Science.gov

Sample records for basin clastic reservoirs

  1. Clastic depositional styles and reservoir potential of Mediterranean basins

    SciTech Connect

    Bouma, A.H. )

    1990-05-01

    A variety of tectonic styles and activities throughout the late Mesozoic and younger epochs influenced sediment transport to the Mediterranean basins and, consequently, the approach needed to finding reservoir-type clastics. The style of the present-day basins varies from west to east, with large basinal depressions and continental rises in the western province, more elongate shapes in the central area, and numerous small basins and trenches in the eastern Mediterranean. In general terms, all these basins contain a similar fill: a deep-water sequence older than late Miocene, overlain by upper Miocene evaporites, and topped by Pliocene-Quaternary clastics. The exact type of fill depends on several factors, including proximity to the sediment source, climatic conditions, subsidence and tectonic activity, and tectono-eustatic or glacio-eustatic oscillations. Investigations on many of the clastic reservoirs in Mediterranean basins should emphasize submarine fans. The modern Mediterranean Sea contains several mid-sized fans (Rhone, Ebro, Valencia, and Nile fans) and many small ones (e.g., Crati Fan). There are several well-studied Tertiary subsurface and outcropping turbidite systems. The concept of deep-water marine sands, and many of the initial studies, began with some of the now classic outcrops in Italy, France, and Spain. A well-integrated study of both modern and ancient turbidite series is needed to construct basic exploration models for the Mediterranean region. 9 figs., 1 tab.

  2. Application of advanced reservoir characterization, simulation and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Annual report

    SciTech Connect

    Dutton, S.P.; Asquith, G.B.; Barton, M.D.; Cole, A.G.; Gogas, J.; Malik, M.A.; Clift, S.J.; Guzman, J.I.

    1997-11-01

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. This project involves reservoir characterization of two Late Permian slope and basin clastic reservoirs in the Delaware Basin, West Texas, followed by a field demonstration in one of the fields. The fields being investigated are Geraldine Ford and Ford West fields in Reeves and Culberson Counties, Texas. Project objectives are divided into two major phases, reservoir characterization and implementation. The objectives of the reservoir characterization phase of the project were to provide a detailed understanding of the architecture and heterogeneity of the two fields, the Ford Geraldine unit and Ford West field. Reservoir characterization utilized 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once reservoir characterized was completed, a pilot area of approximately 1 mi{sup 2} at the northern end of the Ford Geraldine unit was chosen for reservoir simulation. This report summarizes the results of the second year of reservoir characterization.

  3. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect

    Dutton, Shirley P.; Flanders, William A.

    2001-11-04

    The objective of this Class III project was demonstrate that reservoir characterization and enhanced oil recovery (EOR) by CO2 flood can increase production from slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico. Phase 1 of the project, reservoir characterization, focused on Geraldine Ford and East Ford fields, which are Delaware Mountain Group fields that produce from the upper Bell Canyon Formation (Ramsey sandstone). The demonstration phase of the project was a CO2 flood conducted in East Ford field, which is operated by Orla Petco, Inc., as the East Ford unit.

  4. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect

    Dutton, Shirley P.; Flanders, William A.; Mendez, Daniel L.

    2001-05-08

    The objective of this Class 3 project was demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstone's of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover oil more economically through geologically based field development. This project was focused on East Ford field, a Delaware Mountain Group field that produced from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 9160, is operated by Oral Petco, Inc., as the East Ford unit. A CO2 flood was being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

  5. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect

    Dutton, Shirley P.; Flanders, William A.; Zirczy, Helena H.

    2000-05-24

    The objective of this Class 3 project was to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Phase 1 of the project, reservoir characterization, was completed this year, and Phase 2 began. The project is focused on East Ford field, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 1960, is operated by Oral Petco, Inc., as the East Ford unit. A CO{sub 2} flood is being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

  6. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin)

    SciTech Connect

    Shirley P. Dutton

    1997-07-30

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir-characterization study of both fields is completed, a pilot area of approximately 1 mi 2 in one of the fields will be chosen for reservoir simulation.

  7. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect

    Murphy, Mark B.

    1999-02-24

    The Nash Draw Brushy Canyon Pool in Eddy County New Mexico is a cost-shared field demonstration project in the US Department of Energy Class II Program. A major goal of the Class III Program is to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques are being used at the Nash Draw project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. Analysis, interpretation, and integration of recently acquired geologic, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description is being used as a risk reduction tool to identify ''sweet spots'' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well simulation, and well spacing to improve recovery from this reservoir.

  8. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope, and Basin Clastic Reservoirs, West Texas (Delaware Basin)

    SciTech Connect

    Shirley P. Dutton

    1997-04-30

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir-characterization study of both fields is completed, a pilot area of approximately 1 mi 2 in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO 2 flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Through technology transfer workshops and other presentations, the knowledge gained in the comparative study of these two fields can then be applied to increase production from the more

  9. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin).

    SciTech Connect

    Dutton, S.P.

    1997-10-30

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir- characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sub 2} flood, water flood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Through technology transfer workshops and other present at ions, the knowledge gained in the comparative study of these two fields can then be applied to increase product ion

  10. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Technical progress report

    SciTech Connect

    Dutton, S.P.

    1996-04-30

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. One the reservoir-characterization study of both field is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to: (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area; (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments; and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced recovery program (CO{sub 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill well will be drilled and cored. Technical progress is summarized for: geophysical characterization; reservoir characterization; outcrop characterization; and producibility problem characterization.

  11. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin)

    SciTech Connect

    Dutton, S.P.; Flanders, W.A.; Guzman, J.I.; Zirczy, H.

    1999-06-08

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover a higher percentage of the original oil in place through geologically based field development. This year the project focused on reservoir characterization of the East Ford unit, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey Sandstone). The field, discovered in 1960, is operated by Orla Petco, Inc., as the East Ford unit; it contained an estimated 19.8 million barrels (MMbbl) of original oil in place. Petrophysical characterization of the East Ford unit was accomplished by integrating core and log data and quantifying petrophysical properties from wireline logs. Most methods of petrophysical analysis that had been developed during an earlier study of the Ford Geraldine unit were successfully transferred to the East Ford unit. The approach that was used to interpret water saturation from resistivity logs, however, had to be modified because in some East Ford wells the log-calculated water saturation was too high and inconsistent with observations made during the actual production. Log-porosity to core-porosity transforms and core-porosity to core-permeability transforms were derived from the East Ford reservoir. The petrophysical data were used to map porosity, permeability, net pay, water saturation, mobil-oil saturation, and other reservoir properties.

  12. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect

    Mark B. Murphy

    2001-10-31

    The Nash Draw Brushy Canyon Pool (NDP) in southeast New Mexico is one of the nine projects selected in 1995 by the U.S. Department of Energy (DOE) for participation in the Class III Reservoir Field Demonstration Program. The goals of the DOE cost-shared Class Program are to: (1) extend economic production, (2) increase ultimate recovery, and (3) broaden information exchange and technology application. Reservoirs in the Class III Program are focused on slope basin and deep-basin clastic depositional types. Production at the NDP is from the Brushy Canyon formation, a low-permeability turbidite reservoir in the Delaware Mountain Group of Permian, Guadalupian age. A major challenge in this marginal-quality reservoir is to distinguish oil-productive pay intervals from water-saturated non-pay intervals. Because initial reservoir pressure is only slightly above bubble-point pressure, rapid oil decline rates and high gas/oil ratios are typically observed in the first year of primary production. Limited surface access, caused by the proximity of underground potash mining and surface playa lakes, prohibits development with conventional drilling. Reservoir characterization results obtained to date at the NDP show that a proposed pilot injection area appears to be compartmentalized. Because reservoir discontinuities will reduce effectiveness of a pressure maintenance project, the pilot area will be reconsidered in a more continuous part of the reservoir if such areas have sufficient reservoir pressure. Most importantly, the advanced characterization results are being used to design extended reach/horizontal wells to tap into predicted ''sweet spots'' that are inaccessible with conventional vertical wells. The activity at the NDP during the past year has included the completion of the NDP Well No.36 deviated/horizontal well and the completion of additional zones in three wells, the design of the NDP No.33 directional/horizontal well, The planning and regulatory approval for the

  13. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin)

    SciTech Connect

    Andrew G. Cole; George B. Asquith; Jose I. Guzman; Mark D. Barton; Mohammad A. Malik; Shirley P. Dutton; Sigrid J. Clift

    1998-04-01

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of clastic reservoirs in basinal sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover more of the original oil in place by strategic infill-well placement and geologically based enhanced oil recovery. The study focused on the Ford Geraldine unit, which produces from the upper Bell Canyon Formation (Ramsey sandstone). Reservoirs in this and other Delaware Mountain Group fields have low producibility (average recovery <14 percent of the original oil in place) because of a high degree of vertical and lateral heterogeneity caused by depositional processes and post-depositional diagenetic modification. Outcrop analogs were studied to better interpret the depositional processes that formed the reservoirs at the Ford Geraldine unit and to determine the dimensions of reservoir sandstone bodies. Facies relationships and bedding architecture within a single genetic unit exposed in outcrop in Culberson County, Texas, suggest that the sandstones were deposited in a system of channels and levees with attached lobes that initially prograded basinward, aggraded, and then turned around and stepped back toward the shelf. Channel sandstones are 10 to 60 ft thick and 300 to 3,000 ft wide. The flanking levees have a wedge-shaped geometry and are composed of interbedded sandstone and siltstone; thickness varies from 3 to 20 ft and length from several hundred to several thousands of feet. The lobe sandstones are broad lens-shaped bodies; thicknesses range up to 30 ft with aspect ratios (width/thickness) of 100 to 10,000. Lobe sandstones may be interstratified with laminated siltstones.

  14. 3D multicomponent seismic characterization of a clastic reservoir in the Middle Magdalena Valley Basin, Colombia

    NASA Astrophysics Data System (ADS)

    Velasquez-Espejo, Antonio Jose

    The main goal of this research is to characterize the combined structural-stratigraphic trap of the Tenerife Field in the Middle Magdalena Valley Basin (MMVB), Colombia. For the first time in Colombia the structural and quantitative interpretation of modern three-dimensional multicomponent (3D-3C) seismic imaging enables a geometric description, a kinematic interpretation of the structural styles, and the facies distribution of the reservoir. A seismic petrophysics work-flow to better achieve the seismic well-tie. Edited and check-shot calibrated P-wave sonic logs were obtained and coefficients of the Gardner and Castagna equations were calibrated to match the density and shear-wave velocity depth trends for the basin. Seismic modeling was performed to evaluate the PP and PS seismic response of the reservoir interval (Mugrosa Formation). The structural interpretation methodology involves a 3D fault-correlation and horizon picking for both PP- and PS-PSTM data volumes. Geometric attributes such as coherence and curvature were used to enhance the structural discontinuities. The main unconformity of the Middle Eocene (MEU) was interpreted, and an attribute-assisted interpretation of the reservoir was conducted in detail. While P-wave data provided most of the structural interpretation, converted-wave data provide a better understanding of the faults. Traditionally, compressive thrust-propagation folds and tectonic inversion have been considered as the main mechanisms controlling the deformation in the MMVB. However, the new interpretation shown in this work provides a different structural concept that involves two major structural styles: 1. Under the MEU the Late Cretaceous and Early Paleocene deformation, dominated by east-verging thrust and partially inverted Mesozoic normal faults, is preserved. Associated folds exhibit a north-south strike, and their structural development is controlled by a long-lived structural element that dominates the area (the Infantas

  15. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III

    SciTech Connect

    Murphy, Mark B.

    2000-10-25

    The Nash Draw Brushy Canyon Pool (NDP) is southeast New Mexico is one of the nine projects selected in 1995 by the U.S. Department of Energy (DOE) for participation in the Class III Reservoir Field Demonstration Program. The goals of the DOE cost-shared Class Program are to: (1) extend economic production, (2) increase ultimate recovery, and (3) broaden information exchange and technology application. Reservoirs in the Class III Program are focused on slope-basin and deep-basin clastic depositional types.

  16. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect

    Mark B. Murphy

    2005-09-30

    The Nash Draw Brushy Canyon Pool in Eddy County New Mexico was a cost-shared field demonstration project in the U.S. Department of Energy Class III Program. A major goal of the Class III Program was to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques were used at the Nash Draw Pool (NDP) project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The objective of the project was to demonstrate that a development program, which was based on advanced reservoir management methods, could significantly improve oil recovery at the NDP. Initial goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to other oil and gas producers. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description was used as a risk reduction tool to identify 'sweet spots' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir. An Advanced

  17. Comparison of transgressive and regressive clastic reservoirs, late Albian Viking Formation, Alberta basin

    SciTech Connect

    Reinson, G.E.

    1996-06-01

    Detailed stratigraphic analysis of hydrocarbon reservoirs from the Basal Colorado upwards through the Viking/Bow Island and Cardium formations indicates that the distributional trends, overall size and geometry, internal heterogeneity, and hydrocarbon productivity of the sand bodies are related directly to a transgressive-regressive (T-R) sequence stratigraphic model. The Viking Formation (equivalent to the Muddy Sandstone of Wyoming) contains examples of both transgressive and regressive reservoirs. Viking reservoirs can be divided into progradational shoreface bars associated with the regressive systems tract, and bar/sheet sands and estuary/channel deposits associated with the transgressive systems tract. Shoreface bars, usually consisting of fine- to medium-grained sandstones, are tens of kilometers long, kilometers in width, and in the order of five to ten meters thick. Transgressive bar and sheet sandstones range from coarse-grained to conglomeratic, and occur in deposits that are tens of kilometers long, several kilometers wide, and from less than one to four meters in thickness. Estuary and valley-fill reservoir sandstones vary from fine-grained to conglomeratic, occur as isolated bodies that have channel-like geometries, and are usually greater than 10 meters thick. From an exploration viewpoint the most prospective reservoir trends in the Viking Formation are those associated with transgressive systems tracts. In particular, bounding discontinuities between T-R systems tracts are the principal sites of the most productive hydrocarbon-bearing sandstones.

  18. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect

    Murphy, M.B.

    1997-10-30

    The overall objective of this project is to demonstrate that a development program-based on advanced reservoir management methods- can significantly improve oil recovery. The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  19. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect

    Mark B. Murphy

    2004-01-31

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  20. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect

    Mark B. Murphy

    2003-10-31

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  1. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect

    Mark B. Murphy

    2002-12-31

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  2. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect

    Mark B. Murphy

    2003-07-30

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  3. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, west Texas (Delaware Basin). Annual progress report, March 31, 1995--March 31, 1996

    SciTech Connect

    Dutton, S.P.; Hovorka, S.D.; Cole, A.G.

    1996-08-01

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of clastic reservoirs in basinal sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover more of the original oil in place by strategic infill-well placement and geologically based field development. Reservoirs in the Delaware Mountain Group have low producibility (average recovery <14 percent of the original oil in place) because of a high degree of vertical and lateral heterogeneity caused by depositional processes and post-depositional diagenetic modification. Detailed correlations of the Ramsey sandstone reservoirs in Geraldine Ford field suggest that lateral sandstone continuity is less than interpreted by previous studies. The degree of lateral heterogeneity in the reservoir sandstones suggests that they were deposited by eolian-derived turbidites. According to the eolian-derived turbidite model, sand dunes migrated across the exposed shelf to the shelf break during sea-level lowstands and provided well sorted sand for turbidity currents or grain flows into the deep basin.

  4. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Quarterly report, April 1,1996 - June 30, 1996

    SciTech Connect

    Dutton, S.P.

    1996-07-01

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir- characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sub 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Progress to date is summarized for reservoir characterization.

  5. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Quarterly report, October 1 - December 31, 1996

    SciTech Connect

    Dutton, S.P.

    1997-01-01

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir-characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sub 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Technical progress is summarized for: geophysical characterization; reservoir characterization; outcrop characterization; and recovery technology identification and analysis.

  6. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect

    Mark B. Murphy

    2002-09-30

    The overall objective of this project is to demonstrate that a development program-based on advanced reservoir management methods-can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry. This is the twenty-eighth quarterly progress report on the project. Results obtained to date are summarized.

  7. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Quarterly report, July 1 - September 30, 1996

    SciTech Connect

    Dutton, S.P.

    1996-10-01

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir- characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sup 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Accomplishments for this past quarter are discussed.

  8. Distribution of Permo-Carboniferous clastics of Greater Arabian basin

    SciTech Connect

    Al-Laboun, A.A.

    1987-05-01

    Strikingly correlative sequences of sediments composed of sandstones, siltstones, shales, and thin argillaceous carbonate beds are present, practically everywhere, underlying the Late Permian carbonates in the Greater Arabian basin. The Greater Arabian basin as defined here occupies the broad Arabian Shelf that borders the Arabian shield. This basin is composed of several smaller basins. These clastics are exposed as thin bands and scattered small exposures in several localities around the margins of the basin. The Permo-Carboniferous clastics are represented by the Unayzah Formation of Arabia, the Doubayat Group of Syria, the Hazro Formation of southeast Turkey, the Ga'arah Formation of Iraq, the Faraghan Formation of southwest Iran, and the Haushi Group of Oman. A Late Carboniferous-Early Permian age is assigned to these clastics because they contain fossil plants and palynomorphs. These sediments represent time-transgressive fluctuating sea deposits following a phase of regional emergence, erosion, and structural disturbance which preceded the Permian transgression. The basal contact of these clastics is marked by a well-pronounced angular unconformity with various older units, ranging in age from early Carboniferous to late Precambrian. This regional unconformity is probably related to the Hercynian movements. The upper contact is conformable with the Permian carbonates. The porous sandstones of the Permo-Carboniferous sediments are important hydrocarbon exploration targets. These reservoir rocks sometimes overlie mature source rocks and are capped by shales, marls, and tight carbonates. Significant quantities of hydrocarbons are contained in these reservoirs in different parts of the Greater Arabian basin.

  9. Reservoir heterogeneity and hydrocarbon production in mixed dolomitic-clastic sequence: Escandalosa Formation, Barinas-Apure basin, southwestern Venezuela

    SciTech Connect

    Escalona, N.; Abud, J.

    1989-03-01

    Widespread dedolomitization and differential leaching occur in the Turonian O Member of the Escandalosa Formation, Barinas-Apure basin. Within this dolostone-dominated succession, calcite was developed through a dedolomitization process occurring in deeply buried dolomitized lime sediments previously deposited on a carbonate platform as well as dedolomitization on the associated glauconitic-quartzose sandstones of small-scale channels that scoured the platform. The dolomitized intervals have a strata-bound nature, and their original fabric is totally obliterated. The dolomitization process generated a sucrose-textured mosaic of saddle dolomite. Initial dolomite was of the scattered type, but progressive replacement of the host produced a mosaic dolostone with both idiotopic and xenotopic textures. A general increase occurred in the iron and manganese content, and goethite was exsolved from the curved rhombs of saddle dolomite. Calcite usually postdates dolomitization, except in the highly fossiliferous packstones; calcite veins develop in both dolostones and limestones. Leaching is restricted essentially to glauconitic sandstones where calcite and some clay have been leached. This has produced very low intercrystalline porosity within the dolostones and partially dissolved, corroded and floating grains with oversized pores in the sandstones. These sandy intervals exhibit maximum potential for hydrocarbon storage, due to contrasting diagenetic influence associated with reservoir heterogeneity.

  10. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect

    Murphy, M.B.

    1999-02-01

    Advanced reservoir characterization techniques are being used at the Nash Draw Brushy Canyon Pool project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The reservoir characterization, geologic modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir.

  11. Advanced Oil Recovery Technologies for Improved Recovery From Slope Basin Clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico

    SciTech Connect

    Mark B. Murphy

    1998-04-30

    The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.

  12. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico

    SciTech Connect

    Murphy, Mark B.

    1999-11-01

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  13. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III

    SciTech Connect

    Murphy, Michael B.

    2002-02-21

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  14. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III

    SciTech Connect

    Murphy, Mark B.

    2002-01-16

    The overall objective of this project was to demonstrate that a development program-based on advanced reservoir management methods-can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  15. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report

    SciTech Connect

    Murphy, M.B.

    1996-04-22

    The overall objective of this project is to demonstrate that development program based on advanced reservoir management methods can significantly improve oil recovery. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced reservoir management methods. specific goals to attain the objective are (1) to demonstrate that development drilling program and pressure maintenance program, based on advanced reservoir management methods , can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced methodologies to oil and gas producers in the Permian Basin and elsewhere in the US oil and gas industry. This is the second quarterly progress report on the project. Results obtained to date are summarized.

  16. Advanced Oil Recovery Technologies for Improve Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool,Eddy County,NM

    SciTech Connect

    Murphy, M.B.

    1997-10-31

    The Nash Draw Brushy Canyon Pool in Eddy County New Mexico is a field demonstration in the U. S. Department of Energy Class IH Program. Advanced reservoir characterization techniques are being used at the Nash Draw project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir description was too simplistic to capture the critical features of this complex formation. As a result of the analysis, a proposed pilot area was reconsidered. Comparison of seismic data and engineering data have shown evidence of discontinuities in the area surrounding the proposed injector. Analysis of the 3-D seismic has shown that wells in the proposed pilot are in an area of poor quality amplitude development. The implication is that since amplitude attenuation is a function of porosity, then this is not the best area to be attempting a pilot pressure maintenance project. Because the original pilot area appears to be compartmentalized, the lateral continuity between the pilot wells could be reduced. The 3-D seismic interpretation indicates other areas may be better suited for the initial pilot area. Therefore, the current focus has shifted more to targeted drilling, and the pilot injection will be considered in a more continuous area of the NDP in the future. Results of reservoir simulation studies indicate that pressure maintenance should be started early when reservoir pressure is still high.

  17. Sequence stratigraphy simulations of carbonate, clastics, and mixed basin margins

    SciTech Connect

    Kendall, C.G.St.C.; Moore, P.; Birdwell, B.A.; Rouchie, L.; Cannon, R. ); Biswas, G. ); Bezdek, J. )

    1991-03-01

    Clastics, carbonates, and their mixtures have different depositional and post-depositional behavior that produces the different margin characteristics seen in seismic sequences. Carbonates undergo early cementation while maintaining higher angles of repose, while clays and sands accumulate at lower-angle slopes whose inclination is proportional to the grain size and post-depositional cohesive behavior. In higher energy regimes, waves or currents winnow less cohesive finer material that is transported downdip to from slope sediments rimming the basin. Simulations of mixed carbonate-clastic sediment accumulation, tectonism, and eustasy for settings in the Permian basin of west Texas and New Mexico show that sharp differentiation of clastics from carbonates is a product of higher angles of repose that carbonates maintain and the higher rates of clastic input at lowstands in sea level. In contrast, simulation of mixed grain-size margins like the Exmouth Plateau of Western Australia, the Baltimore Canyon, and the Gulf Coast Tertiary indicate that muds are winnowed preferentially from shelf-margin crests but accumulate on slopes, while sands accumulate on higher energy shelves. When they bypass at lowstands in sea level, they accumulate in the near slope basin but not on the slope. Simulation of pure carbonate systems like that of the Bahamian platform suggests that progradation is greatest in areas of low wave and current energy while backstepping and cliffed margins occur in high energy settings. The ability to accurately simulate mixed carbonate-clastic slopes is a key to development of exploration and production models of these systems.

  18. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, January 1--March 31, 1998

    SciTech Connect

    1998-04-30

    The overall objective of this project is to demonstrate that a development program--based on advanced reservoir management methods--can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the US oil and gas industry. Results obtained to date are summarized for the following: geostatistics and reservoir mapping; reservoir engineering; reservoir characterization/reservoir simulation; miscible recovery simulations; and technology transfer.

  19. Advanced oil recovery technologies for improved recovery from Slope Basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report (sixth quarter), January 1, 1997--March 31, 1997

    SciTech Connect

    1997-04-30

    The overall objective of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the U.S. oil and gas industry.

  20. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, October 1--December 31, 1995

    SciTech Connect

    1996-01-22

    Objective is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery and to transfer this technology to oil and gas producers in the Permian Basin. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced management methods. Specific goals are (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced technologies to oil and gas producers in the Permian Basin and elswhere in the US oil and gas industry. This is the first quarterly progress report on the project; results to date are summarized.

  1. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, October 1--December 31, 1996 (fifth quarter)

    SciTech Connect

    1997-01-31

    The overall objective of this project is to demonstrate that a development program--based on advanced reservoir management methods--can significantly improve oil recovery. The plan includes developing a control area using standard reservoir management techniques while comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program, can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the US oil and gas industry. Results so far are described on geology, engineering, 3-D seismic, reservoir characterization and simulation, and technology transfer.

  2. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, April 1, 1996--June 30, 1996

    SciTech Connect

    Murphy, M.B.

    1996-07-26

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced reservoir management methods. Specific goals to attain the objective are: (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced methodologies to oil and gas producers in the Permian Basin and elsewhere in the U.S. oil and gas industry.

  3. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico. Annual report, September 25, 1995--September 24, 1996

    SciTech Connect

    Murphy, M.B.

    1997-08-01

    The basic driver for this project is the low recovery observed in Delaware reservoirs, such as the Nash Draw Pool (NDP). This low recovery is caused by low reservoir energy, less than optimum permeabilities and porosities, and inadequate reservoir characterization and reservoir management strategies which are typical of projects operated by independent producers. Rapid oil decline rates and high gas/oil ratios are typically observed in the first year of primary production. Based on the production characteristics that have been observed in similar Delaware fields, pressure maintenance is a likely requirement at the Nash Pool. Three basic constraints to producing the Nash Draw Brushy Canyon Reservoir are: (1) limited areal and interwell geologic knowledge, (2) lack of an engineering tool to evaluate the various producing strategies, and (3) limited surface access prohibiting development with conventional drilling. The limited surface access is caused by the proximity of underground potash mining and surface playa lakes. The objectives of this project are: (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers, especially in the Permian Basin.

  4. 3-D seismic evidence of the effects of carbonate karst collapse on overlying clastic stratigraphy and reservoir compartmentalization

    SciTech Connect

    Hardage, B.A.; Carr, D.L.; Simmons, J.L. Jr.; Jons, R.A.; Lancaster, D.E.; Elphick, R.Y.; Pendleton, V.M.

    1996-09-01

    A multidisciplinary team, composed of stratigraphers, petrophysicists, reservoir engineers, and geophysicists, studied a portion of Boonsville gas field in the Fort Worth Basin of north-central Texas to determine how modern techniques can be combined to understand the mechanisms by which fluvio-deltaic depositional processes create reservoir compartmentalization in a low- to moderate-accommodation basin. An extensive database involving well logs, cores, production, and pressure data from more than 200 wells, 26 mi{sup 2} of 3-D seismic data, vertical seismic profiles, and checkshots was assembled to support this investigation. The authors found the most important geologic influence on stratigraphy and reservoir compartmentalization in this basin to be the existence of numerous karst collapse chimneys over the area covered. These near-vertical karst collapses originated in, or near, the deep Ordovician-age Ellenburger carbonate section and created vertical chimneys extending as high as 2,500 ft above their point of origin, causing significant disruptions in the overlying clastic strata.

  5. Sequence stratigraphy and depositional environments on a Palaeozoic clastic ramp margin, Ahnet-Timimoun Basin, Algeria

    SciTech Connect

    Myers, K.J.; Hirst, J.P.P.; Arezki, A.

    1995-08-01

    A wide, ramp margin was developed during the Devonian/Carboniferous in the Ahnet-Timimoun Basin, Algerian Sahara. Variations in relative sea level resulted in rapid, long distance (>500km) lateral translations of the clastic facies belts; this was the main influence on the locations of sand depocentres. The geometry and distribution of both Gedinnian and Emsian shallow marine sandstones is complex. Understanding the influence of relative sea level, shelf processes and local tectonics is essential to predicting the distribution of potential reservoir units. The Silurian to Carboniferous succession preserved in the Ahnet-Timimoun Basin can be divided into two major Transgressive-Regressive cycles, each of approximately 45 million years duration (Ashigill to Siegenian; Siegenian to Tournaisian). The T-R cycles several sequences of approximately 10 million years duration. Major source the basin were deposited in the Early Silurian (Llandovery) and Late Devonian (Frasnian) around the transgressive maximum of the T-R cycles. In the Ahnet-Timimoun Basin, marine sedimentation prevailed across much of the ramp margin. During Gedinnian times (early Devonian), progradational events associated with each sequence deposited a succession of extensive, shallow marine, coarsening-up sandstones. The sequence boundary marking the regressive maximum. Of the first T-R cycle (Siegenian) resulted in a rapid transition from an inner shelf environment to braided rivers which deposited a regional, high N/G sandstone. Sequence boundaries, although marked by rapid basinward shifts in facies belts, are without significant fluvial incision. The transgressive sequence set in the overlying T/R cycle, is marked initially by rapid southwards directed trangression and an extensive ravinement surface of early Emsian age.

  6. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Second annual technical progress report, October 1, 1996--September 30, 1997

    SciTech Connect

    1998-09-01

    The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration in the US Department of Energy Class III Program. Advanced reservoir characterization techniques are being used at the Nash Draw project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir description was too simplistic to capture the critical features of this complex formation. As a result of the analysis, a proposed pilot area was reconsidered. Comparison of seismic data and engineering data have shown evidence of discontinuities in the area surrounding the proposed injector. Analysis of the 3-D seismic has shown that wells in the proposed pilot are in an area of poor quality amplitude development. The implication is that since amplitude attenuation is a function of porosity, then this is not the best area to be attempting a pilot pressure maintenance project. Because the original pilot area appears to be compartmentalized, the lateral continuity between the pilot wells could be reduced. The 3-D seismic interpretation indicates other areas may be better suited for the initial pilot area. Therefore, the current focus has shifted more to targeted drilling, and the pilot injection will be considered in a more continuous area of the NDP in the future. Results of reservoir simulation studies indicate that pressure maintenance should be started early when reservoir pressure is still high.

  7. Appalachian Basin Low-Permeability Sandstone Reservoir Characterizations

    SciTech Connect

    Ray Boswell; Susan Pool; Skip Pratt; David Matchen

    1993-04-30

    A preliminary assessment of Appalachian basin natural gas reservoirs designated as 'tight sands' by the Federal Energy Regulatory Commission (FERC) suggests that greater than 90% of the 'tight sand' resource occurs within two groups of genetically-related units; (1) the Lower Silurian Medina interval, and (2) the Upper Devonian-Lower Mississippian Acadian clastic wedge. These intervals were targeted for detailed study with the goal of producing geologic reservoir characterization data sets compatible with the Tight Gas Analysis System (TGAS: ICF Resources, Inc.) reservoir simulator. The first phase of the study, completed in September, 1991, addressed the Medina reservoirs. The second phase, concerned with the Acadian clastic wedge, was completed in October, 1992. This report is a combined and updated version of the reports submitted in association with those efforts. The Medina interval consists of numerous interfingering fluvial/deltaic sandstones that produce oil and natural gas along an arcuate belt that stretches from eastern Kentucky to western New York. Geophysical well logs from 433 wells were examined in order to determine the geologic characteristics of six separate reservoir-bearing intervals. The Acadian clastic wedge is a thick, highly-lenticular package of interfingering fluvial-deltaic sandstones, siltstones, and shales. Geologic analyses of more than 800 wells resulted in a geologic/engineering characterization of seven separate stratigraphic intervals. For both study areas, well log and other data were analyzed to determine regional reservoir distribution, reservoir thickness, lithology, porosity, water saturation, pressure and temperature. These data were mapped, evaluated, and compiled into various TGAS data sets that reflect estimates of original gas-in-place, remaining reserves, and 'tight' reserves. The maps and data produced represent the first basin-wide geologic characterization for either interval. This report outlines the methods and

  8. Intrashelf basins: A geologic model for source-bed and reservoir facies deposition within carbonate shelves

    SciTech Connect

    Grover, G. Jr. )

    1993-09-01

    Intrashelf basins (moats, inshore basins, shelf basins, differentiated shelf, and deep-water lagoons of others) are depressions of varying sizes and shapes that occur within tectonically passive and regionally extensive carbonate shelves. Intrashelf basins grade laterally and downdip (seaward) into shallow-water carbonates of the regional shelf, are separated from the open marine basin by the shelf margin, and are largely filled by fine-grained subtidal sediments having attributes of shallow- and deeper water sedimentation. These basins are commonly fringed or overlain by carbonate sands, reefs, or buildups. These facies may mimic those that occur along the regional shelf margin, and they can have trends that are at a high angle to that of the regional shelf. Intrashelf basins are not intracratonic basins. The history of most intrashelf basins is a few million to a few tens of million of years. Examples of intrashelf basins are known throughout the Phanerozoic; the southern portion of the Holocene Belize shelf is a modern example of an intrashelf basin. Two types of intrashelf basins are recognized. Coastal basins pass updip into coastal clastics of the craton with the basin primarily filled by fine clastics. Shelf basins occur on the outer part of the shelf, are surrounded by shallow-water carbonate facies, and are filled by peloidal lime mud, pelagics, and argillaceous carbonates. Intrashelf basins are commonly the site of organic-rich, source-bed deposition, resulting in the close proximity of source beds and reservoir facies that may fringe or overlie the basin. Examples of hydrocarbon-charged reservoirs that were sourced by an intrashelf basin include the Miocene Bombay High field, offshore India; the giant Jurassic (Arab-D) and Cretaceous (Shuaiba) reservoirs of the Arabian Shelf; the Lower Cretaceous Sunniland trend, South Florida basin; and the Permian-Pennsylvanian reservoirs surrounding the Tatum basin in southeastern New Mexico.

  9. Late Mississippian (Chesterian) carbonate to carbonate-clastic cycles in the eastern Illinois Basin

    SciTech Connect

    Smith, L.B.; Read, J.F. )

    1994-03-01

    Late Mississippian (Chesterian) rocks of the eastern Illinois Basin in Kentucky and Indiana show depositional cycles (3--20 meters thick) composed of a range of facies deposited during the transition from carbonate-dominated deposition of the Middle Mississippian to the predominantly siliciclastic regime of the Pennsylvanian. Within the basal Ste. Genevieve Formation (30--70 meters thick) there are five predominantly carbonate cycles. Cycle bases vary from thin calcareous sandstone near the northern clastic source to ooid-quartz dolomitic pelletal grainstone and mudstone further south. Massive cross-bedded and channeled ooid-skeletal grainstones represent the cycle tops and are commonly capped by caliche and subaerial breccia, particularly where there was no subsequent siliciclastic deposition. The cycles are interpreted to be driven by fourth-order (400 k.y.) glacio-eustatic sea-level fluctuations based on coincidence of the calculated cycle period with the long-term eccentricity signal, the Late Mississippian onset of Gondwana glaciation and cycle correlation over more than 100 kilometers. The breccia and caliche formed during lowstands, the siliciclastics, eolianites and dolomitic pelletal grainstones are transgressive facies and the ooid-skeletal grainstones represent sea-level highstands.

  10. Advanced Oil Recovery Technologies for Improved Recovery From Slope Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico

    SciTech Connect

    Mark B. Murphy

    1998-01-30

    The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.

  11. Fractured reservoirs in clastic rocks: Differences between a basement-cored structure and a detached fold belt

    SciTech Connect

    Engelder, T.; Gross, M.R.; Younes, A.

    1996-08-01

    The Elk Basin anticline, Wyoming-Montana, has an order of magnitude more structural relief than structures of the Appalachian Plateau, New York. Despite its structural relief the Elk Basin anticline shows very little macroscopic evidence for layer-parallel shortening vs. more than 10% for the subtle Appalachian Plateau folds. Elk Basin anticline is a passive drape fold extending over a tongue of basement punching up into the sedimentary cover. On the other extreme, the detached fold belt of the Appalachian Plateau remained in compression during most, if not all, of the Alleghanian layer-parallel shortening event. The joint pattern in Elk Basin is dominated by fold-parallel sets. The joint pattern in the Appalachian Plateau is dominated by fold-perpendicular sets. These two joint patterns are consistent with states of stress that suppress layer-parallel shortening in the former case and favor it in the latter case. Curvy cross joints are unambiguous records of the change in stress field orientation. Such structures in the clastic rocks of Elk Basin indicate a 10{degrees} to 15{degrees} clockwise reorientation of the stress field during later stages of fold development. The early to synfolding propagation of fold-parallel joints is indicated by their attitude normal to bedding on both limbs of the Elk Basin anticline. Fold-parallel joints are also rotated during strike-slip motion on later, vertical faults cutting subperpendicular to the anticlinal axis. Finally, the fracture spacing index for fold-parallel joints in various formations at Elk Basin is less than for cross fold joints of the Appalachian Plateau.

  12. Geological model of shallow marine clastic reservoirs in a Wrench-Faulted Province

    SciTech Connect

    Johnson, H.D.; Chapman, J.W.; Ranggon, J.

    1988-01-01

    The St. Joseph field is situated along a major wrench-fault zone in offshore Sabah (The Bunbury-St. Joseph-Bambazon ''ridge'') that divides the field into several structural areas. The most prospective of these is the structurally simple northwest flank (about 6 km long and 1 km wide) that dips uniformly to the northwest (about 15/sup 0/-20/sup 0/) in a basinward direction away from the crestal wrench-fault zone. The main hydrocarbon-bearing interval comprises a 1,350-ft long oil column, which is contained within a highly heterogeneous sequence of late Miocene shallow marine sandstone and shales. The main geologic uncertainties of the northwest flank concern lateral variations in sand development, shale-layer continuity, and reservoir quality. They have a major impact on reservoir recovery mechanisms, pressure-maintenance schemes, and on field development strategy. Therefore, a reservoir geologic model was developed that incorporates sedimentologic studies, well-log facies analysis, reservoir mapping, and detailed structural interpretation (using a full reservoir core and three-dimensional seismic data). These studies demonstrate that depositional processes and tectonic setting had a major impact in controlling the thickness, quality and distribution of the sandstone reservoirs. Features that had a particularly significant impact on hydrocarbon distribution, reservoir modeling and field development are: (1) a storm-dominated shelf-sand depositional system, (2) rapid vertical and lateral switches in sand supply, (3) a tectonically unstable, narrow (about 5-15 km wide) shelf, and (4) shelf-edge slumping (slump scars).

  13. Visualizing heterogeneous clastic reservoirs: Price formation (early Mississippian) oil fields in West Virginia

    SciTech Connect

    Hohn, M.E.; McDowell, R.R.; Matchen, D.L. )

    1996-01-01

    A procedure has been developed using public-domain and published software for creating 3-D models of facies in structurally-deformed elastic reservoirs. The procedure was tested successfully on two oil fields in Early Mississippian sandstone reservoirs in central West Virginia. The procedure has four stages: removal of structural deformation; definition of electrofacies from digitized electric logs and cores; classification of additional logs; and 3-D kriging. Reconstruction of original bedding was needed before variography and kriging, but no datum was available: the reservoir sandstone lies just below an angular unconformity, and many wells were not drilled far enough below the reservoir to penetrate a potential datum. In a novel application of automated stratigraphic correlation, a published algorithm was used on digitized gamma-ray logs to find the relative vertical shift between pairs of wells giving the highest cross-correlation. Multidimensional scaling of a matrix of shifts yielded a vector of values necessary for restoring the relative elevation of each well. Cluster analysis of gamma-ray and density log responses from cored wells defined four groups matched through core descriptions with environments of deposition. Discriminant functions calculated for these groups were used to classify log responses from uncored wells. Kriging of electrofacies followed conventional variography. Results are displayed as cross-sections and maps.

  14. Visualizing heterogeneous clastic reservoirs: Price formation (early Mississippian) oil fields in West Virginia

    SciTech Connect

    Hohn, M.E.; McDowell, R.R.; Matchen, D.L.

    1996-12-31

    A procedure has been developed using public-domain and published software for creating 3-D models of facies in structurally-deformed elastic reservoirs. The procedure was tested successfully on two oil fields in Early Mississippian sandstone reservoirs in central West Virginia. The procedure has four stages: removal of structural deformation; definition of electrofacies from digitized electric logs and cores; classification of additional logs; and 3-D kriging. Reconstruction of original bedding was needed before variography and kriging, but no datum was available: the reservoir sandstone lies just below an angular unconformity, and many wells were not drilled far enough below the reservoir to penetrate a potential datum. In a novel application of automated stratigraphic correlation, a published algorithm was used on digitized gamma-ray logs to find the relative vertical shift between pairs of wells giving the highest cross-correlation. Multidimensional scaling of a matrix of shifts yielded a vector of values necessary for restoring the relative elevation of each well. Cluster analysis of gamma-ray and density log responses from cored wells defined four groups matched through core descriptions with environments of deposition. Discriminant functions calculated for these groups were used to classify log responses from uncored wells. Kriging of electrofacies followed conventional variography. Results are displayed as cross-sections and maps.

  15. Gamma ray spectrometry logs as a hydrocarbon indicator for clastic reservoir rocks in Egypt.

    PubMed

    Al-Alfy, I M; Nabih, M A; Eysa, E A

    2013-03-01

    Petroleum oil is an important source for the energy in the world. The Gulf of Suez, Nile Delta and South Valley are important regions for studying hydrocarbon potential in Egypt. A thorium normalization technique was applied on the sandstone reservoirs in the three regions to determine the hydrocarbon potentialities zones using the three spectrometric radioactive gamma ray-logs (eU, eTh and K% logs). The conventional well logs (gamma-ray, deep resistivity, shallow resistivity, neutron, density and sonic logs) are analyzed to determine the net pay zones in these wells. Indices derived from thorium normalized spectral logs indicate the hydrocarbon zones in petroleum reservoirs. The results of this technique in the three regions (Gulf of Suez, Nile Delta and South Valley) are in agreement with the results of the conventional well log analyses by ratios of 82%, 78% and 71% respectively. PMID:23306160

  16. Geoscience/Engineering Characterization of the Interwell Environment in Carbonate Reservoirs Based on Outcrop Analogs, Permian Basin, West Texas and New Mexico.

    SciTech Connect

    Lucia, F.J.; Kerans, C.

    1997-05-29

    The objective of this project is to investigate styles of reservoir heterogeneity found in low permeability pelleted wackestone/packstone facies and mixed carbonate/clastic facies found in Permian Basin reservoirs by studying similar facies found in Permian Basin reservoirs by studying similar facies exposed in the Guadalupe Mountains. Specific objectives for the outcrop study include construction of a stratigraphic framework, petrophysical quantification of the framework, and testing the outcrop reservoir model for effects of reservoir heterogeneity on production performance. Specific objectives for the subsurface study parallel objectives for the outcrop study.

  17. Organic geochemistry of Upper Carboniferous bituminous coals and clastic sediments from the Lublin Coal Basin

    NASA Astrophysics Data System (ADS)

    Gola, Marek R.; Karger, Michał; Gazda, Lucjan; Grafka, Oliwia

    2013-09-01

    Bituminous coals and clastic rocks from the Lublin Formation (Pennsylvanian, Westphalian B) were subjected to detailed biomarker and Rock-Eval analyses. The investigation of aliphatic and aromatic fractions and Rock-Eval Tmax suggests that the Carboniferous deposits attained relatively low levels of thermal maturity, at the end of the microbial processes/initial phase of the oil window. Somewhat higher values of maturity in the clastic sediments were caused by postdiagenetic biodegradation of organic matter. The dominance of the odd carbon-numbered n-alkanes in the range n-C25 to n-C31 , high concentrations of moretanes and a predominance of C 28 and C29 steranes are indicative of a terrigenous origin of the organic matter in the study material. This is supported by the presence of eudesmane, bisabolane, dihydro-ar-curcumene and cadalene, found mainly in the coal samples. In addition, tri- and tetracyclic diterpanes, e. g. 16β(H)-kaurane, 16β(H)-phyllocladane, 16α(H)-kaurane and norisopimarane, were identified, suggesting an admixture of conifer ancestors among the deposited higher plants. Parameters Pr/n-C17 and Rdit in the coal samples show deposition of organic matter from peat swamp environments, with the water levels varying from high (water-logged swamp) to very low (ephemeral swamp). Clastic deposits were accumulated in a flood plain environment with local small ponds/lakes. In pond/lake sediments, apart from the dominant terrigenous organic matter, research also revealed a certain quantity of algal matter, indicated, i.a., by the presence of tricyclic triterpanes C28 and C29 and elevated concentrations of steranes. The Paq parameter can prove to be a useful tool in the identification of organic matter, but the processes of organic matter biodegradation observed in clastic rocks most likely influence the value of the parameter, at the same time lowering the interpretation potential of these compounds. The value of Pr/Ph varies from 0.93 to 5.24 and from 3

  18. Interaction of microbial communities with clastic sedimentation during Palaeoproterozoic time — An example from basal Gulcheru Formation, Cuddapah basin, India

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Gopal; Shome, Debashish

    2010-04-01

    The siliciclastic basal Gulcheru Formation (˜ 1.8 Ga) of the Proterozoic Cuddapah basin preserves abundance of mat-induced sedimentary structures like old elephant skin, wrinkle structure, kinneyia ripples, palimpsest ripples etc. in the vicinity of Pullivendla town (Kottalu village), Andhra Pradesh, India in a low gradient tidal-flat deposional setting. This is the first report of interaction of microbial communities with clastic sedimentation during Palaeoproterozoic time in Indian Purana stratigraphy and probably from the viewpoint of Global Proterozoic biosedimentation. Various types of cracks on bed-top, hitherto considered as of trace-fossil in origin, may be considered to be formed on exposed surface due to dessication or under water due to synaeresis in presence of microbial communities.

  19. Shoreline position in clastic wedges of marine foreland basins: A modeling study

    SciTech Connect

    Slingerland, R.L.; Furlong, K.P. )

    1990-05-01

    The transgressive-regressive history of an active margin bordering a marine foreland basin is controlled by the relative rates of sediment supply, basin subsidence, and sea level change. The purpose of this research is to better understand the functional relationships among these factors and shoreline position by exploring solutions to a coupled source-basin numerical model. The model consists of a critically tapered, accretionary wedge, and a single-thread river of known discharge and width carrying sediment eroded off the wedge to a basin of specified initial depth, with the elastically deforming lithosphere responding to the tectonic and sedimentary loads. The accretionary wedge, modeled as a steady state critically tapered wedge, provides the initial supracrustal load that creates the basin, the initial slope of the river, and a sediment load the river must carry. The river builds a delta and alluvial plain into a standing body of water of specified surface elevation. The river/transport system is modeled using the equations of unsteady, gradually varied flow, modified Bagnold bed load transport, and conservation of bed material. The lithosphere deforms according to elastic flexure under a distributed supracrustal load. The authors model the evolution of topography and basin bathymetry from initial conditions to steady state when the sediment flux overpassing the foreland basin equals the convergence flux into the wedge at its toe. The results are strongly dependent upon characteristic times for the completing processes. For example, an increase in the convergence rate causes an increase in the height and width of the wedge, increasing both the sediment volume to be carried by the river and magnitude of the load. This load increases basin subsidence, allowing additional accumulation of sediments (and loading) in the basin.

  20. Reservoir compartmentalization and management strategies: Lessons learned in the Illinois basin

    SciTech Connect

    Grube, J.P.; Crockett, J.E.; Huff, B.G.

    1997-08-01

    A research project jointly sponsored by the US Department of Energy and the Illinois State Geological Survey focused on the Cypress and Aux Vases Formations (Mississippian), major clastic reservoirs in the Illinois Basin. Results from the research showed that understanding the nature and distribution of reservoir compartments, and using effective reservoir management strategies, can significantly improve recovery efficiencies from oil fields in this mature basin. Compartments can be most effectively drained where they are geologically well defined and reservoir management practices are coordinated through unified, compartment-wide, development programs. Our studies showed that the Cypress and Aux Vases reservoirs contain lateral and vertical permeability barriers forming compartments that range in size from isolated, interlaminated sandstone and shale beds to sandstone bodies tens of feet in thickness and more than a mile in length. Stacked or shingled, genetically similar sandstone bodies are commonly separated by thin impermeable intervals that can be difficult to distinguish on logs and can, therefore, cause correlation problems, even between wells drilled on spacing of less than ten acres. Lateral separation of sandstone bodies causes similar problems. Reservoir compartmentalization reduces primary and particularly secondary recovery by trapping pockets of by-passed or banked oil. Compartments can be detected by comparing recovery factors of genetically similar sandstone bodies within a field; using packers to separate commingled intervals and analyzing fluid recoveries and pressures; making detailed core-to-log calibrations that identify compartment boundaries; and analyzing pressure data from waterflood programs.

  1. Geoscience/Engineering Characterization of the Interwell Environment in Carbonate Reservoirs Based on Outcrop Analogs, Permian Basin, West Texas and New Mexico.

    SciTech Connect

    Lucia, F.J.; Kerans, C.

    1996-12-31

    The objective of this project is to investigate styles of reservoir heterogeneity found in low permeability pelleted wackestone/packstone facies and mixed carbonate/clastic facies found in Permian Basin reservoirs by studying similar facies exposed in the Guadalupe Mountains. Specific objectives for the outcrop study include construction of a stratigraphic framework, petrophysical quantification of the framework, and testing the outcrop reservoir model for effects of reservoir heterogeneity on production performance. Specific objectives for the subsurface study parallel objectives for the outcrop study.

  2. Electric fabric of Cretaceous clastic rocks in Abu Gharadig basin, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Nabawy, Bassem S.; ElHariri, Tarek Y. M.

    2008-09-01

    Measuring the petrophysical properties of sedimentary rocks in three-dimensions (3-D) has a high priority for interpretation of their physical behaviour. The present work attempts to study the 3-D electric behaviour of the Upper Cretaceous sandstones and clayey sandstones in the Abu Gharadig basin, Egypt. These rocks belong to the Betty, Bahariya, and Abu Roash Formations. The apparent electrical resistivity ( Ro) was measured in three perpendicular directions, one normal to the bedding plane along Z-axis, and the other two directions parallel to the bedding plane and normal to each other, along X-axis and Y-axis. The electrical resistivity ( Ro) was also studied at three NaCl-saline concentrations of Rw = 0.53, 0.13, and 0.07 Ω m in ambient conditions, using A-C bridge at 1 kHz. It is proposed that, processing and matching the electric data in 3-D as ellipsoids instead of in 2-D, has led to the electric fabric concept. It is a combination of electric foliation ( F) and electric lineation ( L). Statistical analyses of measured electrical resistivity reveal that the electric fabric at the second brine concentration should be taken into consideration to avoid the effect of clay content. The electric lineation and foliation of the studied sandstones and clayey sandstones at the second concentration are mostly small (1.1-1.5) to moderate (1.5-2.5), with few sandstone samples having high (2.5-5.0) to very high foliation (5.0-7.5), whereas the electric anisotropy values for these samples are small to moderate (1.1-2.5). This fabric is contributed mainly from their electric foliation, indicating some load pressure compaction that led to small to moderate anisotropic grains and flow paths/network pore spaces.

  3. Lithofacies and cyclicity of the Yates Formation, Permian basin: Implications for reservoir heterogeneity

    SciTech Connect

    Borer, J.M.; Harris, P.M. )

    1991-04-01

    Siliciclastics of the Yates Formation (Permian, upper Guadalupian) are significant hydrocarbon reservoirs in the US Permian basin. Subsurface and outcrop data show that the most porous lithofacies occur in a clastic-dominated middle shelf and that evaporitic inner shelf and carbonate outer shelf equivalents are mostly nonporous. Lithofacies relations and much of the heterogeneity in Yates reservoirs are related to the stacking of depositional sequences (i.e., siliciclastic-carbonate alternations and sandstone-argillaceous siltstone alternations) in response to three orders of orbitally forced, low-amplitude, eustatic variation. In general, siliciclastics dominated the Yates shelf during lowstand parts of asymmetric, 400-k.y. sea level fluctuations, whereas carbonates were deposited during sea level highstands. The character and position of sand depocenters on the Yates shelf during these lowstands were controlled by a longer duration third-order sea level variation. Shorter duration cycles controlled the heterogeneity within the 400-k.y. depositional sequences. The variation in cycle packaging, lithology, and reservoir quality between the Central Basin platform and Northwest shelf may be a response of eustatic variation on parts of the shelf with different slopes or subsidence profiles. The lithofacies described from the Yates Formation and the deposition model proposed to explain the stratigraphy may be valuable as analogs in other basins containing mixed siliciclastic-carbonate settings.

  4. A thrust-ridge paleodepositional model for the Upper Freeport coal bed and associated clastic facies, Upper Potomac coal field, Appalachian basin, U.S.A.

    USGS Publications Warehouse

    Belt, E.S.; Lyons, P.C.

    1989-01-01

    A blind-thrust-ridge model is proposed to explain the lack of coarse clastic material in the vast minable Upper Freeport coal bed (UF). This coal bed contains only fine elastic partings and is overlain by regionally extensive, closely spaced channel-belt deposits in the Upper Potomac coal field of the Appalachian basin. A blind-thrust ridge may have formed a sediment trap and prevented c coarse fluvial sediments from entering the swamp during a period (Westphalian D) when the thick Upper Freeport peat accumulated. Anticlinal thrust ridges and associated depressions may have existed uninterrupted for about 40 km parallel to the Appalachian orogen. Sediment shed from the breached anticlinal ridges accumulated in the sediment trap and was carried out of the ends of the trap by streams that occupied the shear zone at the ends of the blind-thrust ridge. The extent, parallel to the orogen, of thick, areally extensive UF is related to the length of the blind-thrust ridge that, in turn, controlled the spacing of the river-derived coarse clastic sediments that entered the main basin from the east. The thrust plane eventually emerged to the surface of the blind-thrust ridge and peat accumulation was terminated when the ridge became eroded and the sediment trapped behind it was released. The peat was buried by abundant coarse clastic sediment, which formed closely spaced channel belts and intervening flood basins. This model has implications for widespread peat deposits (now coal) that developed in tropical regions a few hundred kilometers from the sea in a tectonically active foreland basin. ?? 1989.

  5. Magnetic fabric (anisotropy of magnetic susceptibility) constraints on emplacement mechanism of clastic dikes: an example from the Cretaceous Dadaepo Basin in SE Korea

    NASA Astrophysics Data System (ADS)

    Son, M.; Cho, H.; Sohn, Y. K.

    2014-12-01

    Emplacement mechanisms of clastic dikes, which are discordant and tabular bodies comprised of weakly to strongly lithified clastic detritus, have been a matter of considerable interest over the last 20 years. Clastic dikes are generally classified into neptunian and injected dikes. Using the magnetic fabrics (AMS), we attempt to classify the clastic dikes in the late Cretaceous Dadaepo Basin, SE Korea, and interpret their emplacement mechanisms. The neptunian dikes exhibit a typical oblate sedimentary fabric which makes a sharp contrast with the injected dikes. The fabrics of the injected dikes are greatly influenced by current conditions (flow directions, rheological properties, and rates) and transportation types (imbrication or rolling) of filling materials. Based on the AMS fabrics, they are classified into four types. (1) Type-VP is formed by grain imbrication in low- to moderate-energy vertical flow of a Newtonian fluid and characterized by a bilateral symmetry of fabrics across the dike. (2) Type-VT results from grain rolling in vertical high-energy flow and is characterized by subvertical k2 and subhorizontal k1 axes on the dike plane. (3) Type-HP is formed by grain imbrication in horizontal low- to moderate-energy flow, resulting in subvertical k3 and subhorizontal k1 and k2 axes. (4) Type-HT is formed by grain rolling in horizontal high-energy flow, resulting in streaked k2-k3 on the dike plane and horizontally clustered k1 axes. The AMS fabrics of each type can be a significant indicator for flow direction. The observed AMS fabric of low-energy current immediately above the source layer indicates that fluidized clastic materials in the lower part of injected dike can flow laterally by lateral propagation of new or pre-existing fractures due to a dominant horizontal pressure gradient. Based on abundant AMS fabrics of high-energy current, coexistence of paleoseismic structures, and tectonic setting of the basin, earthquake-induced liquefaction is the most

  6. Sedimentation, zoning of reservoir rocks in W. Siberian basin oil fields

    SciTech Connect

    Kliger, J.A. )

    1994-02-07

    A line pattern of well cluster spacing was chosen in western Siberia because of taiga, marshes, etc., on the surface. The zoning of the oil pools within productive Upper Jurassic J[sub 3] intervals is complicated. This is why until the early 1990s almost each third well drilled in the Shaimsky region on the western edge of the West Siberian basin came up dry. The results of development drilling would be much better if one used some sedimentological relationships of zoning of the reservoir rocks within the oil fields. These natural phenomena are: Paleobasin bathymetry; Distances from the sources of the clastic material; and Proximity of the area of deposition. Using the diagram in this article, one can avoid drilling toward areas where the sandstone pinch out, area of argillization of sand-stones, or where the probability of their absence is high.

  7. Evidence of Quaternary rock avalanches in the central Apennines: new data and interpretation of the huge clastic deposit of the L'Aquila basin (central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Esposito, Carlo; Scarascia Mugnozza, Gabriele; Tallini, Marco; Della Seta, Marta

    2014-05-01

    Active extensional tectonics and widespread seismicity affect the axial zone of the central Apennines (Italy) and led to the formation of several plio-quaternary intermontane basins, whose morpho-evolution was controlled by the coupling of tectonic and climatic inputs. Common features of the Apennines intermontane basins as well as their general morpho-evolution are known. Nonetheless, the complex interaction among regional uplift, local fault displacements and morpho-climatic factors caused differences in the denudational processes of the single intermontane basins. Such a dynamic response left precious records in the landscape, which in some cases testify for the occurrence of huge, catastrophic rock slope failures. Several Quaternary rock avalanches have been identified in central Apennines, which are often associated with Deep Seated Gravitational Slope Deformation (DSGSD) and thus strictly related to the geological-structural setting as well as to the Quaternary morpho-structural evolution of the mountain chain. The L'Aquila basin is one of the intermontane tectonic depression aligned along the Middle Aterno River Valley and was the scene of strong historical earthquakes, among which the last destructive event occurred on April 6, 2009 (Mw 6.3). We present here the evidence that the huge clastic deposit on which the city of L'Aquila was built up is the body of a rock avalanche detached from the southern slope of the Gran Sasso Range. The clastic deposit elongates for 13 km to the SW, from the Assergi Plain to L'Aquila and is characterized by typical morphological features such as hummocky topography, compressional ridges and run-up on the opposite slope. Sedimentological characters of the deposit and grain size analyses on the matrix let us confirm the genetic interpretation, while borehole data and significant cross sections allowed us reconstructing the 3D shape and volume of the clastic body. Finally, morphometric analyses of the Gran Sasso Range southern

  8. Geoscience/engineering characterization of the interwell environment in carbonate reservoirs based on outcrop analogs, Permian Basin, West Texas and New Mexico. Quarterly report, January 1--April 30, 1996

    SciTech Connect

    Lucia, F.J.; Kerans, C.

    1996-04-30

    The objective of this project is to investigate styles of reservoir heterogeneity found in low-permeability pelleted wackestone/packstone facies and mixed carbonate/clastic facies found in Permian Basin reservoirs by studying similar facies exposed in the Guadalupe Mountains. Specific objectives for the outcrop study include construction of a stratigraphic framework, petrophysical quantification of the framework, and testing the outcrop reservoir model for effects of reservoir heterogeneity on production performance. Specific objectives for the subsurface study parallel objectives for the outcrop study.

  9. Geoscience/engineering characterization of the interwell environment in carbonate reservoirs based on outcrop analogs, Permian Basin, West Texas and New Mexico. Quarterly technical progress report, April 1, 1995--June 1, 1995

    SciTech Connect

    Lucia, F.J.; Kerans, C.

    1995-09-01

    The objective of this project is to investigate styles of reservoir heterogeneity that occur in low permeability pelleted wackestone/packstone facies and mixed carbonate/clastic facies found in Permian Basin reservoirs by studying similar facies exposed in the Guadalupe mountains. Specific objectives for the outcrop study include construction of a stratigraphic framework, petrophysical quantification of the framework, and testing the outcrop reservoir model for effects of reservoir heterogeneity on production performance. Specific objectives for the subsurface study parallel objectives for the outcrop study. Technical progress is reported for outcrop activities and subsurface activities.

  10. Reservoir, seal, and source rock distribution in Essaouira Rift Basin

    SciTech Connect

    Ait Salem, A. )

    1994-07-01

    The Essaouira onshore basin is an important hydrocarbon generating basin, which is situated in western Morocco. There are seven oil and gas-with-condensate fields; six are from Jurassic reservoirs and one from a Triassic reservoir. As a segment of the Atlantic passive continental margin, the Essaouira basin was subjected to several post-Hercynian basin deformation phases, which resulted in distribution, in space and time, of reservoir, seal, and source rock. These basin deformations are synsedimentary infilling of major half grabens with continental red buds and evaporite associated with the rifting phase, emplacement of a thick postrifting Jurassic and Cretaceous sedimentary wedge during thermal subsidence, salt movements, and structural deformations in relation to the Atlas mergence. The widely extending lower Oxfordian shales are the only Jurassic shale beds penetrated and recognized as potential and mature source rocks. However, facies analysis and mapping suggested the presence of untested source rocks in Dogger marine shales and Triassic to Liassic lacustrine shales. Rocks with adequate reservoir characteristics were encountered in Triassic/Liassic fluvial sands, upper Liassic dolomites, and upper Oxfordian sandy dolomites. The seals are provided by Liassic salt for the lower reservoirs and Middle to Upper Jurassic anhydrite for the upper reservoirs. Recent exploration studies demonstrate that many prospective structure reserves remain untested.

  11. Geoscience/Engineering Characterization of the Interwell Environment in Carbonate Reservoirs Based on Outcrop Analogs, Permian Basin, West Texas and New Mexico.

    SciTech Connect

    Lucia, Jerry F.; Kerans, Charles

    1997-05-19

    The objective of this project is to investigate styles of reservoir heterogeneity found in low permeability pelleted wackestone/packstone facies and mixed carbonate/clastic facies found in Permian Basin reservoirs by studying similar facies exposed in the Guadalupe Mountains. Specific objectives for the outcrop study include construction of a stratigraphic framework, petrophysical quantification of the framework, and testing the outcrop reservoir model for effects of reservoir heterogeneity on production performance. Specific objectives for the subsurface study parallel objectives for the outcrop study. Subsurface Activities - We continue to prepare two final reports that summarize research results of the South Cowden Field study. One report summarizes results of the petrophysical characterization research, and one summarizes results of the fluid-flow modeling research. Outcrop Activities - We also continue to prepare the final report, which summarizes the research results of the Grayburg outcrop reservoir study.

  12. Geoscience/Engineering Characterization of the Interwell Environment in Carbonate Reservoirs Based on Outcrop Analogs, Permian Basin, West Texas and New Mexico.

    SciTech Connect

    Lucia, Jerry F.; Kerans, Charles

    1997-05-29

    The objective of this project is to investigate styles of reservoir heterogeneity found in low permeability pelleted wackestone/packstone facies and mixed carbonate/clastic facies found in Permian Basin reservoirs by studying similar facies exposed in the Guadalupe Mountains. Specific objectives for the outcrop study include construction of a stratigraphic framework, petrophysical quantification of the framework, and testing the outcrop reservoir model for effects of reservoir heterogeneity on production performance. Specific objectives for the subsurface study parallel objectives for the outcrop study. Subsurface Activities - We continue to prepare two final reports that summarize research results of the South Cowden Field study. One report summarizes results of the petrophysical characterization research, and one summarizes results of the fluid-flow modeling research. Outcrop Activities - We also continue to prepare the final report, which summarizes the research results of the Grayburg outcrop reservoir study.

  13. Controls on reservoir development in Devonian Chert: Permian Basin, Texas

    SciTech Connect

    Ruppel, S.C.; Hovorka, S.D.

    1995-12-01

    Chert reservoirs of the Lower Devonian Thirtyone Formation contain a significant portion of the hydrocarbon resource in the Permian basin. More than 700 million bbl of oil have been produced from these rocks, and an equivalent amount of mobile oil remains. Effective exploitation of this sizable remaining resource, however, demands a comprehensive appreciation of the complex factors that have contributed to reservoir development. Analysis of Thirtyone Formation chert deposits in Three Bar field and elsewhere in the Permian basin indicates that reservoirs display substantial heterogeneity resulting from depositional, diagenetic, and structural processes. Large-scale reservoir geometries and finer scale, intra-reservoir heterogeneity are primarily attributable to original depositional processes. Despite facies variations, porosity development in these cherts is principally a result of variations in rates and products of early silica diagenesis. Because this diagenesis was in part a function of depositional facies architecture, porosity development follows original depositional patterns. In reservoirs such as Three Bar field, where the Thirtyone Formation has been unroofed by Pennsylvanian deformation, meteoric diagenesis has created additional heterogeneity by causing dissolution of chert and carbonate, especially in areas of higher density fracturing and faulting and along truncated reservoir margins. Structural deformation also has exerted direct controls on heterogeneity that are particularly noteworthy in reservoirs under waterflood. High-density fracture zones create preferred flow paths that result in nonuniform sweep through the reservoir. Faulting locally creates compartments by offsetting reservoir flow units. As such, the processes and models defined here improve understanding of the causes of heterogeneity in all Thirtyone chert reservoirs in the Permian basin and aid recovery of the sizable hydrocarbon resource remaining in these rocks.

  14. The impact of high-resolution biostratigraphy on reservoir prediction and basin history - A Barents Sea case study

    SciTech Connect

    Husmo, T. ); Hochuli, P. )

    1991-08-01

    The Hammerfest Basin is bounded by the Troms-Finnmark Platform to the south and the Loppa High to the north. Twenty-seven exploration wells have been drilled in the basin since 1980. The objective for most of these wells was Middle Jurassic fault blocks. Until recently little attention has been paid to the Upper Jurassic to Lower Cretaceous synrift sequence. The first well drilled on Block 7120/10 tested a rotated Jurassic fault block. This well, together with two wells in an adjacent block, penetrated thin Lower Cretaceous sands near the distal pinch-outs of fault wedges. Seismic data indicated that a basinal wedge of equivalent age was present on Block 7120/10. High risk was put on the presence of sand in this basinal wedge, and a detailed biostratigraphic analysis was performed on wells along the basin margin in order to determine the timing of erosion on the margin and whether the Jurassic-Triassic coarse clastics were present in the provenance area. The analysis separated reworked from in-situ palynomorph assemblages in the synrift succession in the analyzed wells. A clear inverted stratigraphy was displayed by the reworked palynomorphs. Furthermore, a dramatic increase in reworked palynomorphs. Furthermore, a dramatic increase in reworked palynomorphs was observed in all wells at the onset of Valanginian. In particular the presence of Nannoceratopsis gracilis suggested that shallow marine Jurassic clastics were eroded at this time. Sand presence was predicted for the basinal wedge. The understanding of the basin history was also improved. Well 71Z0/10-2 drilled summer 1990 proved the success of the reservoir prediction and hence the usefulness of incorporating biostratigraphy in the assessment.

  15. Rock-physics-based carbonate pore type characterization and reservoir permeability heterogeneity evaluation, Upper San Andres reservoir, Permian Basin, west Texas

    NASA Astrophysics Data System (ADS)

    Dou, Qifeng; Sun, Yuefeng; Sullivan, Charlotte

    2011-05-01

    In addition to mineral composition and pore fluid, pore type variations play an important role in affecting the complexity of velocity-porosity relationship and permeability heterogeneity of carbonate reservoirs. Without consideration of pore type diversity, most rock physics models applicable to clastic rocks for explaining the rock acoustic properties and reservoir parameters relationship may not work well for carbonate reservoirs. A frame flexibility factor ( γ) defined in a new carbonate rock physics model can quantify the effect of pore structure changes on seismic wave velocity and permeability heterogeneity in carbonate reservoirs. Our study of an Upper San Andres carbonate reservoir, Permian Basin, shows that for core samples of given porosity, the lower the frame flexibility factor ( γ), the higher the sonic wave velocity. For the studied reservoir, samples with frame flexibility factor ( γ) < 3.85 represent either visible vuggy pore space in a dolopackstone or intercrystalline pore space in dolowackstone. On the other hand, samples with frame flexibility factor ( γ) > 3.85 indicate either dominant interparticle pore space in dolopackstone or microcrack pore space in dolowackstone or dolomudstone. Using the frame flexibility factor ( γ), different porosity-impedance and porosity-permeability trends can be classified with clear geologic interpretation such as pore type and rock texture variations to improve porosity and permeability prediction accuracy. New porosity-permeability relations with γ classification help delineate permeability heterogeneity in the Upper San Andres reservoir, and could be useful for other similar carbonate reservoir studies. In addition, results from analysis of amplitude variation with offset (AVO) and impedance modeling indicate that by combining rock physics model and pre-stack seismic inversion, simultaneous estimation of porosity and frame flexibility factor ( γ) is quite feasible because of the strong influence of

  16. Sedimentology of granite boulder conglomerates and associated clastics in the onshore section of the late Mesozoic Pletmos Basin (Western Cape, South Africa)

    NASA Astrophysics Data System (ADS)

    Bordy, Emese M.; America, Travis

    2016-07-01

    Along the southern margin of South Africa, intermountain rift successions, which comprise unusually large, rounded granite boulders and other coarse clastics, reveal an important geological history about the mid-Mesozoic extensional tectonics that lead to the break-up of Gondwana. These strata, mapped as part of the Mid to Upper Jurassic Enon Formation, allow the assessment of the nature, intensity and mode of sediment transport in onshore section of the Pletmos Basin, which is one of the late Mesozoic basins in southern Africa. Based on sedimentary facies analysis, palaeocurrent measurements and semi-quantitative palaeohydraulic calculations, the results suggest that the abundant coarse sediment was deposited by debris-flows and stream-flow floods on a proximal alluvial fan with high gradient alluvial channels. The floods were intense with mean flow velocity of ∼6 m3/s and peak discharge of ∼450 m3/s. While the role of climate in the sedimentation dynamics remains unknown, syn-sedimentary rift tectonics were likely significant and caused, north of the major boundary fault, the unroofing and denudation of the uplifted mountainous source areas, including the Late Ediacaran-Cambrian Maalgaten Granite Suite and the Siluro-Ordovician Table Mountain Group (Cape Supergroup).

  17. Basin-wide architecture of sandstone reservoirs in the Fort Union Formation, Wind River basin, Wyoming

    SciTech Connect

    Flores, R.M.; Keighin, C.W.; Keefer, W.R. )

    1991-06-01

    Architecture of hydrocarbon-bearing sandstone reservoirs of the Paleocene Fort Union Formation in the Wind River basin, Wyoming, was studied using lithofacies, grain size, bounding surfaces, sedimentary structures, internal organization, and geometry. Two principal groups of reservoirs, both erosionally based and fining upward, consist of either conglomeratic sandstone or sandstone lithofacies. Two types of architecture were recognized in conglomeratic sandstone reservoirs: (1) heterogeneous, multistacked, lenticular and (2) homogeneous, multiscoured, wedge-sheet bodies. Three types of architecture were recognized in sandstone reservoirs: (3) heterogeneous, multistacked, elongate; (4) homogeneous, multilateral, lenticular; and (5) homogeneous, ribbon-lensoid bodies. Conglomeratic sandstone reservoirs in the southern and southwestern parts of the basin suggest deposition in gravel-bedload fluvial systems influenced by provenance uplift of the Granite and southern Wind River mountains. Type 2 reservoirs represent deposits of eastward-flowing braided streams aggrading an alluvial valley in response to base level rise. Thus, to determine basin-wide architecture of reservoirs requires understanding the interplay between base level conditions, basin subsidence, and provenance uplift. These interrelated factors, in turn, control differences in hierarchies of fluvial systems throughout the basin.

  18. Salt tectonics, patterns of basin fill, and reservoir distribution

    SciTech Connect

    Yorston, H.J.; Miles, A.E.

    1988-02-01

    Salt structures, which develop due to sediment loading, gravity creep, and/or buoyancy, include boundary-fault grabens and half grabens, rollers, anticlines, domes and walls, diapirs, sills, massifs, and compressional toe structures. Associated features include fault systems and turtle structures. Of these, six directly relate to basin fill and all directly influence the distribution of reservoir facies. Salt structuring is initiated by sedimentation, which in turn is localized by salt withdrawal. Withdrawal produces individual salt structures, migrating sills, dissected massifs, and regional depocenters bordered by salt walls. Composite withdrawals dictate the patterns of basin fill. Relative rates of structural growth and sedimentation control the distribution of reservoir facies. When growth dominates, sands are channeled into lows. When sedimentation dominates and maintains flat surfaces, facies distribution is not impacted except where faulting develops. Turtle structures, developed by the inversion of peripheral synclines, can move sands into favorable structural position and/or serve as platforms for carbonate reservoir development. Salt growth varies with type structure, stage of development, and rate of sedimentation. Sedimentation at a specific location depends on basin position, sediment transport system, sea level stand, and rate of salt withdrawal. This paper presents techniques for using seismic data to determine the controls on salt structural growth and sedimentation and the patterns of basin fill and reservoir distribution.

  19. Paleontology and sedimentology of upper clastic member of Wanakah Formation, Chama basin, New Mexico: Lacustrine paleoenvironmental implications

    SciTech Connect

    Good, S.J.; Ridgley, J.L. )

    1989-09-01

    Lacustrine strata of the upper part of the Jurassic Wanakah Formation were restricted to the Chama basin of north-central New Mexico by mid-Jurassic tectonic activity in the Brazos and Nacimiento uplifts and along the Gallina-Archuleta anticlinorium. Lateral and vertical facies of the upper Wanakah exposed around the southern margin of the Chama basin indicate that the deeper part of the lake was north of the outcrop belt. The upper 3-5 m of the Wanakah consists of thin-bedded rippled sandstone, interbedded mudstone, and limestone containing trace fossils and freshwater mollusks characteristic of marginal lacustrine facies. Taphonomic studies of mollusks in the Wanakah Formation have been combined with application of ecophenotypic variation documented in extant unionid bivalves to produce paleoenvironmental interpretations of these lacustrine rocks.

  20. Clastic-hosted stratiform, vein/breccia and disseminated Zn-Pb-Ag deposits of the northwestern Brooks Range, AK: Are they different expressions of dewatering of the same source basin

    SciTech Connect

    Schmidt, J.M. ); Werdon, M.B. . Dept. of Geology)

    1993-04-01

    Sphalerite and galena, with significant silver occur in 3 distinct types of mineralization hosted in Upper Devonian and Carboniferous clastic rocks of the northwestern Brooks Range. The best known are Zn-Pb-Ag massive sulfide deposits with variable pyrite, barite, and hydrothermal silifica hosted in Mississippian (to Pennsylvanian ) black siliceous shale and chert, and similar to shale-hosted Pb-Zn massive sulfide deposits worldwide. Zn-Pb-Ag breccias and veins are hosted in Upper Devonian to Lower Mississippian fine-grained quartzites and siltstone which stratigraphically underlie the massive sulfide-hosting units. The breccia-vein and disseminated occurrences are co-extensive with the rocks that host massive sulfide deposits, and with the western part of the Endicott Group clastic basin. Pb isotopic ratios of galena from all the deposits are remarkably uniform, and suggest a single Pb source. The authors genetic model suggests that all types are the result of dewatering of a single clastic source basin. Different mineralization styles are probably due to variable depths of emplacement (at or below the seafloor), thermal variations related to extensional thinning of the crust, and hydrologic flow out of the basin controlled by extensional thinning of the crust, and hydrologic flow out of the basin controlled by extensional faulting and permeability variations in local stratigraphy. The most likely sources for Zn and Pb are clay minerals within the lowermost (Hunt Fork Shale) portions of the western Endicott Group.

  1. Lithofacies distribution and reservoir heterogeneity within Pennsylvanian phylloid algal mounds, western Orogrande basin, New Mexico

    SciTech Connect

    Giles, K.A.; Soreghan, G.S.

    1996-12-31

    Pennsylvanian strata within the San Andres Mountains (western Orogrande basin) contain very well-developed phylloid algal bioherms, but these bioherms remain understudied owing to their location within the bounds of the U.S. Army White Sands Missile Range. The exposed Upper Pennsylvanian section within Hembrillo Canyon affords a three-dimensional view of mound structure, and thus an excellent opportunity for characterizing lithofacies distribution and reservoir heterogeneity that may prove useful for exploration/exploitation efforts in analogous petroliferous systems. The mounds are developed within a mixed carbonate-clastic shallow marine section punctuated by shoaling-upward cycles. Each mound site consists of a slack of individual biohermal growth events characterized by a subtidal wackestone initiation phase, core boundstone phase, and peritidal to subaerially exposed packstone/grainstone terminal phase. Individual biohermal growth events range up to 30 m in thickness; vertical stacking of these bioherms has produced aggregate mounds reaching up to 100 m in stratigraphic thickness and 300 m in diameter. Individual blohermal thicknesses decrease abruptly and markedly away from mound sites, and calcareous mudstones dominate in intermound regions. The controlling influences of paleogeography and glacioeustasy, respectively, produced the pronounced lateral and vertical heterogeneity characterizing these and analogous phylloid algal mound systems. Reservoirs within these systems are highly compartmentalized: wackestone initiation phases and peritidal to subaerial termination phases that envelope core facies may serve as porosity and permeability barriers that effectively partition the reservoir. Recognition of the scale, character, and probable controls on these lateral and vertical changes is important for effective exploration and exploitation in phylloid algal mound systems.

  2. Lithofacies distribution and reservoir heterogeneity within Pennsylvanian phylloid algal mounds, western Orogrande basin, New Mexico

    SciTech Connect

    Giles, K.A. ); Soreghan, G.S. )

    1996-01-01

    Pennsylvanian strata within the San Andres Mountains (western Orogrande basin) contain very well-developed phylloid algal bioherms, but these bioherms remain understudied owing to their location within the bounds of the U.S. Army White Sands Missile Range. The exposed Upper Pennsylvanian section within Hembrillo Canyon affords a three-dimensional view of mound structure, and thus an excellent opportunity for characterizing lithofacies distribution and reservoir heterogeneity that may prove useful for exploration/exploitation efforts in analogous petroliferous systems. The mounds are developed within a mixed carbonate-clastic shallow marine section punctuated by shoaling-upward cycles. Each mound site consists of a slack of individual biohermal growth events characterized by a subtidal wackestone initiation phase, core boundstone phase, and peritidal to subaerially exposed packstone/grainstone terminal phase. Individual biohermal growth events range up to 30 m in thickness; vertical stacking of these bioherms has produced aggregate mounds reaching up to 100 m in stratigraphic thickness and 300 m in diameter. Individual blohermal thicknesses decrease abruptly and markedly away from mound sites, and calcareous mudstones dominate in intermound regions. The controlling influences of paleogeography and glacioeustasy, respectively, produced the pronounced lateral and vertical heterogeneity characterizing these and analogous phylloid algal mound systems. Reservoirs within these systems are highly compartmentalized: wackestone initiation phases and peritidal to subaerial termination phases that envelope core facies may serve as porosity and permeability barriers that effectively partition the reservoir. Recognition of the scale, character, and probable controls on these lateral and vertical changes is important for effective exploration and exploitation in phylloid algal mound systems.

  3. Madison Group (Mississippian) reservoir facies of Williston Basin, North Dakota

    SciTech Connect

    Lindsay, R.F.

    1985-02-01

    Twenty-seven oil fields producing from the Mission Canyon Limestone and Charles Formation (Madison Group) were studied: 1) along the eastern basin margin (Bluell, Sherwood, Mohall, Glenburn, Haas, and Chola fields), 2) northeast of Nesson anticline (Foothills, North Black Slough, South Black Slough, Rival, Lignite, and Flaxton), 3) along Nesson anticline (North Tioga, Tioga, Beaver Lodge, Capa, Hoffland, Charlson, Hawkeye, Blue Buttes, Antelope, and Clear Creek), and 4) south of the basin center (Lone Butte, Little Knife, Big Stick, Fryburg, and Medora). Mission Canyon reservoirs along the eastern margin are in several shoaling-upward carbonate to anhydrite cycles of pisolitic packstone or grainstone buildups. South of the basin center, only a single shoaling-upward sequence is present, with dolomitized, mostly restructed-marine skeletal wackstone to pelletal wackstone or packstone reservoir facies. Nesson anticline, between these 2 areas, contains a single shoaling-upward sequence without an anhydrite cap. In northern Nesson anticline, Mission Canyon reservoir facies are oolitic-pisolitic, intraclastic wackestone or grainstone buildups or open-marine skeletal packstone or grainstone. Both limestones and dolostones are productive in southern Nesson anticline. Limestone reservoir facies are transitional, open to restricted-marine slightly intraclastic, skeletal wackestone or packstone facies. Dolostone reservoir facies are restricted-marine mudstone to skeletal mudstone and pelletal wackestone or packstone. Northeast of the Nesson anticline, production is from oolitic to pisolitic packstone or grainstone buildups in the Rival subinterval and from restricted-marine, dolomitized spiculitic mudstone in the Midale subinterval (base of Charles Formation). In the northern Nesson anticline, Rival reservoir facies are offshore open to restricted-marine, skeletal, intraclastic, pelletal wackestone and/or packstones.

  4. Sequence stratigraphy, facies architecture and reservoir distribution, Cretaceous lowstand fan reservoirs, Southern Basin, onshore Trinidad

    SciTech Connect

    Sprague, A.R.; Larue, D.K.; Faulkner, B.L.

    1996-08-01

    Thick Albian-Campanian mass-flow sandstones in the Southern Basin Trinidad were deposited within submarine canyons incised into the northern continental slope of South America and as associated down-dip basin-floor lowstand fans. The contemporaneous slope to basin-floor break lay across the Southern Basin area with turbidity current paleoflow being to the northwest. North of this paleo-slope break graded to massive, channelized, high-density turbidite sandstones occur interstratified with shaly overbank and channel abandonment deposits. A progression of depositional sub-environments from proximal through distal lowstand fan can be recognized. All fine and thin upward but can be discriminated by the occurrence of slumps, debris flows and conglomerates, the grain-size and bedding scale of sandstones and the characteristics of low-density turbidites and mudrocks. South of the paleo-slope break mass-flow deposits comprise muddy slumps and debris flows rich in granules and pebbles deposited in slope canyons. During periods of turbidity current by-pass or fan abandonment hemipelagic settling processes predominated. Reservoir distribution maps of these lowstand fans have been constructed utilizing geometric constraints, analogs and paleoslope determinations from oriented core. The interpreted canyon locations and orientations are key to the understanding of reservoir distribution on the basin-floor tract to the north: a vital component in the exploration of the basin.

  5. Some Cenozoic hydrocarbon basins on the continental shelf of Vietnam

    SciTech Connect

    Dien, P.T.

    1994-07-01

    The formation of the East Vietnam Sea basins was related to different geodynamic processes. The pre-Oligocene basement consists of igneous, metamorphic, and metasediment complexes. The Cretaceous-Eocene basement formations are formed by convergence of continents after destruction of the Tethys Ocean. Many Jurassic-Eocene fractured magmatic highs of the Cuulong basin basement constitute important reservoirs that are producing good crude oil. The Paleocene-Eocene formations are characterized by intramountain metamolasses, sometimes interbedded volcanic rocks. Interior structures of the Tertiary basins connect with rifted branches of the widened East Vietnam Sea. Bacbo (Song Hong) basin is predominated by alluvial-rhythmic clastics in high-constructive deltas, which developed on the rifting and sagging structures of the continental branch. Petroleum plays are constituted from Type III source rocks, clastic reservoirs, and local caprocks. Cuulong basin represents sagging structures and is predominated by fine clastics, with tidal-lagoonal fine sandstone and shalestone in high-destructive deltas that are rich in Type II source rocks. The association of the pre-Cenozoic fractured basement reservoirs and the Oligocene-Miocene clastic reservoir sequences with the Oligocene source rocks and the good caprocks is frequently met in petroleum plays of this basin. Nan Conson basin was formed from complicated structures that are related to spreading of the oceanic branch. This basin is characterized by Oligocene epicontinental fine clastics and Miocene marine carbonates that are rich in Types I, II, and III organic matter. There are both pre-Cenozoic fractured basement reservoirs, Miocene buildup carbonate reservoir rocks and Oligocene-Miocene clastic reservoir sequences, in this basin. Pliocene-Quaternary sediments are sand and mud carbonates in the shelf facies of the East Vietnam Sea back-arc basin. Their great thickness provides good conditions for maturation and trapping.

  6. Sedimentation and basin-fill history of the Neogene clastic succession exposed in the southeastern fold belt of the Bengal Basin, Bangladesh: a high-resolution sequence stratigraphic approach

    NASA Astrophysics Data System (ADS)

    Royhan Gani, M.; Mustafa Alam, M.

    2003-02-01

    The Tertiary basin-fill history of the Bengal Basin suffers from oversimplification. The interpretation of the sedimentary history of the basin should be consistent with the evolution of its three geo-tectonic provinces, namely, western, northeastern and eastern. Each province has its own basin generation and sediment-fill history related mainly to the Indo-Burmese and subordinately to the Indo-Tibetan plate convergence. This paper is mainly concerned with facies and facies sequence analysis of the Neogene clastic succession within the subduction-related active margin setting (oblique convergence) in the southeastern fold belt of the Bengal Basin. Detailed fieldwork was carried out in the Sitapahar anticline of the Rangamati area and the Mirinja anticline of the Lama area. The study shows that the exposed Neogene succession represents an overall basinward progradation from deep marine through shallow marine to continental-fluvial environments. Based on regionally correlatable erosion surfaces the entire succession (3000+ m thick) has been grouped into three composite sequences C, B and A, from oldest to youngest. Composite sequence C begins with deep-water base-of-slope clastics overlain by thick slope mud that passes upward into shallow marine and nearshore clastics. Composite sequence B characteristically depicts tide-dominated open-marine to coastal depositional systems with evidence of cyclic marine regression and transgression. Repetitive occurrence of incised channel, tidal inlet, tidal ridge/shoal, tidal flat and other tidal deposits is separated by shelfal mudstone. Most of the sandbodies contain a full spectrum of tide-generated structures (e.g. herringbone cross-bedding, bundle structure, mud couplet, bipolar cross-lamination with reactivation surfaces, 'tidal' bedding). Storm activities appear to have played a subordinate role in the mid and inner shelf region. Rizocorallium, Rosselia, Planolites and Zoophycos are the dominant ichnofacies within the

  7. Fan-delta and interdeltaic shoreline sediments of Middle Devonian Granite Wash and Keg River clastics, Red Earth field, north Alberta basin, Canada

    SciTech Connect

    Sabry, H.

    1989-03-01

    A detailed sedimentological investigation of over 4000 ft of core and 500 well logs of the Middle Devonian granite wash and Keg River clastics in the Red Earth field, North Alberta basin, Canada, has led to the recognition of a granite wash subaerial fan-delta system that is laterally continuous with a Keg River subaqueous delta component along an eastern shoreline of the ancestral Peace River arch. The subaerial fan delta includes alluvial fan facies, sheet wash and mud flows, and playa lakes. The subaqueous delta component includes lower shoreface, upper shoreface, beach-foreshore, eolian sand dunes, lagoon, washover sands, tidal channels and flats, and supratidal carbonates and anhydrites. Within this system, six mappable units are defined. A conceptual depositional model for the sequence depicts four main events. (1) Erosion of Peach River arch uplifted fault blocks, which produced coarse-grained fan-delta sediments in an adjacent fault-bounded margin. Subsequent fluvial reworking resulted in the deposition of thick, lenticular, wedge-shaped alluvial fans of granite wash. (2) Progradation of alluvial fans seaward into the Keg River Sea. (3) Transgression by Middle Devonian seas from the east, which reworked alluvial fans and led to deposition of discontinuous linear sand bodies represented by the Keg River regressive shoreline sediments. (4) Restriction of the sea by the Presqu'ile barrier reef to the north, which deposited evaporites of the Muskeg Formation over the whole sequence. Modern analog to this fan-delta system is the coastal fans of the Gulf of Aqaba, Red Sea. Red Earth field contains over 27 million bbl of recoverable oil, related to a combination structural-stratigraphic trap.

  8. Stratigraphic modeling of sedimentary basins

    SciTech Connect

    Aigner, T. ); Lawrence, D.T. )

    1990-11-01

    A two-dimensional stratigraphic forward model has been successfully applied and calibrated in clastic, carbonate, and mixed clastic/carbonate regimes. Primary input parameters are subsidence, sea level, volume of clastics, and carbonate growth potential. Program output includes sequence geometries, facies distribution lithology distribution, chronostratigraphic plots, burial history plots, thermal and maturity histories, and crossplots. The program may be used to predict reservoir distribution, to constrain interpretations of well and seismic data, to rapidly test exploration scenarios in frontier basins, and to evaluate the fundamental controls on observed basin stratigraphy. Applications to data sets from Main Pass (US Gulf Coast), Offshore Sarawak (Malaysia), Rub'al Khali basin (Oman), Paris basin (France), and Baltimore Canyon (US East Coast) demonstrate that the program can be used to simulate stratigraphy on a basin-wide scale as well as on the scale of individual prospects.

  9. Understanding Reservoir Quality in the Petroleum System of the Ediacaran-Early Cambrian Ara Group (South Oman Salt Basin):

    NASA Astrophysics Data System (ADS)

    Becker, S.; Reuning, L.; Kukla, P.; Marquez, X.; Farquani, S.; Rawahi, Z.

    2009-04-01

    The Ediacaran-Early Cambrian Ara Group of the South Oman Salt Basin consists of six carbonate to evaporite (rock salt, gypsum) sequences. These Ara Group carbonates are termed A0C to A6C from the bottom towards the top of the basin. Differential loading of locally 5 km thick Cambrian to Ordovician clastics onto the mobile rock salt of the Ara Group caused growth of isolated salt diapirs, which resulted in strong fragmentation and faulting of the carbonate intervals into several isolated so-called ‘stringers'. These carbonate stringers represent a unique intra-salt petroleum system, which has been successfully explored in recent years. Initially the reservoir properties of the carbonate stringers were controlled by their depositional facies. After deposition, the stringers experienced a complex diagenetic history from the shallow to the deep burial realm. Diagenetic processes like anhydrite and halite plugging exerted a negative affect on poroperm properties, whereas e.g. calcite dissolution had a positive affect. Our goal is to detect spatial and temporal distribution patterns of diagenetic phases and their effect on reservoir properties. Mineralogy, rock fabrics, paragenetic relationships and geochemistry of ~ 200 samples from several petroleum wells from the late Neoproterozoic A2C interval were analyzed. For a mineralogical overview the samples were measured by XRD - powder diffraction, whereas the rock fabric was studied by thin section analysis and if required additionally with SEM. This high-resolution dataset was used in combination with external petrophysical observations to defined porosity-permeability trends for different rock-fabric groups according to LUCIA (1995). The spatial distribution of these petrophysical characteristics will be displayed in field-scale distribution maps of the analyzed diagenetic phases. The expected integrated 3D - diagenesis model will enable better predictions of the reservoir qualities in the Ara fields and will

  10. Seismic imaging a carbonate reservoir: The Paris Basin Dogger

    SciTech Connect

    Mougenot, D.

    1995-08-01

    Within the Dogger project, seven partners joined forces (CGG, DHYCA, EAP, ESSO-REP, IFP, TOTAL, TRITON France) to develop an appropriate seismic acquisition, processing and interpretation methodology in order to improve the description of the main oil reservoir (30 m) lying at the top of the Dogger carbonates in the Paris Basin, at a depth of 1900 m. High-resolution 2D Vibroseismic is used to record high frequencies (up to 100 Hz) at the level of the target, and provides sufficiently adequate vertical resolution for the reflections at the top and at the base of the reservoir not to interfere. The upper frequency content of the 3D seismic (70 Hz) is more difficult to enhance. Yet the essential contribution made by the 3D is to evidence, via horizon attributes, sub-meridian lineaments corresponding to faults with throw of several meters which is too weak to be detected on vertical sections. The distribution of these faults, via which water tends to invade the reservoir, and the organization of the amplitudes at the top reservoir reflector, which seems to suggest lateral variations in porosity, are a valuable guide for setting up wells. Three-component seismic (2D-3c) and S-wave emissions did not produce any reflections beyond 30 Hz at the level of the target which is a poor reflector (PS & SS). Only borehole seismic (VSP, offset VSP), where high frequencies are much less attenuated than with surface seismic, provides detailed imaging of the reservoir in converted mode (up to 110 Hz in PP and in PS). The combination of a continuous spatial sampling, such as that obtained in 3D, and of a Vibroseis emission adapted to frequency attenuation, such as that used in 2D, can supply useful information about the thin and discontinuous Dogger reservoir which cannot he provided by mere correlation of the borehole data.

  11. Characterization of a Delaware slope basin reservoir for optimal development

    SciTech Connect

    Weiss, W.W.; Ouenes, A.; Sultan, A.J.

    1995-12-31

    A reliable reservoir description is essential to various scenarios for successful field development. In this study, various new tools have been applied to fully characterize the East Livingston Ridge Delaware reservoir. The Delaware formations in their slope/basin environment are difficult to characterize due to the channels in the submarine fans. Using well logs, a complex 3-D reservoir model composed of a channel through the bottom three layers of a seven layer model with one non-oil bearing zone was constructed to represent this complex depositional setting. Drastic changes in layer lithologies resulting in multiple oil/water contacts and varying water saturations required detailed log interpretation. The porosity logs were tuned with available sidewall core information. Log porosity was determined for each layer at each well and kriging was used to estimate the areal distribution of the porosity. Porosity-permeability correlations for each layer were developed from sidewall core data. The correlations were used to make an initial estimate of the interwell permeabilities. A production history match was not possible with the initial characterization of the reservoir. The production rates of the oil, gas, and water phases of each of the twenty-three wells in the East Livingston Ridge field and the pressure data were automatically history matched using a recently developed simulated annealing technique. The absolute and relative permeabilities of the layers were varied automatically during the history matching phase of the reservoir study. The larger scale properties resulting from the calibrated model were used to forecast the results of continued primary, infill drilling and/or waterflooding.

  12. Reservoir property estimation in Pohang Basin, South Korea for the preliminary CO2 storage prospect

    NASA Astrophysics Data System (ADS)

    Han, J.; Keehm, Y.

    2013-12-01

    Geological CO2 storage draws a great attention globally and South Korea also look for proper storage sites to reduce CO2 emission. The Pohang Basin area, located at the southeastern part of Korea, is regarded as a good candidate for CO2 storage, since the basin is believed to have good sand intervals, and there are various CO2 sources, such as a steel mill and a car factory around the area. However, there are not many geophysical data (core, logs, seismic, etc.) available since the area is highly industrialized and the target site is located offshore. There are a few well logs sparsely located, and core data are not many either since the target formation is semi- to unconsolidated clastics. To overcome these difficulties, we firstly go back to regional geology and determine the regional 3D distribution of target formation. Then, we obtain onshore outcrop samples from the same target formation to compliment scarce core data. The core and outcrop samples are not well-consolidated, which makes lab measurements highly difficult. We adopt a computational rock physics method, which estimates porosity and permeability on 3D microstructures statistically reconstructed from thin section images. The average values of porosity and permeability of outcrop samples are 25% and 1,000mD, and those from one core data 17% and 100mD, respectively. Other cores from the same formation do not give any significant permeability values. Thus, we categorize the formation into two subgroups, good and bad. Next, we visit well-log data and categorize intervals into two subgroups, and apply the our computation results to the good group. Finally, we can give maps of reservoir properties for the target formation. Although we can give only approximate values/relations of reservoir properties for good interval, it helps evaluate overall prospect of the target formation. Acknowledgements: This research was supported by the Basic Research Project of the Korea Institute of Geoscience and Mineral

  13. New exploration targets in Malaysia: Deep sandstone reservoirs in Malay basin and turbidites in Sabah basin

    SciTech Connect

    Ngah, K.B. )

    1996-01-01

    Much of the production in Malaysia is from middle to upper Miocene sandstones and carbonates in three main basins: Malay, Sarawak (Its three subbasins-Central Luconia, Balingian and Baram), and Sabah. Fifteen fields produce an average of 630,000 bopd and 3.0 bcfgpd. More than 4.0 billion barrels of oil and 20 tcf of gas have been produced, and reserves are 4.2 billion barrels of oil and 90 tcf. Oil production will decline within the next 1 0 years unless new discoveries are made and/or improved oil recovery methods introduced, but gas production of 5 tcf, expected after the turn of the century, can be sustained for several decades. Successful exploratory wells continue to be drilled in the Malaysian Tertiary basins, and others are anticipated with application of new ideas and technology. In the Malay basin, Miocene sandstone reservoirs in Groups L and M have been considered as very [open quote]high risk[close quotes] targets, the quality of the reservoirs has generally been thought to be poor, especially toward the basinal center, where they occur at greater depth. The cause of porosity loss is primarily burial-related. Because of this factor and overpressuring, drilling of many exploration wells has been suspended at or near the top of Group L. In a recent prospect drilled near the basinal axis on the basis of advanced seismic technology, Groups L and M sandstones show fair porosity (8-15%) and contain gas. In the Sabah basin, turbidite play has received little attention, partly because of generally poor seismic resolution in a very complex structural setting. Only one field is known to produce oil from middle Miocene turbidities. However, using recently acquired 3-D seismic data over this field, new oil pools have been discovered, and they are currently being developed. These finds have created new interest, as has Shell's recent major gas discovery from a turbidite play in this basin.

  14. New exploration targets in Malaysia: Deep sandstone reservoirs in Malay basin and turbidites in Sabah basin

    SciTech Connect

    Ngah, K.B.

    1996-12-31

    Much of the production in Malaysia is from middle to upper Miocene sandstones and carbonates in three main basins: Malay, Sarawak (Its three subbasins-Central Luconia, Balingian and Baram), and Sabah. Fifteen fields produce an average of 630,000 bopd and 3.0 bcfgpd. More than 4.0 billion barrels of oil and 20 tcf of gas have been produced, and reserves are 4.2 billion barrels of oil and 90 tcf. Oil production will decline within the next 1 0 years unless new discoveries are made and/or improved oil recovery methods introduced, but gas production of 5 tcf, expected after the turn of the century, can be sustained for several decades. Successful exploratory wells continue to be drilled in the Malaysian Tertiary basins, and others are anticipated with application of new ideas and technology. In the Malay basin, Miocene sandstone reservoirs in Groups L and M have been considered as very {open_quote}high risk{close_quotes} targets, the quality of the reservoirs has generally been thought to be poor, especially toward the basinal center, where they occur at greater depth. The cause of porosity loss is primarily burial-related. Because of this factor and overpressuring, drilling of many exploration wells has been suspended at or near the top of Group L. In a recent prospect drilled near the basinal axis on the basis of advanced seismic technology, Groups L and M sandstones show fair porosity (8-15%) and contain gas. In the Sabah basin, turbidite play has received little attention, partly because of generally poor seismic resolution in a very complex structural setting. Only one field is known to produce oil from middle Miocene turbidities. However, using recently acquired 3-D seismic data over this field, new oil pools have been discovered, and they are currently being developed. These finds have created new interest, as has Shell`s recent major gas discovery from a turbidite play in this basin.

  15. 3D Sedimentological and geophysical studies of clastic reservoir analogs: Facies architecture, reservoir properties, and flow behavior within delta front facies elements of the Cretaceous Wall Creek Member, Frontier Formation, Wyoming

    SciTech Connect

    Christopher D. White

    2009-12-21

    rock types (\\Eg sandstones and mudstones) and the variation of transport properties (\\Eg permeability and porosity) within bodies of a particular rock type. Both basin-wide processes such as sea-level change and the autocyclicity of deltaic processes commonly cause deltaic reservoirs to have large variability in rock properties; in particular, alternations between mudstones and sandstones may form baffles and trends in rock body permeability can influence productivity and recovery efficiency. In addition, diagenetic processes such as compaction, dissolution, and cementation can alter the spatial pattern of flow properties. A better understanding of these properties, and improved methods to model the properties and their effects, will allow improved reservoir development planning and increased recovery of oil and gas from deltaic reservoirs. Surface exposures of ancient deltaic rocks provide a high resolution, low uncertainty view of subsurface variability. Patterns and insights gleaned from these exposures can be used to model analogous reservoirs, for which data is much sparser. This approach is particularly attractive when reservoir formations are exposed at the surface. The Frontier Formation in central Wyoming provides an opportunity for high resolution characterization. The same rocks exposed in the vicinity of the Tisdale anticline are productive in nearby oil fields, including Salt Creek. Many kilometers of good-quality exposure are accessible, and the common bedding-plane exposures allow use of shallow-penetration, high-resolution electromagnetic methods known as ground-penetrating radar. This study combined geologic interpretations, maps, vertical sections, core data, and ground-penetrating radar to construct high-resolution geostatistical and flow models for the Wall Creek Member of the Frontier Formation. Stratal-conforming grids were use to reproduce the progradational and aggradational geometries observed in outcrop and radar data. A new, Bayesian method

  16. Modeling water-quality loads to the reservoirs of the Upper Trinity River Basin, Texas, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water quality modeling efforts have been conducted for 12 reservoirs in ten watersheds in Upper Trinity River Basin located in north Texas. The reservoirs are being used for water supply to the populated area around the Dallas-Fort Worth Metro and the water quality of some of these reservoirs has b...

  17. Sedimentological and geophysical studies of clastic reservoir analogs: Methods, applications and developments of ground-penetrating radar for determination of reservoir geometries in near-surface settings. Final report

    SciTech Connect

    McMechan, G.A.; Soegaard, K.

    1998-05-25

    An integrated sedimentologic and GPR investigation has been carried out on a fluvial channel sandstone in the mid-Cretaceous Ferron Sandstone at Coyote Basin along the southwestern flank of the San Rafael Uplift in east-central Utah. This near-surface study, which covers a area of 40 {times} 16.5 meters to a depth of 15 meters, integrates detailed stratigraphic data from outcrop sections and facies maps with multi-frequency 3-D GPR surveys. The objectives of this investigation are two-fold: (1) to develop new ground-penetrating radar (GPR) technology for imaging shallow subsurface sandstone bodies, and (2) to construct an empirical three-dimensional sandstone reservoir model suitable for hydrocarbon flow-simulation by imaging near-surface sandstone reservoir analogs with the use of GPR. The sedimentological data base consists of a geologic map of the survey area and a detailed facies map of the cliff face immediately adjacent to the survey area. Five vertical sections were measured along the cliff face adjacent to the survey area. In addition, four wells were cored within the survey area from which logs were recorded. In the sections and well logs primary sedimentary structures were documented along with textural information and permeability data. Gamma-ray profiles were also obtained for all sections and core logs. The sedimentologic and stratigraphic information serves as the basis from which much of the processing and interpretation of the GPR data was made. Three 3-D GPR data sets were collected over the survey area at frequencies of 50 MHZ, 100 MHZ, and 200 MHZ.

  18. Reservoir geology of Landslide field, southern San Joaquin basin, California

    SciTech Connect

    Carr, T.R.; Tucker, R.D.; Singleton, M.T. )

    1991-02-01

    The Landslide field, which is located on the southern margin of the San Joaquin basin, was discovered in 1985 and consists of 13 producers and six injectors. Cumulative production as of mid-1990 was approximately 10 million bbl of oil with an average daily production of 4700 BOPD. Production is from a series of late Miocene turbidite sands (Stevens Sand) that were deposited as a small constructional submarine fan (less than 2 mi in diameter). Based on interpretation of wireline logs and engineering data, deposition of the fan and of individual lobes within the fan was strongly influenced by preexisting paleotopography and small syndepositional slump features. Based on mapping of individual depositional units and stratigraphic dipmeter analysis, transport direction of the sand was to the north-north across these paleotopographic breaks in slope. Dipmeter data and pressure data from individual sands are especially useful for recognition and mapping of individual flow units between well bores. Detailed engineering, geophysical and geological studies have increased our understanding of the dimensions, continuity, geometry, and inherent reservoir properties of the individual flow units within the reservoir. Based on the results of these studies a series of water isolation workovers and extension wells were proposed and successfully undertaken. This work has increased recoverable reserves and arrested the rapid production decline.

  19. Characterization of the Qishn sandstone reservoir, Masila Basin-Yemen, using an integrated petrophysical and seismic structural approach

    NASA Astrophysics Data System (ADS)

    Lashin, Aref; Marta, Ebrahim Bin; Khamis, Mohamed

    2016-03-01

    This study presents an integrated petrophysical and seismic structural analysis that is carried out to evaluate the reservoir properties of Qishn sandstone as well as the entrapment style of the hydrocarbons at Sharyoof field, Sayun-Masila Basin that is located at the east central of Yemen. The reservoir rocks are dominated by clean porous and permeable sandstones zones usually intercalated with some clay stone interbeds. As identified from well logs, Qishn sandstone is classified into subunits (S1A, S1B, S1C and S2) with different reservoir characteristics and hydrocarbon potentiality. A number of qualitative and quantitative well logging analyses are used to characterize the different subunits of the Qishn reservoir and identify its hydrocarbon potentiality. Dia-porosity, M-N, Pickett, Buckles plots, petrophysical analogs and lateral distribution maps are used in the analysis. Shale volume, lithology, porosity, and fluid saturation are among the most important deduced parameters. The analysis revealed that S1A and S1C are the main hydrocarbon-bearing units. More specifically, S1A unit is the best, as it attains the most prolific hydrocarbon saturations (oil saturation "SH″ up to 65) and reservoir characteristics. An average petrophysical ranges of 4-21%, 16-23%, 11-19%, 0-65%, are detected for S1A unit, regarding shale volume, total and effective porosity, and hydrocarbon saturation, respectively. Meanwhile, S1B unit exhibits less reservoir characteristics (Vsh>30%, ϕEff<15% and SH< 15%). The lateral distribution maps revealed that most of the hydrocarbons (for S1A and S1C units) are indicated at the middle of the study area as NE-SW oriented closures. The analysis and interpretation of seismic data had clarified that the structure of study area is represented by a big middle horst bounded by a group of step-like normal faults at the extreme boundaries (faulted anticlinal-structure). In conclusion, the entrapment of the encountered hydrocarbon at Sharyoof oil

  20. Upper Strawn (Desmoinesian) carbonte and clastic depositional environments, southeastern King County, Texas

    SciTech Connect

    Boring, T.H. )

    1990-02-01

    The Pennsylvanian upper Strawn Group of southeastern King County, Texas, provides a unique setting to study interactions between coeval carbonate and clastic deposition during the Desmoinesian. One of the most perplexing problems is the relationship of massive Pennsylvanian platform carbonates to shallow-water terrigenous clastic sediments. Within the study area, carbonate facies were deposited along the northern edge of the Knox-Baylor trough on the Spur platform, and terrigenous clastics were carried toward the Midland basin through the Knox-Baylor trough. Based on the analysis of subsurface cores, five carbonate lithofacies and four clastic lithofacies were recognized in southeastern King County, Texas. The distribution and geometry of these lithofacies are related to variations in the rate of subsidence in the Knox-Baylor trough, Pennsylvanian tectonics, deltaic progradation, avulsion, and compaction. The platform carbonates within the northern region of southeastern King County record environments within the carbonate platform complex, including middle platform, outer platform, algal mound, and platform margin. The quartzarenitic sandstones within the southern region of southeastern King County occur in a variety of complex depositional geometries, including distributary-bar fingers, lobate deltas, and offshore bars. Cores of these sandstones represent mainly the uppermost portion of the various sandstone bodies. The upper Strawn Group provides an attractive area for exploration geology. Both carbonates and clastics provide excellent reservoirs from a depth of approximately 5,000-6,000 ft. Total production within the area is over 100 million bbl of oil since the early 1940s. Multiple pay zones within a 600-ft interval also provide an added incentive for exploration. Areas within and around the Knox-Baylor trough deserve a detailed study due to these relatively shallow, unexplored, multiple pay zones.

  1. Reservoir Space Evolution of Volcanic Rocks in Deep Songliao Basin, China

    NASA Astrophysics Data System (ADS)

    Zheng, M.; Wu, X.; Zheng, M.; HU, J.; Wang, S.

    2015-12-01

    Recent years, large amount of natural gas has been discovered in volcanic rock of Lower Crataceous of Songliao basin. Volcanic reservoirs have become one of the important target reservoir types of eastern basin of China. In order to study the volcanic reservoirs, we need to know the main factors controlling the reservoir space. By careful obsercation on volcanic drilling core, casting thin sections and statistical analysis of petrophysical properties of volcanic reservoir in Songliao basin, it can be suggested that the igneous rock reservoir in Yingcheng formation of Lower Crataceous is composed of different rock types, such ad rohylite, rohylitic crystal tuff, autoclastic brecciation lava and so on. There are different reservoirs storage space in in various lithological igneous rocks, but they are mainly composed of primary stoma, secondary solution pores and fractures.The evolution of storage space can be divided into 3 stage: the pramary reservoir space,exogenic leaching process and burial diagenesis.During the evolution process, the reservoir space is effected by secondary minerals, tectonic movement and volcanic hydrothermal solution. The pore of volcanic reservoirs can be partially filled by secondary minerals, but also may be dissoluted by other chemical volcanic hydrothermal solution. Therefore, the favorable places for better-quality volcanic reservoirs are the near-crater facies of vocanic apparatus and dissolution zones on the high position of paleo-structures.

  2. Hydrodynamics of coalbed methane reservoirs in the Black Warrior Basin: Key to understanding reservoir performance and environmental issues

    USGS Publications Warehouse

    Pashin, J.C.

    2007-01-01

    The Black Warrior Basin of the southeastern United States hosts one of the world's most prolific and long-lived coalbed methane plays, and the wealth of experience in this basin provides insight into the relationships among basin hydrology, production performance, and environmental issues. Along the southeast margin of the basin, meteoric recharge of reservoir coal beds exposed in an upturned fold limb exerts a strong control on water chemistry, reservoir pressure, and production performance. Fresh-water plumes containing Na-HCO3 waters with low TDS content extend from the structurally upturned basin margin into the interior of the basin. Northwest of the plumes, coal beds contain Na-Cl waters with moderate to high-TDS content. Carbon isotope data from produced gas and mineral cements suggest that the fresh-water plumes have been the site of significant bacterial activity and that the coalbed methane reservoirs contain a mixture of thermogenic and late-stage biogenic gases. Water produced from the fresh-water plumes may be disposed safely at the surface, whereas underground injection has been used locally to dispose of highly saline water. Wells in areas that had normal hydrostatic reservoir pressure prior to development tend to produce large volumes of water and may take up to 4 a to reach peak gas production. In contrast, wells drilled in naturally underpressured areas distal to the fresh-water plumes typically produce little water and achieve peak gas rates during the first year of production. Environmental debate has focused largely on issues associated with hydrologic communication between deep reservoir coal beds and shallow aquifers. In the coalbed methane fields of the Black Warrior Basin, a broad range of geologic evidence suggests that flow is effectively confined within coal and that the thick intervals of marine shale separating coal zones limit cross-formational flow. ?? 2007 Elsevier Ltd. All rights reserved.

  3. Clastic dikes of the Hatrurim basin (western flank of the Dead Sea) as natural analogues of alkaline concretes: Mineralogy, solution chemistry, and durability

    NASA Astrophysics Data System (ADS)

    Sokol, E. V.; Gaskova, O. L.; Kozmenko, O. A.; Kokh, S. N.; Vapnik, E. A.; Novikova, S. A.; Nigmatulina, E. N.

    2014-11-01

    This study shows that the mineral assemblages from clastic dikes in areas adjacent to the Dead Sea graben may be considered as natural analogues of alkaline concretes. The main infilling material of the clastic dikes is composed of well-sorted and well-rounded quartz sand. The cement of these hard rocks contains hydroxylapophyllite, tacharanite, calcium silicate hydrates, opal, calcite, and zeolite-like phases, which is indicative of a similarity of the natural cementation processes and industrial alkaline concrete production from quartz sands and industrial alkaline cements. The quartz grains exhibit a variety of reaction textures reflecting the interaction with alkaline solutions (opal and calcium hydrosilicate overgrowths; full replacement with apophyllite or thomsonite + apophyllite). The physicochemical analysis and reconstruction of the chemical composition of peralkaline Ca, Na, and K solutions that formed these assemblages reveal that the solutions evolved toward a more stable composition of zeolite-like phases, which are more resistant to long-term chemical weathering and atmospheric corrosion. The 40Ar/39Ar age of 6.2 ± 0.7 Ma obtained for apophyllite provides conclusive evidence for the high corrosion resistance of the assemblages consisting of apophyllite and zeolite-like phases.

  4. Reservoir Performance Under Future Climate For Basins With Different Hydrologic Sensitivities

    NASA Astrophysics Data System (ADS)

    Mateus, M. C.; Tullos, D. D.

    2013-12-01

    In addition to long-standing uncertainties related to variable inflows and market price of power, reservoir operators face a number of new uncertainties related to hydrologic nonstationarity, changing environmental regulations, and rapidly growing water and energy demands. This study investigates the impact, sensitivity, and uncertainty of changing hydrology on hydrosystem performance across different hydrogeologic settings. We evaluate the performance of reservoirs in the Santiam River basin, including a case study in the North Santiam Basin, with high permeability and extensive groundwater storage, and the South Santiam Basin, with low permeability, little groundwater storage and rapid runoff response. The modeling objective is to address the following study questions: (1) for the two hydrologic regimes, how does the flood management, water supply, and environmental performance of current reservoir operations change under future 2.5, 50 and 97.5 percentile streamflow projections; and (2) how much change in inflow is required to initiate a failure to meet downstream minimum or maximum flows in the future. We couple global climate model results with a rainfall-runoff model and a formal Bayesian uncertainty analysis to simulate future inflow hydrographs as inputs to a reservoir operations model. To evaluate reservoir performance under a changing climate, we calculate reservoir refill reliability, changes in flood frequency, and reservoir time and volumetric reliability of meeting minimum spring and summer flow target. Reservoir performance under future hydrology appears to vary with hydrogeology. We find higher sensitivity to floods for the North Santiam Basin and higher sensitivity to minimum flow targets for the South Santiam Basin. Higher uncertainty is related with basins with a more complex hydrologeology. Results from model simulations contribute to understanding of the reliability and vulnerability of reservoirs to a changing climate.

  5. Heterogeneity in Mississippi oil reservoirs, Black Warrior basin, Alabama: An overview

    SciTech Connect

    Kugler, R.L.; Pashin, J.C.; Irvin, G.D. )

    1993-09-01

    Four Mississippian sandstone units produce oil in the Black Warrior basin of Alabama: (1) Lewis; (2) Carter; (3) Millerella, and (4) Gilmer. Reservoir geometries differ for each producing interval, reflecting variation in depositional style during the evolution of a foreland basin. Widespread strike-elongate bodies of Lewis sandstone with complex internal geometry were deposited during destruction of the Fort Payne-Tuscumbia carbonate ramp and represent inception of the foreland basin and initial forebulge migration. Synorogenic Carter sandstone is part of the first major deltaic foreland basin fill and accounts for more than 80% of oil production in the basin. Millerella sandstone was deposited as transgressive sand patches during the final stages of delta destruction. Gilmer sandstone occurs as imbricate sandstone lenses deposited in a constructive shoal-water delta and is part of the late relaxational basin fill. Interaction of siliciclastic sediment with ancestral and active carbonate ramps was a primary control on facies architecture and reservoir heterogeneity. Patterns of injection and reservoir fluid production, as well as field- to basin-scale depositional, petrological, petrophysical and geostatistical modeling reveal microscopic to megascopic controls on reservoir heterogeneity and hydrocarbon producibility. At a megascopic scale, isolation or continuity of reservoir bodies is a function of depositional topography and the degree of marine reworking of genetically coherent sandstone bodies. These factors result in amalgamated reservoir bodies or in compartments that may remain uncontacted or unconnected during field development. Within producing fields, segmentation of amalgamated sandstone bodies into individual lenses, grain size variations, depositional barriers, and diagenetic baffles further compartmentalize reservoirs, increase tortuosity of fluid flow, and affect sweep efficiency during improved recovery operations.

  6. Clastic rocks associated with the Midcontinent rift system in Iowa

    USGS Publications Warehouse

    Anderson, Raymond R.; McKay, Robert M.

    1997-01-01

    The Middle Proterozoic Midcontinent Rift System (MRS) of North America is a failed rift that formed in response to region-wide stresses about 1,100 Ma. In Iowa, the MRS is buried beneath 2,200?3,500 ft of Paleozoic and Mesozoic sedimentary rocks and Quaternary glaciogenic deposits. An extremely large volume of sediments was deposited within basins associated with the rift at several stages during its development. Although the uplift of a rift-axial horst resulted in the erosional removal of most of these clastic rocks from the central region of the MRS in Iowa, thick sequences are preserved in a series of horst-bounding basins. Recent studies incorporating petrographic analysis, geophysical modeling, and other analytical procedures have led to the establishment of a preliminary stratigraphy for these clastic rocks and interpretations of basin geometries. This information has allowed the refinement of existing theories and history of MRS formation in Iowa. Additionally, drill samples previously interpreted as indicating the existence of early Paleozoic basins overlying the Proterozoic MRS basins were re-examined. Samples previously interpreted as deep-lying Paleozoic rocks are now known to have caved from upper levels of the drillhole and were out of stratigraphic position. No deep Paleozoic basins exist in this area. These investigations led to the development of petrographic parameters useful in differentiating the Proterozoic MRS Red clastics from Paleozoic clastic rocks having similar lithologies.

  7. A new integrated tectonic synthesis of the Piceance Basin: Implications for fractured reservoir detection and characterization

    SciTech Connect

    Hoak, T.E.

    1995-06-01

    Detailed reservoir characterization of Piceance Basin thin-skinned structural traps reveals the importance of fracture-controlled gas production. A complete understanding of basin fracture genesis can be achieved through determination of the regional tectonic evolution. To understand the evolution of thin-skinned and basement-involved structures, high-resolution aeromagnetic data, seismic data, remote sensing imagery analysis, and production history analyses have been integrated with conventional subsurface and surficial dynamic structural analyses. Examination of structural trends in rocks ranging in age from the Precambrian through Holocene show the importance of pre-existing anisotropies in partitioning younger tectonic strain. Because of this strain partitioning, many Laramide structures show complex reactivation histories that obscure older Precambrian and Paleozoic tectonic events. An excellent example of this reactivation and partitioning is provided by NW-trending Precambrian-age structures on the Uncompahgre Uplift that were reactivated during Pennsylvanian-age deformation (Ancestral Rockies) and Laramide events. Because of its importance to reservoir engineering problems such as hydraulic stimulation design and drainage efficiency calculations for fractured reservoirs, the modern stress state throughout the basin has been determined and data suggest that there is significant variability in principal stress orientations throughout the basin. This interpretation demonstrates the complex evolution of multiply-reactivated tectonic structures and the relationship between production trends, structure, and fractured reservoirs. Most importantly, the integrated exploration approach demonstrates the power of an integrated basin analysis as a deterministic tool for understanding and predicting fractured reservoir conditions in advance of drilling.

  8. Jurassic carbonate reservoirs of the Amu Darya Basin, Uzbekistan and Turkmenistan

    SciTech Connect

    Shein, V.S.; Fortunatova, N.K.; Neilson, J.E.

    1995-08-01

    The Amu Darya Basin is a world class hydrocarbon province. Current reserves estimates are 220 TCF of gas and 800 MMbbl of oil and condensate, 50% of which is reservoired in Late Jurassic carbonates. Exploration opportunities still exist in large parts of the basin which are relatively undrilled. Within the 100-600m thick carbonate sequence, reservoir facies include reefs, shelf grainstones and turbidite fares. The major seal are Kimmeridgian - Tithonian evaporates which are up to 1600m thick in the basin centre. Stratigraphic trapping is common and often enhanced by structural modifications. The reservoirs are in communication with a major gas-prone Early-Middle Jurassic source rock. Oil-prone source rocks are thought to occur in basinal sediments which are coeval with the Late Jurassic reservoirs. Carbonate sedimentation commenced during the Late Jurassic with the development of a ramp complex. This evolved into a rimmed shelf with barrier and pinnacle reefs. Several cycles of relative sea-level change (largely eustatic?) influence the carbonate ramp/shelf systems and effect the distribution of reservoir facies. Numerous empirical observations by VNIGNI scientists on carbonate successions have enabled them to develop mathematically calculated indices for facies and reservoir prediction, which have been applied successfully in the Amu Darya Basin. Reservoir quality in the limestones is strongly controlled by primary facies. Reefs and shelf grainstones display the best reservoir characteristics. Whilst many facies have good total porosity, it is only the reef and grainstone belts where connected porosity (with pore throats greater than 10um) becomes effective. Burial cements are rare. Freshwater solution and cementation has often improved or preserved primary porosity.

  9. Upper Strawn (Desmoinesian) carbonate and clastic depositional environments, SE King County, TX

    SciTech Connect

    Boring, T.H. )

    1990-05-01

    The Pennsylvanian upper Strawn Group of southeast King County, Texas, provides a unique setting to study interactions between coeval carbonate and clastic deposition during the Desmoinesian. One of the most perplexing problems is the relationship of massive Pennsylvanian platform carbonates to shallow-water marine and deltaic sediments. Within the study area carbonate facies were deposited along the northern edge of the Knox-Baylor trough on the Spur platform, and terrigenous clastics were carried toward the Midland basin through the Knox-Baylor trough. Based on the analysis of subsurface cores, five carbonate lithofacies and four clastic lithofacies were recognized in southeast King County, Texas. The distribution and geometry of these lithofacies are related to variations in the rate of subsidence in the Knox-Baylor trough, Pennsylvanian tectonics, deltaic progradation, avulsion and compaction. The platform carbonates within the northern region record environments within the carbonate platform complex, including middle platform, outer platform, algal mound, and platform margin. The quartzarenitic sandstones within the southern region occur in a variety of complex depositional geometries, including distributary bar fingers, lobate deltas, and offshore bars. The upper Strawn Group provides an attractive area for exploration geology. Both carbonates and clastics provide excellent reservoirs from a depth of approximately 5,000 to 6,000 ft. Total production since the early 1940s, within the area is over 100,000,000 bbl of oil. Multiple pay zones within a 600-ft interval also provide an added incentive for exploration. Areas within and around the Knox-Baylor trough deserve additional study due to these relatively shallow, unexplored, multiple pay zones.

  10. Reservoir heterogeneity in Carboniferous sandstone of the Black Warrior basin. Final report

    SciTech Connect

    Kugler, R.L.; Pashin, J.C.; Carroll, R.E.; Irvin, G.D.; Moore, H.E.

    1994-04-01

    Although oil production in the Black Warrior basin of Alabama is declining, additional oil may be produced through improved recovery strategies, such as waterflooding, chemical injection, strategic well placement, and infill drilling. High-quality characterization of reservoirs in the Black Warrior basin is necessary to utilize advanced technology to recover additional oil and to avoid premature abandonment of fields. This report documents controls on the distribution and producibility of oil from heterogeneous Carboniferous reservoirs in the Black Warrior basin of Alabama. The first part of the report summarizes the structural and depositional evolution of the Black Warrior basin and establishes the geochemical characteristics of hydrocarbon source rocks and oil in the basin. This second part characterizes facies heterogeneity and petrologic and petrophysical properties of Carter and Millerella sandstone reservoirs. This is followed by a summary of oil production in the Black Warrior basin and an evaluation of seven improved-recovery projects in Alabama. In the final part, controls on the producibility of oil from sandstone reservoirs are discussed in terms of a scale-dependent heterogeneity classification.

  11. Reservoir heterogeneity in carboniferous sandstone of the Black Warrior basin. Final report

    SciTech Connect

    Kugler, R.L.; Pashin, J.C.; Carroll, R.E.; Irvin, G.D.; Moore, H.E.

    1994-06-01

    Although oil production in the Black Warrior basin of Alabama is declining, additional oil may be produced through improved recovery strategies, such as waterflooding, chemical injection, strategic well placement, and infill drilling. High-quality characterization of reservoirs in the Black Warrior basin is necessary to utilize advanced technology to recover additional oil and to avoid premature abandonment of fields. This report documents controls on the distribution and producibility of oil from heterogeneous Carboniferous reservoirs in the Black Warrior basin of Alabama. The first part of the report summarizes the structural and depositional evolution of the Black Warrior basin and establishes the geochemical characteristics of hydrocarbon source rocks and oil in the basin. This second part characterizes facies heterogeneity and petrologic and petrophysical properties of Carter and Millerella sandstone reservoirs. This is followed by a summary of oil production in the Black Warrior basin and an evaluation of seven improved-recovery projects in Alabama. In the final part, controls on the producibility of oil from sandstone reservoirs are discussed in terms of a scale-dependent heterogeneity classification.

  12. Depositional setting and diagenetic evolution of some Tertiary unconventional reservoir rocks, Uinta Basin, Utah.

    USGS Publications Warehouse

    Pitman, J.K.; Fouch, T.D.; Goldhaber, M.B.

    1982-01-01

    The Douglas Creek Member of the Tertiary Green River Formation underlies much of the Uinta basin, Utah, and contains large volumes of oil and gas trapped in a complex of fractured low-permeability sandstone reservoirs. In the SE part of the basin at Pariette Bench, the Eocene Douglas Creek Member is a thick sequence of fine- grained alluvial sandstone complexly intercalated with lacustrine claystone and carbonate rock. Sediments were deposited in a subsiding intermontane basin along the shallow fluctuating margin of ancient Lake Uinta. Although the Uinta basin has undergone postdepositional uplift and erosion, the deepest cored rocks at Pariette Bench have never been buried more than 3000m.-from Authors

  13. FRACTURED RESERVOIR E&P IN ROCKY MOUNTAIN BASINS: A 3-D RTM MODELING APPROACH

    SciTech Connect

    P. Ortoleva; J. Comer; A. Park; D. Payne; W. Sibo; K. Tuncay

    2001-11-26

    Key natural gas reserves in Rocky Mountain and other U.S. basins are in reservoirs with economic producibility due to natural fractures. In this project, we evaluate a unique technology for predicting fractured reservoir location and characteristics ahead of drilling based on a 3-D basin/field simulator, Basin RTM. Recommendations are made for making Basin RTM a key element of a practical E&P strategy. A myriad of reaction, transport, and mechanical (RTM) processes underlie the creation, cementation and preservation of fractured reservoirs. These processes are often so strongly coupled that they cannot be understood individually. Furthermore, sedimentary nonuniformity, overall tectonics and basement heat flux histories make a basin a fundamentally 3-D object. Basin RTM is the only 3-D, comprehensive, fully coupled RTM basin simulator available for the exploration of fractured reservoirs. Results of Basin RTM simulations are presented, that demonstrate its capabilities and limitations. Furthermore, it is shown how Basin RTM is a basis for a revolutionary automated methodology for simultaneously using a range of remote and other basin datasets to locate reservoirs and to assess risk. Characteristics predicted by our model include reserves and composition, matrix and fracture permeability, reservoir rock strength, porosity, in situ stress and the statistics of fracture aperture, length and orientation. Our model integrates its input data (overall sedimentation, tectonic and basement heat flux histories) via the laws of physics and chemistry that describe the RTM processes to predict reservoir location and characteristics. Basin RTM uses 3-D, finite element solutions of the equations of rock mechanics, organic and inorganic diagenesis and multi-phase hydrology to make its predictions. As our model predicts reservoir characteristics, it can be used to optimize production approaches (e.g., assess the stability of horizontal wells or vulnerability of fractures to

  14. Ourcrop characterization of sandstone heterogeneity in Carboniferous reservoirs, Black Warrior basin, Alabama

    SciTech Connect

    Pashin, J.C.; Osborne, E.W.; Rindsberg, A.K.

    1991-08-01

    Where production is currently declining, improved recovery strategies, such as waterflooding, injection, strategic well placement, and infill drilling may be used to increase production of liquid hydrocarbons from reservoir sandstone in the Black Warrior basin. Characterizing reservoir heterogeneity provides information regarding how those strategies can best be applied, and exceptional exposures of asphaltic sandstone in north Alabama enable first-hand observation of such heterogeneity. This report identifies heterogeneity in Carboniferous strata of the Black Warrior basin on the basis of vertical variations, lithofacies analysis. Results of lithofacies analysis and depositional modeling were synthesized with existing models of sandstone heterogeneity to propose methods which may improve hydrocarbon recovery in Carboniferous sandstone reservoirs of the Black Warrior basin. 238 refs., 89 figs. 2 tabs.

  15. Structurally controlled and aligned tight gas reservoir compartmentalization in the San Juan and Piceance Basins

    SciTech Connect

    Decker, A.D.; Kuuskraa, V.A.; Klawitter, A.L.

    1995-10-01

    Recurrent basement faulting is the primary controlling mechanism for aligning and compartmentalizing upper Cretaceous aged tight gas reservoirs of the San Juan and Piceance Basins. Northwest trending structural lineaments that formed in conjunction with the Uncompahgre Highlands have profoundly influenced sedimentation trends and created boundaries for gas migration; sealing and compartmentalizing sedimentary packages in both basins. Fractures which formed over the structural lineaments provide permeability pathways which allowing gas recovery from otherwise tight gas reservoirs. Structural alignments and associated reservoir compartments have been accurately targeted by integrating advanced remote sensing imagery, high resolution aeromagnetics, seismic interpretation, stratigraphic mapping and dynamic structural modelling. This unifying methodology is a powerful tool for exploration geologists and is also a systematic approach to tight gas resource assessment in frontier basins.

  16. Reservoir Characterization of the Lower Green River Formation, Southwest Uinta Basin, Utah

    SciTech Connect

    Morgan, Craig D.; Chidsey, Jr., Thomas C.; McClure, Kevin P.; Bereskin, S. Robert; Deo, Milind D.

    2002-12-02

    The objectives of the study were to increase both primary and secondary hydrocarbon recovery through improved characterization (at the regional, unit, interwell, well, and microscopic scale) of fluvial-deltaic lacustrine reservoirs, thereby preventing premature abandonment of producing wells. The study will encourage exploration and establishment of additional water-flood units throughout the southwest region of the Uinta Basin, and other areas with production from fluvial-deltaic reservoirs.

  17. Reliability, sensitivity, and uncertainty of reservoir performance under climate variability in basins with different hydrogeologic settings

    NASA Astrophysics Data System (ADS)

    Mateus, C.; Tullos, D.

    2014-12-01

    This study investigated how reservoir performance varied across different hydrogeologic settings and under plausible future climate scenarios. The study was conducted in the Santiam River basin, OR, USA, comparing the North Santiam basin (NSB), with high permeability and extensive groundwater storage, and the South Santiam basin (SSB), with low permeability, little groundwater storage, and rapid runoff response. We applied projections of future temperature and precipitation from global climate models to a rainfall-runoff model, coupled with a formal Bayesian uncertainty analysis, to project future inflow hydrographs as inputs to a reservoir operations model. The performance of reservoir operations was evaluated as the reliability in meeting flood management, spring and summer environmental flows, and hydropower generation objectives. Despite projected increases in winter flows and decreases in summer flows, results suggested little evidence of a response in reservoir operation performance to a warming climate, with the exception of summer flow targets in the SSB. Independent of climate impacts, historical prioritization of reservoir operations appeared to impact reliability, suggesting areas where operation performance may be improved. Results also highlighted how hydrologic uncertainty is likely to complicate planning for climate change in basins with substantial groundwater interactions.

  18. Advanced Characterization of Fractured Reservoirs in Carbonate Rocks: The Michigan Basin

    SciTech Connect

    Wood, James R.; Harrison, William B.

    2000-10-24

    The main objective of this project is for a university-industry consortium to develop a comprehensive model for fracture carbonate reservoirs based on the ''data cube'' concept using the Michigan Basin as a prototype. This project combined traditional historical data with 2D and 3D seismic data as well as data from modern logging tools in a novel way to produce a new methodology for characterizing fractured reservoirs in carbonate rocks. Advanced visualization software was used to fuse the data and to image it on a variety of scales, ranging from basin-scale to well-scales.

  19. Advanced Characterization of Fractured Reservoirs in Carbonate Rocks: The Michigan Basin

    SciTech Connect

    Wood, J.R.; Harrison, W.B.

    2001-01-22

    The main objective of this project is for a university-industry consortium to develop a comprehensive model for fracture carbonate reservoirs based on the ''data cube'' concept using the Michigan Basin as a prototype. This project combined traditional historical data with 2D and 3D seismic data as well as data from modern logging tools in a novel way to produce a new methodology for characterizing fractured reservoirs in carbonate rocks. Advanced visualization software was used to fuse the data and to image it on a variety of scales, ranging from basin-scale to well-scales.

  20. Effects of reservoirs on flood discharges in the Kansas and the Missouri River basins, 1993

    USGS Publications Warehouse

    Perry, Charles A.

    1994-01-01

    The floods of 1993 were of historic magnitude as water in the Missouri and the Mississippi Rivers reached levels that exceeded many of the previous observed maximums. Although large parts of the flood plains of both rivers upstream from St. Louis, Missouri, were inundated, water levels would have been even higher had it not been for the large volume of runoff retained in flood-control reservoirs. Most of the total flood-control storage available upstream from St. Louis is located along the main stem and tributaries of the Missouri River; the largest concentration of reservoirs is located within the Kansas River Basin. The Kansas River Basin accounts for about l0 percent (60,000 square miles) of the drainage area of the Missouri River Basin, and reservoirs control streamflow from 85 percent (50,840 square miles) of the drainage area of the Kansas River Basin. Analyses of flood discharges in the Kansas River indicate that reservoirs reduced flooding along the Kansas and the lower Missouri Rivers. Results of analyses of the 1993 flooding, which include total basin rainfall, peak discharge, and total flood volume on the Kansas River, are compared with analyses of the 1951 flood, which had a similar total volume but a substantially larger peak discharge.

  1. Effects of sequence stratigraphy on distribution of Cambro-Ordovician siliciclastic hydrocarbon reservoirs in Michigan basin

    SciTech Connect

    Horne, J.C.; Reel, C.L.; Cummins, G.D. )

    1989-08-01

    The lateral and vertical distribution of Cambrian-Ordovician siliciclastic reservoir-potential rock types in the Michigan basin is governed by the sequence stratigraphy. The sequence stratigraphy is controlled primarily by the interaction of four variables: subsidence, eustasy, volume of sediments, and climate. Seven sequential stratigraphic intervals can be defined in the pre-Utica, Cambrian-Ordovician deposits of the Michigan basin. Each of these unconformity-bounded sequences begins with a siliciclastic unit deposited over a lowstand surface of erosion. These lowstand surfaces developed during periods when eustatic sea level decline exceeded the rate of subsidence in the basin, and much or all of the basin became exposed. Where the sedimentation rate was less than the sum of the rate of subsidence and sea level change, a transgressive sequence developed with more open-marine carbonates overlying shallower water and/or non-marine facies. Reservoir-potential siliciclastics accumulated in incised valley-fill and transgressive reworked deposits.

  2. Iron speciation and mineral characterization of upper Jurassic reservoir rocks in the Minhe Basin, NW China

    NASA Astrophysics Data System (ADS)

    Ma, Xiangxian; Zheng, Guodong; Xu, Wang; Liang, Minliang; Fan, Qiaohui; Wu, Yingzhong; Ye, Conglin; Shozugawa, Katsumi; Matsuo, Motoyuki

    2016-12-01

    Six samples from a natural outcrop of reservoir rocks with oil seepage and two control samples from surrounding area in the Minhe Basin, northwestern China were selectively collected and analyzed for mineralogical composition as well as iron speciation using X-ray powder diffraction (XRD) and Mössbauer spectroscopy, respectively. Iron species revealed that: (1) the oil-bearing reservoir rocks were changed by water-rock-oil interactions; (2) even in the same site, there was a different performance between sandstone and mudstone during the oil and gas infusion to the reservoirs; and (3) this was evidence indicating the selective channels of hydrocarbon migration. In addition, these studies showed that the iron speciation by Mössbauer spectroscopy could be useful for the study of oil and gas reservoirs, especially the processes of the water-rock interactions within petroleum reservoirs.

  3. Belize model, a carbonate-clastic shelf buildup

    SciTech Connect

    Shepard, W.

    1987-05-01

    Belize, a small Central American country located on the Caribbean Sea south of the Yucatan Peninsula, offers an excellent modern analog of a mixed carbonate/clastic shelf buildup. Its 175-mi long reef tract, second longest in the world, restricts a shallow shelf depobasin into which terrigenous clastics source from the Maya Mountains to the west and carbonates dominate from the east. Mixed lithologies occur along strandlines, in submarine channels, and in lagoons and river-delta fronts, which are scattered throughout the depobasin. Energy sources from both land and sea influence sedimentation. Heavy summer rains flood the basin with arkosic and quartzose clastics, and periodic sea storms and hurricanes drive carbonate particles from the reef tract landward into the basin. Modern environments include the reef tract, carbonate tidal flats, shallow shelf patch reefs, lagoons, cayes, mainland coast deltas, estuaries, lagoons, and beach/bar barriers. Modern sediments include reef metazoans, algae, coralline algae, lime mud, quartz, and feldspathic sand and clay. The setting for the model has been influenced by Tertiary tectonics and Pleistocene sea level changes. Karstification occurred during the past 10,000 years, partly controlling topography and resulting Holocene sediment patterns. Facies patterns of the Belize Holocene are compared to the Jurassic of Montana. The Middle Jurassic Piper Formation exhibits a nearly 100-mi long carbonate barrier/buildup restricting a clastic-dominated shelf. Other ancient mixed carbonate/clastic terranes may fit this model as well.

  4. Global surveys of reservoirs and lakes from satellites and regional application to the Syrdarya river basin

    NASA Astrophysics Data System (ADS)

    Crétaux, Jean-François; Biancamaria, Sylvain; Arsen, Adalbert; Bergé-Nguyen, Muriel; Becker, Mélanie

    2015-01-01

    Large reservoirs along rivers regulate downstream flows to generate hydropower but may also store water for irrigation and urban sectors. Reservoir management therefore becomes critical, particularly for transboundary basins, where coordination between riparian countries is needed. Reservoir management is even more important in semiarid regions where downstream water users may be totally reliant on upstream reservoir releases. If the water resources are shared between upstream and downstream countries, potentially opposite interests arise as is the case in the Syrdarya river in Central Asia. In this case study, remote sensing data (radar altimetry and optical imagery) are used to highlight the potential of satellite data to monitor water resources: water height, areal extent and storage variations. New results from 20 years of monitoring using satellites over the Syrdarya basin are presented. The accuracy of satellite data is 0.6 km3 using a combination of MODIS data and satellite altimetry, and only 0.2 km3 with Landsat images representing 2-4% of average annual reservoir volume variations in the reservoirs in the Syrdarya basin. With future missions such as Sentinel-3A (S3A), Sentinel-3B (S3B) and surface water and ocean topography (SWOT), significant improvement is expected. The SWOT mission’s main payload (a radar interferometer in Ka band) will furthermore provide 2D maps of water height, reservoirs, lakes, rivers and floodplains, with a temporal resolution of 21 days. At the global scale, the SWOT mission will cover reservoirs with areal extents greater than 250 × 250 m with 20 cm accuracy.

  5. Vertical stacking of reservoirs in Silurian carbonates of Appalachian basin

    SciTech Connect

    Smosna, R.; Conrad, J.M.; Maxwell, T.C.

    1988-08-01

    The distribution of modern reefs and oolites is controlled to a large degree by sea-floor topography. Likewise, paleotopographic highs in the Silurian Lockport Dolomite and underlying Keefer Sandstone provided optimum sites for the deposition of boundstone and grainstone reservoir facies. The Keefer Sandstone in western West Virginia was deposited as a series of subtidal sand waves with a relief of a few meters. During initial Lockport sedimentation, the turbulence, water chemistry, and light intensity were most favorable in shallow water over the Keefer sand waves, encouraging growth of coral-stromatoporoid patch reefs. Skeletal banks in the upper Lockport of eastern Kentucky also were established over topographic highs of earlier Lockport mounds. In a similar fashion, the upper Lockport of West Virginia was deposited as oolitic shoals that formed atop exposed mud mounds in the middle member. A slight rise of sea level created the agitated subtidal environment above the now-submerged mud mounds, and oolite bars developed. The reef, skeletal-bank, and oolite facies of the Lockport, and the Keefer Sandstone, are all petroleum reservoirs. Carbonate reservoirs can be identified in the subsurface by thicks on isopach maps, by their clean gamma-ray signature, and by a relatively high log porosity. Based on these criteria, seven potential fairways have been mapped in Kentucky. Because the distribution of buildups was greatly influenced by that of their predecessors, five of the fairways contain vertically stacked reservoir facies. These are particularly attractive because they can be drilled as multistory targets.

  6. Reservoir heterogeneity in Carter Sandstone, North Blowhorn Creek oil unit and vicinity, Black Warrior Basin, Alabama

    SciTech Connect

    Kugler, R.L.; Pashin, J.C.

    1992-05-01

    This report presents accomplishments made in completing Task 3 of this project which involves development of criteria for recognizing reservoir heterogeneity in the Black Warrior basin. The report focuses on characterization of the Upper Mississippian Carter sandstone reservoir in North Blowhorn Creek and adjacent oil units in Lamar County, Alabama. This oil unit has produced more than 60 percent of total oil extracted from the Black Warrior basin of Alabama. The Carter sandstone in North Blowhorn Creek oil unit is typical of the most productive Carter oil reservoirs in the Black Warrior basin of Alabama. The first part of the report synthesizes data derived from geophysical well logs and cores from North Blowhorn Creek oil unit to develop a depositional model for the Carter sandstone reservoir. The second part of the report describes the detrital and diagenetic character of Carter sandstone utilizing data from petrographic and scanning electron microscopes and the electron microprobe. The third part synthesizes porosity and pore-throat-size-distribution data determined by high-pressure mercury porosimetry and commercial core analyses with results of the sedimentologic and petrographic studies. The final section of the report discusses reservoir heterogeneity within the context of the five-fold classification of Moore and Kugler (1990).

  7. Historical trends in organochlorine compounds in river basins identified using sediment cores from reservoirs

    USGS Publications Warehouse

    Van Metre, P.C.; Callender, E.; Fuller, C.C.

    1997-01-01

    This study used chemical analyses of dated sediment cores from reservoirs to define historical trends in water quality in the influent river basins. This work applies techniques from paleolimnology to reservoirs, and in the process, highlights differences between sediment-core interpretations for reservoirs and natural lakes. Sediment cores were collected from six reservoirs in the central and southeastern United States, sectioned, and analyzed for 137Cs and organochlorine compounds. 137Cs analyses were used to demonstrate limited post-depositional mixing, to indicate sediment deposition dates, and to estimate sediment focusing factors. Relative lack of mixing, high sedimentation rates, and high focusing factors distinguish reservoir sediment cores from cores collected in natural lakes. Temporal trends in concentrations of PCBs, total DDT (DDT + DDD + DDE), and chlordane reflect historical use and regulation of these compounds and differences in land use between reservoir drainages. PCB and total DDT core burdens, normalized for sediment focusing, greatly exceed reported cumulative regional atmospheric fallout of PCBs and total DDT estimated using cores from peat hogs and natural lakes, indicating the dominance of fluvial inputs of both groups of compounds to the reservoirs.This study used chemical analyses of dated sediment cores from reservoirs to define historical trends in water quality in the influent river basins. This work applies techniques from paleolimnology to reservoirs, and in the process, highlights differences between sediment-core interpretations for reservoirs and natural lakes. Sediment cores were collected from six reservoirs in the central and southeastern United States, sectioned, and analyzed for 137Cs and organochlorine compounds. 137Cs analyses were used to demonstrate limited post-depositional mixing, to indicate sediment deposition dates, and to estimate sediment focusing factors. Relative lack of mixing, high sedimentation rates, and high

  8. Val Verde Basin: Thrusted Strawn (Pennsylvanian) carbonate reservoirs, Pakenham Field area

    SciTech Connect

    Montgomery, S.L.

    1996-07-01

    An important target of recent exploration in the Val Verde basin of southwestern Texas has been thrusted Pennsylvanian (Desmoinesian) carbonates along the leading edge of the Ouachita front. These reservoirs produce gas and condensate at significant rates from fractured limestones, which were deposited in a variety of environments and later complexly juxtaposed during thrusting. Improvements in seismic imaging capabilities, particularly associated with the introduction of two-dimension (2-D) swath and three-dimensional (3-D) surveys, have allowed accurate mapping of the thrust front and have resulted in revised interpretations of basin structure and history. These data highlight the existence of multiple reservoirs at separate structural levels. Strawn reservoirs are discussed in relation to the Pakenham field area, northwestern Terrell County.

  9. Structural controls on fractured coal reservoirs in the southern Appalachian Black Warrior foreland basin

    USGS Publications Warehouse

    Groshong, R.H., Jr.; Pashin, J.C.; McIntyre, M.R.

    2009-01-01

    Coal is a nearly impermeable rock type for which the production of fluids requires the presence of open fractures. Basin-wide controls on the fractured coal reservoirs of the Black Warrior foreland basin are demonstrated by the variability of maximum production rates from coalbed methane wells. Reservoir behavior depends on distance from the thrust front. Far from the thrust front, normal faults are barriers to fluid migration and compartmentalize the reservoirs. Close to the thrust front, rates are enhanced along some normal faults, and a new trend is developed. The two trends have the geometry of conjugate strike-slip faults with the same ??1 direction as the Appalachian fold-thrust belt and are inferred to be the result of late pure-shear deformation of the foreland. Face cleat causes significant permeability anisotropy in some shallow coal seams but does not produce a map-scale production trend. ?? 2008 Elsevier Ltd. All rights reserved.

  10. Carboniferous-Lower Permian carbonate reservoirs of the Timan-Pechora Basin

    SciTech Connect

    Zhemchugova, V.A.; Schamel, S.

    1994-01-01

    The Carboniferous-Lower Permian carbonate succession of the Timan-Pechora basin is a major hydrocarbon-bearing complex, hosting about half of the oil and nearly a third of the gas reserves of the basin. The succession represents the last episode of carbonate deposition on the northeastern margin of the Russian platform before the closure of the Ural seaway in the mid-Permian. The lower part of the succession (upper Visean-Moscovian) contains three major transgressive-regressive sequences. Depositional facies ranged from nearshore carbonate-shale-evaporite through shallow shelf detrital carbonates to outer-shelf carbonate-siliceous shale. The most pronounced regression during this interval occurred during the Serpukhovian, when marine sabkhas covered vast portions of the carbonate platform. Late Carboniferous-Early Permian sedimentation was complicated by the onset of Uralian tectonism. Flysch from the encroaching orogen accumulated initially in the east, advanced westward across the passive margin, and finally covered the carbonate platform in Artinskian-Kungurian time. Simultaneously, structural inversion along the Pechora-Kolva aulacogen and elsewhere provided sites for bioherm growth, in addition to exposing parts of the lower succession to erosion and karstification. Overall polarity of the basin switched as the eastern margin was elevated in the frontal thrusts of the Urals. The carbonate succession was terminated by increased clastic input from the advancing Ural orogen. 6 refs., 9 figs.

  11. The fate of giant Silurian paleo-reservoirs in Tarim Basin

    SciTech Connect

    Chen, J.H.; Fu, J.M.; Sheng, G.Y.

    1996-10-01

    Tarim Basin is located in the south part of the Xinjiang Yugur autonomous region of China, between Tianshan and Kunlun mountains. Tarim Basin is the largest petroliferous sedimentary basin in China, with a total area of 560,000 km{sup 2}. Within the past five years` exploration, it was revealed that there occur widely tar sands and heavy oils in the Silurian formation in North and Central uplifts of Tarim basin in a huge volume. Based on the geochemical data including distribution of biological markers, this talk will discuss how these tar sands and heavy oils were formed by destruction and degradation of giant Silurian reservoirs. It will also be pointed that these tar sand bitumen have made important contribution to petroleum accumulation as an unique hydrocarbon source in Tarim basin.

  12. 3-D sedimentological and geophysical studies of clastic reservoir analogs: Facies architecture, reservoir properties, and flow behavior within delta front facies elements of the Cretaceous Wall Creek Member, Frontier Formation, Wyoming

    SciTech Connect

    Janok P. Bhattacharya; George A. McMechan

    2007-02-16

    This project examined the internal architecture of delta front sandstones at two locations within the Turonian-age Wall Creek Member of the Frontier Formation, in Wyoming. The project involved traditional outcrop field work integrated with core-data, and 2D and 3D ground penetrating radar (GPR) imaging from behind the outcrops. The fluid-flow engineering work, handled through a collaborative grant given to PI Chris White at LSU, focused on effects on fluid flow of late-stage calcite cement nodules in 3D. In addition to the extensive field component, the work funded 2 PhD students (Gani and Lee) and resulted in publication of 10 technical papers, 17 abstracts, and 4 internal field guides. PI Bhattacharya also funded an additional 3 PhD students that worked on the Wall Creek sandstone funded separately through an industrial consortium, two of whom graduated in the fall 2006 ((Sadeque and Vakarelov). These additional funds provided significant leverage to expand the work to include a regional stratigraphic synthesis of the Wall Creek Member of the Frontier Formation, in addition to the reservoir-scale studies that DOE directly funded. Awards given to PI Bhattacharya included the prestigious AAPG Distinguished Lecture Award, which involved a tour of about 25 Universities and Geological Societies in the US and Canada in the fall of 2005 and Spring of 2006. Bhattacharya gave two talks, one entitled “Applying Deltaic and Shallow Marine Outcrop Analogs to the Subsurface”, which highlighted the DOE sponsored work and the other titled “Martian River Deltas and the Origin of Life”. The outcrop analog talk was given at about 1/2 of the venues visited.

  13. Appropriate stratigraphic nomenclature for coal reservoirs in Piceance basin, Colorado

    SciTech Connect

    Decker, D.

    1985-05-01

    Coal-bearing intervals occurring within the Upper Cretaceous Mesaverde Group in the Piceance basin have been described by various authors. The most current and widely accepted work has the Sego, Corcoran, Cozzette, and Rollins Sandstone Members comprising the Iles Formation. The overlying Williams Fork Formation is divided into the basal Bowie Shale Member and Paonia Shale Member, with the upper remaining section undifferentiated. Coal seams associated with the Iles Formation belong to the Black Diamond coal group. The Fairfield coal group and the South Canon coal group are part of the Bowie Shale Member. These two coal groups, continuous throughout the basin, are also called the Sommerset coals in the Sommerset coal field and the Cameo coal measures in the Grand Mesa coal field. Although priority of nomenclature dictates otherwise, established usage of the Cameo coals for coal seams in the Bowie Shale Member should be continued as the most appropriate nomenclature. The basal coal seam of the proposed Cameo coal group is laterally continuous throughout the Piceance basin. A second coal seam 40-120 ft (12-37 m) above the basal coal also has large areal extent. Both coal seams, as existing and potential future pay zones, are of significant economic importance and should, in ascending order, be classified as the Cameo coal A and D seams. The coal seams in the Paonia Shale Member, extremely variable in thickness, continuity, and quality, have been established as the Coal Ridge coal group.

  14. Geology and petroleum resources of West Siberian Basin, USSR

    SciTech Connect

    Clarke, J.W.; Klemme, H.D.; Peterson, J.A.

    1986-05-01

    The West Siberian basin occupies an area of approximately 3.3 million km/sup 2/ (1.3 million mi/sup 2/) in northwestern Siberia east of the Ural Mountains. Thickness of the Phanerozoic sedimentary cover ranges from approximately 3-5 km (10,000-15,000 ft) in the central area of the basin, to 8-12 km (25,000-40,000 ft) in the northern part. The basin is filled with approximately 10 million km/sup 3/ (2.4 million mi/sup 3/) of Mesozoic-Cenozoic clastic sedimentary rocks ranging in thickness from 3-4 km (10,000-13,000 ft) in the central area to 6-9 km (20,000-30,000 ft) in the north. The basement in the basin is Precambrian and Precambrian-Paleozoic granitic rocks and in places is highly metamorphosed Paleozoic sedimentary rocks. In other parts of the basin, Paleozoic carbonate and clastic rocks are only lightly metamorphosed and are targets for petroleum exploration. The Mesozoic-Cenozoic sedimentary basin fill was initiated in the northern part of the basin during the Triassic. By the Late Jurassic, marine clastic deposition had spread throughout the basin, and the basin configuration was established for the remainder of geologic time. Cretaceous and lower Tertiary rocks are primarily shallow marine shelf, coastal plain, and lowland clastic deposits formed during several transgressive-regressive phases. Major oil accumulations, mainly in Lower Cretaceous and Jurassic sandstone reservoirs, are located in the central and west-central parts of the basin. The largest reserves of natural gas in the world are located in the northern part of the basin, primarily in Upper Cretaceous (Cenomanian) sandstone reservoirs. In 1982, estimated cumulative production from the basin was approximately 10 billion bbl of oil. Estimated mean undiscovered resources (1981) are approximately 80 billion bbl of oil and 700 tcf of gas.

  15. The deep Madden Field, a super-deep Madison gas reservoir, Wind River Basin, Wyoming

    SciTech Connect

    Moore, C.H.; Hawkins, C.

    1996-12-31

    Madison dolomites form the reservoir of a super deep, potential giant sour gas field developed on the Madden Anticline immediately in front of the Owl Creek Thrust along the northern rim of the Wind River Basin, central Wyoming. The Madison reservoir dolomites are presently buried to some 25,000 feet at Madden Field and exhibit porosity in excess of 15%. An equivalent dolomitized Madison sequence is exposed in outcrop only 5 miles to the north on the hanging wall of the Owl Creek thrust at Lysite Mountain. Preliminary comparative stratigraphic, geochemical and petrologic data, between outcrop and available cores and logs at Deep Madden suggests: (1) early, sea level-controlled, evaporite-related dolomitization of the reservoir and outcrop prior to significant burial; (2) both outcrop and deep reservoir dolomites underwent significant recrystallization during a common burial history until their connection was severed during Laramide faulting in the Eocene; (3) While the dolomite reservoir at Madden suffered additional diagenesis during an additional 7-10 thousand feet of burial, the pore systems between outcrop and deep reservoir are remarkably similar. The two existing deep Madison wells at Madden are on stream, with a third deep Madison well currently drilling. The sequence stratigraphic framework and the diagenetic history of the Madison strongly suggests that outcrops and surface cores of the Madison in the Owl Creek Mountains will be useful in further development and detailed reservoir modeling of the Madden Deep Field.

  16. The deep Madden Field, a super-deep Madison gas reservoir, Wind River Basin, Wyoming

    SciTech Connect

    Moore, C.H. ); Hawkins, C. )

    1996-01-01

    Madison dolomites form the reservoir of a super deep, potential giant sour gas field developed on the Madden Anticline immediately in front of the Owl Creek Thrust along the northern rim of the Wind River Basin, central Wyoming. The Madison reservoir dolomites are presently buried to some 25,000 feet at Madden Field and exhibit porosity in excess of 15%. An equivalent dolomitized Madison sequence is exposed in outcrop only 5 miles to the north on the hanging wall of the Owl Creek thrust at Lysite Mountain. Preliminary comparative stratigraphic, geochemical and petrologic data, between outcrop and available cores and logs at Deep Madden suggests: (1) early, sea level-controlled, evaporite-related dolomitization of the reservoir and outcrop prior to significant burial; (2) both outcrop and deep reservoir dolomites underwent significant recrystallization during a common burial history until their connection was severed during Laramide faulting in the Eocene; (3) While the dolomite reservoir at Madden suffered additional diagenesis during an additional 7-10 thousand feet of burial, the pore systems between outcrop and deep reservoir are remarkably similar. The two existing deep Madison wells at Madden are on stream, with a third deep Madison well currently drilling. The sequence stratigraphic framework and the diagenetic history of the Madison strongly suggests that outcrops and surface cores of the Madison in the Owl Creek Mountains will be useful in further development and detailed reservoir modeling of the Madden Deep Field.

  17. The circular Uneged Uul structure (East Gobi Basin, Mongolia) - Geomorphic and structural evidence for meteorite impact into an unconsolidated coarse-clastic target?

    NASA Astrophysics Data System (ADS)

    Schmieder, Martin; Seyfried, Hartmut; Gerel, Ochir

    2013-03-01

    The Uneged Uul structure is a ˜10 km circular, complex, multi-ridged domal feature in the Unegt subbasin of the East Gobi Basin, southeastern Mongolia. As revealed by remote sensing and recent field reconnaissance, the central part of the Uneged Uul structure comprises a complex central peak of outward-radiating curved ridges, composed of stratigraphically uplifted greenschist-facies basement schists, surrounded by an annular moat. The most prominent feature of the structure is a central annular ridge ˜3 km in diameter composed of pebble-boulder conglomerates and gravels of the Upper Jurassic Sharilyn Formation, surrounded by three outer domal ridges composed of Lower Cretaceous conglomeratic sandstones and gypsum clays. Jurassic conglomerates forming the main part of the central annular ridge show effects of severe internal deformation. The original population of pebbles, cobbles and boulders appears moderately displaced and mostly broken but nowhere aligned along shear planes or foliated. Primary sedimentary features, such as cross-lamination or imbrication, have been obliterated. We explain this penetrative brecciation as a result of dissipative shearing caused by a strong and rapid singular event that in magnitude was beyond the range of the common crustal tectonics recorded elsewhere in this region. Disrupted and chaotically distributed conglomeratic sandstone beds in the central annular ridge dip in highly variable directions on a local scale but show an apparent SE-NW trend of bedding plane alignment. Further outside, the tilted and uplifted Upper Jurassic to Lower Cretaceous strata of the domal area are overlain by the flat-lying Upper Cretaceous, which stratigraphically constrains the timing of deformation at the Uneged Uul structure to most likely the Early Cretaceous. Endogenic formation models, such as magmatism and salt, gypsum, or mud diapirism, fail to explain the nature of the Uneged Uul structure. The Uneged Uul structure bears a set of

  18. Diagenesis and reservoir quality of Paleocoene sandstones in the Kupe South field, Taranaki Basin, New Zealand

    SciTech Connect

    Martin, K.R. ); Baker, J.C. ); Hamilton, P.J. ); Thrasher, G.P. )

    1994-04-01

    The Kupe South field, Taranaki basin, New Zealand is a gas condensate and oil field offshore in the southern Taranaki basin. Its Paleocene reservoir sandstones contain a diagenetic mineral assemblage that records major shifts in pore-water composition during the burial history of the basin. Early calcite formed a shallow burial largely from meteoric depositional pore waters, whereas later chlorite/smectic records the downward passage of marine pore waters into the sandstones from overlying, marine mudrocks prior to significant sandstone compaction during the late Miocene. Late calcite and ferroan carbonates may record the presence of connate meteoric water expelled upward from nonmarine sedimentary rocks of the underyling Cretaceous sequence, whereas later kaolinite and secondary porosity formation are related to localized meteoric influx resulting from late Miocene to early Pliocene uplift and erosion of the reservoir section. Hydrocarbon entrapment occurred during further Pliocene to Holocene sediment accumulation. Labile-grain alteration has been less severe in the lower part of the hydrocarbon-bearing section than in the upper sands with the result that the lower sands contain mainly chlorite/smectite and the upper sands contain mainly ferroan carbonates and kaolinite formed by extensive alteration of labile grains and earlier formed chlorite/smectite. Reservoir quality in the lower sands is controlled mostly by grain size and the presence of chlorite/smectite, but in the upper sands, the presence of kaolinite is the single most important cause of poor reservoir quality. 36 refs., 13 figs., 3 tabs.

  19. Permian {open_quotes}Wolfcamp{close_quotes} limestone reservoirs: Powell Ranch field, Eastern Midland Basin

    SciTech Connect

    Montgomery, S.L.

    1996-09-01

    Deep-water carbonate channel reservoirs form important oil reservoirs along the toe of the Eastern Shelf of the Permian basin in west Texas. In northwestern Glasscock County, these `Wolfcamp` reservoirs are Leonardian (Early Permian) in age and define high-energy channels incised into surrounding carbonate detritus and basinal shale. Porous grain-flow material filling these channels, along with encasing detritus, was derived from the shallow shelf located six miles to the east. Reservoirs are in packstone and grainstone facies and have significant interparticle and moldic porosity. Relevant exploration began in the 1960s, but expanded slowly thereafter due to lack of success caused by complex patterns of channel occurrence. Results of a three-dimensional (3-D) seismic survey conducted in 1990 have greatly enhanced the identification and mapping of productive channels in the Powell Ranch field complex. Wells in this complex are capable of flowing 400-1200 bbl of oil per day, and have reserves ranging from 0.2 to 1.3 MBO. The new 3-D data have improved the relevant geologic model and dramatically increased rates of drilling success. Application of such data to this setting offers a potential model for other parts of the Permian basin.

  20. Towards an optimal integrated reservoir system management for the Awash River Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Müller, Ruben; Gebretsadik, Henok Y.; Schütze, Niels

    2016-05-01

    Recently, the Kessem-Tendaho project is completed to bring about socioeconomic development and growth in the Awash River Basin, Ethiopia. To support reservoir Koka, two new reservoirs where built together with extensive infrastructure for new irrigation projects. For best possible socioeconomic benefits under conflicting management goals, like energy production at three hydropower stations and basin wide water supply at various sites, an integrated reservoir system management is required. To satisfy the multi-purpose nature of the reservoir system, multi-objective parameterization-simulation-optimization model is applied. Different Pareto-optimal trade-off solutions between water supply and hydro-power generation are provided for two scenarios (i) recent conditions and (ii) future planned increases for Tendaho and Upper Awash Irrigation projects. Reservoir performance is further assessed under (i) rule curves with a high degree of freedom - this allows for best performance, but may result in rules curves to variable for real word operation and (ii) smooth rule curves, obtained by artificial neuronal networks. The results show no performance penalty for smooth rule curves under future conditions but a notable penalty under recent conditions.

  1. Basin Dynamics and Sedimentary Infilling of Miocene Sandstone Reservoir Systems In Eastern Tunisian African Margin

    NASA Astrophysics Data System (ADS)

    Bédir, Mourad; Khomsi, Sami

    2015-04-01

    Most of hydrocarbon accumulations and aquifers within the Cap Bon, Gulf of Hammamet and Sahel basins in eastern tunisian foreland are reservoired within the Upper Miocene Birsa and Saouaf sandstones and shales Formations. In the gulf of Hammamet, these sandstones constitutes oil and gas fields and are exploited on anticline highs and described as varying from shoreface to shallow marine and typically exhibit excellent reservoir quality of 30% to 35% porosity and good permeability from 500 to 1100 md. In addition, the fracturing of faults enhanced the reservoir quality potential. In contrary, the same hydrocarbon reservoirs are important hydrogeologic ones in the Cap Bon and Sahel basins with huge amount of hundred millions of cubic meters of water only partially exploited. Integrated wire line logging correlations, seismic sequence stratigraphic, tectonics and outcrop geologic analogue studies had permitted to highlight the basin structuring and sedimentary environments of sequence deposits infilling of the reservoir distribution between high platforms to subsiding graben and syncline basins bounded by deep-seated transtensive and transpressive flower faults. Seven third order sequence deposits limited by downlap prograding and onlap/toplap aggrading/retrograding system tracts extend along the eastern margin around the three basins by facies and thickness variances. System tracts exhibit around high horst and graben a channelized and levee infillings extending from 100 meters to more than a kilometer of width. They present a stacked single story and multistory channels types showing space lateral and vertical migrations along NE-SW, E-W and N-S directions. Paleogeographic depositional reservoir fair maps distribution highlight deltaic horst domain with floodplain and incised valley of fluvial amalgamed and braided sandstones distributary channels that occupy the high folded horsts. Whereas folded horst-graben and syncline borders domain of Shelf prodelta are

  2. Gas-and water-saturated conditions in the Piceance Basin, Western Colorado: Implications for fractured reservoir detection in a gas-centered coal basin

    SciTech Connect

    Hoak, T.E.; Decker, A.D.

    1995-10-01

    Mesaverde Group reservoirs in the Piceance Basin, Western Colorado contain a large reservoir base. Attempts to exploit this resource base are stymied by low permeability reservoir conditions. The presence of abundant natural fracture systems throughout this basin, however, does permit economic production. Substantial production is associated with fractured reservoirs in Divide Creek, Piceance Creek, Wolf Creek, White River Dome, Plateau, Shire Gulch, Grand Valley, Parachute and Rulison fields. Successful Piceance Basin gas production requires detailed information about fracture networks and subsurface gas and water distribution in an overall gas-centered basin geometry. Assessment of these three parameters requires an integrated basin analysis incorporating conventional subsurface geology, seismic data, remote sensing imagery analysis, and an analysis of regional tectonics. To delineate the gas-centered basin geometry in the Piceance Basin, a regional cross-section spanning the basin was constructed using hydrocarbon and gamma radiation logs. The resultant hybrid logs were used for stratigraphic correlations in addition to outlining the trans-basin gas-saturated conditions. The magnitude of both pressure gradients (paludal and marine intervals) is greater than can be generated by a hydrodynamic model. To investigate the relationships between structure and production, detailed mapping of the basin (top of the Iles Formation) was used to define subtle subsurface structures that control fractured reservoir development. The most productive fields in the basin possess fractured reservoirs. Detailed studies in the Grand Valley-Parachute-Rulison and Shire Gulch-Plateau fields indicate that zones of maximum structural flexure on kilometer-scale structural features are directly related to areas of enhanced production.

  3. Examining the relationship between snow cover and reservoir storage in the American River Basin

    NASA Astrophysics Data System (ADS)

    McGillis-Moskaluk, Karen

    This study focused on finding evidence of a relationship between snow cover and reservoir storage in the American River basin. Water availability is very important to the future of California. Landsat Thematic Mapper images of the area taken from 1985-2011 were analyzed by calculating Normalized Difference Snow Index and calculating snow acres. The peak storage data were obtained for Folsom Lake for the same time period as the satellite images. The evaluation of these methods showed that over time there was a correlation between snow cover and reservoir storage downstream.

  4. Geological and reservoir characterization of shallow-shelf carbonate fields, Southern Paradox Basin, Utah

    SciTech Connect

    Chidsey, T.C. Jr. ); Eby, D.E. )

    1996-01-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to three wells with primary per field production ranging from 700 MBO to 2 MMBO at a 15-20% recovery rate. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah have been evaluated for CO[sub 2]-flood projects based upon geological characterization and reservoir modeling. Conventional cores from the five fields show that three compositional reservoir types are present: (1) phylloid algal, (2) bioclastic calcarenite, and (3) bryozoan-dominated. Phylloid algal mounds are abundant in four of the five fields, and exhibit the best overall porosity and permeability. This mound type developed where shallow water depths and low energy allowed establishment of calcareous algal colonies possibly on paleohighs. The principal reservoir rock is algal bafflestone composed mostly of the phylloid Ivanovia and occasionally dolomitized. The Heron North field is a bioclastic calcarenite reservoir. It represents high-energy conditions resulting in carbonate beaches developed over foreshore carbonate rubble. The principal reservoir rocks are grainstones and rudstones having grain-selective dissolution and complete dolomitization. Bryozoan-dominated mounds present in Runway field developed in quiet, below wave-base settings that appear to be localized along Mississippian fault blocks trends. The principal reservoir rocks are bindstone and framestone with no dolomitization. The resulting model suggests that CO[sub 2] miscible flooding of these and other small carbonate reservoirs in the Paradox basin could significantly increase ultimate recovery of oil.

  5. Geological and reservoir characterization of shallow-shelf carbonate fields, Southern Paradox Basin, Utah

    SciTech Connect

    Chidsey, T.C. Jr.; Eby, D.E.

    1996-12-31

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to three wells with primary per field production ranging from 700 MBO to 2 MMBO at a 15-20% recovery rate. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah have been evaluated for CO{sub 2}-flood projects based upon geological characterization and reservoir modeling. Conventional cores from the five fields show that three compositional reservoir types are present: (1) phylloid algal, (2) bioclastic calcarenite, and (3) bryozoan-dominated. Phylloid algal mounds are abundant in four of the five fields, and exhibit the best overall porosity and permeability. This mound type developed where shallow water depths and low energy allowed establishment of calcareous algal colonies possibly on paleohighs. The principal reservoir rock is algal bafflestone composed mostly of the phylloid Ivanovia and occasionally dolomitized. The Heron North field is a bioclastic calcarenite reservoir. It represents high-energy conditions resulting in carbonate beaches developed over foreshore carbonate rubble. The principal reservoir rocks are grainstones and rudstones having grain-selective dissolution and complete dolomitization. Bryozoan-dominated mounds present in Runway field developed in quiet, below wave-base settings that appear to be localized along Mississippian fault blocks trends. The principal reservoir rocks are bindstone and framestone with no dolomitization. The resulting model suggests that CO{sub 2} miscible flooding of these and other small carbonate reservoirs in the Paradox basin could significantly increase ultimate recovery of oil.

  6. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect

    Koerner, Roy; Clarke, Don; Walker, Scott

    1999-11-09

    The objectives of this quarterly report was to summarize the work conducted under each task during the reporting period April - June 1998 and to report all technical data and findings as specified in the ''Federal Assistance Reporting Checklist''. The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology.

  7. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect

    Clarke, Don; Koerner, Roy; Moos, Dan; Nguyen, John; Phillips, Chris; Tagbor, Kwasi; Walker, Scott

    1999-11-09

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period July - September 1998 and to report all technical data and findings as specified in the ''Federal Assistance Reporting Checklist''. The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology.

  8. Hydrology and model study of the proposed Prosperity Reservoir, Center Creek Basin, southwestern Missouri

    USGS Publications Warehouse

    Harvey, Edward Joseph; Emmett, Leo F.

    1980-01-01

    A reservoir has been proposed on Center Creek, Jasper County, southwestern Missouri. Ground-water levels in the limestone uplands adjacent to the reservoir will rise when the impoundment is completed. The site is a few miles upstream from the Oronogo-Duenweg belt in the Tri-State zinc district. Grove Creek joins Center Creek downstream from the reservoir separating it from the mining belt. A model study indicates water-level rises varying from about 20 feet near the reservoir to 0.5 to 1.0 foot in the southern part of the Grove Creek drainage basin. A significant rise in the water table adjacent to the reservoir could increase mine-water discharge if Grove Creek is not an effective drain. However, it is probable that Grove Creek is an effective drain, and the higher ground-water levels in the reservoir area will increase ground-water discharge to Grove Creek, and in turn, Center Creek. The increase in ground-water discharge to Grove Creek will have the beneficial effect of diluting mine-water discharge from the Oronogo-Duenweg belt during periods of low flow. (USGS)

  9. Porosity evolution in reservoir sandstones in the West-Central San Joaquin basin, California

    SciTech Connect

    Horton, R.A. Jr.; McCullough, P.T.; Houghton, B.D.; Pennell, D.A.; Dunwoody, J.A. III; Menzie, R.J. Jr.

    1995-04-01

    Miocene reservoir sands (feldspathic and lithic arenites) in central San Joaquin basin oil fields show similar trends in porosity development despite differences in depositional environment, pore-fluid chemistry, and burial history. Burial and tectonic compaction caused grain rotation, deformation of altered lithics, and extensive fracturing of brittle grains, thereby eliminating most primary porosity. Diagenetic fluids, infiltrating along fractures in grains, reacted with freshly exposed mineral surfaces causing extensive leaching of framework components. All major grain types were affected but preferential removal of feldspars and lithics resulted in changes in QFL ratios. With continued compaction angular remnants of partially disolved grains were rotated and rearranged while secondary intergranular and moldic porosity collapsed to form secondary intergranular porosity. This resulted in reservoir sands that are less well sorted, more angular, and mineralogically more mature than they were at deposition. Such changes appear to widespread in the San Joaquin basin and may be more important than is generally acknowledged.

  10. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  11. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

  12. Diagenesis and pore water evolution in the Keuper reservoir, Paris Basin (France)

    SciTech Connect

    Spotl, C.; Matter, A. . Geologisches Inst.); Brevart, O. . Centre Scientifique et Technique Jean Feger)

    1993-09-01

    Keuper (Upper Triassic) fluvial sandstones and nonmarine carbonate rocks form a major oil reservoir in the western Paris Basin at burial depths of [approximately] 2km. Early-diagenetic processes comprise red-bed-type diagenesis and extensive dolocrete formation both in fluvial channels and in fine-grained over-bank sediments. Locally significant paleokarst created vuggy dissolution porosity in the carbonate units and probably also caused leaching of detrital alkali feldspar grains. Oxygen, carbon, and strontium isotope analyses of various eogenetic cements indicate a nonmarine pore-water composition. Ferroan carbonates, authigenic albite and potassium feldspar, quartz, sulfates, sulfides, and clay minerals formed subsequent to major mechanical compaction. Their isotopic compositions record significant changes in the chemistry of the parent pore water. Cl-Br relationships of the present-day pore water reveal that fluids saturated with respect to halite flushed the reservoir during burial. Based on radiogenic dating of illite cements, influx of warm brines into the reservoir most likely occurred during the earliest Cretaceous. The authors suggest that uplift of the Vosges crustal block created a hydraulic head in the eastern part of the basin and established a gravity-driven fluid flow system, displacing interstitial brines from the Keuper evaporites from the eastern part towards the western part of the basin. A second gravity-driven fluid flow system was established during the Oligocene by major uplift, and freshwater flushed the Keuper reservoir, causing brine dilution. The present-day pore water in the study area is still saline and mass-balance calculations indicate that the ratio of basinal brines to Tertiary meteoric water is about 1:2.

  13. Influence of depositional environment and diagenesis on gas reservoir properties in St. Peter Sandstone, Michigan basin

    SciTech Connect

    Harrison, W.B. III; Turmelle, T.M.; Barnes, D.A.

    1987-05-01

    The St. Peter Sandstone in the Michigan basin subsurface is rapidly becoming a major exploration target for natural gas. This reservoir was first proven with the successful completion of the Dart-Edwards 7-36 (Falmouth field, Missaukee County, Michigan) in 1981. Fifteen fields now are known, with a maximum of three producing wells in any one field. The production from these wells ranges from 1 to more than 10 MMCFGD on choke, with light-gravity condensate production of up to 450 b/d. Depth to the producing intervals ranges from about 7000 ft to more than 11,000 ft. The St. Peter Sandstone is an amalgamated stack of shoreface and shelf sequences more than 1100 ft in thickness in the basin center and thinning to zero at the basin margins. Sandstone composition varies from quartzarenite in the coarser sizes to subarkose and arkose in the finer sizes. Thin salty/shaly lithologies and dolomite-cemented sandstone intervals separate the porous sandstone packages. Two major lithofacies are recognized in the basin: a coarse-grained, well-sorted quartzarenite with various current laminations and a fine-grained, more poorly sorted subarkose and arkose with abundant bioturbation and distinct vertical and horizontal burrows. Reservoir quality is influenced by original depositional and diagenetic fabrics, but there is inversion of permeability and porosity with respect to primary textures in the major lithofacies. The initially highly porous and permeable, well-sorted, coarser facies is now tightly cemented with syntaxial quartz cement, resulting in a low-permeability, poor quality reservoir. The more poorly sorted, finer facies with initially lower permeabilities did not receive significant fluid flux until it passed below the zone of quartz cementation. This facies was cemented with carbonate which has subsequently dissolved to form a major secondary porosity reservoir.

  14. Estimating probabilities of reservoir storage for the upper Delaware River basin

    USGS Publications Warehouse

    Hirsch, Robert M.

    1981-01-01

    A technique for estimating conditional probabilities of reservoir system storage is described and applied to the upper Delaware River Basin. The results indicate that there is a 73 percent probability that the three major New York City reservoirs (Pepacton, Cannonsville, and Neversink) would be full by June 1, 1981, and only a 9 percent probability that storage would return to the ' drought warning ' sector of the operations curve sometime in the next year. In contrast, if restrictions are lifted and there is an immediate return to normal operating policies, the probability of the reservoir system being full by June 1 is 37 percent and the probability that storage would return to the ' drought warning ' sector in the next year is 30 percent. (USGS)

  15. Rationale for finding and exploiting fractured reservoirs, based on the MWX/SHCT-Piceance basin experience

    SciTech Connect

    Lorenz, J.C.; Warpinski, N.R.; Teufel, L.W.

    1993-08-01

    The deliverability of a reservoir depends primarily on its permeability, which, in many reservoirs, is controlled by a combination of natural fractures and the in situ stresses. Therefore it is important to be able to predict which parts of a basin are most likely to contain naturally fractured strata, what the characteristics of those fractures might be, and what the most likely in situ stresses are at a given location. This paper presents a set of geologic criteria that can be superimposed onto factors, such as levels of maturation and porosity development, in order to predict whether fractures are present once the likelihood of petroleum presence and reservoir development have been determined. Stress causes fracturing, but stresses are not permanent. A natural-fracture permeability pathway opened by one system of stresses may be held open by those stresses, or narrowed or even closed by changes of the stress to an oblique or normal orientation. The origin of stresses and stress anisotropies in a basin, the potential for stress to create natural fractures, and the causes of stress reorientation are examined in this paper. The appendices to this paper present specific techniques for exploiting and characterizing natural fractures, for measuring the present-day in situ stresses, and for reconstructing a computerized stress history for a basin.

  16. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shu-Guang

    2012-01-01

    Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (~78%) and nutrients (~30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.

  17. Sensitivity of reservoir storage and outflow to climate change in a water-limited river basin

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Gao, H.; Naz, B. S.; Kao, S. C.; Voisin, N.

    2015-12-01

    During the past several decades, numerous reservoirs have been built across the world for a variety of purposes such as flood control, irrigation, municipal water supplies, and hydropower. Consequently, streamflow timing and magnitude are altered significantly by reservoir operations. In addition, the hydrological cycle can be modified substantially by a changing climate. Therefore, a distributed hydrological model which has an embedded reservoir component is essential for representing these effects in future water management planning strategies. In this study, a multi-purpose reservoir module was integrated into the Distributed Hydrology Soil Vegetation Model (DHSVM). The DHSVM model was selected because of its high spatial and temporal resolution and because of its explicit representation of the physical processes. Prescribed operating rules, which are designed to reduce flood risk and enhance water supply reliability, were adopted in this module. The integrated model was tested over a water-limited basin (i.e. the central Brazos River Basin, Texas). Both the calibration and validation results suggest that the model performed robustly at daily, weekly, and monthly levels. Subsequently, the effect of climate sensitivity on reservoir storage and outflow was assessed by perturbing precipitation within a range from -30% to 30% and temperature from -2 °C to 2 °C. Results suggest that both variables are more sensitive to precipitation than temperature. However, there are more uncertainties associated with future precipitation than temperature. It was also found that the sensitivities vary significantly by season. Enabled with the new reservoir component, the DHSVM model provides a platform for projecting future water availability estimations under flow regulation, climate change, and land cover/land use changes. We expect this integrated model to be beneficial for sustainable water resources management.

  18. Effects of Reservoirs on Nutrient Concentrations and Ratios along the Longitudinal Gradient of Danube River Basin

    NASA Astrophysics Data System (ADS)

    Salcedo Borda, J. S.; Gettel, G. M.; Irvine, K.

    2015-12-01

    Reservoirs reduce water flow and increase the retention time which can provide conditions to increase primary production, sedimentation and nutrient retention. As a consequence, nutrient ratios and fluxes of nitrogen (N), phosphorus (P), and silica (Si) may be altered which in turn affects the identity of limiting nutrients and the dynamics of primary production in downstream ecosystems. Residence time as well as the position of reservoirs along the longitudinal gradient (headwaters vs. mouth) may affect these processes. The Danube River Basin is one example where reservoirs have likely altered nutrient stoichiometry along the longitudinal gradient. It has a dam every 17 Km in the upper 1000 km of the river along with a very large dam complex (Iron Gates Dam) 117- Km from the mouth. There has been there has been an observed decline in Si flux, which may have led to changes in phytoplankton community structure in the Black Sea, but for which the causes for this decline are not yet clear. The purpose of this study is to examine the effects of reservoirs from headwaters to the mouth on nutrient stoichiometry in the Danube Basin. Data on dissolved Si, N, and P concentrations from 1996 to 2012 were analyzed from 40 monitoring stations from the TransNational Monitoring Network (TNMN), which are located in the main stem of the Danube. Time series analysis is used to compare nutrient concentrations and ratios both through seasons and through the 15 year time-period. The monitoring stations are located above and below reservoirs in order to analyze the effect of reservoirs on nutrient ratios and fluxes. Preliminary results show that relationship of dissolved inorganic N (DIN): soluble reactive P (SRP) range from 207 to 76, while DIN:Si ratio ranges from 1.89 to 0.2 from the headwaters to the mouth.

  19. Sequence Stratigraphy of the Dakota Sandstone, Eastern San Juan Basin, New Mexico, and its Relationship to Reservoir Compartmentalization

    SciTech Connect

    Varney, Peter J.

    2002-04-23

    This research established the Dakota-outcrop sequence stratigraphy in part of the eastern San Juan Basin, New Mexico, and relates reservoir quality lithologies in depositional sequences to structure and reservoir compartmentalization in the South Lindrith Field area. The result was a predictive tool that will help guide further exploration and development.

  20. Effects of reservoirs on river nitrogen and phosphorus export in the Mississippi and Great Lakes Basins: A regional comparison

    NASA Astrophysics Data System (ADS)

    Powers, S. M.; Tank, J. L.; Robertson, D.

    2013-12-01

    Reservoirs can influence mass transport of anthropogenic nitrogen (N) and phosphorus (P) through rivers, but comparative studies are needed to better understand how reservoir processes vary among landscapes and regions. We compared influences of reservoirs on N and P delivery to tributaries of the Mississippi and Great Lakes Basins, using river monitoring stations that were positioned immediately downstream of reservoir outlets. For a given agricultural intensity (percent of basin classified as cropland), outlet stations (n=115) had lower mean annual flow-weighted concentration for N and P than other stations (n=1085), as well as lower concentration variability. For instance, in the presence of high agriculture (>50% of basin as cropland), reservoir outflow stations had on average 40% lower N and 35% lower P concentration, while the coefficient of variation for both N and P was 30% lower. These aggregate patterns were examined more closely for individual reservoirs of different regions, which fell into two monitoring categories: 1) those which had monitoring stations positioned at the inflow as well as the outflow (n= 23 for TN, n=34 for TP); 2) those which had outflow monitoring stations, as well as an estimate of the expected inflow (from a spatially-referenced regression model). Again, both outflow nutrient concentration and yield (mass per basin area) were usually lower and more stable than the inflow. However, the difference between outflow and inflow varied substantially among reservoirs and regions, including some cases where reservoirs appeared to be net P sources to rivers at the annual time frame. These effects of reservoirs on river N and P are presumably the consequence of reservoir nutrient burial, microbial denitrification, and internal nutrient recycling. Management intended to improve the water quality of rivers and receiving waters would benefit from an improved understanding of reservoir processes, which not only vary among regions, but also could

  1. Reservoir Operations and Flow Modeling to Support Decision Making in the Delaware River Basin

    NASA Astrophysics Data System (ADS)

    Quinodoz, H. A.

    2006-12-01

    About five percent of the US population depends on the waters from the Delaware River Basin for its water supply, including New York City and Philadelphia. Water management in the basin is governed by a compact signed in 1961 by the four basin states and the federal government. The compact created the Delaware River Basin Commission (DRBC) and gave it broad powers to plan, regulate, and manage the development of the basin water resources. The compact also recognized a pre-existing (1954) U.S. Supreme Court Decree that grants the City of New York the right to export up to 800 million gallons per day out of the basin, provided that a prescribed minimum flow is met at Montague, New Jersey for the use of the lower-basin states. The Delaware River Basin Compact also allows the DRBC to adjust the releases and diversions under the Decree, subject to the unanimous consent of the decree parties. This mechanism has been used several times over the last 30 years, to implement and modify rules governing drought operations, instream flows, minimum flow targets, and control of salinity intrusion. In every case, decision makers have relied upon extensive modeling of alternative proposals, using a basin-wide daily flow model. Often, stakeholders have modified and used the same model to test and refine their proposals prior to consideration by the decision makers. The flow model has been modified over the years, to simulate new features and processes in a river system partially controlled by more than ten reservoirs. The flow model has proved to be an adaptable tool, able to simulate the dynamics of a complex system driven by conflicting objectives. This presentation reviews the characteristics of the daily flow model in its current form, discuss how model simulations are used to inform the decision-making process, and provide a case study of a recent modification of the system-wide drought operating plan.

  2. Reserves in western basins

    SciTech Connect

    Caldwell, R.H.; Cotton, B.W.

    1995-04-01

    The objective of this project is to investigate the reserves potential of tight gas reservoirs in three Rocky Mountain basins: the Greater Green River (GGRB), Uinta and Piceance basins. The basins contain vast gas resources that have been estimated in the thousands of Tcf hosted in low permeability clastic reservoirs. This study documents the productive characteristics of these tight reservoirs, requantifies gas in place resources, and characterizes the reserves potential of each basin. The purpose of this work is to promote understanding of the resource and to encourage its exploitation by private industry. At this point in time, the GGRB work has been completed and a final report published. Work is well underway in the Uinta and Piceance basins which are being handled concurrently, with reports on these basins being scheduled for the middle of this year. Since the GGRB portion of the project has been completed, this presentation win focus upon that basin. A key conclusion of this study was the subdivision of the resource, based upon economic and technological considerations, into groupings that have distinct properties with regard to potential for future producibility, economics and risk profile.

  3. Deep-water facies and petrography of the Galoc clastic unit, offshore Palawan, Philippines (south China Sea)

    SciTech Connect

    Link, M.H.; Helmold, K.P.

    1988-02-01

    The lower Miocene Galoc clastic unit, offshore Palawan, Philippines, is about 500-600 ft thick. The unit overlies the Galoc Limestone and is overlain by the Pelitic Pagasa Formation. The Galoc clastic unit consists of alternating quartzose sandstone, mudstone, and resedimented carbonate deposited at bathyal depths, mainly as turbidites. The deep-water deposits are confined to the axis of a northeast-trending trough in which slope, submarine channel, interchannel, depositional lobe, slump, and basinal facies are recognized. Eroded shallow-marine carbonate lithoclasts are commonly incorporated within the siliciclastic turbidites. The main reservoir sandstones occur in submarine channels and depositional lobes. The sandstones are texturally submature, very fine to medium-grained feldspathic litharenites and subarkoses. The sandstones have detrital modes of Q78:F11:L11 and Qm51:F11:Lt38, with partial modes of the monocrystalline components of Qm82:P13:K5. Lithic fragments include chert, shale, schist, volcanic rock fragments, and minor plutonic rock fragments. Porosity in the better reservoir sandstones ranges from 11 to 25%, and calcite is the dominant cement. Dissolution textures and inhomogeneity of calcite distribution suggest that at least half of the porosity in the sandstones has formed through the leaching of calcite cement and labile framework grains. A source terrain of quartzo-feldspathic sediments and metasediments, chert, volcanics, and acid-intermediate plutonic rocks is visualized.

  4. Integrating short-term and long-term forecasting with reservoir optimisation; Mantaro Basin, Peru.

    NASA Astrophysics Data System (ADS)

    Jensen, R. A.; Lasarte, A.; Butts, M. B.

    2009-04-01

    Operational water management often requires a trade-off between short-term and long-term water demands, where short-term demands are driven for example by hydropower generation and flood protection requirements and the long-term demands by water and irrigation supply, sustainable reservoir management and the seasonal impacts of snow melt or climate. This paper presents an operational decision support system designed to forecast and optimise reservoir operations in both the short-term and long-term. The system has been established for the 20,000 km2 Mantaro river basin located in the high Andes with altitudes ranging from 3500 to nearly 6000 m.a.s.l.. The two main power stations at Tablachaca have a combined capacity of more than 1000 MW that supplies 30% of Peru's electrical energy. In addition, the basin's water resources supply extensive agricultural areas, an urban population and mining activities and sustain important ecological habitats. In this paper, the methodologies used for the integrating short-term and long-term forecasting are presented together with their application to the optimal operation of reservoirs. A key element in the system is the MIKE BASIN modelling tool. The system uses several modelling capabilities of MIKE BASIN: rainfall-runoff, reservoir operation, hydropower production, and river flow routing. The system also takes advantage of long-term forecasts (based on statistical information) and short-term forecasts (based on telemetry data). The continually updated runoff and flow forecasts enter the optimization, which applies the Model Predictive Control principle for MIKE BASIN as the core simulation model. For each optimization, a non-linear program algorithm is used to find the best release strategy. On the basis of the forecasted inflows and the real time data the system suggests to the user from which reservoirs to release water for alleviation of possible forecasted deficits. In addition to the Tablachaca scheme the model accounts for

  5. Diagenesis of an 'overmature' gas reservoir: The Spiro sand of the Arkoma Basin, USA

    USGS Publications Warehouse

    Spotl, C.; Houseknecht, D.W.; Burns, S.J.

    1996-01-01

    The Spiro sand is a laterally extensive thin sandstone of earliest Atokan (Pennsylvanian) age that forms a major natural gas reservoir in the western Arkoma Basin, Oklahoma. Petrographic analysis reveals a variety of diagenetic alterations, the majority of which occurred during moderate to deep burial. Early diagenetic processes include calcite cementation and the formation of Fe-clay mineral peloids and coatings around quartz framework grains. These clays, which underwent transformation to well-crystallized chamosite [polytype Ib(?? = 90??)] on burial, are particularly abundant in medium-grained channel sandstones, whereas illitic clays are predominant in fine-grained interchannel sandstones. Subsequent to mechanical compaction, saddle ankerite precipitated in the reservoir at temperatures in excess of 70??C. Crude oil collected in favourable structural locations during and after ankeritization. Whereas hydrocarbons apparently halted inorganic diagenesis in oil-saturated zones, cementation continued in the underlying water-saturated zones. As reservoir temperatures increased further, hydrocarbons were cracked and a solid pyrobitumen residue remained in the reservoir. At temperatures exceeding ???140-150??C, non-syntaxial quartz cement, ferroan calcite and traces of dickite(?) locally reduced the reservoir quality. Local secondary porosity was created by carbonate cement dissolution. This alteration post-dated hydrocarbon emplacement and is probably related to late-stage infiltration of freshwater along 'leaky' faults. The study shows that the Spiro sandstone locally retained excellent porosities despite deep burial and thermal conditions that correspond to the zone of incipient very low grade metamorphism.

  6. Extensional tectonic influence on lower and upper cretaceous stratigraphy and reservoirs, southern Powder River basin, Wyoming

    SciTech Connect

    Mitchell, G.C.; Rogers, M.H.

    1993-04-01

    The southern Powder River basin has been influenced significantly by an extensional system affecting Lower Cretaceous, Upper Cretaceous and Tertiary units. The system is composed of small throw, nearly vertical normal faults which are identified in the Cretaceous marine shales and that we believe are basement derived. Resultant fractures were present at erosional/depositional surfaces, both marine and nonmarine, that, in part, controlled erosion and subsequent deposition of Lower and Upper Cretaceous rocks. The normal faults also affected coal deposition in the Tertiary, now exposed at the surface. The erosion and resultant deposition formed extensive stratigraphic traps in Cretaceous units in both conventional and unconventional reservoirs. These reservoirs are interbedded with mature source rocks that have generated and expelled large amounts of hydrocarbons. Resulting overpressuring in the Fall River through the Niobrara formations has kept fractures open and has preserved primary porosity in the reservoirs. The normal faults offset thin sandstone reservoirs forming permeability barriers. Associated fractures may have provided vertical pathways for organic acids that assisted development of secondary porosity in Upper Cretaceous sandstones. These normal...faults and fractures provide significant potential for the use of horizontal drilling techniques to evaluate fractured, overpressured conventional and unconventional reservoirs.

  7. Delineation of Piceance Basin basement structures using multiple source data: Implications for fractured reservoir exploration

    SciTech Connect

    Hoak, T.E.; Klawitter, A.L.

    1995-10-01

    Fractured production trends in Piceance Basin Cretaceous-age Mesaverde Group gas reservoirs are controlled by subsurface structures. Because many of the subsurface structures are controlled by basement fault trends, a new interpretation of basement structure was performed using an integrated interpretation of Landsat Thematic Mapper (TM), side-looking airborne radar (SLAR), high altitude, false color aerial photography, gas and water production data, high-resolution aeromagnetic data, subsurface geologic information, and surficial fracture maps. This new interpretation demonstrates the importance of basement structures on the nucleation and development of overlying structures and associated natural fractures in the hydrocarbon-bearing section. Grand Valley, Parachute, Rulison, Plateau, Shire Gulch, White River Dome, Divide Creek and Wolf Creek fields all produce gas from fractured tight gas sand and coal reservoirs within the Mesaverde Group. Tectonic fracturing involving basement structures is responsible for development of permeability allowing economic production from the reservoirs. In this context, the significance of detecting natural fractures using the intergrated fracture detection technique is critical to developing tight gas resources. Integration of data from widely-available, relatively inexpensive sources such as high-resolution aeromagnetics, remote sensing imagery analysis and regional geologic syntheses provide diagnostic data sets to incorporate into an overall methodology for targeting fractured reservoirs. The ultimate application of this methodology is the development and calibration of a potent exploration tool to predict subsurface fractured reservoirs, and target areas for exploration drilling, and infill and step-out development programs.

  8. Effects of clay minerals on Triassic sandstone reservoir in Shan Can Ning basin and their significance

    SciTech Connect

    Zhu Guo Hua; Qian Kai

    1989-03-01

    Mesozoic sandstone reservoirs in the Shan Can Ning basin contain various clay minerals with different genesis and occurrences, which give rise to different effects on reservoir characteristics. The results of this study suggest that the effects of illite on permeability, electrical resistivity, and oil and water saturation of the Yan 10 sandstone are much more obvious than those due to kaolinite. Authigenic chlorite film covering the peripheral edges of sand grains restrained the coaxial secondary overgrowths of quartz, feldspar, and other grains. This restraint played an effective role in preserving the pores and texture of the Yanchang reservoir rocks. The authigenic chlorite film contains abundant micropores which can adsorb considerable pore water, which is kept in an irreducible state. Thus, given the same water saturation conditions, the water production of Yanchang reservoir rocks rich in authigenic chlorite is significantly lower than that of the rocks poor in chlorite film. Because the occurrence of the pore-lining clay (film type) reduces the size of pore throats, acidization may show notable effects on this type of sandstone reservoir.

  9. Pennsylvanian carbonate buildups, Paradox basin: Increasing reserves in heterogeneous, shallow-shelf reservoirs

    USGS Publications Warehouse

    Montgomery, S.L.; Chidsey, T.C., Jr.; Eby, D.E.; Lorenz, D.M.; Culham, W.E.

    1999-01-01

    Productive carbonate buildups of Pennsylvanian age in the southern Paradox basin, Utah, contain up to 200 million bbl remaining oil potentially recoverable by enhanced recovery methods. These buildups comprise over 100 satellite fields to the giant Greater Aneth field, where secondary recovery operations thus far have been concentrated. Several types of satellite buildups exist and produce oil from the Desert Creek zone of the Paradox Formation. Many of the relevant fields have undergone early abandonment; wells in Desert Creek carbonate mounds commonly produce at very high initial rates (>1000 bbl/day) and then suffer precipitous declines. An important new study focused on the detailed characterization of five separate reservoirs has resulted in significant information relevant to their future redevelopment. Completed assessment of Anasazi field suggests that phylloid algal mounds, the major productive buildup type in this area, consist of ten separate lithotypes and can be described in terms of a two-level reservoir system with an underlying high-permeability mound-core interval overlain by a lower permeability but volumetrically larger supramound (mound capping) interval. Reservoir simulations and related performance predictions indicate that CO2 flooding of these reservoirs should have considerable success in recovering remaining oil reserves.Productive carbonate buildups of Pennsylvanian age in the southern Paradox basin, Utah, contain up to 200 million bbl remaining oil potentially recoverable by enhanced recovery methods. These buildups comprise over 100 satellite fields to the giant Greater Aneth field, where secondary recovery operations thus far have been concentrated. Several types of satellite buildups exist and produce oil from the Desert Creek zone of the Paradox Formation. Many of the relevant fields have undergone early abandonment; wells in Desert Creek carbonate mounds commonly produce at very high initial rates (>1000 bbl/day) and then suffer

  10. Diagenesis and porosity evolution of tight sand reservoirs in Carboniferous Benxi Formation, Southeast Ordos Basin

    NASA Astrophysics Data System (ADS)

    Hu, Peng; Yu, Xinghe; Shan, Xin; Su, Dongxu; Wang, Jiao; Li, Yalong; Shi, Xin; Xu, Liqiang

    2016-04-01

    The Ordos Basin, situated in west-central China, is one of the oldest and most important fossil-fuel energy base, which contains large reserves of coal, oil and natural gas. The Upper Palaeozoic strata are widely distributed with rich gas-bearing and large natural gas resources, whose potential is tremendous. Recent years have witnessed a great tight gas exploration improvement of the Upper Paleozoic in Southeastern Ordos basin. The Carboniferous Benxi Formation, mainly buried more than 2,500m, is the key target strata for hydrocarbon exploration, which was deposited in a barrier island and tidal flat environment. The sandy bars and flats are the favorable sedimentary microfacies. With an integrated approach of thin-section petrophysics, constant velocity mercury injection test, scanning electron microscopy and X-ray diffractometry, diagenesis and porosity evolution of tight sand reservoirs of Benxi Formation were analyzed in detail. The result shows that the main lithology of sandstone in this area is dominated by moderately to well sorted quartz sandstone. The average porosity and permeability is 4.72% and 1.22mD. The reservoirs of Benxi Formation holds a variety of pore types and the pore throats, with obvious heterogeneity and poor connection. Based on the capillary pressure curve morphological characteristics and parameters, combined with thin section and phycical property data, the reservoir pore structure of Benxi Formation can be divided into 4 types, including mid pore mid throat type(I), mid pore fine throat type(II), small pore fine throat type(III) and micro pro micro throat type(Ⅳ). The reservoirs primarily fall in B-subsate of middle diagenesis and late diagenesis, which mainly undergo compaction, cmentation, dissolution and fracturing process. Employing the empirical formula of different sorting for unconsolideated sandstone porosity, the initial sandstone porosity is 38.32% on average. Quantitative evaluation of the increase and decrease of

  11. Increased Oil Production and Reserves Utilizing Secondary/Terriary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect

    David E. Eby; Thomas C. Chidsey, Jr.

    1998-04-08

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO -) 2 flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. Two activities continued this quarter as part of the geological and reservoir characterization of productive carbonate buildups in the Paradox basin: (1) diagenetic characterization of project field reservoirs, and (2) technology transfer.

  12. Increasing Heavy Oil in the Wilmington Oil Fiel Through Advanced Reservoir Characterization and Thermal Production Technologies. Annual Report, March 30, 1995--March 31, 1996

    SciTech Connect

    Allison, Edith

    1996-12-01

    The objective of this project is to increase heavy oil reserves in a portion of the Wilmington Oil Field, near Long Beach, California, by implementing advanced reservoir characterization and thermal production technologies. Based on the knowledge and experience gained with this project, these technologies are intended to be extended to other sections of the Wilmington Oil Field, and, through technology transfer, will be available to increase heavy oil reserves in other slope and basin clastic (SBC) reservoirs.

  13. Low permeability Neogene lithofacies in Northern Croatia as potential unconventional hydrocarbon reservoirs

    NASA Astrophysics Data System (ADS)

    Malvić, Tomislav; Sučić, Antonija; Cvetković, Marko; Resanović, Filip; Velić, Josipa

    2014-06-01

    We present two examples of describing low permeability Neogene clastic lithofacies to outline unconventional hydrocarbon lithofacies. Both examples were selected from the Drava Depression, the largest macrostructure of the Pannonian Basin System located in Croatia. The first example is the Beničanci Field, the largest Croatian hydrocarbon reservoir discovered in Badenian coarse-grained clastics that consists mostly of breccia. The definition of low permeability lithofacies is related to the margins of the existing reservoir, where the reservoir lithology changed into a transitional one, which is mainly depicted by the marlitic sandstones. However, calculation of the POS (probability of success of new hydrocarbons) shows critical geological categories where probabilities are lower than those in the viable reservoir with proven reserves. Potential new hydrocarbon volumes are located in the structural margins, along the oil-water contact, with a POS of 9.375%. These potential reserves in those areas can be classified as probable. A second example was the Cremušina Structure, where a hydrocarbon reservoir was not proven, but where the entire structure has been transferred onto regional migration pathways. The Lower Pontian lithology is described from well logs as fine-grained sandstones with large sections of silty or marly clastics. As a result, the average porosity is low for conventional reservoir classification (10.57%). However, it is still an interesting case for consideration as a potentially unconventional reservoir, such as the "tight" sandstones.

  14. Reservoir characterization of the Mississippian Ratcliffe, Richland County, Montana, Williston Basin. Topical report, September 1997

    SciTech Connect

    Sippel, M.; Luff, K.D.; Hendricks, M.L.

    1998-07-01

    This topical report is a compilation of characterizations by different disciplines of the Mississippian Ratcliffe in portions of Richland County, MT. Goals of the report are to increase understanding of the reservoir rocks, oil-in-place, heterogeneity and methods for improved recovery. The report covers investigations of geology, petrography, reservoir engineering and seismic. The Ratcliffe is a low permeability oil reservoir which appears to be developed across much of the study area and occurs across much of the Williston Basin. The reservoir has not been a primary drilling target in the study area because average reserves have been insufficient to payout the cost of drilling and completion despite the application of hydraulic fracture stimulation. Oil trapping does not appear to be structurally controlled. For the Ratcliffe to be a viable drilling objective, methods need to be developed for (1) targeting better reservoir development and (2) better completions. A geological model is presented for targeting areas with greater potential for commercial reserves in the Ratcliffe. This model can be best utilized with the aid of 3D seismic. A 3D seismic survey was acquired and is used to demonstrate a methodology for targeting the Ratcliffe. Other data obtained during the project include oriented core, special formation-imaging log, pressure transient measurements and oil PVT. Although re-entry horizontal drilling was unsuccessfully tested, this completion technology should improve the economic viability of the Ratcliffe. Reservoir simulation of horizontal completions with productivity of three times that of a vertical well suggested two or three horizontal wells in a 258-ha (640-acre) area could recover sufficient reserves for profitable drilling.

  15. Potential evaluation of CO2 storage and enhanced oil recovery of tight oil reservoir in the Ordos Basin, China.

    PubMed

    Tian, Xiaofeng; Cheng, Linsong; Cao, Renyi; Zhang, Miaoyi; Guo, Qiang; Wang, Yimin; Zhang, Jian; Cui, Yu

    2015-07-01

    Carbon -di-oxide (CO2) is regarded as the most important greenhouse gas to accelerate climate change and ocean acidification. The Chinese government is seeking methods to reduce anthropogenic CO2 gas emission. CO2 capture and geological storage is one of the main methods. In addition, injecting CO2 is also an effective method to replenish formation energy in developing tight oil reservoirs. However, exiting methods to estimate CO2 storage capacity are all based on the material balance theory. This was absolutely correct for normal reservoirs. However, as natural fractures widely exist in tight oil reservoirs and majority of them are vertical ones, tight oil reservoirs are not close. Therefore, material balance theory is not adaptive. In the present study, a new method to calculate CO2 storage capacity is presented. The CO2 effective storage capacity, in this new method, consisted of free CO2, CO2 dissolved in oil and CO2 dissolved in water. Case studies of tight oil reservoir from Ordos Basin was conducted and it was found that due to far lower viscosity of CO2 and larger solubility in oil, CO2 could flow in tight oil reservoirs more easily. As a result, injecting CO2 in tight oil reservoirs could obviously enhance sweep efficiency by 24.5% and oil recovery efficiency by 7.5%. CO2 effective storage capacity of Chang 7 tight oil reservoir in Longdong area was 1.88 x 10(7) t. The Chang 7 tight oil reservoir in Ordos Basin was estimated to be 6.38 x 10(11) t. As tight oil reservoirs were widely distributed in Songliao Basin, Sichuan Basin and so on, geological storage capacity of CO2 in China is potential. PMID:26387353

  16. Oil reservoirs in grainstone aprons around Bryozoan Mounds, Upper Harrodsburg Limestone, Mississippian, Illinois Basin

    SciTech Connect

    Jobe, H.; Saller, A.

    1995-06-01

    Several oil pools have been discovered recently in the upper Harrodsburg Limestone (middle Mississippian) of the Illinois basin. A depositional model for bryozoan mound complexes has allowed more successful exploration and development in this play. In the Johnsonville area of Wayne County, Illinois, three lithofacies are dominant in the upper Harrodsburg: (1) bryozoan boundstones, (2) bryozoan grainstones, and (3) fossiliferous wackestones. Bryozoan boundstones occur as discontinuous mounds and have low porosity. Although bryozoan boundstones are not the main reservoir lithofacies, they are important because they influenced the distribution of bryozoan grainstones and existing structure. Bryozoan grainstones have intergranular porosity and are the main reservoir rock. Bryozoan fragments derived from bryozoan boundstone mounds were concentrated in grainstones around the mounds. Fossiliferous wackestones are not porous and form vertical and lateral seals for upper Harrodsburg grainstones. Fossiliferous wackestones were deposited in deeper water adjacent to bryozoan grainstone aprons, and above grainstones and boundstones after the mounds were drowned. Upper Harrodsburg oil reservoirs occur where grainstone aprons are structurally high. The Harrodsburg is a good example of a carbonate mound system where boundstone cores are not porous, but adjacent grainstones are porous. Primary recovery in these upper Harrodsburg reservoirs is improved by strong pressure support from an aquifer in the lower Harrodsburg. Unfortunately, oil production is commonly decreased by water encroaching from that underlying aquifer.

  17. Diagenetic Evolution and Reservoir Quality of Sandstones in the North Alpine Foreland Basin: A Microscale Approach.

    PubMed

    Gross, Doris; Grundtner, Marie-Louise; Misch, David; Riedl, Martin; Sachsenhofer, Reinhard F; Scheucher, Lorenz

    2015-10-01

    Siliciclastic reservoir rocks of the North Alpine Foreland Basin were studied focusing on investigations of pore fillings. Conventional oil and gas production requires certain thresholds of porosity and permeability. These parameters are controlled by the size and shape of grains and diagenetic processes like compaction, dissolution, and precipitation of mineral phases. In an attempt to estimate the impact of these factors, conventional microscopy, high resolution scanning electron microscopy, and wavelength dispersive element mapping were applied. Rock types were established accordingly, considering Poro/Perm data. Reservoir properties in shallow marine Cenomanian sandstones are mainly controlled by the degree of diagenetic calcite precipitation, Turonian rocks are characterized by reduced permeability, even for weakly cemented layers, due to higher matrix content as a result of lower depositional energy. Eocene subarkoses tend to be coarse-grained with minor matrix content as a result of their fluvio-deltaic and coastal deposition. Reservoir quality is therefore controlled by diagenetic clay and minor calcite cementation.Although Eocene rocks are often matrix free, occasionally a clay mineral matrix may be present and influence cementation of pores during early diagenesis. Oligo-/Miocene deep marine rocks exhibit excellent quality in cases when early cement is dissolved and not replaced by secondary calcite, mainly bound to the gas-water contact within hydrocarbon reservoirs. PMID:26365327

  18. Reservoir characteristics of Putnam zone (Silurian Interlake Formation) lithofacies, southwestern Williston basin

    SciTech Connect

    Inden, R. ); Oglesby, C. ); Byrnes, A. ); Cluff, B. )

    1991-06-01

    Reservoirs in the Putnam zone (lower Interlake Formation) in the southwestern part of the Williston basin include oolitic-pellet dolomite grainstone, fossil-pellet grainstone, and a wide spectrum of reef-related, fossil-corral dolomite packstones and coral-stromatoporoid rudstone/boundstones. Each of these potential reservoirs has a unique pore system and, thus a different set of petrophysical properties which define their reservoir characteristics. Oolitic grainstones have a homogeneous intercrystalline-micro-crystalline pore system, whereas the fossil-pellet dolomite grainstone facies consists of separate mesovugs dispersed in well-interconnected intercrystalline porosity. Capillary pressure curves indicate that pore-throat heterogeneity is greater, and entry pressures lower, for reefal lithofacies than for pelletal grainstones. These curves also demonstrate why many of the producing fields tend to have high water cuts. In many oolitic-pellet grainstone units, irreducible water saturations of 10% would not be reached until a hydrocarbon column of 700 ft was reached. High water production characteristics are therefore expected because Red River/Interlake structures attain only 50-100 ft of closure. This, however, does not mean that Putnam is not an economic zone, especially as a secondary objective. Wells in Putnam and Crane fields, for instance, have reserves in excess of 300,000 bbl of oil. The reservoirs here may be dominated by the reef-related facies, which have an extremely high relative permeability to oil.

  19. Potential non-tertiary additional oil recovery from heterogeneous submarine-fan reservoirs, Spraberry-Benedum field, Midland basin, Texas

    SciTech Connect

    Guevara, E.H.; Worrall, J.G.; Walter, T.

    1987-05-01

    The Spraberry-Benedum field is a multipay, solution-gas drive, combined structural-stratigraphic trap. It contains approximately 200 million bbl of original oil in place and has been waterflooded since 1967. Producing intervals are in the Spraberry formation (Permian, Leonardian), which in this area consists of mixed-sediment submarine-fan deposits (upper and lower Spraberry) and basin-plain facies (middle Spraberry). Principal oil reservoirs, with 12% average porosity and permeabilities of less than 1 md, occur in the lower and upper Spraberry. They consist of naturally fractured, very fine-grained sandstones and coarse siltstones of braided and meandering, peripheral channels and associated outer fan facies. Complex facies architecture results in highly heterogeneous reservoirs. Oil accumulations are layered because basin-plain shales vertically separate submarine-fan reservoirs, and they are laterally compartmentalized due to the channelization of reservoir rocks. Production trends locally parallel to facies trends indicate that recovery is influenced by reservoir stratigraphy. Well locations, based only on structural position and fracture orientation, commonly do not conform to the axes of belts of greatest sandstone-siltstone thickness, which contain the best reservoirs. Furthermore, completion intervals do not systematically tap both lower and upper Spraberry reservoirs. Ultimate recovery will be improved by aggressive development programs aimed at producing from poorly drained traps created by reservoir heterogeneities. Recompletion and deepening of wells, strategic infill drilling, and injection patterns in such programs should be based on detailed reservoir stratigraphy, in addition to structure and fracture data.

  20. Modeling pollution potential input from the drainage basin into Barra Bonita reservoir, São Paulo - Brazil.

    PubMed

    Prado, R B; Novo, E M L M

    2015-05-01

    In this study multi-criteria modeling tools are applied to map the spatial distribution of drainage basin potential to pollute Barra Bonita Reservoir, São Paulo State, Brasil. Barra Bonita Reservoir Basin had undergone intense land use/land cover changes in the last decades, including the fast conversion from pasture into sugarcane. In this respect, this study answers to the lack of information about the variables (criteria) which affect the pollution potential of the drainage basin by building a Geographic Information System which provides their spatial distribution at sub-basin level. The GIS was fed by several data (geomorphology, pedology, geology, drainage network and rainfall) provided by public agencies. Landsat satellite images provided land use/land cover map for 2002. Ratings and weights of each criterion defined by specialists supported the modeling process. The results showed a wide variability in the pollution potential of different sub-basins according to the application of different criterion. If only land use is analyzed, for instance, less than 50% of the basin is classified as highly threatening to water quality and include sub basins located near the reservoir, indicating the importance of protection areas at the margins. Despite the subjectivity involved in the weighing processes, the multi-criteria analysis model allowed the simulation of scenarios which support rational land use polices at sub-basin level regarding the protection of water resources. PMID:26132013

  1. ADVANCED CHARACTERIZATION OF FRACTURED RESERVOIRS IN CARBONATE ROCKS: THE MICHIGAN BASIN

    SciTech Connect

    James R. Wood; William B. Harrison

    2002-12-01

    The purpose of the study was to collect and analyze existing data on the Michigan Basin for fracture patterns on scales ranging form thin section to basin. The data acquisition phase has been successfully concluded with the compilation of several large digital databases containing nearly all the existing information on formation tops, lithology and hydrocarbon production over the entire Michigan Basin. These databases represent the cumulative result of over 80 years of drilling and exploration. Plotting and examination of these data show that contrary to most depictions, the Michigan Basin is in fact extensively faulted and fractured, particularly in the central portion of the basin. This is in contrast to most of the existing work on the Michigan Basin, which tends to show relatively simple structure with few or minor faults. It also appears that these fractures and faults control the Paleozoic sediment deposition, the subsequent hydrocarbon traps and very likely the regional dolomitization patterns. Recent work has revealed that a detailed fracture pattern exists in the interior of the Central Michigan Basin, which is related to the mid-continent gravity high. The inference is that early Precambrian, ({approx}1 Ga) rifting events presumed by many to account for the gravity anomaly subsequently controlled Paleozoic sedimentation and later hydrocarbon accumulation. There is a systematic relationship between the faults and a number of gas and oil reservoirs: major hydrocarbon accumulations consistently occur in small anticlines on the upthrown side of the faults. The main tools used in this study to map the fault/fracture patterns are detailed, close-interval (CI = 10 feet) contouring of the formation top picks accompanied by a new way of visualizing the data using a special color spectrum to bring out the third dimension. In addition, recent improvements in visualization and contouring software were instrumental in the study. Dolomitization is common in the

  2. Hydrogeology and hydrogeochemistry at a site of strategic importance: the Pareja Limno-reservoir drainage basin (Guadalajara, central Spain)

    NASA Astrophysics Data System (ADS)

    Molina-Navarro, Eugenio; Sastre-Merlín, Antonio; Vicente, Rosa; Martínez-Pérez, Silvia

    2014-08-01

    A small calcareous basin in central Spain was studied to establish the role of groundwater in the Pareja Limno-reservoir. Limno-reservoirs aim to preserve a constant water level in the riverine zone of large reservoirs to mitigate the impacts arising from their construction. Groundwater flow contribution (mean 60 %) was derived by recharge estimation. In situ measurements (spring discharge, electrical conductivity and sulfate) were undertaken and spring discharge was compared with a drought index. Twenty-eight springs were monitored and three hydrogeological units (HGUs) were defined: a carbonate plateau (HGU1), the underlying aquitard (HGU2), and the gypsum-enriched HGU3. HGU1 is the main aquifer and may play a role in the preservation of the limno-reservoir water level. Hydrogeochemical sampling was conducted and the code PHREEQC used to describe the main geochemical processes. Weathering and dissolution of calcite and gypsum seem to control the hydrogeochemical processes in the basin. Water progresses from Ca2+-HCO3 - in the upper basin to Ca2+-SO4 2- in the lower basin, where HGU3 outcrops. A clear temporal pattern was observed in the limno-reservoir, with salinity decreasing in winter and increasing in summer. This variation was wider at the river outlet, but the mixing of the river discharge with limno-reservoir water buffered it.

  3. Sedimentology and genetic stratigraphy of Dean and Spraberry Formations (Permian), Midland basin, Texas

    SciTech Connect

    Handford, C.R.

    1981-09-01

    The Spraberry trend of west Texas, once known as the world's largest uneconomic oil field, will undoubtedly become an increasingly important objective for the development of enhanced oil recovery techniques in fine-grained, low-permeability, low-pressure reservoirs. As the trend expands, facies and stratigraphic data should be integrated into exploration strategies. The Spraberry and Dean Formations may be divided into three genetic sequences, each consisting of several hundred feet of interbedded shale and carbonate overlain by a roughly equal amount of sandstone and siltstone. These sequences record episodes of shelf-margin progradation, deep-water resedimentation of shelf-derived carbonate debris, followed by influxes of terrigenous clastics into the basin by way of feeder channels or submarine canyons, and suspension settling of fine-grained sediment from the water column. Four lithofacies comprise the terrigenous clastics of the Spraberry and Dean Fomations: (1) cross-laminated, massive, and parallel-laminated sandstone, (2) laminated siltstone, (3) bioturbated siltstone, and (4) black, organic-rich shale. Carbonate lithofacies occur mostly in the form of thin-bedded turbidites, slump, and debris-flow deposits. Terrigenous clastic rocks display facies sequences, isopach patterns, and sedimentary structures suggestive of deposition from turbidity currents, and long-lived saline density underflow and interflow currents. Clastic isopach patterns reflect an overall southward thinning of clastics in the Midland basin. Channelized flow and suspension settling were responsible for the formation of elongate fan-shaped accumulations of clastic sediments.

  4. Bogi and Capiron fields, Oriente Basin, Ecuador: Similar reservoirs but contrasting drive mechanisms and recoveries

    SciTech Connect

    Sanchez, H.; Morales, M.; Young, R.; Zambrano, H.

    1996-08-01

    Bogi and Capiron fields are being developed under a unit agreement with Petroecuador. These adjoining fields straddle Block 16 in the Oriente Basin and probably share a common oil water contact. Both fields are simple four-way-dip closures which produce heavy oil from Campanian sandstones of similar quality. However, the two fields are remarkably different in terms of oil production and projected recovery as a result of differing structural closures, reservoir distributions and, hence, differing drive mechanisms. The main reservoir at Bogi field is an amalgamation of two fluvial sheet sandstones thought to be low-stand deposits associated with two falls in relative sea level. The reservoir is thick (56-78 ft) and, with an observed oil column of only 38 feet, a bottom-water drive mechanism is ubiquitous. The oil is heavy (18 API) and mobility ratios unfavorable; water production is high and oil recovery from conventional drilling is expected to be 3-5%. In contrast, only the upper fluvial sheet sandstone is present in Capiron field and a reservoir thickness of 32-48 ft combined with an oil column of 99 ft ensures an edge-water drive mechanism over most of the field with concomitant initial low water production and oil recoveries of approximately 30%. The contrast between Bogi and Capiron fields highlights the problems and challenges in the Block 16 area. Small structural closures filled with heavy oil are abundant and an accurate seismic depth map coupled with an understanding of reservoir distribution are vital to economic success.

  5. Ground Penetrating Radar Imaging of Ancient Clastic Deposits: A Tool for Three-Dimensional Outcrop Studies

    NASA Astrophysics Data System (ADS)

    Akinpelu, Oluwatosin Caleb

    The growing need for better definition of flow units and depositional heterogeneities in petroleum reservoirs and aquifers has stimulated a renewed interest in outcrop studies as reservoir analogues in the last two decades. Despite this surge in interest, outcrop studies remain largely two-dimensional; a major limitation to direct application of outcrop knowledge to the three dimensional heterogeneous world of subsurface reservoirs. Behind-outcrop Ground Penetrating Radar (GPR) imaging provides high-resolution geophysical data, which when combined with two dimensional architectural outcrop observation, becomes a powerful interpretation tool. Due to the high resolution, non-destructive and non-invasive nature of the GPR signal, as well as its reflection-amplitude sensitivity to shaly lithologies, three-dimensional outcrop studies combining two dimensional architectural element data and behind-outcrop GPR imaging hold significant promise with the potential to revolutionize outcrop studies the way seismic imaging changed basin analysis. Earlier attempts at GPR imaging on ancient clastic deposits were fraught with difficulties resulting from inappropriate field techniques and subsequent poorly-informed data processing steps. This project documents advances in GPR field methodology, recommends appropriate data collection and processing procedures and validates the value of integrating outcrop-based architectural-element mapping with GPR imaging to obtain three dimensional architectural data from outcrops. Case studies from a variety of clastic deposits: Whirlpool Formation (Niagara Escarpment), Navajo Sandstone (Moab, Utah), Dunvegan Formation (Pink Mountain, British Columbia), Chinle Formation (Southern Utah) and St. Mary River Formation (Alberta) demonstrate the usefulness of this approach for better interpretation of outcrop scale ancient depositional processes and ultimately as a tool for refining existing facies models, as well as a predictive tool for subsurface

  6. Fractional water allocation and reservoir capacity sharing concepts: An adaptation for the Komati Basin

    NASA Astrophysics Data System (ADS)

    Dlamini, Enoch M.; Dhlamini, Sidney; Mthimkhulu, Sindy

    This paper presents an adaptation of fractional water allocation and reservoir capacity sharing (FWARCS) concepts for application in the Komati Basin, a river system shared between South Africa, Swaziland and Mozambique. Many traditional methods for allocating water are based on volume-per-unit-time allocation that is supplied at some level of assurance and managed using priority-based reservoir and river system operating rules, as well as on the “use it or lose it” principle, which is considered exclusive by water users as it leaves them out of the management of their water allocations. In the Komati Basin, these traditional methods of water allocation led to frequent conflicts among users and with water managers. However, the introduction of the modified FWARCS, which assigns available water in the system to water users according to the proportions of their water entitlements and allows water to be banked in reservoirs, appears to be a solution to some of these problems. This method allows water users to decide when and how much of that entitlement they may use. Since the implementation of the modified FWARCS technique in the Komati Basin in 2002, the regulation, transparency and efficiency of operating the system improved and subsequently the number of disputes over water has declined. South Africa improved from an overuse of 8.2 Mm 3 in 2002/03 water year to realize a saving of 29.5 Mm 3 in 2005/06. Similarly, Swaziland improved from an overuse of 3.9 Mm 3 in 2002/03 to achieve a saving of 14.6 Mm 3 in 2005/06. Users have recognised and embraced the transparency and flexibility of the modified FWARCS. They choose, as the need and opportunity arise, when and how much water they utilise, whether to “bank” and/or “trade” the water they save subject to the conditions of their entitlements. The implementation of the modified FWARCS was also made successful by the existence of proper institutional structures, appropriate decision support tools, good water

  7. Variations of chlorites and illites and porosity in Mississippian sandstone reservoirs in the Illinois basin

    SciTech Connect

    Moore, D.M.; Hughes, R.E. )

    1991-03-01

    Shallow marine, Mississippian, siliclastics in the Illinois basin, although predominantly quartz, contain other minerals that directly influence the porosity and permeability of these reservoir rocks. These sandstones contain more chlorite and kaolinite, relative to illite, than the authors have observed for shales from other Chesterian and Valmeyeran strata. Clay mineral suites in reservoirs appear to be diagenetic. The Aux Vases Sandstone contains illite, illite/smectite, and chlorite; kaolinite is absent. The Cypress Sandstone contains illite, illite/smectite, chlorite, and kaolinite. Chlorite in the Aux Vases Sandstone varies from moderately Fe-rich to Mg-rich, whereas the chlorite in the Cypress Sandstone is uniformly Fe-rich. As the percentage of clay minerals in these rocks decreases, the proportion of chlorite to other clay minerals increases. In some chlorites, the width of the 003 and 005 peaks at half-height is greater than that of the 002 and 004 peaks. This suggests an interlayering of a 7{angstrom} mineral, probably berthierine- or serpentine-like. SEM photos show chlorite coating quartz grains. In some samples there are quartz overgrowths in spite of the presence of a coating of chlorite; in others, chlorite interlayered with the 7{angstrom} phase seems to have interfered with or suppressed overgrowths. Correspondingly, there is a correlation between the 7{angstrom} phase/chlorite and porosity. Therefore, identification of the type of chlorite in a potential reservoir may be an indicator of porosity, as well as a guide for selecting completion and stimulation treatments.

  8. Structural compartmentalization in a decapitated anticline: The example of the Divide Creek fractured reservoir, Piceance Basin

    SciTech Connect

    Hoak, T.E.; Klawitter, A.L. )

    1996-01-01

    Integrated analysis of high-resolution aeromagnetic and remote sensing data, confirmed by field geology, seismic and production data, demonstrates reservoir compartmentalization within the Divide Creek Field, southeast Piceance Basin. Topographic constraints and Federal land use restrictions, limit the ability to collect extensive seismic data across this complex structure and precludes complete characterization of subsurface structure by direct methods. Integrated analysis of airborne aeromagnetic data with TM (thematic mapper) and SAR (synthetic aperture radar) data, permit the resolution of the 3D complexity of this fold and its associated reservoir not easily defined using conventional 2D seismic. The Divide Creek Anticline is a decapitated pop-up anticline. The pop-up anticline that originally formed along a deeper, Eagle Valley Evaporite detachment surface has been [open quotes]decapitated[close quotes] along a shallower Manoos-level detachment that translates the shallows pop-up anticlinal axis to the west. The fold is further segmented by normal faults trending axis-perpendicular to its axis that create distinct reservoir compartments. Processing of aeromagnetic data using multiple bandpass filters demonstrates three detachments in the fold, and the 3D geometry of the detachments. Understanding timing of these structures is critical for constraining fracture genesis and gas migration models, Oriented fracture data from surficial studies, aeromagnetic data, remote sensing imagery, and subsurface core delineated three primary trends. These trends correspond to axis-parallel, axis-perpendicular and an older oblique regional fracture sets. This fracture permeability has made Divide Creek Field the most prolific Piceance Basin tight gas sand field.

  9. Structural compartmentalization in a decapitated anticline: The example of the Divide Creek fractured reservoir, Piceance Basin

    SciTech Connect

    Hoak, T.E.; Klawitter, A.L.

    1996-12-31

    Integrated analysis of high-resolution aeromagnetic and remote sensing data, confirmed by field geology, seismic and production data, demonstrates reservoir compartmentalization within the Divide Creek Field, southeast Piceance Basin. Topographic constraints and Federal land use restrictions, limit the ability to collect extensive seismic data across this complex structure and precludes complete characterization of subsurface structure by direct methods. Integrated analysis of airborne aeromagnetic data with TM (thematic mapper) and SAR (synthetic aperture radar) data, permit the resolution of the 3D complexity of this fold and its associated reservoir not easily defined using conventional 2D seismic. The Divide Creek Anticline is a decapitated pop-up anticline. The pop-up anticline that originally formed along a deeper, Eagle Valley Evaporite detachment surface has been {open_quotes}decapitated{close_quotes} along a shallower Manoos-level detachment that translates the shallows pop-up anticlinal axis to the west. The fold is further segmented by normal faults trending axis-perpendicular to its axis that create distinct reservoir compartments. Processing of aeromagnetic data using multiple bandpass filters demonstrates three detachments in the fold, and the 3D geometry of the detachments. Understanding timing of these structures is critical for constraining fracture genesis and gas migration models, Oriented fracture data from surficial studies, aeromagnetic data, remote sensing imagery, and subsurface core delineated three primary trends. These trends correspond to axis-parallel, axis-perpendicular and an older oblique regional fracture sets. This fracture permeability has made Divide Creek Field the most prolific Piceance Basin tight gas sand field.

  10. Fault interpretation and reservoir characterization of the Farewell Formation within Kerry Field, Taranaki Basin, New Zealand

    NASA Astrophysics Data System (ADS)

    Alotaby, Waleed Deefallah M.

    The Kerry Field, located in the southern offshore Taranaki Basin, is a large liquid-rich gas accumulation with a thin (20 m) oil rim. The field was discovered by the New Zealand Oil & Gas in 1986 (well Kupe South-1). The gas and oil are trapped within a 9.2 km2 fault-dependent three-way dip closure in the Paleocene Farewell Formation reservoir. Pressure, volume, and temperature (PVT) data indicate that the gas and oil columns in the field are in equilibrium with one another and are saturated at current reservoir conditions. The Farewell Formation is the uppermost formation of the Kapuni Group and is producing gas and oil in the Kerry Field. The Farewell Formation is one of the oldest reservoirs in the Taranaki Basin. The Kupe South-1 well penetrates two sequence boundaries. One is an unconformity beneath the Late Miocene Urenui Formation, and the other is beneath the Oligocene Otaraoa Formation, which appears to be in fault contact with the Paleocene Farewell Formation. The Farewell Formation was deposited in the fluvio-deltaic environment, and consists primarily of sandstone, interbedded with carbonaceous mudstone. The thickness of the formation ranges from 261 to 382 m. A time structure map, depth map, isochron map, edge detection map, and coherence map were produced to identify the structures, especially the faults the study area. A correlation across three wells along 19,089 m was generated to support the interpretation the maps. Several faults are mapped that display seismic attributes. The water-oil contact was found at a depth of 3,300 m. The density of the Farewell Formation ranges between 2.2 and 2.6 g/ cm3. The average porosity of the Farewell Formation ranges between 20 -24 present. The prospective areas for oil production are located in the north and the south-west parts of the formation.

  11. Neogene sandstone reservoirs of the East Slovakian basin: Zeolites and clay minerals from the alteration of volcanics

    SciTech Connect

    Reed, J.K.; Gipson, M. Jr. )

    1991-03-01

    Petrographic analyses of core samples from wells in the East Slovakian basin indicate that alteration products of volcanic materials cause porosity loss in sandstone reservoirs. The reservoirs, which produce natural gas, are part of a shallow marine to continental basin fill with interbedded volcaniclastics, tuffs, and volcanites. Abnormally high heat-flow values have been recorded in the basin fill, which reaches up to 7 km in thickness. Both clay minerals and zeolites are found to restrict porosity. Kaolinite, smectite, illite, chlorite, and mixed-layer clay minerals are all identified in various combinations. Zeolites identified include phillipsite, erionite, clinoptilolite, and analcime. These minerals are related to the occurrence of volcanic rock fragments in the reservoir sand and interbedded volcanics, and they occur as diagenetic replacement minerals and cements. The effects of these minerals are compounded by the initial poor reservoir quality caused by immature sediments and calcite cement. Reservoir productivity would probably be increased if drilling and completion practices in the basin reflected the potential effects of the clay minerals and zeolites.

  12. Tectonic Evolution of Tarim Basin in Cambrian-Ordovician and the Implication for Reservoir Development, NW China

    NASA Astrophysics Data System (ADS)

    Yinglu, Pan; Bingsong, Yu

    2015-04-01

    In order to search after the control of regional tectonic evolution of Tarim basin on the inside distribution of sedimentary facies and reservoir development, this paper, based on the research of plate-tectonic evolution of Tarim basin, conducts an in-depth analysis on the basin's inside sedimentary response to the Eopaleozoic regional geodynamic reversion from extension to convergence around Tarim plate, and concludes that the regional geodynamic environment of surrounding areas closely contributes to the formation and evolution of paleo-uplifts, differentiation of sedimentary facies in platform, distribution of high-energy reef and bank facies belts, conversion of sedimentary base level from fall to rise, obvious change of lithology from dolomite to limestone, and formation of several unconformity surfaces in Ordovician System in the basin. A series of sedimentary responses in the basin are controlled by the regional dynamic setting, which not only controls the distribution of reservoirs in reef and bank facies but also restricts the development and distribution of karst reservoirs controlled by the unconformity surfaces. This offers the macro geological evidences for us to further analyze and evaluate the distribution of favorable reservoirs.

  13. Tectonic evolution of Tarim basin in Cambrian-Ordovician and its implication for reservoir development, NW China

    NASA Astrophysics Data System (ADS)

    Bingsong, Yu; Zhuang, Ruan; Cong, Zhang; Yinglu, Pan; Changsong, Lin; Lidong, Wang

    2016-03-01

    In order to find the impact of regional tectonic evolution of Tarim basin on the inside distribution of sedimentary facies and reservoir development, this paper, based on the research of plate-tectonic evolution of Tarim basin, conducts an in-depth analysis on the basin's inside sedimentary response to the Eopaleozoic regional geodynamic reversion from extension to convergence around Tarim plate, and concludes that the regional geodynamic environment of surrounding areas closely contributes to the formation and evolution of paleo-uplifts, differentiation of sedimentary facies in platform, distribution of high-energy reef and bank facies belts, conversion of sedimentary base level from fall to rise, obvious change of lithology from dolomite to limestone, and formation of several unconformity surfaces in Ordovician system in the basin. A series of sedimentary responses in the basin are controlled by regional dynamic setting, which not only controls the distribution of reservoirs in reef and bank facies but also restricts the development and distribution of karst reservoirs controlled by the unconformity surfaces. This offers the macro geological evidences for us to further analyze and evaluate the distribution of favorable reservoirs.

  14. RESERVOIR CHARACTERIZATION OF THE LOWER GREEN RIVER FORMATION, SOUTHWEST UINTA BASIN, UTAH

    SciTech Connect

    S. Robert Bereskin

    2003-02-11

    Anastamosing, low gradient distributary channels produce {approx}30 gravity, paraffinic oils from the Middle Member of the lacustrine Eocene Green River Formation in the south-central portion of the Uinta Basin. This localized depocenter was situated along the fluctuating southern shoreline of Lake Uinta, where complex deposits of marginal-lacustrine to lower delta plain accumulations are especially characteristic. The Middle Member contains several fining-upward parasequences that can be recognized in outcrop, core, and downhole logs. Each parasequence is about 60 to 120 feet thick and consists of strata deposited during multiple lake level fluctuations that approach 30 to 35 feet in individual thickness. Such parasequences represent 300,000-year cycles based on limited absolute age dating. The subaerial to subaqueous channels commonly possess an erosional base and exhibit a fining upward character. Accordingly, bedding features commonly range from large-scale trough and planar cross bedding or lamination at the base, to a nonreservoir, climbing ripple assemblage near the uppermost reservoir boundary. The best reservoir quality occurs within the laminated to cross-stratified portions, and the climbing ripple phase usually possesses more deleterious micas and/or detrital clays. Diagenesis also exerts a major control on reservoir quality. Certain sandstones were cemented by an early, iron-poor calcite cement, which can be subsequently leached. Secondary intergranular porosity (up to 20%) is largely responsible for the 10 -100 millidarcy rock, which represents petrophysical objectives for both primary and secondary production. Otherwise, intense compaction, silicic and iron-rich carbonate cements, and authigenic clays serve to reduce reservoir quality to marginal economic levels.

  15. The Volta Basin Water Allocation System: assessing the impact of small-scale reservoir development on the water resources of the Volta basin, West Africa

    NASA Astrophysics Data System (ADS)

    Leemhuis, C.; Jung, G.; Kasei, R.; Liebe, J.

    2009-08-01

    In the Volta Basin, infrastructure watershed development with respect to the impact of climate conditions is hotly debated due to the lack of adequate tools to model the consequences of such development. There is an ongoing debate on the impact of further development of small and medium scale reservoirs on the water level of Lake Volta, which is essential for hydropower generation at the Akosombo power plant. The GLOWA Volta Project (GVP) has developed a Volta Basin Water Allocation System (VB-WAS), a decision support tool that allows assessing the impact of infrastructure development in the basin on the availability of current and future water resources, given the current or future climate conditions. The simulated historic and future discharge time series of the joint climate-hydrological modeling approach (MM5/WaSiM-ETH) serve as input data for a river basin management model (MIKE BASIN). MIKE BASIN uses a network approach, and allows fast simulations of water allocation and of the consequences of different development scenarios on the available water resources. The impact of the expansion of small and medium scale reservoirs on the stored volume of Lake Volta has been quantified and assessed in comparison with the impact of climate variability on the water resources of the basin.

  16. Geology and hydrocarbon potential of the Oued Mya basin, Algeria

    SciTech Connect

    Benamrane, O.; Messaoudi, M.; Messelles, H. )

    1993-09-01

    The Oued Mya hydrocarbon system is located in the Sahara basin. It is one of the best producing basins in Algeria, along with the Ghadames and Illizi basins. The stratigraphic section consists of Paleozoic and Mesozoic, and is about 5000 m thick. This intracratonic basin is limited to the north by the Toughourt saddle, and to the west and east it is flanked by regional arches, Allal-Tilghemt and Amguid-Hassi Messaoud, which culminate in the super giant Hassi Messaoud and Hassi R'mel hydrocarbon accumulations, respectively, producing oil from the Cambrian sands and gas from the Trissic sands. The primary source rock in this basin is lower Silurian shale, with an average thickness of 50 m and a total organic carbon of 6% (14% in some cases). Results of maturation modeling indicate that the lower Silurian source is in the oil window. The Ordovician shales are also source rocks, but in a second order. Clastic reservoirs are in the Trissic sequence, which is mainly fluvial deposits with complex alluvial channels, and the main target in the basin. Clastic reservoirs in the lower Devonian section have a good hydrocarbon potential east of the basin through a southwest-northwest orientation. The Late Trissic-Early Jurassic evaporites that overlie the Triassic clastic interval and extend over the entire Oued Mya basin, are considered to be a super-seal evaporite package, which consists predominantly of anhydrite and halite. For paleozoic targets, a large number of potential seals exist within the stratigraphic column. This super seal does not present oil dismigration possibilities. We can infer that a large amount of the oil generated by the Silurian source rock from the beginning of Cretaceous until now still is not discovered and significantly greater volumes could be trapped within structure closures and mixed or stratigraphic traps related to the fluvial Triassic sandstones, marine Devonian sands, and Cambrian-Ordovician reservoirs.

  17. Low flows and reservoir management for the Durance River basin (Southern France) in the 2050s

    NASA Astrophysics Data System (ADS)

    Sauquet, Eric

    2015-04-01

    . A model of water management similar to the tools used by Electricité De France was calibrated to simulate the behavior of the three reservoirs Serre-Ponçon, Castillon, Sainte-Croix on present-day conditions. This model simulates water releases from reservoir under constraints imposed by rule curves, ecological flows downstream to the dams and water levels in summer for recreational purposes. The results demonstrate the relatively good performance of this simplified model and its ability to represent the influence of reservoir operations on the natural hydrological river flow regime, the decision-making involved in water management and the interactions at regional scale. Four territorial socio-economic scenarios have been also elaborated with the help of stake holders to project water needs in the 2050s for the area supplied with water from the Durance River basin. This presentation will focus on the specific tools developed within the project to simulate water management and water abstractions. The main conclusions related to the risk of water shortage in the 2050s and the level of satisfaction for each water use will be also discussed.

  18. Multivariate classification of small order watersheds in the Quabbin Reservoir Basin, Massachusetts

    USGS Publications Warehouse

    Lent, R.M.; Waldron, M.C.; Rader, J.C.

    1998-01-01

    A multivariate approach was used to analyze hydrologic, geologic, geographic, and water-chemistry data from small order watersheds in the Quabbin Reservoir Basin in central Massachusetts. Eighty three small order watersheds were delineated and landscape attributes defining hydrologic, geologic, and geographic features of the watersheds were compiled from geographic information system data layers. Principal components analysis was used to evaluate 11 chemical constituents collected bi-weekly for 1 year at 15 surface-water stations in order to subdivide the basin into subbasins comprised of watersheds with similar water quality characteristics. Three principal components accounted for about 90 percent of the variance in water chemistry data. The principal components were defined as a biogeochemical variable related to wetland density, an acid-neutralization variable, and a road-salt variable related to density of primary roads. Three subbasins were identified. Analysis of variance and multiple comparisons of means were used to identify significant differences in stream water chemistry and landscape attributes among subbasins. All stream water constituents were significantly different among subbasins. Multiple regression techniques were used to relate stream water chemistry to landscape attributes. Important differences in landscape attributes were related to wetlands, slope, and soil type.A multivariate approach was used to analyze hydrologic, geologic, geographic, and water-chemistry data from small order watersheds in the Quabbin Reservoir Basin in central Massachusetts. Eighty three small order watersheds were delineated and landscape attributes defining hydrologic, geologic, and geographic features of the watersheds were compiled from geographic information system data layers. Principal components analysis was used to evaluate 11 chemical constituents collected bi-weekly for 1 year at 15 surface-water stations in order to subdivide the basin into subbasins

  19. Increasing Waterflood Reserves in the Wilmington Oil Field Through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect

    Chris Phillips; Dan Moos; Don Clarke; Dwasi Tagbor; John Nguygen; Roy Koerner; Scott Walker

    1997-04-10

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period January - March 1997 and to report all technical data and findings as specified in the "Federal Assistance Reporting Checklist". The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology.

  20. Synergistic gains from the multi-objective optimal operation of cascade reservoirs in the Upper Yellow River basin

    NASA Astrophysics Data System (ADS)

    Bai, Tao; Chang, Jian-xia; Chang, Fi-John; Huang, Qiang; Wang, Yi-min; Chen, Guang-sheng

    2015-04-01

    The Yellow River, known as China's "mother river", originates from the Qinghai-Tibet Plateau and flows through nine provinces with a basin area of 0.75 million km2 and an annual runoff of 53.5 billion m3. In the last decades, a series of reservoirs have been constructed and operated along the Upper Yellow River for hydropower generation, flood and ice control, and water resources management. However, these reservoirs are managed by different institutions, and the gains owing to the joint operation of reservoirs are neither clear nor recognized, which prohibits the applicability of reservoir joint operation. To inspire the incentive of joint operation, the contribution of reservoirs to joint operation needs to be quantified. This study investigates the synergistic gains from the optimal joint operation of two pivotal reservoirs (i.e., Longyangxia and Liujiaxia) along the Upper Yellow River. Synergistic gains of optimal joint operation are analyzed based on three scenarios: (1) neither reservoir participates in flow regulation; (2) one reservoir (i.e., Liujiaxia) participates in flow regulation; and (3) both reservoirs participate in flow regulation. We develop a multi-objective optimal operation model of cascade reservoirs by implementing the Progressive Optimality Algorithm-Dynamic Programming Successive Approximation (POA-DPSA) method for estimating the gains of reservoirs based on long series data (1987-2010). The results demonstrate that the optimal joint operation of both reservoirs can increase the amount of hydropower generation to 1.307 billion kW h/year (about 594 million USD) and increase the amount of water supply to 36.57 billion m3/year (about 15% improvement). Furthermore both pivotal reservoirs play an extremely essential role to ensure the safety of downstream regions for ice and flood management, and to significantly increase the minimum flow in the Upper Yellow River during dry periods. Therefore, the synergistic gains of both reservoirs can be

  1. The exhumed ``Carlin-type'' fossil oil reservoir at Yankee Basin

    NASA Astrophysics Data System (ADS)

    Hulen, Jeffrey B.; Collister, James W.; Stout, Bill; Curtiss, David K.; Dahdah, Nicolas F.

    1998-12-01

    The Carlin-type disseminated gold orebodies of Yankee basin in the southern part of the Alligator Ridge mining district in Nevada contain widespread oil as smears, open-space fillings, and fluid inclusions in syn- and pre-mineral calcite veins. These unusual oils are the relicts of an exhumed and deeply oxidized oil reservoir that encom-passes the orebodies at the crest of a dissected, anticlinal trap. Results of fluid-inclusion microthermometry and organic geochemistry demonstrate that the oils experienced peak paleotemperatures of no more than about 150°C, a temperature unusually low for Carlin-type mineralization, but ideal for the transport, entrapment, and preservation of liquid hydrocarbon. Similar geothermal systems are actively circulating at three of Nevada’s producing oil fields—Grant Canyon, Bacon Flat, and Blackburn. Accordingly, concealed Carlin-type fossil hydrothermal systems of this type, even if subeconomic for gold, could contain commercial concentrations of oil.

  2. Deep burial diagenesis in Rotliegende reservoirs of the NW German Basin

    SciTech Connect

    Ramseyer, K. ); Gaupp, R.; Matter, A.

    1990-05-01

    A deeply buried Permian continental sequence forms the major gas reservoir in northwest Germany. Deposits of fluvial, eolian, and playa lake shoreline facies show the most favorable reservoir properties. Burial diagenesis is greatly influenced by primary depositional textures and eogenetic processes. However, growth of authigenic clay minerals (illite, kaolinite/dickite, chlorite) relates to changes in the chemistry and flow rate of formation waters. Three different mesogenetic fluid types can be recognized: (1) Alkaline fluids from basin center red beds: The presence of pore-lining chlorite in porous subarkoses of the playa shoreline facies probably is related to a compaction-driven influx of alkaline waters from the shaly, red bed sequences of the basin center. (2) Acidic fluids from coal-bearing Late Carboniferous sediments: An aureole of dickite/kaolinite, several hundred meters wide, is developed in Rotliegende arkosic sands where they are juxtaposed against Carboniferous horsts. In this zone, almost all feldspars were destroyed and the formation of dickite/kaolinite was followed by illite growth and bitumen impregnation. In an outer aureole with less extensive feldspar destruction, kandite minerals are not present, but a dense meshwork of well-crystallized, platy illite fills the pores. The intensity of illitization diminishes away from the Carboniferous sediments (i.e., with increasing distance of fluid migration). K-Ar ages reveal that this illite precipitated within a period when organic maturation products were expelled from the coal measures into Rotliegende sediments and when Paleozoic faults were reactivated. (3) Brines from overlying Zechstein evaporites: During late mesogenetic uplift local influxes of these brines resulted in the formation of pore-plugging carbonate and sulfate cements.

  3. [Potential ecological risks assessment of heavy metals in the reservoir sediment of the western Haihe River basin].

    PubMed

    Cheng, Xian; Wang, Rui-lin; Wang, Jian-li; Sun, Ran-hao

    2015-05-01

    The reservoirs distributed in the western part of Haihe River basin play a key role in drinking water supply in the densely populated region. The potential ecological risk of heavy metals stored in the reservoir sediments has drawn more attention during recent decades. In this study, a total of 10 reservoirs in the western Haihe River basin were sampled. The sediment samples were assessed by the Hakanson potential ecological risk evaluation index. The sediments of upstream and downstream rivers were also sampled for comparative analysis with those of the reservoirs. The results indicated the concentration of Cd was significantly higher than the background value in this region, it was 1.67 times of the background value on average and the highest was 2.77 times. The concentration of Pb was higher than the background value for more than half of the reservoirs. The potential ecological risk was evaluated by the toxic coefficient. The ecological risk level was decreased in the order of Cd>As>Pb>Ni>Cu>Cr>Zn. The ecological risk of Cd in most reservoir sediments belonged to a moderate harm. Xidayang Reservior, which supplied the drinking water for Beijing and Baoding, had the highest level of Cd pollution. The ecological risk of Cd in the upstream and downstream rivers was significantly higher than that of the reservoirs. In addition, the ecological risks of Pb, Cu and Ni in the upstream rivers were also higher than the reservoirs. The difference of ecological risks of Zn and Cr was not significant between reservoirs and rivers. PMID:26571670

  4. Deformation bands evolving from dilation to cementation bands in a hydrocarbon reservoir (Vienna Basin, Austria)

    PubMed Central

    Exner, Ulrike; Kaiser, Jasmin; Gier, Susanne

    2013-01-01

    In this study we analyzed five core samples from a hydrocarbon reservoir, the Matzen Field in the Vienna Basin (Austria). Deformation bands occur as single bands or as strands of several bands. In contrast to most published examples of deformation bands in terrigeneous sandstones, the reduction of porosity is predominantly caused by the precipitation of Fe-rich dolomite cement within the bands, and only subordinately by cataclasis of detrital grains. The chemical composition of this dolomite cement (10–12 wt% FeO) differs from detrital dolomite grains in the host rock (<2 wt% FeO). This observation in combination with stable isotope data suggests that the cement is not derived from the detrital grains, but precipitated from a fluid from an external, non-meteoric source. After an initial increase of porosity by dilation, disaggregation and fragmentation of detrital grains, a Fe-rich carbonate fluid crystallized within the bands, thereby reducing the porosity relative to the host sediment. The retention of pyrite cement by these cementation bands as well as the different degree of oil staining on either side of the bands demonstrate that these cementation bands act as effective barriers to the migration of fluids and should be considered in reservoir models. PMID:26321782

  5. Prospect evaluation of shallow I-35 reservoir of NE Malay Basin offshore, Terengganu, Malaysia

    NASA Astrophysics Data System (ADS)

    Janjua, Osama Akhtar; Wahid, Ali; Salim, Ahmed Mohamed Ahmed; Rahman, M. Nasir B. A.

    2016-02-01

    A potential accumulation of hydrocarbon that describes significant and conceivable drilling target is related to prospect. Possibility of success estimation, assuming discovery of hydrocarbons and the potential recoverable quantities range under a commercial development program are the basis of Prospect evaluation activities. The objective was to find the new shallow prospects in reservoir sandstone of I -Formation in Malay basin. The prospects in the study area are mostly consisting of faulted structures and stratigraphic channels. The methodology follows seismic interpretation and mapping, attribute analysis, evaluation of nearby well data i.e., based on well - log correlation. The petrophysical parameters analogue to nearby wells was used as an input parameter for volumetric assessment. Based on analysis of presence and effectiveness, the prospect has a complete petroleum system. Two wells have been proposed to be drilled near the major fault and stratigraphic channel in I-35 reservoir that is O-1 and O-2 prospects respectively. The probability of geological success of prospect O-1 is at 35% while for O-2 is 24%. Finally, for hydrocarbon in place volumes were calculated which concluded the best estimate volume for oil in O-1 prospect is 4.99 MMSTB and O-2 prospect is 28.70 MMSTB while for gas is 29.27 BSCF and 25.59 BSCF respectively.

  6. Characterizing fractured reservoir by multicomponent reflection data and VSPs in the Paris basin

    SciTech Connect

    Li, Xiang-Yang; MacBeth, C.; Lefeuvre, F.

    1995-12-31

    We process and interpret nine-component (9C, three component recordings of two horizontal and one vertical sources) surface seismic data and two nearby VSPs to characterize the fractured carbonate reservoir in the Dogger Formation in the Paris Basin. This is achieved by analysing differential changes in the various attributes of the vector wavefield: velocity ratios, polarizations, amplitudes and differential travel times. Careful processing is required to preserve and recover these attributes which have diagnostic anomalies associated with the Dogger formation. The interval shear-anisotropy within the Dogger shows an average of 4% with significant lateral variations, which might be interpreted as lateral changes in porosity and permeability. The differential shear-wave amplitude from the top of the Dogger shows an overall dimming. The shear-wave polarization section reveals detailed internal layering, up to six intervals, within the Dogger, which is not visible in the P-wave section. The information inferred from these wavefield attributes can be broadly correlated with the reservoir properties at the inter-well scale in Duval but with more detailed lateral variations.

  7. ANALYSIS OF FAULT SEAL POTENTIAL FOR KNOX RESERVOIRS IN THE SOUTHERN ILLINOIS BASIN

    SciTech Connect

    Hickman, John; Leetaru, Hannes

    2014-09-30

    The presence of known faults near potential geologic CO2 sequestration sites significantly raises the uncertainty of having a sufficient seal to prevent leakage along the fault plane from the intended reservoir. In regions where relocating a large sequestration project a considerable distance away from any known faults is impractical, a detailed analysis of the sealing potential of any faults within the projected future injection plume must be performed. In order to estimate the sealing potential of faults within the Late Cambrian-Early Ordovician Knox Supergroup in the Illinois Basin, two well-based cross sections were produced across two different regional fault systems (Rough Creek Fault Zone in Kentucky, and the unnamed core fault of the LaSalle Anticlinorium in Illinois) to calculate subsurface stratigraphic juxtapositions across each fault zone. Using this stratigraphic and lithologic data, three different algorithms were used to calculate the sealing potential of a theoretical Knox reservoir at each section location. These results indicate a high probability for sealing within the Rough Creek Fault Zone, but a much lower probability for a continuous seal within the LaSalle Anticlinorium.

  8. SWOT Data Assimilation for Operational Reservoir Management on the Upper Niger River Basin

    NASA Astrophysics Data System (ADS)

    Munier, S.; Polebistki, A.; Brown, C.; Belaud, G.; Lettenmaier, D. P.

    2014-12-01

    The future Surface Water and Ocean Topography (SWOT) satellite mission will provide two-dimensional maps of water elevation for rivers with width greater than 100 m globally. We describe a modeling framework and an automatic control algorithm that prescribe optimal releases from the Selingue dam in the Upper Niger River Basin, with the objective of understanding how SWOT data might be used to the benefit of operational water management. The modeling framework was used in a twin experiment to simulate the "true" system state and an ensemble of model states derived using corrupted meteorological forcings. Virtual SWOT observations of reservoir and river levels were assimilated into the model with a repeat cycle of 21 days. The updated state was used to initialize a Model Predictive Control (MPC) algorithm that computed the optimal reservoir release that meets a minimum flow requirement 300 km downstream of the dam at the entrance of the environmentally sensitive Niger Inner Delta. The data assimilation results indicate that the model updates had a positive effect on estimates of both water level and discharge. The "persistence", which describes the duration of the assimilation effect, was clearly improved by integrating a smoother into the assimilation procedure. We compared performances of the MPC with SWOT data assimilation to an open-loop MPC simulation. Results show that the assimilation of SWOT data resulted in substantial improvements in the performances of the Selingue Dam management with a greater ability to meet environmental requirements and a lower volume of water released from the dam.

  9. SWOT data assimilation for operational reservoir management on the upper Niger River Basin

    NASA Astrophysics Data System (ADS)

    Munier, S.; Polebistki, A.; Brown, C.; Belaud, G.; Lettenmaier, D. P.

    2015-01-01

    The future Surface Water and Ocean Topography (SWOT) satellite mission will provide two-dimensional maps of water elevation for rivers with width greater than 100 m globally. We describe a modeling framework and an automatic control algorithm that prescribe optimal releases from the Selingue dam in the Upper Niger River Basin, with the objective of understanding how SWOT data might be used to the benefit of operational water management. The modeling framework was used in a twin experiment to simulate the "true" system state and an ensemble of corrupted model states. Virtual SWOT observations of reservoir and river levels were assimilated into the model with a repeat cycle of 21 days. The updated state was used to initialize a Model Predictive Control (MPC) algorithm that computed the optimal reservoir release that meets a minimum flow requirement 300 km downstream of the dam. The data assimilation results indicate that the model updates had a positive effect on estimates of both water level and discharge. The "persistence," which describes the duration of the assimilation effect, was clearly improved (greater than 21 days) by integrating a smoother into the assimilation procedure. We compared performances of the MPC with SWOT data assimilation to an open-loop MPC simulation. Results show that the data assimilation resulted in substantial improvements in the performances of the Selingue dam management with a greater ability to meet environmental requirements (the number of days the target is missed falls to zero) and a minimum volume of water released from the dam.

  10. Quantifying quagga mussel veliger abundance and distribution in Copper Basin Reservoir (California) using acoustic backscatter.

    PubMed

    Anderson, Michael A; Taylor, William D

    2011-11-01

    Quagga mussels (Dreissena bugensis) have been linked to oligotrophication of lakes, alteration of aquatic food webs, and fouling of infrastructure associated with water supply and power generation, causing potentially billions of dollars in direct and indirect damages. Understanding their abundance and distribution is key in slowing their advance, assessing their potential impacts, and evaluating effectiveness of control strategies. Volume backscatter strength (Sv) measurements at 201- and 430-kHz were compared with quagga mussel veliger and zooplankton abundances determined from samples collected using a Wisconsin closing net from the Copper Basin Reservoir on the Colorado River Aqueduct. The plankton within the lower portion of the water column (>18 m depth) was strongly dominated by D-shaped quagga mussel veligers, comprising up to 95-99% of the community, and allowed direct empirical measurement of their mean backscattering cross-section. The upper 0-18 m of the water column contained a smaller relative proportion of veligers based upon net sampling. The difference in mean volume backscatter strength at these two frequencies was found to decrease with decreasing zooplankton abundance (r(2) = 0.94), allowing for correction of Sv due to the contribution of zooplankton and the determination of veliger abundance in the reservoir. Hydroacoustic measurements revealed veligers were often present at high abundances (up to 100-200 ind L(-1)) in a thin 1-2 m layer at the thermocline, with considerable patchiness in their distribution observed along a 700 m transect on the reservoir. Under suitable conditions, hydroacoustic measurements can rapidly provide detailed information on the abundance and distribution of quagga mussel veligers over large areas with high horizontal and vertical resolution. PMID:21906773

  11. Building the 3-D jugsaw puzzle: Applications of sequence stratigraphy to 3-D reservoir characterization, Permian basin

    SciTech Connect

    Tinker, S.W.

    1996-04-01

    Reservoir characterization involves the quantification, integration, reduction, and analysis of geological, petrophysical, seismic, and engineering data. This is no small task. A principal goal of reservoir characterization is to derive a spatial understanding of interwell heterogeneity. Traditionally, geologic attempts to characterize interwell heterogeneity have been done using hand-drawn or computer-generated two-dimensional (2-D) maps and cross sections. Results can be improved dramatically using three-dimensional (3-D) interpretation and analysis techniques. Three-dimensional reservoir characterization requires the same input data used in 2-D approaches, and the cost is equal to, and commonly lower than, traditional 2-D methods. The product of 3-D reservoir characterization is a 3-D reservoir model. The language used to communicate the results of a 3-D reservoir model is visualization; i.e., visual images of numerical data. All of the available log and core data in a model area are incorporated in a 3-D model, but the data are depicted as colored cells rather than as log traces. The integrity of the 3-D reservoir model is largely a function of the stratigraphic framework. Interpreting the correct stratigraphic framework for a subsurface reservoir is the most difficult and creative part of the 3-D modeling process. Sequence and seismic stratigraphic interpretation provide the best stratigraphic framework for 3-D reservoir modeling. The purpose of this paper is to discuss the pro- cess of 3-D deterministic reservoir modeling and to illustrate the advantages of using a sequence stratigraphic framework in 3-D modeling. Mixed carbonate and siliciclastic sediment outcrop and subsurface examples from the Permian basin of west Texas and New Mexico will be used as examples, but the concepts and techniques can be applied to reservoirs of any age.

  12. Deposition of selenium and other constituents in reservoir bottom sediment of the Solomon River Basin, north-central Kansas

    USGS Publications Warehouse

    Christensen, Victoria G.

    1999-01-01

    The Solomon River drains approximately 6,840 square miles of mainly agricultural land in north-central Kansas. The Bureau of Reclamation, U.S. Department of the Interior, has begun a Resource Management Assessment (RMA) of the Solomon River Basin to provide the necessary data for National Environmental Policy Act (NEPA) compliance before renewal of long-term water-service contracts with irrigation districts in the basin. In May 1998, the U.S. Geological Survey (USGS) collected bottom-sediment cores from Kirwin and Webster Reservoirs, which are not affected by Bureau irrigation, and Waconda Lake, which receives water from both Bureau and non-Bureau irrigated lands. The cores were analyzed for selected physical properties, total recoverable metals, nutrients, cesium-137, and total organic carbon. Spearman's rho correlations and Kendall's tau trend tests were done for sediment concentrations in cores from each reservoir. Selenium, arsenic, and strontium were the only constituents that showed an increasing trend in concentrations for core samples from more than one reservoir. Concentrations and trends for these three constituents were compared to information on historical irrigation to determine any causal effect. Increases in selenium, arsenic, and strontium concentrations can not be completely explained by Bureau irrigation. However, mean selenium, arsenic, and strontium concentrations in sediment from all three reservoirs may be related to total irrigated acres (Bureau and non-Bureau irrigation) in the basin. Selenium, arsenic, and strontium loads were calculated for Webster Reservoir to determine if annual loads deposited in the reservoir were increasing along with constituent concentrations. Background selenium, arsenic, and strontium loads in Webster Reservoir are significantly larger than post-background loads.

  13. OIL RESERVOIR CHARACTERIZATION AND CO2 INJECTION MONITORING IN THE PERMIAN BASIN WITH CROSSWELL ELECTROMAGNETIC IMAGING

    SciTech Connect

    Michael Wilt

    2004-02-01

    Substantial petroleum reserves exist in US oil fields that cannot be produced economically, at current prices, unless improvements in technology are forthcoming. Recovery of these reserves is vital to US economic and security interests as it lessens our dependence on foreign sources and keeps our domestic petroleum industry vital. Several new technologies have emerged that may improve the situation. The first is a series of new flooding techniques to re-pressurize reservoirs and improve the recovery. Of these the most promising is miscible CO{sub 2} flooding, which has been used in several US petroleum basins. The second is the emergence of new monitoring technologies to track and help manage this injection. One of the major players in here is crosswell electromagnetics, which has a proven sensitivity to reservoir fluids. In this project, we are applying the crosswell EM technology to a CO{sub 2} flood in the Permian Basin oil fields of New Mexico. With our partner ChevronTexaco, we are testing the suitability of using EM for tracking the flow of injected CO{sub 2} through the San Andreas reservoir in the Vacuum field in New Mexico. The project consisted of three phases, the first of which was a preliminary field test at Vacuum, where a prototype system was tested in oil field conditions including widely spaced wells with steel casing. The results, although useful, demonstrated that the older technology was not suitable for practical deployment. In the second phase of the project, we developed a much more powerful and robust field system capable of collecting and interpreting field data through steel-cased wells. The final phase of the project involved applying this system in field tests in the US and overseas. Results for tests in steam and water floods showed remarkable capability to image between steel wells and provided images that helped understand the geology and ongoing flood and helped better manage the field. The future of this technology is indeed bright

  14. Thrace basin: An extensional Tertiary sedimentary basin in an area of major plate convergences, northwest Turkey

    SciTech Connect

    Turgut, S.; Atalik, E.

    1988-08-01

    The Thrace basin forms one of the largest Tertiary basins in Turkey. Paleontological and sedimentological evidence suggests sedimentation and basin formation commenced by a major transgression from the southwest in the middle to late middle Eocene. The basin formed over an extremely deformed crustal block. It straddles an Upper Cretaceous suture zone which later became a major mobile belt in Turkey. Syndepositional fault patterns and sedimentary thickness indicate the basin was evolved tectonically by north-south extension. Large listric normal faults and east-west depositional axis are evidence of this extension. Early marine sedimentation in the basin was accompanied by an intense volcanism which poured large quantities of ash into the depositional environment. Normal basement faults were active and great thicknesses of clastic sediments accumulated along faults. Reefal to shallow marine carbonates were deposited on shelves and over intrabasinal paleohighs. Sedimentation became regressive in the early Oligocene. Alternation of marine and nonmarine clastic deposition continued without interruption until the end of the Oligocene. By the late Oligocene to early Miocene, the whole basin was subjected to intense tectonism that caused uplift and faulting. Seismic reflection profiles reveal a very complex tectonic style in the basin. Fault-related inversion and flowage structures involving shale diapirism are quite common. Eocene and Oligocene shales are mature enough to generate economical quantities of hydrocarbons. Their source quality is fair to poor. Sand bodies in the Eocene-Oligocene series and reefal carbonates form the reservoir facies, and they are targets for exploration.

  15. Effects of the proposed Prosperity Reservoir on ground water and water quality in lower Center Creek basin, Missouri

    USGS Publications Warehouse

    Berkas, Wayne R.; Barks, James H.

    1980-01-01

    Effects of the proposed Prosperity Reservoir on groundwater and water quality in lower Center Creek basin, Mo., depend partly on the effectiveness of Grove Creek as a hydrologic boundary between the reservoir site and the Oronogo-Duenweg mining belt. Results of two dye traces indicate that Grove Creek probably is not an effective boundary. Therefore, higher water levels near the reservoir could cause more groundwater to move into the mining belt and cause a greater discharge of zinc-laden mine water into Center Creek. Fertilizer industry wastes discharged into Grove Creek resulted in significant increases of nitrogen and phosphorus in lower Center Creek. Results of seepage runs confirm that mine-water discharge and seepage account for the increased zinc concentrations in Center Creek during base flow. The nutrient and zinc concentrations in Center Creek, after the completion of the proposed reservoir, would depend upon the release schedule. (USGS)

  16. Reservoir impact assessment in sub-Saharan Africa: The Volta Basin Water Allocation System (VB-WAS)

    NASA Astrophysics Data System (ADS)

    Leemhuis, C.; Jung, G.; Kasei, R.; Liebe, J.

    2009-04-01

    In the Volta River Basin, infrastructure watershed development with respect to the impact of climate conditions is hotly debated due to the lack of adequate tools to model the consequences of such development. The Volta basin drains an area of approx. 400 000 km² of the subhumid to semiarid West-African savannah zone and is shared by six riparian countries. The region is characterized by erratic rainfall patterns, and domestic and agricultural water users in the upper regions of the Basin complete with hydropower generation in the south for increasingly scarce water resources. There is an ongoing debate on the impact of further development of small, medium and large reservoirs on the water level of Lake Volta. The GLOWA Volta Project (GVP) has developed a Volta Basin Water Allocation System (VB-WAS), a decision support tool that allows assessing the impact of infrastructure development in the basin on the availability of current and future water resources, given the current or future climate conditions. The simulated historic and future discharge time series of the coupled climate-hydrological model (MM5/WaSiM) serve as input data for a river basin management model (MIKE BASIN). MIKE BASIN uses a network approach, and allows fast simulations of water allocation and of the consequences of different development scenarios on the available water resources. Furthermore it is possible to up set up climate scenario time series scenarios for an assessment of the consequences of extreme climate conditions. Within a case study analysis the impact of small and medium scale reservoir development on the water resources of the Volta basin has been evaluated under different climatic conditions. For the evaluation of the impact of large reservoir development in particular the impact of Bui dam, which is under construction on the Black Volta River in Ghana, on the water level of Lake Volta has been simulated with the VB-WAS model. The VB-WAS model allows a quantified impact

  17. Geology of the Roswell artesian basin, New Mexico, and its relation to the Hondo Reservoir and Effect on artesian aquifer storage of flood water in Hondo Reservoir

    USGS Publications Warehouse

    Bean, Robert T.; Theis, Charles V.

    1949-01-01

    In the Roswell Basin in southeastern New Mexico artesian water is produced from cavernous zones in the carbonate rocks of the San Andres formation and the lower part of the Chalk Bluff formation, both of Permian age. The Hondo Reservoir, 9 miles west-southwest of Roswell, was completed by the U. S. Bureau of Reclamation in 1907, to store waters of the Rio Hondo for irrigation. The project was not successful, as the impounded water escaped rapidly through holes in the gypsum and limestone of the San Andres formation constituting its floor. Of 27,000 acre~feet that entered the reservoir between 1908 and 1913, only 1,100 acre-feet was drawn Ollt for use, the remainder escaping through the floor of the reservoir. Since 1939, plans have been drawn up by the State Engineer and by Federal agencies to utilize the reservoir to protect Roswell from floods. It has also been suggested that water from the Pecos River might be diverted into underground storage through the reservoir. Sinkholes in the Roswell Basin are largely clustered in areas where gypsum occurs in the bedrock. Collapse of strata is due to solution of underlying rock commonly containing gypsum. Domes occur in gypsiferous strata near Salt Creek. The Bottomless Lakes, sinkhole lakes in the escarpment on the east side of the Pecos, are believed to have developed in north-south hinge-line fractures opened when the westernmost beds in the escarpment collapsed. Collapse was due to solution and removal of gypsiferous rock by artesian water which now fills the lakes.

  18. Frontier sedimentary basins of New Zealand region

    SciTech Connect

    Beggs, J.M. )

    1991-03-01

    Petroleum-prospective basins of New Zealand began to form by mid-Cretaceous rifting of crustal elements previously assembled at the Gondwana continental margin. During the latest Cretaceous-early Cenozoic New Zealand separated from Australia and Antarctica by sea-floor spreading. An overall transgression in widely recorded in this post-rift phase, with decreasing clastic sediment supply as land area and relief were reduced. Mid-Cenozoic initiation of the modern plate boundary has resulted in uplift of mountain ranges, subsidence and filling of troughs, progradation of the shelf, and common reactivation or eversion of older structures. Petroleum potential of less explored basins can be compared to the productive Taranki basin. Source rocks are coal-rich deposits of the rift phase, also developed in Great South, Canterbury/Chatham, Western Southland, West Coast, and Northland basins. A different source contributes to oil and gas seeps on the East Coast, a continental margin during Late Cretaceous. The main reservoirs of Taranaki are early Cenozoic coastal and fluvial sands, also present in Great South, Canterbury, and West Coast and possibly other basins. Other Taranaki reservoirs include mid-Cenozoic limestone and Miocene turbidites, which are widespread in most other basins. Pliocene limestones have excellent reservoir potential on the East Coast. Late Cenozoic tectonics, essential to trap development and significant for maturation in Taranaki, have created similar structures in basins near the plate boundary but are less significant in the development of Great South, eastern Canterbury/Chatham, and Northland basins.

  19. Reservoir characterization of the Upper Jurassic geothermal target formations (Molasse Basin, Germany): role of thermofacies as exploration tool

    NASA Astrophysics Data System (ADS)

    Homuth, S.; Götz, A. E.; Sass, I.

    2015-06-01

    The Upper Jurassic carbonates of the southern German Molasse Basin are the target of numerous geothermal combined heat and power production projects since the year 2000. A production-orientated reservoir characterization is therefore of high economic interest. Outcrop analogue studies enable reservoir property prediction by determination and correlation of lithofacies-related thermo- and petrophysical parameters. A thermofacies classification of the carbonate formations serves to identify heterogeneities and production zones. The hydraulic conductivity is mainly controlled by tectonic structures and karstification, whilst the type and grade of karstification is facies related. The rock permeability has only a minor effect on the reservoir's sustainability. Physical parameters determined on oven-dried samples have to be corrected, applying reservoir transfer models to water-saturated reservoir conditions. To validate these calculated parameters, a Thermo-Triaxial-Cell simulating the temperature and pressure conditions of the reservoir is used and calorimetric and thermal conductivity measurements under elevated temperature conditions are performed. Additionally, core and cutting material from a 1600 m deep research drilling and a 4850 m (total vertical depth, measured depth: 6020 m) deep well is used to validate the reservoir property predictions. Under reservoir conditions a decrease in permeability of 2-3 magnitudes is observed due to the thermal expansion of the rock matrix. For tight carbonates the matrix permeability is temperature-controlled; the thermophysical matrix parameters are density-controlled. Density increases typically with depth and especially with higher dolomite content. Therefore, thermal conductivity increases; however the dominant factor temperature also decreases the thermal conductivity. Specific heat capacity typically increases with increasing depth and temperature. The lithofacies-related characterization and prediction of reservoir

  20. High resolution sequence stratigraphy of Miocene deep-water clastic outcrops, Taranaki coast, New Zealand

    SciTech Connect

    King, P.R.; Browne, G.H.; Slatt, R.M.

    1995-08-01

    Approximately 700m of deep water clastic deposits of Mt. Messenger Formation are superbly exposed along the Taranaki coast of North Island, New Zealand. Biostratigraphy indicates the interval was deposited during the time span 10.5-9.2m.y. in water depths grading upward from lower bathyal to middle-upper bathyal. This interval is considered part of a 3rd order depositional sequence deposited under conditions of fluctuating relative sea-level, concomitant with high sedimentation rates. Several 4th order depositional sequences, reflecting successive sea-level falls, are recognized within the interval. Sequence boundaries display a range of erosive morphologies from metre-wide canyons to scours several hundred metres across. All components of a generic lowstand systems tract--basin floor fan, channel-levee complex and progading complex--are present in logical and temporal order. They are repetitive through the interval, with the relatively shallower-water components becoming more prevalent upward. Basin floor fan lithologies are mainly m-thick, massive and convolute-bedded sandstones that alternate with cm- and dm-thick massive, horizontally-stratified and ripple-laminated sandstones and bioturbated mudstones. Channel-levee deposits consist of interleaving packages of thin-bedded, climbing-rippled and parallel-laminated sandstones and millstones; infrequent channels are filled with sandstones and mudstones, and sometimes lined with conglomerate. Thin beds of parallel to convoluted mudstone comprise prograding complex deposits. Similar lowstand systems tracts can be recognized and correlated on subsurface seismic reflection profiles and wireline logs. Such correlation has been aided by a continuous outcrop gamma-ray fog obtained over most of the measured interval. In the adjacent Taranaki peninsula, basin floor fan and channel-levee deposits comprise hydrocarbon reservoir intervals. Outcrop and subsurface reservior sandstones exhibit similar permeabilities.

  1. High resolution reservoir architecture of late Jurassic Haynesville ramp carbonates in the Gladewater field, East Texas Salt Basin

    SciTech Connect

    Goldhammer, R.K.

    1996-12-31

    The East Texas Salt Basin contains numerous gas fields within Upper Jurassic Haynesville ramp-complex reservoirs. A sequenced-keyed, high-resolution zonation scheme was developed for the Haynesville Formation in Gladewater field by integrating core description, well-log, seismic, porosity and permeability data. The Haynesville at Gladewater represents a high-energy ramp system, localized on paleotopographic highs induced by diapirism of Callovian Age Salt (Louann). Ramp crest grainstones serve as reservoirs. We have mapped the distribution of reservoir facies within a hierarchy of upward-shallowing parasequences grouped into low-frequency sequences. The vertical stacking patterns of parasequences and sequences reflect the interplay of eustasy, sediment accumulation patterns, and local subsidence (including salt movement and compaction). In this study we draw on regional relations from analogous, Jurassic systems in Mexico to constrain the stratigraphic architecture, age model, and facies model. Additionally, salt-cored Holocene, grain-rich shoals from the Persian Gulf provide excellent facies analogs. The result is a new high-resolution analysis of reservoir architecture at a parasequence scale that links reservoir facies to depositional facies. The new stratigraphy scheme demonstrates that different geographic portions of the field have markedly distinct reservoir intervals, both in terms of total pay and the sequence-stratigraphic interval within which it occurs. Results from this study are used to evaluate infill drill well potential, in well planning, for updating reservoir models, and in refining field reserve estimates.

  2. High resolution reservoir architecture of late Jurassic Haynesville ramp carbonates in the Gladewater field, East Texas Salt Basin

    SciTech Connect

    Goldhammer, R.K. )

    1996-01-01

    The East Texas Salt Basin contains numerous gas fields within Upper Jurassic Haynesville ramp-complex reservoirs. A sequenced-keyed, high-resolution zonation scheme was developed for the Haynesville Formation in Gladewater field by integrating core description, well-log, seismic, porosity and permeability data. The Haynesville at Gladewater represents a high-energy ramp system, localized on paleotopographic highs induced by diapirism of Callovian Age Salt (Louann). Ramp crest grainstones serve as reservoirs. We have mapped the distribution of reservoir facies within a hierarchy of upward-shallowing parasequences grouped into low-frequency sequences. The vertical stacking patterns of parasequences and sequences reflect the interplay of eustasy, sediment accumulation patterns, and local subsidence (including salt movement and compaction). In this study we draw on regional relations from analogous, Jurassic systems in Mexico to constrain the stratigraphic architecture, age model, and facies model. Additionally, salt-cored Holocene, grain-rich shoals from the Persian Gulf provide excellent facies analogs. The result is a new high-resolution analysis of reservoir architecture at a parasequence scale that links reservoir facies to depositional facies. The new stratigraphy scheme demonstrates that different geographic portions of the field have markedly distinct reservoir intervals, both in terms of total pay and the sequence-stratigraphic interval within which it occurs. Results from this study are used to evaluate infill drill well potential, in well planning, for updating reservoir models, and in refining field reserve estimates.

  3. Modelling of wind waves on the lake-like basin of Gorky Reservoir with WAVEWATCH III

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Kuznetsova, Alexandra; Zenkovich, Dmitry; Papko, Vladislav; Kandaurov, Alexander; Baidakov, Georgy; Vdovin, Maxim; Sergeev, Daniil

    2014-05-01

    Simulation of ocean waves and sea waves is nowadays a generally adopted technique of operational meteorology. Such well-known models as WAVEWATCH, WAM, SWAM are aimed primarily at describing ocean waves including coastal (nearshore) zones. Meanwhile, wave modelling is less developed for moderate and small inland water reservoirs and lakes, though being of considerable interest for inland navigation. In this paper test numerical experiments on simulating waves on the lake-like basin of the Gorky Reservoir using WAVEWATCH III are reported. We aimed to evaluate the applicability of the model to the waves on a mid-sized inland reservoir. Gorky Reservoir is an artificial lake in the central part of the Volga River formed by a hydroelectric dam of Gorky Hydroelectric Station between the towns of Gorodets and Zavolzhye. It spans for 427 km from the dam of Rybinsk to the dam of Gorodets through several regions of Central Russia. While it is relatively narrow and follows the natural riverbed of Volga in the upper part, it becomes up to 15 km wide downstream the town of Yuryevets. Its maximum depth is 22 m, the surface area is 1590 km2, the accumulated water volume amounts to 8.71 km3. In the series of calculations we considered moderate winds of different directions blowing steadily all over the surface of the reservoir and the waves developing from calm conditions or from some initial seeding spectral distribution that is Gaussian in frequency and space, cosine in direction. The results of wave simulation are compared then with the data collected by the field in-situ observations and measurements. The field experiments were carried out in the south part of the Gorky reservoir from the boat. In the course of the experiment we simultaneously measured profiles of wind speed and surface wave spectra using instruments placed on the Froude buoy, which measures the following parameters: i) the module and the direction of the wind speed using ultrasonic wind sensor WindSonic Gill

  4. Genesis Analysis of High-Gamma Ray Sandstone Reservoir and Its Log Evaluation Techniques: A Case Study from the Junggar Basin, Northwest China

    PubMed Central

    Wang, Liang; Mao, Zhiqiang; Sun, Zhongchun; Luo, Xingping; Song, Yong; Liu, Zhen

    2013-01-01

    In the Junggar basin, northwest China, many high gamma-ray (GR) sandstone reservoirs are found and routinely interpreted as mudstone non-reservoirs, with negative implications for the exploration and exploitation of oil and gas. Then, the high GR sandstone reservoirs' recognition principles, genesis, and log evaluation techniques are systematically studied. Studies show that the sandstone reservoirs with apparent shale content greater than 50% and GR value higher than 110API can be regarded as high GR sandstone reservoir. The high GR sandstone reservoir is mainly and directly caused by abnormally high uranium enrichment, but not the tuff, feldspar or clay mineral. Affected by formation's high water sensitivity and poor borehole quality, the conventional logs can not recognize reservoir and evaluate the physical property of reservoirs. Then, the nuclear magnetic resonance (NMR) logs is proposed and proved to be useful in reservoir recognition and physical property evaluation. PMID:24078797

  5. Genesis analysis of high-gamma ray sandstone reservoir and its log evaluation techniques: a case study from the Junggar basin, northwest China.

    PubMed

    Wang, Liang; Mao, Zhiqiang; Sun, Zhongchun; Luo, Xingping; Song, Yong; Liu, Zhen

    2013-01-01

    In the Junggar basin, northwest China, many high gamma-ray (GR) sandstone reservoirs are found and routinely interpreted as mudstone non-reservoirs, with negative implications for the exploration and exploitation of oil and gas. Then, the high GR sandstone reservoirs' recognition principles, genesis, and log evaluation techniques are systematically studied. Studies show that the sandstone reservoirs with apparent shale content greater than 50% and GR value higher than 110API can be regarded as high GR sandstone reservoir. The high GR sandstone reservoir is mainly and directly caused by abnormally high uranium enrichment, but not the tuff, feldspar or clay mineral. Affected by formation's high water sensitivity and poor borehole quality, the conventional logs can not recognize reservoir and evaluate the physical property of reservoirs. Then, the nuclear magnetic resonance (NMR) logs is proposed and proved to be useful in reservoir recognition and physical property evaluation. PMID:24078797

  6. Dolomite diagenesis and porosity preservation in lithic reservoirs: Carmopolis member, Sergipe-Alagoas Basin, northeastern Brazil

    SciTech Connect

    Souza, R.S. de; De Ros, L.F.; Morad, S.

    1995-05-01

    The lithic sandstones and conglomerates of the Carmopolis Member of the Muribeca Formation (Aptian) were deposited by fan deltas, alluvial fans, and braid deltas that prograded from low-grade metamorphic terrains into the Sergipe-Alagoas rift basin during the opening of the South Atlantic. Initial carbonates in the Carmopolis reservoirs (presently at depths of 180-2200 m) were marine (high-Mg calcite/aragonite) grain rims, allochems, stromatolitic laminites, and meteoric calcite. These carbonates were subsequently replaced by dolomite/ankerite ({delta}18O{sub PDB} = -7.3 to -4.1{per_thousand}; {delta}{sup 13}C{sub PDB} = -15 to +16.2{delta}) derived from ascending thermobaric fluids prior to oil emplacement. These fluids also caused the direct precipitation of dolomite/ankerite cements and the replacement of dolomite/ankerite cements and the replacement of nonferroan dolomite by ferroan dolomite/ankerite. Rocks lacking early cements were strongly compacted, losing their primary intergranular porosity and permeability, whereas massively cemented rocks show only minor compaction and further diagenetic modifications. Partial cementation has greatly limited the compaction and preserved intergranular porosity, allowing the partial dissolution of carbonates and framework grains and the precipitation of replacive ferroan dolomite/ankerite and pyrite. Offshore reservoirs show late porosity reduction by the precipitation of quartz, kaolinite/dickite, saddle dolomite, and ferroan calcite. Experimental analyses of porosity and permeability reduction under pressure confirmed the importance of early cementation in the preservation of porosity in lithic rocks with ductile framework.

  7. Geoscience/engineering characterization of the interwell environment in carbonate reservoirs based on outcrop analogs, Permian Basin, West Texas and New Mexico - petrophysical characterization of the South Cowden Grayburg Reservoir, Ector County, Texas. Final report

    SciTech Connect

    Lucia, F.J.

    1997-06-01

    Reservoir performance of the South Cowden Grayburg field suggests that only 21 percent of the original oil in place has been recovered. The purpose of this study is to construct a realistic reservoir model to be used to predict the location of the remaining mobile oil. Construction of reservoir models for fluid-flow simulation of carbonate reservoirs is difficult because they typically have complicated and unpredictable permeability patterns. Much of the difficulty results from the degree to which diagenetic overprinting masks depositional textures and patterns. For example, the task of constructing a reservoir model of a limestone reservoir that has undergone only cementation and compaction is easier than constructing a model of a karsted reservoir that has undergone cavern formation and collapse as well as cementation and compaction. The Permian-age carbonate-ramp reservoirs in the Permian Basin, West Texas and New Mexico, are typically anhydritic dolomitized limestone. Because the dolomitization occurred soon after deposition, depositional fabrics and patterns are often retained, and a reservoir model can be constructed using depositional concepts. Recent studies of the San Andres outcrop in the Guadalupe Mountains and the Seminole San Andres reservoir in the Permian Basin illustrate how depositional fabrics and patterns can be used to construct a reservoir model when depositional features are retained.

  8. A quantitative study of the petroleum generation and migration development in the Tarim Basin, northwest of China

    SciTech Connect

    Jianchang Liu; Leonard, C.; Cao, Song; Tang, Jie

    1996-12-31

    The Tarim Basin is the largest undeveloped petroliferous basin in China. Sediments in the basin range from Precambrian to Tertiary in age and from marine carbonate to non-marine clastic in depositional environment. Investigations indicate that there are potential structural, stratigraphic and unconformity traps for oil and gas in the basin. Applying one and two dimensional basin modelling systems to the well data and cross section, a number of different geologic scenarios such as sedimentary compactions, diagenesis, unconformities, faults, thermal maturation, hydrocarbon generation, expulsion, migration and accumulation are modeled. The modelling results in the basin reveal: (1) there is a vast amount of source rock which is thermally mature or overmatured, (2) there are multiple peaks of hydrocarbon generation and a continuous expulsion process in the basin`s history, (3) the Carboniferous rocks which have undergone severe diagenesis are the major oil-producing rocks in both structural and lithological reservoirs in the Paleozoic strata; while the isolated clastic sediments are the major traps in the younger strata, (4) oil in the stratigraphic reservoirs comes mainly from the adjacent source rocks, and, (5) diagenesis and faulting are the major controlling factors for the hydrocarbon accumulations in the Paleozoic reservoirs.

  9. Small reservoir distribution, rate of construction, and uses in the upper and middle Chattahoochee basins of the Georgia Piedmont, USA, 1950-2010

    USGS Publications Warehouse

    Ignatius, Amber R.; Jones, John W.

    2014-01-01

    Construction of small reservoirs affects ecosystem processes in numerous ways including fragmenting stream habitat, altering hydrology, and modifying water chemistry. While the upper and middle Chattahoochee River basins within the Southeastern United States Piedmont contain few natural lakes, they have a high density of small reservoirs (more than 7500 small reservoirs in the nearly 12,000 km2 basin). Policymakers and water managers in the region have little information about small reservoir distribution, uses, or the cumulative inundation of land cover caused by small reservoir construction. Examination of aerial photography reveals the spatiotemporal patterns and extent of small reservoir construction from 1950 to 2010. Over that 60 year timeframe, the area inundated by water increased nearly six fold (from 19 reservoirs covering 0.16% of the study area in 1950 to 329 reservoirs covering 0.95% of the study area in 2010). While agricultural practices were associated with reservoir creation from 1950 to 1970, the highest rates of reservoir construction occurred during subsequent suburban development between 1980 and 1990. Land cover adjacent to individual reservoirs transitioned over time through agricultural abandonment, land reforestation, and conversion to development during suburban expansion. The prolific rate of ongoing small reservoir creation, particularly in newly urbanizing regions and developing counties, necessitates additional attention from watershed managers and continued scientific research into cumulative environmental impacts at the watershed scale.

  10. 3-D solid modeling of sandstone reservoirs using NURBS: A case study of Noonen Ranch Field, Denver Basin, Colorado

    SciTech Connect

    Fisher, T.R. ); Wales, R.Q. )

    1990-02-01

    In this paper, the authors describe an experimental attempt to represent sandstone petroleum reservoirs as 3-D solids using Intergraphs object-oriented NURBS (non-uniform rational B-splines) based engineering modeling system. Initial data interpretation, well log correlation, map preparation and combination were done using GIPSE geological interpretation software. The modeling efforts were concentrated on Noonen Ranch, a small producing field in the Denver Basin of Colorado.

  11. 3-D seismic improves structural mapping of a gas storage reservoir (Paris basin)

    SciTech Connect

    Huguet, F. ); Pinson, C. )

    1993-09-01

    In the Paris basin, anticlinal structures with closure of no more than 80 m and surface area of a few km[sup 2] are used for underground gas storage. At Soings-en-Sologne, a three-dimensional (3-D) survey (13 km[sup 2]) was carried out over such a structure to establish its exact geometry and to detail its fault network. Various reflectors were picked automatically on the migrated data: the top of the Kimmeridgian, the top of the Bathoinian and the base of the Hettangian close to the top of the reservoir. The isochron maps were converted into depth using data from 12 wells. Horizon attributes (amplitude, dip, and azimuth) were used to reconstruct the fault's pattern with much greater accuracy than that supplied by interpretation from previous two-dimensional seismic. The Triassic and the Jurassic are affected by two systems of conjugate faults (N10-N110, inherited from the Hercynian basement and N30-N120). Alternating clay and limestone are the cause of numerous structural disharmonies, particularly on both sides of the Bathonian. Ridges associated with N30-N120 faults suggest compressive movements contemporaneous with the tertiary events. The northern structure in Soings-en-Sologne thus appear to be the result of polyphased tectonics. Its closure (25 m), which is associated either with dips or faults, is described in detail by 3-D seismic, permitting more accurate forecast of the volume available for gas storage.

  12. Water quality in the proposed Prosperity Reservoir area, Center Creek Basin, Missouri

    USGS Publications Warehouse

    Barks, James H.; Berkas, Wayne R.

    1979-01-01

    Water in Center Creek basin, Mo., upstream from the proposed Prosperity Reservoir damsite is a calcium bicarbonate type that is moderately mineralized, hard, and slightly alkaline. Ammonia and organic nitrogen, phosphorus, total organic carbon, chemical oxygen demand, and bacteria increased considerably during storm runoff, probably due to livestock wastes. Nitrogen and phosphorus concentrations are probably high enough to cause the proposed lake to be eutrophic. Minor-element concentrations were at or near normal levels in Center and Jones Creeks. The only pesticides detected were 0.01 micrograms per liter of 2, 4, 5-T in one base-flow sample and 0.02 to 0.04 micrograms per liter of 2, 4, 5-T and 2, 4-D in all storm-runoff samples. Fecal coliform and fecal streptococcus densities ranged from 2 to 650 and 2 to 550 colonies per 100 milliliters, respectively, during base flow , but were 17,000 to 45,000 and 27,000 to 70,000 colonies per 100 milliliters, respectively, during storm runoff. Water in Center Creek about 2.5 miles downstream from the proposed damsite is similar in quality to that upstream from the damsite except for higher concentrations of sodium, sulfate, chloride, fluoride, nitrogen, and phosphorus. These higher concentrations are caused by fertilizer industry wastes that enter Center Creek about 1.0 mile downstream from the proposed damsite. (Woodard-USGS).

  13. The relationship between mineral content and acoustic velocity of sandstone reservoirs in Junggar basin

    NASA Astrophysics Data System (ADS)

    Li, Yan; Gu, Hanming

    2015-08-01

    Sandstone reservoirs have generally high porosity in the Shawan formation of the Chunguang oil field, Junggar basin, because they developed in geological conditions of shallow and weak compaction. High porosity always links lower acoustic velocities in sandstone. However, when it is more than a certain value (approximately 27.5%), the porosity is not in accordance with acoustic velocities. In addition, cast thin sections illustrated incoherence between pore types and porosity. Fluids and mineral content are the two main factors changing acoustic velocities. This means that acoustic velocities of the high-porosity sandstone are mainly affected by the mineral content and fluid properties. Hence, data from litho-electric analysis are used to measure velocities of the compression shear waves, and thin sections are used to identify the mineral content. By the application of cross-plot maps, relations of acoustic velocities and mineral contents are proposed. Mineral contents include mainly quartz, feldspar, and tuff. In normal rock physical models, the shale content is calculated from well logs. The mineral grain is often regarded as pure quartz grain or average mineral composition. However, the application of the normal rock physics model will be inaccurate for high-porosity sandstone. Experience regression functions of the velocity model are established to estimate acoustic velocities. Also, mineral content logs could be predicted by using the P-wave acoustic log, and the rock physics model would be enhanced by using these logs of dynamic mineral contents. Shear wave velocity could also be estimated more accurately.

  14. The Relationship Analysis between Water Injection and Microfacies of SHA1 Reservoir of Liao He Basin, China

    PubMed Central

    Wang, Qing; Lu, Zhanguo; Guo, Shiguang; Wang, Chao

    2014-01-01

    SHA1 is the representative reservoir in Liao He Basin. Through the introduction of curvature displayed on the gray scale, we determine the substructure and fractures. Geostatistical inversion method is used to help study the porosity of reservoir. The relationship between interval transit times and resistivity among mudstone and sandstone, before and after water injection, is analyzed. The relationship between porosity and permeability and the relationship between porosity and impedance from core analysis were studied. Through the whole information above, we divide the microfacies of SHA1 reservoir to distributary channel, mouth bar, the leading edge thin sand, and prodelta mud. The water injections in different microfacies are studied. The distributary channel should be used by large distant injection wells or smaller injection pressure injection. The smaller distant injection wells or large injection pressure should be used in the mouth bar. The arrangement of well injection need consider the different sedimentary microfacies. PMID:24672345

  15. The relationship analysis between water injection and microfacies of SHA1 reservoir of Liao He Basin, China.

    PubMed

    Wang, Qing; Lu, Zhanguo; Guo, Shiguang; Wang, Chao

    2014-01-01

    SHA1 is the representative reservoir in Liao He Basin. Through the introduction of curvature displayed on the gray scale, we determine the substructure and fractures. Geostatistical inversion method is used to help study the porosity of reservoir. The relationship between interval transit times and resistivity among mudstone and sandstone, before and after water injection, is analyzed. The relationship between porosity and permeability and the relationship between porosity and impedance from core analysis were studied. Through the whole information above, we divide the microfacies of SHA1 reservoir to distributary channel, mouth bar, the leading edge thin sand, and prodelta mud. The water injections in different microfacies are studied. The distributary channel should be used by large distant injection wells or smaller injection pressure injection. The smaller distant injection wells or large injection pressure should be used in the mouth bar. The arrangement of well injection need consider the different sedimentary microfacies. PMID:24672345

  16. Stratigraphy and reservoir potential of glacial deposits of the Itarare Group (Carboniferous-Permian), Parana basin, Brazil

    SciTech Connect

    Franca, A.B. ); Potter, P.E. )

    1991-01-01

    Drilling in the Parana basin of Brazil in the mid-1980s discovered gas and condensate in the Itarare Group, and showed that glacial deposits in Brazil can contain hydrocarbons. The reservoir potential of the Carboniferous-Permian Itarare Group of the basin is analyzed using new subsurface data from 20 deep wells drilled in the early to middle 1980s. Central to the analysis was the construction of over 3000 km of cross sections based on more than 100 wells, the description of more than 400 m of core, and study of 95 thin sections. Subsurface exploration and mapping of the Itarare are greatly aided by the recognition of three recently defined and described formations and four members, which are traceable for hundreds of kilometers. These units belong to three major glacial cycles in which the pebbly mudstones and shales are seals and glacially related sandstones are reservoirs. The best sandstone reservoirs in the deep subsurface belong to the Rio Segredo Member, the upper-most sandy unit of the Itarare. The Rio Segredo Member is the best petroleum target because it is overlain by thick seals and massive pebbly mudstones and shales, and because it is shallower and less compacted than underlying, more deeply buried sandstones. This member has little detrital matrix and much of its porosity is secondary, developed by carboxylic acid and CO{sub 2} generated when Jurassic-Cretaceous basalts, sills, and dikes were intruded into the Parana basin as Gondwana broke up.

  17. Petrophysical Analysis and Geographic Information System for San Juan Basin Tight Gas Reservoirs

    SciTech Connect

    Martha Cather; Robert Lee; Robert Balch; Tom Engler; Roger Ruan; Shaojie Ma

    2008-10-01

    The primary goal of this project is to increase the availability and ease of access to critical data on the Mesaverde and Dakota tight gas reservoirs of the San Juan Basin. Secondary goals include tuning well log interpretations through integration of core, water chemistry and production analysis data to help identify bypassed pay zones; increased knowledge of permeability ratios and how they affect well drainage and thus infill drilling plans; improved time-depth correlations through regional mapping of sonic logs; and improved understanding of the variability of formation waters within the basin through spatial analysis of water chemistry data. The project will collect, integrate, and analyze a variety of petrophysical and well data concerning the Mesaverde and Dakota reservoirs of the San Juan Basin, with particular emphasis on data available in the areas defined as tight gas areas for purpose of FERC. A relational, geo-referenced database (a geographic information system, or GIS) will be created to archive this data. The information will be analyzed using neural networks, kriging, and other statistical interpolation/extrapolation techniques to fine-tune regional well log interpretations, improve pay zone recognition from old logs or cased-hole logs, determine permeability ratios, and also to analyze water chemistries and compatibilities within the study area. This single-phase project will be accomplished through four major tasks: Data Collection, Data Integration, Data Analysis, and User Interface Design. Data will be extracted from existing databases as well as paper records, then cleaned and integrated into a single GIS database. Once the data warehouse is built, several methods of data analysis will be used both to improve pay zone recognition in single wells, and to extrapolate a variety of petrophysical properties on a regional basis. A user interface will provide tools to make the data and results of the study accessible and useful. The final deliverable

  18. Comparison of Tarim and central Asian FSU basins, II: Differences in hydrocarbon systems and possible explanations

    SciTech Connect

    Shangyou, N.; Heubeck, C.

    1996-12-31

    If the Tertiary crustal shortening and indentation in the Pamirs is restored palinspastically, it would be evident that the Central Asian basins in the FSU (including Amu Darya, Tajik, Fergana, and Syr Darya) in the west and the Tarim basin in the cast probably shared many similarities in their geological history after becoming part of the Eurasia continent in the Late Paleozoic. For example, both areas contain significant amounts of coal-bearing Jurassic sequences, and a marine connection no doubt existed between the two during the maximum marine transgression period of Late Cretaceous and Early Tertiary. A direct comparison is more difficult for the Paleozoic sequences because in the Central Asia basins, they are either buried too deeply or highly metamorphosed in the outcrops. It is interesting to note that these basins exhibit vast differences in the age and type of source and reservoir rocks. For the Tarim basin, most of the source rocks are Paleozoic (Ordovician and Carboniferous) and marine in nature, whereas in the Central Asian basins, the dominant source rocks are Jurassic and younger and include both marine and non-marine sequences. Similarly for the reservoir rocks, most of the hydrocarbons found in the Tarim basin is from the Paleozoic, (such as Devonian and Carboniferous clastics/carbonates), whereas in Amu Darya and Fergana basins, the reservoir rocks are dominated by Jurassic carbonates and Paleogene clastics respectively. This presentation will highlight these differences and address the probable causes mainly from the view points of tectonics and paleogeography. We conclude that the dominant effect is the Early Tertiary India-Asia collision, which caused significant differences in the distribution and thickness of the post-collisional clastic sediments, which in turn resulted in different maturation and migration history.

  19. Comparison of Tarim and central Asian FSU basins, II: Differences in hydrocarbon systems and possible explanations

    SciTech Connect

    Shangyou, N.; Heubeck, C. )

    1996-01-01

    If the Tertiary crustal shortening and indentation in the Pamirs is restored palinspastically, it would be evident that the Central Asian basins in the FSU (including Amu Darya, Tajik, Fergana, and Syr Darya) in the west and the Tarim basin in the cast probably shared many similarities in their geological history after becoming part of the Eurasia continent in the Late Paleozoic. For example, both areas contain significant amounts of coal-bearing Jurassic sequences, and a marine connection no doubt existed between the two during the maximum marine transgression period of Late Cretaceous and Early Tertiary. A direct comparison is more difficult for the Paleozoic sequences because in the Central Asia basins, they are either buried too deeply or highly metamorphosed in the outcrops. It is interesting to note that these basins exhibit vast differences in the age and type of source and reservoir rocks. For the Tarim basin, most of the source rocks are Paleozoic (Ordovician and Carboniferous) and marine in nature, whereas in the Central Asian basins, the dominant source rocks are Jurassic and younger and include both marine and non-marine sequences. Similarly for the reservoir rocks, most of the hydrocarbons found in the Tarim basin is from the Paleozoic, (such as Devonian and Carboniferous clastics/carbonates), whereas in Amu Darya and Fergana basins, the reservoir rocks are dominated by Jurassic carbonates and Paleogene clastics respectively. This presentation will highlight these differences and address the probable causes mainly from the view points of tectonics and paleogeography. We conclude that the dominant effect is the Early Tertiary India-Asia collision, which caused significant differences in the distribution and thickness of the post-collisional clastic sediments, which in turn resulted in different maturation and migration history.

  20. The Mesozoic rift basins of eastern North America: Potential reservoir or Explorationist's folly

    SciTech Connect

    Pyron, A.

    1991-08-01

    Mesozoic rift basins are found on the East Coast of North America from Georgia to Nova Scotia. The basins formed as a result of extensional activity associated with the breakup of Pangaea. The internal geometry of the basins includes a depositional sequence ranging from coarse fanglomerates to fine-grained siltstones and argillites. Since these Mesozoic rift basins were first studied, they have not been considered to be likely spots for hydrocarbon accumulations. Recently, geologists have reconsidered these Mesozoic basins and have developed a more synergistic approach that suggests that many of these rift basins might be suitable targets for exploration. By analogy, these Mesozoic basins are correlative to similar basins in northwestern Africa, where significant reserved of oil and natural gas have been developed. The similarity between the productive basins in northwestern Africa and the Mesozoic basins of North America and their proximity to major markets provides sufficient rationale to further investigate these basins.

  1. Petrology and reservoir paragenesis in the Sussex 'B' sandstone of the upper Cretaceous Cody Shale, House Creek and Porcupine Fields, Powder River Basin, Wyoming

    SciTech Connect

    Higley, D.K.

    1991-05-03

    Using petrologic and sedimentologic studies, the paper characterizes the influence of sedimentologic and petrologic variations on reservoir heterogeneity in the Sussex 'B' sandstone in the House Creek and Porcupine fields, Powder River Basin, Wyoming. Effects of authigenic minerals on reservoir properties are described in detail for selected inter-ridge and ridge facies sandstones.

  2. Nutrient Sources and Transport in the Missouri River Basin, with Emphasis on the Effects of Irrigation and Reservoirs.

    PubMed

    Brown, Juliane B; Sprague, Lori A; Dupree, Jean A

    2011-10-01

    SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some areas. Sediment mobilized from stream channels was a source of phosphorus in medium and larger streams. Irrigation on agricultural land was estimated to decrease the nitrogen load reaching the Mississippi River by as much as 17%, likely as a result of increased anoxia and denitrification in the soil zone. Approximately 16% of the nitrogen load and 33% of the phosphorus load that would have otherwise reached the Mississippi River was retained in reservoirs and lakes throughout the basin. Nearly half of the total attenuation occurred in the eight largest water bodies. Unlike the other major tributary basins, nearly the entire instream nutrient load leaving the outlet of the Platte and Kansas River subbasins reached the Mississippi River. Most of the larger reservoirs and lakes in the Platte River subbasin are upstream of the major sources, whereas in the Kansas River subbasin, most of the source inputs are in the southeast part of the subbasin where characteristics of the area and proximity to the Missouri River facilitate delivery of nutrients to the Mississippi River. PMID:22457581

  3. Nutrient Sources and Transport in the Missouri River Basin, with Emphasis on the Effects of Irrigation and Reservoirs1

    PubMed Central

    Brown, Juliane B; Sprague, Lori A; Dupree, Jean A

    2011-01-01

    Abstract SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some areas. Sediment mobilized from stream channels was a source of phosphorus in medium and larger streams. Irrigation on agricultural land was estimated to decrease the nitrogen load reaching the Mississippi River by as much as 17%, likely as a result of increased anoxia and denitrification in the soil zone. Approximately 16% of the nitrogen load and 33% of the phosphorus load that would have otherwise reached the Mississippi River was retained in reservoirs and lakes throughout the basin. Nearly half of the total attenuation occurred in the eight largest water bodies. Unlike the other major tributary basins, nearly the entire instream nutrient load leaving the outlet of the Platte and Kansas River subbasins reached the Mississippi River. Most of the larger reservoirs and lakes in the Platte River subbasin are upstream of the major sources, whereas in the Kansas River subbasin, most of the source inputs are in the southeast part of the subbasin where characteristics of the area and proximity to the Missouri River facilitate delivery of nutrients to the Mississippi River. PMID:22457581

  4. Modeling of basin-wide water management for dry-season paddy irrigation with large reservoirs in the Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Kudo, R.; Masumoto, T.; Horikawa, N.; Yoshida, T.

    2012-12-01

    Northeast Thailand, one of the regions in the Mekong River Basin, has less rainfall than adjacent countries and its rainfall is heavily concentrated in rainy seasons (almost 90% of annual rainfall). Therefore, this area is characterized as semi-arid region especially during dry seasons. In this region, rain-fed paddies account for about 90% and this leads to unstable rice production. Against these backgrounds, a number of large irrigation projects have been carried out since the 1970s to increase agricultural productivity. In these projects, a lot of irrigation facilities such as large/medium reservoirs, diversion weirs and irrigation canals were constructed for stable water supply in dry seasons. These projects enable farmers to pursue double rice cropping as rainy- and dry-season cropping in this region. Paddy field irrigation, however, exerts a great influence on water circulation of river basins in Monsoon Asia and modeling of these processes is crucial to understand the hydrological cycle especially in areas where irrigated agriculture is dominant. In this study, to quantify the hydrological cycle in irrigation-dominant basins, we applied a distributed hydrological model incorporating paddy irrigation schemes to the Mun River Basin, one of the tributaries of the Mekong River, in Northeast Thailand, and analyzed water circulation considering complex water use by agricultural activities. The model used in this study consists of four sub-models, such as referential evapotranspiration, cropping pattern/area, agricultural water use, and runoff model in order to estimate various information on agricultural water use. Additionally, water allocation and reservoir operation models were integrated into the hydrological model to account for the water circulation in large irrigation areas. For the analysis, the basin is divided into 10km-mesh and each mesh contains the ratio of 5 land-use category as forest, rain-fed paddy, irrigated paddy, upland field and water area

  5. A quantitative study of the petroleum generation and migration development in the Tarim Basin, northwest of China

    SciTech Connect

    Jianchang Liu; Leonard, C. ); Cao, Song; Tang, Jie )

    1996-01-01

    The Tarim Basin is the largest undeveloped petroliferous basin in China. Sediments in the basin range from Precambrian to Tertiary in age and from marine carbonate to non-marine clastic in depositional environment. Investigations indicate that there are potential structural, stratigraphic and unconformity traps for oil and gas in the basin. Applying one and two dimensional basin modelling systems to the well data and cross section, a number of different geologic scenarios such as sedimentary compactions, diagenesis, unconformities, faults, thermal maturation, hydrocarbon generation, expulsion, migration and accumulation are modeled. The modelling results in the basin reveal: (1) there is a vast amount of source rock which is thermally mature or overmatured, (2) there are multiple peaks of hydrocarbon generation and a continuous expulsion process in the basin's history, (3) the Carboniferous rocks which have undergone severe diagenesis are the major oil-producing rocks in both structural and lithological reservoirs in the Paleozoic strata; while the isolated clastic sediments are the major traps in the younger strata, (4) oil in the stratigraphic reservoirs comes mainly from the adjacent source rocks, and, (5) diagenesis and faulting are the major controlling factors for the hydrocarbon accumulations in the Paleozoic reservoirs.

  6. Styles of deposition and diagenesis in the Monahans Clear Fork reservoir: Implications for improved characterization of Leonard reservoirs on the Central basin platform

    SciTech Connect

    Ruppel, S.C. )

    1992-04-01

    The Leonard Series (Lower Permian) of west Texas contains a substantial hydrocarbon resource; the original oil in place in these predominantly carbonate rocks totaled about 14.5 billion bbl. Recovery of this resource has proven difficult, however. Current recovery efficiencies average about 20%, far below the 35% average for other Permian basin carbonate reservoirs. Detailed characterization of the Leonard in the Monahans field (Ward and Winkler counties, Texas) illustrates that poor reservoir performance in these reservoirs is the result of extreme lithologic heterogeniety resulting from cyclic rise and fall of relative sea level. Patterns of both depositional and diagenetic facies are a function of this cyclicity. Three orders of cyclicity are apparent in the Leonard: high-frequency, fifth-order cycles averaging 1-2 m in thickness, fourth-order cycles averaging 15-20 m in thickness, and third-order cycles averaging 200 m in thickness. Diagenetic patterns reflect control by fourth-order and third-order cyclicity. Both depositional and diagenetic trends are modified by local topography. Porosity and permeability also manifest cycle-related trends. Porosity and permeability exhibit opposite relationships to paleotopography. Porosity, which is encountered in tidal-flat and subtidal facies, is greatest on paleotopographic highs, whereas permeability, which is most commonly developed in subtidal facies, is most common on paleotopographic lows. Preliminary investigation of Leonard carbonate sequences elsewhere in the Permian basin reveals analogous styles and patterns of facies development. The concepts and models developed in the Monahans field should help improve characterization of these sequences as well.

  7. Play Analysis and Digital Portfolio of Major Oil Reservoirs in the Permian Basin: Application and Transfer of Advanced Geological and Engineering Technologies for Incremental Production Opportunities

    SciTech Connect

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; Caroline L. Breton; William D. Raatz; Stephen C. Ruppel; Charles Kerans

    2004-01-13

    A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest onshore petroleum-producing basin in the United States. Approximately 1,300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of oil through 2000. Of these significant-sized reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. There are 32 geologic plays that have been defined for Permian Basin oil reservoirs, and each of the 1,300 major reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. The final reservoir shapefile for each play contains the geographic location of each reservoir. Associated reservoir information within the linked data tables includes RRC reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are smaller than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. Oil production from the reservoirs in the Permian Basin having cumulative production of >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl [5.25 x 10{sup 8} m{sup 3}]), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San Andres Platform Carbonate play (2.15 Bbbl [3.42 x 10{sup 8} m{sup 3}]). Detailed studies of three reservoirs

  8. Detailed mapping of reservoir structural geometry in detached, shortened fold belts, Ortega (Aptian-Albian) field area, Girardot basin, Colombia

    SciTech Connect

    Allen, G.D. )

    1990-05-01

    Discovery and development of oil fields in shortened compressional fold belts require recognition that the largest reservoirs occur in intermediate or third-order scale folds. Third-order folds generally are preserved in the footwall of larger scale fold thrusts, and may be concealed beneath smaller, detached surface folds of nonreservoir condition. A successful reservoir mapping procedure involved (1) detailed surface mapping, (2) depth conversion of seismic data (3) construction of a network of true-scale balanced cross sections, and (4) contour mapping above and below the major zones of detachment. Structure at the 11 million bbl Ortega field consist of convergent third-order fold thrusts, with internal decollement. Tight flexural-slip folds imbricate and tectonically thicken upward on the west-verging Ortega anticline. The buried, east-vergent Salado anticline acts as a buttress to westward propagation at Ortega but retreats along strike to allow the Porvenir anticline to develop a low, broad, fault-bend fold geometry. At least four fault blocks in the Ortega field remain untested because balanced section analysis has not been employed to create additional control points for structure contour maps on the top of the reservoir. It is speculated that another 10-50 million bbl of primary recoverable reserves remain in the Ortega field. In addition, reservoirs like the Ortega field should occur elsewhere in the Girardot basin. These reservoirs likely will occur all along the footwall of fold-thrust structures on the flank of the intrabasin Pata high.

  9. Long-term trend analysis of reservoir water quality and quantity at the landscape scale in two major river basins of Texas, USA.

    USGS Publications Warehouse

    Patino, Reynaldo; Asquith, William H.; VanLandeghem, Matthew M.; Dawson, D.

    2016-01-01

    Trends in water quality and quantity were assessed for 11 major reservoirs of the Brazos and Colorado river basins in the southern Great Plains (maximum period of record, 1965–2010). Water quality, major contributing-stream inflow, storage, local precipitation, and basin-wide total water withdrawals were analyzed. Inflow and storage decreased and total phosphorus increased in most reservoirs. The overall, warmest-, or coldest-monthly temperatures increased in 7 reservoirs, decreased in 1 reservoir, and did not significantly change in 3 reservoirs. The most common monotonic trend in salinity-related variables (specific conductance, chloride, sulfate) was one of no change, and when significant change occurred, it was inconsistent among reservoirs. No significant change was detected in monthly sums of local precipitation. Annual water withdrawals increased in both basins, but the increase was significant (P < 0.05) only in the Colorado River and marginally significant (P < 0.1) in the Brazos River. Salinity-related variables dominated spatial variability in water quality data due to the presence of high- and low-salinity reservoirs in both basins. These observations present a landscape in the Brazos and Colorado river basins where, in the last ∼40 years, reservoir inflow and storage generally decreased, eutrophication generally increased, and water temperature generally increased in at least 1 of 3 temperature indicators evaluated. Because local precipitation remained generally stable, observed reductions in reservoir inflow and storage during the study period may be attributable to other proximate factors, including increased water withdrawals (at least in the Colorado River basin) or decreased runoff from contributing watersheds.

  10. Research on the Log Interpretation Method of Tuffaceous Sandstone Reservoirs of X Depression in Hailar-Tamtsag Basin

    NASA Astrophysics Data System (ADS)

    Liu, S.; Pan, B.

    2015-12-01

    The logging evaluation of tuffaceous sandstone reservoirs is always a difficult problem. Experiments show that the tuff and shale have different logging responses. Since the tuff content exerts an influence on the computation of shale content and the parameters of the reservoir, and the accuracy of saturation evaluation is reduced. Therefore, the effect of tuff on the calculation of saturation cannot be ignored. This study takes the tuffaceous sandstone reservoirs in the X depression of Hailar-Tamtsag basin as an example to analyze. And the electric conduction model of tuffaceous sandstone reservoirs is established. The method which combines bacterial foraging algorithm and particle swarm optimization algorithm is used to calculate the content of reservoir components in well logging for the first time, and the calculated content of tuff and shale corresponds to the results analysis of thin sections. The experiment on cation exchange capacity (CEC) proves that tuff has conductivity, and the conversion relationship between CEC and resistivity proposed by Toshinobu Iton has been improved. According to the rock electric experiment under simulated reservoir conditions, the rock-electro parameters (a, b, m and n) are determined. The improved relationship between CEC and resistivity and the rock-electro parameters are used in the calculation of saturation. Formula (1) shows the saturation equation of the tuffaceous reservoirs:According to the comparative analysis between irreducible water saturation and the calculated saturation, we find that the saturation equation used CEC data and rock-electro parameters has a better application effect at oil layer than Archie's formulas.

  11. Diagenesis and reservoir quality of the Lower Cretaceous Quantou Formation tight sandstones in the southern Songliao Basin, China

    NASA Astrophysics Data System (ADS)

    Xi, Kelai; Cao, Yingchang; Jahren, Jens; Zhu, Rukai; Bjørlykke, Knut; Haile, Beyene Girma; Zheng, Lijing; Hellevang, Helge

    2015-12-01

    The Lower Cretaceous Quantou Formation in the southern Songliao Basin is the typical tight oil sandstone in China. For effective exploration, appraisal and production from such a tight oil sandstone, the diagenesis and reservoir quality must be thoroughly studied first. The tight oil sandstone has been examined by a variety of methods, including core and thin section observation, XRD, SEM, CL, fluorescence, electron probing analysis, fluid inclusion and isotope testing and quantitative determination of reservoir properties. The sandstones are mostly lithic arkoses and feldspathic litharenites with fine to medium grain size and moderate to good sorting. The sandstones are dominated by feldspar, quartz, and volcanic rock fragments showing various stages of disintegration. The reservoir properties are quite poor, with low porosity (average 8.54%) and permeability (average 0.493 mD), small pore-throat radius (average 0.206 μm) and high displacement pressure (mostly higher than 1 MPa). The tight sandstone reservoirs have undergone significant diagenetic alterations such as compaction, feldspar dissolution, quartz cementation, carbonate cementation (mainly ferrocalcite and ankerite) and clay mineral alteration. As to the onset time, the oil emplacement was prior to the carbonate cementation but posterior to the quartz cementation and feldspar dissolution. The smectite to illite reaction and pressure solution at stylolites provide a most important silica sources for quartz cementation. Carbonate cements increase towards interbedded mudstones. Mechanical compaction has played a more important role than cementation in destroying the reservoir quality of the K1q4 sandstone reservoirs. Mixed-layer illite/smectite and illite reduced the porosity and permeability significantly, while chlorite preserved the porosity and permeability since it tends to be oil wet so that later carbonate cementation can be inhibited to some extent. It is likely that the oil emplacement occurred

  12. INCREASED OIL PRODUCTION AND RESERVES UTILIZING SECONDARY/TERTIARY RECOVERY TECHNIQUES ON SMALL RESERVOIRS IN THE PARADOX BASIN, UTAH

    SciTech Connect

    Thomas C. Chidsey, Jr.

    2002-11-01

    The Paradox Basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from shallow-shelf carbonate buildups or mounds within the Desert Creek zone of the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. Five fields in southeastern Utah were evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. The Desert Creek zone includes three generalized facies belts: (1) open-marine, (2) shallow-shelf and shelf-margin, and (3) intra-shelf, salinity-restricted facies. These deposits have modern analogs near the coasts of the Bahamas, Florida, and Australia, respectively, and outcrop analogs along the San Juan River of southeastern Utah. The analogs display reservoir heterogeneity, flow barriers and baffles, and lithofacies geometry observed in the fields; thus, these properties were incorporated in the reservoir simulation models. Productive carbonate buildups consist of three types: (1) phylloid algal, (2) coralline algal, and (3) bryozoan. Phylloid-algal buildups have a mound-core interval and a supra-mound interval. Hydrocarbons are stratigraphically trapped in porous and permeable lithotypes within the mound-core intervals of the lower part of the buildups and the more heterogeneous supramound intervals. To adequately represent the observed spatial heterogeneities in reservoir properties, the phylloid-algal bafflestones of the mound-core interval and the dolomites of the overlying supra-mound interval were subdivided into ten architecturally distinct lithotypes, each of which

  13. Geologic controls on oil and gas occurrence in Taranaki basin, New Zealand

    SciTech Connect

    King, P.R.; Beggs, J.M. )

    1991-03-01

    Taranaki basin contains all the commercial oil and gas fields in New Zealand as well as several marginal and subeconomic accumulations. The basin has a polyphase tectonic history, with different phases controlling specific aspects of hydrocarbon occurrence. Basin formation began with oblique rifting in the mid-Late Cretaceous. Principal petroleum source rocks are coal measures deposited in southern, central, and eastern parts of the basin during the rift and immediate postrift phase. In the Latest Cretaceous and early Cenozoic, the Taranaki basin was part of a western passive margin bordering proto-New Zealand, a large region of thinned continental crust separating from Australia and Antarctica. Clastic sediment supply to the basin progressively diminished as the sea transgressed the land to the south and east. Coastal and fluvial sandstones deposited during this phase are major petroleum reservoirs; a late Eocene turbidite reservoir in the north contains a noncommercial accumulation. In the mid-Cenozoic, the modern plate boundary began to propagate through New Zealand. In initial response, the Taranaki basin evolved into a submerged foreland basin. A recent significant oil discovery is reservoired in fractured limestones deposited in the foredeep. Taranaki basin Neogene development is characterized by structure reactivation, eversion, overthrusting, and differential subsidence along its eastern margin and in the south. Mountain building adjacent to the basin caused an increase in clastic sediment supply and concomitant regression, during which some minor reservoirs were deposited. However, the major significance of the Neogene tectonic phase lies in the formation of all proven traps, and in maturation of source rocks with increasing burial.

  14. Reservoir impacts downstream in highly regulated river basins: the Ebro delta and the Guadalquivir estuary in Spain

    NASA Astrophysics Data System (ADS)

    Polo, María J.; Rovira, Albert; García-Contreras, Darío; Contreras, Eva; Millares, Agustín; Aguilar, Cristina; Losada, Miguel A.

    2016-05-01

    Regulation by reservoirs affects both the freshwater regime and the sediment delivery at the area downstream, and may have a significant impact on water quality in the final transitional water bodies. Spain is one the countries with more water storage capacity by reservoirs in the world. Dense reservoir networks can be found in most of the hydrographic basins, especially in the central and southern regions. The spatial redistribution of the seasonal and annual water storage in reservoirs for irrigation and urban supply, mainly, has resulted in significant changes of water flow and sediment load regimes, together with a fostered development of soil and water uses, with environmental impacts downstream and higher vulnerability of these areas to the sea level rise and drought occurrence. This work shows these effects in the Guadalquivir and the Ebro River basins, two of the largest regulated areas in Spain. The results show a 71 % decrease of the annual freshwater input to the Guadalquivir River estuary during 1930-2014, an increase of 420 % of the irrigated area upstream the estuary, and suspended sediment loads up to 1000 % the initial levels. In the Ebro River delta, the annual water yield has decreased over a 30 % but, on the contrary, the big reservoirs are located in the main stream, and the sediment load has decreased a 99 %, resulting in a delta coastal regression up to 10 m per year and the massive presence of macrophytes in the lower river. Adaptive actions proposed to face these impacts in a sea level rise scenario are also analyzed.

  15. PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES

    SciTech Connect

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; William Raatz; Cari Breton; Stephen C. Ruppel; Charles Kerans; Mark H. Holtz

    2003-04-01

    A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest petroleum-producing basin in the US. Approximately 1300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl of oil through 2000. Of these major reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. On a preliminary basis, 32 geologic plays have been defined for Permian Basin oil reservoirs and assignment of each of the 1300 major reservoirs to a play has begun. The reservoirs are being mapped and compiled in a Geographic Information System (GIS) by play. Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonardian Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.

  16. Prediction and exploitation of basement-controlled production trends in Piceance Basin fractured tight gas reservoirs: Results of an integrated analysis

    SciTech Connect

    Hoak, T.E.; Klawitter, A.L.

    1995-12-31

    The ability to delineate and accurately predict fracured reservoir conditions represents critical information necessary for field development srategies, and development of play concepts in less-developed areas. To demonstrate relationships between fracture-controlled production, stratigraphy and structural geology, the Piceance Basin is being used as the site for an integrated fracture detection and reservoir characterization program utilizing high-resolution aeromagnetics, seismic, and conventional subsurface structural and stratigraphic mapping. In the Piceance Basin, there are two primary controls on well performance. The first is reservoir thickness and the second is deliverability, a funciton of fracture permeability. Reservoir thickness is controlled by depositional systems whereas fracture permeability is controlled by tectonic deformation. In Rulison Field, a sidetrack well with a 142 foot difference in bottomhole location shows a 50% difference in net sandstone pay between the two wellbores. This intense variability underscores the difficulty of predicting sand geometries in the basin. Depositional systems analysis is important as a means of predicting reservoir quality and reservoir thickness, however, in the Piceance Basin, reservoir thickness and quality cannot be accurately predicted because of complex fluvial and paludal stratigraphy, In addition, stratigraphy does not exert the greatest control on production economics. Instead, fracture permeability is the predictable and most important variable for successful development programs. In support of this, the orientation of fracture-controlled production trends lie either orthogonal or oblique to depositional trends in White River Dome, Divide Creek, Shire Gulch, Plateau, Grand Valley, Parachute and Rulison fields.

  17. Coastline change assessment on water reservoirs located in the Konya Basin Area, Turkey, using multitemporal landsat imagery.

    PubMed

    Durduran, S Savas

    2010-05-01

    This paper focuses mainly on the coastline change assessment on water reservoirs located in the Konya Basin Area, Turkey. The Konya Closed Basin exists at the Central Anatolia Region and covers a region of 50,000 km(2) area corresponding to the 7% cumulative area of Turkey in which three million people live, 45% in rural areas and 55% in urban areas. The basin is surrounded with the city centers of Konya, Aksaray, Karaman, Isparta, Niğde, Ankara, Nevşehir, and Antalya cities. In this study, these changes were examined using Landsat TM and ETM+ 1987-2006 and 1990-2000. In the image processing step, image and vectorization of the satellite images were carried out to monitor coastline changes over the lakes located in the Konya Closed Basin Area. At the end of the study, significant coastline movements were detected for a 19-year period due to drought effects, agricultural watering, and planning mistakes experienced in the basin. PMID:19399635

  18. Finding a way to optimize drilling depths in clastic aquifers for geothermal energy

    NASA Astrophysics Data System (ADS)

    van Putten, M.; van Wees, J. D. A. M.; Pluymaekers, M. P. D.; Kramers, L.

    2012-04-01

    Clastic aquifers generally are marked by decreasing porosity and associated permeability with depth. Uncertainties in porosity of a few percentages can result in an order of magnitude change in permeability. Further, temperature increases with depth and is marked by an uncertainty of about 10-20%. Monte Carlo performance calculations, adopting variable temperature and porosity distributions, along with other natural uncertainties and engineering options for drilling, show that performance in doublet power and levelized costs of energy (LCOE in EUR/GJ) is most sensitive to changes in the temperature gradient and the porosity. As the temperature increases with depth while the porosity decreases with depth, these relationships show a trade-off in performance, such that a theoretical optimal depth can be found for a specific temperature gradient and porosity-depth curve, and associated porosity-permeability relationship. The optimal drilling depth is at the depth level where the LCOE are minimal. In mature oil and gas basin areas, such as the Netherlands, it is possible to obtain relationships of porosity and underlying permeability as a function of depth. Therefore, the applicability for establishing and using an optimal depth has been tested for a clastic aquifer in the Rotliegend stratigraphic group in the Netherlands. This aquifer has high geothermal potential and is subject to many exploration activities. Temperature gradient and porosity-depth trends (and underlying uncertainties) for this aquifer have been adopted from the national geothermal information system ThermoGIS (www.thermogis.nl). For the performance calculation of doublet power and LCOE an in-house techno-economical performance assessment (TEPA) tool called DoubletCalc has been used. The results show that optimal depth corresponds to a pronounced and sharp minimum in LCOE. Its depth depends strongly on the actual porosity-depth relationship and ranges between 1.5 and 3 km. Remarkably, variations in

  19. Mixing of biogenic siliceous and terrigenous clastic sediments: South Belridge field and Beta field, California

    SciTech Connect

    Schwartz, D.E. )

    1990-05-01

    The intermixing and interbedding of biogenically derived siliceous sediment with terrigenous clastic sediment in reservoirs of upper Miocene age provides both reservoir rock and seal and influences productivity by affecting porosity and permeability. Miocene reservoirs commonly contain either biogenic-dominated cyclic diatomite, porcelanite, or chert (classic Monterey Formation) or clastic-dominated submarine fan sequences with interbedded or intermixed siliceous members of biogenic origin. Biogenic-clastic cycles, 30-180 ft thick, at South Belridge field were formed by episodic influx of clastic sediment from distant submarine fans mixing with slowly accumulating diatomaceous ooze. The cycles consist of basal silt and pelletized massive diatomaceous mudstone, overlain by burrowed, faintly bedded clayey diatomite and topped by laminated diatomite. Cycle tops have higher porosity and permeability, lower grain density, and higher oil saturation than clay and silt-rich portions of the cycles. Submarine fan sediments forming reservoirs at the Beta field are comprised of interbedded sands and silts deposited in a channelized middle fan to outer fan setting. Individual turbidites display fining-upward sequences, with oil-bearing sands capped by wet micaceous silts. Average sands are moderately to poorly sorted, fine- to medium-grained arkosic arenites. Sands contain pore-filling carbonate and porcelaneous cements. Porcelaneous cement consists of a mixture of opal-A, opal-CT, and chert with montmorillonite and minor zeolite. This cement is an authigenic material precipitated in intergranular pore space. The origin of the opal is biogenic, with recrystallization of diatom frustules (opal-A) into opal-CT lepispheres and quartz crystals. Porcelaneous cement comprises 4-21% of the bulk volume of the rock. Seventy percent of the bulk volume of the cement is micropore space.

  20. Seismic structural investigation and reservoir characterization of the Moki Formation in Maari Field, Taranaki Basin, New Zealand

    NASA Astrophysics Data System (ADS)

    Alotaibi, Mohammed Dhaifallah M.

    The Maari Field is a large oil field located in the southern part of the Taranaki Basin, New Zealand. The field is bounded by two major structures, the Eastern Mobile Belt and Western Stable Platform. The Maari Field produces 40,000 BOPD (Barrels of Oil per Day) from five wells from reservoirs in the Moki Formation. The Miocene Moki Formation was deposited as part of the Wai-iti Group and consists of sandstone interbedded with siltstone and claystone. The sandstone of the Moki Formation is characterized by a submarine fan. It is distributed along the southern and central Taranaki shelf. Three-dimensional seismic data and well logs were recorded by the Geco-Prakla Company. Time and depth structural maps on the top of the Moki Formation are subdivided into a main structure with high and low elevations of topography, which are separated by a major fault, the Kiwi Fault. The fault trends from the south toward the northeast. Seismic attributes, such as coherence and edge detection, were mapped to interpret the major and minor faults. In the Maari Field, there are more than seventeen faults. Seismic data and well log data were used to determine the petrophysical properties in the Moki reservoir. Using the well logs, the transition zone (oil-water contact) between the oil and water was found to be 1352 m. The Moki reservoir has good quality oil, with an average porosity at Maari-1, Maui-4, Kea-1, Moki, and Maari-2 ranging from 14 to 19 percent. Gamma ray, resistivity, and spontaneous potential logs were used to determine correlation between well and lithology of the Moki reservoir. The net thickness of the reservoir is 320 m to 360 m. The distribution of shale is less than 10 percent throughout the Moki reservoir.

  1. Factors affecting water quality and net flux of solutes in two stream basins in the Quabbin Reservoir drainage basin, central Massachusetts,1983-85

    USGS Publications Warehouse

    Rittmaster, R.L.; Shanley, J.B.

    1995-01-01

    The factors that affect stream-water quality were studied at West Branch Swift River (Swift River), and East Branch Fever Brook (Fever Brook), two forested watersheds that drain into the Quabbin Reservoir, central Massachusetts, from December 1983 through August 1985. Spatial and temporal variations of chemistry of precipitation, surface water; and ground water and the linkages between chemical changes and hydrologic processes were used to identify the mechanisms that control stream chemistry. Precipitation chemistry was dominated by hydrogen ion (composite p.H 4.23), sulfate, and nitrate. Inputs of hydrogen and nitrate from pre- cipitation were almost entirely retained in the basins, whereas input of sulfate was approximately balanced by export by streamflow draining the basins. Both streams were poorly buffered, with mean pH near 5.7, mean alkalinity less than 30 microequivalents per liter, and sulfate concen- trations greater than 130 microequivalents per liter. Sodium and chloride, derived primarily from highway deicing salts, were the dominant solutes at Fever Brook. After adjustments for deicing salts, fluxes of base cations during the 21-month study were 2,014 and 1,429 equivalents per hectare in Swift River and Fever Brook, respectively. Base cation fluxes were controlled primarily by weathering of hornblende (Fever Brook) and plagioclase (Swift River). The overall weathering rate was greater in the Swift River Basin because easily weathered gabbro underlies one subbasin which comprises 11.2 percent of the total basin area but contributed about 77 percent of the total alkalinity. Alkalinity export was nearly equal in the two basins, however, because some alkalinity was generated in wetlands in the Fever Brook Basin through bacterial sulfate reduction coupled with organic-carbon oxidation.

  2. Geothermal reservoir properties of the Rotliegend (Permocarboniferous) sediments in the Saar Nahe Basin (South-West Germany)

    NASA Astrophysics Data System (ADS)

    Aretz, A.; Bär, K.; Sass, I.

    2012-04-01

    The geothermal potential of the Rotliegend (Permocarboniferous) in the Northern Upper Rhine Graben and the Saar-Nahe-Basin (Germany) has been shown in large scale regional studies. To further assess the geothermal potential of the different lithostratigraphical units and facies types within this Variscan intramontane basin, knowledge of their thermophysical and hydraulic properties is indispensable. Where the Cenozoic Upper Rhine Graben crosses the Permocarboniferous molasse basin, the top of the up to two kilometers thick Permocarboniferous deposits is located at a depth of one to three kilometers and is overlain by Tertiary and Quaternary sediments. Therefore, the reservoir temperatures exceed 150°C, making it suitable for geothermal power production. Lithologically the Permocarboniferous deposits consist of different formations and facies types including fine, middle and coarse grained sandstones, arcosic sandstones, siltstones, volcanics and carbonates. Within the framework of the study presented here, outcrop analogue studies west of the Graben in the Saar-Nahe-Basin, and east of the Graben in the Wetterau and the Wetterau-Fulda-Basin are conducted. Each lithostratigraphic formation and lithofacies type is sampled in various outcrops to generate a statistically sufficient amount of samples of the different sedimentary rocks in order to determine their petrophysical, sedimentological and geochemical characteristics. The petrophysical parameters measured include the porosity, permeability, density, thermal conductivity, thermal diffusivity and uniaxial compressive strength. So far, the petrophysical properties of samples of more than 70 locations have been measured in our lab facilities, showing a clear correlation with the facies type. Excluding the coarse grained sandstones of the Donnersberg formation at the beginning of the Nahe-subgroup of the Upper Rotliegend, the geothermal reservoir properties are more suitable in the Glan-subgroup of the Lower

  3. Impact of depositional facies on the distribution of diagenetic alterations in the Devonian shoreface sandstone reservoirs, Southern Ghadamis Basin, Libya

    NASA Astrophysics Data System (ADS)

    Khalifa, Muftah Ahmid; Morad, Sadoon

    2015-11-01

    The middle Devonian, shoreface quartz arenites (present-day burial depths 2833-2786 m) are important oil and gas reservoirs in the Ghadamis Basin, western Libya. This integrated petrographic and geochemical study aims to unravel the impact of depositional facies on distribution of diagenetic alterations and, consequently, related reservoir quality and heterogeneity of the sandstones. Eogenetic alterations include the formation of kaolinite, pseudomatrix, and pyrite. The mesogenetic alterations include cementation by quartz overgrowths, Fe-dolomite/ankerite, and illite, transformation of kaolinite to dickite, illitization of smectite, intergranular quartz dissolution, and stylolitization, and albitization of feldspar. The higher energy of deposition of the coarser-grained upper shoreface sandstones combined with less extensive chemical compaction and smaller amounts of quartz overgrowths account for their better primary reservoir quality compared to the finer-grained, middle-lower shoreface sandstones. The formation of kaolin in the upper and middle shoreface sandstones is attributed to a greater flux of meteoric water. More abundant quartz overgrowths in the middle and lower shoreface is attributed to a greater extent of stylolitization, which was promoted by more abundant illitic clays. This study demonstrated that linking the distribution of diagenetic alterations to depositional facies of shoreface sandstones leads to a better understanding of the impact of these alterations on the spatial and temporal variation in quality and heterogeneity of the reservoirs.

  4. Petrography and diagenesis of reservoir and non-reservoir sandstones in Shattuck Member of Queen Formation, northwest shelf of Permian basin

    SciTech Connect

    Malicse, A.; Siegel, J.; Mazzullo, J.

    1988-02-01

    The Shattuck Member is a thick (6-20 m) sandstone that defines the top of the Queen Formation (Permian, Guadalupian) and is a major hydrocarbon reservoir on the Northwestern shelf of the Permian basin. The Shattuck was deposited in desert dune and interdune, dry and wet sand sheet, and sandy sabkha environments during a lowstand of sea level. The desert dune, interdune, and dry sand sheet deposits constitute the producing horizons in the Shattuck, whereas the wet sand sheet and sabkha deposits are generally non-productive. The purposes of this study are to examine the petrographic characteristics of the producing and non-producing horizons with petrographic and scanning electron microscopes, and to determine their provenance and diagenetic history.

  5. New England reservoir management: Land use/vegetation mapping in reservoir management (Merrimack River Basin). [Massachusetts and New Hamshire

    NASA Technical Reports Server (NTRS)

    Cooper, S. (Principal Investigator); Mckim, H. L.; Gatto, L. W.; Merry, C. J.; Anderson, D. M.; Marlar, T. L.

    1974-01-01

    The author has identified the following significant results. It is evident from this comparison that for land use/vegetation mapping the S190B Skylab photography compares favorably with the RB-57 photography and is much superior to the ERTS-1 and Skylab 190A imagery. For most purposes the 12.5 meter resolution of the S190B imagery is sufficient to permit extraction of the information required for rapid land use and vegetation surveys necessary in the management of reservoir or watershed. The ERTS-1 and S190A data products are not considered adequate for this purpose, although they are useful for rapid regional surveys at the level 1 category of the land use/vegetation classification system.

  6. Controls on nitrous oxide production and consumption in reservoirs of the Ohio River Basin

    NASA Astrophysics Data System (ADS)

    Beaulieu, Jake J.; Nietch, Christopher T.; Young, Jade L.

    2015-10-01

    Aquatic ecosystems are a globally significant source of nitrous oxide (N2O), a potent greenhouse gas, but estimates are largely based on studies conducted in streams and rivers with relatively less known about N2O dynamics in reservoirs. Due to long water residence times and high nitrogen (N) loading rates, reservoirs support substantial N processing and therefore may be particularly important sites of N2O production. Predicting N2O emissions from reservoirs is difficult due to complex interactions between microbial N processing in the oxygen-poor hypolimnion and oxygen-rich epilimnion. Here we present the results of a survey of N2O depth profiles in 20 reservoirs draining a broad range of land use conditions in four states in the U.S. Nitrous oxide was supersaturated in the epilimnion of 80% of the reservoirs and was undersaturated in only one, indicating that reservoirs in this region are generally a source of N2O to the atmosphere. Nitrous oxide was undersaturated in the hypolimnion of 10 reservoirs, supersaturated in 9, and transitioned from supersaturation to undersaturation in 1 reservoir that was monitored periodically from midsummer to fall. All reservoirs with a mean hypolimnion nitrate concentration less than 50 µg N L-1 showed evidence of net N2O consumption in the hypolimnion. All reservoirs sampled during lake turnover supported N2O production throughout the water column. These results indicate that N2O dynamics in reservoirs differ widely both among systems and through time but can be predicted based on N and oxygen availability and degree of thermal stratification.

  7. Estimation of small reservoir storage capacities in the São Francisco, Limpopo, Bandama and Volta river basins using remotely sensed surface areas

    NASA Astrophysics Data System (ADS)

    Rodrigues, Lineu; Senzanje, Aidan; Cecchi, Philippe; Liebe, Jens

    2010-05-01

    People living in areas with highly variable rainfall, experience droughts and floods and often have insecure livelihoods. Small multi-purpose reservoirs (SR) are a widely used form of infrastructures to provide people in such areas with water during the dry season, e.g. in the basins of São Francisco, Brazil, Limpopo, Zimbabwe, Bandama, Ivory Coast and Volta, Ghana. In these areas, the available natural flow in the streams is sometimes less than the flow required for water supply or irrigation, however water can be stored in times of surplus, for example, from a wet season to a dry season. Efficient water management and sound reservoir planning are hindered by the lack of information about the functioning of these reservoirs. Reservoirs in these regions were constructed in a series of projects funded by different agencies, at different times, with little or no coordination among the implementing partners. Poor record keeping and the lack of appropriate institutional support result in deficiencies of information on the capacity, operation, and maintenance of these structures. Estimating the storage capacity of dams is essential to the responsible management of water diversion. Most of SR in these basins have never been evaluated, possibly because the tools currently used for such measurement are labor-intensive, costly and time-consuming. The objective of this research was to develop methodology to estimate small reservoir capacities as a function of their remotely sensed surface areas in the São Francisco, Limpopo, Bandama and Volta basins, as a way to contribute to improve the water resource management in those catchments. Remote sensing was used to identify, localize and characterize small reservoirs. The surface area of each was calculated from satellite images. A sub-set of reservoirs was selected. For each reservoir in the sub-set, the surface area was estimated from field surveys, and storage capacity was estimated using information on reservoir surface

  8. Groundwater age, life expectancy and transit time distributions in advective dispersive systems; 2. Reservoir theory for sub-drainage basins

    NASA Astrophysics Data System (ADS)

    Cornaton, F.; Perrochet, P.

    2006-09-01

    Groundwater age and life expectancy probability density functions (pdf) have been defined, and solved in a general three-dimensional context by means of forward and backward advection-dispersion equations [Cornaton F, Perrochet P. Groundwater age, life expectancy and transit time distributions in advective-dispersive systems; 1. Generalized reservoir theory. Adv Water Res (xxxx)]. The discharge and recharge zones transit time pdfs were then derived by applying the reservoir theory (RT) to the global system, thus considering as ensemble the union of all inlet boundaries on one hand, and the union of all outlet boundaries on the other hand. The main advantages in using the RT to calculate the transit time pdf is that the outlet boundary geometry does not represent a computational limiting factor (e.g. outlets of small sizes), since the methodology is based on the integration over the entire domain of each age, or life expectancy, occurrence. In the present paper, we extend the applicability of the RT to sub-drainage basins of groundwater reservoirs by treating the reservoir flow systems as compartments which transfer the water fluxes to a particular discharge zone, and inside which mixing and dispersion processes can take place. Drainage basins are defined by the field of probability of exit at outlet. In this way, we make the RT applicable to each sub-drainage system of an aquifer of arbitrary complexity and configuration. The case of the well-head protection problem is taken as illustrative example, and sensitivity analysis of the effect of pore velocity variations on the simulated ages is carried out.

  9. Role of structural heritage and global tectonics events in evolution of Algerian Triassic basin: Tectonic inversion and reservoir distribution

    SciTech Connect

    Boudjema, A.; Tremolieres, P.

    1988-01-01

    Fieldwork and subsurface studies (350 bore holes and more than 100 seismic profiles) show the structural evolution of the Triassic Saharian basin. This evolution is controlled by the successive motions of ancient faults of the Paleozoic basement during the different compressional and distensional tectonic phases. These movements led to some tectonic inversions. Depending on the strike of the faults, the present results correspond to normal throw or reverse throw at the level of hydrocarbon reservoirs. These tectonic phases clearly result from relative motions between African, American, and European lithospheric plates. The Triassic basin, a mobile zone between two rigid shields, constitutes a very good indication of the successive motions. The distribution and the nature of hydrocarbon fields are clearly related to the proximity of the faults, the post-tectonic erosion of a part of the source rocks, the burial and maturation of the organic matter, and the age of structural traps.

  10. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect

    Chidsey Jr., Thomas C.

    2003-02-06

    The primary objective of this project was to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox Basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project was designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  11. Effects of the Pays de Bray'' fault on fluid paleocirculations in the Paris Basin Dogger reservoir, France

    SciTech Connect

    Bril, H. . Lab. d'Analyse Structurale et Hydrothermalisme); Velde, B.; Iqdari, A. . Dept. Geologie); Meunier, A. . Lab. Petrologie des Alterations Hydrothermales)

    1994-06-01

    Clay fractions and fluid inclusions were studied in the Aulnay sous Bois and Cerneaux (CER-1 and CER-P6) wells located 10 km, 1.3 and 0.6 km, respectively, from the Pays de Bray'' fault (Paris Basin, France). It was shown that a connection was probably established between the Dogger and Triassic reservoirs during the active period of the fault. Chemical and heat transfers have locally modified the diagenesis conditions in the Dogger formation, inducing an overmaturation of clay minerals. These effects, although attenuated, are still identifiable in the Aulnay and CER-1 wells. A maximum temperature of about 90 C was maintained in CER-P6 site even during the uplift stage of the basin.

  12. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect

    Jr., Chidsey, Thomas C.; Allison, M. Lee

    1999-11-02

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced- oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  13. ADVANCED CHARACTERIZATION OF FRACTURED RESERVOIRS IN CARBONATE ROCKS: THE MICHIGAN BASIN

    SciTech Connect

    James R. Wood; William B. Harrison

    2001-04-01

    Among the accomplishments of this past reporting period are obtaining a complete landgrid for the State of Michigan and the digital processing of the high and medium resolution DEM files. We can now extract lineations from the DEMs automatically using machine algorithms. One tentative result that may be very significant is that we may be seeing manifestations of buried structures in the DEM data. We are looking at a set of extracted lineations in the northern lower peninsula that appear to follow the trend of the pinnacle reefs (Silurian) which had relief approaching 300 feet but are now buried to greater than 3000 feet. We have also extracted the dolomite alteration data from all fields and can show that this is mainly confined to the basin center. It may be related to the paleo-rift suggested by the paleomagnetic and gravity data. As reported last time, the acquisition of a 3D seismic dataset over Stoney Point Field from Marathon Oil Company, is complete and attention is being devoted to incorporating the data into the project database and utilizing it. The surface lineation study is focusing on Stoney Point Field using the high-resolution DEM data and plotting of subsurface formation top data for the main reservoir, the Trenton (Ordovician) Formation. The fault pattern at Stoney Point is well documented by Marathon and we are looking for any manifestations on the surface. The main project database is now about as complete as it will be for this project. The main goals have been met, although the scanning of the paper records will have to continue beyond the scheduled end of the project due to the sheer number of records and the increased donations of data from companies as word spread of the project. One of the unanticipated benefits of the project has been the cooperation of gas and oil companies that are or were active in the Michigan Basin in donating material to the project. Both Michigan Tech and Western Michigan continue to receive donations at an

  14. Effects of a regional décollement level for gravity tectonics on late Neogene-Quaternary deep-sea clastic sedimentation in the Foz do Amazonas Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Cruz, A. M.; Gorini, C.

    2015-12-01

    Sets of 2D multi-channel seismic and chronostratigraphic data allowed us to undertake analyses of source to sink processes and triggering mechanisms of the gigantic megaslides previously documented off the NW and SE steep slope settings of the Foz do Amazonas basin. These megaslides comprise two sets of stacked allochthonous masses within the Upper Miocene-Quaternary sedimentary record, now described as Mass-Transport Complexes (MTCs): the Amapá Megaslide Complex (AMC) and the Pará-Maranhão Megaslide Complex (PMMC). Individual megaslides of both MTCs can mobilize to deep waters up to kilometer thick sedimentary series as allochthonous masses with different flow directions, degrees of sediment disruption and internal coherence. Megaslides spread downslope over areas as large as thousands of km2, attaining dimensions comparable to the world's largest mass-transport deposits. The basal and largest megaslide of the AMC (AM1 megaslide) is a quite unique example of mass-transport deposit, since it is interpreted as a dominant carbonate allochthonous mass sourced from a mixed carbonate-siliciclastic platform. According to stratigraphic correlations with global sea-level positions, platform instability would have been triggered between the late Miocene and the end of the Early Pliocene by gravitational collapse of the mixed platform under its own weight, after successive subaerial exposures which were able to generate karstification processes. Siliciclastic-type megaslides, on the other hand, are all sourced from large upslope slide and/or rotated blocks (up to 60 km large in the case of the PMMC).Stratigraphic correlations evidenced that horizon equally acts as the upper décollement level for the gravity tectonic system that operates in the regional scale of the Foz do Amazonas basin. In such a context, results of this work evidence complex links between variable modes of gravity deformation (gravity tectonics and mass wasting), all induced by instability created from

  15. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report, February 9, 1996--February 8, 1997

    SciTech Connect

    Chidsey, T.C. Jr.

    1997-08-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The Anasazi field was selected for the initial geostatistical modeling and reservoir simulation. A compositional simulation approach is being used to model primary depletion, waterflood, and CO{sub 2}-flood processes. During this second year of the project, team members performed the following reservoir-engineering analysis of Anasazi field: (1) relative permeability measurements of the supra-mound and mound-core intervals, (2) completion of geologic model development of the Anasazi reservoir units for use in reservoir simulation studies including completion of a series of one-dimensional, carbon dioxide-displacement simulations to analyze the carbon dioxide-displacement mechanism that could operate in the Paradox basin system of reservoirs, and (3) completion of the first phase of the full-field, three-dimensional Anasazi reservoir simulation model, and the start of the history matching and reservoir performance prediction phase of the simulation study.

  16. Erosion and deposition as indicated by sediment accumulation in stock reservoirs in the Powder River drainage basin, Wyoming

    USGS Publications Warehouse

    Roach, Carl H.; Colby, Bruce R.

    1957-01-01

    This report gives the results of an investigation by the U.S. Geological Survey and U.S. Bureau of Reclamation of sediment accumulation in stock reservoirs in the powder River drainage basin upstream from Arvada, Wyo. The study was made to determine the net rates of erosion in the upland areas and the effects of the reservoirs on the amount of sediment transported to the parent stream. The climate of the area ranges from cold and humid on the high mountains to warm and semiarid on the plains. The average annual precipitation ranges from less than 15 inches on the plains to more than 27 inches in the high mountains, which have a maximum altitude of 13,165 feet. The rocks in the Powder River drainage basin range in age from Precambrian to Recent. The 25 stock reservoirs that were used in the study have drainage areas of 0.09 to 3.53 square miles, are from 3 to 51 years old, and impound water from areas that have land slopes averaging from about 3 to 41 percent. The ratio of average reservoir capacity to drainage area ranges from about 2 to nearly 200 acre-feet per square mile. After adjustment for trap efficiency the average annual sediment yield to the 25 reservoirs ranged from 0.04 to 1.49 acre-feet per square mile and averaged 0.50 acre-foot per square mile of drainage area. The average sediment yield from 6 drainage areas mostly underlain by shale was 0.80 acre-foot per year, 2.3 times greater than yields from the areas underlain by sandstone or sandy shales. Correlations show that the sediment yield increased approximately as the 1.5 power of the channel density, the 0.4 power oif the shape factor, the 0.7 power of the average land slope, and the -0.25 power of the age of the reservoir. Empirical equations for sediment yield and trap efficiency for the area studied are given.

  17. Scale-dependent gas hydrate saturation estimates in sand reservoirs in the Ulleung Basin, East Sea of Korea

    USGS Publications Warehouse

    Lee, Myung Woong; Collett, Timothy S.

    2013-01-01

    Through the use of 2-D and 3-D seismic data, several gas hydrate prospects were identified in the Ulleung Basin, East Sea of Korea and thirteen drill sites were established and logging-while-drilling (LWD) data were acquired from each site in 2010. Sites UBGH2–6 and UBGH2–10 were selected to test a series of high amplitude seismic reflections, possibly from sand reservoirs. LWD logs from the UBGH2–6 well indicate that there are three significant sand reservoirs with varying thickness. Two upper sand reservoirs are water saturated and the lower thinly bedded sand reservoir contains gas hydrate with an average saturation of 13%, as estimated from the P-wave velocity. The well logs at the UBGH2–6 well clearly demonstrated the effect of scale-dependency on gas hydrate saturation estimates. Gas hydrate saturations estimated from the high resolution LWD acquired ring resistivity (vertical resolution of about 5–8 cm) reaches about 90% with an average saturation of 28%, whereas gas hydrate saturations estimated from the low resolution A40L resistivity (vertical resolution of about 120 cm) reaches about 25% with an average saturation of 11%. However, in the UBGH2–10 well, gas hydrate occupies a 5-m thick sand reservoir near 135 mbsf with a maximum saturation of about 60%. In the UBGH2–10 well, the average and a maximum saturation estimated from various well logging tools are comparable, because the bed thickness is larger than the vertical resolution of the various logging tools. High resolution wireline log data further document the role of scale-dependency on gas hydrate calculations.

  18. Fluid-rock interactions in unconventional reservoirs during hydraulic fracturing: a geochemical investigation from the Powder River Basin, WY

    NASA Astrophysics Data System (ADS)

    Herz-Thyhsen, R.; Kaszuba, J. P.

    2014-12-01

    Widespread use of hydraulic fracturing to stimulate resource production from unconventional reservoirs necessitates the development of a fundamental understanding for this process. Our research focuses on a synthesis of three sets of data to better understand geochemical and mineralogic aspects of the process of hydraulic fracturing, including laboratory experiments, field data, and geochemical modeling. Experiments examine fluid-rock interaction using rock samples from the Niobrara and Frontier Formations, two unconventional reservoirs within the Powder River Basin of NE Wyoming. Experiments react reservoir rocks with a representative hydraulic fracturing fluid for 28 days at 115°C and 350 bars. Fresh water and common chemicals, including HCl and petroleum distillates, used in hydraulic fracturing comprise the experimental fluid. Mineral reaction to the acidic fluid (pH ~2.35) causes immediate buffering, bringing fluid pH to near-neutral conditions after ~6 hours. Al initially spikes in the first 6 hours by ~10X, but returns to lower concentrations within 12 hours. Fe, Ba, Co, Mn, Sb, and Cr follow similar trends. Contemporaneously, Sr, Mo, Li, W, V, and Rb increase dramatically and remain at elevated levels. Changes in trace element concentrations correlate with clay alteration, calcite dissolution, and feldspar dissolution observed within reacted rock samples. Fluid samples are compared to produced-water chemistry from active wells in the field, enhancing our understanding of geochemical reactions occurring at depth. Lastly, produced fluid chemistry from both field samples and experiments are tethered together using preliminary geochemical models. These models predict calcite and feldspar reaction as well as new clay formation. This research ties together a limited population of produced water data with reservoir mineralogy to enhance fundamental understanding of fluid-rock interactions in unconventional reservoirs.

  19. Advanced Characterization of Fractured Reservoirs in Carbonate Rocks: The Michigan Basin

    SciTech Connect

    Wood, James R.; Harrison, William B.

    2002-12-02

    The purpose of the study was to collect and analyze existing data on the Michigan Basin for fracture patterns on scales ranging form thin section to basin. The data acquisition phase has been successfully concluded with the compilation of several large digital databases containing nearly all the existing information on formation tops, lithology and hydrocarbon production over the entire Michigan Basin. These databases represent the cumulative result of over 80 years of drilling and exploration.

  20. Carbonate reservoir characterization using seismic velocity and amplitude variation with offset analysis: Hardeman basin, Texas, test case

    SciTech Connect

    Pigott, J.D.; Shrestha, R.K. ); Warwick, R.A. )

    1991-03-01

    Mississippian bioherms in the Hardeman basin, Texas, produce from dolomitized mud cores with porosities that can vary from 10 to 40%. These carbonate buildups, though often similar in seismic reflector boundary configuration, can vary remarkably in reservoir quality (e.g., porosity) owing to diagenesis. However, imaging these lateral variations of porosity and determining the reservoir pressure is possible with detailed seismic velocity control and amplitude variation with offset (AVO) analysis. The investigated 24-fold seismic profile was acquired by four Vibroseis trucks in the Hardeman basin across two bioherms, one oil-productive and other tight and water-filled. Detailed stacking velocity analyses on the relative amplitude processed line directly delineate areas of increasing and decreasing gross porosity and dramatically differentiate the two mounds. Moreover, the detailed velocity analyses help provide a more accurate stacked section with resultant better definition of the external mound configuration. Analysis of available laboratory compressional and shear wave velocity data for carbonate rocks reveal that Young's modulus in carbonates is a function of porosity and differential pressure. Comparison of the derived Young's modulus from an inversion of the AVO data for the unstacked line with the experimental laboratory data yield porosity and differential pressure estimates over the productive bioherm which are within 18% and 15%, respectively, of those observed in the borehole.

  1. Effect of salt tectonics on potential CO2 reservoir and caprock in the Norwegian-Danish basin.

    NASA Astrophysics Data System (ADS)

    Sassier, C.; Faleide, J. I.; Aagaard, P.; Gabrielsen, R. H.

    2012-04-01

    Salt tectonics can provide closure structure for accumulation of oil or gas. Thus, it can also provide proper closure structures for CO2 storage. In contrast to oil and gas accumulation where the sealing is evident, however, these potential closure structures, including reservoir and caprock, and the associated faults have to be carefully evaluated for CO2 storage. In the North Sea, previous screening for CO2 storage plays identified potential Triassic and Jurassic reservoirs, in particular in the Upper Triassic Gassum Formation. In the Norwegian-Danish basin located in the southern part of the North Sea, Permian salt occurs widely and is at the origin of intense salt tectonics. There, salt plugs and walls deformed and pierced the overburden sediments between Triassic or Jurassic times until the Early Miocene according to previous studies. In order to evaluate the potential closure structures over salt plugs in the Norwegian-Danish basin for CO2 storage purpose, we investigate the initiation, movement and duration of the salt tectonics, its effects on the Gassum formation and its overburden caprock through detailed seismic mapping and structural analysis. In this contribution, we will present the preliminary results of this study.

  2. Integrated Water Basin Management Including a Large Pit Lake and a Water Supply Reservoir: The Mero-Barcés Basin

    NASA Astrophysics Data System (ADS)

    Delgado, Jordi; Juncosa-Rivera, Ricardo; Hernández-Anguiano, Horacio; Muñoz-Ibáñez, Andrea

    2016-04-01

    use of lake water is acceptable from different points of view (water quality, legal constrains, etc.). Our results indicate that the joint use of the lake/reservoir system is feasible. Based on this and other complementary study, the basin water authorities has developed a project by which a 2.1 km uptake tunnel will be excavated in the next years to drain water from the lake towards the Barcés river and complement the water supply necessities of the Abegondo-Cecebre reservoir in case of hydric emergencies.

  3. [Macrobenthic community structure and bioassessment for water quality of Banqiao Reservoir in Huaihe River basin].

    PubMed

    Sun, Wei-sheng; Gu, Qian-hong; Dong, Jing; Cheng, Qing-qing; Li, Xue-jun; Zhang, Man

    2015-09-01

    In order to demonstrate macrobenthic community structure dynamics and conduct a biological evaluation of water quality in Banqiao Reservoir, we collected seasonal samples from January to November 2014 across 15 sampling sites. A total of 17 species belonging to five families, four classes, and 3 phyla were identified, including 8 chironomidae, 4 oligochaeta and 5 mollusc. Bellamya aeruginosa, Corbicula fluminea, Branchiura sowerbyi, Pelopia sp. and Glyptotendipes sp. were the important species in Banqiao Reservoir. The total density, biomass and biodiversity of marobenthos showed significant spatial and temporal differences. ANOSIM analysis indicated that the macrobenthic community structure also differed significantly among regions and seasons, and the main contributing species were Glyptotendipes sp., Pelopia sp. and B. sowerbyi. The abundance-biomass comparison curves (ABC curves) indicated that the current macrobenthic community in Banqiao Reservoir was stable. Combined with the biodiversity index, biological pollution index (BPI) and Hilsenhoff biotic index (BI), it was suggested that Banqiao Reservoir suffered slight pollution. PMID:26785570

  4. Geochemical characteristics of crude oil from a tight oil reservoir in the Lucaogou Formation, Jimusar Sag, Junggar Basin

    NASA Astrophysics Data System (ADS)

    Cao, Z.

    2015-12-01

    Jimusar Sag, which lies in the Junggar Basin,is one of the most typical tight oil study areas in China. However, the properties and origin of the crude oil and the geochemical characteristics of the tight oil from the Lucaogou Formation have not yet been studied. In the present study, 23 crude oilsfrom the Lucaogou Formation were collected for analysis, such as physical properties, bulk composition, saturated hydrocarbon gas chromatography-mass spectrometry (GC-MS), and the calculation of various biomarker parameters. In addition,source rock evaluation and porosity permeability analysis were applied to the mudstones and siltstones. Biomarkers of suitable source rocks (TOC>1, S1+S2>6mg/g, 0.7%basin modeling was performed. The oil-filling history was also defined by means of basin modeling and microthermometry. The results indicated the presence of low maturity to mature crude oils originating from the burial of terrigenous organic matter beneath a saline lake in the source rocks of mainly type II1kerogen. In addition, a higher proportion of bacteria and algae was shown to contribute to the formation of crude oil in the lower section when compared with the upper section of the Lucaogou Formation. Oil-source correlations demonstrated that not all mudstones within the Lucaogou Formation contributed to oil accumulation.Crude oil from the upper and lower sections originated from thin-bedded mudstones interbedded within sweet spot sand bodies. A good coincidence of filling history and hydrocarbon generation history indicated that the Lucaogou reservoir is a typical in situ reservoir. The mudstones over or beneath the sweet spot bodies consisted of natural caprocks and prevented the vertical movement of oil by capillary forces. Despite being thicker, the thick-bedded mudstone between the upper and lower sweet spots had no obvious contribution to

  5. PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES

    SciTech Connect

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; Caroline L. Breton; William D. Raatz; Stephen C. Ruppel; Charles Kerans

    2004-05-01

    The Permian Basin of west Texas and southeast New Mexico has produced >30 Bbbl (4.77 x 10{sup 9} m{sup 3}) of oil through 2000, most of it from 1,339 reservoirs having individual cumulative production >1 MMbbl (1.59 x 10{sup 5} m{sup 3}). These significant-sized reservoirs are the focus of this report. Thirty-two Permian Basin oil plays were defined, and each of the 1,339 significant-sized reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. Associated reservoir information within linked data tables includes Railroad Commission of Texas reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are <1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. This report contains a summary description of each play, including key reservoir characteristics and successful reservoir-management practices that have been used in the play. The CD accompanying the report contains a pdf version of the report, the GIS project, pdf maps of all plays, and digital data files. Oil production from the reservoirs in the Permian Basin having cumulative production >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 from these significant-sized reservoirs was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl 5.25 x 10{sup 8} m{sup 3}), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San Andres

  6. Clastic Intrusions and Chemosynthetic Paleocommunities in the Cretaceous-Paleocene Great Valley Forearc Basin, Panoche Hills, CA: Geochemistry of Carbonates Suggests Biogenic and Thermogenic Input During Early Tertiary Subduction

    NASA Astrophysics Data System (ADS)

    Sample, J.; Moore, C.; Weberling, K.; Schwartz, H.; Vrolijk, P.

    2001-12-01

    A Paleocene seep system is remarkably well preserved in the Panoche Hills of central California. The seep horizons lie within a 45-m-thick interval in the Dos Palos Shale Member of the Moreno Formation, which contains chemosynthetic fauna. Extensive sandstone dikes in the underlying Cretaceous to Paleocene units presumably acted as conduits to replenish the seep organisms with the methane-enriched fluids required for chemoynthesis. We investigated the geochemistry of the carbonate cements and veins within the seep horizons and sandstone dikes to determine the nature of the fluid sources. Carbonate occurs as pore-filling cement, infill of tubes, shell material, veins, and possible replacement of tubeworm walls. The preserved carbonate textures, including fibrous, syntaxial vein minerals and radial, fibrous fills of tubes (fluid pipes?), indicate that many of the samples have not undergone extensive recrystallization during diagenesis. Isotopic values of 33 seep samples are δ 13CPDB = -42.56‰ to 0.55‰ and δ 18OPDB = -5.81‰ to 3.78‰ . These carbon isotope values are consistent with a fluid source during seep formation containing a mixture of oxidized thermogenic methane from marine organic matter, seawater bicarbonate, and a component of biogenic methane. Three dike samples have carbonate with δ 13CPDB = -21.12‰ to -5.54‰ , and δ 18OPDB = -8.45‰ to -6.26‰ . The low dike oxygen values suggest that fluids retained some of the elevated temperature of the source region during migration, or later diagenesis recrystallized the cement. Given that the source of sandstone dikes was at most a few hundred metres below the seeps at the time of their formation, a significant component of thermogenic methane preserved in the carbonates requires some westward lateral migration of fluids from beneath the Great Valley forearc basin before expulsion at the Paleocene seafloor. The migration pathways probably developed as a consequence of early Tertiary subduction and

  7. An agricultural drought index to incorporate the irrigation process and reservoir operations: A case study in the Tarim River Basin

    NASA Astrophysics Data System (ADS)

    Li, Zehua; Hao, Zhenchun; Shi, Xiaogang; Déry, Stephen J.; Li, Jieyou; Chen, Sichun; Li, Yongkun

    2016-08-01

    To help the decision making process and reduce climate change impacts, hydrologically-based drought indices have been used to determine drought severity in the Tarim River Basin (TRB) over the past decades. As the major components of the surface water balance, however, the irrigation process and reservoir operations have not been incorporated into drought indices in previous studies. Therefore, efforts are needed to develop a new agricultural drought index, which is based on the Variable Infiltration Capacity (VIC) model coupled with an irrigation scheme and a reservoir module. The new drought index was derived from the simulated soil moisture data from a retrospective VIC simulation from 1961 to 2007 over the irrigated area in the TRB. The physical processes in the coupled VIC model allow the new agricultural drought index to take into account a wide range of hydrologic processes including the irrigation process and reservoir operations. Notably, the irrigation process was found to dominate the surface water balance and drought evolution in the TRB. Furthermore, the drought conditions identified by the new agricultural drought index presented a good agreement with the historical drought events that occurred in 1993-94, 2004, and 2006-07, respectively. Moreover, the spatial distribution of coupled VIC model outputs using the new drought index provided detailed information about where and to what extent droughts occurred.

  8. Petroleum geology and resources of the West Siberian Basin, Russia

    USGS Publications Warehouse

    Ulmishek, Gregory F.

    2003-01-01

    during Neocomian time. The clastic material was transported by a system of rivers dominantly from the eastern provenance. Sandstones within the Neocomian clinoforms contain the principal oil reservoirs. The thick continental Aptian?Cenomanian Pokur Formation above the Neocomian sequence contains giant gas reserves in the northern part of the basin. Three total petroleum systems are identified in the West Siberian basin. Volumes of discovered hydrocarbons in these systems are 144 billion barrels of oil and more than 1,300 trillion cubic feet of gas. The assessed mean undiscovered resources are 55.2 billion barrels of oil, 642.9 trillion cubic feet of gas, and 20.5 billion barrels of natural gas liquids. The largest known oil reserves are in the Bazhenov-Neocomian total petroleum system that includes Upper Jurassic and younger rocks of the central and southern parts of the basin. Oil reservoirs are mainly in Neocomian and Upper Jurassic clastic strata. Source rocks are organic-rich siliceous shales of the Bazhenov Formation. Most discovered reserves are in structural traps, but stratigraphic traps in the Neocomian clinoform sequence are pro-ductive and are expected to contain much of the undiscovered resources. Two assessment units are identified in this total petroleum system. The first assessment unit includes all conventional reservoirs in the stratigraphic interval from the Upper Jurassic to the Cenomanian. The second unit includes unconventional (or continuous), self-sourced, fractured reservoirs in the Bazhenov Formation. This unit was not assessed quantitatively. The Togur-Tyumen total petroleum system covers the same geographic area as the Bazhenov-Neocomian system, but it includes older, Lower?Middle Jurassic strata and weathered rocks at the top of the pre-Jurassic sequence. A Callovian regional shale seal of the Abalak and lower Vasyugan Formations separates the two systems. The Togur-Tyumen system is oil-prone; gas reserves are insignificant. The principal o

  9. Microfractures due to overpressures caused by thermal cracking in well-sealed upper Devonian reservoirs, deep Alberta basin

    SciTech Connect

    Marquez, X.M.; Mountjoy, E.W.

    1996-04-01

    Microfractures (<1 mm in width) filled with reservoir bitumen occur and crosscut all sedimentary and diagenetic phases in the upper 200 m of the partially to completely dolomitized Upper Devonian (Leduc Formation) Strachan buildup and other buildups in the deep Alberta basin. They display three patterns: (1) subhorizontal, extending from intraskeletal pores and subvertical fractures, (2) radial around vugs and molds, and (3) random in the matrix. Subhorizontal microfracturing is the most common, and radial is the least common. Overpressuring by thermal cracking of crude oil to gas during burial can produce most of the characteristics exhibited by these microfractures: their association with all pore types, bitumen fillings, and relatively late diagenetic timing. Microfractures are restricted to isolated buildups below depths of about 3800 m in the Alberta basin. The lack of microfractures in adjacent gas-bearing and updip buildups along the Rimbey-Meadowbrook reef trend is likely because of the connection of these buildups to a regional conduit system in the underlying Cooking Lake platform, preventing them from developing sufficient pressures. Thermal cracking of crude oil to gas during burial is also indicated by finely and coarsely deformed lamellar textures of the reservoir bitumen that fills the microfractures in the Strachan buildup. This thermal cracking took place during the Late Cretaceous when the buildup was buried deeper than about 3500 m; however, tectonic compression occurred immediately west of these areas during the Late Cretaceous and early Tertiary Laramide orogeny, modifying the stress field. Suprahydrostatic (abnormal) pressures generated during thermal cracking of oil in conjunction with Laramide tectonic compression probably created the microfractures in isolated and effectively scaled reservoirs.

  10. Accounting for geochemical alterations of caprock fracture permeability in basin-scale models of leakage from geologic CO2 reservoirs

    NASA Astrophysics Data System (ADS)

    Guo, B.; Fitts, J. P.; Dobossy, M.; Bielicki, J. M.; Peters, C. A.

    2012-12-01

    Climate mitigation, public acceptance and energy, markets demand that the potential CO2 leakage rates from geologic storage reservoirs are predicted to be low and are known to a high level of certainty. Current approaches to predict CO2 leakage rates assume constant permeability of leakage pathways (e.g., wellbores, faults, fractures). A reactive transport model was developed to account for geochemical alterations that result in permeability evolution of leakage pathways. The one-dimensional reactive transport model was coupled with the basin-scale Estimating Leakage Semi-Analytical (ELSA) model to simulate CO2 and brine leakage through vertical caprock pathways for different CO2 storage reservoir sites and injection scenarios within the Mt. Simon and St. Peter sandstone formations of the Michigan basin. Mineral dissolution in the numerical reactive transport model expands leakage pathways and increases permeability as a result of calcite dissolution by reactions driven by CO2-acidified brine. A geochemical model compared kinetic and equilibrium treatments of calcite dissolution within each grid block for each time step. For a single fracture, we investigated the effect of the reactions on leakage by performing sensitivity analyses of fracture geometry, CO2 concentration, calcite abundance, initial permeability, and pressure gradient. Assuming that calcite dissolution reaches equilibrium at each time step produces unrealistic scenarios of buffering and permeability evolution within fractures. Therefore, the reactive transport model with a kinetic treatment of calcite dissolution was coupled to the ELSA model and used to compare brine and CO2 leakage rates at a variety of potential geologic storage sites within the Michigan basin. The results are used to construct maps based on the susceptibility to geochemically driven increases in leakage rates. These maps should provide useful and easily communicated inputs into decision-making processes for siting geologic CO2

  11. Assessment of Deep Seated Geothermal Reservoirs in Selected European Sedimentary Environments

    NASA Astrophysics Data System (ADS)

    Ungemach, Pierre; Antics, Miklos

    2014-05-01

    Europe at large enjoys a variety of sedimentary environments. They most often host dependable geothermal reservoirs thus favouring the farming of hot fluids, within the low to medium enthalpy range, among which geothermal district heating (GDH) and combined heat and power (CHP) undertakings hold a dominant share. Three selected reservoir settings, addressing carbonate and clastic deposits, the Central part of the Paris Basin, the Southern Germany Molasse Basin in the Münich area and the Netherland Basin respectively will be presented and the exploratory, modeling and development strategies discussed accordingly. Whereas 2D (reprocessed) and 3D seismics have become a standard in matching the distinctive (reef facies, an echelon faulting, carbonate platform layering) features of a deep buried karst and a key to drilling success in the Molasse Basin, thus emphasizing a leading exploratory rationale, the Netherland and Paris Basin instead benefit from a mature data base inherited from extensive hydrocarbon exploration campaigns, with concerns focused on reservoir modeling and sustainable management issues. As a result the lessons learned from the foregoing have enabled to build up a nucleus of expertise in the whole chain from resource identification to reservoir assessment and market penetration. The seismic risk, indeed a sensitive though somewhat emotional issue, which is requiring special attention and due microseismic monitoring from the geothermal community will also be commented.

  12. Hydrodynamic analysis as an aid in exploration within mature basins: Examples from Sawtooth and Sunburst Reservoirs, northwestern Williston basin

    SciTech Connect

    Putnam, P.E.; Moore, S. ); Ward, G. )

    1990-05-01

    Linking hydrodynamics to detailed stratigraphic and structural analyses is a powerful tool in hydrocarbon exploration in mature basins, In southernmost Canada straddling the Alberta-Saskatchewan border, significant petroleum reserves are encountered within Mesozoic units which are largely controlled by subsurface flow cells. The Jurassic Sawtooth Formation is characterized by an eastward shift from lower shoreface quartzarenites to basinal coquinas. The Sawtooth is a blanket deposit and crops out along the flanks of several Tertiary uplifts in northern Montana. In the subsurface the Sawtooth is draped over several relatively young structures. Potentiometric mapping illustrates a northerly flow orientation within the Sawtooth, and oil pools under artesian conditions are located where flow paths cross steeply flanked structures. The Lower Cretaceous Sunburst Formation is a series of valley-fill sandstones with mainly southwesterly paleoflow orientations. Hydrocarbon pools (e.g., Manyberries field) are located within a regional potentiometric low formed by three converging cells which recharge in the south, northwest, and east. This potentiometric low is characterized by systematic changes in oil and water compositions, with progressively lighter oils and NaCl-rich waters found toward the low's center. Stratigraphic variability controls pooling within the low, with hydrocarbons located on the updip flanks of valley fills which border nonreservoir rocks. In the northwestern Williston basin regional hydrodynamic analysis, combined with standard subsurface approaches, allows operators to discern large new hydrocarbon-bearing trends within and between densely drilled areas characterized by complex structure and stratigraphy.

  13. Role of sea-level change in deep water deposition along a carbonate shelf margin, Early and Middle Permian, Delaware Basin: implications for reservoir characterization

    NASA Astrophysics Data System (ADS)

    Li, Shunli; Yu, Xinghe; Li, Shengli; Giles, Katherine A.

    2015-04-01

    The architecture and sedimentary characteristics of deep water deposition can reflect influences of sea-level change on depositional processes on the shelf edge, slope, and basin floor. Outcrops of the northern slope and basin floor of the Delaware Basin in west Texas are progressively exposed due to canyon incision and road cutting. The outcrops in the Delaware Basin were measured to characterize gravity flow deposits in deep water of the basin. Subsurface data from the East Ford and Red Tank fields in the central and northeastern Delaware Basin were used to study reservoir architectures and properties. Depositional models of deep water gravity flows at different stages of sea-level change were constructed on the basis of outcrop and subsurface data. In the falling-stage system tracts, sandy debris with collapses of reef carbonates are deposited on the slope, and high-density turbidites on the slope toe and basin floor. In the low-stand system tracts, deep water fans that consist of mixed sand/mud facies on the basin floor are comprised of high- to low-density turbidites. In the transgression and high-stand system tracts, channel-levee systems and elongate lobes of mud-rich calciturbidite deposits formed as a result of sea level rise and scarcity of sandy sediment supply. For the reservoir architecture, the fan-like debris and high-density turbidites show high net-to-gross ratio of 62 %, which indicates the sandiest reservoirs for hydrocarbon accumulation. Lobe-like deep water fans with net-to-gross ratio of 57 % facilitate the formation of high quality sandy reservoirs. The channel-levee systems with muddy calciturbidites have low net-to-gross ratio of 30 %.

  14. Reservoir characterization of the Ordovician Red River Formation in southwest Williston Basin Bowman County, ND and Harding County, SD

    SciTech Connect

    Sippel, M.A.; Luff, K.D.; Hendricks, M.L.; Eby, D.E.

    1998-07-01

    This topical report is a compilation of characterizations by different disciplines of the Red River Formation in the southwest portion of the Williston Basin and the oil reservoirs which it contains in an area which straddles the state line between North Dakota and South Dakota. Goals of the report are to increase understanding of the reservoir rocks, oil-in-place, heterogeneity, and methods for improved recovery. The report is divided by discipline into five major sections: (1) geology, (2) petrography-petrophysical, (3) engineering, (4) case studies and (5) geophysical. Interwoven in these sections are results from demonstration wells which were drilled or selected for special testing to evaluate important concepts for field development and enhanced recovery. The Red River study area has been successfully explored with two-dimensional (2D) seismic. Improved reservoir characterization utilizing 3-dimensional (3D) and has been investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Targeted drilling from predictions using 3D seismic for porosity development were successful in developing significant reserves at close distances to old wells. Short-lateral and horizontal drilling technologies were tested for improved completion efficiency. Lateral completions should improve economics for both primary and secondary recovery where low permeability is a problem and higher density drilling is limited by drilling cost. Low water injectivity and widely spaced wells have restricted the application of waterflooding in the past. Water injection tests were performed in both a vertical and a horizontal well. Data from these tests were used to predict long-term injection and oil recovery.

  15. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah.

    SciTech Connect

    Chidsey, T.C. Jr.; Lorenz, D.M.; Culham, W.E.

    1997-10-15

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide- (CO{sub 2}-) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  16. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect

    Allison, M. Lee; Chidsey, Jr., Thomas

    1999-11-03

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million bbl of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO-) flood 2 project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  17. Dickinson field lodgepole reservoir: Significance of this Waulsortian-type mound to exploration in the Williston Basin

    SciTech Connect

    Johnson, M.S.

    1995-07-01

    Conoco`s No. 74 Dickinson State well, a deep test in Dickinson Field, Stark County, North Dakota, was completed in early 1993 capable of producing over 2,000 BOPD. It represents the first commercial oil production from the Lower Mississippian Lodgepole Formation in the U.S. portion of the Williston Basin. Three additional oil producers have now been completed and this Lodgepole discovery is fully developed. The producing reservoir, at depths of 9,700 to 10,000 ft, is a Waulsortian-type mound approximately 300 ft thick with a characteristic faunal assemblage of bryozoans and crinoids. The mound has an areal extent of slightly more than 1 square mile. Similar Waulsortian-type mounds have been recognized in rocks of Paleozoic age around the world, but have only been reported in the Williston Basin during the past decade. Such mounds are shallow to deep water deposits, tend to develop over structurally or topographically-positive areas, and may form by algal or by current action in conjunction with baffling action caused by bryozoans. The prolific nature of the Conoco discovery, plus several more-recent excellent mound discoveries in this same area, have caused renewed drilling and leasing activity. These events have also encouraged a review of existing seismic data, the shooting of new 3-D seismic programs and re-analysis of wells previously drilled through the Lodgepole Formation for evidence of similar mounds elsewhere in the basin.

  18. Hydrocarbon charging histories of the Ordovician reservoir in the Tahe oil field, Tarim Basin, China.

    PubMed

    Li, Chun-Quan; Chen, Hong-Han; Li, Si-Tian; Zhang, Xi-Ming; Chen, Han-Lin

    2004-08-01

    The Ordovician reservoir of the Tahe oil field went through many tectonic reconstructions, and was characterized by multiple hydrocarbon chargings. The aim of this study was to unravel the complex charging histories. Systematic analysis of fluid inclusions was employed to complete the investigation. Fluorescence observation of oil inclusions under UV light, and microthermometry of both oil and aqueous inclusions in 105 core samples taken from the Ordovician reservoir indicated that the Ordovician reservoir underwent four oil chargings and a gas charging. The hydrocarbon chargings occurred at the late Hercynian, the Indo-Sinian and Yanshan, the early Himalaya, the middle Himalaya, and the late Himalaya, respectively. The critical hydrocarbon charging time was at the late Hercynian. PMID:15236484

  19. The lower Miocene Liuhua carbonate reservoir, Pearl River Mouth basin, offshore People's Republic of China

    SciTech Connect

    Turner, N.L. )

    1990-06-01

    Since the drilling in January 1987 of the Amoco Liuhua 11-1-1A discovery well located 220 km southeast of Hong Kong, five additional wells have drilled and tested this lower Miocene Zhujiang Formation carbonate reservoir. Deposition of upper Zhujiang carbonates in the Liuhua area took place in an isolated platform environment. Major facies are (1) a platform-rim reef composed of red algae and coral boundstones, (2) a back-reef lagoon of fine-grained carbonates, (3) a large interior platform bank dominated by red algae but with a red algal-coral fringe on the south and southwest sides, (4) platform grainrocks, and (5) platform to lagoonal mud-supported carbonates. A paleo-water table surface present in every well represents a time of regional exposure. The reservoir is subdivided into five diagenetic carbonate units that are correlated across the platform and that cross facies boundaries and inferred time lines. The uppermost unit is a thin, tightly cemented carbonate formed at the time of drowning of the platform. Two thick highly leached carbonate units with porosities and permeabilities as high as 30% and several darcys comprise most of the reservoir. They are separated by a thin (7 m) tighter interval that formed by cementation below the water table of an exposure surface. The less porous unit at the base of the reservoir formed as a result of interaction between oil and water causing calcite cementation. Leaching continued in the carbonate below the reservoir and biodegradation occurred after oil had filled the structure. Further drilling and testing will determine the limits of the diagenetic units and whether the reservoir has commercial potential.

  20. Simulation model of clastic sedimentary processes

    SciTech Connect

    Tetzlaff, D.M.

    1987-01-01

    This dissertation describes SEDSIM, a computer model that simulates erosion, transport, and deposition of clastic sediments by free-surface flow in natural environments. SEDSIM is deterministic and is applicable to sedimentary processes in rivers, deltas, continental shelves, submarine canyons, and turbidite fans. The model is used to perform experiments in clastic sedimentation. Computer experimentation is limited by computing power available, but is free from scaling problems associated with laboratory experiments. SEDSIM responds to information provided to it at the outset of a simulation experiment, including topography, subsurface configuration, physical parameters of fluid and sediment, and characteristics of sediment sources. Extensive computer graphics are incorporated in SEDSIM. The user can display the three-dimensional geometry of simulated deposits in the form of successions of contour maps, perspective diagrams, vector plots of current velocities, and vertical sections of any azimuth orientation. The sections show both sediment age and composition. SEDSIM works realistically with processes involving channel shifting and topographic changes. Example applications include simulation of an ancient submarine canyon carved into a Cretaceous sequence in the National Petroleum Reserve in Alaska, known mainly from seismic sections and a sequence of Tertiary age in the Golden Meadow oil field of Louisiana, known principally from well logs.

  1. Ordovician carbonate buildups: Potential gas reservoirs in the Ordos basin, central China

    SciTech Connect

    Huaida Hsu )

    1991-03-01

    The Ordos basin of central China covers an area of about 25,000 km{sup 2}. A series of eastward moving overthrusts developed along its western flank, but most of the basin consists of a stable slope that dips westward less than one degree. The basin contains sediments from Sinian to Middle Ordovician and from the Middle Carboniferous to Cretaceous. Its evolutionary history is similar to that of the Alberta basin. Recently drilled wildcat wells have produced commercial gas flows that are closely associated with Ordovician carbonate buildups and a weathered surface between the Ordovician and Carboniferous. Most of the buildups consist of agal mounds; however, some Middle Ordovician reefs developed in the western portion and along the southern margin of the Ordos basin. More than 200 buildups were delineated using seismic stratigraphic techniques. They can be divided into four distinct types. The growth and distribution of buildups were controlled by sea-level fluctuations. The interpretations made in this study were based on the integration of results from a variety of analyses including vertical profiling, differential interformational velocity analysis, amplitude versus offset comparisons, G-log analysis, seismic modeling techniques, and high-precision gravity surveys. The best gas prospects are the Ordovician carbonate buildups distributed around the basin's central uplift. The delineation of carbonate buildups and the demonstration that they are associated with commercial gas flows open the gate for future gas exploration in this area.

  2. Structural style of the Cuyo-Bolsones basin complex of west-central Argentina

    SciTech Connect

    Gollop, I.G. )

    1991-03-01

    The Cuyo-Bolsones basin complex is part of a mosaic of basinal features that lie in the eastern Andean foreland. Sedimentary section ranges from Ordovician to Tertiary in age with the main petroleum source and reservoir potential in Carboniferous to Triassic clastics. Thick conglomerate units and widespread unconformities of both Permo-Carboniferous and Triassic age as well as localized volcanics indicate several periods of violent tectonic activity during late Paleozoic to early Mesozoic times. Triassic and older sediments are affected by normal faulting which in basins directly south extends up into the Lower Cretaceous. In the Cuyo-Bolsones basinal area, however this ancient tensional regime is entirely overprinted by relatively recent thrusting. This thrusting is late Tertiary in age, generally from east to west with very substantial relief. These thrust sheets are cut in places by later northeast-southwest strike-slip fault zones producing some localized flower structures. Nearly all the oil discovered in the Cuyo basin is produced from Triassic clastic reservoirs in compressional anticlines related to this thrusting. The major thrusts are well defined seismically, and seismic interpretations fit easily on balanced sections.

  3. Controls on nitrous oxide production and consumption in reservoirs of the Ohio River Basin

    EPA Science Inventory

    Aquatic ecosystems are a globally significant source of nitrous oxide (N2O), a potent greenhouse gas, but estimates are largely based on studies conducted in streams and rivers with relatively less known about N2O dynamics in lakes and reservoirs. Due to long water residence tim...

  4. Diagenetic overprint of original depositional architecture in a shallow water carbonate reservoir, Permian Basin, Texas

    SciTech Connect

    Ruppel, S.C.; Lucia, F.J.

    1996-12-31

    Permian shallow-water carbonate reservoirs are highly heterogeneous because of complex variations in depositional facies produced by high-frequency sea level rise and fall. Accordingly, establishment of a cycle stratigraphic framework is fundamental to defining reservoir heterogeneity. Because nearly all of these reservoirs have experienced multiple episodes of dolomitization and sulfate emplacement, however, permeability is a n of diagenetic overprint. The extent to which diagenesis can affect permeability development is dramatically displayed in the Grayburg Formation (middle Permian) at South Cowden field, Weit Texas. Three scales of cyclicity contribute to original depositional facies heterogeneity in the Grayburg; high-frequency cycles, averaging 3 meters in thickness, constitute the fundamental architectural element in the main reservoir interval. Despite original depositional heterogeneity due to this cyclicity, however, permeability development is substantially the result of two diagenetic events: (1) dolomite diagenesis in vertically burrowed wackestones and packstones and (2) late alteration and removal of anhydrite. Dolomite diagenesis in vertically burrowed wackestones and packstones has produced irregular vertical zones of higher permeability in mud-dominated bases of high-frequency cycles in leeward ramp-crest highstand successions. Because dolomite diagenesis is concentrated in burrowed highstand successions, the distribution of resultant permeability trends is partly constrained by patterns of longterm accommodation and high frequency cyclicity. Anhydrite diagenesis, which is characterized by conversion to gypsum or by complete removal of sulfate, is developed along basinward margins of the field and cross cuts original depositional framework.

  5. Diagenetic overprint of original depositional architecture in a shallow water carbonate reservoir, Permian Basin, Texas

    SciTech Connect

    Ruppel, S.C.; Lucia, F.J. )

    1996-01-01

    Permian shallow-water carbonate reservoirs are highly heterogeneous because of complex variations in depositional facies produced by high-frequency sea level rise and fall. Accordingly, establishment of a cycle stratigraphic framework is fundamental to defining reservoir heterogeneity. Because nearly all of these reservoirs have experienced multiple episodes of dolomitization and sulfate emplacement, however, permeability is a n of diagenetic overprint. The extent to which diagenesis can affect permeability development is dramatically displayed in the Grayburg Formation (middle Permian) at South Cowden field, Weit Texas. Three scales of cyclicity contribute to original depositional facies heterogeneity in the Grayburg; high-frequency cycles, averaging 3 meters in thickness, constitute the fundamental architectural element in the main reservoir interval. Despite original depositional heterogeneity due to this cyclicity, however, permeability development is substantially the result of two diagenetic events: (1) dolomite diagenesis in vertically burrowed wackestones and packstones and (2) late alteration and removal of anhydrite. Dolomite diagenesis in vertically burrowed wackestones and packstones has produced irregular vertical zones of higher permeability in mud-dominated bases of high-frequency cycles in leeward ramp-crest highstand successions. Because dolomite diagenesis is concentrated in burrowed highstand successions, the distribution of resultant permeability trends is partly constrained by patterns of longterm accommodation and high frequency cyclicity. Anhydrite diagenesis, which is characterized by conversion to gypsum or by complete removal of sulfate, is developed along basinward margins of the field and cross cuts original depositional framework.

  6. Neoproterozoic to Early Cambrian clastics sedimentation and stratigraphy in the Central and Southern Appalachians: An overview

    SciTech Connect

    Schwab, F.L. . Dept. of Geology)

    1993-03-01

    A clear understanding of paleogeography, tectonics, and sedimentary framework now exists for Neoproterozoic to Early Cambrian clastics in the Central and Southern Appalachians. It is based on well-constrained data on mineralogy, texture, and sedimentary structures and less precise information on age and regional variations in lithology and thickness. From 900 m.y. ago until 600 m.y. ago, tension along the eastern edge of North America produced a series of NE-SW basins (grabens and aulacogens ). These rift-related basins filled with thick, coarse, arkosic clastics (Mechum River Fm., Mt. Rogers Volc. Gp., Grandfather Mtn. Fm., portions of the Ocoee Series) mimicking the setting that later typified the Triassic of eastern North America. Coeval sequences exposed along the southeastern edge of the Blue Ridge in Va. and N.C. (Fauquier Fm., Lynchburg Gp., Ashe Fm.) define the hinge zone of a developing continental margin. Farther south in Tenn., Ga., and Ala., the picture is less clear. In latest Precambrian and Early Cambrian time, a passive Atlantic-type'' margin existed. This consisted of paired continental shelf and continental slope-rise areas (shallow water deposits of the Chilhowee Gp. and overlying muds and carbonates to the northwest; deep water clastics of the Evington Gp. and Alligator Back Fm. to the southeast). The cohesiveness of this framework argues against these tectonostratigraphic belts being considered terranes.

  7. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report

    SciTech Connect

    Chidsey, T.C. Jr.

    1997-02-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, mule, Blue Hogan, heron North, and Runway) within the Navajo Nation of southeastern utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The reservoir engineering component of the work completed to date included analysis of production data and well tests, comprehensive laboratory programs, and preliminary mechanistic reservoir simulation studies. A comprehensive fluid property characterization program was completed. Mechanistic reservoir production performance simulation studies were also completed.

  8. Petrology and reservoir paragenesis in the Sussex B sandstone of the Upper Cretaceous Cody Shale, House Creek and Porcupine fields, Powder River basin, Wyoming

    SciTech Connect

    Not Available

    1992-01-01

    This book of reservoir paragenesis includes detailed descriptions of the petrology of depositional facies of the Sussex B sandstone of the Sussex Sandstone Member of the Upper Cretaceous Cody Shale in the House Creek and Porcupine fields, Powder River basin, Wyoming.

  9. Variogram Identification Aided by a Structural Framework for Improved Geometric Modeling of Faulted Reservoirs: Jeffara Basin, Southeastern Tunisia

    SciTech Connect

    Chihi, Hayet Bedir, Mourad; Belayouni, Habib

    2013-06-15

    This article describes a proposed work-sequence to generate accurate reservoir-architecture models, describing the geometry of bounding surfaces (i.e., fault locations and extents), of a structurally complex geologic setting in the Jeffara Basin (South East Tunisia) by means of geostatistical modeling. This uses the variogram as the main tool to measure the spatial variability of the studied geologic medium before making any estimation or simulation. However, it is not always easy to fit complex experimental variograms to theoretical models. Thus, our primary purpose was to establish a relationship between the geology and the components of the variograms to fit a mathematically consistent and geologically interpretable variogram model for improved predictions of surface geometries. We used a three-step approach based on available well data and seismic information. First, we determined the structural framework: a seismo-tectonic data analysis was carried out, and we showed that the study area is cut mainly by NW-SE-trending normal faults, which were classified according to geometric criteria (strike, throw magnitude, dip, and dip direction). We showed that these normal faults are at the origin of a large-scale trend structure (surfaces tilted toward the north-east). At a smaller scale, the normal faults create a distinct compartmentalization of the reservoirs. Then, a model of the reservoir system architecture was built by geostatistical methods. An efficient methodology was developed, to estimate the bounding faulted surfaces of the reservoir units. Emphasis was placed on (i) elaborating a methodology for variogram interpretation and modeling, whereby the importance of each variogram component is assessed in terms of probably geologic factor controlling the behavior of each structure; (ii) integrating the relevant fault characteristics, which were deduced from the previous fault classification analysis, as constraints in the kriging estimation of bounding surfaces

  10. Quantitative seismic reservoir characterization of tight sands (granite wash) play at Stiles Ranch field in the Anadarko Basin, Texas (USA)

    NASA Astrophysics Data System (ADS)

    Durrani, Muhammad Zahid Afzal

    The main objective of this study is to conduct quantitative seismic reservoir characterization study of the Granite Wash (Marmaton-tight sand) play at Stiles Ranch field in the Anadarko Basin, Texas (USA). The proposed methodology incorporates seismic petrophysics, rock physics, Amplitude Variation with Offset (AVO) analysis and seismic pre-stack simultaneous elastic impedance inversion. In addition, it utilizes geostatistical technique to improve the reservoir property estimation and quantify uncertainty in seismic lithology and fluid prediction. The general objective encompasses several more specific goals to study: well data conditioning and prediction of essential petrophysical properties (e.g., porosity, permeability and saturation), and their relationship to the elastic properties. Due to the multidisciplinary nature of seismic petrophysics, only three core aspects are focused on that cover the desired objectives: 1) porosity modeling, 2) shear wave prediction, and (3) fluid substitution. The rock types are characterized by Rock Physics Diagnostic (RPD) approach conducted on well log data calibrated with core data and thin sections. The Granite Wash reservoir elastic properties are upscaled from log to seismic scale using Backus averaging to obtain a more coarsely (upscaled) sampled data set equivalent to the seismic scale. Anisotropy parametric (epsilon, gamma and delta) log curves are estimated consistent with seismic measurements using rock properties, seismic velocity and clay volume (Vsh) as a function of depth. The reservoir elastic properties are related to both the depositional environment and burial history through rock physics depth trends as function of depth. Furthermore, based on the practical aspects two separate inversion approaches; AVO and Elastic Impedance (EI) are evaluated prior to their application to real seismic. Various AVO derived attribute volumes such as intercept (A), gradient (B) and reflection coefficients (scaled Poisson's ratio

  11. Airborne Snow Observatory: measuring basin-wide seasonal snowpack with LiDAR and an imaging spectrometer to improve runoff forecasting and reservoir operation (Invited)

    NASA Astrophysics Data System (ADS)

    McGurk, B. J.; Painter, T. H.

    2013-12-01

    The Airborne Snow Observatory (ASO) NASA-JPL demonstration mission collected detailed snow information for portions of the Tuolumne Basin in California and the Uncompahgre Basin in Colorado in spring of 2013. The ASO uses an imaging spectrometer and LiDAR sensors mounted in an aircraft to collect snow depth and extent data, and snow albedo. By combining ground and modeled density fields, the ~weekly flights over the Tuolumne produced both basin-wide and detailed sub-basin snow water equivalent (SWE) estimates that were used in a hydrologic simulation model to improve the accuracy and timing of runoff forecasting tools used to manage Hetch Hetchy Reservoir, the source of 85% of the water supply for 2.5 million people on the San Francisco Peninsula. The USGS PRMS simulation model was calibrated to the 459 square mile basin and was updated with both weather forecast data and distributed snow information from ASO flights to inform the reservoir operators of predicted inflow volumes and timing. Information produced by the ASO data collection was used to update distributed SWE and albedo state variables in the PRMS model and improved inflow forecasts for Hetch Hetchy. Data from operational ASO programs is expected to improve the ability of reservoir operators to more efficiently allocate the last half of the recession limb of snowmelt inflow and be more assured of meeting operational mandates. This presentation will provide results from the project after its first year.

  12. Cation exchange capacity (Qv) estimation in shaly sand reservoirs: case studies in the Junggar Basin, northwest China

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Mao, Zhi-Qiang; Sun, Zhong-Chun; Luo, Xing-Ping; Deng, Ren-Shuang; Zhang, Ya-Hui; Ren, Bing

    2015-10-01

    Cation exchange capacity (Qv) is a key parameter in resistivity-based water saturation models of shaly sand reservoirs, and the accuracy of Qv calculation is crucial to the prediction of saturations of oil and gas. In this study, a theoretical expression of Qv in terms of shaly sand permeability (Kshaly-sand), total porosity (ϕt), and salinity of formation water (S) is deduced based on the capillary tube model and the physics volume model. Meanwhile, the classical Schlumberger-Doll research (SDR) model has been introduced to estimate Kshaly-sand. On this basis, a novel technique to estimate Qv from nuclear magnetic resonance (NMR) logs is proposed, and the corresponding model is also established, whose model parameters are calibrated by laboratory Qv and NMR measurements of 15 core samples from the Toutunhe formation of the Junggar Basin, northwest China. Based on the experimental data sets, this technique can be extended to reservoir conditions to estimate continuous Qv along the intervals. The processing results of field examples illustrate that the Qv calculated from field NMR logs are consistent with the analyzed results, with the absolute errors within the scope of  ±0.1 mmol cm-3 for the majority of core samples.

  13. Controls on early retention and late enhancement of microporosity in reefal gas reservoirs, offshore north Sumatra basin

    SciTech Connect

    Moshier, S.O.

    1989-03-01

    Chalky lime-matrix texture is pervasive in 300 m of coralgal and skeletal carbonates in the NSB-A (North Sumatra basin-A) gas field (lower-middle Miocene), offshore northern Sumatra. Much of the reservoir quality can be attributed to matrix with abundant intercrystalline, vuggy, and channel-form micropores. Matrix is composed of calcite microrhombs which are interpreted to have developed during stabilization of the precursor mud. On the same shelf, the smaller NSB-H oil field is composed of more than 45-m thick buildup of similar lithofacies which lack abundant microporosity. In both fields, early diagenesis included dissolution of aragonitic skeletal material, matrix neomorphism, and precipitation of nonluminescent calcite followed by zoned, luminescent calcite cements. Stable isotopes from matrix reflect a more open or water-dominated matrix diagenesis at NSB-H field. More active flushing of oversaturated, organically charged meteoric waters was responsible for thorough matrix cementation and microporosity occlusion at NSB-H field. Calcite cements show progressive enrichment of iron and manganese and depletion of magnesium and strontium during growth. The matrix at NSB-H field contains iron-rich dolomite. At A field, remnant matrix microporosity and intraparticle microporosity in calcitic skeletal material were greatly enhanced after all phases of cementation. Some pore-rimming cements are partially dissolved. At NSB-H field, late-phase dissolution is limited to the vicinity of open fractures where matrix-calcite and dolomite crystals are leached. Reservoir brines have a limey marine origin but are depleted in Ca and Mg relative to seawater, and carbon dioxide accounts for 31% of reservoir gas. If present brines are carbonate undersaturated, they may be substantially enhanced microporosity at NSB-A field. Late-stage dissolution is insignificant at NSB-H field due to the lack of early formed matrix microporosity.

  14. Negotiating designs of multi-purpose reservoir systems in international basins

    NASA Astrophysics Data System (ADS)

    Geressu, Robel; Harou, Julien

    2016-04-01

    Given increasing agricultural and energy demands, coordinated management of multi-reservoir systems could help increase production without further stressing available water resources. However, regional or international disputes about water-use rights pose a challenge to efficient expansion and management of many large reservoir systems. Even when projects are likely to benefit all stakeholders, agreeing on the design, operation, financing, and benefit sharing can be challenging. This is due to the difficulty of considering multiple stakeholder interests in the design of projects and understanding the benefit trade-offs that designs imply. Incommensurate performance metrics, incomplete knowledge on system requirements, lack of objectivity in managing conflict and difficulty to communicate complex issue exacerbate the problem. This work proposes a multi-step hybrid multi-objective optimization and multi-criteria ranking approach for supporting negotiation in water resource systems. The approach uses many-objective optimization to generate alternative efficient designs and reveal the trade-offs between conflicting objectives. This enables informed elicitation of criteria weights for further multi-criteria ranking of alternatives. An ideal design would be ranked as best by all stakeholders. Resource-sharing mechanisms such as power-trade and/or cost sharing may help competing stakeholders arrive at designs acceptable to all. Many-objective optimization helps suggests efficient designs (reservoir site, its storage size and operating rule) and coordination levels considering the perspectives of multiple stakeholders simultaneously. We apply the proposed approach to a proof-of-concept study of the expansion of the Blue Nile transboundary reservoir system.

  15. Reservoir uncertainty, Precambrian topography, and carbon sequestration in the Mt. Simon Sandstone, Illinois Basin

    USGS Publications Warehouse

    Leetaru, H.E.; McBride, J.H.

    2009-01-01

    Sequestration sites are evaluated by studying the local geological structure and confirming the presence of both a reservoir facies and an impermeable seal not breached by significant faulting. The Cambrian Mt. Simon Sandstone is a blanket sandstone that underlies large parts of Midwest United States and is this region's most significant carbon sequestration reservoir. An assessment of the geological structure of any Mt. Simon sequestration site must also include knowledge of the paleotopography prior to deposition. Understanding Precambrian paleotopography is critical in estimating reservoir thickness and quality. Regional outcrop and borehole mapping of the Mt. Simon in conjunction with mapping seismic reflection data can facilitate the prediction of basement highs. Any potential site must, at the minimum, have seismic reflection data, calibrated with drill-hole information, to evaluate the presence of Precambrian topography and alleviate some of the uncertainty surrounding the thickness or possible absence of the Mt. Simon at a particular sequestration site. The Mt. Simon is thought to commonly overlie Precambrian basement granitic or rhyolitic rocks. In places, at least about 549 m (1800 ft) of topographic relief on the top of the basement surface prior to Mt. Simon deposition was observed. The Mt. Simon reservoir sandstone is thin or not present where basement is topographically high, whereas the low areas can have thick Mt. Simon. The paleotopography on the basement and its correlation to Mt. Simon thickness have been observed at both outcrops and in the subsurface from the states of Illinois, Ohio, Wisconsin, and Missouri. ?? 2009. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  16. Hydrocarbon prospects of southern Indus basin, Pakistan

    SciTech Connect

    Quadri, V.U.N.; Shuaib, S.M.

    1986-06-01

    The Southern Indus basin extends approximately between lat. 23/sup 0/ and 28/sup 0/31'N, and from long. 66/sup 0/E to the eastern boundary of Pakistan. Of the 55 exploratory wells drilled (1955-1984), 27 were based on results of multifold seismic surveys. Five commercial oil discoveries and one gas discovery in Cretaceous sands, three gas discoveries in Paleocene limestone or sandstone, and one gas-condensate discovery from lower Eocene limestone prove that hydrocarbons are present. The main hydrocarbon fairways are Mesozoic tilted fault blocks. Tertiary reefal banks, and drape and compressional anticlines. Older reservoirs are accessible toward the east and northeast, and younger mature source rocks are to the west, including offshore, of the Badin block oil field area. The Indus offshore basin reflects sedimentation associated with Mesozoic rifting of the Pakistan-Indian margin, superimposed by a terrigenous clastic depositional system comprised of deltas, shelves, and deep-sea fans of the Indus River.

  17. Diagenesis and reservoir potential of volcanogenic sandstones - Cretaceous of the Surat Basin, Queensland, Australia

    SciTech Connect

    Hawlader, H.M. )

    1990-06-01

    The sandstones of the Lower Cretaceous succession of the Surat basin are characterized by abundant volcanogenic detritus in the form of rock-fragments and feldspars derived from an andesitic magmatic arc coincident with the present Great Barrier Reef in offshore Queensland. These compositionally immature sandstones are not regarded as favorable exploration targets because of their labile nature, their shallow burial depths, and hence the low thermal maturity of the intercalated mudrocks that might have constituted hydrocarbon source rocks. However, petrographic and petrophysical examinations show that significant primary and early diagenetic secondary dissolution porosity and permeability exist in some of these stratigraphic units that under certain circumstances could be the host for hydrocarbons and may become the future exploration targets. Flushing by CO{sub 2}-charged meteoric water after the inception of the Great Artesian basin (of which the Surat basin is a component) in the Tertiary is likely to have been the principal agent of secondary porosity development in these sandstones. Additionally, products of microbial degradation of organic matter (in the intercalated mudstones) and/or maturation products from the deeply buried part of the basin might have assisted in the dissolution of framework grains and previously deposited cement.

  18. Simulating sediment loading into the major reservoirs in Trinity River Basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Upper Trinity Basin supplies water to about one-fourth of Texas' population. The anticipated rapid growth of North Central Texas will certainly increase regional demands for high quality drinking water. This has increased concerns that sediment and nutrient loads received by drinking water reser...

  19. The costs of uncoordinated infrastructure management in multi-reservoir river basins

    NASA Astrophysics Data System (ADS)

    Jeuland, Marc; Baker, Justin; Bartlett, Ryan; Lacombe, Guillaume

    2014-10-01

    Though there are surprisingly few estimates of the economic benefits of coordinated infrastructure development and operations in international river basins, there is a widespread belief that improved cooperation is beneficial for managing water scarcity and variability. Hydro-economic optimization models are commonly-used for identifying efficient allocation of water across time and space, but such models typically assume full coordination. In the real world, investment and operational decisions for specific projects are often made without full consideration of potential downstream impacts. This paper describes a tractable methodology for evaluating the economic benefits of infrastructure coordination. We demonstrate its application over a range of water availability scenarios in a catchment of the Mekong located in Lao PDR, the Nam Ngum River Basin. Results from this basin suggest that coordination improves system net benefits from irrigation and hydropower by approximately 3-12% (or US12-53 million/yr) assuming moderate levels of flood control, and that the magnitude of coordination benefits generally increases with the level of water availability and with inflow variability. Similar analyses would be useful for developing a systematic understanding of the factors that increase the costs of non-cooperation in river basin systems worldwide, and would likely help to improve targeting of efforts to stimulate complicated negotiations over water resources.

  20. Study of the relation between soil use, vegetation coverage, and the discharge of sediments from artificial reservoirs using MSS/LANDSAT images. Example: The Tres Marias reservoir and its supply basin

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Sausen, T. M.

    1981-01-01

    The land use and types of vegetation in the region of the upper Sao Francisco River, Brazil, are identified. This region comprises the supply basin of the Tres Marias reservoir. Imagery from channels 5 and 7 of the LANDSAT multispectral band scanner during wet and rainy seasons and ground truth data were employed to characterize and map the vegetation, land use, and sedimentary discharges from the reservoir. Agricultural and reforested lands, meadows, and forests are identified. Changes in land use due to human activity are demonstrated.

  1. The western Mediterranean basin as an aged aerosols reservoir. Insights from an old-fashioned but efficient radiotracer

    NASA Astrophysics Data System (ADS)

    Brattich, E.; Hernández-Ceballos, M. A.; Orza, J. A. G.; Bolívar, J. P.; Tositti, L.

    2016-09-01

    The long-term contemporary 210Pb time series acquired during the period 2004-2011 at two distant sites of different altitude in the Mediterranean basin, El Arenosillo (40 m a.s.l. in southwestern Spain) and Mt. Cimone (2165 m a.s.l. in northern Italy), are analyzed and compared. Besides being considered a tracer of continental air masses, 210Pb radionuclide is also a proxy of fine stable aerosol. For this reason, the measurements of PM10 mass concentrations collected at the same time and the corresponding 210Pb/PM10 ratio at the two sites are considered to gain better insights into the origin and size of the particles. Three statistical trajectory methods are applied to identify and characterize the 210Pb source regions at the two sites. The three methods yield similar outcomes in the source identification, which strengthens the robustness of our results. In addition to the importance of the transport from areas of continental Europe, this study highlights the relevant role of the Mediterranean Sea as a major 210Pb reservoir layer associated to the aged air masses that accumulate in the western Mediterranean basin. The analysis of the sources points out the significant influence of northern Africa to 210Pb increases at both sites as well, even though the most intensive episodes are not of Saharan origin.

  2. Predicting the downstream impact of ensembles of small reservoirs with special reference to the Volta Basin, West Africa

    NASA Astrophysics Data System (ADS)

    van de Giesen, N.; Andreini, M.; Liebe, J.; Steenhuis, T.; Huber-Lee, A.

    2005-12-01

    After a strong reduction in investments in water infrastructure in Sub-Saharan Africa, we now see a revival and increased interest to start water-related projects. The global political willingness to work towards the UN millennium goals are an important driver behind this recent development. Large scale irrigation projects, such as were constructed at tremendous costs in the 1970's and early 1980's, are no longer seen as the way forward. Instead, the construction of a large number of small, village-level irrigation schemes is thought to be a more effective way to improve food production. Such small schemes would fit better in existing and functioning governance structures. An important question now becomes what the cumulative (downstream) impact is of a large number of small irrigation projects, especially when they threaten to deplete transboundary water resources. The Volta Basin in West Africa is a transboundary river catchment, divided over six countries. Of these six countries, upstream Burkina Faso and downstream Ghana are the most important and cover 43% and 42% of the basin, respectively. In Burkina Faso (and also North Ghana), small reservoirs and associated irrigation schemes are already an important means to improve the livelihoods of the rural population. In fact, over two thousand such schemes have already been constructed in Burkina Faso and further construction is to be expected in the light of the UN millennium goals. The cumulative impact of these schemes would affect the Akosombo Reservoir, one of the largest manmade lakes in the world and an important motor behind the economic development in (South) Ghana. This presentation will put forward an analytical framework that allows for the impact assessment of (large) ensembles of small reservoirs. It will be shown that despite their relatively low water use efficiencies, the overall impact remains low compared to the impact of large dams. The tools developed can be used in similar settings elsewhere

  3. Effects of the Paso Robles Geothermal Reservoir on water quality and availability in the Paso Robles Groundwater Basin, California

    NASA Astrophysics Data System (ADS)

    Rytuba, J. J.; Langenheim, V. E.; Goldstein, D.

    2012-12-01

    Geochemical and isotopic data from water wells and hot springs in the Paso Robles Groundwater Basin (PRGB) indicate that two water sources affect water quality and availability: meteoric water stored in Pliocene sediments, and geothermal waters present in deeper Miocene sediments. Understanding mixing of these two water sources is important in managing groundwater in the PRGB. The PRGB is the southernmost of several Salinas Valley groundwater basins. Demands from both population growth and agriculture have made water quality and availability a continuing concern. To address continuing depletion of groundwater, a 25 km pipe was recently constructed to bring water from Lake Nacimiento to supplement municipal water supplies. The PRGB is bounded on the west by the Rinconada Fault, and on the east by the San Juan and Red Hills faults. The main aquifer in the PRGB is in the Pliocene Paso Robles Formation (PRF). Aeromagnetic anomalies delineate the boundaries of the basin and thickness of basin fill. Aeromagnetic highs are coincident with surface and near surface presence of the highly magnetic La Panza granite, while aeromagnetic lows occur where basin fill is deepest and the La Panza granite is at a depth of over 1 km. The low temperature (<40oC) geothermal system in the Paso Robles area is located on the west side of the PRGB. The geothermal reservoir is present in the base of the PRF and the upper part of the Miocene Monterey Formation. The geothermal waters are Ca-Mg-SO4 waters, with gas chemistry dominated by CH4, N2, CO2, and H2S. Sulfur, barite and FeS precipitates occur in hot spring pools. The hot springs and geothermal wells are localized along the Rinconada and subsidiary faults. Several new hot springs developed along the Rinconada fault, including one in the Paso Robles city center after the 2003 M6.5 San Simeon earthquake. The city center hot spring was covered over and hot spring effluent was piped 1 km to a leach field in the Salinas River floodplain

  4. Secondary natural gas recovery: Targeted applications for infield reserve growth in midcontinent reservoirs, Boonsville Field, Fort Worth Basin, Texas. Topical report, May 1993--June 1995

    SciTech Connect

    Hardage, B.A.; Carr, D.L.; Finley, R.J.; Tyler, N.; Lancaster, D.E.; Elphick, R.Y.; Ballard, J.R.

    1995-07-01

    The objectives of this project are to define undrained or incompletely drained reservoir compartments controlled primarily by depositional heterogeneity in a low-accommodation, cratonic Midcontinent depositional setting, and, afterwards, to develop and transfer to producers strategies for infield reserve growth of natural gas. Integrated geologic, geophysical, reservoir engineering, and petrophysical evaluations are described in complex difficult-to-characterize fluvial and deltaic reservoirs in Boonsville (Bend Conglomerate Gas) field, a large, mature gas field located in the Fort Worth Basin of North Texas. The purpose of this project is to demonstrate approaches to overcoming the reservoir complexity, targeting the gas resource, and doing so using state-of-the-art technologies being applied by a large cross section of Midcontinent operators.

  5. High-resolution sequence stratigraphy of Late Mississippian carbonates in the Appalachian basin, implications for compartmentalization of reservoir facies

    SciTech Connect

    Al-Tawil, A.; Read, J.F. )

    1996-01-01

    The Late Mississippian Newman/Greenbrier carbonates were deposited in the Appalachian foreland basin whose depocenter lay to the south and east of Kentucky, West Virginia and Virginia. Over 50 closely spaced detailed measured sections along with numerous wireline logs, biostratigraphic data, and lithologic markers are used to construct detailed facies cross-sections. In the Newman limestone along the Cincinnati Arch, four sequences bounded by regional unconformities can be recognized. The lower three sequences contain one to eight oolite bearing disconformity bounded parasequences. Parasequences within sequences one to three, progressively onlap the Waverly and Cincinnati arches. These are dominated by shoal water ooid grainstone and lagoonal skeletal wackestone/mudstone facies, while eolianite quartzose peloidal grainstone facies are restricted to the lower two sequences. Sequence four is thicker and capped by a disconformity, but is internally conformable. It contains thick oolite units in the lower part (up to 10 m), open ramp skeletal packstone and shale (2nd order maximum flooding of the studied interval). In the much thicker foreland basin sections in West Virginia, four sequences also can be defined. The lowstand deposits are characterized by red beds up-dip, locally thickened tidal flat facies down-dip, and thin grainstone tongues extending into the slope/basin facies. Within the sequences, parasequences lack bounding disconformities, and are dominated by open ramp skeletal packstone and shoal water ooid grainstone facies. Eolianite facies are common in landward parts of the lower two sequences. The complex regional distribution and vertical compartmentalization of these multilateral oolitic reservoirs in both areas on this tropical ramp reflect tidal bar morphologies, differential regional subsidence patterns, coupled with 4th order moderate amplitude eustacy.

  6. High-resolution sequence stratigraphy of Late Mississippian carbonates in the Appalachian basin, implications for compartmentalization of reservoir facies

    SciTech Connect

    Al-Tawil, A.; Read, J.F.

    1996-12-31

    The Late Mississippian Newman/Greenbrier carbonates were deposited in the Appalachian foreland basin whose depocenter lay to the south and east of Kentucky, West Virginia and Virginia. Over 50 closely spaced detailed measured sections along with numerous wireline logs, biostratigraphic data, and lithologic markers are used to construct detailed facies cross-sections. In the Newman limestone along the Cincinnati Arch, four sequences bounded by regional unconformities can be recognized. The lower three sequences contain one to eight oolite bearing disconformity bounded parasequences. Parasequences within sequences one to three, progressively onlap the Waverly and Cincinnati arches. These are dominated by shoal water ooid grainstone and lagoonal skeletal wackestone/mudstone facies, while eolianite quartzose peloidal grainstone facies are restricted to the lower two sequences. Sequence four is thicker and capped by a disconformity, but is internally conformable. It contains thick oolite units in the lower part (up to 10 m), open ramp skeletal packstone and shale (2nd order maximum flooding of the studied interval). In the much thicker foreland basin sections in West Virginia, four sequences also can be defined. The lowstand deposits are characterized by red beds up-dip, locally thickened tidal flat facies down-dip, and thin grainstone tongues extending into the slope/basin facies. Within the sequences, parasequences lack bounding disconformities, and are dominated by open ramp skeletal packstone and shoal water ooid grainstone facies. Eolianite facies are common in landward parts of the lower two sequences. The complex regional distribution and vertical compartmentalization of these multilateral oolitic reservoirs in both areas on this tropical ramp reflect tidal bar morphologies, differential regional subsidence patterns, coupled with 4th order moderate amplitude eustacy.

  7. Mesozoic evolution of the Amu Darya basin

    NASA Astrophysics Data System (ADS)

    Brunet, Marie-Françoise; Ershov, Andrey; Korotaev, Maxim; Mordvintsev, Dmitriy; Barrier, Eric; Sidorova, Irina

    2014-05-01

    of the basin is occupied by the Pre-Kopet Dagh Cenozoic foreland basin NW oriented, possibly underlain by an earlier extensional trough. The main elements of the sedimentary pile, which can be partly observed in the South-Western Gissar are: Lower to Middle Jurassic continental to paralic clastic rocks; upper Middle to Upper Jurassic marine carbonate then thick Tithonian evaporite rocks, sealing the reservoirs in the Jurassic carbonates; continental Neocomian clastic rocks and red beds, Aptian to Paleogene marine carbonate and clastic rocks. To reconstruct the geodynamic evolution of the Amu Darya Basin, we analysed the subsidence by backstripping of some wells/pseudo-wells and of three cross-sections with some examples of thermal modelling on the periods of maturation of the potential source rocks. The crustal thinning events take place in the Permo-Triassic? (depending on the age of the rifts underlying the basin), in Early-Middle Jurassic and during the Early Cretaceous, resulting in increases of the tectonic subsidence rates.

  8. Designing multi-reservoir system designs via efficient water-energy-food nexus trade-offs - Selecting new hydropower dams for the Blue Nile and Nepal's Koshi Basin

    NASA Astrophysics Data System (ADS)

    Harou, J. J.; Hurford, A.; Geressu, R. T.

    2015-12-01

    Many of the world's multi-reservoir water resource systems are being considered for further development of hydropower and irrigation aiming to meet economic, political and ecological goals. Complex river basins serve many needs so how should the different proposed groupings of reservoirs and their operations be evaluated? How should uncertainty about future supply and demand conditions be factored in? What reservoir designs can meet multiple goals and perform robustly in a context of global change? We propose an optimized multi-criteria screening approach to identify best performing designs, i.e., the selection, size and operating rules of new reservoirs within multi-reservoir systems in a context of deeply uncertain change. Reservoir release operating rules and storage sizes are optimized concurrently for each separate infrastructure design under consideration across many scenarios representing plausible future conditions. Outputs reveal system trade-offs using multi-dimensional scatter plots where each point represents an approximately Pareto-optimal design. The method is applied to proposed Blue Nile River reservoirs in Ethiopia, where trade-offs between capital costs, total and firm energy output, aggregate storage and downstream irrigation and energy provision for the best performing designs are evaluated. The impact of filling period for large reservoirs is considered in a context of hydrological uncertainty. The approach is also applied to the Koshi basin in Nepal where combinations of hydropower storage and run-of-river dams are being considered for investment. We show searching for investment portfolios that meet multiple objectives provides stakeholders with a rich view on the trade-offs inherent in the nexus and how different investment bundles perform differently under plausible futures. Both case-studies show how the proposed approach helps explore and understand the implications of investing in new dams in a global change context.

  9. ADVANCED CHARACTERIZATION OF FRACTURED RESERVOIRS IN CARBONATE ROCKS: THE MICHIGAN BASIN

    SciTech Connect

    James R. Wood; William B. Harrison

    2000-04-01

    Progress in year 2 of this project is highlighted by the completing of the writing and testing of the project database, ''Atlas'', and populating it with all the project data gathered to date. This includes digitization of 17,000+ original Scout Tickets for the Michigan Basin. Work continues on the Driller's Reports, where they have scanned about 50,000 pages out of an estimated 300,000 pages. All of the scanned images have been attached to ''Atlas'', the visual database viewer developed for this project. A complete set of the 1/24,000 USGS DEM (Digital Elevation Models) for the State of Michigan has been downloaded from the USGS Web sites, decompressed and converted to ArcView Grid files. A large-scale map (48 inches x 84 inches) has been constructed by mosaicking of the high-resolution files. This map shows excellent ground surface detail and has drawn much comment and requests for copies at the venues where it has been displayed. Although it was generated for mapping of surface lineations the map has other uses, particularly analysis of the glacial drift in Michigan. It presents unusual problems due to its size and they are working with vendors on compression and display algorithms (e.g. MrSID{copyright}) in an attempt to make it available over the Internet, both for viewing and download. A set of aeromagnetic data for the Michigan Basin has been acquired and is being incorporated into the study. As reported previously, the general fracture picture in the Michigan Basin is a dominant NW-SE trend with a conjugate NE-SW trend. Subsurface, DEM and gravity data support the interpretation of a graben-type deep basement structural trend coincident with the Michigan Basin Gravity High. They plan to incorporate the aeromagnetic data into this interpretation as well.

  10. Middle Jurassic incised valley fill (eolian/estuarine) and nearshore marine petroleum reservoirs, Powder River basin

    SciTech Connect

    Ahlbrandt, T.S.; Fox, J.E.

    1997-07-01

    Paleovalleys incised into the Triassic Spearfish Formation (Chugwater equivalent) are filled with a vertical sequence of eolian, estuarine, and marine sandstones of the Middle Jurassic (Bathonian age) Canyon Springs Sandstone Member of the Sundance Formation. An outcrop exemplifying this is located at Red Canyon in the southern Black Hills, Fall River County, South Dakota. These paleovalleys locally have more than 300 ft of relief and are as much as several miles wide. Because they slope in a westerly direction, and Jurassic seas transgressed into the area from the west there was greater marine-influence and more stratigraphic complexity in the subsurface, to the west, as compared to the Black Hills outcrops. In the subsurface two distinctive reservoir sandstone beds within the Canyon Springs Sandstone Member fill the paleovalleys. These are the eolian lower Canyon Springs unit (LCS) and the estuarine upper Canyon Springs unit (UCS), separated by the marine {open_quotes}Limestone Marker{close_quotes} and estuarine {open_quotes}Brown Shale{close_quotes}. The LCS and UCS contain significant proven hydrocarbon reservoirs in Wyoming (about 500 MMBO in-place in 9 fields, 188 MMBO produced through 1993) and are prospective in western South Dakota, western Nebraska and northern Colorado. Also prospective is the Callovian-age Hulett Sandstone Member which consists of multiple prograding shoreface to foreshore parasequences, as interpreted from the Red Canyon locality. Petrographic, outcrop and subsurface studies demonstrate the viability of both the Canyon Springs Sandstone and Hulett Sandstone members as superior hydrocarbon reservoirs in both stratigraphic and structural traps. Examples of fields with hydrocarbon production from the Canyon Springs in paleovalleys include Lance Creek field (56 MMBO produced) and the more recently discovered Red Bird field (300 MBO produced), both in Niobrara County, Wyoming.

  11. Water quality of Corydon Reservoir before implementation of agricultural best-management practices in the basin, Wayne County, Iowa, September 1990 to September 1991

    USGS Publications Warehouse

    Kalkhoff, S.J.

    1993-01-01

    A hydrologic investigation to define the water quality of Corydon Reservoir before implementation of agricultural best-management practices in the basin was conducted from September 1990 to September 1991. Runoff from the 1,680-acre basin is the primary source of water to the 58-acre reservoir. Current water quality of the reservoir is affected substantially by runoff from the agricultural basin. Total-solids, total-nitrogen, and total-phosphorus concentrations were largest during April through July 1991, the months of greatest rainfall. Herbicide concentrations increased substantially in June after application. The concentration of the sum of all triazines was greater than 50 micrograms per liter in one sample, with the predominant herbicides being atrazine and cyanazine. Atrazine concentrations, estimated from immunoassay, were greater than 8.0 micrograms per liter from June through September 1991 as a result of reservoir storage. Atrazine concentrations commonly were less at the surface than at depth. Algal populations remained constant even though nutrient concen- trations increased during the summer months. This may be due to the presence of suspended sediment that reduces light penetration and herbicides that inhibit photosynthesis.

  12. Increased oil production and reserves utilizing secondary/teritiary recovery techniques on small reservoirs in the Paradox Basin, Utah. Quarterly report, July 1 - September 30, 1996

    SciTech Connect

    Allison, M.L.

    1996-10-01

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meeting, and publication in newsletters and various technical or trade journals. Four activities continued this quarter as part of the geological and reservoir characterization: (1) interpretation of outcrop analogues; (2) reservoir mapping, (3) reservoir engineering analysis of the five project fields; and (4) technology transfer.

  13. Hydrocarbon habitat of the west Netherlands basin

    SciTech Connect

    De Jager, J. ); Doyle, M. ); Grantham, P. ); Mabillard, J. )

    1993-09-01

    The complex West Netherlands Basin contains oil and gas in Triassic and Upper Jurassic to Cretaceous clastic reservoir sequences. The understanding has always been that the Carboniferous coal measures have generated only gas and the Jurassic marine Posidonia Shale only oil. However, detailed geochemical analyses show that both source rocks have generated oil and gas. Geochemical fingerprinting established a correlation of the hydrocarbons with the main source rocks. The occurrence of these different hydrocarbons is consistent with migration routes. Map-based charge modeling shows that the main phase of hydrocarbon generation occurred prior to the Late Cretaceous inversion of the West Netherlands Basin. However, along the southwest flank of the basin and in lows between the inversion highs, significant charge continued during the Tertiary. Biodegradation of oils in Jurassic and Cretaceous reservoirs occurred during the earliest Tertiary, but only in reservoirs that were at that time at temperatures of less then 70 to 80[degrees]C, where bacteria could survive. This study shows that also in a mature hydrocarbon province an integrated hydrocarbon habitat study with modern analyses and state-of-the-art technology can lead to a much improved understanding of the distribution of oil and gas in the subsurface. The results of this study will allow a better risk assessment for remaining prospects, and an improved prediction of the type of trapped hydrocarbons in terms of gas, oil, and biodegraded oil.

  14. Appalachian Basin Play Fairway Analysis: Natural Reservoir Analysis in Low-Temperature Geothermal Play Fairway Analysis for the Appalachian Basin (GPFA-AB)

    DOE Data Explorer

    Teresa E. Jordan

    2015-10-22

    The files included in this submission contain all data pertinent to the methods and results of this task’s output, which is a cohesive multi-state map of all known potential geothermal reservoirs in our region, ranked by their potential favorability. Favorability is quantified using a new metric, Reservoir Productivity Index, as explained in the Reservoirs Methodology Memo (included in zip file). Shapefile and images of the Reservoir Productivity and Reservoir Uncertainty are included as well.

  15. Paleokarst and reservoir porosity in the Ordovician Beekmantown Dolomite of the central Appalachian basin

    USGS Publications Warehouse

    Smosna, R.; Bruner, K.R.; Riley, R.A.

    2005-01-01

    A karst-unconformity play at the top of the Ordovician Beekmantown Dolomite is judged to have great petroleum potential in Ohio and adjacent states; wells have high ultimate reserves and large areas remain untested. To better understand the origin, development, and distribution of Beekmantown porosity, we conducted a petrologic-stratigraphic study of cores and thin sections from 15 oil and gas wells. The massive dolomite, characterized by a hypidiotopic-idiotopic texture, formed by the replacement of stacked peritidal carbonate cycles. Secondary porosity occurs at two scales: (1) mesoscopic - breccia porosity, solution-enlarged fractures, large vugs, and caverns, and (2) microscopic - intercrystalline, intracrystalline, molds, small vugs, and microfractures. Mesoscopic pores (providing the major storage capacity in this reservoir) were produced by intrastratal solution and collapse of carbonate layers, whereas microscopic pores (connecting the larger pores) generally formed by the leaching of individual carbonate grains and crystals. Most pore types developed during periods of subaerial exposure across the carbonate bank, tied to either the numerous, though brief falls of relative sea level during Beekmantown deposition or more importantly the prolonged Knox unconformity at the close of sedimentation. The distribution of reservoir-quality porosity is quite heterogeneous, being confined vertically to a zone immediately below the unconformity and best developed laterally beneath buried hills and noses of this erosion surface. The inferred, shallow flow of ground water in the Beekmantown karst, primarily below topographic highs and above a diagenetic base level close to the water table, led to this irregular distribution of porosity.

  16. Advanced reservoir characterization for improved oil recovery in a New Mexico Delaware basin project

    SciTech Connect

    Martin, F.D.; Kendall, R.P.; Whitney, E.M.

    1997-08-01

    The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration site in the Department of Energy Class III program. The basic problem at the Nash Draw Pool is the low recovery typically observed in similar Delaware fields. By comparing a control area using standard infill drilling techniques to a pilot area developed using advanced reservoir characterization methods, the goal of the project is to demonstrate that advanced technology can significantly improve oil recovery. During the first year of the project, four new producing wells were drilled, serving as data acquisition wells. Vertical seismic profiles and a 3-D seismic survey were acquired to assist in interwell correlations and facies prediction. Limited surface access at the Nash Draw Pool, caused by proximity of underground potash mining and surface playa lakes, limits development with conventional drilling. Combinations of vertical and horizontal wells combined with selective completions are being evaluated to optimize production performance. Based on the production response of similar Delaware fields, pressure maintenance is a likely requirement at the Nash Draw Pool. A detailed reservoir model of pilot area was developed, and enhanced recovery options, including waterflooding, lean gas, and carbon dioxide injection, are being evaluated.

  17. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Quarterly report, October 1--December 31, 1996

    SciTech Connect

    Allison, M.L.

    1997-02-01

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals. Three activities continued this quarter as part of the geological and reservoir characterization of productive carbonate buidups in the Paradox basin: (1) interpretation of new seismic data in the Mule field area, (2) reservoir engineering analysis of the Anasazi field, and (3) technology transfer.

  18. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Final technical progress report, October 1--December 31, 1995

    SciTech Connect

    Allison, M.L.

    1996-01-15

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meeting, and publication in newsletters and various technical or trade journals. Five activities continued this quarter as part of the geological and reservoir characterization of carbonate mound buildups in the Paradox basin: (1) regional facies evaluation, (2) evaluation of outcrop analogues, (3) field-scale geologic analysis, (4) reservoir analysis, and (5) technology transfer.

  19. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, July 1--September 30, 1995

    SciTech Connect

    Allison, M.L.

    1995-12-01

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}-) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals. Four activities continued this quarter as part of the geological and reservoir characterization of carbonate mound buildups in the Paradox basin: (1) field studies, (2) development well completion operations, (3) reservoir analysis and modeling, and (4) technology transfer. This paper reviews the status.

  20. Well-log signatures of alluvial-lacustrine reservoirs and source rocks, Lagoa-Feia Formations, Lower Cretaceous, Campos Basin, offshore Brazil

    SciTech Connect

    Abrahao, D.; Warme, J.E.

    1988-01-01

    The Campos basin is situated in offshore southeastern Brazil. The Lagoa Feia is the basal formation in the stratigraphic sequence of the basin, and was deposited during rifting in an evolving complex of lakes of different sizes and chemical characteristics, overlying and closely associated with rift volcanism. The stratigraphic sequence is dominated by lacustrine limestones and shales (some of them organic-rich), and volcaniclastic conglomerates deposited on alluvial fans. The sequence is capped by marine evaporites. In the Lagoa Feia Formation, complex lithologies make reservoirs and source rocks unsuitable for conventional well-log interpretation. To solve this problem, cores were studied and the observed characteristics related to log responses. The results have been extended through the entire basin for other wells where those facies were not cored. The reservoir facies in the Lagoa Feia Formation are restricted to levels of pure pelecypod shells (''coquinas''). Resistivity, sonic, neutron, density, and gamma-ray logs were used in this work to show how petrophysical properties are derived for the unconventional reservoirs existing in this formation. The same suite of logs was used to develop methods to define geochemical characteristics where source rock data are sparse in the organic-rich lacustrine shales of the Lagoa Feia Formation. These shales are the main source rocks for all the oil discovered to date in the Campos basin.

  1. Timing and Duration of Gas Charge-Driven Fracturing in Tight-Gas Sandstone Reservoirs Based on Fluid Inclusion Observations: Piceance Basin, Colorado

    NASA Astrophysics Data System (ADS)

    Fall, A.; Eichhubl, P.; Laubach, S.; Bodnar, R. J.

    2012-12-01

    Natural fractures are universally present in tight-gas sandstone reservoirs. Fractures are recognized to enhance permeability of the reservoir, provide gas-migration pathways during charge, and boost connectivity with well bore during production of natural gas. "Sweet spots", or higher than average permeability and production regions, have been attributed to the presence of open fractures in the reservoir. Thus it is essential to understand the opening history of natural fractures, such as the timing with respect to hydrocarbon generation and migration in the reservoirs. The natural opening-mode fractures in the tight-gas sandstone of the Mesaverde Group in the Piceance Basin, Colorado, are partially or completely cemented by quartz and/or calcite that precipitated syn- or postkinematically relative to fracture opening. Fluid inclusions trapped in the cements record pressure, temperature, and fluid composition during subsequent fracture opening and cementation. SEM-CL imaging of cements combined with fluid inclusion microthermometry and Raman spectroscopy constrain fluid evolution trends during fracturing, and timing of fracture opening in the tight-gas sandstone reservoirs. Fluid inclusions indicate a thermal history varying from ~150°C to ~188°C to ~140°C in sandstones of the Piceance Basin. Based on microthermometry, Raman spectroscopy, and equation of state modeling calculated pore-fluid pressures varied from ~40 to 100 MPa suggesting fracture opening under significant pore-fluid overpressures. Observed variability in pore-fluid pressure over time is interpreted to reflect dynamic conditions of episodic gas charge. Models of gas and oil generation in the Piceance Basin suggest that fracture opening and elevated pore-fluid pressures coincided with maximum gas generation within the Mesaverde Group. These observations demonstrate that protracted growth of the pervasive fracture system was the consequence of gas maturation and reservoir charge, and that fracture

  2. Nonassociated gas resources in low-permeability sandstone reservoirs, lower tertiary Wasatch Formation, and upper Cretaceous Mesaverde Group, Uinta Basin, Utah

    SciTech Connect

    Fouch, T.D.; Schmoker, J.W.; Boone, L.E.; Wandrey, C.J.; Crovelli, R.A.; Butler, W.C.

    1994-08-01

    The US Geological Survey recognizes six major plays for nonassociated gas in Tertiary and Upper Cretaceous low-permeability strata of the Uinta Basin, Utah. For purposes of this study, plays without gas/water contacts are separated from those with such contacts. Continuous-saturation accumulations are essentially single fields, so large in areal extent and so heterogeneous that their development cannot be properly modeled as field growth. Fields developed in gas-saturated plays are not restricted to structural or stratigraphic traps and they are developed in any structural position where permeability conduits occur such as that provided by natural open fractures. Other fields in the basin have gas/water contacts and the rocks are water-bearing away from structural culmination`s. The plays can be assigned to two groups. Group 1 plays are those in which gas/water contacts are rare to absent and the strata are gas saturated. Group 2 plays contain reservoirs in which both gas-saturated strata and rocks with gas/water contacts seem to coexist. Most units in the basin that have received a Federal Energy Regulatory Commission (FERC) designation as tight are in the main producing areas and are within Group 1 plays. Some rocks in Group 2 plays may not meet FERC requirements as tight reservoirs. However, we suggest that in the Uinta Basin that the extent of low-permeability rocks, and therefore resources, extends well beyond the limits of current FERC designated boundaries for tight reservoirs. Potential additions to gas reserves from gas-saturated tight reservoirs in the Tertiary Wasatch Formation and Cretaceous Mesaverde Group in the Uinta Basin, Utah is 10 TCF. If the potential additions to reserves in strata in which both gas-saturated and free water-bearing rocks exist are added to those of Group 1 plays, the volume is 13 TCF.

  3. Increasing heavy oil reserves in the Wilmington oil field through advanced reservoir characterization and thermal production technologies. Quarterly report, July 1 - September 30, 1996

    SciTech Connect

    Hara, S.

    1996-12-01

    The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. This is the sixth quarterly technical progress report for the project. Through September 1996, the project continues to make good progress but is slightly behind schedule. Estimated costs are on budget for the work performed to date. Technical achievements accomplished during the quarter include placing the first two horizontal wells on production following cyclic steam stimulation, completing several draft technical reports and preparing presentations on the deterministic geologic model, steam channel crossing and horizontal well drilling for technical transfer. Cyclic steam injection into the first two horizontal wells was completed in June 1996 and initial oil production from the project began the same month. Work has commenced on the stochastic geologic and reservoir simulation models. High temperature core work and reservoir tracer work will commence in the First Quarter 1997.

  4. Land use/vegetation mapping in reservoir management. Merrimack River basin

    NASA Technical Reports Server (NTRS)

    Mckim, H. L.; Gatto, L. W.; Merry, C. J.; Anderson, D. M.; Marlar, T. L.

    1975-01-01

    This report consists of an analysis of: ERTS-1 Multispectral Scanner imagery obtained 10 August 1973; Skylab 3 S190A and S190B photography, track 29, taken 21 September 1973; and RB-57 high-altitude aircraft photography acquired 26 September 1973. These data products were acquired on three cloud-free days within a 47-day period. The objectives of this study were: (1) to make quantitative comparisons between high-altitude aircraft photography and satellite imagery, and (2) to demonstrate the extent to which high resolution (S190A and B) space-acquired data can be used for land use/vegetation mapping and management of drainage basins.

  5. Petroleum geology and resources of the North Caspian Basin, Kazakhstan and Russia

    USGS Publications Warehouse

    Ulmishek, Gregory F.

    2001-01-01

    on the Kashagan structure offshore in the Caspian Sea is probably also of the supergiant status. Major oil and gas reserves are located in carbonate reservoirs in reefs and structural traps of the subsalt sequence. Substantially smaller reserves are located in numerous fields in the suprasalt sequence. These suprasalt fields are largely in shallow Jurassic and Cretaceous clastic reservoirs in salt dome-related traps. Petroleum source rocks are poorly identified by geochemical methods. However, geologic data indicate that the principal source rocks are Upper Devonian to Lower Permian deep-water black-shale facies stratigraphically correlative to shallow-shelf carbonate platforms on the basin margins. The main stage of hydrocarbon generation was probably in Late Permian and Triassic time, during deposition of thick orogenic clastics. Generated hydrocarbons migrated laterally into adjacent subsalt reservoirs and vertically, through depressions between Kungurian salt domes where the salt is thin or absent, into suprasalt clastic reservoirs. Six assessment units have been identified in the North Caspian basin. Four of them include Paleozoic subsalt rocks of the basin margins, and a fifth unit, which encompasses the entire total petroleum system area, includes the suprasalt sequence. All five of these assessment units are underexplored and have significant potential for new discoveries. Most undiscovered petroleum resources are expected in Paleozoic subsalt carbonate rocks. The assessment unit in subsalt rocks with the greatest undiscovered potential occupies the south basin margin. Petroleum potential of suprasalt rocks is lower; however, discoveries of many small to medium size fields are expected. The sixth identified assessment unit embraces subsalt rocks of the central basin areas. The top of subsalt rocks in these areas occurs at depths ranging from 7 to 10 kilometers and has not been reached by wells. Undiscovered resources of this unit did not rec

  6. Phytoplankton community of a polymictic reservoir, La Plata River basin, Uruguay.

    PubMed

    Pérez, M C; Bonilla, S; Martínez, G

    1999-11-01

    This paper deals with the analysis of phytoplankton composition and abundance from four sampling stations at the polymictic system, Rinc6n del Bonete water reservoir in Uruguay. Sampling data were obtained in 4 seasonal periods between February and November 1993. A hundred and twenty-four taxa were identified, where Aulacoseira granulata (Ehrenb.) Simon., A. granulata var. angustissima (Muller) Simon., A. granulata var. angustissima f. spiralis, (Muller) Simon., A. cf. ambigua, (Grun.) Simon., A. cf. distans (Ehrenb.) Simon., Cryptomonas spp. and Synedra ulna (Nitzsch) Ehrenberg, were always present. Phytoplankton abundance fluctuated between 29 (autumn) and 2129 (summer) ind/ml. The general dominance of Aulacoseira spp. could be related to the polymictic condition of the system. In cold months phytoplankton distribution was homogeneous among sampling stations, while in warm months, spatial heterogeneity was detected, suggesting that sampling stations can behave as independent compartments. PMID:23505641

  7. 3-D reservoir characterization of the House Creek oil field, Powder River Basin, Wyoming

    USGS Publications Warehouse

    Higley, Debra K.; Pantea, Michael P.; Slatt, Roger M.

    1997-01-01

    This CD-ROM is intended to serve a broad audience. An important purpose is to explain geologic and geochemical factors that control petroleum production from the House Creek Field. This information may serve as an analog for other marine-ridge sandstone reservoirs. The 3-D slide and movie images are tied to explanations and 2-D geologic and geochemical images to visualize geologic structures in three dimensions, explain the geologic significance of porosity/permeability distribution across the sandstone bodies, and tie this to petroleum production characteristics in the oil field. Movies, text, images including scanning electron photomicrographs (SEM), thin-section photomicrographs, and data files can be copied from the CD-ROM for use in external mapping, statistical, and other applications.

  8. Turbidite fans in Upper Cretaceous Pierre Shale, Eagle Basin, Colorado: a new reservoir facies

    SciTech Connect

    Krystinik, L.F.

    1983-03-01

    Two fans intercalate with the Upper Cretaceous Pierre Shale and form cliffs over more than 10 mi (16 km) of continuous outcrop in the Eagle basin, north of Walcott, Colorado. Both units exhibit progradational sequences typical of turbidite fans. A common vertical succession of sedimentary structures consists of starved ripples, flat-bottomed ripple beds, thin flat beds grading into ripples of climbing ripples, and amalgamated flat beds. Massive to graded beds are rare and occur only in the upper part of each sandstone body. Associated sedimentary features include parting lineation, grooves, prod marks, mud chips, contorted bedding, and flute casts. Broad, low-relief channels occur at the top of the lower, more well-developed sequence. The sedimentary structures described correlate well with accepted models for turbidite-fan sedimentation. Alternative interpretations of these laterally continuous, progradational sandstone bodies might include deposition in a distal shoreface or offshore bar environment. Hummocky cross-stratification and large-scale cross-stratified bed forms are not common in the sequence, as would be expected in a shoreface or marine-bar environment. Turbidite-fan deposits similar to those studied could be economically significant because of their extreme lateral continuity, updip seals, intercalation with hydrocarbon source rock, and possible overpressuring. The presence of submarine fans within the Cretaceous Western Interior seaway may increase significantly the hydrocarbon potential of previously unexplored, shaly portions of the basin.

  9. Spatial and temporal variability of the water and sediments quality in the Alqueva reservoir (Guadiana Basin; southern Portugal).

    PubMed

    Palma, P; Ledo, L; Soares, S; Barbosa, I R; Alvarenga, P

    2014-02-01

    The purpose of this work was to evaluate the dynamic of the water quality from the Alqueva reservoir (Guadiana River Basin, Portugal) and identify the most important parameters that influence its ecological and chemical status. The results could indicate preventive and/or remediation actions that are necessary to improve its quality and status. Water and sediment samples were collected between 2011 and 2012, at five sampling stations, and analyzed for: (i) water - pH, temperature, dissolved oxygen, electrical conductivity, chloride, total phosphorus, total nitrogen, ammonium, nitrate, nitrite, biochemical and chemical oxygen demand, total Fe, Mn, and As; and (ii) sediments - pH, electrical conductivity, organic matter, total nitrogen, total phosphorus, major and trace elements. The results from the water column showed that the organic descriptors exceeded the Portuguese guideline values for water quality for multiple uses at most of the sampling stations. As for nutrients, Ajuda is the station where the concentrations of the total nitrogen and total phosphorus exceeded the guideline values in most months. Ammonium achieved concentrations above the allowed, during the study, in all locations. Trace elements were more abundant in the sediments, surpassing the maximum levels for the protection of aquatic life for As, Cd and Pb, at Alcarrache, Lucefécit and Álamos, respectively. The use of multivariate analysis showed that the major parameters that explained the water quality variability were the nutrients in the water column, and trace elements in the sediments. Comparing the results from this study with results obtained since 2006, we can observe an obvious increment of the organic descriptors and nutrients in the water body. Further, several parameters and observations indicate an increase of the eutrophication process. So, it is urgent to develop preventive actions and remediation processes to stop the degradation so as to improve the quality of the water in this

  10. Unraveling the multiple origins of heterogeneity within Lower Mississippian Madison reservoirs: Bighorn Basin, Wyoming and Montana, USA

    SciTech Connect

    Sonnenfeld, M.D.

    1995-08-01

    {open_quotes}Fracture-controlled{close_quotes} and {open_quotes}karst-controlled{close_quotes} contributions to reservoir heterogeneity tend to be viewed as non-fabric selective in nature. Given such an outlook, predictions of fracture and karst overprints depend on an awareness of extrinsic controls such as past and present stress-fields, structural curvature, fault proximity, and the positions and movements of paleo-water tables. The hierarchical sequence stratigraphy of the 300 m Madison provides the stratigraphic framework necessary to characterize the vertical distribution of early, fabric-selective platformal dolomite; additionally, this framework assists in discriminating between fabric-selective and non-fabric-selective styles of karst and fracturing. In the case of Madison karst, early meteoric lithification and subtle Mississippian tectonics resulted in a vertically oriented fracture-controlled karst on top of the Madison, yet this non fabric-selective system channeled waters into several fabric-selective, regionally widespread solution collapse zones and cave systems. The horizontally oriented regional dissolution was stratigraphically controlled by soluble evaporitic zones and/or argillaceous aquitards overlying intra-Madison sequence boundaries rather than occurring at various unconfined water-table stillstands. Evaporite solution collapse breccias presently form partial to complete barriers to vertical fluid flow depending on thickness and degree of associated argillaceous influx, while cave-roof {open_quotes}fracture breccias{close_quotes} were preferential sites of late dolomitization within the giant Elk Basin Madison reservoir. In the case of Madison fracturing, stratigraphic cycles of several scales provide effective scales of analysis in the quest for true mechanical stratigraphic units defined by common fracture styles.

  11. Characterization of gas hydrate reservoirs by integration of core and log data in the Ulleung Basin, East Sea

    USGS Publications Warehouse

    Bahk, J.-J.; Kim, G.-Y.; Chun, J.-H.; Kim, J.-H.; Lee, J.Y.; Ryu, B.-J.; Lee, J.-H.; Son, B.-K.; Collett, Timothy S.

    2013-01-01

    Examinations of core and well-log data from the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) drill sites suggest that Sites UBGH2-2_2 and UBGH2-6 have relatively good gas hydrate reservoir quality in terms of individual and total cumulative thicknesses of gas-hydrate-bearing sand (HYBS) beds. In both of the sites, core sediments are generally dominated by hemipelagic muds which are intercalated with turbidite sands. The turbidite sands are usually thin-to-medium bedded and mainly consist of well sorted coarse silt to fine sand. Anomalies in infrared core temperatures and porewater chlorinity data and pressure core measurements indicate that “gas hydrate occurrence zones” (GHOZ) are present about 68–155 mbsf at Site UBGH2-2_2 and 110–155 mbsf at Site UBGH2-6. In both the GHOZ, gas hydrates are preferentially associated with many of the turbidite sands as “pore-filling” type hydrates. The HYBS identified in the cores from Site UBGH2-6 are medium-to-thick bedded particularly in the lower part of the GHOZ and well coincident with significant high excursions in all of the resistivity, density, and velocity logs. Gas-hydrate saturations in the HYBS range from 12% to 79% with an average of 52% based on pore-water chlorinity. In contrast, the HYBS from Site UBGH2-2_2 are usually thin-bedded and show poor correlations with both of the resistivity and velocity logs owing to volume averaging effects of the logging tools on the thin HYBS beds. Gas-hydrate saturations in the HYBS range from 15% to 65% with an average of 37% based on pore-water chlorinity. In both of the sites, large fluctuations in biogenic opal contents have significant effects on the sediment physical properties, resulting in limited usage of gamma ray and density logs in discriminating sand reservoirs.

  12. A model study of the coupled water quality and hydrodynamics in YuQiao Reservoir of Haihe River Basin, People's Republic of China

    NASA Astrophysics Data System (ADS)

    Liu, X.; Liu, J.; Peng, W.; Wang, Y.

    2007-05-01

    In recent years, eutrophication has become one of the most serious of global water pollution problems, especially in reservoirs, which is menacing the security of domestic water supplies. As the unique drinking water source of Tianjin within the Haihe River basin of Hebei Province, China, YuQiao Reservoir has been polluted and its eutrophic state is serious. To make clear the physical and chemical relationship between transport and transformation of the polluted water, a model package was developed to compute the hydrodynamic field and mass transport processes including total nitrogen (TN) and total phosphorus (TP) for YuQiao Reservoir. The hydrodynamic model was driven by observed winds and daily measured flow data to simulate the seasonal water cycle of the reservoir. The mass transport and transformation processes of TN and TP was based on the unsteady diffusion equations, driven by observed meteorological forcings and external loadings, with the fluxes through the bottom of the reservoir, plant (algal) photosynthesis, and respiration as internal sources and sinks. The solution of these equations uses the finite volume method and alternating direction implicit (ADI) scheme. The model was calibrated and verified by using the data observed from YuQiao Reservoir in two different years. The results showed that in YuQiao Reservoir, the wind-driven current is an important style of lake current, while the water quality is decreasing from east to west because of the external polluted loadings. There was good agreement between the simulated and measured values. Advection is the main process driving the water quality impacts from the inflow river, and diffusion and biochemical processes dominate in center of the reservoir. So it is necessary to build a pre-pond to reduce the external loadings into the reservoir.

  13. Assessing potential impacts of climate change on hydropower generation of three reservoirs in the Tagus River Basin under ensemble of climate projections

    NASA Astrophysics Data System (ADS)

    Lobanova, Anastasia; Koch, Hagen; Hattermann, Fred F.; Krysanova, Valentina

    2015-04-01

    The Tagus River basin is an important strategic water and energy source for Portugal and Spain. With an extensive network of 40 reservoirs with more than 15 hm3 capacity and numerous abstraction channels it is ensuring water supply for domestic and industrial usage, irrigation and hydropower production in Spain and Portugal. Growing electricity and water supply demands, over-regulation and construction of new dams, and large inter-basin water transfers aggravated by strong natural variability of climate and aridity of the catchment have already imposed significant pressures on the river. The substantial reduction of discharge, dropping during some months to zero in some parts of the catchment, is observed already now, and projected climatic change is expected to alter the water budget of the catchment further. As the water inflow is a fundamental defining factor in a reservoir operation and hydropower production, the latter are highly sensitive to shifts in water balance of the catchment, and hence to changes in climate. In this study we aim to investigate the effects of projected climate change on water inflows and hydropower generation of the three large reservoirs in the Tagus River Basin, and by that to assess their ability to cover electricity power demands and provide water supply under changed conditions, assuming present management strategies; hydropower and abstraction demands. The catchment scale, process-based eco-hydrological model SWIM was set up, calibrated and validated up to the Santarem gauge at the Tagus outlet, with the implementation of a reservoir module. The reservoir module is able to represent three reservoir operation management options, simulate water abstraction and provide rates of generated hydropower. In total, fifteen largest reservoirs in the Tagus River Basin were included in the model, calibrated and validated against observed inflow, stored water and outflow water volumes. The future climate projections were selected from the

  14. Petroleum geology of rift basins in Niger, Chad, and Central African Republic

    SciTech Connect

    Genik, G.J. )

    1991-08-01

    Ten Cretaceous-Tertiary rift basins in Niger, Chad and the Central African Republic (C.A.R.) are defined and the petroleum geology is overviewed based on proprietary exploration results derived from more than one million km{sup 2} of aeromagnetics, 10,520 line-km of gravity profiles, 49,721 km of reflection seismic, and 50 exploration wells. The data were acquired by Exxon with partners Shell, Chevron, Elf, Conoco, Texaco, and Amax Oil Gas During 1969-1989. In Niger and Chad, the West African rift subsystem includes the extensional basins of Termit, Tefidet, Tenere, Grein/Kafra, N'Djel Edji, and Bongor. These rift basins contain up to 15,000 m of Cretaceous to Cenozoic continental and marine clastics. Key exploration elements are Tertiary and Cretaceous fluvial to tidal sandstone reservoirs, Tertiary and Cretaceous marine to lacustrine shale source rocks and seals, with traps in normal fault blocks and anticlinal closures. There have been six oil discoveries in the Termit basin. In C.A.R., the Central African rift subsystem incorporates the extensional Doba and transtensional Doseo and Salamat basins flanking the Borogop dextral wrench fault. These basins contain up to 7,500 m of chiefly Cretaceous continental clastics. key exploration elements are Lower and Upper Cretaceous fluvial to lacustrine sandstone reservoirs, Lower Cretaceous lacustrine shale source rocks, lacustrine to flood-plain shale and mudstone seals, with traps in mainly faulted anticlinal closures. There have been six oil discoveries in the Doba basin and three in the Doseo basin. The studied petroleum geology in the rifts of Niger, Chad, and C.A.R. indicates that potentially commercial volumes of oil remain to be discovered.

  15. Petroleum geology of rift basins in Niger, Chad, and the Central African Republic

    SciTech Connect

    Genik, G.J. )

    1991-03-01

    Ten Cretaceous-Tertiary rift basins in Niger, Chad, and the Central African Republic (C.A.R.) are defined and the petroleum geology is overviewed. This paper is based on proprietary exploration results derived from more than 1 million km{sup 2} of aeromagnetics, 10,520 line km of gravity profiles, 49,721 km of reflection seismic, and 50 exploration wells. The data were acquired by Exxon with partners Shell, Chevron, Elf, Conoco, Texaco, and Amax Oil Gas, Inc., during the years 1969-1989. In Niger and Chad, the West African rift subsystem includes the extensional basins of Termit, Tefidet, Tenere, Grein/Kafra, N'Djel Edji, and Bongor. These rift basins contain up to 15,000 m of Cretaceous to Cenozoic continental and marine clastics. Key exploration elements are Tertiary and Cretaceous fluvial to tidal sandstone reservoirs, Tertiary and Cretaceous marine to lacustrine shale source rocks, and seals, with traps in normal fault blocks and anticlinal closures. There are six oil discoveries in the Termit basin. In Chad and the C.A.R., the Central African rift subsystem incorporates the extensional Doba and transtensional Doseo and Salamat basins flanking the Borogop dextral wrench fault. These basins contain up to 7,500 m of chiefly Cretaceous continental clastics. Key exploration elements are Lower and Upper Cretaceous fluvial to lacustrine sandstone reservoirs, Lower Cretaceous lacustrine shale source rocks, lacustrine to flood plain shale and mudstone seals, with traps in mainly faulted anticlinal closures. There are six oil discoveries in the Doba basin and three in the Doseo basin. The studied petroleum geology in the rifts of Niger, Chad, and the C.A.R. indicates that potentially commercial volumes of oil remain to be discovered.

  16. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah. Annual report, February 9, 1997--February 8, 1998

    SciTech Connect

    Chidsey, T.C. Jr.

    1998-03-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. At least 200 million barrels (31,800,000 m{sup 3}) of oil are at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah are being evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. This study utilized representative core and modern geophysical logs to characterize and grade each of the five fields for suitability of enhanced recovery projects. The typical vertical sequence or cycle of lithofacies from each field, as determined from conventional core, was tied to its corresponding log response. The diagenetic fabrics and porosity types found in the various hydrocarbon-bearing rocks of each field can be an indicator of reservoir flow capacity, storage capacity, and potential for water- and/or CO{sub 2}-flooding. Diagenetic histories of the various Desert Creek reservoirs were determined from 50 representative samples selected from the conventional cores of each field. Thin sections were also made of each sample for petrographic description.

  17. ENHANCING RESERVOIR MANAGEMENT IN THE APPALACHIAN BASIN BY IDENTIFYING TECHNICAL BARRIER AND PREFERRED PRACTICES

    SciTech Connect

    Ronald R. McDowell; Khashayar Aminian; Katharine L. Avary; John M. Bocan; Michael Ed. Hohn; Douglas G. Patchen

    2003-09-01

    The Preferred Upstream Management Practices (PUMP) project, a two-year study sponsored by the United States Department of Energy (USDOE), had three primary objectives: (1) the identification of problems, problematic issues, potential solutions and preferred practices related to oil production; (2) the creation of an Appalachian Regional Council to oversee and continue this investigation beyond the end of the project; and (3) the dissemination of investigative results to the widest possible audience, primarily by means of an interactive website. Investigation and identification of oil production problems and preferred management practices began with a Problem Identification Workshop in January of 2002. Three general issues were selected by participants for discussion: Data Management; Reservoir Engineering; and Drilling Practices. At the same meeting, the concept of the creation of an oversight organization to evaluate and disseminated preferred management practices (PMP's) after the end of the project was put forth and volunteers were solicited. In-depth interviews were arranged with oil producers to gain more insight into problems and potential solutions. Project members encountered considerable reticence on the part of interviewees when it came to revealing company-specific production problems or company-specific solutions. This was the case even though interviewees were assured that all responses would be held in confidence. Nevertheless, the following production issues were identified and ranked in order of decreasing importance: Water production including brine disposal; Management of production and business data; Oil field power costs; Paraffin accumulation; Production practices including cementing. An number of secondary issues were also noted: Problems associated with Enhanced Oil Recovery (EOR) and Waterflooding; Reservoir characterization; Employee availability, training, and safety; and Sale and Purchase problems. One item was mentioned both in

  18. First report of Calyptospora sp. (Apicomplexa, Calyptosporidae) in forage characid fish from the Três Marias Reservoir, São Francisco Basin, Brazil.

    PubMed

    de Albuquerque, Marcia Cavalcanti; de Carvalho Brasil-Sato, Marilia

    2010-05-01

    Coccidians are parasitic protozoans, and Calyptospora is an important genus of coccidia found in freshwater and marine fish of the Americas. This paper describes Calyptospora sp. that were found parasitizing the liver and intestine of Triportheus guentheri and the intestine of Tetragonopterus chalceus, two forage fish species from the Três Marias Reservoir, Upper São Francisco River, State of Minas Gerais, Brazil. Apicomplexa found in the São Francisco Basin are reported here for the first time. PMID:20163938

  19. Natural flow and vertical heterogeneities in a sedimentary geothermal reservoir (Paris Basin, France): Geochemical investigations

    SciTech Connect

    Criaud, Annie, Fouassier, Philippe; Fouillac, Christian; Brach, Michel

    1988-01-01

    Three geothermal wells tapping the Dogger aquifer were studied in detail for their variations in chemical composition with time or conditions of exploitation. Analytical improvements for the determination of Cl, SO{sub 4}, Ca, Mg, Na and K make it possible to detect variations respectively of 0.15, 0.8, 0.6, 1.8, 1.8 and 1.4 %. Despite the fact that the natural flow may be important in some parts of the basin aquifer, we conclude that this factor is not responsible for the small variations noticed in mineralization within the one year survey period. The results concerning reactive and nonreactive species are best explained if a vertical heterogeneity of the chemistry of the fluid is assumed. A number of calcareous sub-layers, already demonstrated by geological studies, contribute to varying degrees to the production of the hot water. The changes in pumping rates, which are fixed according to external requirements, play a major role in the hydrodynamic and chemical disequilibrium of the wells. The consequences for the geothermal exploitations are emphasized.

  20. Petroleum geology and resources of the Dnieper-Donets Basin, Ukraine and Russia

    USGS Publications Warehouse

    Ulmishek, Gregory F.

    2001-01-01

    the Dnieper-Donets basin. Discovered reserves of the system are 1.6 billion barrels of oil and 59 trillion cubic feet of gas. More than one-half of the reserves are in Lower Permian rocks below the salt seal. Most of remaining reserves are in upper Visean-Serpukhovian (Lower Carboniferous) strata. The majority of discovered fields are in salt-cored anticlines or in drapes over Devonian horst blocks; little exploration has been conducted for stratigraphic traps. Synrift Upper Devonian carbonate reservoirs are almost unexplored. Two identified source-rock intervals are the black anoxic shales and carbonates in the lower Visean and Devonian sections. However, additional source rocks possibly are present in the deep central area of the basin. The role of Carboniferous coals as a source rock for gas is uncertain; no coal-related gas has been identified by the limited geochemical studies. The source rocks are in the gas-generation window over most of the basin area; consequently gas dominates over oil in the reserves. Three assessment units were identified in the Dnieper-Donets Paleozoic total petroleum system. The assessment unit that contains all discovered reserves embraces postrift Carboniferous and younger rocks. This unit also contains the largest portion of undiscovered resources, especially gas. Stratigraphic and combination structural and stratigraphic traps probably will be the prime targets for future exploration. The second assessment unit includes poorly known synrift Devonian rocks. Carbonate reef reservoirs along the basin margins probably will contain most of the undiscovered resources. The third assessment unit is an unconventional, continuous, basin-centered gas accumulation in Carboniferous low-permeability clastic rocks. The entire extent of this accumulation is unknown, but it occupies much of the basin area. Resources of this assessment unit were not estimated quantitatively.

  1. Influence of sedimentary environments on mechanical properties of clastic rocks

    NASA Astrophysics Data System (ADS)

    Meng, Zhaoping; Zhang, Jincai; Peng, Suping

    2006-10-01

    The sedimentary environments are the intrinsic factor controlling the mechanical properties of clastic rocks. Examining the relationship between rock sedimentary environments and rock mechanical properties gives a better understanding of rock deformation and failure mechanisms. In this study, more than 55 samples in coal measures were taken from seven different lithologic formations in eastern China. Using the optical microscope the sedimentary characteristics, such as components of clastic rocks and sizes of clastic grains were quantitatively tested and analyzed. The corresponding mechanical parameters were tested using the servo-controlled testing system. Different lithologic attributes in the sedimentary rocks sampled different stress-strain behaviors and failure characteristics under different confining pressures, mainly due to different compositions and textures. Results demonstrate that clastic rocks have the linear best-fit for Mohr-Coulomb failure criterion. The elastic moduli in clastic rocks are highly dependent upon confining pressures, unlike hard rocks. The envelope lines of the mechanical properties versus the contents of quartz, detritus of the grain diameter of more than 0.03 mm, and grain size in clastic rocks are given. The compressive strength or elastic modulus and the grain diameter have a non-monotonic relation and demonstrate the “grain-diameter softening” effect.

  2. Markov chains and entropy tests in genetic-based lithofacies analysis of deep-water clastic depositional systems

    NASA Astrophysics Data System (ADS)

    Borka, Szabolcs

    2016-01-01

    The aim of this study was to examine the relationship between structural elements and the so-called genetic lithofacies in a clastic deep-water depositional system. Process-sedimentology has recently been gaining importance in the characterization of these systems. This way the recognized facies attributes can be associated with the depositional processes establishing the genetic lithofacies. In this paper this approach was presented through a case study of a Tertiary deep-water sequence of the Pannonian-basin. Of course it was necessary to interpret the stratigraphy of the sequences in terms of "general" sedimentology, focusing on the structural elements. For this purpose, well-logs and standard deep-water models were applied. The cyclicity of sedimentary sequences can be easily revealed by using Markov chains. Though Markov chain analysis has broad application in mainly fluvial depositional environments, its utilization is uncommon in deep-water systems. In this context genetic lithofacies was determined and analysed by embedded Markov chains. The randomness in the presence of a lithofacies within a cycle was estimated by entropy tests (entropy after depositional, before depositional, for the whole system). Subsequently the relationships between lithofacies were revealed and a depositional model (i.e. modal cycle) was produced with 90% confidence level of stationarity. The non-randomness of the latter was tested by chi-square test. The consequences coming from the comparison of "general" sequences (composed of architectural elements), the genetic-based sequences (showing the distributions of the genetic lithofacies) and the lithofacies relationships were discussed in details. This way main depositional channel has the best, channelized lobes have good potential hydrocarbon reservoir attributes, with symmetric alternation of persistent fine-grained sandstone (Facies D) and muddy fine-grained sandstone with traction structures (Facies F)

  3. Diagenetic characteristics and reservoir quality of the Lower Cretaceous Biyadh sandstones at Kharir oilfield in the western central Masila Basin, Yemen

    NASA Astrophysics Data System (ADS)

    Hakimi, Mohammed Hail; Shalaby, Mohamed Ragab; Abdullah, Wan Hasiah

    2012-06-01

    The Lower Cretaceous Biyadh Formation in the Masila Basin is an important hydrocarbon reservoir. However, in spite of its importance as a reservoir, published studies on the Biyadh Formation more specifically on the diagenesis and relate with reservoir quality, are limited. Based on core samples from one well in the Kharir oilfield, western central Masila Basin, this study reports the lithologic and diagenetic characteristics of this reservoir. The Biyadh sandstones are very fine to very coarse-grained, moderate to well sorted quartzarenite and quartzwacke. The diagenetic processes recognized include mechanical compaction, cementation (carbonate, clay minerals, quartz overgrowths, and a minor amount of pyrite), and dissolution of the calcite cement and feldspar grains. The widespread occurrences of early calcite cement suggest that the Biyadh sandstones lost a significant amount of primary porosity at a very early stage of its diagenetic history. Based on the framework grain-cement relationships, precipitation of the early calcite cement was either accompanied or followed by the development of part of the pore-lining and pore-filling clay cements. Secondary porosity development occurred due to partial to complete dissolution of early calcite cement and feldspar grains. In addition to calcite, several different clay minerals including kaolinite and chlorite occur as pore-filling and pore-lining cements. Kaolinite largely occurs as vermiform and accelerated the minor porosity loss due to pore-occlusion. Chlorite coating grains helps to retain primary porosity a by retarding the envelopment of quartz overgrowths. Porosity and permeability data exhibit good inverse correlation with cement. Thus, reservoir quality is controlled by pore occluding cement. Diagenetic history of the Biyadh sandstones as established here is expected to help better understanding and exploitation of this reservoir. The relation between diagenesis and reservoir quality is as follows: the

  4. Oil fields and new plays in the Rioni foreland basin, Republic of Georgia

    SciTech Connect

    Robinson, A.G.; Griffith, E.T. ); Sargeant, J. )

    1996-01-01

    The Rioni Basin in West Georgia is an Oligocene foredeep that evolved into a Miocene to Pliocene foreland basin, north of the Achara-Trialeti thrust belt and south of the Greater Caucasus. It extends to the west into the Black Sea. A large number of exploration wildcats have been drilled onshore since the nineteenth century and have led to the discovery of three fields. Exploration was prompted by seeps and restricted to frontal ramp anticlines mapped at surface. No wells have been drilled offshore. Supsa (discovered 1889) contains 29 MMbbl oil in clastic Sarmatian reservoirs. The field has around 50 wells but less than 0.5 MMbbl have been produced. Shromisubani (discovered 1973) contains oil within Maeotian and Pontian clastic reservoirs, Chaladidi oil within Upper Cretaceous chalk. Despite this long and apparently intensive exploration effort, several factors make the basin an exciting target for field redevelopment and further exploration. The quality of existing seismic is very poor both on-and offshore. Reinterpretation of the structure of the fold and thrust belt has suggested the presence of new targets and plays which may be imaged by modern seismic methods. In addition, due to problems associated with central planning, discovered fields have not been optimally developed or even fully appraised. The application of new technology, geological interpretation and investment promises to delineate substantial remaining reserves even after more than one hundred years of exploration.

  5. Oil fields and new plays in the Rioni foreland basin, Republic of Georgia

    SciTech Connect

    Robinson, A.G.; Griffith, E.T.; Sargeant, J.

    1996-12-31

    The Rioni Basin in West Georgia is an Oligocene foredeep that evolved into a Miocene to Pliocene foreland basin, north of the Achara-Trialeti thrust belt and south of the Greater Caucasus. It extends to the west into the Black Sea. A large number of exploration wildcats have been drilled onshore since the nineteenth century and have led to the discovery of three fields. Exploration was prompted by seeps and restricted to frontal ramp anticlines mapped at surface. No wells have been drilled offshore. Supsa (discovered 1889) contains 29 MMbbl oil in clastic Sarmatian reservoirs. The field has around 50 wells but less than 0.5 MMbbl have been produced. Shromisubani (discovered 1973) contains oil within Maeotian and Pontian clastic reservoirs, Chaladidi oil within Upper Cretaceous chalk. Despite this long and apparently intensive exploration effort, several factors make the basin an exciting target for field redevelopment and further exploration. The quality of existing seismic is very poor both on-and offshore. Reinterpretation of the structure of the fold and thrust belt has suggested the presence of new targets and plays which may be imaged by modern seismic methods. In addition, due to problems associated with central planning, discovered fields have not been optimally developed or even fully appraised. The application of new technology, geological interpretation and investment promises to delineate substantial remaining reserves even after more than one hundred years of exploration.

  6. Crosshole geotomography in a partially depleted reservoir. Final report

    SciTech Connect

    McDonald, J.A.

    1994-04-01

    Specific project objectives are to: characterize downhole seismic sources; show the applicability of crosswell tomography as a tool for reservoir characterization in depleted reservoirs; use crosswell methodology to make attenuation estimates; use crosswell methods for lithology prediction and fluid detection; and combine crosswell methods with VSP and high-resolution 3-D surface seismic methods to characterize lithology. Major recent accomplishments include: production of a P-wave velocity tomogram which successfully imaged a 20 ft thick sandstone in a shallow clastic oil field; development and implementation of software for all stages of tomographic reconstruction; attenuation study in a shallow clastic reservoir; and Vp/Vs analysis in a carbonate reservoir.

  7. Assessment of spatial distribution of soil loss over the upper basin of Miyun reservoir in China based on RS and GIS techniques.

    PubMed

    Chen, Tao; Niu, Rui-qing; Wang, Yi; Li, Ping-xiang; Zhang, Liang-pei; Du, Bo

    2011-08-01

    Soil conservation planning often requires estimates of the spatial distribution of soil erosion at a catchment or regional scale. This paper applied the Revised Universal Soil Loss Equation (RUSLE) to investigate the spatial distribution of annual soil loss over the upper basin of Miyun reservoir in China. Among the soil erosion factors, which are rainfall erosivity (R), soil erodibility (K), slope length (L), slope steepness (S), vegetation cover (C), and support practice factor (P), the vegetative cover or C factor, which represents the effects of vegetation canopy and ground covers in reducing soil loss, has been one of the most difficult to estimate over broad geographic areas. In this paper, the C factor was estimated based on back propagation neural network and the results were compared with the values measured in the field. The correlation coefficient (r) obtained was 0.929. Then the C factor and the other factors were used as the input to RUSLE model. By integrating the six factor maps in geographical information system (GIS) through pixel-based computing, the spatial distribution of soil loss over the upper basin of Miyun reservoir was obtained. The results showed that the annual average soil loss for the upper basin of Miyun reservoir was 9.86 t ha(-1) ya(-1) in 2005, and the area of 46.61 km(2) (0.3%) experiences extremely severe erosion risk, which needs suitable conservation measures to be adopted on a priority basis. The spatial distribution of erosion risk classes was 66.9% very low, 21.89% low, 6.18% moderate, 2.89% severe, and 1.84% very severe. Thus, by using RUSLE in a GIS environment, the spatial distribution of water erosion can be obtained and the regions which susceptible to water erosion and need immediate soil conservation planning and application over the upper watershed of Miyun reservoir in China can be identified. PMID:21058050

  8. Geologic evolution and hydrocarbon prospects in the Chotts Basin, Tunisia

    SciTech Connect

    Johns, C.; Chine, A.

    1995-08-01

    The Chotts Basin, running east-west across central Tunisia, is a complex Late Paleozoic to Mesozoic graben system with a sediment thickness reaching over 5000m. It covers an area of over 15,000 km{sup 2} but is underexplored. It has been drilled by only a few wells; several of which gave oil and gas shows. A number of oil and condensate fields lie immediately south. ETAP, the national oil company, has undertaken a detailed investigation of the basin, greatly improving our understanding of its evolution and prospectivity. The basin is floored by Lower Paleozoic sediments. These occur at shallow depth on the southern flank where they were affected by periodic contemporary tectonism. The succession includes Ordovician clastics with good reservoir potential and both Ordovician and uppermost Silurian source rocks. Locally, the latter unconformably overlie Ordovician reservoir sections. The basin developed into a major, east-west trending, intracratonic wrench basin during the late Permian. Carbonate facies dominate the southern shelf area and, although lithofacies distributions are poorly constrained, the existence of quality source rocks is a strong possibility. The graben complex was inverted and partly eroded prior to deposition of Upper Triassic volcanics and sandstones. The sandstones are a proven reservoir and several leads are identified. Substantial subsidence occurred in the northern part of the basin from the Middle Jurassic to Early Cretaceous. Jurassic carbonates provide numerous reservoir sections, while Callovian shales constitute a proven, mature source rock. Large fault- and fold- related traps were formed during latest Cretaceous to Paleocene and Mio-Pliocene orogeny; they provide promising objectives.

  9. Updates to watershed modeling in the Potholes Reservoir basin, Washington-a supplement to Scientific Investigation Report 2009-5081

    USGS Publications Warehouse

    Mastin, Mark

    2012-01-01

    A previous collaborative effort between the U.S. Geological Survey and the Bureau of Reclamation resulted in a watershed model for four watersheds that discharge into Potholes Reservoir, Washington. Since the model was constructed, two new meteorological sites have been established that provide more reliable real-time information. The Bureau of Reclamation was interested in incorporating this new information into the existing watershed model developed in 2009, and adding measured snowpack information to update simulated results and to improve forecasts of runoff. This report includes descriptions of procedures to aid a user in making model runs, including a description of the Object User Interface for the watershed model with details on specific keystrokes to generate model runs for the contributing basins. A new real-time, data-gathering computer program automates the creation of the model input files and includes the new meteorological sites. The 2009 watershed model was updated with the new sites and validated by comparing simulated results to measured data. As in the previous study, the updated model (2012 model) does a poor job of simulating individual storms, but a reasonably good job of simulating seasonal runoff volumes. At three streamflow-gaging stations, the January 1 to June 30 retrospective forecasts of runoff volume for years 2010 and 2011 were within 40 percent of the measured runoff volume for five of the six comparisons, ranging from -39.4 to 60.3 percent difference. A procedure for collecting measured snowpack data and using the data in the watershed model for forecast model runs, based on the Ensemble Streamflow Prediction method, is described, with an example that uses 2004 snow-survey data.

  10. Testing new methodologies and assessing their potential for reservoir characterisation: Geoelectrical studies in the Northwest Carboniferous Basin (Ireland).

    NASA Astrophysics Data System (ADS)

    Ogaya, Xènia; Campanyà, Joan; Rath, Volker; Jones, Alan G.; Reay, Derek; Raine, Rob; McConnell, Brian; Ledo, Juanjo

    2016-04-01

    The overarching objective of this study is to improve our methods of characterising saline aquifers by integrating newly acquired electromagnetic data with existing geophysical and geological data. The work presented here is part of an ongoing project to evaluate Ireland's potential for onshore carbon sequestration (IRECCSEM; funded by Science Foundation Ireland). The methodology presented in this characterisation work is not only relevant for studying the potential for onshore carbon sequestration, but is generally applicable for aquifer characterisation, particularly for the evaluation of geothermal resources in appropriate geological settings. We present first results of the three-dimensional (3D) modelling and inversion of the magnetotelluric (MT) data acquired in the Northwest Carboniferous Basin (Ireland) in summer 2015. The electrical resistivity distribution beneath the survey area is constrained using a joint inversion of three different types of electromagnetic data: MT impedance tensor responses (Z), geomagnetic transfer functions (GTF) and inter-station horizontal magnetic transfer-functions (HMT). The preliminary 3D resistivity model obtained reveals the geoelectrical structure of the subsurface, which is translated into parameters relevant to fluid flow. The electromagnetic data were acquired along profiles linking four wells drilled in the area and the available well log data from those wells are used to evaluate some of the existing petrophysical relationships and calibrate them for the study area. This allows us to interpolate the rock physical properties from one well to another well, using the computed geoelectrical model as a reference. The obtained results are compared to available independent geological and geophysical data in order to analyse the validity of this technique, to characterise the uncertainties inherent to our approach, and to assess the potential of this methodology for reservoir characterisation.

  11. Burial dolomitisation in a non-tropical carbonate petroleum reservoir: the Oligocene Tikorangi Formation, Taranaki Basin, New Zealand

    NASA Astrophysics Data System (ADS)

    Hood, Steven D.; Nelson, Campbell S.; Kamp, Peter J. J.

    2004-11-01

    The Oligocene Tikorangi Formation is a subsurface, non-tropical, limestone-rich, fracture-producing oil reservoir in Taranaki Basin, New Zealand. The formation is distinct from uplifted and exposed age-equivalent New Zealand limestones due to partial dolomitisation by modest quantities of silt-sized, scattered, inclusion-rich, euhedral dolomite rhombs, occasionally displaying idiotopic fabrics. Rhombs commonly have dull luminescent Fe-rich cores, and oscillatory bright and dull concentric outers. The dolomites are non-stoichiometric, high calcian and highly ferroan varieties. Dolomite 18O and 13C values are moderately depleted, while associated precursor calcite phases are less depleted. Petrographic, geochemical and geohistory evidence suggest that the dolomite formed during and following the later stages of pressure-dissolution cementation in a relatively closed, moderately deep burial environment (ca. 0.85-1.9 km burial depth, ca. 33-65 °C) in the early Miocene (ca. 24-18 Ma) from warm, saline-enriched pore fluids by mainly mimic fabric-selective replacement of interparticle, and rarely intraparticle, micrite/matrix. Dolomitisation did not affect skeletal grains or calcite cements or develop any secondary porosity. Mg supply was restricted and was likely sourced internally from micritic inter- and intraparticle precursor material, and from the pressure-dissolution of calcitic skeletons. Importantly, dolomitisation occurred prior to compression-related brittle fracturing of the carbonates, responsible for creating extensive hydrocarbon-bearing fracture networks. Because of the greater susceptibility of the dolomitised limestones to brittle fracturing, their location and distribution may have important implications for hydrocarbon prospectivity and production within the Tikorangi Formation.

  12. Facies-controlled reservoir properties in ramp-fan and slope-apron deposits, Miocene Puente Formation, Los Angeles basin

    SciTech Connect

    Lyons, K.T.; Geving, R.L.; Suchecki, R.K.

    1989-03-01

    The Miocene Puente Formation in outcrops of the eastern Los Angeles basin is interpreted as a succession of slope-apron and ramp-fan deposits that accumulated in a prism-rise wedge. The principal depositional components of this dominantly base-of-slope and ramp system are ramp-fan channels and lobes, and slope-channel and slope-apron channel/interchannel deposits. Facies-specific textural, compositional, and diagenetic attributes observed in thin section assist in the classification of depositional facies. Specifically, occurrence of carbonate cement, clay mineralogy, and abundance of organic material vary as a function of component facies architecture of the depositional system. Slope and ramp-fan channel-fill sandstones are characterized by pervasive carbonate cements, including poikilotopic and fine-grained calcite, fine-grained and baroque dolomite, and minor siderite. Diagenetic clays predate carbonate cements, and dolomite predates coarser, void-filling calcite. Ramp-fan lobe and interchannel deposits are carbonate free but are rich in detrital clay and organic matter. Diagenetic clays include mixed-layer illite/smectite and kaolinite. Sediments deposited in slope-apron channel fill are virtually cement free except for small amounts of authigenic illite/smectite. Slope-apron interchannel deposits are characterized by high content of organic matter and clay-rich matrix. Potential reservoir characteristics, such as grain size, sorting, and abundance of depositional clay matrix, are related to the primary sedimentary properties of depositional architectural components in the ramp-fan and slope-apron system. Additional diagenetic modifications, without consideration of compaction, were controlled by precipitation reactions associated with fluid flow along pathways related to the depositional architectural framework.

  13. Petroleum geology and resources of the North Ustyurt Basin, Kazakhstan and Uzbekistan

    USGS Publications Warehouse

    Ulmishek, Gregory F.

    2001-01-01

    The triangular-shaped North Ustyurt basin is located between the Caspian Sea and the Aral Lake in Kazakhstan and Uzbekistan and extends offshore both on the west and east. Along all its sides, the basin is bounded by the late Paleozoic and Triassic foldbelts that are partially overlain by Jurassic and younger rocks. The basin formed on a cratonic microcontinental block that was accreted northward to the Russian craton in Visean or Early Permian time. Continental collision and deformation along the southern and eastern basin margins occurred in Early Permian time. In Late Triassic time, the basin was subjected to strong compression that resulted in intrabasinal thrusting and faulting. Jurassic-Tertiary, mostly clastic rocks several hundred meters to 5 km thick overlie an older sequence of Devonian?Middle Carboniferous carbonates, Upper Precambrian massifs and deformed Caledonian foldbelts. The Carboniferous?Lower Permian clastics, carbonates, and volca-basement is at depths from 5.5 km on the highest uplifts to 11 nics, and Upper Permian?Triassic continental clastic rocks, pri-km in the deepest depressions. marily red beds. Paleogeographic conditions of sedimentation, Three total petroleum systems are identified in the basin. the distribution of rock types, and the thicknesses of pre-Triassic Combined volumes of discovered hydrocarbons in these sysstratigraphic units are poorly known because the rocks have been tems are nearly 2.4 billion barrels of oil and 2.4 trillion cubic penetrated by only a few wells in the western and eastern basin feet of gas. Almost all of the oil reserves are in the Buzachi Arch areas. The basement probably is heterogeneous; it includes and Surrounding Areas Composite Total Petroleum System in 2 Petroleum Geology, Resources?North Ustyurt Basin, Kazakhstan and Uzbekistan the western part of the basin. Oil pools are in shallow Jurassic and Neocomian sandstone reservoirs, in structural traps. Source rocks are absent in the total petroleum

  14. Conjunctive use of water resources as an alternative to a leaky reservoir in a mountainous, semiarid area (Adra River basin, SE Spain)

    NASA Astrophysics Data System (ADS)

    García-López, S.; Benavente, J.; Cruz-Sanjulián, J. J.; Olías, M.

    2009-11-01

    Regulatory actions taken in the Adra River basin (746 km2), located south of the Sierra Nevada Mountains (SE Spain), are analyzed. The Benínar Reservoir (60 hm3), which entered into service in 1983, has suffered from severe leakage from the outset, preventing it from performing the water management functions originally foreseen for it; however, it has also made it possible to determine the response of the underlying carbonate aquifer into which the reservoir water is draining. This response has been studied based on historical data as well as the occurrence of an extraordinary recharge produced by a period of exceptionally heavy rainfall. A conceptual model of the system’s functioning has been established by analyzing leakage rates, piezometric variations, the discharge through the only spring in the area (the Fuentes de Marbella spring) and the physical-chemical characteristics of the aquifer water. Geological and structural aspects of the carbonate formation were also included. An alternative solution for water regulation in the river basin is proposed: the construction of a smaller dam downstream from the spring. This dam would induce recharge through the permeable base of the reservoir, raise the piezometric level and thus increase its storage capacity, as well as control and regulate the water discharged from the spring.

  15. Impacts of golden alga Prymnesium parvum on fish populations in reservoirs of the upper Colorado River and Brazos River basins, Texas

    USGS Publications Warehouse

    VanLandeghem, Matthew M.; Farooqi, Mukhtar; Farquhar, B.; Patino, Reynaldo

    2013-01-01

    Several reservoirs in the upper Colorado River and Brazos River basins in Texas have experienced toxic blooms of golden alga Prymnesium parvum and associated fish kills since 2001. There is a paucity of information, however, regarding the population-level effects of such kills in large reservoirs, species-specific resistance to or recovery from kills, or potential differences in the patterns of impacts among basins. We used multiple before-after, control-impact analysis to determine whether repeated golden alga blooms have led to declines in the relative abundance and size structure of fish populations. Sustained declines were noted for 9 of 12 fish species surveyed in the upper Colorado River, whereas only one of eight species was impacted by golden alga in the Brazos River. In the upper Colorado River, White Bass Morone chrysops, White Crappie Pomoxis annularis, Largemouth Bass Micropterus salmoides, Bluegill Lepomis macrochirus, River Carpsucker Carpiodes carpio, Freshwater Drum Aplodinotus grunniens, Channel Catfish Ictalurus punctatus, Flathead Catfish Pylodictis olivaris, and Blue Catfish I. furcatus exhibited sustained declines in relative abundance, size structure, or both; Gizzard Shad Dorosoma cepedianum, Longnose Gar Lepisosteus osseus, and Common Carp Cyprinus carpio did not exhibit those declines. In the Brazos River, only the relative abundance of Blue Catfish was impacted. Overall, toxic golden alga blooms can negatively impact fish populations over the long-term, but the patterns of impact can vary considerably among river basins and species. In the Brazos River, populations of most fish species appear to be healthy, suggesting a positive angling outlook for this basin. In the upper Colorado River, fish populations have been severely impacted, and angling opportunities have been reduced. Basin-specific management plans aimed at improving water quality and quantity will likely reduce bloom intensity and allow recovery of fish populations to the

  16. Standardizing texture and facies codes for a process-based classification of clastic sediment and rock

    USGS Publications Warehouse

    Farrell, K.M.; Harris, W.B.; Mallinson, D.J.; Culver, S.J.; Riggs, S.R.; Pierson, J.; Self-Trail J.M.; Lautier, J.C.

    2012-01-01

    Proposed here is a universally applicable, texturally based classification of clastic sediment that is independent from composition, cementation, and geologic environment, is closely allied to process sedimentology, and applies to all compartments in the source-to-sink system. The classification is contingent on defining the term "clastic" so that it is independent from composition or origin and includes any particles or grains that are subject to erosion, transportation, and deposition. Modifications to Folk's (1980) texturally based classification that include applying new assumptions and defining a broader array of textural fields are proposed to accommodate this. The revised ternary diagrams include additional textural fields that better define poorly sorted and coarse-grained deposits, so that all end members (gravel, sand, and mud size fractions) are included in textural codes. Revised textural fields, or classes, are based on a strict adherence to volumetric estimates of percentages of gravel, sand, and mud size grain populations, which by definition must sum to 100%. The new classification ensures that descriptors are applied consistently to all end members in the ternary diagram (gravel, sand, and mud) according to several rules, and that none of the end members are ignored. These modifications provide bases for standardizing vertical displays of texture in graphic logs, lithofacies codes, and their derivatives- hydrofacies. Hydrofacies codes are nondirectional permeability indicators that predict aquifer or reservoir potential. Folk's (1980) ternary diagram for fine-grained clastic sediments (sand, silt, and clay size fractions) is also revised to preserve consistency with the revised diagram for gravel, sand, and mud. Standardizing texture ensures that the principles of process sedimentology are consistently applied to compositionally variable rock sequences, such as mixed carbonate-siliciclastic ramp settings, and the extreme ends of depositional

  17. Development of an integrated hydrological modeling system for near-real-time multi-objective reservoir operation in large river basins

    NASA Astrophysics Data System (ADS)

    Wang, L.; Koike, T.

    2010-12-01

    The climate change-induced variability in hydrological cycles directly affects regional water resources management. For improved multiple multi-objective reservoir operation, an integrated modeling system has been developed by incorporating a global optimization system (SCE-UA) into a distributed biosphere hydrological model (WEB-DHM) coupled with the reservoir routing module. The reservoir storage change is estimated from the difference between the simulated inflows and outflows; while the reservoir water level can be defined from the updated reservoir storage by using the H-V curve. According to the reservoir water level, the new operation rule can be decided. For optimization: (1) WEB-DHM is calibrated for each dam’s inflows separately; (2) then the calibrated WEB-DHM is used to simulate inflows and outflows by assuming outflow proportional to inflow; and (3) the proportion coefficients are optimized with Shuffle Complex Evolution method (SCE-UA), to fulfill an objective function towards minimum flood risk at downstream and maximum reservoir water storage for future use. The GSMaP product offers hourly global precipitation maps in near real-time (about four hours after observation). Aiming at near real-time reservoir operation in large river basins, the integrated modeling system takes the inputs from both an operational global quantitative precipitation forecast (JMA-GPV; to achieve an optimal operation rule in the assumed lead time period) and the GSMaP product (to perform current operation with the obtained optimal rule, after correction by gauge rainfall). The newly-developed system was then applied to the Red River Basin, with an area of 160,000 km2, to test its performance for near real-time dam operation. In Vietnam, three reservoirs are located in the upstream of Hanoi city, with Hoa Binh the largest (69% of total volume). After calibration with the gauge rainfall, the inflows to three reservoirs are well simulated; the discharge and water level at

  18. The Sredne-Amursky basin: A migrating cretaceous depocenter for the Amur river, eastern Siberia

    SciTech Connect

    Light, M.; Maslanyj, M.; Davidson, K. )

    1993-09-01

    Recently acquired seismic, well, and regional geological data imply favorable conditions for the accumulation of oil and gas in the 20,000 km[sup 2] Sredne-Amursky basin. Major graben and northeast-trending sinistral wrench-fault systems are recognized in the basin. Lower and Upper Cretaceous sediments are up to 9000 and 3000 m thick, respectively. Paleogeographic reconstructions imply that during the Late Triassic-Early Cretaceous the Sredne-Amursky basin was part of a narrow marine embayment (back-arc basin), which was open to the north. During the Cretaceous, the region was part of a foreland basin complicated by strike-slip, which produced subsidence related to transtension during oblique collision of the Sikhote-Alin arc with Eurasian margin. Contemporaneous uplift also related to this collision migrated from south to north and may have sourced northward-directed deltas and alluvial fans, which fed northward into the closing back-arc basin between 130 and 85 Ma. The progradational clastic succession of the Berriasian-Albian and the Late Cretaceous fluvial, brackish water and paralic sediments within the basin may be analogous to the highly productive late Tertiary clastics of the Amur River delta in the northeast Sakhalin basin. Cretaceous-Tertiary lacustrine-deltaic sapropelic shales provide significant source and seal potential and potential reservoirs occur in the Cretaceous and Tertiary. Structural plays were developed during Cretaceous rifting and subsequent strike-slip deformation. If the full hydrocarbon potential of the Sredne-Amursky basin is to be realized, the regional appraisal suggests that exploration should be focused toward the identification of plays related to prograding Cretaceous deltaic depositional systems.

  19. Pliocene facies trends and controls on deposition of lower gusher shallow gas reservoirs, North Coles Levee Field, San Joaquin Basin, California

    SciTech Connect

    Steward, D.C.; Gillespie, J.M. )

    1994-04-01

    Net sand isochore maps of three Pliocene-age Lower Gusher sands in the Etchegoin Formation at North Coles Levee field, southern San Joaquin basin, California display geometries suggestive of deposition in delta front settings. The north-south depositional strike of these sands approximately parallels the orientation of the paleoshoreline. The sands thicken and display greater lateral continuity near distributary channel sands, which are oriented east-northeast approximately perpendicular to the shoreline. A comparison of the isochore maps of each of the three sand bodies show that they are stacked vertically above each other, indicating that the position of the shoreline remained stationary during deposition of the Gusher interval. This apparent stillstand of the shoreline is superimposed on an overall regression of the sea from the San Joaquin basin during the Pliocene. Therefore, we believe that the Lower Gusher sands were deposited during a period of relatively rapid basin subsidence, which negated the effects of the marine regression and caused vertical aggradation of shoreline facies in the North Coles Levee area. The Lower Gusher interval at North and South Coles Levee contains the most prolific shallow gas reservoirs on the Bakersfield Arch. A thorough knowledge of depositional trends in the Lower Gusher interval increases the probability of encountering reservoir-quality facies in exploration programs focusing on Pliocene gas.

  20. Temperature-pressure conditions in coalbed methane reservoirs of the Black Warrior basin: Implications for carbon sequestration and enhanced coalbed methane recovery

    USGS Publications Warehouse

    Pashin, J.C.; McIntyre, M.R.

    2003-01-01

    Sorption of gas onto coal is sensitive to pressure and temperature, and carbon dioxide can be a potentially volatile supercritical fluid in coalbed methane reservoirs. More than 5000 wells have been drilled in the coalbed methane fields of the Black Warrior basin in west-central Alabama, and the hydrologic and geothermic information from geophysical well logs provides a robust database that can be used to assess the potential for carbon sequestration in coal-bearing strata.Reservoir temperature within the coalbed methane target zone generally ranges from 80 to 125 ??F (27-52 ??C), and geothermal gradient ranges from 6.0 to 19.9 ??F/1000 ft (10.9-36.2 ??C/km). Geothermal gradient data have a strong central tendency about a mean of 9.0 ??F/1000 ft (16.4 ??C/km). Hydrostatic pressure gradients in the coalbed methane fields range from normal (0.43 psi/ft) to extremely underpressured (<0.05 psi/ft). Pressure-depth plots establish a bimodal regime in which 70% of the wells have pressure gradients greater than 0.30 psi/ft, and 20% have pressure gradients lower than 0.10 psi/ft. Pockets of underpressure are developed around deep longwall coal mines and in areas distal to the main hydrologic recharge zone, which is developed in structurally upturned strata along the southeastern margin of the basin.Geothermal gradients within the coalbed methane fields are high enough that reservoirs never cross the gas-liquid condensation line for carbon dioxide. However, reservoirs have potential for supercritical fluid conditions beyond a depth of 2480 ft (756 m) under normally pressured conditions. All target coal beds are subcritically pressured in the northeastern half of the coalbed methane exploration fairway, whereas those same beds were in the supercritical phase window prior to gas production in the southwestern half of the fairway. Although mature reservoirs are dewatered and thus are in the carbon dioxide gas window, supercritical conditions may develop as reservoirs

  1. Research on the calculation method of shale and tuff content: taking tuffaceous reservoirs of X depression in the Hailar-Tamtsag Basin as an example

    NASA Astrophysics Data System (ADS)

    Liu, Sihui; Huang, Buzhou; Pan, Baozhi; Wang, Guiping; Sun, Fengxian; Qiu, Haibo; Guo, Yuhang; Fang, Chunhui; Jiang, Bici

    2015-10-01

    Shale content is known in reservoir evaluation as an important parameter in well logging. However, the log response characteristics are simultaneously affected by shale and tuff existing in tuffaceous sandstone reservoirs. Due to the fact that tuff content exerts an influence on the calculation of shale content, the former is equally important as the latter. Owing to the differences in the source and composition between shale and tuff, the calculation of tuff content using the same methods for shale content cannot meet the accuracy requirements of logging evaluation. The present study takes the tuffaceous reservoirs in the X depression of the Hailar-Tamtsag Basin as an example. The differences in the log response characteristics between shale and tuff are theoretically analyzed and verified using core analysis data. The tuff is then divided into fine- and coarse-grained fractions, according to the differences in the distribution of the radioactive elements, uranium, thorium and potassium. Next, a volume model suitable for tuffaceous sandstone reservoirs is established to include a sandstone matrix, shale, fine-grained tuff, coarse-grained tuff and pore. A comparison of three optimization algorithms shows that the particle swarm optimization (PSO) yields better calculation results with small mean errors. The resistivity differences among shale, fine-grained tuff and coarse-grained tuff are considered in the calculation of saturation. The water saturation of tuffaceous reservoirs is computed using the improved Poupon’s equation, which is suitable for tuffaceous sandstone reservoirs with low water salinity. The method is used in well Y, and is shown to have a good application effect.

  2. An Analytical Method for Deriving Reservoir Operation Curves to Maximize Social Benefits from Multiple Uses of Water in the Willamette River Basin

    NASA Astrophysics Data System (ADS)

    Moore, K. M.; Jaeger, W. K.; Jones, J. A.

    2013-12-01

    A central characteristic of large river basins in the western US is the spatial and temporal disjunction between the supply of and demand for water. Water sources are typically concentrated in forested mountain regions distant from municipal and agricultural water users, while precipitation is super-abundant in winter and deficient in summer. To cope with these disparities, systems of reservoirs have been constructed throughout the West. These reservoir systems are managed to serve two main competing purposes: to control flooding during winter and spring, and to store spring runoff and deliver it to populated, agricultural valleys during the summer. The reservoirs also provide additional benefits, including recreation, hydropower and instream flows for stream ecology. Since the storage capacity of the reservoirs cannot be used for both flood control and storage at the same time, these uses are traded-off during spring, as the most important, or dominant use of the reservoir, shifts from buffering floods to storing water for summer use. This tradeoff is expressed in the operations rule curve, which specifies the maximum level to which a reservoir can be filled throughout the year, apart from real-time flood operations. These rule curves were often established at the time a reservoir was built. However, climate change and human impacts may be altering the timing and amplitude of flood events and water scarcity is expected to intensify with anticipated changes in climate, land cover and population. These changes imply that reservoir management using current rule curves may not match future societal values for the diverse uses of water from reservoirs. Despite a broad literature on mathematical optimization for reservoir operation, these methods are not often used because they 1) simplify the hydrologic system, raising doubts about the real-world applicability of the solutions, 2) exhibit perfect foresight and assume stationarity, whereas reservoir operators face

  3. Increasing waterflood reserves in the Wilmington oil field through improved reservoir characterization and reservoir management. Quarterly technical progress report, March 21, 1995--June 30, 1995

    SciTech Connect

    Sullivan, D.; Clarke, D.; Walker, S.; Phillips, C.; Nguyen, J.; Moos, D.; Tagbor, K.

    1995-07-26

    The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology. The identification of the sands with high remaining oil saturation will be accomplished by developing a deterministic 3-D geologic model and by using a state of the art reservoir management computer software. The wells identified by the geologic and reservoir engineering work as having the best potential will be logged with a pulsed acoustic cased-hole logging tool. The application of the logging tools will be optimized in the lab by developing a rock-log model. The wells that are shown to have the best oil production potential will be recompleted. The recompletions will be optimized by evaluating short radius and ultra-short radius lateral recompletions. Technical progress is reported for the following tasks: Reservoir characterization; reservoir engineering; 3-D geologic modeling; pulsed acoustic logging; and technology transfer.

  4. Comparative hydrocarbon geology of two Mesozoic Circum-Pacific foreland basins as function of sediment provenance: Surat basin, eastern Australia and western Canada basin

    SciTech Connect

    Hawlader, H.M. )

    1990-06-01

    The Surat basin in Queensland and New South Wales, Australia, is a foreland basin formed in response to a magmatic arc during Early Jurassic to mid-Cretaceous time. It has a maximum basin-fill of about 2.5 km of Jurassic and Lower Cretaceous sediments. The first commercial production of oil in Australia came from this basin in the early 1960s. The Western Canada basin is a retro-arc foreland basin with up to 3.5 km of sediments deposited during the Middle Jurassic to Late Cretaceous. The basin was developed on the cratonward side of an arc/cordillera by plate convergence. It is a composite basin with sediments ranging in age from Devonian to Tertiary and is one of the prolific petroliferous basins of the world. The famous Athabasca-Peace River-Lloydminister tar sands alone contain a reserve of about 3 {times} 10{sup 12} barrels of oil, which exceeds three times the recoverable reserves of the world's known oil. The main sediment source was, in both basins, a rising arc/cordillera that shed a cratonward tapering clastic wedge into the flanking foreland basins. Sedimentation, in both cases, was episodic and the patterns of sedimentation in each present striking similarities. During the waxing phase of magmatism/orogeny in the arc/cordillera, the foreland subsided in response to flexural loading of the foreland fold-thrust belt and downward drag by the subducting plate. Continental synorogenic sediments were rapidly emplaced in mainly terrestrial environments into the subsiding foreland. These sediments are lithic-labile in nature and because of their physical and chemical reactivity are prone to be tight and thus of little hydrocarbon reservoir potential. During the waning phase of the arc/orogen the foreland gently rose in response partly to the cessation of drag (decoupling) by the subducting plate and to isostatic rebound (tectonic relaxation).

  5. Evolution of pore-fluid pressure during folding and basin contraction in overpressured reservoirs assessed by combined fracture analysis and calcite twinning paleopiezometry

    NASA Astrophysics Data System (ADS)

    Beaudoin, Nicolas; Lacombe, Olivier; Bellahsen, Nicolas; Amrouch, Khalid; Daniel, Jean-Marc

    2014-05-01

    Reconstructing the evolution of paleofluid (over)pressure in sedimentary basins during deformation is a challenging problem, especially when no hydrocarbon-bearing fluid inclusions are available to provide barometric constraints on the fluid system. This contribution reports the application to a natural case (the Bighorn Basin) of recent methodological advance to access fluid (over)pressure level prevailing in strata during sub-seismic fracture development. The fluid pressure evolution in the Mississippian-Permian Madison-Phosphoria carbonate reservoir is tentatively reconstructed from the early Sevier Layer Parallel Shortening to the Laramide folding in two basement-cored folds: the Sheep Mountain Anticline and the Rattlesnake Mountain Anticline, located on both edges of the Bighorn Basin. This reconstruction is based on a combination of stress inversion of fault slip data, calcite twins paleopiezometry and rock mechanics. Results point out that supra-hydrostatic pressure values prevail in the carbonate reservoir during most of its whole Sevier-Laramide history, and a coeval evolution between fluid overpressure and differential stress build-up is also emphasized. In each fold, a maximum value of 30-35 MPa for overpressure (i.e. above hydrostatic value) is recorded, just before Laramide folding, while minimum values of 0 MPa or 7 MPa are recorded during Sevier foreland flexure/forebulge and Laramide folding, respectively. After normalization to the same depth for both folds of differential stress magnitudes obtained from calcite twins paleopiezometry, the reconstructed values for the two folds can be compared and this comparison provides an image of the evolution fluid pressure levels at the basin scale. Until folding, the evolution of the fluid overpressure during deformation can be interpreted as reflecting large-scale fluid migrations in a laterally connected reservoir. The drop of fluid overpressure recorded in both folds during folding illustrates the

  6. Influence of Cougar Reservoir Drawdown on Sediment and DDT Transport and Deposition in the McKenzie River Basin, Oregon, Water Years 2002-04

    USGS Publications Warehouse

    Anderson, Chauncey W.

    2007-01-01

    bags, was greatest downstream of Cougar and Blue River Reservoirs (1.0 and 1.2 percent of total sediments, respectively). Deposition was least in the high-energy, unregulated environments (about 0.25 percent) of the South Fork McKenzie River above Cougar Reservoir and in the mainstem above the South Fork, and intermediate near Vida, the most downstream site on the mainstem. DDT, applied throughout much of the upper McKenzie River drainage basin to control spruce budworm during the 1950s, was detected in the South Fork near Rainbow in the form of its metabolites DDD and DDE in fine sediment captured in the infiltration bags. DDE also was detected in infiltration bags deployed in the McKenzie River near Vida, downstream of the South Fork. All concentrations of DDD and DDE were less than the aquatic-life criterion for bed sediment. DDT species were not detected in water samples, including samples collected during large storms. The reservoir apparently acted as a trap for sediment and DDT throughout the course of its existence, facilitating degradation of the trapped DDT, and may have been a source for both during the construction period in 2002-05, but the lack of detections during storms indicates that DDT transport was small. Transport of detectable amounts of DDT likely was limited to periods of high suspended-sediment concentrations (greater than 75-100 milligrams per liter). Infiltration bags were deployed during August 2003-July 2004 and were a useful device for measuring fine-sediment deposition and for chemical analysis of the deposited material. Deposition of fine-grained sediment downstream of the flood-control dams may be reduced if bed-moving events can be periodically reintroduced to those reaches.

  7. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah, Class II

    SciTech Connect

    Chidsey, Thomas C.

    2000-07-28

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m{sup 3}) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  8. Reservoir quality and diagenetic evolution of Upper Mississippian rocks in the Illinois Basin; influence of a regional hydrothermal fluid-flow event during late diagenesis

    USGS Publications Warehouse

    Pitman, Janet K.; Henry, Mitchell E.; Seyler, Beverly

    1998-01-01

    Conventional reservoir quality data for more than 300 wells provided by the Illinois and Indiana State Geological Surveys were analyzed to determine the factors governing porosity and permeability in the Upper Mississippian Bethel Sandstone and Cypress Sandstone, two of the principal producing units in the Illinois Basin. In addition, approximately 150 samples of the Bethel Sandstone-Cypress Sandstone interval from about 80 wells in the Illinois Basin were collected for mineralogical and geochemical analysis to reconstruct the burial and diagenetic history and to establish the timing of diagenesis relative to the entrapment of hydrocarbons. One aspect of the study involved linking inorganic and organic diagenesis to late Paleozoic tectonism and hydrothermal fluid-flow events in the region.

  9. Hydrologic and geochemical data collected near Skewed Reservoir, an impoundment for coal-bed natural gas produced water, Powder River Basin, Wyoming

    USGS Publications Warehouse

    Healy, Richard W.; Rice, Cynthia A.; Bartos, Timothy T.

    2012-01-01

    The Powder River Structural Basin is one of the largest producers of coal-bed natural gas (CBNG) in the United States. An important environmental concern in the Basin is the fate of groundwater that is extracted during CBNG production. Most of this produced water is disposed of in unlined surface impoundments. A 6-year study of groundwater flow and subsurface water and soil chemistry was conducted at one such impoundment, Skewed Reservoir. Hydrologic and geochemical data collected as part of that study are contained herein. Data include chemistry of groundwater obtained from a network of 21 monitoring wells and three suction lysimeters and chemical and physical properties of soil cores including chemistry of water/soil extracts, particle-size analyses, mineralogy, cation-exchange capacity, soil-water content, and total carbon and nitrogen content of soils.

  10. Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in Eastern Kentucky

    SciTech Connect

    Grujic, Ognjen; Mohaghegh, Shahab; Bromhal, Grant

    2010-07-01

    In this paper a fast track reservoir modeling and analysis of the Lower Huron Shale in Eastern Kentucky is presented. Unlike conventional reservoir simulation and modeling which is a bottom up approach (geo-cellular model to history matching) this new approach starts by attempting to build a reservoir realization from well production history (Top to Bottom), augmented by core, well-log, well-test and seismic data in order to increase accuracy. This approach requires creation of a large spatial-temporal database that is efficiently handled with state of the art Artificial Intelligence and Data Mining techniques (AI & DM), and therefore it represents an elegant integration of reservoir engineering techniques with Artificial Intelligence and Data Mining. Advantages of this new technique are a) ease of development, b) limited data requirement (as compared to reservoir simulation), and c) speed of analysis. All of the 77 wells used in this study are completed in the Lower Huron Shale and are a part of the Big Sandy Gas field in Eastern Kentucky. Most of the wells have production profiles for more than twenty years. Porosity and thickness data was acquired from the available well logs, while permeability, natural fracture network properties, and fracture aperture data was acquired through a single well history matching process that uses the FRACGEN/NFFLOW simulator package. This technology, known as Top-Down Intelligent Reservoir Modeling, starts with performing conventional reservoir engineering analysis on individual wells such as decline curve analysis and volumetric reserves estimation. Statistical techniques along with information generated from the reservoir engineering analysis contribute to an extensive spatio-temporal database of reservoir behavior. The database is used to develop a cohesive model of the field using fuzzy pattern recognition or similar techniques. The reservoir model is calibrated (history matched) with production history from the most recently

  11. Erosion processes, fluvial sediment transport, and reservoir sedimentation in a part of the Newell and Zayante Creek basins, Santa Cruz County, California

    USGS Publications Warehouse

    Brown, W. M., III

    1973-01-01

    The drainage basins upstream from Loch Lomond, a water-supply reservoir on Newell Creek, and a proposed reservoir site on Zayante Creek were investigated for their characteristics with respect to the erosion, transportation, and deposition of sediment. The study area is underlain predominantly by sandstone, siltstone, and shale of Tertiary age that decompose readily into moderately deep soils, friable colluvium, and easily transported sediment particles. The Rices Mudstone and Twobar, Shale Members of the San Lorenzo Formation of Brabb (1964) underlie steep dip slopes in the study area, and probably are the most highly erodible of the several geologic units present there. However, nearly all of the geologic units have shown a propensity for accelerated erosion accompanying the disturbance of the land surface by the roadbuilding practices that predominate over other types of sediment-producing land-use activities in the study area. Sediment transport in the study area was estimated from (1) a reservoir survey of Loch Lomond in 1971 that was compared with a preconstruction survey of 1960, and (2) sampling of sediment transported in suspension by Zayante Creek during the 1970 and 1971 water years. At least 46 acre-feet of sediment accumulated in Loch Lomond in a 10-year period, and an unmeasured quantity of very fine sediment in the form of a thin layer over much of the reservoir bottom was observed. The measured quantity of deposited sediment in a 10-year period represented a sediment yield of about 1,100 tons annually per square mile of drainage basin upstream from the reservoir arms where the major deposition occurred. This sediment occupied less than i percent of the original capacity of Loch Lomond, but the volume of measured sediment deposition is probably conservative in view of the unmeasured deposits observed and a reservoir trap efficiency of about 95 percent. Sediment sampling on Zayante Creek indicated suspended-sediment yields of about 4,570 and 570 tons

  12. Geoscience/engineering characterization of the interwell environment in carbonate reservoirs based on outcrop analogs, Permian Basin, West Texas and New Mexico--waterflood performance analysis for the South Cowden Grayburg Reservoir, Ector County, Texas. Final report

    SciTech Connect

    Jennings, J.W. Jr.

    1997-05-01

    A reservoir engineering study was conducted of waterflood performance in the South Cowden field, an Upper Permian Grayburg reservoir on the Central Basin Platform in West Texas. The study was undertaken to understand the historically poor waterflood performance, evaluate three techniques for incorporating petrophysical measurements and geological interpretation into heterogeneous reservoir models, and identify issues in heterogeneity modeling and fluid-flow scaleup that require further research. The approach included analysis of relative permeability data, analysis of injection and production data, heterogeneity modeling, and waterflood simulation. The poor South Cowden waterflood recovery is due, in part, to completion of wells in only the top half of the formation. Recompletion of wells through the entire formation is estimated to improve recovery in ten years by 6 percent of the original oil in place in some areas of the field. A direct three-dimensional stochastic approach to heterogeneity modeling produced the best fit to waterflood performance and injectivity, but a more conventional model based on smooth mapping of layer-averaged properties was almost as good. The results reaffirm the importance of large-scale heterogeneities in waterflood modeling but demonstrate only a slight advantage for stochastic modeling at this scale. All the flow simulations required a reduction to the measured whole-core k{sub v}/k{sub h} to explain waterflood behavior, suggesting the presence of barriers to vertical flow not explicitly accounted for in any of the heterogeneity models. They also required modifications to the measured steady-state relative permeabilities, suggesting the importance of small-scale heterogeneities and scaleup. Vertical flow barriers, small-scale heterogeneity modeling, and relative permeability scaleup require additional research for waterflood performance prediction in reservoirs like South Cowden.

  13. CHARACTERIZATION OF SANDSTONE RESERVOIRS FOR ENHANCED OIL RECOVERY: THE PERMIAN UPPER MINNELUSA FORMATION, POWDER RIVER BASIN, WYOMING.

    USGS Publications Warehouse

    Schenk, C.J.; Schmoker, J.W.; Scheffler, J.M.

    1986-01-01

    Upper Minnelusa sandstones form a complex group of reservoirs because of variations in regional setting, sedimentology, and diagenetic alteration. Structural lineaments separate the reservoirs into northern and southern zones. Production in the north is from a single pay sand, and in the south from multi-pay sands due to differential erosion on top of the Upper Minnelusa. The intercalation of eolian dune, interdune, and sabkha sandstones with marine sandstones, carbonates, and anhydrites results in significant reservoir heterogeneity. Diagenetic alterations further enhance heterogeneity, because the degree of cementation and dissolution is partly facies-related.

  14. Land-use effects on erosion, sediment yields, and reservoir sedimentation: a case study in the Lago Loiza Basin, Puerto Rico

    USGS Publications Warehouse

    Gellis, A.C.; Webb, R.M.T.; McIntyre, S.C.; Wolfe, W.J.

    2006-01-01

     Lago Loíza impounded in 1953 to supply San Juan, Puerto Rico, with drinking water; by 1994, it had lost 47% of its capacity. To characterize sedimentation in Lago Loíza, a study combining land-use history, hillslope erosion rates, and subbasin sediment yields was conducted. Sedimentation rates during the early part of the reservoir’s operation (1953– 1963) were slightly higher than the rates during 1964–1990. In the early history of the reservoir, cropland comprised 48% of the basin and erosion rates were high. Following economic shifts during the 1960s, cropland was abandoned and replaced by forest, which increased from 7.6% in 1950 to 20.6% in 1987. These land-use changes follow a pattern similar to the northeastern United States. Population in the Lago Loíza Basin increased 77% from 1950 to 1990, and housing units increased 194%. Sheetwash erosion measured from 1991 to 1993 showed construction sites had the highest sediment concentration (61,400 ppm), followed by cropland (47,400 ppm), pasture (3510 ppm), and forest (2050 ppm). This study illustrates how a variety of tools and approaches can be used to understand the complex interaction between land use, upland erosion, fluvial sediment transport and storage, and reservoir sedimentation. 

  15. High resolution sequence stratigraphy in the upper Jurassic carbonate platform of the Paris basin: Reservoir geometries in lagoonal, protected marine and ooids shoals environments

    SciTech Connect

    Pascal, H.; Villalobos, L. Guillocheau, F.

    1995-08-01

    Reservoir geometry reconstruction within carbonate platforms has been carried out in the Upper Jurassic of the Paris Basin based on high-resolution sequence stratigraphy correlations (cores and well-logs). 18 cored wells over 25 kM{sup 2} have been correlated (Saint-Clair-sur-Epte field, Gaz de France). During lower and middle Oxfordian the Paris Basin is a carbonate platform prograding southward. This progradational trend can be subdivided into three upper order sequences (parasequences sets, mean duration: one m.y.). The lower parasequence-set is a stacking of shallowing-upward parasequences made up of tidal ooids bars surrounded laterally and backward by more protected environments (large variety of coated grains). The middle parasequence-set is recorded in lagoonal environments with numerous channels and lobes of storm washover-fans. Metric-thick sequences have been correlated over the field. They are ernersive upward (subtidal lagoonal deposits cut by storm-induced channels and lobes, covered by small karsts). The upper parasequence-set is made-up of protected-marine deposits grading into lagoonal sediments. The metric thick shallowing-upward sequences are composed by sheet-shaped, strongly bioturbated, medium to coarse-grained bioclastic limestones. Correlation levels are the deepest facies (strongly monospecifically bioturbated wackstones). Shape and size of reservoirs will be quantified.

  16. Diagenesis and secondary porosity enhancement from dissolution of analcime cement in reservoir sandstones: The Upper Permian Pingdiquan Formation, Junggar basin, northwest China

    SciTech Connect

    Zhaohui, T.; Longstaffe, F.J.; Parnell, J.

    1996-12-31

    The Junggar Basin is one of the largest and most important oil-producing basins in China, in which Upper Permian lacustrine oil shales are among the thickest and richest petroleum source rocks in the world. The Upper Permian Pingdiquan Formation was deposited predominantly in fan-delta sequences within a lacustrine setting. The Pingdiquan Formation sandstones constitute the principal oil reservoirs, whereas the interbedded black shales are the predominant oil source rocks. The early diagenetic mineral assemblage in the sandstones comprises siderite, pyrite, analcime, albite, calcite and authigenic quartz as well as trace amount of halite; By contrast, the late diagenetic minerals are characterized by authigenic K-feldspar, ankerite, and minor amounts of mixed-layer clay minerals. Petrographic, mineralogical and available paleoecological data suggest that early authigenic minerals in the sandstones were controlled by alternating periodic fresh water and saline/alkaline water episodes in a lacustrine environment. The cementation of siderite, analcime, calcite and albite occluded the substantial porosity in the sandstones at an early diagenetic stage. However, extensive dissolution of analcime cement and labile detrital feldspars occurred during burial diagenesis, resulting in a significant secondary porosity enhancement in the sandstones and making them very good quality oil reservoirs. The origin of secondary porosity is related to the generation of various organic acids due to organic maturation of the interbedded exceptionally organic-rich oil shales.

  17. Diagenesis and secondary porosity enhancement from dissolution of analcime cement in reservoir sandstones: The Upper Permian Pingdiquan Formation, Junggar basin, northwest China

    SciTech Connect

    Zhaohui, T.; Longstaffe, F.J. ); Parnell, J. )

    1996-01-01

    The Junggar Basin is one of the largest and most important oil-producing basins in China, in which Upper Permian lacustrine oil shales are among the thickest and richest petroleum source rocks in the world. The Upper Permian Pingdiquan Formation was deposited predominantly in fan-delta sequences within a lacustrine setting. The Pingdiquan Formation sandstones constitute the principal oil reservoirs, whereas the interbedded black shales are the predominant oil source rocks. The early diagenetic mineral assemblage in the sandstones comprises siderite, pyrite, analcime, albite, calcite and authigenic quartz as well as trace amount of halite; By contrast, the late diagenetic minerals are characterized by authigenic K-feldspar, ankerite, and minor amounts of mixed-layer clay minerals. Petrographic, mineralogical and available paleoecological data suggest that early authigenic minerals in the sandstones were controlled by alternating periodic fresh water and saline/alkaline water episodes in a lacustrine environment. The cementation of siderite, analcime, calcite and albite occluded the substantial porosity in the sandstones at an early diagenetic stage. However, extensive dissolution of analcime cement and labile detrital feldspars occurred during burial diagenesis, resulting in a significant secondary porosity enhancement in the sandstones and making them very good quality oil reservoirs. The origin of secondary porosity is related to the generation of various organic acids due to organic maturation of the interbedded exceptionally organic-rich oil shales.

  18. Data Assimilation of InSAR Surface Deformation Measurements for the Estimation of Reservoir Geomechanical Parameters in the Upper Adriatic Sedimentary Basin, Italy

    NASA Astrophysics Data System (ADS)

    Bau, D. A.; Alzraiee, A.; Ferronato, M.; Gambolati, G.; Teatini, P.

    2012-12-01

    In the last decades, extensive work has been conducted to estimate land subsidence due the development of deep gas reservoirs situated in the Upper Adriatic sedimentary basin, Italy. These modeling efforts have stemmed from the development finite-element (FE) coupled reservoir-geomechanical models that can simulate the deformation due to the change in pore pressure induced by hydrocarbon production from the geological formations. However, the application of these numerical models has often been limited by the uncertainty in the hydrogeological and poro-mechanical input parameters that are necessary to simulate the impact on ground surface levels of past and/or future gas-field development scenarios. Resolving these uncertainties is of paramount importance, particularly the Northern Adriatic region, given the low elevation above the mean sea level observed along most of the coastline and in the areas surrounding the Venice Lagoon. In this work, we present a state-of-the-art data assimilation (DA) framework to incorporate measurements of displacement of the land surface obtained using Satellite Interferometric Synthetic Aperture Radar (InSAR) techniques into the response of geomechanical simulation models. In Northern Italy, InSAR measurement campaigns have been carried out over a depleted gas reservoir, referred to as "Lombardia", located at a depth of about 1200 m in the sedimentary basin of the Po River plain. In the last years, this reservoir has been used for underground gas storage and recovery (GSR). Because of the pore pressure periodical alternation produced by GSR, reservoir formations have undergone loading/unloading cycles, experiencing effective stress changes that have induced periodical variation of ground surface levels. Over the Lombardia reservoir, the pattern, magnitude and timing of time-laps land displacements both in the vertical and in the East-West directions have been acquired from 2003 until 2008. The availability of these data opens new

  19. Geologic controls on reservoir properties in gas-bearing middle and Upper Devonian rocks, southern Appalachian basin

    SciTech Connect

    Vessell, R.K.; Davies, D.K.

    1988-08-01

    Porosities and permeabilities have been measured for a wide range of nonfractured Devonian lithologies in 23 wells from southeastern Ohio, eastern Kentucky, West Virginia, and Virginia. These reservoir properties can be related directly to the geometry of the pore system. Pore geometry, in turn, is a function of rock lithology and mineralogy. Despite the lithologic complexity of the Devonian sequence, reservoir quality can be related to a small number of differing pore geometries.

  20. Prediction of subtle thin gas reservoir in the loess desert area in the north of Ordos basin

    NASA Astrophysics Data System (ADS)

    Yang, Hua; Fu, Jinhua; Wang, Daxing

    2004-10-01

    For thin gas reservoir of low-porosity and low-permeability in the loess desert area, a suite of lateral reservoir prediction techniques has been developed by Changqing Oil Company and the excellent effects achieved in exploration and exploitation in the areas such as Yulin, Wushenqi, Suligemiao, Shenmu etc., so that the Upper Paleozoic gas reserve has been stably increasing for eight years in Changqing Oilfield. The paper analyzed the effects and experience of the application of these techniques in detail.

  1. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2001-06-27

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

  2. Geology of the reservoirs from interval I of the Oficina formation, Greater Oficina area, eastern Venezuela Basin

    SciTech Connect

    Rivero, C.A.; Scherer, W.

    1996-08-01

    In order to determine the geologic features of the reservoirs and their areal statistical distribution and geometry, a study was made of a selected interval where the sands present less coalescence and the reservoirs are clearly defined. The study area comprises 1900 km{sup 2} of the Greater Oficina area; core samples, logs and reservoir maps were used. It was found that interval I consists of interbedded sandstones, shales, some siltstone, and occasionally lignites. Based upon lithologic mesoscopic features, eight (8) characteristic lithofacies could be defined. Rocks classified as sub-litharenites, sub-arkoses, arkoses lithic sandstones and graywackes could be inferred as belonging to a fluvio-deltaic system sourced on the Pre-Cambrian Guayana shield. The diagenetic level reached by the sequence corresponds to the intermediate stage, where significant processes of cementation by oxides, carbonates and silica are of equal intensity and magnitude to the lixiviation of feldspars and other detritic particles, giving these rooks good potential reservoir qualities. Descriptive statistical evaluation was performed on 140 reservoirs representing all lithofacies populations in this interval. Based on this analysis reservoirs were statistically grouped in classes which are a function of their geometry, spatial location and type of hydrocarbon content.

  3. The petroleum geology of the sub-Andean Maranon-Ucayali Basin, onshore Peru

    SciTech Connect

    Mathalone, J.M.P. ); Montoya, M. )

    1993-02-01

    The Maranon-Ucayali Basin complex covers seventy five million acres east of the Andes. It trends north to south from the Ecuadorian Border where it is synonymous with the Oriente Basin to within 200 kilometers of the Bolivian border. The stratigraphy of the basin ranges from Ordovician to recent, covering remnants of larger Lower and Upper Paleozoic and Mesozoic basins. The basin is currently the foreland trough of the overthrusting Eastern Cordillera and, in common with many other sub-Andean Basins, is a Miocene to Recent feature. Three main compressional structural events are usually visible on seismic data, a Hercynian (Carboniferous-Permian) episode in the Ucayali Basin or Triassic event in the Maranon Basin, followed by Lowermost Cretaceous uplift and erosion and strong Miocene (Quachua) compressional folding. Oil prone source rocks are recognized mainly in the Devonian, Permian, and Cretaceous, but with significant potential in the Triassic and Jurassic. Four main families of oils have been identified of which three correlate with Cretaceous and Permian source rocks and one with neither. Approximately one billion barrels of oil and five trillion cubic feet of wet gas have been discovered to date, almost exclusively reservoired in Cretaceous deltaic to shallow marine clastics. A variety of trap types have been identified for which examples will be presented. These range from basement involved and detached thrust faulted anticlines to inversion and combination drape/compression anticlines.

  4. Generation of isotopically and compositionally distinct water during thermochemical sulfate reduction (TSR) in carbonate reservoirs: Triassic Feixianguan Formation, Sichuan Basin, China

    NASA Astrophysics Data System (ADS)

    Jiang, Lei; Worden, Richard H.; Cai, Chunfang

    2015-09-01

    Thermochemical sulfate reduction (TSR), the reaction of petroleum with anhydrite in reservoirs resulting in the growth of calcite and the accumulation of H2S, has been documented in the Feixianguan Formation dolomite reservoir in the Sichuan Basin, China. Fluid inclusion salinity and homogenization temperature data have shown that TSR results in a decrease in salinity from a pre-TSR value of 25 wt.% down to 5 wt.% as a result of water created as a byproduct of progressive TSR. We have studied the isotopic character of the water that resulted from TSR in the Feixianguan Formation by analyzing the oxygen isotopes of TSR calcite and determining the oxygen isotopes of the water in equilibrium with the TSR calcite at the temperatures determined by aqueous fluid inclusion analysis. We have compared these TSR-waters to water that would have been in equilibrium with the bulk rock, also at the temperatures determined by aqueous fluid inclusion analysis. We have found that the TSR-waters are relatively depleted in oxygen isotopes (by up to 8‰ compared to what would be expected at equilibrium between the bulk rock and water) since this type of water was specifically derived from anhydrite. The generation of relatively large volumes of low salinity, low δ18O water associated with advanced TSR in the Feixianguan Formation has also been reported in the Permian Khuff Formation in Abu Dhabi and from sour Devonian fields in the Western Canada Basin. This suggests that TSR-derived water may be a common phenomenon, the effects of which on mesogenetic secondary porosity and reservoir quality have previously been underappreciated.

  5. Operation of TVA reservoirs. Annual report, 1981

    SciTech Connect

    Not Available

    1984-09-01

    This report describes the operation of TVA, ALCOA, and Cumberland Basin reservoirs that were scheduled daily by Reservoir Operations Branch personnel during calendar year 1981. These include all TVA reservoirs, eight reservoirs in the Cumberland River Basin owned by the US Army, Corps of Engineers, and six reservoirs in the Tennessee River Basin owned by ALCOA. In addition, storage and flow computations include Walters Reservoir, operated by Carolina Power and Light Company; and Woods Reservoir, operated by the US Air Force. Plates are included in this report tabulating daily elevations, storage volumes, and/or average discharges for 48 reservoirs for 1981. Additional plates are included for the daily average flow in Barkley Canal, monthly and annual emptyings and water use at each lock in the Tennessee River Basin, monthly and annual capacity factors at each TVA scheduled hydro plant, combined monthly and annual storage and flows (in inches) for reservoirs above Chickamauga and Kentucky Dams, and a summary of Reservoir Operations. Tables of monthly and annual storages and flows (in inches) for the principal Tennessee River Basin tributary projects are included at the end of their respective annual operations summary. Individual plotting of midnight reservoir elevations during calendar year 1981 are included for the principal tributary storage reservoirs and Normandy Reservoir. Group charts are included showing midnight reservoir elevations for other tributary reservoirs, the Tennessee River reservoirs, and the principal Cumberland Basin reservoirs.

  6. Operation of TVA reservoirs: annual 1980

    SciTech Connect

    Not Available

    1983-10-01

    This report describes the operation of TVA, ALCOA, and Cumberland Basin reservoirs that were scheduled daily by Reservoir Operations Branch personnel during calendar year 1980. These include all TVA reservoirs, eight reservoirs in the Cumberland River Basin owned by the US Army, Corps of Engineers, and six reservoirs in the Tennessee River Basin owned by ALCOA. In addition, storage and flow computations include Walters Reservoir, operated by Carolina Power and Light Company; and Woods Reservoir, operated by the US Air Force. Plates are included in this report tabulating daily elevations, storage volumes, and/or average discharges for 48 reservoirs for 1980. Additional plates are included for the daily average flow in Barkley Canal, monthly and annual emptyings and water use at each lock in the Tennessee River Basin, monthly and annual capacity factors at each TVA scheduled hydro plant, combined monthly and annual storage and flows (in inches) for reservoirs above Chickamauga and Kentucky Dams, and a summary of Reservoir Operations. Tables of monthly and annual storage and flows (in inches) for the principal Tennessee River Basin tributary projects are included at the end of their respective annual operations summary. Individual plottings of midnight reservoir elevations are included for the principal tributary storage reservoirs and Normandy Reservoir. Group charts are included showing midnight reservoir elevations for other tributary reservoirs, the Tennessee River reservoirs, and the principal Cumberland Basin reservoirs.

  7. 300-Myr-old magmatic CO2 in natural gas reservoirs of the west Texas Permian basin.

    PubMed

    Ballentine, C J; Schoell, M; Coleman, D; Cain, B A

    2001-01-18

    Except in regions of recent crustal extension, the dominant origin of carbon dioxide in fluids in sedimentary basins has been assumed to be from crustal organic matter or mineral reactions. Here we show, by contrast, that Rayleigh fractionation caused by partial degassing of a magma body can explain the CO2/3He ratios and delta13C(CO2) values observed in CO2-rich natural gases in the west Texas Val Verde basin and also the mantle 3He/22Ne ratios observed in other basin systems. Regional changes in CO2/3He and CO2/CH4 ratios can be explained if the CO2 input pre-dates methane generation in the basin, which occurred about 280 Myr ago. Uplift to the north of the Val Verde basin between 310 and 280 Myr ago appears to be the only tectonic event with appropriate timing and location to be the source of the magmatic CO2. Our identification of magmatic CO2 in a foreland basin indicates that the origin of CO2 in other mid-continent basin systems should be re-evaluated. Also, the inferred closed-system preservation of natural gas in a trapping structure for approximately 300 Myr is far longer than the residence time predicted by diffusion models. PMID:11201738

  8. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect

    Scott Hara

    1998-03-03

    The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and

  9. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect

    Scott Hara

    1997-08-08

    The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and

  10. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah. Technical progress report, January 1--March 31, 1996

    SciTech Connect

    Allison, M.L.

    1996-04-30

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}-)flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  11. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Allison, M.L.

    1995-07-14

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  12. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Allison, M.L.

    1995-05-30

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  13. Minimum average 7-day, 10-year flows in the Hudson River basin, New York, with release-flow data on Rondout and Ashokan reservoirs

    USGS Publications Warehouse

    Archer, Roger J.

    1978-01-01

    Minimum average 7-day, 10-year flow at 67 gaging stations and 173 partial-record stations in the Hudson River basin are given in tabular form. Variation of the 7-day, 10-year low flow from point to point in selected reaches, and the corresponding times of travel, are shown graphically for Wawayanda Creek, Wallkill River, Woodbury-Moodna Creek, and the Fishkill Creek basins. The 7-day, 10-year low flow for the Saw Kill basin, and estimates of the 7-day, 10-year low flow of the Roeliff Jansen Kill at Ancram and of Birch Creek at Pine Hill, are given. Summaries of discharge from Rondout and Ashokan Reservoirs, in Ulster County, are also included. Minimum average 7-day, 10-year flow for gaging stations with 10 years or more of record were determined by log-Pearson Type III computation; those for partial-record stations were developed by correlation of discharge measurements made at the partial-record stations with discharge data from appropriate long-term gaging stations. The variation in low flows from point to point within the selected subbasins were estimated from available data and regional regression formula. Time of travel at these flows in the four subbasins was estimated from available data and Boning's equations.

  14. Establishing the Relationship between Fracture-Related Dolomite and Primary Rock Fabric on the Distribution of Reservoirs in the Michigan Basin

    SciTech Connect

    G. Michael Grammer

    2006-09-30

    This topical report covers the year 2 of the subject 3-year grant, evaluating the relationship between fracture-related dolomite and dolomite constrained by primary rock fabric in the 3 most prolific reservoir intervals in the Michigan Basin (Ordovician Trenton-Black River Formations; Silurian Niagara Group; and the Devonian Dundee Formation). The characterization of select dolomite reservoirs has been the major focus of our efforts in Phase II/Year 2. Fields have been prioritized based upon the availability of rock data for interpretation of depositional environments, fracture density and distribution as well as thin section, geochemical, and petrophysical analyses. Structural mapping and log analysis in the Dundee (Devonian) and Trenton/Black River (Ordovician) suggest a close spatial relationship among gross dolomite distribution and regional-scale, wrench fault related NW-SE and NE-SW structural trends. A high temperature origin for much of the dolomite in the 3 studied intervals (based upon initial fluid inclusion homogenization temperatures and stable isotopic analyses,) coupled with persistent association of this dolomite in reservoirs coincident with wrench fault-related features, is strong evidence for these reservoirs being influenced by hydrothermal dolomitization. For the Niagaran (Silurian), a comprehensive high resolution sequence stratigraphic framework has been developed for a pinnacle reef in the northern reef trend where we had 100% core coverage throughout the reef section. Major findings to date are that facies types, when analyzed at a detailed level, have direct links to reservoir porosity and permeability in these dolomites. This pattern is consistent with our original hypothesis of primary facies control on dolomitization and resulting reservoir quality at some level. The identification of distinct and predictable vertical stacking patterns within a hierarchical sequence and cycle framework provides a high degree of confidence at this point

  15. Geothermal reservoir assessment: Northern Basin and Range Province, Stillwater prospect, Churchill County, Nevada. Final report, April 1979-July 1981

    SciTech Connect

    Ash, D.L.; Dondanville, R.F.; Gulati, M.S.

    1981-08-01

    Union Oil Company of California drilled two exploratory geothermal wells in the Stillwater geothermal prospect area in northwestern Nevada to obtain new subsurface data for inclusion in the geothermal reservoir assessment program. Existing data from prior investigations, which included the drilling of four earlier deep temperature gradient wells in the Stillwater area, was also provided. The two wells were drilled to total depths of 6946 ft and 10,014 ft with no significant drilling problems. A maximum reservoir temperature of 353 F was measured at 9950 ft. The most productive well flow tested at a rate of 152,000 lbs/hr with a wellhead temperature of 252 F and pressure of 20 psig. Based upon current economics, the Stillwater geothermal prospect is considered to be subcommercial for the generation of electrical power. This synopsis of the exploratory drilling activities and results contains summary drilling, geologic, and reservoir information from two exploratory geothermal wells.

  16. Pore size and pore throat types in a heterogeneous dolostone reservoir, Devonian Grosmont formation, western Canada sedimentary basin

    SciTech Connect

    Luo, P.; Machel, H. G.

    1995-11-01

    The Devonian Grosmont Formation in northeastern Alberta, Canada, is a giant heavy-oil reservoir. The main reservoir rocks are dolomitized and karstified platform and ramp carbonates, and the best reservoir facies occur in the upper Grosmont (UGM) units 3 and 2. In these units, reservoir properties are highly heterogeneous. Hand specimen, thin section, UV, and SEM petrography, as well as grading scales, mercury capillary pressure curve analysis, and statistics, have been used to characterize reservoir heterogeneity. Our investigation led to a new pore size classification for carbonate reservoirs; this new classification has four pore sizes: microporosity (pore diameters <1 {mu}m), mesoporosity (pore diameters 1-1000 {mu}m), macroporosity (pore diameters 1-256 mm), and megaporosity (pore diameters >256 mm). A combination of microscopic observations and capillary pressure curve characteristics led to the recognition of four pore throat texture types on the microporosity scale, and to five types on the mesoporosity scale. Microporosity pore types include (1) intracrystal dissolution porosity, (2) pervasive intercrystal and intracrystal dissolution porosity, (3) intergranular and/or intercrystal porosity in grainstones, and (4) primary or solution microporosity in mud matrix (only in limestones). Mesoporosity pore types include (1) intercrystal porosity, (2) solution-enhanced intercrystal porosity, (3) oversized porosity, (4) intragranular solution porosity, and (5) intergranular solution porosity. Some of these types are homogeneous (e.g., non-fabric selective dissolution porosity and intercrystal primary porosity), whereas others are heterogeneous. Generally, hydrocarbon recovery efficiency is good in the homogeneous pore throat types, but poor in the heterogeneous types.

  17. Tectonic Setting and Characteristics of Natural Fractures in MesaVerde and Dakota Reservoirs of the San Juan Basin

    SciTech Connect

    LORENZ,JOHN C.; COOPER,SCOTT P.

    2000-12-20

    The Cretaceous strata that fill the San Juan Basin of northwestern New Mexico and southwestern Colorado were shortened in a generally N-S to NN13-SSW direction during the Laramide orogeny. This shortening was the result of compression of the strata between southward indentation of the San Juan Uplift at the north edge of the basin and northward to northeastward indentation of the Zuni Uplift from the south. Right-lateral strike-slip motion was concentrated at the eastern and western basin margins of the basin to form the Hogback Monocline and the Nacimiento Uplift at the same time, and small amounts of shear may have been pervasive within the basin as well. Vertical extension fractures, striking N-S to NNE-SSW with local variations (parallel to the Laramide maximum horizontal compressive stress), formed in both Mesaverde and Dakota sandstones under this system, and are found in outcrops and in the subsurface of the San Juan Basin. The immature Mesaverde sandstones typically contain relatively long, irregular, vertical extension fractures, whereas the quartzitic Dakota sandstones contain more numerous, shorter, sub-parallel, closely spaced, extension fractures. Conjugate shear planes in several orientations are also present locally in the Dakota strata.

  18. Basins and thrust belts in western Turkey: Tectonic history and hydrocarbons potential

    SciTech Connect

    Bird, P.R.; Johns, C.C.; Clark-Lowes, D.D. )

    1990-05-01

    Western Turkey consists of a number of tectonic terranes joined together by a network of suture zones. The terranes originated as microcontinental plates that rifted away from the continental margins forming the northern and southern boundaries of the Tethyan sea. These micro-continents were united by a series of collisions beginning in the Late Triassic and ending in the Miocene, with the final closure of the Tethyan sea. The sedimentary cover of the microcontinents consists of Paleozoic and Mesozoic passive margin and rift basin sequences containing numerous potential source and reservoir intervals. Most of these sequences show affinities with Gondwanaland, with the notable exception of the Istanbul nappe, which is strongly Laurasian in character. Forearc basin sequences were also deposited on the margins of the microcontinents during early Tertiary plate convergence. Ensuing continental collisions resulted in compressional deformation of sedimentary cover sequences. The intensity of deformation ranged from basin inversion producing numerous potential hydrocarbon traps, to large-scale overthrusting. Following continental suturing, continued compression in eastern Turkey has been accommodated since the Miocene by westward escape of continental lithosphere between the North and South Anatolian transform faults. Neotectonic pull-apart basins formed in response to these movements, accumulating large thicknesses of Miocene-Pliocene carbonates and clastic sediments. Potential reservoirs in the Neotectonic basins may be sourced either in situ or from underlying Paleozoic and Mesozoic source rocks that remain within the hydrocarbon generating window today.

  19. Oil exploration in nonmarine rift basins of interior Sudan

    SciTech Connect

    Schull, T.J.

    1984-04-01

    In early 1975 Chevron Overseas Petroleum Inc. commenced a major petroleum exploration effort in previously unexplored interior Sudan. With the complete cooperation of the Sudanese Government, Chevron has acquired a vast amount of geologic and geophysical data during the past 9 years. These data include extensive aeromagnetic and gravity surveys, 25,000 mi (40,200 km) of seismic data, and the results of 66 wells. This information has defined several large rift basins which are now recognized as a major part of the Central African rift system. The sedimentary basins of interior Sudan are characterized by thick Cretaceous and Tertiary nonmarine clastic sequences. Over 35,000 ft (10,600 m) of sediment have been deposited in the deepest trough, and extensive basinal areas are underlain by more than 20,000 ft (6100 m) of sediment. The depositional sequence includes thick lacustrine shales and claystones, flood plain claystones, and lacustrine, fluvial, and alluvial sandstones and conglomerates. Those lacustrine claystones which were deposited in an anoxic environment provide oil-prone source rocks. Reservoir sandstones have been found in a wide variety of nonmarine sandstone facies. The extensional tectonism which formed these basins began in the Early Cretaceous. Movement along major fault trends continued intermittently into the Miocene. This deformation resulted in a complex structural history which led to the formation of several deep fault-bounded troughs, major interbasin high trends, and complex basin flanks. This tectonism has created a wide variety of structures, many of which have become effective hydrocarbon traps.

  20. Muddy and dolomitic rip-up clasts in Triassic fluvial sandstones: Origin and impact on potential reservoir properties (Argana Basin, Morocco)

    NASA Astrophysics Data System (ADS)

    Henares, Saturnina; Arribas, Jose; Cultrone, Giuseppe; Viseras, Cesar

    2016-06-01

    The significance of rip-up clasts as sandstone framework grains is frequently neglected in the literature being considered as accessory components in bulk sandstone composition. However, this study highlights the great value of muddy and dolomitic rip-up clast occurrence as: (a) information source about low preservation potential from floodplain deposits and (b) key element controlling host sandstone diagenetic evolution and thus ultimate reservoir quality. High-resolution petrographic analysis on Triassic fluvial sandstones from Argana Basin (T6 and T7/T8 units) highlights the significance of different types of rip-up clasts as intrabasinal framework components of continental sediments from arid climates. On the basis of their composition and ductility, three main types are distinguished: (a) muddy rip-up clasts, (b) dolomitic muddy rip-up clasts and (c) dolomite crystalline rip-up clasts. Spatial distribution of different types is strongly facies-related according to grain size. Origin of rip-up clasts is related to erosion of coeval phreatic dolocretes, in different development stages, and associated muddy floodplain sediments. Cloudy cores with abundant inclusions and clear outer rims of dolomite crystals suggest a first replacive and a subsequent displacive growth, respectively. Dolomite crystals are almost stoichiometric. This composition is very similar to that of early sandstone dolomite cement, supporting phreatic dolocretes as dolomite origin in both situations. Sandstone diagenesis is dominated by mechanical compaction and dolomite cementation. A direct correlation exists between: (1) muddy rip-up clast abundance and early reduction of primary porosity by compaction with irreversible loss of intergranular volume (IGV); and (2) occurrence of dolomitic rip-up clasts and dolomite cement nucleation in host sandstone, occluding adjacent pores but preserving IGV. Both processes affect reservoir quality by generation of vertical and 3D fluid flow baffles and

  1. Detailed petrophysical and geophysical characterization of core samples from the potential caprock-reservoir system in the Sulcis Coal Basin (South-Western Sardinia - Italy).

    NASA Astrophysics Data System (ADS)

    Fais, Silvana; Ligas, Paola; Cuccuru, Francesco; Maggio, Enrico; Plaisant, Alberto; Pettinau, Alberto

    2015-04-01

    The evaluation of the CO2 geologic storage site requires a robust experimental database especially with respect to spatial petrophysical heterogeneities. The integrated analysis of minero-petrographical, physical and geophysical parameters (e.g. longitudinal and transversal propagation velocity, VpVs ratio, dynamic elastic moduli, etc.) of the rocks that make up a caprock-reservoir system can substantially reduce the geologic uncertainity in the storage site characterization and in the geological and numerical modelling for the evaluation of the CO2 storage capacity. In this study the Middle Eocene - Lower Oligocene Cixerri Formation made up of siliciclastic rocks and the Upper Thanetian - Lower Ypresian Miliolitico Carbonate Complex in the Sulcis coal basin (South-Western Sardinia - Italy) have been identified respectively as potential caprock and reservoir for the CO2 storage. The petrographical, physical and geophysical parameters of the above mentioned geological Formations (Cixerri and Milolitico) were investigated to improve the geological model aimed at verifying the geological CO2 storage capacity within the carbonate reservoir rocks, in order to guarantee an efficient use of the reservoir, and to improve the numerical simulation of CO2 behaviour in the short, medium and long term after its injection in single or multiple wells. . The petrographical characteristics of the caprock-reservoir rocks were determined by optical and SEM analyses of core samples representing the different facies of the Cixerri Formation and of the Miliolitico Carbonate Complex, provided by Carbosulcis S.p.A.. Porosity analysis was completed by mercury porosimeter determinations which also provided quantitative information on the permeability of the study rocks and on the tortuosity of their pore system. Further physical properties, such as dry and saturated density and porosity, and water absorption were determined on the cylindrical core samples of intact rocks (ISRM, 1979) from

  2. Operation of TVA reservoirs. Annual 1979

    SciTech Connect

    Not Available

    1982-04-01

    Data for 1979 on the operation of TVA reservoirs for flood control, power generation and navigational purposes are reported. The operation of TVA, ALCOA, and Cumberland Basin reservoirs that were scheduled daily by Reservoir Operations Branch personnel during calendar year 1979 is described. These include all TVA reservoirs, eight reservoirs in the Cumberland River Basin owned by the US Army, Corps of Engineers, and six reservoirs in the Tennessee River Basin owned by ALCOA. In addition, storage and flow computations include Walters Reservoir, operated by Carolina Power and Light Company; and Woods Reservoir, operated by the US Air Force. Any reference in this report to all reservoirs in the Tennessee or Cumberland River Basins refer to these specific reservoirs. Tabulated data are included on: reservation elevation and storage volume; turbine and gate discharges; and head water elevation. (LCL)

  3. Reservoir framework and exploration potential of the Cleveland Formation (Western Anadarko Basin) using a sequence-stratigraphic model

    SciTech Connect

    Hentz, T.F. )

    1993-09-01

    The Upper Pennsylvanian (lower Missourian) Cleveland Formation has yielded more than 435 bcf on natural gas and more than 18.2 MM bbl of oil from a seven-county tight-gas area in the northeastern Texas panhandle. Regional study of the Cleveland and underlying Desmoinesian Marmaton Group siliciclastics established the sequence-stratigraphic framework to clarify the vertical and areal occurrence of Cleveland reservoirs, seals, and source rocks. Regionally distinctive facies stacking patterns in the study interval compose a sequence-stratigraphic framework of several westerly sourced systems tracts and three depositional sequences. Sequence 1 (S1) is characterized by landward- and seaward-stepping deltaic/strand-plain cycles (parasequences) deposited on the top-of-Oswego type 1 sequence boundary. A relative sea level drop with the onset of S2 deposition initiated development of a sand-rich incised-valley system (LST:iv) in the middle Cleveland that extended basinward of the lower Cleveland shelf break. Subsequent coastal onlap by thin deltaic systems of the overlying TST marks the start of decreased sediment influx during late Cleveland deposition, resulting in thinning of parasequences and an increase in carbonate beds in upper S2 and S3. Stratigraphic traps and pinch out of reservoir facies within small, southeast-plunging anticlines compose most traps in the producing area. Proximal delta-front and fluvial sandstones of the Cleveland upper HST and overlying LST:iv, respectively, are the primary reservoirs. The high-TOC, top-of-Marmaton marine-condensed section and thick prodeltaic and lower distal delta-front shales within the lower Cleveland HST are the probable source rocks. Distal deltaic shales of the middle Cleveland TST form most reservoir seals. Potential new reservoirs should be targeted at the updip terminations of systems tracts, at lapout positions of individual sand-rich HST and TST parasequences, and along LST:iv valley-margin stratal terminations.

  4. Petroleum Systems in the Austral Basin

    SciTech Connect

    Robbiano, J.; Arbe, H.

    1996-08-01

    The aggressive exploration activities pursued over the past five years, both onshore and offshore, have contributed to increase our knowledge about how the Petroleum Systems functioned within the basin. Three main Petroleum Systems were identified, and referred to as Jurassic, Lower Cretaceous and Aptian-Tertiary Petroleum Systems. The Jurassic P.S. is restricted to the volcanic, volcaniclastic and clastic sequences (known as Tobifera Series) related to the opening of the South Atlantic Ocean. Lacustrine to marine black shales give good source rock, locally developed; oil and gas, poorly developed, was trapped in fluvial to littoral sandstones, related to the same sedimentary cycle. The Lower Cretaceous P.S. represents the main petroleum system of the Austral Basin, and it is related to the main oil and gas accumulations today known within the basin. The lateral relation between the marine source rocks (Palermo Aike, Inoceramus Inferior, Pampa Rincon Formations) and the continental to littoral Springhill Formation in a transgressive signature indicates the extent of the migration from the oil kitchen, in the present deep location of the basin, to the shallow eastern flank of the Austral Basin. The cumulative production and reserves of this efficient petroleum system are more than 400 MM of petroleum and gas equivalent. The Aptian-Tertiary P.S. is related to the Margas Verdes source rock that has fed younger reservoirs which have developed since the Upper Cretaceous (?)-Palaeocene and could also feed Upper Oligocene sandstones, associated with low-stand system tracts. Commercial accumulations were tested in Campo Boleadoras and Maria Ines fields, towards the deepest zones of the Austral Basin. This petroleum system will figure prominently in exploration activities over the coming years, specifically in those areas where the main petroleum system is not laterally efficient.

  5. The Sirte Basin province of Libya; Sirte-Zelten total petroleum system

    USGS Publications Warehouse

    Ahlbrandt, Thomas S.

    2001-01-01

    The Sirte (Sirt) Basin province ranks 13th among the world?s petroleum provinces, having known reserves of 43.1 bil-lion barrels of oil equivalent (36.7 billion barrels of oil, 37.7 tril-lion cubic feet of gas, 0.1 billion barrels of natural gas liquids). It includes an area about the size of the Williston Basin of the north-ern United States and southern Canada (?490,000 square kilome-ters). The province contains one dominant total petroleum system, the Sirte-Zelten, based on geochemical data. The Upper Cretaceous Sirte Shale is the primary hydrocarbon source bed. Reservoirs range in rock type and age from fractured Precam-brian basement, clastic reservoirs in the Cambrian-Ordovician Gargaf sandstones, and Lower Cretaceous Nubian (Sarir) Sand-stone to Paleocene Zelten Formation and Eocene carbonates commonly in the form of bioherms. More than 23 large oil fields (>100 million barrels of oil equivalent) and 16 giant oil fields (>500 million barrels of oil equivalent) occur in the province. Abstract 1 Production from both clastic and carbonate onshore reservoirs is associated with well-defined horst blocks related to a triple junc-tion with three arms?an eastern Sarir arm, a northern Sirte arm, and a southwestern Tibesti arm. Stratigraphic traps in combina-tion with these horsts in the Sarir arm are shown as giant fields (for example, Messla and Sarir fields in the southeastern portion of the province). Significant potential is identified in areas marginal to the horsts, in the deeper grabens and in the offshore area. Four assessment units are defined in the Sirte Basin prov-ince, two reflecting established clastic and carbonate reservoir areas and two defined as hypothetical units. Of the latter, one is offshore in water depths greater than 200 meters, and the other is onshore where clastic units, mainly of Mesozoic age, may be res-ervoirs for laterally migrating hydrocarbons that were generated in the deep-graben areas. The Sirte Basin reflects significant rifting

  6. Challenges modeling clastic eruptions: applications to the Lusi mud eruption, East Java, Indonesia.

    NASA Astrophysics Data System (ADS)

    Collignon, Marine; Schmid, Daniel; Mazzini, Adriano

    2016-04-01

    Clastic eruptions involve brecciation and transport of the hosting rocks by ascent fluids (gas and/or liquids), resulting in a mixture of rock clasts and fluids (i.e. mud breccia). This kind of eruptions is often associated with geological features such as mud volcanoes, hydrothermal vents or more generically with piercement structures. Over the past decades, several numerical models, often based on those used in volcanology, have been employed to better understand the behavior of such clastics systems. However, modeling multiphase flow is challenging, and therefore most of the models are considering only one phase flow. Many chemical, mechanical and physical aspects remain still poorly understood. In particular, the rheology of the fluid is one of the most important aspects, but also the most difficult to characterize. Experimental flow curves can be obtained on the finest fraction, but coarser particles (> 1mm) are usually neglected. While these experimental measurements usually work well on magma, they are much more difficult to perform when clay minerals are involved. As an initial step, we use analytical and simplified numerical models (flow in a pipe) to better understand the flow dynamics within a main conduit connected to an overpressured reservoir. The 2D numerical model solves the stokes equations, discretized on a finite element mesh. The solid phase is treated as rigid particles in suspension in the liquid. The gaseous phase (methane and carbon dioxide) is treated in an analytical manner using the equations of state of the H2O-CO2 and H2O-CH4 systems. Here, we present an overview of the state-of-the-art in modeling clastic eruptions as well as the limitations and challenges of such numerical models. We also discuss the challenges associated to the specific case of Lusi. In particular the difficulty to characterize the mud properties and the technical challenges associated with the acquisition of new data and development of more sophisticated models

  7. Hydrocarbon habitat of San Martin and Cashiriari gas/condensate discoveries, southern Ucayali basin of Peru

    SciTech Connect

    Mohler, H.P.

    1989-03-01

    Fifteen trillion ft/sup 3/ of wet gas in place containing some 800 million bbl of associated liquids have been discovered in the San Martin and Cashiriari anticlines, which are located in the Subandean thrusted foldbelt of the Southern Ucayali basin of Peru. Ultimate recoverable volumes are estimated at 10 trillion ft/sup 3/ of gas and 500 million bbl of liquids including condensate (C5+) and LPG (C3/C4). Most of these potentially recoverable reserves are located in the Cashiriari structure (80% of the gas and 70% of the liquids). They were encountered in fair-excellent sandstone reservoirs of Early Permian and Late Cretaceous age and are thought to be derived from Carboniferous coaly shale source rocks. The Paleozoic (pre-Andean) sedimentary megacycle is represented by deeper shallow marine clastics of Ordovician to Early Carboniferous age (5000 m maximum), including Silurian glaciomarine deposits, overlain by up to 1200 m of Permian-Carboniferous platform carbonates and 600-1000( ) m of Lower Permian-lower Upper Permian coastal-continental clastics. The Mesozoic-Tertiary (Andean) megacycle is represented by a Campanian-Maastrichtian transgressive marine clastic/carbonate and overlying regressive clastic sequence (450 m maximum), followed by several thousand meters of Molasse-type continental infill of the Tertiary foredeep, which was created by the crustal loading in the wake of the compressional Andean orogeny (Peru, Inca, and Quechua phases). Late Tertiary folding and thrusting of the sub-Andean belt was superseded by regional Pleistocene uplift, and parts of the foreland continue to subside.

  8. Increasing Heavy Oil Reserves in the Wilmington Oil Field through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect

    City of Long Beach; David K.Davies and Associates; Tidelands Oil Production Company; University of Southern California

    1999-06-25

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California. This is realized through the testing and application of advanced reservoir characterization and thermal production technologies. It is hoped that the successful application of these technologies will result in their implementation throughout the Wilmington Field and through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively insufficient because of several producability problems which are common in SBC reservoir; inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves.

  9. Inverse modelling of the reversely magnetized, shallow plumbing system hosting oil reservoirs of the Auca Mahuida volcano (Payeina retroarc, Neuquén Basin, Argentina)

    NASA Astrophysics Data System (ADS)

    Paine, John; De Ritis, Riccardo; Ventura, Guido; Longo, Mariana; Ravat, Dhananjay; Speranza, Fabio; Chiappini, Massimo

    2016-02-01

    The Auca Mahuida volcano (2.03-0.88 Ma) located east of the Andean thrust front in the Neuquén basin (Argentina) hosts an oil system of thermogenic origin and is affected by the NW-SE striking-faults. Intrusive bodies and the underlying Jurassic sediments constitute the reservoir rocks. Aeromagnetic data collected in the Auca Mahuida area detected multiple dipolar magnetic anomalies, many of which have reverse polarity. Palaeomagnetic measurements on rock samples collected in the field together with available age determinations indicate that the reversely magnetized sources were mainly emplaced during the Matuyama reverse polarity chron while the normal polarity sources were emplaced during the Olduvai and/or Jaramillo subchrons. The location and geometry of the intrusive bodies is poorly known and the customary magnetic inversion is rendered difficult because of multiple natural remanent magnetization directions. To address these difficulties, a voxel inversion was applied to model the vector residual magnetic intensity (VRMI) transformation of the observed total magnetic intensity data. The modelling showed a 1.5 km deep, subcircular ring-shaped intrusion below the summit of the volcano and a series of NW-SE elongated, fault-controlled intrusive bodies to depths up to 3-4 km. Our results show that magnetic data and VRMI modelling help resolve the geometry of the shallow plumbing system of volcanoes with remanently magnetized sources, and estimate the depth and geometry of potential oil reservoirs in volcanic areas.

  10. Integrated hydrological modelling of small- and medium-sized water storages with application to the upper Fengman Reservoir Basin of China

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Peng, Y.; Chu, J.; Shoemaker, C. A.

    2012-03-01

    Hydrological simulation in regions with a large number of water storages is difficult due to the inaccurate water storage data, including both topologic parameters and operational rules. To address this issue, this paper presents an improved version of SWAT2005 (Soil and Water Assessment Tool, version 2005) using the satellite-based dataset Landsat, an empirical storage classification method, and some empirical relationships to estimate water storage and release from the various levels of flow regulation facilities. The improved SWAT2005 is characterised by three features: (1) a realistic representation of the relationships between the water surface area and volume of each type of water storage, ranging from small-sized ponds for water flow regulation to large-sized and medium-sized reservoirs for water supply and hydropower generation; (2) water balance and transport through a network combining both sequential and parallel streams and storage links; and (3) calibrations for the physical parameters and the human interference parameters. Both the original and improved SWAT2005 are applied to the upper Fengman Reservoir Basin, and the results of these applications are compared. The improved SWAT2005 accurately models small- and medium-sized storages, indicating a significantly improved performance from that of the original model in reproducing streamflows.

  11. Oil biodegradation by Bacillus strains isolated from the rock of an oil reservoir located in a deep-water production basin in Brazil.

    PubMed

    da Cunha, Claudia Duarte; Rosado, Alexandre S; Sebastián, Gina V; Seldin, Lucy; von der Weid, Irene

    2006-12-01

    Sixteen spore forming Gram-positive bacteria were isolated from the rock of an oil reservoir located in a deep-water production basin in Brazil. These strains were identified as belonging to the genus Bacillus using classical biochemical techniques and API 50CH kits, and their identity was confirmed by sequencing of part of the 16S rRNA gene. All strains were tested for oil degradation ability in microplates using Arabian Light and Marlin oils and only seven strains showed positive results in both kinds of oils. They were also able to grow in the presence of carbazole, n-hexadecane and polyalphaolefin (PAO), but not in toluene, as the only carbon sources. The production of key enzymes involved with aromatic hydrocarbons biodegradation process by Bacillus strains (catechol 1,2-dioxygenase and catechol 2,3-dioxygenase) was verified spectrophotometrically by detection of cis,cis-muconic acid and 2-hydroxymuconic semialdehyde, and results indicated that the ortho ring cleavage pathway is preferential. Furthermore, polymerase chain reaction (PCR) products were obtained when the DNA of seven Bacillus strains were screened for the presence of catabolic genes encoding alkane monooxygenase, catechol 1,2-dioxygenase, and/or catechol 2,3-dioxygenase. This is the first study on Bacillus strains isolated from an oil reservoir in Brazil. PMID:16896598

  12. Characterizing an unconventional reservoir with conventional seismic data: A case study using seismic inversion for the Vaca Muerta Formation, Neuquen Basin, Argentina

    NASA Astrophysics Data System (ADS)

    Fernandez-Concheso, Jorge E.

    Reservoir characterization for unconventional shale plays ideally requires multi-component, wide-azimuth, long-offset surface seismic data. These data are generally not available, especially in exploration or pre-development stages. Furthermore, it is common to have only a few wells over a large area, along with non-existent or scarce microseismic, engineering and production data. This thesis presents a methodology and workflow to deal with these circumstances of limited data availability. By using a narrow-azimuth, regional P-wave seismic volume and integrating it with wireline logs, cuttings and PLT data, the variability in the geomechanical properties of the Vaca Muerta Formation in Argentina's Neuquen Basin, and their relationships with lithology, stress state and total organic content, were analyzed. Post-stack and pre-stack inversions were performed on the seismic volume. The un- certainties inherent from limited well control in the estimation of elastic properties were investigated using blind well testing. Sensitivity and error analysis was conducted on post-stack vs pre-stack derived P-impedance, the choice of the inversion algorithm (model-based vs sparse-spike) and the definition of the low frequency model (simple kriging model vs complex model derived from multi-attribute stepwise regression) were examined. Also, the use of isotropic AVA equations to approximate the anisotropic (VTI) behaviour of the reservoir was evaluated, using estimates of Thomsen parameters and simple AVA modelling. The integration of the inversion results with the petrophysical analysis and the mechanical stratigraphy work by Bishop (2015), suggests that the rock composition has the largest influence on the geomechanical behaviour of the reservoir. Overpressure is also a major driving factor in that it controls changes in elastic properties. Bishop's cluster analysis was used to identify good quality rock classes. The probabilistic interpretation of these rock classes from seismic

  13. Devonian shales of central Appalachian basin: geological controls on gas production

    SciTech Connect

    Lowry, P.H.; Hamilton-Smith, T.; Peterson, R.M. )

    1989-03-01

    Gas reserves of the Devonian shales of the Appalachian basin constitute a large, underdeveloped resource producing from fractured reservoirs. As part of ongoing Gas Research Institute research, K and A Energy Consultants, Inc., is identifying geological controls on gas production. Preliminary findings indicate that local gas production is controlled by a combination of structure and stratigraphy. Regional geological review indicates that Devonian sedimentation and structure is influenced by repeated reactivation of basement faults. Site-specific geologic studies indicate that depositional and structural mechanisms vary substantially throughout the basin. Gas production on the eastern margin of the producing area is controlled by an Alleghenian thrust front located by Grenville normal faults. High-capacity wells are associated with tear faults in the thrust sheets. To the southwest, deformation is controlled by both Grenville and Rome trough basement faults. Reactivation of these faults during later orogenic events produced a complex of high-angle reverse and strike-slip faults. Fracturing in the Devonian shales is produced by shearing and flexure associated with these structures. Syndepositional movement of the basement structures influenced the deposition of coarser grained turbidites and tempestites. The combination of fractures and coarser clastic beds provides effective reservoir systems. The shale contains abundant organic material consisting of terrestrial plant debris and marine algal remains. Thermal maturation of this material produced gas which charged the lower reservoir systems. Exploration along reactivated structural trends is an effective strategy for locating Devonian shale gas accumulations. This approach may also apply to other producing strata in the basin.

  14. [An example of anthropogeneous succession in the ecosystem of the Verkhnetulomsky Water Reservoir (the Tuloma River Basin, the Kola region)].

    PubMed

    Mitenev, V K; Shul'man, B S; Karasev, A B; Ponomarev, S V

    2010-01-01

    The destruction of initial biocenoses in the ecosystem of the Verkhnetulomsky Water Reservoir caused deep succession processes. As a result of the loss of the amphipod group in the benthos, replacement of the trophic links in fishes took place in the biocenosis of the reservoir. Benthos feeders changed over to the feeding on zooplankton and, as a result, became the constituent of the predators'diet. The structure of parasitic systems has changed. The parasites using amphipods as intermediate hosts have been and, on the contrary, the abundance of parasites infesting fishes through feeding of the latter on zooplankton has increased. Among the parasites, Triaenophorus crassus Forel became the cause of the appearance of stable triaenophorosis focus. PMID:21061595

  15. Maps showing petroleum exploration intensity and production in major Cambrian to Ordovician reservoir rocks in the Anadarko Basin

    USGS Publications Warehouse

    Henry, Mitch; Hester, Tim

    1996-01-01

    The Anadarko basin is a large, deep, two-stage Paleozoic basin (Feinstein, 1981) that is petroleum rich and generally well explored. The Anadarko basin province, a geogrphic area used here mostly for the convenience of mapping and data management, is defined by political boundaries that include the Anadarko basin proper. The boundaries of the province are identical to those used by the U.S. Geological Survey (USGS) in the 1995 National Assessment of United Stated Oil and Gas Resources. The data in this report, also identical to those used in the national assessment, are from several computerized data bases including Nehring Research Group (NRG) Associates Inc., Significant Oil and Gas Fields of the United States (1992); Petroleum Information (PI), Inc., Well History Control System (1991); and Petroleum Information (PI), Inc., Petro-ROM: Production data on CD-ROM (1993). Although generated mostly in response to the national assessment, the data presented here arc grouped differently and arc displayed and described in greater detail. In addition, the stratigraphic sequences discussed may not necessarily correlate with the "plays" of the 1995 national assessment. This report uses computer-generated maps to show drilling intensity, producing wells, major fields, and other geologic information relevant to petroleum exploration and production in the lower Paleozoic part of the Anadarko basin province as defined for the U.S. Geological Survey's 1995 national petroleum assessment. Hydrocarbon accumulations must meet a minimum standard of 1 million barrels of oil (MMBO) or 6 billion cubic feet of gas (BCFG) estimated ultimate recovery to be included in this report as a major field or revoir. Mapped strata in this report include the Upper Cambrian to Lower Ordovician Arbuckle and Low Ordovician Ellenburger Groups, the Middle Ordovician Simpson Group, and the Middle to Upper Ordovician Viola Group.

  16. Prediction of reservoir quality and porosity basement in sandstones of the Pakawau and Kapuni groups, Taranaki basin, New Zealand - Preliminary results

    SciTech Connect

    Bloch, S.; Helmold, K.P. )

    1990-05-01

    Vitrinite reflectance porosity and porosity permeability relationships were established in 12 wells during a preliminary investigation of arkosic sandstones of the Pakawau and Kapuni groups (Late Cretaceous through Eocene) in the Taranaki basin of New Zealand. These relationships were used in conjunction with geohistory analysis to determine the economic basement and to predict porosity and permeability in the sandstones prior to drilling. Medium- to coarse-grained Kapuni and Pakawau sandstones, at vitrinite reflectance values of 0.65-0.70% R{sub 0} and higher, are not expected to have porosities and permeabilities greater than 10% and 1 md, respectively. Results obtained from a subsequently drilled well confirmed the validity of this approach. Meaningful reservoir quality predictions can be obtained only if (1) the lithological characteristics of the sandstones are accurately predicted from facies analysis, (2) the realistic input parameters, based on seismic stratigraphy and regional geologic interpretations, are used in basin modeling, and (3) the sandstones were not affected by hydrothermal activity associated with regional volcanism.

  17. Increasing heavy oil reserves in the Wilmington Oil Field through advanced reservoir characterization and thermal production technologies. Annual report, March 30, 1995--March 31, 1996

    SciTech Connect

    1997-09-01

    The objective of this project is to increase heavy oil reserves in a portion of the Wilmington Oil Field, near Long Beach, California, by implementing advanced reservoir characterization and thermal production technologies. Based on the knowledge and experience gained with this project, these technologies are intended to be extended to other sections of the Wilmington Oil Field, and, through technology transfer, will be available to increase heavy oil reserves in other slope and basin clastic (SBC) reservoirs. The project involves implementing thermal recovery in the southern half of the Fault Block II-A Tar zone. The existing steamflood in Fault Block II-A has been relatively inefficient due to several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery efficiency and reduce operating costs.

  18. Petroleum systems characterization and ages in the Neuquen Basin (Triassic-to-Tertiary), West-Central Andes, Argentina

    SciTech Connect

    Legarreta, L.; Gulisano, C.A.; Orchuela, I.; Minnti, S.A.

    1996-08-01

    The Neuquen Basin, implanted on the western margin of the South American Plate evolved from Late Triassic-Early Jurassic as a set of isolated troughs, some of them connected to the {open_quotes}Pacific Ocean,{close_quotes} to an intra-arc to back-arc marine setting in Early-Late Jurassic. At the present day, a 7-km-thick succession of clastics, carbonates, evaporates, and volcanic rocks is preserved in between the eastern side of the Andean folded belt and the South American hinterland, affected by gentle deformation. On the southeastern margin of the basin occurs a relatively complex structural trend, as a result of the inversion tectonics related to an E-W regional strike-slip, fault. Five source-rock intervals are documented, the oldest consists of dark shales accumulated in a lacustrine environment (L. Triassic-E. Jurassic) and the others contain Type I and II organic matter as a consequence of anoxic conditions associated with marine flooding events that took place during the Jurassic and Early Cretaceous. The presence of numerous reservoir levels (clastics, carbonates, and also sills) and many regional and local seal intervals (shales and evaporates) within the sedimentary pile, combined with a diverse structural style, allowed the oil and gas trapping. Hydrocarbons were generated in various kitchens working at different times, as result of the subsidence regime and geothermal gradient that diversely affected different regions of the Neuquen Basin.

  19. Reservoir quality and potential, National Petroleum Reserve in Alaska

    SciTech Connect

    Mowatt, T.C.; Seidlitz, A.; Gibson, C.; Bascle, R.; Dygas, J. )

    1991-03-01

    As part of the reservoir management, resource assessment, and planning programs of the U.S. Bureau of Land Management in Alaska, the oil and gas resource potential of the National Petroleum Reserve in Alaska (NPRA) is undergoing review in light of new technical information, as well as changing national and international socioeconomic conditions. Emphasis is on integration of geological, petrophysical, geophysical, and engineering information to provide a refined, more technically substantive knowledge base for resource assessment and management. Brookian clastic rocks - in particular the Nanushuk Group and underlying Torok/Topagoruk intervals - have been the principal horizons of concern. Petrologic-mineralogic characteristics have been reinvestigated, related to petrophysical parameters and wireline log responses, and integrated with available engineering data, for key wells within and peripheral to the NPRA. Particular attention has been directed to diagenetic relationships, effects on reservoir quality, and implications for untested portions of this sizable basin. Similar efforts have been directed to pre-Brookian strata as well. Only some 127 exploratory wells (all but one under government aegis) have been drilled within or adjacent to NPRA (a geographic area on the order of 37,000 mi{sup 2} - about the size of the state of Indiana), many only to shallow depths. In almost every well drilled to any appreciable depth in the area, there have been manifestations of the presence of hydrocarbons. The results to date are actually rather promising from a qualitative geologic-geochemical perspective, in terms of potential for significant resources to be present.

  20. The simulation of the sedimentary fill of basins and the characterization of hydrocarbon plays by an expert system

    SciTech Connect

    Strobel, J.S.

    1989-01-01

    This dissertation investigates the forward modeling of sedimentary basins using a simulation program, and the characterization of hydrocarbon fields or plays using an expert systems approach. The simulation program models processes associated with eustatic sea level, tectonic behavior, and rates of sediment accumulation in an attempt to explain the sediment geometries seen in a basin. The knowledge-based system, PLAYMAKER is designed as an interactive system to aid geologists in characterizing their fields or prospects. SEDPAK is designed as an interactive computer simulation tool. It erects models of sedimentary geometries by filling in a two-dimensional basin from both sides with a combination of clastic sediment and/or in situ and transported carbonate sediments. Clastic modeling includes sedimentary bypass and erosion and sedimentation in alluvial and coastal plains, marine shelf, basin slope and basin floor settings. Carbonate modeling includes progradation, the development of hard grounds, down slope aprons, keep up, catch up, back step and drowned reef facies as well as lagoonal and epeiric facies. Also included in the model are extensional vertical faulting of the basin, sediment compaction, and isostatic response to sediment loading. PLAYMAKER is an interactive query/response knowledge-based system that elicits field attributes and their qualities from the user in order to characterize a hydrocarbon play. The geologic model developed in PLAYMAKER describes a prospect in terms of its essential characteristics, such as basin type, structural style and history, location of the depositional setting, sediment type and geometry, facies model, reservoir quality, and source and seal potential. The system is implemented using MIDST, a rule-based expert system shell that incorporates uncertain reasoning based on the Dempster-Shafer framework.