Science.gov

Sample records for basin clastic reservoirs

  1. Clastic depositional styles and reservoir potential of Mediterranean basins

    SciTech Connect

    Bouma, A.H. )

    1990-05-01

    A variety of tectonic styles and activities throughout the late Mesozoic and younger epochs influenced sediment transport to the Mediterranean basins and, consequently, the approach needed to finding reservoir-type clastics. The style of the present-day basins varies from west to east, with large basinal depressions and continental rises in the western province, more elongate shapes in the central area, and numerous small basins and trenches in the eastern Mediterranean. In general terms, all these basins contain a similar fill: a deep-water sequence older than late Miocene, overlain by upper Miocene evaporites, and topped by Pliocene-Quaternary clastics. The exact type of fill depends on several factors, including proximity to the sediment source, climatic conditions, subsidence and tectonic activity, and tectono-eustatic or glacio-eustatic oscillations. Investigations on many of the clastic reservoirs in Mediterranean basins should emphasize submarine fans. The modern Mediterranean Sea contains several mid-sized fans (Rhone, Ebro, Valencia, and Nile fans) and many small ones (e.g., Crati Fan). There are several well-studied Tertiary subsurface and outcropping turbidite systems. The concept of deep-water marine sands, and many of the initial studies, began with some of the now classic outcrops in Italy, France, and Spain. A well-integrated study of both modern and ancient turbidite series is needed to construct basic exploration models for the Mediterranean region. 9 figs., 1 tab.

  2. Application of advanced reservoir characterization, simulation and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Annual report

    SciTech Connect

    Dutton, S.P.; Asquith, G.B.; Barton, M.D.; Cole, A.G.; Gogas, J.; Malik, M.A.; Clift, S.J.; Guzman, J.I.

    1997-11-01

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. This project involves reservoir characterization of two Late Permian slope and basin clastic reservoirs in the Delaware Basin, West Texas, followed by a field demonstration in one of the fields. The fields being investigated are Geraldine Ford and Ford West fields in Reeves and Culberson Counties, Texas. Project objectives are divided into two major phases, reservoir characterization and implementation. The objectives of the reservoir characterization phase of the project were to provide a detailed understanding of the architecture and heterogeneity of the two fields, the Ford Geraldine unit and Ford West field. Reservoir characterization utilized 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once reservoir characterized was completed, a pilot area of approximately 1 mi{sup 2} at the northern end of the Ford Geraldine unit was chosen for reservoir simulation. This report summarizes the results of the second year of reservoir characterization.

  3. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect

    Dutton, Shirley P.; Flanders, William A.

    2001-11-04

    The objective of this Class III project was demonstrate that reservoir characterization and enhanced oil recovery (EOR) by CO2 flood can increase production from slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico. Phase 1 of the project, reservoir characterization, focused on Geraldine Ford and East Ford fields, which are Delaware Mountain Group fields that produce from the upper Bell Canyon Formation (Ramsey sandstone). The demonstration phase of the project was a CO2 flood conducted in East Ford field, which is operated by Orla Petco, Inc., as the East Ford unit.

  4. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect

    Dutton, Shirley P.; Flanders, William A.; Mendez, Daniel L.

    2001-05-08

    The objective of this Class 3 project was demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstone's of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover oil more economically through geologically based field development. This project was focused on East Ford field, a Delaware Mountain Group field that produced from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 9160, is operated by Oral Petco, Inc., as the East Ford unit. A CO2 flood was being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

  5. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect

    Dutton, Shirley P.; Flanders, William A.; Zirczy, Helena H.

    2000-05-24

    The objective of this Class 3 project was to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Phase 1 of the project, reservoir characterization, was completed this year, and Phase 2 began. The project is focused on East Ford field, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 1960, is operated by Oral Petco, Inc., as the East Ford unit. A CO{sub 2} flood is being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

  6. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin)

    SciTech Connect

    Shirley P. Dutton

    1997-07-30

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir-characterization study of both fields is completed, a pilot area of approximately 1 mi 2 in one of the fields will be chosen for reservoir simulation.

  7. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect

    Murphy, Mark B.

    1999-02-24

    The Nash Draw Brushy Canyon Pool in Eddy County New Mexico is a cost-shared field demonstration project in the US Department of Energy Class II Program. A major goal of the Class III Program is to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques are being used at the Nash Draw project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. Analysis, interpretation, and integration of recently acquired geologic, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description is being used as a risk reduction tool to identify ''sweet spots'' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well simulation, and well spacing to improve recovery from this reservoir.

  8. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Technical progress report

    SciTech Connect

    Dutton, S.P.

    1996-04-30

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. One the reservoir-characterization study of both field is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to: (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area; (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments; and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced recovery program (CO{sub 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill well will be drilled and cored. Technical progress is summarized for: geophysical characterization; reservoir characterization; outcrop characterization; and producibility problem characterization.

  9. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope, and Basin Clastic Reservoirs, West Texas (Delaware Basin)

    SciTech Connect

    Shirley P. Dutton

    1997-04-30

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir-characterization study of both fields is completed, a pilot area of approximately 1 mi 2 in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO 2 flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Through technology transfer workshops and other presentations, the knowledge gained in the comparative study of these two fields can then be applied to increase production from the more

  10. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin).

    SciTech Connect

    Dutton, S.P.

    1997-10-30

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir- characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sub 2} flood, water flood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Through technology transfer workshops and other present at ions, the knowledge gained in the comparative study of these two fields can then be applied to increase product ion

  11. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin)

    SciTech Connect

    Dutton, S.P.; Flanders, W.A.; Guzman, J.I.; Zirczy, H.

    1999-06-08

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover a higher percentage of the original oil in place through geologically based field development. This year the project focused on reservoir characterization of the East Ford unit, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey Sandstone). The field, discovered in 1960, is operated by Orla Petco, Inc., as the East Ford unit; it contained an estimated 19.8 million barrels (MMbbl) of original oil in place. Petrophysical characterization of the East Ford unit was accomplished by integrating core and log data and quantifying petrophysical properties from wireline logs. Most methods of petrophysical analysis that had been developed during an earlier study of the Ford Geraldine unit were successfully transferred to the East Ford unit. The approach that was used to interpret water saturation from resistivity logs, however, had to be modified because in some East Ford wells the log-calculated water saturation was too high and inconsistent with observations made during the actual production. Log-porosity to core-porosity transforms and core-porosity to core-permeability transforms were derived from the East Ford reservoir. The petrophysical data were used to map porosity, permeability, net pay, water saturation, mobil-oil saturation, and other reservoir properties.

  12. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect

    Mark B. Murphy

    2001-10-31

    The Nash Draw Brushy Canyon Pool (NDP) in southeast New Mexico is one of the nine projects selected in 1995 by the U.S. Department of Energy (DOE) for participation in the Class III Reservoir Field Demonstration Program. The goals of the DOE cost-shared Class Program are to: (1) extend economic production, (2) increase ultimate recovery, and (3) broaden information exchange and technology application. Reservoirs in the Class III Program are focused on slope basin and deep-basin clastic depositional types. Production at the NDP is from the Brushy Canyon formation, a low-permeability turbidite reservoir in the Delaware Mountain Group of Permian, Guadalupian age. A major challenge in this marginal-quality reservoir is to distinguish oil-productive pay intervals from water-saturated non-pay intervals. Because initial reservoir pressure is only slightly above bubble-point pressure, rapid oil decline rates and high gas/oil ratios are typically observed in the first year of primary production. Limited surface access, caused by the proximity of underground potash mining and surface playa lakes, prohibits development with conventional drilling. Reservoir characterization results obtained to date at the NDP show that a proposed pilot injection area appears to be compartmentalized. Because reservoir discontinuities will reduce effectiveness of a pressure maintenance project, the pilot area will be reconsidered in a more continuous part of the reservoir if such areas have sufficient reservoir pressure. Most importantly, the advanced characterization results are being used to design extended reach/horizontal wells to tap into predicted ''sweet spots'' that are inaccessible with conventional vertical wells. The activity at the NDP during the past year has included the completion of the NDP Well No.36 deviated/horizontal well and the completion of additional zones in three wells, the design of the NDP No.33 directional/horizontal well, The planning and regulatory approval for the

  13. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin)

    SciTech Connect

    Andrew G. Cole; George B. Asquith; Jose I. Guzman; Mark D. Barton; Mohammad A. Malik; Shirley P. Dutton; Sigrid J. Clift

    1998-04-01

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of clastic reservoirs in basinal sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover more of the original oil in place by strategic infill-well placement and geologically based enhanced oil recovery. The study focused on the Ford Geraldine unit, which produces from the upper Bell Canyon Formation (Ramsey sandstone). Reservoirs in this and other Delaware Mountain Group fields have low producibility (average recovery <14 percent of the original oil in place) because of a high degree of vertical and lateral heterogeneity caused by depositional processes and post-depositional diagenetic modification. Outcrop analogs were studied to better interpret the depositional processes that formed the reservoirs at the Ford Geraldine unit and to determine the dimensions of reservoir sandstone bodies. Facies relationships and bedding architecture within a single genetic unit exposed in outcrop in Culberson County, Texas, suggest that the sandstones were deposited in a system of channels and levees with attached lobes that initially prograded basinward, aggraded, and then turned around and stepped back toward the shelf. Channel sandstones are 10 to 60 ft thick and 300 to 3,000 ft wide. The flanking levees have a wedge-shaped geometry and are composed of interbedded sandstone and siltstone; thickness varies from 3 to 20 ft and length from several hundred to several thousands of feet. The lobe sandstones are broad lens-shaped bodies; thicknesses range up to 30 ft with aspect ratios (width/thickness) of 100 to 10,000. Lobe sandstones may be interstratified with laminated siltstones.

  14. 3D multicomponent seismic characterization of a clastic reservoir in the Middle Magdalena Valley Basin, Colombia

    NASA Astrophysics Data System (ADS)

    Velasquez-Espejo, Antonio Jose

    The main goal of this research is to characterize the combined structural-stratigraphic trap of the Tenerife Field in the Middle Magdalena Valley Basin (MMVB), Colombia. For the first time in Colombia the structural and quantitative interpretation of modern three-dimensional multicomponent (3D-3C) seismic imaging enables a geometric description, a kinematic interpretation of the structural styles, and the facies distribution of the reservoir. A seismic petrophysics work-flow to better achieve the seismic well-tie. Edited and check-shot calibrated P-wave sonic logs were obtained and coefficients of the Gardner and Castagna equations were calibrated to match the density and shear-wave velocity depth trends for the basin. Seismic modeling was performed to evaluate the PP and PS seismic response of the reservoir interval (Mugrosa Formation). The structural interpretation methodology involves a 3D fault-correlation and horizon picking for both PP- and PS-PSTM data volumes. Geometric attributes such as coherence and curvature were used to enhance the structural discontinuities. The main unconformity of the Middle Eocene (MEU) was interpreted, and an attribute-assisted interpretation of the reservoir was conducted in detail. While P-wave data provided most of the structural interpretation, converted-wave data provide a better understanding of the faults. Traditionally, compressive thrust-propagation folds and tectonic inversion have been considered as the main mechanisms controlling the deformation in the MMVB. However, the new interpretation shown in this work provides a different structural concept that involves two major structural styles: 1. Under the MEU the Late Cretaceous and Early Paleocene deformation, dominated by east-verging thrust and partially inverted Mesozoic normal faults, is preserved. Associated folds exhibit a north-south strike, and their structural development is controlled by a long-lived structural element that dominates the area (the Infantas

  15. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III

    SciTech Connect

    Murphy, Mark B.

    2000-10-25

    The Nash Draw Brushy Canyon Pool (NDP) is southeast New Mexico is one of the nine projects selected in 1995 by the U.S. Department of Energy (DOE) for participation in the Class III Reservoir Field Demonstration Program. The goals of the DOE cost-shared Class Program are to: (1) extend economic production, (2) increase ultimate recovery, and (3) broaden information exchange and technology application. Reservoirs in the Class III Program are focused on slope-basin and deep-basin clastic depositional types.

  16. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect

    Mark B. Murphy

    2005-09-30

    The Nash Draw Brushy Canyon Pool in Eddy County New Mexico was a cost-shared field demonstration project in the U.S. Department of Energy Class III Program. A major goal of the Class III Program was to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques were used at the Nash Draw Pool (NDP) project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The objective of the project was to demonstrate that a development program, which was based on advanced reservoir management methods, could significantly improve oil recovery at the NDP. Initial goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to other oil and gas producers. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description was used as a risk reduction tool to identify 'sweet spots' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir. An Advanced

  17. Comparison of transgressive and regressive clastic reservoirs, late Albian Viking Formation, Alberta basin

    SciTech Connect

    Reinson, G.E.

    1996-06-01

    Detailed stratigraphic analysis of hydrocarbon reservoirs from the Basal Colorado upwards through the Viking/Bow Island and Cardium formations indicates that the distributional trends, overall size and geometry, internal heterogeneity, and hydrocarbon productivity of the sand bodies are related directly to a transgressive-regressive (T-R) sequence stratigraphic model. The Viking Formation (equivalent to the Muddy Sandstone of Wyoming) contains examples of both transgressive and regressive reservoirs. Viking reservoirs can be divided into progradational shoreface bars associated with the regressive systems tract, and bar/sheet sands and estuary/channel deposits associated with the transgressive systems tract. Shoreface bars, usually consisting of fine- to medium-grained sandstones, are tens of kilometers long, kilometers in width, and in the order of five to ten meters thick. Transgressive bar and sheet sandstones range from coarse-grained to conglomeratic, and occur in deposits that are tens of kilometers long, several kilometers wide, and from less than one to four meters in thickness. Estuary and valley-fill reservoir sandstones vary from fine-grained to conglomeratic, occur as isolated bodies that have channel-like geometries, and are usually greater than 10 meters thick. From an exploration viewpoint the most prospective reservoir trends in the Viking Formation are those associated with transgressive systems tracts. In particular, bounding discontinuities between T-R systems tracts are the principal sites of the most productive hydrocarbon-bearing sandstones.

  18. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect

    Murphy, M.B.

    1997-10-30

    The overall objective of this project is to demonstrate that a development program-based on advanced reservoir management methods- can significantly improve oil recovery. The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  19. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect

    Mark B. Murphy

    2004-01-31

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  20. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect

    Mark B. Murphy

    2003-10-31

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  1. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect

    Mark B. Murphy

    2002-12-31

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  2. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect

    Mark B. Murphy

    2003-07-30

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  3. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, west Texas (Delaware Basin). Annual progress report, March 31, 1995--March 31, 1996

    SciTech Connect

    Dutton, S.P.; Hovorka, S.D.; Cole, A.G.

    1996-08-01

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of clastic reservoirs in basinal sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover more of the original oil in place by strategic infill-well placement and geologically based field development. Reservoirs in the Delaware Mountain Group have low producibility (average recovery <14 percent of the original oil in place) because of a high degree of vertical and lateral heterogeneity caused by depositional processes and post-depositional diagenetic modification. Detailed correlations of the Ramsey sandstone reservoirs in Geraldine Ford field suggest that lateral sandstone continuity is less than interpreted by previous studies. The degree of lateral heterogeneity in the reservoir sandstones suggests that they were deposited by eolian-derived turbidites. According to the eolian-derived turbidite model, sand dunes migrated across the exposed shelf to the shelf break during sea-level lowstands and provided well sorted sand for turbidity currents or grain flows into the deep basin.

  4. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Quarterly report, October 1 - December 31, 1996

    SciTech Connect

    Dutton, S.P.

    1997-01-01

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir-characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sub 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Technical progress is summarized for: geophysical characterization; reservoir characterization; outcrop characterization; and recovery technology identification and analysis.

  5. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Quarterly report, April 1,1996 - June 30, 1996

    SciTech Connect

    Dutton, S.P.

    1996-07-01

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir- characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sub 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Progress to date is summarized for reservoir characterization.

  6. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect

    Mark B. Murphy

    2002-09-30

    The overall objective of this project is to demonstrate that a development program-based on advanced reservoir management methods-can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry. This is the twenty-eighth quarterly progress report on the project. Results obtained to date are summarized.

  7. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Quarterly report, July 1 - September 30, 1996

    SciTech Connect

    Dutton, S.P.

    1996-10-01

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir- characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sup 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Accomplishments for this past quarter are discussed.

  8. Distribution of Permo-Carboniferous clastics of Greater Arabian basin

    SciTech Connect

    Al-Laboun, A.A.

    1987-05-01

    Strikingly correlative sequences of sediments composed of sandstones, siltstones, shales, and thin argillaceous carbonate beds are present, practically everywhere, underlying the Late Permian carbonates in the Greater Arabian basin. The Greater Arabian basin as defined here occupies the broad Arabian Shelf that borders the Arabian shield. This basin is composed of several smaller basins. These clastics are exposed as thin bands and scattered small exposures in several localities around the margins of the basin. The Permo-Carboniferous clastics are represented by the Unayzah Formation of Arabia, the Doubayat Group of Syria, the Hazro Formation of southeast Turkey, the Ga'arah Formation of Iraq, the Faraghan Formation of southwest Iran, and the Haushi Group of Oman. A Late Carboniferous-Early Permian age is assigned to these clastics because they contain fossil plants and palynomorphs. These sediments represent time-transgressive fluctuating sea deposits following a phase of regional emergence, erosion, and structural disturbance which preceded the Permian transgression. The basal contact of these clastics is marked by a well-pronounced angular unconformity with various older units, ranging in age from early Carboniferous to late Precambrian. This regional unconformity is probably related to the Hercynian movements. The upper contact is conformable with the Permian carbonates. The porous sandstones of the Permo-Carboniferous sediments are important hydrocarbon exploration targets. These reservoir rocks sometimes overlie mature source rocks and are capped by shales, marls, and tight carbonates. Significant quantities of hydrocarbons are contained in these reservoirs in different parts of the Greater Arabian basin.

  9. Reservoir heterogeneity and hydrocarbon production in mixed dolomitic-clastic sequence: Escandalosa Formation, Barinas-Apure basin, southwestern Venezuela

    SciTech Connect

    Escalona, N.; Abud, J.

    1989-03-01

    Widespread dedolomitization and differential leaching occur in the Turonian O Member of the Escandalosa Formation, Barinas-Apure basin. Within this dolostone-dominated succession, calcite was developed through a dedolomitization process occurring in deeply buried dolomitized lime sediments previously deposited on a carbonate platform as well as dedolomitization on the associated glauconitic-quartzose sandstones of small-scale channels that scoured the platform. The dolomitized intervals have a strata-bound nature, and their original fabric is totally obliterated. The dolomitization process generated a sucrose-textured mosaic of saddle dolomite. Initial dolomite was of the scattered type, but progressive replacement of the host produced a mosaic dolostone with both idiotopic and xenotopic textures. A general increase occurred in the iron and manganese content, and goethite was exsolved from the curved rhombs of saddle dolomite. Calcite usually postdates dolomitization, except in the highly fossiliferous packstones; calcite veins develop in both dolostones and limestones. Leaching is restricted essentially to glauconitic sandstones where calcite and some clay have been leached. This has produced very low intercrystalline porosity within the dolostones and partially dissolved, corroded and floating grains with oversized pores in the sandstones. These sandy intervals exhibit maximum potential for hydrocarbon storage, due to contrasting diagenetic influence associated with reservoir heterogeneity.

  10. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect

    Murphy, M.B.

    1999-02-01

    Advanced reservoir characterization techniques are being used at the Nash Draw Brushy Canyon Pool project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The reservoir characterization, geologic modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir.

  11. Advanced Oil Recovery Technologies for Improved Recovery From Slope Basin Clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico

    SciTech Connect

    Mark B. Murphy

    1998-04-30

    The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.

  12. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico

    SciTech Connect

    Murphy, Mark B.

    1999-11-01

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  13. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III

    SciTech Connect

    Murphy, Michael B.

    2002-02-21

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  14. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III

    SciTech Connect

    Murphy, Mark B.

    2002-01-16

    The overall objective of this project was to demonstrate that a development program-based on advanced reservoir management methods-can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  15. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report

    SciTech Connect

    Murphy, M.B.

    1996-04-22

    The overall objective of this project is to demonstrate that development program based on advanced reservoir management methods can significantly improve oil recovery. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced reservoir management methods. specific goals to attain the objective are (1) to demonstrate that development drilling program and pressure maintenance program, based on advanced reservoir management methods , can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced methodologies to oil and gas producers in the Permian Basin and elsewhere in the US oil and gas industry. This is the second quarterly progress report on the project. Results obtained to date are summarized.

  16. Advanced Oil Recovery Technologies for Improve Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool,Eddy County,NM

    SciTech Connect

    Murphy, M.B.

    1997-10-31

    The Nash Draw Brushy Canyon Pool in Eddy County New Mexico is a field demonstration in the U. S. Department of Energy Class IH Program. Advanced reservoir characterization techniques are being used at the Nash Draw project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir description was too simplistic to capture the critical features of this complex formation. As a result of the analysis, a proposed pilot area was reconsidered. Comparison of seismic data and engineering data have shown evidence of discontinuities in the area surrounding the proposed injector. Analysis of the 3-D seismic has shown that wells in the proposed pilot are in an area of poor quality amplitude development. The implication is that since amplitude attenuation is a function of porosity, then this is not the best area to be attempting a pilot pressure maintenance project. Because the original pilot area appears to be compartmentalized, the lateral continuity between the pilot wells could be reduced. The 3-D seismic interpretation indicates other areas may be better suited for the initial pilot area. Therefore, the current focus has shifted more to targeted drilling, and the pilot injection will be considered in a more continuous area of the NDP in the future. Results of reservoir simulation studies indicate that pressure maintenance should be started early when reservoir pressure is still high.

  17. Sequence stratigraphy simulations of carbonate, clastics, and mixed basin margins

    SciTech Connect

    Kendall, C.G.St.C.; Moore, P.; Birdwell, B.A.; Rouchie, L.; Cannon, R. ); Biswas, G. ); Bezdek, J. )

    1991-03-01

    Clastics, carbonates, and their mixtures have different depositional and post-depositional behavior that produces the different margin characteristics seen in seismic sequences. Carbonates undergo early cementation while maintaining higher angles of repose, while clays and sands accumulate at lower-angle slopes whose inclination is proportional to the grain size and post-depositional cohesive behavior. In higher energy regimes, waves or currents winnow less cohesive finer material that is transported downdip to from slope sediments rimming the basin. Simulations of mixed carbonate-clastic sediment accumulation, tectonism, and eustasy for settings in the Permian basin of west Texas and New Mexico show that sharp differentiation of clastics from carbonates is a product of higher angles of repose that carbonates maintain and the higher rates of clastic input at lowstands in sea level. In contrast, simulation of mixed grain-size margins like the Exmouth Plateau of Western Australia, the Baltimore Canyon, and the Gulf Coast Tertiary indicate that muds are winnowed preferentially from shelf-margin crests but accumulate on slopes, while sands accumulate on higher energy shelves. When they bypass at lowstands in sea level, they accumulate in the near slope basin but not on the slope. Simulation of pure carbonate systems like that of the Bahamian platform suggests that progradation is greatest in areas of low wave and current energy while backstepping and cliffed margins occur in high energy settings. The ability to accurately simulate mixed carbonate-clastic slopes is a key to development of exploration and production models of these systems.

  18. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, January 1--March 31, 1998

    SciTech Connect

    1998-04-30

    The overall objective of this project is to demonstrate that a development program--based on advanced reservoir management methods--can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the US oil and gas industry. Results obtained to date are summarized for the following: geostatistics and reservoir mapping; reservoir engineering; reservoir characterization/reservoir simulation; miscible recovery simulations; and technology transfer.

  19. Advanced oil recovery technologies for improved recovery from Slope Basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report (sixth quarter), January 1, 1997--March 31, 1997

    SciTech Connect

    1997-04-30

    The overall objective of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the U.S. oil and gas industry.

  20. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, October 1--December 31, 1995

    SciTech Connect

    1996-01-22

    Objective is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery and to transfer this technology to oil and gas producers in the Permian Basin. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced management methods. Specific goals are (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced technologies to oil and gas producers in the Permian Basin and elswhere in the US oil and gas industry. This is the first quarterly progress report on the project; results to date are summarized.

  1. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, April 1, 1996--June 30, 1996

    SciTech Connect

    Murphy, M.B.

    1996-07-26

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced reservoir management methods. Specific goals to attain the objective are: (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced methodologies to oil and gas producers in the Permian Basin and elsewhere in the U.S. oil and gas industry.

  2. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, October 1--December 31, 1996 (fifth quarter)

    SciTech Connect

    1997-01-31

    The overall objective of this project is to demonstrate that a development program--based on advanced reservoir management methods--can significantly improve oil recovery. The plan includes developing a control area using standard reservoir management techniques while comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program, can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the US oil and gas industry. Results so far are described on geology, engineering, 3-D seismic, reservoir characterization and simulation, and technology transfer.

  3. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico. Annual report, September 25, 1995--September 24, 1996

    SciTech Connect

    Murphy, M.B.

    1997-08-01

    The basic driver for this project is the low recovery observed in Delaware reservoirs, such as the Nash Draw Pool (NDP). This low recovery is caused by low reservoir energy, less than optimum permeabilities and porosities, and inadequate reservoir characterization and reservoir management strategies which are typical of projects operated by independent producers. Rapid oil decline rates and high gas/oil ratios are typically observed in the first year of primary production. Based on the production characteristics that have been observed in similar Delaware fields, pressure maintenance is a likely requirement at the Nash Pool. Three basic constraints to producing the Nash Draw Brushy Canyon Reservoir are: (1) limited areal and interwell geologic knowledge, (2) lack of an engineering tool to evaluate the various producing strategies, and (3) limited surface access prohibiting development with conventional drilling. The limited surface access is caused by the proximity of underground potash mining and surface playa lakes. The objectives of this project are: (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers, especially in the Permian Basin.

  4. 3-D seismic evidence of the effects of carbonate karst collapse on overlying clastic stratigraphy and reservoir compartmentalization

    SciTech Connect

    Hardage, B.A.; Carr, D.L.; Simmons, J.L. Jr.; Jons, R.A.; Lancaster, D.E.; Elphick, R.Y.; Pendleton, V.M.

    1996-09-01

    A multidisciplinary team, composed of stratigraphers, petrophysicists, reservoir engineers, and geophysicists, studied a portion of Boonsville gas field in the Fort Worth Basin of north-central Texas to determine how modern techniques can be combined to understand the mechanisms by which fluvio-deltaic depositional processes create reservoir compartmentalization in a low- to moderate-accommodation basin. An extensive database involving well logs, cores, production, and pressure data from more than 200 wells, 26 mi{sup 2} of 3-D seismic data, vertical seismic profiles, and checkshots was assembled to support this investigation. The authors found the most important geologic influence on stratigraphy and reservoir compartmentalization in this basin to be the existence of numerous karst collapse chimneys over the area covered. These near-vertical karst collapses originated in, or near, the deep Ordovician-age Ellenburger carbonate section and created vertical chimneys extending as high as 2,500 ft above their point of origin, causing significant disruptions in the overlying clastic strata.

  5. Sequence stratigraphy and depositional environments on a Palaeozoic clastic ramp margin, Ahnet-Timimoun Basin, Algeria

    SciTech Connect

    Myers, K.J.; Hirst, J.P.P.; Arezki, A.

    1995-08-01

    A wide, ramp margin was developed during the Devonian/Carboniferous in the Ahnet-Timimoun Basin, Algerian Sahara. Variations in relative sea level resulted in rapid, long distance (>500km) lateral translations of the clastic facies belts; this was the main influence on the locations of sand depocentres. The geometry and distribution of both Gedinnian and Emsian shallow marine sandstones is complex. Understanding the influence of relative sea level, shelf processes and local tectonics is essential to predicting the distribution of potential reservoir units. The Silurian to Carboniferous succession preserved in the Ahnet-Timimoun Basin can be divided into two major Transgressive-Regressive cycles, each of approximately 45 million years duration (Ashigill to Siegenian; Siegenian to Tournaisian). The T-R cycles several sequences of approximately 10 million years duration. Major source the basin were deposited in the Early Silurian (Llandovery) and Late Devonian (Frasnian) around the transgressive maximum of the T-R cycles. In the Ahnet-Timimoun Basin, marine sedimentation prevailed across much of the ramp margin. During Gedinnian times (early Devonian), progradational events associated with each sequence deposited a succession of extensive, shallow marine, coarsening-up sandstones. The sequence boundary marking the regressive maximum. Of the first T-R cycle (Siegenian) resulted in a rapid transition from an inner shelf environment to braided rivers which deposited a regional, high N/G sandstone. Sequence boundaries, although marked by rapid basinward shifts in facies belts, are without significant fluvial incision. The transgressive sequence set in the overlying T/R cycle, is marked initially by rapid southwards directed trangression and an extensive ravinement surface of early Emsian age.

  6. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Second annual technical progress report, October 1, 1996--September 30, 1997

    SciTech Connect

    1998-09-01

    The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration in the US Department of Energy Class III Program. Advanced reservoir characterization techniques are being used at the Nash Draw project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir description was too simplistic to capture the critical features of this complex formation. As a result of the analysis, a proposed pilot area was reconsidered. Comparison of seismic data and engineering data have shown evidence of discontinuities in the area surrounding the proposed injector. Analysis of the 3-D seismic has shown that wells in the proposed pilot are in an area of poor quality amplitude development. The implication is that since amplitude attenuation is a function of porosity, then this is not the best area to be attempting a pilot pressure maintenance project. Because the original pilot area appears to be compartmentalized, the lateral continuity between the pilot wells could be reduced. The 3-D seismic interpretation indicates other areas may be better suited for the initial pilot area. Therefore, the current focus has shifted more to targeted drilling, and the pilot injection will be considered in a more continuous area of the NDP in the future. Results of reservoir simulation studies indicate that pressure maintenance should be started early when reservoir pressure is still high.

  7. Appalachian Basin Low-Permeability Sandstone Reservoir Characterizations

    SciTech Connect

    Ray Boswell; Susan Pool; Skip Pratt; David Matchen

    1993-04-30

    A preliminary assessment of Appalachian basin natural gas reservoirs designated as 'tight sands' by the Federal Energy Regulatory Commission (FERC) suggests that greater than 90% of the 'tight sand' resource occurs within two groups of genetically-related units; (1) the Lower Silurian Medina interval, and (2) the Upper Devonian-Lower Mississippian Acadian clastic wedge. These intervals were targeted for detailed study with the goal of producing geologic reservoir characterization data sets compatible with the Tight Gas Analysis System (TGAS: ICF Resources, Inc.) reservoir simulator. The first phase of the study, completed in September, 1991, addressed the Medina reservoirs. The second phase, concerned with the Acadian clastic wedge, was completed in October, 1992. This report is a combined and updated version of the reports submitted in association with those efforts. The Medina interval consists of numerous interfingering fluvial/deltaic sandstones that produce oil and natural gas along an arcuate belt that stretches from eastern Kentucky to western New York. Geophysical well logs from 433 wells were examined in order to determine the geologic characteristics of six separate reservoir-bearing intervals. The Acadian clastic wedge is a thick, highly-lenticular package of interfingering fluvial-deltaic sandstones, siltstones, and shales. Geologic analyses of more than 800 wells resulted in a geologic/engineering characterization of seven separate stratigraphic intervals. For both study areas, well log and other data were analyzed to determine regional reservoir distribution, reservoir thickness, lithology, porosity, water saturation, pressure and temperature. These data were mapped, evaluated, and compiled into various TGAS data sets that reflect estimates of original gas-in-place, remaining reserves, and 'tight' reserves. The maps and data produced represent the first basin-wide geologic characterization for either interval. This report outlines the methods and

  8. Intrashelf basins: A geologic model for source-bed and reservoir facies deposition within carbonate shelves

    SciTech Connect

    Grover, G. Jr. )

    1993-09-01

    Intrashelf basins (moats, inshore basins, shelf basins, differentiated shelf, and deep-water lagoons of others) are depressions of varying sizes and shapes that occur within tectonically passive and regionally extensive carbonate shelves. Intrashelf basins grade laterally and downdip (seaward) into shallow-water carbonates of the regional shelf, are separated from the open marine basin by the shelf margin, and are largely filled by fine-grained subtidal sediments having attributes of shallow- and deeper water sedimentation. These basins are commonly fringed or overlain by carbonate sands, reefs, or buildups. These facies may mimic those that occur along the regional shelf margin, and they can have trends that are at a high angle to that of the regional shelf. Intrashelf basins are not intracratonic basins. The history of most intrashelf basins is a few million to a few tens of million of years. Examples of intrashelf basins are known throughout the Phanerozoic; the southern portion of the Holocene Belize shelf is a modern example of an intrashelf basin. Two types of intrashelf basins are recognized. Coastal basins pass updip into coastal clastics of the craton with the basin primarily filled by fine clastics. Shelf basins occur on the outer part of the shelf, are surrounded by shallow-water carbonate facies, and are filled by peloidal lime mud, pelagics, and argillaceous carbonates. Intrashelf basins are commonly the site of organic-rich, source-bed deposition, resulting in the close proximity of source beds and reservoir facies that may fringe or overlie the basin. Examples of hydrocarbon-charged reservoirs that were sourced by an intrashelf basin include the Miocene Bombay High field, offshore India; the giant Jurassic (Arab-D) and Cretaceous (Shuaiba) reservoirs of the Arabian Shelf; the Lower Cretaceous Sunniland trend, South Florida basin; and the Permian-Pennsylvanian reservoirs surrounding the Tatum basin in southeastern New Mexico.

  9. Late Mississippian (Chesterian) carbonate to carbonate-clastic cycles in the eastern Illinois Basin

    SciTech Connect

    Smith, L.B.; Read, J.F. )

    1994-03-01

    Late Mississippian (Chesterian) rocks of the eastern Illinois Basin in Kentucky and Indiana show depositional cycles (3--20 meters thick) composed of a range of facies deposited during the transition from carbonate-dominated deposition of the Middle Mississippian to the predominantly siliciclastic regime of the Pennsylvanian. Within the basal Ste. Genevieve Formation (30--70 meters thick) there are five predominantly carbonate cycles. Cycle bases vary from thin calcareous sandstone near the northern clastic source to ooid-quartz dolomitic pelletal grainstone and mudstone further south. Massive cross-bedded and channeled ooid-skeletal grainstones represent the cycle tops and are commonly capped by caliche and subaerial breccia, particularly where there was no subsequent siliciclastic deposition. The cycles are interpreted to be driven by fourth-order (400 k.y.) glacio-eustatic sea-level fluctuations based on coincidence of the calculated cycle period with the long-term eccentricity signal, the Late Mississippian onset of Gondwana glaciation and cycle correlation over more than 100 kilometers. The breccia and caliche formed during lowstands, the siliciclastics, eolianites and dolomitic pelletal grainstones are transgressive facies and the ooid-skeletal grainstones represent sea-level highstands.

  10. Advanced Oil Recovery Technologies for Improved Recovery From Slope Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico

    SciTech Connect

    Mark B. Murphy

    1998-01-30

    The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.

  11. Fractured reservoirs in clastic rocks: Differences between a basement-cored structure and a detached fold belt

    SciTech Connect

    Engelder, T.; Gross, M.R.; Younes, A.

    1996-08-01

    The Elk Basin anticline, Wyoming-Montana, has an order of magnitude more structural relief than structures of the Appalachian Plateau, New York. Despite its structural relief the Elk Basin anticline shows very little macroscopic evidence for layer-parallel shortening vs. more than 10% for the subtle Appalachian Plateau folds. Elk Basin anticline is a passive drape fold extending over a tongue of basement punching up into the sedimentary cover. On the other extreme, the detached fold belt of the Appalachian Plateau remained in compression during most, if not all, of the Alleghanian layer-parallel shortening event. The joint pattern in Elk Basin is dominated by fold-parallel sets. The joint pattern in the Appalachian Plateau is dominated by fold-perpendicular sets. These two joint patterns are consistent with states of stress that suppress layer-parallel shortening in the former case and favor it in the latter case. Curvy cross joints are unambiguous records of the change in stress field orientation. Such structures in the clastic rocks of Elk Basin indicate a 10{degrees} to 15{degrees} clockwise reorientation of the stress field during later stages of fold development. The early to synfolding propagation of fold-parallel joints is indicated by their attitude normal to bedding on both limbs of the Elk Basin anticline. Fold-parallel joints are also rotated during strike-slip motion on later, vertical faults cutting subperpendicular to the anticlinal axis. Finally, the fracture spacing index for fold-parallel joints in various formations at Elk Basin is less than for cross fold joints of the Appalachian Plateau.

  12. Geological model of shallow marine clastic reservoirs in a Wrench-Faulted Province

    SciTech Connect

    Johnson, H.D.; Chapman, J.W.; Ranggon, J.

    1988-01-01

    The St. Joseph field is situated along a major wrench-fault zone in offshore Sabah (The Bunbury-St. Joseph-Bambazon ''ridge'') that divides the field into several structural areas. The most prospective of these is the structurally simple northwest flank (about 6 km long and 1 km wide) that dips uniformly to the northwest (about 15/sup 0/-20/sup 0/) in a basinward direction away from the crestal wrench-fault zone. The main hydrocarbon-bearing interval comprises a 1,350-ft long oil column, which is contained within a highly heterogeneous sequence of late Miocene shallow marine sandstone and shales. The main geologic uncertainties of the northwest flank concern lateral variations in sand development, shale-layer continuity, and reservoir quality. They have a major impact on reservoir recovery mechanisms, pressure-maintenance schemes, and on field development strategy. Therefore, a reservoir geologic model was developed that incorporates sedimentologic studies, well-log facies analysis, reservoir mapping, and detailed structural interpretation (using a full reservoir core and three-dimensional seismic data). These studies demonstrate that depositional processes and tectonic setting had a major impact in controlling the thickness, quality and distribution of the sandstone reservoirs. Features that had a particularly significant impact on hydrocarbon distribution, reservoir modeling and field development are: (1) a storm-dominated shelf-sand depositional system, (2) rapid vertical and lateral switches in sand supply, (3) a tectonically unstable, narrow (about 5-15 km wide) shelf, and (4) shelf-edge slumping (slump scars).

  13. Visualizing heterogeneous clastic reservoirs: Price formation (early Mississippian) oil fields in West Virginia

    SciTech Connect

    Hohn, M.E.; McDowell, R.R.; Matchen, D.L. )

    1996-01-01

    A procedure has been developed using public-domain and published software for creating 3-D models of facies in structurally-deformed elastic reservoirs. The procedure was tested successfully on two oil fields in Early Mississippian sandstone reservoirs in central West Virginia. The procedure has four stages: removal of structural deformation; definition of electrofacies from digitized electric logs and cores; classification of additional logs; and 3-D kriging. Reconstruction of original bedding was needed before variography and kriging, but no datum was available: the reservoir sandstone lies just below an angular unconformity, and many wells were not drilled far enough below the reservoir to penetrate a potential datum. In a novel application of automated stratigraphic correlation, a published algorithm was used on digitized gamma-ray logs to find the relative vertical shift between pairs of wells giving the highest cross-correlation. Multidimensional scaling of a matrix of shifts yielded a vector of values necessary for restoring the relative elevation of each well. Cluster analysis of gamma-ray and density log responses from cored wells defined four groups matched through core descriptions with environments of deposition. Discriminant functions calculated for these groups were used to classify log responses from uncored wells. Kriging of electrofacies followed conventional variography. Results are displayed as cross-sections and maps.

  14. Visualizing heterogeneous clastic reservoirs: Price formation (early Mississippian) oil fields in West Virginia

    SciTech Connect

    Hohn, M.E.; McDowell, R.R.; Matchen, D.L.

    1996-12-31

    A procedure has been developed using public-domain and published software for creating 3-D models of facies in structurally-deformed elastic reservoirs. The procedure was tested successfully on two oil fields in Early Mississippian sandstone reservoirs in central West Virginia. The procedure has four stages: removal of structural deformation; definition of electrofacies from digitized electric logs and cores; classification of additional logs; and 3-D kriging. Reconstruction of original bedding was needed before variography and kriging, but no datum was available: the reservoir sandstone lies just below an angular unconformity, and many wells were not drilled far enough below the reservoir to penetrate a potential datum. In a novel application of automated stratigraphic correlation, a published algorithm was used on digitized gamma-ray logs to find the relative vertical shift between pairs of wells giving the highest cross-correlation. Multidimensional scaling of a matrix of shifts yielded a vector of values necessary for restoring the relative elevation of each well. Cluster analysis of gamma-ray and density log responses from cored wells defined four groups matched through core descriptions with environments of deposition. Discriminant functions calculated for these groups were used to classify log responses from uncored wells. Kriging of electrofacies followed conventional variography. Results are displayed as cross-sections and maps.

  15. Gamma ray spectrometry logs as a hydrocarbon indicator for clastic reservoir rocks in Egypt.

    PubMed

    Al-Alfy, I M; Nabih, M A; Eysa, E A

    2013-03-01

    Petroleum oil is an important source for the energy in the world. The Gulf of Suez, Nile Delta and South Valley are important regions for studying hydrocarbon potential in Egypt. A thorium normalization technique was applied on the sandstone reservoirs in the three regions to determine the hydrocarbon potentialities zones using the three spectrometric radioactive gamma ray-logs (eU, eTh and K% logs). The conventional well logs (gamma-ray, deep resistivity, shallow resistivity, neutron, density and sonic logs) are analyzed to determine the net pay zones in these wells. Indices derived from thorium normalized spectral logs indicate the hydrocarbon zones in petroleum reservoirs. The results of this technique in the three regions (Gulf of Suez, Nile Delta and South Valley) are in agreement with the results of the conventional well log analyses by ratios of 82%, 78% and 71% respectively. PMID:23306160

  16. Geoscience/Engineering Characterization of the Interwell Environment in Carbonate Reservoirs Based on Outcrop Analogs, Permian Basin, West Texas and New Mexico.

    SciTech Connect

    Lucia, F.J.; Kerans, C.

    1997-05-29

    The objective of this project is to investigate styles of reservoir heterogeneity found in low permeability pelleted wackestone/packstone facies and mixed carbonate/clastic facies found in Permian Basin reservoirs by studying similar facies found in Permian Basin reservoirs by studying similar facies exposed in the Guadalupe Mountains. Specific objectives for the outcrop study include construction of a stratigraphic framework, petrophysical quantification of the framework, and testing the outcrop reservoir model for effects of reservoir heterogeneity on production performance. Specific objectives for the subsurface study parallel objectives for the outcrop study.

  17. Organic geochemistry of Upper Carboniferous bituminous coals and clastic sediments from the Lublin Coal Basin

    NASA Astrophysics Data System (ADS)

    Gola, Marek R.; Karger, Michał; Gazda, Lucjan; Grafka, Oliwia

    2013-09-01

    Bituminous coals and clastic rocks from the Lublin Formation (Pennsylvanian, Westphalian B) were subjected to detailed biomarker and Rock-Eval analyses. The investigation of aliphatic and aromatic fractions and Rock-Eval Tmax suggests that the Carboniferous deposits attained relatively low levels of thermal maturity, at the end of the microbial processes/initial phase of the oil window. Somewhat higher values of maturity in the clastic sediments were caused by postdiagenetic biodegradation of organic matter. The dominance of the odd carbon-numbered n-alkanes in the range n-C25 to n-C31 , high concentrations of moretanes and a predominance of C 28 and C29 steranes are indicative of a terrigenous origin of the organic matter in the study material. This is supported by the presence of eudesmane, bisabolane, dihydro-ar-curcumene and cadalene, found mainly in the coal samples. In addition, tri- and tetracyclic diterpanes, e. g. 16β(H)-kaurane, 16β(H)-phyllocladane, 16α(H)-kaurane and norisopimarane, were identified, suggesting an admixture of conifer ancestors among the deposited higher plants. Parameters Pr/n-C17 and Rdit in the coal samples show deposition of organic matter from peat swamp environments, with the water levels varying from high (water-logged swamp) to very low (ephemeral swamp). Clastic deposits were accumulated in a flood plain environment with local small ponds/lakes. In pond/lake sediments, apart from the dominant terrigenous organic matter, research also revealed a certain quantity of algal matter, indicated, i.a., by the presence of tricyclic triterpanes C28 and C29 and elevated concentrations of steranes. The Paq parameter can prove to be a useful tool in the identification of organic matter, but the processes of organic matter biodegradation observed in clastic rocks most likely influence the value of the parameter, at the same time lowering the interpretation potential of these compounds. The value of Pr/Ph varies from 0.93 to 5.24 and from 3

  18. Interaction of microbial communities with clastic sedimentation during Palaeoproterozoic time — An example from basal Gulcheru Formation, Cuddapah basin, India

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Gopal; Shome, Debashish

    2010-04-01

    The siliciclastic basal Gulcheru Formation (˜ 1.8 Ga) of the Proterozoic Cuddapah basin preserves abundance of mat-induced sedimentary structures like old elephant skin, wrinkle structure, kinneyia ripples, palimpsest ripples etc. in the vicinity of Pullivendla town (Kottalu village), Andhra Pradesh, India in a low gradient tidal-flat deposional setting. This is the first report of interaction of microbial communities with clastic sedimentation during Palaeoproterozoic time in Indian Purana stratigraphy and probably from the viewpoint of Global Proterozoic biosedimentation. Various types of cracks on bed-top, hitherto considered as of trace-fossil in origin, may be considered to be formed on exposed surface due to dessication or under water due to synaeresis in presence of microbial communities.

  19. Shoreline position in clastic wedges of marine foreland basins: A modeling study

    SciTech Connect

    Slingerland, R.L.; Furlong, K.P. )

    1990-05-01

    The transgressive-regressive history of an active margin bordering a marine foreland basin is controlled by the relative rates of sediment supply, basin subsidence, and sea level change. The purpose of this research is to better understand the functional relationships among these factors and shoreline position by exploring solutions to a coupled source-basin numerical model. The model consists of a critically tapered, accretionary wedge, and a single-thread river of known discharge and width carrying sediment eroded off the wedge to a basin of specified initial depth, with the elastically deforming lithosphere responding to the tectonic and sedimentary loads. The accretionary wedge, modeled as a steady state critically tapered wedge, provides the initial supracrustal load that creates the basin, the initial slope of the river, and a sediment load the river must carry. The river builds a delta and alluvial plain into a standing body of water of specified surface elevation. The river/transport system is modeled using the equations of unsteady, gradually varied flow, modified Bagnold bed load transport, and conservation of bed material. The lithosphere deforms according to elastic flexure under a distributed supracrustal load. The authors model the evolution of topography and basin bathymetry from initial conditions to steady state when the sediment flux overpassing the foreland basin equals the convergence flux into the wedge at its toe. The results are strongly dependent upon characteristic times for the completing processes. For example, an increase in the convergence rate causes an increase in the height and width of the wedge, increasing both the sediment volume to be carried by the river and magnitude of the load. This load increases basin subsidence, allowing additional accumulation of sediments (and loading) in the basin.

  20. Reservoir compartmentalization and management strategies: Lessons learned in the Illinois basin

    SciTech Connect

    Grube, J.P.; Crockett, J.E.; Huff, B.G.

    1997-08-01

    A research project jointly sponsored by the US Department of Energy and the Illinois State Geological Survey focused on the Cypress and Aux Vases Formations (Mississippian), major clastic reservoirs in the Illinois Basin. Results from the research showed that understanding the nature and distribution of reservoir compartments, and using effective reservoir management strategies, can significantly improve recovery efficiencies from oil fields in this mature basin. Compartments can be most effectively drained where they are geologically well defined and reservoir management practices are coordinated through unified, compartment-wide, development programs. Our studies showed that the Cypress and Aux Vases reservoirs contain lateral and vertical permeability barriers forming compartments that range in size from isolated, interlaminated sandstone and shale beds to sandstone bodies tens of feet in thickness and more than a mile in length. Stacked or shingled, genetically similar sandstone bodies are commonly separated by thin impermeable intervals that can be difficult to distinguish on logs and can, therefore, cause correlation problems, even between wells drilled on spacing of less than ten acres. Lateral separation of sandstone bodies causes similar problems. Reservoir compartmentalization reduces primary and particularly secondary recovery by trapping pockets of by-passed or banked oil. Compartments can be detected by comparing recovery factors of genetically similar sandstone bodies within a field; using packers to separate commingled intervals and analyzing fluid recoveries and pressures; making detailed core-to-log calibrations that identify compartment boundaries; and analyzing pressure data from waterflood programs.

  1. Geoscience/Engineering Characterization of the Interwell Environment in Carbonate Reservoirs Based on Outcrop Analogs, Permian Basin, West Texas and New Mexico.

    SciTech Connect

    Lucia, F.J.; Kerans, C.

    1996-12-31

    The objective of this project is to investigate styles of reservoir heterogeneity found in low permeability pelleted wackestone/packstone facies and mixed carbonate/clastic facies found in Permian Basin reservoirs by studying similar facies exposed in the Guadalupe Mountains. Specific objectives for the outcrop study include construction of a stratigraphic framework, petrophysical quantification of the framework, and testing the outcrop reservoir model for effects of reservoir heterogeneity on production performance. Specific objectives for the subsurface study parallel objectives for the outcrop study.

  2. Electric fabric of Cretaceous clastic rocks in Abu Gharadig basin, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Nabawy, Bassem S.; ElHariri, Tarek Y. M.

    2008-09-01

    Measuring the petrophysical properties of sedimentary rocks in three-dimensions (3-D) has a high priority for interpretation of their physical behaviour. The present work attempts to study the 3-D electric behaviour of the Upper Cretaceous sandstones and clayey sandstones in the Abu Gharadig basin, Egypt. These rocks belong to the Betty, Bahariya, and Abu Roash Formations. The apparent electrical resistivity ( Ro) was measured in three perpendicular directions, one normal to the bedding plane along Z-axis, and the other two directions parallel to the bedding plane and normal to each other, along X-axis and Y-axis. The electrical resistivity ( Ro) was also studied at three NaCl-saline concentrations of Rw = 0.53, 0.13, and 0.07 Ω m in ambient conditions, using A-C bridge at 1 kHz. It is proposed that, processing and matching the electric data in 3-D as ellipsoids instead of in 2-D, has led to the electric fabric concept. It is a combination of electric foliation ( F) and electric lineation ( L). Statistical analyses of measured electrical resistivity reveal that the electric fabric at the second brine concentration should be taken into consideration to avoid the effect of clay content. The electric lineation and foliation of the studied sandstones and clayey sandstones at the second concentration are mostly small (1.1-1.5) to moderate (1.5-2.5), with few sandstone samples having high (2.5-5.0) to very high foliation (5.0-7.5), whereas the electric anisotropy values for these samples are small to moderate (1.1-2.5). This fabric is contributed mainly from their electric foliation, indicating some load pressure compaction that led to small to moderate anisotropic grains and flow paths/network pore spaces.

  3. Lithofacies and cyclicity of the Yates Formation, Permian basin: Implications for reservoir heterogeneity

    SciTech Connect

    Borer, J.M.; Harris, P.M. )

    1991-04-01

    Siliciclastics of the Yates Formation (Permian, upper Guadalupian) are significant hydrocarbon reservoirs in the US Permian basin. Subsurface and outcrop data show that the most porous lithofacies occur in a clastic-dominated middle shelf and that evaporitic inner shelf and carbonate outer shelf equivalents are mostly nonporous. Lithofacies relations and much of the heterogeneity in Yates reservoirs are related to the stacking of depositional sequences (i.e., siliciclastic-carbonate alternations and sandstone-argillaceous siltstone alternations) in response to three orders of orbitally forced, low-amplitude, eustatic variation. In general, siliciclastics dominated the Yates shelf during lowstand parts of asymmetric, 400-k.y. sea level fluctuations, whereas carbonates were deposited during sea level highstands. The character and position of sand depocenters on the Yates shelf during these lowstands were controlled by a longer duration third-order sea level variation. Shorter duration cycles controlled the heterogeneity within the 400-k.y. depositional sequences. The variation in cycle packaging, lithology, and reservoir quality between the Central Basin platform and Northwest shelf may be a response of eustatic variation on parts of the shelf with different slopes or subsidence profiles. The lithofacies described from the Yates Formation and the deposition model proposed to explain the stratigraphy may be valuable as analogs in other basins containing mixed siliciclastic-carbonate settings.

  4. A thrust-ridge paleodepositional model for the Upper Freeport coal bed and associated clastic facies, Upper Potomac coal field, Appalachian basin, U.S.A.

    USGS Publications Warehouse

    Belt, E.S.; Lyons, P.C.

    1989-01-01

    A blind-thrust-ridge model is proposed to explain the lack of coarse clastic material in the vast minable Upper Freeport coal bed (UF). This coal bed contains only fine elastic partings and is overlain by regionally extensive, closely spaced channel-belt deposits in the Upper Potomac coal field of the Appalachian basin. A blind-thrust ridge may have formed a sediment trap and prevented c coarse fluvial sediments from entering the swamp during a period (Westphalian D) when the thick Upper Freeport peat accumulated. Anticlinal thrust ridges and associated depressions may have existed uninterrupted for about 40 km parallel to the Appalachian orogen. Sediment shed from the breached anticlinal ridges accumulated in the sediment trap and was carried out of the ends of the trap by streams that occupied the shear zone at the ends of the blind-thrust ridge. The extent, parallel to the orogen, of thick, areally extensive UF is related to the length of the blind-thrust ridge that, in turn, controlled the spacing of the river-derived coarse clastic sediments that entered the main basin from the east. The thrust plane eventually emerged to the surface of the blind-thrust ridge and peat accumulation was terminated when the ridge became eroded and the sediment trapped behind it was released. The peat was buried by abundant coarse clastic sediment, which formed closely spaced channel belts and intervening flood basins. This model has implications for widespread peat deposits (now coal) that developed in tropical regions a few hundred kilometers from the sea in a tectonically active foreland basin. ?? 1989.

  5. Magnetic fabric (anisotropy of magnetic susceptibility) constraints on emplacement mechanism of clastic dikes: an example from the Cretaceous Dadaepo Basin in SE Korea

    NASA Astrophysics Data System (ADS)

    Son, M.; Cho, H.; Sohn, Y. K.

    2014-12-01

    Emplacement mechanisms of clastic dikes, which are discordant and tabular bodies comprised of weakly to strongly lithified clastic detritus, have been a matter of considerable interest over the last 20 years. Clastic dikes are generally classified into neptunian and injected dikes. Using the magnetic fabrics (AMS), we attempt to classify the clastic dikes in the late Cretaceous Dadaepo Basin, SE Korea, and interpret their emplacement mechanisms. The neptunian dikes exhibit a typical oblate sedimentary fabric which makes a sharp contrast with the injected dikes. The fabrics of the injected dikes are greatly influenced by current conditions (flow directions, rheological properties, and rates) and transportation types (imbrication or rolling) of filling materials. Based on the AMS fabrics, they are classified into four types. (1) Type-VP is formed by grain imbrication in low- to moderate-energy vertical flow of a Newtonian fluid and characterized by a bilateral symmetry of fabrics across the dike. (2) Type-VT results from grain rolling in vertical high-energy flow and is characterized by subvertical k2 and subhorizontal k1 axes on the dike plane. (3) Type-HP is formed by grain imbrication in horizontal low- to moderate-energy flow, resulting in subvertical k3 and subhorizontal k1 and k2 axes. (4) Type-HT is formed by grain rolling in horizontal high-energy flow, resulting in streaked k2-k3 on the dike plane and horizontally clustered k1 axes. The AMS fabrics of each type can be a significant indicator for flow direction. The observed AMS fabric of low-energy current immediately above the source layer indicates that fluidized clastic materials in the lower part of injected dike can flow laterally by lateral propagation of new or pre-existing fractures due to a dominant horizontal pressure gradient. Based on abundant AMS fabrics of high-energy current, coexistence of paleoseismic structures, and tectonic setting of the basin, earthquake-induced liquefaction is the most

  6. Sedimentation, zoning of reservoir rocks in W. Siberian basin oil fields

    SciTech Connect

    Kliger, J.A. )

    1994-02-07

    A line pattern of well cluster spacing was chosen in western Siberia because of taiga, marshes, etc., on the surface. The zoning of the oil pools within productive Upper Jurassic J[sub 3] intervals is complicated. This is why until the early 1990s almost each third well drilled in the Shaimsky region on the western edge of the West Siberian basin came up dry. The results of development drilling would be much better if one used some sedimentological relationships of zoning of the reservoir rocks within the oil fields. These natural phenomena are: Paleobasin bathymetry; Distances from the sources of the clastic material; and Proximity of the area of deposition. Using the diagram in this article, one can avoid drilling toward areas where the sandstone pinch out, area of argillization of sand-stones, or where the probability of their absence is high.

  7. Evidence of Quaternary rock avalanches in the central Apennines: new data and interpretation of the huge clastic deposit of the L'Aquila basin (central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Esposito, Carlo; Scarascia Mugnozza, Gabriele; Tallini, Marco; Della Seta, Marta

    2014-05-01

    Active extensional tectonics and widespread seismicity affect the axial zone of the central Apennines (Italy) and led to the formation of several plio-quaternary intermontane basins, whose morpho-evolution was controlled by the coupling of tectonic and climatic inputs. Common features of the Apennines intermontane basins as well as their general morpho-evolution are known. Nonetheless, the complex interaction among regional uplift, local fault displacements and morpho-climatic factors caused differences in the denudational processes of the single intermontane basins. Such a dynamic response left precious records in the landscape, which in some cases testify for the occurrence of huge, catastrophic rock slope failures. Several Quaternary rock avalanches have been identified in central Apennines, which are often associated with Deep Seated Gravitational Slope Deformation (DSGSD) and thus strictly related to the geological-structural setting as well as to the Quaternary morpho-structural evolution of the mountain chain. The L'Aquila basin is one of the intermontane tectonic depression aligned along the Middle Aterno River Valley and was the scene of strong historical earthquakes, among which the last destructive event occurred on April 6, 2009 (Mw 6.3). We present here the evidence that the huge clastic deposit on which the city of L'Aquila was built up is the body of a rock avalanche detached from the southern slope of the Gran Sasso Range. The clastic deposit elongates for 13 km to the SW, from the Assergi Plain to L'Aquila and is characterized by typical morphological features such as hummocky topography, compressional ridges and run-up on the opposite slope. Sedimentological characters of the deposit and grain size analyses on the matrix let us confirm the genetic interpretation, while borehole data and significant cross sections allowed us reconstructing the 3D shape and volume of the clastic body. Finally, morphometric analyses of the Gran Sasso Range southern

  8. Geoscience/engineering characterization of the interwell environment in carbonate reservoirs based on outcrop analogs, Permian Basin, West Texas and New Mexico. Quarterly report, January 1--April 30, 1996

    SciTech Connect

    Lucia, F.J.; Kerans, C.

    1996-04-30

    The objective of this project is to investigate styles of reservoir heterogeneity found in low-permeability pelleted wackestone/packstone facies and mixed carbonate/clastic facies found in Permian Basin reservoirs by studying similar facies exposed in the Guadalupe Mountains. Specific objectives for the outcrop study include construction of a stratigraphic framework, petrophysical quantification of the framework, and testing the outcrop reservoir model for effects of reservoir heterogeneity on production performance. Specific objectives for the subsurface study parallel objectives for the outcrop study.

  9. Geoscience/engineering characterization of the interwell environment in carbonate reservoirs based on outcrop analogs, Permian Basin, West Texas and New Mexico. Quarterly technical progress report, April 1, 1995--June 1, 1995

    SciTech Connect

    Lucia, F.J.; Kerans, C.

    1995-09-01

    The objective of this project is to investigate styles of reservoir heterogeneity that occur in low permeability pelleted wackestone/packstone facies and mixed carbonate/clastic facies found in Permian Basin reservoirs by studying similar facies exposed in the Guadalupe mountains. Specific objectives for the outcrop study include construction of a stratigraphic framework, petrophysical quantification of the framework, and testing the outcrop reservoir model for effects of reservoir heterogeneity on production performance. Specific objectives for the subsurface study parallel objectives for the outcrop study. Technical progress is reported for outcrop activities and subsurface activities.

  10. Reservoir, seal, and source rock distribution in Essaouira Rift Basin

    SciTech Connect

    Ait Salem, A. )

    1994-07-01

    The Essaouira onshore basin is an important hydrocarbon generating basin, which is situated in western Morocco. There are seven oil and gas-with-condensate fields; six are from Jurassic reservoirs and one from a Triassic reservoir. As a segment of the Atlantic passive continental margin, the Essaouira basin was subjected to several post-Hercynian basin deformation phases, which resulted in distribution, in space and time, of reservoir, seal, and source rock. These basin deformations are synsedimentary infilling of major half grabens with continental red buds and evaporite associated with the rifting phase, emplacement of a thick postrifting Jurassic and Cretaceous sedimentary wedge during thermal subsidence, salt movements, and structural deformations in relation to the Atlas mergence. The widely extending lower Oxfordian shales are the only Jurassic shale beds penetrated and recognized as potential and mature source rocks. However, facies analysis and mapping suggested the presence of untested source rocks in Dogger marine shales and Triassic to Liassic lacustrine shales. Rocks with adequate reservoir characteristics were encountered in Triassic/Liassic fluvial sands, upper Liassic dolomites, and upper Oxfordian sandy dolomites. The seals are provided by Liassic salt for the lower reservoirs and Middle to Upper Jurassic anhydrite for the upper reservoirs. Recent exploration studies demonstrate that many prospective structure reserves remain untested.

  11. Geoscience/Engineering Characterization of the Interwell Environment in Carbonate Reservoirs Based on Outcrop Analogs, Permian Basin, West Texas and New Mexico.

    SciTech Connect

    Lucia, Jerry F.; Kerans, Charles

    1997-05-19

    The objective of this project is to investigate styles of reservoir heterogeneity found in low permeability pelleted wackestone/packstone facies and mixed carbonate/clastic facies found in Permian Basin reservoirs by studying similar facies exposed in the Guadalupe Mountains. Specific objectives for the outcrop study include construction of a stratigraphic framework, petrophysical quantification of the framework, and testing the outcrop reservoir model for effects of reservoir heterogeneity on production performance. Specific objectives for the subsurface study parallel objectives for the outcrop study. Subsurface Activities - We continue to prepare two final reports that summarize research results of the South Cowden Field study. One report summarizes results of the petrophysical characterization research, and one summarizes results of the fluid-flow modeling research. Outcrop Activities - We also continue to prepare the final report, which summarizes the research results of the Grayburg outcrop reservoir study.

  12. Geoscience/Engineering Characterization of the Interwell Environment in Carbonate Reservoirs Based on Outcrop Analogs, Permian Basin, West Texas and New Mexico.

    SciTech Connect

    Lucia, Jerry F.; Kerans, Charles

    1997-05-29

    The objective of this project is to investigate styles of reservoir heterogeneity found in low permeability pelleted wackestone/packstone facies and mixed carbonate/clastic facies found in Permian Basin reservoirs by studying similar facies exposed in the Guadalupe Mountains. Specific objectives for the outcrop study include construction of a stratigraphic framework, petrophysical quantification of the framework, and testing the outcrop reservoir model for effects of reservoir heterogeneity on production performance. Specific objectives for the subsurface study parallel objectives for the outcrop study. Subsurface Activities - We continue to prepare two final reports that summarize research results of the South Cowden Field study. One report summarizes results of the petrophysical characterization research, and one summarizes results of the fluid-flow modeling research. Outcrop Activities - We also continue to prepare the final report, which summarizes the research results of the Grayburg outcrop reservoir study.

  13. The impact of high-resolution biostratigraphy on reservoir prediction and basin history - A Barents Sea case study

    SciTech Connect

    Husmo, T. ); Hochuli, P. )

    1991-08-01

    The Hammerfest Basin is bounded by the Troms-Finnmark Platform to the south and the Loppa High to the north. Twenty-seven exploration wells have been drilled in the basin since 1980. The objective for most of these wells was Middle Jurassic fault blocks. Until recently little attention has been paid to the Upper Jurassic to Lower Cretaceous synrift sequence. The first well drilled on Block 7120/10 tested a rotated Jurassic fault block. This well, together with two wells in an adjacent block, penetrated thin Lower Cretaceous sands near the distal pinch-outs of fault wedges. Seismic data indicated that a basinal wedge of equivalent age was present on Block 7120/10. High risk was put on the presence of sand in this basinal wedge, and a detailed biostratigraphic analysis was performed on wells along the basin margin in order to determine the timing of erosion on the margin and whether the Jurassic-Triassic coarse clastics were present in the provenance area. The analysis separated reworked from in-situ palynomorph assemblages in the synrift succession in the analyzed wells. A clear inverted stratigraphy was displayed by the reworked palynomorphs. Furthermore, a dramatic increase in reworked palynomorphs. Furthermore, a dramatic increase in reworked palynomorphs was observed in all wells at the onset of Valanginian. In particular the presence of Nannoceratopsis gracilis suggested that shallow marine Jurassic clastics were eroded at this time. Sand presence was predicted for the basinal wedge. The understanding of the basin history was also improved. Well 71Z0/10-2 drilled summer 1990 proved the success of the reservoir prediction and hence the usefulness of incorporating biostratigraphy in the assessment.

  14. Controls on reservoir development in Devonian Chert: Permian Basin, Texas

    SciTech Connect

    Ruppel, S.C.; Hovorka, S.D.

    1995-12-01

    Chert reservoirs of the Lower Devonian Thirtyone Formation contain a significant portion of the hydrocarbon resource in the Permian basin. More than 700 million bbl of oil have been produced from these rocks, and an equivalent amount of mobile oil remains. Effective exploitation of this sizable remaining resource, however, demands a comprehensive appreciation of the complex factors that have contributed to reservoir development. Analysis of Thirtyone Formation chert deposits in Three Bar field and elsewhere in the Permian basin indicates that reservoirs display substantial heterogeneity resulting from depositional, diagenetic, and structural processes. Large-scale reservoir geometries and finer scale, intra-reservoir heterogeneity are primarily attributable to original depositional processes. Despite facies variations, porosity development in these cherts is principally a result of variations in rates and products of early silica diagenesis. Because this diagenesis was in part a function of depositional facies architecture, porosity development follows original depositional patterns. In reservoirs such as Three Bar field, where the Thirtyone Formation has been unroofed by Pennsylvanian deformation, meteoric diagenesis has created additional heterogeneity by causing dissolution of chert and carbonate, especially in areas of higher density fracturing and faulting and along truncated reservoir margins. Structural deformation also has exerted direct controls on heterogeneity that are particularly noteworthy in reservoirs under waterflood. High-density fracture zones create preferred flow paths that result in nonuniform sweep through the reservoir. Faulting locally creates compartments by offsetting reservoir flow units. As such, the processes and models defined here improve understanding of the causes of heterogeneity in all Thirtyone chert reservoirs in the Permian basin and aid recovery of the sizable hydrocarbon resource remaining in these rocks.

  15. Rock-physics-based carbonate pore type characterization and reservoir permeability heterogeneity evaluation, Upper San Andres reservoir, Permian Basin, west Texas

    NASA Astrophysics Data System (ADS)

    Dou, Qifeng; Sun, Yuefeng; Sullivan, Charlotte

    2011-05-01

    In addition to mineral composition and pore fluid, pore type variations play an important role in affecting the complexity of velocity-porosity relationship and permeability heterogeneity of carbonate reservoirs. Without consideration of pore type diversity, most rock physics models applicable to clastic rocks for explaining the rock acoustic properties and reservoir parameters relationship may not work well for carbonate reservoirs. A frame flexibility factor ( γ) defined in a new carbonate rock physics model can quantify the effect of pore structure changes on seismic wave velocity and permeability heterogeneity in carbonate reservoirs. Our study of an Upper San Andres carbonate reservoir, Permian Basin, shows that for core samples of given porosity, the lower the frame flexibility factor ( γ), the higher the sonic wave velocity. For the studied reservoir, samples with frame flexibility factor ( γ) < 3.85 represent either visible vuggy pore space in a dolopackstone or intercrystalline pore space in dolowackstone. On the other hand, samples with frame flexibility factor ( γ) > 3.85 indicate either dominant interparticle pore space in dolopackstone or microcrack pore space in dolowackstone or dolomudstone. Using the frame flexibility factor ( γ), different porosity-impedance and porosity-permeability trends can be classified with clear geologic interpretation such as pore type and rock texture variations to improve porosity and permeability prediction accuracy. New porosity-permeability relations with γ classification help delineate permeability heterogeneity in the Upper San Andres reservoir, and could be useful for other similar carbonate reservoir studies. In addition, results from analysis of amplitude variation with offset (AVO) and impedance modeling indicate that by combining rock physics model and pre-stack seismic inversion, simultaneous estimation of porosity and frame flexibility factor ( γ) is quite feasible because of the strong influence of

  16. Sedimentology of granite boulder conglomerates and associated clastics in the onshore section of the late Mesozoic Pletmos Basin (Western Cape, South Africa)

    NASA Astrophysics Data System (ADS)

    Bordy, Emese M.; America, Travis

    2016-07-01

    Along the southern margin of South Africa, intermountain rift successions, which comprise unusually large, rounded granite boulders and other coarse clastics, reveal an important geological history about the mid-Mesozoic extensional tectonics that lead to the break-up of Gondwana. These strata, mapped as part of the Mid to Upper Jurassic Enon Formation, allow the assessment of the nature, intensity and mode of sediment transport in onshore section of the Pletmos Basin, which is one of the late Mesozoic basins in southern Africa. Based on sedimentary facies analysis, palaeocurrent measurements and semi-quantitative palaeohydraulic calculations, the results suggest that the abundant coarse sediment was deposited by debris-flows and stream-flow floods on a proximal alluvial fan with high gradient alluvial channels. The floods were intense with mean flow velocity of ∼6 m3/s and peak discharge of ∼450 m3/s. While the role of climate in the sedimentation dynamics remains unknown, syn-sedimentary rift tectonics were likely significant and caused, north of the major boundary fault, the unroofing and denudation of the uplifted mountainous source areas, including the Late Ediacaran-Cambrian Maalgaten Granite Suite and the Siluro-Ordovician Table Mountain Group (Cape Supergroup).

  17. Basin-wide architecture of sandstone reservoirs in the Fort Union Formation, Wind River basin, Wyoming

    SciTech Connect

    Flores, R.M.; Keighin, C.W.; Keefer, W.R. )

    1991-06-01

    Architecture of hydrocarbon-bearing sandstone reservoirs of the Paleocene Fort Union Formation in the Wind River basin, Wyoming, was studied using lithofacies, grain size, bounding surfaces, sedimentary structures, internal organization, and geometry. Two principal groups of reservoirs, both erosionally based and fining upward, consist of either conglomeratic sandstone or sandstone lithofacies. Two types of architecture were recognized in conglomeratic sandstone reservoirs: (1) heterogeneous, multistacked, lenticular and (2) homogeneous, multiscoured, wedge-sheet bodies. Three types of architecture were recognized in sandstone reservoirs: (3) heterogeneous, multistacked, elongate; (4) homogeneous, multilateral, lenticular; and (5) homogeneous, ribbon-lensoid bodies. Conglomeratic sandstone reservoirs in the southern and southwestern parts of the basin suggest deposition in gravel-bedload fluvial systems influenced by provenance uplift of the Granite and southern Wind River mountains. Type 2 reservoirs represent deposits of eastward-flowing braided streams aggrading an alluvial valley in response to base level rise. Thus, to determine basin-wide architecture of reservoirs requires understanding the interplay between base level conditions, basin subsidence, and provenance uplift. These interrelated factors, in turn, control differences in hierarchies of fluvial systems throughout the basin.

  18. Salt tectonics, patterns of basin fill, and reservoir distribution

    SciTech Connect

    Yorston, H.J.; Miles, A.E.

    1988-02-01

    Salt structures, which develop due to sediment loading, gravity creep, and/or buoyancy, include boundary-fault grabens and half grabens, rollers, anticlines, domes and walls, diapirs, sills, massifs, and compressional toe structures. Associated features include fault systems and turtle structures. Of these, six directly relate to basin fill and all directly influence the distribution of reservoir facies. Salt structuring is initiated by sedimentation, which in turn is localized by salt withdrawal. Withdrawal produces individual salt structures, migrating sills, dissected massifs, and regional depocenters bordered by salt walls. Composite withdrawals dictate the patterns of basin fill. Relative rates of structural growth and sedimentation control the distribution of reservoir facies. When growth dominates, sands are channeled into lows. When sedimentation dominates and maintains flat surfaces, facies distribution is not impacted except where faulting develops. Turtle structures, developed by the inversion of peripheral synclines, can move sands into favorable structural position and/or serve as platforms for carbonate reservoir development. Salt growth varies with type structure, stage of development, and rate of sedimentation. Sedimentation at a specific location depends on basin position, sediment transport system, sea level stand, and rate of salt withdrawal. This paper presents techniques for using seismic data to determine the controls on salt structural growth and sedimentation and the patterns of basin fill and reservoir distribution.

  19. Paleontology and sedimentology of upper clastic member of Wanakah Formation, Chama basin, New Mexico: Lacustrine paleoenvironmental implications

    SciTech Connect

    Good, S.J.; Ridgley, J.L. )

    1989-09-01

    Lacustrine strata of the upper part of the Jurassic Wanakah Formation were restricted to the Chama basin of north-central New Mexico by mid-Jurassic tectonic activity in the Brazos and Nacimiento uplifts and along the Gallina-Archuleta anticlinorium. Lateral and vertical facies of the upper Wanakah exposed around the southern margin of the Chama basin indicate that the deeper part of the lake was north of the outcrop belt. The upper 3-5 m of the Wanakah consists of thin-bedded rippled sandstone, interbedded mudstone, and limestone containing trace fossils and freshwater mollusks characteristic of marginal lacustrine facies. Taphonomic studies of mollusks in the Wanakah Formation have been combined with application of ecophenotypic variation documented in extant unionid bivalves to produce paleoenvironmental interpretations of these lacustrine rocks.

  20. Clastic-hosted stratiform, vein/breccia and disseminated Zn-Pb-Ag deposits of the northwestern Brooks Range, AK: Are they different expressions of dewatering of the same source basin

    SciTech Connect

    Schmidt, J.M. ); Werdon, M.B. . Dept. of Geology)

    1993-04-01

    Sphalerite and galena, with significant silver occur in 3 distinct types of mineralization hosted in Upper Devonian and Carboniferous clastic rocks of the northwestern Brooks Range. The best known are Zn-Pb-Ag massive sulfide deposits with variable pyrite, barite, and hydrothermal silifica hosted in Mississippian (to Pennsylvanian ) black siliceous shale and chert, and similar to shale-hosted Pb-Zn massive sulfide deposits worldwide. Zn-Pb-Ag breccias and veins are hosted in Upper Devonian to Lower Mississippian fine-grained quartzites and siltstone which stratigraphically underlie the massive sulfide-hosting units. The breccia-vein and disseminated occurrences are co-extensive with the rocks that host massive sulfide deposits, and with the western part of the Endicott Group clastic basin. Pb isotopic ratios of galena from all the deposits are remarkably uniform, and suggest a single Pb source. The authors genetic model suggests that all types are the result of dewatering of a single clastic source basin. Different mineralization styles are probably due to variable depths of emplacement (at or below the seafloor), thermal variations related to extensional thinning of the crust, and hydrologic flow out of the basin controlled by extensional thinning of the crust, and hydrologic flow out of the basin controlled by extensional faulting and permeability variations in local stratigraphy. The most likely sources for Zn and Pb are clay minerals within the lowermost (Hunt Fork Shale) portions of the western Endicott Group.

  1. Lithofacies distribution and reservoir heterogeneity within Pennsylvanian phylloid algal mounds, western Orogrande basin, New Mexico

    SciTech Connect

    Giles, K.A.; Soreghan, G.S.

    1996-12-31

    Pennsylvanian strata within the San Andres Mountains (western Orogrande basin) contain very well-developed phylloid algal bioherms, but these bioherms remain understudied owing to their location within the bounds of the U.S. Army White Sands Missile Range. The exposed Upper Pennsylvanian section within Hembrillo Canyon affords a three-dimensional view of mound structure, and thus an excellent opportunity for characterizing lithofacies distribution and reservoir heterogeneity that may prove useful for exploration/exploitation efforts in analogous petroliferous systems. The mounds are developed within a mixed carbonate-clastic shallow marine section punctuated by shoaling-upward cycles. Each mound site consists of a slack of individual biohermal growth events characterized by a subtidal wackestone initiation phase, core boundstone phase, and peritidal to subaerially exposed packstone/grainstone terminal phase. Individual biohermal growth events range up to 30 m in thickness; vertical stacking of these bioherms has produced aggregate mounds reaching up to 100 m in stratigraphic thickness and 300 m in diameter. Individual blohermal thicknesses decrease abruptly and markedly away from mound sites, and calcareous mudstones dominate in intermound regions. The controlling influences of paleogeography and glacioeustasy, respectively, produced the pronounced lateral and vertical heterogeneity characterizing these and analogous phylloid algal mound systems. Reservoirs within these systems are highly compartmentalized: wackestone initiation phases and peritidal to subaerial termination phases that envelope core facies may serve as porosity and permeability barriers that effectively partition the reservoir. Recognition of the scale, character, and probable controls on these lateral and vertical changes is important for effective exploration and exploitation in phylloid algal mound systems.

  2. Lithofacies distribution and reservoir heterogeneity within Pennsylvanian phylloid algal mounds, western Orogrande basin, New Mexico

    SciTech Connect

    Giles, K.A. ); Soreghan, G.S. )

    1996-01-01

    Pennsylvanian strata within the San Andres Mountains (western Orogrande basin) contain very well-developed phylloid algal bioherms, but these bioherms remain understudied owing to their location within the bounds of the U.S. Army White Sands Missile Range. The exposed Upper Pennsylvanian section within Hembrillo Canyon affords a three-dimensional view of mound structure, and thus an excellent opportunity for characterizing lithofacies distribution and reservoir heterogeneity that may prove useful for exploration/exploitation efforts in analogous petroliferous systems. The mounds are developed within a mixed carbonate-clastic shallow marine section punctuated by shoaling-upward cycles. Each mound site consists of a slack of individual biohermal growth events characterized by a subtidal wackestone initiation phase, core boundstone phase, and peritidal to subaerially exposed packstone/grainstone terminal phase. Individual biohermal growth events range up to 30 m in thickness; vertical stacking of these bioherms has produced aggregate mounds reaching up to 100 m in stratigraphic thickness and 300 m in diameter. Individual blohermal thicknesses decrease abruptly and markedly away from mound sites, and calcareous mudstones dominate in intermound regions. The controlling influences of paleogeography and glacioeustasy, respectively, produced the pronounced lateral and vertical heterogeneity characterizing these and analogous phylloid algal mound systems. Reservoirs within these systems are highly compartmentalized: wackestone initiation phases and peritidal to subaerial termination phases that envelope core facies may serve as porosity and permeability barriers that effectively partition the reservoir. Recognition of the scale, character, and probable controls on these lateral and vertical changes is important for effective exploration and exploitation in phylloid algal mound systems.

  3. Madison Group (Mississippian) reservoir facies of Williston Basin, North Dakota

    SciTech Connect

    Lindsay, R.F.

    1985-02-01

    Twenty-seven oil fields producing from the Mission Canyon Limestone and Charles Formation (Madison Group) were studied: 1) along the eastern basin margin (Bluell, Sherwood, Mohall, Glenburn, Haas, and Chola fields), 2) northeast of Nesson anticline (Foothills, North Black Slough, South Black Slough, Rival, Lignite, and Flaxton), 3) along Nesson anticline (North Tioga, Tioga, Beaver Lodge, Capa, Hoffland, Charlson, Hawkeye, Blue Buttes, Antelope, and Clear Creek), and 4) south of the basin center (Lone Butte, Little Knife, Big Stick, Fryburg, and Medora). Mission Canyon reservoirs along the eastern margin are in several shoaling-upward carbonate to anhydrite cycles of pisolitic packstone or grainstone buildups. South of the basin center, only a single shoaling-upward sequence is present, with dolomitized, mostly restructed-marine skeletal wackstone to pelletal wackstone or packstone reservoir facies. Nesson anticline, between these 2 areas, contains a single shoaling-upward sequence without an anhydrite cap. In northern Nesson anticline, Mission Canyon reservoir facies are oolitic-pisolitic, intraclastic wackestone or grainstone buildups or open-marine skeletal packstone or grainstone. Both limestones and dolostones are productive in southern Nesson anticline. Limestone reservoir facies are transitional, open to restricted-marine slightly intraclastic, skeletal wackestone or packstone facies. Dolostone reservoir facies are restricted-marine mudstone to skeletal mudstone and pelletal wackestone or packstone. Northeast of the Nesson anticline, production is from oolitic to pisolitic packstone or grainstone buildups in the Rival subinterval and from restricted-marine, dolomitized spiculitic mudstone in the Midale subinterval (base of Charles Formation). In the northern Nesson anticline, Rival reservoir facies are offshore open to restricted-marine, skeletal, intraclastic, pelletal wackestone and/or packstones.

  4. Sequence stratigraphy, facies architecture and reservoir distribution, Cretaceous lowstand fan reservoirs, Southern Basin, onshore Trinidad

    SciTech Connect

    Sprague, A.R.; Larue, D.K.; Faulkner, B.L.

    1996-08-01

    Thick Albian-Campanian mass-flow sandstones in the Southern Basin Trinidad were deposited within submarine canyons incised into the northern continental slope of South America and as associated down-dip basin-floor lowstand fans. The contemporaneous slope to basin-floor break lay across the Southern Basin area with turbidity current paleoflow being to the northwest. North of this paleo-slope break graded to massive, channelized, high-density turbidite sandstones occur interstratified with shaly overbank and channel abandonment deposits. A progression of depositional sub-environments from proximal through distal lowstand fan can be recognized. All fine and thin upward but can be discriminated by the occurrence of slumps, debris flows and conglomerates, the grain-size and bedding scale of sandstones and the characteristics of low-density turbidites and mudrocks. South of the paleo-slope break mass-flow deposits comprise muddy slumps and debris flows rich in granules and pebbles deposited in slope canyons. During periods of turbidity current by-pass or fan abandonment hemipelagic settling processes predominated. Reservoir distribution maps of these lowstand fans have been constructed utilizing geometric constraints, analogs and paleoslope determinations from oriented core. The interpreted canyon locations and orientations are key to the understanding of reservoir distribution on the basin-floor tract to the north: a vital component in the exploration of the basin.

  5. Some Cenozoic hydrocarbon basins on the continental shelf of Vietnam

    SciTech Connect

    Dien, P.T.

    1994-07-01

    The formation of the East Vietnam Sea basins was related to different geodynamic processes. The pre-Oligocene basement consists of igneous, metamorphic, and metasediment complexes. The Cretaceous-Eocene basement formations are formed by convergence of continents after destruction of the Tethys Ocean. Many Jurassic-Eocene fractured magmatic highs of the Cuulong basin basement constitute important reservoirs that are producing good crude oil. The Paleocene-Eocene formations are characterized by intramountain metamolasses, sometimes interbedded volcanic rocks. Interior structures of the Tertiary basins connect with rifted branches of the widened East Vietnam Sea. Bacbo (Song Hong) basin is predominated by alluvial-rhythmic clastics in high-constructive deltas, which developed on the rifting and sagging structures of the continental branch. Petroleum plays are constituted from Type III source rocks, clastic reservoirs, and local caprocks. Cuulong basin represents sagging structures and is predominated by fine clastics, with tidal-lagoonal fine sandstone and shalestone in high-destructive deltas that are rich in Type II source rocks. The association of the pre-Cenozoic fractured basement reservoirs and the Oligocene-Miocene clastic reservoir sequences with the Oligocene source rocks and the good caprocks is frequently met in petroleum plays of this basin. Nan Conson basin was formed from complicated structures that are related to spreading of the oceanic branch. This basin is characterized by Oligocene epicontinental fine clastics and Miocene marine carbonates that are rich in Types I, II, and III organic matter. There are both pre-Cenozoic fractured basement reservoirs, Miocene buildup carbonate reservoir rocks and Oligocene-Miocene clastic reservoir sequences, in this basin. Pliocene-Quaternary sediments are sand and mud carbonates in the shelf facies of the East Vietnam Sea back-arc basin. Their great thickness provides good conditions for maturation and trapping.

  6. Sedimentation and basin-fill history of the Neogene clastic succession exposed in the southeastern fold belt of the Bengal Basin, Bangladesh: a high-resolution sequence stratigraphic approach

    NASA Astrophysics Data System (ADS)

    Royhan Gani, M.; Mustafa Alam, M.

    2003-02-01

    The Tertiary basin-fill history of the Bengal Basin suffers from oversimplification. The interpretation of the sedimentary history of the basin should be consistent with the evolution of its three geo-tectonic provinces, namely, western, northeastern and eastern. Each province has its own basin generation and sediment-fill history related mainly to the Indo-Burmese and subordinately to the Indo-Tibetan plate convergence. This paper is mainly concerned with facies and facies sequence analysis of the Neogene clastic succession within the subduction-related active margin setting (oblique convergence) in the southeastern fold belt of the Bengal Basin. Detailed fieldwork was carried out in the Sitapahar anticline of the Rangamati area and the Mirinja anticline of the Lama area. The study shows that the exposed Neogene succession represents an overall basinward progradation from deep marine through shallow marine to continental-fluvial environments. Based on regionally correlatable erosion surfaces the entire succession (3000+ m thick) has been grouped into three composite sequences C, B and A, from oldest to youngest. Composite sequence C begins with deep-water base-of-slope clastics overlain by thick slope mud that passes upward into shallow marine and nearshore clastics. Composite sequence B characteristically depicts tide-dominated open-marine to coastal depositional systems with evidence of cyclic marine regression and transgression. Repetitive occurrence of incised channel, tidal inlet, tidal ridge/shoal, tidal flat and other tidal deposits is separated by shelfal mudstone. Most of the sandbodies contain a full spectrum of tide-generated structures (e.g. herringbone cross-bedding, bundle structure, mud couplet, bipolar cross-lamination with reactivation surfaces, 'tidal' bedding). Storm activities appear to have played a subordinate role in the mid and inner shelf region. Rizocorallium, Rosselia, Planolites and Zoophycos are the dominant ichnofacies within the

  7. Fan-delta and interdeltaic shoreline sediments of Middle Devonian Granite Wash and Keg River clastics, Red Earth field, north Alberta basin, Canada

    SciTech Connect

    Sabry, H.

    1989-03-01

    A detailed sedimentological investigation of over 4000 ft of core and 500 well logs of the Middle Devonian granite wash and Keg River clastics in the Red Earth field, North Alberta basin, Canada, has led to the recognition of a granite wash subaerial fan-delta system that is laterally continuous with a Keg River subaqueous delta component along an eastern shoreline of the ancestral Peace River arch. The subaerial fan delta includes alluvial fan facies, sheet wash and mud flows, and playa lakes. The subaqueous delta component includes lower shoreface, upper shoreface, beach-foreshore, eolian sand dunes, lagoon, washover sands, tidal channels and flats, and supratidal carbonates and anhydrites. Within this system, six mappable units are defined. A conceptual depositional model for the sequence depicts four main events. (1) Erosion of Peach River arch uplifted fault blocks, which produced coarse-grained fan-delta sediments in an adjacent fault-bounded margin. Subsequent fluvial reworking resulted in the deposition of thick, lenticular, wedge-shaped alluvial fans of granite wash. (2) Progradation of alluvial fans seaward into the Keg River Sea. (3) Transgression by Middle Devonian seas from the east, which reworked alluvial fans and led to deposition of discontinuous linear sand bodies represented by the Keg River regressive shoreline sediments. (4) Restriction of the sea by the Presqu'ile barrier reef to the north, which deposited evaporites of the Muskeg Formation over the whole sequence. Modern analog to this fan-delta system is the coastal fans of the Gulf of Aqaba, Red Sea. Red Earth field contains over 27 million bbl of recoverable oil, related to a combination structural-stratigraphic trap.

  8. Stratigraphic modeling of sedimentary basins

    SciTech Connect

    Aigner, T. ); Lawrence, D.T. )

    1990-11-01

    A two-dimensional stratigraphic forward model has been successfully applied and calibrated in clastic, carbonate, and mixed clastic/carbonate regimes. Primary input parameters are subsidence, sea level, volume of clastics, and carbonate growth potential. Program output includes sequence geometries, facies distribution lithology distribution, chronostratigraphic plots, burial history plots, thermal and maturity histories, and crossplots. The program may be used to predict reservoir distribution, to constrain interpretations of well and seismic data, to rapidly test exploration scenarios in frontier basins, and to evaluate the fundamental controls on observed basin stratigraphy. Applications to data sets from Main Pass (US Gulf Coast), Offshore Sarawak (Malaysia), Rub'al Khali basin (Oman), Paris basin (France), and Baltimore Canyon (US East Coast) demonstrate that the program can be used to simulate stratigraphy on a basin-wide scale as well as on the scale of individual prospects.

  9. Understanding Reservoir Quality in the Petroleum System of the Ediacaran-Early Cambrian Ara Group (South Oman Salt Basin):

    NASA Astrophysics Data System (ADS)

    Becker, S.; Reuning, L.; Kukla, P.; Marquez, X.; Farquani, S.; Rawahi, Z.

    2009-04-01

    The Ediacaran-Early Cambrian Ara Group of the South Oman Salt Basin consists of six carbonate to evaporite (rock salt, gypsum) sequences. These Ara Group carbonates are termed A0C to A6C from the bottom towards the top of the basin. Differential loading of locally 5 km thick Cambrian to Ordovician clastics onto the mobile rock salt of the Ara Group caused growth of isolated salt diapirs, which resulted in strong fragmentation and faulting of the carbonate intervals into several isolated so-called ‘stringers'. These carbonate stringers represent a unique intra-salt petroleum system, which has been successfully explored in recent years. Initially the reservoir properties of the carbonate stringers were controlled by their depositional facies. After deposition, the stringers experienced a complex diagenetic history from the shallow to the deep burial realm. Diagenetic processes like anhydrite and halite plugging exerted a negative affect on poroperm properties, whereas e.g. calcite dissolution had a positive affect. Our goal is to detect spatial and temporal distribution patterns of diagenetic phases and their effect on reservoir properties. Mineralogy, rock fabrics, paragenetic relationships and geochemistry of ~ 200 samples from several petroleum wells from the late Neoproterozoic A2C interval were analyzed. For a mineralogical overview the samples were measured by XRD - powder diffraction, whereas the rock fabric was studied by thin section analysis and if required additionally with SEM. This high-resolution dataset was used in combination with external petrophysical observations to defined porosity-permeability trends for different rock-fabric groups according to LUCIA (1995). The spatial distribution of these petrophysical characteristics will be displayed in field-scale distribution maps of the analyzed diagenetic phases. The expected integrated 3D - diagenesis model will enable better predictions of the reservoir qualities in the Ara fields and will

  10. Seismic imaging a carbonate reservoir: The Paris Basin Dogger

    SciTech Connect

    Mougenot, D.

    1995-08-01

    Within the Dogger project, seven partners joined forces (CGG, DHYCA, EAP, ESSO-REP, IFP, TOTAL, TRITON France) to develop an appropriate seismic acquisition, processing and interpretation methodology in order to improve the description of the main oil reservoir (30 m) lying at the top of the Dogger carbonates in the Paris Basin, at a depth of 1900 m. High-resolution 2D Vibroseismic is used to record high frequencies (up to 100 Hz) at the level of the target, and provides sufficiently adequate vertical resolution for the reflections at the top and at the base of the reservoir not to interfere. The upper frequency content of the 3D seismic (70 Hz) is more difficult to enhance. Yet the essential contribution made by the 3D is to evidence, via horizon attributes, sub-meridian lineaments corresponding to faults with throw of several meters which is too weak to be detected on vertical sections. The distribution of these faults, via which water tends to invade the reservoir, and the organization of the amplitudes at the top reservoir reflector, which seems to suggest lateral variations in porosity, are a valuable guide for setting up wells. Three-component seismic (2D-3c) and S-wave emissions did not produce any reflections beyond 30 Hz at the level of the target which is a poor reflector (PS & SS). Only borehole seismic (VSP, offset VSP), where high frequencies are much less attenuated than with surface seismic, provides detailed imaging of the reservoir in converted mode (up to 110 Hz in PP and in PS). The combination of a continuous spatial sampling, such as that obtained in 3D, and of a Vibroseis emission adapted to frequency attenuation, such as that used in 2D, can supply useful information about the thin and discontinuous Dogger reservoir which cannot he provided by mere correlation of the borehole data.

  11. Characterization of a Delaware slope basin reservoir for optimal development

    SciTech Connect

    Weiss, W.W.; Ouenes, A.; Sultan, A.J.

    1995-12-31

    A reliable reservoir description is essential to various scenarios for successful field development. In this study, various new tools have been applied to fully characterize the East Livingston Ridge Delaware reservoir. The Delaware formations in their slope/basin environment are difficult to characterize due to the channels in the submarine fans. Using well logs, a complex 3-D reservoir model composed of a channel through the bottom three layers of a seven layer model with one non-oil bearing zone was constructed to represent this complex depositional setting. Drastic changes in layer lithologies resulting in multiple oil/water contacts and varying water saturations required detailed log interpretation. The porosity logs were tuned with available sidewall core information. Log porosity was determined for each layer at each well and kriging was used to estimate the areal distribution of the porosity. Porosity-permeability correlations for each layer were developed from sidewall core data. The correlations were used to make an initial estimate of the interwell permeabilities. A production history match was not possible with the initial characterization of the reservoir. The production rates of the oil, gas, and water phases of each of the twenty-three wells in the East Livingston Ridge field and the pressure data were automatically history matched using a recently developed simulated annealing technique. The absolute and relative permeabilities of the layers were varied automatically during the history matching phase of the reservoir study. The larger scale properties resulting from the calibrated model were used to forecast the results of continued primary, infill drilling and/or waterflooding.

  12. Reservoir property estimation in Pohang Basin, South Korea for the preliminary CO2 storage prospect

    NASA Astrophysics Data System (ADS)

    Han, J.; Keehm, Y.

    2013-12-01

    Geological CO2 storage draws a great attention globally and South Korea also look for proper storage sites to reduce CO2 emission. The Pohang Basin area, located at the southeastern part of Korea, is regarded as a good candidate for CO2 storage, since the basin is believed to have good sand intervals, and there are various CO2 sources, such as a steel mill and a car factory around the area. However, there are not many geophysical data (core, logs, seismic, etc.) available since the area is highly industrialized and the target site is located offshore. There are a few well logs sparsely located, and core data are not many either since the target formation is semi- to unconsolidated clastics. To overcome these difficulties, we firstly go back to regional geology and determine the regional 3D distribution of target formation. Then, we obtain onshore outcrop samples from the same target formation to compliment scarce core data. The core and outcrop samples are not well-consolidated, which makes lab measurements highly difficult. We adopt a computational rock physics method, which estimates porosity and permeability on 3D microstructures statistically reconstructed from thin section images. The average values of porosity and permeability of outcrop samples are 25% and 1,000mD, and those from one core data 17% and 100mD, respectively. Other cores from the same formation do not give any significant permeability values. Thus, we categorize the formation into two subgroups, good and bad. Next, we visit well-log data and categorize intervals into two subgroups, and apply the our computation results to the good group. Finally, we can give maps of reservoir properties for the target formation. Although we can give only approximate values/relations of reservoir properties for good interval, it helps evaluate overall prospect of the target formation. Acknowledgements: This research was supported by the Basic Research Project of the Korea Institute of Geoscience and Mineral

  13. New exploration targets in Malaysia: Deep sandstone reservoirs in Malay basin and turbidites in Sabah basin

    SciTech Connect

    Ngah, K.B. )

    1996-01-01

    Much of the production in Malaysia is from middle to upper Miocene sandstones and carbonates in three main basins: Malay, Sarawak (Its three subbasins-Central Luconia, Balingian and Baram), and Sabah. Fifteen fields produce an average of 630,000 bopd and 3.0 bcfgpd. More than 4.0 billion barrels of oil and 20 tcf of gas have been produced, and reserves are 4.2 billion barrels of oil and 90 tcf. Oil production will decline within the next 1 0 years unless new discoveries are made and/or improved oil recovery methods introduced, but gas production of 5 tcf, expected after the turn of the century, can be sustained for several decades. Successful exploratory wells continue to be drilled in the Malaysian Tertiary basins, and others are anticipated with application of new ideas and technology. In the Malay basin, Miocene sandstone reservoirs in Groups L and M have been considered as very [open quote]high risk[close quotes] targets, the quality of the reservoirs has generally been thought to be poor, especially toward the basinal center, where they occur at greater depth. The cause of porosity loss is primarily burial-related. Because of this factor and overpressuring, drilling of many exploration wells has been suspended at or near the top of Group L. In a recent prospect drilled near the basinal axis on the basis of advanced seismic technology, Groups L and M sandstones show fair porosity (8-15%) and contain gas. In the Sabah basin, turbidite play has received little attention, partly because of generally poor seismic resolution in a very complex structural setting. Only one field is known to produce oil from middle Miocene turbidities. However, using recently acquired 3-D seismic data over this field, new oil pools have been discovered, and they are currently being developed. These finds have created new interest, as has Shell's recent major gas discovery from a turbidite play in this basin.

  14. New exploration targets in Malaysia: Deep sandstone reservoirs in Malay basin and turbidites in Sabah basin

    SciTech Connect

    Ngah, K.B.

    1996-12-31

    Much of the production in Malaysia is from middle to upper Miocene sandstones and carbonates in three main basins: Malay, Sarawak (Its three subbasins-Central Luconia, Balingian and Baram), and Sabah. Fifteen fields produce an average of 630,000 bopd and 3.0 bcfgpd. More than 4.0 billion barrels of oil and 20 tcf of gas have been produced, and reserves are 4.2 billion barrels of oil and 90 tcf. Oil production will decline within the next 1 0 years unless new discoveries are made and/or improved oil recovery methods introduced, but gas production of 5 tcf, expected after the turn of the century, can be sustained for several decades. Successful exploratory wells continue to be drilled in the Malaysian Tertiary basins, and others are anticipated with application of new ideas and technology. In the Malay basin, Miocene sandstone reservoirs in Groups L and M have been considered as very {open_quote}high risk{close_quotes} targets, the quality of the reservoirs has generally been thought to be poor, especially toward the basinal center, where they occur at greater depth. The cause of porosity loss is primarily burial-related. Because of this factor and overpressuring, drilling of many exploration wells has been suspended at or near the top of Group L. In a recent prospect drilled near the basinal axis on the basis of advanced seismic technology, Groups L and M sandstones show fair porosity (8-15%) and contain gas. In the Sabah basin, turbidite play has received little attention, partly because of generally poor seismic resolution in a very complex structural setting. Only one field is known to produce oil from middle Miocene turbidities. However, using recently acquired 3-D seismic data over this field, new oil pools have been discovered, and they are currently being developed. These finds have created new interest, as has Shell`s recent major gas discovery from a turbidite play in this basin.

  15. 3D Sedimentological and geophysical studies of clastic reservoir analogs: Facies architecture, reservoir properties, and flow behavior within delta front facies elements of the Cretaceous Wall Creek Member, Frontier Formation, Wyoming

    SciTech Connect

    Christopher D. White

    2009-12-21

    rock types (\\Eg sandstones and mudstones) and the variation of transport properties (\\Eg permeability and porosity) within bodies of a particular rock type. Both basin-wide processes such as sea-level change and the autocyclicity of deltaic processes commonly cause deltaic reservoirs to have large variability in rock properties; in particular, alternations between mudstones and sandstones may form baffles and trends in rock body permeability can influence productivity and recovery efficiency. In addition, diagenetic processes such as compaction, dissolution, and cementation can alter the spatial pattern of flow properties. A better understanding of these properties, and improved methods to model the properties and their effects, will allow improved reservoir development planning and increased recovery of oil and gas from deltaic reservoirs. Surface exposures of ancient deltaic rocks provide a high resolution, low uncertainty view of subsurface variability. Patterns and insights gleaned from these exposures can be used to model analogous reservoirs, for which data is much sparser. This approach is particularly attractive when reservoir formations are exposed at the surface. The Frontier Formation in central Wyoming provides an opportunity for high resolution characterization. The same rocks exposed in the vicinity of the Tisdale anticline are productive in nearby oil fields, including Salt Creek. Many kilometers of good-quality exposure are accessible, and the common bedding-plane exposures allow use of shallow-penetration, high-resolution electromagnetic methods known as ground-penetrating radar. This study combined geologic interpretations, maps, vertical sections, core data, and ground-penetrating radar to construct high-resolution geostatistical and flow models for the Wall Creek Member of the Frontier Formation. Stratal-conforming grids were use to reproduce the progradational and aggradational geometries observed in outcrop and radar data. A new, Bayesian method

  16. Modeling water-quality loads to the reservoirs of the Upper Trinity River Basin, Texas, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water quality modeling efforts have been conducted for 12 reservoirs in ten watersheds in Upper Trinity River Basin located in north Texas. The reservoirs are being used for water supply to the populated area around the Dallas-Fort Worth Metro and the water quality of some of these reservoirs has b...

  17. Sedimentological and geophysical studies of clastic reservoir analogs: Methods, applications and developments of ground-penetrating radar for determination of reservoir geometries in near-surface settings. Final report

    SciTech Connect

    McMechan, G.A.; Soegaard, K.

    1998-05-25

    An integrated sedimentologic and GPR investigation has been carried out on a fluvial channel sandstone in the mid-Cretaceous Ferron Sandstone at Coyote Basin along the southwestern flank of the San Rafael Uplift in east-central Utah. This near-surface study, which covers a area of 40 {times} 16.5 meters to a depth of 15 meters, integrates detailed stratigraphic data from outcrop sections and facies maps with multi-frequency 3-D GPR surveys. The objectives of this investigation are two-fold: (1) to develop new ground-penetrating radar (GPR) technology for imaging shallow subsurface sandstone bodies, and (2) to construct an empirical three-dimensional sandstone reservoir model suitable for hydrocarbon flow-simulation by imaging near-surface sandstone reservoir analogs with the use of GPR. The sedimentological data base consists of a geologic map of the survey area and a detailed facies map of the cliff face immediately adjacent to the survey area. Five vertical sections were measured along the cliff face adjacent to the survey area. In addition, four wells were cored within the survey area from which logs were recorded. In the sections and well logs primary sedimentary structures were documented along with textural information and permeability data. Gamma-ray profiles were also obtained for all sections and core logs. The sedimentologic and stratigraphic information serves as the basis from which much of the processing and interpretation of the GPR data was made. Three 3-D GPR data sets were collected over the survey area at frequencies of 50 MHZ, 100 MHZ, and 200 MHZ.

  18. Reservoir geology of Landslide field, southern San Joaquin basin, California

    SciTech Connect

    Carr, T.R.; Tucker, R.D.; Singleton, M.T. )

    1991-02-01

    The Landslide field, which is located on the southern margin of the San Joaquin basin, was discovered in 1985 and consists of 13 producers and six injectors. Cumulative production as of mid-1990 was approximately 10 million bbl of oil with an average daily production of 4700 BOPD. Production is from a series of late Miocene turbidite sands (Stevens Sand) that were deposited as a small constructional submarine fan (less than 2 mi in diameter). Based on interpretation of wireline logs and engineering data, deposition of the fan and of individual lobes within the fan was strongly influenced by preexisting paleotopography and small syndepositional slump features. Based on mapping of individual depositional units and stratigraphic dipmeter analysis, transport direction of the sand was to the north-north across these paleotopographic breaks in slope. Dipmeter data and pressure data from individual sands are especially useful for recognition and mapping of individual flow units between well bores. Detailed engineering, geophysical and geological studies have increased our understanding of the dimensions, continuity, geometry, and inherent reservoir properties of the individual flow units within the reservoir. Based on the results of these studies a series of water isolation workovers and extension wells were proposed and successfully undertaken. This work has increased recoverable reserves and arrested the rapid production decline.

  19. Characterization of the Qishn sandstone reservoir, Masila Basin-Yemen, using an integrated petrophysical and seismic structural approach

    NASA Astrophysics Data System (ADS)

    Lashin, Aref; Marta, Ebrahim Bin; Khamis, Mohamed

    2016-03-01

    This study presents an integrated petrophysical and seismic structural analysis that is carried out to evaluate the reservoir properties of Qishn sandstone as well as the entrapment style of the hydrocarbons at Sharyoof field, Sayun-Masila Basin that is located at the east central of Yemen. The reservoir rocks are dominated by clean porous and permeable sandstones zones usually intercalated with some clay stone interbeds. As identified from well logs, Qishn sandstone is classified into subunits (S1A, S1B, S1C and S2) with different reservoir characteristics and hydrocarbon potentiality. A number of qualitative and quantitative well logging analyses are used to characterize the different subunits of the Qishn reservoir and identify its hydrocarbon potentiality. Dia-porosity, M-N, Pickett, Buckles plots, petrophysical analogs and lateral distribution maps are used in the analysis. Shale volume, lithology, porosity, and fluid saturation are among the most important deduced parameters. The analysis revealed that S1A and S1C are the main hydrocarbon-bearing units. More specifically, S1A unit is the best, as it attains the most prolific hydrocarbon saturations (oil saturation "SH″ up to 65) and reservoir characteristics. An average petrophysical ranges of 4-21%, 16-23%, 11-19%, 0-65%, are detected for S1A unit, regarding shale volume, total and effective porosity, and hydrocarbon saturation, respectively. Meanwhile, S1B unit exhibits less reservoir characteristics (Vsh>30%, ϕEff<15% and SH< 15%). The lateral distribution maps revealed that most of the hydrocarbons (for S1A and S1C units) are indicated at the middle of the study area as NE-SW oriented closures. The analysis and interpretation of seismic data had clarified that the structure of study area is represented by a big middle horst bounded by a group of step-like normal faults at the extreme boundaries (faulted anticlinal-structure). In conclusion, the entrapment of the encountered hydrocarbon at Sharyoof oil

  20. Upper Strawn (Desmoinesian) carbonte and clastic depositional environments, southeastern King County, Texas

    SciTech Connect

    Boring, T.H. )

    1990-02-01

    The Pennsylvanian upper Strawn Group of southeastern King County, Texas, provides a unique setting to study interactions between coeval carbonate and clastic deposition during the Desmoinesian. One of the most perplexing problems is the relationship of massive Pennsylvanian platform carbonates to shallow-water terrigenous clastic sediments. Within the study area, carbonate facies were deposited along the northern edge of the Knox-Baylor trough on the Spur platform, and terrigenous clastics were carried toward the Midland basin through the Knox-Baylor trough. Based on the analysis of subsurface cores, five carbonate lithofacies and four clastic lithofacies were recognized in southeastern King County, Texas. The distribution and geometry of these lithofacies are related to variations in the rate of subsidence in the Knox-Baylor trough, Pennsylvanian tectonics, deltaic progradation, avulsion, and compaction. The platform carbonates within the northern region of southeastern King County record environments within the carbonate platform complex, including middle platform, outer platform, algal mound, and platform margin. The quartzarenitic sandstones within the southern region of southeastern King County occur in a variety of complex depositional geometries, including distributary-bar fingers, lobate deltas, and offshore bars. Cores of these sandstones represent mainly the uppermost portion of the various sandstone bodies. The upper Strawn Group provides an attractive area for exploration geology. Both carbonates and clastics provide excellent reservoirs from a depth of approximately 5,000-6,000 ft. Total production within the area is over 100 million bbl of oil since the early 1940s. Multiple pay zones within a 600-ft interval also provide an added incentive for exploration. Areas within and around the Knox-Baylor trough deserve a detailed study due to these relatively shallow, unexplored, multiple pay zones.

  1. Reservoir Space Evolution of Volcanic Rocks in Deep Songliao Basin, China

    NASA Astrophysics Data System (ADS)

    Zheng, M.; Wu, X.; Zheng, M.; HU, J.; Wang, S.

    2015-12-01

    Recent years, large amount of natural gas has been discovered in volcanic rock of Lower Crataceous of Songliao basin. Volcanic reservoirs have become one of the important target reservoir types of eastern basin of China. In order to study the volcanic reservoirs, we need to know the main factors controlling the reservoir space. By careful obsercation on volcanic drilling core, casting thin sections and statistical analysis of petrophysical properties of volcanic reservoir in Songliao basin, it can be suggested that the igneous rock reservoir in Yingcheng formation of Lower Crataceous is composed of different rock types, such ad rohylite, rohylitic crystal tuff, autoclastic brecciation lava and so on. There are different reservoirs storage space in in various lithological igneous rocks, but they are mainly composed of primary stoma, secondary solution pores and fractures.The evolution of storage space can be divided into 3 stage: the pramary reservoir space,exogenic leaching process and burial diagenesis.During the evolution process, the reservoir space is effected by secondary minerals, tectonic movement and volcanic hydrothermal solution. The pore of volcanic reservoirs can be partially filled by secondary minerals, but also may be dissoluted by other chemical volcanic hydrothermal solution. Therefore, the favorable places for better-quality volcanic reservoirs are the near-crater facies of vocanic apparatus and dissolution zones on the high position of paleo-structures.

  2. Hydrodynamics of coalbed methane reservoirs in the Black Warrior Basin: Key to understanding reservoir performance and environmental issues

    USGS Publications Warehouse

    Pashin, J.C.

    2007-01-01

    The Black Warrior Basin of the southeastern United States hosts one of the world's most prolific and long-lived coalbed methane plays, and the wealth of experience in this basin provides insight into the relationships among basin hydrology, production performance, and environmental issues. Along the southeast margin of the basin, meteoric recharge of reservoir coal beds exposed in an upturned fold limb exerts a strong control on water chemistry, reservoir pressure, and production performance. Fresh-water plumes containing Na-HCO3 waters with low TDS content extend from the structurally upturned basin margin into the interior of the basin. Northwest of the plumes, coal beds contain Na-Cl waters with moderate to high-TDS content. Carbon isotope data from produced gas and mineral cements suggest that the fresh-water plumes have been the site of significant bacterial activity and that the coalbed methane reservoirs contain a mixture of thermogenic and late-stage biogenic gases. Water produced from the fresh-water plumes may be disposed safely at the surface, whereas underground injection has been used locally to dispose of highly saline water. Wells in areas that had normal hydrostatic reservoir pressure prior to development tend to produce large volumes of water and may take up to 4 a to reach peak gas production. In contrast, wells drilled in naturally underpressured areas distal to the fresh-water plumes typically produce little water and achieve peak gas rates during the first year of production. Environmental debate has focused largely on issues associated with hydrologic communication between deep reservoir coal beds and shallow aquifers. In the coalbed methane fields of the Black Warrior Basin, a broad range of geologic evidence suggests that flow is effectively confined within coal and that the thick intervals of marine shale separating coal zones limit cross-formational flow. ?? 2007 Elsevier Ltd. All rights reserved.

  3. Clastic dikes of the Hatrurim basin (western flank of the Dead Sea) as natural analogues of alkaline concretes: Mineralogy, solution chemistry, and durability

    NASA Astrophysics Data System (ADS)

    Sokol, E. V.; Gaskova, O. L.; Kozmenko, O. A.; Kokh, S. N.; Vapnik, E. A.; Novikova, S. A.; Nigmatulina, E. N.

    2014-11-01

    This study shows that the mineral assemblages from clastic dikes in areas adjacent to the Dead Sea graben may be considered as natural analogues of alkaline concretes. The main infilling material of the clastic dikes is composed of well-sorted and well-rounded quartz sand. The cement of these hard rocks contains hydroxylapophyllite, tacharanite, calcium silicate hydrates, opal, calcite, and zeolite-like phases, which is indicative of a similarity of the natural cementation processes and industrial alkaline concrete production from quartz sands and industrial alkaline cements. The quartz grains exhibit a variety of reaction textures reflecting the interaction with alkaline solutions (opal and calcium hydrosilicate overgrowths; full replacement with apophyllite or thomsonite + apophyllite). The physicochemical analysis and reconstruction of the chemical composition of peralkaline Ca, Na, and K solutions that formed these assemblages reveal that the solutions evolved toward a more stable composition of zeolite-like phases, which are more resistant to long-term chemical weathering and atmospheric corrosion. The 40Ar/39Ar age of 6.2 ± 0.7 Ma obtained for apophyllite provides conclusive evidence for the high corrosion resistance of the assemblages consisting of apophyllite and zeolite-like phases.

  4. Reservoir Performance Under Future Climate For Basins With Different Hydrologic Sensitivities

    NASA Astrophysics Data System (ADS)

    Mateus, M. C.; Tullos, D. D.

    2013-12-01

    In addition to long-standing uncertainties related to variable inflows and market price of power, reservoir operators face a number of new uncertainties related to hydrologic nonstationarity, changing environmental regulations, and rapidly growing water and energy demands. This study investigates the impact, sensitivity, and uncertainty of changing hydrology on hydrosystem performance across different hydrogeologic settings. We evaluate the performance of reservoirs in the Santiam River basin, including a case study in the North Santiam Basin, with high permeability and extensive groundwater storage, and the South Santiam Basin, with low permeability, little groundwater storage and rapid runoff response. The modeling objective is to address the following study questions: (1) for the two hydrologic regimes, how does the flood management, water supply, and environmental performance of current reservoir operations change under future 2.5, 50 and 97.5 percentile streamflow projections; and (2) how much change in inflow is required to initiate a failure to meet downstream minimum or maximum flows in the future. We couple global climate model results with a rainfall-runoff model and a formal Bayesian uncertainty analysis to simulate future inflow hydrographs as inputs to a reservoir operations model. To evaluate reservoir performance under a changing climate, we calculate reservoir refill reliability, changes in flood frequency, and reservoir time and volumetric reliability of meeting minimum spring and summer flow target. Reservoir performance under future hydrology appears to vary with hydrogeology. We find higher sensitivity to floods for the North Santiam Basin and higher sensitivity to minimum flow targets for the South Santiam Basin. Higher uncertainty is related with basins with a more complex hydrologeology. Results from model simulations contribute to understanding of the reliability and vulnerability of reservoirs to a changing climate.

  5. Heterogeneity in Mississippi oil reservoirs, Black Warrior basin, Alabama: An overview

    SciTech Connect

    Kugler, R.L.; Pashin, J.C.; Irvin, G.D. )

    1993-09-01

    Four Mississippian sandstone units produce oil in the Black Warrior basin of Alabama: (1) Lewis; (2) Carter; (3) Millerella, and (4) Gilmer. Reservoir geometries differ for each producing interval, reflecting variation in depositional style during the evolution of a foreland basin. Widespread strike-elongate bodies of Lewis sandstone with complex internal geometry were deposited during destruction of the Fort Payne-Tuscumbia carbonate ramp and represent inception of the foreland basin and initial forebulge migration. Synorogenic Carter sandstone is part of the first major deltaic foreland basin fill and accounts for more than 80% of oil production in the basin. Millerella sandstone was deposited as transgressive sand patches during the final stages of delta destruction. Gilmer sandstone occurs as imbricate sandstone lenses deposited in a constructive shoal-water delta and is part of the late relaxational basin fill. Interaction of siliciclastic sediment with ancestral and active carbonate ramps was a primary control on facies architecture and reservoir heterogeneity. Patterns of injection and reservoir fluid production, as well as field- to basin-scale depositional, petrological, petrophysical and geostatistical modeling reveal microscopic to megascopic controls on reservoir heterogeneity and hydrocarbon producibility. At a megascopic scale, isolation or continuity of reservoir bodies is a function of depositional topography and the degree of marine reworking of genetically coherent sandstone bodies. These factors result in amalgamated reservoir bodies or in compartments that may remain uncontacted or unconnected during field development. Within producing fields, segmentation of amalgamated sandstone bodies into individual lenses, grain size variations, depositional barriers, and diagenetic baffles further compartmentalize reservoirs, increase tortuosity of fluid flow, and affect sweep efficiency during improved recovery operations.

  6. Clastic rocks associated with the Midcontinent rift system in Iowa

    USGS Publications Warehouse

    Anderson, Raymond R.; McKay, Robert M.

    1997-01-01

    The Middle Proterozoic Midcontinent Rift System (MRS) of North America is a failed rift that formed in response to region-wide stresses about 1,100 Ma. In Iowa, the MRS is buried beneath 2,200?3,500 ft of Paleozoic and Mesozoic sedimentary rocks and Quaternary glaciogenic deposits. An extremely large volume of sediments was deposited within basins associated with the rift at several stages during its development. Although the uplift of a rift-axial horst resulted in the erosional removal of most of these clastic rocks from the central region of the MRS in Iowa, thick sequences are preserved in a series of horst-bounding basins. Recent studies incorporating petrographic analysis, geophysical modeling, and other analytical procedures have led to the establishment of a preliminary stratigraphy for these clastic rocks and interpretations of basin geometries. This information has allowed the refinement of existing theories and history of MRS formation in Iowa. Additionally, drill samples previously interpreted as indicating the existence of early Paleozoic basins overlying the Proterozoic MRS basins were re-examined. Samples previously interpreted as deep-lying Paleozoic rocks are now known to have caved from upper levels of the drillhole and were out of stratigraphic position. No deep Paleozoic basins exist in this area. These investigations led to the development of petrographic parameters useful in differentiating the Proterozoic MRS Red clastics from Paleozoic clastic rocks having similar lithologies.

  7. A new integrated tectonic synthesis of the Piceance Basin: Implications for fractured reservoir detection and characterization

    SciTech Connect

    Hoak, T.E.

    1995-06-01

    Detailed reservoir characterization of Piceance Basin thin-skinned structural traps reveals the importance of fracture-controlled gas production. A complete understanding of basin fracture genesis can be achieved through determination of the regional tectonic evolution. To understand the evolution of thin-skinned and basement-involved structures, high-resolution aeromagnetic data, seismic data, remote sensing imagery analysis, and production history analyses have been integrated with conventional subsurface and surficial dynamic structural analyses. Examination of structural trends in rocks ranging in age from the Precambrian through Holocene show the importance of pre-existing anisotropies in partitioning younger tectonic strain. Because of this strain partitioning, many Laramide structures show complex reactivation histories that obscure older Precambrian and Paleozoic tectonic events. An excellent example of this reactivation and partitioning is provided by NW-trending Precambrian-age structures on the Uncompahgre Uplift that were reactivated during Pennsylvanian-age deformation (Ancestral Rockies) and Laramide events. Because of its importance to reservoir engineering problems such as hydraulic stimulation design and drainage efficiency calculations for fractured reservoirs, the modern stress state throughout the basin has been determined and data suggest that there is significant variability in principal stress orientations throughout the basin. This interpretation demonstrates the complex evolution of multiply-reactivated tectonic structures and the relationship between production trends, structure, and fractured reservoirs. Most importantly, the integrated exploration approach demonstrates the power of an integrated basin analysis as a deterministic tool for understanding and predicting fractured reservoir conditions in advance of drilling.

  8. Jurassic carbonate reservoirs of the Amu Darya Basin, Uzbekistan and Turkmenistan

    SciTech Connect

    Shein, V.S.; Fortunatova, N.K.; Neilson, J.E.

    1995-08-01

    The Amu Darya Basin is a world class hydrocarbon province. Current reserves estimates are 220 TCF of gas and 800 MMbbl of oil and condensate, 50% of which is reservoired in Late Jurassic carbonates. Exploration opportunities still exist in large parts of the basin which are relatively undrilled. Within the 100-600m thick carbonate sequence, reservoir facies include reefs, shelf grainstones and turbidite fares. The major seal are Kimmeridgian - Tithonian evaporates which are up to 1600m thick in the basin centre. Stratigraphic trapping is common and often enhanced by structural modifications. The reservoirs are in communication with a major gas-prone Early-Middle Jurassic source rock. Oil-prone source rocks are thought to occur in basinal sediments which are coeval with the Late Jurassic reservoirs. Carbonate sedimentation commenced during the Late Jurassic with the development of a ramp complex. This evolved into a rimmed shelf with barrier and pinnacle reefs. Several cycles of relative sea-level change (largely eustatic?) influence the carbonate ramp/shelf systems and effect the distribution of reservoir facies. Numerous empirical observations by VNIGNI scientists on carbonate successions have enabled them to develop mathematically calculated indices for facies and reservoir prediction, which have been applied successfully in the Amu Darya Basin. Reservoir quality in the limestones is strongly controlled by primary facies. Reefs and shelf grainstones display the best reservoir characteristics. Whilst many facies have good total porosity, it is only the reef and grainstone belts where connected porosity (with pore throats greater than 10um) becomes effective. Burial cements are rare. Freshwater solution and cementation has often improved or preserved primary porosity.

  9. Upper Strawn (Desmoinesian) carbonate and clastic depositional environments, SE King County, TX

    SciTech Connect

    Boring, T.H. )

    1990-05-01

    The Pennsylvanian upper Strawn Group of southeast King County, Texas, provides a unique setting to study interactions between coeval carbonate and clastic deposition during the Desmoinesian. One of the most perplexing problems is the relationship of massive Pennsylvanian platform carbonates to shallow-water marine and deltaic sediments. Within the study area carbonate facies were deposited along the northern edge of the Knox-Baylor trough on the Spur platform, and terrigenous clastics were carried toward the Midland basin through the Knox-Baylor trough. Based on the analysis of subsurface cores, five carbonate lithofacies and four clastic lithofacies were recognized in southeast King County, Texas. The distribution and geometry of these lithofacies are related to variations in the rate of subsidence in the Knox-Baylor trough, Pennsylvanian tectonics, deltaic progradation, avulsion and compaction. The platform carbonates within the northern region record environments within the carbonate platform complex, including middle platform, outer platform, algal mound, and platform margin. The quartzarenitic sandstones within the southern region occur in a variety of complex depositional geometries, including distributary bar fingers, lobate deltas, and offshore bars. The upper Strawn Group provides an attractive area for exploration geology. Both carbonates and clastics provide excellent reservoirs from a depth of approximately 5,000 to 6,000 ft. Total production since the early 1940s, within the area is over 100,000,000 bbl of oil. Multiple pay zones within a 600-ft interval also provide an added incentive for exploration. Areas within and around the Knox-Baylor trough deserve additional study due to these relatively shallow, unexplored, multiple pay zones.

  10. Reservoir heterogeneity in Carboniferous sandstone of the Black Warrior basin. Final report

    SciTech Connect

    Kugler, R.L.; Pashin, J.C.; Carroll, R.E.; Irvin, G.D.; Moore, H.E.

    1994-04-01

    Although oil production in the Black Warrior basin of Alabama is declining, additional oil may be produced through improved recovery strategies, such as waterflooding, chemical injection, strategic well placement, and infill drilling. High-quality characterization of reservoirs in the Black Warrior basin is necessary to utilize advanced technology to recover additional oil and to avoid premature abandonment of fields. This report documents controls on the distribution and producibility of oil from heterogeneous Carboniferous reservoirs in the Black Warrior basin of Alabama. The first part of the report summarizes the structural and depositional evolution of the Black Warrior basin and establishes the geochemical characteristics of hydrocarbon source rocks and oil in the basin. This second part characterizes facies heterogeneity and petrologic and petrophysical properties of Carter and Millerella sandstone reservoirs. This is followed by a summary of oil production in the Black Warrior basin and an evaluation of seven improved-recovery projects in Alabama. In the final part, controls on the producibility of oil from sandstone reservoirs are discussed in terms of a scale-dependent heterogeneity classification.

  11. Reservoir heterogeneity in carboniferous sandstone of the Black Warrior basin. Final report

    SciTech Connect

    Kugler, R.L.; Pashin, J.C.; Carroll, R.E.; Irvin, G.D.; Moore, H.E.

    1994-06-01

    Although oil production in the Black Warrior basin of Alabama is declining, additional oil may be produced through improved recovery strategies, such as waterflooding, chemical injection, strategic well placement, and infill drilling. High-quality characterization of reservoirs in the Black Warrior basin is necessary to utilize advanced technology to recover additional oil and to avoid premature abandonment of fields. This report documents controls on the distribution and producibility of oil from heterogeneous Carboniferous reservoirs in the Black Warrior basin of Alabama. The first part of the report summarizes the structural and depositional evolution of the Black Warrior basin and establishes the geochemical characteristics of hydrocarbon source rocks and oil in the basin. This second part characterizes facies heterogeneity and petrologic and petrophysical properties of Carter and Millerella sandstone reservoirs. This is followed by a summary of oil production in the Black Warrior basin and an evaluation of seven improved-recovery projects in Alabama. In the final part, controls on the producibility of oil from sandstone reservoirs are discussed in terms of a scale-dependent heterogeneity classification.

  12. Depositional setting and diagenetic evolution of some Tertiary unconventional reservoir rocks, Uinta Basin, Utah.

    USGS Publications Warehouse

    Pitman, J.K.; Fouch, T.D.; Goldhaber, M.B.

    1982-01-01

    The Douglas Creek Member of the Tertiary Green River Formation underlies much of the Uinta basin, Utah, and contains large volumes of oil and gas trapped in a complex of fractured low-permeability sandstone reservoirs. In the SE part of the basin at Pariette Bench, the Eocene Douglas Creek Member is a thick sequence of fine- grained alluvial sandstone complexly intercalated with lacustrine claystone and carbonate rock. Sediments were deposited in a subsiding intermontane basin along the shallow fluctuating margin of ancient Lake Uinta. Although the Uinta basin has undergone postdepositional uplift and erosion, the deepest cored rocks at Pariette Bench have never been buried more than 3000m.-from Authors

  13. FRACTURED RESERVOIR E&P IN ROCKY MOUNTAIN BASINS: A 3-D RTM MODELING APPROACH

    SciTech Connect

    P. Ortoleva; J. Comer; A. Park; D. Payne; W. Sibo; K. Tuncay

    2001-11-26

    Key natural gas reserves in Rocky Mountain and other U.S. basins are in reservoirs with economic producibility due to natural fractures. In this project, we evaluate a unique technology for predicting fractured reservoir location and characteristics ahead of drilling based on a 3-D basin/field simulator, Basin RTM. Recommendations are made for making Basin RTM a key element of a practical E&P strategy. A myriad of reaction, transport, and mechanical (RTM) processes underlie the creation, cementation and preservation of fractured reservoirs. These processes are often so strongly coupled that they cannot be understood individually. Furthermore, sedimentary nonuniformity, overall tectonics and basement heat flux histories make a basin a fundamentally 3-D object. Basin RTM is the only 3-D, comprehensive, fully coupled RTM basin simulator available for the exploration of fractured reservoirs. Results of Basin RTM simulations are presented, that demonstrate its capabilities and limitations. Furthermore, it is shown how Basin RTM is a basis for a revolutionary automated methodology for simultaneously using a range of remote and other basin datasets to locate reservoirs and to assess risk. Characteristics predicted by our model include reserves and composition, matrix and fracture permeability, reservoir rock strength, porosity, in situ stress and the statistics of fracture aperture, length and orientation. Our model integrates its input data (overall sedimentation, tectonic and basement heat flux histories) via the laws of physics and chemistry that describe the RTM processes to predict reservoir location and characteristics. Basin RTM uses 3-D, finite element solutions of the equations of rock mechanics, organic and inorganic diagenesis and multi-phase hydrology to make its predictions. As our model predicts reservoir characteristics, it can be used to optimize production approaches (e.g., assess the stability of horizontal wells or vulnerability of fractures to

  14. Ourcrop characterization of sandstone heterogeneity in Carboniferous reservoirs, Black Warrior basin, Alabama

    SciTech Connect

    Pashin, J.C.; Osborne, E.W.; Rindsberg, A.K.

    1991-08-01

    Where production is currently declining, improved recovery strategies, such as waterflooding, injection, strategic well placement, and infill drilling may be used to increase production of liquid hydrocarbons from reservoir sandstone in the Black Warrior basin. Characterizing reservoir heterogeneity provides information regarding how those strategies can best be applied, and exceptional exposures of asphaltic sandstone in north Alabama enable first-hand observation of such heterogeneity. This report identifies heterogeneity in Carboniferous strata of the Black Warrior basin on the basis of vertical variations, lithofacies analysis. Results of lithofacies analysis and depositional modeling were synthesized with existing models of sandstone heterogeneity to propose methods which may improve hydrocarbon recovery in Carboniferous sandstone reservoirs of the Black Warrior basin. 238 refs., 89 figs. 2 tabs.

  15. Structurally controlled and aligned tight gas reservoir compartmentalization in the San Juan and Piceance Basins

    SciTech Connect

    Decker, A.D.; Kuuskraa, V.A.; Klawitter, A.L.

    1995-10-01

    Recurrent basement faulting is the primary controlling mechanism for aligning and compartmentalizing upper Cretaceous aged tight gas reservoirs of the San Juan and Piceance Basins. Northwest trending structural lineaments that formed in conjunction with the Uncompahgre Highlands have profoundly influenced sedimentation trends and created boundaries for gas migration; sealing and compartmentalizing sedimentary packages in both basins. Fractures which formed over the structural lineaments provide permeability pathways which allowing gas recovery from otherwise tight gas reservoirs. Structural alignments and associated reservoir compartments have been accurately targeted by integrating advanced remote sensing imagery, high resolution aeromagnetics, seismic interpretation, stratigraphic mapping and dynamic structural modelling. This unifying methodology is a powerful tool for exploration geologists and is also a systematic approach to tight gas resource assessment in frontier basins.

  16. Reservoir Characterization of the Lower Green River Formation, Southwest Uinta Basin, Utah

    SciTech Connect

    Morgan, Craig D.; Chidsey, Jr., Thomas C.; McClure, Kevin P.; Bereskin, S. Robert; Deo, Milind D.

    2002-12-02

    The objectives of the study were to increase both primary and secondary hydrocarbon recovery through improved characterization (at the regional, unit, interwell, well, and microscopic scale) of fluvial-deltaic lacustrine reservoirs, thereby preventing premature abandonment of producing wells. The study will encourage exploration and establishment of additional water-flood units throughout the southwest region of the Uinta Basin, and other areas with production from fluvial-deltaic reservoirs.

  17. Reliability, sensitivity, and uncertainty of reservoir performance under climate variability in basins with different hydrogeologic settings

    NASA Astrophysics Data System (ADS)

    Mateus, C.; Tullos, D.

    2014-12-01

    This study investigated how reservoir performance varied across different hydrogeologic settings and under plausible future climate scenarios. The study was conducted in the Santiam River basin, OR, USA, comparing the North Santiam basin (NSB), with high permeability and extensive groundwater storage, and the South Santiam basin (SSB), with low permeability, little groundwater storage, and rapid runoff response. We applied projections of future temperature and precipitation from global climate models to a rainfall-runoff model, coupled with a formal Bayesian uncertainty analysis, to project future inflow hydrographs as inputs to a reservoir operations model. The performance of reservoir operations was evaluated as the reliability in meeting flood management, spring and summer environmental flows, and hydropower generation objectives. Despite projected increases in winter flows and decreases in summer flows, results suggested little evidence of a response in reservoir operation performance to a warming climate, with the exception of summer flow targets in the SSB. Independent of climate impacts, historical prioritization of reservoir operations appeared to impact reliability, suggesting areas where operation performance may be improved. Results also highlighted how hydrologic uncertainty is likely to complicate planning for climate change in basins with substantial groundwater interactions.

  18. Advanced Characterization of Fractured Reservoirs in Carbonate Rocks: The Michigan Basin

    SciTech Connect

    Wood, James R.; Harrison, William B.

    2000-10-24

    The main objective of this project is for a university-industry consortium to develop a comprehensive model for fracture carbonate reservoirs based on the ''data cube'' concept using the Michigan Basin as a prototype. This project combined traditional historical data with 2D and 3D seismic data as well as data from modern logging tools in a novel way to produce a new methodology for characterizing fractured reservoirs in carbonate rocks. Advanced visualization software was used to fuse the data and to image it on a variety of scales, ranging from basin-scale to well-scales.

  19. Advanced Characterization of Fractured Reservoirs in Carbonate Rocks: The Michigan Basin

    SciTech Connect

    Wood, J.R.; Harrison, W.B.

    2001-01-22

    The main objective of this project is for a university-industry consortium to develop a comprehensive model for fracture carbonate reservoirs based on the ''data cube'' concept using the Michigan Basin as a prototype. This project combined traditional historical data with 2D and 3D seismic data as well as data from modern logging tools in a novel way to produce a new methodology for characterizing fractured reservoirs in carbonate rocks. Advanced visualization software was used to fuse the data and to image it on a variety of scales, ranging from basin-scale to well-scales.

  20. Effects of reservoirs on flood discharges in the Kansas and the Missouri River basins, 1993

    USGS Publications Warehouse

    Perry, Charles A.

    1994-01-01

    The floods of 1993 were of historic magnitude as water in the Missouri and the Mississippi Rivers reached levels that exceeded many of the previous observed maximums. Although large parts of the flood plains of both rivers upstream from St. Louis, Missouri, were inundated, water levels would have been even higher had it not been for the large volume of runoff retained in flood-control reservoirs. Most of the total flood-control storage available upstream from St. Louis is located along the main stem and tributaries of the Missouri River; the largest concentration of reservoirs is located within the Kansas River Basin. The Kansas River Basin accounts for about l0 percent (60,000 square miles) of the drainage area of the Missouri River Basin, and reservoirs control streamflow from 85 percent (50,840 square miles) of the drainage area of the Kansas River Basin. Analyses of flood discharges in the Kansas River indicate that reservoirs reduced flooding along the Kansas and the lower Missouri Rivers. Results of analyses of the 1993 flooding, which include total basin rainfall, peak discharge, and total flood volume on the Kansas River, are compared with analyses of the 1951 flood, which had a similar total volume but a substantially larger peak discharge.

  1. Effects of sequence stratigraphy on distribution of Cambro-Ordovician siliciclastic hydrocarbon reservoirs in Michigan basin

    SciTech Connect

    Horne, J.C.; Reel, C.L.; Cummins, G.D. )

    1989-08-01

    The lateral and vertical distribution of Cambrian-Ordovician siliciclastic reservoir-potential rock types in the Michigan basin is governed by the sequence stratigraphy. The sequence stratigraphy is controlled primarily by the interaction of four variables: subsidence, eustasy, volume of sediments, and climate. Seven sequential stratigraphic intervals can be defined in the pre-Utica, Cambrian-Ordovician deposits of the Michigan basin. Each of these unconformity-bounded sequences begins with a siliciclastic unit deposited over a lowstand surface of erosion. These lowstand surfaces developed during periods when eustatic sea level decline exceeded the rate of subsidence in the basin, and much or all of the basin became exposed. Where the sedimentation rate was less than the sum of the rate of subsidence and sea level change, a transgressive sequence developed with more open-marine carbonates overlying shallower water and/or non-marine facies. Reservoir-potential siliciclastics accumulated in incised valley-fill and transgressive reworked deposits.

  2. Iron speciation and mineral characterization of upper Jurassic reservoir rocks in the Minhe Basin, NW China

    NASA Astrophysics Data System (ADS)

    Ma, Xiangxian; Zheng, Guodong; Xu, Wang; Liang, Minliang; Fan, Qiaohui; Wu, Yingzhong; Ye, Conglin; Shozugawa, Katsumi; Matsuo, Motoyuki

    2016-12-01

    Six samples from a natural outcrop of reservoir rocks with oil seepage and two control samples from surrounding area in the Minhe Basin, northwestern China were selectively collected and analyzed for mineralogical composition as well as iron speciation using X-ray powder diffraction (XRD) and Mössbauer spectroscopy, respectively. Iron species revealed that: (1) the oil-bearing reservoir rocks were changed by water-rock-oil interactions; (2) even in the same site, there was a different performance between sandstone and mudstone during the oil and gas infusion to the reservoirs; and (3) this was evidence indicating the selective channels of hydrocarbon migration. In addition, these studies showed that the iron speciation by Mössbauer spectroscopy could be useful for the study of oil and gas reservoirs, especially the processes of the water-rock interactions within petroleum reservoirs.

  3. Belize model, a carbonate-clastic shelf buildup

    SciTech Connect

    Shepard, W.

    1987-05-01

    Belize, a small Central American country located on the Caribbean Sea south of the Yucatan Peninsula, offers an excellent modern analog of a mixed carbonate/clastic shelf buildup. Its 175-mi long reef tract, second longest in the world, restricts a shallow shelf depobasin into which terrigenous clastics source from the Maya Mountains to the west and carbonates dominate from the east. Mixed lithologies occur along strandlines, in submarine channels, and in lagoons and river-delta fronts, which are scattered throughout the depobasin. Energy sources from both land and sea influence sedimentation. Heavy summer rains flood the basin with arkosic and quartzose clastics, and periodic sea storms and hurricanes drive carbonate particles from the reef tract landward into the basin. Modern environments include the reef tract, carbonate tidal flats, shallow shelf patch reefs, lagoons, cayes, mainland coast deltas, estuaries, lagoons, and beach/bar barriers. Modern sediments include reef metazoans, algae, coralline algae, lime mud, quartz, and feldspathic sand and clay. The setting for the model has been influenced by Tertiary tectonics and Pleistocene sea level changes. Karstification occurred during the past 10,000 years, partly controlling topography and resulting Holocene sediment patterns. Facies patterns of the Belize Holocene are compared to the Jurassic of Montana. The Middle Jurassic Piper Formation exhibits a nearly 100-mi long carbonate barrier/buildup restricting a clastic-dominated shelf. Other ancient mixed carbonate/clastic terranes may fit this model as well.

  4. Global surveys of reservoirs and lakes from satellites and regional application to the Syrdarya river basin

    NASA Astrophysics Data System (ADS)

    Crétaux, Jean-François; Biancamaria, Sylvain; Arsen, Adalbert; Bergé-Nguyen, Muriel; Becker, Mélanie

    2015-01-01

    Large reservoirs along rivers regulate downstream flows to generate hydropower but may also store water for irrigation and urban sectors. Reservoir management therefore becomes critical, particularly for transboundary basins, where coordination between riparian countries is needed. Reservoir management is even more important in semiarid regions where downstream water users may be totally reliant on upstream reservoir releases. If the water resources are shared between upstream and downstream countries, potentially opposite interests arise as is the case in the Syrdarya river in Central Asia. In this case study, remote sensing data (radar altimetry and optical imagery) are used to highlight the potential of satellite data to monitor water resources: water height, areal extent and storage variations. New results from 20 years of monitoring using satellites over the Syrdarya basin are presented. The accuracy of satellite data is 0.6 km3 using a combination of MODIS data and satellite altimetry, and only 0.2 km3 with Landsat images representing 2-4% of average annual reservoir volume variations in the reservoirs in the Syrdarya basin. With future missions such as Sentinel-3A (S3A), Sentinel-3B (S3B) and surface water and ocean topography (SWOT), significant improvement is expected. The SWOT mission’s main payload (a radar interferometer in Ka band) will furthermore provide 2D maps of water height, reservoirs, lakes, rivers and floodplains, with a temporal resolution of 21 days. At the global scale, the SWOT mission will cover reservoirs with areal extents greater than 250 × 250 m with 20 cm accuracy.

  5. Vertical stacking of reservoirs in Silurian carbonates of Appalachian basin

    SciTech Connect

    Smosna, R.; Conrad, J.M.; Maxwell, T.C.

    1988-08-01

    The distribution of modern reefs and oolites is controlled to a large degree by sea-floor topography. Likewise, paleotopographic highs in the Silurian Lockport Dolomite and underlying Keefer Sandstone provided optimum sites for the deposition of boundstone and grainstone reservoir facies. The Keefer Sandstone in western West Virginia was deposited as a series of subtidal sand waves with a relief of a few meters. During initial Lockport sedimentation, the turbulence, water chemistry, and light intensity were most favorable in shallow water over the Keefer sand waves, encouraging growth of coral-stromatoporoid patch reefs. Skeletal banks in the upper Lockport of eastern Kentucky also were established over topographic highs of earlier Lockport mounds. In a similar fashion, the upper Lockport of West Virginia was deposited as oolitic shoals that formed atop exposed mud mounds in the middle member. A slight rise of sea level created the agitated subtidal environment above the now-submerged mud mounds, and oolite bars developed. The reef, skeletal-bank, and oolite facies of the Lockport, and the Keefer Sandstone, are all petroleum reservoirs. Carbonate reservoirs can be identified in the subsurface by thicks on isopach maps, by their clean gamma-ray signature, and by a relatively high log porosity. Based on these criteria, seven potential fairways have been mapped in Kentucky. Because the distribution of buildups was greatly influenced by that of their predecessors, five of the fairways contain vertically stacked reservoir facies. These are particularly attractive because they can be drilled as multistory targets.

  6. Reservoir heterogeneity in Carter Sandstone, North Blowhorn Creek oil unit and vicinity, Black Warrior Basin, Alabama

    SciTech Connect

    Kugler, R.L.; Pashin, J.C.

    1992-05-01

    This report presents accomplishments made in completing Task 3 of this project which involves development of criteria for recognizing reservoir heterogeneity in the Black Warrior basin. The report focuses on characterization of the Upper Mississippian Carter sandstone reservoir in North Blowhorn Creek and adjacent oil units in Lamar County, Alabama. This oil unit has produced more than 60 percent of total oil extracted from the Black Warrior basin of Alabama. The Carter sandstone in North Blowhorn Creek oil unit is typical of the most productive Carter oil reservoirs in the Black Warrior basin of Alabama. The first part of the report synthesizes data derived from geophysical well logs and cores from North Blowhorn Creek oil unit to develop a depositional model for the Carter sandstone reservoir. The second part of the report describes the detrital and diagenetic character of Carter sandstone utilizing data from petrographic and scanning electron microscopes and the electron microprobe. The third part synthesizes porosity and pore-throat-size-distribution data determined by high-pressure mercury porosimetry and commercial core analyses with results of the sedimentologic and petrographic studies. The final section of the report discusses reservoir heterogeneity within the context of the five-fold classification of Moore and Kugler (1990).

  7. Historical trends in organochlorine compounds in river basins identified using sediment cores from reservoirs

    USGS Publications Warehouse

    Van Metre, P.C.; Callender, E.; Fuller, C.C.

    1997-01-01

    This study used chemical analyses of dated sediment cores from reservoirs to define historical trends in water quality in the influent river basins. This work applies techniques from paleolimnology to reservoirs, and in the process, highlights differences between sediment-core interpretations for reservoirs and natural lakes. Sediment cores were collected from six reservoirs in the central and southeastern United States, sectioned, and analyzed for 137Cs and organochlorine compounds. 137Cs analyses were used to demonstrate limited post-depositional mixing, to indicate sediment deposition dates, and to estimate sediment focusing factors. Relative lack of mixing, high sedimentation rates, and high focusing factors distinguish reservoir sediment cores from cores collected in natural lakes. Temporal trends in concentrations of PCBs, total DDT (DDT + DDD + DDE), and chlordane reflect historical use and regulation of these compounds and differences in land use between reservoir drainages. PCB and total DDT core burdens, normalized for sediment focusing, greatly exceed reported cumulative regional atmospheric fallout of PCBs and total DDT estimated using cores from peat hogs and natural lakes, indicating the dominance of fluvial inputs of both groups of compounds to the reservoirs.This study used chemical analyses of dated sediment cores from reservoirs to define historical trends in water quality in the influent river basins. This work applies techniques from paleolimnology to reservoirs, and in the process, highlights differences between sediment-core interpretations for reservoirs and natural lakes. Sediment cores were collected from six reservoirs in the central and southeastern United States, sectioned, and analyzed for 137Cs and organochlorine compounds. 137Cs analyses were used to demonstrate limited post-depositional mixing, to indicate sediment deposition dates, and to estimate sediment focusing factors. Relative lack of mixing, high sedimentation rates, and high

  8. Structural controls on fractured coal reservoirs in the southern Appalachian Black Warrior foreland basin

    USGS Publications Warehouse

    Groshong, R.H., Jr.; Pashin, J.C.; McIntyre, M.R.

    2009-01-01

    Coal is a nearly impermeable rock type for which the production of fluids requires the presence of open fractures. Basin-wide controls on the fractured coal reservoirs of the Black Warrior foreland basin are demonstrated by the variability of maximum production rates from coalbed methane wells. Reservoir behavior depends on distance from the thrust front. Far from the thrust front, normal faults are barriers to fluid migration and compartmentalize the reservoirs. Close to the thrust front, rates are enhanced along some normal faults, and a new trend is developed. The two trends have the geometry of conjugate strike-slip faults with the same ??1 direction as the Appalachian fold-thrust belt and are inferred to be the result of late pure-shear deformation of the foreland. Face cleat causes significant permeability anisotropy in some shallow coal seams but does not produce a map-scale production trend. ?? 2008 Elsevier Ltd. All rights reserved.

  9. Val Verde Basin: Thrusted Strawn (Pennsylvanian) carbonate reservoirs, Pakenham Field area

    SciTech Connect

    Montgomery, S.L.

    1996-07-01

    An important target of recent exploration in the Val Verde basin of southwestern Texas has been thrusted Pennsylvanian (Desmoinesian) carbonates along the leading edge of the Ouachita front. These reservoirs produce gas and condensate at significant rates from fractured limestones, which were deposited in a variety of environments and later complexly juxtaposed during thrusting. Improvements in seismic imaging capabilities, particularly associated with the introduction of two-dimension (2-D) swath and three-dimensional (3-D) surveys, have allowed accurate mapping of the thrust front and have resulted in revised interpretations of basin structure and history. These data highlight the existence of multiple reservoirs at separate structural levels. Strawn reservoirs are discussed in relation to the Pakenham field area, northwestern Terrell County.

  10. Carboniferous-Lower Permian carbonate reservoirs of the Timan-Pechora Basin

    SciTech Connect

    Zhemchugova, V.A.; Schamel, S.

    1994-01-01

    The Carboniferous-Lower Permian carbonate succession of the Timan-Pechora basin is a major hydrocarbon-bearing complex, hosting about half of the oil and nearly a third of the gas reserves of the basin. The succession represents the last episode of carbonate deposition on the northeastern margin of the Russian platform before the closure of the Ural seaway in the mid-Permian. The lower part of the succession (upper Visean-Moscovian) contains three major transgressive-regressive sequences. Depositional facies ranged from nearshore carbonate-shale-evaporite through shallow shelf detrital carbonates to outer-shelf carbonate-siliceous shale. The most pronounced regression during this interval occurred during the Serpukhovian, when marine sabkhas covered vast portions of the carbonate platform. Late Carboniferous-Early Permian sedimentation was complicated by the onset of Uralian tectonism. Flysch from the encroaching orogen accumulated initially in the east, advanced westward across the passive margin, and finally covered the carbonate platform in Artinskian-Kungurian time. Simultaneously, structural inversion along the Pechora-Kolva aulacogen and elsewhere provided sites for bioherm growth, in addition to exposing parts of the lower succession to erosion and karstification. Overall polarity of the basin switched as the eastern margin was elevated in the frontal thrusts of the Urals. The carbonate succession was terminated by increased clastic input from the advancing Ural orogen. 6 refs., 9 figs.

  11. The fate of giant Silurian paleo-reservoirs in Tarim Basin

    SciTech Connect

    Chen, J.H.; Fu, J.M.; Sheng, G.Y.

    1996-10-01

    Tarim Basin is located in the south part of the Xinjiang Yugur autonomous region of China, between Tianshan and Kunlun mountains. Tarim Basin is the largest petroliferous sedimentary basin in China, with a total area of 560,000 km{sup 2}. Within the past five years` exploration, it was revealed that there occur widely tar sands and heavy oils in the Silurian formation in North and Central uplifts of Tarim basin in a huge volume. Based on the geochemical data including distribution of biological markers, this talk will discuss how these tar sands and heavy oils were formed by destruction and degradation of giant Silurian reservoirs. It will also be pointed that these tar sand bitumen have made important contribution to petroleum accumulation as an unique hydrocarbon source in Tarim basin.

  12. 3-D sedimentological and geophysical studies of clastic reservoir analogs: Facies architecture, reservoir properties, and flow behavior within delta front facies elements of the Cretaceous Wall Creek Member, Frontier Formation, Wyoming

    SciTech Connect

    Janok P. Bhattacharya; George A. McMechan

    2007-02-16

    This project examined the internal architecture of delta front sandstones at two locations within the Turonian-age Wall Creek Member of the Frontier Formation, in Wyoming. The project involved traditional outcrop field work integrated with core-data, and 2D and 3D ground penetrating radar (GPR) imaging from behind the outcrops. The fluid-flow engineering work, handled through a collaborative grant given to PI Chris White at LSU, focused on effects on fluid flow of late-stage calcite cement nodules in 3D. In addition to the extensive field component, the work funded 2 PhD students (Gani and Lee) and resulted in publication of 10 technical papers, 17 abstracts, and 4 internal field guides. PI Bhattacharya also funded an additional 3 PhD students that worked on the Wall Creek sandstone funded separately through an industrial consortium, two of whom graduated in the fall 2006 ((Sadeque and Vakarelov). These additional funds provided significant leverage to expand the work to include a regional stratigraphic synthesis of the Wall Creek Member of the Frontier Formation, in addition to the reservoir-scale studies that DOE directly funded. Awards given to PI Bhattacharya included the prestigious AAPG Distinguished Lecture Award, which involved a tour of about 25 Universities and Geological Societies in the US and Canada in the fall of 2005 and Spring of 2006. Bhattacharya gave two talks, one entitled “Applying Deltaic and Shallow Marine Outcrop Analogs to the Subsurface”, which highlighted the DOE sponsored work and the other titled “Martian River Deltas and the Origin of Life”. The outcrop analog talk was given at about 1/2 of the venues visited.

  13. Appropriate stratigraphic nomenclature for coal reservoirs in Piceance basin, Colorado

    SciTech Connect

    Decker, D.

    1985-05-01

    Coal-bearing intervals occurring within the Upper Cretaceous Mesaverde Group in the Piceance basin have been described by various authors. The most current and widely accepted work has the Sego, Corcoran, Cozzette, and Rollins Sandstone Members comprising the Iles Formation. The overlying Williams Fork Formation is divided into the basal Bowie Shale Member and Paonia Shale Member, with the upper remaining section undifferentiated. Coal seams associated with the Iles Formation belong to the Black Diamond coal group. The Fairfield coal group and the South Canon coal group are part of the Bowie Shale Member. These two coal groups, continuous throughout the basin, are also called the Sommerset coals in the Sommerset coal field and the Cameo coal measures in the Grand Mesa coal field. Although priority of nomenclature dictates otherwise, established usage of the Cameo coals for coal seams in the Bowie Shale Member should be continued as the most appropriate nomenclature. The basal coal seam of the proposed Cameo coal group is laterally continuous throughout the Piceance basin. A second coal seam 40-120 ft (12-37 m) above the basal coal also has large areal extent. Both coal seams, as existing and potential future pay zones, are of significant economic importance and should, in ascending order, be classified as the Cameo coal A and D seams. The coal seams in the Paonia Shale Member, extremely variable in thickness, continuity, and quality, have been established as the Coal Ridge coal group.

  14. Geology and petroleum resources of West Siberian Basin, USSR

    SciTech Connect

    Clarke, J.W.; Klemme, H.D.; Peterson, J.A.

    1986-05-01

    The West Siberian basin occupies an area of approximately 3.3 million km/sup 2/ (1.3 million mi/sup 2/) in northwestern Siberia east of the Ural Mountains. Thickness of the Phanerozoic sedimentary cover ranges from approximately 3-5 km (10,000-15,000 ft) in the central area of the basin, to 8-12 km (25,000-40,000 ft) in the northern part. The basin is filled with approximately 10 million km/sup 3/ (2.4 million mi/sup 3/) of Mesozoic-Cenozoic clastic sedimentary rocks ranging in thickness from 3-4 km (10,000-13,000 ft) in the central area to 6-9 km (20,000-30,000 ft) in the north. The basement in the basin is Precambrian and Precambrian-Paleozoic granitic rocks and in places is highly metamorphosed Paleozoic sedimentary rocks. In other parts of the basin, Paleozoic carbonate and clastic rocks are only lightly metamorphosed and are targets for petroleum exploration. The Mesozoic-Cenozoic sedimentary basin fill was initiated in the northern part of the basin during the Triassic. By the Late Jurassic, marine clastic deposition had spread throughout the basin, and the basin configuration was established for the remainder of geologic time. Cretaceous and lower Tertiary rocks are primarily shallow marine shelf, coastal plain, and lowland clastic deposits formed during several transgressive-regressive phases. Major oil accumulations, mainly in Lower Cretaceous and Jurassic sandstone reservoirs, are located in the central and west-central parts of the basin. The largest reserves of natural gas in the world are located in the northern part of the basin, primarily in Upper Cretaceous (Cenomanian) sandstone reservoirs. In 1982, estimated cumulative production from the basin was approximately 10 billion bbl of oil. Estimated mean undiscovered resources (1981) are approximately 80 billion bbl of oil and 700 tcf of gas.

  15. The circular Uneged Uul structure (East Gobi Basin, Mongolia) - Geomorphic and structural evidence for meteorite impact into an unconsolidated coarse-clastic target?

    NASA Astrophysics Data System (ADS)

    Schmieder, Martin; Seyfried, Hartmut; Gerel, Ochir

    2013-03-01

    The Uneged Uul structure is a ˜10 km circular, complex, multi-ridged domal feature in the Unegt subbasin of the East Gobi Basin, southeastern Mongolia. As revealed by remote sensing and recent field reconnaissance, the central part of the Uneged Uul structure comprises a complex central peak of outward-radiating curved ridges, composed of stratigraphically uplifted greenschist-facies basement schists, surrounded by an annular moat. The most prominent feature of the structure is a central annular ridge ˜3 km in diameter composed of pebble-boulder conglomerates and gravels of the Upper Jurassic Sharilyn Formation, surrounded by three outer domal ridges composed of Lower Cretaceous conglomeratic sandstones and gypsum clays. Jurassic conglomerates forming the main part of the central annular ridge show effects of severe internal deformation. The original population of pebbles, cobbles and boulders appears moderately displaced and mostly broken but nowhere aligned along shear planes or foliated. Primary sedimentary features, such as cross-lamination or imbrication, have been obliterated. We explain this penetrative brecciation as a result of dissipative shearing caused by a strong and rapid singular event that in magnitude was beyond the range of the common crustal tectonics recorded elsewhere in this region. Disrupted and chaotically distributed conglomeratic sandstone beds in the central annular ridge dip in highly variable directions on a local scale but show an apparent SE-NW trend of bedding plane alignment. Further outside, the tilted and uplifted Upper Jurassic to Lower Cretaceous strata of the domal area are overlain by the flat-lying Upper Cretaceous, which stratigraphically constrains the timing of deformation at the Uneged Uul structure to most likely the Early Cretaceous. Endogenic formation models, such as magmatism and salt, gypsum, or mud diapirism, fail to explain the nature of the Uneged Uul structure. The Uneged Uul structure bears a set of

  16. The deep Madden Field, a super-deep Madison gas reservoir, Wind River Basin, Wyoming

    SciTech Connect

    Moore, C.H.; Hawkins, C.

    1996-12-31

    Madison dolomites form the reservoir of a super deep, potential giant sour gas field developed on the Madden Anticline immediately in front of the Owl Creek Thrust along the northern rim of the Wind River Basin, central Wyoming. The Madison reservoir dolomites are presently buried to some 25,000 feet at Madden Field and exhibit porosity in excess of 15%. An equivalent dolomitized Madison sequence is exposed in outcrop only 5 miles to the north on the hanging wall of the Owl Creek thrust at Lysite Mountain. Preliminary comparative stratigraphic, geochemical and petrologic data, between outcrop and available cores and logs at Deep Madden suggests: (1) early, sea level-controlled, evaporite-related dolomitization of the reservoir and outcrop prior to significant burial; (2) both outcrop and deep reservoir dolomites underwent significant recrystallization during a common burial history until their connection was severed during Laramide faulting in the Eocene; (3) While the dolomite reservoir at Madden suffered additional diagenesis during an additional 7-10 thousand feet of burial, the pore systems between outcrop and deep reservoir are remarkably similar. The two existing deep Madison wells at Madden are on stream, with a third deep Madison well currently drilling. The sequence stratigraphic framework and the diagenetic history of the Madison strongly suggests that outcrops and surface cores of the Madison in the Owl Creek Mountains will be useful in further development and detailed reservoir modeling of the Madden Deep Field.

  17. The deep Madden Field, a super-deep Madison gas reservoir, Wind River Basin, Wyoming

    SciTech Connect

    Moore, C.H. ); Hawkins, C. )

    1996-01-01

    Madison dolomites form the reservoir of a super deep, potential giant sour gas field developed on the Madden Anticline immediately in front of the Owl Creek Thrust along the northern rim of the Wind River Basin, central Wyoming. The Madison reservoir dolomites are presently buried to some 25,000 feet at Madden Field and exhibit porosity in excess of 15%. An equivalent dolomitized Madison sequence is exposed in outcrop only 5 miles to the north on the hanging wall of the Owl Creek thrust at Lysite Mountain. Preliminary comparative stratigraphic, geochemical and petrologic data, between outcrop and available cores and logs at Deep Madden suggests: (1) early, sea level-controlled, evaporite-related dolomitization of the reservoir and outcrop prior to significant burial; (2) both outcrop and deep reservoir dolomites underwent significant recrystallization during a common burial history until their connection was severed during Laramide faulting in the Eocene; (3) While the dolomite reservoir at Madden suffered additional diagenesis during an additional 7-10 thousand feet of burial, the pore systems between outcrop and deep reservoir are remarkably similar. The two existing deep Madison wells at Madden are on stream, with a third deep Madison well currently drilling. The sequence stratigraphic framework and the diagenetic history of the Madison strongly suggests that outcrops and surface cores of the Madison in the Owl Creek Mountains will be useful in further development and detailed reservoir modeling of the Madden Deep Field.

  18. Diagenesis and reservoir quality of Paleocoene sandstones in the Kupe South field, Taranaki Basin, New Zealand

    SciTech Connect

    Martin, K.R. ); Baker, J.C. ); Hamilton, P.J. ); Thrasher, G.P. )

    1994-04-01

    The Kupe South field, Taranaki basin, New Zealand is a gas condensate and oil field offshore in the southern Taranaki basin. Its Paleocene reservoir sandstones contain a diagenetic mineral assemblage that records major shifts in pore-water composition during the burial history of the basin. Early calcite formed a shallow burial largely from meteoric depositional pore waters, whereas later chlorite/smectic records the downward passage of marine pore waters into the sandstones from overlying, marine mudrocks prior to significant sandstone compaction during the late Miocene. Late calcite and ferroan carbonates may record the presence of connate meteoric water expelled upward from nonmarine sedimentary rocks of the underyling Cretaceous sequence, whereas later kaolinite and secondary porosity formation are related to localized meteoric influx resulting from late Miocene to early Pliocene uplift and erosion of the reservoir section. Hydrocarbon entrapment occurred during further Pliocene to Holocene sediment accumulation. Labile-grain alteration has been less severe in the lower part of the hydrocarbon-bearing section than in the upper sands with the result that the lower sands contain mainly chlorite/smectite and the upper sands contain mainly ferroan carbonates and kaolinite formed by extensive alteration of labile grains and earlier formed chlorite/smectite. Reservoir quality in the lower sands is controlled mostly by grain size and the presence of chlorite/smectite, but in the upper sands, the presence of kaolinite is the single most important cause of poor reservoir quality. 36 refs., 13 figs., 3 tabs.

  19. Permian {open_quotes}Wolfcamp{close_quotes} limestone reservoirs: Powell Ranch field, Eastern Midland Basin

    SciTech Connect

    Montgomery, S.L.

    1996-09-01

    Deep-water carbonate channel reservoirs form important oil reservoirs along the toe of the Eastern Shelf of the Permian basin in west Texas. In northwestern Glasscock County, these `Wolfcamp` reservoirs are Leonardian (Early Permian) in age and define high-energy channels incised into surrounding carbonate detritus and basinal shale. Porous grain-flow material filling these channels, along with encasing detritus, was derived from the shallow shelf located six miles to the east. Reservoirs are in packstone and grainstone facies and have significant interparticle and moldic porosity. Relevant exploration began in the 1960s, but expanded slowly thereafter due to lack of success caused by complex patterns of channel occurrence. Results of a three-dimensional (3-D) seismic survey conducted in 1990 have greatly enhanced the identification and mapping of productive channels in the Powell Ranch field complex. Wells in this complex are capable of flowing 400-1200 bbl of oil per day, and have reserves ranging from 0.2 to 1.3 MBO. The new 3-D data have improved the relevant geologic model and dramatically increased rates of drilling success. Application of such data to this setting offers a potential model for other parts of the Permian basin.

  20. Towards an optimal integrated reservoir system management for the Awash River Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Müller, Ruben; Gebretsadik, Henok Y.; Schütze, Niels

    2016-05-01

    Recently, the Kessem-Tendaho project is completed to bring about socioeconomic development and growth in the Awash River Basin, Ethiopia. To support reservoir Koka, two new reservoirs where built together with extensive infrastructure for new irrigation projects. For best possible socioeconomic benefits under conflicting management goals, like energy production at three hydropower stations and basin wide water supply at various sites, an integrated reservoir system management is required. To satisfy the multi-purpose nature of the reservoir system, multi-objective parameterization-simulation-optimization model is applied. Different Pareto-optimal trade-off solutions between water supply and hydro-power generation are provided for two scenarios (i) recent conditions and (ii) future planned increases for Tendaho and Upper Awash Irrigation projects. Reservoir performance is further assessed under (i) rule curves with a high degree of freedom - this allows for best performance, but may result in rules curves to variable for real word operation and (ii) smooth rule curves, obtained by artificial neuronal networks. The results show no performance penalty for smooth rule curves under future conditions but a notable penalty under recent conditions.

  1. Basin Dynamics and Sedimentary Infilling of Miocene Sandstone Reservoir Systems In Eastern Tunisian African Margin

    NASA Astrophysics Data System (ADS)

    Bédir, Mourad; Khomsi, Sami

    2015-04-01

    Most of hydrocarbon accumulations and aquifers within the Cap Bon, Gulf of Hammamet and Sahel basins in eastern tunisian foreland are reservoired within the Upper Miocene Birsa and Saouaf sandstones and shales Formations. In the gulf of Hammamet, these sandstones constitutes oil and gas fields and are exploited on anticline highs and described as varying from shoreface to shallow marine and typically exhibit excellent reservoir quality of 30% to 35% porosity and good permeability from 500 to 1100 md. In addition, the fracturing of faults enhanced the reservoir quality potential. In contrary, the same hydrocarbon reservoirs are important hydrogeologic ones in the Cap Bon and Sahel basins with huge amount of hundred millions of cubic meters of water only partially exploited. Integrated wire line logging correlations, seismic sequence stratigraphic, tectonics and outcrop geologic analogue studies had permitted to highlight the basin structuring and sedimentary environments of sequence deposits infilling of the reservoir distribution between high platforms to subsiding graben and syncline basins bounded by deep-seated transtensive and transpressive flower faults. Seven third order sequence deposits limited by downlap prograding and onlap/toplap aggrading/retrograding system tracts extend along the eastern margin around the three basins by facies and thickness variances. System tracts exhibit around high horst and graben a channelized and levee infillings extending from 100 meters to more than a kilometer of width. They present a stacked single story and multistory channels types showing space lateral and vertical migrations along NE-SW, E-W and N-S directions. Paleogeographic depositional reservoir fair maps distribution highlight deltaic horst domain with floodplain and incised valley of fluvial amalgamed and braided sandstones distributary channels that occupy the high folded horsts. Whereas folded horst-graben and syncline borders domain of Shelf prodelta are

  2. Gas-and water-saturated conditions in the Piceance Basin, Western Colorado: Implications for fractured reservoir detection in a gas-centered coal basin

    SciTech Connect

    Hoak, T.E.; Decker, A.D.

    1995-10-01

    Mesaverde Group reservoirs in the Piceance Basin, Western Colorado contain a large reservoir base. Attempts to exploit this resource base are stymied by low permeability reservoir conditions. The presence of abundant natural fracture systems throughout this basin, however, does permit economic production. Substantial production is associated with fractured reservoirs in Divide Creek, Piceance Creek, Wolf Creek, White River Dome, Plateau, Shire Gulch, Grand Valley, Parachute and Rulison fields. Successful Piceance Basin gas production requires detailed information about fracture networks and subsurface gas and water distribution in an overall gas-centered basin geometry. Assessment of these three parameters requires an integrated basin analysis incorporating conventional subsurface geology, seismic data, remote sensing imagery analysis, and an analysis of regional tectonics. To delineate the gas-centered basin geometry in the Piceance Basin, a regional cross-section spanning the basin was constructed using hydrocarbon and gamma radiation logs. The resultant hybrid logs were used for stratigraphic correlations in addition to outlining the trans-basin gas-saturated conditions. The magnitude of both pressure gradients (paludal and marine intervals) is greater than can be generated by a hydrodynamic model. To investigate the relationships between structure and production, detailed mapping of the basin (top of the Iles Formation) was used to define subtle subsurface structures that control fractured reservoir development. The most productive fields in the basin possess fractured reservoirs. Detailed studies in the Grand Valley-Parachute-Rulison and Shire Gulch-Plateau fields indicate that zones of maximum structural flexure on kilometer-scale structural features are directly related to areas of enhanced production.

  3. Examining the relationship between snow cover and reservoir storage in the American River Basin

    NASA Astrophysics Data System (ADS)

    McGillis-Moskaluk, Karen

    This study focused on finding evidence of a relationship between snow cover and reservoir storage in the American River basin. Water availability is very important to the future of California. Landsat Thematic Mapper images of the area taken from 1985-2011 were analyzed by calculating Normalized Difference Snow Index and calculating snow acres. The peak storage data were obtained for Folsom Lake for the same time period as the satellite images. The evaluation of these methods showed that over time there was a correlation between snow cover and reservoir storage downstream.

  4. Geological and reservoir characterization of shallow-shelf carbonate fields, Southern Paradox Basin, Utah

    SciTech Connect

    Chidsey, T.C. Jr. ); Eby, D.E. )

    1996-01-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to three wells with primary per field production ranging from 700 MBO to 2 MMBO at a 15-20% recovery rate. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah have been evaluated for CO[sub 2]-flood projects based upon geological characterization and reservoir modeling. Conventional cores from the five fields show that three compositional reservoir types are present: (1) phylloid algal, (2) bioclastic calcarenite, and (3) bryozoan-dominated. Phylloid algal mounds are abundant in four of the five fields, and exhibit the best overall porosity and permeability. This mound type developed where shallow water depths and low energy allowed establishment of calcareous algal colonies possibly on paleohighs. The principal reservoir rock is algal bafflestone composed mostly of the phylloid Ivanovia and occasionally dolomitized. The Heron North field is a bioclastic calcarenite reservoir. It represents high-energy conditions resulting in carbonate beaches developed over foreshore carbonate rubble. The principal reservoir rocks are grainstones and rudstones having grain-selective dissolution and complete dolomitization. Bryozoan-dominated mounds present in Runway field developed in quiet, below wave-base settings that appear to be localized along Mississippian fault blocks trends. The principal reservoir rocks are bindstone and framestone with no dolomitization. The resulting model suggests that CO[sub 2] miscible flooding of these and other small carbonate reservoirs in the Paradox basin could significantly increase ultimate recovery of oil.

  5. Geological and reservoir characterization of shallow-shelf carbonate fields, Southern Paradox Basin, Utah

    SciTech Connect

    Chidsey, T.C. Jr.; Eby, D.E.

    1996-12-31

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to three wells with primary per field production ranging from 700 MBO to 2 MMBO at a 15-20% recovery rate. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah have been evaluated for CO{sub 2}-flood projects based upon geological characterization and reservoir modeling. Conventional cores from the five fields show that three compositional reservoir types are present: (1) phylloid algal, (2) bioclastic calcarenite, and (3) bryozoan-dominated. Phylloid algal mounds are abundant in four of the five fields, and exhibit the best overall porosity and permeability. This mound type developed where shallow water depths and low energy allowed establishment of calcareous algal colonies possibly on paleohighs. The principal reservoir rock is algal bafflestone composed mostly of the phylloid Ivanovia and occasionally dolomitized. The Heron North field is a bioclastic calcarenite reservoir. It represents high-energy conditions resulting in carbonate beaches developed over foreshore carbonate rubble. The principal reservoir rocks are grainstones and rudstones having grain-selective dissolution and complete dolomitization. Bryozoan-dominated mounds present in Runway field developed in quiet, below wave-base settings that appear to be localized along Mississippian fault blocks trends. The principal reservoir rocks are bindstone and framestone with no dolomitization. The resulting model suggests that CO{sub 2} miscible flooding of these and other small carbonate reservoirs in the Paradox basin could significantly increase ultimate recovery of oil.

  6. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect

    Koerner, Roy; Clarke, Don; Walker, Scott

    1999-11-09

    The objectives of this quarterly report was to summarize the work conducted under each task during the reporting period April - June 1998 and to report all technical data and findings as specified in the ''Federal Assistance Reporting Checklist''. The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology.

  7. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect

    Clarke, Don; Koerner, Roy; Moos, Dan; Nguyen, John; Phillips, Chris; Tagbor, Kwasi; Walker, Scott

    1999-11-09

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period July - September 1998 and to report all technical data and findings as specified in the ''Federal Assistance Reporting Checklist''. The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology.

  8. Hydrology and model study of the proposed Prosperity Reservoir, Center Creek Basin, southwestern Missouri

    USGS Publications Warehouse

    Harvey, Edward Joseph; Emmett, Leo F.

    1980-01-01

    A reservoir has been proposed on Center Creek, Jasper County, southwestern Missouri. Ground-water levels in the limestone uplands adjacent to the reservoir will rise when the impoundment is completed. The site is a few miles upstream from the Oronogo-Duenweg belt in the Tri-State zinc district. Grove Creek joins Center Creek downstream from the reservoir separating it from the mining belt. A model study indicates water-level rises varying from about 20 feet near the reservoir to 0.5 to 1.0 foot in the southern part of the Grove Creek drainage basin. A significant rise in the water table adjacent to the reservoir could increase mine-water discharge if Grove Creek is not an effective drain. However, it is probable that Grove Creek is an effective drain, and the higher ground-water levels in the reservoir area will increase ground-water discharge to Grove Creek, and in turn, Center Creek. The increase in ground-water discharge to Grove Creek will have the beneficial effect of diluting mine-water discharge from the Oronogo-Duenweg belt during periods of low flow. (USGS)

  9. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  10. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

  11. Porosity evolution in reservoir sandstones in the West-Central San Joaquin basin, California

    SciTech Connect

    Horton, R.A. Jr.; McCullough, P.T.; Houghton, B.D.; Pennell, D.A.; Dunwoody, J.A. III; Menzie, R.J. Jr.

    1995-04-01

    Miocene reservoir sands (feldspathic and lithic arenites) in central San Joaquin basin oil fields show similar trends in porosity development despite differences in depositional environment, pore-fluid chemistry, and burial history. Burial and tectonic compaction caused grain rotation, deformation of altered lithics, and extensive fracturing of brittle grains, thereby eliminating most primary porosity. Diagenetic fluids, infiltrating along fractures in grains, reacted with freshly exposed mineral surfaces causing extensive leaching of framework components. All major grain types were affected but preferential removal of feldspars and lithics resulted in changes in QFL ratios. With continued compaction angular remnants of partially disolved grains were rotated and rearranged while secondary intergranular and moldic porosity collapsed to form secondary intergranular porosity. This resulted in reservoir sands that are less well sorted, more angular, and mineralogically more mature than they were at deposition. Such changes appear to widespread in the San Joaquin basin and may be more important than is generally acknowledged.

  12. Diagenesis and pore water evolution in the Keuper reservoir, Paris Basin (France)

    SciTech Connect

    Spotl, C.; Matter, A. . Geologisches Inst.); Brevart, O. . Centre Scientifique et Technique Jean Feger)

    1993-09-01

    Keuper (Upper Triassic) fluvial sandstones and nonmarine carbonate rocks form a major oil reservoir in the western Paris Basin at burial depths of [approximately] 2km. Early-diagenetic processes comprise red-bed-type diagenesis and extensive dolocrete formation both in fluvial channels and in fine-grained over-bank sediments. Locally significant paleokarst created vuggy dissolution porosity in the carbonate units and probably also caused leaching of detrital alkali feldspar grains. Oxygen, carbon, and strontium isotope analyses of various eogenetic cements indicate a nonmarine pore-water composition. Ferroan carbonates, authigenic albite and potassium feldspar, quartz, sulfates, sulfides, and clay minerals formed subsequent to major mechanical compaction. Their isotopic compositions record significant changes in the chemistry of the parent pore water. Cl-Br relationships of the present-day pore water reveal that fluids saturated with respect to halite flushed the reservoir during burial. Based on radiogenic dating of illite cements, influx of warm brines into the reservoir most likely occurred during the earliest Cretaceous. The authors suggest that uplift of the Vosges crustal block created a hydraulic head in the eastern part of the basin and established a gravity-driven fluid flow system, displacing interstitial brines from the Keuper evaporites from the eastern part towards the western part of the basin. A second gravity-driven fluid flow system was established during the Oligocene by major uplift, and freshwater flushed the Keuper reservoir, causing brine dilution. The present-day pore water in the study area is still saline and mass-balance calculations indicate that the ratio of basinal brines to Tertiary meteoric water is about 1:2.

  13. Influence of depositional environment and diagenesis on gas reservoir properties in St. Peter Sandstone, Michigan basin

    SciTech Connect

    Harrison, W.B. III; Turmelle, T.M.; Barnes, D.A.

    1987-05-01

    The St. Peter Sandstone in the Michigan basin subsurface is rapidly becoming a major exploration target for natural gas. This reservoir was first proven with the successful completion of the Dart-Edwards 7-36 (Falmouth field, Missaukee County, Michigan) in 1981. Fifteen fields now are known, with a maximum of three producing wells in any one field. The production from these wells ranges from 1 to more than 10 MMCFGD on choke, with light-gravity condensate production of up to 450 b/d. Depth to the producing intervals ranges from about 7000 ft to more than 11,000 ft. The St. Peter Sandstone is an amalgamated stack of shoreface and shelf sequences more than 1100 ft in thickness in the basin center and thinning to zero at the basin margins. Sandstone composition varies from quartzarenite in the coarser sizes to subarkose and arkose in the finer sizes. Thin salty/shaly lithologies and dolomite-cemented sandstone intervals separate the porous sandstone packages. Two major lithofacies are recognized in the basin: a coarse-grained, well-sorted quartzarenite with various current laminations and a fine-grained, more poorly sorted subarkose and arkose with abundant bioturbation and distinct vertical and horizontal burrows. Reservoir quality is influenced by original depositional and diagenetic fabrics, but there is inversion of permeability and porosity with respect to primary textures in the major lithofacies. The initially highly porous and permeable, well-sorted, coarser facies is now tightly cemented with syntaxial quartz cement, resulting in a low-permeability, poor quality reservoir. The more poorly sorted, finer facies with initially lower permeabilities did not receive significant fluid flux until it passed below the zone of quartz cementation. This facies was cemented with carbonate which has subsequently dissolved to form a major secondary porosity reservoir.

  14. Estimating probabilities of reservoir storage for the upper Delaware River basin

    USGS Publications Warehouse

    Hirsch, Robert M.

    1981-01-01

    A technique for estimating conditional probabilities of reservoir system storage is described and applied to the upper Delaware River Basin. The results indicate that there is a 73 percent probability that the three major New York City reservoirs (Pepacton, Cannonsville, and Neversink) would be full by June 1, 1981, and only a 9 percent probability that storage would return to the ' drought warning ' sector of the operations curve sometime in the next year. In contrast, if restrictions are lifted and there is an immediate return to normal operating policies, the probability of the reservoir system being full by June 1 is 37 percent and the probability that storage would return to the ' drought warning ' sector in the next year is 30 percent. (USGS)

  15. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shu-Guang

    2012-01-01

    Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (~78%) and nutrients (~30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.

  16. Rationale for finding and exploiting fractured reservoirs, based on the MWX/SHCT-Piceance basin experience

    SciTech Connect

    Lorenz, J.C.; Warpinski, N.R.; Teufel, L.W.

    1993-08-01

    The deliverability of a reservoir depends primarily on its permeability, which, in many reservoirs, is controlled by a combination of natural fractures and the in situ stresses. Therefore it is important to be able to predict which parts of a basin are most likely to contain naturally fractured strata, what the characteristics of those fractures might be, and what the most likely in situ stresses are at a given location. This paper presents a set of geologic criteria that can be superimposed onto factors, such as levels of maturation and porosity development, in order to predict whether fractures are present once the likelihood of petroleum presence and reservoir development have been determined. Stress causes fracturing, but stresses are not permanent. A natural-fracture permeability pathway opened by one system of stresses may be held open by those stresses, or narrowed or even closed by changes of the stress to an oblique or normal orientation. The origin of stresses and stress anisotropies in a basin, the potential for stress to create natural fractures, and the causes of stress reorientation are examined in this paper. The appendices to this paper present specific techniques for exploiting and characterizing natural fractures, for measuring the present-day in situ stresses, and for reconstructing a computerized stress history for a basin.

  17. Sensitivity of reservoir storage and outflow to climate change in a water-limited river basin

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Gao, H.; Naz, B. S.; Kao, S. C.; Voisin, N.

    2015-12-01

    During the past several decades, numerous reservoirs have been built across the world for a variety of purposes such as flood control, irrigation, municipal water supplies, and hydropower. Consequently, streamflow timing and magnitude are altered significantly by reservoir operations. In addition, the hydrological cycle can be modified substantially by a changing climate. Therefore, a distributed hydrological model which has an embedded reservoir component is essential for representing these effects in future water management planning strategies. In this study, a multi-purpose reservoir module was integrated into the Distributed Hydrology Soil Vegetation Model (DHSVM). The DHSVM model was selected because of its high spatial and temporal resolution and because of its explicit representation of the physical processes. Prescribed operating rules, which are designed to reduce flood risk and enhance water supply reliability, were adopted in this module. The integrated model was tested over a water-limited basin (i.e. the central Brazos River Basin, Texas). Both the calibration and validation results suggest that the model performed robustly at daily, weekly, and monthly levels. Subsequently, the effect of climate sensitivity on reservoir storage and outflow was assessed by perturbing precipitation within a range from -30% to 30% and temperature from -2 °C to 2 °C. Results suggest that both variables are more sensitive to precipitation than temperature. However, there are more uncertainties associated with future precipitation than temperature. It was also found that the sensitivities vary significantly by season. Enabled with the new reservoir component, the DHSVM model provides a platform for projecting future water availability estimations under flow regulation, climate change, and land cover/land use changes. We expect this integrated model to be beneficial for sustainable water resources management.

  18. Effects of Reservoirs on Nutrient Concentrations and Ratios along the Longitudinal Gradient of Danube River Basin

    NASA Astrophysics Data System (ADS)

    Salcedo Borda, J. S.; Gettel, G. M.; Irvine, K.

    2015-12-01

    Reservoirs reduce water flow and increase the retention time which can provide conditions to increase primary production, sedimentation and nutrient retention. As a consequence, nutrient ratios and fluxes of nitrogen (N), phosphorus (P), and silica (Si) may be altered which in turn affects the identity of limiting nutrients and the dynamics of primary production in downstream ecosystems. Residence time as well as the position of reservoirs along the longitudinal gradient (headwaters vs. mouth) may affect these processes. The Danube River Basin is one example where reservoirs have likely altered nutrient stoichiometry along the longitudinal gradient. It has a dam every 17 Km in the upper 1000 km of the river along with a very large dam complex (Iron Gates Dam) 117- Km from the mouth. There has been there has been an observed decline in Si flux, which may have led to changes in phytoplankton community structure in the Black Sea, but for which the causes for this decline are not yet clear. The purpose of this study is to examine the effects of reservoirs from headwaters to the mouth on nutrient stoichiometry in the Danube Basin. Data on dissolved Si, N, and P concentrations from 1996 to 2012 were analyzed from 40 monitoring stations from the TransNational Monitoring Network (TNMN), which are located in the main stem of the Danube. Time series analysis is used to compare nutrient concentrations and ratios both through seasons and through the 15 year time-period. The monitoring stations are located above and below reservoirs in order to analyze the effect of reservoirs on nutrient ratios and fluxes. Preliminary results show that relationship of dissolved inorganic N (DIN): soluble reactive P (SRP) range from 207 to 76, while DIN:Si ratio ranges from 1.89 to 0.2 from the headwaters to the mouth.

  19. Sequence Stratigraphy of the Dakota Sandstone, Eastern San Juan Basin, New Mexico, and its Relationship to Reservoir Compartmentalization

    SciTech Connect

    Varney, Peter J.

    2002-04-23

    This research established the Dakota-outcrop sequence stratigraphy in part of the eastern San Juan Basin, New Mexico, and relates reservoir quality lithologies in depositional sequences to structure and reservoir compartmentalization in the South Lindrith Field area. The result was a predictive tool that will help guide further exploration and development.

  20. Reserves in western basins

    SciTech Connect

    Caldwell, R.H.; Cotton, B.W.

    1995-04-01

    The objective of this project is to investigate the reserves potential of tight gas reservoirs in three Rocky Mountain basins: the Greater Green River (GGRB), Uinta and Piceance basins. The basins contain vast gas resources that have been estimated in the thousands of Tcf hosted in low permeability clastic reservoirs. This study documents the productive characteristics of these tight reservoirs, requantifies gas in place resources, and characterizes the reserves potential of each basin. The purpose of this work is to promote understanding of the resource and to encourage its exploitation by private industry. At this point in time, the GGRB work has been completed and a final report published. Work is well underway in the Uinta and Piceance basins which are being handled concurrently, with reports on these basins being scheduled for the middle of this year. Since the GGRB portion of the project has been completed, this presentation win focus upon that basin. A key conclusion of this study was the subdivision of the resource, based upon economic and technological considerations, into groupings that have distinct properties with regard to potential for future producibility, economics and risk profile.

  1. Effects of reservoirs on river nitrogen and phosphorus export in the Mississippi and Great Lakes Basins: A regional comparison

    NASA Astrophysics Data System (ADS)

    Powers, S. M.; Tank, J. L.; Robertson, D.

    2013-12-01

    Reservoirs can influence mass transport of anthropogenic nitrogen (N) and phosphorus (P) through rivers, but comparative studies are needed to better understand how reservoir processes vary among landscapes and regions. We compared influences of reservoirs on N and P delivery to tributaries of the Mississippi and Great Lakes Basins, using river monitoring stations that were positioned immediately downstream of reservoir outlets. For a given agricultural intensity (percent of basin classified as cropland), outlet stations (n=115) had lower mean annual flow-weighted concentration for N and P than other stations (n=1085), as well as lower concentration variability. For instance, in the presence of high agriculture (>50% of basin as cropland), reservoir outflow stations had on average 40% lower N and 35% lower P concentration, while the coefficient of variation for both N and P was 30% lower. These aggregate patterns were examined more closely for individual reservoirs of different regions, which fell into two monitoring categories: 1) those which had monitoring stations positioned at the inflow as well as the outflow (n= 23 for TN, n=34 for TP); 2) those which had outflow monitoring stations, as well as an estimate of the expected inflow (from a spatially-referenced regression model). Again, both outflow nutrient concentration and yield (mass per basin area) were usually lower and more stable than the inflow. However, the difference between outflow and inflow varied substantially among reservoirs and regions, including some cases where reservoirs appeared to be net P sources to rivers at the annual time frame. These effects of reservoirs on river N and P are presumably the consequence of reservoir nutrient burial, microbial denitrification, and internal nutrient recycling. Management intended to improve the water quality of rivers and receiving waters would benefit from an improved understanding of reservoir processes, which not only vary among regions, but also could

  2. Reservoir Operations and Flow Modeling to Support Decision Making in the Delaware River Basin

    NASA Astrophysics Data System (ADS)

    Quinodoz, H. A.

    2006-12-01

    About five percent of the US population depends on the waters from the Delaware River Basin for its water supply, including New York City and Philadelphia. Water management in the basin is governed by a compact signed in 1961 by the four basin states and the federal government. The compact created the Delaware River Basin Commission (DRBC) and gave it broad powers to plan, regulate, and manage the development of the basin water resources. The compact also recognized a pre-existing (1954) U.S. Supreme Court Decree that grants the City of New York the right to export up to 800 million gallons per day out of the basin, provided that a prescribed minimum flow is met at Montague, New Jersey for the use of the lower-basin states. The Delaware River Basin Compact also allows the DRBC to adjust the releases and diversions under the Decree, subject to the unanimous consent of the decree parties. This mechanism has been used several times over the last 30 years, to implement and modify rules governing drought operations, instream flows, minimum flow targets, and control of salinity intrusion. In every case, decision makers have relied upon extensive modeling of alternative proposals, using a basin-wide daily flow model. Often, stakeholders have modified and used the same model to test and refine their proposals prior to consideration by the decision makers. The flow model has been modified over the years, to simulate new features and processes in a river system partially controlled by more than ten reservoirs. The flow model has proved to be an adaptable tool, able to simulate the dynamics of a complex system driven by conflicting objectives. This presentation reviews the characteristics of the daily flow model in its current form, discuss how model simulations are used to inform the decision-making process, and provide a case study of a recent modification of the system-wide drought operating plan.

  3. Deep-water facies and petrography of the Galoc clastic unit, offshore Palawan, Philippines (south China Sea)

    SciTech Connect

    Link, M.H.; Helmold, K.P.

    1988-02-01

    The lower Miocene Galoc clastic unit, offshore Palawan, Philippines, is about 500-600 ft thick. The unit overlies the Galoc Limestone and is overlain by the Pelitic Pagasa Formation. The Galoc clastic unit consists of alternating quartzose sandstone, mudstone, and resedimented carbonate deposited at bathyal depths, mainly as turbidites. The deep-water deposits are confined to the axis of a northeast-trending trough in which slope, submarine channel, interchannel, depositional lobe, slump, and basinal facies are recognized. Eroded shallow-marine carbonate lithoclasts are commonly incorporated within the siliciclastic turbidites. The main reservoir sandstones occur in submarine channels and depositional lobes. The sandstones are texturally submature, very fine to medium-grained feldspathic litharenites and subarkoses. The sandstones have detrital modes of Q78:F11:L11 and Qm51:F11:Lt38, with partial modes of the monocrystalline components of Qm82:P13:K5. Lithic fragments include chert, shale, schist, volcanic rock fragments, and minor plutonic rock fragments. Porosity in the better reservoir sandstones ranges from 11 to 25%, and calcite is the dominant cement. Dissolution textures and inhomogeneity of calcite distribution suggest that at least half of the porosity in the sandstones has formed through the leaching of calcite cement and labile framework grains. A source terrain of quartzo-feldspathic sediments and metasediments, chert, volcanics, and acid-intermediate plutonic rocks is visualized.

  4. Integrating short-term and long-term forecasting with reservoir optimisation; Mantaro Basin, Peru.

    NASA Astrophysics Data System (ADS)

    Jensen, R. A.; Lasarte, A.; Butts, M. B.

    2009-04-01

    Operational water management often requires a trade-off between short-term and long-term water demands, where short-term demands are driven for example by hydropower generation and flood protection requirements and the long-term demands by water and irrigation supply, sustainable reservoir management and the seasonal impacts of snow melt or climate. This paper presents an operational decision support system designed to forecast and optimise reservoir operations in both the short-term and long-term. The system has been established for the 20,000 km2 Mantaro river basin located in the high Andes with altitudes ranging from 3500 to nearly 6000 m.a.s.l.. The two main power stations at Tablachaca have a combined capacity of more than 1000 MW that supplies 30% of Peru's electrical energy. In addition, the basin's water resources supply extensive agricultural areas, an urban population and mining activities and sustain important ecological habitats. In this paper, the methodologies used for the integrating short-term and long-term forecasting are presented together with their application to the optimal operation of reservoirs. A key element in the system is the MIKE BASIN modelling tool. The system uses several modelling capabilities of MIKE BASIN: rainfall-runoff, reservoir operation, hydropower production, and river flow routing. The system also takes advantage of long-term forecasts (based on statistical information) and short-term forecasts (based on telemetry data). The continually updated runoff and flow forecasts enter the optimization, which applies the Model Predictive Control principle for MIKE BASIN as the core simulation model. For each optimization, a non-linear program algorithm is used to find the best release strategy. On the basis of the forecasted inflows and the real time data the system suggests to the user from which reservoirs to release water for alleviation of possible forecasted deficits. In addition to the Tablachaca scheme the model accounts for

  5. Extensional tectonic influence on lower and upper cretaceous stratigraphy and reservoirs, southern Powder River basin, Wyoming

    SciTech Connect

    Mitchell, G.C.; Rogers, M.H.

    1993-04-01

    The southern Powder River basin has been influenced significantly by an extensional system affecting Lower Cretaceous, Upper Cretaceous and Tertiary units. The system is composed of small throw, nearly vertical normal faults which are identified in the Cretaceous marine shales and that we believe are basement derived. Resultant fractures were present at erosional/depositional surfaces, both marine and nonmarine, that, in part, controlled erosion and subsequent deposition of Lower and Upper Cretaceous rocks. The normal faults also affected coal deposition in the Tertiary, now exposed at the surface. The erosion and resultant deposition formed extensive stratigraphic traps in Cretaceous units in both conventional and unconventional reservoirs. These reservoirs are interbedded with mature source rocks that have generated and expelled large amounts of hydrocarbons. Resulting overpressuring in the Fall River through the Niobrara formations has kept fractures open and has preserved primary porosity in the reservoirs. The normal faults offset thin sandstone reservoirs forming permeability barriers. Associated fractures may have provided vertical pathways for organic acids that assisted development of secondary porosity in Upper Cretaceous sandstones. These normal...faults and fractures provide significant potential for the use of horizontal drilling techniques to evaluate fractured, overpressured conventional and unconventional reservoirs.

  6. Delineation of Piceance Basin basement structures using multiple source data: Implications for fractured reservoir exploration

    SciTech Connect

    Hoak, T.E.; Klawitter, A.L.

    1995-10-01

    Fractured production trends in Piceance Basin Cretaceous-age Mesaverde Group gas reservoirs are controlled by subsurface structures. Because many of the subsurface structures are controlled by basement fault trends, a new interpretation of basement structure was performed using an integrated interpretation of Landsat Thematic Mapper (TM), side-looking airborne radar (SLAR), high altitude, false color aerial photography, gas and water production data, high-resolution aeromagnetic data, subsurface geologic information, and surficial fracture maps. This new interpretation demonstrates the importance of basement structures on the nucleation and development of overlying structures and associated natural fractures in the hydrocarbon-bearing section. Grand Valley, Parachute, Rulison, Plateau, Shire Gulch, White River Dome, Divide Creek and Wolf Creek fields all produce gas from fractured tight gas sand and coal reservoirs within the Mesaverde Group. Tectonic fracturing involving basement structures is responsible for development of permeability allowing economic production from the reservoirs. In this context, the significance of detecting natural fractures using the intergrated fracture detection technique is critical to developing tight gas resources. Integration of data from widely-available, relatively inexpensive sources such as high-resolution aeromagnetics, remote sensing imagery analysis and regional geologic syntheses provide diagnostic data sets to incorporate into an overall methodology for targeting fractured reservoirs. The ultimate application of this methodology is the development and calibration of a potent exploration tool to predict subsurface fractured reservoirs, and target areas for exploration drilling, and infill and step-out development programs.

  7. Diagenesis of an 'overmature' gas reservoir: The Spiro sand of the Arkoma Basin, USA

    USGS Publications Warehouse

    Spotl, C.; Houseknecht, D.W.; Burns, S.J.

    1996-01-01

    The Spiro sand is a laterally extensive thin sandstone of earliest Atokan (Pennsylvanian) age that forms a major natural gas reservoir in the western Arkoma Basin, Oklahoma. Petrographic analysis reveals a variety of diagenetic alterations, the majority of which occurred during moderate to deep burial. Early diagenetic processes include calcite cementation and the formation of Fe-clay mineral peloids and coatings around quartz framework grains. These clays, which underwent transformation to well-crystallized chamosite [polytype Ib(?? = 90??)] on burial, are particularly abundant in medium-grained channel sandstones, whereas illitic clays are predominant in fine-grained interchannel sandstones. Subsequent to mechanical compaction, saddle ankerite precipitated in the reservoir at temperatures in excess of 70??C. Crude oil collected in favourable structural locations during and after ankeritization. Whereas hydrocarbons apparently halted inorganic diagenesis in oil-saturated zones, cementation continued in the underlying water-saturated zones. As reservoir temperatures increased further, hydrocarbons were cracked and a solid pyrobitumen residue remained in the reservoir. At temperatures exceeding ???140-150??C, non-syntaxial quartz cement, ferroan calcite and traces of dickite(?) locally reduced the reservoir quality. Local secondary porosity was created by carbonate cement dissolution. This alteration post-dated hydrocarbon emplacement and is probably related to late-stage infiltration of freshwater along 'leaky' faults. The study shows that the Spiro sandstone locally retained excellent porosities despite deep burial and thermal conditions that correspond to the zone of incipient very low grade metamorphism.

  8. Effects of clay minerals on Triassic sandstone reservoir in Shan Can Ning basin and their significance

    SciTech Connect

    Zhu Guo Hua; Qian Kai

    1989-03-01

    Mesozoic sandstone reservoirs in the Shan Can Ning basin contain various clay minerals with different genesis and occurrences, which give rise to different effects on reservoir characteristics. The results of this study suggest that the effects of illite on permeability, electrical resistivity, and oil and water saturation of the Yan 10 sandstone are much more obvious than those due to kaolinite. Authigenic chlorite film covering the peripheral edges of sand grains restrained the coaxial secondary overgrowths of quartz, feldspar, and other grains. This restraint played an effective role in preserving the pores and texture of the Yanchang reservoir rocks. The authigenic chlorite film contains abundant micropores which can adsorb considerable pore water, which is kept in an irreducible state. Thus, given the same water saturation conditions, the water production of Yanchang reservoir rocks rich in authigenic chlorite is significantly lower than that of the rocks poor in chlorite film. Because the occurrence of the pore-lining clay (film type) reduces the size of pore throats, acidization may show notable effects on this type of sandstone reservoir.

  9. Pennsylvanian carbonate buildups, Paradox basin: Increasing reserves in heterogeneous, shallow-shelf reservoirs

    USGS Publications Warehouse

    Montgomery, S.L.; Chidsey, T.C., Jr.; Eby, D.E.; Lorenz, D.M.; Culham, W.E.

    1999-01-01

    Productive carbonate buildups of Pennsylvanian age in the southern Paradox basin, Utah, contain up to 200 million bbl remaining oil potentially recoverable by enhanced recovery methods. These buildups comprise over 100 satellite fields to the giant Greater Aneth field, where secondary recovery operations thus far have been concentrated. Several types of satellite buildups exist and produce oil from the Desert Creek zone of the Paradox Formation. Many of the relevant fields have undergone early abandonment; wells in Desert Creek carbonate mounds commonly produce at very high initial rates (>1000 bbl/day) and then suffer precipitous declines. An important new study focused on the detailed characterization of five separate reservoirs has resulted in significant information relevant to their future redevelopment. Completed assessment of Anasazi field suggests that phylloid algal mounds, the major productive buildup type in this area, consist of ten separate lithotypes and can be described in terms of a two-level reservoir system with an underlying high-permeability mound-core interval overlain by a lower permeability but volumetrically larger supramound (mound capping) interval. Reservoir simulations and related performance predictions indicate that CO2 flooding of these reservoirs should have considerable success in recovering remaining oil reserves.Productive carbonate buildups of Pennsylvanian age in the southern Paradox basin, Utah, contain up to 200 million bbl remaining oil potentially recoverable by enhanced recovery methods. These buildups comprise over 100 satellite fields to the giant Greater Aneth field, where secondary recovery operations thus far have been concentrated. Several types of satellite buildups exist and produce oil from the Desert Creek zone of the Paradox Formation. Many of the relevant fields have undergone early abandonment; wells in Desert Creek carbonate mounds commonly produce at very high initial rates (>1000 bbl/day) and then suffer

  10. Diagenesis and porosity evolution of tight sand reservoirs in Carboniferous Benxi Formation, Southeast Ordos Basin

    NASA Astrophysics Data System (ADS)

    Hu, Peng; Yu, Xinghe; Shan, Xin; Su, Dongxu; Wang, Jiao; Li, Yalong; Shi, Xin; Xu, Liqiang

    2016-04-01

    The Ordos Basin, situated in west-central China, is one of the oldest and most important fossil-fuel energy base, which contains large reserves of coal, oil and natural gas. The Upper Palaeozoic strata are widely distributed with rich gas-bearing and large natural gas resources, whose potential is tremendous. Recent years have witnessed a great tight gas exploration improvement of the Upper Paleozoic in Southeastern Ordos basin. The Carboniferous Benxi Formation, mainly buried more than 2,500m, is the key target strata for hydrocarbon exploration, which was deposited in a barrier island and tidal flat environment. The sandy bars and flats are the favorable sedimentary microfacies. With an integrated approach of thin-section petrophysics, constant velocity mercury injection test, scanning electron microscopy and X-ray diffractometry, diagenesis and porosity evolution of tight sand reservoirs of Benxi Formation were analyzed in detail. The result shows that the main lithology of sandstone in this area is dominated by moderately to well sorted quartz sandstone. The average porosity and permeability is 4.72% and 1.22mD. The reservoirs of Benxi Formation holds a variety of pore types and the pore throats, with obvious heterogeneity and poor connection. Based on the capillary pressure curve morphological characteristics and parameters, combined with thin section and phycical property data, the reservoir pore structure of Benxi Formation can be divided into 4 types, including mid pore mid throat type(I), mid pore fine throat type(II), small pore fine throat type(III) and micro pro micro throat type(Ⅳ). The reservoirs primarily fall in B-subsate of middle diagenesis and late diagenesis, which mainly undergo compaction, cmentation, dissolution and fracturing process. Employing the empirical formula of different sorting for unconsolideated sandstone porosity, the initial sandstone porosity is 38.32% on average. Quantitative evaluation of the increase and decrease of

  11. Increased Oil Production and Reserves Utilizing Secondary/Terriary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect

    David E. Eby; Thomas C. Chidsey, Jr.

    1998-04-08

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO -) 2 flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. Two activities continued this quarter as part of the geological and reservoir characterization of productive carbonate buildups in the Paradox basin: (1) diagenetic characterization of project field reservoirs, and (2) technology transfer.

  12. Increasing Heavy Oil in the Wilmington Oil Fiel Through Advanced Reservoir Characterization and Thermal Production Technologies. Annual Report, March 30, 1995--March 31, 1996

    SciTech Connect

    Allison, Edith

    1996-12-01

    The objective of this project is to increase heavy oil reserves in a portion of the Wilmington Oil Field, near Long Beach, California, by implementing advanced reservoir characterization and thermal production technologies. Based on the knowledge and experience gained with this project, these technologies are intended to be extended to other sections of the Wilmington Oil Field, and, through technology transfer, will be available to increase heavy oil reserves in other slope and basin clastic (SBC) reservoirs.

  13. Low permeability Neogene lithofacies in Northern Croatia as potential unconventional hydrocarbon reservoirs

    NASA Astrophysics Data System (ADS)

    Malvić, Tomislav; Sučić, Antonija; Cvetković, Marko; Resanović, Filip; Velić, Josipa

    2014-06-01

    We present two examples of describing low permeability Neogene clastic lithofacies to outline unconventional hydrocarbon lithofacies. Both examples were selected from the Drava Depression, the largest macrostructure of the Pannonian Basin System located in Croatia. The first example is the Beničanci Field, the largest Croatian hydrocarbon reservoir discovered in Badenian coarse-grained clastics that consists mostly of breccia. The definition of low permeability lithofacies is related to the margins of the existing reservoir, where the reservoir lithology changed into a transitional one, which is mainly depicted by the marlitic sandstones. However, calculation of the POS (probability of success of new hydrocarbons) shows critical geological categories where probabilities are lower than those in the viable reservoir with proven reserves. Potential new hydrocarbon volumes are located in the structural margins, along the oil-water contact, with a POS of 9.375%. These potential reserves in those areas can be classified as probable. A second example was the Cremušina Structure, where a hydrocarbon reservoir was not proven, but where the entire structure has been transferred onto regional migration pathways. The Lower Pontian lithology is described from well logs as fine-grained sandstones with large sections of silty or marly clastics. As a result, the average porosity is low for conventional reservoir classification (10.57%). However, it is still an interesting case for consideration as a potentially unconventional reservoir, such as the "tight" sandstones.

  14. Reservoir characterization of the Mississippian Ratcliffe, Richland County, Montana, Williston Basin. Topical report, September 1997

    SciTech Connect

    Sippel, M.; Luff, K.D.; Hendricks, M.L.

    1998-07-01

    This topical report is a compilation of characterizations by different disciplines of the Mississippian Ratcliffe in portions of Richland County, MT. Goals of the report are to increase understanding of the reservoir rocks, oil-in-place, heterogeneity and methods for improved recovery. The report covers investigations of geology, petrography, reservoir engineering and seismic. The Ratcliffe is a low permeability oil reservoir which appears to be developed across much of the study area and occurs across much of the Williston Basin. The reservoir has not been a primary drilling target in the study area because average reserves have been insufficient to payout the cost of drilling and completion despite the application of hydraulic fracture stimulation. Oil trapping does not appear to be structurally controlled. For the Ratcliffe to be a viable drilling objective, methods need to be developed for (1) targeting better reservoir development and (2) better completions. A geological model is presented for targeting areas with greater potential for commercial reserves in the Ratcliffe. This model can be best utilized with the aid of 3D seismic. A 3D seismic survey was acquired and is used to demonstrate a methodology for targeting the Ratcliffe. Other data obtained during the project include oriented core, special formation-imaging log, pressure transient measurements and oil PVT. Although re-entry horizontal drilling was unsuccessfully tested, this completion technology should improve the economic viability of the Ratcliffe. Reservoir simulation of horizontal completions with productivity of three times that of a vertical well suggested two or three horizontal wells in a 258-ha (640-acre) area could recover sufficient reserves for profitable drilling.

  15. Potential evaluation of CO2 storage and enhanced oil recovery of tight oil reservoir in the Ordos Basin, China.

    PubMed

    Tian, Xiaofeng; Cheng, Linsong; Cao, Renyi; Zhang, Miaoyi; Guo, Qiang; Wang, Yimin; Zhang, Jian; Cui, Yu

    2015-07-01

    Carbon -di-oxide (CO2) is regarded as the most important greenhouse gas to accelerate climate change and ocean acidification. The Chinese government is seeking methods to reduce anthropogenic CO2 gas emission. CO2 capture and geological storage is one of the main methods. In addition, injecting CO2 is also an effective method to replenish formation energy in developing tight oil reservoirs. However, exiting methods to estimate CO2 storage capacity are all based on the material balance theory. This was absolutely correct for normal reservoirs. However, as natural fractures widely exist in tight oil reservoirs and majority of them are vertical ones, tight oil reservoirs are not close. Therefore, material balance theory is not adaptive. In the present study, a new method to calculate CO2 storage capacity is presented. The CO2 effective storage capacity, in this new method, consisted of free CO2, CO2 dissolved in oil and CO2 dissolved in water. Case studies of tight oil reservoir from Ordos Basin was conducted and it was found that due to far lower viscosity of CO2 and larger solubility in oil, CO2 could flow in tight oil reservoirs more easily. As a result, injecting CO2 in tight oil reservoirs could obviously enhance sweep efficiency by 24.5% and oil recovery efficiency by 7.5%. CO2 effective storage capacity of Chang 7 tight oil reservoir in Longdong area was 1.88 x 10(7) t. The Chang 7 tight oil reservoir in Ordos Basin was estimated to be 6.38 x 10(11) t. As tight oil reservoirs were widely distributed in Songliao Basin, Sichuan Basin and so on, geological storage capacity of CO2 in China is potential. PMID:26387353

  16. Diagenetic Evolution and Reservoir Quality of Sandstones in the North Alpine Foreland Basin: A Microscale Approach.

    PubMed

    Gross, Doris; Grundtner, Marie-Louise; Misch, David; Riedl, Martin; Sachsenhofer, Reinhard F; Scheucher, Lorenz

    2015-10-01

    Siliciclastic reservoir rocks of the North Alpine Foreland Basin were studied focusing on investigations of pore fillings. Conventional oil and gas production requires certain thresholds of porosity and permeability. These parameters are controlled by the size and shape of grains and diagenetic processes like compaction, dissolution, and precipitation of mineral phases. In an attempt to estimate the impact of these factors, conventional microscopy, high resolution scanning electron microscopy, and wavelength dispersive element mapping were applied. Rock types were established accordingly, considering Poro/Perm data. Reservoir properties in shallow marine Cenomanian sandstones are mainly controlled by the degree of diagenetic calcite precipitation, Turonian rocks are characterized by reduced permeability, even for weakly cemented layers, due to higher matrix content as a result of lower depositional energy. Eocene subarkoses tend to be coarse-grained with minor matrix content as a result of their fluvio-deltaic and coastal deposition. Reservoir quality is therefore controlled by diagenetic clay and minor calcite cementation.Although Eocene rocks are often matrix free, occasionally a clay mineral matrix may be present and influence cementation of pores during early diagenesis. Oligo-/Miocene deep marine rocks exhibit excellent quality in cases when early cement is dissolved and not replaced by secondary calcite, mainly bound to the gas-water contact within hydrocarbon reservoirs. PMID:26365327

  17. Reservoir characteristics of Putnam zone (Silurian Interlake Formation) lithofacies, southwestern Williston basin

    SciTech Connect

    Inden, R. ); Oglesby, C. ); Byrnes, A. ); Cluff, B. )

    1991-06-01

    Reservoirs in the Putnam zone (lower Interlake Formation) in the southwestern part of the Williston basin include oolitic-pellet dolomite grainstone, fossil-pellet grainstone, and a wide spectrum of reef-related, fossil-corral dolomite packstones and coral-stromatoporoid rudstone/boundstones. Each of these potential reservoirs has a unique pore system and, thus a different set of petrophysical properties which define their reservoir characteristics. Oolitic grainstones have a homogeneous intercrystalline-micro-crystalline pore system, whereas the fossil-pellet dolomite grainstone facies consists of separate mesovugs dispersed in well-interconnected intercrystalline porosity. Capillary pressure curves indicate that pore-throat heterogeneity is greater, and entry pressures lower, for reefal lithofacies than for pelletal grainstones. These curves also demonstrate why many of the producing fields tend to have high water cuts. In many oolitic-pellet grainstone units, irreducible water saturations of 10% would not be reached until a hydrocarbon column of 700 ft was reached. High water production characteristics are therefore expected because Red River/Interlake structures attain only 50-100 ft of closure. This, however, does not mean that Putnam is not an economic zone, especially as a secondary objective. Wells in Putnam and Crane fields, for instance, have reserves in excess of 300,000 bbl of oil. The reservoirs here may be dominated by the reef-related facies, which have an extremely high relative permeability to oil.

  18. Oil reservoirs in grainstone aprons around Bryozoan Mounds, Upper Harrodsburg Limestone, Mississippian, Illinois Basin

    SciTech Connect

    Jobe, H.; Saller, A.

    1995-06-01

    Several oil pools have been discovered recently in the upper Harrodsburg Limestone (middle Mississippian) of the Illinois basin. A depositional model for bryozoan mound complexes has allowed more successful exploration and development in this play. In the Johnsonville area of Wayne County, Illinois, three lithofacies are dominant in the upper Harrodsburg: (1) bryozoan boundstones, (2) bryozoan grainstones, and (3) fossiliferous wackestones. Bryozoan boundstones occur as discontinuous mounds and have low porosity. Although bryozoan boundstones are not the main reservoir lithofacies, they are important because they influenced the distribution of bryozoan grainstones and existing structure. Bryozoan grainstones have intergranular porosity and are the main reservoir rock. Bryozoan fragments derived from bryozoan boundstone mounds were concentrated in grainstones around the mounds. Fossiliferous wackestones are not porous and form vertical and lateral seals for upper Harrodsburg grainstones. Fossiliferous wackestones were deposited in deeper water adjacent to bryozoan grainstone aprons, and above grainstones and boundstones after the mounds were drowned. Upper Harrodsburg oil reservoirs occur where grainstone aprons are structurally high. The Harrodsburg is a good example of a carbonate mound system where boundstone cores are not porous, but adjacent grainstones are porous. Primary recovery in these upper Harrodsburg reservoirs is improved by strong pressure support from an aquifer in the lower Harrodsburg. Unfortunately, oil production is commonly decreased by water encroaching from that underlying aquifer.

  19. Potential non-tertiary additional oil recovery from heterogeneous submarine-fan reservoirs, Spraberry-Benedum field, Midland basin, Texas

    SciTech Connect

    Guevara, E.H.; Worrall, J.G.; Walter, T.

    1987-05-01

    The Spraberry-Benedum field is a multipay, solution-gas drive, combined structural-stratigraphic trap. It contains approximately 200 million bbl of original oil in place and has been waterflooded since 1967. Producing intervals are in the Spraberry formation (Permian, Leonardian), which in this area consists of mixed-sediment submarine-fan deposits (upper and lower Spraberry) and basin-plain facies (middle Spraberry). Principal oil reservoirs, with 12% average porosity and permeabilities of less than 1 md, occur in the lower and upper Spraberry. They consist of naturally fractured, very fine-grained sandstones and coarse siltstones of braided and meandering, peripheral channels and associated outer fan facies. Complex facies architecture results in highly heterogeneous reservoirs. Oil accumulations are layered because basin-plain shales vertically separate submarine-fan reservoirs, and they are laterally compartmentalized due to the channelization of reservoir rocks. Production trends locally parallel to facies trends indicate that recovery is influenced by reservoir stratigraphy. Well locations, based only on structural position and fracture orientation, commonly do not conform to the axes of belts of greatest sandstone-siltstone thickness, which contain the best reservoirs. Furthermore, completion intervals do not systematically tap both lower and upper Spraberry reservoirs. Ultimate recovery will be improved by aggressive development programs aimed at producing from poorly drained traps created by reservoir heterogeneities. Recompletion and deepening of wells, strategic infill drilling, and injection patterns in such programs should be based on detailed reservoir stratigraphy, in addition to structure and fracture data.

  20. Modeling pollution potential input from the drainage basin into Barra Bonita reservoir, São Paulo - Brazil.

    PubMed

    Prado, R B; Novo, E M L M

    2015-05-01

    In this study multi-criteria modeling tools are applied to map the spatial distribution of drainage basin potential to pollute Barra Bonita Reservoir, São Paulo State, Brasil. Barra Bonita Reservoir Basin had undergone intense land use/land cover changes in the last decades, including the fast conversion from pasture into sugarcane. In this respect, this study answers to the lack of information about the variables (criteria) which affect the pollution potential of the drainage basin by building a Geographic Information System which provides their spatial distribution at sub-basin level. The GIS was fed by several data (geomorphology, pedology, geology, drainage network and rainfall) provided by public agencies. Landsat satellite images provided land use/land cover map for 2002. Ratings and weights of each criterion defined by specialists supported the modeling process. The results showed a wide variability in the pollution potential of different sub-basins according to the application of different criterion. If only land use is analyzed, for instance, less than 50% of the basin is classified as highly threatening to water quality and include sub basins located near the reservoir, indicating the importance of protection areas at the margins. Despite the subjectivity involved in the weighing processes, the multi-criteria analysis model allowed the simulation of scenarios which support rational land use polices at sub-basin level regarding the protection of water resources. PMID:26132013

  1. ADVANCED CHARACTERIZATION OF FRACTURED RESERVOIRS IN CARBONATE ROCKS: THE MICHIGAN BASIN

    SciTech Connect

    James R. Wood; William B. Harrison

    2002-12-01

    The purpose of the study was to collect and analyze existing data on the Michigan Basin for fracture patterns on scales ranging form thin section to basin. The data acquisition phase has been successfully concluded with the compilation of several large digital databases containing nearly all the existing information on formation tops, lithology and hydrocarbon production over the entire Michigan Basin. These databases represent the cumulative result of over 80 years of drilling and exploration. Plotting and examination of these data show that contrary to most depictions, the Michigan Basin is in fact extensively faulted and fractured, particularly in the central portion of the basin. This is in contrast to most of the existing work on the Michigan Basin, which tends to show relatively simple structure with few or minor faults. It also appears that these fractures and faults control the Paleozoic sediment deposition, the subsequent hydrocarbon traps and very likely the regional dolomitization patterns. Recent work has revealed that a detailed fracture pattern exists in the interior of the Central Michigan Basin, which is related to the mid-continent gravity high. The inference is that early Precambrian, ({approx}1 Ga) rifting events presumed by many to account for the gravity anomaly subsequently controlled Paleozoic sedimentation and later hydrocarbon accumulation. There is a systematic relationship between the faults and a number of gas and oil reservoirs: major hydrocarbon accumulations consistently occur in small anticlines on the upthrown side of the faults. The main tools used in this study to map the fault/fracture patterns are detailed, close-interval (CI = 10 feet) contouring of the formation top picks accompanied by a new way of visualizing the data using a special color spectrum to bring out the third dimension. In addition, recent improvements in visualization and contouring software were instrumental in the study. Dolomitization is common in the

  2. Hydrogeology and hydrogeochemistry at a site of strategic importance: the Pareja Limno-reservoir drainage basin (Guadalajara, central Spain)

    NASA Astrophysics Data System (ADS)

    Molina-Navarro, Eugenio; Sastre-Merlín, Antonio; Vicente, Rosa; Martínez-Pérez, Silvia

    2014-08-01

    A small calcareous basin in central Spain was studied to establish the role of groundwater in the Pareja Limno-reservoir. Limno-reservoirs aim to preserve a constant water level in the riverine zone of large reservoirs to mitigate the impacts arising from their construction. Groundwater flow contribution (mean 60 %) was derived by recharge estimation. In situ measurements (spring discharge, electrical conductivity and sulfate) were undertaken and spring discharge was compared with a drought index. Twenty-eight springs were monitored and three hydrogeological units (HGUs) were defined: a carbonate plateau (HGU1), the underlying aquitard (HGU2), and the gypsum-enriched HGU3. HGU1 is the main aquifer and may play a role in the preservation of the limno-reservoir water level. Hydrogeochemical sampling was conducted and the code PHREEQC used to describe the main geochemical processes. Weathering and dissolution of calcite and gypsum seem to control the hydrogeochemical processes in the basin. Water progresses from Ca2+-HCO3 - in the upper basin to Ca2+-SO4 2- in the lower basin, where HGU3 outcrops. A clear temporal pattern was observed in the limno-reservoir, with salinity decreasing in winter and increasing in summer. This variation was wider at the river outlet, but the mixing of the river discharge with limno-reservoir water buffered it.

  3. Sedimentology and genetic stratigraphy of Dean and Spraberry Formations (Permian), Midland basin, Texas

    SciTech Connect

    Handford, C.R.

    1981-09-01

    The Spraberry trend of west Texas, once known as the world's largest uneconomic oil field, will undoubtedly become an increasingly important objective for the development of enhanced oil recovery techniques in fine-grained, low-permeability, low-pressure reservoirs. As the trend expands, facies and stratigraphic data should be integrated into exploration strategies. The Spraberry and Dean Formations may be divided into three genetic sequences, each consisting of several hundred feet of interbedded shale and carbonate overlain by a roughly equal amount of sandstone and siltstone. These sequences record episodes of shelf-margin progradation, deep-water resedimentation of shelf-derived carbonate debris, followed by influxes of terrigenous clastics into the basin by way of feeder channels or submarine canyons, and suspension settling of fine-grained sediment from the water column. Four lithofacies comprise the terrigenous clastics of the Spraberry and Dean Fomations: (1) cross-laminated, massive, and parallel-laminated sandstone, (2) laminated siltstone, (3) bioturbated siltstone, and (4) black, organic-rich shale. Carbonate lithofacies occur mostly in the form of thin-bedded turbidites, slump, and debris-flow deposits. Terrigenous clastic rocks display facies sequences, isopach patterns, and sedimentary structures suggestive of deposition from turbidity currents, and long-lived saline density underflow and interflow currents. Clastic isopach patterns reflect an overall southward thinning of clastics in the Midland basin. Channelized flow and suspension settling were responsible for the formation of elongate fan-shaped accumulations of clastic sediments.

  4. Bogi and Capiron fields, Oriente Basin, Ecuador: Similar reservoirs but contrasting drive mechanisms and recoveries

    SciTech Connect

    Sanchez, H.; Morales, M.; Young, R.; Zambrano, H.

    1996-08-01

    Bogi and Capiron fields are being developed under a unit agreement with Petroecuador. These adjoining fields straddle Block 16 in the Oriente Basin and probably share a common oil water contact. Both fields are simple four-way-dip closures which produce heavy oil from Campanian sandstones of similar quality. However, the two fields are remarkably different in terms of oil production and projected recovery as a result of differing structural closures, reservoir distributions and, hence, differing drive mechanisms. The main reservoir at Bogi field is an amalgamation of two fluvial sheet sandstones thought to be low-stand deposits associated with two falls in relative sea level. The reservoir is thick (56-78 ft) and, with an observed oil column of only 38 feet, a bottom-water drive mechanism is ubiquitous. The oil is heavy (18 API) and mobility ratios unfavorable; water production is high and oil recovery from conventional drilling is expected to be 3-5%. In contrast, only the upper fluvial sheet sandstone is present in Capiron field and a reservoir thickness of 32-48 ft combined with an oil column of 99 ft ensures an edge-water drive mechanism over most of the field with concomitant initial low water production and oil recoveries of approximately 30%. The contrast between Bogi and Capiron fields highlights the problems and challenges in the Block 16 area. Small structural closures filled with heavy oil are abundant and an accurate seismic depth map coupled with an understanding of reservoir distribution are vital to economic success.

  5. Ground Penetrating Radar Imaging of Ancient Clastic Deposits: A Tool for Three-Dimensional Outcrop Studies

    NASA Astrophysics Data System (ADS)

    Akinpelu, Oluwatosin Caleb

    The growing need for better definition of flow units and depositional heterogeneities in petroleum reservoirs and aquifers has stimulated a renewed interest in outcrop studies as reservoir analogues in the last two decades. Despite this surge in interest, outcrop studies remain largely two-dimensional; a major limitation to direct application of outcrop knowledge to the three dimensional heterogeneous world of subsurface reservoirs. Behind-outcrop Ground Penetrating Radar (GPR) imaging provides high-resolution geophysical data, which when combined with two dimensional architectural outcrop observation, becomes a powerful interpretation tool. Due to the high resolution, non-destructive and non-invasive nature of the GPR signal, as well as its reflection-amplitude sensitivity to shaly lithologies, three-dimensional outcrop studies combining two dimensional architectural element data and behind-outcrop GPR imaging hold significant promise with the potential to revolutionize outcrop studies the way seismic imaging changed basin analysis. Earlier attempts at GPR imaging on ancient clastic deposits were fraught with difficulties resulting from inappropriate field techniques and subsequent poorly-informed data processing steps. This project documents advances in GPR field methodology, recommends appropriate data collection and processing procedures and validates the value of integrating outcrop-based architectural-element mapping with GPR imaging to obtain three dimensional architectural data from outcrops. Case studies from a variety of clastic deposits: Whirlpool Formation (Niagara Escarpment), Navajo Sandstone (Moab, Utah), Dunvegan Formation (Pink Mountain, British Columbia), Chinle Formation (Southern Utah) and St. Mary River Formation (Alberta) demonstrate the usefulness of this approach for better interpretation of outcrop scale ancient depositional processes and ultimately as a tool for refining existing facies models, as well as a predictive tool for subsurface

  6. Fractional water allocation and reservoir capacity sharing concepts: An adaptation for the Komati Basin

    NASA Astrophysics Data System (ADS)

    Dlamini, Enoch M.; Dhlamini, Sidney; Mthimkhulu, Sindy

    This paper presents an adaptation of fractional water allocation and reservoir capacity sharing (FWARCS) concepts for application in the Komati Basin, a river system shared between South Africa, Swaziland and Mozambique. Many traditional methods for allocating water are based on volume-per-unit-time allocation that is supplied at some level of assurance and managed using priority-based reservoir and river system operating rules, as well as on the “use it or lose it” principle, which is considered exclusive by water users as it leaves them out of the management of their water allocations. In the Komati Basin, these traditional methods of water allocation led to frequent conflicts among users and with water managers. However, the introduction of the modified FWARCS, which assigns available water in the system to water users according to the proportions of their water entitlements and allows water to be banked in reservoirs, appears to be a solution to some of these problems. This method allows water users to decide when and how much of that entitlement they may use. Since the implementation of the modified FWARCS technique in the Komati Basin in 2002, the regulation, transparency and efficiency of operating the system improved and subsequently the number of disputes over water has declined. South Africa improved from an overuse of 8.2 Mm 3 in 2002/03 water year to realize a saving of 29.5 Mm 3 in 2005/06. Similarly, Swaziland improved from an overuse of 3.9 Mm 3 in 2002/03 to achieve a saving of 14.6 Mm 3 in 2005/06. Users have recognised and embraced the transparency and flexibility of the modified FWARCS. They choose, as the need and opportunity arise, when and how much water they utilise, whether to “bank” and/or “trade” the water they save subject to the conditions of their entitlements. The implementation of the modified FWARCS was also made successful by the existence of proper institutional structures, appropriate decision support tools, good water

  7. Variations of chlorites and illites and porosity in Mississippian sandstone reservoirs in the Illinois basin

    SciTech Connect

    Moore, D.M.; Hughes, R.E. )

    1991-03-01

    Shallow marine, Mississippian, siliclastics in the Illinois basin, although predominantly quartz, contain other minerals that directly influence the porosity and permeability of these reservoir rocks. These sandstones contain more chlorite and kaolinite, relative to illite, than the authors have observed for shales from other Chesterian and Valmeyeran strata. Clay mineral suites in reservoirs appear to be diagenetic. The Aux Vases Sandstone contains illite, illite/smectite, and chlorite; kaolinite is absent. The Cypress Sandstone contains illite, illite/smectite, chlorite, and kaolinite. Chlorite in the Aux Vases Sandstone varies from moderately Fe-rich to Mg-rich, whereas the chlorite in the Cypress Sandstone is uniformly Fe-rich. As the percentage of clay minerals in these rocks decreases, the proportion of chlorite to other clay minerals increases. In some chlorites, the width of the 003 and 005 peaks at half-height is greater than that of the 002 and 004 peaks. This suggests an interlayering of a 7{angstrom} mineral, probably berthierine- or serpentine-like. SEM photos show chlorite coating quartz grains. In some samples there are quartz overgrowths in spite of the presence of a coating of chlorite; in others, chlorite interlayered with the 7{angstrom} phase seems to have interfered with or suppressed overgrowths. Correspondingly, there is a correlation between the 7{angstrom} phase/chlorite and porosity. Therefore, identification of the type of chlorite in a potential reservoir may be an indicator of porosity, as well as a guide for selecting completion and stimulation treatments.

  8. Structural compartmentalization in a decapitated anticline: The example of the Divide Creek fractured reservoir, Piceance Basin

    SciTech Connect

    Hoak, T.E.; Klawitter, A.L. )

    1996-01-01

    Integrated analysis of high-resolution aeromagnetic and remote sensing data, confirmed by field geology, seismic and production data, demonstrates reservoir compartmentalization within the Divide Creek Field, southeast Piceance Basin. Topographic constraints and Federal land use restrictions, limit the ability to collect extensive seismic data across this complex structure and precludes complete characterization of subsurface structure by direct methods. Integrated analysis of airborne aeromagnetic data with TM (thematic mapper) and SAR (synthetic aperture radar) data, permit the resolution of the 3D complexity of this fold and its associated reservoir not easily defined using conventional 2D seismic. The Divide Creek Anticline is a decapitated pop-up anticline. The pop-up anticline that originally formed along a deeper, Eagle Valley Evaporite detachment surface has been [open quotes]decapitated[close quotes] along a shallower Manoos-level detachment that translates the shallows pop-up anticlinal axis to the west. The fold is further segmented by normal faults trending axis-perpendicular to its axis that create distinct reservoir compartments. Processing of aeromagnetic data using multiple bandpass filters demonstrates three detachments in the fold, and the 3D geometry of the detachments. Understanding timing of these structures is critical for constraining fracture genesis and gas migration models, Oriented fracture data from surficial studies, aeromagnetic data, remote sensing imagery, and subsurface core delineated three primary trends. These trends correspond to axis-parallel, axis-perpendicular and an older oblique regional fracture sets. This fracture permeability has made Divide Creek Field the most prolific Piceance Basin tight gas sand field.

  9. Structural compartmentalization in a decapitated anticline: The example of the Divide Creek fractured reservoir, Piceance Basin

    SciTech Connect

    Hoak, T.E.; Klawitter, A.L.

    1996-12-31

    Integrated analysis of high-resolution aeromagnetic and remote sensing data, confirmed by field geology, seismic and production data, demonstrates reservoir compartmentalization within the Divide Creek Field, southeast Piceance Basin. Topographic constraints and Federal land use restrictions, limit the ability to collect extensive seismic data across this complex structure and precludes complete characterization of subsurface structure by direct methods. Integrated analysis of airborne aeromagnetic data with TM (thematic mapper) and SAR (synthetic aperture radar) data, permit the resolution of the 3D complexity of this fold and its associated reservoir not easily defined using conventional 2D seismic. The Divide Creek Anticline is a decapitated pop-up anticline. The pop-up anticline that originally formed along a deeper, Eagle Valley Evaporite detachment surface has been {open_quotes}decapitated{close_quotes} along a shallower Manoos-level detachment that translates the shallows pop-up anticlinal axis to the west. The fold is further segmented by normal faults trending axis-perpendicular to its axis that create distinct reservoir compartments. Processing of aeromagnetic data using multiple bandpass filters demonstrates three detachments in the fold, and the 3D geometry of the detachments. Understanding timing of these structures is critical for constraining fracture genesis and gas migration models, Oriented fracture data from surficial studies, aeromagnetic data, remote sensing imagery, and subsurface core delineated three primary trends. These trends correspond to axis-parallel, axis-perpendicular and an older oblique regional fracture sets. This fracture permeability has made Divide Creek Field the most prolific Piceance Basin tight gas sand field.

  10. Fault interpretation and reservoir characterization of the Farewell Formation within Kerry Field, Taranaki Basin, New Zealand

    NASA Astrophysics Data System (ADS)

    Alotaby, Waleed Deefallah M.

    The Kerry Field, located in the southern offshore Taranaki Basin, is a large liquid-rich gas accumulation with a thin (20 m) oil rim. The field was discovered by the New Zealand Oil & Gas in 1986 (well Kupe South-1). The gas and oil are trapped within a 9.2 km2 fault-dependent three-way dip closure in the Paleocene Farewell Formation reservoir. Pressure, volume, and temperature (PVT) data indicate that the gas and oil columns in the field are in equilibrium with one another and are saturated at current reservoir conditions. The Farewell Formation is the uppermost formation of the Kapuni Group and is producing gas and oil in the Kerry Field. The Farewell Formation is one of the oldest reservoirs in the Taranaki Basin. The Kupe South-1 well penetrates two sequence boundaries. One is an unconformity beneath the Late Miocene Urenui Formation, and the other is beneath the Oligocene Otaraoa Formation, which appears to be in fault contact with the Paleocene Farewell Formation. The Farewell Formation was deposited in the fluvio-deltaic environment, and consists primarily of sandstone, interbedded with carbonaceous mudstone. The thickness of the formation ranges from 261 to 382 m. A time structure map, depth map, isochron map, edge detection map, and coherence map were produced to identify the structures, especially the faults the study area. A correlation across three wells along 19,089 m was generated to support the interpretation the maps. Several faults are mapped that display seismic attributes. The water-oil contact was found at a depth of 3,300 m. The density of the Farewell Formation ranges between 2.2 and 2.6 g/ cm3. The average porosity of the Farewell Formation ranges between 20 -24 present. The prospective areas for oil production are located in the north and the south-west parts of the formation.

  11. Neogene sandstone reservoirs of the East Slovakian basin: Zeolites and clay minerals from the alteration of volcanics

    SciTech Connect

    Reed, J.K.; Gipson, M. Jr. )

    1991-03-01

    Petrographic analyses of core samples from wells in the East Slovakian basin indicate that alteration products of volcanic materials cause porosity loss in sandstone reservoirs. The reservoirs, which produce natural gas, are part of a shallow marine to continental basin fill with interbedded volcaniclastics, tuffs, and volcanites. Abnormally high heat-flow values have been recorded in the basin fill, which reaches up to 7 km in thickness. Both clay minerals and zeolites are found to restrict porosity. Kaolinite, smectite, illite, chlorite, and mixed-layer clay minerals are all identified in various combinations. Zeolites identified include phillipsite, erionite, clinoptilolite, and analcime. These minerals are related to the occurrence of volcanic rock fragments in the reservoir sand and interbedded volcanics, and they occur as diagenetic replacement minerals and cements. The effects of these minerals are compounded by the initial poor reservoir quality caused by immature sediments and calcite cement. Reservoir productivity would probably be increased if drilling and completion practices in the basin reflected the potential effects of the clay minerals and zeolites.

  12. Tectonic Evolution of Tarim Basin in Cambrian-Ordovician and the Implication for Reservoir Development, NW China

    NASA Astrophysics Data System (ADS)

    Yinglu, Pan; Bingsong, Yu

    2015-04-01

    In order to search after the control of regional tectonic evolution of Tarim basin on the inside distribution of sedimentary facies and reservoir development, this paper, based on the research of plate-tectonic evolution of Tarim basin, conducts an in-depth analysis on the basin's inside sedimentary response to the Eopaleozoic regional geodynamic reversion from extension to convergence around Tarim plate, and concludes that the regional geodynamic environment of surrounding areas closely contributes to the formation and evolution of paleo-uplifts, differentiation of sedimentary facies in platform, distribution of high-energy reef and bank facies belts, conversion of sedimentary base level from fall to rise, obvious change of lithology from dolomite to limestone, and formation of several unconformity surfaces in Ordovician System in the basin. A series of sedimentary responses in the basin are controlled by the regional dynamic setting, which not only controls the distribution of reservoirs in reef and bank facies but also restricts the development and distribution of karst reservoirs controlled by the unconformity surfaces. This offers the macro geological evidences for us to further analyze and evaluate the distribution of favorable reservoirs.

  13. Tectonic evolution of Tarim basin in Cambrian-Ordovician and its implication for reservoir development, NW China

    NASA Astrophysics Data System (ADS)

    Bingsong, Yu; Zhuang, Ruan; Cong, Zhang; Yinglu, Pan; Changsong, Lin; Lidong, Wang

    2016-03-01

    In order to find the impact of regional tectonic evolution of Tarim basin on the inside distribution of sedimentary facies and reservoir development, this paper, based on the research of plate-tectonic evolution of Tarim basin, conducts an in-depth analysis on the basin's inside sedimentary response to the Eopaleozoic regional geodynamic reversion from extension to convergence around Tarim plate, and concludes that the regional geodynamic environment of surrounding areas closely contributes to the formation and evolution of paleo-uplifts, differentiation of sedimentary facies in platform, distribution of high-energy reef and bank facies belts, conversion of sedimentary base level from fall to rise, obvious change of lithology from dolomite to limestone, and formation of several unconformity surfaces in Ordovician system in the basin. A series of sedimentary responses in the basin are controlled by regional dynamic setting, which not only controls the distribution of reservoirs in reef and bank facies but also restricts the development and distribution of karst reservoirs controlled by the unconformity surfaces. This offers the macro geological evidences for us to further analyze and evaluate the distribution of favorable reservoirs.

  14. RESERVOIR CHARACTERIZATION OF THE LOWER GREEN RIVER FORMATION, SOUTHWEST UINTA BASIN, UTAH

    SciTech Connect

    S. Robert Bereskin

    2003-02-11

    Anastamosing, low gradient distributary channels produce {approx}30 gravity, paraffinic oils from the Middle Member of the lacustrine Eocene Green River Formation in the south-central portion of the Uinta Basin. This localized depocenter was situated along the fluctuating southern shoreline of Lake Uinta, where complex deposits of marginal-lacustrine to lower delta plain accumulations are especially characteristic. The Middle Member contains several fining-upward parasequences that can be recognized in outcrop, core, and downhole logs. Each parasequence is about 60 to 120 feet thick and consists of strata deposited during multiple lake level fluctuations that approach 30 to 35 feet in individual thickness. Such parasequences represent 300,000-year cycles based on limited absolute age dating. The subaerial to subaqueous channels commonly possess an erosional base and exhibit a fining upward character. Accordingly, bedding features commonly range from large-scale trough and planar cross bedding or lamination at the base, to a nonreservoir, climbing ripple assemblage near the uppermost reservoir boundary. The best reservoir quality occurs within the laminated to cross-stratified portions, and the climbing ripple phase usually possesses more deleterious micas and/or detrital clays. Diagenesis also exerts a major control on reservoir quality. Certain sandstones were cemented by an early, iron-poor calcite cement, which can be subsequently leached. Secondary intergranular porosity (up to 20%) is largely responsible for the 10 -100 millidarcy rock, which represents petrophysical objectives for both primary and secondary production. Otherwise, intense compaction, silicic and iron-rich carbonate cements, and authigenic clays serve to reduce reservoir quality to marginal economic levels.

  15. The Volta Basin Water Allocation System: assessing the impact of small-scale reservoir development on the water resources of the Volta basin, West Africa

    NASA Astrophysics Data System (ADS)

    Leemhuis, C.; Jung, G.; Kasei, R.; Liebe, J.

    2009-08-01

    In the Volta Basin, infrastructure watershed development with respect to the impact of climate conditions is hotly debated due to the lack of adequate tools to model the consequences of such development. There is an ongoing debate on the impact of further development of small and medium scale reservoirs on the water level of Lake Volta, which is essential for hydropower generation at the Akosombo power plant. The GLOWA Volta Project (GVP) has developed a Volta Basin Water Allocation System (VB-WAS), a decision support tool that allows assessing the impact of infrastructure development in the basin on the availability of current and future water resources, given the current or future climate conditions. The simulated historic and future discharge time series of the joint climate-hydrological modeling approach (MM5/WaSiM-ETH) serve as input data for a river basin management model (MIKE BASIN). MIKE BASIN uses a network approach, and allows fast simulations of water allocation and of the consequences of different development scenarios on the available water resources. The impact of the expansion of small and medium scale reservoirs on the stored volume of Lake Volta has been quantified and assessed in comparison with the impact of climate variability on the water resources of the basin.

  16. Geology and hydrocarbon potential of the Oued Mya basin, Algeria

    SciTech Connect

    Benamrane, O.; Messaoudi, M.; Messelles, H. )

    1993-09-01

    The Oued Mya hydrocarbon system is located in the Sahara basin. It is one of the best producing basins in Algeria, along with the Ghadames and Illizi basins. The stratigraphic section consists of Paleozoic and Mesozoic, and is about 5000 m thick. This intracratonic basin is limited to the north by the Toughourt saddle, and to the west and east it is flanked by regional arches, Allal-Tilghemt and Amguid-Hassi Messaoud, which culminate in the super giant Hassi Messaoud and Hassi R'mel hydrocarbon accumulations, respectively, producing oil from the Cambrian sands and gas from the Trissic sands. The primary source rock in this basin is lower Silurian shale, with an average thickness of 50 m and a total organic carbon of 6% (14% in some cases). Results of maturation modeling indicate that the lower Silurian source is in the oil window. The Ordovician shales are also source rocks, but in a second order. Clastic reservoirs are in the Trissic sequence, which is mainly fluvial deposits with complex alluvial channels, and the main target in the basin. Clastic reservoirs in the lower Devonian section have a good hydrocarbon potential east of the basin through a southwest-northwest orientation. The Late Trissic-Early Jurassic evaporites that overlie the Triassic clastic interval and extend over the entire Oued Mya basin, are considered to be a super-seal evaporite package, which consists predominantly of anhydrite and halite. For paleozoic targets, a large number of potential seals exist within the stratigraphic column. This super seal does not present oil dismigration possibilities. We can infer that a large amount of the oil generated by the Silurian source rock from the beginning of Cretaceous until now still is not discovered and significantly greater volumes could be trapped within structure closures and mixed or stratigraphic traps related to the fluvial Triassic sandstones, marine Devonian sands, and Cambrian-Ordovician reservoirs.

  17. Low flows and reservoir management for the Durance River basin (Southern France) in the 2050s

    NASA Astrophysics Data System (ADS)

    Sauquet, Eric

    2015-04-01

    . A model of water management similar to the tools used by Electricité De France was calibrated to simulate the behavior of the three reservoirs Serre-Ponçon, Castillon, Sainte-Croix on present-day conditions. This model simulates water releases from reservoir under constraints imposed by rule curves, ecological flows downstream to the dams and water levels in summer for recreational purposes. The results demonstrate the relatively good performance of this simplified model and its ability to represent the influence of reservoir operations on the natural hydrological river flow regime, the decision-making involved in water management and the interactions at regional scale. Four territorial socio-economic scenarios have been also elaborated with the help of stake holders to project water needs in the 2050s for the area supplied with water from the Durance River basin. This presentation will focus on the specific tools developed within the project to simulate water management and water abstractions. The main conclusions related to the risk of water shortage in the 2050s and the level of satisfaction for each water use will be also discussed.

  18. Multivariate classification of small order watersheds in the Quabbin Reservoir Basin, Massachusetts

    USGS Publications Warehouse

    Lent, R.M.; Waldron, M.C.; Rader, J.C.

    1998-01-01

    A multivariate approach was used to analyze hydrologic, geologic, geographic, and water-chemistry data from small order watersheds in the Quabbin Reservoir Basin in central Massachusetts. Eighty three small order watersheds were delineated and landscape attributes defining hydrologic, geologic, and geographic features of the watersheds were compiled from geographic information system data layers. Principal components analysis was used to evaluate 11 chemical constituents collected bi-weekly for 1 year at 15 surface-water stations in order to subdivide the basin into subbasins comprised of watersheds with similar water quality characteristics. Three principal components accounted for about 90 percent of the variance in water chemistry data. The principal components were defined as a biogeochemical variable related to wetland density, an acid-neutralization variable, and a road-salt variable related to density of primary roads. Three subbasins were identified. Analysis of variance and multiple comparisons of means were used to identify significant differences in stream water chemistry and landscape attributes among subbasins. All stream water constituents were significantly different among subbasins. Multiple regression techniques were used to relate stream water chemistry to landscape attributes. Important differences in landscape attributes were related to wetlands, slope, and soil type.A multivariate approach was used to analyze hydrologic, geologic, geographic, and water-chemistry data from small order watersheds in the Quabbin Reservoir Basin in central Massachusetts. Eighty three small order watersheds were delineated and landscape attributes defining hydrologic, geologic, and geographic features of the watersheds were compiled from geographic information system data layers. Principal components analysis was used to evaluate 11 chemical constituents collected bi-weekly for 1 year at 15 surface-water stations in order to subdivide the basin into subbasins

  19. Increasing Waterflood Reserves in the Wilmington Oil Field Through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect

    Chris Phillips; Dan Moos; Don Clarke; Dwasi Tagbor; John Nguygen; Roy Koerner; Scott Walker

    1997-04-10

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period January - March 1997 and to report all technical data and findings as specified in the "Federal Assistance Reporting Checklist". The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology.

  20. Synergistic gains from the multi-objective optimal operation of cascade reservoirs in the Upper Yellow River basin

    NASA Astrophysics Data System (ADS)

    Bai, Tao; Chang, Jian-xia; Chang, Fi-John; Huang, Qiang; Wang, Yi-min; Chen, Guang-sheng

    2015-04-01

    The Yellow River, known as China's "mother river", originates from the Qinghai-Tibet Plateau and flows through nine provinces with a basin area of 0.75 million km2 and an annual runoff of 53.5 billion m3. In the last decades, a series of reservoirs have been constructed and operated along the Upper Yellow River for hydropower generation, flood and ice control, and water resources management. However, these reservoirs are managed by different institutions, and the gains owing to the joint operation of reservoirs are neither clear nor recognized, which prohibits the applicability of reservoir joint operation. To inspire the incentive of joint operation, the contribution of reservoirs to joint operation needs to be quantified. This study investigates the synergistic gains from the optimal joint operation of two pivotal reservoirs (i.e., Longyangxia and Liujiaxia) along the Upper Yellow River. Synergistic gains of optimal joint operation are analyzed based on three scenarios: (1) neither reservoir participates in flow regulation; (2) one reservoir (i.e., Liujiaxia) participates in flow regulation; and (3) both reservoirs participate in flow regulation. We develop a multi-objective optimal operation model of cascade reservoirs by implementing the Progressive Optimality Algorithm-Dynamic Programming Successive Approximation (POA-DPSA) method for estimating the gains of reservoirs based on long series data (1987-2010). The results demonstrate that the optimal joint operation of both reservoirs can increase the amount of hydropower generation to 1.307 billion kW h/year (about 594 million USD) and increase the amount of water supply to 36.57 billion m3/year (about 15% improvement). Furthermore both pivotal reservoirs play an extremely essential role to ensure the safety of downstream regions for ice and flood management, and to significantly increase the minimum flow in the Upper Yellow River during dry periods. Therefore, the synergistic gains of both reservoirs can be

  1. The exhumed ``Carlin-type'' fossil oil reservoir at Yankee Basin

    NASA Astrophysics Data System (ADS)

    Hulen, Jeffrey B.; Collister, James W.; Stout, Bill; Curtiss, David K.; Dahdah, Nicolas F.

    1998-12-01

    The Carlin-type disseminated gold orebodies of Yankee basin in the southern part of the Alligator Ridge mining district in Nevada contain widespread oil as smears, open-space fillings, and fluid inclusions in syn- and pre-mineral calcite veins. These unusual oils are the relicts of an exhumed and deeply oxidized oil reservoir that encom-passes the orebodies at the crest of a dissected, anticlinal trap. Results of fluid-inclusion microthermometry and organic geochemistry demonstrate that the oils experienced peak paleotemperatures of no more than about 150°C, a temperature unusually low for Carlin-type mineralization, but ideal for the transport, entrapment, and preservation of liquid hydrocarbon. Similar geothermal systems are actively circulating at three of Nevada’s producing oil fields—Grant Canyon, Bacon Flat, and Blackburn. Accordingly, concealed Carlin-type fossil hydrothermal systems of this type, even if subeconomic for gold, could contain commercial concentrations of oil.

  2. Deep burial diagenesis in Rotliegende reservoirs of the NW German Basin

    SciTech Connect

    Ramseyer, K. ); Gaupp, R.; Matter, A.

    1990-05-01

    A deeply buried Permian continental sequence forms the major gas reservoir in northwest Germany. Deposits of fluvial, eolian, and playa lake shoreline facies show the most favorable reservoir properties. Burial diagenesis is greatly influenced by primary depositional textures and eogenetic processes. However, growth of authigenic clay minerals (illite, kaolinite/dickite, chlorite) relates to changes in the chemistry and flow rate of formation waters. Three different mesogenetic fluid types can be recognized: (1) Alkaline fluids from basin center red beds: The presence of pore-lining chlorite in porous subarkoses of the playa shoreline facies probably is related to a compaction-driven influx of alkaline waters from the shaly, red bed sequences of the basin center. (2) Acidic fluids from coal-bearing Late Carboniferous sediments: An aureole of dickite/kaolinite, several hundred meters wide, is developed in Rotliegende arkosic sands where they are juxtaposed against Carboniferous horsts. In this zone, almost all feldspars were destroyed and the formation of dickite/kaolinite was followed by illite growth and bitumen impregnation. In an outer aureole with less extensive feldspar destruction, kandite minerals are not present, but a dense meshwork of well-crystallized, platy illite fills the pores. The intensity of illitization diminishes away from the Carboniferous sediments (i.e., with increasing distance of fluid migration). K-Ar ages reveal that this illite precipitated within a period when organic maturation products were expelled from the coal measures into Rotliegende sediments and when Paleozoic faults were reactivated. (3) Brines from overlying Zechstein evaporites: During late mesogenetic uplift local influxes of these brines resulted in the formation of pore-plugging carbonate and sulfate cements.

  3. [Potential ecological risks assessment of heavy metals in the reservoir sediment of the western Haihe River basin].

    PubMed

    Cheng, Xian; Wang, Rui-lin; Wang, Jian-li; Sun, Ran-hao

    2015-05-01

    The reservoirs distributed in the western part of Haihe River basin play a key role in drinking water supply in the densely populated region. The potential ecological risk of heavy metals stored in the reservoir sediments has drawn more attention during recent decades. In this study, a total of 10 reservoirs in the western Haihe River basin were sampled. The sediment samples were assessed by the Hakanson potential ecological risk evaluation index. The sediments of upstream and downstream rivers were also sampled for comparative analysis with those of the reservoirs. The results indicated the concentration of Cd was significantly higher than the background value in this region, it was 1.67 times of the background value on average and the highest was 2.77 times. The concentration of Pb was higher than the background value for more than half of the reservoirs. The potential ecological risk was evaluated by the toxic coefficient. The ecological risk level was decreased in the order of Cd>As>Pb>Ni>Cu>Cr>Zn. The ecological risk of Cd in most reservoir sediments belonged to a moderate harm. Xidayang Reservior, which supplied the drinking water for Beijing and Baoding, had the highest level of Cd pollution. The ecological risk of Cd in the upstream and downstream rivers was significantly higher than that of the reservoirs. In addition, the ecological risks of Pb, Cu and Ni in the upstream rivers were also higher than the reservoirs. The difference of ecological risks of Zn and Cr was not significant between reservoirs and rivers. PMID:26571670

  4. Prospect evaluation of shallow I-35 reservoir of NE Malay Basin offshore, Terengganu, Malaysia

    NASA Astrophysics Data System (ADS)

    Janjua, Osama Akhtar; Wahid, Ali; Salim, Ahmed Mohamed Ahmed; Rahman, M. Nasir B. A.

    2016-02-01

    A potential accumulation of hydrocarbon that describes significant and conceivable drilling target is related to prospect. Possibility of success estimation, assuming discovery of hydrocarbons and the potential recoverable quantities range under a commercial development program are the basis of Prospect evaluation activities. The objective was to find the new shallow prospects in reservoir sandstone of I -Formation in Malay basin. The prospects in the study area are mostly consisting of faulted structures and stratigraphic channels. The methodology follows seismic interpretation and mapping, attribute analysis, evaluation of nearby well data i.e., based on well - log correlation. The petrophysical parameters analogue to nearby wells was used as an input parameter for volumetric assessment. Based on analysis of presence and effectiveness, the prospect has a complete petroleum system. Two wells have been proposed to be drilled near the major fault and stratigraphic channel in I-35 reservoir that is O-1 and O-2 prospects respectively. The probability of geological success of prospect O-1 is at 35% while for O-2 is 24%. Finally, for hydrocarbon in place volumes were calculated which concluded the best estimate volume for oil in O-1 prospect is 4.99 MMSTB and O-2 prospect is 28.70 MMSTB while for gas is 29.27 BSCF and 25.59 BSCF respectively.

  5. Characterizing fractured reservoir by multicomponent reflection data and VSPs in the Paris basin

    SciTech Connect

    Li, Xiang-Yang; MacBeth, C.; Lefeuvre, F.

    1995-12-31

    We process and interpret nine-component (9C, three component recordings of two horizontal and one vertical sources) surface seismic data and two nearby VSPs to characterize the fractured carbonate reservoir in the Dogger Formation in the Paris Basin. This is achieved by analysing differential changes in the various attributes of the vector wavefield: velocity ratios, polarizations, amplitudes and differential travel times. Careful processing is required to preserve and recover these attributes which have diagnostic anomalies associated with the Dogger formation. The interval shear-anisotropy within the Dogger shows an average of 4% with significant lateral variations, which might be interpreted as lateral changes in porosity and permeability. The differential shear-wave amplitude from the top of the Dogger shows an overall dimming. The shear-wave polarization section reveals detailed internal layering, up to six intervals, within the Dogger, which is not visible in the P-wave section. The information inferred from these wavefield attributes can be broadly correlated with the reservoir properties at the inter-well scale in Duval but with more detailed lateral variations.

  6. ANALYSIS OF FAULT SEAL POTENTIAL FOR KNOX RESERVOIRS IN THE SOUTHERN ILLINOIS BASIN

    SciTech Connect

    Hickman, John; Leetaru, Hannes

    2014-09-30

    The presence of known faults near potential geologic CO2 sequestration sites significantly raises the uncertainty of having a sufficient seal to prevent leakage along the fault plane from the intended reservoir. In regions where relocating a large sequestration project a considerable distance away from any known faults is impractical, a detailed analysis of the sealing potential of any faults within the projected future injection plume must be performed. In order to estimate the sealing potential of faults within the Late Cambrian-Early Ordovician Knox Supergroup in the Illinois Basin, two well-based cross sections were produced across two different regional fault systems (Rough Creek Fault Zone in Kentucky, and the unnamed core fault of the LaSalle Anticlinorium in Illinois) to calculate subsurface stratigraphic juxtapositions across each fault zone. Using this stratigraphic and lithologic data, three different algorithms were used to calculate the sealing potential of a theoretical Knox reservoir at each section location. These results indicate a high probability for sealing within the Rough Creek Fault Zone, but a much lower probability for a continuous seal within the LaSalle Anticlinorium.

  7. SWOT Data Assimilation for Operational Reservoir Management on the Upper Niger River Basin

    NASA Astrophysics Data System (ADS)

    Munier, S.; Polebistki, A.; Brown, C.; Belaud, G.; Lettenmaier, D. P.

    2014-12-01

    The future Surface Water and Ocean Topography (SWOT) satellite mission will provide two-dimensional maps of water elevation for rivers with width greater than 100 m globally. We describe a modeling framework and an automatic control algorithm that prescribe optimal releases from the Selingue dam in the Upper Niger River Basin, with the objective of understanding how SWOT data might be used to the benefit of operational water management. The modeling framework was used in a twin experiment to simulate the "true" system state and an ensemble of model states derived using corrupted meteorological forcings. Virtual SWOT observations of reservoir and river levels were assimilated into the model with a repeat cycle of 21 days. The updated state was used to initialize a Model Predictive Control (MPC) algorithm that computed the optimal reservoir release that meets a minimum flow requirement 300 km downstream of the dam at the entrance of the environmentally sensitive Niger Inner Delta. The data assimilation results indicate that the model updates had a positive effect on estimates of both water level and discharge. The "persistence", which describes the duration of the assimilation effect, was clearly improved by integrating a smoother into the assimilation procedure. We compared performances of the MPC with SWOT data assimilation to an open-loop MPC simulation. Results show that the assimilation of SWOT data resulted in substantial improvements in the performances of the Selingue Dam management with a greater ability to meet environmental requirements and a lower volume of water released from the dam.

  8. SWOT data assimilation for operational reservoir management on the upper Niger River Basin

    NASA Astrophysics Data System (ADS)

    Munier, S.; Polebistki, A.; Brown, C.; Belaud, G.; Lettenmaier, D. P.

    2015-01-01

    The future Surface Water and Ocean Topography (SWOT) satellite mission will provide two-dimensional maps of water elevation for rivers with width greater than 100 m globally. We describe a modeling framework and an automatic control algorithm that prescribe optimal releases from the Selingue dam in the Upper Niger River Basin, with the objective of understanding how SWOT data might be used to the benefit of operational water management. The modeling framework was used in a twin experiment to simulate the "true" system state and an ensemble of corrupted model states. Virtual SWOT observations of reservoir and river levels were assimilated into the model with a repeat cycle of 21 days. The updated state was used to initialize a Model Predictive Control (MPC) algorithm that computed the optimal reservoir release that meets a minimum flow requirement 300 km downstream of the dam. The data assimilation results indicate that the model updates had a positive effect on estimates of both water level and discharge. The "persistence," which describes the duration of the assimilation effect, was clearly improved (greater than 21 days) by integrating a smoother into the assimilation procedure. We compared performances of the MPC with SWOT data assimilation to an open-loop MPC simulation. Results show that the data assimilation resulted in substantial improvements in the performances of the Selingue dam management with a greater ability to meet environmental requirements (the number of days the target is missed falls to zero) and a minimum volume of water released from the dam.

  9. Deformation bands evolving from dilation to cementation bands in a hydrocarbon reservoir (Vienna Basin, Austria)

    PubMed Central

    Exner, Ulrike; Kaiser, Jasmin; Gier, Susanne

    2013-01-01

    In this study we analyzed five core samples from a hydrocarbon reservoir, the Matzen Field in the Vienna Basin (Austria). Deformation bands occur as single bands or as strands of several bands. In contrast to most published examples of deformation bands in terrigeneous sandstones, the reduction of porosity is predominantly caused by the precipitation of Fe-rich dolomite cement within the bands, and only subordinately by cataclasis of detrital grains. The chemical composition of this dolomite cement (10–12 wt% FeO) differs from detrital dolomite grains in the host rock (<2 wt% FeO). This observation in combination with stable isotope data suggests that the cement is not derived from the detrital grains, but precipitated from a fluid from an external, non-meteoric source. After an initial increase of porosity by dilation, disaggregation and fragmentation of detrital grains, a Fe-rich carbonate fluid crystallized within the bands, thereby reducing the porosity relative to the host sediment. The retention of pyrite cement by these cementation bands as well as the different degree of oil staining on either side of the bands demonstrate that these cementation bands act as effective barriers to the migration of fluids and should be considered in reservoir models. PMID:26321782

  10. Quantifying quagga mussel veliger abundance and distribution in Copper Basin Reservoir (California) using acoustic backscatter.

    PubMed

    Anderson, Michael A; Taylor, William D

    2011-11-01

    Quagga mussels (Dreissena bugensis) have been linked to oligotrophication of lakes, alteration of aquatic food webs, and fouling of infrastructure associated with water supply and power generation, causing potentially billions of dollars in direct and indirect damages. Understanding their abundance and distribution is key in slowing their advance, assessing their potential impacts, and evaluating effectiveness of control strategies. Volume backscatter strength (Sv) measurements at 201- and 430-kHz were compared with quagga mussel veliger and zooplankton abundances determined from samples collected using a Wisconsin closing net from the Copper Basin Reservoir on the Colorado River Aqueduct. The plankton within the lower portion of the water column (>18 m depth) was strongly dominated by D-shaped quagga mussel veligers, comprising up to 95-99% of the community, and allowed direct empirical measurement of their mean backscattering cross-section. The upper 0-18 m of the water column contained a smaller relative proportion of veligers based upon net sampling. The difference in mean volume backscatter strength at these two frequencies was found to decrease with decreasing zooplankton abundance (r(2) = 0.94), allowing for correction of Sv due to the contribution of zooplankton and the determination of veliger abundance in the reservoir. Hydroacoustic measurements revealed veligers were often present at high abundances (up to 100-200 ind L(-1)) in a thin 1-2 m layer at the thermocline, with considerable patchiness in their distribution observed along a 700 m transect on the reservoir. Under suitable conditions, hydroacoustic measurements can rapidly provide detailed information on the abundance and distribution of quagga mussel veligers over large areas with high horizontal and vertical resolution. PMID:21906773

  11. Building the 3-D jugsaw puzzle: Applications of sequence stratigraphy to 3-D reservoir characterization, Permian basin

    SciTech Connect

    Tinker, S.W.

    1996-04-01

    Reservoir characterization involves the quantification, integration, reduction, and analysis of geological, petrophysical, seismic, and engineering data. This is no small task. A principal goal of reservoir characterization is to derive a spatial understanding of interwell heterogeneity. Traditionally, geologic attempts to characterize interwell heterogeneity have been done using hand-drawn or computer-generated two-dimensional (2-D) maps and cross sections. Results can be improved dramatically using three-dimensional (3-D) interpretation and analysis techniques. Three-dimensional reservoir characterization requires the same input data used in 2-D approaches, and the cost is equal to, and commonly lower than, traditional 2-D methods. The product of 3-D reservoir characterization is a 3-D reservoir model. The language used to communicate the results of a 3-D reservoir model is visualization; i.e., visual images of numerical data. All of the available log and core data in a model area are incorporated in a 3-D model, but the data are depicted as colored cells rather than as log traces. The integrity of the 3-D reservoir model is largely a function of the stratigraphic framework. Interpreting the correct stratigraphic framework for a subsurface reservoir is the most difficult and creative part of the 3-D modeling process. Sequence and seismic stratigraphic interpretation provide the best stratigraphic framework for 3-D reservoir modeling. The purpose of this paper is to discuss the pro- cess of 3-D deterministic reservoir modeling and to illustrate the advantages of using a sequence stratigraphic framework in 3-D modeling. Mixed carbonate and siliciclastic sediment outcrop and subsurface examples from the Permian basin of west Texas and New Mexico will be used as examples, but the concepts and techniques can be applied to reservoirs of any age.

  12. Deposition of selenium and other constituents in reservoir bottom sediment of the Solomon River Basin, north-central Kansas

    USGS Publications Warehouse

    Christensen, Victoria G.

    1999-01-01

    The Solomon River drains approximately 6,840 square miles of mainly agricultural land in north-central Kansas. The Bureau of Reclamation, U.S. Department of the Interior, has begun a Resource Management Assessment (RMA) of the Solomon River Basin to provide the necessary data for National Environmental Policy Act (NEPA) compliance before renewal of long-term water-service contracts with irrigation districts in the basin. In May 1998, the U.S. Geological Survey (USGS) collected bottom-sediment cores from Kirwin and Webster Reservoirs, which are not affected by Bureau irrigation, and Waconda Lake, which receives water from both Bureau and non-Bureau irrigated lands. The cores were analyzed for selected physical properties, total recoverable metals, nutrients, cesium-137, and total organic carbon. Spearman's rho correlations and Kendall's tau trend tests were done for sediment concentrations in cores from each reservoir. Selenium, arsenic, and strontium were the only constituents that showed an increasing trend in concentrations for core samples from more than one reservoir. Concentrations and trends for these three constituents were compared to information on historical irrigation to determine any causal effect. Increases in selenium, arsenic, and strontium concentrations can not be completely explained by Bureau irrigation. However, mean selenium, arsenic, and strontium concentrations in sediment from all three reservoirs may be related to total irrigated acres (Bureau and non-Bureau irrigation) in the basin. Selenium, arsenic, and strontium loads were calculated for Webster Reservoir to determine if annual loads deposited in the reservoir were increasing along with constituent concentrations. Background selenium, arsenic, and strontium loads in Webster Reservoir are significantly larger than post-background loads.

  13. OIL RESERVOIR CHARACTERIZATION AND CO2 INJECTION MONITORING IN THE PERMIAN BASIN WITH CROSSWELL ELECTROMAGNETIC IMAGING

    SciTech Connect

    Michael Wilt

    2004-02-01

    Substantial petroleum reserves exist in US oil fields that cannot be produced economically, at current prices, unless improvements in technology are forthcoming. Recovery of these reserves is vital to US economic and security interests as it lessens our dependence on foreign sources and keeps our domestic petroleum industry vital. Several new technologies have emerged that may improve the situation. The first is a series of new flooding techniques to re-pressurize reservoirs and improve the recovery. Of these the most promising is miscible CO{sub 2} flooding, which has been used in several US petroleum basins. The second is the emergence of new monitoring technologies to track and help manage this injection. One of the major players in here is crosswell electromagnetics, which has a proven sensitivity to reservoir fluids. In this project, we are applying the crosswell EM technology to a CO{sub 2} flood in the Permian Basin oil fields of New Mexico. With our partner ChevronTexaco, we are testing the suitability of using EM for tracking the flow of injected CO{sub 2} through the San Andreas reservoir in the Vacuum field in New Mexico. The project consisted of three phases, the first of which was a preliminary field test at Vacuum, where a prototype system was tested in oil field conditions including widely spaced wells with steel casing. The results, although useful, demonstrated that the older technology was not suitable for practical deployment. In the second phase of the project, we developed a much more powerful and robust field system capable of collecting and interpreting field data through steel-cased wells. The final phase of the project involved applying this system in field tests in the US and overseas. Results for tests in steam and water floods showed remarkable capability to image between steel wells and provided images that helped understand the geology and ongoing flood and helped better manage the field. The future of this technology is indeed bright

  14. Thrace basin: An extensional Tertiary sedimentary basin in an area of major plate convergences, northwest Turkey

    SciTech Connect

    Turgut, S.; Atalik, E.

    1988-08-01

    The Thrace basin forms one of the largest Tertiary basins in Turkey. Paleontological and sedimentological evidence suggests sedimentation and basin formation commenced by a major transgression from the southwest in the middle to late middle Eocene. The basin formed over an extremely deformed crustal block. It straddles an Upper Cretaceous suture zone which later became a major mobile belt in Turkey. Syndepositional fault patterns and sedimentary thickness indicate the basin was evolved tectonically by north-south extension. Large listric normal faults and east-west depositional axis are evidence of this extension. Early marine sedimentation in the basin was accompanied by an intense volcanism which poured large quantities of ash into the depositional environment. Normal basement faults were active and great thicknesses of clastic sediments accumulated along faults. Reefal to shallow marine carbonates were deposited on shelves and over intrabasinal paleohighs. Sedimentation became regressive in the early Oligocene. Alternation of marine and nonmarine clastic deposition continued without interruption until the end of the Oligocene. By the late Oligocene to early Miocene, the whole basin was subjected to intense tectonism that caused uplift and faulting. Seismic reflection profiles reveal a very complex tectonic style in the basin. Fault-related inversion and flowage structures involving shale diapirism are quite common. Eocene and Oligocene shales are mature enough to generate economical quantities of hydrocarbons. Their source quality is fair to poor. Sand bodies in the Eocene-Oligocene series and reefal carbonates form the reservoir facies, and they are targets for exploration.

  15. Effects of the proposed Prosperity Reservoir on ground water and water quality in lower Center Creek basin, Missouri

    USGS Publications Warehouse

    Berkas, Wayne R.; Barks, James H.

    1980-01-01

    Effects of the proposed Prosperity Reservoir on groundwater and water quality in lower Center Creek basin, Mo., depend partly on the effectiveness of Grove Creek as a hydrologic boundary between the reservoir site and the Oronogo-Duenweg mining belt. Results of two dye traces indicate that Grove Creek probably is not an effective boundary. Therefore, higher water levels near the reservoir could cause more groundwater to move into the mining belt and cause a greater discharge of zinc-laden mine water into Center Creek. Fertilizer industry wastes discharged into Grove Creek resulted in significant increases of nitrogen and phosphorus in lower Center Creek. Results of seepage runs confirm that mine-water discharge and seepage account for the increased zinc concentrations in Center Creek during base flow. The nutrient and zinc concentrations in Center Creek, after the completion of the proposed reservoir, would depend upon the release schedule. (USGS)

  16. Reservoir impact assessment in sub-Saharan Africa: The Volta Basin Water Allocation System (VB-WAS)

    NASA Astrophysics Data System (ADS)

    Leemhuis, C.; Jung, G.; Kasei, R.; Liebe, J.

    2009-04-01

    In the Volta River Basin, infrastructure watershed development with respect to the impact of climate conditions is hotly debated due to the lack of adequate tools to model the consequences of such development. The Volta basin drains an area of approx. 400 000 km² of the subhumid to semiarid West-African savannah zone and is shared by six riparian countries. The region is characterized by erratic rainfall patterns, and domestic and agricultural water users in the upper regions of the Basin complete with hydropower generation in the south for increasingly scarce water resources. There is an ongoing debate on the impact of further development of small, medium and large reservoirs on the water level of Lake Volta. The GLOWA Volta Project (GVP) has developed a Volta Basin Water Allocation System (VB-WAS), a decision support tool that allows assessing the impact of infrastructure development in the basin on the availability of current and future water resources, given the current or future climate conditions. The simulated historic and future discharge time series of the coupled climate-hydrological model (MM5/WaSiM) serve as input data for a river basin management model (MIKE BASIN). MIKE BASIN uses a network approach, and allows fast simulations of water allocation and of the consequences of different development scenarios on the available water resources. Furthermore it is possible to up set up climate scenario time series scenarios for an assessment of the consequences of extreme climate conditions. Within a case study analysis the impact of small and medium scale reservoir development on the water resources of the Volta basin has been evaluated under different climatic conditions. For the evaluation of the impact of large reservoir development in particular the impact of Bui dam, which is under construction on the Black Volta River in Ghana, on the water level of Lake Volta has been simulated with the VB-WAS model. The VB-WAS model allows a quantified impact

  17. Frontier sedimentary basins of New Zealand region

    SciTech Connect

    Beggs, J.M. )

    1991-03-01

    Petroleum-prospective basins of New Zealand began to form by mid-Cretaceous rifting of crustal elements previously assembled at the Gondwana continental margin. During the latest Cretaceous-early Cenozoic New Zealand separated from Australia and Antarctica by sea-floor spreading. An overall transgression in widely recorded in this post-rift phase, with decreasing clastic sediment supply as land area and relief were reduced. Mid-Cenozoic initiation of the modern plate boundary has resulted in uplift of mountain ranges, subsidence and filling of troughs, progradation of the shelf, and common reactivation or eversion of older structures. Petroleum potential of less explored basins can be compared to the productive Taranki basin. Source rocks are coal-rich deposits of the rift phase, also developed in Great South, Canterbury/Chatham, Western Southland, West Coast, and Northland basins. A different source contributes to oil and gas seeps on the East Coast, a continental margin during Late Cretaceous. The main reservoirs of Taranaki are early Cenozoic coastal and fluvial sands, also present in Great South, Canterbury, and West Coast and possibly other basins. Other Taranaki reservoirs include mid-Cenozoic limestone and Miocene turbidites, which are widespread in most other basins. Pliocene limestones have excellent reservoir potential on the East Coast. Late Cenozoic tectonics, essential to trap development and significant for maturation in Taranaki, have created similar structures in basins near the plate boundary but are less significant in the development of Great South, eastern Canterbury/Chatham, and Northland basins.

  18. Geology of the Roswell artesian basin, New Mexico, and its relation to the Hondo Reservoir and Effect on artesian aquifer storage of flood water in Hondo Reservoir

    USGS Publications Warehouse

    Bean, Robert T.; Theis, Charles V.

    1949-01-01

    In the Roswell Basin in southeastern New Mexico artesian water is produced from cavernous zones in the carbonate rocks of the San Andres formation and the lower part of the Chalk Bluff formation, both of Permian age. The Hondo Reservoir, 9 miles west-southwest of Roswell, was completed by the U. S. Bureau of Reclamation in 1907, to store waters of the Rio Hondo for irrigation. The project was not successful, as the impounded water escaped rapidly through holes in the gypsum and limestone of the San Andres formation constituting its floor. Of 27,000 acre~feet that entered the reservoir between 1908 and 1913, only 1,100 acre-feet was drawn Ollt for use, the remainder escaping through the floor of the reservoir. Since 1939, plans have been drawn up by the State Engineer and by Federal agencies to utilize the reservoir to protect Roswell from floods. It has also been suggested that water from the Pecos River might be diverted into underground storage through the reservoir. Sinkholes in the Roswell Basin are largely clustered in areas where gypsum occurs in the bedrock. Collapse of strata is due to solution of underlying rock commonly containing gypsum. Domes occur in gypsiferous strata near Salt Creek. The Bottomless Lakes, sinkhole lakes in the escarpment on the east side of the Pecos, are believed to have developed in north-south hinge-line fractures opened when the westernmost beds in the escarpment collapsed. Collapse was due to solution and removal of gypsiferous rock by artesian water which now fills the lakes.

  19. High resolution sequence stratigraphy of Miocene deep-water clastic outcrops, Taranaki coast, New Zealand

    SciTech Connect

    King, P.R.; Browne, G.H.; Slatt, R.M.

    1995-08-01

    Approximately 700m of deep water clastic deposits of Mt. Messenger Formation are superbly exposed along the Taranaki coast of North Island, New Zealand. Biostratigraphy indicates the interval was deposited during the time span 10.5-9.2m.y. in water depths grading upward from lower bathyal to middle-upper bathyal. This interval is considered part of a 3rd order depositional sequence deposited under conditions of fluctuating relative sea-level, concomitant with high sedimentation rates. Several 4th order depositional sequences, reflecting successive sea-level falls, are recognized within the interval. Sequence boundaries display a range of erosive morphologies from metre-wide canyons to scours several hundred metres across. All components of a generic lowstand systems tract--basin floor fan, channel-levee complex and progading complex--are present in logical and temporal order. They are repetitive through the interval, with the relatively shallower-water components becoming more prevalent upward. Basin floor fan lithologies are mainly m-thick, massive and convolute-bedded sandstones that alternate with cm- and dm-thick massive, horizontally-stratified and ripple-laminated sandstones and bioturbated mudstones. Channel-levee deposits consist of interleaving packages of thin-bedded, climbing-rippled and parallel-laminated sandstones and millstones; infrequent channels are filled with sandstones and mudstones, and sometimes lined with conglomerate. Thin beds of parallel to convoluted mudstone comprise prograding complex deposits. Similar lowstand systems tracts can be recognized and correlated on subsurface seismic reflection profiles and wireline logs. Such correlation has been aided by a continuous outcrop gamma-ray fog obtained over most of the measured interval. In the adjacent Taranaki peninsula, basin floor fan and channel-levee deposits comprise hydrocarbon reservoir intervals. Outcrop and subsurface reservior sandstones exhibit similar permeabilities.

  20. Reservoir characterization of the Upper Jurassic geothermal target formations (Molasse Basin, Germany): role of thermofacies as exploration tool

    NASA Astrophysics Data System (ADS)

    Homuth, S.; Götz, A. E.; Sass, I.

    2015-06-01

    The Upper Jurassic carbonates of the southern German Molasse Basin are the target of numerous geothermal combined heat and power production projects since the year 2000. A production-orientated reservoir characterization is therefore of high economic interest. Outcrop analogue studies enable reservoir property prediction by determination and correlation of lithofacies-related thermo- and petrophysical parameters. A thermofacies classification of the carbonate formations serves to identify heterogeneities and production zones. The hydraulic conductivity is mainly controlled by tectonic structures and karstification, whilst the type and grade of karstification is facies related. The rock permeability has only a minor effect on the reservoir's sustainability. Physical parameters determined on oven-dried samples have to be corrected, applying reservoir transfer models to water-saturated reservoir conditions. To validate these calculated parameters, a Thermo-Triaxial-Cell simulating the temperature and pressure conditions of the reservoir is used and calorimetric and thermal conductivity measurements under elevated temperature conditions are performed. Additionally, core and cutting material from a 1600 m deep research drilling and a 4850 m (total vertical depth, measured depth: 6020 m) deep well is used to validate the reservoir property predictions. Under reservoir conditions a decrease in permeability of 2-3 magnitudes is observed due to the thermal expansion of the rock matrix. For tight carbonates the matrix permeability is temperature-controlled; the thermophysical matrix parameters are density-controlled. Density increases typically with depth and especially with higher dolomite content. Therefore, thermal conductivity increases; however the dominant factor temperature also decreases the thermal conductivity. Specific heat capacity typically increases with increasing depth and temperature. The lithofacies-related characterization and prediction of reservoir

  1. High resolution reservoir architecture of late Jurassic Haynesville ramp carbonates in the Gladewater field, East Texas Salt Basin

    SciTech Connect

    Goldhammer, R.K.

    1996-12-31

    The East Texas Salt Basin contains numerous gas fields within Upper Jurassic Haynesville ramp-complex reservoirs. A sequenced-keyed, high-resolution zonation scheme was developed for the Haynesville Formation in Gladewater field by integrating core description, well-log, seismic, porosity and permeability data. The Haynesville at Gladewater represents a high-energy ramp system, localized on paleotopographic highs induced by diapirism of Callovian Age Salt (Louann). Ramp crest grainstones serve as reservoirs. We have mapped the distribution of reservoir facies within a hierarchy of upward-shallowing parasequences grouped into low-frequency sequences. The vertical stacking patterns of parasequences and sequences reflect the interplay of eustasy, sediment accumulation patterns, and local subsidence (including salt movement and compaction). In this study we draw on regional relations from analogous, Jurassic systems in Mexico to constrain the stratigraphic architecture, age model, and facies model. Additionally, salt-cored Holocene, grain-rich shoals from the Persian Gulf provide excellent facies analogs. The result is a new high-resolution analysis of reservoir architecture at a parasequence scale that links reservoir facies to depositional facies. The new stratigraphy scheme demonstrates that different geographic portions of the field have markedly distinct reservoir intervals, both in terms of total pay and the sequence-stratigraphic interval within which it occurs. Results from this study are used to evaluate infill drill well potential, in well planning, for updating reservoir models, and in refining field reserve estimates.

  2. High resolution reservoir architecture of late Jurassic Haynesville ramp carbonates in the Gladewater field, East Texas Salt Basin

    SciTech Connect

    Goldhammer, R.K. )

    1996-01-01

    The East Texas Salt Basin contains numerous gas fields within Upper Jurassic Haynesville ramp-complex reservoirs. A sequenced-keyed, high-resolution zonation scheme was developed for the Haynesville Formation in Gladewater field by integrating core description, well-log, seismic, porosity and permeability data. The Haynesville at Gladewater represents a high-energy ramp system, localized on paleotopographic highs induced by diapirism of Callovian Age Salt (Louann). Ramp crest grainstones serve as reservoirs. We have mapped the distribution of reservoir facies within a hierarchy of upward-shallowing parasequences grouped into low-frequency sequences. The vertical stacking patterns of parasequences and sequences reflect the interplay of eustasy, sediment accumulation patterns, and local subsidence (including salt movement and compaction). In this study we draw on regional relations from analogous, Jurassic systems in Mexico to constrain the stratigraphic architecture, age model, and facies model. Additionally, salt-cored Holocene, grain-rich shoals from the Persian Gulf provide excellent facies analogs. The result is a new high-resolution analysis of reservoir architecture at a parasequence scale that links reservoir facies to depositional facies. The new stratigraphy scheme demonstrates that different geographic portions of the field have markedly distinct reservoir intervals, both in terms of total pay and the sequence-stratigraphic interval within which it occurs. Results from this study are used to evaluate infill drill well potential, in well planning, for updating reservoir models, and in refining field reserve estimates.

  3. Modelling of wind waves on the lake-like basin of Gorky Reservoir with WAVEWATCH III

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Kuznetsova, Alexandra; Zenkovich, Dmitry; Papko, Vladislav; Kandaurov, Alexander; Baidakov, Georgy; Vdovin, Maxim; Sergeev, Daniil

    2014-05-01

    Simulation of ocean waves and sea waves is nowadays a generally adopted technique of operational meteorology. Such well-known models as WAVEWATCH, WAM, SWAM are aimed primarily at describing ocean waves including coastal (nearshore) zones. Meanwhile, wave modelling is less developed for moderate and small inland water reservoirs and lakes, though being of considerable interest for inland navigation. In this paper test numerical experiments on simulating waves on the lake-like basin of the Gorky Reservoir using WAVEWATCH III are reported. We aimed to evaluate the applicability of the model to the waves on a mid-sized inland reservoir. Gorky Reservoir is an artificial lake in the central part of the Volga River formed by a hydroelectric dam of Gorky Hydroelectric Station between the towns of Gorodets and Zavolzhye. It spans for 427 km from the dam of Rybinsk to the dam of Gorodets through several regions of Central Russia. While it is relatively narrow and follows the natural riverbed of Volga in the upper part, it becomes up to 15 km wide downstream the town of Yuryevets. Its maximum depth is 22 m, the surface area is 1590 km2, the accumulated water volume amounts to 8.71 km3. In the series of calculations we considered moderate winds of different directions blowing steadily all over the surface of the reservoir and the waves developing from calm conditions or from some initial seeding spectral distribution that is Gaussian in frequency and space, cosine in direction. The results of wave simulation are compared then with the data collected by the field in-situ observations and measurements. The field experiments were carried out in the south part of the Gorky reservoir from the boat. In the course of the experiment we simultaneously measured profiles of wind speed and surface wave spectra using instruments placed on the Froude buoy, which measures the following parameters: i) the module and the direction of the wind speed using ultrasonic wind sensor WindSonic Gill

  4. Genesis analysis of high-gamma ray sandstone reservoir and its log evaluation techniques: a case study from the Junggar basin, northwest China.

    PubMed

    Wang, Liang; Mao, Zhiqiang; Sun, Zhongchun; Luo, Xingping; Song, Yong; Liu, Zhen

    2013-01-01

    In the Junggar basin, northwest China, many high gamma-ray (GR) sandstone reservoirs are found and routinely interpreted as mudstone non-reservoirs, with negative implications for the exploration and exploitation of oil and gas. Then, the high GR sandstone reservoirs' recognition principles, genesis, and log evaluation techniques are systematically studied. Studies show that the sandstone reservoirs with apparent shale content greater than 50% and GR value higher than 110API can be regarded as high GR sandstone reservoir. The high GR sandstone reservoir is mainly and directly caused by abnormally high uranium enrichment, but not the tuff, feldspar or clay mineral. Affected by formation's high water sensitivity and poor borehole quality, the conventional logs can not recognize reservoir and evaluate the physical property of reservoirs. Then, the nuclear magnetic resonance (NMR) logs is proposed and proved to be useful in reservoir recognition and physical property evaluation. PMID:24078797

  5. Genesis Analysis of High-Gamma Ray Sandstone Reservoir and Its Log Evaluation Techniques: A Case Study from the Junggar Basin, Northwest China

    PubMed Central

    Wang, Liang; Mao, Zhiqiang; Sun, Zhongchun; Luo, Xingping; Song, Yong; Liu, Zhen

    2013-01-01

    In the Junggar basin, northwest China, many high gamma-ray (GR) sandstone reservoirs are found and routinely interpreted as mudstone non-reservoirs, with negative implications for the exploration and exploitation of oil and gas. Then, the high GR sandstone reservoirs' recognition principles, genesis, and log evaluation techniques are systematically studied. Studies show that the sandstone reservoirs with apparent shale content greater than 50% and GR value higher than 110API can be regarded as high GR sandstone reservoir. The high GR sandstone reservoir is mainly and directly caused by abnormally high uranium enrichment, but not the tuff, feldspar or clay mineral. Affected by formation's high water sensitivity and poor borehole quality, the conventional logs can not recognize reservoir and evaluate the physical property of reservoirs. Then, the nuclear magnetic resonance (NMR) logs is proposed and proved to be useful in reservoir recognition and physical property evaluation. PMID:24078797

  6. Dolomite diagenesis and porosity preservation in lithic reservoirs: Carmopolis member, Sergipe-Alagoas Basin, northeastern Brazil

    SciTech Connect

    Souza, R.S. de; De Ros, L.F.; Morad, S.

    1995-05-01

    The lithic sandstones and conglomerates of the Carmopolis Member of the Muribeca Formation (Aptian) were deposited by fan deltas, alluvial fans, and braid deltas that prograded from low-grade metamorphic terrains into the Sergipe-Alagoas rift basin during the opening of the South Atlantic. Initial carbonates in the Carmopolis reservoirs (presently at depths of 180-2200 m) were marine (high-Mg calcite/aragonite) grain rims, allochems, stromatolitic laminites, and meteoric calcite. These carbonates were subsequently replaced by dolomite/ankerite ({delta}18O{sub PDB} = -7.3 to -4.1{per_thousand}; {delta}{sup 13}C{sub PDB} = -15 to +16.2{delta}) derived from ascending thermobaric fluids prior to oil emplacement. These fluids also caused the direct precipitation of dolomite/ankerite cements and the replacement of dolomite/ankerite cements and the replacement of nonferroan dolomite by ferroan dolomite/ankerite. Rocks lacking early cements were strongly compacted, losing their primary intergranular porosity and permeability, whereas massively cemented rocks show only minor compaction and further diagenetic modifications. Partial cementation has greatly limited the compaction and preserved intergranular porosity, allowing the partial dissolution of carbonates and framework grains and the precipitation of replacive ferroan dolomite/ankerite and pyrite. Offshore reservoirs show late porosity reduction by the precipitation of quartz, kaolinite/dickite, saddle dolomite, and ferroan calcite. Experimental analyses of porosity and permeability reduction under pressure confirmed the importance of early cementation in the preservation of porosity in lithic rocks with ductile framework.

  7. A quantitative study of the petroleum generation and migration development in the Tarim Basin, northwest of China

    SciTech Connect

    Jianchang Liu; Leonard, C.; Cao, Song; Tang, Jie

    1996-12-31

    The Tarim Basin is the largest undeveloped petroliferous basin in China. Sediments in the basin range from Precambrian to Tertiary in age and from marine carbonate to non-marine clastic in depositional environment. Investigations indicate that there are potential structural, stratigraphic and unconformity traps for oil and gas in the basin. Applying one and two dimensional basin modelling systems to the well data and cross section, a number of different geologic scenarios such as sedimentary compactions, diagenesis, unconformities, faults, thermal maturation, hydrocarbon generation, expulsion, migration and accumulation are modeled. The modelling results in the basin reveal: (1) there is a vast amount of source rock which is thermally mature or overmatured, (2) there are multiple peaks of hydrocarbon generation and a continuous expulsion process in the basin`s history, (3) the Carboniferous rocks which have undergone severe diagenesis are the major oil-producing rocks in both structural and lithological reservoirs in the Paleozoic strata; while the isolated clastic sediments are the major traps in the younger strata, (4) oil in the stratigraphic reservoirs comes mainly from the adjacent source rocks, and, (5) diagenesis and faulting are the major controlling factors for the hydrocarbon accumulations in the Paleozoic reservoirs.

  8. Geoscience/engineering characterization of the interwell environment in carbonate reservoirs based on outcrop analogs, Permian Basin, West Texas and New Mexico - petrophysical characterization of the South Cowden Grayburg Reservoir, Ector County, Texas. Final report

    SciTech Connect

    Lucia, F.J.

    1997-06-01

    Reservoir performance of the South Cowden Grayburg field suggests that only 21 percent of the original oil in place has been recovered. The purpose of this study is to construct a realistic reservoir model to be used to predict the location of the remaining mobile oil. Construction of reservoir models for fluid-flow simulation of carbonate reservoirs is difficult because they typically have complicated and unpredictable permeability patterns. Much of the difficulty results from the degree to which diagenetic overprinting masks depositional textures and patterns. For example, the task of constructing a reservoir model of a limestone reservoir that has undergone only cementation and compaction is easier than constructing a model of a karsted reservoir that has undergone cavern formation and collapse as well as cementation and compaction. The Permian-age carbonate-ramp reservoirs in the Permian Basin, West Texas and New Mexico, are typically anhydritic dolomitized limestone. Because the dolomitization occurred soon after deposition, depositional fabrics and patterns are often retained, and a reservoir model can be constructed using depositional concepts. Recent studies of the San Andres outcrop in the Guadalupe Mountains and the Seminole San Andres reservoir in the Permian Basin illustrate how depositional fabrics and patterns can be used to construct a reservoir model when depositional features are retained.

  9. Small reservoir distribution, rate of construction, and uses in the upper and middle Chattahoochee basins of the Georgia Piedmont, USA, 1950-2010

    USGS Publications Warehouse

    Ignatius, Amber R.; Jones, John W.

    2014-01-01

    Construction of small reservoirs affects ecosystem processes in numerous ways including fragmenting stream habitat, altering hydrology, and modifying water chemistry. While the upper and middle Chattahoochee River basins within the Southeastern United States Piedmont contain few natural lakes, they have a high density of small reservoirs (more than 7500 small reservoirs in the nearly 12,000 km2 basin). Policymakers and water managers in the region have little information about small reservoir distribution, uses, or the cumulative inundation of land cover caused by small reservoir construction. Examination of aerial photography reveals the spatiotemporal patterns and extent of small reservoir construction from 1950 to 2010. Over that 60 year timeframe, the area inundated by water increased nearly six fold (from 19 reservoirs covering 0.16% of the study area in 1950 to 329 reservoirs covering 0.95% of the study area in 2010). While agricultural practices were associated with reservoir creation from 1950 to 1970, the highest rates of reservoir construction occurred during subsequent suburban development between 1980 and 1990. Land cover adjacent to individual reservoirs transitioned over time through agricultural abandonment, land reforestation, and conversion to development during suburban expansion. The prolific rate of ongoing small reservoir creation, particularly in newly urbanizing regions and developing counties, necessitates additional attention from watershed managers and continued scientific research into cumulative environmental impacts at the watershed scale.

  10. 3-D solid modeling of sandstone reservoirs using NURBS: A case study of Noonen Ranch Field, Denver Basin, Colorado

    SciTech Connect

    Fisher, T.R. ); Wales, R.Q. )

    1990-02-01

    In this paper, the authors describe an experimental attempt to represent sandstone petroleum reservoirs as 3-D solids using Intergraphs object-oriented NURBS (non-uniform rational B-splines) based engineering modeling system. Initial data interpretation, well log correlation, map preparation and combination were done using GIPSE geological interpretation software. The modeling efforts were concentrated on Noonen Ranch, a small producing field in the Denver Basin of Colorado.

  11. Water quality in the proposed Prosperity Reservoir area, Center Creek Basin, Missouri

    USGS Publications Warehouse

    Barks, James H.; Berkas, Wayne R.

    1979-01-01

    Water in Center Creek basin, Mo., upstream from the proposed Prosperity Reservoir damsite is a calcium bicarbonate type that is moderately mineralized, hard, and slightly alkaline. Ammonia and organic nitrogen, phosphorus, total organic carbon, chemical oxygen demand, and bacteria increased considerably during storm runoff, probably due to livestock wastes. Nitrogen and phosphorus concentrations are probably high enough to cause the proposed lake to be eutrophic. Minor-element concentrations were at or near normal levels in Center and Jones Creeks. The only pesticides detected were 0.01 micrograms per liter of 2, 4, 5-T in one base-flow sample and 0.02 to 0.04 micrograms per liter of 2, 4, 5-T and 2, 4-D in all storm-runoff samples. Fecal coliform and fecal streptococcus densities ranged from 2 to 650 and 2 to 550 colonies per 100 milliliters, respectively, during base flow , but were 17,000 to 45,000 and 27,000 to 70,000 colonies per 100 milliliters, respectively, during storm runoff. Water in Center Creek about 2.5 miles downstream from the proposed damsite is similar in quality to that upstream from the damsite except for higher concentrations of sodium, sulfate, chloride, fluoride, nitrogen, and phosphorus. These higher concentrations are caused by fertilizer industry wastes that enter Center Creek about 1.0 mile downstream from the proposed damsite. (Woodard-USGS).

  12. 3-D seismic improves structural mapping of a gas storage reservoir (Paris basin)

    SciTech Connect

    Huguet, F. ); Pinson, C. )

    1993-09-01

    In the Paris basin, anticlinal structures with closure of no more than 80 m and surface area of a few km[sup 2] are used for underground gas storage. At Soings-en-Sologne, a three-dimensional (3-D) survey (13 km[sup 2]) was carried out over such a structure to establish its exact geometry and to detail its fault network. Various reflectors were picked automatically on the migrated data: the top of the Kimmeridgian, the top of the Bathoinian and the base of the Hettangian close to the top of the reservoir. The isochron maps were converted into depth using data from 12 wells. Horizon attributes (amplitude, dip, and azimuth) were used to reconstruct the fault's pattern with much greater accuracy than that supplied by interpretation from previous two-dimensional seismic. The Triassic and the Jurassic are affected by two systems of conjugate faults (N10-N110, inherited from the Hercynian basement and N30-N120). Alternating clay and limestone are the cause of numerous structural disharmonies, particularly on both sides of the Bathonian. Ridges associated with N30-N120 faults suggest compressive movements contemporaneous with the tertiary events. The northern structure in Soings-en-Sologne thus appear to be the result of polyphased tectonics. Its closure (25 m), which is associated either with dips or faults, is described in detail by 3-D seismic, permitting more accurate forecast of the volume available for gas storage.

  13. The relationship between mineral content and acoustic velocity of sandstone reservoirs in Junggar basin

    NASA Astrophysics Data System (ADS)

    Li, Yan; Gu, Hanming

    2015-08-01

    Sandstone reservoirs have generally high porosity in the Shawan formation of the Chunguang oil field, Junggar basin, because they developed in geological conditions of shallow and weak compaction. High porosity always links lower acoustic velocities in sandstone. However, when it is more than a certain value (approximately 27.5%), the porosity is not in accordance with acoustic velocities. In addition, cast thin sections illustrated incoherence between pore types and porosity. Fluids and mineral content are the two main factors changing acoustic velocities. This means that acoustic velocities of the high-porosity sandstone are mainly affected by the mineral content and fluid properties. Hence, data from litho-electric analysis are used to measure velocities of the compression shear waves, and thin sections are used to identify the mineral content. By the application of cross-plot maps, relations of acoustic velocities and mineral contents are proposed. Mineral contents include mainly quartz, feldspar, and tuff. In normal rock physical models, the shale content is calculated from well logs. The mineral grain is often regarded as pure quartz grain or average mineral composition. However, the application of the normal rock physics model will be inaccurate for high-porosity sandstone. Experience regression functions of the velocity model are established to estimate acoustic velocities. Also, mineral content logs could be predicted by using the P-wave acoustic log, and the rock physics model would be enhanced by using these logs of dynamic mineral contents. Shear wave velocity could also be estimated more accurately.

  14. The relationship analysis between water injection and microfacies of SHA1 reservoir of Liao He Basin, China.

    PubMed

    Wang, Qing; Lu, Zhanguo; Guo, Shiguang; Wang, Chao

    2014-01-01

    SHA1 is the representative reservoir in Liao He Basin. Through the introduction of curvature displayed on the gray scale, we determine the substructure and fractures. Geostatistical inversion method is used to help study the porosity of reservoir. The relationship between interval transit times and resistivity among mudstone and sandstone, before and after water injection, is analyzed. The relationship between porosity and permeability and the relationship between porosity and impedance from core analysis were studied. Through the whole information above, we divide the microfacies of SHA1 reservoir to distributary channel, mouth bar, the leading edge thin sand, and prodelta mud. The water injections in different microfacies are studied. The distributary channel should be used by large distant injection wells or smaller injection pressure injection. The smaller distant injection wells or large injection pressure should be used in the mouth bar. The arrangement of well injection need consider the different sedimentary microfacies. PMID:24672345

  15. The Relationship Analysis between Water Injection and Microfacies of SHA1 Reservoir of Liao He Basin, China

    PubMed Central

    Wang, Qing; Lu, Zhanguo; Guo, Shiguang; Wang, Chao

    2014-01-01

    SHA1 is the representative reservoir in Liao He Basin. Through the introduction of curvature displayed on the gray scale, we determine the substructure and fractures. Geostatistical inversion method is used to help study the porosity of reservoir. The relationship between interval transit times and resistivity among mudstone and sandstone, before and after water injection, is analyzed. The relationship between porosity and permeability and the relationship between porosity and impedance from core analysis were studied. Through the whole information above, we divide the microfacies of SHA1 reservoir to distributary channel, mouth bar, the leading edge thin sand, and prodelta mud. The water injections in different microfacies are studied. The distributary channel should be used by large distant injection wells or smaller injection pressure injection. The smaller distant injection wells or large injection pressure should be used in the mouth bar. The arrangement of well injection need consider the different sedimentary microfacies. PMID:24672345

  16. Stratigraphy and reservoir potential of glacial deposits of the Itarare Group (Carboniferous-Permian), Parana basin, Brazil

    SciTech Connect

    Franca, A.B. ); Potter, P.E. )

    1991-01-01

    Drilling in the Parana basin of Brazil in the mid-1980s discovered gas and condensate in the Itarare Group, and showed that glacial deposits in Brazil can contain hydrocarbons. The reservoir potential of the Carboniferous-Permian Itarare Group of the basin is analyzed using new subsurface data from 20 deep wells drilled in the early to middle 1980s. Central to the analysis was the construction of over 3000 km of cross sections based on more than 100 wells, the description of more than 400 m of core, and study of 95 thin sections. Subsurface exploration and mapping of the Itarare are greatly aided by the recognition of three recently defined and described formations and four members, which are traceable for hundreds of kilometers. These units belong to three major glacial cycles in which the pebbly mudstones and shales are seals and glacially related sandstones are reservoirs. The best sandstone reservoirs in the deep subsurface belong to the Rio Segredo Member, the upper-most sandy unit of the Itarare. The Rio Segredo Member is the best petroleum target because it is overlain by thick seals and massive pebbly mudstones and shales, and because it is shallower and less compacted than underlying, more deeply buried sandstones. This member has little detrital matrix and much of its porosity is secondary, developed by carboxylic acid and CO{sub 2} generated when Jurassic-Cretaceous basalts, sills, and dikes were intruded into the Parana basin as Gondwana broke up.

  17. Comparison of Tarim and central Asian FSU basins, II: Differences in hydrocarbon systems and possible explanations

    SciTech Connect

    Shangyou, N.; Heubeck, C.

    1996-12-31

    If the Tertiary crustal shortening and indentation in the Pamirs is restored palinspastically, it would be evident that the Central Asian basins in the FSU (including Amu Darya, Tajik, Fergana, and Syr Darya) in the west and the Tarim basin in the cast probably shared many similarities in their geological history after becoming part of the Eurasia continent in the Late Paleozoic. For example, both areas contain significant amounts of coal-bearing Jurassic sequences, and a marine connection no doubt existed between the two during the maximum marine transgression period of Late Cretaceous and Early Tertiary. A direct comparison is more difficult for the Paleozoic sequences because in the Central Asia basins, they are either buried too deeply or highly metamorphosed in the outcrops. It is interesting to note that these basins exhibit vast differences in the age and type of source and reservoir rocks. For the Tarim basin, most of the source rocks are Paleozoic (Ordovician and Carboniferous) and marine in nature, whereas in the Central Asian basins, the dominant source rocks are Jurassic and younger and include both marine and non-marine sequences. Similarly for the reservoir rocks, most of the hydrocarbons found in the Tarim basin is from the Paleozoic, (such as Devonian and Carboniferous clastics/carbonates), whereas in Amu Darya and Fergana basins, the reservoir rocks are dominated by Jurassic carbonates and Paleogene clastics respectively. This presentation will highlight these differences and address the probable causes mainly from the view points of tectonics and paleogeography. We conclude that the dominant effect is the Early Tertiary India-Asia collision, which caused significant differences in the distribution and thickness of the post-collisional clastic sediments, which in turn resulted in different maturation and migration history.

  18. Comparison of Tarim and central Asian FSU basins, II: Differences in hydrocarbon systems and possible explanations

    SciTech Connect

    Shangyou, N.; Heubeck, C. )

    1996-01-01

    If the Tertiary crustal shortening and indentation in the Pamirs is restored palinspastically, it would be evident that the Central Asian basins in the FSU (including Amu Darya, Tajik, Fergana, and Syr Darya) in the west and the Tarim basin in the cast probably shared many similarities in their geological history after becoming part of the Eurasia continent in the Late Paleozoic. For example, both areas contain significant amounts of coal-bearing Jurassic sequences, and a marine connection no doubt existed between the two during the maximum marine transgression period of Late Cretaceous and Early Tertiary. A direct comparison is more difficult for the Paleozoic sequences because in the Central Asia basins, they are either buried too deeply or highly metamorphosed in the outcrops. It is interesting to note that these basins exhibit vast differences in the age and type of source and reservoir rocks. For the Tarim basin, most of the source rocks are Paleozoic (Ordovician and Carboniferous) and marine in nature, whereas in the Central Asian basins, the dominant source rocks are Jurassic and younger and include both marine and non-marine sequences. Similarly for the reservoir rocks, most of the hydrocarbons found in the Tarim basin is from the Paleozoic, (such as Devonian and Carboniferous clastics/carbonates), whereas in Amu Darya and Fergana basins, the reservoir rocks are dominated by Jurassic carbonates and Paleogene clastics respectively. This presentation will highlight these differences and address the probable causes mainly from the view points of tectonics and paleogeography. We conclude that the dominant effect is the Early Tertiary India-Asia collision, which caused significant differences in the distribution and thickness of the post-collisional clastic sediments, which in turn resulted in different maturation and migration history.

  19. Petrophysical Analysis and Geographic Information System for San Juan Basin Tight Gas Reservoirs

    SciTech Connect

    Martha Cather; Robert Lee; Robert Balch; Tom Engler; Roger Ruan; Shaojie Ma

    2008-10-01

    The primary goal of this project is to increase the availability and ease of access to critical data on the Mesaverde and Dakota tight gas reservoirs of the San Juan Basin. Secondary goals include tuning well log interpretations through integration of core, water chemistry and production analysis data to help identify bypassed pay zones; increased knowledge of permeability ratios and how they affect well drainage and thus infill drilling plans; improved time-depth correlations through regional mapping of sonic logs; and improved understanding of the variability of formation waters within the basin through spatial analysis of water chemistry data. The project will collect, integrate, and analyze a variety of petrophysical and well data concerning the Mesaverde and Dakota reservoirs of the San Juan Basin, with particular emphasis on data available in the areas defined as tight gas areas for purpose of FERC. A relational, geo-referenced database (a geographic information system, or GIS) will be created to archive this data. The information will be analyzed using neural networks, kriging, and other statistical interpolation/extrapolation techniques to fine-tune regional well log interpretations, improve pay zone recognition from old logs or cased-hole logs, determine permeability ratios, and also to analyze water chemistries and compatibilities within the study area. This single-phase project will be accomplished through four major tasks: Data Collection, Data Integration, Data Analysis, and User Interface Design. Data will be extracted from existing databases as well as paper records, then cleaned and integrated into a single GIS database. Once the data warehouse is built, several methods of data analysis will be used both to improve pay zone recognition in single wells, and to extrapolate a variety of petrophysical properties on a regional basis. A user interface will provide tools to make the data and results of the study accessible and useful. The final deliverable

  20. The Mesozoic rift basins of eastern North America: Potential reservoir or Explorationist's folly

    SciTech Connect

    Pyron, A.

    1991-08-01

    Mesozoic rift basins are found on the East Coast of North America from Georgia to Nova Scotia. The basins formed as a result of extensional activity associated with the breakup of Pangaea. The internal geometry of the basins includes a depositional sequence ranging from coarse fanglomerates to fine-grained siltstones and argillites. Since these Mesozoic rift basins were first studied, they have not been considered to be likely spots for hydrocarbon accumulations. Recently, geologists have reconsidered these Mesozoic basins and have developed a more synergistic approach that suggests that many of these rift basins might be suitable targets for exploration. By analogy, these Mesozoic basins are correlative to similar basins in northwestern Africa, where significant reserved of oil and natural gas have been developed. The similarity between the productive basins in northwestern Africa and the Mesozoic basins of North America and their proximity to major markets provides sufficient rationale to further investigate these basins.

  1. Petrology and reservoir paragenesis in the Sussex 'B' sandstone of the upper Cretaceous Cody Shale, House Creek and Porcupine Fields, Powder River Basin, Wyoming

    SciTech Connect

    Higley, D.K.

    1991-05-03

    Using petrologic and sedimentologic studies, the paper characterizes the influence of sedimentologic and petrologic variations on reservoir heterogeneity in the Sussex 'B' sandstone in the House Creek and Porcupine fields, Powder River Basin, Wyoming. Effects of authigenic minerals on reservoir properties are described in detail for selected inter-ridge and ridge facies sandstones.

  2. Nutrient Sources and Transport in the Missouri River Basin, with Emphasis on the Effects of Irrigation and Reservoirs1

    PubMed Central

    Brown, Juliane B; Sprague, Lori A; Dupree, Jean A

    2011-01-01

    Abstract SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some areas. Sediment mobilized from stream channels was a source of phosphorus in medium and larger streams. Irrigation on agricultural land was estimated to decrease the nitrogen load reaching the Mississippi River by as much as 17%, likely as a result of increased anoxia and denitrification in the soil zone. Approximately 16% of the nitrogen load and 33% of the phosphorus load that would have otherwise reached the Mississippi River was retained in reservoirs and lakes throughout the basin. Nearly half of the total attenuation occurred in the eight largest water bodies. Unlike the other major tributary basins, nearly the entire instream nutrient load leaving the outlet of the Platte and Kansas River subbasins reached the Mississippi River. Most of the larger reservoirs and lakes in the Platte River subbasin are upstream of the major sources, whereas in the Kansas River subbasin, most of the source inputs are in the southeast part of the subbasin where characteristics of the area and proximity to the Missouri River facilitate delivery of nutrients to the Mississippi River. PMID:22457581

  3. Nutrient Sources and Transport in the Missouri River Basin, with Emphasis on the Effects of Irrigation and Reservoirs.

    PubMed

    Brown, Juliane B; Sprague, Lori A; Dupree, Jean A

    2011-10-01

    SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some areas. Sediment mobilized from stream channels was a source of phosphorus in medium and larger streams. Irrigation on agricultural land was estimated to decrease the nitrogen load reaching the Mississippi River by as much as 17%, likely as a result of increased anoxia and denitrification in the soil zone. Approximately 16% of the nitrogen load and 33% of the phosphorus load that would have otherwise reached the Mississippi River was retained in reservoirs and lakes throughout the basin. Nearly half of the total attenuation occurred in the eight largest water bodies. Unlike the other major tributary basins, nearly the entire instream nutrient load leaving the outlet of the Platte and Kansas River subbasins reached the Mississippi River. Most of the larger reservoirs and lakes in the Platte River subbasin are upstream of the major sources, whereas in the Kansas River subbasin, most of the source inputs are in the southeast part of the subbasin where characteristics of the area and proximity to the Missouri River facilitate delivery of nutrients to the Mississippi River. PMID:22457581

  4. Modeling of basin-wide water management for dry-season paddy irrigation with large reservoirs in the Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Kudo, R.; Masumoto, T.; Horikawa, N.; Yoshida, T.

    2012-12-01

    Northeast Thailand, one of the regions in the Mekong River Basin, has less rainfall than adjacent countries and its rainfall is heavily concentrated in rainy seasons (almost 90% of annual rainfall). Therefore, this area is characterized as semi-arid region especially during dry seasons. In this region, rain-fed paddies account for about 90% and this leads to unstable rice production. Against these backgrounds, a number of large irrigation projects have been carried out since the 1970s to increase agricultural productivity. In these projects, a lot of irrigation facilities such as large/medium reservoirs, diversion weirs and irrigation canals were constructed for stable water supply in dry seasons. These projects enable farmers to pursue double rice cropping as rainy- and dry-season cropping in this region. Paddy field irrigation, however, exerts a great influence on water circulation of river basins in Monsoon Asia and modeling of these processes is crucial to understand the hydrological cycle especially in areas where irrigated agriculture is dominant. In this study, to quantify the hydrological cycle in irrigation-dominant basins, we applied a distributed hydrological model incorporating paddy irrigation schemes to the Mun River Basin, one of the tributaries of the Mekong River, in Northeast Thailand, and analyzed water circulation considering complex water use by agricultural activities. The model used in this study consists of four sub-models, such as referential evapotranspiration, cropping pattern/area, agricultural water use, and runoff model in order to estimate various information on agricultural water use. Additionally, water allocation and reservoir operation models were integrated into the hydrological model to account for the water circulation in large irrigation areas. For the analysis, the basin is divided into 10km-mesh and each mesh contains the ratio of 5 land-use category as forest, rain-fed paddy, irrigated paddy, upland field and water area

  5. A quantitative study of the petroleum generation and migration development in the Tarim Basin, northwest of China

    SciTech Connect

    Jianchang Liu; Leonard, C. ); Cao, Song; Tang, Jie )

    1996-01-01

    The Tarim Basin is the largest undeveloped petroliferous basin in China. Sediments in the basin range from Precambrian to Tertiary in age and from marine carbonate to non-marine clastic in depositional environment. Investigations indicate that there are potential structural, stratigraphic and unconformity traps for oil and gas in the basin. Applying one and two dimensional basin modelling systems to the well data and cross section, a number of different geologic scenarios such as sedimentary compactions, diagenesis, unconformities, faults, thermal maturation, hydrocarbon generation, expulsion, migration and accumulation are modeled. The modelling results in the basin reveal: (1) there is a vast amount of source rock which is thermally mature or overmatured, (2) there are multiple peaks of hydrocarbon generation and a continuous expulsion process in the basin's history, (3) the Carboniferous rocks which have undergone severe diagenesis are the major oil-producing rocks in both structural and lithological reservoirs in the Paleozoic strata; while the isolated clastic sediments are the major traps in the younger strata, (4) oil in the stratigraphic reservoirs comes mainly from the adjacent source rocks, and, (5) diagenesis and faulting are the major controlling factors for the hydrocarbon accumulations in the Paleozoic reservoirs.

  6. Styles of deposition and diagenesis in the Monahans Clear Fork reservoir: Implications for improved characterization of Leonard reservoirs on the Central basin platform

    SciTech Connect

    Ruppel, S.C. )

    1992-04-01

    The Leonard Series (Lower Permian) of west Texas contains a substantial hydrocarbon resource; the original oil in place in these predominantly carbonate rocks totaled about 14.5 billion bbl. Recovery of this resource has proven difficult, however. Current recovery efficiencies average about 20%, far below the 35% average for other Permian basin carbonate reservoirs. Detailed characterization of the Leonard in the Monahans field (Ward and Winkler counties, Texas) illustrates that poor reservoir performance in these reservoirs is the result of extreme lithologic heterogeniety resulting from cyclic rise and fall of relative sea level. Patterns of both depositional and diagenetic facies are a function of this cyclicity. Three orders of cyclicity are apparent in the Leonard: high-frequency, fifth-order cycles averaging 1-2 m in thickness, fourth-order cycles averaging 15-20 m in thickness, and third-order cycles averaging 200 m in thickness. Diagenetic patterns reflect control by fourth-order and third-order cyclicity. Both depositional and diagenetic trends are modified by local topography. Porosity and permeability also manifest cycle-related trends. Porosity and permeability exhibit opposite relationships to paleotopography. Porosity, which is encountered in tidal-flat and subtidal facies, is greatest on paleotopographic highs, whereas permeability, which is most commonly developed in subtidal facies, is most common on paleotopographic lows. Preliminary investigation of Leonard carbonate sequences elsewhere in the Permian basin reveals analogous styles and patterns of facies development. The concepts and models developed in the Monahans field should help improve characterization of these sequences as well.

  7. Play Analysis and Digital Portfolio of Major Oil Reservoirs in the Permian Basin: Application and Transfer of Advanced Geological and Engineering Technologies for Incremental Production Opportunities

    SciTech Connect

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; Caroline L. Breton; William D. Raatz; Stephen C. Ruppel; Charles Kerans

    2004-01-13

    A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest onshore petroleum-producing basin in the United States. Approximately 1,300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of oil through 2000. Of these significant-sized reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. There are 32 geologic plays that have been defined for Permian Basin oil reservoirs, and each of the 1,300 major reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. The final reservoir shapefile for each play contains the geographic location of each reservoir. Associated reservoir information within the linked data tables includes RRC reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are smaller than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. Oil production from the reservoirs in the Permian Basin having cumulative production of >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl [5.25 x 10{sup 8} m{sup 3}]), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San Andres Platform Carbonate play (2.15 Bbbl [3.42 x 10{sup 8} m{sup 3}]). Detailed studies of three reservoirs

  8. Detailed mapping of reservoir structural geometry in detached, shortened fold belts, Ortega (Aptian-Albian) field area, Girardot basin, Colombia

    SciTech Connect

    Allen, G.D. )

    1990-05-01

    Discovery and development of oil fields in shortened compressional fold belts require recognition that the largest reservoirs occur in intermediate or third-order scale folds. Third-order folds generally are preserved in the footwall of larger scale fold thrusts, and may be concealed beneath smaller, detached surface folds of nonreservoir condition. A successful reservoir mapping procedure involved (1) detailed surface mapping, (2) depth conversion of seismic data (3) construction of a network of true-scale balanced cross sections, and (4) contour mapping above and below the major zones of detachment. Structure at the 11 million bbl Ortega field consist of convergent third-order fold thrusts, with internal decollement. Tight flexural-slip folds imbricate and tectonically thicken upward on the west-verging Ortega anticline. The buried, east-vergent Salado anticline acts as a buttress to westward propagation at Ortega but retreats along strike to allow the Porvenir anticline to develop a low, broad, fault-bend fold geometry. At least four fault blocks in the Ortega field remain untested because balanced section analysis has not been employed to create additional control points for structure contour maps on the top of the reservoir. It is speculated that another 10-50 million bbl of primary recoverable reserves remain in the Ortega field. In addition, reservoirs like the Ortega field should occur elsewhere in the Girardot basin. These reservoirs likely will occur all along the footwall of fold-thrust structures on the flank of the intrabasin Pata high.

  9. Long-term trend analysis of reservoir water quality and quantity at the landscape scale in two major river basins of Texas, USA.

    USGS Publications Warehouse

    Patino, Reynaldo; Asquith, William H.; VanLandeghem, Matthew M.; Dawson, D.

    2016-01-01

    Trends in water quality and quantity were assessed for 11 major reservoirs of the Brazos and Colorado river basins in the southern Great Plains (maximum period of record, 1965–2010). Water quality, major contributing-stream inflow, storage, local precipitation, and basin-wide total water withdrawals were analyzed. Inflow and storage decreased and total phosphorus increased in most reservoirs. The overall, warmest-, or coldest-monthly temperatures increased in 7 reservoirs, decreased in 1 reservoir, and did not significantly change in 3 reservoirs. The most common monotonic trend in salinity-related variables (specific conductance, chloride, sulfate) was one of no change, and when significant change occurred, it was inconsistent among reservoirs. No significant change was detected in monthly sums of local precipitation. Annual water withdrawals increased in both basins, but the increase was significant (P < 0.05) only in the Colorado River and marginally significant (P < 0.1) in the Brazos River. Salinity-related variables dominated spatial variability in water quality data due to the presence of high- and low-salinity reservoirs in both basins. These observations present a landscape in the Brazos and Colorado river basins where, in the last ∼40 years, reservoir inflow and storage generally decreased, eutrophication generally increased, and water temperature generally increased in at least 1 of 3 temperature indicators evaluated. Because local precipitation remained generally stable, observed reductions in reservoir inflow and storage during the study period may be attributable to other proximate factors, including increased water withdrawals (at least in the Colorado River basin) or decreased runoff from contributing watersheds.

  10. Research on the Log Interpretation Method of Tuffaceous Sandstone Reservoirs of X Depression in Hailar-Tamtsag Basin

    NASA Astrophysics Data System (ADS)

    Liu, S.; Pan, B.

    2015-12-01

    The logging evaluation of tuffaceous sandstone reservoirs is always a difficult problem. Experiments show that the tuff and shale have different logging responses. Since the tuff content exerts an influence on the computation of shale content and the parameters of the reservoir, and the accuracy of saturation evaluation is reduced. Therefore, the effect of tuff on the calculation of saturation cannot be ignored. This study takes the tuffaceous sandstone reservoirs in the X depression of Hailar-Tamtsag basin as an example to analyze. And the electric conduction model of tuffaceous sandstone reservoirs is established. The method which combines bacterial foraging algorithm and particle swarm optimization algorithm is used to calculate the content of reservoir components in well logging for the first time, and the calculated content of tuff and shale corresponds to the results analysis of thin sections. The experiment on cation exchange capacity (CEC) proves that tuff has conductivity, and the conversion relationship between CEC and resistivity proposed by Toshinobu Iton has been improved. According to the rock electric experiment under simulated reservoir conditions, the rock-electro parameters (a, b, m and n) are determined. The improved relationship between CEC and resistivity and the rock-electro parameters are used in the calculation of saturation. Formula (1) shows the saturation equation of the tuffaceous reservoirs:According to the comparative analysis between irreducible water saturation and the calculated saturation, we find that the saturation equation used CEC data and rock-electro parameters has a better application effect at oil layer than Archie's formulas.