirs Using Multispectral Remote Sensing and Geographic Information Systems

    NASA Astrophysics Data System (ADS)

    Mubako, S. T.; Hargrove, W. L.

    2017-12-01

    The Elephant Butte and Caballo dams form the largest surface water reservoirs in the Middle Rio Grande basin. The basin supports more than 2 million people, including the major urban centers of Ciudad Juárez, Chihuahua, Mexico, El Paso, Texas, and Las Cruces, New Mexico, plus more than 70,000 ha of land with water rights for irrigated agriculture. However, this region has experienced severe droughts and growing water demand over the past few decades. This study applied GIS and remote sensing techniques to (1) quantify the shrinking and expansion of the reservoirs for the 44-year period 1973-2017; (2) demonstrate the use of multispectral satellite imagery for qualitative assessment of reservoir water turbidity; and (3) investigate and compare annual and seasonal variability of reservoir temperature. Our preliminary results show apparent shrinkage and recovery cycles of both reservoirs, depending on annual inflow and diversion cycles. For example, the period 1981 to 1993 was unusually `wet' on average, in contrast to the period around September 2002 when the Elephant Butte reservoir shrinked to less than 11 percent of its capacity due to drought. Water in the reservoirs appears more turbid in the fall compared to the summer season, and satellite images showed distinctive zones of deep and shallow water, with evident sedimentation near the in-flow of each reservoir. Examination of image digital numbers revealed the following three distinct temperature zones: scrub environment around the reservoirs, very shallow water around reservoir edges, and deeper reservoir water. The zones were represented by a higher range of digital numbers in the summer in comparison to the fall season, indicating greater surface temperature variability in the summer season. The distinction between high summer temperatures and low fall temperatures was especially prominent along the shallow edges of each reservoir. The fluctuating thermal patterns can be explained by variations in depth

  18. Land use structures fish assemblages in reservoirs of the Tennessee River

    USGS Publications Warehouse

    Miranda, Leandro E.; Bies, J. M.; Hann, D. A.

    2015-01-01

    Inputs of nutrients, sediments and detritus from catchments can promote selected components of reservoir fish assemblages, while hindering others. However, investigations linking these catchment subsidies to fish assemblages have generally focussed on one or a handful of species. Considering this paucity of community-level awareness, we sought to explore the association between land use and fish assemblage composition in reservoirs. To this end, we compared fish assemblages in reservoirs of two sub-basins of the Tennessee River representing differing intensities of agricultural development, and hypothesised that fish assemblage structure indicated by species percentage composition would differ among reservoirs in the two sub-basins. Using multivariate statistical analysis, we documented inter-basin differences in land use, reservoir productivity and fish assemblages, but no differences in reservoir morphometry or water regime. Basins were separated along a gradient of forested and non-forested catchment land cover, which was directly related to total nitrogen, total phosphorous and chlorophyll-a concentrations. Considering the extensive body of knowledge linking land use to aquatic systems, it is reasonable to postulate a hierarchical model in which productivity has direct links to terrestrial inputs, and fish assemblages have direct links to both land use and productivity. We observed a shift from an invertivore-based fish assemblage in forested catchments to a detritivore-based fish assemblage in agricultural catchments that may be a widespread pattern among reservoirs and other aquatic ecosystems.

  19. Establishing the Relationship between Fracture-Related Dolomite and Primary Rock Fabric on the Distribution of Reservoirs in the Michigan Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Michael Grammer

    2006-09-30

    This topical report covers the year 2 of the subject 3-year grant, evaluating the relationship between fracture-related dolomite and dolomite constrained by primary rock fabric in the 3 most prolific reservoir intervals in the Michigan Basin (Ordovician Trenton-Black River Formations; Silurian Niagara Group; and the Devonian Dundee Formation). The characterization of select dolomite reservoirs has been the major focus of our efforts in Phase II/Year 2. Fields have been prioritized based upon the availability of rock data for interpretation of depositional environments, fracture density and distribution as well as thin section, geochemical, and petrophysical analyses. Structural mapping and log analysismore » in the Dundee (Devonian) and Trenton/Black River (Ordovician) suggest a close spatial relationship among gross dolomite distribution and regional-scale, wrench fault related NW-SE and NE-SW structural trends. A high temperature origin for much of the dolomite in the 3 studied intervals (based upon initial fluid inclusion homogenization temperatures and stable isotopic analyses,) coupled with persistent association of this dolomite in reservoirs coincident with wrench fault-related features, is strong evidence for these reservoirs being influenced by hydrothermal dolomitization. For the Niagaran (Silurian), a comprehensive high resolution sequence stratigraphic framework has been developed for a pinnacle reef in the northern reef trend where we had 100% core coverage throughout the reef section. Major findings to date are that facies types, when analyzed at a detailed level, have direct links to reservoir porosity and permeability in these dolomites. This pattern is consistent with our original hypothesis of primary facies control on dolomitization and resulting reservoir quality at some level. The identification of distinct and predictable vertical stacking patterns within a hierarchical sequence and cycle framework provides a high degree of confidence at

  20. Sequence stratigraphy and reservoir architecture of the J18/20 and J15 sequences in PM-9, Malay Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, R.A.; Said, Md.J.; Bedingfield, J.R.

    1994-07-01

    The group J stratigraphic interval is lower Miocene (18.5-21 Ma) in age and was deposited during the early sag phase of the Malay Basin structural development. Reduction in depositional relief and first evidence of widespread marine influence characterize the transition into this interval. Twelve group J sequences have been identified. Reservoirs consist of progradational to aggradational tidally-dominated paralic to shallow marine sands deposited in the lowstand systems tract. Transgressive and highstand deposits are dominantly offshore shales. In PM-9, the original lift-related depocenters, coupled with changes in relative sea level, have strongly influenced group J unit thickness and the distribution ofmore » reservoir and seal facies. Two important reservoir intervals in PM-9 are the J18/20 and J15 sands. The reservoirs in these intervals are contained within the lowstand systems tracts of fourth-order sequences. These fourth-order sequences stack to form sequence sets in response to a third-order change in relative sea level. The sequences of the J18/20 interval stack to form part of a lowstand sequence set, whereas the J15 interval forms part of the transgressive sequence set. Reservoir facies range from tidal bars and subtidal shoals in the J18/20 interval to lower shoreface sands in the J15. Reservoir quality and continuity in group J reservoirs are dependent on depositional facies. An understanding of the controls on the distribution of facies types is crucial to the success of the current phase of field development and exploration programs in PM-9.« less

  1. Impacts of golden alga Prymnesium parvum on fish populations in reservoirs of the upper Colorado River and Brazos River basins, Texas

    USGS Publications Warehouse

    VanLandeghem, Matthew M.; Farooqi, Mukhtar; Farquhar, B.; Patino, Reynaldo

    2013-01-01

    Several reservoirs in the upper Colorado River and Brazos River basins in Texas have experienced toxic blooms of golden alga Prymnesium parvum and associated fish kills since 2001. There is a paucity of information, however, regarding the population-level effects of such kills in large reservoirs, species-specific resistance to or recovery from kills, or potential differences in the patterns of impacts among basins. We used multiple before-after, control-impact analysis to determine whether repeated golden alga blooms have led to declines in the relative abundance and size structure of fish populations. Sustained declines were noted for 9 of 12 fish species surveyed in the upper Colorado River, whereas only one of eight species was impacted by golden alga in the Brazos River. In the upper Colorado River, White Bass Morone chrysops, White Crappie Pomoxis annularis, Largemouth Bass Micropterus salmoides, Bluegill Lepomis macrochirus, River Carpsucker Carpiodes carpio, Freshwater Drum Aplodinotus grunniens, Channel Catfish Ictalurus punctatus, Flathead Catfish Pylodictis olivaris, and Blue Catfish I. furcatus exhibited sustained declines in relative abundance, size structure, or both; Gizzard Shad Dorosoma cepedianum, Longnose Gar Lepisosteus osseus, and Common Carp Cyprinus carpio did not exhibit those declines. In the Brazos River, only the relative abundance of Blue Catfish was impacted. Overall, toxic golden alga blooms can negatively impact fish populations over the long-term, but the patterns of impact can vary considerably among river basins and species. In the Brazos River, populations of most fish species appear to be healthy, suggesting a positive angling outlook for this basin. In the upper Colorado River, fish populations have been severely impacted, and angling opportunities have been reduced. Basin-specific management plans aimed at improving water quality and quantity will likely reduce bloom intensity and allow recovery of fish populations to the

  2. Formation waters from Mississippian-Pennsylvanian reservoirs, Illinois basin, USA: Chemical and isotopic constraints on evolution and migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stueber, A.M.; Walter, L.M.; Huston, T.J.

    1993-02-01

    We have analyzed a suite of seventy-four formation-water samples from Mississippian and Pennsylvanian carbonate and siliciclastic strata in the Illinois basin for major, minor, and trace element concentrations and for strontium isotopic composition. A subset of these samples was also analyzed for boron isotopic composition. Data are used to interpret origin of salinity and chemical and Sr isotopic evolution of the brines and in comparison with a similar data set from an earlier study of basin formation waters from Silurian-Devonian reservoirs. Systematics of Cl-Br-Na show that present Mississippian-Pennsylvanian brine salinity can be explained by a combination of subaerial seawater evaporationmore » short of halite saturation and subsurface dissolution of halite from an evaporite zone in the middle Mississippian St. Louis Limestone, along with extensive dilution by mixing with meteoric waters. Additional diagenetic modifications in the subsurface interpreted from cation/Br ratios include K depletion through interaction with clay minerals, Ca enrichment, and Mg depletion by dolomitization, and Sr enrichment through CaCO[sub 3] recrystallization and dolomitization. Ste. Genevieve Limestone (middle Mississippian) formation waters show [sup 87]Sr/[sup 86]Sr ratios in the range 0.70782-0.70900, whereas waters from the siliciclastic reservoirs are in the rante 0.70900-0.71052. Inverse correlations between [sup 87]Sr/[sup 86]Sr and B,Li, and Mg concentrations suggest that the brines acquired radiogenic [sup 87]Sr through interaction with siliciclastic minerals. Completely unsystematic relations between [sup 87]Fr/[sup 86]Sr and 1/Sr are observed; Sr concentrations in Ste. Genevieve and Aux Vases (middle Mississippian) waters appear to be buffered by equilibrium with respect to SrSo[sub 4]. These formation waters are distinguished from Silurian-Devonian brines in the basin by elevated Cl/Br and Na/Br ratios and by unsystematic Sr isotope relationships.« less

  3. Gas hydrate reservoirs and gas migration mechanisms in the Terrebonne Basin, Gulf of Mexico

    DOE PAGES

    Hillman, Jess I. T.; Cook, Ann E.; Daigle, Hugh; ...

    2017-07-27

    Here, the interactions of microbial methane generation in fine-grained clay-rich sediments, methane migration, and gas hydrate accumulation in coarse-grained, sand-rich sediments are not yet fully understood. The Terrebonne Basin in the northern Gulf of Mexico provides an ideal setting to investigate the migration of methane resulting in the formation of hydrate in thin sand units interbedded with fractured muds. Using 3D seismic and well log data, we have identified several previously unidentified hydrate bearing units in the Terrebonne Basin. Two units are >100 m- thick fine-grained clay-rich units where gas hydrate occurs in near-vertical fractures. In some locations, these fine-grainedmore » units lack fracture features, and they contain 1-4-m thick hydrate bearing-sands. In addition, several other thin sand units were identified that contain gas hydrate, including one sand that was intersected by a well at the location of a discontinuous bottom-simulating reflector. Using correlation of well log data to seismic data, we have mapped and described these new units in detail across the extent of the available data, allowing us to determine the variation of seismic amplitudes and investigate the distribution of free gas and/or hydrate. We present several potential source-reservoir scenarios between the thick fractured mud units and thin hydrate bearing sands. We observe that hydrate preferentially forms within thin sand layers rather than fractures when sands are present in larger marine mud units. Based on regional mapping showing the patchy lateral extent of the thin sand layers, we propose that diffusive methane migration or short-migration of microbially generated methane from the marine mud units led to the formation of hydrate in these thin sands, as discontinuous sands would not be conducive to long-range migration of methane from deeper reservoirs.« less

  4. Impact of Climatic Variability on Hydropower Reservoirs in the Paraiba Basin, Southeast of Brazil

    NASA Astrophysics Data System (ADS)

    Barros, A.; simoes, s

    2002-05-01

    During 2000/2001, a severe drought greatly reduced the volume of water available to Brazilian hydropower plants and lead to a national water rationing plan. To undestand the potential for climatic change in hydrological regimes and its impact on hydropower we chose the Paraiba Basin located in Southeast Brazil. Three important regional multi-purpose reservoirs are operating in this basin. Moreover, the Paraiba River is of great economic and environmental importance and also constitutes a major corridor connecting the two cities of Sao Paulo and Rio de Janeiro. We analyzed monthly and daily records for rainfall, streamflow and temperature using regression and variance analysis. Rainfall records do not show any significant trend since the 1930s/1940s. By contrast, analysis of seasonal patterns show that in the last twenty years rainfall has increased during autumn and winter (dry season) and decreased during spring and summer (rainy season). Comparison between rainfall and streaflow, from small catchment without man-made influences, shows a more pronounced deficit in streamflow when compared with rainfall. The shifts in seasonal rainfall could indicate a tendency towards a more uniform rainfall pattern and could serve to reduce the streamflow. However, the largest upward trends in temperature were found in the driest months (JJA). The increase in rainfall would not be sufficient to overcome increased of evaporation expect to the same period. Instead, such increase in evaporation could create an over more pronounced streamflow deficit. Climatic variability could be reducing water availability in these reservoirs especially in the driest months. To reduce the uncertainties in hydrological predictions, planners need to incorporate climatic variability, at the catchment scale, in order to accomodate the new conditions resulting from these changes.

  5. Gas hydrate reservoirs and gas migration mechanisms in the Terrebonne Basin, Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillman, Jess I. T.; Cook, Ann E.; Daigle, Hugh

    Here, the interactions of microbial methane generation in fine-grained clay-rich sediments, methane migration, and gas hydrate accumulation in coarse-grained, sand-rich sediments are not yet fully understood. The Terrebonne Basin in the northern Gulf of Mexico provides an ideal setting to investigate the migration of methane resulting in the formation of hydrate in thin sand units interbedded with fractured muds. Using 3D seismic and well log data, we have identified several previously unidentified hydrate bearing units in the Terrebonne Basin. Two units are >100 m- thick fine-grained clay-rich units where gas hydrate occurs in near-vertical fractures. In some locations, these fine-grainedmore » units lack fracture features, and they contain 1-4-m thick hydrate bearing-sands. In addition, several other thin sand units were identified that contain gas hydrate, including one sand that was intersected by a well at the location of a discontinuous bottom-simulating reflector. Using correlation of well log data to seismic data, we have mapped and described these new units in detail across the extent of the available data, allowing us to determine the variation of seismic amplitudes and investigate the distribution of free gas and/or hydrate. We present several potential source-reservoir scenarios between the thick fractured mud units and thin hydrate bearing sands. We observe that hydrate preferentially forms within thin sand layers rather than fractures when sands are present in larger marine mud units. Based on regional mapping showing the patchy lateral extent of the thin sand layers, we propose that diffusive methane migration or short-migration of microbially generated methane from the marine mud units led to the formation of hydrate in these thin sands, as discontinuous sands would not be conducive to long-range migration of methane from deeper reservoirs.« less

  6. Basin-centered gas evaluated in Dnieper-Donets basin, Donbas foldbelt, Ukraine

    USGS Publications Warehouse

    Law, B.E.; Ulmishek, G.F.; Clayton, J.L.; Kabyshev, B.P.; Pashova, N.T.; Krivosheya, V.A.

    1998-01-01

    An evaluation of thermal maturity, pore pressures, source rocks, reservoir quality, present-day temperatures, and fluid recovery data indicates the presence of a large basin-centered gas accumulation in the Dnieper-Donets basin (DDB) and Donbas foldbelt (DF) of eastern Ukraine (Fig. 1).

  7. Relationships between water and gas chemistry in mature coalbed methane reservoirs of the Black Warrior Basin

    USGS Publications Warehouse

    Pashin, Jack C.; McIntyre-Redden, Marcella R.; Mann, Steven D.; Kopaska-Merkel, David C.; Varonka, Matthew S.; Orem, William H.

    2014-01-01

    Water and gas chemistry in coalbed methane reservoirs of the Black Warrior Basin reflects a complex interplay among burial processes, basin hydrodynamics, thermogenesis, and late-stage microbial methanogenesis. These factors are all important considerations for developing production and water management strategies. Produced water ranges from nearly potable sodium-bicarbonate water to hypersaline sodium-chloride brine. The hydrodynamic framework of the basin is dominated by structurally controlled fresh-water plumes that formed by meteoric recharge along the southeastern margin of the basin. The produced water contains significant quantities of hydrocarbons and nitrogen compounds, and the produced gas appears to be of mixed thermogenic-biogenic origin.Late-stage microbial methanogenesis began following unroofing of the basin, and stable isotopes in the produced gas and in mineral cements indicate that late-stage methanogenesis occurred along a CO2-reduction metabolic pathway. Hydrocarbons, as well as small amounts of nitrate in the formation water, probably helped nourish the microbial consortia, which were apparently active in fresh to hypersaline water. The produced water contains NH4+ and NH3, which correlate strongly with brine concentration and are interpreted to be derived from silicate minerals. Denitrification reactions may have generated some N2, which is the only major impurity in the coalbed gas. Carbon dioxide is a minor component of the produced gas, but significant quantities are dissolved in the formation water. Degradation of organic compounds, augmented by deionization of NH4+, may have been the principal sources of hydrogen facilitating late-stage CO2 reduction.

  8. Geohydrology of the Aucilla-Suwannee-Ochlockonee River Basin, south-central Georgia and adjacent parts of Florida

    USGS Publications Warehouse

    Torak, Lynn J.; Painter, Jaime A.; Peck, Michael F.

    2010-01-01

    Major streams and tributaries located in the Aucilla-Suwannee-Ochlockonee (ASO) River Basin of south-central Georgia and adjacent parts of Florida drain about 8,000 square miles of a layered sequence of clastic and carbonate sediments and carbonate Coastal Plain sediments consisting of the surficial aquifer system, upper semiconfining unit, Upper Floridan aquifer, and lower confining unit. Streams either flow directly on late-middle Eocene to Oligocene karst limestone or carve a dendritic drainage pattern into overlying Miocene to Holocene sand, silt, and clay, facilitating water exchange and hydraulic connection with geohydrologic units. Geologic structures operating in the ASO River Basin through time control sedimentation and influence geohydrology and water exchange between geohydrologic units and surface water. More than 300 feet (ft) of clastic sediments overlie the Upper Floridan aquifer in the Gulf Trough-Apalachicola Embayment, a broad area extending from the southwest to the northeast through the center of the basin. These clastic sediments limit hydraulic connection and water exchange between the Upper Floridan aquifer, the surficial aquifer system, and surface water. Accumulation of more than 350 ft of low-permeability sediments in the Southeast Georgia Embayment and Suwannee Strait hydraulically isolates the Upper Floridan aquifer from land-surface hydrologic processes in the Okefenokee Basin physiographic district. Burial of limestone beneath thick clastic overburden in these areas virtually eliminates karst processes, resulting in low aquifer hydraulic conductivity and storage coefficient despite an aquifer thickness of more than 900 ft. Conversely, uplift and faulting associated with regional tectonics and the northern extension of the Peninsular Arch caused thinning and erosion of clastic sediments overlying the Upper Floridan aquifer southeast of the Gulf Trough-Apalachicola Embayment near the Florida-Georgia State line. Limestone dissolution in

  9. The Bowland Basin, NW England: Base metal mineralisation and its relationship to basin evolution

    NASA Astrophysics Data System (ADS)

    Gaunt, Jonathan Mark

    The Bowland Basin of NW England is a Carboniferous half graben. The Basin was initiated in the Devonian and actively extended during the Carboniferous until the late Westphalian. From the late Westphalian to the early Permian the Bowland Basin underwent inversion in response to Hercynian collision tectonics. Renewed subsidence commenced in the Permian and continued until inversion in the Cenozoic. The sedimentary succession of the Bowland Basin is dominated by Carboniferous strata, but some Permo-Triassic strata are present. The basal sedimentary succession may be comprised of Devonian to early Dinantian syn-rift clastics. The main Dinantian succession is comprised of interbedded limestones, calcareous mudstones and clastic strata. The Dinantian strata include the Waulsortian-facies Clitheroe Limestone and the Limekiln Wood Limestone, both of which host mineralisation. The overlying Namurian is comprised of shales and sandstones. The diagenetic history of the Limekiln Wood Limestone and Waulsortian-facies Clitheroe Limestone in the Cow Ark-Marl Hill Moor district is a function of changes in the burial environment during the Carboniferous. Both exhibit a pre-basin inversion diagenetic sequence that changes with time from shallow to moderate burial depth cements. Late Carbonifeous basin inversion resulted in the formation of tectonic stylolites. Tectonic stylolitisation was postdated by dolomitisation and silicification. Dolomitisation and silicification are suggested to have taken place in the deep burial environment. The base metal mineralisation studied in this work comes from the Cow Ark- Marl Hill Moor district, which is sited on the present basin inversion axis. Mineralisation occurs as four distinct episodes (Period 1, Period 2, Period 3 and Post-Period 3) within a complex multigeneration vein suite. The vein suite, which postdates tectonic stylolitisation and hence end-Carboniferous basin inversion, is comprised of calcite, baroque dolomite, baroque ankerite

  10. Dissolved heavy metal concentrations of the Kralkızı, Dicle and Batman dam reservoirs in the Tigris River basin, Turkey.

    PubMed

    Varol, Memet

    2013-10-01

    Water samples were collected at monthly intervals during 1 year of monitoring from Kralkızı, Dicle and Batman dam reservoirs in the Tigris River basin to assess the concentrations of dissolved heavy metals and to determine their spatial and seasonal variations. The results indicated that dissolved heavy metal concentrations in the reservoirs were very low, reflecting the natural background levels. The lowest total metal concentrations in the three dam reservoirs were detected at sampling sites close to the dam wall. However, the highest total concentrations were observed at sites, which are located at the entrance of the streams to the reservoirs. Fe, Cr and Ni were the most abundant elements in the reservoirs, whereas Cd and As were the less abundant. The mean concentrations of dissolved metals in the dam reservoirs never exceeded the maximum permitted concentrations established by EC (European Community), WHO and USEPA drinking water quality guidelines. All heavy metals showed significant seasonal variations. As, Cd, Cr, Cu, Fe, Ni and Pb displayed higher values in the dry season, while higher values for Zn in the wet season. Cluster analysis grouped all ten sampling sites into three clusters. Clusters 1 and 2, and cluster 3 corresponded to relatively low polluted and moderate polluted regions, respectively. PCA/FA demonstrated the dissolved metals in the dam reservoirs controlled by natural sources. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Clastic dikes of the Hatrurim basin (western flank of the Dead Sea) as natural analogues of alkaline concretes: Mineralogy, solution chemistry, and durability

    NASA Astrophysics Data System (ADS)

    Sokol, E. V.; Gaskova, O. L.; Kozmenko, O. A.; Kokh, S. N.; Vapnik, E. A.; Novikova, S. A.; Nigmatulina, E. N.

    2014-11-01

    This study shows that the mineral assemblages from clastic dikes in areas adjacent to the Dead Sea graben may be considered as natural analogues of alkaline concretes. The main infilling material of the clastic dikes is composed of well-sorted and well-rounded quartz sand. The cement of these hard rocks contains hydroxylapophyllite, tacharanite, calcium silicate hydrates, opal, calcite, and zeolite-like phases, which is indicative of a similarity of the natural cementation processes and industrial alkaline concrete production from quartz sands and industrial alkaline cements. The quartz grains exhibit a variety of reaction textures reflecting the interaction with alkaline solutions (opal and calcium hydrosilicate overgrowths; full replacement with apophyllite or thomsonite + apophyllite). The physicochemical analysis and reconstruction of the chemical composition of peralkaline Ca, Na, and K solutions that formed these assemblages reveal that the solutions evolved toward a more stable composition of zeolite-like phases, which are more resistant to long-term chemical weathering and atmospheric corrosion. The 40Ar/39Ar age of 6.2 ± 0.7 Ma obtained for apophyllite provides conclusive evidence for the high corrosion resistance of the assemblages consisting of apophyllite and zeolite-like phases.

  12. National Dam Safety Program. Highland Park Reservoir Dam (Inventory Number N.Y. 790), Genesee River Basin, Monroe County, New York. Phase I Inspection Report,

    DTIC Science & Technology

    1981-09-14

    34 rga Highland Park Reservoir Dam Vi’.sual I. .. ’. •Genesee River Basin, ’!ydrolozy. ". ". . . Scabi tyMo r e C u t.,.- Js eps’ •; ::or.ation -3 :..i :n...dam impounds a municipal water storage reservoir. g. Design and Construction History The dam was designed and built around 1875. h. Normal Operating... History : Date Constructed Around 1875 Date(s) Reconstructed N/A Designer Unknown Constructed by Unknown Owner Water Department, City of Rochester, New

  13. Lacustrine Environment Reservoir Properties on Sandstone Minerals and Hydrocarbon Content: A Case Study on Doba Basin, Southern Chad

    NASA Astrophysics Data System (ADS)

    Sumery, N. F. Mohd; Lo, S. Z.; Salim, A. M. A.

    2017-10-01

    The contribution of lacustrine environment as the hydrocarbon reservoir has been widely known. However, despite its growing importance, the lacustrine petroleum geology has received far less attention than marine due to its sedimentological complexity. This study therefore aims in developing an understanding of the unique aspects of lacustrine reservoirs which eventually impacts the future exploration decisions. Hydrocarbon production in Doba Basin, particularly the northern boundary, for instance, has not yet succeeded due to the unawareness of its depositional environment. The drilling results show that the problems were due to the: radioactive sand and waxy oil/formation damage, which all are related to the lacustrine depositional environment. Detailed study of geological and petrophysical integration on wireline logs and petrographic thin sections analysis of this environment helps in distinguishing reservoir and non-reservoir areas and determining the possible mechanism causing the failed DST results. The interpretations show that the correlation of all types> of logs and rho matrix analysis are capable in identifying sand and shale bed despite of the radioactive sand present. The failure of DST results were due to the presence of arkose in sand and waxy oil in reservoir bed. This had been confirmed by the petrographic thin section analysis where the arkose has mineral twinning effect indicate feldspar and waxy oil showing bright colour under fluorescent light. Understanding these special lacustrine environment characteristics and features will lead to a better interpretation of hydrocarbon prospectivity for future exploration.

  14. Secondary natural gas recovery: Targeted applications for infield reserve growth in midcontinent reservoirs, Boonsville Field, Fort Worth Basin, Texas. Topical report, May 1993--June 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardage, B.A.; Carr, D.L.; Finley, R.J.

    1995-07-01

    The objectives of this project are to define undrained or incompletely drained reservoir compartments controlled primarily by depositional heterogeneity in a low-accommodation, cratonic Midcontinent depositional setting, and, afterwards, to develop and transfer to producers strategies for infield reserve growth of natural gas. Integrated geologic, geophysical, reservoir engineering, and petrophysical evaluations are described in complex difficult-to-characterize fluvial and deltaic reservoirs in Boonsville (Bend Conglomerate Gas) field, a large, mature gas field located in the Fort Worth Basin of North Texas. The purpose of this project is to demonstrate approaches to overcoming the reservoir complexity, targeting the gas resource, and doing somore » using state-of-the-art technologies being applied by a large cross section of Midcontinent operators.« less

  15. Rocky Mountain Tertiary coal-basin models and their applicability to some world basins

    USGS Publications Warehouse

    Flores, R.M.

    1989-01-01

    Tertiary intermontane basins in the Rocky Mountain region of the United States contain large amounts of coal resources. The first major type of Tertiary coal basin is closed and lake-dominated, either mud-rich (e.g., North Park Basin, Colorado) or mud plus carbonate (e.g., Medicine Lodge Basin, Montana), which are both infilled by deltas. The second major type of Tertiary coal basin is open and characterized by a preponderance of sediments that were deposited by flow-through fluvial systems (e.g., Raton Basin, Colorado and New Mexico, and Powder River Basin, Wyoming and Montana). The setting for the formation of these coals varies with the type of basin sedimentation, paleotectonism, and paleoclimate. The mud-rich lake-dominated closed basin (transpressional paleotectonism and warm, humid paleoclimate), where infilled by sandy "Gilbert-type" deltas, contains thick coals (low ash and low sulfur) formed in swamps of the prograding fluvial systems. The mud- and carbonate-rich lake-dominated closed basin is infilled by carbonate precipitates plus coarse-grained fan deltas and fine-grained deltas. Here, thin coals (high ash and high sulfur) formed in swamps of the fine-grained deltas. The coarse-clastic, open basins (compressional paleotectonism and warm, paratropical paleoclimate) associated with flow-through fluvial systems contain moderately to anomalously thick coals (high to low ash and low sulfur) formed in swamps developed in intermittently abandoned portions of the fluvial systems. These coal development patterns from the Tertiary Rocky Mountain basins, although occurring in completely different paleotectonic settings, are similar to that found in the Tertiary, Cretaceous, and Permian intermontane coal basins in China, New Zealand, and India. ?? 1989.

  16. Fracture properties from tight reservoir outcrop analogues with application to geothermal exploration

    NASA Astrophysics Data System (ADS)

    Philipp, Sonja L.; Reyer, Dorothea; Afsar, Filiz; Bauer, Johanna F.; Meier, Silke; Reinecker, John

    2015-04-01

    areas of palaeo¬geothermal fields in the Bristol Channel (1), all mineral veins, most of which are extension fractures, are of calcite. They are clearly associated with the faults and indicate that geothermal water was transported along the then-active faults into the host rocks with evidence of injection as hydrofractures. Layers with contrasting mechanical properties (in particular, stiffnesses), however, acted as stress barriers and lead to fracture arrest. Along some faults, veins propagated through the barriers along faults to shallower levels. In the Northwest German Basin (2) there are pronounced differences between normal-fault zones in carbonate and clastic rocks. Only in carbonate rocks clear damage zones occur, characterized by increased fracture frequencies and high amounts of fractures with large apertures. On the Upper Rhine Graben shoulders (3) damage zones in Triassic Muschelkalk limestones are well developed; fault cores are narrow and comprise breccia, clay smear, host rock lenses and mineralization. A large fault zone in Triassic Bunter sandstone shows a clearly developed fault core with fault gouge, slip zones, deformation bands and host rock lenses, a transition zone with mostly disturbed layering and highest fracture frequency, and a damage zone. The latter damage zone is compared to the damage zone of a large Bunter sandstone fault zone currently explored for geothermal energy production. The numerical models focus on stress field development, fracture propagation and associated permeability changes. These studies contribute to the understanding of the hydromechanical behaviour of fault zones and related fluid transport in fractured reservoirs complementing predictions based on geophysical measurements. Eventually we aim at classifying and quantifying fracture system properties in fault zones to improve exploration and exploitation of geothermal reservoirs. Acknowledgements The authors appreciate the support of 'Niedersächsisches Ministerium f

  17. Online interactive U.S. Reservoir Sedimentation Survey Database

    USGS Publications Warehouse

    Gray, J.B.; Bernard, J.M.; Schwarz, G.E.; Stewart, D.W.; Ray, K.T.

    2009-01-01

    In April 2009, the U.S. Geological Survey and the Natural Resources Conservation Service (prior to 1994, the Soil Conservation Service) created the Reservoir Sedimentation Survey Database (RESSED) and Web site, the most comprehensive compilation of data from reservoir bathymetric and dry basin surveys in the United States. RESSED data can be useful for a number of purposes, including calculating changes in reservoir storage characteristics, quantifying rates of sediment delivery to reservoirs, and estimating erosion rates in a reservoir's watershed.

  18. Nutrient dynamics in five off-stream reservoirs in the lower South Platte River basin, March-September 1995

    USGS Publications Warehouse

    Sprague, Lori A.

    2002-01-01

    In 1995, the U.S. Geological Survey conducted a study to characterize nutrient concentrations in five off-stream reservoirs in the lower South Platte River Basin?Riverside, Jackson, Prewitt, North Sterling, and Julesburg. These reservoirs are critical sources of irrigation water for agricultural areas, and several also are used for fishing, boating, swimming, hunting, and camping. Data collected for this study include depth profiles of water temperature, dissolved oxygen, pH, and specific conductance; nutrient species concentrations in the water column, bottom sediment, and inflow and outflow canals; and chlorophyll-a concentrations in the water column. Data were collected during the irrigation season from March through September 1995 at five sites each in Riverside, Jackson, Prewitt, and Julesburg Reservoirs and at six sites in North Sterling Reservoir. The five reservoirs studied are located in similar geographic, climatic, and land-use areas and, as a result, have a number of similarities in their internal nutrient dynamics. Nitrogen concentrations in the reservoirs were highest in March and decreased through September as a result of dilution from river inflows and biological activity. From March through June, decreases in nitrogen concentrations in the river and biological activity contributed to decreases in reservoir concentrations. From July through September, inflows from the river were cut off, and biological activity in the reservoirs led to further decreases in nitrate concentrations, which fell to near or below detectable levels. Phosphorus concentrations in the reservoirs did not show the same consistent decrease from March through September. Phosphorus likely was recycled continuously back to algae during the study period through processes such as excretion from fish, decay of aquatic plants and animals, and release of orthophosphate from bottom sediment during periods of low oxygen. With the exception of phosphorus in Jackson Reservoir, the

  19. Evolution of overpressured and underpressured oil and gas reservoirs, Anadarko Basin of Oklahoma, Texas, and Kansas

    USGS Publications Warehouse

    Nelson, Phillip H.; Gianoutsos, Nicholas J.

    2011-01-01

    Departures of resistivity logs from a normal compaction gradient indicate that overpressure previously extended north of the present-day overpressured zone. These indicators of paleopressure, which are strongest in the deep basin, are mapped to the Kansas-Oklahoma border in shales of Desmoinesian age. The broad area of paleopressure has contracted to the deep basin, and today the overpressured deep basin, as determined from drillstem tests, is bounded on the north by strata with near normal pressures (hydrostatic), grading to the northwest to pressures that are less than hydrostatic (underpressured). Thus the pressure regime in the northwest portion of the Anadarko Basin has evolved from paleo-overpressure to present-day underpressure. Using pressure data from drillstem tests, we constructed cross sections and potentiometric maps that illustrate the extent and nature of present-day underpressuring. Downcutting and exposure of Lower Permian and Pennsylvanian strata along, and east of, the Nemaha fault zone in central Oklahoma form the discharge locus where pressure reaches near atmospheric. From east to west, hydraulic head increases by several hundred feet in each rock formation, whereas elevation increases by thousands of feet. The resulting underpressuring of the aquifer-supported oil and gas fields, which also increases from east to west, is a consequence of the vertical separation between surface elevation and hydraulic head. A 1,000-ft thick cap of Permian evaporites and shales isolates the underlying strata from the surface, preventing re-establishment of a normal hydrostatic gradient. Thus, the present-day pressure regime of oil and gas reservoirs, overpressured in the deep basin and underpressured on the northwest flank of the basin, is the result of two distinct geologic events-rapid burial and uplift/erosion-widely separated in time.

  20. Lithogeochemical character of the near-surface bedrock in the Connecticut, Housatonic, and Thames River Basins

    USGS Publications Warehouse

    Robinson, Gilpin R.; Peper, John D.; Steeves, Peter A.; Desimone, Leslie A.

    1999-01-01

    This data layer shows the generalized lithologic and geochemical (lithogeochemical) character of near-surface bedrock in the Connecticut, Housatonic, and Thames River Basins and several other small basins that drain into Long Island Sound from Connecticut. The area includes most of Connecticut, western Massachusetts, eastern Vermont, western New Hampshire, and small parts of Rhode Island, New York, and Quebec, Canada.Bedrock geologic rock units are classified into 29 lithogeochemical rock units, on the basis of the relative reactivity of their constituent minerals to dissolution and other weathering reactions and the presence of carbonate or sulfide minerals. The 29 lithogeochemical units (28 of which can be found in the study area) can be grouped into 6 major categories: (1) carbonate-rich rocks, (2) carbonate-poor, clastic sedimentary rocks restricted to distinct depositional basins, (3) metamorphosed, clastic sedimentary rocks (primarily noncalcareous), (4) mafic igneous rocks and their metamorphic equivalents, (5) ultramafic rocks, and (6) felsic igneous and plutonic rocks and their metamorphic equivalents. The lithogeochemical rock units also are grouped into nine lithologic and physiographic provinces (lithophysiographic domains), which can be further grouped into three major regions: (1) western highlands and lowlands, (2) central lowlands, and (3) eastern highlands.

  1. Gas hydrate saturations estimated from fractured reservoir at Site NGHP-01-10, Krishna-Godavari Basin, India

    USGS Publications Warehouse

    Lee, M.W.; Collett, T.S.

    2009-01-01

    During the Indian National Gas Hydrate Program Expedition 01 (NGHP-Ol), one of the richest marine gas hydrate accumulations was discovered at Site NGHP-01-10 in the Krishna-Godavari Basin. The occurrence of concentrated gas hydrate at this site is primarily controlled by the presence of fractures. Assuming the resistivity of gas hydratebearing sediments is isotropic, th?? conventional Archie analysis using the logging while drilling resistivity log yields gas hydrate saturations greater than 50% (as high as ???80%) of the pore space for the depth interval between ???25 and ???160 m below seafloor. On the other hand, gas hydrate saturations estimated from pressure cores from nearby wells were less than ???26% of the pore space. Although intrasite variability may contribute to the difference, the primary cause of the saturation difference is attributed to the anisotropic nature of the reservoir due to gas hydrate in high-angle fractures. Archie's law can be used to estimate gas hydrate saturations in anisotropic reservoir, with additional information such as elastic velocities to constrain Archie cementation parameters m and the saturation exponent n. Theory indicates that m and n depend on the direction of the measurement relative to fracture orientation, as well as depending on gas hydrate saturation. By using higher values of m and n in the resistivity analysis for fractured reservoirs, the difference between saturation estimates is significantly reduced, although a sizable difference remains. To better understand the nature of fractured reservoirs, wireline P and S wave velocities were also incorporated into the analysis.

  2. Gradients in Catostomid assemblages along a reservoir cascade

    USGS Publications Warehouse

    Miranda, Leandro E.; Keretz, Kevin R.; Gilliland, Chelsea R.

    2017-01-01

    Serial impoundment of major rivers leads to alterations of natural flow dynamics and disrupts longitudinal connectivity. Catostomid fishes (suckers, family Catostomidae) are typically found in riverine or backwater habitats yet are able to persist in impounded river systems. To the detriment of conservation, there is limited information about distribution of catostomid fishes in impounded rivers. We examined the longitudinal distribution of catostomid fishes over 23 reservoirs of the Tennessee River reservoir cascade, encompassing approximately 1600 km. Our goal was to develop a basin-scale perspective to guide conservation efforts. Catostomid species composition and assemblage structure changed longitudinally along the reservoir cascade. Catostomid species biodiversity was greatest in reservoirs lower in the cascade. Assemblage composition shifted from dominance by spotted sucker Minytrema melanops and buffalos Ictiobus spp. in the lower reservoirs to carpsuckers Carpiodes spp. midway through the cascade and redhorses Moxostoma spp. in the upper reservoirs. Most species did not extend the length of the cascade, and some species were rare, found in low numbers and in few reservoirs. The observed gradients in catostomid assemblages suggest the need for basin-scale conservation measures focusing on three broad areas: (1) conservation and management of the up-lake riverine reaches of the lower reservoirs, (2) maintenance of the access to quality habitat in tributaries to the upper reservoirs and (3) reintroductions into currently unoccupied habitat within species' historic distributions

  3. Alluvial to lacustrine sedimentation in an endorheic basin during the Mio-Pliocene: The Toro Negro Formation, Central Andes of Argentina

    NASA Astrophysics Data System (ADS)

    Ciccioli, Patricia L.; Marenssi, Sergio A.; Amidon, William H.; Limarino, Carlos O.; Kylander-Clark, Andrew

    2018-07-01

    A 2400 m-thick sedimentary column belonging to the Toro Negro Formation was recorded along the Quebrada del Yeso, Sierra de Los Colorados (Vinchina Basin), La Rioja province, NW Argentina. The Vinchina basin is a good example of a closed basin surrounded by the Precordillera fold and thrust belt to the west and basement-cored blocks to the north, south (Western Sierras Pampeanas) and east (Sierra de Famatina). Seven facies associations (FA) are described and interpreted to represent fluvial, lacustrine and alluvial environments developed in the southern part of the Vinchina basin from the Late Miocene until the earliest Pleistocene. The depositional evolution of the formation was divided in four phases. Phase I (∼7-6.6 Ma) represents sedimentation in medial (FA I) to distal (FA II) parts of a southward directed distributive fluvial system with a retrogradational pattern. During phase II (6.6-6.1Ma), the distributive fluvial system was replaced by a mixed clastic-evaporitic shallow lake (FA III) in a high aggradational basin. In phase III (∼6.1-5 Ma) the eastward progradation of a fluvial system (FA IV) was recorded as a distal clastic wedge. Finally, phase IV (∼5-2.4Ma) records two depositional cycles of proximal clastic wedge progradation of fluvial-dominated piedmonts (FAV, FAVII) from the southwest (Sierra de Umango) and/or the west (Precordillera) with an intervening playa lake (FA VI). Two new U-Pb ages obtained from zircons in volcanic ash layers confirm the Late Miocene age of the lower member of the Toro Negro Formation and permit a tight correlation with the central part of the basin (Quebrada de La Troya section). The sedimentation rate calculated for the dated lacustrine-fluvial interval is higher than the corresponding one in La Troya area suggesting a higher subsidence in the southern part of the basin. During the Late Miocene (∼7-6.6Ma) the ephemeral drainage was controlled by an arid to semiarid climate and initially dissipated mostly

  4. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unknown

    2001-08-08

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which aremore » common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application

  5. Scale-dependent gas hydrate saturation estimates in sand reservoirs in the Ulleung Basin, East Sea of Korea

    USGS Publications Warehouse

    Lee, Myung Woong; Collett, Timothy S.

    2013-01-01

    Through the use of 2-D and 3-D seismic data, several gas hydrate prospects were identified in the Ulleung Basin, East Sea of Korea and thirteen drill sites were established and logging-while-drilling (LWD) data were acquired from each site in 2010. Sites UBGH2–6 and UBGH2–10 were selected to test a series of high amplitude seismic reflections, possibly from sand reservoirs. LWD logs from the UBGH2–6 well indicate that there are three significant sand reservoirs with varying thickness. Two upper sand reservoirs are water saturated and the lower thinly bedded sand reservoir contains gas hydrate with an average saturation of 13%, as estimated from the P-wave velocity. The well logs at the UBGH2–6 well clearly demonstrated the effect of scale-dependency on gas hydrate saturation estimates. Gas hydrate saturations estimated from the high resolution LWD acquired ring resistivity (vertical resolution of about 5–8 cm) reaches about 90% with an average saturation of 28%, whereas gas hydrate saturations estimated from the low resolution A40L resistivity (vertical resolution of about 120 cm) reaches about 25% with an average saturation of 11%. However, in the UBGH2–10 well, gas hydrate occupies a 5-m thick sand reservoir near 135 mbsf with a maximum saturation of about 60%. In the UBGH2–10 well, the average and a maximum saturation estimated from various well logging tools are comparable, because the bed thickness is larger than the vertical resolution of the various logging tools. High resolution wireline log data further document the role of scale-dependency on gas hydrate calculations.

  6. Sedimentary record and anthropogenic pollution of a complex, multiple source fed dam reservoirs: An example from the Nové Mlýny reservoir, Czech Republic.

    PubMed

    Sedláček, Jan; Bábek, Ondřej; Nováková, Tereza

    2017-01-01

    While numerous studies of dam reservoirs contamination are reported world-wide, we present a missing link in the study of reservoirs sourced from multiple river catchments. In such reservoirs, different point sources of contaminants and variable composition of their sedimentary matrices add to extremely complex geochemical patterns. We studied a unique, step-wise filled Nové Mlýny dam reservoir, Czech Republic, which consists of three interconnected sub-basins. Their source areas are located in units with contrasting geology and different levels and sources of contamination. The aim of this study is to provide an insight into the provenance of the sediment, including lithogenic elements and anthropogenic pollutants, to investigate the sediment dispersal across the reservoir, and to assess the heavy metal pollution in each basin. The study is based on multi-proxy stratigraphic analysis and geochemistry of sediment cores. There is a considerable gradient in the sediment grain size, brightness, MS and geochemistry, which reflects changing hydrodynamic energy conditions and primary pelagic production of CaCO 3 . The thickness of sediments generally decreases from proximal to distal parts, but underwater currents can accumulate higher amounts of sediments in distal parts near the thalweg line. Average sedimentation rates vary over a wide range from 0.58cm/yr to 2.33cm/yr. In addition, the petrophysical patterns, concentrations of lithogenic elements and their ratios made it possible to identify two main provenance areas, the Dyje River catchment (upper basin) and the Svratka and Jihlava River catchments (middle and lower basin). Enrichment factors (EF) were used for distinguishing the anthropogenic element contribution from the local background levels. We found moderate Zn and Cu pollution (EF ~2 to 5) in the upper basin and Zn, Cu and Pb (EF ~2 to 4.5) in the middle basin with the peak contamination in the late 1980s, indicating that the two basins have different

  7. Terrestrial tight oil reservoir characteristics and Graded Resource Assessment in China

    NASA Astrophysics Data System (ADS)

    Wang, Shejiao; Wu, Xiaozhi; Guo, Giulin

    2016-04-01

    The success of shale/tight plays and the advanced exploitation technology applied in North America have triggered interest in exploring and exploiting tight oil in China. Due to the increased support of exploration and exploitation,great progress has been made in Erdos basin, Songliao basin, Junggar basin, Santanghu basin, Bohai Bay basin, Qaidam Basin, and Sichuan basin currently. China's first tight oil field has been found in Erdos basin in 2015, called xinanbian oil field, with over one hundred million tons oil reserves and one million tons of production scale. Several hundred million tons of tight oil reserve has been found in other basins, showing a great potential in China. Tight oil in China mainly developed in terrestrial sedimentary environment. According to the relations of source rock and reservoir, the source-reservoir combination of tight oil can be divided into three types, which are bottom generating and top storing tight oil,self- generating and self-storing tight oil,top generating and bottom storing tight oil. The self- generating and self-storing tight oil is the main type discovered at present. This type of tight oil has following characteristics:(1) The formation and distribution of tight oil are controlled by high quality source rocks. Terrestrial tight oil source rocks in China are mainly formed in the deep to half deep lacustrine facies. The lithology includes dark mudstone, shale, argillaceous limestone and dolomite. These source rocks with thickness between 20m-150m, kerogen type mostly I-II, and peak oil generation thermal maturity(Ro 0.6-1.4%), have great hydrocarbon generating potential. Most discovered tight oil is distributed in the area of TOC greater than 2 %.( 2) the reservoir with strong heterogeneity is very tight. In these low porosity and permeability reservoir,the resources distribution is controlled by the physical property. Tight sandstone, carbonate and hybrid sedimentary rocks are three main tight reservoir types in

  8. Trap efficiency of reservoirs

    USGS Publications Warehouse

    Brune, Gunnar M.

    1953-01-01

    Forty-four records of reservoir trap efficiency and the factors affecting trap efficiency are analyzed. The capacity-inflow (C/I) ratio is found to offer a much closer correlation with trap efficiency than the capacity-watershed (C/W) ratio heretofore widely used. It appears likely from the cases studied that accurate timing of venting or sluicing operations to intercept gravity underflows can treble or quadruple the amount of sediment discharged from a reservoir. Desilting basins, because of their shape and method of operation, may have trap efficiencies above 90 pct even with very low C/I ratios.Semi-dry reservoirs with high C/I ratios, like John Martin Reservoir, may have trap efficiencies as low as 60 pct. Truly “dry” reservoirs, such as those in the Miami Conservancy District, probably have trap efficiencies in the 10 to 40 pct range, depending upon C/I ratio

  9. Fluvial channel-belts, floodbasins, and aeolian ergs in the Precambrian Meall Dearg Formation (Torridonian of Scotland): Inferring climate regimes from pre-vegetation clastic rock records

    NASA Astrophysics Data System (ADS)

    Lebeau, Lorraine E.; Ielpi, Alessandro

    2017-07-01

    The interpretation of climate regimes from facies analysis of Precambrian clastic rocks has been challenging thus far, hindering full reconstructions of landscape dynamics in pre-vegetation environments. Yet, comparisons between different and co-active sedimentary realms, including fluvial-channelised, floodplain, and aeolian hold the potential to shed further light on this thematic. This research discusses a fluvial-aeolian record from the 1.2 Ga Meall Dearg Formation, part of the classic Torridonian succession of Scotland. Tentatively considered to date as a braided-fluvial deposit, this unit is here reappraised as the record of fluvial channel-belts, floodbasins, and aeolian ergs. Fluvial deposits with abundant transitional- to upper-flow regime structures (mostly cross-beds with tangential sets and plane/antidunal beds) and simple, low-relief sediment bars indicate a low-sinuosity, ephemeral style. Floodbasin deposits consist of plane and cross-beds ubiquitously bounded by symmetrical ripples, and rare sediment bars related to the progradation of splay complexes in temporary flooded depressions. Aeolian deposits occur nearby basement topography, and are dominated by large-scale, pin-stripe laminated cross-beds, indicative of intermountain ergs. Neither ephemeral-fluvial nor intermountain aeolian systems can be considered as reliable indicators of local climate, since their sedimentary style is respectively controlled by catchment size and shape, and basin topography relative to groundwater tables. Contrarily, the occurrence of purely clastic - rather than carbonate or evaporitic - floodplain strata can be more confidently related to humid regimes. In brief, this study provides new insight into an overlooked portion of the Torridonian succession of Scotland, and discusses climate inferences for Precambrian clastic terrestrial rocks.

  10. Sediment transport and capacity change in three reservoirs, Lower Susquehanna River Basin, Pennsylvania and Maryland, 1900-2012

    USGS Publications Warehouse

    Langland, Michael J.

    2015-01-01

    The U.S. Geological Survey (USGS) has conducted numerous sediment transport studies in the Susquehanna River and in particular in three reservoirs in the Lower Susquehanna River Basin to determine sediment transport rates over the past century and to document changes in storage capacity. The Susquehanna River is the largest tributary to Chesapeake Bay and transports about one-half of the total freshwater input and substantial amounts of sediment and nutrients to the bay. The transported loads are affected by deposition in reservoirs (Lake Clarke, Lake Aldred, and Conowingo Reservoir) behind three hydropower dams. The geometry and texture of the deposited sediments in each reservoir upstream from the three dams has been a subject of research in recent decades. Particle size deposition and sediment scouring processes are part of the reservoir dynamics. A Total Maximum Daily Load (TMDL) for nitrogen, phosphorus, and sediment was established for Chesapeake Bay to attain water-quality standards. Six states and the District of Columbia agreed to reduce loads to the bay and to meet load allocation goals for the TMDL. The USGS has been estimating annual sediment loads at the Susquehanna River at Marietta, Pennsylvania (above Lake Clarke), and Susquehanna River at Conowingo, Maryland (below Conowingo Reservoir), since the mid-1980s to predict the mass balance of sediment transport through the reservoir system. Using streamflow and sediment data from the Susquehanna River at Harrisburg, Pennsylvania (upstream from the reservoirs), from 1900 to 1981, sediment loads were greatest in the early to mid-1900s when land disturbance activities from coal production and agriculture were at their peak. Sediment loads declined in the 1950s with the introduction of agricultural soil conservation practices. Loads were dominated by climatic factors in the 1960s (drought) and 1970s (very wet) and have been declining since the 1980s through 2012. The USGS developed a regression equation to

  11. Seismic sequence stratigraphy and platform to basin reservoir structuring of Lower Cretaceous deposits in the Sidi Aïch-Majoura region (Central Tunisia)

    NASA Astrophysics Data System (ADS)

    Azaïez, Hajer; Bédir, Mourad; Tanfous, Dorra; Soussi, Mohamed

    2007-05-01

    In central Tunisia, Lower Cretaceous deposits represent carbonate and sandstone reservoir series that correspond to proven oil fields. The main problems for hydrocarbon exploration of these levels are their basin tectonic configuration and their sequence distribution in addition to the source rock availability. The Central Atlas of Tunisia is characterized by deep seated faults directed northeast-southwest, northwest-southeast and north-south. These faults limit inherited tectonic blocks and show intruded Triassic salt domes. Lower Cretaceous series outcropping in the region along the anticline flanks present platform deposits. The seismic interpretation has followed the Exxon methodologies in the 26th A.A.P.G. Memoir. The defined Lower Cretaceous seismic units were calibrated with petroleum well data and tied to stratigraphic sequences established by outcrop studies. This allows the subsurface identification of subsiding zones and thus sequence deposit distribution. Seismic mapping of these units boundary shows a structuring from a platform to basin blocks zones and helps to understand the hydrocarbon reservoir systems-tract and horizon distribution around these domains.

  12. Morrowan sedimentation in the Orogrande basin, west Texas and south-central New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, W.M.; Stanton, R.J. Jr.

    1986-03-01

    Morrowan strata in the Hueco and Franklin Mountains reflect deposition within a shallow, gradually subsiding, carbonate shelf lagoon. Postulated environments fluctuated between open shelf lagoon with localized shoaling, restricted inner shelf lagoon, and peritidal settings. Variations in depth were slight, probably not exceeding several tens of meters within the photic zone. The La Tuna Formation (Franklin Mountains) was deposited near the axis (center) of the Orogrande basin; the lower division of the Magdalena limestone (Hueco Mountains), 30 mi east, was deposited 20-30 mi west of the paleoshoreline. Physiographically, the Orogrande sea was a small gulf, offering a certain degree ofmore » protection from the Morrowan seaway to the south. Sedimentologically, it was a wide expanse of predominantly quiet-water carbonate sedimentation with subordinate argillaceous influex and coarser peripheral clastics. The Orogrande basin, a stratigraphic feature, corresponds to a blanket deposit of shallow epeiric carbonates. Climatic and orographic effects are invoked to explain the contrasting style of clastic sedimentation in the Delaware and orogrande basins, east and west of the Pedernal uplift. Analysis of Morrowan carbonates reveals no evidence of cyclicity, major transgressions or regressions, or local tectonic activity. Deposition was stable and in equilibrium with a gradually subsiding shallow basin. Based on lithologic, faunal, biostratigraphic, and paleogeographic criteria, the lower division is both laterally and temporally equivalent with the La Tuna Formation. Accordingly, the latter term is advocated in favor of the former, which lacks both priority and formal status.« less

  13. Processes occurring in reservoirs receiving biogenic and polluting substances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasil'ev, Yu.S.; Rolle, N.N.

    1988-04-01

    Various aspects of biogenic pollution on the water quality of reservoirs and its effect on ichthyofauna were analyzed. The effects of fertilizer runoffs and other pollutant pathways, such as the decay of flooded vegetation, into reservoirs were addressed. The dependence of fish survival times on nitrite concentrations was charted. On the basis of an optimization model for the economic development of drainage basins with ecological limitations, the Leningrad Polytechnic Institute developed instructions for calculating the removal of biogenic elements and selecting water protection measures which were tested on a number of streams of the Lake Ladoga Basin and other areasmore » and which provide engineering means for evaluating and controlling the eutrophication of reservoirs.« less

  14. Study on the application of seismic sedimentology in a stratigraphic-lithologic reservoir in central Junggar Basin

    NASA Astrophysics Data System (ADS)

    Yu, Yixin; Xia, Zhongmou

    2017-06-01

    This paper discusses the research idea of description for stratigraphic-lithologic reservoir based on seismic sedimentology methods. The sandstone reservoir of Jurrassic XiShanyao Formation in Junggar Basin is studied according to the theory and approaches of seismic sedimentology. By making full use of borehole data, the technologies of layer correlation based on the stratigraphic sequence framework, the forward seismic modeling, the stratal slicing and lithologic inversion are applied. It describes the range of denudation line, the distribution characteristics of sedimentary facies of the strata, the vertical and horizontal distribution of sand bodies and the favourable oil-gas bearing prospective area. The results shows that study area are dominated braided delta deposition including underwater distributary channel and distributary bay microfacies, the nip-out lines of the formation are northeast to southwest from north to south, the second Middle Jurassic sand body is the most widely distributed one among three sand bodies, the prospective oil-gas bearing area located in the south part and around the YG2 well area. The study result is effective on the practice of exploration in study area.

  15. High resolution modeling of reservoir storage and extent dynamics at the continental scale

    NASA Astrophysics Data System (ADS)

    Shin, S.; Pokhrel, Y. N.

    2017-12-01

    Over the past decade, significant progress has been made in developing reservoir schemes in large scale hydrological models to better simulate hydrological fluxes and storages in highly managed river basins. These schemes have been successfully used to study the impact of reservoir operation on global river basins. However, improvements in the existing schemes are needed for hydrological fluxes and storages, especially at the spatial resolution to be used in hyper-resolution hydrological modeling. In this study, we developed a reservoir routing scheme with explicit representation of reservoir storage and extent at the grid scale of 5km or less. Instead of setting reservoir area to a fixed value or diagnosing it using the area-storage equation, which is a commonly used approach in the existing reservoir schemes, we explicitly simulate the inundated storage and area for all grid cells that are within the reservoir extent. This approach enables a better simulation of river-floodplain-reservoir storage by considering both the natural flood and man-made reservoir storage. Results of the seasonal dynamics of reservoir storage, river discharge at the downstream of dams, and the reservoir inundation extent are evaluated with various datasets from ground-observations and satellite measurements. The new model captures the dynamics of these variables with a good accuracy for most of the large reservoirs in the western United States. It is expected that the incorporation of the newly developed reservoir scheme in large-scale land surface models (LSMs) will lead to improved simulation of river flow and terrestrial water storage in highly managed river basins.

  16. Naturally fractured tight gas reservoir detection optimization. Quarterly report, April--June 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-07-01

    Geologic assessment of the basin during the third quarter possessed several major objectives. The first task was to test the validity of the gas-centered basin model for the Piceance Basin. The second objective was to define the location and variability of gas-saturated zones within the Williams Fork and Iles Formation reservoir horizons. A third objective was to prepare an updated structure map of the Piceance Basin on the top of the Iles Formation (Rollins Sandstone) to take advantage of new data provided by ten years of drilling activity throughout the basin. The first two objectives formed the core of themore » ARI poster session presented at the AAPG annual meeting in Denver. The delineation of the gas and water-saturated zone geometries for the Williams Fork and Iles Formations in the basin was presented in the form of a poster session at the AAPG Annual meeting held in Denver in mid-June. The poster session outlined the nature of the gas-centered basin geometry and demonstrated the gas and water-saturated conditions for the Williams Fork, Cozzette and Corcoran reservoir horizons throughout the basin. Initial and cumulative production data indicate that these reservoir horizons are gas-saturated in most of the south-central and eastern basin. The attached report summarizes the data and conclusions of the poster session.« less

  17. Land-use effects on erosion, sediment yields, and reservoir sedimentation: a case study in the Lago Loiza Basin, Puerto Rico

    USGS Publications Warehouse

    Gellis, A.C.; Webb, R.M.T.; McIntyre, S.C.; Wolfe, W.J.

    2006-01-01

     Lago Loíza impounded in 1953 to supply San Juan, Puerto Rico, with drinking water; by 1994, it had lost 47% of its capacity. To characterize sedimentation in Lago Loíza, a study combining land-use history, hillslope erosion rates, and subbasin sediment yields was conducted. Sedimentation rates during the early part of the reservoir’s operation (1953– 1963) were slightly higher than the rates during 1964–1990. In the early history of the reservoir, cropland comprised 48% of the basin and erosion rates were high. Following economic shifts during the 1960s, cropland was abandoned and replaced by forest, which increased from 7.6% in 1950 to 20.6% in 1987. These land-use changes follow a pattern similar to the northeastern United States. Population in the Lago Loíza Basin increased 77% from 1950 to 1990, and housing units increased 194%. Sheetwash erosion measured from 1991 to 1993 showed construction sites had the highest sediment concentration (61,400 ppm), followed by cropland (47,400 ppm), pasture (3510 ppm), and forest (2050 ppm). This study illustrates how a variety of tools and approaches can be used to understand the complex interaction between land use, upland erosion, fluvial sediment transport and storage, and reservoir sedimentation. 

  18. Petroleum geology and resources of the middle Caspian Basin, Former Soviet Union

    USGS Publications Warehouse

    Ulmishek, Gregory F.

    2001-01-01

    The Middle Caspian basin occupies a large area between the Great Caucasus foldbelt and the southern edge of the Precambrian Russian craton. The basin also includes the central part of the Caspian Sea and the South Mangyshlak subbasin east of the sea. The basin was formed on the Hercynian accreted terrane during Late Permian?Triassic through Quaternary time. Structurally, the basin consists of the fold-and-thrust zone of the northern Caucasus foothills, the foredeep and foreland slope, the Stavropol-Prikumsk uplift and East Manych trough to the north of the slope, and the South Mangyshlak subbasin and slope of the Karabogaz arch east of the Caspian Sea. All these major structures extend offshore. Four total petroleum systems (TPS) have been identified in the basin. The South Mangyshlak TPS contains more than 40 discovered fields. The principal reserves are in Lower?Middle Jurassic sandstone reservoirs in structural traps. Source rocks are poorly known, but geologic data indicate that they are in the Triassic taphrogenic sequence. Migration of oil and gas significantly postdated maturation of source rocks and was related to faulting and fracturing during middle Miocene to present time. A single assessment unit covers the entire TPS. Largest undiscovered resources of this assessment unit are expected in the largely undrilled offshore portion of the TPS, especially on the western plunge of the Mangyshlak meganticline. The Terek-Caspian TPS occupies the fold-and-thrust belt, foredeep, and adjoining foreland slope. About 50 hydrocarbon fields, primarily oil, have been discovered in the TPS. Almost all hydrocarbon reserves are in faulted structural traps related to thrusting of the foldbelt, and most traps are in frontal edges of the thrust sheets. The traps are further complicated by plastic deformation of Upper Jurassic salt and Maykop series (Oligocene? lower Miocene) shale. Principal reservoirs are fractured Upper Cretaceous carbonates and middle Miocene sandstones

  19. Diagenesis and reservoir quality of the Lower Cretaceous Quantou Formation tight sandstones in the southern Songliao Basin, China

    NASA Astrophysics Data System (ADS)

    Xi, Kelai; Cao, Yingchang; Jahren, Jens; Zhu, Rukai; Bjørlykke, Knut; Haile, Beyene Girma; Zheng, Lijing; Hellevang, Helge

    2015-12-01

    The Lower Cretaceous Quantou Formation in the southern Songliao Basin is the typical tight oil sandstone in China. For effective exploration, appraisal and production from such a tight oil sandstone, the diagenesis and reservoir quality must be thoroughly studied first. The tight oil sandstone has been examined by a variety of methods, including core and thin section observation, XRD, SEM, CL, fluorescence, electron probing analysis, fluid inclusion and isotope testing and quantitative determination of reservoir properties. The sandstones are mostly lithic arkoses and feldspathic litharenites with fine to medium grain size and moderate to good sorting. The sandstones are dominated by feldspar, quartz, and volcanic rock fragments showing various stages of disintegration. The reservoir properties are quite poor, with low porosity (average 8.54%) and permeability (average 0.493 mD), small pore-throat radius (average 0.206 μm) and high displacement pressure (mostly higher than 1 MPa). The tight sandstone reservoirs have undergone significant diagenetic alterations such as compaction, feldspar dissolution, quartz cementation, carbonate cementation (mainly ferrocalcite and ankerite) and clay mineral alteration. As to the onset time, the oil emplacement was prior to the carbonate cementation but posterior to the quartz cementation and feldspar dissolution. The smectite to illite reaction and pressure solution at stylolites provide a most important silica sources for quartz cementation. Carbonate cements increase towards interbedded mudstones. Mechanical compaction has played a more important role than cementation in destroying the reservoir quality of the K1q4 sandstone reservoirs. Mixed-layer illite/smectite and illite reduced the porosity and permeability significantly, while chlorite preserved the porosity and permeability since it tends to be oil wet so that later carbonate cementation can be inhibited to some extent. It is likely that the oil emplacement occurred

  20. Erosion processes, fluvial sediment transport, and reservoir sedimentation in a part of the Newell and Zayante Creek basins, Santa Cruz County, California

    USGS Publications Warehouse

    Brown, W. M.

    1973-01-01

    The drainage basins upstream from Loch Lomond, a water-supply reservoir on Newell Creek, and a proposed reservoir site on Zayante Creek were investigated for their characteristics with respect to the erosion, transportation, and deposition of sediment. The study area is underlain predominantly by sandstone, siltstone, and shale of Tertiary age that decompose readily into moderately deep soils, friable colluvium, and easily transported sediment particles. The Rices Mudstone and Twobar, Shale Members of the San Lorenzo Formation of Brabb (1964) underlie steep dip slopes in the study area, and probably are the most highly erodible of the several geologic units present there. However, nearly all of the geologic units have shown a propensity for accelerated erosion accompanying the disturbance of the land surface by the roadbuilding practices that predominate over other types of sediment-producing land-use activities in the study area. Sediment transport in the study area was estimated from (1) a reservoir survey of Loch Lomond in 1971 that was compared with a preconstruction survey of 1960, and (2) sampling of sediment transported in suspension by Zayante Creek during the 1970 and 1971 water years. At least 46 acre-feet of sediment accumulated in Loch Lomond in a 10-year period, and an unmeasured quantity of very fine sediment in the form of a thin layer over much of the reservoir bottom was observed. The measured quantity of deposited sediment in a 10-year period represented a sediment yield of about 1,100 tons annually per square mile of drainage basin upstream from the reservoir arms where the major deposition occurred. This sediment occupied less than i percent of the original capacity of Loch Lomond, but the volume of measured sediment deposition is probably conservative in view of the unmeasured deposits observed and a reservoir trap efficiency of about 95 percent. Sediment sampling on Zayante Creek indicated suspended-sediment yields of about 4,570 and 570 tons

  1. Mining the earth's heat in the basin and range

    USGS Publications Warehouse

    Sass, John H.

    1995-01-01

    The Geothermal Program of the U.S. Geological Survey (USGS) is revisiting the Basin and Range Province after a hiatus of over a decade. The Basin and Range is a region of Neogene extension and generally high, but regionally and locally variable heat flow. The northern Basin and Range (Great Basin) has higher mean elevation and more intense Quaternary extension than does the southern Basin and Range, and a somewhat higher average heat flow. Present geothermal electric power generation (500+ MW) is entirely from hydrothermal systems of the Great Basin. The USGS is seeking industrial partners to investigate the potential for new hydrothermal reservoirs and to develop the technology to enhance the productivity of existing reservoirs.

  2. Muddy and dolomitic rip-up clasts in Triassic fluvial sandstones: Origin and impact on potential reservoir properties (Argana Basin, Morocco)

    NASA Astrophysics Data System (ADS)

    Henares, Saturnina; Arribas, Jose; Cultrone, Giuseppe; Viseras, Cesar

    2016-06-01

    The significance of rip-up clasts as sandstone framework grains is frequently neglected in the literature being considered as accessory components in bulk sandstone composition. However, this study highlights the great value of muddy and dolomitic rip-up clast occurrence as: (a) information source about low preservation potential from floodplain deposits and (b) key element controlling host sandstone diagenetic evolution and thus ultimate reservoir quality. High-resolution petrographic analysis on Triassic fluvial sandstones from Argana Basin (T6 and T7/T8 units) highlights the significance of different types of rip-up clasts as intrabasinal framework components of continental sediments from arid climates. On the basis of their composition and ductility, three main types are distinguished: (a) muddy rip-up clasts, (b) dolomitic muddy rip-up clasts and (c) dolomite crystalline rip-up clasts. Spatial distribution of different types is strongly facies-related according to grain size. Origin of rip-up clasts is related to erosion of coeval phreatic dolocretes, in different development stages, and associated muddy floodplain sediments. Cloudy cores with abundant inclusions and clear outer rims of dolomite crystals suggest a first replacive and a subsequent displacive growth, respectively. Dolomite crystals are almost stoichiometric. This composition is very similar to that of early sandstone dolomite cement, supporting phreatic dolocretes as dolomite origin in both situations. Sandstone diagenesis is dominated by mechanical compaction and dolomite cementation. A direct correlation exists between: (1) muddy rip-up clast abundance and early reduction of primary porosity by compaction with irreversible loss of intergranular volume (IGV); and (2) occurrence of dolomitic rip-up clasts and dolomite cement nucleation in host sandstone, occluding adjacent pores but preserving IGV. Both processes affect reservoir quality by generation of vertical and 3D fluid flow baffles and

  3. Clastic polygonal networks around Lyot crater, Mars: Possible formation mechanisms from morphometric analysis

    NASA Astrophysics Data System (ADS)

    Brooker, L. M.; Balme, M. R.; Conway, S. J.; Hagermann, A.; Barrett, A. M.; Collins, G. S.; Soare, R. J.

    2018-03-01

    Polygonal networks of patterned ground are a common feature in cold-climate environments. They can form through the thermal contraction of ice-cemented sediment (i.e. formed from fractures), or the freezing and thawing of ground ice (i.e. formed by patterns of clasts, or ground deformation). The characteristics of these landforms provide information about environmental conditions. Analogous polygonal forms have been observed on Mars leading to inferences about environmental conditions. We have identified clastic polygonal features located around Lyot crater, Mars (50°N, 30°E). These polygons are unusually large (>100 m diameter) compared to terrestrial clastic polygons, and contain very large clasts, some of which are up to 15 metres in diameter. The polygons are distributed in a wide arc around the eastern side of Lyot crater, at a consistent distance from the crater rim. Using high-resolution imaging data, we digitised these features to extract morphological information. These data are compared to existing terrestrial and Martian polygon data to look for similarities and differences and to inform hypotheses concerning possible formation mechanisms. Our results show the clastic polygons do not have any morphometric features that indicate they are similar to terrestrial sorted, clastic polygons formed by freeze-thaw processes. They are too large, do not show the expected variation in form with slope, and have clasts that do not scale in size with polygon diameter. However, the clastic networks are similar in network morphology to thermal contraction cracks, and there is a potential direct Martian analogue in a sub-type of thermal contraction polygons located in Utopia Planitia. Based upon our observations, we reject the hypothesis that polygons located around Lyot formed as freeze-thaw polygons and instead an alternative mechanism is put forward: they result from the infilling of earlier thermal contraction cracks by wind-blown material, which then became

  4. Transitioning Groundwater from an Extractive Resource to a Managed Water Storage Resource: Geology and Recharge in Sedimentary Basins

    NASA Astrophysics Data System (ADS)

    Maples, S.; Fogg, G. E.; Maxwell, R. M.; Liu, Y.

    2017-12-01

    Civilizations have typically obtained water from natural and constructed surface-water resources throughout most of human history. Only during the last 50-70 years has a significant quantity of water for humans been obtained through pumping from wells. During this short time, alarming levels of groundwater depletion have been observed worldwide, especially in some semi-arid and arid regions that rely heavily on groundwater pumping from clastic sedimentary basins. In order to reverse the negative effects of over-exploitation of groundwater resources, we must transition from treating groundwater mainly as an extractive resource to one in which recharge and subsurface storage are pursued more aggressively. However, this remains a challenge because unlike surface-water reservoirs which are typically replenished over annual timescales, the complex geologic architecture of clastic sedimentary basins impedes natural groundwater recharge rates resulting in decadal or longer timescales for aquifer replenishment. In parts of California's Central Valley alluvial aquifer system, groundwater pumping has outpaced natural groundwater recharge for decades. Managed aquifer recharge (MAR) has been promoted to offset continued groundwater overdraft, but MAR to the confined aquifer system remains a challenge because multiple laterally-extensive silt and clay aquitards limit recharge rates in most locations. Here, we simulate the dynamics of MAR and identify potential recharge pathways in this system using a novel combination of (1) a high-resolution model of the subsurface geologic heterogeneity and (2) a physically-based model of variably-saturated, three-dimensional water flow. Unlike most groundwater models, which have coarse spatial resolution that obscures the detailed subsurface geologic architecture of these systems, our high-resolution model can pinpoint specific geologic features and locations that have the potential to `short-circuit' aquitards and provide orders

  5. Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernest A. Mancini; Paul Aharon; Donald A. Goddard

    2006-05-26

    The principal research effort for Phase 1 (Concept Development) of the project has been data compilation; determination of the tectonic, depositional, burial, and thermal maturation histories of the North Louisiana Salt Basin; basin modeling (geohistory, thermal maturation, hydrocarbon expulsion); petroleum system identification; comparative basin evaluation; and resource assessment. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, and regional cross sections have been prepared. Structure, isopach and formation lithology maps have been constructed, and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface mapsmore » and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs include Upper Jurassic and Cretaceous fluvial-deltaic sandstone facies; shoreline, marine bar and shallow shelf sandstone facies; and carbonate shoal, shelf and reef facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon

  6. Monitoring Reservoirs Using MERIS And LANDSAT Fused Images : A Case Study Of Polyfitos Reservoir - West Macedonia - Greece

    NASA Astrophysics Data System (ADS)

    Stefouli, M.; Charou, E.; Vasileiou, E.; Stathopoulos, N.; Perrakis, A.

    2012-04-01

    Research and monitoring is essential to assess baseline conditions in reservoirs and their watershed and provide necessary information to guide decision-makers. Erosion and degradation of mountainous areas can lead to gradual aggradation of reservoirs reducing their lifetime. Collected measurements and observations have to be communicated to the managers of the reservoirs so as to achieve a common / comprehensive management of a large watershed and reservoir system. At this point Remote Sensing could help as the remotely sensed data are repeatedly and readily available to the end users. Aliakmon is the longest river in Greece, it's length is about 297 km and the surface of the river basin is 9.210 km2.The flow of the river starts from Northwest of Greece and ends in Thermaikos Gulf. The riverbed is not natural throughout the entire route, because constructed dams restrict water and create artificial lakes, such as lake of Polyfitos, that prevent flooding. This lake is used as reservoir, for covering irrigational water needs and the water is used to produce energy from the hydroelectric plant of Public Power Corporation-PPC. The catchment basin of Polyfitos' reservoir covers an area of 847.76 km2. Soil erosion - degradation in the mountainous watershed of streams of Polyfitos reservoir is taking place. It has been estimated that an annual volume of sediments reaching the reservoir is of the order of 244 m3. Geomatic based techniques are used in processing multiple data of the study area. A data inventory was formulated after the acquisition of topographic maps, compilation of geological and hydro-geological maps, compilation of digital elevation model for the area of interest based on satellite data and available maps. It also includes the acquisition of various hydro-meteorological data when available. On the basis of available maps and satellite data, digital elevation models are used in order to delineate the basic sub-catchments of the Polyfytos basin as well as

  7. Effects of urbanization and long-term rainfall on the occurrence of organic compounds and trace elements in reservoir sediment cores, streambed sediment, and fish tissue from the Santa Ana River basin, California, 1998

    USGS Publications Warehouse

    Burton, Carmen A.

    2002-01-01

    Organcochlorine compounds, semivolatile-organic compounds (SVOC), and trace elements were analyzed in reservoir sediment cores, streambed sediment, and fish tissue in the Santa Ana River Basin as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Three reservoirs were sampled in areas that have different degrees of urbanization. Streambed sediment and fish tissue collected at 12 sites were divided into two groups, urban and nonurban. More organochlorine compounds were detected in reservoir sediment cores, streambed sediment and fish tissue, and at higher concentrations at urban sites than at nonurban sites. At all sites, except West Street Basin, concentrations of organochlorine compounds were lower than the probable-effect concentration (PEC). At the highly urbanized West Street Basin, chlordane and p,p'-DDE exceeded the PEC throughout the historical record. The less stringent threshold-effect concentration (TEC) was exceeded for six compounds at eight sites. Most of the organochlorine compounds detected in streambed sediment and fish tissue were at urban sites on the Santa Ana River as opposed to its tributaries, suggesting accumulation and persistence in the river. More SVOCs were detected in reservoir sediment cores and streambed sediment, and at higher concentrations, at urban sites than at nonurban sites. At all the sites, except West Street Basin, concentrations of SVOCs were lower than the PEC. At West Street Basin, chrysene, pyrene, and total polycyclic-aromatic hydrocarbons exceeded the PEC throughout the historical record. The TEC was exceeded for 10 compounds at 3 sites. Most of the SVOCs were detected in streambed sediment at urban sites on tributaries to the Santa Ana River rather than the mainstem itself. The less frequent occurrence and lower concentrations in the Santa Ana River suggest that SVOCs are less persistent than organochlorine compounds, possibly as a result of volatization, gradation, or dilution. Most trace

  8. Geology and physiography of the continental margin north of Alaska and implications for the origin of the Canada Basin

    USGS Publications Warehouse

    Grantz, Arthur; Eittreim, Stephen L.; Whitney, O.T.

    1979-01-01

    The continental margin north of Alaska is of Atlantic type. It began to form probably in Early Jurassic time but possibly in middle Early Cretaceous time, when the oceanic Canada Basin of the Arctic Ocean is thought to have opened by rifting about a pole of rotation near the Mackenzie Delta. Offsets of the rift along two fracture zones are thought to have divided the Alaskan margin into three sectors of contrasting structure and stratigraphy. In the Barter Island sector on the east and the Chukchi sector on the west the rift was closer to the present northern Alaska mainland than in the Barrow sector, which lies between them. In the Barter Island and Chukchi sectors the continental shelf is underlain by prisms of clastic sedimentary rocks that are inferred to include thick sections of Jurassic and Neocomian (lower Lower Cretaceous) strata of southern provenance. In the intervening Barrow sector the shelf is underlain by relatively thin sections of Jurassic and Neocomian strata derived from northern sources that now lie beneath the outer continental shelf. The rifted continental margin is overlain by a prograded prism of Albian (upper Lower Cretaceous) to Tertiary clastic sedimentary rocks that comprises the continental terrace of the western Beaufort and northern Chukchi Seas. On the south the prism is bounded by Barrow arch, which is a hingeline between the northward-tilted basement surface beneath the continental shelf of the western Beaufort Sea and the southward-tilted Arctic Platform of northern Alaska. The Arctic platform is overlain by shelf clastic and carbonate strata of Mississippian to Cretaceous age, and by Jurassic and Cretaceous clastic strata of the Colville foredeep. Both the Arctic platform and Colville foredeep sequences extend from northern Alaska beneath the northern Chukchi Sea. At Herald fault zone in the central Chukchi Sea they are overthrust by more strongly deformed Cretaceous to Paleozoic sedimentary rocks of Herald arch, which trends

  9. Temperature-pressure conditions in coalbed methane reservoirs of the Black Warrior basin: Implications for carbon sequestration and enhanced coalbed methane recovery

    USGS Publications Warehouse

    Pashin, J.C.; McIntyre, M.R.

    2003-01-01

    Sorption of gas onto coal is sensitive to pressure and temperature, and carbon dioxide can be a potentially volatile supercritical fluid in coalbed methane reservoirs. More than 5000 wells have been drilled in the coalbed methane fields of the Black Warrior basin in west-central Alabama, and the hydrologic and geothermic information from geophysical well logs provides a robust database that can be used to assess the potential for carbon sequestration in coal-bearing strata.Reservoir temperature within the coalbed methane target zone generally ranges from 80 to 125 ??F (27-52 ??C), and geothermal gradient ranges from 6.0 to 19.9 ??F/1000 ft (10.9-36.2 ??C/km). Geothermal gradient data have a strong central tendency about a mean of 9.0 ??F/1000 ft (16.4 ??C/km). Hydrostatic pressure gradients in the coalbed methane fields range from normal (0.43 psi/ft) to extremely underpressured (<0.05 psi/ft). Pressure-depth plots establish a bimodal regime in which 70% of the wells have pressure gradients greater than 0.30 psi/ft, and 20% have pressure gradients lower than 0.10 psi/ft. Pockets of underpressure are developed around deep longwall coal mines and in areas distal to the main hydrologic recharge zone, which is developed in structurally upturned strata along the southeastern margin of the basin.Geothermal gradients within the coalbed methane fields are high enough that reservoirs never cross the gas-liquid condensation line for carbon dioxide. However, reservoirs have potential for supercritical fluid conditions beyond a depth of 2480 ft (756 m) under normally pressured conditions. All target coal beds are subcritically pressured in the northeastern half of the coalbed methane exploration fairway, whereas those same beds were in the supercritical phase window prior to gas production in the southwestern half of the fairway. Although mature reservoirs are dewatered and thus are in the carbon dioxide gas window, supercritical conditions may develop as reservoirs

  10. The Messinian of the Nijar Basin (SE Spain): sedimentation, depositional environments and paleogeographic evolution

    NASA Astrophysics Data System (ADS)

    Fortuin, A. R.; Krijgsman, W.

    2003-08-01

    The reconstruction of the depositional events related to the Messinian Salinity Crisis (MSC) of the Mediterranean is generally hampered by an incomplete stratal record in the circum-Mediterranean basins. The sediments of the northern part of the Nijar Basin, however, provide an excellent and continuous record of Late Messinian sediments because features of severe erosion are lacking. Especially, the successions of the deeper part of the basin had sufficient accommodation space to warrant ongoing deposition and may thus serve as a testing ground for existing hypotheses regarding the MSC. Conformable contacts with the overlying Pliocene and good correlation possibilities with the adjacent, astronomically dated, Messinian of the Sorbas Basin provide the necessary age constraints. The main body of evaporites in the Nijar Basin (Yesares Formation) has been affected by local dissolution and erosion prior to deposition of the latest Messinian (Lago-Mare) facies. Pelitic float breccias show textures indicating flowage and/or mass transport and include slumped and slided stratal packets due to foundering of the mixed evaporitic-clastic margin. Increased runoff of meteoric waters probably played an important role as these packet slides are perfectly sealed by the hyposaline Lago-Mare strata. Field observations show that marginal sediments, commonly classified as the Terminal Carbonate Complex (TCC), are a lateral equivalent of the basinal Yesares evaporites. The latest Messinian deposits (Feos Formation) are characterized by a sedimentary cyclicity, related to fluctuating base levels, consisting of chalky-marly laminitic strata alternating with continental coarser clastic intervals. Despite considerable W-E facies changes and indications for discrete tectonic events, a persistent sequential pattern of eight Lago-Mare cycles is present, which are interpreted as precession-controlled variations in regional climate. Instead of one major desiccation event in the latest Messinian

  11. Sedimentary petrology and reservoir quality of the Middle Jurassic Red Glacier Formation, Cook Inlet forearc basin: Initial impressions

    USGS Publications Warehouse

    Helmold, K.P.; LePain, D.L.; Stanley, Richard G.

    2016-01-01

    The Division of Geological & Geophysical Surveys and Division of Oil & Gas are currently conducting a study of the hydrocarbon potential of Cook Inlet forearc basin (Gillis, 2013, 2014; LePain and others, 2013; Wartes, 2015; Herriott, 2016 [this volume]). The Middle Jurassic Tuxedni Group is recognized as a major source of oil in Tertiary reservoirs (Magoon, 1994), although the potential for Tuxedni reservoirs remains largely unknown. As part of this program, five days of the 2015 field season were spent examining outcrops, largely sandstones, of the Middle Jurassic Red Glacier Formation (Tuxedni Group) approximately 6.4 km northeast of Johnson Glacier on the western side of Cook Inlet (fig. 4-1). Three stratigraphic sections (fig. 4-2) totaling approximately 307 m in thickness were measured and described in detail (LePain and others, 2016 [this volume]). Samples were collected for a variety of analyses including palynology, Rock-Eval pyrolysis, vitrinite reflectance, detrital zircon geochronology, and petrology. This report summarizes our initial impressions of the petrology and reservoir quality of sandstones encountered in these measured sections. Interpretations are based largely on hand-lens observations of hand specimens and are augmented by stereomicroscope observations. Detailed petrographic (point-count) analyses and measurement of petrophysical properties (porosity, permeability, and grain density) are currently in progress.

  12. Designing adaptive operating rules for a large multi-purpose reservoir

    NASA Astrophysics Data System (ADS)

    Geressu, Robel; Rougé, Charles; Harou, Julien

    2017-04-01

    Reservoirs whose live storage capacity is large compared with annual inflow have "memory", i.e., their storage levels contain information about past inflows and reservoir operations. Such "long-memory" reservoirs can be found in basins in dry regions such as the Nile River Basin in Africa, the Colorado River Basin in the US, or river basins in Western and Central Asia. There the effects of a dry year have the potential to impact reservoir levels and downstream releases for several subsequent years, prompting tensions in transboundary basins. Yet, current reservoir operation rules in those reservoirs do not reflect this by integrating past climate history and release decisions among the factors that influence operating decisions. This work proposes and demonstrates an adaptive reservoir operating rule that explicitly accounts for the recent history of release decisions, and not only current storage level and near-term inflow forecasts. This implies adding long-term (e.g., multiyear) objectives to the existing short-term (e.g., annual) ones. We apply these operating rules to the Grand Ethiopian Renaissance Dam, a large reservoir under construction on the Blue Nile River. Energy generation has to be balanced with the imperative of releasing enough water in low flow years (e.g., the minimum 1, 2 or 3 year cumulative flow) to avoid tensions with downstream countries, Sudan and Egypt. Maximizing the minimum multi-year releases could be of interest for the Nile problem to minimize the impact on performance of the large High Aswan Dam in Egypt. Objectives include maximizing the average and minimum annual energy generation and maximizing the minimum annual, two year and three year cumulative releases. The system model is tested using 30 stochastically generated streamflow series. One can then derive adaptive release rules depending on the value of one- and two-year total releases with respect to thresholds. Then, there are 3 sets of release rules for the reservoir depending

  13. Data Assimilation of InSAR Surface Deformation Measurements for the Estimation of Reservoir Geomechanical Parameters in the Upper Adriatic Sedimentary Basin, Italy

    NASA Astrophysics Data System (ADS)

    Bau, D. A.; Alzraiee, A.; Ferronato, M.; Gambolati, G.; Teatini, P.

    2012-12-01

    In the last decades, extensive work has been conducted to estimate land subsidence due the development of deep gas reservoirs situated in the Upper Adriatic sedimentary basin, Italy. These modeling efforts have stemmed from the development finite-element (FE) coupled reservoir-geomechanical models that can simulate the deformation due to the change in pore pressure induced by hydrocarbon production from the geological formations. However, the application of these numerical models has often been limited by the uncertainty in the hydrogeological and poro-mechanical input parameters that are necessary to simulate the impact on ground surface levels of past and/or future gas-field development scenarios. Resolving these uncertainties is of paramount importance, particularly the Northern Adriatic region, given the low elevation above the mean sea level observed along most of the coastline and in the areas surrounding the Venice Lagoon. In this work, we present a state-of-the-art data assimilation (DA) framework to incorporate measurements of displacement of the land surface obtained using Satellite Interferometric Synthetic Aperture Radar (InSAR) techniques into the response of geomechanical simulation models. In Northern Italy, InSAR measurement campaigns have been carried out over a depleted gas reservoir, referred to as "Lombardia", located at a depth of about 1200 m in the sedimentary basin of the Po River plain. In the last years, this reservoir has been used for underground gas storage and recovery (GSR). Because of the pore pressure periodical alternation produced by GSR, reservoir formations have undergone loading/unloading cycles, experiencing effective stress changes that have induced periodical variation of ground surface levels. Over the Lombardia reservoir, the pattern, magnitude and timing of time-laps land displacements both in the vertical and in the East-West directions have been acquired from 2003 until 2008. The availability of these data opens new

  14. The Springhill Formation (Jurassic-Cretaceous) as a potential low enthalpy geothermal reservoir in the Cerro Sombrero area, Magallanes Basin, Chile.

    NASA Astrophysics Data System (ADS)

    Lagarrigue, S. C.; Elgueta, S.; Arancibia, G.; Morata, D.; Sanchez, J.; Rojas, L.

    2017-12-01

    Low enthalpy geothermal energy technologies are being developed around the world as part of policies to replace the use of conventional sources of energy by renewable ones. The reuse of abandoned oil and gas wells in sedimentary basins, whose reservoirs are saturated with water at temperatures above 120°C, is of increasing interest due to the low initial cost.In Chile, interest in applying this technology is focused on the Magallanes Basin (Austral Basin in Argentina) in the extreme south of the country, where important hydrocarbon deposits have been exploited for more than six decades with more than 3,500 wells drilled to depths of over 4,000m. Hydrocarbons have been extracted mainly from the Upper Jurassic to lowermost Cretaceous Springhill Formation, which includes sandstone lithofacies with porosities of 12% to 19% and permeability of 10mD and 1100mD. This formation has been drilled mainly at depths of 1500m to 3000m, the estimated geothermal gradient in the zone is 4.9 °C/100m with well bottom temperature measurements oscillating between 60° and 170°C, sufficient for district heating, and even, electricity generation by means of ORC technologies.To understand in detail the behavior and distribution of the different lithofacies of the Springhill Formation in the Sombrero Oil and Gas Field, sedimentological and geological 3D models have been generated from existing well logs and seismic data. To comprehend the quality of the reservoirs on the other hand, many petrophysical studies of drill core samples representative of the different lithofacies, complemented by electric well log interpretations, were carried out. Results confirm the existence of at least two quartz-rich sandstone lithofacies as potential geothermal reservoirs. In the principal settlement in this area, Cerro Sombrero township (1,800 population), the annual average temperature is 6.4°C, requiring constant domestic heating which, at present comes exclusively from natural gas. The study shows

  15. Basin Analysis and Petroleum System Characterisation of Western Bredasdorp Basin, Southern Offshore of South Africa: Insights from a 3d Crust-Scale Basin Model - (Phase 1)

    NASA Astrophysics Data System (ADS)

    Sonibare, W. A.; Scheck-Wenderoth, M.; Sippel, J.; Mikeš, D.

    2012-04-01

    In recent years, construction of 3D geological models and their subsequent upscaling for reservoir simulation has become an important tool within the oil industry for managing hydrocarbon reservoirs and increasing recovery rate. Incorporating petroleum system elements (i.e. source, reservoir and trap) into these models is a relatively new concept that seems very promising to play/prospect risk assessment and reservoir characterisation alike. However, yet to be fully integrated into this multi-disciplinary modelling approach are the qualitative and quantitative impacts of crust-scale basin dynamics on the observed basin-fill architecture and geometries. The focus of this study i.e. Western Bredasdorp Basin constitutes the extreme western section of the larger Bredasdorp sub-basin, which is the westernmost depocentre of the four southern Africa offshore sub-basins (others being Pletmos, Gamtoos and Algoa). These basins, which appear to be initiated by volcanically influenced continental rifting and break-up related to passive margin evolution (during the Mid-Late Jurassic to latest Valanginian), remain previously unstudied for crust-scale basin margin evolution, and particularly in terms of relating deep crustal processes to depo-system reconstruction and petroleum system evolution. Seismic interpretation of 42 2D seismic-reflection profiles forms the basis for maps of 6 stratigraphic horizons which record the syn-rift to post-rift (i.e. early drift and late drift to present-day seafloor) successions. In addition to this established seismic markers, high quality seismic profiles have shown evidence for a pre-rift sequence (i.e. older than Late Jurassic >130 Ma). The first goal of this study is the construction of a 3D gravity-constrained, crust-scale basin model from integration of seismics, well data and cores. This basin model is constructed using GMS (in-house GFZ Geo-Modelling Software) while testing its consistency with the gravity field is performed using IGMAS

  16. Creating an Erosion Vulnerability Map for the Columbia River Basin to Determine Reservoir Susceptibility to Sedimentation Before and After Wildfires

    NASA Astrophysics Data System (ADS)

    Ren, J.; Robichaud, P. J. L.; Adam, J. C.

    2017-12-01

    Sedimentation is important issue to most rivers and reservoirs especially in watersheds with extensive agricultural or wildfire activity. These human and natural induced disturbances have the potential to increase runoff-induced erosion and sediment load to rivers; downstream sedimentation can decrease the life expectancy of reservoir and consequently the dam. This is particularly critical in snowmelt-dominant regions because, as rising temperatures reduce snowpack as a natural reservoir, humans will become more reliant on reservoir storage. In the Northwest U.S., the Columbia River Basin (CRB) has more than 60 dams, which were built for irrigation, hydropower, and flood control, all of which are affected by sediment to varying degrees. Determining what dams are most likely to be affected by sedimentation caused by post-fire erosion is important for future management of reservoirs, especially as climate change is anticipated to exacerbate wildfire and its impacts. The objective of this study is to create a sedimentation vulnerability map for reservoirs in the CRB. There are four attributes of a watershed that determine erosion potential; soil type, topography, vegetation (such as forests, shrubs, and grasslands), and precipitation (although precipitation was excluded in this analysis). In this study, a rating system was developed on a scale of 0-90 (with 90 having the greatest erosion potential). The different layers in a Graphical Information System were combined to create an erosion vulnerability map. Results suggest that areas with agriculture have more erosion without a wildfire but that forested areas are most vulnerable to erosion rates following a fire, particularly a high severity fire. Sedimentation in dams is a growing problem that needs to be addressed especially with the likely reduction in snowpack, this vulnerability map will help determine which reservoirs in the CRB are prone to high sedimentation. This information can inform managers where post

  17. Tektite-bearing, deep-water clastic unit at the Cretaceous-Tertiary boundary in northeastern Mexico

    NASA Technical Reports Server (NTRS)

    Smit, J.; Montanari, A.; Swinburne, N. H.; Alvarez, W.; Hildebrand, A. R.; Margolis, S. V.; Claeys, P.; Lowrie, W.; Asaro, F.

    1992-01-01

    The hypothesis of Cretaceous-Tertiary (K-T) boundary impact on Yucatan, Mexico, predicts that nearby sites should show evidence of proximal impact ejecta and disturbance by giant waves. An outcrop along the Arroyo el Mimbral in northeastern Mexico contains a layered clastic unit up to 3 m thick that interrupts a biostratigraphically complete pelagic-marl sequence deposited at more than 400 m water depth. The marls were found to be unsuitable for determining magnetostratigraphy, but foraminiferal biostratigraphy places the clastic unit precisely at the K-T boundary. We interpret this clastic unit as the deposit of a megawave or tsunami produced by an extraterrestrial impact. The clastic unit comprises three main subunits. (1) The basal "spherule bed" contains glass in the form of tektites and microtektites, glass spherules replaced by chlorite-smectite and calcite, and quartz grains showing probable shock features. This bed is interpreted as a channelized deposit of proximal ejecta. (2) A set of lenticular, massive, graded "laminated beds" contains intraclasts and abundant plant debris, and may be the result of megawave backwash that carried coarse debris from shallow parts of the continental margin into deeper water. (3) At the top, several thin "ripple beds" composed of fine sand are separated by clay drapes; they are interpreted as deposits of oscillating currents, perhaps a seiche. An iridium anomaly (921 +/- 23 pg/g) is observed at the top of the ripple beds. Our observations at the Mimbral locality support the hypothesis of a K-T impact on nearby Yucatan.

  18. Clastic Pipes: Proxies of High Water Tables and Strong Ground Motion, Jurassic Carmel Formation, Southern Utah

    NASA Astrophysics Data System (ADS)

    Wheatley, David; Chan, Marjorie

    2015-04-01

    Multiple soft sediment deformation features from bed-scale to basin-scale are well preserved within the Jurassic Carmel Formation of Southern Utah. Field mapping reveals thousands of small-scale clastic injectite pipes (10 cm to 10 m diameter, up to 20 m tall) in extremely high densities (up to 500+ pipes per 0.075 square kilometers). The pipes weather out in positive relief from the surrounding host strata of massive sandstone (sabkha) and crossbedded sands with minor conglomerate and shale (fluvial) deposits. The host rock shows both brittle and ductile deformation. Reverse, normal, and antithetical faulting is common with increased frequency, including ring faults, surrounding the pipes. The pipes formed from liquefaction and subsequent fluidization induced by strong ground motion. Down-dropped, graben blocks and ring faults surrounding pipes indicate initial sediment volume increase during pipe emplacement followed by sediment volume decrease during dewatering. Complex crosscutting relationships indicate several injection events where some pipe events reached the surface as sand blows. Multiple ash layers provide excellent stratigraphic and temporal constraints for the pipe system with the host strata deposited between 166 and 164 Ma. Common volcanic fragments and rounded volcanic cobbles occur within sandstone and conglomerate beds, and pipes. Isolated volcanic clasts in massive sandstone indicate explosive volcanic events that could have been the exogenic trigger for earthquakes. The distribution of pipes are roughly parallel to the Middle Jurassic paleoshoreline located in marginal environments between the shallow epicontinental Sundance Sea and continental dryland. At the vertical stratigraphic facies change from dominantly fluvial sediments to dominantly massive sabkha sediments, there is a 1-2 m-thick floodplain mudstone that was a likely seal for underlying, overpressurized sediments. The combination of loose porous sediment at a critical depth of water

  19. Prospect evaluation of shallow I-35 reservoir of NE Malay Basin offshore, Terengganu, Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janjua, Osama Akhtar, E-mail: janjua945@hotmail.com; Wahid, Ali, E-mail: ali.wahid@live.com; Salim, Ahmed Mohamed Ahmed, E-mail: mohamed.salim@petronas.com.my

    2016-02-01

    A potential accumulation of hydrocarbon that describes significant and conceivable drilling target is related to prospect. Possibility of success estimation, assuming discovery of hydrocarbons and the potential recoverable quantities range under a commercial development program are the basis of Prospect evaluation activities. The objective was to find the new shallow prospects in reservoir sandstone of I –Formation in Malay basin. The prospects in the study area are mostly consisting of faulted structures and stratigraphic channels. The methodology follows seismic interpretation and mapping, attribute analysis, evaluation of nearby well data i.e., based on well – log correlation. The petrophysical parameters analoguemore » to nearby wells was used as an input parameter for volumetric assessment. Based on analysis of presence and effectiveness, the prospect has a complete petroleum system. Two wells have been proposed to be drilled near the major fault and stratigraphic channel in I-35 reservoir that is O-1 and O-2 prospects respectively. The probability of geological success of prospect O-1 is at 35% while for O-2 is 24%. Finally, for hydrocarbon in place volumes were calculated which concluded the best estimate volume for oil in O-1 prospect is 4.99 MMSTB and O-2 prospect is 28.70 MMSTB while for gas is 29.27 BSCF and 25.59 BSCF respectively.« less

  20. A model study of the coupled water quality and hydrodynamics in YuQiao Reservoir of Haihe River Basin, People's Republic of China

    NASA Astrophysics Data System (ADS)

    Liu, X.; Liu, J.; Peng, W.; Wang, Y.

    2007-05-01

    In recent years, eutrophication has become one of the most serious of global water pollution problems, especially in reservoirs, which is menacing the security of domestic water supplies. As the unique drinking water source of Tianjin within the Haihe River basin of Hebei Province, China, YuQiao Reservoir has been polluted and its eutrophic state is serious. To make clear the physical and chemical relationship between transport and transformation of the polluted water, a model package was developed to compute the hydrodynamic field and mass transport processes including total nitrogen (TN) and total phosphorus (TP) for YuQiao Reservoir. The hydrodynamic model was driven by observed winds and daily measured flow data to simulate the seasonal water cycle of the reservoir. The mass transport and transformation processes of TN and TP was based on the unsteady diffusion equations, driven by observed meteorological forcings and external loadings, with the fluxes through the bottom of the reservoir, plant (algal) photosynthesis, and respiration as internal sources and sinks. The solution of these equations uses the finite volume method and alternating direction implicit (ADI) scheme. The model was calibrated and verified by using the data observed from YuQiao Reservoir in two different years. The results showed that in YuQiao Reservoir, the wind-driven current is an important style of lake current, while the water quality is decreasing from east to west because of the external polluted loadings. There was good agreement between the simulated and measured values. Advection is the main process driving the water quality impacts from the inflow river, and diffusion and biochemical processes dominate in center of the reservoir. So it is necessary to build a pre-pond to reduce the external loadings into the reservoir.

  1. Electrical characteristics of rocks in fractured and caved reservoirs

    NASA Astrophysics Data System (ADS)

    Tang, Tianzhi; Lu, Tao; Zhang, Haining; Jiang, Liming; Liu, Tangyan; Meng, He; Wang, Feifei

    2017-12-01

    The conductive paths formed by fractures and cave in complex reservoirs differ from those formed by pores and throats in clastic rocks. In this paper, a new formation model based on fractured and caved reservoirs is established, and the electrical characteristics of rocks are analyzed with different pore structures using resistance law to understand their effects on rock resistivity. The ratio of fracture width to cave radius (C e value) and fracture dip are employed to depict pore structure in this model. Our research shows that the electrical characteristics of rocks in fractured and caved reservoirs are strongly affected by pore structure and porous fluid distribution. Although the rock electrical properties associated with simple pore structure agree well with Archie formulae, the relationships between F and φ or between I and S w , in more complicated pore structures, are nonlinear in double logarithmic coordinates. The parameters in Archie formulae are not constant and they depend on porosity and fluid saturation. Our calculations suggest that the inclined fracture may lead to resistivity anisotropy in the formation. The bigger dip the inclining fracture has, the more anisotropy the formation resistivity has. All of these studies own practical sense for the evaluation of oil saturation using resistivity logging data.

  2. Pre-lithification tectonic foliation development in a clastic sedimentary sequence

    NASA Astrophysics Data System (ADS)

    Meere, Patrick; Mulchrone, Kieran; McCarthy, David; Timmermann, Martin; Dewey, John

    2016-04-01

    The current view regarding the timing of regionally developed penetrative tectonic fabrics in sedimentary rocks is that their development postdates lithification of those rocks. In this case fabric development is achieved by a number of deformation mechanisms including grain rigid body rotation, crystal-plastic deformation and pressure solution (wet diffusion). The latter is believed to be the primary mechanism responsible for shortening and the domainal structure of cleavage development commonly observed in low grade metamorphic rocks. In this study we combine field observations with strain analysis and modelling to fully characterise considerable (>50%) mid-Devonian Acadian crustal shortening in a Devonian clastic sedimentary sequence from south west Ireland. Despite these high levels of shortening and associated penetrative tectonic fabric there is a marked absence of the expected domainal cleavage structure and intra-clast deformation, which are expected with this level of deformation. In contrast to the expected deformation processes associated with conventional cleavage development, fabrics in these rocks are a product of translation, rigid body rotation and repacking of extra-formational clasts during deformation of an un-lithified clastic sedimentary sequence.

  3. The legacy of leaded gasoline in bottom sediment of small rural reservoirs

    USGS Publications Warehouse

    Juracek, K.E.; Ziegler, A.C.

    2006-01-01

    The historical and ongoing lead (Pb) contamination caused by the 20th-century use of leaded gasoline was investigated by an analysis of bottom sediment in eight small rural reservoirs in eastern Kansas, USA. For the reservoirs that were completed before or during the period of maximum Pb emissions from vehicles (i.e., the 1940s through the early 1980s) and that had a major highway in the basin, increased Pb concentrations reflected the pattern of historical leaded gasoline use. For at least some of these reservoirs, residual Pb is still being delivered from the basins. There was no evidence of increased Pb deposition for the reservoirs completed after the period of peak Pb emissions and (or) located in relatively remote areas with little or no highway traffic. Results indicated that several factors affected the magnitude and variability of Pb concentrations in reservoir sediment including traffic volume, reservoir age, and basin size. The increased Pb concentrations at four reservoirs exceeded the U.S. Environmental Protection Agency threshold-effects level (30.2 mg kg-1) and frequently exceeded a consensus-based threshold-effects concentration (35.8 mg kg-1) for possible adverse biological effects. For two reservoirs it was estimated that it will take at least 20 to 70 yr for Pb in the newly deposited sediment to return to baseline (pre-1920s) concentrations (30 mg kg-1) following the phase out of leaded gasoline. The buried sediment with elevated Pb concentrations may pose a future environmental concern if the reservoirs are dredged, the dams are removed, or the dams fail. ?? ASA, CSSA, SSSA.

  4. Dickinson field lodgepole reservoir: Significance of this Waulsortian-type mound to exploration in the Williston Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, M.S.

    1995-07-01

    Conoco`s No. 74 Dickinson State well, a deep test in Dickinson Field, Stark County, North Dakota, was completed in early 1993 capable of producing over 2,000 BOPD. It represents the first commercial oil production from the Lower Mississippian Lodgepole Formation in the U.S. portion of the Williston Basin. Three additional oil producers have now been completed and this Lodgepole discovery is fully developed. The producing reservoir, at depths of 9,700 to 10,000 ft, is a Waulsortian-type mound approximately 300 ft thick with a characteristic faunal assemblage of bryozoans and crinoids. The mound has an areal extent of slightly more thanmore » 1 square mile. Similar Waulsortian-type mounds have been recognized in rocks of Paleozoic age around the world, but have only been reported in the Williston Basin during the past decade. Such mounds are shallow to deep water deposits, tend to develop over structurally or topographically-positive areas, and may form by algal or by current action in conjunction with baffling action caused by bryozoans. The prolific nature of the Conoco discovery, plus several more-recent excellent mound discoveries in this same area, have caused renewed drilling and leasing activity. These events have also encouraged a review of existing seismic data, the shooting of new 3-D seismic programs and re-analysis of wells previously drilled through the Lodgepole Formation for evidence of similar mounds elsewhere in the basin.« less

  5. Oligo-Miocene reservoir sequence characterization and structuring in the Sisseb El Alem-Kalaa Kebira regions (Northeastern Tunisia)

    NASA Astrophysics Data System (ADS)

    Houatmia, Faten; Khomsi, Sami; Bédir, Mourad

    2015-11-01

    The Sisseb El Alem-Enfidha basin is located in the northeastern Tunisia, It is borded by Nadhour - Saouaf syncline to the north, Kairouan plain to the south, the Mediterranean Sea to the east and Tunisian Atlassic "dorsale" to the west. Oligocene and Miocene deltaic deposits present the main potential deep aquifers in this basin with high porosity (25%-30%). The interpretation of twenty seismic reflection profiles, calibrated by wire line logging data of twelve oil wells, hydraulic wells and geologic field sections highlighted the impact of tectonics on the structuring geometry of Oligo-Miocene sandstones reservoirs and their distribution in raised structures and subsurface depressions. Miocene seismostratigraphy analysis from Ain Ghrab Formation (Langhian) to the Segui Formation (Quaternary) showed five third-order seismic sequence deposits and nine extended lenticular sandy bodies reservoirs limited by toplap and downlap surfaces unconformities, Oligocene deposits presented also five third- order seismic sequences with five extended lenticular sandy bodies reservoirs. The Depth and the thickness maps of these sequence reservoir packages exhibited the structuring of this basin in sub-basins characterized by important lateral and vertical geometric and thichness variations. Petroleum wells wire line logging correlation with clay volume calculation showed an heterogeneous multilayer reservoirs of Oligocene and Miocene formed by the arrangement of fourteen sandstone bodies being able to be good reservoirs, separated by impermeable clay packages and affected by faults. Reservoirs levels correspond mainly to the lower system tract (LST) of sequences. Intensive fracturing by deep seated faults bounding the different sub-basins play a great role for water surface recharge and inter-layer circulations between affected reservoirs. The total pore volume of the Oligo-Miocene reservoir sandy bodies in the study area, is estimated to about 4 × 1012 m3 and equivalent to 4

  6. Tectonic framework of Turkish sedimentary basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yilmaz, P.O.

    1988-08-01

    Turkey's exploration potential primarily exists in seven onshore (Southeast Turkey platform, Tauride platform, Pontide platform, East Anatolian platform, Interior, Trace, and Adana) basins and four offshore (Black Sea, Marmara Sea, Aegean Sea, and Mediterranean Sea) regional basins formed during the Mesozoic and Tertiary. The Mesozoic basins are the onshore basins: Southeast Turkey, Tauride, Pontide, East Anatolian, and Interior basins. Due to their common tectonic heritage, the southeast Turkey and Tauride basins have similar source rocks, structural growth, trap size, and structural styles. In the north, another Mesozoic basin, the Pontide platform, has a much more complex history and very littlemore » in common with the southerly basins. The Pontide has two distinct parts; the west has Paleozoic continental basement and the east is underlain by island-arc basement of Jurassic age. The plays are in the upper Mesozoic rocks in the west Pontide. The remaining Mesozoic basins of the onshore Interior and East Anatolian basins are poorly known and very complex. Their source, reservoir, and seal are not clearly defined. The basins formed during several orogenic phases in mesozoic and Tertiary. The Cenozoic basins are the onshore Thrace and Adana basins, and all offshore regional basins formed during Miocene extension. Further complicating the onshore basins evolution is the superposition of Cenozoic basins and Mesozoic basins. The Thrace basin in the northwest and Adana basin in the south both originate from Tertiary extension over Tethyan basement and result in a similar source, reservoir, and seal. Local strike-slip movement along the North Anatolian fault modifies the Thrace basin structures, influencing its hydrocarbon potential.« less

  7. Advances in carbonate exploration and reservoir analysis

    USGS Publications Warehouse

    Garland, J.; Neilson, J.; Laubach, S.E.; Whidden, Katherine J.

    2012-01-01

    The development of innovative techniques and concepts, and the emergence of new plays in carbonate rocks are creating a resurgence of oil and gas discoveries worldwide. The maturity of a basin and the application of exploration concepts have a fundamental influence on exploration strategies. Exploration success often occurs in underexplored basins by applying existing established geological concepts. This approach is commonly undertaken when new basins ‘open up’ owing to previous political upheavals. The strategy of using new techniques in a proven mature area is particularly appropriate when dealing with unconventional resources (heavy oil, bitumen, stranded gas), while the application of new play concepts (such as lacustrine carbonates) to new areas (i.e. ultra-deep South Atlantic basins) epitomizes frontier exploration. Many low-matrix-porosity hydrocarbon reservoirs are productive because permeability is controlled by fractures and faults. Understanding basic fracture properties is critical in reducing geological risk and therefore reducing well costs and increasing well recovery. The advent of resource plays in carbonate rocks, and the long-standing recognition of naturally fractured carbonate reservoirs means that new fracture and fault analysis and prediction techniques and concepts are essential.

  8. Effects of the proposed Prosperity Reservoir on ground water and water quality in lower Center Creek basin, Missouri

    USGS Publications Warehouse

    Berkas, Wayne R.; Barks, James H.

    1980-01-01

    Effects of the proposed Prosperity Reservoir on ground water and water quality in lower Center Creek basin depend partly on the effectiveness of Grove Creek as a hydrologic boundary between the reservoir site and the Oronogo-Duenweg mining belt. Results of two dye traces indicate that Grove Creek probably is not an effective boundary. Therefore, higher water levels near the reservoir may cause more ground water to move into the mining belt and cause a greater discharge of zinc-laden mine water into Center Creek.Ground-water-level measurements and seepage runs on Center Creek indicate a relationship between ground-water levels, mine-water discharge and seepage, and base flow in Center Creek. From March to October 1979, ground-water levels generally decreased from 5 to 20 feet at higher elevations (recharge areas) and from 1 to 3 feet near Center Creek (discharge area); total mine water discharged to the surface before entering Center Creek decreased from 5.4 to 2.2 cubic feet per second; mine-water seepage directly to Center Creek decreased from an estimated 1.9 to 1.1 cubic feet per second; and the discharge of Center Creek near Carterville decreased from 184 to 42 cubic feet per second.Fertilizer industry wastes discharged into Grove Creek resulted in significant increases of nitrogen and phosphorus in lower Center Creek.

  9. Hydrologic and geochemical data collected near Skewed Reservoir, an impoundment for coal-bed natural gas produced water, Powder River Basin, Wyoming

    USGS Publications Warehouse

    Healy, Richard W.; Rice, Cynthia A.; Bartos, Timothy T.

    2012-01-01

    The Powder River Structural Basin is one of the largest producers of coal-bed natural gas (CBNG) in the United States. An important environmental concern in the Basin is the fate of groundwater that is extracted during CBNG production. Most of this produced water is disposed of in unlined surface impoundments. A 6-year study of groundwater flow and subsurface water and soil chemistry was conducted at one such impoundment, Skewed Reservoir. Hydrologic and geochemical data collected as part of that study are contained herein. Data include chemistry of groundwater obtained from a network of 21 monitoring wells and three suction lysimeters and chemical and physical properties of soil cores including chemistry of water/soil extracts, particle-size analyses, mineralogy, cation-exchange capacity, soil-water content, and total carbon and nitrogen content of soils.

  10. Groundwater Salinity Simulation of a Subsurface Reservoir in Taiwan

    NASA Astrophysics Data System (ADS)

    Fang, H. T.

    2015-12-01

    The subsurface reservoir is located in Chi-Ken Basin, Pescadores (a group islands located at western part of Taiwan). There is no river in these remote islands and thus the freshwater supply is relied on the subsurface reservoir. The basin area of the subsurface reservoir is 2.14 km2 , discharge of groundwater is 1.27×106m3 , annual planning water supplies is 7.9×105m3 , which include for domestic agricultural usage. The annual average temperature is 23.3oC, average moisture is 80~85%, annual average rainfall is 913 mm, but ET rate is 1975mm. As there is no single river in the basin; the major recharge of groundwater is by infiltration. Chi-Ken reservoir is the first subsurface reservoir in Taiwan. Originally, the water quality of the reservoir is good. The reservoir has had the salinity problem since 1991 and it became more and more serious from 1992 until 1994. Possible reason of the salinity problem was the shortage of rainfall or the leakage of the subsurface barrier which caused the seawater intrusion. The present study aimed to determine the leakage position of subsurface barrier that caused the salinity problem. In order to perform the simulation for different possible leakage position of the subsurface reservoir, a Groundwater Modeling System (GMS) is used to define soils layer data, hydro-geological parameters, initial conditions, boundary conditions and the generation of three dimension meshes. A three dimension FEMWATER(Yeh , 1996) numerical model was adopted to find the possible leakage position of the subsurface barrier and location of seawater intrusion by comparing the simulation of different possible leakage with the observations. 1.By assuming the leakage position in the bottom of barrier, the simulated numerical result matched the observation better than the other assumed leakage positions. It showed that the most possible leakage position was at the bottom of the barrier. 2.The research applied three dimension FEMWATER and GMS as an interface

  11. GPFA-AB_Phase1ReservoirTask2DataUpload

    DOE Data Explorer

    Teresa E. Jordan

    2015-10-22

    This submission to the Geothermal Data Repository (GDR) node of the National Geothermal Data System (NGDS) in support of Phase 1 Low Temperature Geothermal Play Fairway Analysis for the Appalachian Basin. The files included in this zip file contain all data pertinent to the methods and results of this task’s output, which is a cohesive multi-state map of all known potential geothermal reservoirs in our region, ranked by their potential favorability. Favorability is quantified using a new metric, Reservoir Productivity Index, as explained in the Reservoirs Methodology Memo (included in zip file). Shapefile and images of the Reservoir Productivity and Reservoir Uncertainty are included as well.

  12. Isopach and isoresource maps for oil shale deposits in the Eocene Green River Formation for the combined Uinta and Piceance Basins, Utah and Colorado

    USGS Publications Warehouse

    Mercier, Tracey J.; Johnson, Ronald C.

    2012-01-01

    The in-place oil shale resources in the Eocene Green River Formation of the Piceance Basin of western Colorado and the Uinta Basin of western Colorado and eastern Utah are estimated at 1.53 trillion barrels and 1.32 trillion barrels, respectively. The oil shale strata were deposited in a single large saline lake, Lake Uinta, that covered both basins and the intervening Douglas Creek arch, an area of comparatively low rates of subsidence throughout the history of Lake Uinta. Although the Green River Formation is largely eroded for about a 20-mile area along the crest of the arch, the oil shale interval is similar in both basins, and 17 out of 18 of the assessed oil shale zones are common to both basins. Assessment maps for these 17 zones are combined so that the overall distribution of oil shale over the entire extent of Lake Uinta can be studied. The combined maps show that throughout most of the history of Lake Uinta, the richest oil shale was deposited in the depocenter in the north-central part of the Piceance Basin and in the northeast corner of the Uinta Basin where it is closest to the Piceance Basin, which is the only area of the Uinta Basin where all of the rich and lean oil shale zones, originally defined in the Piceance Basin, can be identified. Both the oil shale and saline mineral depocenter in the Piceance Basin and the richest oil shale area in the Uinta Basin were in areas with comparatively low rates of subsidence during Lake Uinta time, but both areas had low rates of clastic influx. Limiting clastic influx rather than maximizing subsidence appears to have been the most important factor in producing rich oil shale.

  13. In-situ stress distribution and coalbed methane reservoir permeability in the Linxing area, eastern Ordos Basin, China

    NASA Astrophysics Data System (ADS)

    Ju, Wei; Shen, Jian; Qin, Yong; Meng, Shangzhi; Li, Chao; Li, Guozhang; Yang, Guang

    2017-11-01

    Understanding the distribution of in-situ stresses is extremely important in a wide range of fields such as oil and gas exploration and development, CO2 sequestration, borehole stability, and stress-related geohazards assessment. In the present study, the in-situ stress distribution in the Linxing area of eastern Ordos Basin, China, was analyzed based on well tested parameters. The maximum horizontal principal stress (S Hmax), minimum horizontal principal stress (S hmin), and vertical stress (S v ) were calculated, and they were linearly correlated with burial depth. In general, two types of in-situ stress fields were determined in the Linxing area: (i) the in-situ stress state followed the relation S v >S Hmax>S hmin in shallow layers with burial depths of less than about 940 m, indicating a normal faulting stress regime; (ii) the S Hmax magnitude increased conspicuously and was greater than the S v magnitude in deep layers with depths more than about 940 m, and the in-situ stress state followed the relation S Hmax>S v >S hmin, demonstrating a strike-slip faulting stress regime. The horizontal differential stress (S Hmax-S hmin) increased with burial depth, indicating that wellbore instability may be a potentially significant problem when drilling deep vertical wells. The lateral stress coefficient ranged from 0.73 to 1.08 with an average of 0.93 in the Linxing area. The coalbed methane (CBM) reservoir permeability was also analyzed. No obvious exponential relationship was found between coal permeability and effective in-situ stress magnitude. Coal permeability was relatively high under a larger effective in-situ stress magnitude. Multiple factors, including fracture development, contribute to the variation of CBM reservoir permeability in the Linxing area of eastern Ordos Basin.

  14. Residence times in river basins as determined by analysis of long-term tritium records

    USGS Publications Warehouse

    Michel, R.L.

    1992-01-01

    The US Geological Survey has maintained a network of stations to collect samples for the measurement of tritium concentrations in precipitation and streamflow since the early 1960s. Tritium data from outflow waters of river basins draining 4500-75000 km2 are used to determine average residence times of water within the basins. The basins studied are the Colorado River above Cisco, Utah; the Kissimmee River above Lake Okeechobee, Florida; the Mississippi River above Anoka, Minnesota; the Neuse River above Streets Ferry Bridge near Vanceboro, North Carolina; the Potomac River above Point of Rocks, Maryland; the Sacramento River above Sacramento, California; the Susquehanna River above Harrisburg, Pennsylvania. The basins are modeled with the assumption that the outflow in the river comes from two sources-prompt (within-year) runoff from precipitation, and flow from the long-term reservoirs of the basin. Tritium concentration in the outflow water of the basin is dependent on three factors: (1) tritium concentration in runoff from the long-term reservoir, which depends on the residence time for the reservoir and historical tritium concentrations in precipitation; (2) tritium concentrations in precipitation (the within-year runoff component); (3) relative contributions of flow from the long-term and within-year components. Predicted tritium concentrations for the outflow water in the river basins were calculated for different residence times and for different relative contributions from the two reservoirs. A box model was used to calculate tritium concentrations in the long-term reservoir. Calculated values of outflow tritium concentrations for the basin were regressed against the measured data to obtain a slope as close as possible to 1. These regressions assumed an intercept of zero and were carried out for different values of residence time and reservoir contribution to maximize the fit of modeled versus actual data for all the above rivers. The final slopes of the

  15. Lithofacies control in detrital zircon provenance studies: Insights from the Cretaceous Methow basin, southern Canadian Cordillera

    USGS Publications Warehouse

    DeGraaff-Surpless, K.; Mahoney, J.B.; Wooden, J.L.; McWilliams, M.O.

    2003-01-01

    High-frequency sampling for detrital zircon analysis can provide a detailed record of fine-scale basin evolution by revealing the temporal and spatial variability of detrital zircon ages within clastic sedimentary successions. This investigation employed detailed sampling of two sedimentary successions in the Methow/Methow-Tyaughton basin of the southern Canadian Cordillera to characterize the heterogeneity of detrital zircon signatures within single lithofacies and assess the applicability of detrital zircon analysis in distinguishing fine-scale provenance changes not apparent in lithologic analysis of the strata. The Methow/Methow-Tyaughton basin contains two distinct stratigraphic sequences of middle Albian to Santonian clastic sedimentary rocks: submarine-fan deposits of the Harts Pass Formation/Jackass Mountain Group and fluvial deposits of the Winthrop Formation. Although both stratigraphic sequences displayed consistent ranges in detrital zircon ages on a broad scale, detailed sampling within each succession revealed heterogeneity in the detrital zircon age distributions that was systematic and predictable in the turbidite succession but unpredictable in the fluvial succession. These results suggest that a high-density sampling approach permits interpretation of finescale changes within a lithologically uniform turbiditic sedimentary succession, but heterogeneity within fluvial systems may be too large and unpredictable to permit accurate fine-scale characterization of the evolution of source regions. The robust composite detrital zircon age signature developed for these two successions permits comparison of the Methow/Methow-Tyaughton basin age signature with known plutonic source-rock ages from major plutonic belts throughout the Cretaceous North American margin. The Methow/Methow-Tyaughton basin detrital zircon age signature matches best with source regions in the southern Canadian Cordillera, requiring that the basin developed in close proximity to the

  16. Hydrogeologic and hydrochemical framework, south-central Great Basin, Nevada-California, with special reference to the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winograd, I.J.; Thordarson, W.

    Intensely fractured Precambrian and Paleozoic carbonate and clastic rocks and block-faulted Cenozoic volcanic and sedimentary strata in the Nevada Test Site are divided into 10 hydrogeologic units. Three of these--the lower clastic aquitard, the lower carbonate aquifer, and the tuff aquitard--control the regional movement of ground water. The coefficients of fracture transmissiblity of these rocks are, respectively, less than 1,000, 1,000 to 900,000, and less than 200 gallons per day per foot; interstitial permeability is negligible. Solution caverns are locally present in the carbonate aquifer, but regional movement of water is controlled by variations in fracture transmissibility and by structuralmore » juxtaposition of the aquifer and the lower clastic aquitard. Water circulates freely to depths of at least 1,500 feet beneath the top of the aquifer and up to 4,200 feet below land surface. Synthesis of hydrogeologic, hydrochemical, and isotopic data suggests that an area of at least 4,500 square miles (including 10 intermontane valleys) is hydraulically integrated into one ground-water basin, the Ash Meadows basin, by interbasin movement of ground water through the widespread carbonate aquifer. Discharge from this basin--a minimum of about 17,000 acre-feet annually--occurs along a fault-controlled spring line at Ash Meadows in east-central Amargosa Desert. Intrabasin movement of water between Cenozoic aquifers and the lower carbonate aquifer is controlled by the tuff aquitard, the basal Cenozoic hydrogeologic unit. Such movement significantly influences the chemistry of water in the carbonate aquifer. Ground-water velocity through the tuff aquitard in Yucca Flat is less than 1 foot per year. Velocity through the lower carbonate aquifer ranges from an estimated 0.02 to 200 feet per day, depending upon geographic position within the flow system.Within the Nevada Test Site, ground water moves southward and southwestward toward Ash Meadows.« less

  17. Analysis of ancient-river systems by 3D seismic time-slice technique: A case study in northeast Malay Basin, offshore Terengganu, Malaysia

    NASA Astrophysics Data System (ADS)

    Sulaiman, Noorzamzarina; Hamzah, Umar; Samsudin, Abdul Rahim

    2014-09-01

    Fluvial sandstones constitute one of the major clastic petroleum reservoir types in many sedimentary basins around the world. This study is based on the analysis of high-resolution, shallow (seabed to 500 m depth) 3D seismic data which generated three-dimensional (3D) time slices that provide exceptional imaging of the geometry, dimension and temporal and spatial distribution of fluvial channels. The study area is in the northeast of Malay Basin about 280 km to the east of Terengganu offshore. The Malay Basin comprises a thick (> 8 km), rift to post-rift Oligo-Miocene to Pliocene basin-fill. The youngest (Miocene to Pliocene), post-rift succession is dominated by a thick (1-5 km), cyclic succession of coastal plain and coastal deposits, which accumulated in a humid-tropical climatic setting. This study focuses on the Pleistocene to Recent (500 m thick) succession, which comprises a range of seismic facies analysis of the two-dimensional (2D) seismic sections, mainly reflecting changes in fluvial channel style and river architecture. The succession has been divided into four seismic units (Unit S1-S4), bounded by basin-wide strata surfaces. Two types of boundaries have been identified: 1) a boundary that is defined by a regionally-extensive erosion surface at the base of a prominent incised valley (S3 and S4); 2) a sequence boundary that is defined by more weakly-incised, straight and low-sinuosity channels which is interpreted as low-stand alluvial bypass channel systems (S1 and S2). Each unit displays a predictable vertical change of the channel pattern and scale, with wide low-sinuosity channels at the base passing gradationally upwards into narrow high-sinuosity channels at the top. The wide variation in channel style and size is interpreted to be controlled mainly by the sea-level fluctuations on the widely flat Sunda land Platform.

  18. Turbidites as proxy for past flood events: Testing this approach in a large clastic system (Lake Geneva, France/Switzerland)

    NASA Astrophysics Data System (ADS)

    Kremer, Katrina; Girardclos, Stéphanie

    2017-04-01

    Turbidites recorded in lake sediments are often used to reconstruct the frequency of past flood and also seismological events. However, for such a reconstruction, the origin and causes of the recorded turbidites need to be clearly identified. In this study, we test if turbidites can be used as paleohydrological archive based on the the sedimentary record of Lake Geneva resulting from inputs by the Rhone and Dranse clastic river systems. Our approach is based on several methods combining high-resolution seismic reflection data with geophysical (magnetic susceptibility, grain size) and high-resolution XRF/XRD data measured on ca. 10-m-long sediment cores (dated by radiocarbon ages and 137Cs activity). This dataset allows distinguishing between the different sources (rivers or hemipelagic sediment) of the turbidites deposited in the deep basin of Lake Geneva. However, no clear distinction between the various trigger processes (mass failures or floods) could be made, thus flood deposits could not be clearly identified. From our results, we also conclude that the lack of turbidite deposits in the deep basin between the 15th and 18th century seems to be linked to a change in turbidite depocentre due to the Rhone River mouth shifting possibly triggered by human activity and not by any direct climate effect. This study demonstrates that a least two conditions are needed to perform an adequate paleohydrological interpretation based on turbidite records: (1) the holistic understanding of the basin sedimentary system and (2) the distinction of flood-induced turbidites from other types of turbidites (mass failures etc.).

  19. Optimizing Water Management for Collocated Conventional and Unconventional Reservoirs

    NASA Astrophysics Data System (ADS)

    Reedy, R. C.; Scanlon, B. R.; Walsh, M.

    2016-12-01

    With the U.S. producing much more water than oil from oil and gas reservoirs, managing produced water is becoming a critical issue. Here we quantify water production from collocated conventional and unconventional reservoirs using well by well analysis and evaluate various water management strategies using the U.S. Permian Basin as a case study. Water production during the past 15 years in the Permian Basin totaled 55×109 barrels (bbl), 95% from wells in conventional reservoirs resulting in an average water to oil ratio of 12 compared to ratios of 2-3 in wells in unconventional reservoirs. Some of this water ( 25%) is returned to the reservoir for secondary oil recovery (water flooding) while the remaining water is injected into an average of 18,000 salt water disposal wells. Total water production over the past 15 yr (2000 - 2015) exceeds water used for hydraulic fracturing by almost 40 times. Analyzing water injection into salt water disposal wells relative to water requirements for hydraulic fracturing at a 5 square mile grid scale based on 2014 data indicates that water disposal exceeds water requirements for hydraulic fracturing throughout most of the play. Reusing/recycling of produced water for hydraulic fracturing would reduce sourcing and disposal issues related to hydraulic fracturing. Because shales (unconventional reservoirs) provide the source rocks for many conventional reservoirs, coordinating water management from both conventional and unconventional reservoirs can help resolve issues related to sourcing of water for hydraulic fracturing and disposing of produced water. Reusing/recycling produced water can also help reduce water scarcity concerns in some regions.

  20. Late Pleistocene - Holocene ruptures of the Lima Reservoir fault, SW Montana

    NASA Astrophysics Data System (ADS)

    Anastasio, David J.; Majerowicz, Christina N.; Pazzaglia, Frank J.; Regalla, Christine A.

    2010-12-01

    Active tectonics within the northern Basin and Range province provide a natural laboratory for the study of normal fault growth, linkage, and interaction. Here, we present new geologic mapping and morphologic fault-scarp modeling within the Centennial Valley, Montana to characterize Pleistocene - Holocene ruptures of the young and active Lima Reservoir fault. Geologic relationships and rupture ages indicate Middle Pleistocene activity on the Henry Gulch (>50 ka and 23-10 ka), Trail Creek (>43 ka and ˜13 ka), and reservoir (˜23 ka) segments. Offset Quaternary deposits also record Holocene rupture of the reservoir segment (˜8 ka), but unfaulted modern streams show that no segments of the Lima Reservoir fault have experienced a large earthquake in at least several millennia. The clustered pattern of rupture ages on the Lima Reservoir fault segments suggests a seismogenic linkage though segment length and spacing make a physical connection at depth unlikely. Trail Creek and reservoir segment slip rates were non-steady and appear to be increasing. The fault helps accommodate differential horizontal surface velocity measured by GPS geodesy across the boundary between the northern Basin and Range province and the Snake River Plain.

  1. Predicting the downstream impact of ensembles of small reservoirs with special reference to the Volta Basin, West Africa

    NASA Astrophysics Data System (ADS)

    van de Giesen, N.; Andreini, M.; Liebe, J.; Steenhuis, T.; Huber-Lee, A.

    2005-12-01

    After a strong reduction in investments in water infrastructure in Sub-Saharan Africa, we now see a revival and increased interest to start water-related projects. The global political willingness to work towards the UN millennium goals are an important driver behind this recent development. Large scale irrigation projects, such as were constructed at tremendous costs in the 1970's and early 1980's, are no longer seen as the way forward. Instead, the construction of a large number of small, village-level irrigation schemes is thought to be a more effective way to improve food production. Such small schemes would fit better in existing and functioning governance structures. An important question now becomes what the cumulative (downstream) impact is of a large number of small irrigation projects, especially when they threaten to deplete transboundary water resources. The Volta Basin in West Africa is a transboundary river catchment, divided over six countries. Of these six countries, upstream Burkina Faso and downstream Ghana are the most important and cover 43% and 42% of the basin, respectively. In Burkina Faso (and also North Ghana), small reservoirs and associated irrigation schemes are already an important means to improve the livelihoods of the rural population. In fact, over two thousand such schemes have already been constructed in Burkina Faso and further construction is to be expected in the light of the UN millennium goals. The cumulative impact of these schemes would affect the Akosombo Reservoir, one of the largest manmade lakes in the world and an important motor behind the economic development in (South) Ghana. This presentation will put forward an analytical framework that allows for the impact assessment of (large) ensembles of small reservoirs. It will be shown that despite their relatively low water use efficiencies, the overall impact remains low compared to the impact of large dams. The tools developed can be used in similar settings elsewhere

  2. Petroleum systems of the Northwest Java Province, Java and offshore southeast Sumatra, Indonesia

    USGS Publications Warehouse

    Bishop, Michele G.

    2000-01-01

    Mature, synrift lacustrine shales of Eocene to Oligocene age and mature, late-rift coals and coaly shales of Oligocene to Miocene age are source rocks for oil and gas in two important petroleum systems of the onshore and offshore areas of the Northwest Java Basin. Biogenic gas and carbonate-sourced gas have also been identified. These hydrocarbons are trapped primarily in anticlines and fault blocks involving sandstone and carbonate reservoirs. These source rocks and reservoir rocks were deposited in a complex of Tertiary rift basins formed from single or multiple half-grabens on the south edge of the Sunda Shelf plate. The overall transgressive succession was punctuated by clastic input from the exposed Sunda Shelf and marine transgressions from the south. The Northwest Java province may contain more than 2 billion barrels of oil equivalent in addition to the 10 billion barrels of oil equivalent already identified.

  3. Rock Magnetic Properties of Remagnetised Devonian and Carboniferous Carbonate and Clastic Rocks From The NE Rhenish Massif, Germany

    NASA Astrophysics Data System (ADS)

    Zwing, A.; Matzka, J.; Bachtadse, V.; Soffel, H. C.

    Previous studies on remagnetised carbonate rocks from the North American and Eu- ropean Variscides reported characteristic rock magnetic properties which are thought to be diagnostic for a chemical remagnetisation event. Their hysteresis properties with high ratios of Mrs/Ms and Hcr/Hc indicate the presence of a mixture of single-domain and superparamagnetic magnetite (Jackson, et al. 1990). In order to test if this fin- gerprint can be identified in remagnetised carbonate and clastic rocks from the NE Rhenish Massif, Germany, a series of rock magnetic experiments has been carried out. The hysteresis properties of the remagnetised clastic rocks indicate the domi- nance of large MD particles, as can be expected for detrital sediments. The carbon- ates yield significantly higher ratios of Mrs/Ms and Hcr/Hc than the clastic rocks, but only partly correspond to the characteristic properties of remagnetised carbon- ates described above. The latter might be attributed to detrital input into the carbonate platforms. Additional low-temperature remanence measurements show a wide vari- ety of phenomena, including Verwey transitions and indications for the presence of superparamagnetic grains. However, the low-temperature experiments do not allow a straightforward discrimination between the clastic and carbonate rocks and suggest more complex magnetomineralogies than expected from the hysteresis measurements alone.

  4. Feast to famine: Sediment supply control on Laramide basin fill

    NASA Astrophysics Data System (ADS)

    Carroll, Alan R.; Chetel, Lauren M.; Elliot Smith, M.

    2006-03-01

    Erosion of Laramide-style uplifts in the western United States exerted an important first-order influence on Paleogene sedimentation by controlling sediment supply rates to adjacent closed basins. During the latest Cretaceous through Paleocene, these uplifts exposed thick intervals of mud-rich Upper Cretaceous foreland basin fill, which was quickly eroded and redeposited. Cretaceous sedimentary lithologies dominate Paleocene conglomerate clast compositions, and the volume of eroded foreland basin strata is approximately twice the volume of preserved Paleocene basin fill. As a result of this sediment oversupply, clastic alluvial and paludal facies dominate Paleocene strata, and are associated with relatively shallow and ephemeral freshwater lake facies. In contrast, large, long-lived, carbonate-producing lakes occupied several of the basins during the Eocene. Basement-derived clasts (granite, quartzite, and other metamorphic rocks) simultaneously became abundant in lower Eocene conglomerate. We propose that Eocene lakes developed primarily due to exposure of erosion-resistant lithologies within cores of Laramide uplifts. The resultant decrease in erosion rate starved adjacent basins of sediment, allowing the widespread and prolonged deposition of organic-rich lacustrine mudstone. These observations suggest that geomorphic evolution of the surrounding landscape should be considered as a potentially important influence on sedimentation in many other interior basins, in addition to more conventionally interpreted tectonic and climatic controls.

  5. Inlet Reservoir Model. Part 2: PC-Interface

    DTIC Science & Technology

    2011-12-01

    2008); and Zarillo and Kraus (2003). Figure 1 shows a schematic of an inlet system within the IRM with various types of reservoirs (e.g., channel...ERDC/CHL CHETN-IV-xx 2  Knowledge of engineering activities within the inlet system (e.g., dredging of a deposition basin or dredged channel...there to the Shore, S. As the first reservoir in the system , E, fills and its volume increases closer to the equilibrium (identified for all

  6. The Contribution of Reservoirs to Global Land Surface Water Storage Variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Tian; Nijssen, Bart; Gao, Huilin

    Man-made reservoirs play a key role in the terrestrial water system. They alter water fluxes at the land surface and impact surface water storage through water management regulations for diverse purposes such as irrigation, municipal water supply, hydropower generation, and flood control. Although most developed countries have established sophisticated observing systems for many variables in the land surface water cycle, long-term and consistent records of reservoir storage are much more limited and not always shared. Furthermore, most land surface hydrological models do not represent the effects of water management activities. Here, the contribution of reservoirs to seasonal water storage variationsmore » is investigated using a large-scale water management model to simulate the effects of reservoir management at basin and continental scales. The model was run from 1948 to 2010 at a spatial resolution of 0.258 latitude–longitude. A total of 166 of the largest reservoirs in the world with a total capacity of about 3900 km3 (nearly 60%of the globally integrated reservoir capacity) were simulated. The global reservoir storage time series reflects the massive expansion of global reservoir capacity; over 30 000 reservoirs have been constructed during the past half century, with a mean absolute interannual storage variation of 89 km3. The results indicate that the average reservoir-induced seasonal storage variation is nearly 700 km3 or about 10%of the global reservoir storage. For some river basins, such as the Yellow River, seasonal reservoir storage variations can be as large as 72%of combined snow water equivalent and soil moisture storage.« less

  7. Centralized versus distributed reservoirs: an investigation of their implications on environmental flows and sustainable water resources management

    NASA Astrophysics Data System (ADS)

    Eriyagama, Nishadi; Smakhtin, Vladimir; Udamulla, Lakshika

    2018-06-01

    Storage of surface water is widely regarded as a form of insurance against rainfall variability. However, creation of surface storage often endanger the functions of natural ecosystems, and, in turn, ecosystem services that benefit humans. The issues of optimal size, placement and the number of reservoirs in a river basin - which maximizes sustainable benefits from storage - remain subjects for debate. This study examines the above issues through the analysis of a range of reservoir configurations in the Malwatu Oya river basin in the dry zone of Sri Lanka. The study produced multiple surface storage development pathways for the basin under different scenarios of environmental flow (EF) releases and reservoir network configurations. The EF scenarios ranged from zero to very healthy releases. It is shown that if the middle ground between the two extreme EF scenarios is considered, the theoretical maximum safe yield from surface storage is about 65-70 % of the mean annual runoff (MAR) of the basin. It is also identified that although distribution of reservoirs in the river network reduces the cumulative yield from the basin, this cumulative yield is maximized if the ratio among the storage capacities placed in each sub drainage basin is equivalent to the ratio among their MAR. The study suggests a framework to identify drainage regions having higher surface storage potential, to plan for the right distribution of storage capacity within a river basin, as well as to plan for EF allocations.

  8. Aptian ‘Shale Gas’ Prospectivity in the Downdip Mississippi Interior Salt Basin, Gulf Coast, USA

    USGS Publications Warehouse

    Hackley, Paul C.; Valentine, Brett J.; Enomoto, Catherine B.; Lohr, Celeste D.; Scott, Krystina R.; Dulong, Frank T.; Bove, Alana M.

    2016-01-01

    This study evaluates regional ‘shale gas’ prospectivity of the Aptian section (primarily Pine Island Shale) in the downdip Mississippi Salt Basin (MSB). Previous work by the U.S. Geological Survey estimated a mean undiscovered gas resource of 8.8 trillion cubic feet (TCF) in the chronostratigraphic-equivalent Pearsall Formation in the Maverick Basin of south Texas, where industry has established a moderately successful horizontal gas and liquids play. Wells penetrating the downdip MSB Aptian section at depths of 12,000-15,000 ft were used to correlate formation tops in a 15-well cross-section extending about 200 miles (mi) east-southeastward from Adams Co. to Jackson Co. Legacy cuttings from these wells were analyzed for thermal maturity and source rock quality. Bitumen reflectance (n=53) increases with increasing present-day burial depth in the east-central study area from 1.0% to 1.7%. As the Aptian section shallows in Adams Co. to the west, bitumen Ro values are higher (1.7-2.0%), either from relatively greater heat flux or greater mid-Cenomanian uplift and erosion in this area. Total organic carbon (TOC) content ranges 0.01-1.21 and averages 0.5 wt.% (n=51); pyrolysis output (S2; n=51) averages 0.40 mg HC/g rock, indicating little present-day hydrocarbon-generative potential. Bitumen reflectance is preferred as a thermal maturity parameter as Tmax values are unreliable. Normalized X-ray diffraction (XRD) mineral analyses (n=26) indicate high average clay abundance (53 wt.%) relative to quartz (29%) and carbonate (18%). Mineral content shows a spatial relationship to an Appalachian orogen clastic sediment source, with proximal high clay and quartz and distal high carbonate content. Clastic influx from the Appalachian orogen is confirmed by detrital zircon U-Pb ages with dominant Grenville and Paleozoic components [105 ages from a Rodessa sandstone and 112 ages from a Paluxy (Albian) sandstone]. Preliminary information from fluid inclusion microthermometry

  9. Efficient operation of a multi-purpose reservoir in Chile: Tradeoffs between irrigation and hydropower production

    NASA Astrophysics Data System (ADS)

    Gonzalez Cabrera, J. M., Sr.; Olivares, M. A.

    2015-12-01

    This study proposes a method to develop efficient operational policies for a reservoir the southern Chile. The main water uses in this system are hydropower and irrigation, with conflicting seasonal demands. The conflict between these two uses is currently managed through a so-called "irrigation agreement" which defines a series of operational conditions on the reservoir by restricting volumes used for power production depending on reservoir storage level. Other than that, the reservoir operation is driven by cost-minimization over the power grid. Recent evidence shows an increasing degree of conflict in this basin, which suggests that the static approach of irrigation agreements, might no longer be appropriate. Moreover, this agreement could be revised in light of decreased water availability. This problem poses a challenge related to the spatial scope of analysis. Thus, irrigation benefits are driven by decisions made within the basin, whereas hydropower benefits depend on the operation of the entire power grid. Exploring the tradeoffs between these two water uses involves modeling both scales. The proposed methodology integrates information from both a grid-wide power operations model and a basin-wide agro-economic model into a decision model for optimal reservoir operation. The first model, a hydrothermal coordination tool, schedules power production by each plant in the grid, and allows capturing technical and economic aspects to the operation of hydropower reservoirs. The agro-economic model incorporates economic features of irrigation in the basin, and allows obtaining irrigation water demand functions. Finally, the results of both models are integrated into a single model for optimal reservoir operation considering the tradeoffs between the two uses. The result of the joint operation of water resources, show a flexible coordination of uses, revealing the opportunity cost of irrigation, which it gives the possibility of negotiating transfers of water to

  10. Geology and hydrocarbon potential of the Dead Sea Rift Basins of Israel and Jordan

    USGS Publications Warehouse

    Coleman, James; ten Brink, Uri S.

    2016-01-01

    Geochemical analyses indicate that the source of all oils, asphalts, and tars recovered in the Lake Lisan basin is the Ghareb Formation. Geothermal gradients along the Dead Sea fault zone vary from basin to basin. Syn-wrench potential reservoir rocks are highly porous and permeable, whereas pre-wrench strata commonly exhibit lower porosity and permeability. Biogenic gas has been produced from Pleistocene reservoirs. Potential sealing intervals may be present in Neogene evaporites and tight lacustrine limestones and shales. Simple structural traps are not evident; however, subsalt traps may exist. Unconventional source rock reservoir potential has not been tested.

  11. Model identification and control of development of deeply buried paleokarst reservoir in the central Tarim Basin, northwest China

    NASA Astrophysics Data System (ADS)

    Yu, Jingbo; Li, Zhong; Yang, Liu; Han, Yinxue

    2018-04-01

    The paleokarst reservoirs of the Ordovician Yingshan formation, rich in oil and gas, are deeply buried in the central Tarim Basin, northwest China. Dozens of imaging well-logs in this region reveal five typical paleokarst features, including solution vugs, solution-enlarged fractures, filled caves, unfilled caves and collapsed caves, as well as two typical paleokarst structures located in different paleotopographic sites, including paleokarst vadose and phreatic zones. For seismic data, the large wave impedance contrast between the paleocave system and the surrounding rocks leads to a strong seismic reflection, which is highlighted as a bead-like ‘bright spot’ in a seismic section. By quantitatively estimating the seismic resolution limits of deep seismic reflections, a single paleocave cannot be identified from a seismic profile, and the bead-like reflection represents an entire paleocave complex. The spectral decomposition technique was employed to depict the planar shape and semi-quantitatively measure the size of the paleocave complexes. The results indicate that the sizes of the paleokarst caves are all small, and most of the karst caves are nearly completely filled by clay and calcite. The small cave size and the effective support of cave fills for the overlying strata mean that some individual paleocaves in a paleocave complex are preserved at a burial depth of more than 6000 m. Paleotopography and faults strongly impact the distribution of paleokarst reservoirs. Well-developed paleokarst reservoirs are generally located in paleotopographic highlands and on slopes, and for a specific paleotopographic site, the distribution of paleokarst reservoirs is obviously controlled by NW-SE trending faults. The most favorable area for paleokarst development is the Tazhong No. 10 fault zone, a faulted anticline bounded by two NW-SE trending back thrusts.

  12. Palaeoenvironments and palaeotectonics of the arid to hyperarid intracontinental latest Permian- late Triassic Solway basin (U.K.)

    NASA Astrophysics Data System (ADS)

    Brookfield, Michael E.

    2008-10-01

    The late Permian to late Triassic sediments of the Solway Basin consist of an originally flat-lying, laterally persistent and consistent succession of mature, dominantly fine-grained red clastics laid down in part of a very large intracontinental basin. The complete absence of body or trace fossils or palaeosols indicates a very arid (hyperarid) depositional environment for most of the sediments. At the base of the succession, thin regolith breccias and sandstones rest unconformably on basement and early Permian rift clastics. Overlying gypsiferous red silty mudstones, very fine sandstones and thick gypsum were deposited in either a playa lake or in a hypersaline estuary, and their margins. These pass upwards into thick-bedded, multi-storied, fine- to very fine-grained red quartzo-felspathic and sublithic arenites in which even medium sand is rare despite channels with clay pebbles up to 30 cm in diameter. Above, thick trough cross-bedded and parallel laminated fine-grained aeolian sandstones (deposited in extensive barchanoid dune complexes) pass up into very thick, multicoloured mudstones, and gypsum deposited in marginal marine or lacustrine sabkha environments. The latter pass up into marine Lower Jurassic shales and limestones. Thirteen non-marine clastic lithofacies are arranged into five main lithofacies associations whose facies architecture is reconstructed where possible by analysis of large exposures. The five associations can be compared with the desert pavement, arid ephemeral stream, sabkha, saline lake and aeolian sand dune environments of the arid to hyperarid areas of existing intracontinental basins such as Lake Eyre and Lake Chad. The accommodation space in such basins is controlled by gradual tectonic subsidence moderated by large fluctuations in shallow lake extent (caused by climatic change and local variation) and this promotes a large-scale layer-cake stratigraphy as exemplified in the Solway basin. Here, the dominant fine-grained mature

  13. Multi-scale constraints of sediment source to sink systems in frontier basins: a forward stratigraphic modeling case study of the Levant region

    NASA Astrophysics Data System (ADS)

    Hawie, Nicolas; Deschamps, Remy; Granjeon, Didier; Nader, Fadi-Henri; Gorini, Christian; Müller, Carla; Montadert, Lucien; Baudin, François

    2015-04-01

    Recent scientific work underlined the presence of a thick Cenozoic infill in the Levant Basin reaching up to 12 km. Interestingly; restricted sedimentation was observed along the Levant margin in the Cenozoic. Since the Late Eocene successive regional geodynamic events affecting Afro-Arabia and Eurasia (collision and strike slip deformation)induced fast marginal uplifts. The initiation of local and long-lived regional drainage systems in the Oligo-Miocene period (e.g. Lebanon versus Nile) provoked a change in the depositional pattern along the Levant margin and basin. A shift from carbonate dominated environments into clastic rich systems has been observed. Through this communication we explore the importance of multi-scale constraints (i.e.,seismic, well and field data) in the quantification of the subsidence history, sediment transport and deposition of a Middle-Upper Miocene "multi-source" to sink system along the northernLevant frontier region. We prove through a comprehensive forward stratigraphic modeling workflow that the contribution to the infill of the northern Levant Basin (offshore Lebanon) is split in between proximal and more distal clastic sources as well as in situ carbonate/hemipelagic deposition. In a wider perspective this work falls under the umbrella of multi-disciplinary source to sink studies that investigate the impact of geodynamic events on basin/margin architectural evolutions, consequent sedimentary infill and thus on petroleum systems assessment.

  14. Hydrocarbon potential of Morocco

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achnin, H.; Nairn, A.E.M.

    1988-08-01

    Morocco lies at the junction of the African and Eurasian plates and carries a record of their movements since the end of the Precambrian. Four structural regions with basins and troughs can be identified: Saharan (Tarfaya-Ayoun and Tindouf basins); Anti-Atlas (Souss and Ouarzazate troughs and Boudnib basin); the Essaouria, Doukkala, Tadla, Missour, High Plateau, and Guercif basins; and Meseta and Rif (Rharb and Pre-Rif basins). The targets in the Tindouf basin are Paleozoic, Cambrian, Ordovician (clastics), Devonian (limestones), and Carboniferous reservoirs sourced primarily by Silurian shales. In the remaining basins, excluding the Rharb, the reservoirs are Triassic detritals, limestones atmore » the base of the Lias and Dogger, Malm detritals, and sandy horizons in the Cretaceous. In addition to the Silurian, potential source rocks include the Carboniferous and Permo-Carboniferous shales and clays; Jurassic shales, marls, and carbonates; and Cretaceous clays. In the Rharb basin, the objectives are sand lenses within the Miocene marls. The maturation level of the organic matter generally corresponds to oil and gas. The traps are stratigraphic (lenses and reefs) and structural (horsts and folds). The seals in the pre-Jurassic rocks are shales and evaporites; in the younger rocks, shales and marl. Hydrocarbon accumulations have been found in Paleozoic, Triassic, Liassic, Malm, and Miocene rocks.« less

  15. Petroleum geology of Carter sandstone (upper Mississippian), Black Warrior Basin, Alabama

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bearden, B.L.; Mancini, E.A.

    1985-03-01

    The presence of combination petroleum traps makes the Black Warrior basin of northwestern Alabama an attractive area for continued hydrocarbon exploration. More than 1,500 wells have been drilled, and more than 90 separate petroleum pools have been discovered. The primary hydrocarbon reservoirs are Upper Mississippian sandstones. The Carter sandstone is the most productive petroleum reservoir in the basin. Productivity of the Carter sandstone is directly related to its environment of deposition. The Carter accumulated within a high constructive elongate to lobate delta, which prograded into the basin from the northwest to the southeast. Carter bar-finger and distal-bar lithofacies constitute themore » primary hydrocarbon reservoirs. Primary porosity in the Carter sandstone has been reduced by quartz overgrowths and calcite cementation. Petroleum traps in the Carter sandstone in central Fayette and Lamar Counties, Alabama, are primarily stratigraphic and combination (structural-stratigraphic) traps. The potential is excellent for future development of hydrocarbon reservoirs in the Upper Mississippian Carter sandstone. Frontier regions south and east of the known productive limits of the Black Warrior basin are ideal areas for continued exploration.« less

  16. Fluid Pressure Variation in a Sedimentary Geothermal Reservoir in the North German Basin: Case Study Groß Schönebeck

    NASA Astrophysics Data System (ADS)

    Huenges, Ernst; Trautwein, Ute; Legarth, Björn; Zimmermann, Günter

    2006-10-01

    The Rotliegend of the North German basin is the target reservoir of an interdisciplinary investigation program to develop a technology for the generation of geothermal electricity from low-enthalpy reservoirs. An in situ downhole laboratory was established in the 4.3 km deep well Groβ Schönebeck with the purpose of developing appropriate stimulation methods to increase permeability of deep aquifers by enhancing or creating secondary porosity and flow paths. The goal is to learn how to enhance the inflow performance of a well from a variety of rock types in low permeable geothermal reservoirs. A change in effective stress due to fluid pressure was observed to be one of the key parameters influencing flow properties both downhole and in laboratory experiments on reservoir rocks. Fluid pressure variation was induced using proppant-gel-frac techniques as well as waterfrac techniques in several different new experiments in the borehole. A pressure step test indicates generation and extension of multiple fractures with closure pressures between 6 and 8.4 MPa above formation pressure. In a 24-hour production test 859 m3 water was produced from depth indicating an increase of productivity in comparison with former tests. Different depth sections and transmissibility values were observed in the borehole depending on fluid pressure. In addition, laboratory experiments were performed on core samples from the sandstone reservoir under uniaxial strain conditions, i.e., no lateral strain, constant axial load. The experiments on the borehole and the laboratory scale were realized on the same rock types under comparable stress conditions with similar pore pressure variations. Nevertheless, stress dependences of permeability are not easy to compare from scale to scale. Laboratory investigations reflect permeability variations due to microstructural heterogeneities and the behavior in the borehole is dominated by the generation of connections to large-scale structural patterns.

  17. CO{sub 2} Injectivity, Storage Capacity, Plume Size, and Reservoir and Seal Integrity of the Ordovician St. Peter Sandstone and the Cambrian Potosi Formation in the Illnois Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leetaru, Hannes; Brown, Alan; Lee, Donald

    2012-05-01

    The Cambro-Ordovician strata of the Illinois and Michigan Basins underlie most of the states of Illinois, Indiana, Kentucky, and Michigan. This interval also extends through much of the Midwest of the United States and, for some areas, may be the only available target for geological sequestration of CO{sub 2}. We evaluated the Cambro-Ordovician strata above the basal Mt. Simon Sandstone reservoir for sequestration potential. The two targets were the Cambrian carbonate intervals in the Knox and the Ordovician St. Peter Sandstone. The evaluation of these two formations was accomplished using wireline data, core data, pressure data, and seismic data frommore » the USDOE-funded Illinois Basin Decatur Project being conducted by the Midwest Geological Sequestration Consortium in Macon County, Illinois. Interpretations were completed using log analysis software, a reservoir flow simulator, and a finite element solver that determines rock stress and strain changes resulting from the pressure increase associated with CO{sub 2} injection. Results of this research suggest that both the St. Peter Sandstone and the Potosi Dolomite (a formation of the Knox) reservoirs may be capable of storing up to 2 million tonnes of CO{sub 2} per year for a 20-year period. Reservoir simulation results for the St. Peter indicate good injectivity and a relatively small CO{sub 2} plume. While a single St. Peter well is not likely to achieve the targeted injection rate of 2 million tonnes/year, results of this study indicate that development with three or four appropriately spaced wells may be sufficient. Reservoir simulation of the Potosi suggest that much of the CO{sub 2} flows into and through relatively thin, high permeability intervals, resulting in a large plume diameter compared with the St. Peter.« less

  18. Stratigraphy and sedimentology of the Mid-Cretaceous deposits of the Yukon-Koyukuk Basin, west central Alaska

    NASA Astrophysics Data System (ADS)

    Nilsen, Tor H.

    1989-11-01

    The northeast trending Yukon-Koyukuk basin of west central Alaska consists of two subbasins, the Kobuk-Koyukuk subbasin to the north and east and the Lower Yukon subbasin to the southwest. The subbasins are separated by an arcuate Lower Cretaceous volcanic pile, the Hogatza trend, which is thought to be an accreted volcanic arc. The oldest part of the sedimentary fill of the subbasins consists of Valanginian to lower Albian(?) volcaniclastic rocks deposited on the flanks of the Hogatza trend. Following subsidence of the Hogatza trend, mid-Cretaceous clastic sedimentary strata of mainly Albian and Cenomanian age, and possibly as thick as 8000 m, were shed into the basin; these deposits were derived from surrounding uplands or borderlands in the Seward Peninsula to the west, the Brooks Range to the north, and the Ruby geanticline to the southeast. These mid-Cretaceous basin fill deposits can be divided into four main facies: (1) basin margin conglomerate facies, chiefly alluvial fan deposits that were transported basinward and rest in part unconformably on the surrounding uplands; (2) shelf facies, chiefly cross-stratified and hummocky cross-stratified sandstone deposited by wave-generated currents on a shelf that rimmed the basin on its western and northern margins; (3) deltaic facies, chiefly sandstone and shale deposited in delta plain and delta front environments on a large constructional delta that prograded westward from the eastern basin margin across both subbasins and across the subsided southern part of the Hogatza trend; and (4) turbidite facies, chiefly interbedded sandstone and shale deposited as elongate deep-sea fans and related deep-sea clastic systems by flows that transported sediment to the axial parts of both subbasins, northeastward in the Lower Yukon subbasin and eastward to southward in the Kobuk-Koyukuk subbasin. Sedimentation appears to have ended in the Santonian, followed by uplift, folding, and faulting of the basin fill. Less deformed

  19. Geomechanical Framework for Secure CO 2 Storage in Fractured Reservoirs and Caprocks for Sedimentary Basins in theMidwest United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sminchak, Joel

    This report presents final technical results for the project Geomechanical Framework for Secure CO 2 Storage in Fractured Reservoirs and Caprocks for Sedimentary Basins in the Midwest United States (DE-FE0023330). The project was a three-year effort consisting of seven technical tasks focused on defining geomechanical factors for CO 2 storage applications in deep saline rock formations in Ohio and the Midwest United States, because geomechancial issues have been identified as a significant risk factor for large-scale CO 2 storage applications. A basin-scale stress-strain analysis was completed to describe the geomechanical setting for rock formations of Ordovician-Cambrian age in Ohio andmore » adjacent areas of the Midwest United States in relation to geologic CO 2 storage applications. The tectonic setting, stress orientation-magnitude, and geomechanical and petrophysical parameters for CO 2 storage zones and caprocks in the region were cataloged. Ten geophysical image logs were analyzed for natural fractures, borehole breakouts, and drilling-induced fractures. The logs indicated mostly less than 10 fractures per 100 vertical feet in the borehole, with mostly N65E principal stress orientation through the section. Geophysical image logs and other logs were obtained for three wells located near the sites where specific models were developed for geomechanical simulations: Arches site in Boone County, Kentucky; Northern Appalachian Basin site in Chautauqua County, New York; and E-Central Appalachian Basin site in Tuscarawas County, Ohio. For these three wells, 9,700 feet of image logs were processed and interpreted to provide a systematic review of the distribution within each well of natural fractures, wellbore breakouts, faults, and drilling induced fractures. There were many borehole breakouts and drilling-induced tensile fractures but few natural fractures. Concentrated fractures were present at the Rome-basal sandstone and basal sandstone-Precambrian contacts

  20. Zonation of shale reservoir stimulation modes: a conceptual model based on hydraulic fracturing data from the Baltic Basin (Poland).

    NASA Astrophysics Data System (ADS)

    Jarosiński, Marek; Pachytel, Radomir

    2017-04-01

    Depending on the pressure distribution within Stimulated Reservoir Volume (SRV), a different modes of hydraulic fracturing or tectonic fracture reactivation are active. Hydraulic pressure-driven shortening or expansion of reservoir produces changes in stress field that results in decrease of differential stress either by increasing of horizontal stress minimum (Shmin) or/and by decreasing of horizontal stress maximum (SHmax). For further considerations we assume initial strike-slip stress regime which prevails in the Polish part of the Lower Paleozoic Baltic Basin (BB), as well as in majority of the USA shale basins. The data come from vertical and horizontal shale gas exploration wells drilled from one pad located in the middle of the BB. Structural survey of a long core interval combined with stress analysis based on microfrac tests and fracturing tests allow to reconstruct the initial structural and geomechanical state of reservoir. Further geomechanical evolution of the SRV depends on the hydraulic pressure bubble growth, which is in general unknown. However, the state of pressure can be determined close to the injection borehole and in the front of the SRV migrating in time. In our case, we are able to distinguish four stimulation zones characterized by increasingly diverse stimulation modes and successively closer to the borehole injection zone: (1) shear on preexisting fractures generates microseismic events that produce open fractures propped by their natural asperities being impenetrable for proppant grains; (2) above + initial hydraulic opening of natural fractures that are preferentially oriented to the Shmin, which favors microseismic events triggered by secondary shear on bedding planes and produces open spaces supported by natural fracture asperities and fine-grained proppant; (3) above + failure of primary hydraulic fractures, which increases extensional component of the microseismic events and opens space for coarse-grained proppant; (4) above

  1. Influence of reservoirs on solute transport: A regional-scale approach

    USGS Publications Warehouse

    Kelly, V.J.

    2001-01-01

    Regional transport of water and dissolved constituents through heavily regulated river systems is influenced by the presence of reservoirs. Analysis of seasonal patterns in solute fluxes for salinity and nutrients indicates that in-reservoir processes within large storage reservoirs in the Rio Grande and Colorado basins (southwestern USA) are superimposed over the underlying watershed processes that predominate in relatively unregulated stream reaches. Connectivity of the aquatic system with the landscape is apparently disrupted by processes within the reservoir systems; these processes result in large changes in characteristics for solute transport that persist downstream in the absence of significant inputs. Additionally, reservoir processes may be linked for upstream/downstream reservoirs that are located relatively close in a series. In contrast, the regional effect of in-reservoir processes is negligible for solute transport through run-of-river reservoirs in the lower Columbia River (northwestern USA).

  2. A reservoir morphology database for the conterminous United States

    USGS Publications Warehouse

    Rodgers, Kirk D.

    2017-09-13

    The U.S. Geological Survey, in cooperation with the Reservoir Fisheries Habitat Partnership, combined multiple national databases to create one comprehensive national reservoir database and to calculate new morphological metrics for 3,828 reservoirs. These new metrics include, but are not limited to, shoreline development index, index of basin permanence, development of volume, and other descriptive metrics based on established morphometric formulas. The new database also contains modeled chemical and physical metrics. Because of the nature of the existing databases used to compile the Reservoir Morphology Database and the inherent missing data, some metrics were not populated. One comprehensive database will assist water-resource managers in their understanding of local reservoir morphology and water chemistry characteristics throughout the continental United States.

  3. Geologic framework of the Mississippian Barnett Shale, Barnett-Paleozoic total petroleum system, Bend arch-Fort Worth Basin, Texas

    USGS Publications Warehouse

    Pollastro, R.M.; Jarvie, D.M.; Hill, R.J.; Adams, C.W.

    2007-01-01

    This article describes the primary geologic characteristics and criteria of the Barnett Shale and Barnett-Paleozoic total petroleum system (TPS) of the Fort Worth Basin used to define two geographic areas of the Barnett Shale for petroleum resource assessment. From these two areas, referred to as "assessment units," the U.S. Geological Survey estimated a mean volume of about 26 tcf of undiscovered, technically recoverable hydrocarbon gas in the Barnett Shale. The Mississippian Barnett Shale is the primary source rock for oil and gas produced from Paleozoic reservoir rocks in the Bend arch-Fort Worth Basin area and is also one of the most significant gas-producing formations in Texas. Subsurface mapping from well logs and commercial databases and petroleum geochemistry demonstrate that the Barnett Shale is organic rich and thermally mature for hydrocarbon generation over most of the Bend arch-Fort Worth Basin area. In the northeastern and structurally deepest part of the Fort Worth Basin adjacent to the Muenster arch, the formation is more than 1000 ft (305 m) thick and interbedded with thick limestone units; westward, it thins rapidly over the Mississippian Chappel shelf to only a few tens of feet. The Barnett-Paleozoic TPS is identified where thermally mature Barnett Shale has generated large volumes of hydrocarbons and is (1) contained within the Barnett Shale unconventional continuous accumulation and (2) expelled and distributed among numerous conventional clastic- and carbonate-rock reservoirs of Paleozoic age. Vitrinite reflectance (Ro) measurements show little correlation with present-day burial depth. Contours of equal Ro values measured from Barnett Shale and typing of produced hydrocarbons indicate significant uplift and erosion. Furthermore, the thermal history of the formation was enhanced by hydrothermal events along the Ouachita thrust front and Mineral Wells-Newark East fault system. Stratigraphy and thermal maturity define two gas

  4. Lake Murray, Fly and Strickland River Basins, Papua, New Guinea

    NASA Image and Video Library

    1991-12-01

    Lake Murray, a manmade reservoir, lies between the Fly and Strickland River Basins, Papua, New Guinea (7.0S, 141.5E). The region, photographed in sunglint, shows the water level in the reservoir and the full extent of the drainage basins of both river systems as the rivers meander through wide alluvial floodplains. Some forest clearing can be seen in places throughout the region, but most of the area remains in closed canopy forest.

  5. Assessment of unconvential (tight) gas resources in Upper Cook Inlet Basin, South-central Alaska

    USGS Publications Warehouse

    Schenk, Christopher J.; Nelson, Philip H.; Klett, Timothy R.; Le, Phuong A.; Anderson, Christopher P.; Schenk, Christopher J.

    2015-01-01

    A geologic model was developed for the assessment of potential Mesozoic tight-gas resources in the deep, central part of upper Cook Inlet Basin, south-central Alaska. The basic premise of the geologic model is that organic-bearing marine shales of the Middle Jurassic Tuxedni Group achieved adequate thermal maturity for oil and gas generation in the central part of the basin largely due to several kilometers of Paleogene and Neogene burial. In this model, hydrocarbons generated in Tuxedni source rocks resulted in overpressure, causing fracturing and local migration of oil and possibly gas into low-permeability sandstone and siltstone reservoirs in the Jurassic Tuxedni Group and Chinitna and Naknek Formations. Oil that was generated either remained in the source rock and subsequently was cracked to gas which then migrated into low-permeability reservoirs, or oil initially migrated into adjacent low-permeability reservoirs, where it subsequently cracked to gas as adequate thermal maturation was reached in the central part of the basin. Geologic uncertainty exists on the (1) presence of adequate marine source rocks, (2) degree and timing of thermal maturation, generation, and expulsion, (3) migration of hydrocarbons into low-permeability reservoirs, and (4) preservation of this petroleum system. Given these uncertainties and using known U.S. tight gas reservoirs as geologic and production analogs, a mean volume of 0.64 trillion cubic feet of gas was assessed in the basin-center tight-gas system that is postulated to exist in Mesozoic rocks of the upper Cook Inlet Basin. This assessment of Mesozoic basin-center tight gas does not include potential gas accumulations in Cenozoic low-permeability reservoirs.

  6. Thrust-ridge paleodepositional model for the Upper Freeport coal bed and associated clastic facies, Upper Potomac coal field, Appalachian Basin, U.S.A.

    USGS Publications Warehouse

    Belt, Edward S.; Lyons, P.C.

    1990-01-01

    developed from one of the outboard ridges, and it was thrust farther outboard ahead of the main body of the orogen. Sediment derived from the orogen was diverted into a sediment trap inboard of the ridge (Fig. 1). The ridge prevented sediment from entering the main peat-forming swamp. Sediment shed from the orogen accumulated in the sediment trap was carried out of the ends of the trap by steams that occupied the shear zone at the ends of the blind-thrust ridge (Fig. 1). Remnants of blind-thrust ridges occurs in the Sequatchie Valley thrust and the Pine Mountain thrust of the southern Appalachians. The extent, parallel to the orogen, of the thick areally extensive UF coal is related to the length of the blind-thrust ridge that, in turn, controlled the spacing of the river-derived coarse clastics that entered the main basin from the east. Further tectonism caused the thrust plane to emerge to the surface of the blind-thrust ridge. Peat accumulation was then terminated by the rapid erosion of the blind-thrust ridge and by the release of trapped sediment behind it. The peat was buried by sediments from streams from closely spaced channel belts] with intervening floodbasins. The model was implications for widespread peat (coal) deposits that developed in tropical regions, a few hundred kilometers inland from the sea during Pennsylvanian time (Belt and Lyons, 1989). ?? 1990.

  7. Water quality, discharge, and groundwater levels in the Palomas, Mesilla, and Hueco Basins in New Mexico and Texas from below Caballo Reservoir, New Mexico, to Fort Quitman, Texas, 1889-2013

    USGS Publications Warehouse

    McKean, Sarah E.; Matherne, Anne Marie; Thomas, Nicole

    2014-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, compiled data from various sources to develop a dataset that can be used to conduct an assessment of the total dissolved solids in surface water and groundwater of the Palomas, Mesilla, and Hueco Basins in New Mexico and Texas, from below Caballo Reservoir, N. Mex., to Fort Quitman, Tex. Data include continuous surface-water discharge records at various locations on the Rio Grande; surface-water-quality data for the Rio Grande collected at selected locations in the Palomas, Mesilla, and Hueco Basins; groundwater levels and groundwater-quality data collected from selected wells in the Palomas and Mesilla Basins; and data from several seepage investigations conducted on the Rio Grande and selected drains in the Mesilla Basin.

  8. Large reservoirs: Chapter 17

    USGS Publications Warehouse

    Miranda, Leandro E.; Bettoli, Phillip William

    2010-01-01

    Large impoundments, defined as those with surface area of 200 ha or greater, are relatively new aquatic ecosystems in the global landscape. They represent important economic and environmental resources that provide benefits such as flood control, hydropower generation, navigation, water supply, commercial and recreational fisheries, and various other recreational and esthetic values. Construction of large impoundments was initially driven by economic needs, and ecological consequences received little consideration. However, in recent decades environmental issues have come to the forefront. In the closing decades of the 20th century societal values began to shift, especially in the developed world. Society is no longer willing to accept environmental damage as an inevitable consequence of human development, and it is now recognized that continued environmental degradation is unsustainable. Consequently, construction of large reservoirs has virtually stopped in North America. Nevertheless, in other parts of the world construction of large reservoirs continues. The emergence of systematic reservoir management in the early 20th century was guided by concepts developed for natural lakes (Miranda 1996). However, we now recognize that reservoirs are different and that reservoirs are not independent aquatic systems inasmuch as they are connected to upstream rivers and streams, the downstream river, other reservoirs in the basin, and the watershed. Reservoir systems exhibit longitudinal patterns both within and among reservoirs. Reservoirs are typically arranged sequentially as elements of an interacting network, filter water collected throughout their watersheds, and form a mosaic of predictable patterns. Traditional approaches to fisheries management such as stocking, regulating harvest, and in-lake habitat management do not always produce desired effects in reservoirs. As a result, managers may expend resources with little benefit to either fish or fishing. Some locally

  9. First report of Calyptospora sp. (Apicomplexa, Calyptosporidae) in forage characid fish from the Três Marias Reservoir, São Francisco Basin, Brazil.

    PubMed

    de Albuquerque, Marcia Cavalcanti; de Carvalho Brasil-Sato, Marilia

    2010-05-01

    Coccidians are parasitic protozoans, and Calyptospora is an important genus of coccidia found in freshwater and marine fish of the Americas. This paper describes Calyptospora sp. that were found parasitizing the liver and intestine of Triportheus guentheri and the intestine of Tetragonopterus chalceus, two forage fish species from the Três Marias Reservoir, Upper São Francisco River, State of Minas Gerais, Brazil. Apicomplexa found in the São Francisco Basin are reported here for the first time. Copyright (c) 2010 Elsevier GmbH. All rights reserved.

  10. Geology and hydrocarbon potential in the state of Qatar, Arabian Gulf

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alsharhan, A.S.; Nairn, A.E.M.

    The state of Qatar is situated in the southern Arabian Gulf and covers an area of 12,000 km{sup 2}. It is formed by a large, broad anticline, which is part of the regional south-southwest-north-northeast-trending Qatar-South Fars arch. The arch separates the two Infracambrian salt basins. The Dukhan field was the first discovery, made in 1939, in the Upper Jurassic limestones. Since then, a series of discoveries have been made so that Qatar has become one of the leading OPEC oil states. Hydrocarbon accumulations are widely dispersed throughout the stratigraphic column from upper Paleozoic to Cretaceous producing strata. The most prolificmore » reservoirs are the Permian and Mesozoic shelf carbonate sequences. Minor clastic reservoirs occur in the Albian and Paleozoic sequences. Seals, mainly anhydrite and shale. occur both intraformationally and regionally. Several stratigraphic intervals contain source rocks or potential source rocks. The Silurian shales arc the most likely source of the hydrocarbon stored in the upper Paleozoic clastics and carbonates. The upper Oxfordian-middle Kimmeridgian rocks formed in the extensive starved basin during the Mesozoic period of sea level rise. Total organic carbon ranges between 1 and 6%, with the sulfur content approximately 9%. The source material consists of sapropelic liptodetrinite and algae. The geological background of the sedimentary facies through geologic time, stratigraphy, and structural evolution which control source, and the subsequent timing and migration of large-scale hydrocarbon generation are presented in detail.« less

  11. RAPID Assessment of Extreme Reservoir Sedimentation Resulting from the September 2013 Flood, North St. Vrain Creek, CO

    NASA Astrophysics Data System (ADS)

    Rathburn, S. L.; McElroy, B. J.; Wohl, E.; Sutfin, N. A.; Huson, K.

    2014-12-01

    During mid-September 2013, approximately 360 mm of precipitation fell in the headwaters of the North St. Vrain drainage basin, Front Range, CO. Debris flows on steep hillslopes and extensive flooding along North St. Vrain Creek resulted in extreme sedimentation within Ralph Price Reservoir, municipal water supply for the City of Longmont. The event allows comparison of historical sedimentation with that of an unusually large flood because 1) no reservoir flushing has been conducted since dam construction, 2) reservoir stratigraphy chronicles uninterrupted delta deposition, and 3) this is the only on-channel reservoir with unimpeded, natural sediment flux from the Continental Divide to the mountain front in a basin with no significant historic flow modifications and land use impacts. Assessing the flood-related sedimentation prior to any dredging activities included coring the reservoir delta, a bathymetric survey of the delta, resistivity and ground penetrating radar surveys of the subaerial inlet deposit, and surveying tributary deposits. Over the 44-year life of the reservoir, two-thirds of the delta sedimentation is attributed to extreme discharges from the September 2013 storm. Total storm-derived reservoir sedimentation is approximately 275,000 m3, with 81% of that within the gravel-dominated inlet and 17% in the delta. Volumes of deposition within reservoir tributary inlets is negatively correlated with contributing area, possibly due to a lack of storage in these small basins (1-5 km2). Flood-related reservoir sedimentation will be compared to other research quantifying volumes from slope failures evident on post-storm lidar. Analysis of delta core samples will quantify organic carbon flux associated with the extreme discharge and develop a chronology of flood and fire disturbances for North St. Vrain basin. Applications of similar techniques are planned for two older Front Range reservoirs affected by the September flooding to fill knowledge gaps about

  12. An agricultural drought index to incorporate the irrigation process and reservoir operations: A case study in the Tarim River Basin

    NASA Astrophysics Data System (ADS)

    Li, Zehua; Hao, Zhenchun; Shi, Xiaogang; Déry, Stephen J.; Li, Jieyou; Chen, Sichun; Li, Yongkun

    2016-08-01

    To help the decision making process and reduce climate change impacts, hydrologically-based drought indices have been used to determine drought severity in the Tarim River Basin (TRB) over the past decades. As the major components of the surface water balance, however, the irrigation process and reservoir operations have not been incorporated into drought indices in previous studies. Therefore, efforts are needed to develop a new agricultural drought index, which is based on the Variable Infiltration Capacity (VIC) model coupled with an irrigation scheme and a reservoir module. The new drought index was derived from the simulated soil moisture data from a retrospective VIC simulation from 1961 to 2007 over the irrigated area in the TRB. The physical processes in the coupled VIC model allow the new agricultural drought index to take into account a wide range of hydrologic processes including the irrigation process and reservoir operations. Notably, the irrigation process was found to dominate the surface water balance and drought evolution in the TRB. Furthermore, the drought conditions identified by the new agricultural drought index presented a good agreement with the historical drought events that occurred in 1993-94, 2004, and 2006-07, respectively. Moreover, the spatial distribution of coupled VIC model outputs using the new drought index provided detailed information about where and to what extent droughts occurred.

  13. Provenance and geochronological insights into Late Cretaceous-Paleogene foreland basin development in the Subandean Zone and Oriente Basin of Ecuador

    NASA Astrophysics Data System (ADS)

    Gutierrez, E. G.; Horton, B. K.; Vallejo, C.

    2017-12-01

    The tectonic history of the Oriente foreland basin and adjacent Subandean Zone of Ecuador during contractional mountain building in the northern Andes can be revealed through integrated stratigraphic, geochronological, structural, and provenance analyses of clastic sediments deposited during orogenesis. We present new maximum depositional ages and a comprehensive provenance analysis for key stratigraphic units deposited in the western (proximal) Oriente Basin. Detrital zircon U-Pb ages were obtained from Upper Cretaceous and Cenozoic clastic formations from exposures in the Subandean Zone. The sampled stratigraphic intervals span critical timeframes during orogenesis in the Ecuadorian Andes. Cenozoic formations have poorly defined chronostratigraphic relationships and are therefore a primary target of this study. In addition, the newly acquired U-Pb age spectra allow clear identification of the various sediment source regions that fed the system during distinct depositional phases. Maximum depositional ages (MDA) were obtained for five samples from three formations: the Tena (MDA=69.6 Ma), Chalcana (MDA=29.3 Ma), and Arajuno (MDA= 17.1, 14.2, 12.8 Ma) Formations, placing them in the Maastrichtian, early Oligocene, and early-middle Miocene, respectively. Detrital zircon U-Pb ages identify clear signatures of at least four different sources: craton (1600-1300 Ma, 1250-900 Ma), Eastern Cordillera fold-thrust belt (600-450 Ma, 250-145 Ma), Western Cordillera magmatic arc (<88 Ma), and recycling of cratonic material from the Eastern Cordillera. The U-Pb age spectra of the Upper Cretaceous-Paleogene type sections allow us to recognize variations in the contribution of each recognized source over time. We identify recycled material with two dominant peak ages (1250-900 Ma and 600-450 Ma), material derived from the adjacent uplifted orogen or recycled from foredeep sediments incorporated into the deforming wedge. Finally, an apparent unroofing event is inferred from a 250

  14. An interpretation of core and wireline logs for the Petrophysical evaluation of Upper Shallow Marine sandstone reservoirs of the Bredasdorp Basin, offshore South Africa

    NASA Astrophysics Data System (ADS)

    Magoba, Moses; Opuwari, Mimonitu

    2017-04-01

    This paper embodies a study carried out to assess the Petrophysical evaluation of upper shallow marine sandstone reservoir of 10 selected wells in the Bredasdorp basin, offshore, South Africa. The studied wells were selected randomly across the upper shallow marine formation with the purpose of conducting a regional study to assess the difference in reservoir properties across the formation. The data sets used in this study were geophysical wireline logs, Conventional core analysis and geological well completion report. The physical rock properties, for example, lithology, fluid type, and hydrocarbon bearing zone were qualitatively characterized while different parameters such as volume of clay, porosity, permeability, water saturation ,hydrocarbon saturation, storage and flow capacity were quantitatively estimated. The quantitative results were calibrated with the core data. The upper shallow marine reservoirs were penetrated at different depth ranging from shallow depth of about 2442m to 3715m. The average volume of clay, average effective porosity, average water saturation, hydrocarbon saturation and permeability range from 8.6%- 43%, 9%- 16%, 12%- 68% , 32%- 87.8% and 0.093mD -151.8mD respectively. The estimated rock properties indicate a good reservoir quality. Storage and flow capacity results presented a fair to good distribution of hydrocarbon flow.

  15. Estimating Western U.S. Reservoir Sedimentation

    NASA Astrophysics Data System (ADS)

    Bensching, L.; Livneh, B.; Greimann, B. P.

    2017-12-01

    Reservoir sedimentation is a long-term problem for water management across the Western U.S. Observations of sedimentation are limited to reservoir surveys that are costly and infrequent, with many reservoirs having only two or fewer surveys. This work aims to apply a recently developed ensemble of sediment algorithms to estimate reservoir sedimentation over several western U.S. reservoirs. The sediment algorithms include empirical, conceptual, stochastic, and processes based approaches and are coupled with a hydrologic modeling framework. Preliminary results showed that the more complex and processed based algorithms performed better in predicting high sediment flux values and in a basin transferability experiment. However, more testing and validation is required to confirm sediment model skill. This work is carried out in partnership with the Bureau of Reclamation with the goal of evaluating the viability of reservoir sediment yield prediction across the western U.S. using a multi-algorithm approach. Simulations of streamflow and sediment fluxes are validated against observed discharges, as well as a Reservoir Sedimentation Information database that is being developed by the US Army Corps of Engineers. Specific goals of this research include (i) quantifying whether inter-algorithm differences consistently capture observational variability; (ii) identifying whether certain categories of models consistently produce the best results, (iii) assessing the expected sedimentation life-span of several western U.S. reservoirs through long-term simulations.

  16. Monitoring small reservoirs' storage with satellite remote sensing in inaccessible areas

    NASA Astrophysics Data System (ADS)

    Avisse, Nicolas; Tilmant, Amaury; François Müller, Marc; Zhang, Hua

    2017-12-01

    In river basins with water storage facilities, the availability of regularly updated information on reservoir level and capacity is of paramount importance for the effective management of those systems. However, for the vast majority of reservoirs around the world, storage levels are either not measured or not readily available due to financial, political, or legal considerations. This paper proposes a novel approach using Landsat imagery and digital elevation models (DEMs) to retrieve information on storage variations in any inaccessible region. Unlike existing approaches, the method does not require any in situ measurement and is appropriate for monitoring small, and often undocumented, irrigation reservoirs. It consists of three recovery steps: (i) a 2-D dynamic classification of Landsat spectral band information to quantify the surface area of water, (ii) a statistical correction of DEM data to characterize the topography of each reservoir, and (iii) a 3-D reconstruction algorithm to correct for clouds and Landsat 7 Scan Line Corrector failure. The method is applied to quantify reservoir storage in the Yarmouk basin in southern Syria, where ground monitoring is impeded by the ongoing civil war. It is validated against available in situ measurements in neighbouring Jordanian reservoirs. Coefficients of determination range from 0.69 to 0.84, and the normalized root-mean-square error from 10 to 16 % for storage estimations on six Jordanian reservoirs with maximal water surface areas ranging from 0.59 to 3.79 km2.

  17. Hydrological effects of cropland and climatic changes in arid and semi-arid river basins: A case study from the Yellow River basin, China

    NASA Astrophysics Data System (ADS)

    Li, Huazhen; Zhang, Qiang; Singh, Vijay P.; Shi, Peijun; Sun, Peng

    2017-06-01

    The Yellow River basin is a typical semi-arid river basin in northern China. Serious water shortages have negative impacts on regional socioeconomic development. Recent years have witnessed changes in streamflow processes due to increasing human activities, such as agricultural activities and construction of dams and water reservoirs, and climatic changes, e.g. precipitation and temperature. This study attempts to investigate factors potentially driving changes in different streamflow components defined by different quantiles. The data used were daily streamflow data for the 1959-2005 period from 5 hydrological stations, daily precipitation and temperature data from 77 meteorological stations and data pertaining to cropland and large reservoirs. Results indicate a general decrease in streamflow across the Yellow River basin. Moreover significant decreasing streamflow has been observed in the middle and lower Yellow River basin with change points during the mid-1980s till the mid-1990s. The changes of cropland affect the streamflow components and also the cumulative effects on streamflow variations. Recent years have witnessed moderate cropland variations which result in moderate streamflow changes. Further, precipitation also plays a critical role in changes of streamflow components and human activities, i.e. cropland changes, temperature changes and building of water reservoirs, tend to have increasing impacts on hydrological processes across the Yellow River basin. This study provides a theoretical framework for the study of the hydrological effects of human activities and climatic changes on basins over the globe.

  18. Marketing of surplus water from Federal reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, J.M.

    1978-01-01

    Main-stem reservoirs were constructed and agricultural production flourished to the point of crop surpluses in the Missouri River basin. Consequently, the irrigation that was promised for the upper-basin states was not pursued as originally planned. The result was unappropriated surplus water available for commitments to future use. In recent years, when the nation's need for increased energy production became a reality, attention began focusing on the actual commitments of those surpluses. Conflicts between water for energy and water for agriculture were inevitable. On February 24, 1975 Secretaries of the Army and Interior entered into a ''Memorandum of Understanding'' concerning themore » marketing of surplus water from six reservoirs on the main stem of the Missouri River. The memorandum was executed in order to expedite plans for using large amounts of coal in the Dakotas, Montana, and Wyoming for developing new energy supplies. The purpose of the memorandum was to permit the possible execution of industrial-water-service contracts of approximately one million acre feet of main-stem storage water. This Comment examines two initial questions raised by the Federal proposals to sell impounded reservoir water to industrial users. First, what are the rights or powers of the states to control water within their borders, and second, what legal authority, constitutional, legislative, or otherwise, do the Departments of the Interior and Army have for industrial water marketing from Federal reservoirs. Other collateral yet significant issues are considered as well. One fact concluded is that the constitutional authority of the Federal government to control the disposition of water in Federal reservoirs is almost unlimited. (MCW)« less

  19. Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott Hara

    2007-03-31

    The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibilitymore » problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and

  20. Reserve Growth in Oil Fields of West Siberian Basin, Russia

    USGS Publications Warehouse

    Verma, Mahendra K.; Ulmishek, Gregory F.

    2006-01-01

    Although reserve (or field) growth has proven to be an important factor contributing to new reserves in mature petroleum basins, it is still a poorly understood phenomenon. Limited studies show that the magnitude of reserve growth is controlled by several major factors, including (1) the reserve booking and reporting requirements in each country, (2) improvements in reservoir characterization and simulation, (3) application of enhanced oil recovery techniques, and (4) the discovery of new and extensions of known pools in discovered fields. Various combinations of these factors can affect the estimates of proven reserves in particular fields and may dictate repeated estimations of reserves during a field's life. This study explores the reserve growth in the 42 largest oil fields in the West Siberian Basin, which contain about 55 percent of the basin's total oil reserves. The West Siberian Basin occupies a vast swampy plain between the Ural Mountains and the Yenisey River, and extends offshore into the Kara Sea; it is the richest petroleum province in Russia. About 600 oil and gas fields with original reserves of 144 billion barrels of oil (BBO) and more than 1,200 trillion cubic feet of gas (TCFG) have been discovered. The principal oil reserves and most of the oil fields are in the southern half of the basin, whereas the northern half contains mainly gas reserves. Sedimentary strata in the basin consist of Upper Triassic through Tertiary clastic rocks. Most oil is produced from Neocomian (Lower Cretaceous) marine to deltaic sandstone reservoirs, although substantial oil reserves are also in the marine Upper Jurassic and continental to paralic Lower to Middle Jurassic sequences. The majority of oil fields are in structural traps, which are gentle, platform-type anticlines with closures ranging from several tens of meters to as much as 150 meters (490 feet). Fields producing from stratigraphic traps are generally smaller except for the giant Talin field which

  1. Sedimentation, sediment quality, and upstream channel stability, John Redmond Reservoir, east-central Kansas, 1964-2009

    USGS Publications Warehouse

    Juracek, Kyle E.

    2010-01-01

    A combination of available bathymetric-survey information, bottom-sediment coring, and historical streamgage information was used to investigate sedimentation, sediment quality, and upstream channel stability for John Redmond Reservoir, east-central Kansas. Ongoing sedimentation is reducing the ability of the reservoir to serve several purposes including flood control, water supply, and recreation. The total estimated volume and mass of bottom sediment deposited between 1964 and 2009 in the conservation pool of the reservoir was 1.46 billion cubic feet and 55.8 billion pounds, respectively. The estimated sediment volume occupied about 41 percent of the conservation-pool, water-storage capacity of the reservoir. Water-storage capacity in the conservation pool has been lost to sedimentation at a rate of about 1 percent annually. Mean annual net sediment deposition since 1964 in the conservation pool of the reservoir was estimated to be 1.24 billion pounds per year. Mean annual net sediment yield from the reservoir basin was estimated to be 411,000 pounds per square mile per year Information from sediment cores shows that throughout the history of John Redmond Reservoir, total nitrogen concentrations in the deposited sediment generally were uniform indicating consistent nitrogen inputs to the reservoir. Total phosphorus concentrations in the deposited sediment were more variable than total nitrogen indicating the possibility of changing phosphorus inputs to the reservoir. As the principal limiting factor for primary production in most freshwater environments, phosphorus is of particular importance because increased inputs can contribute to accelerated reservoir eutrophication and the production of algal toxins and taste-and-odor compounds. The mean annual net loads of total nitrogen and total phosphorus deposited in the bottom sediment of the reservoir were estimated to be 2,350,000 pounds per year and 1,030,000 pounds per year, respectively. The estimated mean annual

  2. Tectonic framework of the southern portion of the Paraná Basin based on magnetotelluric method: a contribution to the understanding of unconventional reservoirs

    NASA Astrophysics Data System (ADS)

    Rolim, S.

    2015-12-01

    The characterization of the tectonic framework of Paleozoic terrains is crucial for the investigation of unconventional fractured volcanic reservoirs. In recent years, the need for exploitation of these areas showed the value of the non-seismic methods in Brazil. Here we present the results of a magnetotelluric imaging (MT) to identify and characterize the structural framework of the southern portion of the Paraná Basin, southern Brazil. We carried out a SW-NE ,1200 km-long MT profile, with 68 stations spaced between 5-15 km on the southernmost states in Brazil. The observation of the PSI profile highlights the presence of large scale NW-SE faults and emphasize the presence of two major regional structures: (i) the Rio Grande Arc in the southern portion, and (ii) the Torres Syncline in the northern portion. The Rio Grande Arc is a horst highlighted by the basement uplift and the thicker layers of sedimentary rocks in the extremes south and north of this structure. The fault system observed along the profile suggests simultaneously uplifting of the basement and deposition of the sedimentary sequences of the Paraná Basin. This hypothesis is in agreement with stratigraphic, borehole and geochronological data, which have shown that the Rio Grande arc is contemporaneous with the deposition of the Triassic to Early Jurassic sediments. The Torres Syncline is a structure characterized by the increasing thickness of sedimentary layers in the north section of our MT profile. The continuity of the layers is interrupted by large regional fault systems, which also affect the volcanic rocks of the Serra Geral Formation, indicating that the faults were active after the Cretaceous. The results show that the MT modeling brings a distinct contribution to the understanding of the present structural architecture of the Paraná basin and the construction of a model for potential fractured volcanic reservoirs.

  3. A strategy for low cost development of incremental oil in legacy reservoirs

    USGS Publications Warehouse

    Attanasi, E.D.

    2016-01-01

    The precipitous decline in oil prices during 2015 has forced operators to search for ways to develop low-cost and low-risk oil reserves. This study examines strategies to low cost development of legacy reservoirs, particularly those which have already implemented a carbon dioxide enhanced oil recovery (CO2 EOR) program. Initially the study examines the occurrence and nature of the distribution of the oil resources that are targets for miscible and near-miscible CO2 EOR programs. The analysis then examines determinants of technical recovery through the analysis of representative clastic and carbonate reservoirs. The economic analysis focusses on delineating the dominant components of investment and operational costs. The concluding sections describe options to maximize the value of assets that the operator of such a legacy reservoir may have that include incremental expansion within the same producing zone and to producing zones that are laterally or stratigraphically near main producing zones. The analysis identified the CO2 recycle plant as the dominant investment cost item and purchased CO2 and liquids management as a dominant operational cost items. Strategies to utilize recycle plants for processing CO2 from multiple producing zones and multiple reservoir units can significantly reduce costs. Industrial sources for CO2 should be investigated as a possibly less costly way of meeting EOR requirements. Implementation of tapered water alternating gas injection schemes can partially mitigate increases in fluid lifting costs.

  4. Evolution of the eastern Austrian Molasse Basin: The Lower Miocene (Burdigalian) as a key to the understanding of the Eastern Alps - Molasse Basin system

    NASA Astrophysics Data System (ADS)

    Palzer, Markus; Knierzinger, Wolfgang; Wagreich, Michael; Meszar, Maria E.; Gier, Susanne; Soliman, Ali; -Elena Kallanxhi, Mǎdǎlina

    2016-04-01

    The eastern Austrian Molasse Basin is situated between the Bohemian Massif, the Waschberg-Zone and the Alps. There, sands of the Lower Miocene (Upper Ottnangian) Traisen Formation represent a clastic interval at the top of pelitic Schlier successions, which is correlated with the global sea level drop Bur3 (Burdigalian). North of the Danube River, the continuation of the Traisen-Formation is overlain by the Karpatian Laa-Formation. Drill cores from OMV-wells predominantly from the continuation of the Traisen Formation in deep parts in the NE of the basin show hundreds of meters of pelites with intersections of sands. Contrary to the exposed, mainly brackish TF, a turbiditic and predominantly fully marine deep-water environment is inferred from the cores. Profiles of carbonate content, XRD, XRF, whole rock chemistry, clay minerals, calcareous nannoplankton and dinoflagellate cysts of 7 wells were investigated representing a NE-SW transect through the LAMB. Based on these data, a new stratigraphy for the Burdigalian distal parts of the LAMB can be defined and correlated with the proximal units. The Traisen Formation and its equivalents are characterized at their base by an increased clastic input in the south and by increasing mica content in the northern parts. The complete interval is characterized by the decreased carbonate content. The XRD data show strongly reduced calcite contents which goe hand in hand with the absence of nannoplankton. Whether the signal is related to a crisis in primary production or to carbonate dissolution remains unclear. The absence of dinoflagellate cysts and the chemical data (reduced B/Al* ratios indicate reduced salinity) are considered as an argument for an environmental crisis. However, the absence of resedimented Cretaceous to Paleocene nannofossils, which usually occur together with the autochthonous NN4-nannofossils, indicates carbonate dissolution. These results enable us to define a basinal interval as equivalent to the

  5. Basin characteristics, history of stream gaging, and statistical summary of selected streamflow records for the Rapid Creek basin, western South Dakota

    USGS Publications Warehouse

    Driscoll, Daniel G.; Zogorski, John S.

    1990-01-01

    The report presents a summary of basin characteristics affecting streamflow, a history of the U.S. Geological Survey 's stream-gaging program, and a compilation of discharge records and statistical summaries for selected sites within the Rapid Creek basin. It is the first in a series which will investigate surface-water/groundwater relations along Rapid Creek. The summary of basin characteristics includes descriptions of the geology and hydrogeology, physiography and climate, land use and vegetation, reservoirs, and water use within the basin. A recounting of the U.S. Geological Survey 's stream-gaging program and a tabulation of historic stream-gaging stations within the basin are furnished. A compilation of monthly and annual mean discharge values for nine currently operated, long-term, continuous-record, streamflow-gaging stations on Rapid Creek is presented. The statistical summary for each site includes summary statistics on monthly and annual mean values, correlation matrix for monthly values, serial correlation for 1 year lag for monthly values, percentile rankings for monthly and annual mean values, low and high value tables, duration curves, and peak-discharge tables. Records of monthend contents for two reservoirs within the basin also are presented. (USGS)

  6. Mesozoic (Upper Jurassic-Lower Cretaceous) deep gas reservoir play, central and eastern Gulf coastal plain

    USGS Publications Warehouse

    Mancini, E.A.; Li, P.; Goddard, D.A.; Ramirez, V.O.; Talukdar, S.C.

    2008-01-01

    The Mesozoic (Upper Jurassic-Lower Cretaceous) deeply buried gas reservoir play in the central and eastern Gulf coastal plain of the United States has high potential for significant gas resources. Sequence-stratigraphic study, petroleum system analysis, and resource assessment were used to characterize this developing play and to identify areas in the North Louisiana and Mississippi Interior salt basins with potential for deeply buried gas reservoirs. These reservoir facies accumulated in Upper Jurassic to Lower Cretaceous Norphlet, Haynesville, Cotton Valley, and Hosston continental, coastal, and marine siliciclastic environments and Smackover and Sligo nearshore marine shelf, ramp, and reef carbonate environments. These Mesozoic strata are associated with transgressive and regressive systems tracts. In the North Louisiana salt basin, the estimate of secondary, nonassociated thermogenic gas generated from thermal cracking of oil to gas in the Upper Jurassic Smackover source rocks from depths below 3658 m (12,000 ft) is 4800 tcf of gas as determined using software applications. Assuming a gas expulsion, migration, and trapping efficiency of 2-3%, 96-144 tcf of gas is potentially available in this basin. With some 29 tcf of gas being produced from the North Louisiana salt basin, 67-115 tcf of in-place gas remains. Assuming a gas recovery factor of 65%, 44-75 tcf of gas is potentially recoverable. The expelled thermogenic gas migrated laterally and vertically from the southern part of this basin to the updip northern part into shallower reservoirs to depths of up to 610 m (2000 ft). Copyright ?? 2008. The American Association of Petroleum Geologists. All rights reserved.

  7. Ascent of neotropical migratory fish in the Itaipu Reservoir fish pass

    USGS Publications Warehouse

    Makrakis, S.; Miranda, L.E.; Gomes, L.C.; Makrakis, M.C.; Junior, H.M.F.

    2011-01-01

    The Piracema Canal is a complex 10-km fish pass system that climbs 120m to connect the Paran?? River to the Itaipu Reservoir along the Brazil-Paraguay border. The canal was constructed to allow migratory fishes to reach suitable habitats for reproduction and feeding in tributaries upstream from the reservoir. The Piracema Canal attracted 17 of the 19 long-distance migratory species that have been recorded in the Paran?? River Basin and Paraguay-Paran?? Basin. However, the incidence of migratory fish decreased from downstream to upstream, with the pattern of decrease depending on species. Overall, 0.5% of the migratory fish that entered the Piracema Canal and segment 1, eventually were able to reach segment 5 and potentially Itaipu Reservoir. Ascension rate was examined relative to various physical attributes of canal segments; maximum water velocity emerged as the most influential variable affecting fish passage. Water velocity may be manipulated by controlling water discharge, and by re-engineering critical sections of the canal. Because the Itaipu Reservoir flooded a set of falls that separated two distinct biogeographical regions, facilitating fish movements through the Piracema Canal into the Itaipu Reservoir presents a management dilemma that requires deliberation in the context of the fish assemblages rather than on selected migratory species. ?? 2010 John Wiley & Sons, Ltd.

  8. Recognition of oolite-filled channels, Ste. Genevieve Formation, Illinois basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandy, W.F. Jr.

    1991-03-01

    Porous oolitic grainstones in the Ste. Genevieve Formation (Mississippian) of the Illinois basin have typically been viewed as bar-shaped reservoirs. However, a reservoir discovered in the Allendale Pool, southern Lawrence County, is an oolitic grainstone with a channel geometry. A similar, oolite-filled channel has been recognized in southern Lawrence field, approximately 4 miles north of the Allendale channel. This reservoir, previously thought to be a bar, was discovered over 80 years ago is much larger than the Allendale channel. Both reservoirs have proven prolific, with high initial and cumulative productions and relatively little water. In contrast to oolitic bars, whichmore » are convex downward, with relatively greater average thickness and porosities. Laterally, bars thin gradually, whereas channels may thin very abruptly. Similar, undiscovered channels probably occur elsewhere in the Illinois basin.« less

  9. Reinterpretation of Halokinetic Features in the Ancestral Rocky Mountains Paradox Salt Basin, Utah and Colorado

    NASA Astrophysics Data System (ADS)

    Thompson, J. A.; Giles, K. A.; Rowan, M. G.; Hearon, T. E., IV

    2016-12-01

    The Paradox Basin in southeastern Utah and southwestern Colorado is a foreland basin formed in response to flexural loading by the Pennsylvanian-aged Uncompaghre uplift during the Ancestral Rocky Mountain orogen. Thick sequences of evaporites (Paradox Formation) were deposited within the foreland basin, which interfinger with clastic sediments in the foredeep and carbonates around the basin margin. Differential loading of the Pennsylvanian-Jurassic sediments onto the evaporites drove synsedimentary halokinesis, creating a series of salt walls and adjacent minibasins within the larger foreland basin. The growing salt walls within the basin influenced patterns of sediment deposition from the Pennsylvanian through the Cretaceous. By integrating previously published mapping with recent field observations, mapping, and subsurface interpretations of well logs and 2D seismic lines, we present interpretations of the timing, geometry, and nature of halokinesis within the Paradox Basin, which record the complex salt tectonic history in the basin. Furthermore, we present recent work on the relationships between the local passive salt history and the formation of syndepositional counter-regional extensional fault systems within the foreland. These results will be integrated into a new regional salt-tectonic and stratigraphic framework of the Paradox Basin, and have broader implications for interpreting sedimentary records in other basins with a mobile substrate.

  10. Appalachian Basin Play Fairway Analysis: Natural Reservoir Analysis in Low-Temperature Geothermal Play Fairway Analysis for the Appalachian Basin (GPFA-AB)

    DOE Data Explorer

    Teresa E. Jordan

    2015-10-22

    The files included in this submission contain all data pertinent to the methods and results of this task’s output, which is a cohesive multi-state map of all known potential geothermal reservoirs in our region, ranked by their potential favorability. Favorability is quantified using a new metric, Reservoir Productivity Index, as explained in the Reservoirs Methodology Memo (included in zip file). Shapefile and images of the Reservoir Productivity and Reservoir Uncertainty are included as well.

  11. Unconventional shallow biogenic gas systems

    USGS Publications Warehouse

    Shurr, G.W.; Ridgley, J.L.

    2002-01-01

    Unconventional shallow biogenic gas falls into two distinct systems that have different attributes. Early-generation systems have blanketlike geometries, and gas generation begins soon after deposition of reservoir and source rocks. Late-generation systems have ringlike geometries, and long time intervals separate deposition of reservoir and source rocks from gas generation. For both types of systems, the gas is dominantly methane and is associated with source rocks that are not thermally mature. Early-generation biogenic gas systems are typified by production from low-permeability Cretaceous rocks in the northern Great Plains of Alberta, Saskatchewan, and Montana. The main area of production is on the southeastern margin of the Alberta basin and the northwestern margin of the Williston basin. The huge volume of Cretaceous rocks has a generalized regional pattern of thick, non-marine, coarse clastics to the west and thinner, finer grained marine lithologies to the east. Reservoir rocks in the lower part tend to be finer grained and have lower porosity and permeability than those in the upper part. Similarly, source beds in the units have higher values of total organic carbon. Patterns of erosion, deposition, deformation, and production in both the upper and lower units are related to the geometry of lineament-bounded basement blocks. Geochemical studies show that gas and coproduced water are in equilibrium and that the fluids are relatively old, namely, as much as 66 Ma. Other examples of early-generation systems include Cretaceous clastic reservoirs on the southwestern margin of Williston basin and chalks on the eastern margin of the Denver basin. Late-generation biogenic gas systems have as an archetype the Devonian Antrim Shale on the northern margin of the Michigan basin. Reservoir rocks are fractured, organic-rich black shales that also serve as source rocks. Although fractures are important for production, the relationships to specific geologic structures are

  12. Understanding the Role of Reservoir Size on Probable Maximum Precipitation

    NASA Astrophysics Data System (ADS)

    Woldemichael, A. T.; Hossain, F.

    2011-12-01

    This study addresses the question 'Does surface area of an artificial reservoir matter in the estimation of probable maximum precipitation (PMP) for an impounded basin?' The motivation of the study was based on the notion that the stationarity assumption that is implicit in the PMP for dam design can be undermined in the post-dam era due to an enhancement of extreme precipitation patterns by an artificial reservoir. In addition, the study lays the foundation for use of regional atmospheric models as one way to perform life cycle assessment for planned or existing dams to formulate best management practices. The American River Watershed (ARW) with the Folsom dam at the confluence of the American River was selected as the study region and the Dec-Jan 1996-97 storm event was selected for the study period. The numerical atmospheric model used for the study was the Regional Atmospheric Modeling System (RAMS). First, the numerical modeling system, RAMS, was calibrated and validated with selected station and spatially interpolated precipitation data. Best combinations of parameterization schemes in RAMS were accordingly selected. Second, to mimic the standard method of PMP estimation by moisture maximization technique, relative humidity terms in the model were raised to 100% from ground up to the 500mb level. The obtained model-based maximum 72-hr precipitation values were named extreme precipitation (EP) as a distinction from the PMPs obtained by the standard methods. Third, six hypothetical reservoir size scenarios ranging from no-dam (all-dry) to the reservoir submerging half of basin were established to test the influence of reservoir size variation on EP. For the case of the ARW, our study clearly demonstrated that the assumption of stationarity that is implicit the traditional estimation of PMP can be rendered invalid to a large part due to the very presence of the artificial reservoir. Cloud tracking procedures performed on the basin also give indication of the

  13. Two alternative juvenile life history types for fall Chinook salmon in the Snake River basin

    USGS Publications Warehouse

    Connor, W.P.; Sneva, J.G.; Tiffan, K.F.; Steinhorst, R.K.; Ross, D.

    2005-01-01

    Fall Chinook salmon Oncorhynchus tshawytscha in the Snake River basin were listed under the Endangered Species Act in 1992. At the time of listing, it was assumed that fall Chinook salmon juveniles in the Snake River basin adhered strictly to an ocean-type life history characterized by saltwater entry at age 0 and first-year wintering in the ocean. Research showed, however, that some fall Chinook salmon juveniles in the Snake River basin spent their first winter in a reservoir and resumed seaward movement the following spring at age 1 (hereafter, reservoir-type juveniles). We collected wild and hatchery ocean-type fall Chinook salmon juveniles in 1997 and wild and hatchery reservoir-type juveniles in 1998 to assess the condition of the reservoir-type juveniles at the onset of seaward movement. The ocean-type juveniles averaged 112-139 mm fork length, and the reservoir-type juveniles averaged 222-224 mm fork length. The large size of the reservoir-type juveniles suggested a high potential for survival to salt water and subsequent return to freshwater. Scale pattern analyses of the fall Chinook salmon spawners we collected during 1998-2003 supported this point. Of the spawners sampled, an overall average of 41% of the wild fish and 51% of the hatchery fish had been reservoir-type juveniles. Males that had been reservoir-type juveniles often returned as small "minijacks" (wild, 16% of total; hatchery, 40% of total), but 84% of the wild males, 60% of the hatchery males, and 100% of the wild and hatchery females that had been reservoir-type juveniles returned at ages and fork lengths commonly observed in populations of Chinook salmon. We conclude that fall Chinook salmon in the Snake River basin exhibit two alternative juvenile life histories, namely ocean-type and reservoir-type. ?? Copyright by the American Fisheries Society 2005.

  14. Climatic controls on arid continental basin margin systems

    NASA Astrophysics Data System (ADS)

    Gough, Amy; Clarke, Stuart; Richards, Philip; Milodowski, Antoni

    2016-04-01

    models suggest that the deposits of the Brockram alluvial fans have the potential to contain numerous preferential flow zones. Where these flow zones are adjacent to the unique deposits of the zone of interaction it affects basin-scale fluid flow by: 1) interconnecting decent reservoirs in the distal extent of the basin; 2) creating flow pathways away from these reservoirs; 3) introducing secondary baffles into the system; and, 4) creating a bypass to charge these distal reservoirs.

  15. A comparison of approaches for estimating bottom-sediment mass in large reservoirs

    USGS Publications Warehouse

    Juracek, Kyle E.

    2006-01-01

    Estimates of sediment and sediment-associated constituent loads and yields from drainage basins are necessary for the management of reservoir-basin systems to address important issues such as reservoir sedimentation and eutrophication. One method for the estimation of loads and yields requires a determination of the total mass of sediment deposited in a reservoir. This method involves a sediment volume-to-mass conversion using bulk-density information. A comparison of four computational approaches (partition, mean, midpoint, strategic) for using bulk-density information to estimate total bottom-sediment mass in four large reservoirs indicated that the differences among the approaches were not statistically significant. However, the lack of statistical significance may be a result of the small sample size. Compared to the partition approach, which was presumed to provide the most accurate estimates of bottom-sediment mass, the results achieved using the strategic, mean, and midpoint approaches differed by as much as ?4, ?20, and ?44 percent, respectively. It was concluded that the strategic approach may merit further investigation as a less time consuming and less costly alternative to the partition approach.

  16. Reservoir assessment of the Nubian sandstone reservoir in South Central Gulf of Suez, Egypt

    NASA Astrophysics Data System (ADS)

    El-Gendy, Nader; Barakat, Moataz; Abdallah, Hamed

    2017-05-01

    The Gulf of Suez is considered as one of the most important petroleum provinces in Egypt and contains the Saqqara and Edfu oil fields located in the South Central portion of the Gulf of Suez. The Nubian sandstone reservoir in the Gulf of Suez basin is well known for its great capability to store and produce large volumes of hydrocarbons. The Nubian sandstone overlies basement rocks throughout most of the Gulf of Suez region. It consists of a sequence of sandstones and shales of Paleozoic to Cretaceous age. The Nubian sandstone intersected in most wells has excellent reservoir characteristics. Its porosity is controlled by sedimentation style and diagenesis. The cementation materials are mainly kaolinite and quartz overgrowths. The permeability of the Nubian sandstone is mainly controlled by grain size, sorting, porosity and clay content especially kaolinite and decreases with increase of kaolinite. The permeability of the Nubian Sandstone is evaluated using the Nuclear Magnetic Resonance (NMR technology) and formation pressure data in addition to the conventional logs and the results were calibrated using core data. In this work, the Nubian sandstone was investigated and evaluated using complete suites of conventional and advanced logging techniques to understand its reservoir characteristics which have impact on economics of oil recovery. The Nubian reservoir has a complicated wettability nature which affects the petrophysical evaluation and reservoir productivity. So, understanding the reservoir wettability is very important for managing well performance, productivity and oil recovery.

  17. Water Demand Management Strategies and Challenges in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Kuhn, R. E.

    2016-12-01

    Under the 1922 Colorado River Compact, the Upper Basin (Colorado, New Mexico, Utah, and Wyoming) has flow obligations at Lee Ferry to downstream states and Mexico. The Colorado River Storage Project Act (CRSPA) of 1956 led to the construction of four large storage reservoirs. These provide river regulation to allow the Upper Basin to meet its obligations. Lake Powell, the largest and most important, and Lake Mead are now operated in a coordinated manner under the 2007 Interim Guidelines. Studies show that at current demand levels and if the hydrologic conditions the Basin has experienced since the mid-1980s continue or get drier, reservoir operations, alone, may not provide the necessary water to meet the Upper Basin's obligations. Therefore, the Upper Basin states are now studying demand management strategies that will reduce consumptive uses when total system reservoir storage reaches critically low levels. Demand management has its own economic, political and technical challenges and limitations and will provide new opportunities for applied research. This presentation will discuss some of those strategies, their challenges, and the kinds of information that research could provide to inform demand management.

  18. Onshore and offshore basins of northeast Libya: Their origin and hydrocarbon potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shegewi, O.M.

    1992-01-01

    A comprehensive data base of more than 3000 km of seismic lines, gravity and magnetic data, more than 30 subsurface well logs, and surface geology data were utilized to examine and interpret the sedimentary and tectonic history of the onshore and offshore parts of Northeast Libya and their hydrocarbon potential. The Dernah-Tobruk and Benghazi offshore basins form the northern parts of the study area. The Cyrenaica Stable Platform represents the southern parts. The Sirual Trough stretches E-W and opens into the Antelat Trough in the west. Between these elements is the uplifted areas of the Al Jabal Al Akhdar. Sixmore » principal tectonic phases were responsible for the formation and development of these structural elements: the pre-Mesozoic phase, the Triassic-Jurassic rifting phase, the Neocomian and the Aptian-Albian renewed rifting phases, the Late Cretaceous-Paleocene uplifting phase; and the Eocene-Middle Oligocene rifting phase. Oceanic crust of probable Aptian-Albian age is evident on the seismic lines north of the master fault marking the southern boundary of the rift separating the north African plate and Apulia. The western boundary of the Dernah High displayed clearly NE-SW strike-slip movement of these trajectories. Oceanic crust is also present west of the Dernah High. Positive gravity and magnetic anomalies traverse parallel to the boundary of this oceanic plate Mesogea. The prerequisites for commercial hydrocarbon production are present in abundance. Reservoirs ranging in age from Paleozoic clastics in the Cyrenaica Stable Platform to Mesozoic and Tertiary carbonates throughout the rest of the region. Several deep sites for the generation of hydrocarbons were also present, including the rifted northern parts of the Dernah-Tobruk basin, the Antelat Trough and the Cyrenaica Passive Margin. The Cretaceous and Tertiary section in the study area contain several potential seal rocks. Several potential trap types are also present.« less

  19. Targeted Water Quality Assessment in Small Reservoirs in Brazil, Zimbabwe, Morocco and Burkina Faso

    NASA Astrophysics Data System (ADS)

    Boelee, Eline; Rodrigues, Lineu; Senzanje, Aidan; Laamrani, Hammou; Cecchi, Philippe

    2010-05-01

    Background Physical and chemical parameters of water in reservoirs can be affected by natural and manmade pollutants, causing damage to the aquatic life and water quality. However, the exact water quality considerations depend on what the water will be used for. Brick making, livestock watering, fisheries, irrigation and domestic uses all have their own specific water quality requirements. In turn, these uses impact on water quality. Methodology Water quality was assessed with a variety of methods in small multipurpose reservoirs in the São Francisco Basin in Brazil, Limpopo in Zimbabwe, Souss Massa in Morocco and Nakambé in Burkina Faso. In each case the first step was to select the reservoirs for which the water quality was to be monitored, then identify the main water uses, followed by a determination of key relevant water quality parameters. In addition, a survey was done in some cases to identify quality perceptions of the users. Samples were taken from the reservoir itself and related water bodies such as canals and wells where relevant. Results Accordingly in the four basins different methods gave different locally relevant results. In the Preto River in the Sao Francisco in Brazil small reservoirs are mainly used for irrigated agriculture. Chemical analysis of various small reservoirs showed that water quality was mainly influenced by geological origins. In addition there was nutrient inflow from surrounding areas of intensive agriculture with high fertilizer use. In the Limpopo basin in Zimbabwe small reservoirs are used for almost all community water needs. Plankton was selected as indicator and sampling was carried out in reservoirs in communal areas and in a national park. Park reservoirs were significantly more diversified in phytoplankton taxa compared to those in the communal lands, but not for zooplankton, though communal lands had the highest zooplankton abundance. In Souss Massa in Morocco a combination of perceptions and scientific water

  20. An Analytical Method for Deriving Reservoir Operation Curves to Maximize Social Benefits from Multiple Uses of Water in the Willamette River Basin

    NASA Astrophysics Data System (ADS)

    Moore, K. M.; Jaeger, W. K.; Jones, J. A.

    2013-12-01

    A central characteristic of large river basins in the western US is the spatial and temporal disjunction between the supply of and demand for water. Water sources are typically concentrated in forested mountain regions distant from municipal and agricultural water users, while precipitation is super-abundant in winter and deficient in summer. To cope with these disparities, systems of reservoirs have been constructed throughout the West. These reservoir systems are managed to serve two main competing purposes: to control flooding during winter and spring, and to store spring runoff and deliver it to populated, agricultural valleys during the summer. The reservoirs also provide additional benefits, including recreation, hydropower and instream flows for stream ecology. Since the storage capacity of the reservoirs cannot be used for both flood control and storage at the same time, these uses are traded-off during spring, as the most important, or dominant use of the reservoir, shifts from buffering floods to storing water for summer use. This tradeoff is expressed in the operations rule curve, which specifies the maximum level to which a reservoir can be filled throughout the year, apart from real-time flood operations. These rule curves were often established at the time a reservoir was built. However, climate change and human impacts may be altering the timing and amplitude of flood events and water scarcity is expected to intensify with anticipated changes in climate, land cover and population. These changes imply that reservoir management using current rule curves may not match future societal values for the diverse uses of water from reservoirs. Despite a broad literature on mathematical optimization for reservoir operation, these methods are not often used because they 1) simplify the hydrologic system, raising doubts about the real-world applicability of the solutions, 2) exhibit perfect foresight and assume stationarity, whereas reservoir operators face

  1. Monitoring Lake and Reservoir Level: Satellite Observations, Modeling and Prediction

    NASA Astrophysics Data System (ADS)

    Ricko, M.; Birkett, C. M.; Adler, R. F.; Carton, J.

    2013-12-01

    Satellite measurements of lake and reservoir water levels complement in situ observations by providing stage information for un-gauged basins and by filling data gaps in gauge records. However, different satellite radar altimeter-derived continental water level products may differ significantly owing to choice of satellites and data processing methods. To explore the impacts of these differences, a direct comparison between three different altimeter-based surface water level estimates (USDA/NASA GRLM, LEGOS and ESA-DMU) will be presented and products validated with lake level gauge time series for lakes and reservoirs of a variety of sizes and conditions. The availability of satellite-based rainfall (i.e., TRMM and GPCP) and satellite-based lake/reservoir levels offers exciting opportunities to estimate and monitor the hydrologic properties of the lake systems. Here, a simple water balance model is utilized to relate net freshwater flux on a catchment basin to lake/reservoir level. Focused on tropical lakes and reservoirs it allows a comparison of the flux to altimetric lake level estimates. The combined use of model, satellite-based rainfall, evaporation information and reanalysis products, can be used to output water-level hindcasts and seasonal future forecasts. Such a tool is fundamental for understanding present-day and future variations in lake/reservoir levels and enabling a better understand of climatic variations on inter-annual to inter-decadal time-scales. New model-derived water level estimates of lakes and reservoirs, on regional to global scales, would assist communities with interests in climate studies focusing on extreme events, such as floods and droughts, and be important for water resources management.

  2. Structural styles of the paradox basin: Something to consider in a basin dominated by stratigraphic traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevenson, G.M.

    1993-08-01

    The Paradox basin has produced a considerable amount of oil and gas from Pennsylvanian and Mississippian reservoirs. Most of the production has been from stratigraphic traps associated with subtle rejuvenated basement structures. Only the Blanding sub-basin and west flank of the salt anticlines (Lisbon Valley to Salt Wash fields) have been explored in sufficient quantity to classify as the mature parts of the basin, and even in these areas, new fields are currently being discovered. The majority of the basin still remains an exploration frontier. Certainly, structural and stratigraphic conditions analogous to those in the proven areas exist in muchmore » of these underexplored parts of the Paradox basin, but the potential for new and different types of hydrocarbon traps should not be overlooked. Structural styles present in the Paradox basin range from high-angle reverse, to normal, to inverted, which records different periods of crustal shortening and extension. To provide a full appreciation of the variety and complexities of structural styles in the Paradox basin and their influence on the orientation and distribution of different stratigraphic mechanisms, comparisons are made in the following areas: the Uncompahgre frontal fault zone, salt anticlines, Cane Creek anticline, Nequoia arch, Blanding basin, and Hogback monocline. To demonstrate the episodic nature of tectonism throughout the entire Phanerozoic Era, potential and proven hydrocarbon trapping styles are illustrated in strata ranging from Devonian to Late Pennsylvanian age. In particular, the Pennsylvanian Paradox evaporites and equivalent shelf carbonates and siliciclastics provide an excellent example of chronostratigraphic and glacioeustatic relationships. Due to the proven prolific nature of these Pennsylvanian reservoirs, the interrelationships of structure to stratigraphy in the Blanding basin and along the Cane Creek anticline will be emphasized.« less

  3. Negotiating designs of multi-purpose reservoir systems in international basins

    NASA Astrophysics Data System (ADS)

    Geressu, Robel; Harou, Julien

    2016-04-01

    Given increasing agricultural and energy demands, coordinated management of multi-reservoir systems could help increase production without further stressing available water resources. However, regional or international disputes about water-use rights pose a challenge to efficient expansion and management of many large reservoir systems. Even when projects are likely to benefit all stakeholders, agreeing on the design, operation, financing, and benefit sharing can be challenging. This is due to the difficulty of considering multiple stakeholder interests in the design of projects and understanding the benefit trade-offs that designs imply. Incommensurate performance metrics, incomplete knowledge on system requirements, lack of objectivity in managing conflict and difficulty to communicate complex issue exacerbate the problem. This work proposes a multi-step hybrid multi-objective optimization and multi-criteria ranking approach for supporting negotiation in water resource systems. The approach uses many-objective optimization to generate alternative efficient designs and reveal the trade-offs between conflicting objectives. This enables informed elicitation of criteria weights for further multi-criteria ranking of alternatives. An ideal design would be ranked as best by all stakeholders. Resource-sharing mechanisms such as power-trade and/or cost sharing may help competing stakeholders arrive at designs acceptable to all. Many-objective optimization helps suggests efficient designs (reservoir site, its storage size and operating rule) and coordination levels considering the perspectives of multiple stakeholders simultaneously. We apply the proposed approach to a proof-of-concept study of the expansion of the Blue Nile transboundary reservoir system.

  4. Prioritizing subwatersheds for stormwater pollution to Wachusett Reservoir.

    PubMed

    Cho, Kyung Hwa; Park, Mi-Hyun

    2013-02-01

    The Wachusett Reservoir is a primary drinking water resource for the greater Boston, Massachusetts, area. With a drainage area of 280 km2, the watershed has been gradually urbanized with increased residential, commercial, industrial, and transportation land uses. Increased impervious surface area as a result of urbanization results in increased runoff volume and pollutant loads to the reservoir. This study estimated annual stormwater pollutant mass loads in the watershed to prioritize sub-basins and to identify areas susceptible to stormwater pollution. Catchment Prioritization Index (CPI) was calculated using annual stormwater pollutant mass loads, which were further used to identify clustered hotspots through application of the Getis-Ord Gi* statistic. Validation with observed data showed higher levels of fecal coliform bacteria loading from identified hotspots. This approach will be useful to prioritize sub-basins for future (1) development of stormwater monitoring strategies and (2) best management practices (BMPs) in the watershed.

  5. In-situ soil loss monitoring in a small Mediterranean catchment to assess the siltation risk of a limno-reservoir

    NASA Astrophysics Data System (ADS)

    Molina-Navarro, E.; Bienes-Allas, R.; Martínez-Pérez, S.; Sastre-Merlín, A.

    2012-04-01

    The existence of large reservoirs under Mediterranean climate causes some negative impacts. The construction of small dams in the riverine zone of these reservoirs is an innovative idea designed to counteract some of those impacts, generating a body of water with a constant level which we have termed "limno-reservoirs". Pareja Limno-reservoir, located in the influence area of the Entrepeñas Reservoir (Guadalajara) is among the first limno-reservoirs built in Spain, and the first having a double function: environmental and recreational. The limno-reservoir basin (85.5 Km2) enjoys a Mediterranean climate, however, cold temperatures prevail in winter and maximum annual variation may be around 50 °C. Average annual precipitation is 600 mm, with high variability too. Most of the basin is dominated by a high limestone plateau, while a more erodible lithology surfaces in the hillsides of the Ompólveda River and its tributaries. These characteristics make the basin representative of central Spain. Despite the unquestionable interest of the initiative, it construction has raised some issues about its environmental viability. One of them is related to its siltation risk, as the area shows signs of high erosion rates that have been contrasted in previous empirical studies. An in-situ soil loss monitoring network has been installed in order to determine the soil loss and deposition rates in the limno-reservoir basin (85.5 km2). It includes 15 sampling plots for inter-rill erosion and 8 for sedimentation, each one containing 16 erosion sticks. Rill erosion was studied monitoring 8 rills with a needle micro-profiler, quantifying the sediment deposition in their terminal zone with sticks. These control points have been located in places where the soil type, land use and slope present are representative of the basin, in order to extrapolate the results to similar areas. In-situ monitoring has been performed for three years, starting in 2009 and carrying out sampling every 3

  6. Total mercury and methylmercury levels in fish from hydroelectric reservoirs in Tanzania.

    PubMed

    Ikingura, J R; Akagi, H

    2003-03-20

    Total mercury (THg) and methylmercury (MeHg) levels have been determined in fish species representing various tropic levels in four major hydroelectric reservoirs (Mtera, Kidatu, Hale-Pangani, Nyumba ya Mungu) located in two distinct geographical areas in Tanzania. The Mtera and Kidatu reservoirs are located along the Great Ruaha River drainage basin in the southern central part of the country while the other reservoirs are located within the Pangani River basin in the north eastern part of Tanzania. Fish mercury levels ranged from 5 to 143 microg/kg (mean 40 microg/kg wet weight) in the Mtera Reservoir, and from 7 to 119 microg/kg (mean 21 microg/kg) in the Kidatu Reservoir downstream of the Great Ruaha River. The lowest THg levels, in the range 1-10 microg/kg (mean 5 microg/kg), were found in fish from the Nyumba ya Mungu (NyM) Reservoir, which is one of the oldest reservoirs in the country. Fish mercury levels in the Pangani and Hale mini-reservoirs, downstream of the NyM Reservoir, were in the order of 3-263 microg/kg, with an average level of 21 microg/kg. These THg levels are among the lowest to be reported in freshwater fish from hydroelectric reservoirs. Approximately 56-100% of the total mercury in the fish was methylmercury. Herbivorous fish species contained lower THg levels than the piscivorous species; this was consistent with similar findings in other fish studies. In general the fish from the Tanzanian reservoirs contained very low mercury concentrations, and differed markedly from fish in hydroelectric reservoirs of similar age in temperate and other regions, which are reported to contain elevated mercury concentrations. The low levels of mercury in the fish correlated with low background concentrations of THg in sediment and flooded soil (mean 2-8 microg/kg dry weight) in the reservoir surroundings. This suggested a relatively clean reservoir environment that has not been significantly impacted by mercury contamination from natural or anthropogenic

  7. Towards an Improved Represenation of Reservoirs and Water Management in a Land Surface-Hydrology Model

    NASA Astrophysics Data System (ADS)

    Yassin, F.; Anis, M. R.; Razavi, S.; Wheater, H. S.

    2017-12-01

    Water management through reservoirs, diversions, and irrigation have significantly changed river flow regimes and basin-wide energy and water balance cycles. Failure to represent these effects limits the performance of land surface-hydrology models not only for streamflow prediction but also for the estimation of soil moisture, evapotranspiration, and feedbacks to the atmosphere. Despite recent research to improve the representation of water management in land surface models, there remains a need to develop improved modeling approaches that work in complex and highly regulated basins such as the 406,000 km2 Saskatchewan River Basin (SaskRB). A particular challenge for regional and global application is a lack of local information on reservoir operational management. To this end, we implemented a reservoir operation, water abstraction, and irrigation algorithm in the MESH land surface-hydrology model and tested it over the SaskRB. MESH is Environment Canada's Land Surface-hydrology modeling system that couples Canadian Land Surface Scheme (CLASS) with hydrological routing model. The implemented reservoir algorithm uses an inflow-outflow relationship that accounts for the physical characteristics of reservoirs (e.g., storage-area-elevation relationships) and includes simplified operational characteristics based on local information (e.g., monthly target volume and release under limited, normal, and flood storage zone). The irrigation algorithm uses the difference between actual and potential evapotranspiration to estimate irrigation water demand. This irrigation demand is supplied from the neighboring reservoirs/diversion in the river system. We calibrated the model enabled with the new reservoir and irrigation modules in a multi-objective optimization setting. Results showed that the reservoir and irrigation modules significantly improved the MESH model performance in generating streamflow and evapotranspiration across the SaskRB and that this our approach provides

  8. The paleomagnetism of clastic and precipitate deposits in limestone and dolomite caves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latham, A.G.; Ford, D.C.

    1991-03-01

    Clastic sediments and calcite precipitates (stalagmites, flowstones, etc.) are abundant in modern limestone caves and normally are the dominant infillings in buried (paleokarst) caves. Clastic sediment fillings are chiefly of fluviatile or local breakdown origin, but lacustrine, colluvial, eolian, and glacial deposits are known. Paleomagnetism has been studied in the fluviatile and lacustrine types: (1) reversal stratigraphy aids dating of geomorphic and paleoclimatic events in the late Pliocene/Pleistocene; (2) fine magnetostratigraphy has yielded estimates of the westward drift. Calcite precipitates (speleothems) may display natural remanent magnetism of either depositional (DRM) or chemical (CRM) origin. NRMs of modern speleothems are primary,more » not diagenetic; CRMs are invariably associated with the degradation of surface organic matter. (1) Coarse reversal stratigraphy dates geomorphic, etc., events and erosion rates. (2) Fine stratigraphy combined with {sup 230}Th:{sup 234}U dating gives high precision estimates of secular variation, westward drift, and rate of change of geomagnetic anomalies in upper Pleistocene and Holocene deposits. Magnetostratigraphy of paleokarst speleothem fillings associated with hydrocarbons in Ordovician limestones suggest a Permian age for the karstification. Potential applications of magnetostratigraphy to paleokarst deposits of many different scales are considerable.« less

  9. Geothermal energy from the Pannonian Basins System: An outcrop analogue study of exploration target horizons in Hungary

    NASA Astrophysics Data System (ADS)

    Götz, Annette E.; Sass, Ingo; Török, Ákos

    2015-04-01

    The characterization of geothermal reservoirs of deep sedimentary basins is supported by outcrop analogue studies since reservoir characteristics are strongly related to the sedimentary facies and thus influence the basic direction of geothermal field development and applied technology (Sass & Götz, 2012). Petro- and thermophysical rock properties are key parameters in geothermal reservoir characterization and the data gained from outcrop samples serve to understand the reservoir system. New data from the Meso- and Cenozoic sedimentary rocks of Budapest include carbonates and siliciclastics of Triassic, Eocene, Oligocene and Miocene age, exposed on the western side of the river Danube in the Buda Hills (Götz et al., 2014). Field and laboratory analyses revealed distinct horizons of different geothermal potential and thus, enable to identify and interpret corresponding exploration target horizons in geothermal prone depths in the Budapest region as well as in the Hungarian sub-basins of the Pannonian Basins System (Zala and Danube basins, Great Plain) exhibiting geothermal anomalies. References Götz, A.E., Török, Á., Sass, I., 2014. Geothermal reservoir characteristics of Meso- and Cenozoic sedimentary rocks of Budapest (Hungary). German Journal of Geosciences, 165, 487-493. Sass, I., Götz, A.E., 2012. Geothermal reservoir characterization: a thermofacies concept. Terra Nova, 24, 142-147.

  10. Is there a basin-centered gas accumulation in Cotton Valley Group Sandstones, Gulf Coast Basin, U.S.A.?

    USGS Publications Warehouse

    Bartberger, Charles E.; Dyman, Thaddeus S.; Condon, Steven M.

    2002-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, is reevaluating the resource potential of selected domestic basin-centered gas accumulations. Basin-centered gas accumulations are characterized by presence of gas in extensive low-permeability (tight) reservoirs in which conventional seals and trapping mechanisms are absent, abnormally high or low reservoir pressures exist, and gas-water contacts are absent. In 1995, the USGS assessed one basin-centered gas play and two conventional plays within the trend of Jurassic and Cretaceous Cotton Valley Group fl uvial-deltaic and barrierisland/ strandplain sandstones across the onshore northern Gulf of Mexico Basin. Detailed evaluation of geologic and production data provides new insights into these Cotton Valley plays. Two Cotton Valley sandstone trends are identifi ed based on reservoir properties and gas-production characteristics. Transgressive blanket sandstones across northern Louisiana have relatively high porosity and permeability and do not require fracture stimulation to produce gas at commercial rates. South of this trend, and extending westward into eastern Texas, massive sandstones of the Cotton Valley trend exhibit low porosity and permeability and require fracture stimulation. The high permeability of Cotton Valley blanket sandstones is not conducive to the presence of basin-centered gas, but lowpermeability massive sandstones provide the type of reservoir in which basin-centered gas accumulations commonly occur. Data on source rocks, including burial and thermal history, are consistent with the interpretation of potential basincentered gas within Cotton Valley sandstones. However, pressure gradients throughout most of the blanket- and massivesandstone trends are normal or nearly normal, which is not characteristic of basin-centered gas accumulations. The presence of gas-water contacts in at least seven fi elds across the blanket-sandstone trend together with relatively

  11. DHI evaluation by combining rock physics simulation and statistical techniques for fluid identification of Cambrian-to-Cretaceous clastic reservoirs in Pakistan

    NASA Astrophysics Data System (ADS)

    Ahmed, Nisar; Khalid, Perveiz; Shafi, Hafiz Muhammad Bilal; Connolly, Patrick

    2017-10-01

    The use of seismic direct hydrocarbon indicators is very common in exploration and reservoir development to minimise exploration risk and to optimise the location of production wells. DHIs can be enhanced using AVO methods to calculate seismic attributes that approximate relative elastic properties. In this study, we analyse the sensitivity to pore fluid changes of a range of elastic properties by combining rock physics studies and statistical techniques and determine which provide the best basis for DHIs. Gassmann fluid substitution is applied to the well log data and various elastic properties are evaluated by measuring the degree of separation that they achieve between gas sands and wet sands. The method has been applied successfully to well log data from proven reservoirs in three different siliciclastic environments of Cambrian, Jurassic, and Cretaceous ages. We have quantified the sensitivity of various elastic properties such as acoustic and extended elastic (EEI) impedances, elastic moduli ( K sat and K sat- μ), lambda-mu-rho method ( λρ and μρ), P-to-S-wave velocity ratio ( V P/ V S), and Poisson's ratio ( σ) at fully gas/water saturation scenarios. The results are strongly dependent on the local geological settings and our modeling demonstrates that for Cambrian and Cretaceous reservoirs, K sat- μ, EEI, V P/ V S, and σ are more sensitive to pore fluids (gas/water). For the Jurassic reservoir, the sensitivity of all elastic and seismic properties to pore fluid reduces due to high overburden pressure and the resultant low porosity. Fluid indicators are evaluated using two metrics: a fluid indicator coefficient based on a Gaussian model and an overlap coefficient which makes no assumptions about a distribution model. This study will provide a potential way to identify gas sand zones in future exploration.

  12. Analysis of ancient-river systems by 3D seismic time-slice technique: A case study in northeast Malay Basin, offshore Terengganu, Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulaiman, Noorzamzarina; Hamzah, Umar; Samsudin, Abdul Rahim

    2014-09-03

    Fluvial sandstones constitute one of the major clastic petroleum reservoir types in many sedimentary basins around the world. This study is based on the analysis of high-resolution, shallow (seabed to 500 m depth) 3D seismic data which generated three-dimensional (3D) time slices that provide exceptional imaging of the geometry, dimension and temporal and spatial distribution of fluvial channels. The study area is in the northeast of Malay Basin about 280 km to the east of Terengganu offshore. The Malay Basin comprises a thick (> 8 km), rift to post-rift Oligo-Miocene to Pliocene basin-fill. The youngest (Miocene to Pliocene), post-rift successionmore » is dominated by a thick (1–5 km), cyclic succession of coastal plain and coastal deposits, which accumulated in a humid-tropical climatic setting. This study focuses on the Pleistocene to Recent (500 m thick) succession, which comprises a range of seismic facies analysis of the two-dimensional (2D) seismic sections, mainly reflecting changes in fluvial channel style and river architecture. The succession has been divided into four seismic units (Unit S1-S4), bounded by basin-wide strata surfaces. Two types of boundaries have been identified: 1) a boundary that is defined by a regionally-extensive erosion surface at the base of a prominent incised valley (S3 and S4); 2) a sequence boundary that is defined by more weakly-incised, straight and low-sinuosity channels which is interpreted as low-stand alluvial bypass channel systems (S1 and S2). Each unit displays a predictable vertical change of the channel pattern and scale, with wide low-sinuosity channels at the base passing gradationally upwards into narrow high-sinuosity channels at the top. The wide variation in channel style and size is interpreted to be controlled mainly by the sea-level fluctuations on the widely flat Sunda land Platform.« less

  13. Water quality in the proposed Prosperity Reservoir area, Center Creek Basin, Missouri

    USGS Publications Warehouse

    Barks, James H.; Berkas, Wayne R.

    1979-01-01

    Water in Center Creek basin, Mo., upstream from the proposed Prosperity Reservoir damsite is a calcium bicarbonate type that is moderately mineralized, hard, and slightly alkaline. Ammonia and organic nitrogen, phosphorus, total organic carbon, chemical oxygen demand, and bacteria increased considerably during storm runoff, probably due to livestock wastes. Nitrogen and phosphorus concentrations are probably high enough to cause the proposed lake to be eutrophic. Minor-element concentrations were at or near normal levels in Center and Jones Creeks. The only pesticides detected were 0.01 micrograms per liter of 2, 4, 5-T in one base-flow sample and 0.02 to 0.04 micrograms per liter of 2, 4, 5-T and 2, 4-D in all storm-runoff samples. Fecal coliform and fecal streptococcus densities ranged from 2 to 650 and 2 to 550 colonies per 100 milliliters, respectively, during base flow , but were 17,000 to 45,000 and 27,000 to 70,000 colonies per 100 milliliters, respectively, during storm runoff. Water in Center Creek about 2.5 miles downstream from the proposed damsite is similar in quality to that upstream from the damsite except for higher concentrations of sodium, sulfate, chloride, fluoride, nitrogen, and phosphorus. These higher concentrations are caused by fertilizer industry wastes that enter Center Creek about 1.0 mile downstream from the proposed damsite. (Woodard-USGS).

  14. Osage River Basin, Osage River, Missouri, Harry S. Trumman Dam & Reservoir. Multiple-Purpose Project. Operation and Maintenance Manual. Appendix 7, Volume 2. Construction Foundation Report.

    DTIC Science & Technology

    1984-01-01

    PROJECT S TYPE OF REPORT & PERIOD COVEREDOSAGE RIVER BASIN ConStruction Foundation OSAGE RIVER MISSOURI Report from September 1966 HARRY S. TRUMAN DAM...OPERATION AND MAINTENANCE MANUAL HARRY S. TRUMAN DAM AND RESERVOIR OSAGE RIVER, MISSOURI APPENDIX VII CONSTRUCTION FOUNDATION REPORT VOLUME II TABLE OF...09r IWNI’(ANSAS CITY M?5OU ....... 11 1 O IA R, MISSOURI HARRY S TRUMA DAM & 1K5(V01 = CONSTRUCT"ON FOUNDATION REPORT IGEOLOGIC UNIT DESCRIPTIONS

  15. Limno-reservoirs as a new landscape, environmental and touristic resource: Pareja Limno-reservoir as a case of study (Guadalajara, Spain)

    NASA Astrophysics Data System (ADS)

    Díaz-Carrión, I.; Sastre-Merlín, A.; Martínez-Pérez, S.; Molina-Navarro, E.; Bienes-Allas, R.

    2012-04-01

    A limno-reservoir is a hydrologic infrastructure with the main goal of generating a body of water with a constant level in the riverine zone of a reservoir, building a dam that makes de limno-reservoir independent from the main body of water. This dam can be built in the main river supplying the reservoir or any tributary as well flowing into it. Despite its novel conception and design, around a dozen are already operative in some Spanish reservoirs. This infrastructure allows the new water body to be independent of the main reservoir management, so the water level stability is its main distinctive characteristic. It leads to the development of environmental, sports and cultural initiatives; which may be included in a touristic exploitation in a wide sense. An opinion poll was designed in 2009 to be carried out the Pareja Limno-reservoir (Entrepeñas reservoir area, Tajo River Basin, central Spain). The results showed that for both, Pareja inhabitants and occasional visitors, the limno-reservoir has become an important touristic resource, mainly demanded during summer season. The performance of leisure activities (especially swimming) are being the main brand of this novel hydraulic and environmental infrastructure, playing a role as corrective and/or compensatory action which is needed to apply in order to mitigate the environmental impacts of the large hydraulic constructions.

  16. BASIN-CENTERED GAS SYSTEMS OF THE U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marin A. Popov; Vito F. Nuccio; Thaddeus S. Dyman

    2000-11-01

    The USGS is re-evaluating the resource potential of basin-centered gas accumulations in the U.S. because of changing perceptions of the geology of these accumulations, and the availability of new data since the USGS 1995 National Assessment of United States oil and gas resources (Gautier et al., 1996). To attain these objectives, this project used knowledge of basin-centered gas systems and procedures such as stratigraphic analysis, organic geochemistry, modeling of basin thermal dynamics, reservoir characterization, and pressure analysis. This project proceeded in two phases which had the following objectives: Phase I (4/1998 through 5/1999): Identify and describe the geologic and geographicmore » distribution of potential basin-centered gas systems, and Phase II (6/1999 through 11/2000): For selected systems, estimate the location of those basin-centered gas resources that are likely to be produced over the next 30 years. In Phase I, we characterize thirty-three (33) potential basin-centered gas systems (or accumulations) based on information published in the literature or acquired from internal computerized well and reservoir data files. These newly defined potential accumulations vary from low to high risk and may or may not survive the rigorous geologic scrutiny leading towards full assessment by the USGS. For logistical reasons, not all basins received the level of detail desired or required.« less

  17. The Red Sea Basin Province: Sudr-Nubia(!) and Maqna(!) Petroleum Systems

    USGS Publications Warehouse

    Lindquist, Sandra J.

    1999-01-01

    The Sudr-Nubia(!) oil-prone total petroleum system dominates the densely explored Gulf of Suez part of the rifted Red Sea Basin Province. Upper Cretaceous to Eocene source rocks, primarily the Senonian Sudr Formation, are organic-rich, areally uniform marine carbonates that have generated known ultimate recoverable reserves exceeding 11 BBOE. The name Nubia is used for sandstone reservoirs with a wide range of poorly constrained, pre-rift geologic ages ranging from Early Paleozoic to Early Cretaceous. Syn- and post-rift Tertiary reservoirs, especially the Kareem Formation, also contain significant reserves. Partly overlapping Sudr-Nubia(!) is the areally larger and geochemically distinct, oil-and-gas-prone Maqna(!) total petroleum system within the southern Gulf of Suez basin and the sparsely explored remaining Red Sea basin. Known ultimate recoverable reserves are 50-100 MMBOE and more than 900 MMBOE, respectively, in those areas. Both the source and reservoir rocks in this petroleum system are Tertiary, dominantly Miocene, in age. Maqna(!) has the greater potential for future resource development.

  18. Upper Cretaceous Shannon Sandstone reservoirs, Powder River Basin, Wyoming: evidence for organic acid diagenesis?

    USGS Publications Warehouse

    Hansley, P.L.; Nuccio, V.F.

    1992-01-01

    Comparison of the petrology of shallow and deep oil reservoirs in the Upper Cretaceous Shannon Sandstone Beds of the Steele Member of the Cody Shale strongly suggests that organic acids have had a more significant impact on the diagenetic alteration of aluminosilicate grains and carbonate cements in the deep reservoirs than in the shallow reservoirs. Vitrinite reflectance and Rock-Eval measurements, as well as the time-temperature index and kinetic modeling, indicate that deep reservoirs have been subjected to maximum temperatures of approximately 110-120??C, whereas shallow reservoirs have reached only 75??C. -from Authors

  19. Origin and migration of hydrocarbon gases and carbon dioxide, Bekes Basin, southeastern Hungary

    USGS Publications Warehouse

    Clayton, J.L.; Spencer, C.W.; Koncz, I.; Szalay, A.

    1990-01-01

    The Bekes Basin is a sub-basin within the Pannonian Basin, containing about 7000 m of post-Cretaceous sedimentary rocks. Natural gases are produced from reservoirs (Precambrian to Tertiary in age) located on structural highs around the margins of the basin. Gas composition and stable carbon isotopic data indicate that most of the flammable gases were derived from humic kerogen contained in source rocks located in the deep basin. The depth of gas generation and vertical migration distances were estimated using quantitative source rock maturity-carbon isotope relationships for methane compared to known Neogene source rock maturity-depth relationships in the basin. These calculations indicate that as much as 3500 m of vertical migration has occured in some cases. Isotopically heavy (> - 7 > 0) CO2 is the predominant species present in some shallow reservoirs located on basin-margin structural highs and has probably been derived via long-distance vertical and lateral migration from thermal decompositon of carbonate minerals in Mesozoic and older rocks in the deepest parts of the basin. A few shallow reservoirs (< 2000m) contain isotopically light (-50 to -60%0) methane with only minor amounts of C2+ homologs (< 3% v/v). This methane is probably mostly microbial in origin. Above-normal pressures, occuring at depths greater than 1800 m, are believed to be the principal driving force for lateral and vertical gas migration. These pressures are caused in part by active hydrocarbon generation, undercompaction, and thermal decomposition of carbonates. 

  20. Analytical modeling of mercury injection in high-rank coalbed methane reservoirs based on pores and microfractures: a case study of the upper carboniferous Taiyuan Formation in the Heshun block of the Qinshui Basin, central China

    NASA Astrophysics Data System (ADS)

    Gu, Yang; Ding, Wenlong; Yin, Shuai; Wang, Ruyue; Mei, Yonggui; Liu, Jianjun

    2017-03-01

    The coalbed gas reservoirs in the Qinshui Basin in central China are highly heterogeneous; thus, the reservoir characteristics are difficult to assess. Research on the pore structure of a reservoir can provide a basis for understanding the occurrence and seepage mechanisms of coal reservoirs, rock physics modeling and the formulation of rational development plans. Therefore, the pore structure characteristics of the coalbed gas reservoirs in the high rank bituminous coal in the No. 15 coal seam of the Carboniferous Taiyuan Group in the Heshun coalbed methane (CBM) blocks in the northeastern Qinshui Basin were analyzed based on pressure mercury and scanning electron microscopy data. The results showed that the effective porosity system of the coal reservoir was mainly composed of pores and microfractures and that the pore throat configuration of the coal reservoir was composed of pores and microthroats. A model was developed based on the porosity and microfractures of the high rank coal rock and the mercury injection and drainage curves. The mercury injection curve model and the coal permeability are well correlated and were more reliable for the analysis of coal and rock pore system connectivity than the mercury drainage curve model. Coal rocks with developed microfractures are highly permeable; the production levels are often high during the initial drainage stages, but they decrease rapidly. A significant portion of the natural gas remains in the strata and cannot be exploited; therefore, the ultimate recovery is rather low. Coal samples with underdeveloped microfractures have lower permeabilities. While the initial production levels are lower, the production cycle is longer, and the ultimate recovery is higher. Therefore, the initial production levels of coal reservoirs with poorly developed microfractures in some regions of China may be low. However, over the long term, due to their higher ultimate recoveries and longer production cycles, the total gas

  1. Efficient Operation of a Multi-purpose Reservoir in Chile: Integration of Economic Water Value for Irrigation and Hydropower

    NASA Astrophysics Data System (ADS)

    Olivares, M. A.; Gonzalez Cabrera, J. M., Sr.; Moreno, R.

    2016-12-01

    Operation of hydropower reservoirs in Chile is prescribed by an Independent Power System Operator. This study proposes a methodology that integrates power grid operations planning with basin-scale multi-use reservoir operations planning. The aim is to efficiently manage a multi-purpose reservoir, in which hydroelectric generation is competing with other water uses, most notably irrigation. Hydropower and irrigation are competing water uses due to a seasonality mismatch. Currently, the operation of multi-purpose reservoirs with substantial power capacity is prescribed as the result of a grid-wide cost-minimization model which takes irrigation requirements as constraints. We propose advancing in the economic co-optimization of reservoir water use for irrigation and hydropower at the basin level, by explicitly introducing the economic value of water for irrigation represented by a demand function for irrigation water. The proposed methodology uses the solution of a long-term grid-wide operations planning model, a stochastic dual dynamic program (SDDP), to obtain the marginal benefit function for water use in hydropower. This marginal benefit corresponds to the energy price in the power grid as a function of the water availability in the reservoir and the hydrologic scenarios. This function allows capture technical and economic aspects to the operation of hydropower reservoir in the power grid and is generated with the dual variable of the power-balance constraint, the optimal reservoir operation and the hydrologic scenarios used in SDDP. The economic value of water for irrigation and hydropower are then integrated into a basin scale stochastic dynamic program, from which stored water value functions are derived. These value functions are then used to re-optimize reservoir operations under several inflow scenarios.

  2. The Messinian evaporites in the Levant Basin: lithology, deformation and its evolution

    NASA Astrophysics Data System (ADS)

    Feng, Ye; Steinberg, Josh; Reshef, Moshe

    2017-04-01

    The lithological composition of the Messinian evaporite in the Levant Basin remains controversial and salt deformation mechanisms are still not fully understood, due to the lack of high resolution 3D depth seismic data and well logs that record the entire evaporite sequence. We demonstrate how 3D Pre-stack depth migration (PSDM) and intra-salt tomography can lead to improved salt imaging. Using 3D PSDM seismic data with great coverage and deepwater well log data from recently drilled boreholes, we reveal intra-salt reflective units associated with thin clastic layers and a seismic transparent background consisting of uniform pure halite. Structural maps of all internal reflectors are generated for stratigraphy and attributes analysis. High amplitude fan structures in the lowermost intra-salt reflector are observed, which may indicate the source of the clastic formation during the Messinian Salinity Crisis (MSC). The Messinian evaporite in the Levant Basin comprises six units; the uppermost unit thickens towards the northwest, whereas the other units are uniform in thickness. The top of salt (TS) horizon is relatively horizontal, while all other intra-salt reflectors and base of salt (BS) dip towards the northwest. Different seismic attributes are used for identification of intra-salt deformation patterns. Maximum curvature maps show NW-striking thrust faults on the TS and upper intra-salt units, and dip azimuth maps are used to show different fold orientations between the TS and intra-salt units, which indicate a two-phase deformation mechanism: basin NW tilting as syn-depositional phase and NNE spreading of Plio-Pleistocene overburden as post-depositional phase. RMS amplitude maps are used to identify a channelized system on the TS. An evaporite evolution model during the MSC of the Levant Basin is therefore established based on all the observations. Finally the mechanical properties of the salts will be utilized to explore salt deformation in the Levant Basin

  3. Methane and carbon dioxide production in soils flooded by the Belo Monte hydropower reservoir in the Amazon Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Sawakuchi, H. O.; Bertassoli, D. J., Jr.; Silveira, A. M.; Bozi, B. S.; de Jesus, J. S.; Sawakuchi, A. O.; Ward, N. D.; Bastviken, D.; Krusche, A. V.; Richey, J. E.

    2016-12-01

    The Xingu River, one of the major tributary of the Amazon River, was recently impounded by the Belo Monte dam, a massive and controversial hydropower plant that will become the third biggest power station in generating capacity of the world. Given the limited data associated with greenhouse gas emissions from reservoirs in the Amazon basin, the impacts of hydroelectric expansion in this region to the global carbon budget remains unclear. Here, we used a bottom-up assessment to quantify a fraction of the possible emissions associated with the Belo Monte reservoir. Eighteen soil samples were collected before the impoundment from seven different locations and depths in areas that were going to be permanently flooded by the reservoir (forests and pasturelands). Soil samples were split in triplicates and incubated in anoxic conditions during two phases totaling 160 days of anoxic incubation in order to quantify the potential methane and carbon dioxide production through time. Our results showed that pasturelands soil presented higher potential production of both gases in relation to the soils from forested areas, reaching up to 0.072 mg CH4 g-¹d-1 and 0.078 mg CO2 g-¹d-1 during the first period of 65 days in the first phase of incubations. Significant differences in production were also noted through soil depth and time. In several areas, the first 15 cm of soil generated 99% of the methane volume that was being produced in the 60 cm sampled profile. The first 65 days of the second phase of incubations showed production that was 35% (CH4) and 44% (CO2) lower than the same period in the first stage. Extrapolations towards the total flooded area demonstrates that 27.3-43.3 ton CH4 d-1 may be generated from flooded soils in the Belo Monte reservoir during only the first several months of flooding, maintaining significant production rates during upcoming months as long as favorable conditions are maintained.

  4. Understanding satellite-based monthly-to-seasonal reservoir outflow estimation as a function of hydrologic controls

    NASA Astrophysics Data System (ADS)

    Bonnema, Matthew; Sikder, Safat; Miao, Yabin; Chen, Xiaodong; Hossain, Faisal; Ara Pervin, Ismat; Mahbubur Rahman, S. M.; Lee, Hyongki

    2016-05-01

    Growing population and increased demand for water is causing an increase in dam and reservoir construction in developing nations. When rivers cross international boundaries, the downstream stakeholders often have little knowledge of upstream reservoir operation practices. Satellite remote sensing in the form of radar altimetry and multisensor precipitation products can be used as a practical way to provide downstream stakeholders with the fundamentally elusive upstream information on reservoir outflow needed to make important and proactive water management decisions. This study uses a mass balance approach of three hydrologic controls to estimate reservoir outflow from satellite data at monthly and annual time scales: precipitation-induced inflow, evaporation, and reservoir storage change. Furthermore, this study explores the importance of each of these hydrologic controls to the accuracy of outflow estimation. The hydrologic controls found to be unimportant could potentially be neglected from similar future studies. Two reservoirs were examined in contrasting regions of the world, the Hungry Horse Reservoir in a mountainous region in northwest U.S. and the Kaptai Reservoir in a low-lying, forested region of Bangladesh. It was found that this mass balance method estimated the annual outflow of both reservoirs with reasonable skill. The estimation of monthly outflow from both reservoirs was however less accurate. The Kaptai basin exhibited a shift in basin behavior resulting in variable accuracy across the 9 year study period. Monthly outflow estimation from Hungry Horse Reservoir was compounded by snow accumulation and melt processes, reflected by relatively low accuracy in summer and fall, when snow processes control runoff. Furthermore, it was found that the important hydrologic controls for reservoir outflow estimation at the monthly time scale differs between the two reservoirs, with precipitation-induced inflow being the most important control for the Kaptai

  5. Modelling mechanical behaviour of limestone under reservoir conditions

    NASA Astrophysics Data System (ADS)

    Carvalho Coelho, Lúcia; Soares, Antonio Claudio; Ebecken, Nelson Francisco F.; Drummond Alves, José Luis; Landau, Luiz

    2006-12-01

    High porosity and low permeability limestone has presented pore collapse. As fluid is withdrawn from these reservoirs, the effective stresses acting on the rock increase. If the strength of the rock is overcome, pore collapse may occur, leading to irreversible compaction of porous media with permeability and porosity reduction. It impacts on fluid withdrawal. Most of reservoirs have been discovered in weak formations, which are susceptible to this phenomenon. This work presents a study on the mechanical behaviour of a porous limestone from a reservoir located in Campos Basin, offshore Brazil. An experimental program was undergone in order to define its elastic plastic behaviour. The tests reproduced the loading path conditions expected in a reservoir under production. Parameters of the cap model were fitted to these tests and numerical simulations were run. The numerical simulations presented a good agreement with the experimental tests. Copyright

  6. Thermal and pressure histories of the Malay Basin, offshore Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusoff, W.I.; Swarbrick, R.E.

    1994-07-01

    The Malay Basin is a Neogene intracratonic basin characterized by high heat flow and rapid sedimentation; moderate to high overpressure is common in deeper reservoirs. Thermal conductivity and temperature data from 55 wells have been used to reassess the areal and vertical heat-flow distribution within the basin. Anomalously high temperatures have been observed in some sandstone intervals above the overpressured reservoir section. A narrow to rather abrupt pressure transition zone could be recognized. All hydrocarbon-filled reservoirs seemed to be associated with high heat flow (i.e., about 90 mW/m[sup 2]). Overpressure in some wells is approaching critical fracture pressure (i.e., 0.85more » psi/ft. pressure gradient) in the region. In the central part of the basin, the overpressured sections are found within the shallower (<2000 m) hydrocarbon-bearing units. Selective studies of the temporal development of the pore pressure indicated that overpressure development is associated with episodes of rapid sedimentation. A preliminary fluid flow model supported by pressure modeling is proposed whereby hot fluids are currently being expelled from deeper overpressured sandstone and mudrocks through a fractured seal induced by overpressure. The latter is caused by relatively rapid burial since late Tertiary times. Hydrocarbon migration may have been aided by this fluid movement.« less

  7. Stress heterogeneity above and within a deep geothermal reservoir: From borehole observations to geomechanical modelling

    NASA Astrophysics Data System (ADS)

    Seithel, Robin; Peters, Max; Lesueur, Martin; Kohl, Thomas

    2017-04-01

    Overpressured reservoir conditions, local stress concentrations or a locally rotated stress field can initiate substantial problems during drilling or reservoir exploitation. Increasing geothermal utilization in the Molasse basin area in S-Germany is faced with such problems of deeply seated reservoir sections. In several wells, radial fluid flow systems are interpreted as highly porous layers. However, in nearby wells a combination of linear fluid flow, local stress heterogeneities and structural geology hint to a rather fault dominated reservoir (Seithel et al. 2015). Due to missing knowledge of the stress magnitude, stress orientation and their coupling to reservoir response, we will present a THMC model of critical formations and the geothermal reservoir targeting nearby faults. In an area south of Munich, where several geothermal wells are constructed, such wells are interpreted and integrated into a 30 x 30 km simulated model area. One of the main objectives here is to create a geomechanical reservoir model in a thermo-mechanical manner in order to understand the coupling between reservoir heterogeneities and stress distributions. To this end, stress analyses of wellbore data and laboratory tests will help to calibrate a reliable model. In order to implement the complex geological structure of the studied wedge-shaped foreland basin, an automatic export of lithology, fault and borehole data (e.g. from Petrel) into a FE mesh is used. We will present a reservoir-scale model that considers thermo-mechanic effects and analyze their influence on reservoir deformation, fluid flow and stress concentration. We use the currently developed finite element application REDBACK (https://github.com/pou036/redback), inside the MOOSE framework (Poulet et al. 2016). We show that mechanical heterogeneities nearby fault zones and their orientation within the stress field correlate to fracture pattern, interpreted stress heterogeneities or variegated flow systems within the

  8. Characteristics of discrete and basin-centered parts of the Lower Silurian regional oil and gas accumulation, Appalachian basin; preliminary results from a data set of 25 oil and gas fields

    USGS Publications Warehouse

    Ryder, Robert T.

    1998-01-01

    Oil and gas trapped in Lower Silurian 'Clinton' sands and Medina Group sandstone constitute a regional hydrocarbon accumulation that extends 425 mi in length from Ontario, Canada to northeastern Kentucky. The 125-mi width of the accumulation extends from central Ohio eastward to western Pennsylvania and west-central New York. Lenticular and intertonguing reservoirs, a gradual eastward decrease in reservoir porosity and permeability, and poorly segregated gas, oil, and water in the reservoirs make it very difficult to recognize clear-cut geologic- and production-based subdivisions in the accumulation that are relevant to resource assessment. However, subtle variations are recognizable that permit the regional accumulation to be subdivided into three tentative parts: a western gas-bearing part having more or less discrete fields; an eastern gas-bearing part having many characteristics of a basin-centered accumulation; and a central oil- and gas-bearing part with 'hybrid' fields that share characteristics of both discrete and basin-centered accumulation. A data set of 25 oil and gas fields is used in the report to compare selected attributes of the three parts of the regional accumulation. A fourth part of the regional accumulation, not discussed here, is an eastern extension of basin-centered accumulation having local commercial gas in the Tuscarora Sandstone, a proximal facies of the Lower Silurian depositional system. A basin-centered gas accumulation is a regionally extensive and commonly very thick zone of gas saturation that occurs in low-permeability rocks in the central, deeper part of a sedimentary basin. Another commonly used term for this type of accumulation is deep-basin gas accumulation. Basin-centered accumulation is a variety of continuous-type accumulation. The 'Clinton' sands and Medina Group sandstone part of the basin-centered gas accumulation is characterized by: a) reservoir porosity ranging from about 5 to 10 percent; b) reservoir permeability

  9. Quantification of Hungry Horse Reservoir Water Levels Needed to Maintain or Enhance Reservoir Fisheries; Methods and Data, 1983-1987 Summary Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, Bruce; Michael, Gary; Wachsmuth, John

    1988-06-01

    The Hungry Horse Reservoir study is part of the Northwest Power Planning Council's resident fish and wildlife plan. The plan is responsible for mitigating damages to the fish and wildlife resources caused by hydroelectric development in the Columbia River Basin. The major goal of our study is to quantify seasonal water levels needed to maintain or enhance the reservoir fishery. This study began in May, 1983, and the initial phase will be completed July, 1988. This report summarizes limnological, fish abundance, fish distribution and fish food habits data collected from 1983 to 1988. The effect of reservoir operation upon fishmore » habitat, fish food organisms and fish growth is discussed. 71 refs., 36 figs., 46 tabs.« less

  10. Petroleum geology and resources of southeastern Mexico, northern Guatemala, and Belize

    USGS Publications Warehouse

    Peterson, James A.

    1983-01-01

    Petroleum deposits in southeastern Mexico and Guatemala occur in two main basinal provinces, the Gulf Coast Tertiary basin area, which includes the Reforma and offshore Campeche Mesozoic fields, and the Peten basin of eastern Chiapas State (Mexico) and Guatemala. Gas production is mainly from Tertiary sandstone reservoirs of Miocene age. Major oil production, in order of importance, is from Cretaceous, Paleocene, and Jurassic carbonate reservoirs in the Reforma and offshore Campeche areas. Several small oil fields have been discovered in Cretaceous carbonate reservoirs in west-central Guatemala, and one major discovery has been reported in northwestern Guatemala. Small- to medium-sized oil accumulations also occur in Miocene sandstone reservoirs on salt structures in the Isthmus Saline basin of western Tabasco State, Mexico. Almost all important production is in salt structure traps or on domes and anticlines that may be related to deep-seated salt structures. Some minor oil production has occurred in Cretaceous carbonate reservoirs in a buried overthrust belt along the west flank of the Veracruz basin. The sedimentary cover of Paleozoic through Tertiary rocks ranges in thickness from about 6,000 m (20,000 ft) to as much as 12,000 m (40,000 ft) or more in most of the region. Paleozoic marine carbonate and clastic rocks 1,000 to 2,000 m (3,300 to 6,500 ft) thick overlie the metamorphic and igneous basement in part of the region; Triassic through Middle Jurassic red beds and evaporite deposits, including halite, apparently are present throughout the region, deposited in part in a Triassic graben system. Upper Jurassic (Oxfordian) through Cretaceous rocks make up the bulk of the Mesozoic regional carbonate bank complex, which dominates most of the area. Tertiary marine and continental clastic rocks, some of deep water origin, 3,000 to 10,000 m (10,000 to 35,000 ft) thick, are present in the coastal plain Tertiary basins. These beds grade eastward into a carbonate

  11. Provenance analysis and tectonic setting of the Triassic clastic deposits in Western Chukotka, Northeast Russia

    NASA Astrophysics Data System (ADS)

    Tuchkova, M. I.; Sokolov, S.; Kravchenko-Berezhnoy, I. R.

    2009-09-01

    The study area is part of the Anyui subterrane of the Chukotka microplate, a key element in the evolution of the Amerasia Basin, located in Western Chukotka, Northeast Russia. The subterrane contains variably deformed, folded and cleaved rhythmic Triassic terrigenous deposits which represent the youngest stage of widespread marine deposition which form three different complexes: Lower-Middle Triassic, Upper Triassic (Carnian) and Upper Triassic (Norian). All of the complexes are represented by rhythmic interbeds of sandstone, siltstone and mudstone. Macrofaunas are not numerous, and in some cases deposits are dated by analogy to, or by their relationship with, other units dated with macrofaunas. The deposits are composed of pelagic sediments, low-density flows, high-density flows, and shelf facies associations suggesting that sedimentation was controlled by deltaic progradation on a continental shelf and subsequent submarine fan sedimentation at the base of the continental slope. Petrographic study of the mineral composition indicates that the sandstones are lithic arenites. Although the Triassic sandstones appear similar in outcrop and by classification, the constituent rock fragments are of diverse lithologies, and change in composition from lower grade metamorphic rocks in the Lower-Middle Triassic to higher grade metamorphic rocks in the Upper Triassic. This change suggests that the Triassic deposits represent an unroofing sequence as the source of the clastic material came from more deeply buried rocks with time.

  12. Modelling of water inflow to the Kolyma reservoir in historical and future climates

    NASA Astrophysics Data System (ADS)

    Lebedeva, Liudmila; Makarieva, Olga; Ushakov, Mikhail

    2017-04-01

    Kolyma hydropower plant is the most important electricity producer in the Magadan region, North of Russian Far East. North-Eastern Russia has sparse hydrometeorological network. The density is one hydrological gauge per 10 250 km2. Assessment of water inflow to the Kolyma reservoir is complicated by mountainous relief with altitudes more than 2000 m a.s.l., continuous permafrost and sparse data. The study aimed at application of process-based hydrological model to simulate water inflow to the Kolyma reservoir in historical time period and according to projections of future climate. Watershed area of the Kolyma reservoir is 61 500 km2. Dominant landscapes are mountainous tundra and larch forest. The Hydrograph model used in the study explicitly simulates heat and water dynamics in the soil profile thus is able to reflect ground thawing/freezing and change of soil storage capacity through the summer in permafrost environments. The key model parameters are vegetation and soil properties that relate to land surface classes. They are assessed based on field observations and literature data, don't need calibration and could be transferred to other basins with similar landscapes. Model time step is daily, meteorological input are air temperature, precipitation and air moisture. Parameter set that was firstly developed in the small research basins of the Kolyma water-balance station was transferred to middle and large river basins in the region. Precipitation dependences on altitude and air temperature inversions are accounted for in the modelling routine. Successful model application to six river basins with areas from 65 to 42600 km2 within the watershed of the Kolyma reservoir suggests that simulation results for the water inflow to the reservoir are satisfactory. Modelling according to projections of future climate change showed that air temperature increase will likely lead to earlier snowmelt and lower freshet peaks but doesn't change total inflow volume. The study

  13. Concerns about irrigation efficiency as an adaptation measure to cope with droughts and climate change in semi-arid basins

    NASA Astrophysics Data System (ADS)

    Vicuna, S.; Henriquez, L.; Melo, O.

    2016-12-01

    As expected in the late 1960s, the Paloma reservoir was built in the Limari basin in the semi-arid region in central Chile with the premise that climate conditions of the past, including the recurrence of dry and wet periods, were going to repeat in the future. That was in fact the case for almost 30 years after the reservoir was built. During this period water supplies from the reservoir were reliable and irrigation efficiency was improved with the result of irrigated land in the basin increasing four times especially with high value-permanent-water-consumption crops (fruits, orchards). Since 2003, during a mega-drought that has affected large proportions of central Chile, inflows to the Paloma reservoir have never again equaled or surpassed average historic flows. The refill of the reservoir, an event that happened every 3-4 years has not occurred in the last 13 years. And the capacity of the basin to accommodate to such a drastic reduction in water availability is no longer present because of the already large "efficient" and permanent use of water. The results in terms of agriculture losses and runoff at the outlet of the basin have been dramatic. Some 400 kms. south of the Limari basin, with higher precipitation levels but still in the semi-arid region in Chile is located the Maipo basin home to the 6 million people city of Santiago and around 250,000 has of irrigated land. Irrigation efficiency is also improving in this basin with savings being used mostly to supply drinking water supply shortages via transfer of water rights. Considering costly infrastructure alternatives, adaptation to climate change projections in this basin will likely extend the improvements in irrigation efficiency most likely affecting downstream environmental uses and reducing overall resilience of the basin to cope with droughts.

  14. Classification of gravity-flow deposits and their significance for unconventional petroleum exploration, with a case study from the Triassic Yanchang Formation (southern Ordos Basin, China)

    NASA Astrophysics Data System (ADS)

    Fan, Aiping; Yang, Renchao; (Tom) van Loon, A. J.; Yin, Wei; Han, Zuozhen; Zavala, Carlos

    2018-08-01

    The ongoing exploration for shale oil and gas has focused sedimentological research on the transport and deposition mechanisms of fine-grained sediments, and more specifically on fine-grained mass-flow deposits. It appears, however, that no easily applicable classification scheme for gravity-flow deposits exists, and that such classifications almost exclusively deal with sandy and coarser sediments. Since the lack of a good classification system for fine-grained gravity flow deposits hampers scientific communication and understanding, we propose a classification scheme on the basis of the mud content in combination with the presumed transport mechanism. This results in twelve types of gravity-flow deposits. In order to show the practical applicability of this classification system, we apply it to the Triassic lacustrine Yanchang Formation in the southern Ordos Basin (China), which contains numerous slumps, debris-flows deposits, turbidites and hyperpycnites. The slumps and debrites occur mostly close to a delta front, and the turbidites and hyperpycnites extend over large areas from the delta slopes into the basin plain. The case study shows that (1) mud cannot only be transported but also deposited under active hydrodynamic conditions; (2) fine-grained gravity-flow constitute a significant part of the lacustrine mudstones and shales; (3) muddy gravity flows are important for the transport and deposition of clastic particles, clay minerals and organic matter, and thus are important mechanisms involved in the generation of hydrocarbons, also largely determining the reservoir capability for unconventional petroleum.

  15. Research Spotlight: The varying life expectancies of American reservoirs

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-04-01

    Tasked with controlling floods, coping through droughts, generating electricity, maintaining the flow of drinking water, preserving species' habitats, and managing the local environment, the United States' large-scale freshwater management system is important. Unfortunately, as sediment is washed from river basins to reservoirs, the persistent addition of material eats away at a reservoir's capacity and, consequently, its useful life expectancy. Understanding the integrity of the reservoir system is particularly important, with climate projections anticipating warmer, drier conditions for some parts of the country. Using a database of sedimentation surveys conducted between 1775 and 1993, Graf et al. calculate the life expectancies of many of the nation's reservoirs. They find that although most of the country's large reservoirs were built between 1950 and 1960, they have a wide range of expiration dates. They find that most large reservoirs, those with capacities greater than 1.2 cubic kilometers (0.29 cubic mile), have useful life expectancies ranging from 200 to more than 1000 years, with the lowest average life expectancy in the interior West. (Water Resources Research, doi:10.1029/2009WR008836, 2010)

  16. Geology and assessment of undiscovered oil and gas resources of the Timan-Pechora Basin Province, Russia, 2008

    USGS Publications Warehouse

    Schenk, Christopher J.; Moore, Thomas E.; Gautier, D.L.

    2017-11-15

    The Timan-Pechora Basin Province is a triangular area that represents the northeasternmost cratonic block of east European Russia. A 75-year history of petroleum exploration and production in the area there has led to the discovery of more than 16 billion barrels of oil (BBO) and 40 trillion cubic feet of gas (TCFG). Three geologic assessment units (AUs) were defined for assessing the potential for undiscovered oil and gas resources in the province: (1) the Northwest Izhma Depression AU, which includes all potential structures and reservoirs that formed in the northwestern part of the Izhma-Pechora Depression, although this part of the basin contains only sparse source and reservoir rocks and so was not assessed quantitatively; (2) the Main Basin Platform AU, which includes all potential structures and reservoirs that formed in the central part of the basin, where the tectonic and petroleum system evolution was complex; and (3) the Foredeep Basins AU, which includes all potential structures and reservoirs that formed within the thick sedimentary section of the foredeep basins west of the Uralian fold and thrust belt during the Permian and Triassic Uralian orogeny.For the Timan-Pechora Basin Province, the estimated means of undiscovered resources are 3.3 BBO, 17 TCFG, and 0.3 billion barrels of natural-gas liquids (BBNGL). For the AU areas north of the Arctic Circle in the province, the estimated means of undiscovered resources are 1.7 BBO, 9.0 TCFG, and 0.2 BBNGL. These assessment results indicate that exploration in the Timan-Pechora Basin Province is at a mature level.

  17. The coal-forming plants of the upper part of the Lower Cretaceous Starosuchan Formation (Partizansk Basin, South Primorye region)

    NASA Astrophysics Data System (ADS)

    Bugdaeva, E. V.; Markevich, V. S.; Volynets, E. B.

    2014-05-01

    The plant remains and palynological assemblages are studied in detail in the section of the coal-bearing upper part of the Aptian Starosuchan Formation near the village of Molchanovka (Partizansk Basin, South Primorye region). On the basis of the light and electron microscopic study of the disperse cuticles, it was established that the coals are mostly composed of remains of taxodialean Elatides asiatica (Yok.) Krassil., subordinate Miroviaceae, rare ginkgoalean Pseudotorellia sp., and bennettite Nilssoniopteris rithidorachis (Krysht.) Krassil. The spores Gleicheniidites and pollen Taxodiaceaepollenites are dominant in the palynospectrum of the coal interlayer. It was found that dominant taxodialeans and gleicheniaceous ferns with less abundant Miroviaceae, ginkgoaleans, and rare bennettites occurred in the Aptian swamp communities of the Partizansk basin. Shoots and leaves of Elatides asiatica, fronds of Birisia onychioides (Vassil. et K.-M.) Samyl., are dominant in the burials of plants from the clastic rocks. The fragments of leaves of Nilssoniopteris, scale-leaved conifers, and Ginkgo ex gr. adiantoides are rare. The disperse cuticle of these layers mostly includes Pseudotorellia sp.; however, its remains in burials were not found. The spores Laevigatosporites are dominant in the palynospectra from the clastic interlayers. Ginkgocycadophytus and taxa close to Pinaceae are plentiful among the pollen of gymnosperms.

  18. The cretaceous source rocks in the Zagros Foothills of Iran: An example of a large size intracratonic basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bordenave, M.L.; Huc, A.Y.

    1993-02-01

    The Zagros orogenic belt of Iran is one of the world most prolific petroleum producing area. However, most of the oil production is originated from a relatively small area, the 60,000 km[sup 2] wide Dezful Embayment which contains approximately 12% of the proven oil global reserves. The distribution of the oil and gas fields results from the area extent of six identified source rock layers, their thermal history and reservoir, cap rock and trap availability. In this paper, the emphasis is three of the layers of Cretaceous sources rocks. The Garau facies was deposited during the Neocomian to Albian intervalmore » over Lurestan, Northeast Khuzestan and extends over the extreme northeast part of Fars, the Kazhdumi source rock which deposited over the Dezful Embayment, and eventually the Senonian Gurpi Formation which has marginal source rock characteristics in limited areas of Khuzestan and Northern Fars. The deposition environment of these source rock layers corresponds to semipermanent depressions, included in an overall shallow water intracratonic basin communicating with the South Tethys Ocean. These depressions became anoxic when climatic oceanographical and geological conditions were adequate, i.e., humid climate, high stand water, influxes of fine grained clastics and the existence of sills separating the depression from the open sea. Distribution maps of these source rock layers resulting from extensive field work and well control are also given. The maturation history of source rocks is reconstructed from a set of isopachs. It was found that the main contributor to the oil reserves is the Kazhdumi source rock which is associated with excellent calcareous reservoirs.« less

  19. Drastic change in China's lakes and reservoirs over the past decades.

    PubMed

    Yang, Xiankun; Lu, Xixi

    2014-08-13

    Using remote sensing images, we provided the first complete picture of freshwater bodies in mainland China. We mapped 89,700 reservoirs, covering about 26,870 km(2) and approximately 185,000 lakes with a surface area of about 82,232 km(2). Despite relatively small surface area, the total estimated storage capacity of reservoirs (794 km(3)) is triple that of lakes (268 km(3)). Further analysis indicates that reservoir construction has made the river systems strongly regulated: only 6% of the assessed river basins are free-flowing; 20% of assessed river basins have enough cumulative reservoir capacity to store more than the entire annual river flow. Despite the existence of 2,721 lakes greater than 1 km(2), we found that about 50 lakes greater than km(2) have formed on the Tibetan Plateau resulting from climate change. More than 350 lakes of ≥1 km(2) vanished in four other major lake regions. Although the disappearance of lakes happened in the context of global climate change, it principally reflects the severe anthropogenic impacts on natural lakes, such as, the excessive plundering of water resources on the Inner Mongolia-Xinjiang Plateau and serious destruction (land reclamation and urbanization) on the eastern plains.

  20. Compositional characteristics of some Apollo 14 clastic materials.

    NASA Technical Reports Server (NTRS)

    Lindstrom, M. M.; Duncan, A. R.; Fruchter, J. S.; Mckay, S. M.; Stoeser, J. W.; Goles, G. G.; Lindstrom, D. J.

    1972-01-01

    Eighty-two subsamples of Apollo 14 materials have been analyzed by instrumental neutron activation analysis techniques for as many as 25 elements. In many cases, it was necessary to develop new procedures to allow analyses of small specimens. Compositional relationships among Apollo 14 materials indicate that there are small but systematic differences between regolith from the valley terrain and that from Cone Crater ejecta. Fragments from 1-2 mm size fractions of regolith samples may be divided into compositional classes, and the 'soil breccias' among them are very similar to valley soils. Multicomponent linear mixing models have been used as interpretive tools in dealing with data on regolith fractions and subsamples from breccia 14321. These mixing models show systematic compositional variations with inferred age for Apollo 14 clastic materials.

  1. Oil exploration and development in Marib/Al Jawf basin, Yemen Arab Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maycock, I.D.

    1988-02-01

    In 1981, Yemen Hunt Oil Company (YHOC) negotiated a production-sharing agreement covering 12,600 km/sup 2/ in the northeast part of the Yemen Arab Republic. A reconnaissance seismic program of 1864 km acquired in 1982 revealed the presence of a major half graben, designated the Marib/Al Jawf basin by YHOC. A sedimentary section up to 18,000 ft thick has been recognized. Geologic field mapping identified Jurassic carbonates covered by Cretaceous sands overlying Permian glaciolacustrine sediments, Paleozoic sandstones, or Precambrian basement. The first well, Alif-1, drilled in 1984, aimed at a possible Jurassic carbonate objective, encountered hydrocarbon-bearing sands in the Jurassic-Cretaceous transitionmore » between 5000 and 6000 ft. Appraisal and development drilling followed. The Alif field is believed to contain in excess of 400 million bbl of recoverable oil. Subsequent wildcat drilling has located additional accumulations while further amplifying basin stratigraphy. Rapid basin development took place in the Late Jurassic culminating with the deposition of Tithonian salt. The evaporites provide an excellent seal for hydrocarbons apparently sourced from restricted basin shales and trapped in rapidly deposited clastics.« less

  2. Design and life-cycle considerations for unconventional-reservoir wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miskimins, J.L.

    2009-05-15

    This paper provides an overview of design and life-cycle considerations for certain unconventional-reservoir wells. An overview of unconventional-reservoir definitions is provided. Well design and life-cycle considerations are addressed from three aspects: upfront reservoir development, initial well completion, and well-life and long-term considerations. Upfront-reservoir-development issues discussed include well spacing, well orientation, reservoir stress orientations, and tubular metallurgy. Initial-well-completion issues include maximum treatment pressures and rates, treatment diversion, treatment staging, flowback and cleanup, and dewatering needs. Well-life and long-term discussions include liquid loading, corrosion, refracturing and associated fracture reorientation, and the cost of abandonment. These design considerations are evaluated with case studiesmore » for five unconventional-reservoir types: shale gas (Barnett shale), tight gas (Jonah feld), tight oil (Bakken play), coalbed methane (CBM) (San Juan basin), and tight heavy oil (Lost Hills field). In evaluating the life cycle and design of unconventional-reservoir wells, 'one size' does not fit all and valuable knowledge and a shortening of the learning curve can be achieved for new developments by studying similar, more-mature fields.« less

  3. ASUD2- decision support system on Dnieper reservoirs operations taking into account environmental priorities

    NASA Astrophysics Data System (ADS)

    Iritz, L.; Zheleznyak, M.; Dvorzhak, A.; Nesterov, A.; Zaslavsky, A.

    2003-04-01

    On the European continent the Dnieper is the third largest river basin (509000 sq.km). The Ukrainian part of the drainage basin is 291 400 sq.km. The cascade of 6 reservoirs, that have capacity from 2.5 to 18 cub.km comprises the entire reach of Dnieper River in Ukraine, redistributes the water regime in time. As a result, 17-18 cub. km water can be used, 50% for hydropower production, 30% for agriculture and up to 18% for municipal water supply. The water stress, the pollution load, the insufficient technical conditions require a lot of effort in the water management development. In order to achieve optimal use of water recourses in the Dnieper River basin, it is essential to develop strategies both for the long-term perspective (planning) as well as for the short-term perspective (operation). The Dnieper River basin must be seen as complex of the natural water resources, as well as the human system (water use, social and economic intercourse). In the frame of the project, supported by the Swedish International Development Cooperation Agency (SIDA) the software tool ASUD2 is developed to support reservoir operations provided by the State Committee of Ukraine on Water Management and by the Joint River Commission. ASUD2 includes multicriteria optimization engine that drives the reservoir water balamce models and box models of water quality. A system of supplementary (off-line) tools support more detailed analyses of the water quality parameters of largest reservoirs (Kachovka and Kremechug). The models AQUATOX and WASP ( in the developed 3-D version) are used for these purposes. The Integrated Database IDB-ASUD2 supplies the information such as state of the all reservoirs, hydrological observations and predictions, water demands, measured water quality parameters. ASUD2 is able to give the following information on an operational basis. : - recommended dynamics of the water elevation during the water allocation planning period in all reservoirs calculated on the

  4. Integrated Hydrographical Basin Management. Study Case - Crasna River Basin

    NASA Astrophysics Data System (ADS)

    Visescu, Mircea; Beilicci, Erika; Beilicci, Robert

    2017-10-01

    Hydrographical basins are important from hydrological, economic and ecological points of view. They receive and channel the runoff from rainfall and snowmelt which, when adequate managed, can provide fresh water necessary for water supply, irrigation, food industry, animal husbandry, hydrotechnical arrangements and recreation. Hydrographical basin planning and management follows the efficient use of available water resources in order to satisfy environmental, economic and social necessities and constraints. This can be facilitated by a decision support system that links hydrological, meteorological, engineering, water quality, agriculture, environmental, and other information in an integrated framework. In the last few decades different modelling tools for resolving problems regarding water quantity and quality were developed, respectively water resources management. Watershed models have been developed to the understanding of water cycle and pollution dynamics, and used to evaluate the impacts of hydrotechnical arrangements and land use management options on water quantity, quality, mitigation measures and possible global changes. Models have been used for planning monitoring network and to develop plans for intervention in case of hydrological disasters: floods, flash floods, drought and pollution. MIKE HYDRO Basin is a multi-purpose, map-centric decision support tool for integrated hydrographical basin analysis, planning and management. MIKE HYDRO Basin is designed for analyzing water sharing issues at international, national and local hydrographical basin level. MIKE HYDRO Basin uses a simplified mathematical representation of the hydrographical basin including the configuration of river and reservoir systems, catchment hydrology and existing and potential water user schemes with their various demands including a rigorous irrigation scheme module. This paper analyzes the importance and principles of integrated hydrographical basin management and develop a case

  5. Assessment of Short Term Flood Operation Strategies Using Numerical Weather Prediction Data in YUVACΙK DAM Reservoir, Turkey

    NASA Astrophysics Data System (ADS)

    Uysal, G.; Yavuz, O.; Sensoy, A.; Sorman, A.; Akgun, T.; Gezgin, T.

    2011-12-01

    Yuvacik Dam Reservoir Basin, located in the Marmara region of Turkey with 248 km2 drainage area, has steep topography, mild and rainy climate thus induces high flood potential with fast flow response, especially to early spring and fall precipitation events. Moreover, the basin provides considerable snowmelt contribution to the streamflow during melt season since the elevation ranges between 80 - 1548 m. The long term strategies are based on supplying annual demand of 142 hm3 water despite a relatively small reservoir capacity of 51 hm3. This situation makes short term release decisions as the challenging task regarding the constrained downstream safe channel capacity especially in times of floods. Providing the demand of 1.5 million populated city of Kocaeli is the highest priority issue in terms of reservoir management but risk optimization is also required due to flood regulation. Although, the spillway capacity is 1560 m3/s, the maximum amount of water to be released is set as 100 m3/s by the regional water authority taking into consideration the downstream channel capacity which passes through industrial region of the city. The reservoir is a controlled one and it is possible to hold back the 15 hm3 additional water by keeping the gates closed. Flood regulation is set to achieve the maximum possible flood attenuation by using the full flood-control zone capacity in the reservoir before making releases in excess of the downstream safe-channel capacity. However, the operators still need to exceed flood regulation zones to take precautions for drought summer periods in order to supply water without any shortage that increases the risk in times of flood. Regarding to this circumstances, a hydrological model integrated reservoir modeling system, is applied to account for the physical behavior of the system. Hence, this reservoir modeling is carried out to analyze both previous decisions and also the future scenarios as a decision support tool for operators. In the

  6. Monitoring the formation of clastic-biogenic varves to improve the quality of paleoclimate reconstructions

    NASA Astrophysics Data System (ADS)

    Ojala, A.; Kosonen, E.; Weckstrom, J.; Korkonen, S.

    2013-12-01

    Annually laminated (varved) sediments are excellent archives for studies of past climate and environmental changes, as they allow analysis of the undisturbed 'in-situ' sediment composition and structure with a seasonal-scale resolution. Among those, clastic-biogenic varved lake sediments have been found and investigated in Finland and Sweden during the last decades. An important prerequisite for applying varved sediments in palaeoenvironmental studies is understanding the mechanism of rhythmic sedimentation and the composition of different laminae representing annual sedimentation events. This knowledge is essential for verifying the annual nature of varves, for investigating the main factors controlling seasonal sedimentation, and for the interpretations of past environmental changes. Here, we report detailed information on the seasonal sedimentation of different varve components and palaeolimnological indicators (diatoms, chrysophycaean cysts) in Lake Nautajärvi, Finland, using near-bottom sediment trap monitoring. The monitoring results strongly support previous interpretations of the formation of clastic-biogenic varves in Fennoscandian lakes. The results also indicate that seasonal sediment fluxes correspond with regional climate and environmental changes. They clearly reveal differences in the amount of seasonal sediment flux between two climatologically and hydrologically different years. For example, higher snow storage in winter and the discharge intensity during the following spring snow melt clearly increases the suspended sediment load, transportation, and net accumulation of detrital mineral matter during spring and early summer. A prolonged autumn and subsequent freezing and thawing cycles in winter, conversely, results in an incremental but slow accumulation of assorted mineral matter and organic particles during winter, whereas the subsequent spring flooding and detrital sediment yield are diminished and thinner clastic laminae are formed. The

  7. Minimum average 7-day, 10-year flows in the Hudson River basin, New York, with release-flow data on Rondout and Ashokan reservoirs

    USGS Publications Warehouse

    Archer, Roger J.

    1978-01-01

    Minimum average 7-day, 10-year flow at 67 gaging stations and 173 partial-record stations in the Hudson River basin are given in tabular form. Variation of the 7-day, 10-year low flow from point to point in selected reaches, and the corresponding times of travel, are shown graphically for Wawayanda Creek, Wallkill River, Woodbury-Moodna Creek, and the Fishkill Creek basins. The 7-day, 10-year low flow for the Saw Kill basin, and estimates of the 7-day, 10-year low flow of the Roeliff Jansen Kill at Ancram and of Birch Creek at Pine Hill, are given. Summaries of discharge from Rondout and Ashokan Reservoirs, in Ulster County, are also included. Minimum average 7-day, 10-year flow for gaging stations with 10 years or more of record were determined by log-Pearson Type III computation; those for partial-record stations were developed by correlation of discharge measurements made at the partial-record stations with discharge data from appropriate long-term gaging stations. The variation in low flows from point to point within the selected subbasins were estimated from available data and regional regression formula. Time of travel at these flows in the four subbasins was estimated from available data and Boning's equations.

  8. Factors affecting reservoir and stream-water quality in the Cambridge, Massachusetts, drinking-water source area and implications for source-water protection

    USGS Publications Warehouse

    Waldron, Marcus C.; Bent, Gardner C.

    2001-01-01

    This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the city of Cambridge, Massachusetts, Water Department, to assess reservoir and tributary-stream quality in the Cambridge drinking-water source area, and to use the information gained to help guide the design of a comprehensive water-quality monitoring program for the source area. Assessments of the quality and trophic state of the three primary storage reservoirs, Hobbs Brook Reservoir, Stony Brook Reservoir, and Fresh Pond, were conducted (September 1997-November 1998) to provide baseline information on the state of these resources and to determine the vulnerability of the reservoirs to increased loads of nutrients and other contaminants. The effects of land use, land cover, and other drainage-basin characteristics on sources, transport, and fate of fecal-indicator bacteria, highway deicing chemicals, nutrients, selected metals, and naturally occurring organic compounds in 11 subbasins that contribute water to the reservoirs also was investigated, and the data used to select sampling stations for incorporation into a water-quality monitoring network for the source area. All three reservoirs exhibited thermal and chemical stratification, despite artificial mixing by air hoses in Stony Brook Reservoir and Fresh Pond. The stratification produced anoxic or hypoxic conditions in the deepest parts of the reservoirs and these conditions resulted in the release of ammonia nitrogen orthophosphate phosphorus, and dissolved iron and manganese from the reservoir bed sediments. Concentrations of sodium and chloride in the reservoirs usually were higher than the amounts recommended by the U.S. Environmental Protection agency for drinking-water sources (20 milligrams per liter for sodium and 250 milligrams per liter for chloride). Maximum measured sodium concentrations were highest in Hobbs Brook Reservoir (113 milligrams per liter), intermediate in Stony Brook Reservoir (62

  9. Analysis on biomass and productivity of epilithic algae and their relations to environmental factors in the Gufu River basin, Three Gorges Reservoir area, China.

    PubMed

    Ge, Jiwen; Wu, Shuyuan; Touré, Dado; Cheng, Lamei; Miao, Wenjie; Cao, Huafen; Pan, Xiaoying; Li, Jianfeng; Yao, Minmin; Feng, Liang

    2017-12-01

    The main purpose of this study conducted from August 2010 was to find biomass and productivity of epilithic algae and their relations to environmental factors and try to explore the restrictive factors affecting the growth of algae in the Gufu River, the one of the branches of Xiangxi River located in the Three Gorges Reservoir of the Yangtze River, Hubei Province, Central China. An improved method of in situ primary productivity measurement was utilized to estimate the primary production of the epilithic algae. It was shown that in rivers, lakes, and reservoirs, algae are the main primary producers and have a central role in the ecosystem. Chlorophyll a concentration and ash-free dry mass (AFDM) were estimated for epilithic algae of the Gufu River basin in Three Gorges Reservoir area. Environmental factors in the Gufu River ecosystem highlighted differences in periphyton chlorophyll a ranging from 1.49 mg m -2 (origin) to 69.58 mg m -2 (terminal point). The minimum and maximum gross primary productivity of epilithic algae were 96.12 and 1439.89 mg C m -2  day -1 , respectively. The mean net primary productivity was 290.24 mg C m -2  day -1 . The mean autotrophic index (AFDM:chlorophyll a) was 407.40. The net primary productivity, community respiration ratio (P/R ratio) ranged from 0.98 to 9.25 with a mean of 2.76, showed that autotrophic productivity was dominant in the river. Relationship between physicochemical characteristics and biomass was discussed through cluster and stepwise regression analysis which indicated that altitude, total nitrogen (TN), NO 3 - -N, and NH 4 + -N were significant environmental factors affecting the biomass of epilithic algae. However, a negative logarithmic relationship between altitude and the chlorophyll a of epilithic algae was high. The results also highlighted the importance of epilithic algae in maintaining the Gufu River basin ecosystems health.

  10. Dynamic study of the upper Sao Francisco river and Tres Marias reservoir using MSS/LANDSAT images. M.S. Thesis; [BRazil

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Sausen, T. M.

    1981-01-01

    The relationship between the dispersion and concentration of sediment in the superficial layers of the Tres Marias reservoir and the dynamics of the drainage basins of its tributaries was verified using LANDSAT MSS imagery. The drainage network, dissection patterns, and land use of each watershed were considered in an analysis of multispectral images, corresponding to bands 4,5, and 7, of dry and rainy seasons in 1973, 1975, 1977, and 1978. The superficial layer water layers of the reservoir were also divided according to the grey level pattern of each image. Two field trips were made to collect Secchi depths and in situ water reflectance. It is concluded that it is possible to determine the main factors that act in the dynamics of the drainage basins of a reservoir by simultaneous control of the physical variables and the antropic action of each basin.

  11. Impacts of land and water use on plankton diversity and water quality in small man-made reservoirs in the Limpopo basin, Zimbabwe: A preliminary investigation

    NASA Astrophysics Data System (ADS)

    Basima, Lefranc Busane; Senzanje, Aidan; Marshall, Brian; Shick, Katharine

    This paper reports on a study carried out from February to April 2005 in the southern part of Zimbabwe in the Mzingwane catchment, Limpopo basin to investigate the impacts of land and water use on the water quality and ecosystem health of eight small man-made reservoirs. Four of the reservoirs of were located in communal lands while the remaining four were located in the National Park Estates, considered pristine. Plankton community structure was identified in terms of abundance and diversity as an indirect assessment of water quality and ecosystem health. In addition, phosphorus, nitrogen, pH, transparency, electric conductivity and hardness were analysed. The results obtained indicate that a significant difference in abundance of phytoplankton groups was found between the communal lands and the National Park Estates ( P < 0.01). Though the highest phytoplankton abundance was observed in April, February showed the highest number of taxa (highest diversity). Chlorophytes was the major group in both periods with 29 genera in February and 20 in April followed by Diatoms with 17 genera in February and 12 in April. The zooplankton community was less diverse and less abundant and did not show any seasonality pattern. Phosphorus (0.022 ± 0.037 mg/l) and nitrogen (0.101 ± 0.027 mg/l) had similar trends in the study area during the study period. Transparency of water was very low (ca. 27 cm secchi depth) in 75% of the reservoirs with communal lands’ reservoirs having a whitish colour, likely reducing light penetration and therefore photosynthetic potential. Evidence from the study indicates that, at this time, activities in the communal lands are not significantly impacting the ecosystem health of reservoirs, as water quality characteristics and plankton diversity on communal lands were not significantly different from the pristine reservoirs in National Park. However, water managers are urged to continuously monitor the changes in land and water uses around these

  12. ­­Clastic Pipes on Mars: Evidence for a Near Surface Groundwater System

    NASA Astrophysics Data System (ADS)

    Wheatley, D. F.; Chan, M. A.; Okubo, C. H.

    2017-12-01

    Clastic pipes, a type of vertical, columnar injectite, occur throughout the terrestrial stratigraphic record and are identified across many Martian terrains. Terrestrial pipe analogs can aid in identifying clastic pipes on Mars to understand their formation processes and their implications for a past near-surface groundwater system. On Earth, clastic pipes form through fluidization of overpressurized sediment. Fluidization occurs when the upward frictional (i.e., drag) forces of escaping fluids overpower the downward acting gravitational force. To create the forces necessary for pipe formation requires overpressurization of a body of water-saturated porous media overlain by a low permeability confining layer. As the pressure builds, the confining layer eventually fractures and the escaping fluids fluidize the porous sediment causing the sediment to behave like a fluid. These specific formation conditions record evidence of a violent release of fluid-suspended sediment including brecciation of the host and sealing material, internal outward grading/sorting that results in a coarser-grained commonly better cemented outer rind, traction structures, and a cylindrical geometry. Pipes form self-organized, dispersed spatial relationships due to the efficient diffusion of overpressured zones in the subsurface and the expulsion of sediment under pressure. Martian pipes occur across the northern lowlands, dichotomy boundary, and southern highlands in various forms of erosional relief ranging from newer eruption structures to eroded cylindrical/conical mounds with raised rims to highly eroded mounds/hills. Similar to terrestrial examples, Martian pipes form in evenly-spaced, self-organized arrangements. The pipes are typically internally massive with a raised outer rim (interpreted as a sorted, coarser-grained, better-cemented rim). This evidence indicates that Martian pipes formed through fluidization, which requires a near-surface groundwater system. Pipes create a window

  13. The Noble Gas Record of Gas-Water Phase Interaction in the Tight-Gas-Sand Reservoirs of the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Ballentine, C. J.; Zhou, Z.; Harris, N. B.

    2015-12-01

    The mass of hydrocarbons that have migrated through tight-gas-sandstone systems before the permeability reduces to trap the hydrocarbon gases provides critical information in the hydrocarbon potential analysis of a basin. The noble gas content (Ne, Ar, Kr, Xe) of the groundwater has a unique isotopic and elemental composition. As gas migrates through the water column, the groundwater-derived noble gases partition into the hydrocarbon phase. Determination of the noble gases in the produced hydrocarbon phase then provides a record of the type of interaction (simple phase equilibrium or open system Rayleigh fractionation). The tight-gas-sand reservoirs of the Rocky Mountains represent one of the most significant gas resources in the United States. The producing reservoirs are generally developed in low permeability (averaging <0.1mD) Upper Cretaceous fluvial to marginal marine sandstones and commonly form isolated overpressured reservoir bodies encased in even lower permeability muddy sediments. We present noble gas data from producing fields in the Greater Green River Basin, Wyoming; the the Piceance Basin, Colorado; and in the Uinta Basin, Utah. The data is consistent from all three basins. We show how in each basin the noble gases record open system gas migration through a water column at maximum basin burial. The data within an open system model indicates that the gas now in-place represents the last ~10% of hydrocarbon gas to have passed through the water column, most likely prior to permeability closedown.

  14. Sedimentary facies and depositional environments of early Mesozoic Newark Supergroup basins, eastern North America

    USGS Publications Warehouse

    Smoot, J.P.

    1991-01-01

    The early Mesozoic Newark Supergroup consists of continental sedimentary rocks and basalt flows that occupy a NE-trending belt of elongate basins exposed in eastern North America. The basins were filled over a period of 30-40 m.y. spanning the Late Triassic to Early Jurassic, prior to the opening of the north Atlantic Ocean. The sedimentary rocks are here divided into four principal lithofacies. The alluvial-fan facies includes deposits dominated by: (1) debris flows; (2) shallow braided streams; (3) deeper braided streams (with trough crossbeds); or (4) intense bioturbation or hyperconcentrated flows (tabular, unstratified muddy sandstone). The fluvial facies include deposits of: (1) shallow, ephemeral braided streams; (2) deeper, flashflooding, braided streams (with poor sorting and crossbeds); (3) perennial braided rivers; (4) meandering rivers; (5) meandering streams (with high suspended loads); (6) overbank areas or local flood-plain lakes; or (7) local streams and/or colluvium. The lacustrine facies includes deposits of: (1) deep perennial lakes; (2) shallow perennial lakes; (3) shallow ephemeral lakes; (4) playa dry mudflats; (5) salt-encrusted saline mudflats; or (6) vegetated mudflats. The lake margin clastic facies includes deposits of: (1) birdfoot deltas; (2) stacked Gilbert-type deltas; (3) sheet deltas; (4) wave-reworked alluvial fans; or (5) wave-sorted sand sheets. Coal deposits are present in the lake margin clastic and the lacustrine facies of Carnian age (Late Triassic) only in basins of south-central Virginia and North and South Carolina. Eolian deposits are known only from the basins in Nova Scotia and Connecticut. Evaporites (and their pseudomorphs) occur mainly in the northern basins as deposits of saline soils and less commonly of saline lakes, and some evaporite and alkaline minerals present in the Mesozoic rocks may be a result of later diagenesis. These relationships suggest climatic variations across paleolatitudes, more humid to the

  15. Major factors controlling fracture development in the Middle Permian Lucaogou Formation tight oil reservoir, Junggar Basin, NW China

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Zhu, Deyu; Luo, Qun; Liu, Luofu; Liu, Dongdong; Yan, Lin; Zhang, Yunzhao

    2017-09-01

    Natural fractures in seven wells from the Middle Permian Lucaogou Formation in the Junggar Basin were evaluated in light of regional structural evolution, tight reservoir geochemistry (including TOC and mineral composition), carbon and oxygen isotopes of calcite-filled fractures, and acoustic emission (AE). Factors controlling the development of natural fractures were analyzed using qualitative and/or semi-quantitative techniques, with results showing that tectonic factors are the primary control on fracture development in the Middle Permian Lucaogou Formation of the Junggar Basin. Analyses of calcite, dolomite, and TOC show positive correlations with the number of fractures, while deltaic lithofacies appear to be the most favorable for fracture development. Mineral content was found to be a major control on tectonic fracture development, while TOC content and sedimentary facies mainly control bedding fractures. Carbon and oxygen isotopes vary greatly in calcite-filled fractures (δ13C ranges from 0.87‰ to 7.98‰, while δ18O ranges from -12.63‰ to -5.65‰), indicating that fracture development increases with intensified tectonic activity or enhanced diagenetic alteration. By analyzing the cross-cutting relationships of fractures in core, as well as four Kaiser Effect points in the acoustic emission curve, we observed four stages of tectonic fracture development. First-stage fractures are extensional, and were generated in the late Triassic, with calcite fracture fills formed between 36.51 °C and 56.89 °C. Second-stage fractures are shear fractures caused by extrusion stress from the southwest to the northeast, generated by the rapid uplift of the Tianshan in the Middle and Late Jurassic; calcite fracture fills formed between 62.91 °C and 69.88 °C. Third-stage fractures are NNW-trending shear fractures that resulted from north-south extrusion and thrusting in a foreland depression along the front of the Early Cretaceous Bogda Mountains. Calcite fracture

  16. Tectono-Thermal History Modeling and Reservoir Simulation Study of the Nenana Basin, Central Alaska: Implications for Regional Tectonics and Geologic Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Dixit, Nilesh C.

    basin. Coals have significant capacity for sequestering anthropogenic CO 2 emissions and offer the benefit of enhanced coal bed methane production that can offset the costs associated with the sequestration processes. In order to do a preliminary assessment of the CO2 sequestration and coal bed methane production potential of the Nenana basin, I used available surface and subsurface data to build and simulate a reservoir model of subbituminous Healy Creek Formation coals. The petroleum exploration data were also used to estimate the state of subsurface stresses that are critical in modeling the orientation, distribution and flow behavior of natural coal fractures in the basin. The effect of uncertainties within major coal parameters on the total CO2 sequestration and coal bed methane capacity estimates were evaluated through a series of sensitivity analyses, experimental design methods and fluid flow simulations. Results suggest that the mature, unmineable Healy Creek Formation coals of the Nenana basin can sequester up to 0.41 TCF of CO2 while producing up to 0.36 TCF of CH4 at the end of 44-year forecast. However, these volumes are estimates and they are also sensitive to the well type, pattern and cap rock lithology. I used a similar workflow to evaluate the state of in situ stress in the northeastern North Slope province of Alaska. The results show two distinct stress regimes across the northeastern North Slope. The eastern Barrow Arch exhibits both strike-slip and normal stress regimes. Along the northeastern Brooks Range thrust front, an active thrust-fault regime is present at depths up to 6000 ft but changes to a strike-slip stress regime at depths greater than 6000 ft.

  17. Sedimentary conditions of Upper Permian volcano-clastic rocks of Ayan-Yrahskiy anticlinorium (Verhoyansk-Kolyma orogen)

    NASA Astrophysics Data System (ADS)

    Astakhova, Anna; Khardikov, Aleksandr

    2013-04-01

    Sedimentation conditions of upper Permian volcano-clastic rocks of Ayan-Yurakhsky anticlinorium are the reason of discussions between researchers. It is important to correctly solve this problem. Investigation allows us to conclude that upper Permian sediments was formed due to high rate deltaic sedimentation on shelf and continental slope of epicontinental sea basin. More than 45 outcrops of upper Permian sediments were described within Ayan-Yurakhsky anticlinorium. Termochemical and X-ray phase, lithological facies, stadial, paleogeographic and others were applied. Investigation allows to classify following types: tuffs, tuffites of andesites, andesi-dacites, sandstone tuffs, siltstone tuffs and claystone tuffs. Two facies were deliniated in the research area: 1) delta channel facies 2) epicontinental sea shelf edge and continental slope. Delta channel facies are located on the south-west part of Aian-Yrahskiy anticlinorium. It is composed of silty packsand and psammitic tuff-siltstone alternation and gravel-psammitic andesi-dacitic tuffute and tuff-breccia bands. Sediments have cross-bedding, through cross-bedding, curvilinear lamination structures. Facies occurred during high rate deltaic sedimentation on the shelf of epicontinental sea. Epicontinental sea shelf edge and continental slope facies are located on the south-west part. Sediments are represented by large thickness tuff-siltstone with tuff-sandstone, tuff-madstone, tuff, tuffite bands and lenses. Large number of submarine landslides sediments provide evidence that there was high angle sea floore environment. 30-50 m diametr eruption centers were described by authors during geological traverses. They are located in Kulu river basin. Their locations are limited by deep-seated pre-ore fault which extended along Ayan-Yurakhsky anticlinorium. U-Pb SHRIMP method showed that the average age of circons, taken from eruption centers, is Permian (256,3±3,7 ma). This fact confirms our emphasis that eruption

  18. CE-QUAL-W2 Modeling of Head-of-Reservoir Conditions at Shasta Reservoir, California

    NASA Astrophysics Data System (ADS)

    Clancey, K. M.; Saito, L.; Svoboda, C.; Bender, M. D.; Hannon, J.

    2014-12-01

    Restoration of Chinook salmon and steelhead is a priority in the Sacramento River Basin since they were listed under the Endangered Species Act in 1989 and 1998, respectively. Construction of Shasta Dam and Reservoir obstructed fish migration, resulting in severe population declines. Efforts have been undertaken to restore the fisheries, including evaluation of opportunities for reintroducing Chinook salmon upstream of the dam and providing juvenile fish passage downstream past Shasta Dam. Shasta Reservoir and the Sacramento River and McCloud River tributaries have been modeled with CE-QUAL-W2 (W2) to assess hydrodynamic and temperature conditions with and without surface curtains to be deployed in the tributaries. Expected head-of-reservoir tributary conditions of temperature and water depth are being simulated under dry, median and wet year conditions. Model output is analyzed during months of downstream migration of fish from upstream Sacramento and McCloud River tributaries. W2 will be used to determine presence of favorable conditions for juvenile rearing with proposed surface temperature curtains. Evaluation of favorable conditions for fish includes assessment of water temperature, velocities, and depth. Preliminary results for head-of-reservoir conditions and the influence of temperature curtains modeled with W2 will be presented. Study findings may assist in formulation of juvenile fish passage alternatives for Shasta Lake.

  19. Reconstructed Sediment Mobilization Processes in a Large Reservoir Using Short Sediment Cores

    NASA Astrophysics Data System (ADS)

    Cockburn, J.; Feist, S.

    2014-12-01

    Williston Reservoir in northern British Columbia (56°10'31"N, 124°06'33") was formed when the W.A.C. Bennett Dam was created in the late 1960s, is the largest inland body of water in BC and facilitates hydroelectric power generation. Annually the reservoir level rises and lowers with the hydroelectric dam operation, and this combined with the inputs from several river systems (Upper Peace, Finlay, Parsnip, and several smaller creeks) renews suspended sediment sources. Several short-cores retrieved from shallow bays of the Finlay Basin reveal near-annual sedimentary units and distinct patterns related to both hydroclimate variability and the degree to which the reservoir lowered in a particular year. Thin section and sedimentology from short-cores collected in three bays are used to evaluate sediment mobilization processes. The primary sediment sources in each core location is linked to physical inputs from rivers draining into the bays, aeolian contributions, and reworked shoreline deposits as water levels fluctuate. Despite uniform water level lowering across the reservoir, sediment sequences differed at each site, reflecting the local stream inputs. However, distinct organic-rich units, facilitated correlation across the sites. Notable differences in particle size distributions from each core points to important aeolian derived sediment sources. Using these sedimentary records, we can evaluate the processes that contribute to sediment deposition in the basin. This work will contribute to decisions regarding reservoir water levels to reduce adverse impacts on health, economic activities and recreation in the communities along the shores of the reservoir.

  20. Petrographic and Facies Properties of the Evaporites in the Cihanbeyli-Yeniceoba Basin (Central Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Sami Us, Muhammed; Tekin, Erdoǧan

    2016-04-01

    The Cihanbeyli-Yeniceoba Tertiary basin and other neighbouring basins such as Haymana on the NW and Tuzgölü on the east were formed after ophiolite emplacement and then evolved as tectonic controlled basins bordered with normal and oblique-slip fault systems NW-SE in extending. Where sedimentation commenced with Late Cretaceous-Early Paleocene marine transgression and ended by late Middle Eocene-Early Oligocene regression that involved thick evaporite sedimentation just before the onset of the terrestrial regime through the early Late Oligocene-Pliocene time. This study mainly was focused on the evaporitic sediments of the Late Oligocene-Middle Miocene aged Gökdaǧ Formation which unconformably overlain by fluvial and alluvial units of the Cihanbeyli Formation (Late Miocene-Early Pliocene). Typical outcrops have been seen around the Yeniceoba-Kütükuşaǧı-Kuşca region located in the western part of Tuz Gölü (Salt Lake). The study includes several targets. These are stratigraphical contact and relationship between evaporite and non-evaporite units, evaporite environments and mineralogical, petrographical and microtextural features of the evaporites. The following five evaporite facies were described: a) massive gypsum (F1), b) laminated-banded gypsum (F2), c) nodular gypsum (F3), d) clastic gypsum (F4), e) satin-spar gypsum (F5). On the other hand polarized microscope and scanning electron microscope (SEM) show that secondary gypsums are represented by alabastrine and porfiroblastic textures. Primary anhydrite relicts, euhedral celestine crystals accompanied with the secondary gypsum. Clastic gypsum is rich in fragment fossils (mostly nummulites) and kaolinite clay minerals. All data suggest that evaporites were widely deposited as basin margin evaporite that temporally underwent atmospheric conditions gave rise to detrital gypsum ranging from gypsarenite to gypsum conglomerate. Acknowledgement:This presentation was prepared MS thesis to financially

  1. BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernest A. Mancini; Donald A. Goddard; Ronald K. Zimmerman

    2005-05-10

    The principal research effort for Year 2 of the project has been data compilation and the determination of the burial and thermal maturation histories of the North Louisiana Salt Basin and basin modeling and petroleum system identification. In the first nine (9) months of Year 2, the research focus was on the determination of the burial and thermal maturation histories, and during the remainder of the year the emphasis has basin modeling and petroleum system identification. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, regional cross sections have been prepared, structuremore » and isopach maps have been constructed, and burial history, thermal maturation history and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and related profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs are mainly Upper Jurassic and Lower Cretaceous fluvial-deltaic sandstone facies and Lower Cretaceous and Upper Cretaceous shoreline, marine bar and shallow shelf sandstone facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary

  2. Summary of Research through Phase II/Year 2 of Initially Approved 3 Phase/3 Year Project - Establishing the Relationship between Fracture-Related Dolomite and Primary Rock Fabric on the Distribution of Reservoirs in the Michigan Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Grammer

    2007-09-30

    This final scientific/technical report covers the first 2 years (Phases I and II of an originally planned 3 Year/3 Phase program). The project was focused on evaluating the relationship between fracture-related dolomite and dolomite constrained by primary rock fabric in the 3 most prolific reservoir intervals in the Michigan Basin. The characterization of select dolomite reservoirs was the major focus of our efforts in Phases I and II of the project. Structural mapping and log analysis in the Dundee (Devonian) and Trenton/Black River (Ordovician) suggest a close spatial relationship among gross dolomite distribution and regional-scale, wrench fault-related NW-SE and NE-SWmore » structural trends. A high temperature origin for much of the dolomite in these 2 studied intervals (based upon fluid inclusion homogenization temperatures and stable isotopic analyses,) coupled with persistent association of this dolomite in reservoirs coincident with wrench fault-related features, is strong evidence for these reservoirs being influenced by hydrothermal dolomitization. In the Niagaran (Silurian), there is a general trend of increasing dolomitization shelfward, with limestone predominant in more basinward positions. A major finding is that facies types, when analyzed at a detailed level, are directly related to reservoir porosity and permeability in these dolomites which increases the predictability of reservoir quality in these units. This pattern is consistent with our original hypothesis of primary facies control on dolomitization and resulting reservoir quality at some level. The identification of distinct and predictable vertical stacking patterns within a hierarchical sequence and cycle framework provides a high degree of confidence at this point that the results should be exportable throughout the basin. Much of the data synthesis and modeling for the project was scheduled to be part of Year 3/Phase III, but the discontinuation of funding after Year 2 precluded those

  3. Estimating the impacts of a reservoir for improved water use in irrigation in the Yarabamba region, Peru

    NASA Astrophysics Data System (ADS)

    Swiech, Theoclea; Ertsen, Maurits W.; Pererya, Carlos Machicao

    The pressure on irrigation is increasing worldwide, not only because of - perceived or real - high water consumption in the irrigated sector, but also because an increased world population puts stress on food production. Numerous irrigated areas around the world face similar issues of water scarcity, disparity in water distribution and deficient infrastructure. As a result, farmers are typically restricted in their production strategies. A general strategy in the irrigation sector is the introduction of so-called modern techniques in existing irrigation systems, with the aim to increase agricultural production. This paper discusses such a modernization effort in the sub-basin of Yarabamba, Arequipa, Peru, in which a reservoir is being constructed to improve water use and stimulate economic development. Based on fieldwork, including interviews and scenario modeling with WEAP, the relationships between water users, their irrigation systems and the water balances in the basin were studied. Scenario studies showed that the reservoir might alleviate the current water shortages in the sub-basin, but that restrictions in the current infrastructure and management of irrigation may be of more importance than the reservoir. Especially existing interests and actions of upstream and downstream areas appear to be important factors; these will not be automatically solved with the new reservoir.

  4. Link between Neogene and modern sedimentary environments in the Zagros foreland basin

    NASA Astrophysics Data System (ADS)

    Pirouz, Mortaza; Simpson, Guy; Bahroudi, Abbas

    2010-05-01

    The Zagros mountain belt, with a length of 1800 km, is located in the south of Iran and was produced by collision between the Arabian plate and the Iran micro plate some time in the early Tertiary. After collision, the Zagros carbonate-dominated sedimentary basin has been replaced by a largely clastic system. The Neogene Zagros foreland basin comprises four main depositional environments which reflect the progressive southward migration of the deformation front with time. The oldest unit - the Gachsaran formation - is clastic in the northern part of the basin, but is dominated by evaporates in southern part, being deposited in a supratidal Sabkha-type environment. Overlying the Gachsaran is the Mishan formation, which is characterized by the Guri limestone member at the base, overlain by marine green marls. The thickness of the Guri member increases dramatically towards the southeast. The next youngest unit is the Aghajari Formation which consists of well sorted lenticular sandstone bodies in a red silty-mudstone. This formation is interpreted as representing the floodplain of dominantly meandering rivers. Finally, the Bakhtiari formation consists of mainly coarse-grained gravel sheets which are interpreted to represent braided river deposits. Each of these Neogene depositional environments has a modern day equivalent. For example, the braided rivers presently active in the Zagros mountains are modern analogues of the Bakhtiari. In the downstream direction, these braided rivers become meandering systems, which are equivalents of the Aghajari. Eventually, the meandering rivers meet the Persian gulf which is the site of the ‘modern day' Mishan shallow marine marls. Finally, the modern carbonate system on the southern margin of Persian Gulf represents the Guri member paleo-environment, behind which Sabkha-type deposits similar to the Gachsaran are presently being deposited. One important implication of this link between the Neogene foreland basin deposits and the

  5. Supercomputer analysis of sedimentary basins.

    PubMed

    Bethke, C M; Altaner, S P; Harrison, W J; Upson, C

    1988-01-15

    Geological processes of fluid transport and chemical reaction in sedimentary basins have formed many of the earth's energy and mineral resources. These processes can be analyzed on natural time and distance scales with the use of supercomputers. Numerical experiments are presented that give insights to the factors controlling subsurface pressures, temperatures, and reactions; the origin of ores; and the distribution and quality of hydrocarbon reservoirs. The results show that numerical analysis combined with stratigraphic, sea level, and plate tectonic histories provides a powerful tool for studying the evolution of sedimentary basins over geologic time.

  6. Thermal regimes of Malaysian sedimentary basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdul Halim, M.F.

    1994-07-01

    Properly corrected and calibrated thermal data are important in estimating source-rock maturation, diagenetics, evolution of reservoirs, pressure regimes, and hydrodynamics. Geothermal gradient, thermal conductivity, and heat flow have been determined for the sedimentary succession penetrated by exploratory wells in Malaysia. Geothermal gradient and heat-flow maps show that the highest average values are in the Malay Basin. The values in the Sarawak basin are intermediate between those of the Malay basin and the Sabah Basin, which contains the lowest average values. Temperature data were analyzed from more than 400 wells. An important parameter that was studied in detail is the circulationmore » time. The correct circulation time is essential in determining the correct geothermal gradient of a well. It was found that the most suitable circulation time for the Sabah Basin is 20 hr, 30 hr for the Sarawak Basin and 40 hr for the Malay Basin. Values of thermal conductivity, determined from measurement and calibrated calculations, were grouped according to depositional units and cycles in each basin.« less

  7. Mechanical Stability of Fractured Rift Basin Mudstones: from lab to basin scale

    NASA Astrophysics Data System (ADS)

    Zakharova, N. V.; Goldberg, D.; Collins, D.; Swager, L.; Payne, W. G.

    2016-12-01

    Understanding petrophysical and mechanical properties of caprock mudstones is essential for ensuring good containment and mechanical formation stability at potential CO2 storage sites. Natural heterogeneity and presence of fractures, however, create challenges for accurate prediction of mudstone behavior under injection conditions and at reservoir scale. In this study, we present a multi-scale geomechanical analysis for Mesozoic mudstones from the Newark Rift basin, integrating petropyshical core and borehole data, in situ stress measurements, and caprock stability modeling. The project funded by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) focuses on the Newark basin as a representative locality for a series of the Mesozoic rift basins in eastern North America considered as potential CO2 storage sites. An extensive core characterization program, which included laboratory CT scans, XRD, SEM, MICP, porosity, permeability, acoustic velocity measurements, and geomechanical testing under a range of confining pressures, revealed large variability and heterogeneity in both petrophysical and mechanical properties. Estimates of unconfined compressive strength for these predominantly lacustrine mudstones range from 5,000 to 50,000 psi, with only a weak correlation to clay content. Thinly bedded intervals exhibit up to 30% strength anisotropy. Mineralized fractures, abundant in most formations, are characterized by compressive strength as low as 10% of matrix strength. Upscaling these observations from core to reservoir scale is challenging. No simple one-to-one correlation between mechanical and petrophyscial properties exists, and therefore, we develop multivariate empirical relationships among these properties. A large suite of geophysical logs, including new measurements of the in situ stress field, is used to extrapolate these relationships to a basin-scale geomechanical model and predict mudstone behavior under injection conditions.

  8. Petrology and reservoir quality of the Gaikema Sandstone: Initial impressions

    USGS Publications Warehouse

    Helmold, Kenneth P.; Stanley, Richard G.

    2015-01-01

    The Division of Geological & Geophysical Surveys (DGGS) and Division of Oil & Gas (DOG) are currently conducting a study of the hydrocarbon potential of Cook Inlet basin (LePain and others, 2011). The Tertiary stratigraphic section of the basin includes coal-bearing units that are prolific gas reservoirs, particularly the Neogene sandstones. The Paleogene sandstones are locally prolific oil reservoirs that are sourced largely from the underlying Middle Jurassic Tuxedni Group. Several large structures act as hydrocarbon traps and the possibility exists for stratigraphic traps although this potential has not been fully exploited. As part of this study a significant number of Tertiary sandstones from the basin have been already collected and analyzed (Helmold and others, 2013). Recent field programs have shifted attention to the Mesozoic stratigraphic section to ascertain whether it contains potential hydrocarbon reservoirs. During the 2013 Cook Inlet field season, two days were spent on the Iniskin Peninsula examining outcrops of the Middle Jurassic Gaikema Sandstone along the south shore of Chinitna Bay (fig. 7-1). A stratigraphic section approximately 34 m in thickness was measured and a detailed description was initiated (Stanley and others, 2015), but due to deteriorating weather it was not possible to complete the description. During the 2014 field season two additional days were spent completing work on the Gaikema section. Analyses of thin sections from six of the samples collected in 2013 are available for incorporation in this report (table 7-1). Data from samples collected during the 2014 field season will be included in future reports.

  9. Modeling Reservoir-River Networks in Support of Optimizing Seasonal-Scale Reservoir Operations

    NASA Astrophysics Data System (ADS)

    Villa, D. L.; Lowry, T. S.; Bier, A.; Barco, J.; Sun, A.

    2011-12-01

    HydroSCOPE (Hydropower Seasonal Concurrent Optimization of Power and the Environment) is a seasonal time-scale tool for scenario analysis and optimization of reservoir-river networks. Developed in MATLAB, HydroSCOPE is an object-oriented model that simulates basin-scale dynamics with an objective of optimizing reservoir operations to maximize revenue from power generation, reliability in the water supply, environmental performance, and flood control. HydroSCOPE is part of a larger toolset that is being developed through a Department of Energy multi-laboratory project. This project's goal is to provide conventional hydropower decision makers with better information to execute their day-ahead and seasonal operations and planning activities by integrating water balance and operational dynamics across a wide range of spatial and temporal scales. This presentation details the modeling approach and functionality of HydroSCOPE. HydroSCOPE consists of a river-reservoir network model and an optimization routine. The river-reservoir network model simulates the heat and water balance of river-reservoir networks for time-scales up to one year. The optimization routine software, DAKOTA (Design Analysis Kit for Optimization and Terascale Applications - dakota.sandia.gov), is seamlessly linked to the network model and is used to optimize daily volumetric releases from the reservoirs to best meet a set of user-defined constraints, such as maximizing revenue while minimizing environmental violations. The network model uses 1-D approximations for both the reservoirs and river reaches and is able to account for surface and sediment heat exchange as well as ice dynamics for both models. The reservoir model also accounts for inflow, density, and withdrawal zone mixing, and diffusive heat exchange. Routing for the river reaches is accomplished using a modified Muskingum-Cunge approach that automatically calculates the internal timestep and sub-reach lengths to match the conditions of

  10. The water footprint of human-made reservoirs for hydropower, irrigation, water supply, flood prevention, fishing and recreation on a global scale

    NASA Astrophysics Data System (ADS)

    Hogeboom, Rick; Knook, Luuk; Hoekstra, Arjen

    2017-04-01

    Increasing the availability of freshwater to meet growing and competing demands is on many policy agendas. The Sustainable Development Goals (SDGs) prescribe sustainable management of water for human consumption. For centuries humans have resorted to building dams to store water in periods of excess for use in times of shortage. Although dams and their reservoirs have made important contributions to human development, it is increasingly acknowledged that reservoirs can be substantial water consumers as well. We estimated the water footprint of human-made reservoirs on a global scale and attributed it to the various reservoir purposes (hydropower generation, residential and industrial water supply, irrigation water supply, flood protection, fishing and recreation) based on their economic value. We found that economic benefits from derived products and services from 2235 reservoirs globally, amount to 311 billion US dollar annually, with residential and industrial water supply and hydropower generation as major contributors. The water footprint associated with these benefits is the sum of the water footprint of dam construction (< 1 % contribution) and evaporation from the reservoir's surface area. The latter was calculated as an ensemble mean of four different methods for estimating open water evaporation. The total water footprint of reservoirs globally adds up to ˜104 km3yr-1. Attribution per purpose shows that, with a global average water footprint of 21,5 m3GJ,-1 hydropower on average is a water intensive form of energy. We contextualized the water footprint of reservoirs and their purposes with regard to the water scarcity level of the river basin in which they occur. We found the lion's share (55%) of the water footprint is located in non-water scarce basins and only 1% in year-round scarce basins. The purpose for which the reservoir is primarily used changes with increasing water scarcity, from mainly hydropower generation in non-scarce basins, to the (more

  11. Temporal and basin-specific population trends of quagga mussels on soft sediment of a multi-basin reservoir

    USGS Publications Warehouse

    Caldwell, Timothy J; Rosen, Michael R.; Chandra, Sudeep; Acharya, Kumud; Caires, Andrea M; Davis, Clinton J.; Thaw, Melissa; Webster, Daniel M.

    2015-01-01

    Invasive quagga (Dreissena bugnesis) and zebra (Dreissena ploymorpha) mussels have rapidly spread throughout North America. Understanding the relationships between environmental variables and quagga mussels during the early stages of invasion will help management strategies and allow researchers to predict patterns of future invasions. Quagga mussels were detected in Lake Mead, NV/AZ in 2007, we monitored early invasion dynamics in 3 basins (Boulder Basin, Las Vegas Bay, Overton Arm) bi-annually from 2008-2011. Mean quagga density increased over time during the first year of monitoring and stabilized for the subsequent two years at the whole-lake scale (8 to 132 individuals·m-2, geometric mean), in Boulder Basin (73 to 875 individuals·m-2), and in Overton Arm(2 to 126 individuals·m-2). In Las Vegas Bay, quagga mussel density was low (9 to 44 individuals·m-2), which was correlated with high sediment metal concentrations and warmer (> 30°C) water temperatures associated with that basin. Carbon content in the sediment increased with depth in Lake Mead and during some sampling periods quagga density was also positively correlated with depth, but more research is required to determine the significance of this interaction. Laboratory growth experiments suggested that food quantity may limit quagga growth in Boulder Basin, indicating an opportunity for population expansion in this basin if primary productivity were to increase, but was not the case in Overton Arm. Overall quagga mussel density in Lake Mead is highly variable and patchy, suggesting that temperature, sediment size, and sediment metal concentrations, and sediment carbon content all contribute to mussel distribution patterns. Quagga mussel density in the soft sediment of Lake Mead expanded during initial colonization, and began to stabilize approximately 3 years after the initial invasion.

  12. Adapting Reservoir Operations to Reduce the Multi-Sectoral Impacts of Flood Intensification in the Lower Susquehanna

    NASA Astrophysics Data System (ADS)

    Zatarain-Salazar, J.; Reed, P. M.; Quinn, J.

    2017-12-01

    This study characterizes how changes in reservoir operations can be used to better balance growing flood intensities and the conflicting multi-sectorial demands in the Lower Susequehanna River Basin (LSRB), USA. Tensions in the LSRB are increasing with urban population pressures, evolving energy demands, and growing flood-based infrastructure vulnerabilities. This study explores how re-operation of the Conowingo Reservoir, located in the LSRB, can improve the balance between competing demands for hydropower production, urban water supply to Chester, PA and Baltimore, MD, cooling water supply for the Peach Bottom Atomic Power Plant, recreation, federal environmental flow requirements and improved mitigation of growing flood hazards. The LSRB is also one of the most flood prone basins in the US, impacted by hurricanes and rain-on-snow induced flood events causing on average $100 million in economic losses and infrastructure damages to downstream settlements every year. The purpose of this study is to evaluate the consequences of mathematical formulation choices, uncertainty characterization and the value of information when defining the Conowingo reservoir's multi-purpose operations. This work seeks to strike a balance between the complexity and the efficacy of rival framings for the problem formulations used to discover effective operating policies. More broadly, the problem of intensifying urban floods in reservoir systems with complex multi-sectoral demands is broadly relevant to developed river basins globally.

  13. Impacts of Climate Change on Management of the Colorado River Reservoir System

    NASA Astrophysics Data System (ADS)

    Christensen, N. S.; Lettenmaier, D. P.

    2002-05-01

    The Colorado River system provides water supply to a large area of the interior west. It drains a mostly arid area, with naturalized flow (effects of reservoirs and diversions removed) averaging only 40 mm/yr over the 630,000 km2 drainage area at the mouth of the river. Total reservoir storage (mostly behind Hoover and Glen Canyon Dams) is equivalent to over four times the mean flow of the river. Runoff is heavily dominated by high elevation source areas in the Rocky Mountain headwaters, and the seasonal runoff pattern throughout the Colorado basin is strongly dominated by winter snow accumulation and spring melt. Because of the arid nature of the basin and the low runoff per unit area, performance of the reservoir system is potentially susceptible to changes in streamflow that would result from global warming, although those manifestations are somewhat different than elsewhere in the west where reservoir storage is relatively much smaller. We evaluate, using the macroscale Variable Infiltration Capacity (VIC) model, possible changes in streamflow over the next century using three 100-year ensemble climate simulations of the NCAR/DOE Parallel Climate Model corresponding to business-as-usual (BAU) future greenhouse gas emissions. Single ensemble simulations of the U.K. Hadley Center, and the Max Planck Institute, are considered as well. For most of the climate scenarios, the peak runoff shifts about one month earlier relative to the recent past. However, unlike reservoir systems elsewhere in the west, the effect of these timing shifts is largely mitigated by the size of the reservoir system, and changes in reservoir system reliability (for agricultural water supply and hydropower production) are dominated by streamflow volume shifts, which vary considerably across the climate scenarios.

  14. Tectonothermal modeling of hydrocarbon maturation, Central Maracaibo Basin, Venezuela

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manske, M.C.

    1996-08-01

    The petroliferous Maracaibo Basin of northwestern Venezuela and extreme eastern Colombia has evolved through a complex geologic history. Deciphering the tectonic and thermal evolution is essential in the prediction of hydrocarbon maturation (timing) within the basin. Individual wells in two areas of the central basin, Blocks III and V, have been modeled to predict timing of hydrocarbon generation within the source Upper Cretaceous La Luna Formation, as well as within interbedded shales of the Lower-Middle Eocene Misoa Formation reservoir sandstones. Tectonic evolution, including burial and uplift (erosional) history, has been constrained with available well data. The initial extensional thermal regimemore » of the basin has been approximated with a Mackenzie-type thermal model, and the following compressional stage of basin development by applying a foreland basin model. Corrected Bottom Hole Temperature (BHT) measurements; from wells in the central basin, along with thermal conductivity measurements of rock samples from the entire sedimentary sequence, resulted in the estimation of present day heat flow. An understanding of the basin`s heat flow, then, allowed extrapolation of geothermal gradients through time. The relation of geothermal gradients and overpressure within the Upper Cretaceous hydrocarbon-generating La Luna Formation and thick Colon Formation shales was also taken into account. Maturation modeling by both the conventional Time-Temperature Index (TTI) and kinetic Transformation Ratio (TR) methods predicts the timing of hydrocarbon maturation in the potential source units of these two wells. These modeling results are constrained by vitrinite reflectance and illite/smectite clay dehydration data, and show general agreement. These results also have importance regarding the timing of structural formation and hydrocarbon migration into Misoa reservoirs.« less

  15. Sedimentation and occurrence and trends of selected chemical constituents in bottom sediment of 10 small reservoirs, Eastern Kansas

    USGS Publications Warehouse

    Juracek, Kyle E.

    2004-01-01

    Many municipalities in Kansas rely on small reservoirs as a source of drinking water and for recreational activities. Because of their significance to the community, management of the reservoirs and the associated basins is important to protect the reservoirs from degradation. Effective reservoir management requires information about water quality, sedimentation, and sediment quality. A combination of bathymetric surveying and bottom-sediment coring during 2002 and 2003 was used to investigate sediment deposition and the occurrence of selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 26 trace elements, 15 organochlorine compounds, and 1 radionuclide in the bottom sediment of 10 small reservoirs in eastern Kansas. Original reservoir water-storage capacities ranged from 23 to 5,845 acre-feet. The mostly agricultural reservoir basins range in area from 0.6 to 14 square miles. The mean annual net volume of deposited sediment, estimated separately for several of the reservoirs, ranged from about 43,600 to about 531,000 cubic feet. The estimated mean annual net mass of deposited sediment ranged from about 1,360,000 to about 23,300,000 pounds. The estimated mean annual net sediment yields from the reservoir basins ranged from about 964,000 to about 2,710,000 pounds per square mile. Compared to sediment yield estimates provided by a statewide study published in 1965, the estimates determined in this study differed substantially and were typically smaller. A statistically significant positive correlation was determined for the relation between sediment yield and mean annual precipitation. Nutrient concentrations in the bottom sediment varied substantially among the 10 reservoirs. Median total nitrogen concentrations ranged from 1,400 to 3,700 milligrams per kilogram. Median total phosphorus concentrations ranged from 550 to 1,300 milligrams per kilogram. A statistically significant positive trend (that is, nutrient concentration increased

  16. Can the Gila River reduce risk in the Colorado River Basin?

    NASA Astrophysics Data System (ADS)

    Wade, L. C.; Rajagopalan, B.; Lukas, J.; Kanzer, D.

    2012-12-01

    The Colorado River is the most important source of water in the southwest United States and Northern Mexico, providing water to approximately 35 million people and 4-5 million acres of irrigated lands. To manage the water resources of the basin, estimated to be about 17 million acre-feet (MAF) of undepleted supplies per year, managers use reservoir facilities that can store more than 60 MAF. As the demands on the water resources of the basin approach or exceed the average annual supply, and with average flow projected to decrease due to climate change, smart water management is vital for its sustainability. To quantify the future risk of depleting reservoir storage, Rajagopalan et al. (2009) developed a water-balance model and ran it under scenarios based on historical, paleo-reconstructed and future projections of flows, and different management alternatives. That study did not consider the impact of the Gila River, which enters the Colorado River below all major reservoirs and U.S. diversions. Due to intensive use in Central Arizona, the Gila only has significant inflows to the Colorado in wet years. However, these irregular inflows could beneficially influence system reliability in the US by helping to meet a portion of the 1.5 MAF delivery obligations to Mexico. To help quantify the potential system reliability benefit of the Gila River, we modify the Rajagopalan et al (2009) model to incorporate simulated Gila River inflows. These new data inputs to the water balance model are based on historical flows and tree-ring reconstructions of flow in the Upper Colorado River Basin (at Lee's Ferry), the Lower Colorado River Basin (tributary inflows), and the intermittent flows from the Gila River which are generated using extreme value analysis methods. Incorporating Gila River inflows, although they are highly variable and intermittent, reduces the modeled cumulative risk of reservoir depletion by 4 to 11% by 2057, depending on the demand schedule, reservoir operation

  17. Upper Cretaceous Shannon Sandstone Reservoirs, Powder River Basin, Wyoming: Evidence for organic acid diagenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansley, P.L.; Nuccio, V.F.

    Comparison of the petrology of shallow and deep oil reservoirs in the Upper Cretaceous Shannon Sandstone Beds of the Steele Member of the Cody Shale strongly suggests that organic acids have had a more significant impact on the diagenetic alteration of aluminosilicate grains and carbonate cements in the deep reservoirs than in the shallow reservoirs. In shallow reservoirs, detrital grains exhibit minor dissolution, sparse and small overgrowths, and secondary porosity created by dissolution of early calcite cement. However, deeper sandstones are characterized by extensive dissolution of detrital K-feldspar and detrital glauconite grains, and precipitation of abundant, large quartz and feldsparmore » overgrowths. Throughout the Shannon and Steele, dissolution of glauconite and degradation of kerogen were probably aided by clay mineral/organic catalysis, which caused simultaneous reduction of iron and oxidation of kerogen. This process resulted in release of ferrous iron and organic acids and was promoted in the deep reservoirs by higher formation temperatures accounting for more extensive dissolution of aluminosilicate grains. Carbonic acid produced from the dissolution of early calcite cement, decarboxylation of organic matter, and influx of meteoric water after Laramide uplift produced additional dissolution of cements and grains. Dissolution by organic acids and complexing by organic acid anions, however, best explain the intensity of diagenesis and absence of dissolution products in secondary pores and on etched surfaces of framework grains in deep reservoirs.« less

  18. New Insights into Arctic Tectonics: Uranium-Lead, (Uranium-Thorium)/Helium, and Hafnium Isotopic Data from the Franklinian Basin, Canadian Arctic Islands

    NASA Astrophysics Data System (ADS)

    Anfinson, Owen Anthony

    More than 2300 detrital zircon uranium-lead (U-Pb) ages, 32 176Hf/177Hf (eHf) isotopic values, 37 apatite helium (AHe) ages, and 72 zircon helium (ZHe) ages represent the first in-depth geochronologic and thermochronologic study of Franklinian Basin strata in the Canadian Arctic and provide new insight on >500 M.y. of geologic history along the northern Laurentian margin (modern orientation). Detrital zircon U-Pb age data demonstrate that the Franklinian Basin succession is composed of strata with three distinctly different provenance signatures. Neoproterozoic and Lower Cambrian formations contain detrital zircon populations consistent with derivation from Archean to Paleoproterozoic gneisses and granites of the west Greenland--northeast Canadian Shield. Lower Silurian to Middle Devonian strata are primarily derived from foreland basin strata of the East Greenland Caledonides (Caledonian orogen). Middle Devonian to Upper Devonian strata also contain detrital zircon populations interpreted as being primarily northerly derived from the continental landmass responsible for the Ellesmerian Orogen (often referred to as Crockerland). U-Pb age data from basal turbidites of the Middle to Upper Devonian clastic succession suggest Crockerland contributed sediment to the northern Laurentian margin by early-Middle Devonian time and that prior to the Ellesmerian Orogeny Crockerland had a comparable geologic history to the northern Baltica Craton. Detrital zircon U-Pb ages in Upper Devonian strata suggest Crockerland became the dominant source by the end of Franklinian Basin sedimentation. Mean eHf values from Paleozoic detrital zircon derived from Crockerland suggest the zircons were primarily formed in either an island arc or continental arc built on accreted oceanic crust setting. ZHe cooling ages from Middle and Upper Devonian strata were not buried deeper than 7 km since deposition and suggest Crockerland was partially exhumed during the Caledonian Orogen. AHe cooling ages

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, P.R.; Johns, C.C.; Clark-Lowes, D.D.

    Western Turkey consists of a number of tectonic terranes joined together by a network of suture zones. The terranes originated as microcontinental plates that rifted away from the continental margins forming the northern and southern boundaries of the Tethyan sea. These micro-continents were united by a series of collisions beginning in the Late Triassic and ending in the Miocene, with the final closure of the Tethyan sea. The sedimentary cover of the microcontinents consists of Paleozoic and Mesozoic passive margin and rift basin sequences containing numerous potential source and reservoir intervals. Most of these sequences show affinities with Gondwanaland, withmore » the notable exception of the Istanbul nappe, which is strongly Laurasian in character. Forearc basin sequences were also deposited on the margins of the microcontinents during early Tertiary plate convergence. Ensuing continental collisions resulted in compressional deformation of sedimentary cover sequences. The intensity of deformation ranged from basin inversion producing numerous potential hydrocarbon traps, to large-scale overthrusting. Following continental suturing, continued compression in eastern Turkey has been accommodated since the Miocene by westward escape of continental lithosphere between the North and South Anatolian transform faults. Neotectonic pull-apart basins formed in response to these movements, accumulating large thicknesses of Miocene-Pliocene carbonates and clastic sediments. Potential reservoirs in the Neotectonic basins may be sourced either in situ or from underlying Paleozoic and Mesozoic source rocks that remain within the hydrocarbon generating window today.« less

  20. Petroleum geology of the major producing basins of Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attar, A.; Chaouch, A.

    1988-08-01

    The South Atlas flexure divides Algeria into two contrasting geologic provinces: (1) the Saharan Atlas and offshore region in the north, both of which are part of the Mediterranean basin, and (2) the Saharan platform on the south, part of the North African craton. The limits of the various sedimentary basins on the Saharan platform are tied to late Paleozoic (Hercynian) crustal reactivation. Comparable structurally controlled basins in northern Algeria are the products of Mesozoic-Recent tectonism. The spatial and temporal distribution of hydrocarbons in the Algerian Sahara can be understood in terms of the geologic evolution of the region. Analysismore » of areas of proven hydrocarbon reserves permits the following generalizations. (1) There is a concentration of oil and gas fields northeast of a northwest-southeast-trending line connecting Hassi R'Mel with In Amenas. Production is also established in the Sbaa basin and in northern Algeria, where recent discoveries have been made in, respectively, upper Paleozoic and Mesozoic reservoirs. (2) Hydrocarbon are present throughout the entire sedimentary column, but major production currently is restricted to the lower Paleozoic (Cambrian-Ordovician and Lower Devonian) and Triassic reservoirs.« less

  1. Influence of Cougar Reservoir Drawdown on Sediment and DDT Transport and Deposition in the McKenzie River Basin, Oregon, Water Years 2002-04

    USGS Publications Warehouse

    Anderson, Chauncey W.

    2007-01-01

    bags, was greatest downstream of Cougar and Blue River Reservoirs (1.0 and 1.2 percent of total sediments, respectively). Deposition was least in the high-energy, unregulated environments (about 0.25 percent) of the South Fork McKenzie River above Cougar Reservoir and in the mainstem above the South Fork, and intermediate near Vida, the most downstream site on the mainstem. DDT, applied throughout much of the upper McKenzie River drainage basin to control spruce budworm during the 1950s, was detected in the South Fork near Rainbow in the form of its metabolites DDD and DDE in fine sediment captured in the infiltration bags. DDE also was detected in infiltration bags deployed in the McKenzie River near Vida, downstream of the South Fork. All concentrations of DDD and DDE were less than the aquatic-life criterion for bed sediment. DDT species were not detected in water samples, including samples collected during large storms. The reservoir apparently acted as a trap for sediment and DDT throughout the course of its existence, facilitating degradation of the trapped DDT, and may have been a source for both during the construction period in 2002-05, but the lack of detections during storms indicates that DDT transport was small. Transport of detectable amounts of DDT likely was limited to periods of high suspended-sediment concentrations (greater than 75-100 milligrams per liter). Infiltration bags were deployed during August 2003-July 2004 and were a useful device for measuring fine-sediment deposition and for chemical analysis of the deposited material. Deposition of fine-grained sediment downstream of the flood-control dams may be reduced if bed-moving events can be periodically reintroduced to those reaches.

  2. Simulation of streamflow temperatures in the Yakima River basin, Washington, April-October 1981

    USGS Publications Warehouse

    Vaccaro, J.J.

    1986-01-01

    The effects of storage, diversion, return flow, and meteorological variables on water temperature in the Yakima River, in Washington State, were simulated, and the changes in water temperature that could be expected under four alternative-management scenarios were examined for improvement in anadromous fish environment. A streamflow routing model and Lagrangian streamflow temperature model were used to simulate water discharge and temperature in the river. The estimated model errors were 12% for daily discharge and 1.7 C for daily temperature. Sensitivity analysis of the simulation of water temperatures showed that the effect of reservoir outflow temperatures diminishes in a downstream direction. A 4 C increase in outflow temperatures results in a 1.0 C increase in mean irrigation season water temperature at Umtanum in the upper Yakima River basin, but only a 0.01C increase at Prosser in the lower basin. The influence of air temperature on water temperature increases in a downstream direction and is the dominant influence in the lower basin. A 4 C increase in air temperature over the entire basin resulted in a 2.34 C increase in river temperatures at Prosser in the lower basin and 1.46 C at Umtanum in the upper basin. Changes in wind speed and model wind-function parameters had little effect on the model predicted water temperature. Of four alternative management scenarios suggested by the U.S. Bureau of Indian Affairs and the Yakima Indian Nation, the 1981 reservoir releases maintained without diversions or return flow in the river basin produced water temperatures nearest those considered as preferable for salmon and steelhead trout habitat. The alternative management scenario for no reservoir storage and no diversions or return flows in the river basin (estimate of natural conditions) produced conditions that were the least like those considered as preferable for salmon and steelhead trout habitat. (Author 's abstract)

  3. Geologic evolution and sequence stratigraphy of the offshore Pelotas Basin, southeast Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abreu, V.S.

    1996-01-01

    The Brazilian marginal basins have been studied since the beginning of the 70s. At least nine large basins are distributed along the entire Eastern continental margin. The sedimentary infill of these basins consists of lower Cretaceous (continental/lacustrine) rift section underlying marine upper Cretaceous (carbonate platforms) and marine upper Cretaceous/Tertiary sections, corresponding to the drift phase. The sedimentary deposits are a direct result of the Jurassic to lower Cretaceous break-up of the Pangea. This study will focus on the geologic evolution and sequence stratigraphic analysis of the Pelotas basin (offshore), located in the Southeast portion of the Brazilian continental margin betweenmore » 28[degrees] and 34[degrees] S, covering approximately 50,000 Km[sup 2]. During the early Cretaceous, when the break-up of the continent began in the south, thick basaltic layers were deposited in the Pelotas basin. These basalts form a thick and broad wedge of dipping seaward reflections interpreted as a transitional crust. During Albian to Turonian times, due to thermal subsidence, an extensive clastic/carbonate platform was developed, in an early drift stage. The sedimentation from the upper Cretaceous to Tertiary was characterized by a predominance of siliciclastics in the southeast margin, marking an accentuate deepening of the basin, showing several cycles related to eustatic fluctuations. Studies have addressed the problems of hydrocarbon exploration in deep water setting within a sequence stratigraphic framework. Thus Pelotas basin can provide a useful analogue for exploration efforts worldwide in offshore passive margins.« less

  4. Geologic evolution and sequence stratigraphy of the offshore Pelotas Basin, southeast Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abreu, V.S.

    1996-12-31

    The Brazilian marginal basins have been studied since the beginning of the 70s. At least nine large basins are distributed along the entire Eastern continental margin. The sedimentary infill of these basins consists of lower Cretaceous (continental/lacustrine) rift section underlying marine upper Cretaceous (carbonate platforms) and marine upper Cretaceous/Tertiary sections, corresponding to the drift phase. The sedimentary deposits are a direct result of the Jurassic to lower Cretaceous break-up of the Pangea. This study will focus on the geologic evolution and sequence stratigraphic analysis of the Pelotas basin (offshore), located in the Southeast portion of the Brazilian continental margin betweenmore » 28{degrees} and 34{degrees} S, covering approximately 50,000 Km{sup 2}. During the early Cretaceous, when the break-up of the continent began in the south, thick basaltic layers were deposited in the Pelotas basin. These basalts form a thick and broad wedge of dipping seaward reflections interpreted as a transitional crust. During Albian to Turonian times, due to thermal subsidence, an extensive clastic/carbonate platform was developed, in an early drift stage. The sedimentation from the upper Cretaceous to Tertiary was characterized by a predominance of siliciclastics in the southeast margin, marking an accentuate deepening of the basin, showing several cycles related to eustatic fluctuations. Studies have addressed the problems of hydrocarbon exploration in deep water setting within a sequence stratigraphic framework. Thus Pelotas basin can provide a useful analogue for exploration efforts worldwide in offshore passive margins.« less

  5. Geologic framework for the national assessment of carbon dioxide storage resources: Arkoma Basin, Kansas Basins, and Midcontinent Rift Basin study areas: Chapter F in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Buursink, Marc L.; Craddock, William H.; Blondes, Madalyn S.; Freeman, Phillip A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.

    2013-01-01

    2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows that of previous USGS work. This methodology is non-economic and intended to be used at regional to subbasinal scales. This report identifies and contains geologic descriptions of three storage assessment units (SAUs) in Upper Cambrian to Mississippian sedimentary rocks within the Arkoma Basin study area, and two SAUs in Upper Cambrian to Mississippian sedimentary rocks within the Kansas Basins study area. The Arkoma Basin and Kansas Basins are adjacent with very similar geologic units; although the Kansas Basins area is larger, the Arkoma Basin is more structurally complex. The report focuses on the characteristics, specified in the methodology, that influence the potential CO2 storage resource in the SAUs. Specific descriptions of the SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU, such as depth to top, gross thickness, porosity, permeability, groundwater quality, and structural reservoir traps, are usually provided to illustrate geologic factors critical to the assessment. Although assessment results are not contained in this report, the geologic information herein was employed, as specified in the USGS methodology, to calculate a probabilistic distribution of potential storage resources in each SAU. The Midcontinent Rift Basin study area was not assessed, because no suitable storage formations meeting our size, depth, reservoir quality, and regional seal guidelines were found. Figures in this report show study area boundaries along with the SAU boundaries and cell maps of well penetrations through sealing units into the top of the storage formations. The cell maps show the number of penetrating wells within one-square mile and are

  6. Depositional setting and extension of the evaporitic units in the Neogene Santa Rosalía basin, Baja California Sur, México

    NASA Astrophysics Data System (ADS)

    Munoz, V. O. S.; Maher, A.; Jaime-Geraldo, A. J.; Niemi, T.

    2017-12-01

    Most geologic studies of the Santa Rosalía basin (SRB) have focused on the mineralization of the ore deposits, depositional environment of the sedimentary formations, and volcanism associated with the opening of the Gulf of California. Studies on the depositional setting, features, and patterns of the thick evaporite sequences in the SRB have been neglected even though one of the largest gypsum mines in the world is located in these deposits. Previous reports on the thick gypsum deposits suggested that the deposits were precipitated from hydrothermal submarine springs or from evaporation from bodies of water partly enclosed and cut off from the sea (Wilson and Rocha, 1955; Ochoa-Landin et al., 2000). Contemporary studies on the geochemistry of the gypsum supports an interpretation of marine deposition based on the isotopic values of δ34S and δ18O congruent with the precipitation of Miocene water (Conly et al., 2006). Nonetheless, our sedimentologic and stratigraphic descriptions suggest a more dynamic terrestrial to nearshore setting with graded fluvial beds, debris flow, and a clastic dike within a clastic unit of the gypsum along the Arroyo Boleo. This is compatible with the description of the San Marco Formation reported by Anderson (1940) composed of clastic sediments with no marine fossils, carbonized wood and leaf fragments as well as gypsum along the southeastern shore of the San Marcos Island asserting there is sufficient lithologic resemblance and proximity to indicate that they are the same formation. Furthermore, a multichannel seismic transect study of the Guaymas Basin by Miller and Lizarralde (2013) revealed an approximately 2-km-thick, 50 × 100 km evaporite body under the shelf on the eastern margin of the Guaymas Basin and suggest that this thick evaporitic unit correlates with the gypsum beds of the SRB on the Baja California peninsula. Additional research on the source of water and depositional evolution based on sedimentological

  7. Assessing water reservoir management and development in Northern Vietnam

    NASA Astrophysics Data System (ADS)

    Pianosi, F.; Quach, X.; Castelletti, A.; Soncini-Sessa, R.

    2012-04-01

    In many developing countries water is a key renewable resource to complement carbon-emitting energy production and support food security in the face of demand pressure from fast-growing industrial production and urbanization. To cope with undergoing changes, water resources development and management have to be reconsidered by enlarging their scope across sectors and adopting effective tools to analyze current and projected infrastructure potential and operation strategies. In this work we use multi-objective deterministic and stochastic optimization to assess the current reservoir operation and planned capacity expansion in the Red River Basin (Northern Vietnam), focusing on the major controllable infrastructure in the basin, the HoaBinh reservoir on the Da River. We first provide a general and mathematical description of the socio economic and physical system of the Red River Basin, including the three main objectives of hydropower production, flood control, and water supply, and using conceptual and data-driven modeling tools. Then, we analyze the historical operation of the HoaBinh reservoir and explore re-operation options corresponding to different tradeoffs among the three main objectives, using Multi-Objective Genetic Algorithm. Results show that there exist several operating policies that prove Pareto-dominant over the historical one, that is, they can improve all three management objectives simultaneously. However, while the improvement is rather significant with respect to hydropower production and water supply, it is much more limited in terms of flood control. To understand whether this is due to structural constraints (insufficient storing capacity) or to the imperfect information system (uncertainty in forecasting future flows and thus anticipate floods), we assessed the infrastructural system potential by application of Deterministic Dynamic Programming. Results show that the current operation can only be relatively improved by advanced optimization

  8. Overview of the potential and identified petroleum source rocks of the Appalachian basin, eastern United States: Chapter G.13 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Coleman, James L.; Ryder, Robert T.; Milici, Robert C.; Brown, Stephen; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The Appalachian basin is the oldest and longest producing commercially viable petroleum-producing basin in the United States. Source rocks for reservoirs within the basin are located throughout the entire stratigraphic succession and extend geographically over much of the foreland basin and fold-and-thrust belt that make up the Appalachian basin. Major source rock intervals occur in Ordovician, Devonian, and Pennsylvanian strata with minor source rock intervals present in Cambrian, Silurian, and Mississippian strata.

  9. Replication in plastic of three-dimensional fossils preserved in indurated clastic sedimentary rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapasink, H.T.; Johnston, P.A.

    A new technique for replicating in plastic the fossils preserved in clastic rocks should now make available reliable morphologic and frequency data, comparable in quality to those derived from acid-prepared silicified faunas, for a major segment of the fossil record. The technique involves 3 steps: the dissolution of carbonate in fossiliferous rocks with hydrochloric acid, impregnation of resulting voids with liquid plastic, and dissolution of the rock matrix with hydrofluoric acid, leaving a concentrate of plastic-replaced fossils.

  10. Quantifying Changes in Accessible Water in the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Castle, S.; Thomas, B.; Reager, J. T.; Swenson, S. C.; Famiglietti, J. S.

    2013-12-01

    The Colorado River Basin (CRB) in the western United States is heavily managed yet remains one of the most over-allocated rivers in the world providing water across seven US states and Mexico. Future water management strategies in the CRB have employed land surface models to forecast discharges; such approaches have focused on discharge estimates to meet allocation requirements yet ignore groundwater abstractions to meet water demands. In this analysis, we illustrate the impact of changes in accessible water, which we define as the conjunctive use of both surface water reservoir storage and groundwater storage, using remote sensing observations to explore sustainable water management strategies in the CRB. We employ high resolution Landsat Thematic Mapper satellite data to detect changes in reservoir storage in the two largest reservoirs within the CRB, Lakes Mead and Powell, and the Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage anomalies to isolate changes in basin-wide groundwater storage in the Upper and Lower CRB from October 2003 to December 2012. Our approach quantifies reservoir and groundwater storage within the CRB using remote sensing to provide new information to water managers to sustainably and conjunctively manage accessible water.

  11. The blue water footprint of the world's artificial reservoirs for hydroelectricity, irrigation, residential and industrial water supply, flood protection, fishing and recreation

    NASA Astrophysics Data System (ADS)

    Hogeboom, Rick J.; Knook, Luuk; Hoekstra, Arjen Y.

    2018-03-01

    For centuries, humans have resorted to building dams to gain control over freshwater available for human consumption. Although dams and their reservoirs have made many important contributions to human development, they receive negative attention as well, because of the large amounts of water they can consume through evaporation. We estimate the blue water footprint of the world's artificial reservoirs and attribute it to the purposes hydroelectricity generation, irrigation water supply, residential and industrial water supply, flood protection, fishing and recreation, based on their economic value. We estimate that economic benefits from 2235 reservoirs included in this study amount to 265 × 109 US a year, with residential and industrial water supply and hydroelectricity generation as major contributors. The water footprint associated with these benefits is the sum of the water footprint of dam construction (<1% contribution) and evaporation from the reservoir's surface area, and globally adds up to 66 × 109 m3 y-1. The largest share of this water footprint (57%) is located in non-water scarce basins and only 1% in year-round scarce basins. The primary purposes of a reservoir change with increasing water scarcity, from mainly hydroelectricity generation in non-scarce basins, to residential and industrial water supply, irrigation water supply and flood control in scarcer areas.

  12. Seismic features and evolution of a late Miocene submarine channel system in the Yinggehai basin, northwestern South China Sea

    NASA Astrophysics Data System (ADS)

    Sun, H.; Jiang, T.; Wang, Z.; Zhang, Y.

    2014-12-01

    Submarine channel is one of key conduits for coarse terrigenous clastic sediments to abyssal plain, which provides the possibility for deepwater hydrocarbon exploration. Recently, a new high-quality 3D seismic data is acquired in south Yinggehai basin (YGHB) and the detailed interpretations on those seismic profiles as well as RMS amplitude attributes and variance slices reveal a submarine channel system developed in late Miocene, which could be supplied from Hainan Island via turbidity currents so that it would be filled with sand-rich turbidites as good hydrocarbon reservoir. Based on the integration between regional seismic survey and some boreholes, the investigations on its infilling architectures and depositional processes are carried out. The results show that it composes two converged submarine channels with two channelized submarine fans to their west and the main submarine channel (MSC) is characterized by a downstream increasing width and is infilled by sediments with high amplitude seismic facies, which could be originated from channelized submarine fans. Furthermore, the complicated depositional processes around the confluence region of these two channels are pointed out and the interactions between the submarine channel system and nearby channelized submarine fans are discussed. The detailed illustration on the seismic features and depositional processes of the subsurface submarine system provides us better understanding deepwater sedimentary dynamics and would be more benefit for the hydrocarbon exploration in similar deepwater area around the world.

  13. The ecological dynamics of Barra Bonita (Tietê River, SP, Brazil) reservoir: implications for its biodiversity.

    PubMed

    Tundisi, J G; Matsumura-Tundisi, T; Abe, D S

    2008-11-01

    Barra Bonita reservoir is located in the Tietê River Basin - São Paulo state - 22 degrees 29' to 22 degrees 44' S and 48 degrees 10 degrees W and it is the first of a series of six large reservoirs in this river. Built up in 1963 with the aim to produce hydroelectricity this reservoir is utilized for several activities such as fish production, irrigation, navigation, tourism and recreation, besides hydroelectricity production. The seasonal cycle of events in this reservoir is driven by the hydrological features of the basin with consequences on the retention time and on the limnological functions of this artificial ecosystem. The reservoir is polymitic with short periods of stability. Hydrology of the basin, retention time of the reservoir and cold fronts have an impact in the vertical and horizontal structure of the system promoting rapid changes in the planktonic community and in the succession of species. Blooms of Microcystis sp. are common during periods of stability. Superimposed to the climatological and hydrological forcing functions the human activities in the watershed produce considerable impact such as the discharge of untreated wastewater, the high suspended material contributions and fertilizers from the sugar cane plantations. The fish fauna of the reservoir has been changed extent due to the introduction of exotic fish species that exploit the pelagic zone of the reservoir. Changes in the primary productivity of phytoplankton in this reservoir, in the zooplankton community in the diversity and organization of trophic structure are a consequence of eutrophication and its increase during the last 20 years. Control of eutrophication by treating wastewater from urban sources, adequate agricultural practices in order to diminish the suspended particulate matter contribution, revegetation of the watershed and riparian forests along the tributaries are some possible restoration measures. Another action that can be effective is the protection of wetlands

  14. Hybrid Multi-Objective Optimization of Folsom Reservoir Operation to Maximize Storage in Whole Watershed

    NASA Astrophysics Data System (ADS)

    Goharian, E.; Gailey, R.; Maples, S.; Azizipour, M.; Sandoval Solis, S.; Fogg, G. E.

    2017-12-01

    The drought incidents and growing water scarcity in California have a profound effect on human, agricultural, and environmental water needs. California experienced multi-year droughts, which have caused groundwater overdraft and dropping groundwater levels, and dwindling of major reservoirs. These concerns call for a stringent evaluation of future water resources sustainability and security in the state. To answer to this call, Sustainable Groundwater Management Act (SGMA) was passed in 2014 to promise a sustainable groundwater management in California by 2042. SGMA refers to managed aquifer recharge (MAR) as a key management option, especially in areas with high variation in water availability intra- and inter-annually, to secure the refill of underground water storage and return of groundwater quality to a desirable condition. The hybrid optimization of an integrated water resources system provides an opportunity to adapt surface reservoir operations for enhancement in groundwater recharge. Here, to re-operate Folsom Reservoir, objectives are maximizing the storage in the whole American-Cosumnes watershed and maximizing hydropower generation from Folsom Reservoir. While a linear programing (LP) module tends to maximize the total groundwater recharge by distributing and spreading water over suitable lands in basin, a genetic based algorithm, Non-dominated Sorting Genetic Algorithm II (NSGA-II), layer above it controls releases from the reservoir to secure the hydropower generation, carry-over storage in reservoir, available water for replenishment, and downstream water requirements. The preliminary results show additional releases from the reservoir for groundwater recharge during high flow seasons. Moreover, tradeoffs between the objectives describe that new operation performs satisfactorily to increase the storage in the basin, with nonsignificant effects on other objectives.

  15. Recycling of Clay Sediments for Geopolymer Binder Production. A New Perspective for Reservoir Management in the Framework of Italian Legislation: The Occhito Reservoir Case Study

    PubMed Central

    Molino, Bruno; De Vincenzo, Annamaria; Ferone, Claudio; Messina, Francesco; Colangelo, Francesco; Cioffi, Raffaele

    2014-01-01

    Reservoir silting is an unavoidable issue. It is estimated that in Italy, the potential rate of silting-up in large reservoirs ranges from 0.1% to 1% in the presence of wooded river basins and intensive agricultural land use, respectively. In medium and small-sized reservoirs, these values vary between 0.3% and 2%. Considering both the types of reservoirs, the annual average loss of storage capacity would be of about 1.59%. In this paper, a management strategy aimed at sediment productive reuse is presented. Particularly, the main engineering outcomes of an extensive experimental program on geopolymer binder synthesis is reported. The case study deals with Occhito reservoir, located in Southern Italy. Clay sediments coming from this silted-up artificial lake were characterized, calcined and activated, by means of a wide set of alkaline activating solutions. The results showed the feasibility of this recovery process, optimizing a few chemical parameters. The possible reuse in building material production (binders, precast concrete, bricks, etc.) represents a relevant sustainable alternative to landfill and other more consolidated practices. PMID:28788149

  16. Recycling of Clay Sediments for Geopolymer Binder Production. A New Perspective for Reservoir Management in the Framework of Italian Legislation: The Occhito Reservoir Case Study.

    PubMed

    Molino, Bruno; De Vincenzo, Annamaria; Ferone, Claudio; Messina, Francesco; Colangelo, Francesco; Cioffi, Raffaele

    2014-07-31

    Reservoir silting is an unavoidable issue. It is estimated that in Italy, the potential rate of silting-up in large reservoirs ranges from 0.1% to 1% in the presence of wooded river basins and intensive agricultural land use, respectively. In medium and small-sized reservoirs, these values vary between 0.3% and 2%. Considering both the types of reservoirs, the annual average loss of storage capacity would be of about 1.59%. In this paper, a management strategy aimed at sediment productive reuse is presented. Particularly, the main engineering outcomes of an extensive experimental program on geopolymer binder synthesis is reported. The case study deals with Occhito reservoir, located in Southern Italy. Clay sediments coming from this silted-up artificial lake were characterized, calcined and activated, by means of a wide set of alkaline activating solutions. The results showed the feasibility of this recovery process, optimizing a few chemical parameters. The possible reuse in building material production (binders, precast concrete, bricks, etc. ) represents a relevant sustainable alternative to landfill and other more consolidated practices.

  17. The costs of uncoordinated infrastructure management in multi-reservoir river basins

    NASA Astrophysics Data System (ADS)

    Jeuland, Marc; Baker, Justin; Bartlett, Ryan; Lacombe, Guillaume

    2014-10-01

    Though there are surprisingly few estimates of the economic benefits of coordinated infrastructure development and operations in international river basins, there is a widespread belief that improved cooperation is beneficial for managing water scarcity and variability. Hydro-economic optimization models are commonly-used for identifying efficient allocation of water across time and space, but such models typically assume full coordination. In the real world, investment and operational decisions for specific projects are often made without full consideration of potential downstream impacts. This paper describes a tractable methodology for evaluating the economic benefits of infrastructure coordination. We demonstrate its application over a range of water availability scenarios in a catchment of the Mekong located in Lao PDR, the Nam Ngum River Basin. Results from this basin suggest that coordination improves system net benefits from irrigation and hydropower by approximately 3-12% (or US12-53 million/yr) assuming moderate levels of flood control, and that the magnitude of coordination benefits generally increases with the level of water availability and with inflow variability. Similar analyses would be useful for developing a systematic understanding of the factors that increase the costs of non-cooperation in river basin systems worldwide, and would likely help to improve targeting of efforts to stimulate complicated negotiations over water resources.

  18. A study of uranium favorability of Cenozoic sedimentary rocks, Basin and Range Province, Arizona: Part I, General geology and chronology of pre-late Miocene Cenozoic sedimentary rocks

    USGS Publications Warehouse

    Scarborough, Robert Bryan; Wilt, Jan Carol

    1979-01-01

    This study focuses attention on Cenozoic sedimentary rocks in the Basin and Range Province of Arizona. The known occurrences of uranium and anomalous radioactivity in these rocks are associated with sediments that accumulated in a low energy environment characterized by fine-grained clastics, including important tuffaceous materials, and carbonate rocks. Most uranium occurrences, in these rocks appear to be stratabound. Emphasis was placed on those sedimentary materials that pre-date the late Cenozoic Basin and Range disturbance. They are deformed and crop out on pedimented range blocks and along the province interface with the Transition Zone. Three tentative age groups are recognized: Group I - Oligocene, pre-22 m.y., Group II - early Miocene - 22 m.y. - 16 m.y., and Group III - middle Miocene - 16 m.y. to 13--10 m.y. Regionally, these three groups contain both coarse to fine-grained red clastics and low energy lighter colored 'lacustrine' phases. Each of the three groups has been the object of uranium exploration. Group II, the early Miocene strata, embraces the Anderson Mine - Artillery region host rocks and also the New River - Cave Creek early Miocene beds-along the boundary with the Transition Zone. These three groups of rocks have been tectonically deformed to the extent that original basins of deposition cannot yet be reconstructed. However, they were considerably more extensive in size than the late Cenozoic basins the origin of which deformed the former. Group II rocks are judged to be of prime interest because of: (1) the development and preservation of organic matter in varying lithologies, (2) apparent contemporaneity with silicic volcanic centers, (3) influence of Precambrian crystalline rocks, and (4) relative outcrop continuity near the stable Transition Zone. The Transition Zone, especially along its boundary with the Basin and Range Province, needs additional geologic investigation, especially as regards the depositional continuity of Group II

  19. Maps showing thermal maturity of Upper Cretaceous marine shales in the Bighorn Basin, Wyoming and Montana

    USGS Publications Warehouse

    Finn, Thomas M.; Pawlewicz, Mark J.

    2014-01-01

    The Bighorn Basin is one of many structural and sedimentary basins that formed in the Rocky Mountain foreland during the Laramide orogeny, a period of crustal instability and compressional tectonics that began in latest Cretaceous time and ended in the Eocene. The basin is nearly 180 mi long, 100 mi wide, and encompasses about 10,400 mi2 in north-central Wyoming and south-central Montana. The basin is bounded on the northeast by the Pryor Mountains, on the east by the Bighorn Mountains, and on the south by the Owl Creek Mountains). The north boundary includes a zone of faulting and folding referred to as the Nye-Bowler lineament. The northwest and west margins are formed by the Beartooth Mountains and Absaroka Range, respectively. Important conventional oil and gas resources have been discovered and produced from reservoirs ranging in age from Cambrian through Tertiary. In addition, a potential unconventional basin-centered gas accumulation may be present in Cretaceous reservoirs in the deeper parts of the basin. It has been suggested by numerous authors that various Cretaceous marine shales are the principal source rock for these accumulations. Numerous studies of various Upper Cretaceous marine shales in the Rocky Mountain region have led to the general conclusion that these rocks have generated or are capable of generating oil and (or) gas. In recent years, advances in horizontal drilling and multistage fracture stimulation have resulted in increased exploration and completion of wells in Cretaceous marine shales in other Rocky Mountain Laramide basins that were previously thought of only as hydrocarbon source rocks. Important parameters controlling hydrocarbon production from these shale reservoirs include: reservoir thickness, amount and type of organic matter, and thermal maturity. The purpose of this report is to present maps and a cross section showing levels of thermal maturity, based on vitrinite reflectance (Ro), for selected Upper Cretaceous marine

  20. Dynamic study of the upper Sao Francisco River and the Tres Marias reservoir using MSS/LANDSAT images. [Brazil

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Sausen, T. M.

    1981-01-01

    The use of LANDSAT multispectral ban scanner imagery to verify the relationship between the behavior of the Tres Marias reservoir and the dynamics of the Sao Francisco River supply basin is described. The dispersion of suspended sediments and their concentration in the surface layers of the water are considered. A five year survey of the region during both dry and rainy seasons was performed. The drainage network was analyzed based on the patterns of dessication, water rises and soil use in the supply basin. Surface layers of the reservoir were tabulated as a function of the levels of gray in the imagery. In situ observations of water depth and reflectance were performed. Ground truth and LANDSAT data were correlated to determine the factors affecting the dynamics of the supply basin.

  1. Estimated Loads of Suspended Sediment and Selected Trace Elements Transported through Milltown Reservoir in the Upper Clark Fork Basin, Montana, Water Years 2004-07

    USGS Publications Warehouse

    Lambing, John H.; Sando, Steven K.

    2008-01-01

    The purpose of this report is to present estimated daily and annual loads of suspended sediment and selected trace elements for water years 2004-07 at two sites upstream and one site downstream from Milltown Reservoir. Milltown Reservoir is a National Priorities List Superfund site in the upper Clark Fork basin of western Montana where sediments enriched in trace elements from historical mining and ore processing have been deposited since the construction of Milltown Dam in 1907. The estimated loads were used to quantify annual net gains and losses (mass balance) of suspended sediment and trace elements within Milltown Reservoir before and after June 1, 2006, which was the start of Stage 1 of a permanent drawdown of the reservoir in preparation for removal of Milltown Dam. This study was done in cooperation with the U.S. Environmental Protection Agency. Daily loads of suspended sediment were estimated for water years 2004-07 by using either high-frequency sampling as part of daily sediment monitoring or regression equations relating suspended-sediment discharge to streamflow. Daily loads of unfiltered-recoverable arsenic, cadmium, copper, iron, lead, manganese, and zinc were estimated by using regression equations relating trace-element discharge to suspended-sediment discharge. Regression equations were developed from data for eriodic water-quality samples collected during water years 2004-07. The equations were applied to daily records of either streamflow or suspended-sediment discharge to produce estimated daily loads. Variations in daily suspended-sediment and trace-element loads generally coincided with variations in streamflow. For most of the period before June 1, 2006, differences in daily loads transported to and from Milltown Reservoir were minor or indicated small amounts of deposition; however, losses of suspended sediment and trace elements from the reservoir occurred during temporary drawdowns in July-August 2004 and October-December 2005. After the

  2. Clastic dikes of Heart Mountain fault breccia, northwestern Wyoming, and their significance

    USGS Publications Warehouse

    Pierce, W.G.

    1979-01-01

    Structural features in northwestern Wyoming indicate that the Heart Mountain fault movement was an extremely rapid, cataclysmic event that created a large volume of carbonate fault breccia derived entirely from the lower part of the upper plate. After fault movement had ceased, much of the carbonate fault breccia, here called calcibreccia, lay loose on the resulting surface of tectonic denudation. Before this unconsolidated calcibreccia could be removed by erosion, it was buried beneath a cover of Tertiary volcanic rocks: the Wapiti Formation, composed of volcanic breccia, poorly sorted volcanic breccia mudflows, and lava flows, and clearly shown in many places by inter lensing and intermixing of the calcibreccia with basal volcanic rocks. As the weight of volcanic overburden increased, the unstable water-saturated calcibreccia became mobile and semifluid and was injected upward as dikes into the overlying volcanic rocks and to a lesser extent into rocks of the upper plate. In some places the lowermost part of the volcanic overburden appears to have flowed with the calcibreccia to form dike like bodies of mixed volcanic rock and calcibreccia. One calcibreccia dike even contains carbonized wood, presumably incorporated into unconsolidated calcibreccia on the surface of tectonic denudation and covered by volcanic rocks before moving upward with the dike. Angular xenoliths of Precambrian rocks, enclosed in another calcibreccia dike and in an adjoining dikelike mass of volcanic rock as well, are believed to have been torn from the walls of a vent and incorporated into the basal part of the Wapiti Formation overlying the clastic carbonate rock on the fault surface. Subsequently, some of these xenoliths were incorporated into the calcibreccia during the process of dike intrusion. Throughout the Heart Mountain fault area, the basal part of the upper-plate blocks or masses are brecciated, irrespective of the size of the blocks, more intensely at the base and in places

  3. T-R Cycle Characterization and Imaging: Advanced Diagnostic Methodology for Petroleum Reservoir and Trap Detection and Delineation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernest A. Mancini

    Characterization of stratigraphic sequences (T-R cycles or sequences) included outcrop studies, well log analysis and seismic reflection interpretation. These studies were performed by researchers at the University of Alabama, Wichita State University and McGill University. The outcrop, well log and seismic characterization studies were used to develop a depositional sequence model, a T-R cycle (sequence) model, and a sequence stratigraphy predictive model. The sequence stratigraphy predictive model developed in this study is based primarily on the modified T-R cycle (sequence) model. The T-R cycle (sequence) model using transgressive and regressive systems tracts and aggrading, backstepping, and infilling intervals or sectionsmore » was found to be the most appropriate sequence stratigraphy model for the strata in the onshore interior salt basins of the Gulf of Mexico to improve petroleum stratigraphic trap and specific reservoir facies imaging, detection and delineation. The known petroleum reservoirs of the Mississippi Interior and North Louisiana Salt Basins were classified using T-R cycle (sequence) terminology. The transgressive backstepping reservoirs have been the most productive of oil, and the transgressive backstepping and regressive infilling reservoirs have been the most productive of gas. Exploration strategies were formulated using the sequence stratigraphy predictive model and the classification of the known petroleum reservoirs utilizing T-R cycle (sequence) terminology. The well log signatures and seismic reflector patterns were determined to be distinctive for the aggrading, backstepping and infilling sections of the T-R cycle (sequence) and as such, well log and seismic data are useful for recognizing and defining potential reservoir facies. The use of the sequence stratigraphy predictive model, in combination with the knowledge of how the distinctive characteristics of the T-R system tracts and their subdivisions are expressed in well log

  4. The geologic history of Margaritifer basin, Mars

    USGS Publications Warehouse

    Salvatore, M. R.; Kraft, M. D.; Edwards, Christopher; Christensen, P.R.

    2016-01-01

    In this study, we investigate the fluvial, sedimentary, and volcanic history of Margaritifer basin and the Uzboi-Ladon-Morava (ULM) outflow channel system. This network of valleys and basins spans more than 8000 km in length, linking the fluvially dissected southern highlands and Argyre Basin with the northern lowlands via Ares Vallis. Compositionally, thermophysically, and morphologically distinct geologic units are identified and are used to place critical relative stratigraphic constraints on the timing of geologic processes in Margaritifer basin. Our analyses show that fluvial activity was separated in time by significant episodes of geologic activity, including the widespread volcanic resurfacing of Margaritifer basin and the formation of chaos terrain. The most recent fluvial activity within Margaritifer basin appears to terminate at a region of chaos terrain, suggesting possible communication between surface and subsurface water reservoirs. We conclude with a discussion of the implications of these observations on our current knowledge of Martian hydrologic evolution in this important region.

  5. The geologic history of Margaritifer basin, Mars

    NASA Astrophysics Data System (ADS)

    Salvatore, M. R.; Kraft, M. D.; Edwards, C. S.; Christensen, P. R.

    2016-03-01

    In this study, we investigate the fluvial, sedimentary, and volcanic history of Margaritifer basin and the Uzboi-Ladon-Morava outflow channel system. This network of valleys and basins spans more than 8000 km in length, linking the fluvially dissected southern highlands and Argyre basin with the northern lowlands via Ares Vallis. Compositionally, thermophysically, and morphologically distinct geologic units are identified and are used to place critical relative stratigraphic constraints on the timing of geologic processes in Margaritifer basin. Our analyses show that fluvial activity was separated in time by significant episodes of geologic activity, including the widespread volcanic resurfacing of Margaritifer basin and the formation of chaos terrain. The most recent fluvial activity within Margaritifer basin appears to terminate at a region of chaos terrain, suggesting possible communication between surface and subsurface water reservoirs. We conclude with a discussion of the implications of these observations on our current knowledge of Martian hydrologic evolution in this important region.

  6. Fracture patterns and their origin in the upper Devonian Antrim Shale gas reservoir of the Michigan basin; a review

    USGS Publications Warehouse

    Ryder, Robert T.

    1996-01-01

    INTRODUCTION: Black shale members of the Upper Devonian Antrim Shale are both the source and reservoir for a regional gas accumulation that presently extends across parts of six counties in the northern part of the Michigan basin (fig. 1). Natural fractures are considered by most petroleum geologists and oil and gas operators who work the Michigan basin to be a necessary condition for commercial gas production in the Antrim Shale. Fractures provide the conduits for free gas and associated water to flow to the borehole through the black shale which, otherwise, has a low matrix permeability. Moreover, the fractures assist in the release of gas adsorbed on mineral and(or) organic matter in the shale (Curtis, 1992). Depths to the gas-producing intervals (Norwood and Lachine Members) generally range from 1,200 to 1,800 ft (Oil and Gas Journal, 1994). Locally, wells that produce gas from the accumulation are as deep as 2,200 (Oil and Gas Journal, 1994). Even though natural fractures are an important control on Antrim Shale gas production, most wells require stimulation by hydraulic fracturing to attain commercial production rates (Kelly, 1992). In the U.S. Geological Survey's National Assessment of United States oil and gas, Dolton (1995) estimates that, at a mean value, 4.45 trillion cubic feet (TCF) of gas are recoverable as additions to already discovered quantities from the Antrim Shale in the productive area of the northern Michigan trend. Dolton (1995) also suggests that undiscovered Antrim Shale gas accumulations exist in other parts of the Michigan basin. The character, distribution, and origin of natural fractures in the Antrim Shale gas accumulation have been studied recently by academia and industry. The intent of these investigations is to: 1) predict 'sweet spots', prior to drilling, in the existing gas-producing trend, 2) improve production practices in the existing trend, 3) predict analogous fracture-controlled gas accumulations in other parts of the

  7. OVERVIEW OF VALVE TOWER FROM NORTHERN SIDE OF BASIN. VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF VALVE TOWER FROM NORTHERN SIDE OF BASIN. VIEW FACING SOUTHWEST - Schofield Barracks Military Reservation, Ku Tree Reservoir, Valve Tower, Kalakoa Stream, East Range, Wahiawa, Honolulu County, HI

  8. Complex facies relationships and regional stratigraphy of the Mississippian Ste. Genevieve, Paoli, and Aux Vases Formations, Illinois basin: A major hydrocarbon-producing interval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, R.D.; Nelson, W.J.

    1993-03-01

    The Mississippian Ste. Genevieve and Paoli Limestones and sandstones of the Aux Vases Formation are lateral facies of one another. This interpretation is based on comprehensive investigations of outcrops, and selected cores, samples of well cuttings, and geophysical logs conducted over a period of four years. Both units exhibit similar sedimentological characteristics and represent open marine, shallow subtidal, and intertidal environments. The presence of low-angle cross-laminae, ripple- and plane-laminae, climbing ripples, and ooid shoals suggest most deposition occurred under low energy conditions. Lenticular, channel-like scour and fill structures that contain both fine-grained quartz sand and abraded, disarticulated fossil fragments indicatemore » localized higher energy deposition. The authors studies indicate that siliciclastic vs. carbonate deposition was controlled strictly by available sediment, and not by regressive (siliciclastic) and transgressive (carbonate) events, as inferred by previous workers. This conclusion is based on lateral facies relationships, and the supplanting of carbonates by clastics occurring in the upper part of the Ste. Genevieve through the middle part of the Paoli. The Aux Vases is thickest, coarsest, and least mature in the northwestern part of the Illinois Basin, and pinches out to the southeast. This implies a northwesterly source for clastics, perhaps the Transcontinental Arch. After early Chesterian time, the Transcontinental Arch apparently supplied little or no sediment to any flanking basin. The Ste. Genevieve, Paoli, and Aux Vases are major oil-producing units in the Illinois Basin. New understanding of regional relationships should enhance exploratory success and improve recovery from established fields.« less

  9. Sedimentology of the Essaouira Basin (Meskala Field) in context of regional sediment distribution patterns during upper Triassic pluvial events

    NASA Astrophysics Data System (ADS)

    Mader, Nadine K.; Redfern, Jonathan; El Ouataoui, Majid

    2017-06-01

    Upper Triassic continental clastics (TAGI: Trias Argilo-Greseux Inferieur) in the Essaouira Basin are largely restricted to the subsurface, which has limited analysis of the depositional environments and led to speculation on potential provenance of the fluvial systems. Facies analysis of core from the Meskala Field onshore Essaouira Basin is compared with tentatively time-equivalent deposits exposed in extensive outcrops in the Argana Valley, to propose a process orientated model for local versus regional sediment distribution patterns in the continuously evolving Moroccan Atlantic rift during Carnian to Norian times. The study aims to unravel the climatic overprint and improve the understanding of paleo-climatic variations along the Moroccan Atlantic margin to previously recognised Upper Triassic pluvial events. In the Essaouira Basin, four facies associations representing a progressive evolution from proximal to distal facies belts in a continental rift were established. Early ephemeral braided river systems are succeeded by a wet aeolian sandflat environment with a strong arid climatic overprint (FA1). This is followed by the onset of perennial fluvial deposits with extensive floodplain fines (FA2), accompanied by a distinct shift in fluvial style, suggesting increase in discharge and related humidity, either locally or in the catchment area. The fluvial facies transitions to a shallow lacustrine or playa lake delta environment (FA3), which exhibits cyclical abandonment. The delta is progressively overlain by a terminal playa with extensive, mottled mudstones (FA4), interpreted to present a return from cyclical humid-arid conditions to prevailing aridity in the basin. In terms of regional distribution and sediment source provenance, paleocurrent data from Carnian to Norian deposits (T5 to T8 member) in the Argana Valley suggest paleoflow focused towards the S and SW, not directed towards the Meskala area in the NW as previously suggested. A major depo

  10. Potential for deep basin-centered gas accumulation in Hanna Basin, Wyoming

    USGS Publications Warehouse

    Wilson, Michael S.; Dyman, Thaddeus S.; Nuccio, Vito F.

    2001-01-01

    The potential for a continuous-type basin-centered gas accumulation in the Hanna Basin in Carbon County, Wyoming, is evaluated using geologic and production data including mud-weight, hydrocarbon-show, formation-test, bottom-hole-temperature, and vitrinite reflectance data from 29 exploratory wells. This limited data set supports the presence of a hypothetical basin-centered gas play in the Hanna Basin. Two generalized structural cross sections illustrate our interpretations of possible abnormally pressured compartments. Data indicate that a gas-charged, overpressured interval may occur within the Cretaceous Mowry, Frontier, and Niobrara Formations at depths below 10,000 ft along the southern and western margins of the basin. Overpressuring may also occur near the basin center within the Steele Shale and lower Mesaverde Group section at depths below 18,000 to 20,000 ft. However, the deepest wells drilled to date (12,000 to 15,300 ft) have not encountered over-pressure in the basin center. This overpressured zone is likely to be relatively small (probably 20 to 25 miles in diameter) and is probably depleted of gas near major basement reverse faults and outcrops where gas may have escaped. Water may have invaded reservoirs through outcrops and fracture zones along the basin margins, creating an extensive normally pressured zone. A zone of subnormal pressure also may exist below the water-saturated, normal-pressure zone and above the central zone of overpressure. Subnormal pressures have been interpreted in the center of the Hanna Basin at depths ranging from 10,000 to 25,000 ft based on indirect evidence including lost-circulation zones. Three wells on the south side of the basin, where the top of the subnormally pressured zone is interpreted to cut across stratigraphic boundaries, tested the Niobrara Formation and recovered gas and oil shows with very low shut-in pressures.

  11. A Systems Approach to Identifying Exploration and Development Opportunities in the Illinois Basin: Digital Portifolio of Plays in Underexplored Lower Paleozoic Rocks [Part 1 of 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seyler, Beverly; Harris, David; Keith, Brian

    2008-06-30

    This study examined petroleum occurrence in Ordovician, Silurian and Devonian reservoirs in the Illinois Basin. Results from this project show that there is excellent potential for additional discovery of petroleum reservoirs in these formations. Numerous exploration targets and exploration strategies were identified that can be used to increase production from these underexplored strata. Some of the challenges to exploration of deeper strata include the lack of subsurface data, lack of understanding of regional facies changes, lack of understanding the role of diagenetic alteration in developing reservoir porosity and permeability, the shifting of structural closures with depth, overlooking potential producing horizons,more » and under utilization of 3D seismic techniques. This study has shown many areas are prospective for additional discoveries in lower Paleozoic strata in the Illinois Basin. This project implemented a systematic basin analysis approach that is expected to encourage exploration for petroleum in lower Paleozoic rocks of the Illinois Basin. The study has compiled and presented a broad base of information and knowledge needed by independent oil companies to pursue the development of exploration prospects in overlooked, deeper play horizons in the Illinois Basin. Available geologic data relevant for the exploration and development of petroleum reservoirs in the Illinois Basin was analyzed and assimilated into a coherent, easily accessible digital play portfolio. The primary focus of this project was on case studies of existing reservoirs in Devonian, Silurian, and Ordovician strata and the application of knowledge gained to future exploration and development in these underexplored strata of the Illinois Basin. In addition, a review of published reports and exploration in the New Albany Shale Group, a Devonian black shale source rock, in Illinois was completed due to the recent increased interest in Devonian black shales across the United States

  12. Characterizing the deformation of reservoirs using interferometry, gravity, and seismic analyses

    NASA Astrophysics Data System (ADS)

    Schiek, Cara Gina

    In this dissertation, I characterize how reservoirs deform using surface and subsurface techniques. The surface technique I employ is radar interferometry, also known as InSAR (Interferometric Synthetic Aperture Radar). The subsurface analyses I explore include gravity modeling and seismic techniques consisting of determining earthquake locations from a small-temporary seismic network of six seismometers. These techniques were used in two different projects to determine how reservoirs deform in the subsurface and how this deformation relates to its remotely sensed surface deformation. The first project uses InSAR to determine land subsidence in the Mimbres basin near Deming, NM. The land subsidence measurements are visually compared to gravity models in order to determine the influence of near surface faults on the subsidence and the physical properties of the aquifers in these basins. Elastic storage coefficients were calculated for the Mimbres basin to aid in determining the stress regime of the aquifers. In the Mimbres basin, I determine that it is experiencing elastic deformation at differing compaction rates. The west side of the Mimbres basin is deforming faster, 17 mm/yr, while the east side of the basin is compacting at a rate of 11 mm/yr. The second project focuses on San Miguel volcano, El Salvador. Here, I integrate InSAR with earthquake locations using surface deformation forward modeling to investigate the explosive volcanism in this region. This investigation determined the areas around the volcano that are undergoing deformation, and that could lead to volcanic hazards such as slope failure from a fractured volcano interior. I use the earthquake epicenters with field data to define the subsurface geometry of the deformation source, which I forward model to produce synthetic interferograms. Residuals between the synthetic and observed interferograms demonstrate that the observed deformation is a direct result of the seismic activity along the San

  13. Review of water demand and water utilization studies for the Provo River drainage basin, and review of a study of the effects of the proposed Jordanelle Reservoir on seepage to underground mines, Bonneville unit of the central Utah project

    USGS Publications Warehouse

    Waddell, K.M.; Freethey, G.W.; Susong, D.D.; Pyper, G.E.

    1991-01-01

    Problem: Questions have been raised concerning the adequacy of available water to fulfill the needs of storage, exchanges, diversions, and instream flows, pursuant to existing water rights in the Provo River drainage basin part of the Bonneville Unit. Also, concern has been expressed about the potential for seepage of water from Jordanelle Reservoir to underground mines. The Utah Congressional Delegation requested that the U.S. Geological Survey (USGS) review the results of analyses performed by and for the USBR.Purpose and Scope: The purpose of this report is to present the results of the USGS review of (1) the hydrologic data, techniques, and model used by the USBR in their hydrologic analyses of the Provo River drainage basin and (2) the results of a study of the potential for seepage from the Jordanelle Reservoir to nearby underground mines.The USGS reviewed USBR-supplied water demands, water utilization studies, and models of seepage from Jordanelle Reservoir. The USBR estimated that about 90 percent of the water supply for Jordanelle Reservoir will be water from Strawberry Reservoir exchanged for water from the Provo River stored in Utah Lake. If the Utah State Engineer allows the USBR to claim an estimated 19,700 acre-feet of return flows from the CUP, only about 77 percent of the supply would be derived from exchange of existing water rights in Utah Lake. The USGS assumed that planned importations of water from the Uinta Basin will be available and deliverable to fulfill the proposed exchanges.Water rights and demands are important for determining water availability. The USGS did not conduct an independent review of water rights and demands. The USSR and Utah Division of Water Rights use different methods in some areas for determining stress on the system based on past records. The USSR used "historical observed diversions" and the Utah Division of Water Rights use "diversion entitlements", which may not be equal to the historical diversions. The USGS

  14. Sediment yield and runoff frequency of small drainage basins in the Mojave Desert, U.S.A

    USGS Publications Warehouse

    Griffiths, P.G.; Hereford, R.; Webb, R.H.

    2006-01-01

    Sediment yield from small arid basins, particularly in the Mojave Desert, is largely unknown owing to the ephemeral nature of these fluvial systems and long recurrence interval of flow events. We examined 27 reservoirs in the northern and eastern Mojave Desert that trapped sediment from small (< 1 km2) drainage basins on alluvial fans over the past 100 yr, calculated annual sediment yield, and estimated the average recurrence interval (RI) of sediment-depositing flow events. These reservoirs formed where railbeds crossed and blocked channels, causing sediment to be trapped and stored upslope. Deposits are temporally constrained by the date of railway construction (1906-1910), the presence of 137Cs in the reservoir profile (post-1952 sediment), and either 1993, when some basins breached during regional flooding, or 2000-2001, when stratigraphic analyses were performed. Reservoir deposits are well stratified at most sites and have distinct fining-upward couplets indicative of discrete episodes of sediment-bearing runoff. Average RI of runoff events for these basins ranges from 2.6 to 7.3 yr and reflects the incidence of either intense or prolonged rainfall; more than half the runoff events occurred before 1963. A period of above-normal precipitation, from 1905 to 1941, may have increased runoff frequency in these basins. Mean sediment yield (9 to 48 tons km-2 yr-1) is an order of magnitude smaller than sediment yields calculated elsewhere and may be limited by reduced storm intensity, the presence of desert pavement, and shallow gradient of fan surfaces. Sediment yield decreases as drainage area increases, a trend typical of much larger drainage basins where sediment-transport processes constrain sediment yield. Coarse substrate and low-angle slopes of these alluvial fan surfaces likely limit sediment transport capacity through transmission losses and channel storage. ?? 2005 Elsevier B.V. All rights reserved.

  15. Seismic Characterization of the Terrebonne Mini-basin, a Hydrate Rich Depositional System in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Dafov, L. N.; Eze, P. C.; Haines, S. S.; Graham, S. A.; McHargue, T.; Hosford Scheirer, A.

    2017-12-01

    Natural gas bearing hydrates are a focus of research as a potential source of energy and carbon storage because they occur globally in permafrost regions and marine sediment along every continent. This study focuses on the structural and stratigraphic architecture of the Terrebonne mini-basin, northwest Walker Ridge, Gulf of Mexico, to characterize the depositional architecture and to describe possible migration pathways for petroleum. Questions addressed include: a) continuity of sand layers b) effects of faulting and c) ponding versus fill and spill. To address these questions, seven of forty-two high resolution USGS 2D seismic lines were interpreted and then verified with WesternGeco 3D seismic data, yielding three qualitative models for the depositional environment of hydrate-bearing sand intervals. Deeper hydrate-bearing sand reservoirs were deposited as sheet-like turbidite lobes. Two shallower hydrate-bearing intervals display two possible depositional systems which form reservoirs- 1) sandy to muddy channel sealed laterally by muddy levees with associated sandy crevasse splays, and 2) ponded sandy lobes cut by channels filled with sand lags and mud. Additional observations in the 2D seismic include mass transport deposits and possible contourites. Salt movement facilitated mini-basin formation which was then ponded by sediment and followed by episodes of fill-and-spill and erosion. These seismic interpretations indicate periodic salt uplift. Overturn of salt along the northwestern edge of the basin resulted in thrust faults. The faults and erosional surfaces act as seals to reservoirs. The greatest volume of sandy reservoir potential occurs in sheet-like turbidite lobes with high lateral continuity, which facilitates updip migration of deep-sourced thermogenic gas along bedding surfaces. Channel levees serve as lateral seals to gas hydrate reservoirs, whereas faults, erosional surfaces, and shales provide vertical seals. Characterization of the Terrebonne

  16. Hydrologic effects of floodwater-retarding structures on Garza-Little Elm Reservoir, Texas

    USGS Publications Warehouse

    Gilbert, Clarence R.; Sauer, Stanley P.

    1970-01-01

    "Firm"- or "critical"-yield studies were made of the large reservoir on the basis of two sets of conditions : with floodwater-retarding structures in the drainage basin, and without such structures. Results of the firm-yield studies indicated that with full development, annual firm yield would be initially reduced by 10 percent. After 30 or more years, when the permanent pools of the floodwaterretarding reservoirs would be mostly filled with sediment, the firm yield would be almost the same with or without the upstream development.

  17. Evolution of a Miocene sag basin in the Alboran Sea

    NASA Astrophysics Data System (ADS)

    Do Couto, D.; Gorini, C.; Jolivet, L.; Letouzey, J.; Smit, J.; d'Acremont, E.; Auxietre, J. L.; Le Pourhiet, L.; Estrada, F.; Elabassi, M.; Ammar, A.; Jabour, H.; Vendeville, B.

    2012-04-01

    The Alboran domain represents the westernmost termination of the peri-Mediterranean Alpine orogen. Its arcuate shape, delimited to the North by the Betic range and to the South by the Rif range, is the result of subduction, collision and slab migration processes. During the Neogene, several sedimentary basins formed on the Betics metamorphic basement, mainly due to the extensional collapse of the previously thickened crust of the Betic-Rif belt. The major sedimentary depocentre, the Western Alboran Basin (WAB), is surrounded by the Gibraltar arc, the volcanic Djibouti mounts and the Alboran ridge, and is partly affected by shale tectonics and associated mud volcanism. High-quality 2-D seismic profiles acquired along the Moroccan margin during the last decade reveal a complete history of the basin. Our study deals with the analysis of seismic profiles oriented parallel and orthogonal to the Mediterranean Moroccan margin. The stratigraphy was calibrated using well data from offshore Spain and Morocco. Our study focuses particularly on the tectono-stratigraphic reconstruction of the basin. The formation of the WAB began in the Early Miocene (Aquitanian - Burdigalian). A massive unit of Early Miocene to Lower Langhian shales and olistostromes forms a thick mobile décollement layer that controls and accommodates deformation of the basin fill. From the Upper Langhian to the Upper Tortonian, the basin is filled by a thick sequence of siliciclastic deposits. Stratigraphic geometries identified on seismic data clearly indicate that deformation of the basin fill started during deposition of Upper Langhian to the Upper Tortonian clastics. Shale tectonic deformation was re-activated recently, during the Messinian desiccation of the Mediterranean Sea (and the following catastrophic Pliocene reflooding) or during the Quaternary contourite deposition The sedimentary layers gently dip towards the basin centre and "onlaps" onto the basin margin, especially onto the basement high

  18. Suspended-sediment loads, reservoir sediment trap efficiency, and upstream and downstream channel stability for Kanopolis and Tuttle Creek Lakes, Kansas, 2008-10

    USGS Publications Warehouse

    Juracek, Kyle E.

    2011-01-01

    Continuous streamflow and turbidity data collected from October 1, 2008, to September 30, 2010, at streamgage sites upstream and downstream from Kanopolis and Tuttle Creek Lakes, Kansas, were used to compute the total suspended-sediment load delivered to and released from each reservoir as well as the sediment trap efficiency for each reservoir. Ongoing sedimentation is decreasing the ability of the reservoirs to serve several purposes including flood control, water supply, and recreation. River channel stability upstream and downstream from the reservoirs was assessed using historical streamgage information. For Kanopolis Lake, the total 2-year inflow suspended-sediment load was computed to be 600 million pounds. Most of the suspended-sediment load was delivered during short-term, high-discharge periods. The total 2-year outflow suspended-sediment load was computed to be 31 million pounds. Sediment trap efficiency for the reservoir was estimated to be 95 percent. The mean annual suspended-sediment yield from the upstream basin was estimated to be 129,000 pounds per square mile per year. No pronounced changes in channel width were evident at five streamgage sites located upstream from the reservoir. At the Ellsworth streamgage site, located upstream from the reservoir, long-term channel-bed aggradation was followed by a period of stability. Current (2010) conditions at five streamgages located upstream from the reservoir were typified by channel-bed stability. At the Langley streamgage site, located immediately downstream from the reservoir, the channel bed degraded 6.15 feet from 1948 to 2010. For Tuttle Creek Lake, the total 2-year inflow suspended-sediment load was computed to be 13.3 billion pounds. Most of the suspended-sediment load was delivered during short-term, high-discharge periods. The total 2-year outflow suspended-sediment load was computed to be 327 million pounds. Sediment trap efficiency for the reservoir was estimated to be 98 percent. The mean

  19. Great landslide events in Italian artificial reservoirs

    NASA Astrophysics Data System (ADS)

    Panizzo, A.; de Girolamo, P.; di Risio, M.; Maistri, A.; Petaccia, A.

    2005-09-01

    The empirical formulations to forecast landslide generated water waves, recently defined in the framework of a research program funded by the Italian National Dam Office RID (Registro Italiano Dighe), are here used to study three real cases of subaerial landslides which fell down italian artificial reservoirs. It is well known that impulse water waves generated by landslides constitute a very dangerous menace for human communities living in the shoreline of the artificial basin or downstream the dam. In 1963, the menace became tragedy, when a 270 millions m3 landslide fell down the Vajont reservoir (Italy), generated an impulse wave which destroyed the city of Longarone, and killed 2000 people. The paper is aimed at presenting the very satisfactorily reproduction of the events at hand by using forecasting formulations.

  20. Greenhouse gas emissions of hydropower in the Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Räsänen, Timo A.; Varis, Olli; Scherer, Laura; Kummu, Matti

    2018-03-01

    The Mekong River Basin in Southeast Asia is undergoing extensive hydropower development, but the magnitudes of related greenhouse gas emissions (GHG) are not well known. We provide the first screening of GHG emissions of 141 existing and planned reservoirs in the basin, with a focus on atmospheric gross emissions through the reservoir water surface. The emissions were estimated using statistical models that are based on global emission measurements. The hydropower reservoirs (119) were found to have an emission range of 0.2-1994 kg CO2e MWh-1 over a 100 year lifetime with a median of 26 kg CO2e MWh-1. Hydropower reservoirs facilitating irrigation (22) had generally higher emissions reaching over 22 000 kg CO2e MWh-1. The emission fluxes for all reservoirs (141) had a range of 26-1813 000 t CO2e yr-1 over a 100 year lifetime with a median of 28 000 t CO2e yr-1. Altogether, 82% of hydropower reservoirs (119) and 45% of reservoirs also facilitating irrigation (22) have emissions comparable to other renewable energy sources (<190 kg CO2e MWh-1), while the rest have higher emissions equalling even the emission from fossil fuel power plants (>380 kg CO2e MWh-1). These results are tentative and they suggest that hydropower in the Mekong Region cannot be considered categorically as low-emission energy. Instead, the GHG emissions of hydropower should be carefully considered case-by-case together with the other impacts on the natural and social environment.

  1. Derivation of Optimal Operating Rules for Large-scale Reservoir Systems Considering Multiple Trade-off

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Lei, X.; Liu, P.; Wang, H.; Li, Z.

    2017-12-01

    Flood control operation of multi-reservoir systems such as parallel reservoirs and hybrid reservoirs often suffer from complex interactions and trade-off among tributaries and the mainstream. The optimization of such systems is computationally intensive due to nonlinear storage curves, numerous constraints and complex hydraulic connections. This paper aims to derive the optimal flood control operating rules based on the trade-off among tributaries and the mainstream using a new algorithm known as weighted non-dominated sorting genetic algorithm II (WNSGA II). WNSGA II could locate the Pareto frontier in non-dominated region efficiently due to the directed searching by weighted crowding distance, and the results are compared with those of conventional operating rules (COR) and single objective genetic algorithm (GA). Xijiang river basin in China is selected as a case study, with eight reservoirs and five flood control sections within four tributaries and the mainstream. Furthermore, the effects of inflow uncertainty have been assessed. Results indicate that: (1) WNSGA II could locate the non-dominated solutions faster and provide better Pareto frontier than the traditional non-dominated sorting genetic algorithm II (NSGA II) due to the weighted crowding distance; (2) WNSGA II outperforms COR and GA on flood control in the whole basin; (3) The multi-objective operating rules from WNSGA II deal with the inflow uncertainties better than COR. Therefore, the WNSGA II can be used to derive stable operating rules for large-scale reservoir systems effectively and efficiently.

  2. Stratigraphic and structural distribution of reservoirs in Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefanescu, M.O.

    1991-08-01

    In Romania, there are reservoirs at different levels of the whole Cambrian-Pliocene interval, but only some of these levels have the favorable structural conditions to accumulate hydrocarbons in commercial quantities. These levels are the Devonian, Triassic, Middle Jurassic, Lower Cretaceous (locally including the uppermost Jurassic), Eocene, Oligocene-lower Miocene, middle and upper Miocene, and Pliocene. The productive reservoirs are represented either by carbonate rocks (in Devonian, Middle Triassic and uppermost Jurassic-Lower Cretaceous) or by detrital rocks (in Lower and Upper Triassic, Middle Jurassic, Eocene, Oligocene, Miocene, and Pliocene). From the structural point of view, the Romanian territory is characterized by themore » coexistence both of platforms (East European, Scythian, and Moesian platforms) and of the strongly tectonized orogenes (North Dobrogea and Carpathian orogenes). Each importance crust shortening was followed by the accumulation of post-tectonic covers, some of them being folded during subsequently tectonic movements. The youngest post-tectonic cover is common both for the platforms (foreland) and Carpathian orogene, representing the Carpathian foredeep. Producing reservoirs are present in the East European and Moesian platforms, in the outer Carpathian units (Tarcau and Marginal folds nappes) and in certain post-tectonic covers which fill the Carpathian foredeep and the Transylvanian and Pannonian basins. In the platforms, hydrocarbons accumulated both in calcareous and detrital reservoirs, whereas in the Carpathian units and in their reservoirs, whereas in the Carpathian units and in their post-tectonic covers, hydrocarbons accumulated only in detrital reservoirs.« less

  3. Gas desorption and adsorption isotherm studies of coals in the Powder River basin, Wyoming and adjacent basins in Wyoming and North Dakota

    USGS Publications Warehouse

    Stricker, Gary D.; Flores, Romeo M.; McGarry, Dwain E.; Stillwell, Dean P.; Hoppe, Daniel J.; Stillwell, Cathy R.; Ochs, Alan M.; Ellis, Margaret S.; Osvald, Karl S.; Taylor, Sharon L.; Thorvaldson, Marjorie C.; Trippi, Michael H.; Grose, Sherry D.; Crockett, Fred J.; Shariff, Asghar J.

    2006-01-01

    The U.S. Geological Survey (USGS), in cooperation with the State Office, Reservoir Management Group (RMG), of the Bureau of Land Management (BLM) in Casper (Wyoming), investigated the coalbed methane resources (CBM) in the Powder River Basin, Wyoming and Montana, from 1999 to the present. Beginning in late 1999, the study also included the Williston Basin in Montana and North and South Dakota and Green River Basin and Big Horn Basin in Wyoming. The rapid development of CBM (referred to as coalbed natural gas by the BLM) during the early 1990s, and the lack of sufficient data for the BLM to fully assess and manage the resource in the Powder River Basin, in particular, gave impetus to the cooperative program. An integral part of the joint USGS-BLM project was the participation of 25 gas operators that entered individually into confidential agreements with the USGS, and whose cooperation was essential to the study. The arrangements were for the gas operators to drill and core coal-bed reservoirs at their cost, and for the USGS and BLM personnel to then desorb, analyze, and interpret the coal data with joint funding by the two agencies. Upon completion of analyses by the USGS, the data were to be shared with both the BLM and the gas operator that supplied the core, and then to be released or published 1 yr after the report was submitted to the operator.

  4. Pawcatuck and Woonasquatucket River Basins and Narragansett Bay Local Drainage Area. Main Report.

    DTIC Science & Technology

    1981-10-01

    building and housing codes are recommended. Flood warning systems, urban renewal, tax incentives, and public open space acquisition will also help...RIVER GROUP WATERSHEDLD LOCAL DRAINAGE PD, WOONASQUATUCKET - MOSI4ASSUCK - PROVIDENCE RIVERS SUB-BASIN PD2 BLACKSTONE RIVER SUB-BASIN orPD 3 TENMiLE...of the Taunton River Basin in Massachusetts, 1979 PNB Water Supply Study, January 1979 Big River Reservoir Project, July 1981 Blackstone River

  5. Climate Change and its Impacts on Water Resources and Management of Tarbela Reservoir under IPCC Climate Change Scenarios in Upper Indus Basin, Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, Firdos; Pilz, Jürgen

    2014-05-01

    Water resources play a vital role in agriculture, energy, industry, households and ecological balance. The main source of water to rivers is the Himalaya-Karakorum-Hindukush (HKH) glaciers and rainfall in Upper Indus Basin (UIB). There is high uncertainty in the availability of water in the rivers due to the variability of the monsoon, Western Disturbances, prolonged droughts and melting of glaciers in the HKH region. Therefore, proper management of water resources is undeniably important. Due to the growing population, urbanization and increased industrialization, the situation is likely to get worse. For the assessment of possible climate change, maximum temperature, minimum temperature and precipitation were investigated and evidence was found in favor of climate change in the region. Due to large differences between historical meteorological data and Regional Climate Model (RCM) simulated data, different statistical techniques were used for bias correction in temperature and precipitation. The hydrological model was calibrated for the period of 1995-2004 and validated for the period of 1990-1994 with almost 90 % efficiencies. After the application of bias correction techniques output of RCM, Providing Regional Climate for Impact Studies (PRECIS) were used as input data to the hydrological model to produce inflow projections at Tarbela reservoir on Indus River. For climate change assessment, the results show that the above mentioned variables have greater increasing trend under A2 scenario compared to B2 scenario. The projections of inflow to Tarbela reservoir show that overall 59.42 % and 34.27 % inflow increasing to Tarbela Reservoir during 2040-2069 under A2 and B2 scenarios will occur, respectively. Highest inflow and comparatively more shortage of water is noted in the 2020s under A2 scenario. Finally, the impacts of changing climate are investigated on the operation of the Tarbela reservoir. The results show that there will be shortage of water in some

  6. Improving multi-objective reservoir operation optimization with sensitivity-informed dimension reduction

    NASA Astrophysics Data System (ADS)

    Chu, J.; Zhang, C.; Fu, G.; Li, Y.; Zhou, H.

    2015-08-01

    This study investigates the effectiveness of a sensitivity-informed method for multi-objective operation of reservoir systems, which uses global sensitivity analysis as a screening tool to reduce computational demands. Sobol's method is used to screen insensitive decision variables and guide the formulation of the optimization problems with a significantly reduced number of decision variables. This sensitivity-informed method dramatically reduces the computational demands required for attaining high-quality approximations of optimal trade-off relationships between conflicting design objectives. The search results obtained from the reduced complexity multi-objective reservoir operation problems are then used to pre-condition the full search of the original optimization problem. In two case studies, the Dahuofang reservoir and the inter-basin multi-reservoir system in Liaoning province, China, sensitivity analysis results show that reservoir performance is strongly controlled by a small proportion of decision variables. Sensitivity-informed dimension reduction and pre-conditioning are evaluated in their ability to improve the efficiency and effectiveness of multi-objective evolutionary optimization. Overall, this study illustrates the efficiency and effectiveness of the sensitivity-informed method and the use of global sensitivity analysis to inform dimension reduction of optimization problems when solving complex multi-objective reservoir operation problems.

  7. Improving multi-objective reservoir operation optimization with sensitivity-informed problem decomposition

    NASA Astrophysics Data System (ADS)

    Chu, J. G.; Zhang, C.; Fu, G. T.; Li, Y.; Zhou, H. C.

    2015-04-01

    This study investigates the effectiveness of a sensitivity-informed method for multi-objective operation of reservoir systems, which uses global sensitivity analysis as a screening tool to reduce the computational demands. Sobol's method is used to screen insensitive decision variables and guide the formulation of the optimization problems with a significantly reduced number of decision variables. This sensitivity-informed problem decomposition dramatically reduces the computational demands required for attaining high quality approximations of optimal tradeoff relationships between conflicting design objectives. The search results obtained from the reduced complexity multi-objective reservoir operation problems are then used to pre-condition the full search of the original optimization problem. In two case studies, the Dahuofang reservoir and the inter-basin multi-reservoir system in Liaoning province, China, sensitivity analysis results show that reservoir performance is strongly controlled by a small proportion of decision variables. Sensitivity-informed problem decomposition and pre-conditioning are evaluated in their ability to improve the efficiency and effectiveness of multi-objective evolutionary optimization. Overall, this study illustrates the efficiency and effectiveness of the sensitivity-informed method and the use of global sensitivity analysis to inform problem decomposition when solving the complex multi-objective reservoir operation problems.

  8. A dimension reduction method for flood compensation operation of multi-reservoir system

    NASA Astrophysics Data System (ADS)

    Jia, B.; Wu, S.; Fan, Z.

    2017-12-01

    Multiple reservoirs cooperation compensation operations coping with uncontrolled flood play vital role in real-time flood mitigation. This paper come up with a reservoir flood compensation operation index (ResFCOI), which formed by elements of flood control storage, flood inflow volume, flood transmission time and cooperation operations period, then establish a flood cooperation compensation operations model of multi-reservoir system, according to the ResFCOI to determine a computational order of each reservoir, and lastly the differential evolution algorithm is implemented for computing single reservoir flood compensation optimization in turn, so that a dimension reduction method is formed to reduce computational complexity. Shiguan River Basin with two large reservoirs and an extensive uncontrolled flood area, is used as a case study, results show that (a) reservoirs' flood discharges and the uncontrolled flood are superimposed at Jiangjiaji Station, while the formed flood peak flow is as small as possible; (b) cooperation compensation operations slightly increase in usage of flood storage capacity in reservoirs, when comparing to rule-based operations; (c) it takes 50 seconds in average when computing a cooperation compensation operations scheme. The dimension reduction method to guide flood compensation operations of multi-reservoir system, can make each reservoir adjust its flood discharge strategy dynamically according to the uncontrolled flood magnitude and pattern, so as to mitigate the downstream flood disaster.

  9. Sedimentology of the upper Karoo fluvial strata in the Tuli Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Bordy, Emese M.; Catuneanu, Octavian

    2001-08-01

    The sedimentary rocks of the Karoo Supergroup in the Tuli Basin (South Africa) may be grouped in four stratigraphic units: the basal, middle and upper units, and the Clarens Formation. This paper presents the findings of the sedimentological investigation of the fluvial terrigenous clastic and chemical deposits of the upper unit. Evidence provided by primary sedimentary structures, palaeontological record, borehole data, palaeo-flow measurements and stratigraphic relations resulted in the palaeo-environmental reconstruction of the upper unit. The dominant facies assemblages are represented by sandstones and finer-grained sediments, which both can be interbedded with subordinate intraformational coarser facies. The facies assemblages of the upper unit are interpreted as deposits of a low-sinuosity, ephemeral stream system with calcretes and silcretes in the dinosaur-inhabited overbank area. During the deposition of the upper unit, the climate was semi-arid with sparse precipitation resulting in high-magnitude, low-frequency devastating flash floods. The current indicators of the palaeo-drainage system suggest flow direction from northwest to southeast, in a dominantly extensional tectonic setting. Based on sedimentologic and biostratigraphic evidence, the upper unit of the Tuli Basin correlates to the Elliot Formation in the main Karoo Basin to the south.

  10. Analysis of change of retention capacity of a small water reservoir

    NASA Astrophysics Data System (ADS)

    Výleta, R.; Danáčová, M.; Valent, P.

    2017-10-01

    This study is focused on the analysis of the changes of retention capacity of a small water reservoir induced by intensive erosion and sedimentation processes. The water reservoir is situated near the village of Vrbovce in the Western part of Slovakia, and the analysis is carried out for a period 2008-2017. The data used to build a digital elevation model (DEM) of the reservoir’s bed came from a terrain measurement, utilizing an acoustic Doppler current profiler (ADCP) to measure the water depth in the reservoir. The DEM was used to quantify the soil loss from agricultural land situated within the basin of the reservoir. The ability of the water reservoir to transform a design flood with a return period of 100 years is evaluated for both design (2008) and current conditions (2017). The results show that the small water reservoir is a subject to siltation, with sediments comprised of fine soil particles transported from nearby agricultural land. The ability of the water reservoir to transform a 100-year flood has not changed significantly. The reduction of the reservoir’s retention capacity should be systematically and regularly monitored in order to adjust its operational manual and improve its efficiency.

  11. Spatio-temporal autocorrelation of Neogene-Quaternary volcanic and clastic sedimentary rocks in SW Montana and SE Idaho: Relationship to Cenozoic tectonic and thermally induced extensional events

    NASA Astrophysics Data System (ADS)

    Davarpanah, A.; Babaie, H. A.; Dai, D.

    2013-12-01

    Two systems of full and half grabens have been forming since the mid-Tertiary through tectonic and thermally induced extensional events in SW Montana and neighboring SE Idaho. The earlier mid-Tertiary Basin and Range (BR) tectonic event formed the NW- and NE-striking mountains around the Snake River Plain (SRP) in Idaho and SW Montana, respectively. Since the mid-Tertiary, partially synchronous with the BR event, diachronous bulging and subsidence due to the thermally induced stress field of the Yellowstone hotspot (YHS) has produced the second system of variably-oriented grabens through faulting across the older BR fault blocks. The track of the migration of the YHS is defined by the presence of six prominent volcanic calderas along the SRP which become younger toward the present location of the YHS. Graben basins bounded by both the BR faults and thermally induced cross-faults (CF) systems are now filled with Tertiary-Quaternary clastic sedimentary and volcanic-volcaniclastic rocks. Neogene mafic and felsic lava which erupted along the SRP and clastic sedimentary units (Sixmile Creek Fm., Ts) deposited in both types of graben basins were classified based on their lithology and age, and mapped in ArcGIS 10 as polygon using a combination of MBMG and USGS databases and geological maps at scales of 1:250.000, 1:100,000, and 1:48,000. The spatio-temporal distributions of the lava polygons were then analyzed applying the Global and Local Moran`s I methods to detect any possible spatial or temporal autocorrelation relative to the track of the YHS. The results reveal the spatial autocorrelation of the lithology and age of the Neogene lavas, and suggest a spatio-temporal sequence of eruption of extrusive rocks between Miocene and late Pleistocene along the SRP. The sequence of eruptions, which progressively becomes younger toward the Yellowstone National Park, may track the migration of the YSH. The sub-parallelism of the trend of the SRP with the long axis of the

  12. Palaeozoic gas charging in the Ahnet-Timimoun basin, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cawley, S.J.; Wilson, N.P.; Primmer, T.

    1995-08-01

    The Ahnet-Timimoun Basin, Southern Algeria, contains significant gas reserves expelled from originally oil prone Silurian and Frasnian shales. The gas is reservoired in Devonian and Carboniferous clastics in inversion anticlines formed, primarily, during the Hercynian orogeny. Integration of organic and inorganic geochemical techniques, such as AFTA, ZFTA, fluid inclusion analysis, vitrinite and chitinizoan reflectance, is entirely consistent with gas generation 300 +/- 30MY, immediately prior to or synchronous with the Hercynian orogeny. Data from gas fields has shown the remobilisation of gas during post Hercynian tectonics. A {open_quotes}two-event{close_quotes} heating/cooling history is proposed: (1) Maximum burial and palaeotemperature at ca. 300more » +/- 30MY prior to or synchronous with Hercynian uplift and cooling. (2) Cooling from a secondary peak (lower than maximum) palaeotemperature at ca. 30-60My following Creataceous burial. Calibrated thermal modelling indicates that Palaeozoic source rocks were heated above 200{degrees}C in the Late Carboniferous. Such high temperatures are consistent with the widespread occurrence of pyrophyllite in Silurian shales. Two end-member thermal models can account for the observed maturities. The first is a constant high Pre-Hercynian heat flow which rapidly decreases during Hercynian uplift to remain at Present day values of 50-75mW/m{sup 2}. Gas expulsion in this case commences much earlier than trap formation. The second is {open_quotes}normal{close_quotes} heat flow of ca. 50mW/m{sup 2} until ca. 310My with a rapid increase at ca. 290My followed by an equally rapid drop to constant present day values - in this model, petroleum generation and expulsion is late in relation to structuring.« less

  13. Rainfall forecast in the Upper Mahaweli basin in Sri Lanka using RegCM model

    NASA Astrophysics Data System (ADS)

    Muhammadh, K. M.; Mafas, M. M. M.; Weerakoon, S. B.

    2017-04-01

    The Upper Mahaweli basin is the upper most sub basin of 788 km2 in size above Polgolla barrage in the Mahaweli River, the longest river in Sri Lanka which starts from the central hills of the island and drains to the sea at the North-east coast. Rainfall forecast in the Upper Mahaweli basin is important for issuing flood warning in the river downstream of the reservoirs, landslide warning in the settlements in hilly areas. Anticipatory water management in the basin including reservoir operations, barrage gate operation for releasing water for irrigation and flood control also require reliable rainfall and runoff prediction in the sub basin. In this study, the Regional Climate Model (RegCM V4.4.5.11) is calibrated for the basin to dynamically downscale reanalysis weather data of Global Climate Model (GCM) to forecast the rainfall in the basin. Observed rainfalls at gauging stations within the basin were used for model calibration and validation. The observed rainfall data was analysed using ARC GIS and the output of RegCM was analysed using GrADS tool. The output of the model and the observed precipitation were obtained on grids of size 0.1 degrees and the accuracy of the predictions were analysed using RMSE and Mean Model Absolute Error percentage (MAME %). The predictions by the calibrated RegCM model for the basin is shown to be satisfactory. The model is a useful tool for rainfall forecast in the Upper Mahaweli River basin.

  14. Review of waterpower withdrawals in Weiser River Basin, Idaho

    USGS Publications Warehouse

    Colbert, Jesse Lane; Young, Loyd L.

    1964-01-01

    The Weiser River basin is primarily agricultural and is supported by extensive irrigation. The Geological Survey has initiated withdrawals, or has made powersite classifications of lands having value for reservoir sites and for waterpower production. These withdrawals have been examined to see if they should continue in force or if it is in the public interest to restore them. The 1960 report, "Upper Snake River Basin," by the U.S. bureau of Reclamation, and U.S. Army Corps of Engineers included recommendations conooming potential water resource-development sites in Water River basin. That report furnished much of the information for this review.

  15. The Westphalian D fossil lepidodendrid forest at Table Head, Sydney Basin, Nova Scotia: Sedimentology, paleoecology and floral response to changing edaphic conditions

    USGS Publications Warehouse

    Calder, J.H.; Gibling, M.R.; Eble, C.F.; Scott, A.C.; MacNeil, D.J.

    1996-01-01

    Strata of Westphalian D age on the western coast of the Sydney Basin expose a fossil forest of approximately 30 lepidodendrid trees within one of several clastic splits of the Harbour Seam. A mutidisciplinary approach was employed to interpret the origins of the coal bed, the depositional history of the site and the response of the fossil forest to changing edaphic conditions. The megaspore and miospore records indicate that the mire vegetation was dominated by arboreous lycopsids, especially Paralycopodites, with subdominant tree ferns. Petrographic, palynological and geochemical evidence suggest that the Harbour coal bed at Table Head originated as a rheotrophic (cf. planar) mire (eutric histosol). The mire forest is interpreted to have been engulfed by prograding distributary-channel sediments; sparse protist assemblages are suggestive of a freshwater delta-plain lake environment occasionally in contact with brackish waters. Lepidodendrids persisted as site colonizers of clastic substrates even after burial of the rheotrophic peatland and influenced the morphology of deposited sediment, but apparently were unable to colonize distributary channels. Equivocal taxonomic data (compression fossils) show the fossil forest to have been composed of both monocarpic (Lepidodendron) and polycarpic (Diaphorodendron, Paralycopodites, ?Sigillaria) lycopsids, genera recorded in the palynology of the uppermost ply of the underlying coal bed. Comparatively rare within the clastic beds of the fossil forest, however, is the stem compression of Paralycopodites, whose dispersed megapores and miospores dominate the underlying coal bed. Tree diameter data recorded equivalent to breast height indicate a forest of mixed age. These data would appear to suggest that some lepidodendrids employing a polycarpic reproductive strategy were better able to cross the ecological barrier imposed between peat and clastic substrates. Foliar compressions indicate that an understory or stand of

  16. 76 FR 5586 - Williston Basin Interstate Pipeline Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-01

    ... Commission's Regulations under the Natural Gas Act (NGA) as amended, for the construction and operation of... Baker Storage Reservoir. Williston Basin also adds two natural gas-fueled units, rated at 2,370 hp each... Storage Reservoir by 35,000 Mcf/day and provide 7,000 Mcf/day of incremental transportation transfer...

  17. Examining Reservoir Influences on Fluvial Sediment Supply to Estuaries and Coastal Oceans with Sediment Geochronologies: Example from Conowingo Reservoir (Upper Chesapeake Bay, USA)

    NASA Astrophysics Data System (ADS)

    Palinkas, C. M.; Russ, E.

    2016-12-01

    The flux of fluvial sediment to estuaries and coastal oceans is often interrupted by natural and anthropogenic influences. Here, we focus on river dams, which alter the connection between rivers and their receiving basins via sediment sequestration in their reservoirs. Sediments are effectively trapped until river discharge is high enough to create flow velocities capable of resuspending sediment. Sediment resuspension often varies within the reservoir, driven by morphological features such as channels and islands. Thus, sediment residence times in the reservoir are often highly variable in space and time. This study focuses on reading the sedimentary record in one such system - the reservoir upstream of Conowingo Dam, built in the late 1920s and the last and largest dam on the Susquehanna River (Maryland, USA) before it enters Chesapeake Bay. This study establishes geochronologies of reservoir sedimentation on seasonal to decadal time scales with a variety of techniques (e.g., natural and anthropogenic radioisotopes (7Be, 210Pb, 137Cs), coal from mining in the watershed) to interpret observed down-core sedimentary structures and characteristics (grain size, organic content). These observations reveal spatial and temporal patterns of sediment deposition and/or erosion. Placed within the broader context of reservoir geomorphology, these results can improve predictions of sediment supply to downstream environments, in this case Chesapeake Bay, where it can impact water quality and/or benthic organisms.

  18. Soft sediment deformation structures in the Maastrichtian Ajali Formation Western Flank of Anambra Basin, Southern Nigeria

    NASA Astrophysics Data System (ADS)

    Olabode, Solomon Ojo

    2014-01-01

    Soft sediment deformation structures were recognized in the Maastrichtian shallow marine wave to tide influenced regressive sediments of Ajali Formation in the western flank of Anambra basin, southern Nigerian. The soft sediment deformation structures were in association with cross bedded sands, clay and silt and show different morphological types. Two main types recognised are plastic deformations represented by different types of recumbent folds and injection structure represented by clastic dykes. Other structures in association with the plastic deformation structures include distorted convolute lamination, subsidence lobes, pillars, cusps and sand balls. These structures are interpreted to have been formed by liquefaction and fluidization mechanisms. The driving forces inferred include gravitational instabilities and hydraulic processes. Facies analysis, detailed morphologic study of the soft sediment deformation structures and previous tectonic history of the basin indicate that the main trigger agent for deformation is earthquake shock. The soft sediment deformation structures recognised in the western part of Anambra basin provide a continuous record of the tectonic processes that acted on the regressive Ajali Formation during the Maastrichtian.

  19. Geological history of the west Libyan offshore and adjoining regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benniran, M.M.; Taleb, T.M.; McCrossan, R.G.

    1988-08-01

    The continental margin of the African plate north of Libya is separated from the Saharan platform to the south by a major Variscan fault system running along the coastline. The structural evolution of three sedimentary basins within the margin is discussed. The Jeffara basin, onshore western Libya-southern Tunisia, formed as a right-lateral pull-part late in the Variscan event. When the strike-slip motion ceased in the Late Permian, the basin continued to subside thermally. The Sabratah (Tripolitanian) basin, offshore western Libya-southern Tunisia, and the Benghazi basin in the Sirte rise were both formed as left-lateral pull-aparts in the Late Triassic-Early Jurassic.more » From the Middle Jurassic to the present they have subsided thermally. Onshore the lower Mesozoic is characterized by continental and nearshore clastics, separated by an evaporite sequence of Late Triassic-Early Jurassic age. Offshore this sequence is thought to grade northward into open marine carbonates. Uplift along the edge of the Saharan platform during the Early Cretaceous sourced coarse clastics, which grade northward into a thick sequence of shallow-water carbonates. Throughout the Late Cretaceous and early Tertiary, high-energy carbonates were deposited around the flanks of the Sabratah basin, grading into deeper-water, fine-grained clastics and carbonates toward the center of the basin. The late Tertiary succession is dominated by clastics derived from the growing Tellian Atlas to the northwest. During the Mesozoic and Tertiary a thick sequence of carbonates was deposited on the Pelagian platform to the north of the Sabratah basin. Periodically the platform was exposed subaerially.« less

  20. Clastic sedimentary rocks of the Michipicoten Volcanic-sedimentary belt, Wawa, Ontario

    NASA Technical Reports Server (NTRS)

    Ojakangas, R. W.

    1983-01-01

    The Wawa area, part of the Michipicoten greenstone belt, contains rock assemblages representative of volcanic sedimentary accumulations elsewhere on the shield. Three mafic to felsic metavolcanic sequences and cogenetic granitic rocks range in age from 2749 + or - 2Ma to 2696 + or - 2Ma. Metasedimentary rocks occur between the metavolcanic sequences. The total thickness of the supracrustal rocks may be 10,000 m. Most rocks have been metamorphosed under greenschist conditions. The belt has been studied earlier and is currently being remapped by Sage. The sedimentrologic work has been briefly summarized; two mainfacies associations of clastic sedimentary rocks are present - a Resedimented (Turbidite) Facies Association and a Nonmarine (Alluvial Fan Fluvial) Facies Association.

  1. OVERVIEW OF VALVE TOWER FROM EASTERN SIDE OF BASIN SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF VALVE TOWER FROM EASTERN SIDE OF BASIN SHOWING BRIDGE SUPPORTS ON HILLTOP. VIEW FACING WEST - Schofield Barracks Military Reservation, Ku Tree Reservoir, Valve Tower, Kalakoa Stream, East Range, Wahiawa, Honolulu County, HI

  2. Climate and tectonic evolution of the Descanso-Yauri basin in the northernmost Altiplano: Archetype example of a 'lithospheric drip' basin

    NASA Astrophysics Data System (ADS)

    Kar, N.; Garzione, C. N.

    2015-12-01

    We present a new multiproxy Miocene-Pliocene paleoelevation record of the northernmost Altiplano plateau reconstructed from pollen, clumped isotope (TΔ47) and δ18Oc of sedimentary carbonates and leaf wax n-alkane δD signatures. The ~18Ma to ~9Ma deposits of our study area, Descanso-Yauri basin in southern Peru show 11 to 16ºC warmer than modern mean annual air temperature, low elevation vegetation pollen assemblage (dominated by Podocarpus), and an average precipitation δ18Omw (VSMOW) value of -8.3±2.0‰ (2σ). The ~5 to 4 Ma deposits in the Descanso-Yauri basin are characterized by herb and shrub vegetation and an average δ18O mw (VSMOW) value of -14.6±3.0‰ (2σ), indicative of an elevation and/or climate similar to modern conditions. Based on the multiproxy paleoclimate record, we interpret that there was a 2±1 km surface uplift between 9 and 5 Ma in the northernmost Altiplano plateau. Deformation history analysis through map scale structural investigation combined with provenance analysis from conglomerate clast composition and paleocurrents show that the thrusts bounding the NE side of the Descanso-Yauri basin were active until ˜9Ma. Deformation waned afterwards, and switched to an extensional deformation regime, coincident with decrease in subsidence rate from ˜0.2mm/year to ˜0.03mm/year. Depositional history reconstructed by facies analysis and stratigraphic correlation reveal that deposition in the basin began with transverse braided river systems that formed along the thrust front and gave way to a larger fluvial-lacustrine system until ˜4 Ma. The basin deposits show an overall fining upward trend from coarse clastic dominated, in the lower most parts of the basin fill to fluvial overbank and lacustrine mudstone and diatomite deposits in the middle-upper parts. The thickest deposits formed in the central part of the basin. Based on these depositional and deformational patterns, we infer that the Descanso-Yauri basin formed in response to a

  3. Bioclastic turbiditic reservoirs: San Giorgio, Santa Maria Mare, Sarago Mare fields (Italy)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heritier, F.E.; Soudet, H.; Richert, J.

    1987-05-01

    These three fields and the associated Mormora discovery are located along the coastline of the central Adriatic Sea or on the very proximate shelf south of Ancona. Geologically they belong to the Marches basin. These fields are situated on highly faulted northwest-trending anticlines which are related to a north-south shear zone under the disharmonic cover of late Miocene and early Pliocene shales. Oil and gas are contained in the Scaglia limestone formation of Late Cretaceous to Paleocene age whose reservoirs consist of high-energy bioclastic grainstones interbedded in open marine chalk deposits, and spread and deposited by turbiditic currents. The diagenesismore » of these bioclastic grainstones is closely related to the thickness and composition of the different beds and is chiefly located at the top and bottom of them. It is also related to the fluid content of the reservoir. Fracturing of these beds under the tectonic stresses is linked to the reservoir's characteristics and to the extension of consolidated facies by diagenesis. This fracturing is responsible for the production behavior of the different wells. Source rocks are the evaporitic shales of upper Miocene age, mature in the deeper part of the Marches basin under the upper Pliocene olistostromes.« less

  4. Modeling a complex system of multipurpose reservoirs under prospective scenarios (hydrology, water uses, water management): the case of the Durance River basin (South Eastern France, 12 800 km2)

    NASA Astrophysics Data System (ADS)

    Monteil, Céline; Hendrickx, Frédéric; Samie, René; Sauquet, Eric

    2015-04-01

    The Durance River and its main tributary, the Verdon River, are two major rivers located in the Southern part of France. Three large dams (Serre-Ponçon, Castillon and Sainte-Croix) were built on their streams during the second half of the 20th century for multiple purposes. Stored water is used for hydropower, recreational, industry, drinking water and irrigation. Flows are partly diverted to feed areas outside the basin. On average 30 plants located in the Durance and Verdon valleys currently produce a total of 600 million kWh per year, equal to the annual residential consumption of a city with over 2.5 million inhabitants. The Southern part of France has been recently affected by severe droughts (2003, 2007 and 2011) and the rules for water allocation and reservoir management are now questioned particularly in the light of global change. The objective of the research project named "R²D²-2050" was to assess water availability and risks of water shortage in the mid-21st century by taking into account changes in both climate and water management. Therefore, a multi-model multi-scenario approach was considered to simulate regional climate, water resources and water demands under present-day (over the 1980-2009 baseline period) and under future conditions (over the 2036-2065 period). In addition, a model of water management was developed to simulate reservoir operating rules of the three dams. This model was calibrated to simulate water released from reservoir under constraints imposed by current day water allocation rules (e.g. downstream water requirements for irrigation, minimum water levels in the reservoirs during summer time for recreational purposes). Four territorial socio-economic scenarios were also elaborated with the help of stake holders to project water needs in the 2050s for the areas supplied with water from the Durance River basin. Results suggest an increase of the average air temperature with consequences on snow accumulation, snowmelt processes

  5. Three-dimensional audio-magnetotelluric sounding in monitoring coalbed methane reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Zhao, Shanshan; Hui, Jian; Qin, Qiming

    2017-03-01

    Audio-magnetotelluric (AMT) sounding is widely employed in rapid resistivity delineation of objective geometry in near surface exploration. According to reservoir patterns and electrical parameters obtained in Qinshui Basin, China, two-dimensional and three-dimensional synthetic "objective anomaly" models were designed and inverted with the availability of a modular system for electromagnetic inversion (ModEM). The results revealed that 3-D full impedance inversion yielded the subsurface models closest to synthetic models. One or more conductive targets were correctly recovered. Therefore, conductive aquifers in the study area, including hydrous coalbed methane (CBM) reservoirs, were suggested to be the interpretation signs for reservoir characterization. With the aim of dynamic monitoring of CBM reservoirs, the AMT surveys in continuous years (June 2013-May 2015) were carried out. 3-D inversion results demonstrated that conductive anomalies accumulated around the producing reservoirs at the corresponding depths if CBM reservoirs were in high water production rates. In contrast, smaller conductive anomalies were generally identical with rapid gas production or stopping production of reservoirs. These analyses were in accordance with actual production history of CBM wells. The dynamic traces of conductive anomalies revealed that reservoir water migrated deep or converged in axial parts and wings of folds, which contributed significantly to formations of CBM traps. Then the well spacing scenario was also evaluated based on the dynamic production analysis. Wells distributed near closed faults or flat folds, rather than open faults, had CBM production potential to ascertain stable gas production. Therefore, three-dimensional AMT sounding becomes an attractive option with the ability of dynamic monitoring of CBM reservoirs, and lays a solid foundation of quantitative evaluation of reservoir parameters.

  6. Pre-lithification tectonic foliation development in a clastic sedimentary rock sequence from SW Ireland

    NASA Astrophysics Data System (ADS)

    Meere, Patrick; Mulchrone, Kieran; McCarthy, David

    2017-04-01

    The current orthodoxy regarding the development of regionally developed penetrative tectonic cleavage fabrics in sedimentary rocks is that it postdates lithification of those rocks. It is well established that fabric development under these circumstances is achieved by a combination of grain rigid body rotation, crystal-plastic deformation and pressure solution. The latter is believed to be the primary mechanism responsible for the domainal nature of cleavage development commonly observed in low grade metamorphic rocks. While there have been advocates for the development of tectonic cleavages before host rock lithification these are currently viewed as essentially local aberrations without regional significance. In this study we combine new field observations with strain analysis, element mapping and modelling to characterise Acadian (>50%) crustal shortening in a Devonian clastic sedimentary sequence from the Dingle Peninsula of south west Ireland. Fabrics in these rocks reflect significant levels of tectonic shortening are a product of grain translation, rigid body rotation and repacking of intra- and extra-formational clasts during deformation of an unconsolidated clastic sedimentary sequence. There is an absence of the expected domainal cleavage structure and intra-clast deformation expected with conventional cleavage formation. This study requires geologists to consider the possibility such a mechanism contributing to tectonic strain in a wide range of geological settings and to look again at field evidence that indicates early sediment mobility during deformation.

  7. Latest Cretaceous-Paleogene basin development and resultant sedimentation patterns in the thrust belt and broken foreland of central Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawton, T.F.; Franczyk, K.J.; Pitman, J.K.

    1990-05-01

    Latest Cretaceous tectonism in central and east-central Utah formed several intermontane basins both atop thrust sheets and between the thrust front and basement-involved uplifts in the former foreland basin. The upper Campanian Castlegate Sandstone and its inferred western equivalents were the last strata deposited prior to segmentation of the foreland basin. Thereafter, eastward transport of the thrust allochthon uplifted the most proximal part of the Castlegate depositional wedge. West of the thrust front, small intermontane basins formed on the allochthon. Sediment was transported into these basins from both eastern and western sources. In each basin, facies grade from basin-margin conglomeraticmore » alluvial fan deposits to basin-interior flood-plain and lacustrine deposits within a few kilometers. These intermontane basins existed from latest Campanian through the late Paleocene, and may have been transported a short distance eastward as they formed. East of the thrust front in the latest Campanian and contemporaneous with basin formation on the allochthon, a northward-northeastward-flowing big river system transported sediment into the foreland basin from feldspar-rich source areas southwest of the study area. Subsequently, major movement of the San Rafael uplift in the very late Campanian or early Maastrichtian gave rise to an intermontane basin between the thrust front and the San Rafael uplift. Northwestward-flowing, pebble-bearing braided rivers deposited the oldest sediments in this basin prior to an influx from the south and southwest of sediment that formed a thick Maastrichtian clastic sequence. In contrast to deposition in basins on the allochthon, deposition east of the thrust front in the Paleocene was intermittent and restricted to rapidly shifting centers of basin subsidence.« less

  8. Coupling large scale hydrologic-reservoir-hydraulic models for impact studies in data sparse regions

    NASA Astrophysics Data System (ADS)

    O'Loughlin, Fiachra; Neal, Jeff; Wagener, Thorsten; Bates, Paul; Freer, Jim; Woods, Ross; Pianosi, Francesca; Sheffied, Justin

    2017-04-01

    As hydraulic modelling moves to increasingly large spatial domains it has become essential to take reservoirs and their operations into account. Large-scale hydrological models have been including reservoirs for at least the past two decades, yet they cannot explicitly model the variations in spatial extent of reservoirs, and many reservoirs operations in hydrological models are not undertaken during the run-time operation. This requires a hydraulic model, yet to-date no continental scale hydraulic model has directly simulated reservoirs and their operations. In addition to the need to include reservoirs and their operations in hydraulic models as they move to global coverage, there is also a need to link such models to large scale hydrology models or land surface schemes. This is especially true for Africa where the number of river gauges has consistently declined since the middle of the twentieth century. In this study we address these two major issues by developing: 1) a coupling methodology for the VIC large-scale hydrological model and the LISFLOOD-FP hydraulic model, and 2) a reservoir module for the LISFLOOD-FP model, which currently includes four sets of reservoir operating rules taken from the major large-scale hydrological models. The Volta Basin, West Africa, was chosen to demonstrate the capability of the modelling framework as it is a large river basin ( 400,000 km2) and contains the largest man-made lake in terms of area (8,482 km2), Lake Volta, created by the Akosombo dam. Lake Volta also experiences a seasonal variation in water levels of between two and six metres that creates a dynamic shoreline. In this study, we first run our coupled VIC and LISFLOOD-FP model without explicitly modelling Lake Volta and then compare these results with those from model runs where the dam operations and Lake Volta are included. The results show that we are able to obtain variation in the Lake Volta water levels and that including the dam operations and Lake Volta

  9. Hydrocarbon potential assessment of Ngimbang formation, Rihen field of Northeast Java Basin

    NASA Astrophysics Data System (ADS)

    Pandito, R. H.; Haris, A.; Zainal, R. M.; Riyanto, A.

    2017-07-01

    The assessment of Ngimbang formation at Rihen field of Northeast Java Basin has been conducted to identify the hydrocarbon potential by analyzing the response of passive seismic on the proven reservoir zone and proposing a tectonic evolution model. In the case of petroleum exploration in Northeast Java basin, the Ngimbang formation cannot be simply overemphasized. East Java Basin has been well known as one of the mature basins producing hydrocarbons in Indonesia. This basin was stratigraphically composed of several formations from the old to the young i.e., the basement, Ngimbang, Kujung, Tuban, Ngerayong, Wonocolo, Kawengan and Lidah formation. All of these formations have proven to become hydrocarbon producer. The Ngrayong formation, which is geologically dominated by channels, has become a production formation. The Kujung formation that has been known with the reef build up has produced more than 102 million barrel of oil. The Ngimbang formation so far has not been comprehensively assessed in term its role as a source rock and a reservoir. In 2013, one exploratory well has been drilled at Ngimbang formation and shown a gas discovery, which is indicated on Drill Stem Test (DST) reading for more than 22 MMSCFD of gas. This discovery opens new prospect in exploring the Ngimbang formation.

  10. Estimation of Sediment Sources Using Selected Chemical Tracers in the Perry Lake and Lake Wabaunsee Basins, Northeast Kansas

    USGS Publications Warehouse

    Juracek, Kyle E.; Ziegler, Andrew C.

    2007-01-01

    In Kansas and nationally, stream and lake sediment is a primary concern as related to several important issues including water quality and reservoir water-storage capacity. The ability to achieve meaningful decreases in sediment loads to reservoirs requires a determination of the relative importance of sediment sources within the contributing basins. To investigate sources of sediment within the Perry Lake and Lake Wabaunsee Basins of northeast Kansas, representative samples of channel-bank sources, surface-soil sources (cropland and grassland), and reservoir bottom sediment were collected, analyzed, and compared. Subbasins sampled within the Perry Lake Basin included Atchison County Lake, Banner Creek Reservoir, Gregg Creek, Mission Lake, and Walnut Creek. The samples were sieved to isolate the less than 63-micron fraction (that is, the silt and clay) and analyzed for selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 25 trace elements, and the radionuclide cesium-137 (137Cs). To determine which of the 30 constituents provided the best ability to discriminate between channel-bank and surface-soil sources in the two basins, four selection criteria were used. To be selected, it was required that the candidate constituent (1) was detectable, (2) had concentrations or activities that varied substantially and consistently between the sources, (3) had concentration or activity ranges that did not overlap between the sources, and (4) had concentration or activity differences between the sources that were statistically significant. On the basis of the four selection criteria, total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), and 137Cs were selected. Of the four selected constituents, 137Cs likely is the most reliable indicator of sediment source because it is known to be conservative in the environment. Trace elements were not selected because concentrations in the channel-bank and surface-soil sources generally were

  11. Petrophysical approach for S-wave velocity prediction based on brittleness index and total organic carbon of shale gas reservoir: A case study from Horn River Basin, Canada

    NASA Astrophysics Data System (ADS)

    Kim, Taeyoun; Hwang, Seho; Jang, Seonghyung

    2017-01-01

    When finding the "sweet spot" of a shale gas reservoir, it is essential to estimate the brittleness index (BI) and total organic carbon (TOC) of the formation. Particularly, the BI is one of the key factors in determining the crack propagation and crushing efficiency for hydraulic fracturing. There are several methods for estimating the BI of a formation, but most of them are empirical equations that are specific to particular rock types. We estimated the mineralogical BI based on elemental capture spectroscopy (ECS) log and elastic BI based on well log data, and we propose a new method for predicting S-wave velocity (VS) using mineralogical BI and elastic BI. The TOC is related to the gas content of shale gas reservoirs. Since it is difficult to perform core analysis for all intervals of shale gas reservoirs, we make empirical equations for the Horn River Basin, Canada, as well as TOC log using a linear relation between core-tested TOC and well log data. In addition, two empirical equations have been suggested for VS prediction based on density and gamma ray log used for TOC analysis. By applying the empirical equations proposed from the perspective of BI and TOC to another well log data and then comparing predicted VS log with real VS log, the validity of empirical equations suggested in this paper has been tested.

  12. A fingerprinting mixing model approach to generate uniformly representative solutions for distributed contributions of sediment sources in a Pyrenean drainage basin

    NASA Astrophysics Data System (ADS)

    Palazón, Leticia; Gaspar, Leticia; Latorre, Borja; Blake, Will; Navas, Ana

    2014-05-01

    Spanish Pyrenean reservoirs are under pressure from high sediment yields in contributing catchments. Sediment fingerprinting approaches offer potential to quantify the contribution of different sediment sources, evaluate catchment erosion dynamics and develop management plans to tackle the reservoir siltation problems. The drainage basin of the Barasona reservoir (1509 km2), located in the Central Spanish Pyrenees, is an alpine-prealpine agroforest basin supplying sediments to the reservoir at an annual rate of around 350 t km-2 with implications for reservoir longevity. The climate is mountain type, wet and cold, with both Atlantic and Mediterranean influences. Steep slopes and the presence of deep and narrow gorges favour rapid runoff and large floods. The ability of geochemical fingerprint properties to discriminate between the sediment sources was investigated by conducting the nonparametric Kruskal-Wallis H-test and a stepwise discriminant function analysis (minimization of Wilk's lambda). This standard procedure selects potential fingerprinting properties as optimum composite fingerprint to characterize and discriminate between sediment sources to the reservoir. Then the contribution of each potential sediment source was assessed by applying a Monte Carlo mixing model to obtain source proportions for the Barasona reservoir sediment samples. The Monte Carlo mixing model was written in C programming language and designed to deliver a user-defined number possible solutions. A Combinatorial Principals method was used to identify the most probable solution with associated uncertainty based on source variability. The unique solution for each sample was characterized by the mean value and the standard deviation of the generated solutions and the lower goodness of fit value applied. This method is argued to guarantee a similar set of representative solutions in all unmixing cases based on likelihood of occurrence. Soil samples for the different potential sediment

  13. Groundwater chemistry near an impoundment for produced water, Powder River Basin, Wyoming, USA

    USGS Publications Warehouse

    Healy, R.W.; Bartos, T.T.; Rice, C.A.; McKinley, M.P.; Smith, B.D.

    2011-01-01

    The Powder River Basin is one of the largest producers of coal-bed natural gas (CBNG) in the United States. An important environmental concern in the Basin is the fate of the large amounts of groundwater extracted during CBNG production. Most of this produced water is disposed of in unlined surface impoundments. A 6-year study of groundwater flow and water chemistry at one impoundment, Skewed Reservoir, has produced the most detailed data set for any impoundment in the Basin. Data were collected from a network of 21 observation wells and three suction lysimeters. A groundwater mound formed atop bedrock within initially unsaturated, unconsolidated deposits underlying the reservoir. Heterogeneity in physical and chemical properties of sediments resulted in complex groundwater flow paths and highly variable groundwater chemistry. Sulfate, bicarbonate, sodium, and magnesium were the dominant ions in all areas, but substantial variability existed in relative concentrations; pH varied from less than 3 to more than 9, and total dissolved solids concentrations ranged from less than 5000 to greater than 100,000 mg/L. Selenium was a useful tracer of reservoir water; selenium concentrations exceeded 300 μg/L in samples obtained from 18 of the 24 sampling points. Groundwater travel time from the reservoir to a nearby alluvial aquifer (a linear distance of 177 m) was calculated at 474 days on the basis of selenium concentrations. The produced water is not the primary source of solutes in the groundwater. Naturally occurring salts and minerals within the unsaturated zone, dissolved and mobilized by infiltrating impoundment water, account for most of the solute mass in groundwater. Gypsum dissolution, cation-exchange, and pyrite oxidation appear to be important reactions. The complex geochemistry and groundwater flow paths at the study site underscore the difficulty in assessing effects of surface impoundments on water resources within the Powder River Basin.

  14. Reconnaissance stratigraphic studies in the Susitna basin, Alaska, during the 2014 field season

    USGS Publications Warehouse

    LePain, David L.; Stanley, Richard G.; Harun, Nina T.; Helmold, Kenneth P.; Tsigonis, Rebekah

    2015-01-01

    The Susitna basin is a poorly-understood Cenozoic successor basin immediately north of Cook Inlet in south-central Alaska (Kirschner, 1994). The basin is bounded by the Castle Mountain fault and Cook Inlet basin on the south, the Talkeetna Mountains on the east, the Alaska Range on the north, and the Alaska–Aleutian Range on the west (fig. 2-1). The Cenozoic fill of the basin includes coal-bearing nonmarine rocks that are partly correlative with Paleogene strata in the Matanuska Valley and Paleogene and Neogene formations in Cook Inlet (Stanley and others, 2013, 2014). Mesozoic sedimentary rocks are present in widely-scattered uplifts in and around the margins of the basin; these rocks differ significantly from Mesozoic rocks in the forearc basin to the south. Mesozoic strata in the Susitna region were likely part of a remnant ocean basin that preceded the nonmarine Cenozoic basin (Trop and Ridgway, 2007). The presence of coal-bearing strata similar to units that are proven source rocks for microbial gas in Cook Inlet (Claypool and others, 1980) suggests the possibility of a similar system in the Susitna basin (Decker and others, 2012). In 2011 the Alaska Division of Geological & Geophysical Surveys (DGGS) and Alaska Division of Oil and Gas, in collaboration with the U.S. Geological Survey, initiated a study of the gas potential of the Susitna basin (Gillis and others, 2013). This report presents a preliminary summary of the results from 14 days of helicopter-supported field work completed in the basin in August 2014. The goals of this work were to continue the reconnaissance stratigraphic work begun in 2011 aimed at understanding reservoir and seal potential of Tertiary strata, characterize the gas source potential of coals, and examine Mesozoic strata for source and reservoir potential

  15. Carbon Dioxide Emissions from Reservoirs in the Lower Jordan Watershed

    PubMed Central

    Alshboul, Zeyad; Lorke, Andreas

    2015-01-01

    We have analyzed monthly hydrological, meteorological and water quality data from three irrigation and drinking water reservoirs in the lower Jordan River basin and estimated the atmospheric emission rates of CO2. The data were collected between 2006 and 2013 and show that the reservoirs, which differ in size and age, were net sources of CO2. The estimated surface fluxes were comparable in magnitude to those reported for hydroelectric reservoirs in the tropical and sub-tropical zones. Highest emission rates were observed for a newly established reservoir, which was initially filled during the sampling period. In the two older reservoirs, CO2 partial pressures and fluxes were significantly decreasing during the observation period, which could be related to simultaneously occurring temporal trends in water residence time and chemical composition of the water. The results indicate a strong influence of water and reservoir management (e.g. water consumption) on CO2 emission rates, which is affected by the increasing anthropogenic pressure on the limited water resources in the study area. The low wind speed and relatively high pH favored chemical enhancement of the CO2 gas exchange at the reservoir surfaces, which caused on average a four-fold enhancement of the fluxes. A sensitivity analysis indicates that the uncertainty of the estimated fluxes is, besides pH, mainly affected by the poorly resolved wind speed and resulting uncertainty of the chemical enhancement factor. PMID:26588241

  16. Carbon Dioxide Emissions from Reservoirs in the Lower Jordan Watershed.

    PubMed

    Alshboul, Zeyad; Lorke, Andreas

    2015-01-01

    We have analyzed monthly hydrological, meteorological and water quality data from three irrigation and drinking water reservoirs in the lower Jordan River basin and estimated the atmospheric emission rates of CO2. The data were collected between 2006 and 2013 and show that the reservoirs, which differ in size and age, were net sources of CO2. The estimated surface fluxes were comparable in magnitude to those reported for hydroelectric reservoirs in the tropical and sub-tropical zones. Highest emission rates were observed for a newly established reservoir, which was initially filled during the sampling period. In the two older reservoirs, CO2 partial pressures and fluxes were significantly decreasing during the observation period, which could be related to simultaneously occurring temporal trends in water residence time and chemical composition of the water. The results indicate a strong influence of water and reservoir management (e.g. water consumption) on CO2 emission rates, which is affected by the increasing anthropogenic pressure on the limited water resources in the study area. The low wind speed and relatively high pH favored chemical enhancement of the CO2 gas exchange at the reservoir surfaces, which caused on average a four-fold enhancement of the fluxes. A sensitivity analysis indicates that the uncertainty of the estimated fluxes is, besides pH, mainly affected by the poorly resolved wind speed and resulting uncertainty of the chemical enhancement factor.

  17. A method for examining the geospatial distribution of CO2 storage resources applied to the Pre-Punta Gorda Composite and Dollar Bay reservoirs of the South Florida Basin, U.S.A

    USGS Publications Warehouse

    Roberts-Ashby, Tina; Brandon N. Ashby,

    2016-01-01

    This paper demonstrates geospatial modification of the USGS methodology for assessing geologic CO2 storage resources, and was applied to the Pre-Punta Gorda Composite and Dollar Bay reservoirs of the South Florida Basin. The study provides detailed evaluation of porous intervals within these reservoirs and utilizes GIS to evaluate the potential spatial distribution of reservoir parameters and volume of CO2 that can be stored. This study also shows that incorporating spatial variation of parameters using detailed and robust datasets may improve estimates of storage resources when compared to applying uniform values across the study area derived from small datasets, like many assessment methodologies. Geospatially derived estimates of storage resources presented here (Pre-Punta Gorda Composite = 105,570 MtCO2; Dollar Bay = 24,760 MtCO2) were greater than previous assessments, which was largely attributed to the fact that detailed evaluation of these reservoirs resulted in higher estimates of porosity and net-porous thickness, and areas of high porosity and thick net-porous intervals were incorporated into the model, likely increasing the calculated volume of storage space available for CO2 sequestration. The geospatial method for evaluating CO2 storage resources also provides the ability to identify areas that potentially contain higher volumes of storage resources, as well as areas that might be less favorable.

  18. CONCEPTUAL MODEL FOR ORIGIN OF ABNORMALLY PRESSURED GAS ACCUMULATIONS IN LOW-PERMEABILITY RESERVOIRS.

    USGS Publications Warehouse

    Law, B.E.; Dickinson, W.W.

    1985-01-01

    The paper suggests that overpressured and underpressured gas accumulations of this type have a common origin. In basins containing overpressured gas accumulations, rates of thermogenic gas accumulation exceed gas loss, causing fluid (gas) pressure to rise above the regional hydrostatic pressure. Free water in the larger pores is forced out of the gas generation zone into overlying and updip, normally pressured, water-bearing rocks. While other diagenetic processes continue, a pore network with very low permeability develops. As a result, gas accumulates in these low-permeability reservoirs at rates higher than it is lost. In basins containing underpressured gas accumulations, rates of gas generation and accumulation are less than gas loss. The basin-center gas accumulation persists, but because of changes in the basin dynamics, the overpressured accumulation evolves into an underpressured system.

  19. Petrographic and reservoir features of Hauterivian (Lower Cretaceous) Shatlyk horizon in the Malay gas field, Amu-Darya basin, east Turkmenia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naz, H.; Ersan, A.

    1996-08-01

    Malay gas field in Amu-Darya basin, eastern Turkmenia, is located on the structural high that is on the Malay-Bagadzha arch north of the Repetek-Kelif structure zone. With 500 km{sup 2} areal coverage, 16 producing wells and 200 billion m{sup 3} estimated reserves, the field was discovered in 1978 and production began in 1987 from 2400-m-deep Hauterivian-age (Early Cretaceous) Shatlyk horizon. The Shatlyk elastic sequence shows various thickness up to 100 m in the Malay structural closure and is studied through E-log, core, petrographic data and reservoir characteristics. The Shatlyk consists of poorly indurated, reddish-brown and gray sandstones, and sandy graymore » shales. The overall sand-shale ratio increases up and the shales interleave between the sand packages. The reservoir sandstones are very fine to medium grained, moderately sorted, compositionally immature, subarkosic arenites. The framework grains include quartz, feldspar and volcanic lithic fragments. Quartz grains are monocrystalline in type and most are volcanic in origin. Feldspars consist of K- Feldspar and plagioclase. The orthoclases are affected by preferential alteration. The sandstones show high primary intergranular porosity and variations in permeability. Patch-like evaporate cement and the iron-rich grain coatings are reducing effects in permeability. The coats are pervasive in reddish-brown sandstones but are not observed in the gray sandstones. The evaporate cement is present in all the sandstone samples examined and, in places, follows the oxidation coats. The petrographic evidences and the regional facies studies suggest the deposition in intersection area from continental to marine nearshore deltaic environment.« less

  20. Cosmogenic He and Ne in chondrules from clastic matrix and a lithic clast of Murchison: No pre-irradiation by the early sun

    NASA Astrophysics Data System (ADS)

    Riebe, My E. I.; Huber, Liliane; Metzler, Knut; Busemann, Henner; Luginbuehl, Stefanie M.; Meier, Matthias M. M.; Maden, Colin; Wieler, Rainer

    2017-09-01

    Whether or not some meteorites retain a record of irradiation by a large flux of energetic particles from the early sun in the form of excesses of cosmic-ray produced noble gases in individual crystals or single chondrules is a topic of ongoing debate. Here, we present He and Ne isotopic data for individual chondrules in Murchison, a chondritic regolith breccia of the CM group. We separated 27 chondrules from a clastic matrix portion and 26 chondrules from an adjacent single so-called "primary accretionary rock" (Metzler et al., 1992). All chondrules from the primary rock fragment are expected to share a common irradiation history, whereas chondrules from the clastic matrix were stirred in the regolith independently of each other. All "primary rock chondrules" and 23 of the "matrix chondrules" have very similar concentrations of cosmogenic 3He and 21Ne, corresponding to a cosmic-ray exposure age to galactic cosmic rays (GCR) of ∼1.3-1.9 Ma, in the range of Murchison's meteoroid exposure age determined with cosmogenic radionuclides. Four clastic matrix chondrules contain excesses of cosmogenic 3He and 21Ne, corresponding to nominal 4π exposure ages of ∼4-∼29 Ma, with a Ne isotopic composition as expected for production by GCR. If the fraction of excess cosmogenic gas bearing chondrules in the primary rock and clastic matrix were the same, we would expect this result with a statistical probability of only 0.5 - 2.7%. Therefore, the exposure age distributions for Murchison chondrules in primary rock and clastic matrix are very likely different. Such a difference is expected if the excess cosmogenic gas was acquired by some of the matrix chondrules in the regolith, but not if chondrules were irradiated in the solar nebula by the early sun before they accreted on the Murchison parent body. Therefore, Murchison does not provide evidence for irradiation by a high fluence of energetic particles from the early sun. By inference, this statement likely holds for the